WATER MINIMIZATION ASSESSMENT - HEALTH SCIENCES CENTRE, WINNIPEG, MANITOBA

58

By

Bruce Baird

A Practicum Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements for the Degree of

MASTER OF NATURAL RESOURCES MANAGEMENT

Natural Resources Institute The University of Manitoba Winnipeg, Manitoba R3T 2N2

June 23, 1996

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Votre référence

Our file Notre référence

granted an The author has irrevocable non-exclusive licence allowing the National Library of reproduce, loan, Canada to sell copies of distribute or his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence et non exclusive irrévocable Bibliothèque permettant à la Canada de nationale du reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette disposition des à la thèse personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

į.

ISBN 0-612-12969-1

Price KAIRI

Dissertation Abstracts International and Masters Abstracts International are arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation or thesis. Enter the corresponding four-digit code in the spaces provided, Λ

Environmen

JCIENCES SUBJECT TERM

Subject Categories

Name

THE HUMANITIES AND SOCIAL SCIENCES

0

COMMUNICATIONS AND THE ARTS

Architecture	
Art History	
Cinema	
Dance	
Fine Arts	
Information Science	
Journalism	
Library Science	
Mass Communications	
Music	
Speech Communication	
Theater	

EDUCATION

in a different	A C1 C
General	.0515
Administration	.0514
Adult and Continuing	.0516
Agricultural	0517
	0273
Dita and an al Multiautored	0282
plangua ana momenuar	- AZ00
Business	.0000
Community College	.02/3
Curriculum and Instruction	.0/2/
Early Childhood	.0518
Elementary	.0524
Finance	.0277
Guidance and Courseling	0519
Hoalth	0680
	0745
	0620
History of	.0520
Home Economics	.02/8
Industrial	.0521
Language and Literature	.0279
Mathematics	.0280
Music	.0522
Philosophy of	0998
Distant	0523

Psychology 0525 Reading 0535 Religious 0527 Sciences 0714 Secondary 0533 Social Sciences 0534 Sociology of 0340 Special 0529 Teacher Training 0530 Technology 0710 Tests and Measurements 0288 Vocational 0747

LANGUAGE, LITERATURE AND LINGUISTICS

Language	
General	0679
	0220
Anders	
Linguistics	0290
Modern	0291
Literature	
General	0.401
Control	
Comparative	0295
Medieval	0297
Modern	0298
ALing	
Airicon	
American	0591
Asian	0305
Canadian (English)	0352
Canadian (Emach)	0355
Engแรก	0373
Germanic	0311
Latin American	0312
Middle Fortern	0315
Komance	
Slavic and East European	0314

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES

Agriculture	
General	0473
Agronomy	0285
Animal Culture and	
Nutrition	0475
Animal Pathology	0476
Food Science and	
Technology	0359
Forestry and Wildlife	0478
Plant Culture	0479
Plant Pathology	0480
Plant Physiology	0817
Range Management	0777
Wood Technology	0746
Biology	
General	0306
Anglomy	0287
Biostotistics	.0308
Botany	0309
للم	0379
Ecology	0329
Entomology	0353
Genetics	0369
Limnology	0793
Microbiology	0410
Molecular	0307
Neuroscience	0317
Oceanography	0416
Physiology	0433
Radiation	0821
Veteringry Science	.0778
Zooboty	0472
Riophaica	
General	0786
Medical	0760
EARTH SCIENCES	
Biogeochemistry	0425
Geochemistry	0996

Geology	0372
Geophysics	0373
Hydrology	.0388
Mineralogy	0411
Paleobotany	0345
Paleoecology	0426
Paleontology	.0418
Paleozoology	.0985
Palynology	0427
Phýsical Geography	0368
Physical Oceanography	.0415
HEALTH AND ENVIRONMENTA	L
SCIENCES	
Environmental Sciences	0768
Hardth Sciences	
General	0566
Audioboty	0300
Chemotherrow	0992
Dentistry	0567
Education	0350
Hospital Management	0769
Human Development	0758
Immunology	0982
Medicine and Surgery	0564
Mental Health	.0347
Nursing	.0569
Nutrition	.0570
Obstatrics and Gynacology	.0380
Occupational Health and	
Therapy	.0354
Ophthamology	.0381
Pathology	0571
Pharmacology	0419
Pharmacy	0572
Physical Therapy	0382
Public Health	0573
Radiology	0574
Docration	0575

PHILOSOPHY, RELIGION AND THEOLOGY Philosophy .. .0422 Clergy History of Philosophy of 0319 0320 0322 Theology0469 SOCIAL SCIENCES American Studies Anthropology Archaeology Cultural 0323 0324 0326 Physical Business Administration General0327 0310 Accounting Banking Management Marketing Canadian Studies .0272 .0454 0338 0385 Economics 0501 General 0503 Agricultural0503 Commerce-Business0505 Finance 0508 0509 History Labor 0510 Theory 0511 0358 0366 Gerontology 0351 History General0578

Speech Pathology	0460
Toxicology	0383
ome Economics	0386

PHYSICAL SCIENCES

Pure Sciences

н

homistry	
General	0485
Agricultural	0749
Anabrical	0486
Biochemistry	0487
loomanic	0.488
Nuclear	0738
Oroapic	0.00
Phormaceutical	0491
Dhaical	0 4 0 A
Pakanar	0405
Polymer	0754
	0/05
	.0405
nysics	040E
	.0005
	.0900
Astronomy and	A/A/
Astrophysics	.0000
Almospheric Science	.0000
	.0/48
Electronics and Electricity	.060/
Elementary Particles and	
High Energy	.0/98
Fluid and Plasma	.0759
Molecular	.0609
Nuclear	.0610
Optics	.0752
Rodiation	.0756
Solid State	.0611
italistics	.0463
Instiad Sciencer	
Applied Sciences	0244
upplied mechanics	.0340
enneuter Science	.0784

6	7	6	8	J	J	N	
SL	IRJECT		DE				

Ancient	.0579
Medieval	0581
Modern	0582
Block	0328
African	0331
Asia, Australia and Oceania	0332
Canadian	0334
European	0335
Latin American	0336
Middle Eastern	0333
United States	0337
History of Science	0585
low	0398
Political Science	
General	0615
International Law and	
Relations	0616
Public Administration	0617
Recreation	0814
Social Work	0452
Sociology	
General	0626
Criminology and Penology	0627
Demography	0938
Ethnic and Racial Studies	0631
Individual and Family	
Studies	0628
Industrial and Labor	
Relations	0629
Public and Social Welfare	0630
Social Structure and	
Development	0700
Theory and Methods	0344
Transportation	0709
Urban and Regional Planning	0999
Women's Studies	0453

Engineering General 0538 Aerospace Agricultural 0539 0540 Automotive Biomedical 0541 0542 Chemical CMI Electronics and Electrical Heat and Thermodynamics Hydraulic Industrial 0543 0544 0348 0545 0546 0547 Marine Materials Science 0794 Mechanical ... Metallurgy 0548 0743 0551 Mining..... Nuclear Packaging .. Petroleum ... 0552 0549 0765 Sanitary and Municipal. System Science 0554 0790 Geolechnology Operations Research Plastics Technology 0428 0796 Textile Technology 0994

PSYCHOLOGY

General	
Behavioral	
Clinical	
Developmenta	
Experimental	
Industrial	
Personality	
Physiological	
Psychobiology	
Psychometrics	
Social	

WATER MINIMIZATION ASSESSMENT - HEALTH SCIENCES CENTRE, WINNIPEG, MANITOBA

By

Mr. Bruce Baird

A practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfilment of the requirements of the degree of Master of Natural Resources Management.

©1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this practicum, to the NATIONAL LIBRARY OF CANADA to microfilm this practicum and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this practicum.

The author reserves other publication rights, and neither the practicum nor extensive extracts from it may be printed or otherwise reproduced without the author's permission.

Executive Summary

The Health Sciences Centre (HSC) is the second largest water user in the City of Winnipeg consuming more than 260,000 hundred cubic feet (CCF) of water per year (742 million liters/yr). Over the past ten years consumption has remained relatively constant (slight decreasing trend since 1990), yet the cost of consumption has nearly doubled. This trend should continue as the City of Winnipeg's water and sewer rates are projected to increase by approximately 10-12% per year. The purpose of this research therefore, was to conduct a Water Minimization Assessment to identify and evaluate a variety of water conservation measures as a first step toward reducing water-related expenditures. Specific objectives included: i) identifying and documenting water conservation options available; and, iii) prioritizing the implementation of feasible options.

To evaluate potential options, consumption estimates were required. A literature review and personal communications identified 11 major water use categories. Per category consumption estimates (see exhibit) were derived using information pertaining to flow duration and flow rate, by methods such as: metering, published values, non-structured interviews, accelerated current logging, timed volume measurements, and technical specifications. Once consumption estimates were derived, a review of trade journals and personal communications identified a number of water conservation options available to HSC. The economic feasibility of each option was evaluated based on capital and operating costs, annual cost savings, and payback periods. Using a 5 year payback period cut-off, replacing dishwashers based on energy and water savings alone was not feasible. The remaining options; year round supply of chilled water as a heat sink for water-cooled condensers, 90% recirculating retrofit kits for two medical vacuum pumps, and converting three water-cooled condensers to air-cooled; were feasible and subjected to a negative bias sensitivity analysis. Factors that could affect an options feasibility or implementation prioritization, such as cost increases (+25% and +50%), consumption overestimation (-10%, -25%, and -50%), and water rate increases

ii

lower than expected (0%/yr and 5.3%/yr) were included to identify high and low sensitivity estimates for each option's payback period and five and twenty year net present values (NPV). Each option was then prioritized according to its five year NPV. As a result of the analysis, HSC should implement recommendations one to three in the order in which they appear.

1. HSC should proceed with the installation of the winter chilled water supply as described by Scouten Mitchell Sigurdson (SMS) (1996) so as to provide year round chilled water.

With year round chilled water available, almost all of the water-cooled condensing units can be converted to use the existing chilled water loop. This project will cost approximately \$800,000 with a payback period between 3.4 to 4.6 years. It is the most significant water minimization option, as it represents 25.5% (66,711 CCF) of overall consumption.

iii

 HSC should proceed with the technical assessment required to operate the medical vacuum pumps in CS-008 and GG-048 at 90% recirculation.

Retrofitting these units will reduce overall consumption by 5819 CCF/yr or 2.2%. These retrofits have payback periods between 1.6 to 3.5 years for CS-008 and 1.2 to 2.6 years for GG-048.

 HSC should convert three water-cooled condenser units not feasible in the SMS (1996) proposal (BA-001, GF-632, and GC-420) to air-cooled units.

Converting these units will reduce overall consumption by 4938 CCF/yr or 1.9%. The payback periods associated with these conversions are: 3.4 to 4.6 (BA-001), 1.8 to 3.5 (GF-632), and 3.3 to 6.7 (GC-420).

Implementing these water conservation options (recommendations 1-3) will reduce overall consumption by 82,204 CCF/yr or 31.4%. Additional savings are, or soon will be realized, as a result of on-going projects (replacing packing seals with mechanical seals in HSCs chilled water pumps and Dietetics Department restructuring eliminating the Oasis Cafeteria's dishwasher) and recently completed projects (sterilizer retrofits/replacements and a recirculating loop for the Central Energy Plant's air compressors). These should reduce overall consumption by 17,049 CCF/yr or 6.5%. Overall consumption can be reduced by 37.9% or 99,250 CCF/yr yielding annual cost savings of approximately \$370,000.

Potential exists for additional savings as no water minimization recommendations were made with respect to HSCs largest water use, Domestic Consumption. It is recommended that HSC conduct a separate study pertaining to Domestic water minimization for hospitals that includes input from a variety of stakeholders to ensure implementation.

iv

Acknowledgments

I would like to thank Mr. David Koslowsky for believing in the idea and securing funding for the project, as well as his on-going advice and input. Thanks also goes to Dr. John Sinclair for his guidance and advice as my faculty adviser over the past year. I am grateful to my Practicum Committee for their invaluable input and constructive criticism. Thank you, Dr. John Sinclair (Natural Resources Institute), Mr. David Koslowsky (Health Sciences Centre), Dr. David Morgan (Tetr*ES* Consultants Inc.), and Dr. Daryl McCartney (University of Manitoba, Engineering).

I would also like to thank the staff at HSC for being extremely helpful by answering all my questions. In particular, Sally Plante and Ed Lehmann and the gents in the Central Energy Plant; Gord Berg and the guys in the Plumbing Shop; Larry Drebniski for downloading the ACR data, Manny Bettencourt; and Jane Maslowski for their time, advice, and information regarding HSC water use.

v

Loads of thanks to Jude at the NRI for keeping things organized.

TABLE OF CONTENTS

Executive Summary	. ii
Acknowledgments	. V
List Of Tables	/iii
List Of Figures	/111
List Of Appendices	/iii
	1
Chapter 1 Introduction	1
1.1 Background	I 1
1.1.1 Water & Sewer Rates in Winnipeg	
1.1.2 Water Use at the Health Sciences Centre	2
1.2 Issue Statement	2
1.3 Objectives	
1.4 Methods	6
1.5 Limitations	7
1.6 Assumptions	7
1.7 Organizational Preview	Q
Chapter 2 Water Management and Conservation Practices	
2.1 Introduction	8
2.2 Municipal Water Management	ð
2.3 Technical Water Conservation Options Available To HSC	9
2.3.1 Toilet Replacements	9
2.3.2 Flush Valves	ອ ດ
2.3.3 Showerheads	10
2.3.4 Faucets	10
2.3.5 Chilled Water Loops And Cooling Towers	10
2.3.5.1 Evaporation	11
2.3.5.2 Bleed-Off	11
2.3.5.4 Leakage Within The Distribution System	.11
2.3.6 Medical Air & Vacuum Pumps	.12
2.3.7 X-Ray Processors	. 12
2.3.8 Sterilizers And Autoclaves	. 13
2.4 Conducting A Water Minimization Assessment	.13
2.4.1 Planning And Organization	. 14
2.4.2 Assessment Phase	. 14
2 / 3 Epsibility Analysis	. 16
2.4.0 r casibility / that you	. 16
2.0 Cummery	.18
Chapter 3 Major Water Use Consumption Estimation	18
3.1 Introduction	. 10
	vi

ł

3.2 Use Category Methodology And Water Consumption Estimates	18
3.2.1 Sterilizers	18
3.2.2 Dialysis	20
3.2.3 Kitchen And Cafeteria	20
3.2.4 Water Softening (Steam Production)	21
3.2.5 Air Compressors	22
3.2.6 Cooling Tower And Chilled Water Makeup	22
3.2.7 X-Ray Processing	22
3.2.8 Medical Vacuum & Medical Air Pumps	25
3.2.9 Domestic	20
3.2.10 Hot Water	
3.2.11 Water-Cooled Condensers	30
3.3 Summary	22
Chapter 4 Feasibility Analysis	32
4.1 Introduction	32
4.2 Sterilizers	32
4.3 Dialysis	32
4.4 Kitchen And Cafeteria	32
4.5 Water Softening (Steam Production)	33
4.6 Air Compressors	33 22
4.7 Cooling Tower And Chilled Water Makeup	33
4.8 X-Ray Processing	34
4.9 Medical Vacuum & Medical Air Pumps	
4.10 Domestic	
4.11 Hot Water	36
4.12 Water-Cooled Condensels	37
4.14 Summany	39
	40
Chapter 5 Conclusion and Recommendations	
5.1 Conclusion	40
5.2 Recommendations	40
	A7
Bibliography	4/
	50
Personal Communications	
Written Communications	52

LIST OF TABLES

Table 1.1 Method Used to Determine Water Consumption for HSCs Major Water	
Uses	5
Table 3.1 Water Consumption Associated with Sterilizer Use.	19
Table 3.2 Water Consumption Associated with Dialysis.	20
Table 3.3 Water Consumption Associated with Kitchen and Cafeteria Use	21
Table 3.4 Water Consumption Associated with X-Ray Processing	23
Table 3.5 Water Consumption Associated with Medical Vacuum and Medical Air	
Pumps	24
Table 3.6 Estimated Consumption per Person per Day.	25
Table 3.7 Water Consumption Associated with Domestic Water Production	26
Table 3.8 Hot Water Consumption per Square Foot	27
Table 3.9 Water Consumption Associated with Hot Water Production	28
Table 3.10 Health Sciences Centre Major Water Use Consumption Estimates	31
Table 4.1 Economic Evaluation of Water Conservation Options	38
Table 4.2 Sensitivity Analysis and Prioritization of Water Conservation Options	38
Table 5.1 Summary of Water Conservation Options Available to HSC	42
LIST OF FIGURES	
Figure 1.1 HSC Water Consumption and Cost.	2
Figure 1.2 Water Minimization Assessment Procedure	4
Figure 5.1 HSCs Major Water Use Consumption Estimates	41
LIST OF APPENDICES	
Appendix A List of Abbreviations	53
Appendix B HSC Water Meter Information	57
Appendix C Theoretical vs. Actual Flow Rates for HSC Condensers	59
Appendix D HSC Condenser Loads	61

Appendix E Water-Cooled Condensers Summer and Winter Consumption63Appendix F Water Balance Accuracy Assessment68Appendix G Financial Services Condenser's Consumption Methodology71

viii

Chapter 1 Introduction

1.1 Background

1.1.1 Water & Sewer Rates in Winnipeg

During the 1996 fiscal year, the cost of consuming water for large industrial or institutional users was \$3.74/ hundred cubic feet (water rate = \$1.18/CCF (hundred cubic feet) and the sewer rate = \$2.56/CCF). These rates have been, and will continue to, increase as a result of the provincial government's Sustainable Development strategy for the Capital Region, which includes Winnipeg. Policy 2.6f (Water Service) of the strategy states that Provincial and Municipal governments should "adopt water pricing systems and amend by-laws to encourage water conservation and to pay for infrastructure renewal" (Manitoba Round Table on Environment and Economy, 1995, p.29).

Winnipeg City Council has adopted this strategy by incorporating price rate increases in their water supply plan (Wardrop Engineering Inc., 1992). Although recently, City Council has proposed, but not approved, a 35% reduction in the sewer rate (Free Press, June 6, 1996) for large water users in hope of promoting economic development. The benefits from a lower sewer rate should be short-lived¹, as the sewer rate increases were designed to help offset the City's increased borrowing costs for a \$150 million upgrade to the water treatment facilities (Free Press, June 6, 1996). The water rate, on the other hand, has and should continue to increase by approximately 10% per year over the next few years (Chartier, 1995) in order to generate revenue for aqueduct rehabilitation and future expansion of Winnipeg's water supply (Wardrop Engineering Inc., 1992). As water is being allocated on a full cost basis, the result is a mid to long term trend toward higher water and sewer rates for all users.

¹ HSC experienced a price rate drop in the 1988/89 fiscal year, but the price rate increased thereafter (see Figure 1.1).

1.1.2 Water Use at the Health Sciences Centre

Large institutional water users, like the Health Sciences Centre (HSC), can use water conservation as a means of controlling and reducing water-related expenditures.

illustrates that water consumption at HSC has remained relatively constant over the past 10 years, but the cost associated with this consumption (water and

Figure 1.1

Figure 1.1 HSC Water Consumption and Cost.

sewer) has nearly doubled (not adjusted for inflation). Conservation which reduces consumption and costs takes many forms, from reducing wasteful practices; to repairing leaking fixtures and pipes; to retrofitting or replacing older and less efficient fixtures and appliances with efficient ones (Environment Canada, 1990); as well as, reusing existing water within a closed loop system.

1.2 Issue Statement

The Health Sciences Centre (HSC) is a major tertiary care teaching hospital comprised of 26 buildings on a 32 acre site (Koslowsky, 1995) and is the second largest water user in the City of Winnipeg (Parbery, 1994; Wardrop Engineering Inc., 1992). In the 1994/95 fiscal year (Apr. 1/94 to Mar. 31/95) HSC used 261,869 CCF of water at a cost of \$769,350. Unless water conservation techniques are employed, water related costs will double in just under eight years . Thus, a water minimization assessment is a

necessary first step in order to reduce future water related expenditures and conserve water resources.

1.3 Objectives

The objectives of this study were:

- 1. to identify and document water consumption associated with the major water uses at HSC;
- 2. identify and evaluate water minimization options available for the major water uses identified in objective 1; and
- 3. prioritize water conservation options available for HSC.
- 1.4 Methods

The Water Minimization Assessment Procedure² (EPA, 1990), identified in figure 1.2, establishes a systematic framework from which to evaluate potential conservation measures. However, this research report deals only with the first three phases, as obtaining funding required for installation was beyond the report's scope.

Within this framework, the methodology used to derive consumption estimates was similar to that used by Black and Veatch (1991a & 1991b). Estimating consumption required information pertaining to flow duration and flow rate. Flow duration and flow rate estimates were obtained by:

- i. accelerated current logging to determine average run times, where the drawing of amperes was used as a proxy for run time;
- ii. timed volume measurements to determine flow rates;
- iii. in-hospital documentation (technical specifications, data files, etc.) to determine flow rates, or consumption per use estimates;

² The US Environmental Protection Agency developed a Waste Minimization Assessment Procedure for waste water. However to avoid confusion, it will be referred to as a Water Minimization Assessment Procedure.

- iv. non-structured informal surveys to establish frequency of use and hours of operation estimates;
- v. published values to determine flow rates and consumption estimates; and
- vi. water meters to determine consumption over a specified period of time.

PLANNING & ORGANIZATION Get Management Commitment Set Overall Assessment Program Goals

ASSESSMENT PHASE

Collect Process & Facility Data Prioritize and Select Assessment Targets Generate Options

FEASIBILITY ANALYSIS PHASE Economic & Technical Evaluation Select Options for Implementation

IMPLEMENTATION Justify Projects and Obtain Funding Installation Evaluate Performance

Figure 1.2 Water Minimization Assessment Procedure

Source: EPA, 1990.

Table 1.1 illustrates the techniques used to derive consumption estimates for each of HSCs major water uses³.

Major Wa	ter Us	e Category			Method	Utilized	1	
		<u>v</u> ,	M	PV	NSI	AC	TV	ED
Sterilizer	Use				1			1
Dialysis			1					
Kitchen &	Cafete	eria Use						1
Water So	ftening	(Steam Production)						
Air Comp		1						
Cooling Tower Makeup								
X-Ray Pro	ocessir	Ig			1			
Medical V	acuum	& Medical Air				1		
Domestic		anala an		1	1		<u> </u>	
Hot Wate	r		See Section 3.2.10					
Water-Cooled Condensers			1			1		
Legend:								
U	1	Included	AC	Acce	lerated	Current		
	М	Water Meter	ΤV	Timed Volume				
	ΡV	Published Value	ED	Existing Data within HSC				

Table 1.1 Method Used to Determine Water Consumption for HSCs Major Water Uses.

NSI Non-Structured Interview

Once per category estimates were derived, they were compared to the hospital's average annual consumption (based on consumption from the previous two years)⁴, via a water balance, in order to ensure estimated consumption equals actual consumption. Although not precise, this methodology does give a good indication of annual water usage, from which to evaluate a variety of water conservation measures.

³ Black and Veatch (1991a &1991b) and Wilson (1994) identified major water uses for hospitals when they audited two hospitals in the Los Angeles area.

⁴ See Appendix B.

A review of trade publications and hospital journals, as well as personal communications identified water conservation techniques available for hospitals. From which, the feasibility of these options were evaluated based on capital and operating costs, annual cost savings, and payback periods.

1.5 Limitations

A number of limitations are present. First, the focus of the Water Minimization Assessment was to gather information concerning major water uses where significant cost savings may be realized. As a result, no information was gathered for the following:

- drinking fountains
- labs
- janitor and utility rooms
- operating rooms

Secondly, the water assessment primarily used time of use and flow rates to estimate consumption. It is realized that this is the least precise water auditing methodology; however due to the number of sensitive areas, pumps and fixtures, and plumbing complexities, it was deemed necessary.

Thirdly, ACR current logging measurements required the services of the Electrical Shop to install and remove the device. However, measurements were only taken when time permitted due to the lack of available resources resulting in a sample size of fifteen, not twenty-five.

Fourthly, samples associated with the water-cooled condensers were not truly random. Condensers that were difficult to access were excluded from the sampling list. The remaining condensers were randomly sampled. Finally, only those buildings which are billed (water) directly to the Health Sciences Centre Energy Management Department were included in the study (Table 1.1).

1.6 Assumptions

Some assumptions were used throughout the Research Report and are noted at the time of use.

1.7 Organizational Preview

Chapter one has outlined the study's objectives, methodology employed to meet those objectives, and the reasoning behind them. The following chapter will explore the existing literature regarding water conservation, conservation practices and techniques available to HSC, and what is involved in a water minimization assessment (Chapter 2); Chapter 3, the assessment phase, will detail the methodology used to obtain each consumption estimate; Chapter 4, the feasibility analysis phase, will examine the economic feasibility of the various minimization options; and finally, Chapter 5 summarizes the findings from Chapter's 3 and 4, from which recommendations are based.

Chapter 2 Water Management and Conservation Practices

2.1 Introduction

As a first step, the literature was used to identify current water management approaches available to municipalities; resulting in a noticeable trend toward demand management principles creating an incentive for all water users to conserve, especially large water users. The result is a number of water conservation options are available to HSC. However, to effectively evaluate such options requires a methodological approach for estimating water consumption.

2.2 Municipal Water Management

Municipal water is managed according to two principles, demand-side management or conservation and supply management or supply augmentation. These principles work in conjunction with each other, yet in many regions there has been a noticeable shift toward demand management as a result of slowing population growth (consumptive growth) and limited capital budgets. As for Winnipeg, conservation measures (i.e. price rate changes) are being used to delay infrastructure improvements into the future while generating capital reserves for future construction costs (at present) and to reduce the City's debt load associated with upgrading existing facilities.

Municipal governments are limited by provincial regulators as to which conservation measures council can enact (REIC Ltd. and Associates, 1991). REIC Ltd. and Associates (1991) explained that municipalities cannot legislate water conservation measures beyond lawn watering bans nor adopt stricter standards than those imposed by the province (e.g. plumbing or building codes). The latter which, limits a municipality from mandating water-conserving fixtures (REIC Ltd., 1991). Thus, incentive programs and rate changes are the only conservation measures that a municipality can enact that would directly impact institutional water users, such as the Health Sciences Centre. At present, Winnipeg does not have an incentive program for replacing inefficient fixtures, although Council has adopted a strategy to increase water and sewer rates over the

next few years. Such increases will significantly impact large volume users unless they begin to adopt a variety of water conservation measures.

2.3 Technical Water Conservation Options Available To HSC

As water and sewer rates increase, water conserving technologies can be used by institutional users to offset the increasing cost of using large volumes of water. These technologies take many forms, such as; retrofitting or replacing water-inefficient fixtures, or utilizing a closed loop cooling system.

2.3.1Toilet Replacements

Toilet replacements are relatively costly (Gates, 1994), but can result in significant reductions in water usage. Changing the conventional 20L toilet to a ultra-low volume (ULV) model (less than 6L per flush) can result in water use savings of approximately 70% (REIC Ltd., 1992). In the past, the main disadvantage with ULVs was only a limited number of CSA (Canadian Standards Association) approved models were available (Gates, 1994).

2.3.2 Flush Valves

Flush valves are used to control the flow rate in urinals and tankless toilets. Valve operated toilets use approximately 19-25L per flush, but can be retrofitted with a flow control valve to reduce water consumption to 15L per flush (Environment Canada, 1993). Urinals on the other hand use considerably less water than the standard toilet (7-9L per flush), with further savings achieved by installing a water-saving flush valve that only uses 3L per flush (Environment Canada, 1993).

2.3.3 Showerheads

Conventional showerheads in many commercial institutions use between 13-19L per minute (Brooks and Peters, 1988) or approximately 100L per use (Environment Canada, 1993). Properly engineered showerheads (reducing water consumption without sacrificing performance) have been developed reducing water consumption to between 6-10L per minute (REIC Ltd. and Associates, 1991).

2.3.4 Faucets

Conventional kitchen and bathroom faucets deliver between 11-13L per minute during normal use (Brooks and Peters, 1988), far more than is required for most cases (REIC Ltd. and Associates, 1991). Low-flow faucet aerators can reduce flow rates by approximately 50% (REIC Ltd. and Associates, 1991), while automatic shut-off features (e.g. infrared sensors) can achieve further economies in the order of 85% of the total flow (Brooks and Peters, 1988). The aerator chosen must match the intended use of the fixture (REIC Ltd. and Associates, 1991).

2.3.5 Chilled Water Loops And Cooling Towers

Air conditioning, refrigeration systems, as well as many industrial processes require chilled water to act as a heat sink (Marley, 1982). Chilled water loops and cooling towers work in conjunction with one another as water is continuously heated (e.g. heat sink for pump cooling) and then cooled (via the cooling tower). The main reasoning behind such systems is to reduce energy costs by using the temperature differential between the ambient air and water entering the tower. This differential results in heat being dissipated through evaporation from the tower water to the atmosphere.

In addition to energy savings, water and sewer related expenses are minimized as the water is utilized more than once. The number of times water circulates around a cooling loop (cycles) depends upon the treatment method used to maintain the specified quality. In fact, water is only lost from the system in one of four ways: evaporation, bleed-off (Black and Veatch, n.d.), and leakage. Makeup water is then required to account for such losses.

2.3.5.1 Evaporation

Cooling towers use evaporation to cool the water within the system. The evaporative rate is largely dependent on the amount of cooling achieved, approximately 1% of the rate of recirculating water for every 10°F temperature drop achieved by the tower or approximately 2.4 gpm per 100 tons of cooling (Black and Veatch, n.d.). Many large water and sewer authorities give credit for water that does not enter into the Municipal

sewage system, for cooling towers these savings can be quite considerable (Saunders, 1994).

2.3.5.2 Bleed-Off

Bleed-off is used to prevent damage caused by an increase in the concentration of dissolved solids as a result of evaporation. As only pure water evaporates from the cooling tower, dissolved solids become more concentrated (Black and Veatch, n.d.). Therefore, a portion of the remaining water (bleed-off) must be discharged and replaced with fresh water until the concentration ratio is within acceptable limits (Black and Veatch, n.d.). The frequency with which these bleed-offs occur depend on the quality of water used within the system and the method utilized (e.g. chemical treatment) to control and/or inhibit corrosion, scaling, and biofouling (Black and Veatch, n.d.). Since the rate of evaporative loss cannot be altered, water conservation for cooling towers focuses on reducing the frequency of bleeding.

2.3.5.4 Leakage Within The Distribution System

Leaks in the distribution system can result from leaking pipes, fittings, cooling coils, or pump seals. At HSC, all distributional piping is located inside the hospital complex (tunnels or buildings). As a result, losses associated with leaking pipes and fittings should be identified and repaired quickly. With water consumption monitored on a daily basis, the potential exists to identify cooling coil cracks inside air handling units.

At present, HSC has a combination of packing and mechanical seals in their chilled water pumps. Packing seals, unlike mechanical seals, are not water-tight and require periodic maintenance and/or replacement to minimize water consumption. Packing seals, due to their frictional nature, reduce a pump's horsepower while increasing heat production within the system.

2.3.6 Medical Air & Vacuum Pumps

Many medical air and vacuum pumps use a liquid ring (water) to seal the vacuum chamber as well as to cool the pump (Black and Veatch, 1991a). For vacuum pumps,

water is utilized in one of three ways: as a single-pass; partially recirculated; or, 90% recirculated service liquid. Partial recirculation, distributes approximately 50% of the water from the separator to the pump, whereas, 90% recirculation, distributes 90% of the service liquid through a shell and tube or air cooled heat exchanger (Miller, 1995a). As for medical air compressors, the CSA code stipulates that no recirculation is acceptable (Miller, 1995a).

Recently, CSA approval has been obtained for rotary vane vacuum and oil-less air systems that utilize no water. The new vacuum systems are air-cooled and utilize oil-lubricated rotary vanes on an eccentrically-mounted rotor to draw the necessary vacuum (Thomas Industries Inc., 1993). New medical air compressors use sealed bearings and self-lubricated pistons to deliver the 100% oil-free air required for medical operations (Thomas Industries Inc., 1993).

2.3.7 X-Ray Processors

X-ray film processors use a continuous stream of running water during the processing stage (Black and Veatch, 1991a). A three tank system is used: first, the film enters the developing tank, then the fixing tank, and finally the washing tank (Popoff, 1995a). For effective processing, a flow rate of 2 gpm or less is required (Wilson, 1994).

Modern processors use solenoid control valves to regulate the feed water, so that water is only used when a film is being processed (Wilson, 1994). The water is shut off after approximately 2 to 3 minutes have passed without a film being processed (Black and Veatch, 1991a). Retrofit valve kits are available for some older X-ray processors (Wilson, 1994).

2.3.8 Sterilizers And Autoclaves

There are two types of sterilizers, steam and ethylene oxide, of which both require water. The steam sterilizer uses steam to sterilize the load and water to recondense the steam for discharge and to draw a vacuum during the drying stage (Black and Veatch, 1991b; Wilson, 1994). The ethylene oxide sterilizer, on the other hand, uses

steam to humidify the load and vaporize the EtO gas and water to draw the necessary vacuum to remove the spent ethylene oxide (Wilson, 1994).

As a result of the Canadian government's commitment to ban CFCs (chloroflourocarbon's), 12/88 (12% ethylene oxide and 88% freon) CFCs in hospitals had to be discontinued by December 31,1995 resulting in the elimination of 12/88 EtO sterilizers. Replacements for the 12/88 sterilizers include: 100% ethylene oxide, 12/88 EO/HCFC using the ozone friendly HCFC, and 10/90 EO/CO₂.

2.4 Conducting A Water Minimization Assessment

Given the concern over increasing water rates, many municipalities, industries and institutions are using water audits, water conservation studies, or water minimization assessments as a cost cutting strategy. The United States Environmental Protection Agency (1990) developed the Waste Minimization Assessment Procedure to provide a systematic framework from which conservation or minimization studies should be based. It was designed for waste water studies, however to avoid confusion, it will be referred to as a Water Minimization Assessment throughout the research report. The Environmental Protection Agency, identified four phases to a Waste Minimization Assessment, they are:

- 1. Planning and Organization
- 2. Assessment
- 3. Feasibility Analysis
- 4. Implementation

2.4.1 Planning And Organization

The essential elements of this phase are getting management support and setting minimization goals (EPA, 1990). The importance of getting management support cannot be overstated as it directly relates to implementation of feasible options (EPA, 1990).

2.4.2 Assessment Phase

The Assessment Phase consists of a number of steps (EPA, 1990):

- Prioritize and select assessment targets
- Collect and process facility data
- Review data and inspect site
- Generate options
- Select and screen options for feasibility analysis

Conducting a water audit or adopting its methodology (water inventory) during the Assessment Phase is a necessary step toward achieving resource optimization since it takes a comprehensive look at the facility in order to understand resource flows, as well as focusing one's attention to areas where significant reductions or cost savings can be realized (UNEP, 1991).

2.4.2.1 Water Use Inventory

In order to develop a comprehensive inventory of the facilities water uses, a variety of information sources are required, including (UNEP, 1991; Environment Canada, 1993):

- the use of existing data (e.g. space inventories, plumbing plans, etc.)
- meeting with area personnel
- surveying area personnel about water uses within the area
- transferring questionnaire information to spreadsheets and base maps
- verifying information using plumbing plans, visual inspections and building personnel.

All extraction points should be described and located as to the category of water use; volume, rate, and frequency of use; and whether the water is lost or consumed (Environment Canada, 1993).

Once extraction points have been identified, estimates as to their associated flows must be considered. These estimates can be obtained by either published values or actual measurements. Published values are available for most conventional water uses; from which location specific information such as, the number of users per day or duration of use, can be incorporated (Environment Canada, 1993). Should published values be unavailable or not appropriate, actual measurements should be obtained. These measurements should be taken over the same general time period to ensure periodic and seasonal of flows do not affect the water balance equation, as well as, if outdoor use is suspected, measurements should be conducted during the summer months (Environment Canada, 1993). Environment Canada (1993) has classified field measurements into four groups, flow metering, bucket and stopwatch measurements, volume/frequency measurements, and indirect measurements.

Metering the main flow of water into the facility is an integral component of any water audit (Environment Canada, 1993). In addition to the main meter, sub-areas throughout the facility can also be monitored by installing a water meter on the water distribution system or water using equipment (Environment Canada, 1993), The choice of water meter depends on the data accuracy requirements. Permanent flow meters provide highly accurate data (daily, weekly, monthly, etc.), however they are expensive and must be permanently fixed into the plumbing run (Environment Canada, 1993). Less accurate data can be provided by using temporary flow meters (clamp-on or inserted).

Bucket and stopwatch measurements can be utilized to estimate flows provided the flow is constant and free flowing (Environment Canada, 1993). Flow is calculated by determining the time required to fill a bucket of a known volume. Should the flow not be continuous but fills a known volume, the frequency by which it is emptied or replaced can be used to estimate its flow (Environment Canada, 1993).

Measurements, such as logging the operation of the water pumps or displacement tests on water storage tanks, provide an indirect indication of flow (Environment Canada,

1993). However, Environment Canada (1993) indicates that this method is the least accurate of the four mentioned, but does provide the user an understanding of water use within the facility.

2.4.3 Feasibility Analysis

For each water use category or unit operation, an option must be both technically and economically feasible. A technical evaluation assesses whether a particular option will work within it's proposed application (EPA, 1990).

A cost/benefit analysis (CBA) should be undertaken to determine the capital costs, cost savings and payback period associated with implementing a particular option (Environment Canada, 1993). In addition to the CBA, the option should also be assessed in relation to (Environment Canada, 1993):

- social/political impacts
- environmental/technical impacts
- reliability
- short and long term effectiveness.

The chosen alternative will be consistent with the goals laid out by senior management thereby facilitating its implementation.

2.5 Summary

Winnipeg has adopted water and sewer price rate increases in order to delay future expansion while generating capital reserves in addition to accounting for current borrowing costs for upgrading facilities. These increases create an incentive for large water users, like HSC, to reduce consumption by adopting newer more efficient technologies. However, a proper framework is required in order to evaluate the feasibility of adopting said technologies. As a result, the United States Environmental Protection Agency developed the Waste Minimization Assessment Procedure to outline the steps involved from planning to the successful implementation of waste

minimization projects. Thus, the following chapter details the methodology used to obtain the consumption estimates within this framework, expressed as a percentage of total consumption, for HSCs major water use categories.

Chapter 3 Major Water Use Consumption Estimation

3.1 Introduction

A variety of techniques were used to estimate flow rates and flow duration for each HSCs major water use categories, such as:

- Non-Structured Interviews,
- Metering (permanent and clamp-on),
- Timed Volume Measurements,
- Published Values,
- Current (AC) and Activity Logging,
- Technical Specifications from Existing Equipment.

The per use category estimates were derived by using one or a combination of the above techniques. These estimates, as percentages of overall consumption⁵, were then summed and compared, via a water balance, against the hospital's annual average based on the previous two years consumption (262,041 CCF).

3.2 Use Category Methodology And Water Consumption Estimates

3.2.1 Sterilizers

Sterilizer consumption was estimated using employee knowledge and technical information. Employee knowledge was provided by the Central Processing Department since it is responsible for the majority of the sterilizing at HSC. Susan Hatfield (1995) estimated the number of cycles per week and the duration of each cycle for the steam sterilizers in WT-069 and GG-049, the EtO sterilizer in GG-047, and the washer in GG-639. Consumption estimates for the steam sterilizers were provided by MGT (1994) and Hatfield (1995) provided estimates for the EtO sterilizers and washer.

⁵Percentages were determined by dividing the estimated per use category consumption by the annual average based on the previous 2 years (262,041 CCF).

There are 22 smaller steam sterilizers located throughout the hospital (General O.R., 10 units; Children's O.R., 3 units; Women's O.R., 3 units; Thorlakson and Cancer buildings, 3 units each). The methodology used to estimate water consumption depended upon if sterilizer print outs (hard copies) were available. Where hard copies were available (General and Children's O.R.'s), print outs were collected for a two week period to determine the number and duration of sterilizing cycles. Due to technical difficulties, the Children's O.R.'s print outs were collected for only one week. For the remaining sterilizers, personal communications were used to estimate the frequency and duration of daily sterilizing cycles (Lorimer (1995) for the Women's O.R. and Maslowski (1995) for the Thorlakson building). No information was available for the Cancer building's sterilizers due to variable cycle frequency and duration. A generalized six US gallons per minute flow rate was used to estimate water consumption (MDT Technology for Life, n.d.) since it was not possible to differentiate cycle frequency and duration on a per sterilizer basis. Consumption estimates for all HSCs sterilizers is provided in table 3.1.

Location	Sterilizer	Cycles/Week	Gallons/Cycle	CCF/Yr
General (GG-049)	Steam	64	598	3194
General (GG-047)	EtO ⁶	6	13600 ⁷	6812
General (GG-639)	Washer	46	11250	801
Women's (WT-069)	Steam	28	598	1398
		Minutes/Wk	US GPM	
General OR (10 units)	Steam	4243	6	1770
Children's OR (3 Units)	Steam	481	6	201
Women's OR (3 Units)	Steam	700	6	292
Cancer Bldg (3 Units)	Steam	N/A	N/A	N/A
MS Bldg. (3 Inits)	Steam	1855	6	774
		Total CCF/Yea	15,242	
		Percent of To	5.8%	

Table 3.1	Water	Consumption	Associated	with	Sterilizer	Use.
-----------	-------	-------------	------------	------	------------	------

⁶ Two sterilizers operating on alternating cycles.

⁷ 17 hours per cycle*800 gallons per hour.

3.2.2 Dialysis

HSC has two Dialysis units, Central (CDU) and Self-Care (SCD), each using reverse osmosis to produce the high quality water required. However, reverse osmosis is a water intensive process. Currently, for every unit of acceptable water produced, 1.5 units are rejected.

Since water consumption associated with Dialysis is relatively stable, the water meter in the CDU was monitored for a period of two weeks in July to determine the average daily flow. SCD meter readings were taken on a monthly basis by the Central Energy Plant for billing purposes so the two-year annual average was used to estimate water consumption. The SCD meter, however, accounts for all water uses in the building; therefore, to reduce the effects of double counting, domestic consumption was estimated based on the square footage of the building and then subtracted from the averaged total (see Table 3.2).

S.

Self-Care Dialysis Unit		
2 year average (93/94 and 94/95 fiscal year	ars)	4655 CCF/yr.
Domestic Consumption (8876 sq.ft*.04 CC	F/sq. ft)	(355) CCF/yr.
	SCD Total	4000 001 / 91.
Central Dialysis Unit		
2 week average = 4 Imp. GPM CDU Total (4 gpm*60 min/hr*24 hr/day*36	5 days/yr./623 lmp.	3375 CCF/yr.
Total CC Percent of	F/yr. of Total Consumption	7675 2.9%

3.2.3 Kitchen And Cafeteria

HSC has two kitchens, Rehab and Main, producing approximately 7000 meals per day (Richardson, 1995). Black and Veatch (1991a; 1991b) estimated miscellaneous water use associated with meal production at 0.5 gallons per meal.

Dishwashing results in significant water use in HSCs kitchens and cafeterias. There are 5 dishwashers throughout the complex, three in cafeteria's (Oasis, Cafe on 2, and Tunnel) and one in each of the two kitchens. Kathleen Richardson (1995) provided the time of use estimates, while consumption estimates were taken from the Dishwasher's technical specifications.

Table 3.3 details HSCs water consumption associated with kitchen and cafeteria activities.

Water Use		Times per Day	Duration of Use	Imp. GPD	CCF/Year
Miscellaneous	7000 meals			3500	2051
Dishwashers	Main Kitchen	3	4.5	1734 ⁸	1016
	Cafe on 2	1	10.5	2963°	1/30
	Rehab	2	1.5	73310	430
	Oasis	1	5	1989 ¹¹	1165
	Tunnel	1	5	1989 ¹²	1165
	<u>and and and and and and and and and and </u>	Total Perce	CCF/yr. ent of Total C	onsumption	7563 2.9%

Table 3.3 Water Consumption Associated with Kitchen and Cafeteria Use.

3.2.4 Water Softening (Steam Production)

Water softening is required for steam production. HSC has three softeners in the Central Energy Plant and 1 small unit in GG-038. CEP monitors water softening on a daily basis using water meters. As a result, water consumption was estimated using a two-year annual average (4970 CCF/yr or 1.9% of total consumption). No information was collected for the small unit in GG-038.

⁸ Hobart FTM/FT-800 Series Dishwasher: 4.7 gpm plus 155 gallons to fill tank per use (Hobart, n.d.).

⁹ Flight-a-Round FA-EEE Series Dishwasher: 4.6 gpm 65 gallons to fill tank per use (Brodeur, 1995).

¹⁰ Hobart FTM/FT-800 Series Dishwasher: 4.7 gpm plus 155 gallons to fill tank per use (Hobart, n.d.).

¹¹ Hobart C-44 Dishwasher: 2.8 gpm per rack 203 racks/hr (King, 1995) using a 70% efficiency (Brodeur, 1995).

¹² Hobart SM-6 Dishwasher: No information available, therefore used information for Hobart C-44.

3.2.5 Air Compressors

HSC has four water-cooled air compressors that supply the majority of the hospital's compressed air requirements. The compressors are located in the Central Energy Plant and are monitored on a daily basis using water meters. Therefore, consumption was estimated using the two-year annual average (10,893 CCF/yr or 4.2% of total consumption).

3.2.6 Cooling Tower And Chilled Water Makeup

To operate HSCs chilled water loop from mid-April to mid-October, water is required to prime the system, as well as to account for losses associated with evaporation, bleed off, and leakage. The Central Energy Plant monitors water consumption on a daily basis using a number of meters. As a result, water consumption was estimated using the two-year annual average (9768 CCF/yr or 3.7% of total consumption).

3.2.7 X-Ray Processing

HSC has twenty X-Ray processors located throughout the complex. All but two of these processors (AACs M6AN & Rehab's M6AN) have stand-by switches. Since the stand-by switches shut the water off 2-3 minutes after a film has been processed, consumption estimates are complicated due to the fact that consumption depends not only on the number of films processed but also their frequency. As a result, Jacob Popoff (1995a) tried to account for these variables when estimating utilization in hours per day (see table 3.4).

Processors	Department	Hrs./day	GPM	Days/yr.	CCF/yr.
Konica	AAC	2	1	365	70
M7B Mammo	AAC	2	1.5	180	72
Kodak 460 RA	AAC	4	1.5	365	211
MEAN	AAC	24	2.5	365	2109
MeB	AAC	3	1.5	365	158
M6AN Angio	AAC	2	1.5	250	72
M8 #2 Angio	AAC	2	1.5	250	72
Mo #1 Multi loader	AAC	2	1.5	250	72
		- 1	1.5	250	36
No #3 Angio		1.5	2.5	261	94
Cine Processoi		1	1.5	261	38
M/B Operating Rm.	AAC	6	1.5	365	316
M7B Laser CT	AAC	0	2.5	250	482
M6AN	Renap	0	2.J 5	250	12
Dental (Phillips)	Dental	1	.5	250	36
M6B	Nuclear Med.	1	1.5	250	108
M7B	Ultrasound	3	1.5	250	70
Konica	Children's	2	1.5	365	70
M7B Laser	Children's	1	1.5	250	30
M6AW (Satellite)	Children's	1	1.5	250	30
Cine (Gaevert R10)	Children's	1 hr/week	2.5	365	13
		Total CC	CF/yr.		4113
Percent of Total Consumption					1.6%

Table 3.4 Water Consumption Associated with X-Ray Processing.

Source: Popoff (1995b)

3.2.8 Medical Vacuum & Medical Air Pumps

HSC has 15 medical vacuum (11 medical and 4 laboratory) and 4 medical air pump units¹³ that use a liquid ring of domestic water to seal the pump's chamber, as well as to dissipate waste heat.

An RCC Silent Partner data logger with a one second sampling rate was used to determine the load associated with 15 units. Measurements were taken over a period of three days on each pump from August to November. The order in which the

¹³ 18 of the units are Duplex (2 pumps) and 1 is a Triplex (three pumps) unit.

measurements were made were completely randomized. Of the four units that were not included; three have run-time meters, whereas the only other one runs about 5 seconds every hour in order to maintain its pressure. For these units (run-time metered pumps), daily readings were recorded over a two week period in July.

Flow rates associated with each unit were supplied by Gord Berg (1995). With the exception of two units, the remaining medical vacuum or medical air compressors have flow restricters which prevent flows from exceeding a specified limit.

Table 3.5 illustrates the water consumption associated with the medical vacuum and medical air pumps.

Building	Room #	GPM	% On	CCF/yr.
Medical Vacuum Pumps				
General Hospital	GG-048	6	66.7	3376
Conterar reception	GH-014	7	80.2	4736
Cancer	ON-S01	5	26.2	1105
Women's Hospital	WR-126A	15	5.2	658
Women's hospital	WT-656	6	0	0
Pospiraton/Rehabilitation	RR-044B	2.5	12.2	257
Thorlakson Medical Support	MS-074	15	2.4	303
	PX-030	2	0	0
	SP-069	6	2.2	111
Sherbrook Parkade	CS-008	9	44.7	3394
	0.0-000	Ū		
Laboratory vacuum Pumps	CC 048	15	.8	10
General Hospital	GG-040	1.0	2.7	341
Thorlakson Medical Support	MS-074	25	31.2	658
Cancer	UN-030	2.5	4.8	60
Materials Handling	MH-005	1.5	4.0	00
Medical Air Pumps		r	16.9	713
General Hospital	GG-811	5	10.9	817
Women's Hospital	WS-018	4	24.2	1020
Children's Hospital	CS-008	9	24.2	1030
Total CCF/yr.				
Percent of Total Consumption				

Table 3.5 Water Consumption Associated with Medical Vacuum and Medical Air Pumps.

3.2.9 Domestic

Domestic consumption for HSC was estimated using a combination of published values and personal communications. The published values pertain to consumption estimates associated with the plumbing fixtures, the frequency and time of use with which people use the fixtures, and the number of visitors associated with inpatients. Table 3.6 incorporates these values to estimate the number of imperial gallons consumed per person per day. The methodology used is similar to that in Black and Veatch (1991a; 1991b). The personal communications related to the number of staff, patients (in and outpatients), students, volunteers, and day-care children. Table 3.7 incorporates these values with the per person consumption estimates from table 3.6 to estimate domestic consumption for HSC.

	Davtime	Overnight	Visitors	Source
Toilets				
Imp. Gallons per Flush	4.5	4.5	4.5	Environment Canada, 1993
Flushes per Day	2	4	1	Black & Veatch 1991a&b
Volume/Person/Day	9	18	4.5	
Faucets				
Imp. GPM	2	2	2	Environment Canada, 1993
Minutes/Person/Day	7	8	2	Black & Veatch, 1991a&b
Volume/Person/Day	14	16	4	
Showers				
Gallons per Shower ¹⁴		22		Environment Canada, 1993
Total GPD/Person	23	56	8.5	

Table 3.6 Estimated	Consumption	per Person	per Day.
---------------------	-------------	------------	----------

¹⁴ Based on a 5 minute shower.
	Daily	Overnight	Visitors	Source		
Staff	5000			Koslowsky, 1995		
Students	238			Kirk, 1995; Loveridge, 1995; Nicol, 1995; Yachemitz, 1995		
Volunteers	165			Anderson, 1995; Good, 1995; Hickerson, 1995		
Day-care	32			Braun, 1995		
Lennox Bell Lodge		54		Squires, 1995		
Outpatients			360	Stack, 1995		
Inpatients		855		Koslowsky, 1995		
Visitors			1710 ¹⁵	Black and Veatch, 1991a&b		
Total Persons/Day	5435	909	2070			
Total GPD/Person	23	56	8.5			
Days	251	365	251			
Sub total: CCF/yr.	50,363	29,823	7089			
	Tot	al CCF/yr.		87,275		
Percent of Total Consumption 33.3%						

Table 3.7	Water	Consumption	Associated	with	Domestic	Wate	r Prod	uction.
-----------	-------	-------------	------------	------	----------	------	--------	---------

3.2.10 Hot Water

Hot water is produced in many locations throughout HSC, however, none of these locations are exclusively metered. As a result, the only way to estimate hot water production was via the Maintenance building's water meter. This meter accounts for HSCs central hot water supplied to the following buildings: GA-GH, AD, MA, LB, WR/WS/WT, LA2&3. Central hot water was then estimated by subtracting the two-year annual average (Maintenance Building) from all the known water uses within the Maintenance Building (Domestic and Condenser¹⁶).

Domestic consumption was not estimated using the same methodology as described in section 3.2.9, since it was not possible to determine the number of people working in

¹⁵ 2 Visitors per Patient (Black and Veatch, 1991a; 1991b).

¹⁶ Methodology described in section 3.2.11.

the Maintenance building on a daily basis. Domestic consumption was estimated based on the square footage of the building. Consumption per square foot was estimated by dividing the annual domestic value from table 3.7 (87,275 CCF) into the total square footage associated with all the buildings (1,999,965) except for the Central Energy Plant. The CEP was not included in the total due to its large square footage and limited number of people. As a result, per square foot domestic consumption was estimated to be 0.043 CCF/sq. ft.. Using 0.043 CCF/sq. ft. to estimate domestic consumption for the Maintenance building, table 3.8 estimates the amount of hot water consumed per square foot based upon central hot water production in the Maintenance building. The Maintenance building was chosen since it produces a significant proportion of HSCs hot water and other water uses within the building are limited.

Domestic	Square Footage CCF/Sq. ff 37.431 .043		Total (CCF/yr.) (1610)		
Condenser	CCF/per	riod			
	Summer Consumption	Winter			
Plumbing Shop	340	197			
CCMS	0	236			
			(773)		
Annual Average	CCF/pei				
	Fiscal Year 93/94	Fiscal Year 94/95			
	14,025	14,295			
			14160		
Total Hot Water (CCF/Yr.) Produced in MA Bldg 11,777					
Square Footage Served by Hot Water 737,91					
Hot V	Vater (CCF)/Sq.Ft.		0.016		

Table 3.8 Hot Water Consumption per Square Foot.

Using the 0.016 CCF/sq. ft. value, table 3.9 estimates consumption for the remaining buildings.

Building	Square Footage	CCF/Year
PsycHealth	179,073	2865
Thorlakson Medical Support	259,695	4155
Children's	235,231	3764
Cancer	99,941	1599
School of Nursing	89,324	1429
Respiratory/Rehabilitation Hospit	al 200,825	3213
Materials Handling	56,367	902
Community Services	59,150	946
Einancial Services	15,186	243
Solf Caro Dialysis	8876	142
Maintonance Service	737.915	11807
wantenance Service	31.065	
	11.9%	

Table 3.9 Water Consumption Associated with Hot Water Production.

As domestic consumption is already accounted for, extreme caution should be exercised when interpreting hot water consumption as double-counting is likely.

3.2.11 Water-Cooled Condensers

HSC has approximately 95 water-cooled condensers located throughout the complex. They are used to provide local space or process cooling. All but 16 of these units use water in a single pass capacity, the remaining 16 can be converted to use the existing multi-pass chilled water loop (spooled¹⁷) during summer operations.

A preliminary list of condensers was identified by Navarro (1994), but it had a limited scope. Therefore, visual inspections of all mechanical rooms, as well as a literature search of project information by Rick Van Dulman (1995), identified the remaining condensers.

¹⁷ Spool refers to a removable section of chilled water supply and return piping that is removed from the domestic water supply in summer, so that the condenser can run on the existing chilled water loop.

Since existing HSC horsepower data was insufficient, SMS consultants (1996) calculated the theoretical horsepower associated with each condenser¹⁸ using formula 3.1.

In order to calculate the theoretical flows, the temperature differential between the inlet and outlet water temperature was required for all condensers. Inlet and outlet temperatures were recorded in July using a Thermocouple Type J digital thermometer, where measurements were obtainable. This method provided the summer differentials. For winter differentials, the same outlet temperature was used¹⁹, but an inlet temperature of 45°F was observed in December. Where temperature differentials could not be obtained a 20°F delta was used in the summer and a 45°F delta in winter.

Theoretical flow rates were calculated using formula 3.2.

US GPM per horsepower²⁰ =
$$14,544/(500^{*}(\Delta^{\circ}F))$$
 (3.2)

When verifying the accuracy of these calculations, there was a discrepancy between the theoretical and actual flow rates. Bucket and stopwatch measurements in July, indicated that actual flow rates were in fact much smaller than the calculated flow rates. To provide additional data to this fact, an ultrasonic clamp-on flow meter was used in November. Due to time limitations, the flow meter only took measurements over a one

²⁰ Perry (1976).

¹⁸ SMS (1996) calculated the theoretical horsepower for the following condensers: GC-107, GC-010C, GD-043 (F-37 & F-38), GG-347B, GG-346, GH-195A, GH-014, NA-029A, TW37B, TW37D, RR-044B, RR-029A, WT-563, WS-202A, WS-002, BA-001, ON-302, ON-245, ON-231, ON-040, CS-231, CS-111, CS-105, CS-006, MS BLDG, and FE-018. Horsepower's and flow rates for all the compressors are identified in Appendix C.

¹⁹ All condensers have thermo-regulating valves that control the outlet temperature.

day interval. As a result of these measurements, actual flow rates were on average 50% smaller than theoretical flow rate (see Appendix C).

To determine the run times associated with the condensers, an ACR current logger using an eight second sampling rate was attached to the load side of the condenser motor for a period of three days. The ACR recorded the amperage drawn by the condenser's motor. Amperage was used as a proxy for run time, since amperes are only drawn when the condenser is running. Condensers were chosen using a two stage process since the installation of the device required the services of the Electrical shop. First, all inconveniently located condensers were removed from the sample list; from which, twenty-five condensers were randomly selected. Time limitations resulted in the sample size being reduced from twenty-five to fifteen. Monitoring occurred from late July to the end of November incorporating both summer and winter loads. These measurement identified an average run time for HSCs water-cooled condensers at 59% (see Appendix D).

Consumption per condenser was calculated using formula 3.3 for winter and formula 3.4 for summer consumption resulting in an overall consumption estimate of 77,064 CCF/yr or 29.4% of total consumption (see Appendix E).

Winter Consumption = formula (3.2)*horsepower*60 minutes/hour*24 (3.3) hrs/day*200 days*.59 (average load)*.50 (average theoretical adjustment)

Summer Consumption = formula (3.2)*horsepower*60 minutes/hour*24 hrs/day*165 days*.59 (average load)*.50 (average theoretical adjustment) (3.4)

3.3 Summary

Sections 3.2.1 to 3.2.11 detailed the methodology used to establish estimates of per category water use. Table 3.10 is a water balance comparing the per category consumption estimates against HSCs annual consumption.

Table 3.10 only compares estimated consumption versus actual consumption for the entire hospital. A number of water meters located throughout the complex. That afforded an opportunity to assess the accuracy or acceptability of the entire methodology for estimating consumption. In Appendix F, per category estimates were compared to the two-year annual averages associated with the various water meters or sub-meters at HSC (see Appendix F), indicating that the overall methodology is more likely to be accurate as the number of buildings a water meter services increases. As a result, a sensitivity analysis should be conducted when determining the economic feasibility of a particular minimization option in order to account for the increased variability.

Water Use Category		CCF/Yr.	Percent
Sterilizers		15,242	5.8
Dialysis		7675	2.9
Kitchen and Cafeteria		7563	2.9
Water Softening (Steam Production)		4970	1.9
Air Compressors		10,893	4.2
Cooling Tower and Chilled Water Makeup		9768	3.7
X-Ray Processing		4115	1.6
Medical Vacuum & Medical Air Pumps		18,380	7.0
Domestic		87,275	33.3
Hot Water ²¹		31,065	11.9
Water-Cooled Condensers		77,064	29.4
	Total	274,010	104.6%

Table 3.10 Health Sciences Cent	e Major Water Use	Consumption Estimates.
---------------------------------	-------------------	------------------------

Given these figures, cost savings (benefits) are now identifiable permitting the use of a cost-benefit analysis framework to evaluate potential water conservation measures.

²¹ Figure undoubtedly includes double-counting.

Chapter 4 Feasibility Analysis

4.1 Introduction

For the majority of water uses identified in Chapter 3, options exist to reduce consumption, though not all are feasible at this time. Chapter 4 will identify and economically evaluate water saving measures for each water use category based on capital and operating costs, cost savings, and payback periods. Feasible options will be prioritized based on a sensitivity analysis of their net present value after five years.

4.2 Sterilizers

Changes in Manitoba's Ozone Depleting Substances Act resulted in HSC replacing the existing "12/88" (12% CFC-12 and 88% Ethylene Oxide gas) sterilizers with new disposable cartridge based systems using 100% Ethylene Oxide. Unlike the old system, no domestic water is required during sterilization. To meet demand, an additional steam sterilizer (135 gallon per cycle water saving model) was required.

In January 1995, water saving retrofit kits were installed on the existing steam sterilizers, in WT-069 and GG-049, converting them from 600 to 135 gallons per cycle units (Koslowsky, 1995). The result of these changes is an overall reduction in consumption of 8825 CCF/yr or 3.4%.

4.3 Dialysis

Reverse osmosis is a water intensive process and little opportunity exists to reduce consumption. Flow meters are monitored daily. However, they focus on quality (electrolyte analysis and conductivity measurements), not quantity, since the amount of water consumed by reverse osmosis is relatively fixed (Lepp, 1995).

4.4 Kitchen And Cafeteria

Dishwashing is the most significant water use in HSCs kitchens and cafeterias. Of the five dishwashers, two are relatively water-efficient (Rehab and Main kitchens), two have water efficient replacements identified (Cafe on 2 and Tunnel cafeterias), and one will

be eliminated (Children's cafeteria). Eliminating the Oasis cafeteria dishwasher will reduce over consumption by 1165 CCF/yr or 0.4% as this cafeteria is going to disposable products. Recently, capital funding to replace the Cafe on 2 and Tunnel Cafeteria's dishwashers was rejected (Walker, 1996) as replacing dishwashers in not justified based on energy and water savings alone (see Section 4.13).

4.5 Water Softening (Steam Production)

The CEP monitors water consumption associated with water softening on a daily basis using a series of water meters. Water savings can be realized by reducing the amount of makeup water required by reducing the amount of steam required, changing operating procedures that reduce the number of regeneration's required, and/or increasing the amount of condensate (condensed steam) returned to the CEP.

Recently, boiler makeup water has decreased due to an increase in the amount of condensate returned (Lehmann, 1995). Also, Lehmann (1995) states that a change in operating procedures has reduced the number of regeneration's required. However, the savings associated with these changes have yet to be determined.

4.6 Air Compressors

In the past, approximately 65% (Lehmann, 1995) of air compressor cooling water was reused, via the "swimming pool²²", for cooling tower and chilled water makeup during summer operations (6 months). Recently, a recirculating cooling loop was installed eliminating water consumption. Such a change will reduce total consumption by 6529 CCF/yr or 2.5% of total consumption.

4.7 Cooling Tower And Chilled Water Makeup

Makeup water is required to account for losses associated with evaporation, bleed-off, and leakage. The quantity of makeup water required depends on the rates at which losses occur. Of the three, savings can only be achieved from reducing the amount of bleed-off and leakage.

²² A storage tank with overflow drainage located in the sub-basement of the Central Energy Plant.

The Central Energy Plant uses conventional chemical treatment and sulfuric acid to reduce impurities within the chilled water loop. As a result, HSC is operating at a concentration ratio of 5 (Lehmann, 1995). Black & Veatch (n.d.) estimate that acid treatment in conjunction with conventional chemistry can achieve concentration ratios up to 6 cycles. In which case, savings associated with bleed-off are limited.

However, savings associated with system losses do exist. During the summer of 1995, average daily makeup required to operate HSCs chilled water loop was 2010 imperial gallons. These losses are a result of 31 chilled water pumps using packing seals. These seals are not water-tight and require periodic maintenance and/or replacement to minimize losses. Due to chemical treatment, these losses are significant as the cost per 1000 imperial gallons of makeup water is \$66.38. Currently, a program is in place to replace these seals with water-tight mechanical seals resulting in savings of approximately 0.2% or 530 CCF/yr²³.

4.8 X-Ray Processing

Eighteen out of twenty of HSCs x-ray processors have stand-by switches to shut the water off approximately 2-3 minutes after a film has been processed. The two units that do not have stand-by switches (M6AN in GG-187 and Rehab) consume water whenever the machine is on, whether or not a film is being processed. Current restructuring and renovation plans will see these units replaced with new water efficient processors (Popoff, 1995a). The amount of water saved will depend on the number of hard copies processed and the exact nature of the restructuring.

4.9 Medical Vacuum & Medical Air Pumps

All of HSCs medical vacuum and medical air pumps use a liquid ring to seal the pump chamber, as well as to dissipate waste heat. Ninety percent water-saving retrofit kits are available, for medical vacuum pumps. The CSA code prevents their use with medical air compressors (Miller, 1995a). Potentially three vacuum units; CS-008, GG-

²³ Based on 165 days of chilled water service (Lehmann, 1995).

048, and GH-014; can be retrofitted with 90% water saving retrofit kits. Retrofitting CS-008 and GG-048 would reduce consumption by 2.2% or 5819 CCF/yr. Currently, a study is underway to determine whether the vacuum unit in CS-008 can assume GH-014's load, as this unit is very old and inefficient. If the option of converting GH-014's load proves feasible, an additional 4736 CCF/yr or 1.8% (slightly less than this due to the increased load on CS-008) can be realized. If not, then a 90% retrofit kit is available and would only save 1.6% not 1.8% of total consumption.

4.10 Domestic

Domestic consumption represents the single largest water use at HSC (33.3%), however, the extent of the savings are limited by the existing plumbing infrastructure, plumbing code requirements, and health concerns.

Tankless toilets with flushometers flush valves are almost exclusively used throughout HSC. These flush valves can be adjusted to consume less water, however, present bowl geometry limits the amount of savings available (Berg, 1995). Also, there are health concerns, bacteria and infections, associated with inadequate flushing.

Another option is to change to new ultra-low volume (ULV) toilet bowls. This option is expensive because, in addition to the bowl costs, ULV bowls require different piping runs and fittings. The option to convert to ULVs is limited to new developments and renovation zones.

In order to prevent air borne bacteria from entering the water supply, the Plumbing Code does not permit aerated flow restricting devices in hospitals. As a result, laminar flow devices, using a series of screens, have been developed to reduce consumption. These devices are much more expensive than aerated models (approximately \$6 per compared to \$2) and have higher flow rates of 2.0 US gpm (33% savings) compared to 0.5 US gpm (83% savings) for aerated models.

4.11 Hot Water

Savings associated with hot water are linked to savings elsewhere. Savings may be realized by technical improvements (e.g. flow restricting devices), improving general operating procedures (e.g. full loads in dish and clotheswashers), and/or employee education (e.g. eliminating unnecessary flows -- only running water when required). Due to the linkages elsewhere, cost savings associated with these measures are difficult to quantify, and in the case of improving general operating procedures and employee education difficult to verify.

4.12 Water-Cooled Condensers

Water-cooled condensers represent the second largest water use (29.9%) at HSC. This use has increased over the years to meet localized space cooling or refrigeration needs. The problem with these units is that water is only used in a single-pass capacity to dissipate waste heat. One option is to convert these units from water to air-cooled. However, due to the large number of units (~92) and finite space (roof tops) to locate the air conditioning units, this option is only preferred for a limited number of condensers, which will be identified later. As a result, the Health Sciences Centre commissioned a preliminary engineering study (HSC Project No. 95-20-SP) to evaluate the possibility of operating the existing chilled water loop year round. The study was based on the premise that "winter chilled water would be provided by a process fluid cooler and a plate heat exchanger located in the Central Energy Plant" (SMS, 1996, p.1). SMS (1996) identified the cost of the fluid cooler and associated distributional hardware, piping requirements, and operating expenses; as well as identifying condensers that were not included in the study. By operating the chilled water loop year-round, HSC can reduce its present water consumption by approximately 25.5% or 66,711 CCF/yr. Additional savings of 1.9% or 4938 CCF/yr can be realized by converting three existing water-cooled condensers, excluded²⁴ from the year round study (BA-001, GF-632, and GC-420), to air-cooled units.

²⁴ Excluded condensers include: FE-018, BA-001, GC-420, GD-725, GE-708, GF-632 (SMS, 1996).

4.13 Economic Evaluation and Prioritization of Water Saving Measures

Sections 4.2 to 4.12 identified a number of water saving measures available to HSC. However, two questions still needed answering: i) Are these measures feasible? And if so, ii) What is its relative priority in relation to other measures? Table 4.1 answers the first question by evaluating each option based on their capital and operating costs, cost savings, and payback period²⁵. Using a payback period of 5 years or less to determine the feasibility of a conservation option, it was not feasible to replace dishwashers based on energy and water savings alone.

Table 4.2 answers the second question by conducting a negative bias sensitivity analysis. Measures that could effect feasibility and/or priority, such as capital cost increases, consumption overestimation, and differences in water rate increases, were selected to identify the range of probable outcomes (high and low sensitivity estimates).

Since the Health Sciences Centre is a public institution, the criteria for choosing among competing investment opportunities (Projects) should be the project that has the highest net present value as it contributes the most to the welfare of society (Treasury Board, 1976). Such an approach to decision-making complements the Provincial government's position on Sustainable Development: "employees and organizations at all levels must identify what they do that has an impact on the environment and economy and they must isolate and correct the causes of and activities which are unsustainable" (Manitoba Round Table on Environment & Economy, 1992, p.iii). The average five year net present value, in Table 4.2, was used to prioritize the various water saving measures. This value was used as it indicates the foregone benefits or opportunities of the various projects over a short-term planning horizon. Also, included in table 4.2 is the net present value over 20 years reflecting the foregone opportunity or benefits over the life of the equipment.

²⁵ Payback periods were calculated using the following formula: Capital Cost/(CCF Saved/yr*Cost/CCF - Operating Costs). The Cost/CCF used was \$3.74 (combined water and sewer rate for 1996). The proposed ten to twelve percent per year increase in the water and sewer rate were not included in the calculations. Thus, the payback periods did not change when the water and sewer rates changed in Table 4.2.

Table 4.1 Economic Evaluation of Water Conservation Options

ilse Category	Type of Saving	Cost Data	Capital	Operating	Cost	Payback	CCF/YR	Status
Use Outegoly	.,,	Source	Cost ¹	Cost S	avings	Period ²	Saved	
Starilizor	Retrofit sterilizers (WT-069 & GG-049)3	Koslowsky, 1994	\$ 22,504	\$ 1,000 \$	8,950	2.5 years	3,555	Completed
Stermzers	Renace EtO sterilizers		Sta	atutory Requirement			6,812	Completed
	Instali New Steam sterilizer	To	Meet Dema	nd due to Statutory F	Requireme	ent	(1,542)	Completed
		1000	C 22 640	I Indotorminod	3 472	>6 vears		Not Feasible
Kitchen/Cafeteria	Replace Tunnel Dishwasher	Walker, 1996	\$ 22,040	Undetermined \$	2,500	>10 years		Not Feasible
	Replace Cafe on 2 Dishwasher	Walker, 1996	\$ 65,000	Undetermined a	2,500	> 10 years	4 165	NULLEASIDIC
	Eliminate Oasis Cafeteria Dishwasher						1,105	
Air Compressor	Install Recirculating Cooling Loop	Lehmann, 1996	\$ 31,155	\$ 12,000 \$	24,418	2.5 years	6,529	Completed
Chilled Water	Replace Packing Seals with Mechanical Seals ⁴	Cruickshank, 1996	\$44,082	N/A \$	21,916	2.0 years	530	On-Going
V D D	Department Postructuring	Uni	nown, Not B	ased on Energy or V	Vater Sav	ings	N/A	On-Going
X-Ray Processing	Department Restructuring							
Medical Vacuum	Retrofit Vacuum Pump in CS-008	Miller, 1995	\$ 17,100	\$ 800 \$	11,284	1.6 years	3,017	See Table 4.2
	Retrofit Vacuum Pump in GG-048	Miller, 1995	\$ 11,400	\$ 800 \$	10,479	1.2 years	2,802	See Table 4.2
	Put GH-014 Vacuum Pump's Load on CS-008		Cu	rrently Under Reviev	<u>~</u>		4,736	
	1 A 11 Prove of Mandomatica		Requires F	urther Study, See Se	ection 5.2			
Domestic	Install Faucet Moderators	<u> </u>	Bequires Further Study, See Section 5.2					
	Adjust Flush Valves	+	Nequies :		0011011 012			
Condensers	Install Year Round Cooling Loop	SMS, 1996	\$ 784,206	\$ 18,200 \$	249,499	3.4 years	66,711	See Table 4.2
	Convert BA-001Condenser to Air Cooled	Bettencourt, 1996	\$ 12,612	Unchanged \$	4,155	3.0 years	1,111	See Table 4.2
	Convert GF-632 Condenser to Air Cooled	Bettencourt, 1996	\$ 16,577	Unchanged \$	9,376	1.8 years	2,507	See Table 4.2
	Convert GC-420 Condenser to Air Cooled	Bettencourt, 1996	\$ 16,480	Unchanged \$	4,937	3.3 years	1,320	See Table 4.2

¹Including installation costs and appropriate taxes.

²Based on 1996 water rate at \$3.74/CCF. Payback Period = Capital Costs/(CCF/yr saved*\$3.74/CCF-Operating Costs).

³Based on 1994 costing data (\$2.80/CCF), not adjusted for inflation.

⁴Cost savings based on \$41.35/CCF.

able 4.2 Selisi	avity Analysis and Thornazation of Frank		Canital	Costs		Consumption			Water & Sew	er Rate		Su	mmary Statis	tics	Priority*
Use Category	Type of Saving	Devel = 4775%	10507	410%	-10%	-25%	-50%	0%/vr	+5.3%/yr	+10.6%	tyr 🚺	Mean	Sent	sitivity	
		Discount Rate = 4.775%	72370		-1078				•	Present Co	ndition	`	High	Low	
			e 23.706	5 79 676	\$ 32.043	\$ 23,428	\$ 9 070	\$ 27.270	\$ 32.26	3 5 3	7 787	\$ 28,149	\$ 9,070	\$ 37,787	4
Medical Vacuum	Retrofit Vacuum Pump in CS-008	Net Present Value (5 years)	c 330 578	\$ 326 498	s 97 157	5 244 489	\$ 154 319	5 110 787	\$ 189,63	7 \$ 33	4 658	\$ 223,515	\$ 97,157	\$ 334,658	
		Net Present Value (20 years)	3 330 370	5 525,456	4 01,101	21,00	3.5	1.6	1	5	1 6	2.1	3.5	1.6	
		Simple Payback Period	2.0	2.4	1.0	2.2			1						
					0 00 705	C 22.705	S 12 464	e 70 767	5 34 00	4 5 3	9134	\$ 31 581	\$ 12.464	\$ 39,134	3
	Retrofit Vacuum Pump in GG-048	Net Present Value (5 years)	\$ 36,414	\$ 33,694	5 33,785	<u> 3 33,765</u>	5 12,404	5 106 A79	e 176 70		8 795	\$ 241 216	\$ 106 478	\$ 314.395	
		Net Present Value (20 years)	\$ 311 675	\$ 308,955	\$ 280,802	\$ 280,802	5 140,908	3 100,470	1	, ¥	12	15	26	12	1
		Simple Payback Period	1.5	1.8	1.3	1.0	2.0	1.4		<u> </u>		1.0			1
							·	C 010 074	e	1 E	5 815	\$ 251.457	\$ 71 582	5 445 815	1
Condensers	Install Year Round Cooling Loop	Net Present Value (5 years)	\$ 258,699	\$ 71,582	\$ 318,819	\$ 128,326		5 215,214	5 225.00		6.082	\$ 5 361 866	\$ 2 055 917	\$ 7 006 082	<u>.</u>
oondensers		Net Present Value (20 years)	\$6.818.966	\$ 6,631,849	\$ 6,208,561	\$ 5,012,279		\$2,033,817	2 3,188,41	1 0 7.00	2 2 2	38	4.6	34	1
		Simple Payback Period	3.7	4.5	3.8	4.6		3.4		8		3.0	7.0	1	
										<u></u>	0 4 4 2	¢ 4000	S 14 485	s 0113	5
	Convert BA-001Condenset to Air Cooled	Net Present Value (5 years)	\$ 6,103	\$ 3,094	<u>\$ 6,998</u>	\$ 3,825	5 (1,462)	5 5,240	15 7.07	9 5	\$ 112	5 4,333 5 102 574	¢ 61 420	\$ 133 870	1
		Net Present Value (20 years)	\$ 133,879	\$ 133,879	\$ 120,491	\$ 100,409	\$ 66,939	5 51,439	\$ 80,47	5 \$ 13	13,0/2	5 102,074	φ	3.00,010	
		Simple Payback Period	3.8	4.6	3.4	4.0	6.1	3:0	3.	U	3.0	3.9	<u> </u>		
												0.04504	0.046	C 74 457	
	Convert GE 632 Condenset to Air Cooled	Net Present Value (5 years)	\$ 67,502	\$ 71,457	\$ 27,131	\$ 19,972	<u>\$ 8,041</u>	\$ 23,165	\$ 27,31	4 5	in, u us <u>t</u>	\$ 34,561	\$ 8,041	A 000 444	<u>+</u>
	Net Present Value (20 years)	\$ 319,486	\$ 323,441	\$ 253,916	\$ 208,960	\$ 134,033	\$ 97,860	\$ 163,38	0 5 28	3.88/	\$ 223,120	\$ 97,660	\$ 3/3,4441	<u>.</u>	
		Simple Payback Period	2.2	2.7	2.0	2.4	3.5	1.8	1	8	1.8	2.3	3,3	1.2	3
														0 0 100	<u> </u>
	Comment CC 420 Candenses to Nis Cooled	Net Present Value (5 vears)	\$ 5.467	\$ 1,535	\$ 6,887	\$ 3,117	\$ (3,165)	\$ 4,798	\$ 6,98	3 5	9.400	5 4,378	3,185	11 -	<u>1 0</u>
	CONVERT OCHEC CONDENSET IC ALL COUNT	Net Present Value (20 years)	S 138 143	\$ 134,211	\$ 126,295	\$ 102,624	\$ 63,173	S 44,127	\$ 78,62	<u>5 \$</u> 14	12,075	\$ 103,659	\$ 44,127	13 142,075	
		Simple Payback Period	42	5.0	3.7	4.5	6.7	3.3	3	3	3.3	4.3	6.7		:1

¹Discount rate = 6.875% (5 year GIC return as of 5/6/1996) - 2.1% (Inflation rate 1995).

²Based on Net Present Value over 5 years.

³Simple Payback Period does not account for increases in the water & sewer rate Payback Period = Capital Costs/(CCF/yr. saved*\$3.74/CCF-Operating Costs).

an Arrain. An an an an an an Arrainn an an Arrainn an Arrainn

.

With the exception of the GF-632 condenser, there is a clear hierarchy with respect to 'like' options. HSC should pursue year round cooling first, as it clearly has the largest net present value; followed by vacuum pump retrofits; and finally, converting individual water-cooled condensers to air-cooled. This hierarchy should be followed instead of the priority ratings in table 4.2 for two reasons: i) the average net present values for GF-632 and vacuum pumps are quite close, and ii) potential cost savings may be realized by grouping 'like' projects (e.g. travel and per diem expenses for vacuum pumps and crane rental for air-cooled condensers).

4.14 Summary

Chapter 4 identified a number of water saving initiatives available to HSC. Some have recently been completed or are currently on-going, whereas others have potential for future installation. At present, the only potential option that was not feasible, based on a payback period of five years or less, was installing new dishwashers based on their energy and water savings alone. The remaining options were feasible and were prioritized according to their net present value over five years, resulting in the following implementation hierarchy:

- 1. Provide Year Round Chilled Water
- Retrofit CS-008 and GG-048 Vacuum Pumps with 90% Recirculation Retrofit Kits
- Convert BA-001, GF-632, and GC-420 Water-Cooled Condensers to Air-Cooled.

These changes, in conjunction with recently completed and on-going projects or programs over the past year, will result in an overall reduction of 99,253 CCF/yr or 37.9% resulting in annual savings of approximately \$390,000 (based on 1996 costs).

Chapter 5 Conclusion and Recommendations

5.1 Conclusion

HSC has seen water-related expenditures increase by 10.6% per year over the past four years due to water and sewer rate increases. These increases have created an incentive to reduce consumption. As a result, research was undertaken to identify and evaluate potential water saving measures available to HSC, as well as other large scale tertiary care hospitals, in order to reduce present and future water-related expenditures.

This was accomplished by systematically identifying consumption estimates for HSCs major water uses (see figure 5.1). From which, potential water minimization options were identified and economically evaluated according to capital and operating costs, cost savings, simple payback period, and five year net present value. The five year net present value was then used to prioritize the potential minimization options which have not been completed or are currently on-going. The result is HSC can reduce present consumption by approximately 99,250 CCF/yr. or 37.9% and realize savings close to \$387,000/yr (see table 5.1).

5.2 Recommendations

Currently, a portion of these savings are being realized as some projects have been completed or are currently on-going (see table 5.1). However, they only account for 17,049 CCF/yr or 17.2% of identified savings while the remaining savings are contingent upon future installations, retrofits, or replacements. Thus, the following recommendations:

- 1. HSC should adopt the following water minimization implementation hierarchy:
 - i. Provide Year Round Chilled Water (NPV = \$251,457),
 - Retrofit CS-008 (NPV = \$28,149) and GG-048 (NPV = \$31,581) Vacuum
 Pumps with 90% Recirculation Retrofit Kits, and

ł

Figure 5.1 HSCs Major Water Use Consumption Estimates

Use Category	Type of Saving	Capital	Operating	<u> </u>	Cost	CCF/YR	Percent	Payback	Net Present	Implementation
		Cost ¹	Cost	5	Savings	Saved		Period ²	Value (5 yr) ³	Status
Sterilizers	Retrofit sterilizers (WT-069 & GG-049)4	\$ 22,504	\$ 1,000	\$	8,950	3,555	1.4%			Completed
Otorinizoro	Replace EtO sterilizers	Statutory	Requirement	\$	25,477	6,812	2.6%			Completed
	Install New Steam sterilizer	Required to	meet Demand	\$	(5,767)	(1,542)	-0.6%			Completed
Kitchen/Cafeteria	Eliminate Oasis Cafeteria Dishwasher			\$	4,357	1,165	0.4%			On-Going
Air Compressor	Install Recirculating Cooling Loop	\$ 31,155	\$ 12,000	\$	24,418	6,529	2.5%			Completed
Chilled Water	Replace Packing Seals with Mechanical Seals ⁵			\$	21,916	530	0.2%			On-Going
X-Ray Processing	Department Restructuring	Not based	on Energy or Wa	ater	savings	N/A				On-Going
	Potrofit Voguum Pump in CS 008	\$ 17100	\$ 800	5	11 284	3.017	1.2%	1.7 - 2.6 vears	\$22,557 - \$33,742	Second Priority
	Retrofit Vacuum Pump in GG-048	\$ 11,400	\$ 800	Ŝ	10,479	2.802	1.1%	1.2 - 1.9 years	\$26,385 - \$36,777	Second Priority
	Put GH-014 Vacuum Pump's Load on CS-008	Currently	Under Review	\$	17,713	4,736	1.8%	N/A	N/A	
Domestic		Requires Further Study, See		e Se	ection 5.2					
Condensers	Install Year Round Cooling Loop	\$ 784,206	\$ 18,200	\$	249,499	66,711	25.5%	3.4 - 4.2 years	\$174,181 - \$328,733	First Priority
	Convert BA-001Condenser to Air Cooled	\$ 12,612	Unchanged	\$	4,155	1,111	0.4%	3.1 - 4.6 years	\$2921 - \$7077	Third Priority
	Convert GF-632 Condenser to Air Cooled	\$ 16,577	Unchanged	\$	9,376	2,507	1.0%	1.8 - 2.7 years	\$19,428 - \$49,694	Third Priority
	Convert GC-420 Condenser to Air Cooled	\$ 16,480	Unchanged	\$	4,937	1,320	0.5%	3.5 - 5.1 years	\$1866 - \$6890	Third Priority
<u></u>	Tota	l		\$	386,794	99,253	37.9%			

Table 5.1 Summary of Water Conservation Options Available to HSC

¹Including installation costs and appropriate taxes.

²Based on 1996 water rate at \$3.74/CCF.

³From Table 4.2

⁴Based on 1994 costing data (\$2.80/CCF), not adjusted for inflation.

⁵Cost savings based on \$41.35/CCF.

iii. Convert BA-001 (NPV = \$4999), GF-632 (NPV = \$34,561), and GC-420 (NPV = \$4378) Water-Cooled Condensers to Air-Cooled.

This implementation hierarchy does not follow the priority scheme in table 4.2 for two reasons. First, the net present values for the GF-632 water-cooled condenser and vacuum pumps in CS-008, and GG-048 are quite close. Secondly, by grouping minimization options into similar classes, potential cost savings may be realized with respect to crane rental (water-cooled condensers) and per diem and travel expenses (medical vacuum pumps).

By following the implementation hierarchy, HSC will maximize its return on investment while eliminating unsustainable water use at the hospital.

 HSC proceed with the installation of the winter chilled water supply as described by SMS (1996) so as to provide year round chilled water.

With year round chilled water available, almost all of the water-cooled condensing units can be converted from a single-pass domestic water supply to the existing recirculating chilled water loop. The project costs approximately \$800,000 with annual cost savings, net of operating costs, of approximately \$230,000, translating into a payback period between 3.4 to 4.6 years. It is the most significant of all the water minimization options, identified in table 5.1, as it represents 67% of the identified potential savings (25.5% overall reduction) and has the largest net present value over twenty years (\$174,181 - \$328,733).

3. HSC proceed with the technical assessment required to operate the medical vacuum pumps in CS-008 and GG-048 at 90% recirculation.

Retrofitting these units is second on the implementation hierarchy. Potential cost savings (travel and per diem expenses) can be realized by combining the installation of

the two units since a technical assessment by the vacuum pump's manufacturer is required.

These kits are available in either air or water-cooled models. Since the mechanical rooms, in question, are not vented and are warm to begin with, the water-cooled option was chosen for costing purposes. However, it requires year round chilled water. For CS-008, the retrofit costs approximately \$17,000 producing annual cost savings, net of operating costs, of \$10,000 and translating into a payback period of 1.6 to 3.5 years. While GG-048 will cost \$11,400 with annual savings, net of operating costs, of approximately \$9500 or a payback period of 1.2 to 2.6 years.

Currently, a study is underway to determine whether the GH-014 vacuum pump's load can be assumed by the CS-008 vacuum pump unit (Berg, 1996). If so, converting GH-014s load to the CS-008 will positively affect the annual cost savings and payback period associated with the CS-008 vacuum pump unit.

Retrofitting CS-008 and GG-048 will reduce overall consumption by 5819 CCF/yr or 3.3%.

 HSC convert three of the water-cooled condenser units not feasible in the SMS (1996) proposal (BA-001, GC-420, and GF-632) to air-cooled units.

Seven water-cooled condensers were not feasible in the SMS (1996) proposal. Three of the units (BA-001, GC-420, and GF-632) can be converted from the existing single pass water supply to air-cooled eliminating water use. Converting these units is last on the implementation priority list (recommendation 1) as the net present values are low compared to the other options (see table 5.1). The exception is the GF-632 condenser. This condenser, ranked second in table 4.2, is in the third classification due to potential cost savings (crane rental) by grouping 'like' options together. Converting the three units will reduce overall consumption by 4938 CCF/yr or 1.9%.

5. HSC should conduct a separate study on Domestic water minimization for hospitals.

Domestic consumption represents a third of HSCs water use. The potential exists to reduce consumption, but there are a number of obstacles preventing implementation. Little published information coupled with infection control concerns with commonly used devices in the residential and commercial setting have limited their use. Recently, products have been designed specifically for hospitals, however they are expensive and only offer limited savings. Also, due to the number of fixtures throughout the hospital, it is important to install a reliable product that is endorsed by all players in order to prevent unforeseen operating and maintenance expenses.

Before any retrofits are recommended, with respect to domestic consumption, these obstacles need to be overcome. The focus of this research was on initiatives that were benign or transparent to patient care, therefore those issues were not addressed. HSC should conduct a separate study specific to domestic consumption. Such a study should include:

- i. a detailed literature search and survey of existing practices,
- ii. a controlled trial or case study in a metered building primarily comprised of domestic consumption,
- iii. a test of the devices, and
- iv. an economic analysis of retrofits and renovations based on capital and operating costs, annual cost savings, and payback periods.

Most importantly, it should include input from all players or stakeholders in order to ensure effective implementation.

In conclusion, the proposed 35% reduction in the sewer rate for large water users by the City of Winnipeg will result in a 33% increase in the payback periods associated with potential conservation options. Even with this increase, the payback periods are still quite favorable, approximately five years or less. However, as the mid to long term

trend is toward higher water and sewer rates, HSC has an opportunity to significantly reduce the impact associated with price rate increases by eliminating all unsustainable practices. By doing so, HSC will be seen as an environmentally (promoting sustainable resource use) and economically responsible public institution.

BIBLIOGRAPHY

- Black and Veatch, n.d., A Guide to Water Conservation for Cooling Towers, City of Los Angeles Department of Water and Power.
- Black and Veatch, 1991a, Water Conservation Report Hospital of the Good Samaritan, City of Los Angeles Department of Water and Power.
- Black and Veatch, 1991b, Water Conservation Report Queen of Angels Hollywood Presbyterian Hospital, City of Los Angeles Department of Water and Power.
- Brooks, D.B. and Peters, R., 1988, Water: The Potential for Demand Management in Canada, Science Council of Canada, Supply and Services Canada.
- Chartier, G., 1995, Written Communication Winnipeg Water and Sewer Rates, City of Winnipeg Water and Waste Department, Customer Accounts Branch.
- Dangerfield, S., 1993, An Overview of Federal and Provincial Water Conservation Policies, CCME.

Endress et al, 1989, Flow Handbook, Flowtec AG, Kagenstrasse.

- Environment Canada, 1990, Water: No Time to Waste A Consumer's Guide to Water Conservation, Supply and Services Canada.
- Environment Canada, 1993, Manual for Conducting Water Audits and Developing Water Efficiency Programs at Federal Facilities, Interdepartmental Advisory Group on Water Conservation at Federal Facilities, Supply and Services Canada.
- Environmental Protection Agency, 1990, Guides to Pollution Prevention: Selected Hospital Waste Streams, United States Environmental Protection Agency, Cincinnati, Ohio.
- Gates, C., 1994, The Potential for Improving Water Efficiency in Existing Housing: Implications for Municipal DSM Programming, in Every Drop Counts, eds. Dan Shrubsole and Don Tate, Canada's First National Conference and Trade Show on Water Conservation, Canadian Water Resources Association.
- Hanke, S.H., 1985, The User-Pay Principle and Market Socialism, *in* The Economics of Municipal Water Supply: Applying the User-Pay Principle, S.H. Hanke and M. Fortin, Inquiry on Federal Water Policy, Environment Canada, Research Paper No. 21.

- Hillard, J., 1994, What Governments are Doing in Water Conservation A Consumer Response, in Every Drop Counts, eds. Dan Shrubsole and Don Tate, Canada's First National Conference and Trade Show on Water Conservation, Canadian Water Resources Association.
- Kobrick, J.D. and Wilson, M.D., 1994/5, Uses of Water and Water Conservation Opportunities for Cooling Towers, AWWA., 1339-1355.
- Koslowsky, D., 1994, CPD Steam Sterilizers -- Cost Saving Request, Health Sciences Centre, Winnipeg.
- Kreutzwiser, R.D., 1991, Water Resource Management: Canadian Perspectives and the Great Lakes Water Levels Issue, in Resource Management and Development: Addressing Conflict and Uncertainty, ed. B. Mitchell, Oxford University Press.
- Manitoba Round Table on Environment & Economy, 1992, Sustainable Development: Towards Institutional Change in the Manitoba Public Sector, Manitoba Round Table on Environment & Economy, Winnipeg.
- Manitoba Round Table on Environment & Economy, 1995, Sustainable Development: Workbook on The Capital Region Strategy "Partners for the Future", Manitoba Round Table on Environment & Economy, Winnipeg.
- Marley Cooling Tower Company, 1982, The Application of Cooling Towers for Free Cooling, Technical Report No. H-002.
- Navarro, G., 1994, Proposal to Operate Chilled Water Loop Year Round, Health Sciences Centre, Winnipeg.
- Parbery, D., 1994, A Water Conservation Program for the University of Manitoba, M.N.R.M. Practicum, University of Manitoba, Winnipeg.
- Perry, Robert H., 1976, Engineering Manual -- A Practical Reference of Design Methods and Data in Building Systems, Chemical, Civil, Electrical, Mechanical, and Environmental Engineering and Energy Conservation, 3rd Edition, McGraw-Hill Book Company, New York.
- Postel, S., 1985, Conserving Water: The Untapped Alternative, Worldwatch Paper 67, Worldwatch Institute.
- REIC Ltd. and Associates, 1991, Residential Water Conservation: A Review of Products, Processes, and Practices, The Research Division, Canada Mortgage and Housing Corporation, Ottawa.

- REIC Ltd., 1992, Water Conservation Every Drop Counts, Freshwater Series A-6, Environment Canada, Supply and Services Canada.
- Saunders, H.J., 1994, Saving Money by Metering Nonsewered Water, AIPE Facilities, May/June, p. 36.
- SMS (Scouten Mitchell Sigurdson) Consulting Engineers, 1996, Health Sciences Centre Central Chilled Water System Winter Chilled Water Supply - Preliminary Engineering, HSC Project No. 95-20-SP, SMS Project No. 94-101-02, Winnipeg.
- Sustainability Manitoba, 1994, Applying Manitoba's Water Policies, Sustainable Development, Winnipeg, Manitoba.
- Thomas Industries Inc., 1993, Pneumotive Brand Products -- Industrial Products Guide, Monroe, Louisiana.
- Treasury Board, 1976, Benefit-Cost Analysis Guide, Planning Branch, Treasury Board Secretariat, Ottawa.
- United Nations Environment Programme (UNEP), 1991, Audit and Reduction Manual for Industrial Emissions and Wastes, Technical Report Series No. 7, Paris.
- Vickers, A., 1994, Municipal Water Conservation: Designing a Program to Meet Your System's Needs, in Every Drop Counts, eds. Dan Shrubsole and Don Tate, Canada's First National Conference and Trade Show on Water Conservation, Canadian Water Resources Association.
- Wardrop Engineering Inc., 1992, Regional Water Supply Conceptual Planning Study: Phase 2 Progress Report, City of Winnipeg Waterworks, Waste, and Disposal Department.
- Wilson, M.D., 1994/5, Water Conservation for Hospitals and Health Care Facilities, AWWA, 533-541.
- Winnipeg Free Press, Thursday June 6, 1996, *Homes, Businesses May Foot Schneider Bill*, Winnipeg, page 1.
- Winpenny, J., 1994, Managing Water as an Economic Resource, Development Policy Studies, Overseas Development Institute, London.

PERSONAL COMMUNICATIONS

- Anderson, Chris, 1995, Director of Operations, Children's Hospital Administration, Health Sciences Centre.
- Berg, Gord, 1995, Plumbing Supervisor, Maintenance Department, Health Sciences Centre.
- Berg, Gord, 1996, Plumbing Supervisor, Maintenance Department, Health Sciences Centre.
- Bettencourt, Manny, 1996, Environmental Controls Supervisor, Maintenance Department, Health Sciences Centre.

Braun, Sheri, Director, Daycare - Children at the Centre, Health Sciences Centre.

- Good, Lenore, 1995, Director, Volunteer Services, Health Sciences Centre.
- Hatfield, Susan, 1995, Assistant Director, Central Processing Services, Materiel Management, Health Sciences Centre.
- Hickerson, E., 1995, Volunteer Services Coordinator, Cancer Foundation, Health Sciences Centre.
- Kirk, Elvera , 1995, Technology Training Program Coordinator, Cancer Foundation, Health Sciences Centre.
- Koslowsky, David, 1995, Director, Energy Management, Property Services, Health Sciences Centre.
- Koslowsky, David, 1996, Director, Energy Management, Property Services, Health Sciences Centre.
- Lehmann, Ed, 1995, Chief Operating Engineer, Energy Management, Health Sciences Centre.
- Lehmann, Ed, 1996, Chief Operating Engineer, Energy Management, Health Sciences Centre.
- Lepp, William, 1995, Senior Dialysis Technologist, Central Dialysis Unit, Health Sciences Centre.

Lorimer, Alison, 1995, Registered Nurse, Women's O.R., Health Sciences Centre.

Loveridge, Brenda, 1995, School of Medical Rehabilitation, Health Sciences Centre.

- Maslowski, Jane, 1995, Environmental Protection, Materiel Management, Health Sciences Centre.
- Nicol, Sharon, 1995, Secretary, School of Nursing, Health Sciences Centre.
- Popoff, Jacob, 1995a, Technical Coordinator, Radiology Department, Health Sciences Centre.
- Richardson, Kathleen, 1995, Production Manager Main Kitchen, Dietetics Department, Health Sciences Centre.
- Squires, Cecil, 1995, Hostel Manager, Lennox Bell Lodge Hostel, Health Sciences Centre.
- Walker, Elaine, 1996, Quality Assurance Manager, Dietetics Department, Health Sciences Centre.
- Yachemitz, Ted, 1995, Director, School of Respiratory Medicine, Health Sciences Centre.

WRITTEN COMMUNICATIONS

Brodeur, Lou, 1995, December 15, Flight-A-Round Dishwashers, Brodeur Agencies.

Hobart, n.d., FTM-800/FT-800 Series Dishwasher Specifications.

- King, Chris, 1995, December 13, Hobart C-44 Dishwashers, PMI Food Equipment Group Canada.
- MDT Technology for Life, n.d., Castle[®] M/C 3525 Washer Sterilizer Data and Specifications, MDT Canada.
- MDT Technology for Life, 1994, August 4, Proposal to Provide CV-129 Water Saver Modernization Package for Steam Sterilizers at the Health Sciences Centre, MDT Canada.
- Miller, C., 1995a, August 30, Senior Systems Engineer, SIHI Pumps Ltd., Guelph, Ontario.
- Miller, C., 1995b, September 20, Water Savings Systems, Senior Systems Engineer, SIHI Pumps Ltd., Guelph, Ontario.
- Popoff, Jacob, 1995a, Technical Coordinator, Radiology Department, Health Sciences Centre.
- Stack, Hazel, 1995, System Implementor, Adult Ambulatory Care, Administration and Support Services, Health Sciences Centre.

Van Dulman, Rick, 1995, Facilities Engineering, Health Sciences Centre.

Appendix A List of Abbreviations

List of Abbreviations

Abbreviation	Description
°F	Degrees Fahrenheit
12/88	12% Ethylene Oxide and 88% Freon
3ph	Three Phase
AAC	Adult Ambulatory Care
AC	Accelerated Current
ACR	Accelerated Current Recorder
AD	Intern's Residence
Ave.	Average
BA	Financial Services Building
СВ	Concentration of Bleed-Off
CBA	Cost - Benefit Analysis
CCF	Hundred Cubic Feet
CDU	Central Dialysis Unit
CE	Children's Hospital - E Wing
CEP	Central Energy Plant
CFC	Chloroflourocarbon
СН	Children's Hospital - H Wing
СК	Children's Hospital - K Wing
СМ	Concentration of Makeup Water
CN	Children's Hospital - N Wing
CO ₂	Carbon Dioxide
CR	Concentration Ratio
CS	Children's Hospital - S Wing

Abbreviation	Description
CSA	Canadian Standards Association
e.g.	Example
EO	Ethylene Oxide
EPA	Environmental Protection Agency
etc.	Etcetera
EtO	Ethylene Oxide
FE	Community Services Building - E Wing
FW	Community Services Building - W Wing
GA	General Hospital - A Wing
GB	General Hospital - B Wing
GC	General Hospital - C Wing
GD	General Hospital - D Wing
GE	General Hospital - E Wing
GF	General Hospital - F Wing
GG	General Hospital - G Wing
GH	General Hospital - H Wing
GPD	Gallons per Day
gpm	Gallons per Minute
HCFC	Hydrochloroflourocarbons
HP	Horsepower
hr	Hour(s)
HSC	Health Sciences Centre
Imp.	Imperial
L	Liter
LA	Laundry Building
LB	Lennox Bell Lodge
MA	Maintenance Building

Abbreviation	Description
Med.	Medicine
MH	Materials Handling Building
min	Minute(s)
MS	Thorlakson Medical Support
n.d.	No Date
NA	School of Nursing
0.R.	Operating Room(s)
ON	Cancer Building
PX	PsycHealth Building - X Wing
PY	PsycHealth Building - Y Wing
PZ	PsycHealth Building - Z Wing
rla	Rotor Locked Amps
RR	Rehabilitation Hospital
RS	Respiratory Hospital
SCD	Self-Care Dialysis Building
SMS	Scouten Mitchell Sigurdson
sq.ft	Square Feet
TW	Tunnel
ULV	Ultra Low Volume
UNEP	United Nations Environmental Programme
US	United States
V	Volts
Wk	Week
WR	Women's Hospital - R Wing
WS	Women's Hospital - S Wing
WT	Women's Hospital - T Wing
yr	Year

Appendix B HSC Water Meter Information

£,

Water Consumption - Health Sciences Centre

	CONSUMPTION (CCF)					
QUARTER	91/92	92/93	93/94	94/95		
APR-JUNE	69,616	59,692	58,227	60,067		
JULY-SEPT	85,039	73,279	67,597	72,823		
OCT-DEC	70,403	64,183	62,900	62,446		
JAN-MARCH	61,408	71,176	68,333	60,872		
PsycHealth Adjustment	-	1,049	5,156	5,662		
TOTALS	286,467	269,379	262,213	261,869		
Cost/CCF	2.44	2.64	2.96	3.27		
% Change	12%	8%	12%	10%		
	Two	262,041				

Average Cost/CCF Increase 10.6%

Appendix C Theoretical vs. Actual Flow Rates for HSC Condensers

Room	Month Observed	HP	Delta T° (°F)	Actual US	Calc. US GPM	Actual/ Calc
	•••••		(-)	GPM		
GH-195A (cu-7)	July	1.8	18	1.0	3.2	.31
GH-195A (cu-8)	July	7.6	15	2.3	14.6	.16
ON-302	July	1.7	20	.7	2.2	.32
CS-006	July	6.1	32	1.2	2.7	.44
MS-444	July	1.58	11	.8	1.5	.53
MS-635E	July	1.8	12	1	3.7	.27
MS-449	July	4.8	12	1.7	7.3	.23
RR-044B	July	3.1	12	1.1	8	.14
MS-055B	July	2	9	1.8	2.9	.62
ON-040	July	2.4	14	2.6	6.3	.41
Plumbina	November	3	49	2.2	1.8	1.24
CCMS	November	3	41	2.2	2.1	1.01
BA-001	July	12	20	12	30.7	.39
GH-014	November	10	41	6	7.1	.85
ON-302	November	1.7	49	0.7	1.0	.66
NA-154	November	5	49	1.2	3	.40
GF-120	November	5	49	2.1	3	.71
CS-006	November	6.1	61	.9	2.9	.29

Theoretical vs. Actual Flow Rates for HSC Condensers

Average .50

Appendix D HSC Condenser Loads
HSCs Condenser Loads

Room	Cooling Type	% ON
CS-111	Computer	24
ON-040	Space	44
MA-005A	Space	52
GH-195A (Garbage Rm.)	Process	52
MA-002	Space	53
GH-195A (#7)	Process	55
GC-420	Space	59
TW-37B	Space	68
GH-195A (CU-5)	Process	88
GG-347B	Space	98
GD-043 (F-37)	Space	100
GD-043 (F-38)	Space	99
WT-561	Space	14
CS-231	Space	1
NA-154	Space	81
	-	

Average 59%

62

Appendix E Water-Cooled Condensers Summer and Winter Consumption

					(A)	(B)	(C)	(D)	(E)	(F)	
		Horse	epower & U	Isage	Delta T	GPM US	Adjustment	Summer	Load	% Theory	Consumption
Room #	Unit#	All Year	Spooled	Summer	°F			Days			
GE-426				5	20	7.3	1	165	0.59	0.5	511672
GE-708		5			20	7.3	1	165	0.59	0.5	511672
GE-122A		2			20	2.9	1	165	0.59	0.5	203267
GE-118		6.1			20	8.8	1	165	0.59	0.5	616810
GH-014	#1	2.4			18	4.1	1	165	0.59	0.5	287377
011011	#2	24			26	2.8	1.	165	0.59	0.5	196258
	#3	24			11	6.6	1	165	0.59	0.5	462607
GH-195A	#5 CU-7	18			18	3.2	1	165	0.59	0.5	224294
OTF 19974	CULB	7.6			15	14.6	1	165	0.59	0.5	1023343
	CU-11	NOT OPE			20		1	165	0.59	0.5	0
	no 10	72	0.0000.0		13	15.7	1	165	0.59	0.5	1100444
	Doine	7.5			34	6.4	1	165	0.59	0.5	448589
	Dairy	12.5			11	35.8	1	165	0.59	0.5	2509294
	0.0	7.4			5	43.8	1	165	0.59	0.5	3070030
	Galbage	7.4 E O			19	81	i	165	0.59	0.5	567745
	Copeland	5.2			10	3.1	1	165	0.59	0.5	217285
	Salad	2			19	3.1	1	165	0.59	0.5	175230
	no. 7				23	2.5	1	165	0.55	0.5	0
GG-158	FC-111	Included w	/ith GG-038	6	20		U	100	0.59	0.5	0
GG-169	FC-114	Included w	ith GG-038	5	20	-	0	105	0.59	0.5	400644
GG-639		5			21	7	1 ·	165	0.59	0.5	490644
GG-346			6.3		20	7.3	0	165	0.59	0.5	0
GG-347B		36			17	5.2	1	165	0.59	0.5	364478
GG-038	SPOOLED		25		20	36.5	0	165	0.59	0.5	0
GF-632		20			22	26.5	1	165	0.59	0.5	1857438
GF-120		5			20	7.3	1	165	0.59	0.5	511672
GD-043	Supply Fan (F-37)		4.5		20	5.8	1	165	0.59	0.5	406534
	Supply Fan (F-38)		4.5		18	6.5	1	165	0.59	0.5	455598
	CR-1		2		19	3.1	1	165	0.59	0.5	217285
	CR-2		1.5		19	2.3	1	165	0.59	0.5	161212
GD-725		3			20	4.4	1	165	0.59	0.5	308405
GC-420		7.5			24	9.1	1	165	0.59	0.5	637837
GC-107		3			13	6.7	1	165	0.59	0.5	469616
GC-112		15			20	2.2	1	165	0.59	0.5	154202
CA 150		3			20	4 35	1	165	0.59	0.5	304900
NA 017		Ũ		5	20	73	1	165	0.59	0.5	511672
NA 154		5		-	20	7.3	1	165	0.59	0.5	511672
NA-134		0		73	20	7.3	1	165	0.59	0.5,	511672
TIA/37D	Supply Eap /E-13) 8	(E-14)	10	1.0	20	14.6	1	165	0.59	0.5	1023343
100370	OD 1	(1-1-4)	10		5	29	1	165	0.59	0.5	203267
100290	00.0	,			12	12	1	165	0.59	0.5	84110
	CR-2	0.0			7	2.1	1	165	0.50	0.5	147193
	CR-3	0.8			15	2.1	1	165	0.00	0.0	273359
	CR-4	2.2			10	3.9	1	105	0.00	0.5	385506
	CR-5	2.9			10	0.0	1	105	0.00	0.5	511672
	CR-6	0.8			2	1.3		105	0.00	9 0.J	164000
RS-303			1.5		20	2.2	1	165	0.55	9 0.5	104202
RS-307			1.5		20	2.2	1	165	0.55	9 0.5	154202
RR-0294	A #2	0.33			20	0.5	1	165	0.59	9 0.5	35046
	#3	1			27	1.1	1	165	0.59	9 0.5	77101
	#4	2			10	5.8	1	165	0.59	9 0.5	406534
	#5	1			18	1.6	1	165	0.59	9 0.5	112147

HSCs Water-Cooled Condensers Summer Consumption

RR-044B		3.1			11	8	1	165	0.59	0.5	560736
WS-002	-	12.9			22	13.3	1	165	0.59	0.5	932224
WR-206				10	26	11.2	1	165	0.59	0.5	785030
WS-202A		1.5			14	3.1	1	165	0.59	0.5	217285
WR-506A				10	11	26.5	1	165	0.59	0.5	1857438
WT-563		8			8	18.3	1	165	0.59	0.5	1282684
BA-001				20.7	19	30.7	1	165	0.59	0.5	2151824
ON-040		2.4			14	6.3	1	165	0.59	0.5	441580
ON-048			3		9	9.7	0	165	0.59	0.5	0
ON-059			5		9	16.2	0	165	0.59	0.5	0
ON-231		1.4		-	20	2.2	1	165	0.59	0.5	154202
ON-245		1.4			20	22	1	165	0.59	0.5	154202
ON-302		1.7			20	2.2	1	165	0.59	0.5	154202
ON-174A		2			22	2.7	1	165	0.59	0.5	189248
CS-006		6.1			32	2.7	1	165	0.59	0.5	189248
CS-105	Climate Master #1	2			17	3.4	1	165	0.59	0.5	238313
	Climate Master #2	5.5			32	2.3	1	165	0.59	0.5	161212
CS-111	Supply Fan F-95 (AC-1)	6.2			11	13.3	1	165	0.59	0.5	932224
	Supply Fan F-96 (AC-4)	4.7			12	12.2	1	165	0.59	0.5	855122
CS-116		5			13	11.2	1	165	0.59	0.5	785030
CS-231			4		9	9.7	1	165	0.59	0.5	679892
CCMS	AC Unit F-148		3		20	4.4	0	165	0.59	0.5	0
Plumbing		3			20	4.4	1	165	0.59	0.5	308405
MH-009B		2			20	2.2	1	165	0.59	0.5	154202
MH-009C		1.5			20	2.9	1	165	0.59	0.5	203267
MH-114		2			20	2.9	1	165	0.59	0.5	203267
MS-444		4.8			20	1.5	1	165	0.59	0.5	105138
MS-449		4.8			12	73	1	165	0.59	0.5	511672
MS-458A			4.1		16	1.8	1	165	0.59	0.5	126166
MS-543R		1.8			20	1.5	1	165	0.59	0.5	105138
MS-551E	Conviron #1	2.4			20	1.5	1	165	0.59	0.5	105138
	Conviron #2	3.4			20	2.9	1	165	0.59	0.5	203267
MS-635E		1.8			12	3.7	1	165	0.59	0.5	259340
MS-655A		2.4			20	2.2	1	165	0.59	0.5	154202
MS-655D		2.5			20	4.4	1	165	0.59	0.5	308405
MS-773		4.1			20	1.5	1	165	0.59	0.5	105138
MS-055B		2			20	2.9	1	165	0.59	0.5	203267
AD-202A		3			20	4.4	1	165	0.59	0.5	308405
FE-018	Copeland #1			10.2	20	14.6	1	165	0.59	0.5	1023343
	Copeland #2			77	23	6.9	1	165	0 59	0.5	483635
PX-077	•		3		20	4.4	0	165	0.59	0.5	0
PX-049			3		20	4.4	0	165	0.59	0.5	0
PX-056A			3		20	4.4	0	165	0.59	0.5	0
PY-204			3		20	4.4	0	165	0.59	0.5	0

Total Horsepower 249.33 87.9

Consumption = A*B*C*D*E*F*24hrs/day*60min/hr Gallons per Minute (GPM) = 14,544/(500*(A)) Adjustment: 0 = Summer Unit Only 1 = Operational

75.9

US Gallons/Summer	41,161,527
CCF/Summer	55,029
% of Total	21.0%

Cost (\$) \$ 182,696 •

					(A)	(B)	(C)	(D)	(E)	(F)	
		Horse	epower & U	sage	Delta T		Winter				
Room #	Unit#	All Year	Spooled	Summer	۴F	GPM US	Days	Adjustment	Load	% Theory	GPWinter
GE-426				5	49	3.0	200	0	0.59	0.5	0
GE-708		5			49	3.0	200	1	0.59	0.5	254880
GE-122A		2			49	12	200	1	0.59	0.5	101952
GE-118		61			49	3.6	200	1	0.59	0.5	305856
	444	2.4			47	1.5	200	4	0.50	0.5	127440
Gri-014	#1	2.4			41	1.0	200	1	0.55	0.5	110440
	#2	2.4			22	1.3	200		0.59	0.5	110446
	#3	2.4			40	1.7	200	1	0.59	0.5	144432
GH-195A	CU-7	1.8			47	1.1	200	1	0.59	0.5	93456
	CU-8	7.6			44	5.0	200	1	0.59	0.5	424800
	no. 10	7.2			42	5.0	200	1	0.59	0.5	424800
	Dairy	7.5			63	3.5	200	1	0.59	0.5	297360
	no. 5	13.5			40	9.8	200	1	0.59	0.5	832608
	Garbage	7.4			34	6.3	200	1	0 59	0.5	535248
	Copeland	52			47	3.2	200	1	0.59	0.5	271872
	Salad	2			48	1.2	200	1	0.59	0.5	101952
	no. 7	2			52	1.1	200	1	0.59	0.5	93456
GG-158		Included wi	th GG-038		49	0.0	200	1	0.59	0.5	0
GG-169		Included wi	th GG-038		49	0.0	200	1	0.59	0.5	0
66.639		5			50	29	200	1	0.59	0.5	246384
GG-346		5	63		49	37	200	1	0.59	0.5	314352
GG-340		26	0.0		46	22	200	1	0.00	0.0	105/08
00-3476	• • •	3.0	25		40	14.0	200	4	0.55	0.5	1057400
GG-038			20		49	14 0	200	1	0.59	0.5	1257406
GF-632		20			. 51	11.4	200	U	0.59	0.5	0
GF-120		5			49	3.0	200	1	0.59	0.5	254880
GD-043	Supply Fan (F-37)		4.5		49	2.7	200	1	0.59	0.5	229392
	Supply Fan (F-38)		4.5		47	28	200	1	0.59	0.5	237888
	CR-1		2		48	1.2	200	1	0.59	0.5	101952
	CR-2		1.5		48	0.9	200	1	0.59	0.5	76464
GD-725		3			49	18	200	1	0.59	0.5	152928
GC-420		7.5			53	4.1	200	1	0.59	0.5	348336
GC-107		3			42	2.1	200	1	0.59	0.5	178416
60.112		15			49	0.9	200	1	0.59	0.5	76464
GA-150		3			49	1.8	200	1	0.59	0.5	152928
NA 017		5		5	40	3.0	200	0	0.59	0.5	0
NA 154		5		5	40	3.0	200	1	0.00	0.5	254880
NA-104		5		7 3	40	4.0	200		0.00	0.5	234000
NA-029A			10	1.3	30	4.2	200	0	0.03	0.5	501004
1W3/B	Supply Fan (F-13) & (F-14	1)	10		49	5.9	200		0.59	0.5	301264
10039D	CR-1	1			34	0.9	200		0.59	0.5	76464
	CR-2	0.8			41	0.6	200	1	0.59	0.5	50976
	CR-3	0.8			36	0.6	200	1	0.59	0.5	50976
	CR-4	2.2			44	15	200	1	0.59	0.5	127440
	CR-5	2.9			45	1.9	200	1	0.59	0.5	161424
	CR-6	0.8			31	0.8	200	1	0.59	0.5	67968
RS-303			1.5		39	1.1	200	1	0.59	0.5	93456
RS-307			1.5		39	1.1	200	1	0.59	0.5	93456
RR-029A	#2	0.33			49	0.2	200	1	0.59	0.5	16992
	#3	1			56	0.5	200	1	0.59	0.5	42480
	#4	2			39	1.5	200	1	0.59	0.5	127440

HSCs Water-Cooled Condensers Winter Consumption

.

Coasum	$a_{\text{bion}} = A^*B^*C^*D^*E^*F^*24hrs/day$	/*60min/hr							US Gallor CC	ns/Winter F/Winter	16,482,240 22,035
	Total Horsepower	249.33	87.9	75.9							
PY-204			3		49	0.0	200	0	0.59	0.5	0
PX-056A			3		49	0.0	200	0	0.59	0.5	0
PX-049			3		49	0.0	200	0	0.59	0.5	0
PX-077			3		49	0.0	200	0	0.59	0.5	0
1 010	Copeland #2			7.7	52	4.3	200	0	0.59	0.5	0
FE-018	Copeland #1	-		10.2	49	6.1	200	Ō	0.59	0.5	0
AU-2027		3			49	1.8	200	0	0.59	0.5	0
MS-055R		2			38	1.5	200	, 1	0.59	0.5	127440
MS-772		2.5			49	2.4	200	1	0.59	0.5	203904
MO-600A		2.4			49	1.4	200	1	0.59	0.5	127440
MS-635E		1.0			41	1.3	200	1	0.55	0.5	118944
MO COST	Conviton #2	3.4 1 B			40	13	200	1	0.55	0.5	110448
MS-551E	Conviron #1	2.4			40	2.0	200	1	0.59	0.5	186912
MS-543R	Convision #1	1.8			49	1.1	200	1	0.59	0.5	135036
MS-458A		4.0	4.1		45	2.1	200	1	0.59	0.5	229392
MS-449		4.8			41	34	200	1	0.59	0.0	200004
MS-444		4.8			41	3.4	200	1	0.59	0.5	288864
MH-114		2			49	1.2	200	1	0.59	0.5	101952
MH-009C		1.5			31	14	200	1	0.59	0.5	118944
MH-009B		2			35	17	200	1	0.59	05	144432
Plumbing		3			49	1.8	200	1	0.59	0.5	152928
CCMS			3		41	2.1	200	1	0.59	0.5	178416
CS-231			4		38	3.1	200	1	0.59	0.5	263376
CS-116	•	5			42	3.5	200	1	0.59	0.5	297360
	Supply Fan F-96 (AC-4)	4.7			41	3.3	200	1	0.59	0.5	280368
CS-111	Supply Fan F-95 (AC-1)	6.2			40	4.5	200	1	0.59	0.5	382320
		5.5			61	2.6	200	1	0.59	0.5	220896
CS-105		2			46	1.3	200	1	0.59	0.5	110448
CS-006		6.1			61	2.9	200	1	0.59	0.5	246384
ON-174A		2			51	1.1	200	1	0.59	0.5	93456
ON-302		1.7			49	1.0	200	1	0.59	0.5	84960
ON-245		1.4			49	0.8	200	1	0.59	0.5	67968
ON-231		14	~		49	0.8	200	1	0.59	0.5	67968
ON-048			5		38	3.8	200	1	0.59	0.5	322848
ON-040		2.4	3		38	23	200	1	0.59	0.5	195408
BA-001		24		20.7	40	16	200	1	0.59	0.5	135936
W1-563		0		20.7	37	12.5	200	0	0.55	0.5	0
WR-506A		P		10	40	63	200	1	0.59	0.5	535248
WS-202A		15		10	43	10	200	0	0.59	0.5	04900 N
WR-206				10	55	5.3	200	0	0.59	0.5	0
WS-002		12.9			51	7.4	200	1	0.59	0.5	628704
RR-044B		3.1			40	2.3	200	1	0.59	0.5	195408
	#5	1			47	0.6	200	1	0.59	0.5	50976

 Consumption = A*B*C*D*E*F*24hrs/day*60min/hr
 US Gallons/Winter

 Callons per Minute (GPM) = 14,544/(500*(A))
 CCF/Winter

 Adjustment 0 = Summer Only
 1 = Operational
 % of Total

 Cost (\$)
 \$

8.4% 73,156 Appendix F Water Balance Accuracy Assessment

Water Balance Accuracy Assessment

Financial Services			PsycHealth Building	
Average CCE/vr	1,172		Average CCF/yr 5,40	9
Square Footage	15,186		Square Footage 179,07	3
·			Concumption Estimates	CCE
Consumption Es	timates	CCF	Consumption Estimates	7 700
Domestic Co	onsumption	653	Het Water	2 865
Hot Water		243	Condenser	
Condenser		2,877	Condenser	
	Total CCF	3,773	Total CCF	10,565
	Percent	322%	Percent	195%
Womens Hospital			Cancer Building	
Average CCF/vr	14,844		Average CCF/yr 15,57	9
Square Footage	95,029		Square Footage 99,94	1
Consumption Es	timates	CCF	Consumption Estimates	CCF
Domestic Co	onsumption	4,086	Domestic Consumption	4,297
Hot Water	•	1,520	Hot Water	1,599
Condenser		8,454	Condenser	2,757
Medical Vac	uum & Air	1,475	Medical Vacuum & Air	1,763
Sterilizer		1,690		
	Total CCF	17 225	Total CCI	= 10,416
	Percent	116%	Percent	67%
			Obildrene Hernital (CE/CS/CN)	
School of Nursing			Average CCE/vr 20.00	01
Average CCF/yr	2,699		Square Footage 11972	28
Square Footage	89,324		Square rootage	
Consumption E	stimates	CCF	Consumption Estimates	CCF
Domestic C	onsumption	3,841	Domestic Consumption	n 5,148
Hot Water	•	1,429	Hot Water	1,916
Condenser		2,393	Condenser	7,543
			Medical Vacuum & Air	5,232
	Total CCF	7,663	X-Ray Processing	155
	Percent	284%	Sterilizers	201
			Total CC	F 20,194
			Percent	101%
Internes Residence			Lennox Bell Lodge	~~
Average CCF/yr	1,316		Average CCF/yr 1,5	30
Square Footage	27,190		Square Footage 36,2	14
Consumption E	stimates	CCF	Consumption Estimates	CCF
Domestic C	Consumption	1,169	Domestic Consumption	n 1,557
Hot Mater	e.iouripuori	435	Hot Water	579
Condenser		412		
	Total CCE	2 017	Total CC	F 2,137
	Percent	153%	Percent	140%
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,0070		

Respiratory/Rehabilitation Hospital (RR/RS) Average CCF/yr 11,386

Square Footage	200,825	
Consumption Esti Domestic Cor Hot Water Condenser Medical Vacu X-Ray Proces	i mates nsumption um & Air ssing	CCF 8,635 3,213 2,834 257 482
	Total CCF	15,422

135% Percent

General Hospital Service (GA to GH, AD, MA, LB, WR/WS/WT, LA2&3, MH) Average CCF/yr 133,108

Square Footage 884,240

Consumption Est	imates	CCF
Domestic Co	nsumption	38,022
Hot Water		14,148
Condenser		46,266
Medical Vacu	ium & Air	10,371
X-Ray Proces	ssing	3,478
Kitchen & Ca	feteria	4,187
Sterilizers		14,267
	Total CCF	130,740
	Percent	98%

Sherbrook Parkade Service (CE/CS/CN/CK/CH, MS, RR/RS, ON, NA)

Average CCF/yr	77,502	
Square Footage	885,016	
Consumption Est	imates	CCF
Domestic Col	nsumption	38,056
Hot Water		14,160
Condenser		23,883
Medical Vacu	ıum & Air	8,008
X-Ray Proces	ssing	637
Kitchen & Ca	feteria	2,209
Sterilizers		975
	Total CCF	87,928
	Percent	113%

Weighted Average Based on Square Footage	121%
Weighted Average Based on CCF	108%

Appendix G Financial Services Condenser's Consumption Methodology

Methodology to determine water consumption associated with the water-cooled condenser in the Financial Services Building.

			001100		,		
Fiscal Year	88/89	89/90	90/91	91/92	92/93	93/94	94/95
April	29	62	41	42	31	38	29
лрні Мау	1/10	225	89	166	67	73	109
lune	332	215	194	226	95	164	258
	304	435	376	172	61	123	292
August	504	649	298	295	118	207	327
Sontomber	202	564	112	80	44	78	209
October	112	357	26	45	52	125	65
November	35	24	29	45	26	35	26
December	22	19	20	37	20	20	19
Januany	23	21	27	50	46	24	21
Sanuary Sobruary	25	26	41	36	44	23	30
March	27	27	88	37	56	25	22
	4704	0000	1244	1230	659	936	1407
CCF/yr	1/64	2023	1341	1230	000		

CONSUMPTION (CCF)

Since this building is affected by outside temperatures, year-round consumption was estimated using data from 1988 to present.

Financial Services Building Average Annual Consumption (CCF/yr) = 1423

Since the condenser is not operational during winter, the original two-year methodology was used.

Non-Summer Average Monthly Consumption Nov. to April (CCF/yr) = 26

Average Condenser Consumption = 1423 - (26*12) = 1111 CCF/yr