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ABSTRACT

An advanced borrndary element nethod was developed to solve

two-dimensional- elastostatic bowrdary value problerns. lfhe method

is characterized by replacing tlre physical problem with an

infinite plane problen which has ttre same solution, and for which

there exists a sirnple anal1Èical solution. This is accomplished

by distributing a fict,itious layer of stress over a tracing of

ttre boundary in an infinite plane in such a way as to duplicate

applied boundary conditions.

The current fictitious stress method was advanced by

incorporating the acsurate rnodelling of cu:r¡ed boundaries, a

higher order dístribut,ion of the unl<nown fictit,ious stress layer,

and the fonrulation of Galerkinrs method as a means of optinizing

tÌre solution. Ítrese developnents were achieved by using shape

fi¡nction representat,ions of ttre space co-ordinates and of the

r¡nlcnoryn fictitious stress distribution in the integral equations

of the boundary elenent method.

[tre isoparanetric boundary elernent algorit]rn was numerically

inplenented in a program called BEÀST. The results fro¡n several

theoretical elasticity problems showed a close correlation with

the anal1Èical solutions for both displacement and stress

traction problerns. BEAST was also found to yield far more

acsurate resuLts than ttre ctrrzent line eIe¡rent, method.

Current research has focused on the accurate solution of

mixed boundary value probleros and on ttre addition of useful

input/output features.
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CHAE|IER I

fntroduction

1.1 Boundary Elernent Methods

Most practical engineeríng problerns are írnpossible to solve

by analltical methods, Ín which exact mathematical expressíons

are obtained for the required variables. In the past, a broad

range of assunptions v¡as used to sirnplify problems to a point

where an analytical solution could be obtained. It v¡as hoped

that these solutions bore a reasonable resemblance to the

solutions of the real problern. However, with the advent of

digital computers, the ernphasis in engineering analysis has moved

towards more versatile and accurate numerical methods.

The most established numerical technique for solving

engineering problems is the finite elenent method. In this

techniqr:e, variational methods are used to obtain approximate

solutions to the partial differential equations governing the

physical process, Ítre distribution of ttre r¡n]<nown variables are

obtained as approximate values at a finite number of discrete

points over ttre entire domain of interest. In this sense, the

finite elernent technique may be described as a domain method.

ïn boundary element methods, the prirnary result is the

distribution of the unknown variables on the boundary of the

solution domain only. Thus, âDY boundary element technique may

be described as a boundary rnethod.

Boundary element methods are formulated by deriving a

boundary integral eEration which is equivalent to the partial

I



differential equation ttrat governs the physical process.

Íherefore, calculations are performed over only the boundary of

tlre domain. This effectively reduces the dimensionality of ttre

problem by one, so that a three-dfunensional volume problem

becomes a two-dimensional surface problem, and a two-dinensional

planar problen is reduced to a one-dimensional line problem.

fn boundary element rnethods, ttre interior of the solution

domain is not discretized. Íherefore, there is much less

approximation involved in represent,ing the solution variables,

and rapid variations of these variables can be resolved vetlf

accurately.

L.2 À New Concept in Boundary Elernents

Many vastly different numerical techniques have been

proposed which could be classified as boundary element methods.

Most of these were derived in order to solve specific tlpes of
problems, while others apply to general classes of problems.

fhis thesis is concerned with the boundar? element solution of

elastostatic problems. Ttris class of problen reguires tlrat the

solid body remaÍn elastic under ttre applied loading, and that no

acceleratíon of ttre body result.
The objective of this ttresis is to develop a new boundary

element method which is generally applicable to two-dirnensional

elastostatic problerns of the complexity found in practice. This

method must be accurate, simple, and must lend itself well to

numerical implementat,ion. The resulting program should run

çrickly and efficiently on a micro-cornputer and, most

importantly, should be simple to use.

2



Given these requirements, the rrfictitious stressrr boundary

element method was selected to for¡n tt¡e basis on which a nevJ

advanced formulation would be developed. This method is

characterized by replacing the physical problem wittr an infinite

plane problen which has the same solution, and for which there

exists a simple anaI1Êical solution.

Extensions to the fictitious stress method that are required

by the new method include the acsurate modetling of cun¡ed

bor:ndaries, reduction in the nunber of elements required to solve

a problen, and improved accuracy and versatility, all without a

loss of the cornputational efficiensy which distingrishes this

nethod.

3



CHAPTER, II

Literature Review

2 l- fntroduction

Boundary element researcÏr in elasticÍty has had a short

though varied history. To date, there is no single accepted

boundary element method, and this has inhibited itts widespread

use ín industry. Bor¡ndaqf element formulations have been

developed for many specialÍzed applications but the development

of generalized progirams has been sIow.

fhe mathematical foundation for everlr bor:ndary element

rnethod comes from the ttreory of integrral equations, first
investigated by Fredholn t01l in 1906. This theory was later
applied to solve integral eqr-rations in elasticity, using complex

variable theory, by the Soviet researcher Muskhelishvili ¡ozl in
1953. In 1959, Mikhlin [03] presented similar work but avoided

using complex variables, and ttrereby opened the avenue for
numerical solutions.

In the 1960rs the research into useful applications of

integral equation theory accelerated because of the advent of the

computer. In the middle of the decade two separate schools of

research evolved, distínct in their approach to solving the same

problens. One school of research developed an integral equation

nethod frorn the direct application of potential theory to

elastostatics. The other school solved ttre integral eguations

indirectly by replacing the original problem wittr an equivalent

fictitious problem for which the fundanental solutions of

4



elasticitY are aPPlicable.

2.2 Direct School- of Researclr

In L967 Rizzo [04] introduced an integral equation method

for solving twodimensional elastostatic problerns. He derived

tfie Sonigliana identity for ttre displacements inside a body, by

using Bettits identity. The integral eEration was obtained by

taking the limit of Somiglianars Ídentity for points located on

ttre boundary. Solution of these equations yielded the unlmown

stress tractions and displacements on the bor:ndary which could be

used to obtain interior values. Kelvinrs solution for a point

force in an infinite plane vras used as the basis of tJle

formulation.

The following year, Cnrse [05] presented an e>rtended version

of Rizzors theory which could soLve elastodlmamic problerns. The

integral equations were altered by applying Laplace transforms.

fn the sane year, Rizzo and Shippy [06] solved inclusion problems

using the previous integral equation nethod.

In L969 Crrrse [07] described t]re first three-dimensional

boundary elenent ¡netTrod whictr was based on Rizzors original two-

dirnensional research. Surfaces were discretized using flat
triangrlar elements and several problems were solved. Cmse and

Swedlow [08] introduced t]re first boundary elenent rnettrod for
elastoplastic problems. The elastoplastic methods have since been

advanced by nany researchers including Riccardella [09], who

applied the Von Mises criterion, and Mendelson [10], who

presented a three-dimensional formulation.

In lrg73 Cnrse tIll presented ttre first comprehensive

5



conparison bet\,reen the direct, bor:ndary element method and finite

element solutions of three-dimensional problens. In addition,

several new crack propagation problems were solved. C¡rrse

concluded that the boundary eLement rnethod ltas superior for
problems requiring good resolution. fhis was due to ttre reduced

problen size and n¡n tine.
Crrrse [12] altered his formu]ation tt¡e following year to

irnprove the accurasy of solution. Instead of using constant

boundary data over each elernent, he used a linear variation

between the end-points of elements. Ttris vlas accomplished by

formulating ttre un]<nown boundary data in terms of a double Taylor

series e>pansion and retaining the linear terms.

A significant advancement of the direct method was

accomplished by Lachat and Watson t13l in l-977. These

researchers used quadratíc shape functions to describe ttre cun¡e

of three-dimensional elements and to describe the quadratic

variation of the r:nlanown displacements and stress tractions on

the surface. Íhis irnprovement was found to increase the accuracy

of solutions and required far fewer elements to nodel a surface

accurately.

Since ttris improvement, the direct boundary element theory

applied to elastostatics has remained essentially r:nchanged. In

J-977 Brebbia [14] described a procedure for coupling thre direct
nettrod to finite elements so that a nev¡ hybrid algorithm v¡as

possiJcle. Brebbia t15l also consolidated the previous research

in a comprehensive publication on two and three-di:nensional,

linear and quadratic elements. Recently, the research into

direct nethods has concentrated on elastoplastic rnethods.

6



2.3 fndirect Schoo1 of Research

While direct approaches have remained at the fore-front, of

past research, indírect methods have evolved much more slowly.

1'hís is primarily due to a lack of any rigorous justification for

the fictitious quantities that arise in the indirect approaches.

Hov"rever, Brebbia and Br¡tterfield t16l have proven ttrat the

indirect nethod and direct method are actually equivalent by

deriving one fro¡n the other. Itre indirect ¡nethod has proven to
be a short-cut, to ttre same solution, which avoids the excessive

nathrenatical treatment. Ttrus, the resulting integral equations

are ver? much sinpler than those solved in direct methods.

The first tnre boundary element method was an indirect
approach proposed by Massonet t17l in t965. flris was the first
integral equation solution suitable for numerical implenentation.

Massonet used Flarnantrs half plane problen as a fundamental

solution. Fictitious loads of r¡nlcnown magrnitudes s¡ere

distributed around the solid inbedded in a half plane and their
strengths were detennined from the given boundary conditions. Àrt

iterative method was used to solve tÌre integral equations. Once

ttre magnitude of the fictitious loads was determined, Flamantts

solution provided stresses at any interÍor point,s.

In 1968 Oliveira [18] advanced ttris research by using

Kelvinrs solution for a point force in an infinite plane in place

of Flanantrs solut,ion. lltre fictitious forces were distributed on

an auxiliary boundary, removed some distance from ttre actual

boundary. ftris improved results near the boundary and near

corners. Hohrever, this technique applied only to plane stress

7



problens and, in some instances, the resulting system of

equations could become unstable.

Important research which contributed to the advancement of

indirect ¡nethods was done by Kupradze tlgl in 1964. He described

an integral formuation based on an elastic body sr:bjected to
periodic body forces and boundary conditions, where tt¡e static
problem was a special case. Kupradze introduced tÌ¡e concept of

elastic potentials which arise from the sirnple and dor:bIe layers

of fictitious force. In L972 Watson [20] described both two and

three-dirnensional elastostatic boundary element methods based on

Kupradze ideas of elastic potentials.

In 1970 and L97I, Banerjee and Butterfield [21] applied a

fictitious stress method to the analysis of compressible piles.
this formulation used Mindlints solution for a point force in the

interior of a seni-infinite solid as a fundamental solution.

Their approach v¡as ver? similar to Massonet I s original
formulation. In 1972 Butterfield and Tornlín l22J extended this
formulation to nonhomogeneous and anisotropic problems using a

fundanental solution for a point force in orthotropic lamina.

In the same year Benjurnea and Sikarskie [23] presented two

approaches. The first was sirnilar to Olivierats rnethod but, the

auxiliary boundary was made tangent to ttre real boundary. The

second approach was a refined version of Massonetrs method and,

alttrough verlf general, included all of the essential integral

eqr.rations of the current leve1 of advancement.

In 1976 Banerjee l24J outlined an indirect method in detail

usíng Kelvinrs solution. Tlris was an integral equation method

which e>ctended Benjumeafs work to piece-wise, nonhomogeneous,

I
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tlrree-dimensional elastic bodies using elements conposed of

multiple flat surfaces. TI¡is formulation is indicative of the

current state of research since all later develo¡xnents are

varj.ations on this technique.

Crouch 125), also in 1976, introduced ttre dísplacenent

discontinuity method uÈrich used fictitious displacements instead

of fictitious stresses. Though different, this nethod is no more

sophisticated than any previous techniques.

fn 1978, Àltiero and Gavazza l26J proposed the dislocation

dipole nethod. This nettrod used a dor¡ble layer theory, applying

one layer of fictitious body force and one layer of fictitious
displacements. This ensured ttrat all the resulting integral

equations hrere singiularr âs Ís convenient for numerical

integration. However, tt¡e algorithn used only straight line
elements and any refinements have yet to be reported.

À new concept in elements was described by Mahajerin 127) in

1983. These elements v¡ere circular and defined by a radius of

sur¡¡ature. However, problens witfr straight boundaries or corners

could not be sotved (because ttre radius approaches infinity or

zero) and special trigonernetric equations were required to

describe the boundary shape and ttre bor-mda4/ conditions. No real

physical problerns could be solved.

Though many variations on the indirect approach have been

proposed, Do researcher has advanced his formulation to a level

where it is useful for solving conplex engineering problerns. In

alt cases, the borrndary elements are straight lines (or flat

surfaces in threedi¡nensions) and the fictitious layer is

9



distributed in constant blocks over the boundary. obviously,

advancements in these areas are necessary in order to make the

boundary element nethod useful to industry.

10



CHAHTER IIT

Solutions to Problens in Elasticity

3.1 Introduetion

The foundations for the boundarlz elenent method presented in

ü¡is thesis are found in the theory of elasticity. This chapter

reviews the toþics in elasticity which are necessata¡ for a

conplete understanding of ttre bor.rndary element soluÈion.

The boundary elenent tectrnique is applicable to the solution

of elastostatic boundary value problens. Ttre physical problem

rnust be nodelled accurately by the biharmonic eE-ration,

subject to a set of continuous boundary conditions.

The boundary element nettrod is capable of solving complex

engineering problerns by superirnposing fundarnental solutions to

the biharmonic eguation. Kelvints solution for a point load in
an infinite solid forms the basis on which to develop the

essential integral equat,ions of ttris technique.

3.2 Boundary Value koblens

In order to obtain a boundary element solutionr âD

engineering problem must be posed in tÌre form of a I'boundarlr

value problemrr t281. From the physical problem, a rnathematical

model is created which simplifies though closely approximates

reaLity. The problem is ttren formulated mathernatically, usually

in the form of a partial different,iat equation. This equation is

solved, subject to certain constraints, to yield an approxirnate

solut,ion to ttre original physical problen.

consider a region of naterial R whictr is defined by a

11



boundary C as shown in figUre 3.L. External factors are applied

to the boundary such as electropotential, ternperature or forces

and the resulting conditions at some point P(x,y,z) in the

region are desired.

.v

Reg'ion

R

Ext erna I
Factors

Boundary C
X

P(xrY,z)

Figure 3.J.: À Boundary Value Problen

A partial differentiaL equation, such as Laplacers eEration,

Poissonrs equation or the biharrronic equation, describes ttre

conditions in R as a fi¡nction of position. By specifying the

conditions at all points on C to the partial differential
equat,ion, a unique condition at each point in the region may be

determined by solving the equation.

Therefore, a boundary value problem is characterízed by a

partial dífferential equatíon and a continuous set of boundary

conditions. ff ttre problen is well posed, an approxirnate

solution may be obtained for a physical problem that is well

described by this equation.

t2



3.3 Biharmonic Equation

A partial differential equation that is used to solve two-

dirnensional problerns in elasticity is called the biharmonic

equation [29].
Consider the equilibrir¡¡n of a s¡nall block with a rectangular

section of width w, heíght h and unit depth as shown in fig-rre

3.2. Tl¡e rectangular section consists of faces 1, 2, 3 and 4

which are eactr acted upon by a shear and a normal stress that

result from some applied forces.

Figure 3.2: EErílibrirrm of Srnall Block

Tire uragnitude of the stress components at ttre midpoint of each

face i are represented by (o*r)., and (orr)i ot (rO)., Íhe

force acting on any face may be approximated by nultiplying the

midpoint stress by the area of the face. If X, Y denote

components of ttre body force per unit volume, the equation of

equì'librium of forces in the x-direction is

(o**)l h- (o*")3 n+ (oxV)Z*- (o^r)Ow+X hw= 0 (3.1)
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Dividing this expression by tl¡e rectangular area hw gives

(o**)l - (or*)g + (o*u)2 - (o,r)q *X=0 (3.2)
w h

In the li¡nit as the area of the rectangular section approaches

zero, the tenm[ (or*)l - (oxx)3 lZw becomes ào**/àx and ttre tera

[(o*y)Z - (o*r)allh becomes ao*r/àt . Íhe equation of eErilibriurn

in the x-direction is ttren

ðo
XX

+âoxy+X=o
ây

(3.3)
âX

By a sfunilar derivation the equation of equilibrium in thre y-
direction is

5
ay

+ão *Y=0
xy

ãX

(3.4)

The normal and shear strains at a point are defined in terms

of the components of elastic displacement u, v as

XX
=âu e =âv

AX
yv

ay (3.s)

Y xy ây âx

Íhris definition irnplies that the cornponents of strain are not

independent, but are related by relationships called

"compatibility equat,ionsrr. Differentiating .xx twice with

respect to x and e* twice with respect to y yields

-,,'*= 
ð3u

ay2 ay2ax

ã3v

òx¿ðY

L4

(3.6)



and differentiating Y*y once with respect to each of x and y

gives

t"-
ax ây

ð3u + a3v

tx-æ æay
(3.7)

It follows that the two-dirnensional equation for compatibility

requires

ð'.*
f

*r3
ax2

,XY

ax ay
(3.8)

Generalized Hookers Iaw for plane stress 1291 relates strain
and stress components as follows

e*, =l ( oxx -vo )yv' 'YY=*(orr - u oxx )

(3.e)

xy l úxy = 2 (l+v)
E

o*y
G

Substituting these into the compatibility equations (3.8) yields

*þ,"r* 
- uorr) - 

*r(or, 
- uo**) = 2(1*')fu. (3.10)

This ex¡rression may be simplified by using the eqr:ations of
eguilibriun. Differentiating equation (3.3) with respect to x

and equation (3.4) with respect to y and sunsîing the two yields

(assuming a constant body force)

2 ð2o 
x.v

ax ay

=- ð2o
XX

,r"_
¿y2

(3.11)
tF-

which may be substituted into equatíon (3.10) to yield the

15



cornpatibilty equation for stress

( ¿2/àx2 + ð2/ayz ) ( oxx * or, ) = 0
(3.12)

In ttre absence of body forces, the equations of eguilibrium

and cornpatibility are satj,sfied if oxx , oyy and o*, are defined

in terms of tJle so-called Àiry stress function o . ltris fr¡nction

ís related to the stress tensor by

â20
ay2

o*y = - â20 (3.13)
âx ay

Substituting these relations into the compatibility equation for

stress irnplies that ttre function must sat'isfy

ð40+2aaø +ð40=g
ðx4 ax2ayz ðy4

(3.14)

Equation (3.14) is called ttre bjharmonic equation of

elasticity. A two-dirnensional bor:ndary value problern may be

solved by enforcing a set of boundary conditions associated with

ttre physical problem on the biharmonic equation. fhe stress

tensor conponents at any points may be found by integrating the

solution o in accordance with ttre definition of the stress

function. Note that ttre Àiry stress fi¡nction is a ficÈitious

quantity, without physical meaning, which is used indÍrectly to

obtaín a solution to the equilibrium and compatability equations.

3.4 Boundary Conditions

In addition to specifying ttre partial differential equation

which governs tLre problem, boundary conditions must be specified

ã2e-_
ax¿

d="vvoxx

16



to indicate the applied loading. In elastostatics, boundary

conditions are specÍfied in the form of stress tractions and

displacements.

The stress tensor components in a solid at a point very

near tF¡e boundary rnust be in equilibriurn wittt ttre e:<ternal

forces. In this sense, the e>rternal forces rnay be regarded as a

continuation of ttre internal stress distribution. lfhe exÈernal

force per r¡nit area is a vector representation of the stress

acting on a boundary and is call a stress traction. It nay be

defined in terms of the stress tensor as

l=-
XXX n + o*y n

X v
(3.15)

ty = oy* n* * oyy ny

r,¡here n* .rd ny are components of the r¡nit outward normal to the

boundary. Tfrus, the boundary conditíon at a point is reduced to
a vector from a second rank tensor representation because ttre

plane on which the stress acts is defined by the tangent plane to

the boundary.

Displacements may also be specified as boundary conditions

of an elastostat,ic problen. In particular, if the ext.ernal

forces are not self-equilibriating then tJ:e displacement of at

least one point rnust be specified for the body to remain static.

To properly pose an elastostatic boundary value problern,

eittrer a stress traction or a displacement, must be specified at,

every point on the boundary of ttre so1id. For a nixed problern,

stress tractions may be specified on some parts of the boundary

and displacernents on others, or different components of each may

be specified over the same portion of ttre boundary.

17



Sections of the boundary which are not subjected to external

forces, displacements or constraints are calIed rrtraction freerr.

fhey are defined by applying a zero stress traction so that tJ:e

boundary conditions will be continuous over ttre entire boundary.

Note ttrat an applied force is not a valid boundary

condition Ín elastostatics. A borrndary condition must be

compatible with ttre variables in ttre partial dif ferential

equation. Íherefore, forces must be divided by the area of

application and prescribed as stress tractions.

3.5 Sinqular Solutions

Àna11Êica1 solutions have been derived in many disciplines

for the case where is some sort of disturbance in an infinite
homogeneous region. These solutions are useful because they give

the effect of ttre disturbance upon any point in ttre regíon. Such

cause and effect relationships are referred to as singrular

solutions because ttrey are weII behaved everlnrhere in the region

except at tJ:e point of ttre disturbance. .A,t this point the

solution usually tends to infinity as a result of a mathematical

anomaly.

one such singnrlar solution of the biTrarmonic equation is
Ke1vin's solution for a point force in an infinite solid. In

ttris example, the disturbance is a concentrated force that

induces stress in ttre surrounding field. At the application

point of the force the stress is theoretically infinite because a

finite force is acting over an infinitesimal area. However,

since ttre region very close to the force is in fact plastically

strained, Kelvinrs solution does not apply here (see figure 3.3).

18
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Plastic
Reg i on

Figure 3.3: A Singular Solution

3.6 Kelvinrs Solution

Kelvinfs solution for plane strain [30] yields stress and

displacernent components at a point in an infinite plane when a

concentrated force is applied to another point. Figrre 3.4 shows

a plane wittrin an infinite solid subjected to a point force F at

the source point B. Assuning a plane strain condition, then any

cross-section of the solid will be representative of the whole

body. Referring to figure 3.4, the dÍsplacement components at a

field point A are described by

,* = F* [(3'4v)g - R* 9,*1 + J, [-R, o'rJ
m2G

(3.16)

,y = F* ['R* 9,y] * l, t(s-+")s - R,9,rl
"28t,
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where g (*,y) 
fiìh

ln R
X

+R (3.17)
v

9,x and 9r, âEê the partial derivatives of g(xry), G is tJ:e shear

' nodulus and v is Poissonrs ratio. These equations may be written

in tensor notation as

u u..'rJ
* F.

J
(3.18)

where [J,. are called ttre influence fi.¡nctions for displacement and'rJ

represent the coefficients of Frand t, in equation (3.16).

These funct,ions measure tl¡e contribution of the point force F to

the displacement, of an arbitrary point A.

v

v

X
B

R
X

t//
1A

o,

Figure 3.4: Kelvinrs Solution
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If the e:qgressions for displacement are substituted
/the Lanê equation that relates displacernent to stress,

following three components of the stress tensor will result:

oxx = Fx lz(1-u)g,x - Rx g,rrJ + F, [2v g,y - R, g,**J

F [2u g, R, 9 'rrl +F [2(]-v)g,

into

the

(3.le)
]. ..: i

o *, 9'rrlvy X X v v

o*y = Fx [(l-2v)g,y - R* 9,*rJ * r, [(]-2v)9,* - Rr 9,*rJ

or more concisely

(3.20)

where S.., are the influence fi¡nctions for stress.
lJK

In elasticity, boundary stresses are usually represented by

a stress traction vector ¿. . These components \,rere defined in
terms of the stress tensor in equation (3.L5). By this
definition, the Kelvin solution for stress traction is

ti = ojj * nj = a.iJ * tj (3'21)

whereT.. are the influence functions for stress traction.'rJ

Equations (3.18), (3.20) and (3.21) are expressions for the

components of displacement, the stress tensor and st,ress traction

(on some plane) at a point on an infinite plane, due to a

concentrated point force. For simplicity, the equations for

displacement and stress traction nay be written collectively as

"ij - "ijk * Fk
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B. = C..1 ]J
* F.

J
(3.22)

v"here

Bi = Displacement, or stress traction component u., , t.,
CiJ = Influence ft¡nct,ions Ui¡ , or Tij
tj = Onnlied point force

Kelvinrs solution for plane strain provides the basic
analyt'ical solution on which to deverop ttris boundary element

rnethod for elastostatics. rn fact, any fundamental singular
solution of elasticity, such as Flamantts or Mindlinfs solution,
may be used in place of Kervints solution. However, Kelvinrs
solution râ¡as selected because it yierds the most generally
applicable boundary el_ernent formulation.

22



:

CHAPTER IV

Fictitious Stress MetÌrod

'4.I Introduction

The ttFictitious Stressrr boundary elernent technique v¡as first
proposed by Massonet t17l in 1965 and has since been refined and.

generalized by researchers such as Banerjee L24) and Crouch and

Starfield [30]. In this chapter, ttre fictitious stress nethod is
developed with an emphasis on ttre physical interpretation of all
nattrematical derivations. kesently, this techniq.re is only

suitable for solving sirnple engineering problerns because of tlre

excessive computation required and ttre difficulty of formulating
problems. However, in chapters 5 and 6 ttris fictitious stress

nethod is used as a basis for deriving a new technigr¡e that can

be used to solve conplex problems easily and accurately.

4.2 Infinite Plane Model

Stress and displacenent components obtained frorn Kelvinrs

solution are valid only when tJle region of interest is infinite
in all directions and wittrout cavities. However, Kelvints

solution may be applied to finite solids or infinite solids

containing cavities by modelling these bodies as a portion of an

infinite region.

Figure 4.I illustrates the cross-section of a finite solid

that, is defined by a boundary C. Stress tract,ions and

displacements are applied to C so ttrat the solid is in a state of
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plane strain. Figure 4.1 also shows an infinite plane on which a

Lracinq of the finite solid boundary cr is drawn. If ttre

Stres s

Tract i on

Fictitíous
Load i ng

C

\-

V/

\r1
I ,t
À

C'

Infinite
Plane

Fin'ite
Sol id

FiErre 4.1: fnfinite Plane Model

boundary conditions on C can be identically natched aÈ all points

on the tracing Cr, then ttre conditions in the interior of Ct will
duplicate those wÍttrin ttre finite soIid. Íhe matching of
interior conditions is guaranteed by the uniqueness of solutions

to the biharnoníc eEration for a partícuIar set of boundary

conditions. Since the boundary conditions are reproduced, so must

all other condítions, regardless of ttre extent of tJ.e region.

In order to develop an infinite plane model, a fÍctitious
loading is applied to tÌre infinite region along Cr. This loading

is selected to duplicate tt¡e effect of boundary conditions on C
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tlrat create stress and displacement fields within the interior.

1'he distribution of fictitous loading takes into account ttre

rnaterial exterior to Cr and therefore it will not be the same as

to the real forces applied to ttre finite solid.
once the stress field in the finite solid is duplicated

within the tracing Cr, Kelvin's solution may be applied to tl¡e

rnodel to obtain displacement and stress tensor conponents at any

point wittrin the tracing. The loading applied to cr is called

fictitious because it is not part of the real physical problern.

A fictítious loading is used in ttre nodel to indirectly obtain a

solution to the finite solid problern by replacing it with an

eErivalent infinite ptane problern for which Kelvinrs solution is
applicable.

The infÍnite plane rnodel may also be used to represent a

finite or infinite solid containing cavities. fnfinite solid
problens arise in the analysis of mine shafts, wells and other

rock mechanics applications. In this case, cr traces tJle

boundary of ttre cavity and a fictitious loading is applied to
duplicate the conditions on tl¡e cavity walls. Kelvinrs solution

is then applicable to the infinite plane model to determine ttre

stress tensor and displacement components at, any points outside

the cavity.

4.3 Fictitious Stress

To create an infinite plane rnodel it is necessary to

determine the distribution of fict,ítious loading which will
accurately reproduce a given set of boundary conditions. fhe

attainable acsuracy of Kelvinrs solution is larrgely determined by
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how vrell the boundaly conditions can be duplicated.

To select a fictit,ious loading distribution it is useful to

divide the boundary tracing into a series of line segments called

boundary elements. lltre order of loading distribution, which nay

be constant, línear, quadratic or higher, is tÏren assumed over

each Índividual element. þr dividíng the boundary into elements,

the fictitious }oading distribution around the entire tracing CI

is represented by a piece-wise contÍnuous function composed of a

series of pollmonial distributions, as shown in figure 4.2.

Fictitious
Load i ng
D i str. ('

(' Boundary El ements

Figure 4.2: Piece-wise Distribution of Fictitious loadíng

Ítris discretization allows for a highly variable distribution

loadíng around the bogndary tracing whictr is governed by

number of boundary elements and ttre order of distriJcution

each.

A suitable order of fictitious loading distribution depends

rnainly on the complexity of the boundary conditions (ie. the

variability and discrete nature). Àcceptable accuracy may be

expected by choosing eittrer a larrge number of elements and a low

of
the

on
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order loading distribution (suctr as constant) or a smaller number

of elements witÌr a higher order distribution over each. Bottt of

these approaches will be considered.

Figure 4.3 íllustrates an infinite region nodel that results

fron tTre fÍrst approach. À portion of an arbitrary solid is

modelled by a series of straight line elements and a constant

fictítious loading is applied over each. Assuming tJlat a point

force is equivalent to an infinitesinal portion of a stress

distribution, ttren a point force F may be represented by

dF = 0(s) ds
(4.1)

where O(s) is a fictitious stress applied over source element b.

Substituting this point force representation into Kelvints

solution and integrating the expression over element b yields

B (s) ds .
(4.2)

J J

This integral form of Kelvinrs solution yields stress and

displacement components at a field point rar caused by a stress

applied to a cun¡ilinear element in the infinite pIane. In

effect, the stresses caused by a series of point forces along the

element are superimposed. À problem for which the integral form

of Kelvinfs solution is applicable is illustrated in figrre 4.4.

For a constant fictitious stress distribution over a

straight source element, the term O may be moved outside the

integral so ttrat equation (4.2) becomes

'l=lc
b

0
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El ement b

. Field Point a

Figure 4.3: Constant Distribution of Fictitious Stress
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Bi=0¡/ c ij ds. (4.3)
b

o (s )

v

X

El ement B

Fieid
Point A

Figure 4.4: Integral Form of Kelvinrs Solution

r.ettinq I-., = I C.. ds , ttre integral of the influence function,- ]J ,b ]J
eEration (4.3) nay be written

B
1

oj t 
i j (4 .4)

Superimposing the contribution of every source element, b to ttre

stress on a point rar in ttre field gives

B
1

(a) =

N

L

þ=r0j
I jj (4.5)

where N ís the total nrrmber of boundary elenents.

Equation (4.5) is an ex¡rression for the displacement and

stress components at a point, due to a known fictitíous stress

distribution. However, to develop an infinite plane model a

fictitious stress distribution must be determined from a ]arown

set of boundary conditions. ff field point'a' is moved to a point
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on a boundary element, ttren B becomes the ],o:own boundary

condition and öt represents the unlorol¡n fictitious stress on that
element,. rf field point rar is then moved to each and every

erement, a systen of lÍnear equations is assembled. where the

unlorowns are the fictÍtious stress components on each element.

The resulting system of 2N equations in 2N r¡¡rknowns 0. is of tïre

form

IN

X

I
B

I
o**XXX

N

N

ó
.v

N

xy

NNN
T1txy *y

NNN N] 1

I** o* * I*y oy *+

N

0y
1

öv
1l
I
vv

+
N

0x
IN

+I yx
l1
tr*

I
B
v

N

ov
NN

I
vv

Nll
+T ó +-vv 'y

l1
Ir*

NI
I

I
0x

I
0x

I
0x

* ,.. * I**
I

+IN

0x

I
óy*

1l
I*u+

B r.. +

+ ...
l¡!

*,.. * t*

(4. 6)

(4.7)

NI N

B =I +

where Bi are ttre dispracernent and stress traction boundary

conditions and lij are tT¡e influence functions integrated over

each source element.

When the field point Ís moved to an element where a

displacernent boundary condition is prescrj-bed, then

N N

+I
N

0x+ yxyxv

Bi = ut and I..
rJ I

b
U ds ,ij
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However, when the field point is moved to a stress traction
element ttre equatíon must be nodified. Application of the

fictitious stress layer causes a discontinuity in the variation

of stress across the boundary. It¡is generates a slngularity in
the stress trastion equation, tÌre linit of which is one half tÌre
fictitious stress on element rar (see ¡nge LIO of appendix for
detaÍls). Ítlus for elements where a stress traction is prescribed

B t.¡ and T ds iij (4.8)

(4.e)

elastostatic

following 5

[.. = I]J ',b

except that Ir, = 1/2 when ttre field point corresponds to ttre

source elernent b.

The equatÍons. of system (4.6) rnay be solved nunerically
using techniques such as Gaussian eliminat,ion or Cholesþts

nethod to yield two courponents of fictitious stress for each

element. Once these components are obtained, the finite solid
boundary value problem is replaced by an eErivalent infinite
plane nodel. Displacernent and stress tensor components can then

be calculated by substituting the fictitious stress components

into KeLvi¡fs solution. The effect of all fictitious stress

values on a point rar in the field is given by

u,(a) =
r o,j /o ui.j dt , oi.i (a ) = ö s ds

N

T

þ=

N

t
b=l k

b
i,i kI

4.4 Fictitious Stress Boundary Element Algorithm

The

boundary

precedÍng boundary elenent method

value problerns nay be sunmarized in
for
tfie
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stepsi

1)

2)

3)

4)

5)

Divide the boundarlf of ttre solid into straight line segments

connected end to end.

.â,ssurne a constant fictitíous stress is
element. lftre nid-point co-ordinate

represent, the entire element.

32

applied

may be

over each

used to

Apply the integral form of Kelvinrs solution to each element

of the boundary and thereby assenble a system of l-inear

eErations in unlolowns g, .
J

Solve numerically for O,

Subst,itute q.' Ínto ttre integral form of Kelvin's soution to
J

determine the stress tensor and displacement components at
any desired points.

The fictitious stress method, or singularity metTrod as it is
called by some researchers, is part of a general group of
rrindirectrr approaches. OtÏrer indirect methods include the
frDisplacement Discontinuity Methodtr of Crouch [25] rwhich utilizes
fictitious displacernent,s, and the rrDislocation Dipole Methodtr of

Àltiero and Gavanzza 126). Each of these indirect approaches is
characterized by replacing the actual problem with an equivalent

fictitious problen for which a singular solution is applicable.

fhese boundary element researchers, however, have yet to develop

advanced formulations using cu:¡¡ed elements and high-order

distrÍbutions of the fictitious quantity.



CHAE{TER V

Isoparametric Elements

5.1 Introduction

lltre boundary element nettrod developed thus far is based on

several sfunplifying assumptions whictr lfunit the accurasy and

usefulness of ttre method. By reviewing these assumptions the

algoritlun can be modified to irnprove the attainable accuracy and

to greatly simplify thre formulation of problerns.

In the fÍrst, step, the boundarlf of the finite region is
modelled by a series of straight line elements. ff the boundary

of ttre region contains ctrrlres, a ver? Iarge number of elements

may be required to accurately model the shape. This would

require a tedious problem formulation and excessive computer tirne

and memory. An obvious improvement to the nethod would be to use

sun¡ed elements that could more closely model the shape of a

complex body. A quadratic element shape is especially convenient

since one or two elements rnay be chosen to model each curye in
ttre boundarlf, as shown in figrre 5.I. Each element is defined by

two end-point nodes and one rnid-point node. Elernent eguations

woul,d then take the forrn

!=ax2+bX+c (5. 1)

In ttre second step, a constant distribution of fictitious
stress is assumed over each element. Assurning a higher order of

distribut,ion over each elenent could vastly improve the accuracy

witJ: which boundary conditions couLd be duplicated in the

33



:..

a.a

,tt:.

Quadra t î c
El ements

Figure 5.1: Quadratic Elements

Ínfinite plane. Íhis implies that ttre fÍctitious stress becomes

a function of position, or

(5.2)

Step 3 of the algorith¡u assernbles a set of linear eErations

in unknowns 0 i . A¡1 alternative procedure ttrat can optimize ttre

soluÈion is ca1led, Galerkínrs method and, is introduced into ttre

algorittun in chapter 6.

Íhe inpJ.ementation of cu:r¡ed elements and pollmornial

fictitious stress distributions can be unified by using ttre

concept of shape fi¡nctions.

5.2 Shape Functions

5.2.1 Linear fntertcolation

It is now necessar]¡ to digress from tTre theory of boundary

elernents to develop a useful mathernatical tool. It will then be
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demonstrated how shape functions can be incorporated into tÌre

existing theory to improve the surrent boundary element mettrod.

Shape functions otr more descriptÍvely, ínterpolation

functions, are derived from interpolation methods, where some

funct,ion value f (E) is determined by assurning ttre distribution
of the function between knorvn values f(ti). An exanple of linear
interpolation is illustrated in figure 5.2

r(E)
f Gz)

f(E)
f(E:)

1 F Ez

Figure 5.2 : Linear Inter¡rclatj-on

Ttre two end ¡rcints, or nodal fi,urction values, f(Er) and f(E) are

]orown and the value corresponding to some point E in between is
desired. Assuning a linear distribution of the function, two

eçrivalent ratios of the co-ordinate lengttrs are found from

sirnilar triangles to be

E -81 f -f1 (s. 3)
Ez-Et f z - f t

Solving equation (5.3) for f(E) , then
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f(E) =

f(E)=[l-E -E
Ez- Et

$z-ft) +ft (5.4)

(5. 5)

(5.6)

(5.7)

Ez'

Rearranging equation (5.4) in order to isolate the nodal

function values gives

I fr + lc - e'lfz
Ez' Et

Equation (5.5) nay be written Ín the forrn

f(E)=Lrft+12f2

v¡here L1 and L2 are linear interpolation or shape functions and

f1 and fz are nodal values. A general form for any order of

interpolation n is

f(E) =

n+l
t

i=l
o.'(e) f''

36

where n+l is ttre nr:mber of nodal values and oi = Li for linear
interpolation. Note ttrat, the shape funct,ion values are equal to

1 at the hone node (ie. node I for al ) and zero at all other

nodes. TtrÍs ís a property of all shape functions.

Now, assume tTrat ttre fictitious stress values are lslovrn at

the end-pointsr ot nodes, of a series of l-ine elements. Letting

fi = 0i (the nodal fictitious stress values) in equation (5.7),

t}¡en f(E) = O(E) is a descríption of a IÍnear distribution of

fictitious stress over an element, as illustrated in figure 5.3.

Notice ttrat the variation over ttre boundary more closely

resembles a continous distribution tTran the constant fictitious
stress model.
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Figure 5.3: Linear Fictitious Stress Distrj-bution

5.2.2 fnterpolation Formula

The lagrange interpolatíon fornula is a general ex¡lression

for interpolation of any order, of which ttre linear interpolation
functions of equation (5.s) are a special case. with this
formula, fictitious stress distributions and cu:n¡ed elements of
any order nay be defined.

Assume that Et, Ez, . . . , En+l are the co-ordinates at r,¡hich

ttre function values f (Ei) are ]olor¿n. Ítre interyolation functions

or(e) of order n must have the property ttrat

a.(8.) =0 jli; j=1,2,3, n.I J (5.g)
ot(ei) = l.

Ttris requírement states that the functions o., must be eqrral to 1

at the home point j and zero at aII other points i. Therefore, a

set of pollmomials 
"., 

(e) are required with roots

Ei, Ez, Ei-l ' Ei+l ' " "En+l
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Suctr a pollmornial must be of the forr

o,(e) = k(6 -Er)(E -Ez) ... (e -e,-1)(e -Ei*l) ... (e -r¡+l) (5.e)

where k is seLected such ttrat
pollmornial at a specific point E

o.,(e) = I . Er¡aluating this
yields

"i(Ei) = k(e.'-er)(ei-ez) (e.'-er_1)(e',-Ei*l ) ...(Ei-En+l ) (s.10)

Setting "r(Ei) = I in equat,Íon (5.10)r âs required by conditÍon

(5.8), and solving for k gives

ft= 'l
(5. 11)

(e ,'-e .'-1 )(ei-ri+l ) . . . (e .,-e n*., )

SubstÍtuting ttris e>çression for k into the polynomÍal equation

(5.9) gives tÌre result

ct.l
(E) = (E-Er)G-Ez)... (E-q.,-1 )(e-ei+l )..,(e-En*l ) (5.12)

(l-Et lC;Ez). . .(Ei-Ei-1 )(e t-Ei+t ). . .(e t-En*l )

Eqr.ration (5.12) is tTre Lagrange inter¡polation pollmornial of order

n for any points i = I ... n. Note that any polynomial of order

n may be formed by omÍtting ttre tera involving E., from botlr ttre
numerator and denominator.

Consider a linear elenent defÍned by the normalized co-

ordinate E as shown in figrre 5.4. Linear shape fi-rnctions may be

formed by setting n = I in equation (5.12). The shape functions

associated with node I and node 2 ot fiqure 5.4 are found by

setting i = I and i = 2r yielding
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ar(E) = (E - Er)
(Er- Ez)

(5.13)

az(6) = ÇE - E,)
18, - 617

(s. 14)

For a normalized element 6r = 0 and Ez = 1 which reduces the

functions to

ar (E) = (¿ - I )
10 - T','

(¿-o)
(l - o)

=l-E (5. 15)

cz(E) = (5. 16)

These correspond to the linear shape fr¡nctions of eEration (s.s)

when E, = 0 and Ez = 1.

ar(s)

\//
\-*//

>¿
/-// \-_

=Q

2G)

I

t-=l
Node 'l

Node 2

Figure 5.4: Linear fnterpolation Functions
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Íhese functÍons are plotted along the eLement, in figrure s.4. Tt¡e

linear variation of any function f(ç) may be defined by

f(E) = (t - E)f (Er) + E f(Ez) (5.17)

where E is a nomalized co-ordinate over ttre inten¡al ErEz,

Quadratic interpolation may be performed over ttre linear
normalized element of figure 5.5. rn this case, three nodes are

requíred to define tÏre quadratic functions. euadratic
inteqporation fi.rnctions are formed by settiDg D = 2 in equation

(5.12) and setting i = t, i =2 and. i = 3, yielding

"r(E) = (E - E")(E - E.) (s.18)
(Er Ez)(Er- Ea)

cx2 (E) = (E - q,)(E - E.) (s.le)
Gz- 4)(Ez- Eg)

os(E) = (s. 2o)
Ee- 6r Es- Ez

For the normalized, element E1 = 0, Ez = 1/2 and Ee = I

reduces these inteqpolation functions to

which

or(E)=282-3t+l (5.21)

az(E)=4(E-E2) (5,22)

os(E)=282-E (5.23)

The quadratic variation of any function f(E) may be defined

by
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f(E) =

3
ç

=
o,(e) f1 (5.24)

l
where ot(e) are given by equations (S.21) - (S.23).

T.t rx2 (s ) o¡[E)

I

^I ,1 3

6=0 E=l/ù 9r

Figure 5.5: Quadratic Interpolation Fr¡nctions

The shape funct,ions for cr¡bic or quartic interpolation may

be obtained by sett,ing n = 3 and n = 4 in equation (5.I2) and

reducing the e:pressions in a sinilar fashion. Note that an

interpolation of order n wilt always require n*I nodes

distributed over the elernent.

5.2.3 O¡n¡ed Elements

The shape fi¡nctions (5.21) (5.23) ¡nay be used to descriJce

ttre curve of a boundary element in ttre x - y plane. Letting

f(E) = x and then f(E) = y ín equation (5.24) then the quadratic

variation of the space co-ordinates over a normalized co-ordinate

E are

x(E) =

3
J.

i =l
o.

1
(E) x i

(5. 2s)

1

3
t
l

v(E ) --

4L

cr(e) Y.'
(5.26)



where Xi and Yi are the nodal co-ordinates specífied in some

global co-ordinate systern. Figure 5.6 illustrates ttre quadratic

variation of ttre globa1 co-ordinates x and y over the loca1 co-

ordinate E . This implies ttrat a cur¡¡ed element in x - y space

can be defined pararnetrically in terms of a normalized linear

elenent in I space.

Figrre 5.6: Quadratíc Variation of x - y

The gIobal co-ordinates of any point lying on a parabolic

cura/e formed by the tT¡ree nodes nay be determined from equaÈions

(5.25) and (5.26). Ehis Ís calculated by suruning the product of

ttre global nodal co-ordÍnates and the shape firnctions evaluated

at the corresponding local nodal co-ordinate.

5.2.4 Fictitious Stress Distributions

The same shape functions (5.2I) (5.23) may be

describe a quadratic variation of fictitious stress

element. Letting the function f(E) in equation (5.24)

fictitious stress 0(E), the relation becomes

used to
over an

be the
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o (E ) = "r(e) o.' (5.27',)
l

where 0i are the three nodal values and oi are the three

quadratÍc shape fi¡nctions. Figure 5.7 illustrates the quadratic

dÍstribution of fictitious stress as a function of the normalized

co-ordinate 1. A specifiedvalueofEbetween0and L wil1

correspond to a value of fictitious stress tlrat lies on a

quadratíc variation between t}re end nodes. Usíng this equat,ion

form, a piece-wise quadratic distriJcution of fictitious stress

may be specified around any boundarlfr v¡hich is composed of a

series of quadratic distributions over each element.

Figure 5.7: Quadratic 0 Distribution

Recognize that defíning both space co-ordinates and

fictitious stresses in ter¡ns of shape functions implies a

relationship between then. FigUre 5.8 shows a curr/ed element in
ttre x - y plane and peryendisular to ttre plane is the quadratic

distriþution of fictitious stress over the elenent. Figure 5.8

illustrates that for any E there exists a wrique value for x, Y t

and ö Ttrus each value of the parameter E specifies a single
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point on an

point.
elenent and the applied fictitious stress at that

o(E)

Fictitious Stress Distr.

"v(q)

E=1 /2 E=l

Curved Boundary Elernent
=Q

x(ql

Fígrre 5.81 Relation Between x - y and 0

5.2.5 Shape Functions as a Solution Basis

The group of shape functions associated with a specific
order of interpolation n fora an orthogonal set. That is, no two

or more shape functÍons of the same order are linearly dependent,.

Ttrus a linear conbination of tTre shape fi-rnctions cr.i may be fonned

to approximate any firnction f (E) by deterrnining the necessarl¡

coefficients f'' . In this sense, eqtration (5.24)

f(E) =

3
ç

=

o.'(u) f, (5.24',)
i I

may be viewed as a quadratic functíonal e>çansion of f(E) to

three terms. Because f(E) is formed from a linear co¡nbination of
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oi, aII values of ttre functíon f(E) mrst lie within the domain

of the three shape functions. Thus ttre shape functions form a

mathematical basis that deflnes the space in which f(q) must be.

fhe essential task required to solve any boundary value

problem using the bor.rndarlf element method is to determine the

distribution of fictitious stress. ltre abílity of this
distribution to accurately reproduce boundary conditions applied

to the so1id, governsi the aceuraqf of ttre solutions. ftre

quadratic variatÍon of fictitious stress over an element takes

the same forrn as equation (5.24), where

(5.27)

Ttris inplies that ttre variation of fictítious stress is
restricted to ttre do¡nain of tÏre shape functions. ffius, the shape

functions define the basis of tlre boundary element, solution. If
the exact value of fictitÍous stress reqr:ired lies outside thís
domain, then eEration (5.27) can only provide an approximate

solution.

Increasing the nurnber of shape fi¡nctions (and therefore tl¡e
order of interpolation) will greatly increase the size of the

solution donain. As a result, when solving a complex engineering

problem, quadratic fictitious stress elements can provÍde a more

accurate solution ttrat constant and linear elements, and cubic

elements can give a better solution ttran all three. Ttris,

however, is at the e>çense of much added computation. en

acceptable compromise betrveen the attainable accuracy and the

computational e)q)ense is found using quadratic fictitious stress

elements.
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CHAPTER VI

fsoparametric Boundary Elernent Method

6.1 fntroduction

In chapter 5, the mathenatical foundations r.rere established

for a new tlpe of boundary element formulation. It, was shown

that the variation of any function of order n nay be represented

by a set, of n+l shape functions and specific values of ttre

function. Shape fi¡nction representations are especially well

suited to numerical applications because they are defined

pararnetrically in terms of a local coordinate whích always varies

between 0 and 1. T'herefore, a point, along the local co-ordinate

between 0 and L will correspond to a point along the function.

In ttris ctrapter ít is shown ttrat a shape fi¡nction

representation of the fictitious stress can be used to solve ttre

integral equations of the bor¡ndary element nethod.. In addit,ion,

integrations over the boundary can be performed more precisely by

representing the space co-ordinates in tenns of shape functions.

within ttris solut,ion, the fict,itious stress can be given any

order of distribution over an element.

Galerkinrs method of solving ttre integral equations is also

presented in this chapter. ftris technique uses a different
applicat,ion of the shape function representation which results in
an optínized solution

Ttrese extensions to the boundary element mettrod lead to a

new metlod of accurately solving elastostatic problens which has

not, been attempted before
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6.2 Intecrral Equations

Recall frcm chapter 4 that stress and, displacenent

components in an infinite plane are defined by

0 ds
J j

where ó is the fictitious stress distributed in some manner over

a su:r¡alinear eleurent b. If the fictitious stress is allowed to
vaqf over element b, ttren 0 becomes a function of position.

Since 0 is no longer a constant over b, ít can not be taken

outside of the integral.

If field point rar is moved to any node on the boundary at
which a displacement is applied, then equation (6"1) represents

B.l =lc (6. 1)

(6.2)

b

'i = /o 'ii oi(x,Y) ds

v¡here ,j are components of the applied displacement and

0.(x,y) is ttre unknown fictitious stress distribution over b.
J

Since the ur¡J<nown quantity O appears within the integral,
equation (6.2) takes ttre for:n of a Fredholm integral equation of
the first, kind [31]. ff a stress traction is applied to field
node tat, tÏren equation (6.1) represents

.i = Jo Ttj oj(x,y) or *+ oi(a) (6.3)

where or(a) is ttre fictitious stress at field node rar. fn this
e>çression, the unknown quantity appears wittrin and outside of

ttre Íntegral so that equation (6.3) takes ttre forrn of a Fredholm

integral equation of the second kind. Notice that these equatlons

have the same form as those solved in chapter 4 except that ôi was

removed from the integral for ¡nathenatical convenience. This
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inplies that the algoríthn of ctrapter 4 is equivalent to a

nurnerical solution of tl¡ese integral equatíons. lÍfiis was

accomplished by reducing these integral equations to a system of
IÍnear equations with constant coefficients I* and unknowns 0.,

The solution of lntegral equations (6.2) and (6.3) by

forming a system of linear equatíons is no longer straight
-for*¡ard because ttre ur¡l<nor^rn O must remain wittrin the integral.
However, ttris diffictrlty nay be overcorne by incorlporating shape

functions into these equations.

6.3 SoLution of Intecrral Equations

Consider tÌre quadratic variation of fictitious stress over a

sun¡alinear elament b, gÍven by

3n
ot(e) = 

n],oi 
on (6'4)

n
where on are three quadratic shape fi¡nctions and, oi are the three

nodal fictitious stress values on an element.

e>çression into integral equation (6.I)
sununation yields

23
d1*Õror+0r03.J'J

t'¡ = /¡ ti ot c',, ds * fo ti oz cjJ ot * fu

'l

g. = f I o.1 'b - J

Substituting this
and expanding ttre

lc ds (6.5)ij

which nay be separated into three integrals over b:

2

o¡C ij ds (6.6)

Recall from chapter 5 that 0t ,02 and o3 are constant nodal values

of fictitious stress. Ítrerefore, these terms may be taken

outside of ttre integrals, giving
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B

1

0.
J I cll c

2
ds+o I azC

3
ds+o / "¡c d s (6 .7')

1
b

ij j
b

iJ J b
ij

or using the sununation convention

B 'l

3n
=f,0 j Í

b
on cjj ds r (6. 8)

n= 'l

Superimposing ttre effects of al.I source elements b on field point
rar leads to

ar(a) =

N 3n
rx0 j/oon C

1J
ds (6. e)

þ= n= l

where the quadratic varl-ation of fictitious stress over each

eLement is guaranteed by incorporating ttre shape functions into
the íntegral of ttre Ínfluence functions.

If the boundary condition at, field node taf is a displacenent

then equation (6.9) represents

u, (a ) =

N

x
b=l

3
t

n=l

n

0.
J

I
J

b
o U..n ]J ds (6. 10)

rf the boundary cor.dition is a stress traction then equation

(6.9) represents

t.,(a) =

N3
T'

b=l n=

n

r 
ti /o on Tii ds+l

z
ot(a) (6.11)

where the second te¡m is the lfunit of ttre singularity in Kelvinrs

solution for stress traction. Letting
*I..
rJ J

b
d

n
c ij ds

in eqr:ation (6.9), tÏren

a,(a) =

N

t
b=l

3n
x 0,

n=l J

*
I 

i j (6.12)

Thus, integral eqrrat,ion (6.I) has been reduced to a linear
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equation in is ttre

r¡nloror¡rn nodal fictitious stress.

If field point rat is moved to eactr and every node on ttre

boundary, then equation (6.12) assembles a system of 2N linear
equations in 2N unlmowns oj , sinilar in for:n to system (4.6).

Íhe resulting solution of this system is two components of
fictit,ious stress 0* , ey associated witJr each node on tÏre

boundary. The dispLaceurent or stress tensor components may nolt

be dete:mined at any points in the solid by srrbstituting tlre
nodal values of o into these integrat Ke1vin solut,ions:

U ds (6. 13)'rJ

S ds (6.14)
i j k

6.4

The integral ín equation (6.12)

ds (6. ]s)

is a line integral which must be evaluated over each source

element b. These eLements nay be straight or cula¡ed so ttrat a

general integration tectrnique is reErired.

The differential ds of equation (6.15) can be approximated

by the tangential straight line lengtÏr

ds=(dffi1ffi (6.16)
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fhe globar co-ordinates x and y were defined in chapter 5 as

varying quadratically over an element in ter¡ns of the parameter t
by

x(E) =

3
L

i=l
x.' c.' (e)

v(E) 
3 (6'17)

= 
.,=t, vt o't(e )

where xt and Yi are nodat co-ordinates. This definition implies

that an equivalent expression for ds in terms of E would be

¿t=@ dE (6.18)

where X È + dv/dE ís herein called the Jacobian of
transformation J Cg ) . Sr¡bstituting the shape fr¡nction e>q)ressions

into equation (6.18) gives

ds=J(E) dE=W dE (6. le)

where
3

ds = L
X l= |

(aui/aE) xi ds
3
x

i =l
(aar/a€) Yi ( 6. 2o)

v

Recognize that x and y and the Jacobian J are all- functions of E.

ÍLre influence fi¡ncÈions Cij are expressions in terms of x and y
and are therefore functions of E a1so. By definÍtionron = on(E),

so the integral of equation (6.15) may be written as

*I..'rJ j d (s ) c ij (E) r(E) dE ( 6. 21)
b

n

where all quantities are integrated witÏr respect to pararneter E, .

Because equation (6.2I) is a fi¡nction of only one parameter, this
on is said to be in isoparametric forrn.exÞressl
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Íhis iso¡nrametric fom lendE itserf werr to numerícar

integration techniques such aE simpsonrE rrrre and Gaussian

quadrature because all integration can be perfornred over a

notrralized linear element and transfomed into integration over a

sr.rn¡ilinear element by ttre Jacobian J . A Gaussian quadrature

forruulation for this lntegral is shown 1n chapter 7 and a
presentation of suitable quadrature formt¡la is provided on page

107 of the appendix.

6.5 Isoparanetric Boundan¡ Elenent Alqorlth¡n

The precedíng isoparametric boundary element method

elastostatic boundary value problerns may be sr¡¡unarized in
folJ.owing 5 steps:

for
the

1) Divide tÌre region boundary into quadratic line segments

connested end to end wittr eactr element d,efíned by tl¡ree

adjacent nodes.

2) Assume a quadratic variation of fictÍtious stress over each

element using shape fi¡nctions.

3) Apply ttre inteçfral forn of Kelvinrs solution to the boundary

tn order to assenble a systen of linear equations where the

r¡nJolowns are tåe nodal fictitious stress components o.i

4) Solve the system of linear equations for 0i .

5) St¡bstitute 0i into the integral Kelvinrs solution to
calculate tÌre displacernent and Etress tensor components

at any desired points in the solid.
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These 5 steps describe a nodified fictitious stress method

which affords many advantages over tTre linear element algoritlun
presented ín chapter 4. The equations !,¡ere derived for any

order of shape functlons so tÌrat a rinear, quadratÍc, cr¡bic or
quartic model of any physicar probrern may be constmcted. by

selecting tÏre appropriate shape functions.

6.6 Galerkin's MetTrod of Solution

The isoparametric boundary erement method, can be optimized

by incorporating an alternative numerical solution to integral
eEration (6.1). Garerkinrs netlrod t32l is a numerical techniEre
for finding an approxirnate solution to a problem posed in the

form

Lo=9 (6.22)

where L is a linear operator (such as integration or
differentiation ), çt are known quantities and ûr are unknown

functions. Assuning ttre funcÈion 6 câñ be oçanded as a rinear
combinatj.on of fi.mctions x.i , ttren

u) = ;, Ai ui ( 6.23)
l= I

where 4., are coefficients to be deter¡nined. Àn approxirnation to
t¡ is obtained fron

ui (6.24)

where n is a finite nunber.

Equation (6.22, nay be written ¡i tfre fora
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Lo-g=0 (6.25)

substituting ttre approxinatlon r,ru lnto equatlon (6.28) yierds

n
R=L(.1-A.iui)-g rc.26)

i=l I I

where R is defined as the residuar of ttre approximation and

represents the error in r,ru. since sunmation is a linear operator

and A., are constants, an alternative forrn of this ex¡lression is
I

R= Ai(Lui)-9 (6.27)

To optinize the sorution the residual R must be forced to zero.

NoÈice that R is composed of a linear combination of ui (minus a

constant g) and nust therefore be linearly dependent ott ui

Galerkinrs method is applíed by setting the inner product of
R with each u to zero:

(6.28)

Ítris inner product forces R to be orttrogonal to alr ui Two

functions can be both orthogonal and linearly dependent only if
one function or bottr are zero. CIearIy R is linearly dependent on

urand therefore, to be orthogonal, R ¡nust be forced to zero.

However, since ui is not a conplete set of ex¡lansion functions, R

wÍll not actually approach zero. Rather, R will be mini:nized so

that the best solutÍon possible will be obtaíned.

Recall that tlre quadratic distribution of fictitious stress

over an elenent was given i¡r terrs of shape functions as

n

oi on (6.2e)
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fttis e>çression is equivalent ln fom to the functional elçansion
(6.24') where ôi = ,irdn = ui and 0i = Ai . Incoryorating this
distribution into Kelvinrs sorution resurted in ttre linear
equation

ar(a) = (6. e)

ft=
n
0.

J
ds - B.'(a)

3n
nl, 

ti /n on ciJ dt

/o on cij
N

x
b=l

N

x
b=l

which rnay be rewritten as

3
x

n=l
(6. 3o)

(6. 31)

(6.33)

Applying Galerkinrs mett¡od as in equation (6.29) requires

< R, dn > = Q

St¡bstituting tÏre residual into the inner product and rearranging
gives

/u o, er(m) dsu = /
n
tJ /o on Cij ds' dsu 5.32)

m=lr213

0
m

N3xx
b=l n=la

where rar nor^r represents a field eLement. Because oi are constant
nodar values, they nay be taken outside of the integrar so ttre

relation becomes

n
tJ o

m
o C..n ]JI ct

m
B i (m) ds

a

N

t
b=l

J
a

3
x

n=l
I ds' dsu

a b

m ='l , 2, 3

rf fÍeld erement raf is moved to each and every element on

the boundarlr, then equation (6.33) assenbres a system of rinear
equations in unJorowns o, . upon solution of the system, ttre
values of Õ may be sr¡bstituted into equations'(6.13) and (6.14)

to calculate displacernent and stress tensor components at any
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prescribed field points.

Reca1l that the previous isoparametric algorittrm matches ttre

condÍtions¡ on ttre bor¡ndary of the real problen witïr tf¡ose on ttre

tracing ln ttre i¡rfinlte plane at the nodes onry. conditions¡ on

the boundary between the nodes are allo¡¡ed to vary freery, ttrough

it is assuned ttrat there are no large oscÍllations. Galerkinrs
metfiod offers an inrprovement in resurts by giving ttre boundary

conditions and tÌ¡e fictitious stress the same order of
distribution. rnstead of rnatctring discrete points exactly,
GalerkÍnrs method approactres the er<act conditions on ttre boundary

of the sotid at everl¡ point. Figure 6.1 illustrates ttre

difference betrseen point natctring ttre two sets of boundary

conditions and Galerkinrs method of evenry distributing ttre

error.

Boundary
Condition

Point Matched
Sol 'n

Boundary Elements

Figure 6.1a : Point ldatching
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Boundary El ements

Boundary
Cond i ti on

Galerkin's
Method

----

Figure 6.1b : Galerkints Mettrod

Garerkinrs method, ín general, will not give an exact,

solution because the set of erqlansion functions u., is incompJ-ete.

It ltas stated in section 5.2.5 that ttre shape functions define
the do¡oain in whidr the approxinate solution must lie. rf ttre

exact solution lies outside of ttris doruain, Galerkin's method

s¡ill determine the projection of the exact solution on the shape

function domain. A.s an illustration, consider the case when

there are trvo shape fi¡nction o1 and o2 which define a plane in
which all bor-rndary element solutions must be for¡nd (see figrure

6.2). Point A is tt¡e location of the exact solution which does

not 1ie in the st-d2 plane because it contains a component in the

z-direction. Galerkinrs method will select point, At as a best

approximation to A wÍthin ttre domain of ttre shape functions. Ífie

length AÀt is tÏre smallest distance between point À and the a1-a2

plane and represents the nagrnÍtude of tlre residual R.
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Figure 6.2: optimization Using Galerkinrs Method
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CHAPTER VII

Numerical fnplementation

7.I Introduction

The isoparametric boundary element theory is designed, to be

readily prograrnrnabre. Ítris theory may be progranuned in any

number of ways, 'depending on tlle flexibirity, accuracy and speed

required.

In ttris chapter, ttre isopararnetric boundary elenent program

BEÀsr (for Boundary Erenent Anarysis of srress) is described.

Íhis program uses cun¡ed elements and quadratic fictit,ious stress

distribut,ions, and the point natching technique to assemble the

linear equations. The theory has been successfully progranuned in
FORTRAN' BASIC and Pascal and used to solve several theoretical
elasÈicity problerns. Ítre resurts from these tests are presented

in order to demonstrate ttre validity of the theory and to
evaluate the attainable accuraqf and speed of the program.

7.2 rrBEASTrt - An Isoparametríc Boundan¡ E lement Procrram

7.2.L Prosram Stmcture

The boundary element program BEÀST consists of 7 subroutines

plus a control progran. ffiese subroutines perform ttre following
functions:

i) Read in ttre input file

ii) Initialize the integration data and shape functíons

iii) Generate Jacobians and outward normals
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iv) Generate influence coefficient matrix

v) Solve linear equations

vi) Calculate the stress tensor and displacements

vii) Print-out results

rn addit,ion ttrere are two graphics routines v¡hich are used to
draw ttre bor-rndar:r element mesh and to graph the solution on ttre

screen.

The TURB0 Pascar version of BEAST, wittrout ttre graphics

routines, occupies about 23k of memory on a diskette. Ttre amount

of availabre RAM required to n¡n ttre progran depends on ttre

number of nodes N, since a 2N x 2N rnatrix is generated by ttre

program. A listing of BEAST is contained in the appendix on page

1r3 .

The function of ttre fírst subroutine is to read in the

parameters which describe the boundary element moder, the

boundary conditions and tTre required solution points.

subroutines 2, 3 and 4 are used to evaluate the isoparametric

integral

"n(e ) e 

'r(e) 
J(E) dE ( 6. 2r.)

Wittrin this task, sr¡broutine 2 iJtitializes the Gaussian

quadrature integration d,ata, subroutine 3 determines on(e) and

J(E) , and subroutine 4 calculates Cij(E) and integrates ttre

product over the boundary elements.
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Sr¡broutine 5 is a linear equation solver whlch solves tÏre

system formed by tÏre coefficient ¡natrix and the boundary

condition vector. Finally, the last tv¡o sr¡broutines calculate
the stress tensor and displacement components at ttre prescribed

points and write the results to a file.

7.2.2 Input File
The input flle contains the infomation necessar:f to

accuratery describe a boundary value problem. lltre progran BEA^sr

is accompanied by an interactive data preparation progran called
BEDÀP (for Boundarlf Elenent DAta P:reparation) which prornpts ttre
user for the infor¡nation and creates a proper input file. A

listing of BEDAP is contained in the appendix on page I37.

The data requÍred to sorve a probrern is divided into four
parts. The first section consists of the controt data and

material propertíes including ttre following:

i) Title of the problen

ii) Name of ttre output file
iií) Nr¡¡nlcer of boundary nodes

iv) Youngrs modulus E

v) Poissonts ratio v

The second section contains ttre x and y co-ordinates of tÌre
nodes. For a contour whictr describes the exterior boundary of a

problen the nodes must be ordered in a cloc]<r¿ise nanner.

Conversely, the nodes on the boundary of a cavity must be ordered

counter-cloclcwise. Íhe order of the nodes is used by ttre program

to determine ttre direction of the unit outward normal, which is
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contained ln Kelvinrs solutíon for stress traction.
lÍtre ttrírd section contains the components of ttre boundary

conditions applied to eactr node. Ítrese must be either a stress
traction or a displacement. Finally, ttre last sect,ion consists

of the co-ordinates of points in the f.ield at which solutions are

required.

When the progran BEA.ST is nrn, all input information is
echoed to the output file. To ensure ttre location of ttre nodes

wilr accurately describe the shape of the boundary, BEAsr wirr
draw the model on ttte screen. lftre drawing routine uses quadratic

shape fi¡nctions to interporate points between ttre nodes as is
done by the calcrrlations wittrin the program. Therefore, this
picture ís an accurate description of how the progran interprets
the shape of tÏre boundary from ttre prescribed nod,al co-ordinates.

A more detailed presentation of how to model a physical
problen using boundary elements is presented in sect,Íon 7.3.

7.2.3 Intecrration. Data

The ísoparametric integrat of equation (6.21) is evaluated

by BEÀST using two tlpes of Gaussian quadrature. Integration
over each element is perfor.rued over the inten¡al O to I and

scaled to account for the actual size and shape of the e1e¡nent by

the Jacobi.an J.

When integrating Kelvinrs solution over the element which

contains the field node far as a rnid-point node, care must be

taken to avoid tttis point as a sarnpling point of ttre Gaussian

quadrature. At tttis point Kelvinrs solution contains a

singrlarÍty whictr can not be integrated weII using Gaussian
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quadrature. lÍtrerefore, 5 point quadrature is used over two

intenrars, one on either side of the field nod,e. rrtre tv¡o

solutionE are tÏren surmed to yield ttre integral over ttre entire
erement. To complete tT¡e lntegrar, the linlt of ttre singurarity
must be added, since this port,ion of ttre integrar was avoided.

Ttre thit of the dÍsplacenent singurarity is o and ttre linit of
the stress traction singularity is L/2. A1r other integrars are

evaluated using 10 point quadrature over the entire erement.

In order to use Gaussian quadrature for evaluating ttre
integrar (6.21), the shape functions and their derivatives are

evaruated at all Gauss sampring points for both 5 and L0 poínt
quadrature.

7.2.4 Jacobians

In the ttrird subroutine, the global co-ord.inates of all
Gauss sanpling points (or Gauss points) are calcurated for use in
evaluating ttre isoparametric i.ntegral. llhese are interpolated
from the nod.es assuming a quadratic curnre of the erement. co-

ordinates are determined from

x(E) = ", 
(e ) x., ( 5. 25)

y(E) = o.'(e) v.'
(5.26)

1 I

3

x

3
T

i=l
where

which

X and Y are the global co-ordinates of the three nodes'i

compose an element and "r(f) are the three quadratic shape

funcÈions evaluated at the Gauss points E.

In addition, the Jacobians are determined for every element

and evaluated at each Gauss poínt for use in the isoparametric
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integral. Ttrese are calctrlated from

J(E) = rßi xj :ßi Yj (7.1)+

where ßi are the derivatives of the shape fr¡nctions oi wíth

respect to E. Note tt¡at one set of co-ordinates and Jacobians

is required for each t)æe of Gaussian quadrature.

The unit outward normals are also initialized in this
routine for use in ttre stress tractíon equations. The norrnals

are calculated from the Jacobians using

n
v

j)l-
J

n

rì=
X

where Jn are the Jacobians evaluated at the nodes and ¡y,

AX

J
n

(7 .21

^x 
are

ttre rise and run between adjacent nodes.

7.2.5 Influence Coefficient Matrix

After reading in tlre problem and ínitializíng ttre

integration data, the program begins to assemble the system of
linear equations. Trro equations are formed for each node on the

boundary, one for the x-component and one for ttre y-component.

Firstly, node I becomes the field node and ttre isoparametric

integral is evaluated over each and every element around ttre
boundary. If a boundary condítion at the field node is a

displacement, then the following Gaussian Quadrature formulation

is used:

* l0Iij = 
rll 

r^lt(6) on(e) urr(r) ,t(e ) (7.3)

where wt are the weights for integrat,ion, E are the Gauss
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sanpling points , n J.s the source node (L,2,3, and r is the

distance from ttre fierd point to the Gauss point,. Equation (7.3')

represents the influence of one source element on the field node.

Ttre lntegral is evaluated over each erement using ttris
for¡nulation except the element whicTr contains ttre field node as a

nid-¡rcint node. For this case, ttre integration fonnula is

(7 .4)

+(

where E' denotes two sets of 5 point Gaussian quadrature sampling

points, one from 0 to 0.5, the other from 0.5 to I.
Next, node 2 becomes the field node and if a component of

tfie boundary condition is a stress traction, then ttre Gaussian

quadrature formulation is

* lo
I,,= r t,tt(E)"n(E) Tij(r)J(E) (7.s)1J 6'=l

For the case when rar is a rnid-point node on a stress traction
element,, the integration is performed over ttre tv¡o inte¡r¡als
using

*I..
rJ

5

sl=l 
hlt (E' ) an (t I ) ui¡ (r') J (E'))

l0
¡ l,lt(E') o_(E') Uij(r')J(E,))

E'=6 ll

5

EI=l 
wt (E') an(E' ) Tii (r' ) J (e' ) )

l0
1

E 
t=6

*I..rJ
(7.6)

+[ l^lt[q') on ij[q')T (r') J(E')) + 1/2

where t)te l/2 accounts for the integral over the singruJ-ar point.

The fÍeld node is moved to eactr and every node on the

boundary and tÌre solution of ttre integrals ti¡ are stored in a

natrix. fhe final systern of equations is stored in the fora
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!
I

|i h]
(7 .71

XX xy

J
I Iyx yv

where Õ* , 0y represents all of the x and y components of tJre

unlorov¡n fictitious stress, and B* and B, are the corresponding

boundary conditíon components at the nodes.

7.2,6 Solving Linear Equations

The program BEAST uses a nethod attributed to Cholesþr

[33] to solve the system of linear equatíons (7.7) for ttre

fict,itious stress components. Ítris method has proven to be the

most economical of all elimination methods in terms of computer

tine and memory.

Cholesþrrs method is useful for solving a problem of the

form

Ax=b (7.8)

where A is a square matríx of coefficíents, b are given numbers

and x is a vector of un]<nowns. lthe rnatrix A can be decomposed

into the product of two matrices such that

A=LU (7.e)

where L and U are lower and upper triangrular matrices. ftrus,

equation (7.8) may be represented by

LUx=b. (7. ro)
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PrenultÍplying both sides of (7.10) by ¡-l gives

Ux=z where z = L- I b (7. lL)a

Íhe system of equatíon (7.8) is sorved by first deterrnining

from

z

LtZ=b (7.L2)

and then determining x from

lJx=2. (7.13)

since L and u are triangular matrices these equations nay be

solved directly through back sr¡bstitution. Therefore, no roet

operations are required.

choresþrs netÏrod is especiarry economicar of computer

memol-!¡ because the u and L matrices may overlay the A matrix
storage rocations. rtris rnay be done since there is no need to
store ttre zeros and ones of the u and L matrices. Ítrerefore, no

extra arrays in addition to A, x and b are required to sorve a

system of línear equations.

7.2.7 Obtainincr Field Solut,ions

once ttre fictitious stress components at each nod.e have been

determined, ttre problem is essentially solved. Íhe stress tensor

and dispracement conponents can be calculated at any point in ttre
field by integrating Kelvints solution evaluated at the polnt.
These are determined from
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NE IO
u*(a) = r r wt(E) on(E) uij(a) oj(a) J(E)' b=l E=l

(7.L4)

o..(a) = r x t^lt(q) on(e)Si¡¡tu) oO(a) .ltE)r(J b=l t=l rl rJK

where NE represents tÏre number of elements. Ifiese equations sum

the effect of the fictitious stress distributions on each element,

upon a point rar in ttre field.

7.3 Boundary Element Mode1s

Boundary element moders of physicar problems are much

simpler and more versatile than rnod.els used in finite element

techniques. Íhus, the irnportant advantage of using boundary

elements, and in partisurar isoparametric erements, is that a

minirnurn amount of informatÍon is required. to solve a physical
problem accurately.

once a probren is posed in the form of a boundary value
problem, a suitabre rnoder must, be created. The ínformation
required to formulate and solve a problem using the isoparametric

boundary element technique is as follows:

i) Íhe location of points, witTrin an arbitrary co-ordinate

system, which are indicat,ive of the general shape of
the boundary(s) .

ii) lltre components of the boundary condítions at, each of
these points (displacements and stress tractions).

iii) Properties of the material (8, v ).

iv) llhe location of points at which a solution is required..

0NE
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The quarity of a boundary erement sorution may be increased
by increasing the nr¡rnber of boundary nodes (until affected by

computer round-off error). Holvever, for most problems the number

of poínts required to describe the shape and the variation of
boundary conditions is a sufficient nr.rmber of nodes to obtain an

acceptabre sorution. Ttle optinun number of nodes may then be

found by increasing the density of nodes until the solutions
converge to a single set of values.

As an illustrat,ion of a boundary erement model, consider the
case of a bracket, used to connect, two members of a rinkage, as

shown in figure 7.1. lllre outer halves of each hole are subjected
to a specífied d.istribution of force. Íhe bracket is made

of steel v¡ith material propert,ies E = 3OTOOO ksi, v = 0.3 and a

2t' 1/2"

1 /2"

Figure 7.1: Connecting Bracket
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force of 100 Ibs. ís applied,

Before a boundary element model can be created, ttre problem

must first be posed as a boundary value problem. The problen

contains two axes of slanmetry so that onry one quarter need be

considered. Next a suitable co-ordinate system must be selected,

which is chosen to originate at, the centre of ttre hole.

Boundary condítions must then be determined from the applied

loading. Assuming the force is appried unifor¡nry to a contact,

area of. I/4 the hole circunference then

E = P/ r rd G/2) = Ioo/ r (L/z) (L/2)Q/z) = 254.6 psi

is the stress traction applied radially over L/4 of. the hoIe.

The link is allowed to move freely along the axes of symrnetry

but is constrained across these lines, and the remainder of
the boundaqr is traction free. Thus, the boundary varue problem

becomes as shown in figure 7.2.

254.6 psi

0r0

Figure 7.2: Boundary Value Problern Representation
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To create a boundary element model, points on the boundary

rm¡st be selected which are indicative of the shape of ttre

bracket. Each isoparametric element consists of three nodes

which represent a parabola. Therefore, an element should not be

bent, around a right angle since ttris is not welt modelled by a

parabola. Given ttris requirement, the ninjmun number of nodes

needed to describe this problen is 14 (ie. 7 elements), as shown

in figure 7 .3.

4 5

3

6

2

ll
1? l0

I 7
l4 l3 98

+
+

+
+

Figure 7.3: Bor:ndary Element, Model

trhe nodes are numbered in a cloclauise order to specify an

external boundary. The co-ordÍnates of these points constitute

ttre nodal information. Notice tÏrat, it is imperative to place a

node at ttre junction of two different boundary condit,ions.

Next, the boundary conditíons must be prescribed at every

node on the boundary. As a result of symnetry nodes l, 2

and 3 have zero displacernent in the x-direction and nodes 1, 7 |

8, 9, 13 and 14 have zero displacement Ín ttre y-direction. Nodes

2 and 3 have zero stress traction in the y-direction and nodes
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7, 8, 13 and 14 have zero stress traction in the x-direction.
Nodes 4, 5, 6, II and 12 are unaffect by loading and are

therefore tract,ion free. llhe loading is applied to the hole such

that node t has a 254.0 psi stress traction in the x-direction
and node 10 has a 180.0 psi stress traction in botÌr the x and y-
directions.

In some instances when a stress traction is applied to a

coïner, it is useful to place an extra node very near the corner

and to apply the load here instead of ttre corner. This is
because the ouÈward normal, and therefore ttre direction of ttre

stress traction, is not weII defined at corners.

The material properties required for a solution are those

used in Kelvinrs solution, In general, youngrs modulus E and

Poissonrs ratio v are specified from which tÌre shear modulus G

may be calculated. If tÌre problen is best modelled as plane

stress then v' should be specified where

t-v -¿
l+v

The location of points where the solution is reguired must

ttren be determined. For this problem, the location of ttre

maximum stress should lie somewhere to the right of a vertical
line ttrrough the hole cenÈer. Ítrus, field points should be

selected in this area such as the poÍnts marked by r+r in figure

7 .3.

All of ttre information required to solve this problem is
listed in figrure 7.4. Alternative designs of ttris bracket may

easily be tested by changing the locations of ttre nodes. For

example, to test the effect of different hole sizes on the stress
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around the hole, nodes 9-13 may be moved outward and inward fron

tTre origín. By rnoving nodes 3-7 the effect of different, widths

may also be tested.

Figure 7.4: Proble¡n fnfonnation

7.4 Proqram Applications and Results

7.4.L Kelvin Solution Test,

The boundary element program BEAST v¡as applied to tTre

problem of a point load in an infinite plane to determine whether

the results could match those predicted by Kelvinrs solution.

Íhe results fron this test would not confirm ttrat BEAST could be

used to solve any elastostatic boundary value problem, but would

confirm that the entire algorittm could duplicate the results of

ttre fundamental solution on which it was based.

Since a point load in an infinite plane is not a boundary

value problen, a ne$r problern with approximately the same solution

\¡/as required. A method of converf,ing a point load problem into a
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Node x BC-x BC-yv
1
2
3
4
5
6
7
I
9
10
l_1
t2
13
I4

-2.
-1.
0.
0.
l_.
0.
0.
0.
0.

-0.
-0.

0 0.0 d
5 0.0 d
0 0.0d
o 0.0 t,
0 0.0 t
625 0.0 t,
0 0.0 t
0 0.0t
0 254.6 E
25 180.0 t
5 0.0t
2s 0.0 t
0 0.0t
0 0.0 t

0.0 d
0.0 t,
0.0 t
0.0 t
0.0 t,
0.0 t
0.0 d
0.0 d
0.0 d
0.0 t
0.0 t
0.0 t
0.0 d
0.0 d

0
0
0
0
0
625
25
875
5
25
0
25
5
25

0
0
I
I
l_

0
0
0
0
0
0
0
0
0

E = 30 806 psi PR = 0.3,



displacement boundary value problem lvas developed by Allan
Dolovictr aÈ ttre university of Manitoba. Figure 7.s illustrates a

point force of 100 lbs in an infinite plane. Surrounding tTre

load is a ring at a radius of 0.1 inches on whicÌr 4 points are

rnarked. Kelvints solution for displacenent was used to deterrnine

Figure 7.5: Ke1vin Solutíon Test

the displacernents of these 4 points, which vrere then used as

boundary conditíons on a small hole in an infinite p1ane. Ttris

boundary value problern was used as an approximation to Kelvinrs
problem.

The boundary element model of this problern consisted of two

approxirnate semi-circles as illustrated in figrrre 7.6a. ftre

problen was solved by ttre program BEjA,ST and the stress tensor and

displacement componenÈs were determined at 4 points (4, B, e, D)

at a radius of, 2 inches. Ttlese results are tabulated in figure

7,6b along with ttre results predicted by Kelvinrs solution.

The maximum error in the solution found by BEAST was about

2.5 t. Most of ttris error was attrlbuted to the inexact model

used to approximate Kelvlnfs problem. Both tÏre displacements and
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Figure 7.6a2 BE Model of Kelvin SolutÍon Test

Fignre 7.6b¿ Ke1vin Solution Test Results

Pt Kel vin's Sol 'n BEAST % F.rror

u
X

x l0a inches

A1

A2

A3

4,,T

-1,4077

-7. 091 9

-1 .4077

-7. 091 9

-1 ,3722

-6.921 4

-1.3722

-6.9214

2.5

2,4

2,5

2,4

o
XX

( Þs1 )

A1

A2

A3

4,.
I

-13.642

0,0

13.642

0.0

-13"329

0.0

13,329

0,0

2 I 3

2,3
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stresses were found to be in close agreement wittr ttre fundamental
solution.

The resurts of this test courd not prove the generarity of
ttre isoparametric bound.ary element solution technique. However,

they did prove ttrat tÏris method courd sorve at reast one

elastostatic problern accurately.

7 .4,2 Riqid Díe Disp1acement Problem

The successful results of the Kelvin solution test were used

as a premíse to begin sotving theoretical elastostatic boundary

value probrens. Ttrough of no practicar importance, these
problems were chosen because analyt,ical solutions exist which
could be used to evaluate the results of BEAST.

Ehe first theoretÍcal problem solved.by BEÀsr v¡as ttre
indentation of a half prane by a rtrbricated rigid die. This
boundary value problen and ttre accompanying boundary conditions
are shown ín figure 7.7.

The probren is characterized by a rigid block, tying on the
surface of a half plane, whictr is given a verticat dispracement

of -u. The die is assumed to impart no shear stress on the harf
prane and ttre surface of the half pIane, not under the die, is
assumed to be tractÍon free. The anallt,ical solution for the y-
component of displacernent along tt¡e surface is t30l

u --u l*l < ¡ , y = o
v

u =-uIl-ln(x/b+{TTFJ)7 l*l >- b , J = o
(7. Is)

v lnZ
where displacenents beneath ttre die are measured relative to the

displacement of tTre surface at a point x = 1.25b.
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u
-J-

u -*þ- bl*- --l

Figure 7.7: RÍgid Die Problen
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To approximate this probrern, a botundary erement moder of a

thin crack 1n an infinite prane was usedr âs shown in figure
7.8b. For this problen, the two stress traction boundary

condit,ions could be elininated since tt¡ese vrere irnplied 1n ttre
moder. Each crack surface sras modelled by I isoparanetrl_c

erement for a total of 4 nodes. .These nodes vrere given a total
displacement of -0.1 inches and the displacements $rere measured

at points corresponding to the surface of ttre harf plane.

Figrure 7.8a shows a graph of the dispracenents of the harf
plane surface as a fraction of the applied displacernent for both

the 2 element BEAST solution and ttre analyt,ical solut,ion. Ttre

results from BEAST show a close correlation between displacements

which gradually diverge from ttre exact'sorution at distances
a$tay from the die. At a distance of 2 crack lengttrs from ttre
origin, the error v¡as for¡nd to be about 29 t . The model

accurately predicted ttre locat,ion of the point of zero

displacernent, at, x = l.ZSb.

This test $tas repeated using a 4 element model of ttre crack
surfacesr âs shown in figure 7.9b. Figiure 7.9a shows that ttre
addÍtion of these elements produced results much closer to ttre

exact solutíon at points away from ttre die. At a distance of 2

crack lengttrs from the origin ttre error was reduced to about g t.
Finally, an 8 element nodel of the craçk $ras tested, as

shown in figure 7.IOb. fhe results in figure 7.10a show an

excellent correlation between results. fn fact, between x = l.4b
and x = 1.7b the exact solution $¡as calculated by BEAST. At 2

crack lengths from the origin tTre error was reduced to about 4 t.

78



Bound ary Element Analysis of STres s
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figure 7,8a: 2 Element Die Results
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Figure 7.8b: 2 Element Die Model

79



Boundary Element Analysis of STress
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Figure 7.9b2 4 Element Die Model
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Boundary Element Analysis of srress
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figure 7.IOa: I Element Díe Results

figure 7.10b: I Element Die Mode1
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Notice how the cutr/es of figures '7.8a - 7.IOa converge

towards the exact solution wittr the addition of more elements.

ofcourse the exact solution could never be produced at all points

because the models used are onry approxirnations to the real
problem.

The Erality of results at points near the edge of the die
did not, significantly improve with ttre addition of erements.

This effect is a by-product of the 'indirect boundary erement

technique. The fonnulation of thre fict,itious stress method.

required ttrat, the fictitious stress layer be distributed in a

piece-wise continuous manner over the boundary. As well, the

numerical irnplernentatíon assumed that thre fictitious stress cou]d.

be applied at discrete points arong each element,. The assumption

that thís is equivalent to ttre effect of a continuous

distribution of fictitious stress over the boundary courd. onry be

made by invoking saÍnt venantrs principle t341. Ítris principle
states that, for points sufficiently far from the point, of
application of the load, ttre stresses and displacements at these

points are independent of ttre manner in which tJ'e load. is
distributed. Since Saínt, Venantts principle does not apply to
points close to the application points of the fict,ítious stress

layer, neither does tÏre isoparametric boundary element method.

The extenÈ of this limitation of the method is ex¡rlored in
ttre next sect,ion and ttre available means of overcoming this
problem are discussed in chapter 9.
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7.4.3 Círcular Hole in an Infinite plate Under Internal Pressure

The isoparametric algorithm was tested again by sorving tÏre
probrem of a circurar hole in an infinite prate subjected to an

internal pressure. Ttre analyt,ical solution to tÌris problem t35l
for the radial stress dístribution is given by

n'=-R2P-r7 (7. L6)

where R is the radius of ttre hole, p is ttre internar pressure and

r is the radius of an arbitrar:l'point.
The first boundary element mod.er created to sorve this

probren contained 4 erernents, as shown ín figrure 7.rlb. Ítre

radius of ttre hore was chosen to be 3 inches and a zo ksi
internar pressure was applied to the boundary. Ttre radiar stress
üIas measured at 0.I inctr inten¡als betr,¡een a radius of 3.1 inches

and 4.5 inches.

The computer tírne on an rBM pc-xr required by BEAsr to
obtain a solution at t5 points was about, 2l- seconds. Íhe results
frorn this test as well as the anarlt,ical solution are plotted. in
figure 7.11a. Close to ttre botndary (r = 3.I inctres), the

solution from BEAsr was found to be in error by L7.6 t. This

error decreased steadily to r.0 t at a radius of 4.s inches.

Thus, it was found that, resurts wittrin I inch of ttre boundary

v¡ere affected by the manner 1n which the fictitious stress was

distributed, and results outside this range !/ere in excerlent
agreenent wittr the anallt,ical solution

A second nodel r¡ras created which consisted of 6 elements, as

shown in figure 7.I.2b. In addition to solving this problern using
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BEAST, a two-dimensional fictitious stress program was used.

fkris program, carled TvüoFs, was published by crouch and starfierd

t30l in 1983 and uses straight line elements witÌr constant

fictitious stress distributions. since ttris progran requíres

only one nod.e per element and eEASf requires two, ttre 6 element

BEAST solution $¡as compared to ttre L2 line element TWOFS

sorution. Ttrerefore, the amount of input information was equal.

the results from-these tests are shown in figure 7.L2a. For

6 elements, BEÀsr required a cornputer time of about 43 seconds.

The Erality of results outside a radius of 3.2 inches increased,

dramatically. Ít¡e error in this range decreased from L.4 z at 3.2

inches to 0.2 t at 4 inches, and remained less than 1.0 t outside

this range. Àt 0.1 inches from ttre boundary, the error decreased

to 15 I with ttre addit,ion of 2 elements. Ítrus, the range

affected by ttre discrete distributíon of fÍctitious stress was

reduced to less ttran 0.2 inches.

llhe results from TWOFS r¡rere in error by ZS I at a 3.I inch

radius, At a 3.2 inch radius the error decreased, to l-6.3 8r âs

compared to the 1.4 * error in BEÀST. Even at large distances

from Èhe boundary the error in TWOFS remained above 7.O *,
compared with less than 1.0 I error in BEAST.

FinaIIy, a ttrÍrd model was tested which consisted of I
elementsr âs shor¡¡n in figrure 7.13b. BEAST reErired 70 seconds

for a solution at, 15 points. A listing of the output file for
tTris test is contained in ttre appendix on page I31 . Ttre results
in figure 7. 13a show that the error at 0.1 inctres from ttre
boundary decreased to 5.8 t. zurther testing showed the area

affected by ttre discrete distribution of fictitlous stress was
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restricted to witTrin 0.L2 inches of the boundary. ftre error
outside of a 3.3 ínch radius was less ttran O.2 t.

I{ith 16 line elements, TWOFS was in error by 16.8 * at 0.1

inches from the boundary and the resurts did not improve beyond

6.1 t error at points away from the boundary.

Ífie problen of a circular hole in an infinite plate confirmed

ttre validity of ttre isoparametric algorithm for solving stress
traction probrerns. Resurts were found to be excerrent with a

small number of elements, often less ttran l.o * error. lhe area

near the boundary affected by ttre discrete distribution of
fictitious stress was found to be smarr and to d.ecrease in size
rapidry with the addition of erements. rf L ís the lengÈh of an

eLement and 1.0 t error is the maximum alrowable, then tJre range

affected decreased from 0.33L with 4 elements to o.l3L wittr 6

elements and 0.05L with I elements.

The isopararnetric argorithn was found to yierd far more

acsurate results than the currer¡t line element method for tt¡e

same anount of ínput informatíon. rncreasing the number of
isoparametric elements dranat,icarly increased the quality of
results but this was not, found to occur with line erements.

Íhus, the isoparametric boundary erement nethod has proven to be

a more efficient use of the input data, and therefore to
require far fewer elements to obtain a solution of a given

acguragy.

7.4.4 Current Research

Thus far, the isoparametrÍc algorithn has been applied to
the solution of theoretical elasticity problems only. Ítre
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solution of ttrese problens has confírmed ttre validÍty of ttre

theory and has i.rlustrated the accuracy and sirnpricity of ttre

metÌ¡od.

Although BEÀST has been used successfully for solving

displacenent probrens and for solving stress tractíon problems,

the program has not yet successfurly sorved problems invorving

bottt boundary conditions. rn fact, the pressurized cavity
problem of section 7.4.3 has been solved as both a dispracenent,

problem and a stress traction probJ.em, yielding excellent results
in eactr case. However, mÍxing the boundary condit,ions has

resurted in very poor quarity resurts. This dífficurty $ras

unexpected since the solution of each coefficient natrix yielded

vel1r si¡nirar nodar fictít,ious stresses, yet rnixing equations

resulted in an entirely different solution.
No conclusions have yet been drawn as to the cause of ttre

problem. However, it is believed that ttre dilenroa arises Ín ttre
progranuning of the algorithn since the theory does not indicate
any abnormaritíes should. arÍse from nixing equations in t]le
coefficient, rnatrix.

Galerkinrs nethod has been successfully progranmed ínto tTre

isoparametric algorithm in a BAS¡IC program caIled BEASTG.

Prelíminary results from ttris prograrn have shown a faster
convergence to the exact solution vrith ttre addition of elements

than ttre point, matching technique. However, a comprehensive

evaluation of tÌre accuracy of Galerkinrs method could not be

derived from the theoretÍcal elasticity problensr presented here.

For a complete assessnent, BEASTG must, first be progranuned in a
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high level language (such as pascal) to compare with the ftoating
point accuraqf of BEAST.

fn the numerical irnplernentation of Galerkinrs method, each

Gauss point becomes a field point Ínstead of every node, as in
the point natching technigue. Thus, BEASfc has been found to nrn

much slower ttran the equivalent point matching nethod (prograruned

in BASIC) and also requires a larger code size. It is believed

that t-tre efficiency of BEASTG wourd benefit from reducing the

Gaussian qr.radrature from 10 to 5 points, which shourd allow ttre

progran to run much faster with no signifícant loss Ín accuracy.
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CHAE{TER \rIII

Conclusions

Over the past 20 years, research into indirect, boundary

element rnethods has yielded no advanced formulations suitable for
industry. It has been the purpose of this tl¡esis to elevate ttre

formulation of an indirect, nettrod to a leve1 comparable to
sinilar numerical solution techniques in order Èo demonstrate

the power of this method.

TTre boundary elenent formulation developed. here was d.esigned

to solve two-dirnensional elastostatic borrndary value problerns. A

foundation for ttre nettrod was provided by Kelvinrs solution, a

sing'u1ar solution whicÏr satisfies the biharrnonic equation.

From this research the following conclusions $/ere drawn:

i) It was demonstrated that a cornplex physicat probtem could be

replaced by an equivalent infiníte plane problem, for which

Kelvinr s solution was applicable. ftris v¡as accomplished by

distribut,ing a fictitious stress layer over a tracing of tTre

boundary in an infinite plane, which duplicates ttre effect of

boundary conditions on the physical problern.

ii) The existing elementary applicat,ions of the concepts in i)
\,\rere advanced using isoparametric elements, characterized by

pollmomial fictitious stress distribut,ions and cu¡¡ed boundary

elements. In addition, an alternative for¡nu1atÍon was presented

which optimizes tl:e isoparametric solution.
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iii) The isoparametric boundary element algoriürn was implemented

in a program called BEAST. This program was determíned to be

quick, elçandable and flexible enough to incorporate any order of
solution.

iv) Íhe prograrn BEAST was used to solve several theoretical
elasticíty problens. llhe results showed a close correlation
between the isoparametric solut,ion and the analltical solution
for both displacement and stress traction problems. Dramatic

improvements in ttre quality of results were found. witTr tTre

addit,ion of a small number of elements. BEAST proved. to be a

more efficient use of input, data than t]le line element, method,

and therefore to reErire far fewer elements to obtain a solution
of a given accuracy.

v) The quality of results was for¡nd to deteriorate at points

close to the boundary. This was attributed to the discrete
distribution of fictitious stress ttrat was used to approximate an

actual continuous distríbution. Hohrever, ttris effect was found

to decrease rapidly wittr the addition of elements.

vi) Although BEAST has been used successfully to solve

displacernent and stress traction problerns, the solution of mixed

boundary condition problems has yet, to be accomplished. This

capability is necessarlf if the progran is to be useful to
industry. It is believed ttrat this shortcoming can be overcome

wittr additional research.
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CTIAPTER ÏX

Recornmendations

9.1 Introduction

The enphasis in ttris work has been on deriving and

demonstrating the validity of the ísoparametric boundary elernent

nethod. The development of a generarized stress analysis package

based on this ttreory has been Left to future research.

The potential of this technique to replace finíte element

and other boundary element mettrods has been demonstrated

throughout this work. For tTris to be realized, research must be

conducted on generarizing the method to solve more elasticity
problens and to make the progran BEAST more user-friendly.

This chapter outlines some concepts whích could be

impremented into the ttreory and the program. vriül these

features, the isoparametric boundary element technígue courd

become a useful industrial tool.

9.2 Extensions of the Boundan¡ Elernent Formulat 10n

9.2.1 Multi-Media Solutions

The boundary element theory developed in chapter 6 is only

applícable to the solution of problems with homogeneous naterial
properties. However, many real engineering problems consist of
several materials joined by bolts, rivets or welds. The domain

of such a problern is somet,ines called a multiply connected

region because it consists of several homogeneous media connected

to form a single body.
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As an example, consider ttre stress problem irlustrated in
figure 9.r. Here, a copper ring anchored by a shaft is werded to
a brass rod under a vertical load p. rn this case, material I is
the brass bar, material 2 is t^he copper ring and materiar 3 is
the v¡eld itself. A bor¡ndary elenent solution to problens of this
type can be obtained with minor changes to the existing ttreory.

P

Brass

WeTd

Copper

Figure 9.1¡ Multí-Media Problen

To solve this problem, the boundaries and. the interfaces
between materials must be divÍded into elements. Ttre problern may

then be viewed as three dependent honogeneous region problems.

llhe boundary conditions would include the stress traction on the

bar created by P, a zero displacenent line within the ring, and

zero stress tractions over the remainder of the free boundary.

Boundary conditions can not be applied to the Ínterfaces because

these are unlclown.

In place of boundary condit,ions, equiliJcrium and continuity
condit,ions can be enforced to elimÍnate the interface conditlons
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as unJarowns. TÌlese conditíons require at, ttre ínterface between

naterials t and 2

(e. 1)

=0. (9.2)

where ui and tr'represent the dispracement and stress traction
vectors respectively. However, condition (9.r) Ís irnplicit in
the method (ie. a point can onry have one displacement) so that
only (9.2) need be enforced.

Interface conditÍon (9.2) Í:nplies ttrat the Kelvin solution
for stress traction becomes

I
U.'l

2
u.

1

T2t. + t.11

t2ti*ti I
1

IT 0
J

2(x,y) - T
a

0*(x,y)l ¿s + (l * 1)0. = g,JZ'TIrJij
b

-0.

(e.3)

(e.5)

where the negative sign arises because the outward normal of two

adjacent materials are in op¡losite directions, or

ñ an2 (e'4)

since onry one distribution of 0 can exist on an erement,

eguation (9.3) may be written as

a

)oI
t2(Trj - Tij

b
(x,y) ds + o

J

fhis equation rnay be transformed into isoparametric form for
nunerical integnation.

The incorporation of equation (9.5) Ínto the algorittrm would

allow for the solution of problems composed of any number of

connected honogeneous regions.
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9.2.2 Improved Near Boundaries

A¡rother important feature which could be added to augment the

present method is to improve the solution near bor:ndaries and

corners. Section 7.4.2 disctrssed the decrease in quality of
solutions near the boundary which was attributed to the manner in
which the fictitious stress layer was dístributed.

An excellent ¡nettrod óf circumventing ttris problem, irùrerent

in alt indirect methods, is currently under investigation by ttre

Electrical Engineering Dept. at tTre University of Manitoba. When

a field point is sufficienÈly close to the boundary, elements in
tÏre vicinity of the point are divided into sub-elements as shov¡n

in figure 9.2. This occurrence is deterrnined when the distance

from the field point to ttre source node is less than a minimum

value, say 10 t of an element length.

Sr¡b-element

Field
Point,

Sub-ele¡nent
node

Boundary
Elenent

Figrre 9. 2 : Sub-elenents
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Ttre fictitious stress at ttre sub-eleurent nod.es may be for¡nd

by interporating between the actuar nodes using the shape

function equations. ltre Kelvin solutions can then be integrated
over eactr individual sub-element and sumned to forn ttre Íntegral
over the entire element. rn this way, the effective distance

between the field point and the source nodes has been increased

in relation to the element size. lltris is an automated method of
clustering a large ntrmber of small erements ín the vicinity of a

point near the boundary at whictr a solution is desired.

An improvement in results near the boundary requires no

fundamentar changes to the boundary element theory. Therefore,

it ís recommended that, sucÌr a special use subroutine be added. to
ttre prograrn.

9.2.3 Three-Dimensional Solutions

A naturar exÈ,ension of the isoparametric boundary erement

nethod is to solve three-dfunensional problerns. en equivalent
three-dimensíonar fonrulation is entirely analogous to that
developed in chapters 5 and 6 with some alterations to ttre

theory.

!'lhen solving a three-di:nensional problem using boundary

elements, the surface of the body must be divided into cu:r¡ed

triangular or square elements as illustrated in fígrure 9.3.

fhree-dimensional isoparametric elements can be defined, in terms

of two-dimensional shape fi¡nction equations t36l similar to ttrose

used in two-dimensional finite element solutions. A unit
triangular element, consisting of 6 nodes, is rnapped into cu:r¡ed

space as shown in fignrre 9.4. In ttris case, tvro orttrogonal
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Figure 9.3: 3-D Problen
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Figure 9.4: 3-D Isoparametric Elements
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normalized co-ordinates are used to form elements in the x-y-z
co-ordinate system.

A three-dimensional form of Kelvinrs solution 124), similar
to Kelvinrs solution for plane strainr may be used as the

fundamental solution. This solut,ion yields stress and

dispracernent components caused by a point road in an infinite
solid. A two-dimensional isoparametric integration scheme is
required to assemble the coefficient matrix and to determine

field point solutions.

A ttrree-dimensional isoparametric boundary element

formulat,ion most vividly illustrates the advantages of this
method over ttrree-dimensional finite element solutions. Ar1

calculations are performed using two-dímensíonal elements and

only the surface need be discretized. Therefore, the formulation

of problems is greatly simplified and the number of unknowns is
vety much reduced.

lhe developrnent of a three-dimensional formulation would

require much research and testing and wouId. not be suitable for
prograrming on a micro-computer. However, the result would be an

extremely powerful stress analysis tool which could eventually

rival ttrree-dimensional finite element, programs.

9.3 A Tool For Industn¡

The isoparametric boundary element program BEAST is capable

of solving many stress and displacement problems quickly and

accurately. Ít¡e program is also much easier to use ttran any

available finite element program. With the addition of a nulti-
zoned capability and a routine for finding accurate solutions
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crose to the boundary, BEAsr courd become a generally appricable

stress analysis ¡nckage.

Ttre unique solution procedures withín ttris method allow for
the addition of some convenient input/output features. The

surrent version of ttre prog'rarTl is capable of drawing tTre boundary

erement, model and graphing ttre field point, results on the screen

but, more sophisticated features may also be added..

Rather than specify ttre co-ordinates of each node, the

bor:ndary could be traced using a digitizing tabret and the
program r,¡ourd divide the boundary into a specified number of
elements. sectíons of ttre boundary courd be marked, using ttre
tabret, for a given boundary condition, wtrich ttre program wourd

divide into components and assign to individuar nodes. Ttre

program would then solve for ttre distribution of fictitious
stress and pause to disptay several output opt,ions.

output options would include the plotting of stress contours

on the screen or plotter and the corouring of zones of stress
within a gÍven range. trfie digitizing tablet could be used to
select points at which the stress components are desired. This

courd be done by noving cross-hairs on the screen to the poÍnt

and entering. The proçfrarn could also al1ow for ttre calculatíon
of stress and displacement components along straight or cu:¡¡ed

lines which may be entered by selecting points along the line.
fhe program would calculate tt¡e solution components at several

points along the line and graph the results as a smooth cuta/e on

the screen or plotter. llhese solutions would be obtained very

quickly because the problem would have already been solved by

determiníng the fíctitious stress distribution.
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I{ith the additíon of these input/output features, BEAsr

could develop into a useful stress analysis tool for industry.
llhe ease of formulating probrems and the potentiar output

features are unique to this type of sorution. BEÀsr is a smarl,

efficient progrra¡n which can run Erickry on a personar computer.

Iviür tÏre advent of the personal computer in almost evelT

engineering office, ttre isoparametric bor¡ndary elenent solution
has the potential to become an attractive software package.
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A.l- Gaussian ture

Gaussian quadrature is a nu¡nerical technique for
approximating the definite Íntegi'raI

b

I r (*) dx. (A. 1)
a

rn this technique, ttre integrar ís replaced by a sunnation over a
finite nuunber of points N, and a series of weighting factors A.,

so tt¡at

b N

I (A.2)
a

Íhese weighting factors measure ttre contribution of each r(x; ) to
tJ e inteçfral.

If a function R(x) could be found to satisfy

bb
/ r(r) dx = / R(x) dx (A.3)
aa

where R(x) is of rov¡er degree than f(x), tt¡en the integration of
f(x) could be found more efficiently by instead determining ttre

integral R(x). Hos/ever, it is unnecessary to obtain R(x), but

rather to determine the sanpling points at which R(x) = f(x),
called Gauss points. Tlrís lmplies that

f(x )= (A.4)

/ r(*) dx =

A. R(x.)1 -l'

I'l

'l

A

N

t
i=l

'l

N

t
= I

vrhere x, are the Gauss points.'l-

To deterrnine the locat,ion of ttre Gauss poínts, consider ttre

ex¡lression
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(A.5)

which states tÌrat ttre division of a porlmorníar f (x) of degree

2N-l- by another plolmonial P(x) of degree N yields a pollmornial

L(x) of degree N-l plus a remaider R(x), divided by p(x) .

Mult,iplying bottr sides of eEratíon (Ä,.5) by p(x) yíelds

q#=LN-r(x) 
+ffil

fzr,l_l(x) = n*(x) L*_., (x) + R(x)

Recall that tl¡e Gauss points occur when f (x) = R(x).
specified to be ttre Lagrange pollmonial of d.egree N,

roots *.i of P(x)

P*(xt ) = o

which reduces equation (.A.6) to

r(x.¡) = R(xi )

lltrus, the Gauss points are located at the roots of
pol1monial. Note ttrat, any Lagrange pollmomíaL is
particular inten¡al [arb], which is usually chosen

[-1,1] or [0,1] .

The weighting factors A., of eEration (4.2) may

by enforcing that

(A.6)

If P(x) is
then at the

(A.7)

(A.8)

the lagrange

defined for a

to be either

be determined

f(x (A. e)

give exactly the integral of any pollmomial R(x) of degree

To enforce ttris, a system of linear equations is formed in
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unknoruns A l from

I
I N

t
i=l

R(x) dx = Ai n(x.' ) (A. ro)

by setting R(x) = l, X,..., xN- Once tïre values of Ai are

determined, these weighting factors can be used to integrate
exactly any pollmonial R(x), and therefore any f (x).
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A.2 Stress Traction Sincnrlaritv

Kelvinrs solution for stress tract,íon contaÍns an infiníte
discontinuity when the source point b coincides with the field
point rar. For example, the ro<-component, of the Ínfl_uence

function is given by

T** = -C, [(l-zv) + ZRl

2R2 p2

I IRxnx + Rn
v yl (A.11)

where Ct= R2=R
X
z+R2

v4r l-v

hx'ny = components of the unit outward
normal to the boundary

As the source point approaches ttre field point R + 0.

the denominator of (A.11) approaches zero faster
numerator so that near R:Or the influence function
infinity as illustrated in figure A.L.

Hol^/ever,

than the

tends to

Figure À,.1: Stress Traction Singrlarity

T
XX

AB

a

l_t0



To integrate Kelvinrs solution for stress traction around a
boundary, it must also be integrated over this rsingurarn point,
if the fierd point is on ttre bor¡ndaqr. To accomplish this,
recalL the integral is

11r

t., (a) = /u t, (x,y) T.,, (x,y) ds. (A.12)

where B represents ttre boundary of some region. Equation (A.12)

may be separated into tt¡e two integnals

t.' (a) = /r_0, or(x,v) Tij(x,y) or * /ou 0r(x,v) rij(*,y) ds (A.13)

where ¿B represents a snalr portion of ttre bound.ary around the
singular point. For ttre second Íntegral it can be shown that

lim I Or(x,y) Tr. (x,y) ds = 0(a) (4.14)
¡B+0 ¿B r rr T

v¡here t}:e r/2 assumes the load. is appríed internalry. ffius, the
stress traction at, a point rar on the boundary is given by

t, (a) = /_ 0i (x,y) Tr., (x,y) ds + o(a) (A.rs)
'BrrJT

where the second integral represents ttre contribution of tt¡e

fictitious stress at point |a| to the stress tract,ion at this
point, and ttre first integrral must be interpreted in ttre Cauchy

principal value sense (ie. does not include point rat).

Equation (A.l-4) is often stated in the literature witt¡out a

formal proof or ttre source of ttre derivation. llhough it r1.ras

attempted, ttris proof could not be duplicated here. Therefore,

it, was assumed that ttris resul-t was obtained through a set of
sirnplifying assurnptions which arso apply to the isoparametric

formulation.
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BEAST

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Boundary Element ^Analysis of STress

Point Matching Solution

Pascal Version

By YÍ. Neil Aitken

and

Allan T. Dolovictr

*J.******************************************************

Progrram BEÀSTI

{$I tlæedef.sys}

CONST

Ma>iElem=15 i
Ma*Nodes=3Oi
NumGaussPEs=l-O i
MaxPhi=60;
MaxFldPEs=2S i
ExtPhi=61;

TYPE

OneÎoTen =ARRÀY[1..10] OF REÀL;
llhreeBflen -ÀRRÀYII. . 3, ].. . I0l OF REAL;
NumElenBl4len =ARRAY[1. .tfÐ<Elem, t. .I0] OF REALT
OneToNr¡mNodes =ARRAYII. .MiliNodes] OF REAL;
NunElenByThree=ARRÀY[1. .MÐ(Elen, 1. . 3 ] OF INTEGERT
Code =STRINGII] i
CodeTlpe =ARRAY[]...MÐNodesl OF Code;
oneToMaxPhi -¿\RRAylI. .Maxphil oF REAL;
MaxPhiByExtPhi=ARRÀy [ 1. . Maxphi , 1 . . Extphi ] oF REALT
OneToMaxFldPts=ARRAY[1. .MaxFIdPts] OF REAL;
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F il el¡aneln, Fi leNameOut
title
InFilerOtrtFile
wt,rwt2
alpha, beta, a1pha?,beba2
xsrysrxs?,ys? rdsrds2
xryrNx, Ny
Nodel.Iurn
xCoderyCode
Nu, E, cL rc2
Coeff
PhirB
Xpt, Ypt rUx, Uy, Sx, Sy, Ss
NumNodes, NurnElem,
NunFIdPEs

:String[80];
:string[80];
:Text;
:OneToTeni
:ThreeBl4len;
:NumE1enBl4ten;
:OneToNumNodesi
:NurnEleilìBlrlhreet
:CodeTlpe;
:ReaI¡
:MaxPhiByE>fr,phi;
:OneToMaxPhi;
:OneToMaxFl-dPbs;

¡INTEGER;

($I graphix.sys)
{$I kernel.sys}
{$r
{$r
{$r
($r
($r
{$r

windows. sys)
Polygon.hgh)
À:<is.hgh)
spline.hgh)
findwrld.hgh)
Intro.bst,)

Procedure blankln(n:integer); (*** It'ints n blank lines in output fils 'rr*¡t)

Var

j
Begin

for
wr

End;

: ÏNTEGER;

?
L

¡=1 to n do
teln(outrile);

Procedure Error0t¡ti (*** Error Message for LÍnear Equation Solvg¡ 'b*tr)

Begin

Clrscri goto>q¡(18, 12) t
TextColor(L5);
TextBackground(4) ;
writeln(t--- l{atrix Solution Impossible ---') i
HaIt;

End;

Procedure Heading;
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lr6

Begin

TextBackground ( 4 ) ;gotoxy(22,51 ¡
writeln{ rBoundary Element Analysis of Stress') ;
TexEBackground(I) ;

End;

$r
$r

{
{

graph.bst)
plot.bst)

Read and Echo Input File 
I

I

---- )

Procedure ReadInFile;

Var

bIank, choíce
: INIEGER,;
:CTIAR;

Begin

Intro;
TextBackground ( 1) ;
TextColor(L5) t
ClrScr;
Heading;
got95y(17tL2) i write('Enter the input, datafile name >
readln(FileNarneIn) ;
ClrScr;
Heading;
gotoxy(15,L2)i write(tEnter the output file name >
readln (FileNarnetut) ;
Àssign ( InFile, FileNameIn) ;
Reset(fnFÍle);
Àssigrn ( OutFile, FileNaneOut) ;
Rewrite (OutFile) ;
writeln(outFiler t r:15, r************************************************rÉ

*t);
blankln(1);
writeln(OutFile, I r:15, I BEAST T);
blankln(2);
writeln(OutFiler t r:J.Sr t Boundary Element Analysis of STresst);
blankln(2);
Writeln(OUtFiler t t:15, r*************************************************

t
I

I

]-

)
b

*r ,
lankln(3);



BEASTP. PAS Thursday, Decernber 5, lg8s

(**** Read Problern Parameters and !{rite then to a FiIe ***)
clrscri
Heading;
goto>q¡(27 ,L2) ¡
writeln(t-:- Reading fnput File ---t);
readln (InFile, title) ;
writeln(OutFiler t I z25,titte);
readln ( fnFile, NumNodes, NumElèm) ;blankln(1);
writeln(OutFi1e, t I t24, rNumber of Boundary
blankln(I);
writeln(outFile, t | 226, rNumber of Boundary
readln(fnFile,E,Nu) ; blankln(L) ;writeln(OutFile, t t z2'1, ryoungs Modulus = r,
writeln(OutFile, t I zZ9, tpoisãons Ratio = t',
blankln(2);
writeln(OutFile, I | :3I, TNODAL CO-ORDINATES T

wrÍteln(OutFiler t | :3I, r:::-:-=r
blankln(2);
y|itg]n(OutFile, t I z2L, rNode No. t, I r:8, rX
blankln(L);
for i:=l to Nr¡mNodes do

begin
readln (InFile,x [í],yt il ) ;y¡it9Jn(outFile,' raz4-;i:3, r | :9,xIi] :s:4
blankln(1);
end (i);

blar¡kln(3);
writeln(OutFiler t | :30, TBOUNDARY CONDITIONS
writeln(OutFile, I r:30, r:-:::
blankln(2);
w-riteln(OutFiler t f :15, rNode No. r r t t :5, t*-rY-Boundary Valuet) ; blankh(f ) ;for i¡=I to Nurnl{odes do

begin

28, TFTELD POIIIT CO-ORDINATES
â o I 

-----çv t

Elements = I,NumElen:2) ;

Nodes = rrNumNodes:2);

E:11:2); blankln(1);
Nu:4:2);

);
);
Co-ordr, I r:6, rY Co-ordr) ;

,, I tSry[i]:9:4) ;

t);
r);

Boundary Valuer,I ti5,

Lblank,yCodetil ) ;
,xCodefi1:1,t , i4,

r);
r);

readLn ( InFile, B I i ], blank, xCode I i ], B I i+NunNodes
writeln(OutFiler t .iL7,i:3r t t:Srgtil:IS:e, t I

. BIi+NumNodes]:IS:Brr rryCodetil:f);
if xCode¡i1 = rtr then xCodefi]ì=t1t Iif yCode[i] = rtr then ygode[i]:=rTr;
blankln(I);
end (Í);

readln ( InFile, NumFldpts) ;
blankln(2);
writeln(OutFiler t r.
wríteln(OutFile, I r:
þlankln(2);
writeln(Out,Fi1e, I t z2!,rPoíntrr r r !8, rX Co-ordt r il i6, ry Co-ordt) ;
blankln(1);
for i:=1 to Nr¡rPldPts do

begin
readln(InFile,Xpt I i], yptI i] ) ;
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writeln(OutFile, I |224,i:3,I f :6rXpt[i1 :9:4, t r:5rYptti]:9:4);
blankln(1);

(**** Zero tÌre Field Solution Vecto¡s *'r¡r)

ux[Í]
sx[ í]
end (

:=0.0i Uy
:=0.0; Sy
i);

clrscri
Heading;
goto><y(27,L2); writeln(tWould you like to view ther);gotgrylz!,+3); write('Boundary Element model (y/n) --¡readln(choíce);
if (choice = tyt) or (cÏroice = ryr) ttren plottlesh;
Te><tColor(15) ;
Te>ctBackground (1) ;

il 'lJ:
=Q
=Q

0
0

t

I SsIi]:=0.0i

End;

I

I

I

I

)

{
I

I

I

I

rnitialize Gauss Points and r{eights For Gaussian euadrature.carsulate QuadratÍc rnterrpolatión varues at Gauss points

Procedure InitiaLíze¡
Const

pi=3 . L415926535;

Var

Gs, eta, eta2
i,i rkrm
GaussPtrGaussPt,2

Begin (initialize)

¡ REÀL;
: INTEGER;
:ARRAY[1..10] oF REALT

CIrScri
Heading;
goto>rq¿ (12 tLz) ì
v¡riteln(r--- Initializing Shape Functions and euadrature Data ---t);

(**** Gauss Points and Weights for
Regular Gaussian Qr¡adratu¡s **'t*)

GaussPt[1] := 0. 0L30467358 î
GaussPt[2 ] := 0. 0674683L67,

1t_8
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GaussPt
GaussPt,
GaussPt
GaussPE,
GaussPt
GaussPt
GaussPt
GaussPt

t3l
t4l
tsl
t6l
1.7 )
l8l
tel
[10

: = 0. l-602952159 t
:= 0.283302303t
3= 0.4255628305¡
:= 0.574437L695¡
:= 0.716697697Lì
3= 0.8397O47842¡
:= 0.9325316834,
l:= 0.9869532643ì

V4It,

wt,
vrt
wt
wt
I{t
wt
!Ít
wt,
wt

t
t
t
t
t
t
t
t
t
t

rl:
2)t
3l:
4l:
5l:
6l:
7Jt
8l:
el:

= 0.0333356722ì
= O.O747256746ì
= 0. 109543181_3 t
= 0.1346333597¡
= O.I47762LL24ì
= 0.147762LL24ì
= 0.1346333597:,
= 0.1095431813;
= O.0747256746¡

lOl : =0 .0333356722ì

(**** Gauss Points and Weights for
2-Inten¡al Gaussian Quadrature ****)

GaussPt2 [1] := 0. 023455039 ;
GaussPt2 [2] := 0. 115382623 ;
GarrssPt2[3]:= O.2Sì
GaussPt2 [4] := O.3846t7328 ¡
GaussPt2 [5] := O. 47 654496Lì

wt2
wt2
wt2
vüt2
wt2

L
2
3
4
5

l
l
l
l
l

= 0.05923I72Lì
= 0. l-19657168 t
= O.L42222222ì
= 0.1L9657168¡
= 0.05923L72J,i

GaussPÈ,2 [6] :
GaussPt2 [7] :
GaussPE2 [8] :
GaussPt2 [9] :
GaussPt2 [ 10 ]

0.523455039 t
0. 615382673 t
o.75î
O.8846]-7328ì

¿=O.97654496Iì

Wt2[6]:= O.O5923J-72tî
WE2[7 ]:= 0.L19657L68t
Wt2[8]:= 0.L42222222ì
!{t2 [9] := 0.11-9657168t
Wt2 [].01 :=0. 05923L72Iî

(**** Shape Fr¡nctions ****)

for i:=1 to NumcaussPts do
begin
eta:=GaussPtIi] ;
alpha [ 1, i] : =2 . O*eta*eta-3 . O*eta*l-. 0 i

L19
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alnþat2, +l :=4.0¡t (eta-eta'reta) ;
alpha [3, i] : =2. O*eta¡reta-eta i
beta[ I, i] :=4. Orteta-3, 0 ;
beta[2, i] :=4.0* (I .O-2.O¡reta) t
beta[3, i] :=4.Orteta-I.0 î
eta2:=Gausspt2 til ;
alpha2 [ 1, i] :=2. Oieta2*eta2-3. O*eta2+l. O,
alpþa2 [2, +] :=4. 0* (eta2-eta2*eta2) i
alpha2 [ 3, i] :=2 . O¡téta2¡reta2-eta2 ;
beta2 [f , i] :=4. 0*eta2-3. O;
þetaz t2 , +l : =4 . 0* ( I. 0-2 . 0*eta2 ) t
beta2 [3, i] :=4.O*eta2-I.0¡
end; { i}

(**** Zero Coefficient Matri* **:trr) i
for i:=1 to 2*NunNodes do

begin
for j:=l to 2*NumNodes*I do

Coeffti,jl:=0.0i
end;

(**** Create a Global Node No. Matrix from Element, No. ****
{ and Loca1 Node No.

k:=1i
for i:=1 to Nr¡rnElem do

begin
for j ¡=1 to 3 do

begin
m:=k+j-l;
íf n = NumNodes+I then m:=li
NodeNunfi, j 1 :.=n;
end {j};

k:=k+2 i
end {i};

End; (initialize)

Calculate the Global Co-ordínates of Gauss poínts
Generate ttre Jacobians and Components of tJ:e Unit Normal.

)
)

(**** Materiar constant, coefficients of Kelvin solutio¡s rr**)

Gs: =0 .5*E/ ( I. 0+Nu) t
cI: =L .O/ (9. g*pirrGs* (I. o_Nu) ) ,
c2:=L,O/ (4. g*pj:r (1.o_Nu) ) ,

(
I

I

I
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)

Procedure Jacobians;

Var

dsx, dsy, dsx2, dsy2, dx, dy, dsnj rnrmrkrnode

Begin (jacobians)

:REÀL;
: IMEGER;

rml i
I +alpha [n, n] *x [node] ;
I +a1pha [m, n] *y [node] ;
,nl+alpha2 [m,n] *x[node] ;
,nl+aIpha2 [mrn] *y[node] t

ClrScr;
Heading;
gotoxy(26,J-2) ¡
writeln(t--- Generating Jacobians ---,) i

(**** Global causs points ****)

for j:=L to Nr¡mElen do
begin
for n:=I to Numcausspts do

begin
xsIjrn] :=O.O; ystjrnl :=0.0i
xs2 [j rn] :=0.0; ys2tj,n: :=0.0i
for m:=1 to 3 do

begin
node: =NodeNu¡n I i
xsI j rn] :=xs[j rnysIjrn]:=ysIj,n
xs2[jrn]:=rcs2[j
ys2 [ j,n] :1¡s2 [ j
end; (m)

endr {n}end;{j}

(**** Jacobians fr***)

for j:=l- to NumEIen do
begin
for n:=1 to Numcausspts do

begin
dsx:=O.0i dsyl=0.0;
dsx2:=0.0t dsy2:=0.0i
for m:=1 to 3 do

begin
node¡=NodeNum[ j ,rn] ;
dsx: =dsx+beta [m, n] rtxInode] ;
dsy : =dsy+beta [m, n] *y 

¡ node I ;
dsx2:dsx2+beta2 [mrn] *x[node] ;
dsy2: dsy2+beta2 [m, n] *y[node] ;
end; {n}

ds I j , n] :=sqrt (dsxrtdsx+dsy*4st¡ .

T2]-
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L]
r{
i)

, nl I =sqrt (dsx2rtdsx2+dsy2rtdsy2) ¡
n)

(**** Unit Outward Normals ****)

for j:=I to Nr¡¡nNodes do
begin
if i=1 then k:=Nr¡mNodes else k:if i=¡*o¡qodes then m:=1 else m:
dx: =x [n] -x I k] ;
dy¡=ry[m]-ylkl t
dsn¡ =sqrt (dxfrdx+dy'tdy) ;
Nx[ j 1z= -dy/dsniNy[j]:= dxldsn;
end; {i }

End; {jacobians}

_J

-J +

Generate fnfluence Coefficíent Matrix

ds2
end

r{end

I
L

,
t

I

I

)

Procedure CoeffMatrix ;

Var

FldNode, SrcElem, SrcNode, Gausspt,
lrmrn

sum)O(, srmXY, sumYX, sumyy, Rx, R1r, Rs,
GaussQuad, G, Gx, Gy, G>q¡, G)o<, Gyy, a, b,
),OC, )qf , )rX, )lf
self

: INTEGER;

: REAL;

: BOOLEAN;

Begin {coeffmatrix}
ClrScr;
Heading;
gotox¡¡(Ig,L2, ì
writeln(t--- Generating Influence Coeffícient Matrix ---t ) ;
TextBackground(2) ;
for FldNode:=l- to NumNodes do

begin
goto4¡(33,14) t

].,22
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writeln(rField Node r rFldNode) ;self:=falsei
for SrcElem:=l to NunEIem do

begin
if SrcEtern=FldNode div 2 tt¡en self:=tnre;for SrcNode:=I to 3 do

begin
sum)O(:=0. 0 i sr¡rü(y:=0. 0i sumyX:=0. 0i gumyy:=0. 0 i

(**** Integrate Kelvinrs Solution Evaluated
at the Boundary Nodes ***rr)

for GaussPE:=I to NunGausspts do
begin
if self = true ttren

begin
l* r o [FIdNode] -xs2 [ SrcElem, GaussPt] ;
Ry : 1¡ [ FldNode] -ys2 [ SrcEIem, Causspt] ;
GaussQuad ¡ =I{t2 [ Gaus spt ] *a lphaZ I Srcñode, Gaus spt, ]ttds2 [ SrcElem, Gausspt, ] ;
end

else

begin
!*: o [FIdNode] -xs [SrcE1em, Gausspb] ;
Ry : 1¡ [ FldNode ] -ys [SrcE1em, Gaus=È] ;
GaussQuad : =W! [ Gausspt ] * alpha I SrcNode, Gaus spt ]*ds ISrcEIem, GaussPt] ;end; (if)

Rs: =R:<*R¡<+Ry*¡y;

G:= -Ln(Rs)/2.0;
Gx:= -þ</Rst
Gy:= -Ry/Rs;
G>q¡ : =2 . 0'tRx*Ry/ (RsrtRs) ;
G)Õ(: = (þ<ìlÐ(-Ryt Ry) / (Rs:tRs) ;G¡¡:= -G:oc;
a:= Nx[FldNode] ; b:=Ny[FldNode] ;

if xCode[FldNode] = rfr then begin

{x traction solution}
xx:=c2* ( (2. O* (1.Q-Nu) *Gx-R><*Gs) *a

+ ( (f .0-2.O*Nu) *Cy-n:<'tc>qf) *b) ;
)<y: =c2¡t ( ( (2 .0'bNu*cy) -Ry*G>or) *a

+ ( (1.0-2.O*Nu) *Gx-Ry*öqf) *b) ;
end

else begin

{x displacement solut,ion}
ro<: =cl¡t ( (3. 0-4. Q¡tNu) *G-f,¡(?tcx) t
X}¡:= -cl*Ry*Gx;

L23
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endi {if}
if yCode[FldNode] = rTr then begin

(y traction solution)
yx:=cz:b (

+(
)l¡r: =C2rt (

+(
end

else begin

( (1.0-2.O¡tNu) *Gy-Rx*G{/) *a
2 . 0*Nu:tGx-nx*Gnf) *b) ;
( (1.0-2.O*Nu) *Gx-Ry*G4l) *a
2. o* ( L. O-Nu) *Gy-Ry*Gyy) *b) ;

(y displacement solution)
yX:= -c1r*Rx*Gyl
yy:= cl* ( (3.0-4.0¡tNu) *c-Ry*Gy) tend; {Íf}

sum)O( : =sum)O(*>oc*Gaus seuad ;
suil(Y : =sumXY*)ry*Gaussquad ;
sumYX : =sunYX+1x*Gaus seuad ;
sumYY : =sumYY+1ry *Gaus sQuad ;end; {GaussPb}

1:=FIdNode;
m : =NodeNum I SrcElem, SrcNode] ;
n:=Nu¡nNodesi

(**** Store in Influence Coefficient Matriy ****)
Coeff [1 rn] : =Coeff [ 1 rm] +surüO(;
Coeff I l rm+n] : =Coeff I I, m+n1 +sum](Y t
Coeff [ l+n rn] : =Coeff I l+n rn] +sumyxi
Coeff I I+n, m+n] : =Coeff I I+n,m+n] +6umyy tend; {SrcNode}end; (SrcElen)

endi {FldNode}

(**** Add Traction Discontinuity ****)

for n:=1 to NumNodes do
begín
m:=n*Nr¡mNodes;
if xCode[n] = rTr then Coeff [n,n]:=Coeff fnrn]+O.bO;if yCode[n] = f Tr then coeff [n,nj :=Coeff i*,*j+0.50,
end; {n}

End; {coeffmatríx)

{

L24
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cholesþ Línear Equation sorution for Fictitious stresses 
I

Procedure Cho1esþ;

Var

NumVar, m, rr, I, j , i, ii, j j , k, tm
sum

Begín (cholesþ)

: INIEGER;
: REAL;

TextBackground(L) ;
CIrScri
Heading;
gotoxy (24,L2) ì
wri_t_e1n ( : --- Solving Linear Equat,ions ---r ) ;NumVar: =2 *NumNodes i
m:=NumVar+li
n: =NumVari

for 1:=1 to n do
Coeff [1,n]:=B[1];

if abs(Coeff[Irf]) < I.Oe-20 then ErrorOut;
for j¡=2 to m do Coeff[t,j]:=Coeff[I,))/Coeff[t,I],
for i:=2 to n do

begín
j :=i;
for ii:=j to n do

begin
sum¡=0. 0 ifor k:=t to j-I do

sum:=sum+Coeff Iiirk] 'tCoeff Ik, j ] ;coeff tif , jl:=coeff tii;jl-sum;end; {ii}for j j:=i+l_ to m do
begin
sum:=O.0i
for k:=L to i-l do

sum: =sun+coeff I i, k1 *go"ff tk, j j ] ;if abs(coeff [i,i]) < I.0e-20 üãn Errorout;
Coeff t i r 

j j I : = (Coeff i i, j j I -surn) /coeff I i, i ] ;end; { ji }
endi {í}

(**** Store Línear Equation Solution in Fictitious Stress Vector *trtrtr)

phi [n] :=Coeff [nrn+l] ifor nm:=l to n-l do
125
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begin
sum:=0.0i
i:=n-nmi
for j:=Í+t to n do

sum: =sum+coeff I i, j ] *phi t j I ;phi I i] : =Coeff i i,ml -órrm;end; (run)

End; {cholesþ}

Multiply NodaÌ Fictitious Stress Values B¡r Shape Functions.
carcurate Displacement and stress componeñts aL rieta points. I

I

I

)

{
I

I

I

Procedure FieldPt,s;

Var

Ulo<rUy¡¡, Sror, Srq¿, S¡¡rRx, RlrrRs, G, Gx,
Gy, G>q¡, G:o<, Gyy, )oc, )qf ryxr]l¡z, x¡Õ(, toqz,
xy)K, ïyy r y1x r yfðf r phiX, phiy
no4e, i, j , k, I , n, pt, elem, Gausspt
phii\lpha
choice

: REAL;
¡TNTEGER;
:ARRAY[1. .Ma>iNodes, ]-. .l0l OF REAL¡
:CTIAR;

Begin {fieldpts}
ClrScr;
Heading;
goto>q¡(J-8r12);
writeln(:--- Cal-culating Displacement, and Stress ---t ) igoto>q¡(18,13) ;
writeln(t Components at Fie1d pointst);

(**** Multip1y Nodal Fict,itious Stresses B1z Shape Fr¡nctions rb,h*rt)

i:=NumNodesi
j:=NumElen;
for k:=l to NumElem do

begin
for 1:=I to NumGausspts do

begin
phiAlphalk,ll :=0.0 ì
phiÀlpha[k+j , ]l :=0.0i
for n:=l- to 3 do

begin
node:=NodeNum[krn] t
phi-Alpha I k, 1 ] : ahi-Alpha [k, 1 ] +phi I node ] *alpha 

¡ n, 1l ;
phíÀlpha I k+j, I ] : ryhiÀlpha I k+j, I ] +phi I node+i 1 

*alpha 
¡ n, 1 ] ;

]..26
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end; {n}end; tI)end; {k}

(**** Integrate Kelvin Solutions over Boundary cr***)

for pt:=L to NunFldpts do
begin
for elem:=l to Nr¡nElem do

begin
U:or¡=0.0; U1ry:=0.0;
S)oc:=O. 0i S4¡:=0. 0; Sylz:=0. 0;
for GaussPt:=l to NumGausspts do

begin

R:<: =Xpt [pt] -xs IeIem, GaussPt
Ry: =Ypt[pt] -ys Ielen,Gausspt
Rs: -Rx*Rx+Ry*Ryi
G: = -I¡r (Rs) /2 . o i
Gx:= -Rx/Rst
Gy:= -Ry/Rst
G>q¡:= 2.0'kR(*Ry/ (Rs*Rs) ;
G)Õc: = (Rx*Rx-Ry'kRy) / lnsrtns) ;
GYy: = -G)ÕC i

{Displacement Soln}
)o(: =c1* ( ( 3 . 0-4 . Q:tNu) ¡tG-R(:+Gx) tXf!= -c1*Rl¡*Gx;
)D(: = -cl.tR¡<*Gy;
yy:=cI* ( (3.0-4.O,tNu) *c-Ry*cy) t

{Stress Tensor Soln}

l
l

x¡o(3=c2:l
)Õ{¡:=c2rt
)(fX:=c2tl
Xllf !=c2:k
ylD(:=c2rt
yyy:=c2¡t

(
(
(
(
(
(

2.0* (I.O-Nu) ¡tGx-Rx*G)o() t
2.0*Nu*Gy-Ry*G>oc) ;
(1. 0-2 .0*Nu) 'tGy-Þc*G>qf ) ;
(1. 0-2 .O:rNu) *Gx-Ry*G>qf ) t
2.0*NurtGx-Ð<*c$f) t
2.0* (1.O-Nu) *Gy-Ry*GIIf ) ;

L27

phiX : ahiÀlpha I el em, GaussPt ] *ds I e1em, Gaus spt ]*Wt lGaussÈ] ;
phiY : =phiAlpha I elem+NumEl em, Gausspt ] *ds I e1em, Gaus spt ]*WtlGausspt] t

U¡oc : =Uro<+¡¡¡*phiX+yy*phiy ;
U1ry : =U1ry+lxrtphiX+1ry *phiy ;

S)o( : =S)o(+loo<rtphiX+>o<yrrphiy ;
S 4¿ : =Sxy+x1x*ph iX+xyy rtphiY ;
S14¡ : =S1ry+y¡n<*phiX+ty¡r*phiY ;

end; (GaussPt)
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(**** Store Displacement and Stress componenls *rtrtrt)

kint Fictit,ious Stress Components at the Nodes.
P:rínt Displacernent and streès components at Field points.

ptl +U>o(t
ptl+UI4f t
ptl+S>o<;
ptl+s)qrt
Ptl+Sn¡t

end; {eten}
endi {pt}
Clrscri
Heading;
goto>q¡(2?,\2l ; writeln('woutd you like to plot trre solution,);
got'o_>q¿(2?,+3); write(ron a grraph? (y/n) --t ');readln(choice) ;if (choice = tyr) or (choj.ce = ryr) then graph;

End {fieldpts);

=Ux
=uy
=Sx
=Ss
=Sy

Ux[pt]
uy [pt]sx[pt]
ssIpt]
syIpt]

t
t
t
t
t

I

I

I

)

{
I

I

I

kocedure PrintOutFile ;

Var

i
Begin

: IMTEGER;

CIrScr;
Heading;
gotoxy (24,L2) ¡writeln(t--- Printing Results to File ---t )
goto>q¡ (24,LAJ ¡
TexEColor(14) ;
writeln( t

blankln(3) ;
writeln(OtrtFile, I | :30, I

writeln(Or-rtFiler t | :30, r

blankln(2) ;

I 
, FilelitaneOut) ;

.,

r);
t);

FICTÏTTOUS STRESSES

writeln(OutFile, t I z2O, rNode No.
blankln(2) ;
for i:=1 to Nr¡mlilodes do

begin
].,28

Phi-X Phi-Y');
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writeln(OutFile, t t¿2Zrit3rr r:t0rphiIi1 :I]-:4r il i4,
phÍ t i+UurnNoaesl : tl : 4 ) ;blankln(L)

end {i};
blankln(3) ;wri!,eln(9rllil., | | z2o, 'Drspr,AcENrEltr coMpoNEt{TS AT FIELD pOTNTS') ;y|itSJn(OtrtFile, t I z2O, r:::-::::::::::-::=r i Iblankln(L);
writeln(OutFile,I r:15rrPoint X Co-ord y Co-ordrrr tzI2,tUxr,

brankln(i, , 
t tt' 'uY') ;

for i:=I to NunFIdPts do
begin
writeln (OutFíler t . t : L7, it3, t | : 3 rXpt LíJ 27.. 4, t r : 4 r ypt ¡í1 zl : +,| | :5rUxIi] :12iz,uy¡il :12:7) ;
blankln(1);
end (i);

blankln(3) ;
writeln(OutFile, t . 224,.
writeln(O:tFile, t t .24 | t

blankln(l-) ;

t\.J,
t);

writeln(OutFilert t!5rtpoint X Co-ord y Co-ordrrlr i9,
wrireln(*iiiffi;* sisma-YY sisma-xYr) ;

for i:=I to Nr¡ñldpts do
begin
writeln(OutFile, t r:7, i:3, I t:3rXptI i1t7:,4, t r :Srypt ¡í1zZ za,

blank'nfil rtl0,Sx[í1:8:2r 
t I :5,Sy[ij:s:z, t | :5,sst-í] ieiz) ;

end {i};
Te><tColor(Ì5) ;
TextBackground (4 ) ;
goto>q¡ (Lt?Ð; wríteln('program BEAST has finished. . . ') ;
close (Ot¡tFile) ;
close(InFile);

End {printoutfile};

Control Prograrn
{
I

I

STRESS COMPONENTS AT FTELD POTNTS

]-29

I

I

)

BEGIN

Toctl{ode(3);
}(eactJ-n¡'r-J-ei
fnitialize;
Jacobians;
Coefflr{atrix;
Cholesþr;
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FieldPts;
ÞrintOutFile;

END

lltrursday, December 5, I9g5
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**************************************************

BEAST

Boundary E1e¡nent .Analysis of STress

**************************************************

Hole in an Infinite plate

I elements/ traction b/c
Number of Bor¡ndary Elernents = I
Number of Boundary Nodes = 16

Youngs Modulus = 30000000.00

Poissons Ratío = 0.30

NODAT CO-ORDINATES

Node No.

t
2

3

4

5

6

7

I
I

10

1I

L2

X Co-ord

3.0000

2.7720

2.L?LO

L.1480

0.0000

-1. 1490

-2.Lz]-O

-2.7720

-3.0000

-2.7720

-2.L2rO

-1 " 1480

Y Co-ord

0.0000

1.1480

2.Lzl-O

2.7720

3.0000

2.7720

2.]-2rO

1.l_480

0.0000

-1. 1480

-2.L2J-O

-2.7720
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l3

14

15

I6

0.0000

t_. 1480

2.L?LO

2.7720

BOUNDARY CONDITTONS
:=:::==::::

-3.0000

-2.7720

-2.L?LO

-1.1480

Node

I
2

3

4

5

6

7

I
9

10

11

T2

13

L4

15

16

No. X-Boundary Va1ue y-Boundary Value

20000.00000000 t 0.oooooooo t
L8477.60000000 t 7653.70000000 t
L4I42.10000000 t L4L42.1oOOOOOO t
7653.70000000 t 18477.6oOOOOOO t,

o.oooooooo t 2oooo.oooooooo t
-7653.70000000 t 18477.6oOOOOOO t

-L4).42.10000000 t ]'4].42.1oOOOOOO t
-18477.60000000 t 7653.70000000 t
-20000.00000000 t 0.ooooo0oo t
-L8477.60000000 t -7653.70000000 t
-I4I42.L0000000 t -].4142.1oOOOOOO t
-7653.70000000 t -L8477.6oOOOOOO t

0.00000000 t -20000.00000000 t
7653.70000000 t -L8477.60000000 t

t4L42.10000000 t -L4r42.10000000 t
18477.60000000 t -7653.70000000 t

L33
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PoÍnt

I
2

3

4

5

6

7

I
9

10

l_1

L2

t3

I4

15

X Co-ord

3. 1000

3 .2000

3 .3000

3 .4000

3 .5000

3.6000

3.7oOO

3 .8000

3.9000

4.0000

4.1000

4 .2000

4.3000

4.4000

4.5000

Y Co-ord

0.0000

0.0000

0.0000

0.0000

0.0000

0. 0000

0.0000

0.0000

0. 0000

0.0000

0. 0000

0.0000

0.0000

0.0000

0.0000

FICTTTIOUS STRESSES

Node No Phi-X Phi-y

t_

2

3

4

5

692L5.8668

64454.4807

49037.5179

267L7.4922

2.4554

-0.000r

26727.592L

49035. 903 6

64455.322I

69319.7585
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6

7

I
9

10

1I

t2

13

T4

15

16

X Co-ord

3.1000

3.2000

3.3000

3.4000

3.5000

3.6000

3.7000

3.8000

3.9000

4.0000

4 " 1000

4.2000

-267L2.4L26

-49031.6350

-64451.0263

-69315.970I

-6445L.0265

-4903I.6349

-267L2.4L32

2.4556

267L7.4915

49037.5180

64454.48I0

64454.4028

49034.5834

267L5.2045

-0.000r

-267L5.2040

-49034.5835

-64454.4026

-69319 .7585

-64455.3224

-49035.9034

-26727.5922

Point

t
2

3

4

5

6

7

I
9

10

11

L2

Y Co-ord

0.0000

0.0000

0.0000

0. 0000

0. 0000

0. 0000

0.0000

0.0000

0. 0000

0.0000

0.0000

0. 0000

Ux

0.0024960

o.oo24L75

o.0023444

o.oo22756

o.0022Lo7

0.0021495

0.0020916

o.0020367

0. 0019846

0.0019352

0.0018881

0. 0018433

Uy

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000

-0.0000000
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13

l4

15

4.3000

4.4000

4.5000

0.0000

0.0000

0.0000

0.0018005

0.00L7597

0.0017207

-0.0000000

-0. 0000000

-0.0000000

Point

L

2

3

4

5

6

7

8

9

10

11

T2

13

L4

15

ry- =ggyliiï=gy:
X Co-ord Y Co-ord Sigma-)O( Sigma-yy

3.1000 0.0000 -t9629.77 L9507.75

3.2000 0.0000 -L7274.32 t7464.5I
3.3000 0.0000 -t6323.22 16472.8I

3.4000 0.0000 -15374.43 15508.63

3 .5000 0. 0000 -1450L.90 14618 .76

3.6000 0.0000 -13707. 09 13807. 09

3.7000 0.0000 -L2978.75 L3063.98

3 .8000 0. 0000 -12308. 23 12380.99

3.9000 0.0000 -11688.97 I175L.33

4.0000 0.0000 -1L115.60 11L69.31

4.1000 0.0000 -10583.53 10630. 04

4.2000 0.0000 -10088.78 L}:.zg.zg

4.3000 0.0000 -9627.88 9663.39

4.4000 0.0000 -9197.79 g22g.o8

4.5000 0.0000 -8795.80 8823.54

Sigma-XY

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00

0. 00
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BEDAP.PAS I{ednesday, October 9, 1985

************************************************************
*
* BEDAP*
*

i Boundary Elenent DAta preparation

*
* By W. NeiI Aitken*
* and.*
* Allan T. Dolovich*
***********************************************************

Progrram BEDAP (output) ;

TYPE

)
)
)
)
)
)
)
)

)

)

)
)
)
)
)

*
*
*
*
*
*
*
*
*
*
*
*
*
*

NewFíl-e
FileNane, title
choice, choice2
NumNodes, NumEIem , i,) ,k,
NunFIdPÈs
xryrXptrYpt,
B
xCoderyCode
ErNu

IÀBEL 1'

=STRTNGII] 
'=ARRAYII..50] OF Codet

:EÐ(T;
:STRING[8O];
:STRINGI1] t

¡INTEGER;
:ARRÀYI1..50] oF REAL;
SARRAY[1. .100] oF REAL;
:CodeTlpe;
: REAL;

Code
CodeTlpe

VAR

Procedure Header;

Begin

ClrScr;
gotoxy(3s,8) r writeln(tB E D A p') ;
gotoxy (23,L2) ; writeln( rBoundary Element DAta Preparationt ) ;
Delay(3000);
gotoxy(3O,15) ; writeln('By W. Neil eitkenr) ;
goto>q¿(38,17) ; writeln( tandt) ;
gotoxy (32,L9);writeln( tAllan T. Dolovicht) ;

L38
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De1ay(2000) t
CIrScr;

End;

Procedure ReadlnFile;

Aegin;

CIrScrt
goto><y(
readln(
ClrScr;
Assign(
Rewrite
goto>q¡(
writeln
readln(
writeln
Clrscri

gotoxy(36, L0) ;

I{ednesday, October 9, 1985

1?lI2); r¡rite(rEnter tt¡e New DataFile Name >
FileName);

NewFiIe, Filellarne) ;
(Newfile) ;
19,12);writeln(:--- Erter ttre Title of the problem ---,) i;writeln;write(t t);
title) ;
(NewFile,title) ;

goto>q¡(Isr12) i write(tEnter the Nr¡nber of
readln (ñmllodes) ;
NumElem:=NumNodes div 2 ;
writeln(NewFiIerNumNodes, r t rNunElen) ;
CIrScri
goto>q¡(30, 5) ; writeln('
gotoxy(30, 6) r writeln( t

goto>q¡ (26,L3) ; write('y
readln(E) ;
goto><y (26,L5) i write( rpoissons Ratio >
readln(Nu);
writeln(NewFiIerE, t trNu) ;
Clrscrt
gotoxy(31, 5) t writeln( tNODAL CO-ORD1NATES t

gotoxy(31,6); writeln
for i:=1 to Nr¡mlilodes

begin

36r11);
29,L3',) ìxtil )
28tL5); wrÍte(rY Co-ordinate >
vtil );

1,13) ;ClrEol;
1,15);CIrEol;
(NewFilerxIi], | | :I0rytil) ;
,

writeln( |NODE t , i) ir+riteln(r-------r);
write( tX Co-ordinate >

I{ATERTAL PROPERSIES

oungs Modulus >

139

Boundary Nodes >

l\.
ltt);

r);

r);

)¡
);

t\ ¡t,

t);

t);
t);

goto:<y
goto>q¡
readln
goto><y
readln
gotoxy

VJÏ].
end (

ClrScr;
goto>ry(

i)

goto><y(30r 6
for i:=I to

begín
Nrml.Iodes do

30r5 ; writeln('BOUNDARY C\oNDITIONS
; writetn('

)
)
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goto><y(3
gotoxy
gotoxy
readln
goto>ry

write
rrrrite

readln( ycodetil );

End;

Procedure FrintOutFile ;

); writeln(tPoIM t,i)i
) ; writelnl t--------t) ;
); write(tX Co-ordinate >il );); write(tY Co-ordinate >il )¡
; ClrEol;
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I isplacement | ) ;Normvideo;r---> t);

6
6
5
B
4

(3
(2
(
(2

10
11
13t

,
,
)
,

writeln( TNODE t, i) ;
writeln( t-------t ) ;write( tX Boundarlz Value >

ì
write( tTt ) ;Io¡/Video;write( rraction or t ) ;NomVideo;write( tDt ) ;LorvVideo;
write ( t isplacernent I ) ;Normvideo;
write(t---> t);

til
, 15)

readln( xcode[i] );gotg¡y(25,17); write('Y Boundary Value ---> ');readln ( B [ Í+Nurnl.Iodes] ) ;goto4¡ (24,Lgr;write (tTt) ;Io-rsVideo;write ( traction or t) ;
NormVideo ;write ( t D t ) ; Ior*l/ideo ;

(
(

gotoxy(I, 13) ;CIrEoI;
gotoxy(1, t5) ;ClrEol;
goto>q¡ ( I, 17 ) ; CITEoI ;
goto>q¡ (Ì, 19) ;CIrEoI ;
wrj,t9]n(NewFile,BIi], r r,xCodeIi], r | :I0,Bli+NumNodesl, r

end {i};
CIrScr;
gotoxy(25t12); rrriteln(rEnter the Nr¡¡nber of Fierd pointsl
gofo><y(2sr13) ; writeln( tat wtrich Stress and Displacementl
gotorq¡ (.??,\41 ; writeln( tConponents are to be Calculated' )goto><y(25,16)i write (t >
readln (NunFIdPts) ;
writeln (NewFile, Nr¡nFldpbs ) ;Clrscri
goto>q¡(28r5) ; writeln( tFTELD ponlT co-oRDrNATEsr) tgotoxy(28r 6) ; writeln ( r:::::æ: r ) ;for í:=1 to NL¡mFldpts do

begin
gotoxy(36, 10
gotoxy(36 r 11
gotoxy(28,13
readln( xptl
goto>q¡ (28,L5
readln( Ypt[
gotox¡¿(1r 13)

I ,yCodetil ) ;

)
)
,

goto>q¡(l, 15) ; CIrEol;
writeln(NewFile,Xpt[í], t t :lOrypttil ) ;end {i};

Clrscri

Begin
L40
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repeat
goto:q¡(3I
goto>q¡(3I
got.'ory(22
goto:<y(22

gotoxy(30, 3) ; writeln('BOIINDARY CONDTTIONS
goto4¡(30r4) ; writeln( r-:::::
goto>q¡ (22 ,6); writeln(' X BN
gotor<y(22,7) , writeln( t

goto:ry(J.r 9) ;
for i:=L to I do

beqrin

);
);

CIrScr¡
goto:<y(35,S) ; writeln( TMATERIAL pRopERTIEst) t
goto>q¡(3ã, 6', î ¡rrriteln( r:::::r ) ;
goto:<¡¡ (29,L3) ; writeln( rYoungs Modulus = t rE: 11:2) ;
gotoq¡(29r15) ; writeln( rPoissons Ratio = t rNu:4.2) ìgoto4¡(f ,25) ì writeln( rEess any key to continue . . . r ) ;j:=o;

, 3) ; writeln( |NODAL C0-ORDINATES T ) ;
,4); writeln(r---:t);
,6); writeln(tX Co-ord

'7) ¡ 
rrtriteln( t --------

t

,gotoxy(J-,9) ¡for í:=I to I do
begin
k:=i+j;
writeln;
if k (= Nurnlilodes then

lrriteln( t
end (i);

NODE trkrt r:12rx[k]:8:4, I t..2O,y[k]:8:4) ;

gotolq¡(lr25) ;writeln( rPress any key to continue ... r) irepeat until Kelpressed;
ClrScr;
j :=j+B;

untÍl j >= NpmNodes ìj:=o;
repeat,

L4:.7,r I,xCode[k],
7 ,' I ,yCodetk] ) ;

Y Co-ordf

v B/vt )
----- r 

)

Y Co-ordr);

,
,

k:=i+j;
writeln;
if k (= Nr¡mlitodes then

writeln(t NODE trkrt t:9rB[k]
| | :13r8[k+NunNodes] :14

end {i};
goto><y(I,2?) ¡ writeln(tPress any key to continue ...') ;
repeat untíl KeyPressed;
ClrScr;
J :=j+8;

until j >= NumNodes ìj:=0i
repeat

gotoxy
goto>q¡
gotoxy
goto>q¡

; writeln
; writeln
; writeln

,3)
,4)
,6)
,7)
e);

(28
(28
(22
(22

IFIELD POINT CO-ORDTNATES I

rX Co-ord

);
);

goto>q¡(1
for i:=l

begin

; writeln(t--------
toBdo

141

');
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k:=i+j;
writeLn;
if k (= NumFldpÈs ttren

writeln(t POfNf trkr t r:J-2rXpt[k]:8:4r t r:20rYpt[k] :8:4) ;
end {i};

goto>q¡(Ir2s);wríteln(rPress any key to continue ... t);
repeat until Kelpressed;
ClrScr;
j :=j+8;

until j >= N¡¡nFldPts i
repeat until KeyPressed;

End;

BEGIN

Headeri
't¡¿.
ReadInFile;
gotorq¡(zÙ,Lz); write(tWou1d you like to review ttre datafile? >
readln (ctroice) ;
if (choice = ty,) or (choice = rYr) then kintOutFile;
CIrScrt
gotoxy(20r12); write(tWou1d you like to create another file? >
read(ctroice2) ;
Íf (choícez = tyt) or (ctroice2 = rYt) then goto I;
ClrScr;
gotoxy(20r10); writeln(tllhe input file for the problemt);
gotoxy(22,L3) i r{rÍteln(rrr rrtitle, I trt)i
goto>q¿(20r16); writeln(thas been created and is stored int);
gotoxy(3 5,2O) ; write (FileNane) ;
close (NewFile) ;

END.
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