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Abstract

Modeling real-time reservoir operations and developing optimal rules are formidable tasks
considering a number of issues that need to be addressed within optimization and simulation
models. The issues range from uncertain system inputs to implementation of operating
rules in real-time. This dissertation addresses some of these issues that are relevant at
different stages of real-time reservoir operation process. These issues are: (i) information
uncertainty; (i) system representation; and (iii) computational intractability. Real-time
operation models are developed in the present research for single and multiple reservoir

systems while addressing these issues in that order.

Uncertainty generally associated with system variables in a variety of forms is a main hurdle
in developing approaches for optimizing reservoir operations. Explicit and implicit stochas-
tic approaches based on traditional probability theory concepts cannot always handle all
the uncertain elements of reservoir operation. Approaches to handle imprecise information
are required as much as methodologies to address the issue of lack of information. The
former issue described as information uncertainty in this thesis is addressed using fuzzy
set theory. Mathematical programming models are developed under fuzzy environment to
handle imprecise and uncertain components of reservoir operation problem dominated by

an economic objective. The concept of compromise operating polices is proposed and its

utility is proved.

Representation of physical system in mathematical programming formulations affects the
extent to which the physics of the problem is captured and nature of the solutions that
can be obtained. Tradeoffs between exhaustive representation and optimal solutions can be

identified. Operation of a multiple reservoir system is considered to develop formulations



of varying degree of system representation. A Mixed Integer Non-Linear Programming
(MINLP) Model with binary variables is developed to a specific case of coupled hydropower
reservoirs. The model is considered to be innovative in handling the issue of hydraulic
coupling. In addition to this, a new model is also proposed for the same problem based

on a spatial decomposition approach. These formulations can be superior to the already

existing approaches in the literature.

Classical optimization techniques fail to provide solutions to mathematical programming
formulations whenever an exhaustive representation of the physical systems is considered.
This is due to large number of variables often part of formulations at finer time scales, spe-
cial conditions and variables. This problem is referred to as computational intractability.
To handle this issue, an optimization model based on a stochastic search technique (Simu-
lated Annealing) is proposed. The approach with few conceptual improvements is applied
to multiple reservoir operation problems plagued by dimensionality and computational in-
tractability issues. Application to standard benchmark and real-life problems confirms the

immense potential this approach holds for intractable reservoir operation problems.

Simulation models and a support system that aid the decision making process of reser-
voir operators in real-time are also developed as a part of research work. The simulation
models are developed using an Object-Oriented simulation environment that is based on
the principles of System Dynamics. A Decision Support System (DSS) encompassing all
the simulation and optimization models developed in the present research is designed and
implemented. Some features of these approaches are considered innovative and practical.

These approaches can help address the issues of actual implementation of operating rules

and bridge the gap between theory and practice.
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Chapter 1

Introduction

It isn’t that they can’t see the solution.
It is that they can’t see the problem.

- G. K. Chesterton

The Scandal of Father Brown, ‘The Point of a Pin’




Introduction 2

1.1 Problem Domain

Optimal operation of water resource systems, especially reservoirs, through the application
of systems analysis techniques has gained enormous attention in the past few decades.
This is evident from the large number of operation models (Yeh, 1985; Yakowitz, 1992;
Wurbs, 1993) already developed and being used for planning and operation of reservoir
systems. Research is still continued in the areas where the complexities associated with
the operation of the multiple reservoir systems overwhelm the capabilities of existing state-
of-the-art optimization tools in finding solutions. Better management of existing reservoir

systems in a sustainable way is also a motivation to develop improved and innovative

approaches.

Real-time operation of reservoir systems is a complex and challenging task. The main
hardships in developing optimal or near-optimal operation rules for reservoirs lie in dealing
with the complexity of typical systems, the uncertainty of the future inflows, demands and
multi-objective nature of the operation itself. Real-time or short-term operation in general
relies on forecasted information about various inputs to the system. These inputs are not
always realized in real-life situations, and therefore there is need for updating the system
status as and when information about the variables becomes available. Also, the models
should consider a realistic representation of the physical system, and be solvable in a time

frame acceptable for actual implementation of the operating policies.

A variety of optimization and simulation models have been developed in the past for long-,
short-term and real-time operation of single and multiple reservoir systems. Deterministic

and stochastic approaches were used to handle various issues arising out of the modeling
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process. Real-time operation has always received maximum attention of the researchers,
as it relates to the actual implementation of operation rules. Various issues relevant to
reservoir operation still exist that are needed to be addressed in some framework or the
other. These issues include : (i) uncertainty in the estimation of system variables (inflows,
demands, etc.); (ii) representation of the system (hydraulic and hydrologic) within the
optimization models; (iii) imprecision in the definition of economic objectives (through loss
functions); (iv) computational resources and time required for solution; (v) multi-period
and multiple reservoir operation problems and (vi) real-time implementation of operation
rules and scenario generation (policy analysis). While some of the existing models in
literature consider one or more issues indicated, research is still continued in the areas
where limitations due to the available optimization tools, methodologies and computational
resources exist. The present research work addresses some of these issues in the context of

real-time operation of single and multiple reservoir systems.

1.2 Problem Statement

Three major issues are discussed in the present thesis, apart from few minor ones relevant to
real-time 6peration of reservoir systems. These are: (i) information uncertainty; (ii) system
representation; and (iii) computational intractability. These issues are schematically shown
in the Fiigure 1.1 at various levels of reservoir planning and operation process at which they
are relevant and specific areas of concentration are indicated. The arrows represent inflows
to the reservoirs in the system and also in one way suggest the direction and the order in
which the issues are dealt in the present research. The order also preserves the priority of

these issues in any reservoir operation problem. The issues are addressed in the context
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of real-time operation moving from single to multiple reservoirs. This is because issues
relevant to a single reservoir may not be of any significance to the operation of a multiple
reservoir system and vice versa. All the issues that are dealt with in the present study are

in the context of real-time operation of reservoir systems.

s Inputs *e Uncertainty
Hydrologic Obyective
Mode! vanables Vanabtie ranges
ee Models « Representation
Simulation .
Optimization Forrmulation

« Computational
¢ Implementation Intractability
Real-time Operation
Complexity
Practical solutions
¢ Decisions Decision Support Systems

Figure 1.1: Scope of the present research

Issues related to uncertainty in system variables (i.e. inflows, demands, etc.) were ad-
dressed using implicit and explicit stochastic approaches in the past. With the increasing
attention towards reservoir operation with economic objectives (handled through loss func-
tions), issues related to uncertainty and imprecision in the definition of these objectives
have started to surface. This is mainly due to lack of complete information of some of the
variables. Recent studies have concentrated on methods to develop realistic loss or penalty
functions needed for inclusion of economic objectives within the operation models. How-

ever, extensive literature review suggests that issues related to uncertainty and imprecision
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involved in the derivation of these functions were not addressed before. Uncertainty in
the definition of loss functions (models with economic objectives) in the context of single

reservoir operation is addressed in this study.

The present research also concentrates on ways to deal with the exhaustive system repre-
sentation within mathematical programming formulations. In many of the research works
reported in the past, use of temporal or spatial decomposition, or both, has been made in
optimization models to alleviate the high dimensionality problems associated with opera-
tion of multi-period and multiple reservoir systems. This feature has helped in handling
many variables at a time. Also, the models developed were linked in such a way that a

periodic updating (or re-running) of higher level models is possible.

On the other hand, simplifications in the representation of the physical system can be made
to solve the problem using appropriate optimization tools. In case of the former method-
ology, realistic representation of the physical system is achieved, while the latter ensures
optimal solutions. Spatial decomposition methodology that is different from earlier works is
proposed in the present work to handle this issue. Issues relevant to realistic representation
of physical systems, hydraulic aspects of reservoir systems, computational resources and
time required for solution, in the context of multi-period and multiple hydropower reservoir

system, are addressed in the present research.

The complexity of mathematical programming models is expected to increase with the in-
crease in the number of variables that are needed to represent the physical system under
consideration. The dimensionality of the problem becomes an issue, when the formulations
are attempted for finer time scales as in real-time operations or when the system represen-

tation is exhaustive. The optimization models developed using traditional techniques are
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difficult to solve and become computationally intractable when plagued by this problem.
Simulation combined with an efficient search technique (Simulated Annealing) is identified
as superior approach for solving high dimensional, computer intractable reservoir operation

problems. A model based on this search technique proposed in the present study would

confirm this.

1.3 Motivation and Research Methodology

The motivation to develop the approaches and real-time operation models in the present
research are based on thesé questions : (i) how to handle uncertainty that cannot be
handled by classical probability theory; (ii) what level of system representation is acceptable
for some reservoir operation problems in mathematical programming formulations; (iii)
when formulations become computationally intractable and (iv) to what extent practical

implementation of models is possible. The last two aspects are a consequence of the second

issue.

The present research work attempts to address some of the issues that were not considered
in the optimization models developed in the past. In all the cases, approaches that are
conceptually better (in some way) than existing methodologies are proposed and experi-
mented with. In this process, operation problems relevant to single and multiple reservoirs
are handled and appropriate formulations are developed. Through out this research work,
the emphasis has been on the exhaustive and realistic representation of the physical system

within an optimization framework.
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Problems that cannot be addressed by classical probability are increasing as more and more
social, economic and ecological factors are being considered in developing rules for reservoir
operation in real-time. Inclusion of these aspects, will introduce uncertainty that needs to
be handled. Fuzzy set theory is embraced in the present study to handle this issue in a

mathematical programming framework.

In the past, various mathematical programming techniques have been used for solving
the operation problem of multiple reservoir systems. To obtain optimal solutions using
these techniques (which guarantee global optimal solutions), representation of the physical
systems was simplified. Various assumptions were made to represent the system in a
mathematical form that can be conveniently solved using the optimization tool. This
approach ensures optimal solutions but at the cost of unrealistic formulations. On the
other hand, complete physical representation with near-optimal solutions is acceptable for
most of the real-life problems. Two models developed in the present study for solution of
multi-period, multiple reservoir operation follow the latter approach that is conceptually
far more superior to the former methodology. Spatial decomposition in a way different from
earlier works is attempted in the present study. While the issues that plagued the multiple
reservoir operation models are bound to surface, the near-optimal solution guaranteed by

this approach is far superior than solution based on simplified and lumped representation

of the physical systems

The gap that exists between theory and practice is a motivation to develop additional tools
that can aid reservoir operators or managers when the models are implemented in the real-
life situations. When the time frame is too short to run optimization models, simulation
models are an appropriate choice for generation of scenarios based on actual conditions.

Often the optimal operating rules have to be refined for application in real-time. Dynamics
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of real-time operation need to be captured in simple yet realistic models that are easy to
develop, transparent and implementable. Object-Oriented simulation environment is ideal
for rapid model development and policy analysis. One such environment conceived on the

principles of system dynamics is used in the present study to develop real-time operation

models.

Actual use of models in practice largely depends on support environment in which these
models are interlaced. A Decision Support System (DSS) framework with traditional archi-
tecture (database, model-base and graphical user interface) is a perfect tool to provide such
an environment. A framework based on this architecture is proposed and implemented in
this study. An effort has been made to include a number of functionalities that support

interactive and dynamic decision making environment as well as post-optimal analysis of

operating polices generated by models.

1.4 Owutline of the Thesis

The thesis starts with an introduction to the problem domain, real-time operation of reser-
voir systems. The three major issues, information uncertainty, system representation and
computational intractability are discussed in Chapter 2, 3, 4, respectively in that order.
The issues are addressed in the context of real-time operation of both single and multi-
ple reservoirs systems. Application of these models in real-time and two approaches that

aid this process are discussed in Chapter 5. Literature review relevant to these issues is

included in the corresponding chapters.
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The first chapter provides an introduction to the problem area and briefly describes the
major issues that are addressed in the present research. Chapter 2 provides a detailed
introduction to different uncertainty issues that are needed to be addressed in case of
planning and management of water resource systems. Information uncertainty as an issue
is addressed in case of a single reservoir operation. Fuzzy set theory is used to handle the
uncertainty issue in an optimization framework. Fuzzy Linear and Non-linear Programming
models are developed to address a va.ﬁety of problems to model the uncertainty in the loss

coefficients and imprecision in definition of penalty zones.

Chapter 3 discusses system representation in mathematical programming models. An ex-
ample problem of hydraulically coupled hydropower reservoir is solved. A real-time op-
eration model that uses MINLP (Mixed Integer Non-Linear Programming) formulation is
proposed and reported in this chapter. The MINLP model also addresses the unit com-
mitment problem. Idea of spatial decomposition of the models along with formulations
are presented. The complexities of the approaches, optimization tools and the system

representation are discussed in detail.

Chapter 4 introduces the idea of computational intractability and relevant issues associated
with the implementation of the real-time operation models developed in the present study.
This issue that surfaced out as a problem while implementing the MINLP formulations
is discussed at length. A new optimization model based on a stochastic search technique,
simulated annealing, is presented in this chapter as a last resort algorithm. The application
of this approach is validated by applying it to a benchmark problem and to an existing

multiple reservoir system.
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Issues relevant to operation of reservoirs in real-time and the applicability of models are
discussed in Chapter 5. The gap that exists between theory and practice, and tradeoffs
between modeling and practical solutions in context of reservoir operation models are ana-
lyzed. Simulation models developed using the principles of system dynamics are presented.
Details of a Decision Support System (DSS) developed in the present research are also

discussed. The DSS is intended to assist reservoir operators in the actual implementation

of operating rules in real-time.

Finally conclusions are presented in Chapter 6 along with suggestions for future research.

The thesis ends with references, glossary and appendices, in that order.



Chapter 2

Information Uncertainty

Only one thing is certain
that is, nothing ts certain.
If this statement is true, it is also false.

- Ancient Paradox

11
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2.1 Introduction

Dealing with uncertainty in planning and management of water resource systems is a chal-
lenging task. Modelers of water resource systems are often confronted with uncertainty
issues in handling the natural variability of a variety of hydrologic and physical processes,
and systems with both stochastic and (not so) deterministic inputs in the modeling pro-
cess. In general a major input to any water resource system is hydrologic in nature and
its estimation for planning and management purposes is the main difficulty. This issue has
been a topic of research for the past few decades that generated a variety of explicit and
implicit stochastic approaches to handle such hydrologic uncertainty. Classical probability
theory is often used in such approaches. A form of uncertainty that will be discussed later

in this chapter is dealt using the principles of fuzzy set theory (Zadeh, 1965).

Uncertainty exists in water resource systems in a variety of ways. Attempts to classify it
into different categories were made by many researchers in the past. Mays and Tung (1992)
divide uncertainties in water resources engineering projects into four basic categories: (i)
hydrologic (inherent, parameter and model); (ii) hydraulic (design, model, construction,
material and operating conditions; (iii) structural (unusual failures) and economic (costs,
revenue, operational and maintenance costs). A form of uncertainty that belongs to last

category is addressed in the present research. An exhaustive description of these uncertain

elements is provided by Ling (1997) and Simonovic (2000).

Simonovic (2000) describes an uncertainty paradigm that describes the sources of uncer-
tainty in water resource systems. The paradigm extends the concepts proposed by Ling

(1993). According to Ling, uncertainty is due to two major factors wariability and lack
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of knowledge. In the first case, uncertainty is due to temporal and spatial variability of
hydrologic variables that in a2 way also contribute to the heterogeneity. The variability
is attributed to natural causes, whereas lack of knowledge or information uncertainty is

believed to be existing to a larger extent in the modeling process or due to basic lack of

our understanding of the physical processes.

Uncertzinty
Natural .
Moadeling
;ﬂm& Information/Knowledge
Spatial T ;
emporal Heterogeneity
Model Parameters Objectives
%ﬂﬁs Measurements Qualitative
Quantitative

(modified after Simonovic, 2000)

Figure 2.1: Sources of uncertainty

Figure 2.1 shows the sources of uncertainty in the field of water resources. Two major

categories of uncertainty can be identified in water resources systems : (i) natural and
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(ii) information or knowledge. Natural uncertainty is related to hydrologic inputs to the
water resource systems that are not controlled by human beings and thus is very difficult
to handle. Spatial and temporal variations of hydrologic variables are not deterministic
in general and thus the uncertainty. The heterogeneity of hydrologic systems is mainly
due to many factors that also include spatial and temporal variations. The next branch of
uncertainty that is the main emphasis of the present research is the lack of knowledge or

information uncertainly. Information uncertainty stems from the lack of understanding of

various variables in the modeling process.

Uncertainty mainly due to lack of knowledge or information is an important aspect that
needs to be considered in modeling process. Three different categories can be identified that
are associated with model, parameters and objectives. Modeling a natural process can be
wrong if the physical phenomenon is not captured properly in a mathematical framework.
Then the structure itself is considered wrong thus leading to a specific form of uncertainty

that will contribute to misrepresentation of the system.

Parameter uncertainty is generally related to lack of knowledge of both qualitative and
quantitative nature of the parameters under consideration. Errors in measurement of pa-
rameter values are considered to be factors contributing to the uncertainty. In the present
situation the parameters that define objective are considered to be unknown. This in a way
qualifies for information uncertainty in defining the objectives. Qualitative objectives are
much more difficult to handle than the quantitative ones. Sometimes the objectives cannot
be defined not because of lack of understanding of the problem but due to the lack of com-
plete information that will take into account the aspirations of the decision maker. Partial

information about the goals to be achieved also contributes to this form of uncertainty.
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Uncertainty exists in variety of forms and cannot be dealt always with the concepts of the
traditional probability theory. Reservoir operation problems are no exception to this. The
form of uncertainty that cannot be handled by probability theory can be addressed using
the concepts of fuzzy set theory (Zadeh, 1965). Many ardent supporters of fuzzy set theory
have defended the attacks of statisticians who claim that probability theory is applicable

to any problem. One of the proponents of fuzzy logic concepts, Kosko (1992) explains:

“Fuzziness describes event ambiguity. It measures the degree to which
an event occurs, not whether an event occurs. Randomness describes the
uncertainty of event occurrence. An event occurs or neot and you can bet

on it. The issue concerns the occurring event. To what degree it occurs is

fuzzy” .

Also, fuzziness is not another form of probability. Fuzzy set and probability theory are
different conceptually. Each of them can handle a different type of uncertainty. The only
difference is that probability concept is alive without informatio-n while fuzziness can coexist
even with complete information. Do we need fuzzy set theory concepts to handle problems
in the area of reservoir operation. The human element attached with the whole operation
of reservoir systems brings about the need for a method to handle ambiguous events or

information. This is true especially when the reservoir operation is governed by social and

economic factors.

Uncertain and imprecise components that exist within any reservoir operation problem
are shown in Figure 2.2. The identification and the classification of components into two

categories can be as gray as a fuzzy set. However, the classification can be justified. It
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is fair to consider hydrologic inputs such as streamflows to reservoir as uncertain and also
few problem specific model variables. The physical processes that govern the variability
and availability of water belong to such category. The imprecise elements are the ones that
cannot be estimated or pre-determined with 100% confidence. These include the objective
of the operation model, targets and ranges of certain variables and the information about
the forecasted variables (future demands). The list provided is not exhaustive whereas

a variety of imprecise and uncertain components can be listed for a number of reservoir

operation problems.

Sources of Uncertainty
Physical processes
Inflows Inflows
Demands

AN

L— 1
Sources of Imprecision
Releases Objective
Targets
Variable ranges
Y Future demands

Figure 2.2: Uncertain and imprecision elements of reservoir operation

The type of uncertainty that is dealt in this chapter is different from randomness. To

demonstrate a method of dealing with a specific form of information uncertainty in the
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planning and management of water resource systems, a real-time operation problem of a
single reservoir is considered in the present study. The operation is governed by an economic
objective that in a way is an appropriate problem to : (i) explain the nature of information
uncertainty and (ii) provide a new method in dealing with it in an optimization framework.
As the method uses principles of fuzzy set theory (Zadeh, 1965), a brief introduction to
fuzzy set theory with an emphasis on the fuzzy mathematical programming is presented
here. An array of already existing works that use the fuzzy set theory for water resources

problems are also discussed. Short-term reservoir operation with economic objective is

discussed first.

2.1.1 Reservoir Operation with Economic Objective

Reservoir operation problem in general is an optimization problem. Various problems in this
area have been addressed by many researchers in the past using wide variety of optimiza-
tion tools. These tools range from simple simulation approaches to complex optimization
models. Yeh (1985) provides an excellent state-of-the-art-review of optimization models
used for reservoir operation. Most recent studies (e.g. Simonovic, 1991; Hipel, 1992) have
addressed the multi-objective nature of reservoir operation problems. The emphasis of the
present study is on short-term reservoir operation considering the imprecision in the def-
inition of conventional loss functions. Optimization of the short-term reservoir operation
(with an economic objective) is usually achieved by formulating a model to minimize the
economic loses incurred from deviating in operation from the release and storage volume
values set as targets for the planning period. These losses are usually represented by loss

functions (Datta and Burges, 1984) which in turn reflect the penalty incurred for a specific
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deviation from the target.

Reservoir operation problems concerned with the minimization of short-term economic
losses, were addressed by many researchers in the past. Can and Houck (1984) addressed the
operation problem using Goal Programming. They used reservoir loss functions to minimize
the penalties associated with the deviations from the targets. In another work (Can and
Houck, 1985) they discussed the problems involved in real-time operations. Simonovic and
Burn (1989) presented an improved method for deriving short-term operating policies at
the same time obtaining the optimal operating horizon. Following this work, Reznicek et
al. (1991) worked on the same problem but used Goal Programming instead of Linear

Programming. All the above works involved formulations that have employed piecewise

linearized loss functions of storage and release.

One of the difficult aspects of the operation problem is quantification of loss functions.
These functions are usually derived based on the experience of reservoir operators and
economic information, and therefore are 'highly sub jec;tive. The values that make up the loss
functions are penalty coefficients and their selection is ultimately the reservoir operator’s
prerogative. Despite the utility of loss functions in various reservoir operation problems,

there still exist unresolved questions about their derivation, shapes and associated penalty

coefficients.

In a recent study, Lund and Ferreira (1996) state that "the most difficult and expensive part
of any practical reservoir operation model is usually the development of penalty functions”. Use
of loss functions for reservoir operation with irrigation as primary objective is discussed
by ReVelle (1999). Dynamic nature of the irrigation infrastructure and selection of crops

that influence the loss functions are also discussed. ReVelle states that " Loss functions are
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problematic to determine. Thus, functions determined a priori are unlikely to provide desired
economic information”. Loss functions can be derived for any timeframe. The variation of
loss function values with respect to different season within a year can be captured by the

use of two loss functions one for winter and another one for summer season (Datta and

Burges, 1984).

The imprecise nature of loss functions associated with the difficulties in determining the
shape and penalty coefficients makes the reservoir operation problem difficult to handle.
Also, the operating policies entirely depend upon the exact definition of these functions.
In practice the penalty coefficients are not crisp numbers but are certain aspiration levels
which are not well defined. It can be observed that the loss function values are in turn
the decision maker’s degrees of importance attached to violation of various target values.
Therefore, the decision making process involves dealing with the problem in an environment
where the objectives and constraints imposed are vague. Fuzzy set theory concepts can
be useful in this context as they can provide an alternative approach to deal with those

problems in which the objectives and constraints are not well defined or information about

them is not precise.

2.1.2 Fuzzy Set Theory

Fuzzy set theory concept was originated by L.A. Zadeh in 1965 as a mathematical theory
of vagueness. Since then fuzzy set theory has been applied to a wide variety of problems
in engineering and other allied fields. To provide a brief introduction, basic notation and

terminology related to fuzzy sets is presented here. In the classical set theory, an element
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from some universal set X belongs or does not belong to the subset A defined on X.

Mathematical symbolism describes this process as a characteristic function f4 from X to

{0,1}.

fa: X = {0,1} and fa(z)=1, iffz €A (2.1)

fA(z) = 01 sz z ¢A (22)

Thus if the value of f4(z) is known for every z € X, then the subset A of X is completely

determined and can be represented by

A={ze X :ze€ A} or equivalently, A= {z € X : fa(z) =1} (2.3)

The theory of fuzzy sets on the other hand generalizes the above case in a way that allows
the values of the characteristic function to be any real numbers in the interval [0,1]. A

fuzzy set then can be defined using a set of ordered pairs:

A={(z,p4(z)) : z € X} (2.4)

where 4 is a function: X — [0,1], and pa(x) is the grade of membership of z in A. It

is the measure of how much an element z belongs to A. The higher the value of u4(z),
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the more z belongs to A . Operations on fuzzy sets are provided in many text books (e.g.

Zimmermann, 1984). Some of the operations and relevant terminology is presented here.

Membership function : represents the grade of membership of x in A, and its values are

allowed to be in the real interval [0, 1].

Intersection of fuzzy sets : It is defined by the intersection of membership functions.
The membership function of AN B is defined as the minimum of the membership functions
of A and B. This operation was extended from the classical set theory by the following

relationship that has good use in decision making under fuzzy environment.

pans(X) = min{pa(z), pp(z)} VreX (2.5)

Details of operation on fuzzy sets and their properties can be found elsewhere (Mares, 1994;
Pedrycz, 1999; Zimmermann, 1984). Computation over fuzzy sets and numbers is similar
to operations over traditional sets. In summary, " There is nothing fuzzy about fuzzy set

theory!” - Zimmermann (1984).

2.1.3 Applications in Water Resources

Wealth of literature related to concepts of fuzzy sets and their applications to problems
within the area of operations research is available elsewhere (Zadeh, 1965; Zimmermann,

1984, 1987; Pedrycz and Gomide, 1999). Recent studies provide examples of application of
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fuzzy set theory to reservoir operation problems. Kindler (1992) used fuzzy set theory to
develop a water allocation model where the water requirements are assumed to be fuzzy
quantities. Linear programming formulations under fuzzy environment and simulation
models are developed for single period water allocation problem as well as for different
hydrological input situations. Rational allocation of water is achieved considering the
imprecise objectives provided by the water managers. Sutardi et al. (1995) integrate
Stochastic Dynamic Programming (SDP) and Fuzzy Integer Goal Programming (FIGP) to
deal with the multi-objective water resource investment problems. They use FIGP approach
to handle the uncertainties associated with budgetary and socio-technical aspects of water

resources investment planning. SDP is used to obtain optimal investment planning policy.

Bardossy and Duckstien (1995) discuss a number of applications of fuzzy set theory in wa-
ter resources including a model for sustainable reservoir operation. Russell and Campbell
(1996) used fuzzy logic programming for deriving reservoir operating rules. They indi-
cate that the fuzzy legic programming approach suffers from curse of dimensionality that
might limit the application to problems with few control variables. Shrestha et al. (1996)
developed a fuzzy-rule base for operation of a multipurpose reservoir. The rule-base is
developed considering different operational decisions taken by the reservoir managers that
have a simple “if-then” construct. The reservoir storage level, estimated (forecasted) in-
flows, and demands are used as the premises and release from the reservoir is taken as
the consequence. Fuzzy rule based modeling has an advantage of capturing the reservoir

operator’s experience in a set of rules.

A recent study by Fontane et al. (1997) provides an useful application of fuzzy sets in
planning reservoir operations with imprecise objectives and constraints. Membership func-

tions are obtained based on the actual surveys which are used in a Dynamic Programming
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model. They emphasize the practical value of membership functions when included in op-
timization framework for reservoir operation problems. The development and use of fuzzy
Dynamic Programming formulations has been discussed at length by Zimmermann (1984)
and Kickert (1974). Srinivasan and Simonovic (1994) handled uncertain energy demands

by treating them as fuzzy variables in a reliability model that is developed for operation of

a hydropower reservoir.

Application of fuzzy decision making for a water quality management of a river system
was reported by Sasikumar and Mujumdar (1998). They use fuzzy Linear Programming
formulation to address the problem of water quality management of a river system with
multiple-objectives. Their model incorporates the aspirations and conflicting objectives of

the pollution control agency and the dischargers.

Most recent application of fuzzy set theory approaches can be found in the works of Despic
and Simonovic (2000) and Bender and Simonovic (2000). Despic and Simonovic (2000) use
fuzzy set theory for quantification of complex qualitative criteria for specific problems in
water resources management. A multi-objective fuzzy compromise programming approach
is used by Bender and Simonovic (2000) to select the most desirable water resource man-
agement alternative. They report the advantages of replacing the traditional MCDA (Multi

Criteria Decision Analysis) technique with the fuzzy compromise approach to adopt fuzzy

inputs.

The use of fuzzy set theory within an optimization framework provides a number of ad-
vantages in dealing with the uncertainty associated with economic objectives. The issues
discussed in the literature survey and the difficulties associated with the derivation of loss

functions had provided enough scope for formulation of models that consider these aspects
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in an optimization framework. Loss functions bear a close resemblance to the membership
functions used in the fuzzy set theory. This similarity can be a motivation for replacing
the former with the latter. However, achieving this objective through fuzzy mathematical

programming is difficult and will be discussed at the end of this chapter.

This chapter concentrates on development of approaches to handle the uncertainty and
imprecision in the definition of loss functions at the same time addressing the short-term
reservoir operation problem. The terms loss curve and penalty curve are used interchange-
ably while they both mean a function representing the economic loss (quantified in some
monetary units) associated with different reservoir operating zones. Formulations address-
ing the problems of imprecision in definition of penalty zones and uncertainty in estimation

of coefficients are presented. Issues relating to imprecision in the definition of penalty zones

are addressed first.

2.1.4 Imprecision and Uncertainty

The terms imprecision and uncertainty are appropriate for the problems addressed in this
study. Imprecision can be loosely defined as lesser form of uncertainty. When defining
unclear penalty zones, the word imprecision is used whereas penalty coefficients are con-
sidered uncertain as they are difficult to estimate. The difference in the meaning of these

terms and their use will reflect the difference in the type of problems addressed.
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2.2 Fuzzy Sets in Mathematical Programming

An optimization problem in general is expressed as a formulation maximizing or minimizing
an objective under a set of constraints. If the objective or the constraints are vague, then the
problem can be referred to as fuzzy optimization problem. Bellman and Zadeh (1970) first
proposed the idea of decision making under fuzzy environment. They indicated that if goals
(G;) and the constraints (M;) are fuzzy and characterized by their membership functions
(Le;, iar;) then the decision space can be stated through their fuzzy intersection operation
(e;Npar;)- “In short, a broad definition of the concept of decision may be stated as: Decision =
Confluence of Goals and Constraints” (Bellman and Zadeh, 1970). The intersection is defined
by Min operator and the decision is given as uy = Maz [ Min (uc;, pag) ] More details
about this criterion with applications can be found in Bojadziev and Bojadziev (1997) and
Zimmermann (1987). The decision, in simple terms is the maximum membership value
for the solution obtained by the intersection of constraints and objective function sets.

Operators other than Min can be used that are discussed by Zimmermann (1987).

Fuzzy Linear Programming (FLP) applies the Bellman-Zadeh criterion for solution of many
problems where the goals and constraints are fuzzy. Many applications of FLP to civil en-
gineering problems and its variations can be found in literature (e.g., Kikuchi et.al 1991;
Cui and Blockley, 1990). The present study uses both Linear as well as Non-Linear Pro-
gramming under fuzzy environment to address non- symmetric and symmetric problems.
In case of non-symmetric problems the objective function is crisp or well defined and the
constraints are fuzzy or vague. A fuzzy mathematical programming problem is considered
symmetric when both the objective function as well as the constraints are vague. A non-

symmetric problem is handled first and then the symmetric formulation is addressed in this
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chapter.

To solve the problems that are non-symmetric, a procedure suggested by Zimmermann
(1987) is used. The procedure includes the following steps : (a) the mathematical pro-
gramming model is solved and the objective function value is obtained; (b) the model is
again solved with modified constraints which are considered as vague or fuzzy; (c) the
model is solved, with the objective function and constraints (which were earlier assumed
as fuzzy) replaced by their fuzzy equivalents using membership functions. The objective
function in the step (a) or (b) becomes a fuzzy constraint in step (c). The fuzzy constraints
in the present study are related to the penalty zones and coefficients, whereas the objective
function is the penalty value in monetary units. The procedure described in steps (a), (b)

and (c) can be represented in a mathematical form. For a minimization problem the steps

are given below :

Step I:

Minimize CX (2.6)

subject to AX <b (2.7)

where, CX is the objective function, X = [3:1,:1:2....]"" is the matrix of decision variables,
and AX is the constraint matrix. If the sign < is replaced by = then the constraint(s)
become fuzzy or have a linguistic interpretation - essentially smaller than or equal. The
constraints in (2.7) are fuzzy and should be expressed as form AX = b in standard fuzzy

mathematical programming formulations. However, it is expressed here as any regular
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constraint matrix as a crisp formulation is solved in Step I. Let the objective function value

obtained by solving the above problem be f,.

Step 11 :

Minimize CX (2.8)

subject to AX <b+1t, (2.9)

Here, the tolerance value ¢, value is added to the right hand side of the Equation (2.9).

The tolerance is the value by which the b value changes. Let the objective function value

obtained from the solution of Step II be f;.

Step II1 :

Mazximize A (2.10)
subject to

AX — A ¢, <b (2.11)

CX+A(h—-fo)<h - (2.12)

Equations (2.11) and (2.12) represent the fuzzy constraints defined through a proper mem-
bership function that describe the preferences of the decision maker. The objective function

from Step I becomes a constraint (2.12) in the present formulation. The objective function



Information Uncertainty 28

(2.10) indicates that the objective as well as the fuzzy constraints are satisfied to maximum
possible degree. This is similar to maximizing the membership function value (A € [0, 1]).
The variable, A, is referred to as Level of satisfaction and is represented as L in all the
formulations hereafter. Complete description of the above procedure for different types of
problems is available elsewhere (Zimmermann, 1987). The formulations, Step I, Step II,

Step III are referred to as original, intermediate and final models respectively in the present

study.

In the intermediate formulation an objective function value is obtained at the maximum
level of satisfaction (A = 1). The need for this formulation is based on the fact that the

decision maker cannot provide a reasonable guess for the objective function value for the

fuzzy decision space.

A better benchmark value for f; can be obtained when the degree of membership equals
1. Once this intermediate objective function value, f; is obtained, it can be used to con-
struct the required membership function for the goal. Symmetry is now achieved and the
objective function has been modified from crisp to fuzzy. Using similar fuzzy mathematical
programming framework, problems under symmetric and non-symmetric environments can
be addressed. Mathematical programming model in symmetric fuzzy environment is easy
to handle and does not require the steps indicated above. Non-symmetric formulation used

in the present study is discussed first and the symmetric problem that is relatively easy is

addressed later.

Based on the utility of fuzzy set theory concepts in the present context of reservoir operation
problem, two problems are addressed. The first problem deals with the imprecision in the

definition of different penalty zones while the second one is for uncertain penalty coefficients.
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Figure 2.3 shows one such problem where the location of the point “A” is not precise. This

indicates that the penalty zone is not defined precisely. Similarly, point “B” indicates the

uncertainty in penalty coefficients.

Penalty coefficient

A Target

Storage or Release zones

Figure 2.3: Loss function representing deviations in penalty zones and coefficients

Here the decision maker may be interested in decreasing or increasing the length of a
particular zone or penalty coefficient values. The problem becomes difficult to handle if
the decision maker has preferences attached to any movement in one particular direction. In
this situation a fuzzy set approach would provide a meaningful solution when membership

functions are used to capture the decision maker’s preferences.
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2.3 Formulation of Models

The operation problem is formulated as both Linear Programming (LP) as well as Non-
Linear Programming (NLP) models under fuzzy environment to address the problems re-
lated to imprecision in definition of penalty zones and penalty coefficients. First the original
formulations are presented and then their fuzzy equivalents. Both the models are adopted
from the reservoir operation model discussed by Simonovic and Burn (1989) and are altered
for the present study. This reservoir operation model was originally developed by Can and
Houck (1984). A Non-Linear Programming formulation is developed based on this model
that is used to address a specific problem in the present study. Formulation addressing the

problem of imprecise penalty zones is presented first and the model for uncertain penalty

coefficients is discussed later.

2.3.1 Imprecise Penalty Zones

A fuzzy Linear Programming model is used for solving reservoir operation problem at the
same time to address the problem of imprecision in the definition of penalty zones. The
formulation uses piecewise linearization of a non-linear loss function defined for storage and
release. The inflow scheme for the periods for which optimal operation rules are required
is assumed to be known. The objective is to minimize the sum of under-achievement or

over-achievements in meeting the storage and release target requirements over a specific

time horizon.

The piecewise linearization of loss function for release is shown in the Figure 2.4. Here, RD;
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Penalty

a, b, RTR C, d. e,

Release

Figure 2.4: Piecewise linearized loss function for release

, RD, ... represent the unit penalties (refer to Table 2.1), and a;, b, ... represent various

points on the X axis which define the deviation zones, i.e, RD2, RD1 .. etc. Similar

loss function is chosen to be appropriate for storage. In case of storage, RD;, RD, ... get

and a,, b, .... get replaced by ay, bs ..... and the deviation

replaced by SD; and SD, ...
and RTR by STR respectively.

zones , RD2, RD1.. etc. get replaced by SD2, SD1 ...

The formulation of the operation model is given here.

MODEL 1

Minimize
T
Z(SDg SD2,+SD; SD1;+ S5, SS1;, + 55, SS52, + 553 S53;

t=1

+RD, RD2, + RD; RD1, + RR;, RR1, + RR, RR2, + RR; RR3;) (2.13)
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Table 2.1: Storage and release zones and corresponding penalties for winter season

Storage zone Penalty Release zone Penalty
108 m3 points/10° m3 105 m3 points/10°% m3
136.53 - 190.00 5000 0.367-1.50 10
190.00 - 200.99 1 1.50-2.50 0.1
200.99 Target 2.5 Target
200.99 - 220.00 50 2.50-7.00 150
220 - 893.58 800 7.00 - 9.79 900
893.58 -1507.09 15000 9.79 -14.67 2000
subject to:
St +SD2,+ SD1, — §51;, — §52, — 553, = STR Vi (2.14)
R+ RD2, + RD1, — RR1, — RR2, — RR3;, = RTR Vit (2.15)
SD2, < by —a, vt (2.16)
SD1, < STR - b; vt (2.17)
551 <c; —STR vt (2.18)
SS2; < ds; —cs Vit (2.19)
S5853; <e;, —d, vt (2.20)
RD2, < b, — a, vt (2.21)

RD1, < RTR—b, Ve (2.22)
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RR1; <c¢. — RTR Vi (2.23)
RR2; < d, —c, vt (2.24)

RR3; < e —d, vt ~ (2:25)
So+R =S +1, (2.26)

Siv1—Si+ R =1, t=2,3...T (2.27)
R: < Rz vt (2.28)

R: > Ruin vt (2.29)

St < Smaz vt (2.30)

S¢ > Smin vt (2.31)

The objective is to minimize the penalties, which are incorporated into deterministic Lin-
ear Programming formulation. STR and RTR represent the storage and release targets
respectively. I, represents the inflow in the time period, ¢. The constraints (2.14 and 2.15)
relate to reservoir target storages and releases, the next ten constraints (2.16 - 2.25) relate
to penalty zones, next two relate to reservoir mass balance (2.26 - 2.27) and the final four

constraints (2.28 - 2.31) represent the upper and lower bounds on release and storage.

Membership functions which represent the decision maker’s preferences are assumed to
be known in the present study. These functions are used to derive the appropriate fuzzy
constraints. Membership functions are required for Step II and III formulations. A brief

description of membership functions and their derivation is provided next.
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2.3.2 Membership Functions

The decision maker’s preferences for reducing or increasing the length of the penalty zones
can be used to derive two different membership functions (Zimmermann, 1984). A ﬁember—
ship function can be derived by providing the aspiration levels for the tolerance. A typical
membership function in a graphical form and its derivation for a constraint is shown in
the Figure 2.5. The membership value (u;) takes on values 1 or 0 or any value in between
depending on the conditions. The range, [b;, b; + t,] refers to tolerance interval. Similar
membership functions are derived based on the preferences for the constraints and objective
that are assumed to be fuzzy. The variable, u; is denoted by L in all the formulations.

$

T e e e

Bi(x)
0 -
o bty
1 ax, < b
Bl = 1 1-(ax-b)
" b o< ax < bag
1%
0 ax, > b,

Figure 2.5: Derivation of a membership function
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The membership functions in graphical form are shown in the Figure 2.6(a), 2.6(b) and
2.6(c). These functions indicate the preferences on 0 — 1 scale on the Y-axis for the length
of penalty zone indicated on X-axis. To keep the scope of study to linear formulations,
the membership functions are chosen to be linear, while there is no conceptual difficulty in
handling non-linear membership functions if appropriate formulations are developed. Also,

membership functions can be derived from actual surveys (Fontane et al., 1997).
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Figure 2.6: Membership functions for deviations and objective function
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Fuzzy Formulations

r gl

The formulation (2.13 - 2.31) is first solved to obtain the objective function value, ’f!,
mentioned in the Step I. The formulation can be referred to as crisp as neither the objective
function nor the constraints are fuzzy. Tolerances are then added or subtracted to the
constraints which are considered fuzzy. This formulation refers to Step II. Finally, Step III

formulation is solved using the membership functions.

Membership functions for the constraint (2.22) can be developed, assuming that the decision
maker wants to reduce the first penalty zone of the release on the left side of the target
release and storage. It is assumed that the unit slopes which determine the penalty values
for these zones will remain unaltered even after the length of the zone is changed. Using

the membership function given in the Figure 2.6a, the constraint (2.22) can be modified as

follows.

RDL,+(H)L <RTR—b, Vt (2.32)

Where H indicates the amount of reduction in the first penalty zone, (RTR — b,), that is
equal to b, — by as given in the Figure 2.6(a) and L represents the level of satisfaction for
the constraint. For the membership function given in the Figure 2.6(b), constraint (2.22)

will be modified as,

RD1.+(H)(1—L) <RTR—~b Vt (2.33)
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Similar modifications have to be made to constraint (2.17) to represent imprecision in the
storage penalty zones for different membership functions. An additional constraint has to
be modified to account for the possible reduction in the first penalty zone, which in turn
might increase the second zone, adjacent to the first one, on the left side of the target. The

constraint relating to second zone is modified as,

RD2 — (H) L <b.—a, ¥t (2.34)

The formulations in Step I and Step II when solved provide two differert objective func-
tion values, (f,, f1), which are used to develop membership function for objective, which
is shown in Figure 2.6{(c). The objective function (2.13) is modified and is now used as
a constraint in the final formulation (Step III). Model IA and Model IB given below
refer to final formulations based on the membership functions derived from Figure 2.6(a)
and Figure 2.6(b) respectively. The objective now is to maximize the level of satisfaction,
L. All the models are solved with complete set of constraints (2.14 - 2.31) from the orig-

inal formulation, Model I, except the constraints which are now modified to their fuzzy

equivalents.

MODEL TA

Mazimize L (2.35)
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subject to

T
> [SD: SD2;+ SD, SD1,+ SS; SS1, + 55, §52, + 853 SS3;

t=1

+RD, RD2,+RD, RD1,+RR, RR1,+RR» RR2,+ RR; RR3.]+(fi—f.) L < f (2.36)

RD2, — (H) L < b, —a, Vi (2.37)

RD1,+(H) L < RTR—b, Vit (2.38)

Where H indicates the amount by which the first zone, (RT'R — b,) is reduced, thereby

moving the point, b,, closer to RT'R and L having the same notation as that in the earlier

fuzzy formulation.
MODEL IB
Mazimize L (2.39)

subject to

T
> [SD; SD2;+ SDy SD1; + SS; SS1;+ SS, SS2, + SS3 5S3;

t=L

+RD, RD2,+RD; RD1,+RR, RR1,+RR, RR2,+RR; RR3,]+(fi—fo) L < fi (2.40)



Information Uncertainty 39

RD2,—H L<b, —a, vt (2.41)

RD1,+ H(L—L) < RTR—b, vt (2.42)

This formulation is same as the previous one (Model IA) except that a different type of
membership function (Figure 2.6(b)) is used for the constraint (2.22). For formulations
to reflect the imprecision in the storage zones, the equations (2.41) and (2.42) have to be
replaced by appropriate constraints which reflect the change in storage zones. Problems

addressing the imprecision in both release and storage zones can be handled at the same

time.

2.3.3 Uncertain Penalty Coefficients

Penalty coefficients are the points on the loss functions which define the penalty in monetary
units corresponding to the penalty zones. These values are usually derived from economic
information considering the impacts of reservoir operation. In the present study these
coefficients are considered fuzzy in a sense that they are not well defined. Only points
where the slopes of the loss function change are considered as vague since any change in
location of these points (eg. “B” in Figure 2.3) would cause a change in the slope of the
loss function in the zone and there by affecting the reservoir operations schedule. A Non-
Linear Programming formulation is used to address this problem. The membership function
defined in the Figure 2.6(a) is used for the constraints and the one defined in Figure 2.6(c)
is used for objective function. As unit slopes are no longer constant, they become unknown

variables in the objective function. This transforms the Linear Programming formulation
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(Model I) into a Non-Linear optimization model. The problem formulation is essentially
the same (with respect to constraints) as that of Linear Programming formulation, with a

non-linear objective function and some additional constraints. The complete formulation

is presented next.

MODEL II
Minimize
T
Z(a SD2,+p8 SD1, + 55, §51: + 55, §52, + 553 SS53;
t=1
+RDy RD2;+ RD, RD1,+ RR; RR1,+ RR; RR2, + RR; RR3;) (2.43)
subject to

B SD1 = a; (2.44)

a SD2 = a, (2.45)

and all the constraints (2.14 - 2.31). Here, a; and a, indicate the lengths shown in Figure
2.7. The above formulation is used for representing the uncertainties in the penalty coeffi-

cients of loss curve used for storage. Also, the constraints (2.44) and (2.45) correspond to
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Penalty

Storage zone

Figure 2.7: Schematic representation of deviations in penalty coefficients for storage loss
function

the loss function to the left side of the target storage. Based on the actual values of unit

slopes, SD; and SD,, and the lengths (a;, a;) the following equations can be written,

a, = SD; SD1 (2.46)

Gy = SD2 SD2 (2.47)
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Using the above constraints, formulations for all the three steps (Step I, Step II and Step

ITI) can be derived. The fuzzy equivalents of these constraints are based on the membership

function defined in Figure 2.6(a) and are given below.

BSDL—H,L = SD1SD, (2.48)

« SD2+H,L = SD2 SD, (2.49)

Where H, indicates the amount by which the penalty coefficient value is increased. The

final formulation (Step III) for this problem is similar to one written for Model IA. The

formulation is given below,

Model ITA

Mazimize L (2.50)

subject to

T
> [a SD2; + B SD1, + SS; SS1; + SS; SS2, + SS; SS3;

t=1

+RD; RD2;+RD; RD1,+RR, RR1,+RR» RR2,+RRs RR3,]+(fi—f,) L < f (2.51)
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The formulation is complete with all other constraints (2.14 - 2.31) along with constraints
(2.48) and (2.49). To address the problem of uncertainty in release loss function coefficients,
appropriate changes have to be made in constraints (2.48), (2.49) and (2.51). The formu-
lation presented here is based on the membership function shown in the Figure 2.6(a). It
is fairly straightforward to modify this formulation to consider other types of membership
functions. It should be noted here, that formulation based on Step II should be solved

before this one, as the value of objective function, f; is required for the constraint (2.51).

2.4 Application of Models

A case study of an existing reservoir is chosen for the application of proposed models to
evaluate the sensitivity of reservoir operating policies to the change in the shapes of loss
functions. Green Reservoir in Kentucky, USA is chosen for this purpose. The primary ob-
jective of the reservoir is lood control in the Green River Basin as well as in the downstream
areas of the Ohio River. Secondary objectives include recreation, low flow augmentation
and water quality. The reservoir is the most upstream reservoir in the Green River system
located 489 km above the mouth of the stream with a maximum storage capacity in excess
of 1500 10 m3. The reservoir storage up to the top of spillway is 892.02 108 m3, while the

minimum reservoir storage is 136.53 10% m3.

The maximum daily release is based on the downstream flood protection and is 14.67 106 m3,
whereas, the minimum daily requirement of 0.367 10° m? is based on water quality require-
ments. The original LP formulation (Model I) uses linearized penalty function values

given in the Table 2.1. These values are based on the intended use of the reservoir. It is
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evident from the Table 2.1 that the primary purpose of the reservoir is for flood protection
indicated by the penalty values (values being high for storage and less for release devia-

tions). Details of the case study and loss functions can be obtained from earlier work by

Can and Houck (1984).

2.4.1 Results and Discussion

The fuzzy mathematical programming framework in a symmetric environment is used to
address two modeling issues: (i) the imprecision in the definition of storage and release
zones (ii) the uncertainty in the available penalty coefficient values. Symmetric fuzzy for-
mulations applicable in some situations are discussed later. These two problems are solved
using mathematical formulations, especially, Fuzzy Linear and Non-Linear optimization
models respectively. The models are developed using GAMS(General Algebraic Modeling
System) (Brooke et al., 1996) optimization software. The non-linear formulations devel-
oped in the present study are solved using CONOPT solver available within the GAMS
environment. All the three formulations involving Step I, Step II, and Step III are solved

for each of the cases mentioned above.

Depending upon the type of membership function chosen (Figure 2.6(a) or Figure 2.6(b)),
the formulations would differ. The membership function used in the Figure 2.6(c) is used
for converting the original objective function (2.13) into a fuzzy constraint in all Step III
formulations. The original, intermediate and final formula.ti.ons refer to Step I, IT and III
respectively. The Model I refers to the original formulation, while Models IA and IB refer

to final formulations based on the membership function used for addressing the imprecision
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in the release or storage zones. Model I1, again refers to original formulation, while Model
ITA to final formulation used to handle uncertainty in the penalty coefficients using the
membership function given in Figure 2.6(a). The intermediate formulation refers to Step II
procedure, where Model I or Model II is solved with the appropriate constraints modified.
It is apparent from the Figure 2.6(c) that the decision maker has higher preference for a

lower value of penalty, which is realistic. The following sections give details of the cases

modeled along with the results and interpretations.

The storage and release deviations from the target storage are represented by dividing the
entire range of operational storage and release values into different zones. These are gen-
erally fixed by decision makers or reservoir operators. Different simulations are performed
to evaluate the sensitivity of reservoir operations to the fuzzy penalty zones. Simulations
are performed for a period of 18 days using a known historical inflow scheme and adopting
the penalty function values given in the Table 2.1. The reservoir storage at the beginning
of first period is taken as 199 10°® m3. Model I and Model IA are solved for a case in

which the first release zone, on the left side of the target release is reduced by 0.3 10° m3.

The Membership function shown in Figure 2.6(a) is used for this case to represent the
decision maker’s preference in reducing the zone. This indicates that the higher penalties
are now attached to certain deviations from the target, which had lower values earlier.
The storage loss function is unaltered. Figures 2.8 and 2.9 show the results from all the
three formulations. The final solution indicated is the optimal release rule for the fuzzy
stipulation imposed. To reduce the penalties associated with reduced zone, the model opts

for increased releases close to the target. Figure 2.9 shows the resulting storage variations.

The membership functions used in deriving the constraint (2.38) and objective function
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Figure 2.8: Release variations due to reduction in the release zone
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(2.36) incorporate the preferences that are conflicting, thus producing a satisfying solution
to the degree of L. Any value of L between 0 and 1 does not necessarily indicate that the
final results relevant to storage and releases will lie between the results due to intermediate
and original formulations. This is apparent from the Figures 2.8 and 2.9, where the L
value obtained is 0.51. This is due to the fact that L value is a satisfying value based
on membership function for the constraints in all the time periods. On the other hand,
the final objective function value will always lie between the values f, and f;, obtained
from original and intermediate formulations respectively. In the present case, the final
objective function value in monetary units is 124.07, whereas f, and f; are 108.86 and

139.73 respectively. This can be attributed to the property of membership function given

in the Figure 2.6(c).

In an another experiment, reductions in penalty zones of release as well as storage are
introduced simultaneously. The first storage zone on the left side of the target is reduced

by 5 10° m® and the reduction for release is same as that of previous case. The membership

function used in this case are again from the Figure 2.6(a).

Figure 2.10 gives the details of the release decisions for all the three formulations. The
release decisions are different from the one shown in Figure 2.8. Reservoir storage variations
for this case are shown in Figure 2.11. The L value, or the degree of satisfaction achieved
in this case is 0.63. It can be noted from the Figure 2.10, that the release decisions are

higher than the original decisions. Similar trend can be seen in the Figure 2.11 for storage

variations.

The release values and the storage values are higher than those in the previous formulation.

The final objective function value in this case is 131.09, which is higher than the previous
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value (124.07). This is due to the fact that the penalty values of both release and storage
contribute to the overall penalty value. To evaluate the effect of L value and the type of
membership function on the operation schedule, the following simulation is performed. In
this case the membership corresponding to Figure 2.6(b) is used. Only the reduction in
the first zone of the release is considered. It is evident from Figure 2.6(b), a decreased
preference is attached to the reduced zone than the original zone. As the objective of the
Model IB is to minimize the penalty (reflected indirectly in the constraint (2.40)), the
formulation will force the result to match with the original formulation results (Model
I). In these type of cases, the L value or the degree of level of satisfaction can be limited
to a predetermined constant (Munro, 1984). This constant value can be interpreted as a
minimum level of support in terms of satisfaction. Figure 2.12 shows the storage variations

for such an experiment where the L value is limited to 0.75.
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Figure 2.12: Storage variations based on the reduction in the release zone

The variations due to the final formulation are lower than those obtained from all the

previous cases. This is attributed to the fact that the restriction on the value of L results
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in higher release decisions and lower storage values. The uncertainty in the definition of
penalty coefficients is addressed through Model II and Model ITA formulations. The
membership function used in this case is similar to one shown in the Figure 2.6(a). For
the present case, the value, by, refers to the original penalty coefficient while b, represents
the increased coefficient value. The difference, b, — b4, is represented by H,. Simulations
are carried to evaluate the sensitivity of reservoir operation for a change in the penalty
coefficient values. Figure 2.7 represents a schematic diagram of loss function where the
value of penalty coefficient at the point “m” is increased by an amount H,. Simulation
is performed using 90 (monetary units) as a value for H,. The results are shown in the

Figures 2.13 and 2.14.
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Figure 2.13: Release variations due to increase in penalty coefficient of storage

Release decisions are different from the results due to original formulation shown in the
same figure. It is interesting to note that the storage variations are close to that of the

intermediate formulation. This is attributed to the nature of membership function used.
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Release decisions are lower than the original formulation as there is no change in the release

loss function, whereas the storage values in the first zone now have increased penalty values.

This results in higher storage values. In another simulation, the penalty coefficients related

to release and storage are increased. The values of H, in this case are 90 and 6 monetary

units, for storage and release respectively. The membership function used to indicate the

preference is same as the one used in the previous simulation. Figures 2.15 and 2.16 show

the release decisions and the storage variations respectively for the case considered.

It is interesting to note that the final formulation results are close to the intermediate

formulations in case of both release as well as storage.

increased penalty coefficient values for both storage and release.

This can be attributed to the
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2.5 Symmetric Problem

The Linear and Non-Linear optimization models developed earlier under fuzzy environment
were initially non-symmetric and were later modified to a form that is symmetric. Formula-
tions at three steps are solved to obtain the final solutions. These formulations are required
for problems where the solution space is fuzzy and objective function is crisp (Teegavarapu
and Simonovic, 1999). In case of symmetric fuzzy mathematical programming problems,
the objective function as well as the constraint space are considered fuzzy and therefore
there is no need for the Step II formulation. A non-symmetrical model can be transformed
into a symmetrical one if an equivalent model can be derived so that the objective function
can be fuzzified. In the present context it is assumed that the decision maker can provide

a specific interval within which the objective function value can lie along with preference
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Figure 2.16: Storage variations due to change in penalty coefficients

through membership functions. Tolerances can be used to obtain the intervals if the initial
values of the objective function and the lower bounds on the constraints are known. A

symmetric fuzzy Linear Programming model can be described as follows:

<
Minimize CX — f; (2.47)

<
subject to AX — b (2.48)

~o

CX and AX are the objective and constraint matrices have similar definitions that are
already provided, whereas f, is the upper bound on the objective function. This is equiva-
lent to sum of f, and any tolerance value ¢, provided by the decision maker. The value of
fo can be obtained by using the original formulation. The final formulation can be directly

solved if this appropriate interval, ([fo, fo + t:]), is available.
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MODEL III
Mazimize L - (2.49)
subject to
T
Z[SDQ SD2;+ SD; SD1,+ SS; §51; + 5855 $52; + 553 SS3,
t=1

+RD, RD2, + RD: RD1,+ RR; RR1, + RR, RR2, + RR; RR3,] + (t,) L < f. (2.50)

Experiments are conducted using few cases of symmetric problem. Model III is solved for
a case in which the first release zone, on the left side of the target release zone is reduced
by 0.2 10° m3. The Membership function shown in Figure 2.6(a) is used for this case to

represent the decision maker’s preference in reducing the zone.

The membership functions used in deriving the constraint (2.38) and objective function
(2.36) in Model IA incorporate the preferences that are conflicting, thus producing a
satisfying solution to the degree of L. The L value obtained is 0.51. On the other hand,
the final objective function value obtained is different than the one obtained using the
Model IA formulation. In the present case, the final objective function value in monetary
units is 120.92, whereas in the previous case is 124.07. This can be attributed to the
property of membership function given in the Figure 2.6(c). If the tolerance value is equal
to the value 30.88 (fi — f,) and the initial objective function value is 108.86 (f,) then
final objective function value (124.07) will be the same as obtained by the Model TA
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formulation. Another requirement is that change made to release zones and the preference

attached through membership functions for its reduction must be the same.

Table 2.2: Results of symmetric fuzzy model application

Tolerance (¢,) Reduction in release zone L Objective
105 m3 points/108 m3

50 0.3 0.62 127.68

20 0.3 0.40 120.81

10 0.3 0.26 116.29
30.88 0.3 0.51 124.07
30.88 0.2 0.61 120.92
30.88 0.1 0.76 116.21

It can be observed from the Table 2.2 that using the base value of objective function f,,

in the first three experiments, the final objective function value decreases as the tolerance

is decreases. The L value also decreases to satisfy the fuzzy constraint and the objective

function with decreased tolerance interval. In the next set of experiments (reported in the

table), it can be noted that the reductions in the penalty zones for a constant tolerance

value for the objective function will reduce the final objective function values. This is

obvious as the magnitude of reduction in the first release zone influences the penalty value

and the L value. A comparison of final storage variations due to use of Model III with

tolerance of 20 above the base value and due to Model IA formulation is shown in the

Figure 2.17. It is evident from the figure that storage values are almost identical excepting

in few time intervals.
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The advantage of symmetric formulation is that tolerances for both constraints and objec-
tive function can be changed as long as the feasible solutions can be obtained. The decision
maker can provide vague upper and lower bounds on the penalty value (i.e. objective func-
tion) that is acceptable while providing the tolerances for the constraints. The L value
obtained as a solution will change based on tolerances and the membership functions used

for including the preferences.
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Figure 2.17: Storage variations based on reduction in the tolerance value

A variety of cases can be modeled using the symmetric approach provided the decision
maker is able to provide required information for allowances on objective function. Sym-
metric problems are easy to solve and also provide an option to explore the possibility of
considering more flexible operational decisions. Infeasibility can be avoided by judicious

selection of tolerance intervals.
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2.6 Modeling the Shape of Loss Functions

In the introduction part of this chapter, an idea was tossed that modeling the shape of loss
function or replacing them with fuzzy membership function may be possible. Thi's idea is
tested and the concerns regarding modeling issues are discussed here. Figure 2.18 shows a
comparison between loss curve and an appropriate membership function. It is interesting

to note the similarity between these two curves.

The loss function in one way indicates the increasing penalty as the deviations from the
target point increase. This type of relationship is also reflected in the membership function
that shows a similar property. The value of membership decreases as the deviations increase

on both the sides of the target, indicating a decreasing preference to increasing deviations.

The problem can be posed as fuzzy Linear Programming formulation. The tolerances can be
used to modify the constraints to include under and over achievements and corresponding

aspiration levels in the form of membership functions. The idea is to solve a non-symmetric

fuzzy model with deviations as fuzzy constraints.

The concept is different from the one proposed by Fontane et al. (1997) where the member-
ship functions are derived from actual surveys and are used as a part of objective function
in a fuzzy dynamic programming formulation. In the present case, the membership func-
tion is modeled by defining the problem of deviations as tolerances for the constraints. An
experiment is conducted with a formulation (not reported here) considering a two-sided
membership function as shown in the Figure 2.18. A feasible solution is obtained. How-

ever, the physics of the problem is not captured in the model as over and under achievements
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Figure 2.18: Resemblance between loss curve and a membership function

are not feasible at the same time once an appropriate value for L is obtained as a solution.

One way of handling this problem might be to use two separate variables that represent
different satisfaction levels for both under and over achievements. An appropriate condition
that both cannot be positive in any given time interval can be included in the formulation.
It should be noted that modeling of loss functions using fuzzy mathematical programming

provides an alternative method of including the loss functions and the feasibility of such
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an approach needs to be tested using the formulations with specific restrictions suggested
here. This idea is not without advantages. Fuzzy set theory provides many procedures
(Kickert, 1978) to aggregate membership functions (if derived from more than one decision

maker) that may not be not possible using traditional approaches.

2.7 Modeling Issues

In the fuzzy mathematical programming framework presented in this study, intersection
operator, “Min” was used to define the crisp equivalent that can be solved using any Linear
Programming code or solver. While, “Min” is considered appropriate there are several other
operators (Zimmermann, 1987) that can be used. The simulations carried out in the present
study are limited to the use of a portion of release and storage loss functions. This is due to
a fact that low inflows associated with winter, would force the models to generate storage
levels or release decisions that lie on the under-achievement side of the storage and release
targets respectively. Hence any changes made in the loss functions on the other side (right
side) might not affect the reservoir operating rules. The changes made in the penalty zones
and coefficients for all the simulations are in such way that they increase the overall penalty
value in monetary units. This is more realistic as the reservoir managers tend to impose

higher penalties for achieving the preset targets.

To test the operation models in critical situations, low inflows associated with winter are
used in the present study. However, there is no conceptual difficulty using any type of loss
functions associated with any season. The results due to final formulations will depend on

the inflows, changes made to loss curves and the membership functions used for preferences.
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Many variations of the cases mentioned above can be used to generate results for evaluation

of operation rules and their sensitivity to decision maker’s preferences.

From the experiments conducted, it can be concluded that the reservoir operating rules
are sensitive to decision maker’s preferences attached with the definition of loss functions.
This is evident from the results due to final formulations, that can be called as compromise
operating policies. Sensitivity analysis of operation rules for a variety conditions is not
equivalent to what is achieved by the fuzzy optimization models proposed in the present
study. A major limitation of traditional sensitivity analysis is the inability to handle the
preferences. Conflicting nature of the fuzzy constraints dealing with the penalty zones and
coefficients, and the objective, which is the value in monetary units, is captured in the
optimization framework. Finally, an important aspect that should be noted is that one
cannot expect improved solutions (objective function values) by using fuzzy formulations.
The solutions obtained are appropriate for the stipulations imposed. Therefore the results

can only be more realistic, meaningful and sensitive to decision maker’s preferences.

The membership functions for the preferences are assumed to be linear and are known.
Functions based on actual surveys, if available, can be used with appropriate modifications
to the formulations presented in the study. The approach presented can be summarized
in three steps: (i) development of loss functions to include in mathematical programming
formulations (ii) obtain decision maker’s preferences to develop fuzzy formulations (iii)
generate compromise operating rules. While the first issue was addressed in the past by
many researchers {e.g. Datta and Burges, 1984; Lund and Ferreira, 1996), the latter two

are handled by the procedures developed in the present study.

Uncertainty associated with inflows and operation of multiple reservoir systems are the
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major aspects that need attention when extension to the present methodology is planned.
Extensions along these lines are possible. However, the complexity of formulation can be
commented on, only after preliminary experiments are conducted considering these issues
using the approaches presented in this study. These aspects when included in the present
framework will increase the scope of the problem. In the past uncertainty associated with
inflows into the reservoir systems are considered using either explicit and implicit stochastic
approaches. In a recent study Russell and Campbell (1996) discuss the development of a
fuzzy rule base (FRB) for a reservoir operation problem while considering the stochastic
nature of inflows and energy prices implicitly. They indicate the difficulties involved in
explicit representation in this context. To address the problem of stochastic nature of

inflows, the concepts of probability and fuzzy set theory can be combined to derive a

fuzzy-risk approach.

2.8 Summary

The frameworks both in symmetric and non-symmetric fuzzy mathematical programming
environment presented in this chapter can be extended to a system of interconnected reser-
voirs where the formulations would depend on the number of reservoirs and decision makers
managing the system independently or collectively. In case of multiple decision makers, ap-
plication of fuzzy multi- person decision making approach (Kickert, 1978) is applicable. On

the other hand, formulations are relatively simple if no conflicting preferences exist among

the decision malkers.

A new approach in dealing with the problem of uncertainty associated with the definition of
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conventional loss functions used in reservoir operation models is discussed in this chapter.
The methodologies are well suited for applications where the information or the method by
which the loss functions are derived is debatable. As the penalty zones and coefficients are
considered fuzzy, the decision maker is no longer compelled to provide precise definitions
(shapes) of loss functions. The optimal operating rules generated are a compromise between

the original decisions and the rules when no preferences are attached to the changes made

to the loss functions.

The problem of handling both uncertain penalty coefficients and imprecise zones at the same
time is not attempted here, while there is no conceptual difficulty in extending the present
approach to consider this case. Modeling the shapes of the loss curves to replace them
with fuzzy membership functions using the concepts of fuzzy mathematical programming
approach is difficult, if not impossible, even though a mathematical solution is possible.
The models developed are easy to implement in real-life situations if appropriate methods

are used to generate the preferences in the form of membership functions.

The concept of compromise operating policies ‘can be extended to cases where rules from
long- and short-term operation models are available. In the former case the rules can be
derived from stochastic optimization approaches (e.g. Stochastic Dynamic Programming)
with an objective of maximizing or minimizing an expected value of a performance mea-
sure. In case of real-time operation, any model based on deterministic inputs (through
forecasted values) can be used. The compromise operating polices derived in this case are
in fact sustainable operating rules. The sustainable operating rules derived by Shrestha
et al. (1996) using a Fuzzy Rule Based (FRB) model are conceptually different from the

compromise operating policies suggested here.
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2.8.1 Postscript

Issues relevant to information uncertainty are discussed in this chapter. The method pre-
sented is not exhaustive in dealing with a variety of problems within the area of feservoir
operation relevant to imprecise information. However, this research work can be regarded
as a starting point in dealing with a form of information uncertainty for specific reservoir
operation problems that make use of economic information. Probability theory can be used

to complement fuzzy sets to process the uncertainty while modeling real world systems.

Pedrycz and Gomide (1999) state:

* .. no single universal vehicle exists to cope with uncertainty. Some other
formal frameworks may well be developed (and likely will be developed)
to address specific issues of uncertainty. In this sense, fuzzy sets and

probability seem to be complementary rather than antagonistic ideas”

The fuzzy-risk approach discussed earlier projects a simil:ar idea. A topic of significance in
regard to short-term and real-time operation of reservoir systems is “system representation”
within the optimization models. Next in the line of issues addressed in the present study
is this area. Representation of physical system in mathematical programming formulations

and other relevant issues are addressed in the next chapter.



Chapter 3

System Representation

The mere formulation of a problem is far more often essential than its solution,
which may be merely a matter of mathematical or experimental skill.

- Aibert Einstein

64
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3.1 Introduction

In the previous chapter, approaches that can handle uncertain and imprecise elements of
reservoir operation are presented. The present chapter extends the scope of the .research
to real-time operation of multiple reservoir systems to address the issue of system rep-
resentation. System representation in the present study is defined as the “mathematical
representation of the physical system within a model formulation developed for optimiz-

ing an objective”. System representation or formulation is an important issue that needs

attention while developing optimization models.

Edgar and Himmelblau (1988) provide a set of the six general steps that can be used to

formulate and solve optimization problems. One of the steps relevant to the topic of system

representation is appropriate here:

Develop via mathematical expressions of a valid process or equipment that relates
the input-output variables of the process and associated coefficients. Include
both equality and inequality constraints. Use well-known physical principles,
empirical relations, implicit concepts, and external restrictions. Identify the

independent and dependent variables to get the number of degrees of freedom.

In general, the extent and nature of representation of the physical system in a optimization
or simulation model depends on : (i) basic understanding of the system; (ii) transferability
of knowledge of the system into a mathematical form; (iii) approach and the tool selection,
and their availability and (iv) limitations of the tool to accept variables or mathematical

forms in order to incorporate specific conditions. These issues in the context of optimization
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models are discussed briefly here. System representation issues relevant to simulation

models are discussed in Chapter 5.

Knowledge of the System

The formulation or representation issue begins with the understanding of the underlying
physical processes that govern the system behavior. Identification of system boundaries,
selection of state variables that influence the system the most, recognition of non-linear
processes and nature of inputs (stochastic or deterministic) is the next essential step. Also,
a basic idea about the nature of expected solution and limits (ranges) of some variables is

important. The strength of the formulation and its use depends on this issue.

Mathematical Representation

Translation of system processes or capturing the physics of the problem into a mathematical
form is the next step. This involves identification as well as definition of objective function
(performance measure). Functional description of the system in a form acceptable by
the optimization approach follows. For example, in case of Dynamic Programming (DP)
model, the development of recursive relationship is crucial. Development of constraints
based on system boundaries, binding and relaxed, upper and lower limits that are generally

represented by equalities or inequalities, is the next essential step.

In mathematical programming formulations, a measure of system performance is often
used as an objective function that is maximized or minimized. The physical processes
are represented as constraints (equalities and inequalities). System representation can be

exhaustive in case of simulation models as they are developed using high level programming
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languages. Also, any degree of complexity associated with the natural system can be
incorporated into a serial computer code. If a simulation model is developed using high level
programming language (e.g. FORTRAN or C) then the physical processes are captured and
coded in a specific order. This is due to the fact that computer code is executed in a serial
order. Parallel implementations of serial code is an exception to this. If the models are

developed using other approaches (e.g. Objected-Oriented simulation), the representation

can be limited in some cases.

Approaches and Tools

Selection of optimization approach, more appropriately, the right tool to solve the model is
the main issue that would influence the extent of representation. Depending on the nature
of the formulation either linear or non-linear optimization approaches can be selected. A
Dynamic Programming (DP) is ideal for highly non-linear as well as discontinuous objec-
tive function and constraint relationships within multi-stage decision making problems. A
variety of conditions (decision alternatives, discrete variables, special conditions) can be
represented in DP models. Linear programming (LP) is appropriate for large scale formu-

lations that are linear in nature and for efficient solutions with negligible computational

times.

Representation of constraints and functional relationships in an easy algebraic form rather
than using matrix notations is an aspect that should be given due consideration. Tools that
provide this feature should be selected. For e.g. GAMS and NUMERICA! optimization
software provide modeling languages to represent the formulations in algebraic forms that

can be linked to a variety of solvers. Non-traditional optimization approaches such as

1Global optimization software, ILOG corporation
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Genetic Algorithms (Michalewicz, 1998) and Simulated Annealing can be used for problems
that cannot be solved by available state-of-the-art tools. Since, non-traditional approaches

use simulation models, there are no constraints on the system representation in such cases.

Tool Specific Limitations

Use of special variables (discrete, integer or binary) is made whenever a specific condition
has to be specified or as the physics of the problem demands. Decision alternatives in
formulations can be represented by the use of binary variables. On the similar lines, binary
variables can be used to activate or de-activate some variables that take on values on
continuous domain. The presence of these variables in formulations limits the tool selection
process. In order to handle integer, binary or discrete variables in a non-linear environment,
a mixed integer non-linear programming solver should be used. A number of constraints
associated with computer implementation of approaches and development of tools limit the
exhaustive system representation. These include: (i) number of constraints with special
variables; (ii) dimensionality problems in case of DP; (iii) requirement of initial guess (for
variables) for most bof the standard non-linear programming solvers and (iv) conditional

statements and iterative solution procedures.

3.2 Representation of Water Resources Systems

In general, Linear, Non-Linear and Dynamic Programming techniques have been used in
the past for solution of the most of the routinely encountered problems in the field of

reservoir operation (Yeh, 1985). Dynamic Programming (DP) has played a major role in
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sequential decision-making process inherent in many water resources management problems
(Yakowitz, 1982). Wealth of references concerning the applications of these optimization
techniques to reservoir operation problems can be found in the literature (Loucks et al.,
1991; Wurbs, 1993). The advantages and difficulties associated with the use of these opti-
mization techniques in a variety of reservoir operation models are discussed by researchers
(e.g. Yeh, 1985; Mays and Tung, 1992). The classical optimization techniques are ideal

tools for solving many of the reservoir operation problems, however the computational

requirements are intractable in many instances.

The computational burden and representation of the problem itself have been consistent
hurdles in solving many complex multiple reservoir operation problems characterized by
large number of decision variables. In attempting to solve a problem of multi-period and
multiple reservoir operation, it is important to consider the nature of the formulation (e.g.,
number of variables, non- linearities, constraints) and the computational power required to
solve the problem in real-time. Traditional optimization algorithms still suffer from at least
one of these limitations : (i) computational intractability; (ii) requirement of calculation of
derivatives of complex functions; and (iii) need for too many assumptions for the problem
to be transformed into a standard form required by the optimization technique. These
modifications may range from linearization of the objective function and constraints to

incorporating problem specific assumptions into the formulation.

To use the techniques that can guarantee global optimal solutions or at least optimal
solutions, representation of the physical systems is often simplified in mathematical pro-
gramming models. Various problem-specific assumptions are used to represent the system
in a mathematical form that can be conveniently handled by the optimization tool. This

approach ensures global optimal solutions if at all, however at the cost of unrealistic for-
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mulations. On the other hand, an exhaustive representation of the physical system along

with a technique that provides near-optimal solutions can be accepted for most real-life

problems.

In this chapter, issues relevant to system representation are addressed with the help of a
real-time operation model developed for a multiple reservoir system. The model description,

formulation, application to an existing reservoir system and discussion on representation

issues are provided next, in that order.

3.3 Test Problem

The reservoir operation problem selected in the present research has all the complexities
that provides an opportunity to address a number of issues relevant to system representa-
tion. These complexities include a non-linear objective function, a variety of constraints
(equality and inequalities) and special variables (in this case, binary). Above all this, there
is a need for this formulation structure to develop a realistic representation of the system.
System representation issues can be addressed in a better way if an alternate formulation or
a simplified formulation can be developed and implemented. The reservoir system selected
in this research is a set of four hydropower plants in series. An important feature of the
system is that the generating plants are hydraulically coupled. Literature review relevant

to this problem area is provided here and then the model formulation and results follow.
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3.4 Real-Time Operation of Hydropower Systems

A comprehensive survey of existing optimization models for general real-time operation of
reservoirs would be quite an undertaking. Wealth of literature is available in the. areas of
long term, mid-term and short-term operation of single and multiple reservoirs systems. A
comprehensive review of these models is not attempted here. Detailed reviews of reservoir
operation models and the optimization techniques used are provided by many researchers.
Reviews by Yeh (1985), Yakowitcz (1982) and Wurbs (1993) provide an exhaustive compi-
lation of research works. Considering this, works closely related to proposed research study
are reported. The operation of multiple reservoir systems with an emphasis on hydropower
reservoirs is discussed next. It should be noted that the specific areas on which the present

research work concentrates (hydropower reservoir operation) limits the literature survey to

a certain extent.

Optimal operation of hydropower reservoirs in real-time is a complex and challenging task
addressed by many researchers in the past few decades. Comprehensive models (e.g. Yeh
et al., 1992, Tejada-Guibert et al., 1990, Turgeon., 1981) that deal with variety of problems
related to short-term operation of hydropower reservoirs are now available in literature.
These models address various problems relevant to hydro and thermal power systems.
Grygier and Stedinger (1985) report a set of algorithms for hydropower optimization that
include Successive Linear Programming (SLP), optimal control and LP - DP. An improved
algorithm based on SLP was developed by Reznicek and Simonovic (1990) for optimal op-
eration of a single hydropower system. Recent review by Wurbs (1993) provides description
of models developed for hydropower scheduling considering both hourly and daily time in-

tervals. Lund (2000) in a recent study provides a set of theoretical rules for hydropower
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reservoirs in series and parallel derived based on economic incentives of operation. The
present study deals with the development of a short-term operation model for a system

of cascading hydropower plants. The work addresses the problem of hydraulic coupling

between reservoirs which influences the operation schedules.

The following discussion on the recent studies relevant to hydropower reservoir operations
provides a representative sample of a number of works reported in literature in the past
decade. The words reservoir and plant are used interchangeably in the text, while they
mean a hydropower generating reservoir. Yeh et al. (1992) developed an optimization
model for real-time operation of hydro-thermal system. Three models were developed for
obtaining optimal operating schedules on a daily basis. Even though they did not consider
a hydraulically linked system, they indicate the importance of hydraulic coupling in the

operation of cascading hydropower plants.

Tejada-Guibert et al. (1990) developed a non-linear optimizatiom model for multi-month
operation of a hydropower system. They generate alternate operating schedules using
different objective functions in the optimization model. The issue of hydraulic coupling was
not addressed in their stuay. Martin (1995) developed a method based on optimization as
well as simulation to develop hourly generation schedules. Linear Programming was used
as an optimization tool. Turgeon (1981) used progressive optimalify technique to arrive at
optimal operating rules for a system of hydropower plants located in series on the same

river. Time of water travel between the plants was considered while deriving the operating

rules.

For plants located on a single river, two aspects are of importance: (a) hydrologic linking;

and (b) hydraulic coupling. Hydrologic linking indicates that all the flows from the up-
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stream reservoir and the local inflows join the immediate downstream reservoir. Hydraulic
coupling is assumed to exist when the forebay elevation of a plant influences the tailwater
elevation of an immediate upstream plant. Since the head required for power generation
is calculated based on the forebay elevation and the tailwater elevation, hydraulic coupling
becomes an important aspect that needs to be considered while developing operating rules.
Generating plants with Pelton turbines are an exception. One of the important issues ad-
dressed in the present study is the hydraulic coupling between the plants. In many cases,
the effect of hydraulic coupling can be neglected if the distance between reservoirs is too

large that the tailwater elevation is not influenced by the downstream reservoir’s forebay

elevation.

Hawary and Christensen (1979) have presented an elaborate discussion on different types of
approaches used for scheduling of coupled hydropower reservoirs. The approaches consider
hydraulic coupling between the plants. In all the cases they considered, the plant discharges
were assumed to be pre-specified over the optimization time interval. This assumption
might be helpful in solving the optimization problem but is not realistic. Also, the forebay
elevation at one plant is assumed to be equal to the tailwater elevation of the next upstream
plant. The variation of tailwater elevation with respect to plant discharge and conditions at
the immediate downstream plant are not considered. This issue is addressed in the present

study to handle the hydraulic coupling within an optimization framework.

Recent works (Soares and Carneiro, 1991; Lyra and Ferreira, 1995) have provided useful
real-time operation models for generation scheduling for a series of plants on the same river
(stream). Wood and Wollenberg (1984) report application of Discrete Differential Dynamic
Programming (DDDP) to two hydropower reservoirs that are not hydraulically coupled.

Lund and Guzman (1999) discuss operating rules for hydropower reservoirs in series and
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parallel. PRSYM (Power and Reservoir System Model) (Shane et al., 1995) of United States
Tennessee Valley Authority (US TVA) and Hydro-Quebec model (Robitaille et al., 1995)
developed by Hydro Quebec are the two comprehensive operation models now available for
solving the real-time operation problem of complex network of hydropower systems. These
models are capable of handling dynamic tail water effects in case of cascading reservoir
systems. The PRSYM (Magee et al., 1995) uses a look up table of tailwater elevation
curves, while Hydro-Quebec model (Robitaille and Lafond, 1995) uses an iterative technique
to address the issue of hydraulic coupling in the optimization framework. In the latter
work Successive Linear Programming (SLP) is used as an optimization approach. The

methodology proposed in the present study is different from that of these two models.

Soares and Carneiro (1991) have developed an operation model where the hydraulic cou-
pling between the plants is assumed to be negligible. They provide a systematic study of

cascading reservoirs and comment about the operating schedules based on the position of

the reservoir in the complete system.

Lyra and Ferreira (1995) developed a multi-objective approach for short term scheduling of
a highly coupled system of hydropower reservoirs. DDDP was used to solve the optimiza-
tion problem. In their study, the variation of forebay level within the time interval was
not considered. Even though the present study addresses a similar kind of problem, the
methodology of handling the hydraulic coupling is different. The variation of forebay level
while arriving at the gross head is considered in the present work. Also, discretization of
variables is not required in the model developed in the present study, which is required in

case of DDDP formulation. This can be considered as an advantage, as discretization may

lead to approximations.
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The model developed in the present study is a deterministic scheduling model similar to the
earlier models developed by Soares and Carneiro (1991) and Lyra and Ferreira (1995). The
model can be adopted in an adaptive manner whenever information about the inflows or
other variables (e.g. energy demands) becomes available. This type of approach is widely
accepted in literature (e.g. Yeh, 1985; Soares and Carneiro, 1991) relevant to reservoir

operation and is referred to as adaptive real-time operation.

The problem addressed here is concerned with short-term operation of a series of hy-
dropower reservoirs. One main characteristic of the system of reservoirs considered is the
high hydraulic coupling between the cascading plants. Therefore emphasis is placed on this
issue in the present study. An exhaustive review of existing models (limited in number)
that consider hydraulic coupling in case of a network of hydropower reservoir systems, leads
to the following observations: (i) only few models consider the hydraulic coupling aspects
through a number of assumptions; (ii) physical representation of the system within an op-
timization framework is often simplified; (iii) approximations are made in some instances
due to discretization of variables using certain approaches and (iv) models are confined
to short-term operation as opposed to real-time operation. Based on these observations,
the present study attempts to address the issue of hydraulic coupling in the context of

real-time operation of multiple hydropower systems. An optimization model developed for

this purpose is discussed next.
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3.5 Model Features

The main objective of the operation model is to provide optimal real-time generation
scheduling rules for a set of hydropower generating plants on a single river. The optimiza-
tion model to be formulated should address two important issues: a) non-linear objective
function (energy generation) amd non-linear constraints; and b) hydraulic coupling. While
the first aspect can be handled by using a non-linear optimization model, the latter needs a
set of constraints to model the physical linking between the plants. These constraints can

be incorporated using binary variables that help address the aspect of hydraulic linking.

The type of formulation discussed above falls into the category of Mixed-Integer Non-Linear
Programming (MINLP) models. MINLP formulations are used in many applications espe-
cially in transshipment and process synthesis problems related to the fields of operations
research and chemical engineering respectively. Floudas (1995) provides a comprehensive
review of the development of algorithms for solving the MINLP formulations along with
their computer implementations. The author uses a special structure, referred to as su-
perstructure to represent various problems in a general form. A superstructure provides a
representation of the problem indicating the type of constraints involved and the objective
function along with the description of the nature of the variables (for e.g. binary, inte-

ger, discrete or continuous). The superstructure of a typical minimization problem using

MINLP formulation can be written as,

Minimize fn(z) (3.1)

subject to
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h(z,y) =0 (32)
g(z,y) <0 (3.3)
z€X CR™ . (34)
yeY ={0,1}" (3.5)

Here, fn(z) represents the objective function which can be minimization of the cost of
energy production and other costs in the present context of real-time reservoir operation.
T is a vector of n. continuous variables that can represent plant discharge, storage, spill and
all other variables which can take continuous values. The variable, y, represents a vector

of l; 0 — 1 variables which can be used for modeling the physical link between the plants

using tailwater elevation curves.

The formulation (equations 3.1 - 3.5) is referred to as a Mixed-Integer Non- Linear Program-
ming (MINLP) problem with binary variables. Formulation of MINLP problems should be
developed with complete knowledge of the problem at hand. Nemhauser and Wolsey (1988)
emphasized that in the case of integer programming formulating a good model is of crucial
importance than solving it. Many applications of MINLP with binary variables are avail-
able, especially in the field of chemical engineering (Floudas, 1995). Applications in the

specific areas of power industry can be found in the works of Bertsekas (1983) and Bloom

(1983).

Binary variables are generally used in formulations where the existence or non-existence
of processes are represented with these variables taking only discrete values (0 or 1). Unit
commitment problem is an example where decision has to be taken regarding turning the

unit on or off. In the present context, binary variables are required to select the appropriate
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tailwater elevation curve to address the issue of hydraulic coupling. The non- linear nature
of the objective function (power generation) and constraints along with the binary variables
make MINLP an appropriate choice for formulating the real-time operation problem. The

model formulation based on the above superstructure and details of the constraints are

given in the following section.

3.6 Model Formulation

A non-linear programming model with binary variables is formulated for optimum daily
operation of the power generation plants on a single river. The model provides optimal
power production schedules at each of the generating stations considering the strong hy-
draulic coupling between the plants. The problem considers within the week scheduling

with the weekly power target demand assumed to be known. Flow transport delay between

plants is also considered in the formulation.

The objective is to minimize the total cost of energy production and the surrogate cost
associated with the spill at each of hydropower plants. For the present study the maximum
power that is required to be generated, the initial and final conditions (storage states) and
forecasted values of local inflows are assumed to be known. These values are obtained
from the EMMA (Energy Management and Maintenance Analysis) model (Barritt-Flatt
and Cormie, 1988), presently used by the local power utility, Manitoba Hydro, in the
case study region for obtaining the weekly operating rules. Based on the weekly target

demand, local inflow values and the initial and final forebay elevations, the present model

is formulated to obtain optimum daily scheduling rules.
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The objective function used in the present study is case study specific, an explanation to this
regard is provided here. The function is similar to the one used by Reznicek and Simonovic
(1990). It is generally agreed that the objective in case of operation of a hydrothermal
system would be to minimize the cost associated with the fuel. On the other hand, for
systems without thermal generation, techniques developed for scheduling of hydrothermal
systems can be used by assigning a pseudo-fuel cost to the hydroelectric plants (Wood
and Wollenberg, 1984). The hydropower plants considered in the present study are a part
of a larger network and the objective is to obtain the scheduling rules for the plants with
minimum cost of energy production while meeting the target demand. This implies optimal

distribution of load between the plants within the time horizon considered.

An objective function different from the traditional objective of maximizing energy is cho-
sen to facilitate the comparison of the performance of the present model to that of an
already existing model (EMMA) used by the local power utility. It should be noted that
the operational cost of hydropower production used here is provided by the power utility
that uses the similar cost structure in the EMMA model. The cost structure for energy
production, import of energy and spill (Reznicek and Simonovic, 1990) are available from
the power utility. The objective function therefore is application specific and may not be

appropriate for situations where the set of plants considered are not part of a larger network

of plants and stipulated conditions do not exist.

Details of the EMMA model are given under the section 3.7. The non-linear model formu-

lation developed for the present study is discussed next.
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Objective function :

T n .
Minimize Y > (NO: 7o (hjr — Tje) Qi Bje) + (MO; SPj) (3-6)

t=1 j=1

Where : 7, is a constant; §;, is the overall efficiency of the generating station j for time
interval, £; NO, is the cost of generating a unit of power; and MO; is the surrogate cost
associated with spill; @;: is the plant discharge and SP;; is the spill for the generating
station j. The surrogate cost associated with spill for each of the reservoirs in given in
the Appendix 1. The head for power generation is given as the difference between forebay
elevation (kj:) and tailwater elevation (7j.). Here, n is the total number of generating

plants and ¢ is the time interval index, while 7 is the last time interval under consideration.

A conceptual diagram of the cascading reservoirs is given in the Figure 3.1 to explain the
notation used for different variables in the formulation. The objective function confirms
with the traditional objective of economic operation of hydropower systems while meeting
the system demand. The cost associated with the spill (MO;) is appropriate for the case
study region, where the local power utility decides the priority of the location of the spill.
The aim is to develop a real-time operation model for a series of plants that are a part of

a network of hydropower reservoirs.
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Figure 3.1: Conceptual diagram of cascading reservoirs

Constraints

1. Average elevation

hie = (ki, +k,) 0.5 j=1,n &t=1,T (3.7)

The above constraint is used for obtaining the average forebay elevation at each of the
generating stations. An average value is used as the forebay elevation fluctuates within the

time period considered. Here £, and kjf», ¢ are the initial and final forebay elevations for the

time interval, ¢, associated with the station ;7 respectively.
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Ry = (kipy, +kly,) 05 i=l,n &t=1T (3.8)

The value of hj1, refers to average forebay elevation of reservoir, j+1. The subscﬁpt, 7, t,

is used instead of j + 1, ¢, as hj41, is used for calculation of head at the generating station

7.
2. Selection of tailwater elevation curves

For any generating station, tailwater elevation curves represent discharge- elevation curves

for different downstream forebay elevations. A general form of these curves is given by the

equation,

Tje = klj41 + Crinr Giy Vi, VI, &t=1T (3.9)

Where, T}, is the tailwater elevation, kf,,; is a discrete downstream reservoir’s forebay
elevation, which is taken as downstream condition for deriving the curves. The complete
range of forebay elevation is divided into mj;; — 1 equal intervals. For example, k7;; and
kP, ;11 represent the upper and lower values of one such interval respectively. The variable
G;,: represents the sum of plant discharge and spill from plant j, while the variable C} ;41 is
a constant in the linear equation (3.9). If the local inflow influences the tail water elevation,
it has to be included in calculating the total discharge (or project discharge), Gj;. A set

of typical tailwater elevation curves used in the present study is shown in the Figure 3.2.
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The above constraint is for the selection of appropriate tailwater elevation curve. Based
on the value of Y] ;. (either O or 1), the tailwater elevation curve is selected. The curves
have a form k7., + Ci ;i1 Gje- Also, the index mj,, indicates the number of tailwater

elevation curves available at each of the stations. The intervals and binary variables for a

specific case are shown in the Figure 3.3.
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Figure 3.3: Representation of the storage intervals and tailwater elevation curves
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Selection procedure

The selection procedure involves two steps : i) determination of the interval to which
the average forebay elevation belongs; and ii) selection of appropriate tailwater élevation
curve. As the tailwater elevation curves are available for specific forebay elevations, the
average forebay elevation, h;; 1, of reservoir j 41 is used to determine the interval. This is
achieved by using a large integer coﬁsta.nt M, and the binary variable Y ;41 k7;;; is the
level of the forebay for the plant, 7 + 1 for which the tailwater elevation curve is defined.
Equation (3.10) is used to determine the upper limit of the interval to which the average

value belongs, while equation (3.11) will provide the lower limit.

The number of curves, m;; is equal to the number of binary variables. Once the interval
is decided, either of the two curves (curve associated with the lower or upper value of
interval) can be used to obtain the tailwater elevation. In the present formulation, the
curve associated with lower limit of the interval is selected. This is achieved by using
the constraints (3.12) and (3.25), which ensure that only one curve is selected out of all
the curves at any generating station and is used for calculations. An interpolated curve,
corresponding to the average value, hj;1 ., that lies within the interval is possible. However,
the formulation has to be modified to incorporate the interpolation constraints. The error
induced in the formulation due to this selection method can be reduced if the number of

tailwater elevation curves are increased, thereby increasing the number of intervals.

3. Mass Conservation equations

Sitt =S+ Lie+ Rjmre — Rjp Vi &t=1T (3.13)
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Rjy =SSP+ Qji: Vi &t=1,T (3.14)

S}+l = S; -+ Z:j,t -+ Rj*l,t - Oj,t ] =n+1 & t= 1, T (3.15)

Here, St and S}*! represent reservoir storages at the beginning of time intervals ¢ and ¢+ 1
in volume units respectively. The variables R;; and SP;; are the release and the spill values
from reservoir j respectively, while I;, forecasted value of local inflow. The equation (3.15)
represents the continuity equation for the lake into which the last plant is discharging. The

variable, O;. represents the controlled flow out of the lake.

4. Functional relationships

Bz = f(Qjs) Vi &t=1,T (3.16)

This constraint specifies the functional relationship between the plant discharge, @;: and
overall plant efficiency, B;,. for generating station j for time interval ¢. Efficiency, in general
is also a function of head. Since a non-linear optimization formulation is used, the inclusion
of a constraint which relates efficiency with both discharge and head poses no conceptual
difficulty. However, the relationship (equation 3.16) is used to facilitate the comparison of

the present model with the already existing weekly scheduling model, EMMA, that uses

similar relationship.
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St = f(ki.,t) i=Ln+1l &t=1,T (3.17)

S5 = F(kL) j=LlLn+1 &t=1,T (3.18)

The storage-state relationship for initial (k%,) and final (kj{ .) values of forebay elevations
are obtained for each of the generating stations. For convenience, two relationships are
used. When, j = n + 1, the equations (3.17 - 3.18) provide the storage-state relationships

for the lake or the reservoir into which the last hydropower plant (j=n) is discharging.

5. Spill and other constraints

SP, <F Vi &t=1,T (3.19)

The above constraint is added to limit the spill to the discharge capacity of the spillway.

Here, P; is the maximum value of allowable spillway discharge.

Qje < Q7% Vit (3:20)

Q7" is the maximum allowable plant discharge at plant j.
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T (h it j},t) Qj,t ﬂj't S Pcapj Vj &t= l,T (321)

This constraint provides a upper limit on the power production at each of the planis. Here,

Pcap; is the maximum power production capability of the plant j. The variable v, is a

constant.
T n
Z Z Yo (hje — Tjz) Qi Bit = Erarget (3.22)
t=1 j=1

The constraint indicates that the total power produced from all the plants summed over

all time intervals should equal or exceed the total weekly target Eisrge:- The value of v, is

constant.

Z Yo (hj,t - n'.t) QJ',t ,Bj't Z Em'Lnt t= ].,T (3.23)

=1

The above constraint specifies that a minimum amount of power, £min, to be generated

within a time interval, ¢ from all the generating stations.

!c;'-,l = Ist;, j=1n+1 (3.24)

klr = Fstjr j=1n+1 (3.25)
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Constraints for initial and final forebay elevations at each of the generating stations and

the elevation values (when 7 = n + 1) for the lake or the reservoir downstream of the last

reservoir under consideration.

6. Binary vartables

M+l
S Yijre=1 j=1,n &t=1,T (3.26)

=1

As only one out of the total m;;; tailwater elevation curves at each plant for every time

interval will be used, the sum of the binary variables is equated to unity.
The optimization solver used in the present study requires that the binary variables which

appear in the non-linear constraints (e.g, equation 3.12) should be included in such a form

that the constraint becomes bilinear. This is achieved by adding the following constraints

to the formulation.

Zij+e — Yige= 0 V5,0t (3.27)

Z[,j.;_l'g S 1 Vj, l, A (328)

The variable, Z; j;1. is continuous and the equations (3.26 - 3.27) will force the value to

limit to either 0 or 1. The binary variable, Y71, will be replaced by Z;;1,: while solving



System Representation 90

using the optimization solver. The binary variables do not appear in the non-linear terms

or equations.

The formulation does not account for head losses in the penstock and reservoir evaporation
losses. Their inclusion is quite straight forward. The constants, 7,,7:, are numerical
constants which include the specific weight of water and an appropriate numerical value to

maintain unit consistency. The values of numeric constants are given in Appendix 1.

3.6.1 Time Delay

Time delay or the time of travel for the water between two plants is an important aspect
to be considered in scheduling the plants especially when the delay is equal to or more
than the time interval considered for optimization. Yeh et al. (1992) indicate that in
short-term operation models, hydropower plants may introduce additional complications
of hydraulic time delays for cascaded plants. Approximate flow transport delay in terms
of a fixed time, without a physical model for flow was used by Turgeon (1981). This
approach is justified when data relevant to the river characteristics between the plants are
not available. Considerable insight can be gained into the change in operational schedules

even by using fixed flow transport time as delay.

The formulation presented earlier does not consider the river flow delay between the cascad-
ing plants. The hydraulic characteristics of the river sections between plants are important
issues that are needed to be considered. Based on the location of the plants on the same

stream there is need for inclusion of river low dynamics in the modeling effort. Two ap-
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proaches are discussed by Hawary and Christensen (197°9): (1) state space model; and
(2) transport delay approach. The state space model considers the river characteristics
at regular intervals and principles of hydraulic routing ar< used. For the transport delay
approach, travel time is accounted by the attenuation or lengthening of time base of the
discharge wave which moves towards the immediate downstream reservoir. This lengthen-
ing of time base is represented by an attenuation factor (Elawary and Christensen, 1979).

If this attenuation factor is neglected, then the effect of time delay can be modeled using

the equation below.

S;H = S;- + L+ Rj_p—r — Rjs vy &t=1,T (3-29)

The river transport time is represented by 7 and the variable R;_;:—, is the delayed flow
from the upstream of reservoir j. Constraint (3.13) can be replaced with equation (3.28)
to incorporate transport delay into the main formulation. It is obvious that if the delay
is less than the time interval considered for optimization, then no effect on the scheduling
will be observed.} On the other hand if the delay equals or exceeds the time interval, the
scheduling will be affected. Due to lack of data relevant to £he river characteristics, only a

simplified transport delay approach model is used in the present study.

The objective function used in the earlier formulation (3.6 - 3.29) is case study specific.

A traditional objective function for general hydropower optimization problems is given by

the following expression.
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T n
Mazimize Z Z Yo (Rje —Tje) Qi Bi (3.30)

t=1 j=1

3.6.2 Unit Commitment

Unit commitment is a process of scheduling the available turbine or thermal units for
optimal power generation. The turning on (commitment) and off (decommitment) is based
on the efficiency characteristics of the individual units. In case of hydropower generating
reservoirs, the water allocation among turbines is optimized based on the turbine efficiency
curves. The problem is hancled by Dynamic Programming (DP) and Priority List Schemes
(Wood and Wollenberg, 1984). DP has many advantages compared to other methods, as
any specific conditions can be incorporated at any stage within the formulation with ease,

which is not the case with other traditional methods.

Binary variables are used for selection of appropriate tail water curves in the MINLP
formulation. On similar lines these variables can be used to address the unit commitment
problems. The following constraints can be added to the main formulation. The advantage
is that an exhaustive power generation scheduling problem can be addressed that includes

unit commitment also. For any given time interval, £, the total plant discharge is given by

Tn
Qi=>, aqfuyby Vj (3.31)

tb=1

Q; represents the total plant discharge from turbines, qt§-" is individual turbine discharge
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and yby, is a binary variable associated with the particular turbine.

Tn th
T qt; .
Bi=> —”’Q, . v © (3.32)
th=1 7

The overall plant efficiency is given by the above relationship. Individual turbine efficiency

() relationships are given by

e = f(qt?) V7, tb (3.33)

¢t} <qgtmi  ybs Vi (3-34)

qtmj-b is the maximum allowable discharge for the particular turbine. The time index, £,
is omitted for clarity. The binary variable can be used to decide the non-zero discharge
value. Conditions as to how many number of units to be started, or commit a specific unit
and a variety of stipulations can be specified using binary variables in the formulation. For
example, conditions can be speciﬁed using binary variables that look like: Z;";’;I yby <5,
that indicates that at any time a maximum of five units can be started or yb; +ybs = 0
suggests that specific turbines (numbered one and five) are turned off. When the constraint
(3.32) is used, the constraint that relates the total plant efficiency to discharge (3.16) can
be eliminated from the main formulation. On the other hand if the total plant efficiency is
available, it should be included in the constraint 3.32 on the left hand side. The problem

of unit commitment if addressed increases the number of binary variables in the MINLP
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formulation. The product of number of turbines and the time intervals gives the number

of binary variables in the case of unit commitment problem.

DP and MINLP formulations suffer from problems relevant to discretization and binary

variables respectively if unit commitment problem is addressed.

3.7 Model Application - Winnipeg Reservoir System

The real-time operation model is applied to a series of four reservoirs on the Winnipeg
River, Manitoba, Canada. These four reservoirs in cascade form a part of a much more
complex network of hydropower reservoirs maintained by the local hydropwer corporation,
Manitoba Hydro. Only the plants on the Winnipeg River maintained by Manitoba Hydro
are used as test bed for the developed model. A schematic representation of the plants in
the case study region is given in the Figure 3.4. The first plant, Seven Sisters receives the
controlled flow from the Slave Falls reservoir located upstream, while the last piant under

consideration, Pine Falls reservoir drains into the Lake Winnipeg.

Whitemouth River
Whiteshell River
Bird River Bird River

Whiteshell river

Slave Falls Lake Winnipeg

Natalie Lake Pine Falls forchay

Lac Du Bonnet

Pine Falls

Seven Sisters Mc Arthur Great Falls
Figure 3.4: Schematic representation of hydropower reservoirs in the case study region.

The McArthur reservoir has the largest storage of all the plants. Strong hydraulic coupling

between the hydro-generating plants on the Winnipeg river is one of the important features
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of the present system. More details of the case study region can be obtained from earlier
work by Barritt-Flatt and Cormie (1988). The weekly target power production for all
the power plants, initial and final forebay levels and the forecasted values of inflows are
provided in the present study by EMMA model. The reservoir system in the case study
area. will be henceforth referred to as Winmnipeg Reservoir System. This system will be used

later in chapters 4 and 5 as a test bed for approaches developed in the present research.
Energy Management and Maintenance Analysis (EMMA) Model

The EMMA model (Barritt-Flatt and Cormie, 1988) is presently used by the local power
utility, Manitoba Hydro, to obtain generation and maintenance schedule for all the hy-
dropower plants in the system. The model is used to maximize the net revenues considering
the operation of hydro-electric and thermal generation, maintenance, hydraulic character-
istics of reservoir and river system, domestic loads and external market sales. The model
is a deterministic model which is run repeatedly with different combinations of loads and
inflows. The operations problem addressed by EMMA has planning horizons ranging from
a week to one year. The present study focuses on development of a short-term operation
model for daily scheduling using the targets specified by the EMMA model. The formulated

short-term operation model is applied to the plants on the Winnipeg River where strong

hydraulic coupling exists between the plants.

The EMMA model provides the weekly target demand, Ejsrge: and the initial and final
forebay conditions to the short-term operation model developed in the present study. The

short-term operation model considers the hydraulic coupling and provides the daily schedul-

ing rules for the plants.
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3.7.1 Results and Discussion

The short-term optimization model formulated in the present study is solved using an op-
timization software, GAMS (General Algebraic Modeling System). GAMS (Brooke et al.,
1996) is a modeling tool in which problems can be specified in algebraic form and auto-
matically interfaced with the linear or nonlinear and mixed integer programming solvers.
For solving the MINLP formulation, a solver, DICOPT (DIscrete Continuous OPTimizer)
under GAMS environment, is used with specific restrictions to the representation of some
constraints. Forecasted values of the local streamflows, total energy demand (load), plant
discharge from Slave Falls to first reservoir and the conditions downstream of the last plant
are specified by the EMMA model which provides the weekly scheduling rules for all the
plants in the system. The purpose of the short-term operation model is to provide daily
scheduling rules for the four plants on the Winnipeg River taking into consideration the
strong hydraulic coupling between these cascading plants. The cost of hydropower gener-
ation and spill are specified in Canadian dollars. Time delay effects are considered using
simplified transport delay formulation (Hawary and Christensen, 1979). A delay of one day

is used between two plants to evaluate the effect of time delays on the scheduling.

The main contribution of the present research work is the MINLP formulation (Teegavarapu
and Simonovic, 2000a) along with a procedure for selection of tailwater elevation curves
to address the short-term operation problem as well as the issue of hydraulic coupling. In
the main formulation, j refers to reservoir index in the case study region where n is equal
to 4. The four reservoir system in the case study region is shown in the Figure 3.4. For
J =1, the reservoir is Seven Sisters; and for j = 2, the reservoir is McArthur; and so on.

Tail water elevation curves are developed at regular intervals of the forebay elevations of
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each of the plants taking into account the upstream plant discharge. Regular intervals of
half foot along the entire forebay elevation range are used to develop the curves for varying

discharge values. A total of 5, 11, 11, 15 tailwater curves are developed at each of the

reservoirs in the order of j = 1, 4 respectively.

The total number of binary variables in the formulation is given by the product of total
number of curves and time intervals under consideration. A set of tailwater elevation
curves for McArthur reservoir are given in the Figure 3.2. The forecasted inflows and
total power to be produced for the week, Eiurge, are provided by the EMMA model. To
obtain the optimal daily generation schedules, the week starting from September 15-21,
1997 for which the weekly power generation figures are available, is used. The initial and

final forebay elevations (at the start and the end of the week) are provided by the EMMA

model.

Table 3.1: Forebay levels and Inflows

Location Initial Forebay level (ft.) Final forebay level (ft.) Local Inflow (Kcfs)

Seven Sisters 899.30 899.30 20.76
Mc Arthur 835.68 835.68 0.5
Great Falls 811.74 811.74 0.0
Pine Falls 751.66 751.66 0.36

Winnipeg Lake 714.32 714.12 93.09

The values of initial and final forebay levels for all the plants as well as the local inflows are

given in the Table 3.1. The large values of inflows for both Seven Sisters and Winnipeg Lake
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are due to regulated flows from Slave falls and flows from many small rivers respectively.

Using these values, the MINLP model is first solved without considering the flow transport

delays.

Table 3.2: Daily power generation at different plants

Power (GWhrs)

Day Seven Sisters Mc Arthur Great Falls Pine Falls

1 2.22 1.16 2.93 1.87
2 2.23 1.13 2.04 1.46
3 2.23 0.95 2.39 1.68
4 2.24 1.09 2.03 1.36
) 2.24 0.65 1.80 1.26
6 2.24 0.53 1.01 0.78
7 2.18 0.67 1.13 0.79

The daily power production values at each of the plants are given in the Table 3.2. Also,
the total power production at each plant compared to that of EMMA model are shown
in the Figure 3.5. It is apparent that the values of power production are different from
the EMMA suggested values. The power production values for EMMA models are weekly
figures while those for the present model are the cumulative seven day production values.
The generation value is different at each of the generating plants due to the reason that
EMMA model does not consider the hydraulic coupling between the plants in an exhaustive

way the present MINLP formulation considers.
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It should be noted that the total power production is equal to the weekly demand, Eigrge:.
Therefore the total power production will be equal for both MINLP and EMMA models
while distribution among plants is different. In case of first two reservoirs, the energy
production using MINLP formulation is 4.24% and 6.71% higher than the respective values
due to EMMA model. For the last two reservoirs, the energy production values based on the
EMMA model are 4.01% and 5.67% higher than those of MINLP model. This difference in
scheduling can be attributed to the way in which the MINLP and EMMA models consider

the aspect of hydraulic coupling.
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Figure 3.5: Power Generation values from MINLP and EMMA models

Due to approximations involved in modeling of hydraulic system and the limitations of
the optimization tool used (Barritt-Flatt and Cormie, 1988), an exhaustive representation

of the dynamic tailwater effects was not possible in the EMMA model. The percentage
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variations, even though small are considerable, as the power production values are expressed
in GWhrs. Also, the generation schedules confirm that consideration of hydraulic coupling
might result in unusual rules (Lyra and Ferreira, 1995). A better comparison of the MINLP
model would be with a model that does not consider the dynamic tailwater effects. It can

be easily accomplished by modifying the original MINLP formulation.

Table 3.3: Forebay level variations at different locations

Forebay level (ft)

Day Seven Sisters Mc Arthur Great Falls Pine Falls Lake Winnipeg

1 899.30 835.20 807.26 751.66 714.23
2 899.30 834.79 810.74 751.66 714.21
3 899.30 834.68 807.17 750.34 714.19
4 899.30 834.29 810.83 750.66 714.18
S 899.30 834.68 807.17 751.66 714.16
6 899.26 835.32 808.26 751.34 714.14
7 899.30 835.68 811.74 751.66 714.12

It can be observed from the Table 3.3 that the forebay level variations for Seven Sister and
Pine Falls are very small when compared to the other plants. These two plants are func-
tioning like run-of-the river plants, while the two plants in middle are playing a regulatory
role. This can be attributed to low storage in case of Pine Falls and high flows to the Seven
Sisters plant from the Slave Falls plant that result in low storage variations. The spill values
are zero for all the days for all the plants indicating that the water is completely utilized for

power production. The total power production is specified by the target demand, Eiarget
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which can be modified. Another variable which controls the optimum distribution of load

among the plants is Epp,-

Increasing the value of this variable above a certain value has resulted in infeasible solu-
tion. This is due to fact that the daily generation is limited to the total amount of water
available for power generation. The constraint related to minimum power generation can
be eliminated if such a requirement is not imposed by the power utility. This will eliminate
few constraints in the formulation and would lead to an increased feasible region. The ac-
curacy of the calculation of the head in the MINLP model can be increased if more storage

intervals are considered for deriving the tailwater curves, provided data are available or can

be interpolated based on the existing data.

To understand the effect of river transport delay on the power generation scheduling, time
delay is introduced into the main formulation. A time delay of one day is considered, as
the time step for the scheduling model is one day. Any delay less than one day will not
affect power generation at each of the plants. Again, all the initial conditions used in the
previous run are used. Table 3.4 provides the values of power production at each of the

plants. It is evident that there is lag in the production until some time before the water

becomes available for the power production.

Total power generated from all the plants is 40.16 GW hrs. This value is less than the
total power generated, 44.3 GW hrs, in the earlier case when transport delay was not
considered. The reason for this can be attributed to the non-availability of water for power
production within the seven day period because of the transport delay. The transport delay
model can be replaced by the state space model if the river dynamics can be appropriately

modeled. It should be noted here, that considering fixed time delay is not an innovative
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Table 3.4: Daily power generation considering flow transport delays

Power (GWhrs)

Day Seven Sisters Mc Arthur Great Falls Pine Falls

1 2.20 0.36 0.19 0.05
2 2.78 0.71 0.74 0.17
3 2.83 1.29 1.98 0.56
4 1.76 1.35 2.92 1.46
) 1.22 1.23 2.77 1.82
6 2.63 0.39 3.02 1.82
7 1.23 0.39 0.47 1.82

approach, while modeling effort is primarily meant to emphasize the need for its inclusion

in an optimization framework.

The unit commitment problem is solved for a single generating station (Great Falls) along
with the MINLP formulation to demonstrate the applicability of the extended model.
Discharge-efficiency curves of the 6 turbines at Great Falls generating station are used.
A condition that units 1 and 5 are turned off is used for this sample experiment and results

are shown in the Table 3.5 for 4 daily time intervals.
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Table 3.5: Turbine discharges for unit commitment problem

Day Turbine Discharge (Kcfs)

1 2 3 4 S 6

1 0.0 403 756 7.56 00 7.56
2 0.0 400 6.60 6.60 0.0 6.60
3 00 400 6.64 6.68 0.0 6.68

4 0.0 400 6.69 6.69 0.0 6.69

3.8 Modeling Issues

The approximation of using the average forebay elevation in calculation of head is justified,
as it is difficult to model the variation of forebay level within the time frame of optimization.
As the forebay elevation changes within the time interval, the average value used implies
a fixed head assumption which is valid only for large reservoirs. The error induced due to
this approximation will be negligible if the time interval is decreased. This would in turn
increase the number of binary variables required in the formulation. Also, an increase in
the number of binary variables is inevitable if the number of tailwater elevation curves at
each reservoir/plant is increased. This might increase the computational time required to

solve and produce problems in obtaining the optimum solution using the DICOPT solver

under the GAMS environment.

A sample experiment was conducted where the number of tailwater elevation curves is
increased. Variations in the results are observed as expected and confirm that better

estimation of head is possible if number of storage intervals is increased. Thus model is
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more realistic compared to original formulation with number of intervals lower than the
modified one. The computational time required to solve the problem has not increased
considerably when compared to the time required to solve the original probiem. The case
study to which the present model is applied is limited to four reservoirs. The solution
time is expected to increase once the number of reservoirs is increased. Further studies are
needed to be conducted to corroborate this point, otherwise any conclusion made about

the computational time and nature of solution can only be speculative.

The modeling and solution of MINLP optimization problems has not yet reached the
stage of maturity and reliability as of Linear Programming and Non-Linear programming
(Floudas, 1995). Therefore a global optimum solution is not guaranteed. A satisfying so-
lution obtained in case of real-time operation model will depend on the specified target
power demand. The cost of energy production obtained from the solution can be used to
make a decision about the actual implementation of the operation schedules. The scope
of the present study is limited to operation of four cascading reservoirs on a single river.
However, the methodology can be extended to any configuration of system of reservoirs and
to any time frame. The only concern would be the increase in the computational burden
especially due to the increase in binary variables in the formulation. The configuration
of the reservoir system will affect the computational time and depends on the number of

hydraulically coupled reservoirs in the system.

The time interval used for optimization is equal to a day in the present formulation. A
reduced time step (e.g. hour) can be used to obtain real-time operational decisions. As
time horizon for optimization decreases, there is a need for consideration of plant level
decisions (e.g., unit commitment, turbine allocations) to obtain practical real-time opera-

tions schedules. In the formulation present earlier, a gross representation of the plants is
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achieved by using the total plant efficiency-discharge curves. While, this representation is
adequate for the short-term scheduling problem, a detailed plant level optimization model

to work in conjunction with present model is required for real-time operation.

3.9 Further Extensions

The MINLP formulation model developed can be extended for application to handle any
time frame for obtaining real-time operation decisions. There are two areas where the
model can be still improved: (1) inclusion of a routing model to consider the flow transport
delay effects and (2) optimization model at the generating plant. The routing model can
be included in the form of constraints provided the routing parameters are available for
the river section between the reservoirs. Incorporating plant level optimization model is
straightforward if the efficiency-discharge relationships are available for all the turbines at

each of the plants. This is already attempted by using the unit commitment formulation

discussed in the section 3.6.2.

Exhaustive representation of the system might be required in some instances. As the num-
ber of time intervals increase there would be a combinatorial increase in the number of
binary variables in MINLP formulations. Problems while solving a multi-period optimiza-
tion problem surfaced when MINLP formulation is extended to a time frame of 8 hours
with a maximum optimization time horizon of one week. Realistic representation of phys-
ical system is possible by the use of spatial and temporal decomposition methodologies.
This is possible by formulating models at different levels considering the physical represen-

tation of the system. The next section will discuss such an approach in dealing with the
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real-time operation problem.

3.10 Short-Term Operation Model

Considerable amount of work has been reported in the past few decades involving scheduling
of hydro-power, thermal systems or both. Hydro scheduling models in the past, in general
have followed temporal decomposition approaches (Becker and Yeh, 1974; Becker et al.,
1976, Yeh et al.,, 1979, Yeh et al., 1992) where in different models were developed at
various levels under different time frames. This procedure has helped in alleviating the
dimensionality problem in terms of handling many variables at a time. Also, the models
developed were coupled in such a way that a periodic updating (or re-running) of higher level
models is possible. In this approach the models at the higher level force decisions (targets)
on the lower models. A possibly different approach is the one presented by Georgakakos et
al. (1997b) that uses a spatial decomposition approach, where three models were developed
for operation of the hydropower reservoirs. Dynamic Programming (DP) and Extended
Linear Quadratic Gaussian (ELQG) techniques are used for optimization. The approach

used in the present study relies on a similar kind of methodology.

The proposed approach uses the spatial decomposition where in different models are used
at various levels and are linked. The present study differs from the previous study by
Georgakakos et al. (1997a, 1997b) in two important aspects : (1) hydraulic coupling and
(2) linking of models formulated at different levels. The former aspect is not addressed in
the earlier study (Georgakakos et al. 1997b), while the later aspect is handled in a way

described here. The optimization models in the earlier study interact in such a way, that



System Representation 107

relationships are developed for different possible combinations of variables at each level

and are passed on to the other models. Therefore the linking is made possible through

pre-defined relationships between the variables.

In the present approach, the models interact with each other by passing information about
the variables and obtain the value of the performance measure. The performance measure
can be indicated by the total energy production that is representative of the objective
function of the optimization. The status of the system is used every time to obtain the value
of the performance measure. The short-term operation model proposed in the present study
consists of three models formulated at different levels. These models are: (1) operation
model; (2) river system model and (3) plant level optimization model. All these models

are linked in such a way that the required spatial decomposition is achieved.

The operation model provides the optimal operating schedules for all the hydropower gener-
ating plants on the river. This model is formulated using a backward moving DP algorithm
to optimize a measure of performance of the system. In the present context, the measure

could be the total energy production within the specified number of time intervals.

The state space for the DP formulation is a vector of initial storage states of all the hy-
dropower reservoirs. These are considered appropriate as they represent the state of the
entire system. The formulation is deterministic in a sense that the stochastic components
of the system, the inflows and the energy demands are taken as single valued forecasts.
Based on the status of the system (represented through storage states), forecasted values
of inflows and the energy demand values and other constraints, the performance measure
value is sought which is obtained by solving the river system and plant level models. The

river system model is formulated to achieve the objective of optimum load distribution
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among the plants. Finally, the plant level optimization model is used to obtain the optimal
turbine load allocations and the optimum value of performance measure required by the

operation model. In every time interval all these three models are solved. The formulations

of these models are presented next.

3.10.1 The Operation Model

The operation model is formulated using DP with backward recursion. The state space is
composed of the storage state of each reservoir. Forecasted values of local inflows and energy
demand constraints, initial storage states for the first time interval and the final storage
values for the last interval under consideration are assumed to be available. Following
backward recursion in DP and the objective of maximizing the energy production, the

recursive relationship for any period ¢ and corresponding stage r between the last period

T and first period ¢, is written as

f;; (Kh KZ; KS, K4) = Mazx [ Q(Kly KQ; K31 K‘i) Ll: tl) + z;:_]i (Lla L2: L37 L4)] (335)

feastble L,

Here, (K1, K>, K3, K4] and [Ly, Ls, L3, L4] refer to initial and final storage states at each of
the reservoirs respectively. ® is a function of storage values that provides the performance
measure at any stage. For the last period, since the final storage values are known from

the EMMA. model, the end of the period storage values are restricted to these values.
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For the first time interval, since the initial storage values (K7, K3, K2, K?) are known, the

recursive relationship is given by

f;(Kf,Kzo,Kg,Kg) = Mazx [ @(K{,,K;, Kg, KZ,Ll,tp) +f;:_11(L1,L2, L3,L4)] (336)

feasible L,

3.10.2 River System Model

The river system model is the MINLP formulation reported earlier in this chapter, except
that the model is solved only for a single time interval. Formulation details are avoided
as they are already presented. The initial and final storages values are provided as input
obtained from the operation model. The river system model uses total plant efficiency-
discharge relationships in arriving at the optimal decisions for the time interval under
consideration. The plant level optimization model is then solved in an iterative way to
obtain the actual performance measure. The formulation of the plant level optimization

model is presented next.

3.10.3 Plant Level Optimization Model

The model is formulated as a Dynamic Programming optimization problem similar to one

developed by Allen and Bridgeman (1985), Wunderlich and Giles (1988) and Georgakakos
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(1997a). Iterative procedure for calculation of head is not required in the present case as
the value of head and total plant discharge for each of the plants are provided by the river
system model. A DP (with backward recursion) is used again with the state variable as the

amount of water to be allocated to any turbine. The recursive relationship for any stage s,

is given by

fi(X) = Maz [B(w,h,e,u) + fi1(X —w)] (3-37)
feasible w, h

Here, h indicates the head available for the plant, e is the efficiency of the turbine for the
particular head, h, and the discharge w for allocation to a turbine. The head and the
total plant discharge are obtained from the solution of the river system model for the time
interval considered. Plant efficiency-discharge curves are used in the river system model
as opposed to individual turbine efficiencies in deriving the operation rules. To match the
total plant efficiency with the cumulative efficiency resulting from the allocation of water

to different units, the DP model can be run in an iterative mode.

The model formulation (DP) is not an innovative approach considering the relevant works
reported in literature. On the other hand, iterative execution of the DP within the com-
plete model can be considered as a novel approach. The limitations associated with state
variables can be overcome by using a search technique. The idea is to search the discretized
interval to which the optimal solution belongs. A stochastic search method that will be

discussed in the chapter 5 can be used for this purpose.
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3.11 Model Execution Issues

Considering, the three models at different levels the execution can result in computational
intractability. The curse of dimensionality problem associated with DP would surface if
the number of state variables or the state variable discretization are increased. On the
other hand the computational time required to run the river system model will reduce as
the MINLP formulation is solved for one time interval for every execution of operation
model. The binary variables in the MINLP formulation will be reduced by the order of
T for each execution of river system model, where T is the total number of time intervals
considered for optimization. Considering the problems associated with the execution, it
can be concluded that model is better suited for short-term operation. However, model

can be solved for real-time operation if appropriate computational resources are available.

The spatial decomposition approach is not tested due to reasons of non-availability of data
at a scale required by the approach. However, the conceptual background provided here
indicates the validity of the approach. The only downside of such an approach is the
discretized state variables that would lead to approximations. Exhaustive representation
of the system using this spatial decomposition approach has many advantages compared
to the extended MINLP formulation. DP formulation at plant level is superior compared
to a unit commitment module included within the MINLP formulation. Unit commitment
problem is much easier to handle using DP as any problem specific conditions can be
incorporated without any restrictions. Handling unit commitment in MINLP needs binary
variables. The use of these variables increases the complexity of the formulation and can be

hindrance in obtaining a solution. DP formulation at the river system level has the similar

advantages over MINLP formulation.
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3.12 System Representation Issues

An important feature of the problem that had a major impact on selection of optimiza-
tion approach used and the formulation developed in the present study is the hydraulic
coupling. The hydraulic link (coupling) between the plants is modeled using tailwater ele-
vation curves. The curves provide the tailwater elevation values for different plant discharge
values at pre-determined downstream reservoir’s forebay levels. Selection of appropriate
curve was possible by using binary variables in the formulation. A non-linear programming

formulation with binary variables was used to address the present problem.

One way of handling the hydraulic linking without using binary variables is to develop a
single curve (through regression) based on a set of curves that relate tailwater elevation,
plant discharge and downstream reservoir forebay elevations. However, it is unrealistic
even though it is mathematically possible. The only approach viable is either to select
the appropriate curve by using a look-up table or use an iterative procedure. These pro-
cedures have been used in the past with varying success. To address this issue within an

optimization framework, binary variables are required.

If the hydraulic coupling is assumed to be negligible, then a Dynamic Programming (DP)
formulation can be used. However, DP suffers from the “curse of dimensionality” prob-
lem that surfaces if the number of state variables or discretisation intervals is increased.
Techniques such as spline interpolation can be used to reduce the severity of this problem.
On similar lines if hydraulic coupling is ignored, then a linear formulation can be used if
the non-linear functions can be linearised following a standard rule - “When faced with

non-linear problem, linearise”. However, this is not realistic as the function relationships
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that define the hydropower production function and others are highly non-linear in reality.
Linearization of these functions would lead to approximations in representing the physics

of the problem in a mathematical form.

On the; other hand, if coupling is strong, DP algorithm can be a hindrance in formulating
the present problem as a multi-stage optimization problem and to consider the reservoirs
as stages. This is based on the inherent underlying assumption of “separability” on which
the DP approach is based. The functions that are used to calculate the performance
measure at any stage should only have variables of that stage and not of any other stage.
In case of hydropower system handled in the present study, the tailwater elevation, which
constitutes a variable of a particular stage is dependent on the conditions (e.g. elevation)

at downstream reservoir forebay (a variable at another stage).

Since a MINLP formulation is used to address the problem of hydropower optimization,
extending it to consider the unit commitment problem is fairly straightforward. Binary
variables are again used to activate or de-activate some units (or continuous variables
in case of discharge values). A variety of conditions can be specified to provide different
scenarios. It is already indicated that the optimization solver used in the present study does
not allow inclusion of binary variables in non-linear constraints. To by-pass this problem,
continuous variables are introduced with an upper limit of 1. Similar modifications have

to be made for unit commitment problem.

The hydropower production is non-separable in nature that becomes an obstacle in applying
LP technique. The hydropower optimization problem similar to the one handled in the
present study can be solved by Successive Linear Programming (SLP) formulation where

the non-linearities can be reduced by using first order Taylor series expansion (Reznicek
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and Simonovic, 1990).

3.12.1 Simplifications

To reduce the complexity of the model in cases where the hydraulic coupling is negligible,
the MINLP model can be simplified to Non-Linear Programming (NLP) model. For a
NLP model, the head required for energy generation is calculated based on the difference
between tailwater elevation and forebay elevation. Since the tailwater elevation is no longer
influenced by the project discharge from the plant, the tailwater curves are not required so

are the binary variables. It is obvious that the model that does not include the dynamic

tail water effects would over estimate the head.

T n
Mazimize Z Z Yo (hie — hjr1e) Qre Bie (3.38)

t=1 j=1

here, hji1. represents the average downstream elevation. The objective function value

obtained in this case will be an upper bound for the objective value that can be obtained

when hydraulic coupling is considered.

Results obtained from the NLP model can be used to reduce the number of binary variables
in MINLP model. The forebay elevations at each of the plants proizided by the NLP model
can be used to reduce the number of binary variables when the MINLP formulation is
finally solved. The reduction is possible, as an appropriate range for the forebay elevation

can now be fixed. To use this approach, NLP model is first solved for the results and then
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the MINLP formulation is solved.

In some cases where the plants are hydraulically isolated, the tailrace geometry will in-
fluence the tailwater elevation. The tailwater elevation that is required for calculation of
head for energy generation will then depend on the tail-race geometry. This issue can be
handled by modeling the tailrace dimensions and deriving a relationship. Another form
of simplification is to reduce the number of tailwater curves thus reducing the number of

binary variables in the formulations.

Flow transport delays can be considered by including the time lag in the formulation
whereas a routing model can be used if available. Depending on the time interval for which
decision is required details of the river reaches have to be included. Inclusion of flow routing
process (through a simulation model) in the optimization framework is a challenging task

handled by one of the emerging techniques, optimal control method (Nicklow, 2000).

3.12.2 Solution Issues

To check the accuracy of the MINLP formulation, the problem can be solved as Relaxed
Mixed Integer Non-Linear Programming (RMINLP) model to obtain an initial solution.
In case of RMINLP formulation, the binary variables are relaxed to take on any values

between 0 and 1, thus providing a solution. If no solution exists, the formulation needs to

be checked for any conceptual errors.

In some cases the convergence criteria for the solver (e.g. GAMS) need to be adjusted to
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obtain a solution, as MINLP problems in general are difficult to solve. It is found from the
experiments conducted in the present study improved computational solution times can be

achieved by replacing constraints containing three or more variables (that are non-linear in

form) by a number of constraints.

3.12.3 Computational Issues

One of the hard constraints (as opposed to soft constraints in mathematical programming
jargon) in the formulation (minimization of the cost of energy production) is related to the
total energy (Emin;) from all the plants in a single time interval. The constraint should
be handled with care as this may introduce infeasibility due to reduction in the feasible
space. However, this constraint is required if a specific amount of energy is required to be

produced in a particular time interval from all the generating stations.

Solution time

The time taken by the optimization solver is important especially for real-time operating

rules. In case of hydropower scheduling problems, decisions are made hourly and the solver

should be able to provide the results within that time frame.

Few formulation aspects of the MINLP model dictate the computational time and the
resources required for solution. The number of binary variables is one such aspect. Increase
in the number of binary variables will result in what is referred to as combinatorial ezplosion

problem (Floudas, 1995). This issue is discussed in detail in the next chapter. An attempt
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was made to solve the formulation for daily, half-day, 8 hour and hourly intervals. The

first three formulations with respective time intervals were successfully solved, whereas the

final formulation with a total of 168 time intervals is intractable.

This will lead to computational intractability which is the topic of the next chapter.

3.12.4 Postscript

System representation within mathematical programming formulation is an important issue
that will determine the nature of the solution. The extent to which the physics of the
problem is represented in a mathematical programming formulation dictates the availability
of the solution using a particular optimization approach. Floudas (1995) stresses the need
for realistic system representation in a process synthesis optimization problem (similar to

the reservoir operation problem dealt in this chapter):

“The representation problem is crucial on the grounds of determining a
superstructure which on the one hand should be rich enough to allow all

alternatives to be included and on the other hand should also be clever to

eliminate undesirable structures”

Computational issues surface if the problem has to be solved within a time frame required
for actual implementation of the operating rules. The computational time can be reduced
by simplification that might lead to unrealistic formulations. Considering the limitations of

the traditional optimization tools and difficulties associated with modeling, emerging non-
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Chapter 4

Computational Intractability

“Can you do addition ?” the White Queen asked.
“What’s one and one and one and one and one and
one and one and one and one and one ?”

“I don’t know,” said Alice. “I lost count.”

- Lewis Carroll

Through the Laoking Glass.
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4.1 Introduction

Problems associated with the use of a traditional optimization approach (MINLP) in solving
the real-time operation problem of multi-period, multiple reservoir systems are discussed
in the previous chapter. In the wake of this discussion and also the experimentation al-
ready carried, it can be concluded that the issue of computational intractability needs to
be addressed. The intractability issue is analyzed and details of an approach that is de-
veloped to handle the same are provided in this chapter. Application of the approach is

demonstrated by using the case study problem (Winnipeg Reservoir System) used in the

previous chapter.

It is well known that solution of non - linear programming problem depends on the num-

ber of constraints and the variables, and nature of objective function that constitute the

complete formulation. Hentenryck et al. (1997) state that

“From a computational standpoint, nonlinear programming in general, and

many of its subclasses in particular are intractable”.

Quadratic programming with linear constraints is now regarded as a difficult problem to
solve. The dimensionality problem surfaces and in a form that is different for the for-
mulations. The formulations that were attempted in the previous chapter do suffer from
computational intractability when the size of the problem is increased. In plain words, the
problem is so difficult that an exponential amount of time (related to size of the problem) is
needed to obtain a solution. Computational intractability suggests that using an optimiza-

tion approach or tool it is impossible to obtain a solution due to difficulties in the computer
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implementation of the algorithm on which the approach is based. The solution capabilities

of the solver are sometimes limited due to available computational memory requirements

and resources.

The motivation to address the issue of computational intractability in this research is based
on need to obtain optimal (global optimal if at all) solutions to problem that have the similar
features of MINLP formulation. The MINLP formulation reported in the earlier chapter
uses binary variables in the formulation to address the issue of hydraulic coupling. The
traditional optimization technique already experimented has not provided the required
results (e.g. release decisions) that can be implemented in real-time. It was observed
that the computation time required to solve the model often exceeded the actual time
within which a decision is required. Solution of an hourly scheduling problem with a total
of 168 time hourly time intervals (considering a total optimization horizon of a week)
was attempted using the MINLP formulation with the help of GAMS (General Algebraic
Modeling System) optimization solver (Brooke et. al, 1996). The model execution was
aborted as the solver failed to produce the results even after four hours of computation time.
This can be attributed to the capabilities of DICOPT (DIscrete COntinuous OPTimizer),

a state-of-the-art solver used for solution within GAMS environment and the complexity

associated with the problem formulation.

A more concise and clear definition of computational intractability is that “an algorithm
or approach ezists for solution of a particular instance of the problem and not for all
the instances of the problem”. In the previous chapter it was mentioned that a MINLP
formulation for day and eight hour scheduling problem can be solved. However, an hourly
scheduling problem cannot be solved using the existing computational resources and time.

The former is the instance of the latter with higher dimensions. The size of the problem has
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increased as the number of time intervals is increased. The computational time is specific

to application.

A general definition of computational intractability does not clearly imply any time limit
within which a solution has to be obtained. However, it suggests that if a large amount
of time is required to be invested for the solution of the problem then the problem can
be marked as intractable. In the present case, it is fair to consider MINLP as intractable
for specific instances, whenever the solution is not obtained within some specified time
limit. This limit is dictated by the actual time frame within which a decision is required.
Experiments are conducted in the present study using the MINLP formulation by extending

the limit beyond the actual time frame to mark it as intractable beyond any doubt.

A detailed description of problems (some of them relevant to Operations Research), their
complexity and the computational intractability is provided by Garey and Johnson (1979).

Computational intractability is due to several reasons some of them relevant to the math-

ematical programming are discussed here.

4.1.1 Complexity

Complexity of the formulation relates to the number of variables and the time required to
obtain a solution. Theoretical computer scientists provide a number of definitions to discuss
complexity. One of those definitions is given here. Complexity is defined as measure of
computer time to solve a problem by an algorithm as a function of the problem’s dimensions.

For example, if T'I(n) is the time it takes to solve an instance of the problem with dimension
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n. Then, the algorithm has time complexity of K{n) if the greatest time it could take to
solve an instance of the problem is O(K(n)) of order O. When K (n) is a polynomial then
the algorithm is said to have polynomial time complexity. The average time complexity is

the average (rather than worst) time taken by an algorithm over some class of problems.

4.1.2 Curse of Dimensionality

Curse of Dimensionality (a phrase coined by Richard Bellman) refers to a problem asso-
ciated with solving multi-stage optimization problems using Dynamic Programming with
large number of state variables. As the name suggests that complexity of problems scales
up as the number of variables are increased. Curse of dimensionality is a general problem
associated with any complex system with large number of variables. Kosko (1999) refers to

this as rule ezplosion when dealing with problems that involve development of fuzzy rule

bases. Kosko continues to state

“It means that most math schemes do not "scale up”. The math scheme
becomes more than twice as complex when you double the number of
inputs. The complexity tends to grow in an exponential way while the

inputs grow in a linear way”.

Approaches are available to address the curse of dimensionality problem in DP. One such
approach is Discrete Differential Dynamic Programming (DDDP) proposed by Chow et al.
(1971). Recent efforts (e.g. Hentenryck et al., 1997) have concentrated on development of

global optimization approaches, that do not assume convexity of the problem. Apart from
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traditional approaches, optimization techniques based on evolution process in nature and
annealing process used in metallurgical processes are emerging. The former approach is a

well known as Genetic Algorithms and the latter is referred to as Simulated Annealing.

4.1.3 NP-Complete Problems

NP stands for Non-deterministic Polynomial time - a classification used by theoretical
computer science and operations research communities. Problems that can be solved by
a computer are divided into two categories: those for which there exists an algorithm to
solve (it with polynomial time complexity), and those for which there is no such algorithm.
The former class of problems are denoted by P. There are also problems for which no
known algorithm exists that solves (it in polynomial time), but there is also no proof that
no such algorithm exists. Among these problems that are not known to be in P, there is
a subclass of problems known as NP-complete: those for which either all are solvable in
polynomial time, or none are. In general, all NP-Complete problems have exponential time

complexity. Problems that are unsolvable and at least as hard as NP-complete are referred

to as NP-hard.

The definition of NP has some relevance to the MINLP formulation discussed in the earlier
chapter. An increase in the number of binary variables in the MINLP formulation results in
a large combinatorial problem and the complexity analysis results characterize the problem
as NP-complete (Nemhauser and Wolsey, 1988). The determination of global optimum for

MINLP non-convex problems is also NP-hard (Murty and Kabadi, 1987).
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4.1.4 Combinatorial Explosion

In case of combinatorial problems (MINLP formulations), especially the one that is solved
in the previous chapter, suffer from “combinatorial ezplosion problem” due to présence of
binary variables. These formulations belong to a class of problems that are referred to as
NP-complete problems. The solution of combinatorial problems is difficult as the compu-
tational time required increases polynomially with the problem size. A direct consequence
of NP-completeness is that optimal solutions are not guaranteed in reasonable amount
of computational time (Aarts and Korst, 1989). Some of the NP-hard problems include,
Traveling Salesman Problem (TSP), vehicle routing and cutting stock problems. Algo-
rithms that are developed for solution of MINLP problems that do not assume convexity

of objective function or constraints are referred to as global optimization approaches.

4.2 Solution of Intractable Problems

The nature of mathematical programming formulation and the representation of the system
have enormous impact on the solution. These issues decide whether a formulation is com-
putationally tractable or not. In some cases remedial measures can be taken or available

feasible solution is accepted if the existing formulation cannot be altered. These issues are

discussed here.
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4.2.1 Constraint Satisfaction

In case of complex non-linear programming and combinatorial optimization problems it is
often difficult to obtain optimal solutions, let alone feasible solutions. There are niany rea-
sons for the difficulty that include complexity of the formulation and optimization approach
or the specific tools used. In those cases any optimal solution is accepted and the solution

is referred to as constraint satisfying solution. This indicates that all the constraints in the

formulation are satisfied to obtain a feasible solution.

4.2.2 Problem Abstraction

One of the easy solutions to intractable problems is dealing with the problem abstraction
aspects. The intractability may be due to some details that have been ignored or included
in the formulation that cause the same. For example in the present case, the problem of
coupled hydropower reservoir operation : selection process of tailwater elevation curves
using binary variables. The inclusion or deduction of some details will determine whether
the problem is solvable or not. The question is: What is the effect of considering reservoirs
as hydraulically isolated when they are not?. If hydraulic coupling is ignored, the problem

becomes computationally tractable at any time frame.
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4.3 MINLP Formulation and Intractability

The MINLP formulation suffers from combinatorial explosion problem due to the presence
of binary variables, whereas Dynamic Programming algorithm if implemented, has limi-
tations due to the curse of dimensionality. From the experiments conducted using the
MINLP formulation, it can be concluded that an hourly scheduling problem for a time
horizon of a week cannot be solved within the time limit of one hour in real-time. The
optimization techniques or algorithms developed for solution of Mixed-Integer Non-Linear
optimization problems have not reached the maturity and reliability of the standard Linear
Programming technique (Floudas, 1995). The experiments conducted using the MINLP

formulation in the previous chapter confirm the validity of this statement.

The number of binary variables required in formulations for a variety of situations are given
in the Table 4.1 assuming a constant number (e.g. 5) of tailwater curves available for each

of the hydro generating reservoirs for a total time horizon of one week.

Table 4.1: Characteristics of different formulations

Scheduling Time intervals Formulation Binary variables  Solution

Daily 7 MINLP 140 Tractable
8 Hour 21 MINLP 420 Tractable
Hourly 168 MINLP 3360 Intractable
Hourly 168 RMINLP 3360 Intractable

Here RMINLP refers to Relaxed MINLP formulation where the binary variables can take
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on continuous values. It is evident from the table, that RMINLP is also intractable. It
should be noted that the transformation of MINLP into RMINLP model does not reduce
the total number of variables. If unit commitment problem is also included considering tb
number of turbines at each plant and n being the number of reservoirs, then an additional,

(tb . T . n), number of binary variables will become part of the formulation.

4.3.1 Alternative Approaches

To solve problems that are computationally intractable, alternative formulations (some-
times simplified) or sophisticated algorithms can be developed to at least obtain sub - op-
timal solutions when it is computationally feasible. Some alternative approaches include:
(i) Mixed Integer Linear Programming (MILP) and (ii) DP-MINLP formulation. MILP
formulation is a linearized version of MINLP model where the non-linear relationships
are linearized using different techniques (piece-wise linearization, Taylor series approxima-
tions, etc.). Binary variables are still required to address the issue of hydraulic coupling in
the formulation. One major disadvantage of this formulation is that it is unrealistic and
approximations due to linearization process are unavoidable. DP-MINLP is a relatively
superior formulation compared to MINLP model considering the issue of computational
intractability. This is discussed as a part of spatial decomposition approach in the earlier
chapter. However, the curse of dimensionality problem may surface and the model cannot

be solved in time frame within which decisions are required.

Another way is to search for sophisticated algorithms to solve intractable problems. Search

for such algorithms has led to a new breed of approaches that have emerged in the past
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decade referred to as natural algorithms (Haupt and Haupt, 1998) to solve intractable
optimization problems. These algorithms are based on the idea that processes occurring
in nature can be used as analogies to solve complex function optimization problems. Two
emerging approaches that fall under this category are Genetic Algorithms (GA) (Holland,
1992) and Simulated Annealing (SA) (Kirkpatrik et al. 1983). Genetic algorithms belong
to the class of evolutionary algorithms whereas simulated annealing algorithm belongs to
the category of stochastic search techniques. Some researchers regard SA as an evolutionary
algorithm as the solutions are generated in SA based on the existing ones. Whatever may

be the classification both GA and SA are based on imitating the processes occurring in

nature.

SA is referred to as a single trial search approach, where as GA (Michalewicz, 1998) are
known to be multiple trial search approaches. Application of GA to reservoir operation
problems are most recent. Olivera and Loucks (1997) and Wardlaw and Sharif (1999) used
GA to derive operating rules for multiple reservoir systems. It is evident from these studies
that GA can be effectively implemented for operation problems with multiple reservoirs.
However, they are difficult to implement when compared to simulated annealing technique.
Certain aspects of GA such as parameter coding, precision and various operators are dif-
ficult to formulate for complex reservoir optimization problems. It has been proved that

simulated annealing can be a competent alternative to GA for many optimization problems

(Ingber, 1993).

Eglese (1989) provides a detailed survey of applications of the simulated annealing in op-
erations research. Considering simulated annealing as a heuristic algorithm for obtaining
good, though not necessarily global optimal solutions to complex optimization problems

in some situations, Eglese (1989) indicates its several attractive features. Advantages of
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simulated annealing include: (1) efficient search technique that can surpass local minima
in case of a general minimization problem; (2) global optimum solutions are possible if the
parameters of the algorithm are chosen appropriately; (3) suitable for highly combinatorial

optimization problems; and (4) ease of implementation.

Gen and Cheng (1997) report that simulated annealing has performed better than genetic
algorithms in few cases of job shop scheduling problems in the field of industrial engineer-
ing. In case of function optimization problems, both SA and GA need the estimation of
performance measure. The measure is associated with a particular state of the system that
is defined by pre-defined values of the variables. A simulation model is essential to model
a complex physical system and to obtain the performance measure. In this context, SA is

much easier to implement compared to GA if a simulation model can be developed.

Simulated Annealing is selected as an approach to deal with the computationally intractable
problem in the present study due to a number of reasons: (i) SA is easy to implement and
is robust compared to GA; (ii) SA has been found to perform better than GA in some
specific optimization problems (Ingber, 1993) and (iii) SA has not been applied in the past

to reservoir operation problems. The last reason provides an opportunity to evaluate its

capabilities.

Considering the models based on MINLP, DP and simulated annealing to be three possible
candidate models to solve the multiple reservoir operation problem an approximate assess-
ment of the computation time required for solution can be made. The DP formulation
is feasible only if the hydraulic coupling between two hydropower reservoirs is neglected.
The computation time requirements can be linked to the different aspects of the respec-

tive formulations. The requirement is proportional to the number of state variables and



Computational Intractability 131

discretized class intervals in case of a DP formulation, whereas in MINLP formulation it
is a function of the number of binary variables, [, and is given by 2'. The model based on
simulated annealing requires the majority of the computational time and effort in obtain-

ing the performance measure, which is proportional to the number of times the simulation

model is executed.

4.3.2 Stochastic Search Techniques

Simulation models have been used in the past in many instances for developing models
for operation of complex water resource systems (Yeh, 1985; Wurbs, 1993). One of the
major advantages of simulation models is the ease with which a real- world problem can be
represented in a mathematical form. The power of combining simulation with any method
of selecting the best among the alternatives has been advocated by many researchers.
An example of such approach is presented by Burn (1989) where Monte-Carlo simulation
model is used along with a mathematical programming technique. Also, an execution of one

single run of a simulation model is much faster than that of any conventional/traditional

optimization algorithm.

Search methods can be easily combined with a simulation model to obtain near-optimal
solutions for many complex problems. Simulated annealing is one such stochastic search
method that is proved to be useful in obtaining solutions for complex combinatorial opti-
mization problems. The model proposed in the present study is based on this technique.
Recent applications of simulated annealing technique in the area of water resources can

be found in the works of Dougherty and Maryott (1990), Wang and Cheng (1998), Cunha
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(1999) and Cunha and Sousa (1999). While the first three works were applications to

groundwater management problems, the last one is concerned with the operation of water

distribution networks.

An exhaustive search on applications of simulated annealing in water resources suggests
that application of this technique to reservoir operation problems has not been reported
earlier. The present study concentrates on the development of optimization models for
multi-period operation of a multiple reservoir systems. While, the proposed models are
developed for operation of a specific network of reservoirs, any configuration of network of
reservoirs meant for any purpose can be handled provided appropriate simulation models

are developed. The algorithm can be implemented using any simulation model developed

using a high level programming language.

Heuristics search methods are used especially in case of combinatorial problems where they
are referred to as randomized or local search or approzimation algorithms. The algorithms
based on heuristics are broadly classified as tailored algorithms as they use problem specific
information in obtaining the solution. The model that will presented later in this chapter
for solution of multi-period, multiple reservoir operations problem falls into one of the
categories. The annealing technique used in the present study is improved by the use
of problem specific heuristic rules. Recent applications of evolutionary algorithms with

heuristic improvements are discussed by Ilich and Simomnovic (1998, 2000).
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4.4 Simulated Annealing

Search techniques belong to the class of the algorithms that use the concept of searching the
entire solution space in order to obtain feasible and optimal solutions for an optimization
problem. These techniques range from simple hill climbing heuristics to complex tabu search
methods. A vast literature is available on these techniques (e.g., Openshaw and Openshaw,
1997). Simulation becomes a perfect tool in many of the search methods to obtain the
performance measure associated with a particular solution obtained through perturbation
of system variables. In general, traditional search techniques are brute force methods and
do not use any problem specific information or gradients for guidance in obtaining optimal
solution. Almost all the available standard non-linear optimization solvers (e.g., GAMS,
MINOS) do suffer from the problem of escaping local minima and are generally based on
hill-climbing approaches. A recent message posted on a news group (Sarle, 1993) provides

an insightful yet funny look at these algorithms using a situation where kangaroos climb

up a hill.

Notice that in all [hill-climbing] methods discussed so far, a kangarco can
hope at best to find the top of a mountain close to where he starts. There's
no guarantee that this mountain will be Everest, or even a very high moun-

tain. Various methods are used to try to find the actual global optimum.
In simulated annealing, the kangaroo is drunk and hops around randomly

for a long time. However, he gradually sobers up and tends to hop up hill.

Stochastic search techniques are an improvement over the traditional search techniques.

The direction of search in this context is guided by a stochastic criterion that will help to
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surpass the local minima in case of a general minimization problem. One of the stochastic
search techniques that adopt this concept is simulated annealing. The technique derives
its name from the physical annealing process in metals. The following section provides a
brief description of the simulated annealing technique, which is used in the present study

to develop optimization models for operation of multiple reservoir systems.

Simulated annealing (SA) as a stochastic search technique is used for solving complex
combinatorial problems (e.g., Traveling Salesman Problem (TSP); circuit layout). The
algorithm is based on the work by Kirkpatrick et al. (1983). The technique derives its name
from the annealing process generally used in glass industry and metallurgical processes.
It uses an imperfect analogy between the process of cooling in metals to a low energy
state and optimization of complex functions. This analogy is shown in the Figure 4.1. In
annealing, a metal or alloy is slowly cooled at each intermediate temperature until some
kind of equilibrium is achieved. Higher temperatures correspond to greater kinetic energy.
The best structures are stably obtained at lower temperatures, but rapid cooling a metal
can result in a brittle structure. Annealing process involves slow and controlled cooling
thus resulting in better structural properties. Annealing can be viewed as solving an
optimization problem, maximizing the strength, minimizing the brittleness, by generating

a structure with least energy (Mehrotra, 1997).

Simulated annealing is a probabilistic algorithm that uses a similar analogy to solve diffi-
cult combinatorial optimization problems for which traditional gradient descent methods
may not provide the required solutions. Application of simulated annealing to global op-
timization of statistical functions was discussed by Goffe et al. (1994). An energy (or
cost) function is defined, which is to be minimized by the algorithm. A candidate move is

generated from the current state, and the system must decide whether to accept that move
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Figure 4.1: Imperfect analogy between annealing and optimization

based on the temperature parameter and resulting energy change. A general description of

the algorithm is given below.

The following steps are carried out while implementing a general simulated annealing al-

gorithm for a minimization problem:

1. Selection of variables that influence the system
2. Initialize the parameters (T2, L., o) of the algorithm

3. Introduce random perturbations to generate a solution

4. Obtain the performance measure (e) associated with the solution using a simulation

model
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5. IF (e, < e,), THEN accept the move
ELSE accept/reject based on a stochastic criterion
6. Repeat steps 3 - 3 for L,
7. Lower the temperature (7°¢)
8. Store the best solution obtained so far.

9. Repeat steps 2 - 8 till: stopping criterion is met

The steps 1-4 are problem specific, whereas changes can be made in steps 5-9 to improve
the efficiency of the algorithm in terms of quality of solution and reduction of computa-
tional time. The state of the system can be changed using a generation mechanism that
implements a random perturbation of current state. The move from one state to another is
referred to as one transition. The total number of transitions between initial and final states
constitutes a homogenous Markov chain of length given by the variable L.. Laarhoven and
Arts (1989) have shown that there must be a number of transitions at each temperature
level that is exponential with the problem size to achieve stationary distribution. The vari-
ables e, and e, refer to energy (performance measure) in two consecutive iterations. Each

transition is defined as a metropolis step (Kirkpatrik, et al., 1983).

If sufficient number of transitions is guaranteed at a given temperature and the temperature
is lowered in a specific number of steps, global optimum solution is guaranteed in theory
with a probability of 1 using the SA algorithm (Geman and Geman, 1984). This amounts
to saying that every energy state has a non-zero chance of occurrence if the annealing

procedure is run for a long enough time and the global optimum is likely to be found. The
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variable, T, is the initial temperature and its value is problem specific. The stochastic

criterion indicated in the step 5 is explained here. The energy difference between two states

is obtained by the expression,

Y = exp (e, — en/ky T°) (4.1)

¥ > ran(0, 1) (4.2)

In the equation, k, represents Boltzmann constant!. A move from one state to another is
accepted if the equation (4.2) is satisfied, else it is rejected. The probability of accepting a
move which results in a deterioration of the objective function is calculated by comparing
the v value with a random number generated from an uniform distribution. The number of
minor iterations (or transitions) at each temperature level is given by L., and the decrement

parameter (temperature factor), « is used to decrease the temperature at the end of every

major iteration given by the expression,

ie-{-l = I-"e @ (4.3)

z

where 77 and T7,, represent the temperature values at the start of two consecutive major
iterations. A high temperature value in the initial stages would allow a larger number of

moves to be accepted compared to that at a low value at the end of the cooling process.

!Taken as 1 in this study
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The acceptance criterion is satisfied most of the time in the initial stages as the ¥ value

is high due to high temperature. As the cooling progresses, the low value of temperature

reduces the value of .

The number of minor iterations, L. constitute a major iteration. The value of a ranges
between 0.8 and 0.99, which is suggested by Kirkpatrik et al. (1983). The cooling schedule
is referred to as geometric cooling schedule. A stopping criterion is generally used to end
the annealing process. Two criteria are suggested in the literature that are: (1) when the
temperature reaches below a specified level; and (2) the change in the performance measure
is insignificant over a number of major iterations. In the present study, the second criterion

is adopted to stop the algorithm implementation or the annealing process.

Modifications to annealing algorithm are proposed by Ingber (1993) to handle several types
of non-linear optimization problems. More detailed description of the algorithm and the
proof of global optimality can be found in the works of Kirkpatrik et al. (1983) and
Laarhoven and Aarts (1989). Simulated annealing is ideal for application to combinatorial
optimization problems where the solution space can be generated by a combination of finite

number of configurations or transitions.

In the present context, the solution space is continuous within the range of the different de-
cision variables. This imposes a difficulty in devising a mechanism to generate the changes
in the system and to define the range of the variables. However, this is not a concern in
applications where the problem is of combinatorial optimization nature (e.g., selection of
pipes of different diameters in case of a water distribution network, number of cities in
Traveling Salesman Problem (TSP)). Pardo-Iguzquiza (1998) reports application of simu-

lated annealing for the combinatorial problem of optimal selection of number and location
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of rainfall gauges for areal rainfall estimation. The annealing technique is applied for two
different optimisation problems, the optimal selection of a subset from a set of stations that

already exist and the optimal augmentation of a previously existing network.

4.4.1 Problem Representation

Problem representation becomes an important aspect of the models developed using sim-
ulated annealing algorithm. This involves selection of variables and identification of a
performance measure or cost function. The performance measure is often the objective
function used in the mathematical programming model if the problem is formulated as an
optimization model. A cost function is generally a performance measure for minimization
problem. The control variables that affect the system the most are generally selected.
Considering a general reservoir operation model, release (or discharge) and storage are re-
garded as the state (control) variables that influence the system. These variables have been

identified as decision variables as well as state variables in many optimization models used

in the past (Yeh, 1985).

Problem specific information is generally helpful in selection process of the control variables.
Appropriate selection of the state variables is important as it may influence the nature of
solution or the computational time required to sclve the problem. A general description of
the problem representation and the most probable control variables for reservoir operation
problems is given in the Table 4.2. The list provided in the table is not exhaustive, whereas
some of the control variables suggested are appropriate for reservoir operation problems

while implementing the SA algorithm. It can be seen from the table that storage is not
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suggested as a control variable in case of multiple reservoir systems. The reason for this

will be evident from the discussion provided later in the section 4.6.

Table 4.2: Problem representation

Configuration Control Variabie(s) Problem specific information

Single reservoir

hydropower Storage, Discharge Discharge~ Efficiency curves
Irrigation Storage, Release, Soil moisture ~ Yield curves
Soil moisture

Multiple Reservoirs

hydropower Discharge Discharge ~Efficiency curves
Irrigation Release, Soil moisture Soil moisture ~ Yield curves

4.4.2 Generation Mczchanism for Transitions

Simulated annealing is a variant of an iterative improvement technique where a solution
is obtained by perturbing the variable values associated with the previous solution. This
process is achieved by using a generation mechanism. A generation to a particular state
is referred to as a configuration of the system. The annealing technique is applied in the
present study to problems where the variables take on continuous values. The generation
mechanism is different and difficult compared to that is generally used for a combinatorial

optimization problem using the annealing algorithm, where the transitions occur between

discrete sample spaces.

Considering V; as a vector of values for a variable, v, the vector Vi, after each perturba-
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tion, 7, is given by

Viga=Vi+A Vi T (4.4)

A =V 4nge((ran(0,1) 2) — 1) (4.5)

ran(0,1) is a random number that is uniformly distributed between 0 and 1. Equation
(5) can be used to derive increments or decrements within a range, (—1,1) V gng. The
value of the A can be scaled to reflect the amount of changes to be incorporated. If the
value of any specific variable, v' is not within the allowable range of that variable, then the

following expression can be used to obtain a value that lies in the feasible range of that

variable.

] !

v =v ran(0, 1) (4.6)

— “range

To reduce the time required to obtain optimal solutions, problem specific heuristics are

used in the present study. These are aimed at reducing the search space of the continuous

variables.
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4.5 Improvements

Modifications are made to the general annealing technique in the present study to improve
the nature of solution and the computational time required to obtain it. These include: (1)
repair strategy to generate feasible solutions which otherwise are infeasible; and (2) heuristic

rules to reduce the range of the values the state variables assume. Thé modifications are

explained below.

4.5.1 Repair Strategy

This refers to a process of producing a feasible solution from an otherwise infeasible solu-
tion mainly generated due to the pre-defined values of the state variables. The strategy is
to eliminate the infeasibilities by adjusting some of the variable values that influence the
physical system. This idea of repair is borrowed from the field of evolutionary algorithms
(Michalewicz, 1998) and is implemented within the annealing algorithm. Since consider-
able amount of computational time is wasted on obtaining the performance measure for
infeasible solutions, it is prudent to reduce the number of those solutions. The strategy is
applied within the simulation model and therefore is problem specific and demands knowl-
edge of the basic structure of the problem. The strategy is applied based on the number

of infeasibilities that are counted based on the violation of constraints.

If the count is non-zero, then procedure is applied. Use of this strategy specific to reservoir
operation problems addressed in the present study is discussed later. The main disadvan-

tage of using this method is that it is problem dependent. Sometimes, the repair procedure
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becomes so complex that it is better to solve the problem without any repair. The repaired
individual variable values can be replaced back for searching or rejected if the number in-
feasibilities exist even after repair strategy is implemented. These approaches are referred
to as replacing and non-replacing procedures. In the present research, all the repaired solu-
tions are replaced. If the solution is found to be infeasible based on the count of constraint
violations, a penalty is added to the performance measure. Recent studies (Michalewicz,

1998) have suggested the use of a percentage of repaired solutions for replacing. Details of

the repair strategy are presented later.

4.5.2 Heuristic Rules

An important aspect that needs attention while using the annealing algorithm is the de-
termination of the possible ranges of the variables that assume continuous values. This
will help in reducing the computational time required for the algorithm to converge to an
optimum solution. Heuristics can take one of these forms: (1) approximate estimation of
ranges for the variables; and (2) modification of generation mechanism. As the mechanism
to generate transitions is random, there is possibility that the solution obtained may be a
local optimum if ranges are defined too narrowly. However, narrowing the range of values
can drastically reduce the computational time required. The heuristic rules are problem
specific. The idea here is to introduce a bias towards a particular set of transitions based on
the problem specific information. Heuristics are used to modify'r the generation mechanism

within the annealing module to accomplish this. More details of the use of these rules are

explained in the following sections.
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4.6 Proposed Models

It is prudent to test a new approach on few benchmark problems before applying it to
large-scale problems. This study investigates and evaluates simulated annealing approach
for application to multi-reservoir optimization problems. The technique is applied to: (1)
four-reservoir operation problem (Heidari et al., 1971); and (2) operation of a system of
hydropower reservoirs - Winnipeg Reservoir System. The four-reservoir operation problem

is already solved using a Linear Programming formulation with the global optimum reported

in the earlier study.

The hypothetical four-reservoir problem has been used by many researchers (e.g. Chow
et al., 1975; Kitanidis and Andricevic, 1989; Johnson et al., 1993) in several applications.
The problem has become a benchmark for testing a variety of approaches ranging from
DDDP to optimal control methods. In many cases, the model was used with little or no
modifications. The latter is specific to a series of hydropower plants on a single river with
strong hydraulic coupling and is computationally intractable. This is due to large number

of decision variables in the formulation that is proportional to the number of time intervals

considered for optimization.

The solution for the second problem is attempted to investigate the suitability of the algo-
rithm for a reservoir operation problem with many decision variables, nature of optimum
solution, computational time requirements and a comparison of its performance to that of
a traditional optimization technique. The motivation to use the annealing technique in the
present study is largely due to the need for obtaining optimal solutions for problems that

reflect the characteristics of the second problem.
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The models developed using the annealing algorithm are for: (1) four reservoir problem
(Heidari, et al., 1971); and (2) operation of a system of hydropower reservoirs. The models
are referred to as the benchmark and Winnipeg Reservoir System models respectively. The
proposed models have two modules: (1) annealing algorithm; and (2) simulation. The
module that incorporates the annealing algorithm uses the steps 1-3 and 5-9, whereas
step 4 is executed using the simulation model. These steps are described in the Simulated

Annealing section. Convergence criteria and values for different parameters of the annealing

algorithm are set a priori.

The solution of the simulated annealing algorithm is based on the evaluation of the per-
formance measure after every perturbation that is obtained using a simulation model. The
simulation models that form the backbone of the complete models are developed using the
programming language, C. The models cannot be strictly referred to as simulation mod-
els in a general sense, since they also check for infeasibilities resulting from violation of
imposed constraints. The performance measures required by the algorithm are obtained
from the simulation models. The simulation model developed for the benchmark problem

is discussed first and the model developed for the Winnipeg Reservoir System is explained

next.

For the reservoir operation problems considered in the present study, plant discharge or
release at each of the reservoirs is selected as a control variable. This is based on the
experiments conducted in the present study using storage state and discharge as main
control variables. It was observed from experiments conducted in the present study that
the use of storage as a state variable has resulted in higher number of infeasible solutions
compared to the similar usage of discharge variable. This is attributed to the fact that

random values of discharge within a specified range would most likely result in feasible
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storage states as opposed to feasible discharge values produced by transitions in storage
states. Since, release is the main decision variable with which performance measure is
usually associated in most of the reservoir operation problems, a positive value for release
is essential and its use is appropriate as a control variable. If storage is chosen as a state
variable, care should be taken to ensure that the transitions are generated such that a
feasible value of release is always realized. This procedure requires a condition that in a

set of two consecutive storage values generated, the final value should be at least equal to

or lower than previous value.

R

Figure 4.2: Schematic diagram of four reservoirs (Heidari et al., 1971)
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4.6.1 Benchmark Model

The annealing technique is applied to a four reservoir problem where benefit functions
are available to calculate the benefit from the release made from each of the reservoirs
for every time interval. A schematic diagram of the four reservoir system is shown in

the Figure 4.2. The objective function used for the optimization problem is given by the

following expression.

T =n
Mazimize Z Z R;: by (4.7)

t=1 j=1

The index j refers to the reservoir and T is the total number of time intervals for which

the operation is considered. The variables R;, and b;,; represent the release and the benefit

values respectively. In case of the j = 4, the benefits are from the release made for

hydropower and irrigation. Constraints for storage include, 51, 52,53 < 10and Sy < 15
and for release are: (i) Ry < 3; (ii) B2, B3 < 4 and (iii) By < 7. The inflows for the
reservoirs for first and second reservoirs are 2 and 3 units respectively and the initial storage
for all the reservoirs is taken as 5 units. Details of the benefit functions for the release are
avoided, as they are available elsewhere (Heidari et al., 1971). A negative sign attached to
objective function can be used as a cost function (performance measure) in order to apply
the annealing algorithm in its standard form. To reduce the range of the variables (release
values), problem specific information is used. The approximate range of the variables are
obtained using normalized benefit values within the generation mechanism. The benefit
values associated with the release values in each time interval are normalized using the

highest possible benefit value of all the time intervals for a particular reservoir using the



Computational Intractability 148

expression,

b,

I

¢ = bjt [ bjmaz V7,1 - (4.8)

These normalized values are calculated for all the reservoirs and the time intervals.

r 8 R
€t = bj,t V], t (4.9)

The variable, 8 can take any value above 1. In the case of # assuming a value of unity,
the curve would be linear. Higher values of 8 would reinforce the effect of benefit values
associated with the release. The values of €, can be used in introducing the bias towards

specific transitions in the generation mechanism as given by

Riqjs =R+ (ej,t Rﬂ-ange ((ran(O, 1) ¢) - ¢1)) Vi, g, t (4-10)

Here, R refers to a vector of release values at a particular reservoir. The nature of pertur-
bation (increment or decrement) to generate a transition is influenced by the values of ¢
and ¢,. Appropriately selected values for these parameters can introduce a skew or unifor-

mity in the distribution of Rit+;. A skewed distribution would introduce a bias towards a

particular set of values.

The benchmark model is a closed-end problem wherein the target values of some variables
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are fixed for the final time interval. Infeasibilities are bound to occur in such problems
where the predefined state variable values are not appropriate to satisfy the constraints that
relate to the target values. Repair strategy is used to obtain feasible solutions whenever
the infeasibilities are associated with such constraints. In the present operation problem,
the final storage values are fixed. The strategy would be to re-calculate the release values
from the continuity equations with the available target storage values. For example, for
reservoir (1), the release value is calculated if the final storage is not equal to the target

storage, S1 target, that is required to be met at the end of final time interval.

Ry = S11 — Sitarget + L1 (4.11)

Re-adjusting the values can eliminate the infeasibilities related to the variables. One such

modification for storage values is provided here.

Sie = ST (1= b;,) Vit (4.12)

This modification is appropriate whenever the constraints related to the upper and lower
bounds of the storage are violated. Incorporation of normalized benefit function value into
the constraint serves as a heuristic to limit the storage to low value if benefit is high and
vice versa. This will lead to corresponding release decisions. Based on the modifications
made to the storage, the discharge values are re-calculated using mass balance equations
for all the reservoirs. Similar modifications may be needed for the variables at the end of

the last time interval, where the target storage values are known or set a priori.
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(1) Generate random values of the releases for all the time intervals and for each reservoir.

Heuristic rules used to generate appropriate values are discussed later.

(2) Calculation of storage states: based on the release values the storage states are de-
termined for all time intervals. The storage values are estimated starting from the first
reservoir (7 = 1) to the last reservoir (j =n). As the reservoirs are in series, this order has

to be maintained to account for the appropriate mass balance between the reservoirs.
(3) Average storage: using the initial and final values of the storage in any time period the

average value of the storage is calculated.

hie = (K, + kL) 0.5 j=lLn &t=1T (4.13)

where h;, represents the average storage value with k},t and ka ; indicate the initial and

final storages for the time interval, £.

(4) Calculation of average forebay elevations: the head required for hydropower gener-

ation is calculated using the average of initial and final forebay elevations, k., ,, k{ i1t

respectively.

hisre = (Kipr, +k1,) 05 i=1n &t=1T (4.14)

(5) Selection of tailwater curve: to account for hydraulic coupling, the tailwater elevation
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that is a function of the total plant discharge and the elevation at the immediate down-
stream reservoir is used. Based on the discharge G;; which includes plant release and spill,
and the average downstream elevation, A;;., a specific tailwater curve is selected. This

curve will be used to estimate the tailwater level elevation.

fz_:*f,t = k?,j":-l -+ Cl,j-H. Gj,t j = 1, n &t= l,T (4.15)

here, T}, is the tail water elevation based on the downstream storage elevation, &7, for
which the tailwater elevation curve is defined. C; ;4 is a constant. The selection is possible

since the initial and final values of the storage at each of the reservoirs is already known.

(6) Validation of constraints: the constraints related to power production at each plant,
maximum and minimum allowable storage levels, target storages and allowable discharge

values are checked. Major constraints that are checked are given below.

n
o (Pje — Tje) Qi Bit = Etar (4.16)
=1

>

t=1 3

kje > KT Vi, t (4.17)

kje < KO Vj,t (4.18)
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Here, k_;-“i" and £7**F represent the minimum and maximum storage values allowed at the

reservoirs. E,, refers to the target demand that has to be met.

(7) Real-time constraints: the storage states are updated in real-time using the following

constraints.

;) = Ist;y j=lLn+1 (4.19)

kjj':T = F'stjr j=1,n+1 (4.20)

Where, k;'-,l and k:£ r represent the initial and final storage values for all the reservoirs. The
variables, Ist;; and F'stjr are the initial and final storage states whereas n + 1 refers to

the lake, river or reservoir into which the last reservoir is discharging.

(8) Evaluation of infeasibilities: the number of infeasibilities is counted based on the con-
straint violations obtained from the step 6. If the count is zero, the next step is executed;
otherwise a repair strategy is implemented. If infeasibilities remain after implementing the
repair strategy, the solution is either rejected or modified to incorporate a penalty associ-
ated with the violation of each of the constraints. The severity of the penalty depends on

the importance of the constraint.

(9) Performance measure: once the evaluation of infeasibilities is complete, the performance

measure is obtained by the following expression.
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T n
My;=3" > (DO: v (hje— Tjz) Qi Biy) (4.21)

t=1 j=1

The expression (4.21) is same as the objective function that is used to minimize the cost
of energy production in the MINLP formulation. In general, for hydropower plants that
are not operated in conjunction with thermal plants the power production cost is zero.
However, a psuedo-cost is associated with the power production to reflect the variations
in power production with respect to different time intervals and to primarily assess the
capabilities of the algorithm. The variation of the cost in different time intervals is shown

in the Figure 4.3.
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Figure 4.3: Cost structure in different time intervals

If the energy production cost is zero, as it is in most of the real-life situations, the energy
generation would depend on the plant discharge-efficiency curves. The discharge-efficiency

curves can be used for the range selection. A typical discharge-efficiency curve and the
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identification of approximate range value are shown in the Figure 4.4. The range for
the discharge variable can be selected considering the portion of the curve where highest
efficiency is possible. Steps 1 - 9 described for the simulation model are specific to the
type of network of reservoirs considered. The steps are to be carried in the order specified

to allow the calculation of the variable values and expressions. The annealing :10dule is

implemented and is stopped when the convergence criterion is met.
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Figure 4.4: Identification of approximate range

An important parameter associated with the annealing module is the initial temperature.

The value for this parameter is problem specific. In the present context, the initial tem-

perature, T, can be obtained by one of the following expressions :

T: = Cmaz Etar (4'22)

where, FEi,r represents the target energy demand for a specific total time horizon, and
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Cmaz a0d Cpin are the maximum and minimum cost of energy production in any given
time interval. The cost obtained from the expression in the equation (4.22) can used as
it provides higher value for temperature. Higher value of initial temperature is generally
adopted as this would allow for higher number of configurations to be accepted to avoid
local minima. In the absence of any problem specific information a very large value of

initial temperature in the annealing algorithm can be used.

4.7 Model Applications

The benchmark and Winnipeg Reservoir System models developed using simulated an-
nealing algorithm are applied to hypothetical and real-life hydropower reservoir systems
respectively. Details of the Winnipeg hydropower reservoir system can be obtained from
the previous study (Barritt-Flatt and Cormie, 1989) and from chapter 3. The fact that
both models deal with a four reservoir system is a coincidence. Release is considered as
state variable for both operation problems while using the annealing algorithm. The bench-
mark model is applied for solution of the four-reservoir operation (Heidari et al.,1971) for
12 time intervals. The initial and final storage states, inflows to the reservoirs and the
benefit functions for the release are taken from the previous study. The model is applied

to an existing system of hydropower reservoirs in Winnipeg, Canada.

Hourly scheduling is considered based on the weekly targets available from the EMMA
(Energy Management and Maintenance Analysis) model (Barritt-Flatt and Cormie, 1988).
The objective is to minimize power generation cost for all time intervals while meeting

system demand. Forecasted inflows for all time intervals, the initial and final storage
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targets and tailwater elevation curves are provided by the local power utility, Manitoba

Hydro. A weekly time interval between September 15-21st, 1997 is used for application of

the model.

The Winnipeg Reservoir System model is solved for two different problems of constant
overall time horizon considering different number of time intervals. An hourly scheduling
problem is considered with 168 time intervals. In another experiment a total of 14 time
intervals are considered thus reducing the problem to a half-day scheduling problem. The
latter has provided an opportunity to compare the results from the real-time operation
model with those of a MINLP model. The solution obtained for the first problem is not
necessarily a global optimal solution. The nature of the solution (global or local optimum)
could not be determined, as a feasible solution was not obtained using the solver used for
the MINLP model. This can be attributed to the number of time intervals, binary variables

and the decision variables that increase the complexity of the formulation and make the

model computationally intractable.

To assess the nature of solution obtained by SA an alternate comparison was attempted.
Two cost structures that reflect the variation of cost of energy production are used. These
are: (1) constant cost of power production per hour through out the day; and (2) varying
cost of power production for specific time intervals of the day. The model is run for a
time horizon of one week with 168 hourly intervals using the two cost structures. Using a

varying cost structure will aid in the visual inspection of the nature of the solution.
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4.8 Results and Discussion

The annealing algorithm is applied to two different multiple reservoir operation problems.
Results from the application to four-reservoir problem are presented first, followed by results

from the hydraulically coupled hydropower Winnipeg reservoir system.

4.8.1 Benchmark Model

The objective of this experiment is to evaluate the ability of the simulated annealing to
obtain the global optimum solution for a multiple reservoir operation problem with linear
benefit functions. Release is selected as the variable that is perturbed using the generation
mechanism. The range for the variable is based on the lower and upper limits of the release
at each of the reservoirs. The selection of the initial temperature, 7, is straight forward
as the value is reflective of the objective function. As the global optimum value is already

available the task is to replicate that using the simulated annealing technique.

The « value is taken as 0.99. It was observed that the number of feasible solutions were
directly related to the number of the minor iterations, L. carried out. The value of L. varied
anywhere between 10000 to 40000. Experiments are conducted with changing values of ¢
and ¢;. Using higher values for ¢ (e.g. a value above 2) and values lower than 1 for ¢; has
resulted in more number of near optimal solutions in the first few major iterations. This

is suggestive of the mechanism that higher values of the control variables would result in

higher benefit values.
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Since the objective function depends on the release-benefit curves, higher values of releases
would always increase objective function values. The value of ¢ used in the experiments
ranged from 1 to 5. A value of 5 was found to be ideal in generating more feasible solutions
compared to other values. A higher value for ¢ and a lower value for ¢, is appropriate for
the present problem as this would introduce a heavy bias towards one set of transitions.
Since these transitions produced better objective function values, these are preferred. It

is advisable to experiment with different values of ¢ and ¢; for few iterations before using

them for the complete annealing process.

Repair strategies are applied at two instances within the simulation model. As no benefit
value is attached to spill at any reservoir, the continuity equations are modified through
repair strategy to modify the release to include the spill wherever and whenever possible.
Release values are recalculated in the last time interval based on the target storages for
all reservoirs whenever the target storage states are not met based on the pre-defined
release values. If constraints related to upper and lower bounds are violated, a corrective
mechanism (in Equation 4.12) is applied. The results were compared with those of Heidari
et. al (1971). A global optimum value of 401.3 is achieved by the simulated annealing
algorithm as compared to the one obtained using Linear Programming. The number of
minor and major iterations needed for the solution are 36000 and 132 respectively. In
the present case, global optimum value is achieved when the release values are restricted
to integer values. The use of integer values is also justified based on a specific property

relevant to solution of a special category of Linear Programming problems.

The benchmark problem belongs to a special case of Linear Programming problem (ex-
pressed in standard form) where the entries in the constraint matrix are either of the form

[-1, 0, +1] and the constants on the right hand side are integers. Kolman and Beck (1990)
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refer to Hoffman and Kruskal (1956) who showed that the solution to these problems would

always yield an integer solution for the variables.

Near optimal solutions (e.g. 400.8) close to the reported global optimum were obtained if
this restriction was not applied. It should be noted that the improvements to generation
mechanism are in general useful for any problem with variables taking continuous values.
However, in this case, restriction of variables to integer values has resulted in global opti-
mum solution. A trial run with this restriction on variable values is worth undertaking to
explore the nature of solution for any reservoir operation problem. The computational time
taken to obtain global and near-optimal solutions is reasonable considering the nature of
the annealing algorithm and not considered as an advantage when compared to traditional
LP technique. The storage trajectories were similar to those obtained by Heidari et al.
(1971) except in two time intervals. Minor variations in a few time intervals were observed
when the values ¢ and ¢; are changed. The storage trajectories for reservoirs 2 and 3 from

the LP, GA (Wardlaw and Sharif, 1999) and SA approach from the present study are shown

in the Figures 4.5 and 4.6.

In case of reservoir 2, the storage trajectory from SA and LP are almost the same. The
storage values are different from LP formulation in two intervals in case of SA and four
in case of GA. Similar trends can be seen in the case of the reservoir 3 using all the three
approaches. However, the global optimum, 401.3, is obtained using GA approach (Wardlaw
and Sharif, 1999). The difference in the storage trajectories generated by SA and GA does

not necessarily indicate that one approach is better than the other.

Implementing the annealing algorithm with two different generation mechanisms can show

the value of using heuristic rules for reduction of the range of variables. It was observed that
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Figure 4.5: Storage trajectories for reservoir 2

a relatively many feasible and near-optimal solutions were obtained using the generation
mechanism in equation (4.10) compared to the standard mechanism provided by equation
(4.4). An experiment is conducted using the standard and improved generation mechanisms
and the number of feasible solutions are compared. In the former case, only 3 feasible
solutions were obtained while the latter produced more than 1000. In this experiment, a
solution is -regarded as feasible only when the objective function value is more than 380.

It should be noted that the generation mechanism is heavily biased by problem specific

information.

The number of transitions at each temperature has an effect on the number of solutions
obtained. Figure 4.7 shows the cumulative number of solutions obtained for different num-
ber of transitions at each temperature level. The number of transitions chosen for each
case is indicated in the figure. For this experiment, solutions are regarded feasible and are

accepted only when the objective function is greater than 400. It is evident from the graph
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Figure 4.6: Storage trajectories for reservoir 3

the number of feasible solutions depends on the number of transitions allowed at a given

temperature.

The global optimum solution was obtained using the mechanism where the transitions are
guided by heuristic rules. The exercise of solving the benchmark model is intended to show
the advantages of using heuristics within the simulated annealing algorithm for reservoir
operation problems. Application of SA to the four-reservoir problem is not based on the
need for global optimal solution and is not recommended for problems that can be solved
using traditional optimization techniques. However, the application provides insight into

the generation mechanism used for continuous variables, incorporation of problem specific

information and repair strategy for closed-end problems.
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Figure 4.7: Effect of number of transitions on the number of solutions

4.8.2 Winnipeg Reservoir System Model

The model is developed to test the capability of SA algorithm in two cases: (1) obtain
an optimal or near-optimal solution for a reservoir operation problem with many decision
variables; and (2) comparison of the performance of the annealing algorithm to a traditional
optimization technique. The real- time operation model is applied to a system of four
hydropower reservoirs in series on a single river. The state variable selected in both the
cases is release. The ranges of the variables are provided using heuristics. An initial guess
of the range of the variables is obtained from the EMMA model that provides a weekly
optimal release values. Problem specific information was proved to be useful in the present
case and allowed better results. The range and cost of production values for different time

intervals are shown in the Figure 4.3.

The results relevant to these conditions are shown in the Figures 4.8 and 4.9 respectively.

The power production figures shown in the graphs indicate the total amount of power
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produced at all the power plants for half-day intervals. The values shown in the Figures 4.8
and 4.9 are for constant and varying cost structures respectively. It can be noticed from
the graphs the variation of power production in the first case is erratic while an oscillatory
trend is observed in the case of the varying cost structure. This provides a clear sign of
optimization that is achieved using the present algorithm. As it is impossible to solve
the problem using any other state-of-the-art optimization technique available, the solution
obtained cannot be guaranteed as global optimum. The average computation time taken to

obtain a solution using a PC (under Windows N'T environment with Pentium III processor)

is 20 minutes.
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Figure 4.8: Power production values with constant cost structure

The model also is applied to operation of a coupled hydropower reservoir system con-
sidering a time horizon of one week comprising of half-day time intervals with total of 14
decision intervals. Plant discharge (release) is again selected as the control variable and the

generation mechanism given by equation (4.4) is used to obtain the values of the variable.
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Figure 4.9: Power production values with varying cost structure

A trial and error procedure was used to arrive at the feasible ranges of the discharge
variables. The variation of cost of energy production with respect to time was used to
approximate the range of the discharge variables. After few trials using the annealing
algorithm, the ranges are fixed. For each trial, the number of feasible solutions is counted
for a specific number of major iterations. The range values that resulted in larger number
of feasible solutions are selected and the annealing algorithm is applied. The generation
mechanism needs to be modified if the ranges of the discharge variables are not fixed using

this trial and error procedure.

Since the cost structure varies in a periodic fashion, the determination of the ranges after
few trials is easy. However, if the cost structure is complex, then normalized cost values
(similar to normalized benefit values) can be used to introduce the bias into the generation
mechanism. The o value used in the annealing algorithm is 0.98 which ensures a slow

cooling schedule for the annealing process.
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There are two ways of applying the generation mechanism for the discharge variable :

(i) Use an appropriate range for the discharge variable different for every time interval

and reservoir.

(ii) Use an appropriate range that is constant for all the time intervals and different for

the reservoirs.

In the present study a constant range for the discharge for each reservoir is used. The
standard generation mechanism given in equation (4.4) is used as appropriate range values
for the discharge variable are already defined. The increments or decrements (Equation

4.5) are scaled using a factor of 0.1.

The problem is also solved using the traditional MINLP formulation using a state-of-the-
art solver, GAMS (Brooke et. al, 1996). The MINLP and SA models are run for the
similar conditions to obtain the optimal power generation values at each of the hydropower
plants. The total power demand to be met is fixed in both the formulations and is equal
to 43.1 GWhrs. The objective function (cost) values obtained are 264.17 and 260.15 by
MINLP and SA models respectively. These figures represent the cost of energy production
in monetary units. The SA model provided a better value of objective function than the
MINLP model. Also, the computation time for solving the operation problem is much
less compared to that of the MINLP model. The objective function value indicated was
obtained within few major iterations. An average computation time of 10 minutes was
required to obtain the solution on a PC (under Windows NT environment with Pentium
III processor). The power generation values obtained from the models at two reservoirs for

7 time intervals are given in the Table 4.3.
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Table 4.3: Power generation at McArthur and Great Falls

Power (GWhrs)

Time interval Mc Arthur Great Falls
(MINLP) (SA) (MINLP) (SA)

1 0.54 0.28 0.17 0.73
2 1.63 0.59 0.68 1.43
3 0.52 0.26 0.17 0.60
4 1.63 0.55 0.68 1.45
G 0.52 0.31 0.17 0.74
6 1.63 0.64 0.68 1.34
7 0.53 0.31 0.17 0.60

4.9 Modeling Issues

The results obtained in the present study provide considerable insight into the working of
the annealing algorithm and its application to reservoir operation problems. The cooling
schedule within the annealing can be incorporated at a faster rate (referred to as quenching)
to assess the capability of the simulated annealing technique in solving a multi-period
and multiple reservoir operation problems and obtaining near-optimal solutions. However,

global optimal solutions are not guaranteed by this procedure.

The problem specific heuristic rules and the repair strategies used in the present study

for two different reservoir operation problems are useful in generating larger number of
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feasible solutions. The repair strategy is ﬁseful for operation problems where some of the
variables take on target values at the end of the time horizon. This can be referred to be
a closed-end problem, where larger number of infeasibilities is bound to occur. The repair
strategy may not be required in cases where the problems are cast as open-end problems

without end-of-period target constraints. However these types of problems are quite rare

in the field of reservoir operation.

The results presented corroborate that near optimal solutions can be obtained within a rea-
sonable amount of computational time for complex multiple reservoir problems involving
many decision variables. Even though, global optimum solutions are guaranteed in theory
using the annealing algorithm, the decision maker can decide to use the available near op-
timal solutions for application in real-time. The improvements incorporated into simulated
annealing can be used to address any configuration of reservoirs. Problem specific informa-
tion is essential in improving the search for optimal solutions and reducing the computation
times. In the present study, the use of heuristics to define the range of discharge variables
proved to be useful. Avfunctional relationship between the cost of production and plant

discharge has helped narrow the ranges of discharge variables used as control variable in

the annealing model.

4.9.1 Complexities

The complexity issue surrounding the MINLP formulation is related to computational in-
tractability resulting from combinatorial increase in the number of binary variables. The

increase is proportional to the number of time intervals and tailwater curves considered. In
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the case of annealing, simulation model is an integral part of the algorithm that provides an
easy mechanism to incorporate any detail while considering the representation of the phys-
ical system that is not possible using traditional optimization techniques. Improvements
in the reduction of search space are possible, while conceptually better algorithms such
as very fast simulated re-annealing (Ingber, 1993) can be experimented. The annealing
algorithm is simple and easy to implement for many reservoir operation problems. The an-
nealing parameters (number of major and minor iterations, temperature and the stopping

criterion) play a major role in obtaining global or near optimal solutions.

The experiments conducted in the present study suggest that the speed and convergence
of the annealing algorithm to a near- or global optimal solution depends more on the range
of the state variables appropriately defined than on the parameters used for the annealing
algorithm. The random perturbation part of the annealing algorithm needs attention. The
spectral properties of the random number generator used within the annealing algorithm
to a certain extent influence the performance of the algorithm. In the present study two
functions (rand and rand48) available on the Unix (Solaris) platform are experimented. The
rand48 function has better spectral properties, a fact.coﬁﬁrmed by the literature relevant
to the random generator functions and the number of feasible solutions obtained in the

present study. A generator with good spectral properties is always preferred to obtain a

wide range of solutions.
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4.9.2 Implementation of Simulated Annealing

A major difficulty with the use of simulated annealing is the definition of the range of the
continuous variables. Since reservoir operation problems are bound to have continuous

variables, heuristic rules can be used to reduce the range of these variables. General

guidelines while applying annealing to reservoir operation problems:

e define the relationships between the state variables and the performance measure to

develop heuristic rules.

e experiment with the appropriate range values for the variables based on the problem

specific information.

e use screening models that provide sub-optimal solutions for simplified models to ob-

tain variable ranges.

e identify any problem specific conditions to devise heuristic rules.

The performance measure or objective function often provides clues for developing heuristic
rules. Linear Programming formulations can serve as screening models. Discrete Dynamic
Programming can also be useful for obtaining the optimal range of the variables through
the discretized class intervals. However, these screening approaches apply only when they

are computationally feasible and insightful.
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4.10 Summary

A stochastic search technique, simulated annealing, is used to develop operation mod-
els for multiple reservoir systems. Considering the number of decision variables and the
counstraints, the near-optimal solutions obtained are considered adequate for practical ap-
plications, especially in the absence of tools to precise globally obtain optimal solutions.
The annealing technique can be regarded as a last resort algorithm for solving reservoir
operation problems marked as computationally intractable (Teegavarapu and Simonovic,
2000d). The model based on the annealing technique is proved competitive with a tradi-
tional optimization technique used in the present study. The problem specific heuristics
used make the annealing technique a tailored algorithm applicable only to specific reservoir
operation problems. However, this should not be regarded as a disadvantage as the prob-
lem specific information can be used in improving the solution and reduce the computation
time required. The annealing technique in general is easier to apply for reservoir operation

problems compared to a genetic algorithm.

For problems where continuous variables space pose a problem, suggestions are provided
in this research. The algorithm used here is a sequential implementation of standard
annealing technique. Recent studies (Azencott, 1992) have dealt with the development of
approaches useful for parallel implementation of the algorithm. Further research is aimed at
developing parallel implementations of the annealing algorithm and general heuristic rules
for the various problems relevant to operating of multiple-reservoir systems. The simulated
annealing algorithm was applied to two problems here, one a standard test problem. At
this point it is tempting to make global claims about the general nature of algorithm and its

applicability for a variety of reservoir operation problems. With cautious optimism it can
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be stated that the algorithm has potential for application to a number of computationally

intractable problems in reservoir operations.

4.10.1 Extensions

A real-time multiple reservoir operation problem was solved using the proposed simulated
annealing model. The near optimal solutions obtained are adequate for practical applica-
tions. However, some issues relevant to the algorithm’s performance still need to be ad-
dressed. Belonging to a similar class of search techniques, genetic algorithms (Michalewicz,
1996; Haupt and Haupt, 1998) are becoming increasingly popular for solving complex
optimization problems. These algorithms simulate nature’s evolution process in solving
complex optimization problems. Genetic Algorithms can be used to solve the real-time

operation problem to assess their performance compared to that of SA.

An ideal extension to the present study would be to compare the performance of GA and
SA for several multiple reservoir operation problems or at least using the reservoir operation
problem already addressed. The simulation model and the problem representation exper-
iments conducted in the present study will be of great use in developing the optimization
models using genetic algorithms. The simulation model developed for simulated annealing

algorithm can be used to calculate the fitness values of the population in case of Genetic

Algorithms.
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4.10.2 Postscript

Computational intractability must be considered in developing real-time optimization mod-
els. The use of heuristics within the stochastic search techniques is inevitable for solving
complex problems. The essence of this statement is well summarized by H. Bremermann

in “Optimization Through Evolution and Recombination” reported by Kosko (1999):

“Problems involving vast number of possibilities will not be solved by sheer
data processing quantity. We must look for quality, for refinements, for
tricks, for every ingenuity that we can think of. Computers faster than

those of today will be of great help. We need them.”

Use of problem specific heuristics in any algorithm marks it as a tailored approach or
technique. In instances where the problems cannot be solved using existing classical and

non - traditional optimization approaches, failored algorithms will become the last resort.

The next chapter addresses the tail-end issue handled in the present research relevant to
the actual implementation of the reservoir operating rules. The chapter also discusses a

few tools developed in the present study to aid such an implementation process.



Chapter 5

Implementation Issues and Practical

Solutions

Results ! Why man, I have gotien a lot of results.
I know several thousand things that won’t work.

- Thomas A. Edison

174
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5.1 Introduction

Three major issues relevant to the real-time operation of reservoir systems are discussed in
the earlier chapters. The models developed considering these issues are validated by a few
test cases of real-time operation of existing reservoir systems. However, application of these
models in real-time and their practical utility in a variety of situations needs to be assessed.
A fair evaluation can only be possible when the models are applied in real life situations by
reservoir operators or managers, decisions are implemented and the system performance is
estimated. As actual implementation will reflect on these aspects, this chapter will discuss
some additional approaches and tools that are developed in the present research to aid this

process. It is imperative that reservoir operators and model developers should be involved

in such a process.

The perspectives of modelers and the reservoir operators on reservoir operation models and
their application in real-time are completely different. Many of the models developed in
theory are not finding their way into praétice. Some of the issues the modelers generally
concentrate on are: (1) development of models to capture the dynamics and exhaustive
representation of the system; (2) adopt state-of-the-art optimization tools that provide
globally optimal solutions; and (3) model execution time within an operational time frame.
However, reservoir operators/managers are interested in: (1) comprehensive, yet easy to
use operation models; (2) transparency of the modeling environment to adopt, modify and
run for a variety of situations in real-time; (3) interactive user interface and add-on tools
to obtain real-time operational scenarios; (4) reasonable computational resources and time
within which operational decisions can be obtained; and (5) acceptable quality of solutions

as long as the performance of the system is better than the one obtainable using existing
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standard operational decisions. While these are some of the views on which modelers and
operators differ, a variety of issues that stem out of these might hold the key to the better

acceptance of models developed in theory for application.

5.2 Theory and Practice

The gap that still exists between theory and practice in the field of reservoir operations
and a variety of reasons for the same have been already discussed by many researchers (e.g.
Yeh, 1985, Simonovic, 1992; Labadie, 1997; Nicklow, 2000). Efforts are still being made by
many researchers to reduce the gap by involving reservoirs operators in model development
to a larger extent and embracing the emerging optimization tools (Simonovic., 2000). These
new tools are referred to as non- traditional approaches in this research. A major issue

related to the existence of the gap is the practical application of the models in real-time.

The model execution or run time that has an enormous influence on the actual usage of
models in real-time is not explicitly spelled out as an issue in the earlier works (Yeh, 1985;
Simonovic, 1992; Labadie, 1997). Execution time (computational) of the model assumes
importance in case of short-term or real-time operation of reservoir systems, where oper-
ational decisions are required within a short time. Examples of such applications include
hydropower and flood control reservoir operations. The execution time and the nature of
the solution are affected by the system representation in the formulations. As discussed in
previous chapters an exhaustive representation of the system at a finer time scale increases
the number of variables and non-linear functional relationships in the formulations. A di-

rect consequence would be an increase in the computational time required for solution or
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in some cases the existence of feasible solutions.

Where it is difficult to run the optimization models, simulation models can aid the reservoir
operators in implementing the operation rules in real-time. Also, improving the practi-
cal utility of optimization models revolves around better packaging of associated software
(Goulter, 1992). Decision makers will more readily accept models that support their think-
ing process, provide graphical interfaces and enhance the understanding of the results. A
decision support framework to aid the implementation process should have the capabilities

of scenario generation and policy analysis. Simulation models are useful for policy analysis

and scenario generation based on the dynamic inputs.

A framework that combines these elements in the form of Decision Support System (DSS)
is developed in the present study. The framework encompasses all the optimization models
developed in the present research. Simulation models developed based on a relatively new
approach, Object-Oriented System Dynamics and Simulated Annealing are also included

in the system. The development of the simulation model is discussed first and then details

of the Decision Support System (DSS) are presented.

5.3 Object-Oriented Simulation

Modeling reservoir systems is generally achieved by developing mathematical programming
formulations for optimizing the operations or by using a simulation model to understand
or capture the dynamics of reservoir operation. In recent studies, operation models are

developed using relatively new non-traditional optimization approaches such as Genetic
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Algorithms (Oliviera and Loucks, 1999), optimal control methods (Nicklow, 2000) and
Simulated Annealing. The use of simulation models is not uncommon in the field of reservoir
operation. A detailed review of traditional simulation models used for reservoir operation is
given by Wurbs (1993) whereas models based on principles of System Dynamics (Forrester,

1961) are discussed by Simonovic et al. (1996) and Simonovic and Fahmy (1999).

Simulation models have been used for almost 50 years for planning and analysis of water
resources systems. Excellent state-of-the-art reviews are provided by Yeh (1985) and Wurbs
(1993). A variety of simulation models are developed by agencies such as U.S. Army Corps
of Engineers and the Colorado Water Resources Institute (ReVelle, 1999). However, many
of the simulation models developed in the past use high level programming languages with
many disadvantages. These disadvantages include: (i) problem specific codes; (ii) rigid
model structure; (iii) non-transparent structure that is difficult to decipher or change;

(iv) lack of generic structure and (v) often huge time investments are required in model

development.

Recent developments in computer science have lead to design of software approaches that
eliminate many of the disadvantages associated with traditional models. One such approach
that has gained attention is Object-Oriented simulation. The advantages of such an ap-
proach are discussed by Wurbs (1993) and Simonovic et. al (1997). An Object-Oriented
simulation environment is ideal for carrying out the simulations, since the elements within
in any system can be represented as a set of interrelated objects. One of the advantages
of such an environment is that the objects can have generic properties that can be used to
model specific elements. Objected-Oriented Analysis (OOA) (Tisdale, 1996) and Objected
Modeling Technique (OMT) (Rambaugh et al., 1991) are different from Object-Oriented

simulation conceptually.



Implementation Issues and Practical Solutions 179

The Object-Oriented simulation environments (e.g. STELLA, POWERSIM!) developed
more recently are conceived on the principles of System Dynamics (SD) Forrester (1961).
The concept of SD is relatively old compared to the environments that are based on its
principles. The advantage of these environments is that they provide objects with generic
structures and embrace the basic principles of SD. SD concepts explain the behavior of
any system over time, whereas OOA and OMT help in understanding a real-world system
using objects with specific properties. Object-Oriented simulation environments provide a
number of advantages in developing simulation models. The benefits include: (i) flexible
model structure; (ii) transparency; (iii) generic objects; (iv) negligible time investment in
the development of models and (v) ease of use. One of the major features of the OO
simulation environments is the ease with which qualitative information can be included

in the model. This feature is useful while modeling water resource systems influenced by

social and economic factors.

The simulation model developed in the present research use a specific Object- Oriented
simulation environment that is conceived on the principles of System Dynamics. Hereafter,
the models will be referred to as Object-Oriented System Dynamics or System Dynamics

simulation models. The following sections provide the background to SD approach and

details of the models.
1Developed by High Performance Systems Inc and Palisade Corporation respectively
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5.3.1 System Dynamics Simulation

The field of water resources is replete with problems where traditional methods require com-
plex mathematical representation of the physical systems and at the same time beiﬁg exces-
sively abstract. The non-linearities inherent in hydrological processes and socio-economic
aspects associated with water resources systems sometimes make them less amenable to
traditional models. The complexity of these models is a driving force for the research com-

munity to abstain from reductionist approaches and work towards holistic approaches to

understand the dynamic behavior of these systems.

The weaknesses of traditional models are overcome by the paradigm of systems dynamics
put forth by Forrester (1961) and Object-Oriented modeling tools. The paradigm relies
on understanding of complex inter-relationships between the elements in any system and
constructing a mental (conceptual) model. The mental model is then transformed into
computer simulation to understand the behavior of the system over time. Coyle (1993)
and Wolstenholme (1990) and Ford (1999) discuss the concepts and applications of system

dynamics approach to a variety of problems. The concept of system dynamics approach is

explained next.

System dynamics simulation (Forrester, 1961) approach relies on understanding complex
inter-relationships existing between different elements within a system. This is achieved by
developing a model that can simulate and quantify the behavior of the system. Simulation
of the system over time is considered essential to understand the dynamics of the system.
Understanding the system and its boundaries, identifying the key variables, representation

of the physical processes or variables through mathematical relationships, mapping the
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structure of the model and simulating the model for understanding its behavior are some
of the major steps that are carried out in the development of a system dynamics simula-

tion model. The central building blocks of system dynamics approach are well suited for

modeling any physical system.

Central to the theme of systems dynamics (Forrester, 1961) are two important building
blocks, stocks and flows that can be used to model the elements that govern the water
resource systems. Two important assumptions also are used while constructing these system
dynamics models: {(a) processes modeled form a closed loop and (b) system boundaries
influence the dynamics. Causal loop diagrams or influence diagrams representing the inter-
relationships between various elements of the system are first developed. Flow diagrams are

then extracted to develop simulation models. Computer simulations are performed using

difference equations to integrate stocks and flows.

In general, the models developed using the system dynamics principles are validated by
several tests that include: (1) replication; (2) sensitivity; and (3) prediction. These tests
confirm the structure of the model with the physical system. Various other tests that
validate the dimensional consistency of the equations used and robustness of the model in
handling extreme conditions are carried out before the model is adopted for implementation.

The model developed in the present study is validated using all these tests.

Recent applications of OOP methodology to water resource planning and policy analysis
were provided by Lund and Ferreira (1996), Simonovic et al.(1997) and Fletcher (1998),
Simonovic and Fahmy (1999). Keyes and Palmer (1993) indicate the advantages of such an
approach to problems in water resources by demonstrating its utility in drought planning

policy scenario generation. The principles of system dynamics are well suited for modeling
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and application to water resources problems, a fact that is confirmed by the previous
works. Simonovic and Fahmy provide a general approach for policy analysis that uses the
principles of system dynamics. Simonovic et al. (1997) apply system dynamics simulation
to operation of High Aswan Dam in Egypt. The advantages of Object-Oriented simulation
over traditional simulation models are discussed in detail by them. Lund and Ferreira (1996)
use STELLA (Systems Thinking Educational Learning Laboratory with Animation), a tool
based on System Dynamics approach to develop a rule based reservoir operation model.
They compare the performance of this model with that of an optimization model, HEC-
PRM. Ahmad and Simonovic (2000) in a recent study used similar approach to simulate

reservoir operating polices for different flood control options.

In the present research work a SD simulation model for operation of a hydropower reser-
voir system is developed. However, the model can be modified to handle op eration of
any multi-purpose reservoir. The model is developed using an Object-Oriented simulation
environment, STELLA, conceived on the principles of systems dynamics approach. The
modeling environment is developed by High Performance Systems (1994). While describ-

ing simulation models, Wurbs (1993) refers to the tool, STELLA, as an Object-Oriented

simulation environment.

The model developed in the present research is differs with the earlier work (Simonovic et.
al, 1997, Simonovic and Fahmy, 1999) : (i) in addressing the issue of real-time operation
of multiple reservoir system; (ii) exhaustive modeling of the system and the use of two
indices (Hashimoto, 1982) to quantify the system performance and (iii) few problemn specific
objects and functions used in the simulation environment. Since the model is built around
a simulation environment using pre-defined objects with specific properties, several special

structures are developed to achieve this objective.
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5.3.2 Governing Equations

The governing equations used for modeling different elements in a system are represented
by finite difference expressions that are solved using a standard numerical scheme. The
simulation environment (STELLA) used in the present study uses three different schemes
with varying levels of accuracy. The equations are transparent to the user and can help
understand various mathematical relationships. The governing equations are generic in
nature and are associated with the objects. For example in case of Stock (object), a
continuity equation for mass balance will be developed considering the inflows and outflows,
while a Converter carries a functional relationship between different variables that can be
represented in a mathematical or a graphical form. The time interval for simulation is also

an important aspect that will determine the accuracy of the numerical scheme used for

solving the finite difference equations.

5.3.3 Modeling Environment

The Object-Oriented simulation environment, STELLA, used to model the operation of a
multiple reservoir system is conceived on the principles of system dynamics and uses objects
that have specific properties. The basic building blocks, “Objects”, are shown in the Figure
5.1. The environment provides three layers (mapping, model building and equation) that
are used to develop a complete model. These are linked and any modification made in any

one of the layers is reflected in all other layers.

The mapping layer provides the user interface, while the modeling layer is used for the
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Objects
Stock Conveyor

Stock : to model storage (e.0. Reservoir)

Ty Flow - to model any time series (e.g. Inflow)
Connector - to cany information about variables

Flow Out flow Converter : to model functional refationships

Conveyor :to introduce delay in the system.

Connector
Functions Graphical Interface :
RANDOM Graphs, Tables, Sliders
Comater [F-THEN -ELSE Sectors.
DELAY.

Figure 5.1: Basic building blocks of the model

construction of the model. Different objects are used in the modeling layer to develop the
model. For example, the object, Stock is used to model a reservoir while a Flow is used to
represent inflow, spill and release from a reservoir. In order to incorporate a flow transport

delay between two reservoirs, a Conveyor object is used.

Functional relationships and dependencies are defined using converters and connectors re-
spectively. The simulation environment also provides a number of built-in mathematical,
logical and statistical functions that can be used in any of the objects. The governing
equations based on the model structure are automatically created in the equation layer by
the STELLA environment and can reviewed for accuracy of the structure of the model. In
the present study, functions such as RANDOM, IF -THEN-ELSE and DELAY are used.
The environment also provides features such as sensitivity analysis, provision for graphical

inputs and a simulation mode in which the inputs can be changed dynamically.
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5.3.4 Model Architecture

The first step in the development of a System Dynamics simulation model is the creation of
causal loop diagram. The diagram is used to identify the elements of the system and their
relationship with each other. A causal loop diagram for a two-reservoir system (relevant

to the Winnipeg River System) is shown in the Figure 5.2.

Inflow (1) Inflow (2)
Reservair (1) Reservoir (2)
Storage \ / Storage
+
Reservoir level Release + Spill

+
\ Tailwater elevation
Hiead /

Figure 5.2: Causal loop diagram for a two reservoir system

The arrows indicate the relationships between different elements and the sign attached at
the front of the arrow suggests the type of effect one element has on the other. For example,
an increase in inflow would lead to an increase in storage. Similarly an increase in taliwater
elevation would lead to a decrease in the head required for power generation. The spill,
release, reservoir level and head shown in the Figure 5.2 are associated with reservoir (1)-

More details of the development of causal loop diagrams are available elsewhere (Roberts et



Implementation Issues and Practical Solutions 186

al., 1983). The utility of the diagram will be evident when it is developed for a system with
large number of interdependent elements. Development of SD models for large systems
is difficult if causal loop diagrams are not created. However, this diagram provides a
basic understanding of the system and its components. The structure of the model can be

developed using the basic building blocks of any Object-Oriented simulation environment.
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Figure 5.3: Main interactive layer of the simulation model

To facilitate the development, the model is divided into three major sectors. The major
sectors and the initial interactive layer of the STELLA model are shown in the Figure 5.3.
One of the advantages of dividing the model into sectors is that each sector can be run
individually or in & group. The sectors also help incorporate the required modularity in

the model structure.
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The object structure of one of the main sectors (reservoir) is given in the Figure 5.4. The
structure represented in the figure is for the Seven Sisters reservoir from the Winnipeg
Reservoir System. The model structure is aimed at reflecting the operation of a system of
reservoirs in series, with the final reservoir discharging into a lake with a strong hydraulic

coupling existing between the plants. A brief description of the sectors is given here.

. Final storage

Resesvoir Level

Average storage

Figure 5.4: Object structure of one of the sectors (reservoir)

5.3.5 Reservoirs

Each reservoir is represented as a sector that has reservoir specific properties. The ob-
ject structure shown in the Figure 5.4. refers to the first reservoir, Seven Sisters, in the

complete system. Similar structures are required for all the other reservoirs and a lake
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that add up to a total of five sectors. The reservoir specific characteristics for a particu-
lar sector include, stage-storage relationships, local inflow, controlled fiows from any other
reservoirs, discharge-efficiency curves, spill calculations, plant release, average storage level,
flow transport delay and calculation of head required for power generation. The description

of all the sectors all developed for the Winnipeg River System is provided here.

5.3.6 Tailwater Elevations

The model developed considers the strong hydraulic coupling that exists between the hy-
dropower reservoirs. This feature is taken into consideration while calculating the head

required for energy generation at each of the hydropower plants.

This sector uses objects with logical functions (e.g. IF-THEN-ELSE) to determine the
appropriate tailwater elevation curve for use in the calculation of the head. These objects
are shown in the Figure 5.5. A sample set of rules using IF-THEN-ELSE construct (for

McArthur generating station) are given next.
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Seven spill

Mc Asthur Spill

Total flow at Nc Arthur
Mc Arthur Discharge

@ Taiwater Seven Mc Arthur average storage

Great Falls average storage

Tall water Mc Arthur

Great Falls Spill

Pine alls Spill

Total flow pt Great fails .
Great Falis Discharge

Pine falls discharge

total flow at{pine falls

Tail water at Pine falls
Pine Falls average storage

Wpg average storage

Tail water winnipeg lake

Figure 5.5: Object structure for tailwater elevation calculations

IF(average_storage_3 >= 809) AND(average_storage_3 < 809.5)THEN

(809 + (Total_flow_at_Mc_Arthur*0.06774)) ELSE

IF (average_storage_3 >= 809.5) AND (average_storage_3 < 810)THEN
(809.5 + (Total_flow_at_Mc_Arthur*0.06404)) ELSE

Endif

In optimization and simulation models developed in the past for hydraulically coupled

reservoirs, similar rules were used and they are referred to as look-up tables. Similar rules
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exist for all the reservoirs that are considered in the present study. If hydraulic coupling is

neglected the average storage value can be used for head calculation. This eliminates all

the converters that house the IF-THEN-ELSE rules.

5.3.7 Lake

The object structure of a lake (Winnipeg Lake) is shown in the Figure 5.6. The structure
includes a stock as a water body into which the final reservoir (Pine Falls reservoir) is
discharging and also a controlled outflow from the lake. Converters are used to calculate

the average volume of the lake and for determination of tailwater elevations curves.

7 low from Pine falls
reguiatedow  Winnipeg Lakk level
Outflow from Winnipeg Lake
@ winnipeg lake storage
Winnipeg Lake

Infiow Winnipeg

winnipeg |pke storage

Flow from Pine falls

Pine Falls outflow
Winnipeg Lake level

Wpg average storage

Figure 5.6: Object structure of the Lake Winnipeg
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5.3.8 Performance Indices

Two indices that are used as a performance measure of the system are incorporated in this
sector. The sector uses objects with graphical relationships for penalty/loss functions to
determine the vulnerability index and logical and mathematical functions to obtain the

reliability of the system. Individual indices for each reservoir and the whole system are

defined in this sector.

Apart from these major sectors few others are used to incorporate different features in
the model. These include, selection process for variable values, graphical relationships
and all other calculations that are not included in the major sectors. Link exists between
different sectors if and only if the variables in the sectors are interdependent. This can
be seen in the main mapping layer of the STELLA. The user can modify any graphical
relationship or provide any input required by the model. Any parameter permitted by

modeling environment can be used for sensitivity analysis.

5.4 Model Application - Winnipeg Reservoir System

The system dynamics model is applied to a case study problem discussed in chapters 3
and 4. Few details are provided here to refresh the memory of the case study area. The
Winnipeg Reservoir System consists of series of reservoirs, i.e., Seven Sisters, McArthur,
Great Falls and Pine Falls respectively in that order. The last reservoir drains into the

Lake Winnipeg. The reservoirs are hydraulically coupled, an aspect that is considered in
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the model in arriving at release decisions. The initial storage states, the plant discharge-
efficiency curves, discharge values are obtained from a seasonal model used by the power

utility presently operating the plants on the Winnipeg River.

The local flows to the plants are considered negligible compared to that of controlled
flow contributed by the reservoir upstream of the first reservoir. The simulation model

developed in the present study is used to obtain the daily scheduling rules based on the

available weekly operation rules.

5.4.1 Results and Discussion

The modeling environment used in the present study provides an easy mechanism to gen-
erate a large number of scenarios based on variety of conditions. Different initial storage
conditions and the value of controlled flow into the system are considered for performing
the sensitivity analysis. More scenarios can also be obtained by changing the flow trans-
port delay between the plants. Two different performance indices, reliability in meeting
the target demand and vulnerability of the system to any failure are analyzed. The system
dynamics model also allows sensitivity analysis of different parameters used in the model.
The model is particularly useful for reservoir/plant managers to generate operating rules
for various uncertain conditions and also in instances where the time interval within which
decisions are required is too small to run an optimization model. The model can be run to
obtain the operation rules using different values of initial storage states while retaining a

constant inflow scheme to the reservoir system.
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The plant discharge at each reservoir can be varied either graphically or based on operating
policy provided by any optimization model. This will result in different power generation
values. In the present study, the plant discharge values are obtained from the optimization
model. Sensitivity analysis can be easily performed using simulation environment. One
such experiment is carried out where the plant discharge for the first reservoir (Seven
Sisters) is varied starting with the initial value and five constant increments within the
interval [17.8,20.8]. The variation of the reservoir level is given in the Table 5.1. Each

scenario is based on a particular value of plant discharge. Three scenarios are provided in

the Table 5.1.

Table 5.1: Forebay elevation of Seven Sisters reservoir

Day Forebay elevation (ft.)

Scenario 1 Scenario 2 Scenario 3

899.30 8399.30 899.30

—

2 898.32 898.03 897.74
3 897.34 896.76 896.18
4 896.36 895.49 894.62
5) 895.38 894.22 893.06
6 894.40 892.95 891.50

893.42 891.68 890.00

=~

The controlled inflow into the reservoir is restricted to 15Kc¢fs. The variation of tailwater

elevation for three scenarios corresponding to different release patterns is given in the
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table 5.2. The variation in the tailwater elevation will not be observed if the inflow is
high enough to cause spill when release is restricted. For inflow level of 20.7Kcfs (actual

controlled inflow), no variation in the tailwater elevation is observed.

Table 5.2: Tailwater elevation at Seven Sisters reservoir

Day Tailwater elevation (ft.)

Scenario 1 Scenario 2 Scenario 3

1 836.46 836.54 836.62

2 836.04 836.13 836.21

3 837.79 836.13 836.21
4 837.79 837.86 837.94
9 837.79 837.86 837.94
6 837.79 837.86 837.92
7 837.79 837.86 837.53

The flow transport time between the plants can be used to evaluate the effect of the delay
time on the total amount of power produced at each of the plants. The model developed
in the present study uses a fixed delay approach. The delay time can be changed using the
graphical interface in the interactive layer of the modeling environment as shown in Figure
5.3. A built-in function, DELAY or an object, Conveyor, can be used to introduce the flow
transport delay. Conveyor as Stock object has special properties that allow it to convey
material (in this case flow) at a pre-defined time intervals. The modeling environment can

also be used to incorporate a routing model. A number of stocks can be used in between
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the two reservoirs to model the storage effect of the stream.

Details of the power production at each of the hydropower plants with and without flow
transport delay are given in the Table 5.3. A flow transport delay time of one day between

the plants is considered for this simulation.

Table 5.3: Power generation (GWhrs) at four reservoirs

Hydropower Station Power generation (GWhrs)

No delay Delay

Seven Sisters 15.32 13.85
Mc Arthur 5.85 6.03
Great Falls 13.81 11.62
Pine Falls 9.85 7.23

5.4.2 System Performance Measure

Two indices, namely reliability and vulnerability (Hashimoto, 1982) are used to measure
the system performance. In the present study, loss functions are developed to obtain a
monetary or a penalty value associated with a particular failure (e.g. failure to meet the
target demand). These curves can be modified by user with the help of Graphical User
Interface (GUI) provided by the simulation environment. One such interface is shown in the
Figure 5.3. Vulnerability is defined in terms of a monetary value attached to a particular

failure decided by a penalty function provided by the user. The values of the indices for an
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arbitrarily selected inflow scheme, associated with a specific reservoir (Mc Arthur) are given
in the Table 5.4. It should be noted that there is no conceptual difficulty in developing

these criteria for the whole system.

Table 5.4: Performance indices for different inflow schemes

Inflow Scheme Reliability Vulnerability

1 1.0 15.18
2 1.0 14.32
3 1.0 15.60

The Object-Oriented simulation model developed in the present study will have enormous
utility in variety of real-time operational conditions. Advantages of the model include:
(1) generation of different operating rules based on a variety of conditions; (2) evaluation
of system performance through different indices; (3) online usage for real-time operational
decisions. The modeling tool is ideal for application to reservoir operation problems. It can
be concluded that the simulation runs can be useful for reservoir operators for ana.b;zing

and understanding various real-time conditions.

One of major advantages of the simulation environment is that qualitative information can
be handled. For example, if two operating polices are available, then operator’s willingness
to use any one of the policies can be incorporated through graphical functions. The func-
tions would look similar to membership functions from the fuzzy set theory. The model
can be extended to include the simulation of individual turbine operations at each of the
reservoirs. In order to achieve a complete representation of the physical system (e.g. in-

corporation of hydraulic coupling and calculation of average storage elevations), additional
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objects are defined in the model. This is due to the limited number of objects provided by

the modeling environment.

Reliability and vulnerability are used as indicators to quantify the system performance in
response to different inflow conditions. The model uses objects that provide a good repre-
sentation of the physical system under consideration. The simulation environment provides
an easy mechanism to include certain aspects of the modeling which otherwise are difficult
to incorporate into traditional simulation models. The scenarios generated will be useful
for real-time implementation of the operating rules. Even though the model is specific to
reservoir operation related to hydropower generation (Teegavarapu and Simonovic, 2000b),
the modeling concepts can be extended to any type of reservoir system. The objects used

in the simulation environment can easily represent the basic governing processes of many

hydrological and water resources systems.

Simulation model that is developed using Object-Oriented environment discussed in this
chapter is useful for real-time operation of reservoirs. However, optimization models also
play a major role in providing the decisions for implementation. A framework that combines
these two categories of models while capturing the experience of reservoir operators is an

ideal tool that can assist on-line implementation of decisions. A decision support system

conceived on these ideas is discussed next.
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5.5 Decision Support System

Decision support systems that aid human decision-making process are existent for a long
time in field of water resources. Extensive literature on development of decision support
systems is available elsewhere (Mallach, 1994; Guariso and Werthner, 1989). Simonovic
(1996a, 1996b) discusses the general principles of DSS and their application to few case
studies in the field of water resources. The idea of Intelligent Decision Support System
(IDSS) for operation of reservoir systems was initially proposed by Savic and Simonovic
(1991). The support system draws engineering expertise and includes a database and a
modelbase. The database is a repository of data while a modelbase is storehouse of a set of
models developed for a specific problem. An interactive graphical user-interface is developed

to link all the components of the Decision Support System. These three elements form the

general architecture of any DSS.

A decision support system is developed based on the above basic architecture in the present
study. The system is designed to aid the decision maker in the implementation of models
developed for operation of reservoirs in real-time. The system is referred to as Decision
Support System for Operation of Reservoirs (DSSOR). The system encompasses all the
models developed in the present study under one interactive environment. Figure 5.7
shows the architecture of the DSS developed in the present study. In general, Knowledge
base is also an important component of any traditional DSS architecture. The knowledge
base component is not included in DSSOR architecture, as the amount of experience and

knowledge captured in the form of rules is not large enough to be identified as a separate

identity.
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Figure 5.7: Architecture of the Decision Support System

The DSSOR encompasses all the simulation and optimization models developed in the
present study. Therefore, the DSS is specific to the nature of operation problems and
reservoir systems dealt in the present research. General applicability of DSS is debatable
at this point of time, however practical utility is beyond any doubt. The DSS skeleton

can be used to add other models. Different components of DSSOR. and their features are

discussed next.
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5.5.1 Graphical User Interface

The Graphical User Interface (GUI) is developed using Visual Basic (VB) programming
language. The interface is developed using a variety of programming procedures. It 'provides
an interactive link between the user and the system. A set of model descriptions and data
preparation menus are provided for the user to select and provide data at various levels.

The interface generates warnings in case if non~numerical inputs are provided by the user

at any instance.

The GUI provides help at any point in the consultation session. The DSSOR, presently
does not possess capability to view the data files in a graphical form. Scripts (command
m files) are developed for execution within in a Matlab? environment and one such script

is included in the Appendix 2. The Matlab scripts can be used for viewing graphs.

5.5.2 Database

The database consists of a set of data files (in ascii format) required by the models. Data
provided by the user through the interface are stored in model specific text files. The
files are updated when the models are run and can be viewed or altered in an interactive
mode. The database primarily contains files that provide: (1) storage-elevation curves; (2)
maximum and minimum allowable range values for the variables (e.g., discharge, power
plant capacity, etc.) and (3) coeflicients for the regression equations of the tail-water

elevation curves at each of the hydropower plants.

2A numeric computing and visualization software from Mathworks, Inc.
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Much of the data that is relatively constant for the optimization and simulation models are
provided within the models (e.g., GAMS). In case of simulation models that are developed
under STELLA, the data can be provided and can be changed in an interactive mode within

that environment. Database is modified whenever user provides data through GUL

5.5.3 Modelbase

The modelbase consists of models that are developed for both optimization and simulation
of the single and multiple reservoir systems. The single reservoir operation is aimed at
predominantly flood control with economic objective, whereas the multiple reservoir system
operation is for optimal power generation. A variety of models are available that consider
different problems that include coupled and non-coupled systems, different time horizons,

single time interval simulation and optimization.

Optimization Models

The optimization models for reservoir operation are developed using both GAMS and Sim-
ulated Annealing approach. The modelbase has models that deal with different conditions:
(1) coupled reservoirs and (2) non-coupled reservoirs for different time frames and with
different objective functions. The model based on simulated annealing approach is used for
solution of hourly scheduling problem with 168 decision intervals. In case of single reservoir
operation, fuzzy optimization models with Linear and Non-Linear formulations are used.

These are indicated as FLP and FNLP in the Figure 5.7 respectively.
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Stmulation Models

The simulation models are developed using high level programming language (C language)
and an Object-Oriented simulation environment (STELLA). The simulation model de-
veloped using high-level language also serves as backbone for the Simulated Annealing
approach that is used as a part of optimization models. Separate models are available for

hydraulically coupled and isolated hydropower reservoirs.

5.5.4 Consultation Sessions

The initial consultation session provides a background to the problem and set of questions
for the user to answer about the problem domain. An initial consultation session is shown
in the Figure 5.8. Based on the answers (selected from a set of multiple-choice questions)

provided by the user, the DSS will launch appropriate data preparation sessions.

These sessions depend on the nature of the approach selected. Different menus are provided
and user can input appropriate values for the variables required by the optimization and
simulation models. The user is warned at times when data is not provided in a required

format. Help is provided at :very stage and user can end the session at any time.

Using data preparation session, the user can select specific options such as coupled or non-
coupled hydropower reservoirs, objective functions and time frames for optimization. An
example of such a session is shown in the Figure 5.9. If data are already available and exist

in text files, the option, “confinue” can be used to proceed to the next session.
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Figure 5.8: Initial consultation session of DSSOR
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A detailed data entry interface is provided by the consultation session for specific cases.

Figure 5.10 shows a detailed data entry interface for the hydropower system used as a case

study in the Chapters 3 and 4. In case of simulation models developed using STELLA, the

user can change the data interactively in the modeling environment.

Model Ezecution and Solution Status

Once the data preparation is complete, appropriate models are run and status of the solu-

tion is reported. The whole procedure involves invoking GAMS solver and providing the

appropriate data files for execution and writing the output files. The output files (results)

are written in ascit format in text files when the execution is completed. This is achieved by

modeling statements within the GAMS environment. The system automatically provides

help in case if the obtained solution is feasible or infeasible or no-integer solution is available

(in case of MINLP formulation). The optimization solver used in the present study reports
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Figure 5.9: Data entry session of DSSOR,

a number of solutions. In order to identify the nature of solution, a search is conducted in
the result files generated by the optimization model (run by GAMS solver) and the nature
of the solution is identified. This is one of the difficult aspects of the DSS development.
Remedial measures are provided to the user in case of infeasible solution or if Relaxed
Mixed Integer Non-Linear Programming (RMINLP) solution is reported. Guidelines are
provided for selecting meaningful values for the constants associated with constraints that

are binding and may cause models to produce infeasible solutions.

If an infeasible solution is obtained, the user can get back to data preparation menu for
data re-entry. The new data is now used to rerun the models and establish feasible and
optimal solutions. Once the execution is completed, the results-display menu is launched
by the system. A sample results display menu is shown in the Figure 5.11. The user will be
able to view any file with complete description about the results. These range from storage

states to power generation figures.
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Figure 5.10: Detailed data entry session for a system of Reservoirs

Data files can be viewed one at a time and the results can be used for policy analysis
using simulation models developed using STELLA. At this point of time, the user could
chose from three options: (i) end the session; (ii) rerun the models with different data
files and (iii) start a new consultation. The DSS also provides an option to continue to
use simulation models after the optimal operating rules are obtained. This is of help to

reservoir operators as they can use simulation models to generate scenarios with use of

optimal operating rules already available.

The DSS developed in the present research will aid the reservoir operators in implementing
the operating rules in real-time. Online use of this system is possible and needs to be tested
in live conditions. Considering the existing literature on DSS applications in the field of
reservoir operation, the system developed in the present study may not be considered

completely innovative. However the framework and specific features of the system can be

considered novel.
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Figure 5.11: Results display session of DSSOR

5.6 Practical Solutions

General observations relevant to computational time requirements, feasibility and the qual-
ity of solutions, implementation of operational decisions in real- time and their acceptance
by the operators are discussed here. These are based on the optimization and simulation
models developed in the present research. The conclusions in few cases are problem specific
and depend on the optimization tool used. However, a more general analysis of tradeoffs
between the modeling and solutions relevant to operation of multiple reservoir systems is

discussed. The next few sections summarize the observations in the form of schematic

diagrams.
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5.6.1 Complexity

A measure of the complexity of any mathematical programming formulation can be related
to difficulties associated with use of an optimization solver to obtain an optimal solution.
One such measure defined in the present study relates to the number of decision variables
in the mathematical formulation, non- linearities in the objective function, constraints and
existence of special variables that take on integer or discrete (including binary) values.
This measure is appropriate, as the nature of the solution, computational tractability and
time required to obtain a solution depend on the solution algorithm used by the solver
and its ability to handle the special variables. A typical relationship between the nature
of optimal solutions and complexity of formulations is shown in the Figure 5.12. The
nature of solutions obtained from two different optimization approaches starting with the
same-level of problem complexity are indicated. Figure 5.12 also suggests that the search
techniques that are regarded as non-traditional approaches are more efficient in providing

better quality solutions than the traditional optimization techniques.

5.6.2 Solutions and Computation Time

Based on the experiments conducted using both MINLP and SA approaches for multiple
reservoir operation problems in chapters 3 and 4, few general observations can be made. A
general indication of complexity associated with the nature of mathematical programming
formulations is shown in the Figure 5.13. Few standard optimization tools are identified for
use at different levels of complexity while a variety of others can be used to solve problems

that fall within the range of any two different formulations. Acceptability of the tools by
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Figure 5.12: Complexity and nature of solutions using non- and traditional optimization
techniques

reservoirs managers or operators is shown by a different curve suggesting that it is relatively
high for tools that are easy to use and low for non-standard approaches. The curves are
projected based on the experience from the use of different tools and also from experiments
conducted in the present study. While the observations are case study specific these are

valid for most of reservoir operation problems.

5.7 Tradeoffs

The computational time and modeling of the physical system are the two important as-
pects that are to be considered while developing and implementing the models for real-time
operation of reservoir systems (Teegavarapu and Simonovic, 2000c). The complexity of the

formulation increases with the increase in the number of time intervals and thus making
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Figure 5.13: Complexity of formulations, tools and their acceptability

the problem computationally intractable. In the absence of the tools to obtain optimal
solutions, the tools/techniques that can provide at least near-optimal solutions are always
favored. The stochastic search method used in the present study has overcome the lim-
itations of a traditional model (MINLP) besides giving the advantage of an exhaustive
representation of the physical system. Considering these observations, it can be concluded
that tradeoffs exist between: (a) nature of solution and time within which it is required; (b)
exhaustive representation of the system and computational tractability; (c) computational
time and the nature of the solution; and (d) type of approach chosen, acceptability and

ease of implementation of the model in real-time.

Optimization models are not always the solution for many instances of operation of reser-
voirs in real-time. System performance evaluation and rapid scenario generation based on
available operating policies is possible using appropriate simulation tools that can incorpo-

rate the dynamics of the operation in real- time. In a recent study, Simonovic and Fahmy



Implementation Issues and Practical Solutions 210

System Representation

e

Complexity Acceptability
R4

i t
\l

Computational time

Y

Practical use
Solution -~

Figure 5.14: Factors affecting the acceptability and use of models

(1999) emphasize the advantage of developing simulation models based on the principles of
system dynamics and Object-Oriented programming. They also suggest that these models
are applicable in situations where it is difficult to run optimization models, especially for
real-time operations. The acceptability of the models by the operators and influencing
factors are shown in the Figure 5.14. The arrows show how different aspects are linked
and depéndent. The acceptability as it can be seen is dependent more on the tool and

computational time than on the nature of solution.

In summary, the following observations can be made : (a) emerging optimization method-
ologies and techniques such as optimal control methods, simulated annealing and genetic
algorithms offer solutions to operation problems that otherwise are not possible using tra-
ditional techniques; (b) even though reservoir operators prefer models that are easy to

use and implement, exhaustive representation of the physical system within the models
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is increasingly accepted; (c) simulation models used as stand alone or embedded within
optimization techniques are essential as they can incorporate any system detail, judgment
and experience of operators; (d) operators are generally interested in rules that are easy
to implement rather than solutions and their quality (near - or global optimum); and (e)
tradeoff between exhaustive modeling of reservoir operation and practical solutions exist

and it directly influences the selection of optimization tools.

5.8 Summary

Issues such as computational solution time, tractability and the utility of the approach
for application are to be considered in arriving at or selecting the models for real-time
operation of multiple reservoir systems. The reservoir operators are generally interested
in models that are relatively easy to modify, adopt and run within the specified time
to implement the decisions. Evaluation and modification of already existing standard
operating policies using a simulation model is required in cases where the time is too small
to run an optimization model. Computer intractability is a direct consequence of exhaustive
representation of the physical systems in the mathematical programming formulations.
BExhaustive system representation is possible in simulation models whereas it is limited in

mathematical programming models in some situations.

Distinction between near and global optimum solutions is not an important issue for the
reservoir operation managers as long as the pre-specified targets are met and the perfor-
mance of the system using the operating policies is better than the available standard

operating polices if implemented. Finally, involvement of reservoir operators in the model
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development process, appropriate selection of optimization tools, generation of practical
operating rules and recognizing the tradeoffs can help reduce the gap between theory and

practice in the field of reservoir operation.

' 5.8.1 Postscript

Closing the gap between theory and practice in the field of reservoir operation is perhaps
more difficult compared to solving the existing complex problems plagued by dimensionality
and optimality issues. Many of the models developed in theory are not finding their way

into practice for a variety of reasons. One reason indicated by Yeh (1985) is appropriate

here.

“Most of the reservoir operators have not been directly involved in the
development of the computer models and are not entirely comfortable in
using the model, particularly under the situation where modifications have
to be made in the model to respond to changes encountered in the day to

day operation.”

The Object-Oriented simulation model and the Decision Support System described in this
chapter indicate an attempt made towards bridging the existing gap, at least in the case
of the specific hydropower reservoir system handled in this research. The simulation en-
vironment used in the present research allows rapid modifications in the model structure
at a rate required by reservoir operators in case of real-time implementation of operating

rules. The simulation model is easy to modify, transparent and ease to use. Considering
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these features, reservoir operators can be easily involved in the model development.

Use of emerging non-traditional optimization approaches (Simonovic, 2000) and develop-
ment of decision support systems can help narrow the gap. Simulation models will play
a major role in future in the planning and management of water resource systems as a

backbone for non-traditional optimization approaches (e.g. Simulated Annealing, Genetic

Algorithms and optimal control concepts).

The next chapter provides the conclusions based on the research work conducted on the

three major issues that are relevant to real-time operation of reservoir systems.



Chapter 6

Conclusions

Referee’s report: This paper contains much that is new and much that is true.
Unfortunately, that which is true is not new and that which is new is not true.
- Anonymous

In H. Eves Return to Mathematical Circles, Boston: Prindle, Weber, and Schmidt, 1988.
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6.1 Thesis Summary

The dissertation covers a wide spectrum of topics in the area of real-time operation of
reservoir systems. However, three issues (information uncertainty, system representation
and computational intractability) that are relevant to real-time operation of single and
multiple reservoir systems received more emphasis in this thesis. The issues fall within the
stages of planning and operation of reservoir systems. The first issue is addressed in the
context of a single reservoir operation, primarily meant for flood control whereas for the

last two the emphasis is on development of real-time operation models for predominantly

hydropower generating reservoirs.

Modeling reservoir operations with economic objectives is as difficult as understanding
available information that is vague. The challenge is to deal with information uncertainty
in a mathematical programming framework. The present research work uses fuzzy set
theory to address some forms of uncertainty. Fuzzy mathematical programming has been
effectively implemented in this research work to handle vagueness. The idea of compromise
operating rules is appropriate for real-time reservoir operation where the preferences of

decision maker are given due consideration. The models developed in Chapter 2 address

these issues.

The extent of system representation in mathematical programming models reflects on the
physics of the problem that is actually captured. The hydropower optimization problem
solved using MINLP formulation in Chapter 3 clearly demonstrates the difficulties asso-
ciated with system representation, optimization approaches and solutions. An approach

using spatial decomposition is also presented. Exhaustive system representation is possible
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using this approach. However, computational time and resources would limit the use of

such an approach.

Solution of mathematical programming models is the stage where the issue of computa-
tional intractability surfaces. The issue can be handled in variety of ways ranging from
problem abstraction to constraint satisfaction. Non - traditional optimization approaches
(Simulated Annealing, Genetic Algorithms, etc.) are one way out to resolve this issue.
One such approach that uses the idea of combining simulation with a stochastic search
method (to find solutions to computationally intractable problems) is presented in this
thesis. Simulation of the system behavior that is realistic is far more essential than obtain-
ing optimal solutions for unrealistic formulations. The models that provide near-optimal
solutions based on exhaustive representation are considered superior to models that use

simplified representation. These ideas discussed in Chapter 4 are tested in this thesis and

are shown to be feasible and applicable.

Practical on-line use of models is a meaningful end for modeling and optimization. Better
acceptance of the models developed in theory is only possible if appropriate support systems
are developed. This dissertation advocates the use of modeling environments (e.g. object-
oriented simulation) that are easy to use, transparent and valuable in scemario generation.
Use of Decision Support Systems (DSS) cannot be underestimated in the process of actual

implementation of rules. The models and DSS framework discussed in Chapter 5 embrace

these ideas.
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6.2 Contributions

Approaches for addressing the issues of information uncertainty, system representation and
computational intractability are developed in this thesis. In most cases, these approaches
are tested using case study applications. However, the practical significance of the models
developed in the present research can only be known when they are put to rigorous tests
and actual use in real-time. Meanwhile, some of the approaches developed in the present

research can at least now qualify as “beneficial additions” to the field of real-time reservoir

system operation.

6.2.1 Approaches for Handling Information Uncertainty

Uncertainty issues dominant in reservoir operation models that make use of economic loss
functions are dealt in an exhaustive manner in this dissertation. Fuzzy mathematical
programming in symmetric and non-symmetric environments is used to address the issues
of imprecision and uncertainty in the definition of loss functions. The models provide a

new methodology to capture the decision maker’s preferences and aid in the development

of compromise operating polices.
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6.2.2 Innovative Method to Operate Coupled Hydropower Reser-

voirs

Optimization of hydraulically coupled hydropower systems is handled using a MINLP for-
mulation. The concept of using binary variables for selection of curves to address the
hydraulic coupling is considered to be a novel approach. The approach eliminates the need
for discretization of state variables which is required in DP and DDDP formulations. Unit
commitment problem is addressed within the same framework. Transport delays are con-
sidered using a simplified approach to emphasize the need for a detailed modeling of the
flow transport processes. A spatial decomposition approach different from earlier work is
presented. The exhaustive system representation is a merit, however the computational

burden in solving the problem needs to be evaluated.

6.2.3 Last Resort Algorithm for Computationally Intractable Prob-

lems

A Simulated Annealing technique is used to develop models for real-time operation of mul-
tiple reservoir systems. The approach is beneficial when solutions are required considering
the constraints of computational time and resources. Few conceptual and algorithmic im-
provements are proposed and implemented borrowing ideas from the field of evolutionary
algorithms. General guidelines are provided to implement this approach for operation of
multiple reservoir systems. The proposed approach has been shown to be viable for a

benchmark problem as well as for a real-time reservoir operation problem with a large
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number of decision variables.

6.2.4 Object-Oriented System Dynamics Simulation Model for

Real-Time Operation

Dynamics of the real-time operation process is simulated using an object- oriented simula-
tion environment. Principles of system dynamics are used to develop the models of varying
complexity. The main feature of hydraulic coupling dominant in the hydropower optimiza-
tion problem is incorporated into the model. The study demonstrates the advantage of
building complex models using basic building blocks (objects) with pre-defined properties.
Few simulation environment specific objects and the performance indices used to quantify
the system performance mark the study as different one from the earlier works in the lit-

erature. The transparency and ease of use of these models in real-time are beyond any

doubt.

6.2.5 Decision Support Framework

A decision support framework is proposed and developed in the present study to combine
the optimization and simulation models in an interactive environment. The system is
not without some merits and these include: (i) interactive environment for analyzing the
operating rules; (ii) scenario generation with the help of simulation models; (iii) post-

optimal analysis of results, and (iv) post-mortem analysis and advice on infeasible solutions.
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Few conceptual enhancements are possible in future. However, the present status of the
system qualifies for a title of “practical decision support system” that can aid reservoir

operators in implementing the rules provided by the models. A framework of this kind

would have enormous practical utility.

6.3 Opportunities for Future Research

Improvements in methodologies and developed models are possible at various evels. Some

possible research directions for future work are outlined here.

6.3.1 Information Uncertainty

Issues relevant to imprecise penalty zones and uncertain coefficients are addressed inde-
pendently within the optimization models in this research. Conceptually it is possible to
address these issues together in one framework. Multiple reservoir operators and systems
can also be dealt under fuzzy decision making environment. Future work can explore these
ideas. Replacing loss functions with membership functions from fuzzy set theory is dif-
ficult but not impossible. Some ideas are already suggested in Chapter 2 to handle this
issue. The issue of compromise operating polices can be addressed with the help of long-
and short-term operation models. This approach will have wide range of applications and

would be appropriate to develop sustainable operating polices.
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6.3.2 Hybrid Otpimization Models

Combining simulated annealing with classical optimization approaches will yield a new
breed of optimization models. The traditional optimization approaches can be'used as
screening models to obtain the feasible variable ranges and insights into the structure of
the model. Using this information, the annealing algorithm can be tailored to obtain bet-
ter computational efficiency and near-optimal solutions. Examples of such combinations
include LP-SA (Linear Programming - Simulated Annealing) and DP - SA. The DP ap-
plication provides the optimal discretized intervals for the variables, where the solution

obtained from LP can used to devise the ranges for decision variables.

6.3.3 Parallel Simulated Annealing

A number of conceptual enhancements are possible in Simulated Annealing algorithms.
These i_nclude ways to reduce: (i) computation time and resources required for solution;
(ii) number of infeasible solutions and (iii) time required to obtain the performance measure.
The repair and reject strategies already employed in the present research can be improved.
Development of a general method to handle any configuration or network of reservoirs is

possible and should be explored.

Simulated annealing in its original form can only be applied using a serialized computer
code. Parallel implementation of the annealing algorithm on a number of computers can

be explored in future research. This might extend the capability and application of the

algorithm to a large network of reservoirs.
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6.3.4 Decision Support and Modeling Systems (DSMS)

The Decision Support System (DSS) framework presented in this thesis can be improved
by adding the capability of automatic model generation to the existing system. The math-
ematical programming formulations can be developed interactively and translated into
algebraic mbdeling language for solution by an appropriate solver. The original DSS can
now be transformed into a DSMS. DSMS can provide many advantages compared to DSS
in terms of eliminating the need for development of a number of replicates of the model
for variety of situations and flexibility in the model development process. Inclusion of
knowledge and experience of the reservoir operators is next step in enhancing the use of

the system for real- time operations.
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Annealing

Algebraic modeling system

Boltzmann Distribution
Crisp value
Combinatorial problem

Combinatorial explosion

Compromise polices

DSS

DSSOR

Extremum

Fuzzy Mathematical
Programming
Function optimization

Generation mechanism

Cooling of metal after having been heated [Metallurgy].
A modeling framework in which the mathematical
formulation is represented in algebraic form.

A probability distribution function.

A value that is defined exactly.

A problem with countably finite number of solutions.
Problem associated with solution of

combinatorial problem with too many solutions.
Polices derived from traditional and

fuzzy optimization models.

Decision Support System.

Decision Support System for Operation of Reservoirs.
A minimum or maximum.

Mathematical programming formulation where
objective function or constraints are fuzzy.

Process of finding the extremum of a function.

A process used to generate feasible states (solutions).
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Genetic Algorithm (GA) An algorithm based on the evolution process.

Global optimum

Global optimization

GUI

Local optimum

Loss curves
MINLP
Membership function

Natural algorithms

NP-complete

OOE

OOSE

Extremum of a function better than any

of the optimal solutions (see also Local optimum).
Mathematical programming without convexity assumptions.
Graphical User Interface.

Extremum in a subspace of the search space

that is not better than a global optimum.

Functions representing penalty in monetary units

Mixed Integer Non-Linear Programming.

A graded function generally that ranges between [0,1].
Algorithms which are based on processes

occurring in nature.

A combinatorial problem for which the solution time varies
in a polynomial way with respect to increase in variables.

Object-Oriented Environment.

Object-Oriented Simulation Environment.



Optimal control theory

Reject strategy

Repair strategy

RMINLP

Simulated Annealing (SA)

System Dynamics

Superstructure

VB

241

An approach where the optimization model is combined

with a simulation model.

A process of rejecting infeasible solutions

(evolutionary algorithms).

A process used to transform a infeasible solution to feasible one.
Relaxed - MINLP, A programming problem where the variables
are relaxed from binary to real values.

An algorithm that uses an analogy between annealing.

and function optimization.

A concept based on feedback processes to describe

behavior of dynamic systems.

Formulation structure for a MINLP problem.

Visual Basic.



Appendix 1
Conversion Units and Constants

Conversion to Sl units

To convert To
ft m
cu ft/sec X 103 m3/s

cu ft/sec X day X 108 m3

Values of constants

Yo = 0.203 102

71 = 0.085

Multiply by

0.305

28.37

2451394.8

Cost coefficients (spill) ($/(cu ft/sec X 103))

MO, =0.714
MO, = 1875
MO; =0.789

MOy =1.154
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Appendix 2

Matlab Scripts “m” files for generation of graphs

General script for any data file

load data.dat

in=input(’ GIVE # of columns’)
inl=input(’GIVE the curve ?)
a(2)="r’

a(3)="b’

a(4)="m’

a(5)="r’

a(6)="y’

bt(2)="0’

bt(3)="x’

bt(4)="+"

bt(5)="x’

bt(6)="0"

for i=inl:inl

plot(data(:,1), data(:,i),a(i), data(:,1),data(:,i),bt(i))

end
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Script for ”bar chart” to graph Power Generation values

load power.dat

echo off

a(2)="r’

a(3)="b'

a(4)="m’

a(5)=¢’

subplot(4,1,1)
bar(power(:,2),0.5,a(2))
axis([0,8,0,4.5))
title(’Seven Sisters GS’)
subplot(4,1,2)
bar(power(:,3),0.5,a(3))
axis([0,8,0,4.5])
title("McArthur GS’)
ylabel(’ POWER GENERATION (GWhs)’)
subplot(4,1,3)
bar(power(:,4),0.5,2(4))
axis([0,8,0,4.5])

title('Great Falls GS’)
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subplot(4,1,4)
bar(power(:,5),0.5,a(5))
axis([0,8,0,4.5])

xlabel(’Day?)





