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ABSTRACT

An advanced boundary element method was developed to solve
two-dimensional elastostatic boundary value problems. The method
' is characterized by replacing the physical problem with an
infinite plane problem which has the same solution, and for which
there exists a simple analytical solution. This is accomplished
by distributing a fictitious layer of stress over a tracing of
the boundary in an infinite plane in such a way as to duplicate
applied boundary conditions.

The current fictitious stress method was advanced by
incorporating the accurate modelling of curved boundaries, a
higher order distribution of the unknown fictitious stress layer,
and the formulation of Galerkin's method as a means of optimizing
the solution. These developments were achieved by using shape
function representations of the space co-ordinates and of the
unknown fictitious stress distribution in the integral equations
of the boundary element method.

The isoparametric boundary element algorithm was numerically
implemented in a program called BEAST. The results from several
theoretical elasticity problems showed a close correlation with
the analytical solutions for both displacement and stress
traction problens. BEAST was also found to yield far more
accurate results than the current line element method.

Current research has focused on the accurate solution of
mixed boundary value problems and on the addition of wuseful

input/output features.
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NOMENCLATURE

field point/element
unknown coefficients
source point/element

displacement or stress traction vector

"boundary of finite solid

tracing of boundary in the infinite plane

influence coefficients for displacement
or stress traction

Young's modulus

arbitrary function

point force

shear modulus

integral of influence functions (general)

integral of influence functions
times shape functions

Jacobian of transformation
nodal Jacobian
linear operator

unit outward normal

distance between field point and source point

influence functions for stress

stress traction vector

influence functions for stress traction
displacement vector

influence functions for displacement

weighting factor for Gaussian quadrature




x co-ordinates of nodes

y co-ordinates of nodes

shape functions

derivatives of shape functions
shear strain

normal strain

expansion functions

Poisson's ratio

parameter, Gauss point

stress tensor

fictitious stress vector
Airy's stress function

nodal fictitious stress vector

unknown functions




CHAPTER 1

Introduction

1.1 Boundary Element Methods

Most practical engineering problems are impossible to solve
by analytical methods, in which exact mathematical expressions
are obtained for the required variables. In the past, a broad
range of assumptions was used to simplify problems to a point
where an analytical solution could be obtained. It was hoped
that these solutions bore a reasonable resemblance to the
solutions of the real problem. However, with the advent of
digital computers, the emphasis in engineering analysis has moved
towards more versatile and accurate numerical methods.

The most established numerical technique for solving
engineering problems is the finite element method. In this
technique, variational methods are used to obtain approximate
solutions to the partial differential equations governing the
physical process. The distribution of the unknown variables are
obtained as approximate values at a finite number of discrete
points over the entire domain of interest. In this sense, the

finite element technicque may be described as a domain method.

In boundary element methods, the primary result is the
distribution of the unknown variables on the boundary of the
solution domain only. Thus, any boundary element technique may

be described as a boundary method.

Boundary element methods are formulated by deriving a

boundary integral equation which is equivalent to the partial




differential equation that governs the physical process.
Therefore, calculations are performed over only the boundary of
the domain. This effectively reduces the dimensionality of the
problem by one, so that a three~-dimensional volume problem
becomes a two-dimensional surface problem, and a two-dimensional
' planar problem is reduced to a one-dimensional line problem.

In boundary element methods, the interior of the solution
domain is not discretized. Therefore, there is much less
approximation involved in representing the solution variables,
and rapid variations of these variables can be resolved very

accurately.

1.2 A New Concept in Boundary Elements

Many vastly different numerical techniques have been
proposed which could be classified as boundary element methods.
Most of these were derived in order to solve specific types of
problems, while others apply to general classes of problems.
This thesis is concerned with the boundary element solution of
elastostatic problems. This class of problem requires that the
solid body remain elastic under the applied loading, and that no
acceleration of the body result.

The objective of this thesis is to develop a new boundary
element method which is generally applicable to two-dimensional
elastostatic problems of the complexity found in practice. This
method must be accurate, simple, and must lend itself well to
numerical implementation. The resulting program should run
quickly and efficiently on a micro-computer and, most

importantly, should be simple to use.




Given these requirements, ‘the "fictitious stress" boundary
element method was selected to form the basis on which a new
advanced formulation would be developed. This method is
characterized by replacing the physical problem with an infinite
plane problem which has the same solution, and for which there
exists a simple analytical solution.

Extensions to the fictitious stress method that are required
by the new method include the accurate modelling of curved
boundaries, reduction in the number of elements required to solve
a problem, and improved accuracy and versatility, all without a
loss of the computational efficiency which distinguishes this

method.




CHAPTER II

Literature Review

2.1 Introduction

Boundary element research in elasticity has had a short
though varied history. To date, there is no single accepted
boundary element method, and this has inhibited it's widespread
use in industry. Boundary element formulations have been
developed for many specialized applications but the development
of generalized programs has been slow.

The mathematical foundation for every boundary element
method comes from the theory of integral equations, first
investigated by Fredholm [01] in 1906. This theory was later
applied to solve integral equations in elasticity,using complex
variable theory, by the Soviet researcher Muskhelishvili [02] in
1953. In 1959, Mikhlin [03] presented similar work but avoided
using complex variables, and thereby opened the avenue for
numerical solutions.

In the 1960's the research into useful applications of
integral equation theory accelerated because of the advent of the
computer. In the middle of the decade two separate schools of
research evolved, distinct in their approach to solving the same
problems. One school of research developed an integral equation
method from the direct application of potential theory to
elastostatics. The other school solved the integral equations
indirectly by replacing the original problem with an equivalent

fictitious problem for which the fundamental solutions of



elasticity are applicable.

2.2 Direct School of Research

In 1967 Rizzo [04] introduced an integral equation method
for solving two-dimensional elastostatic problems. He derived
the Somigliana identity for the displacements inside a body, by
using Betti's identity. The integral equation was obtained by
taking the limit of Somigliana's identity for points located on
the boundary. Solution of these equations yielded the unknown
stress tractions and displacements on the boundary which could be
used to obtain interior values. Kelvin's solution for a point
force in an infinite plane was used as the basis of the
formulation.

The following year, Cruse [05] presented an extended version
of Rizzo's theory which could solve elastodynamic problems. The
integral equations were altered by applying Laplace transforms.
In the same year, Rizzo and Shippy [06] solved inclusion problems
using the previous integral equation method.

In 1969 Cruse [07] described the first three-dimensional
boundary element method which was based on Rizzo's original two-
dimensional research. Surfaces were discretized using flat
triangular elements and several problems were solved. Cruse and
Swedlow [08] introduced the first boundary element method for
elastoplastic problems. The elastoplastic methods have since been
advanced by many researchers including Riccardella [09], who
applied the Von Mises criterion, and Mendelson [10], who
presented a three~dimensional formulation.

In 1973 Cruse [1ll1] presented the first comprehensive




comparison between the direct boundary element method and finite
element solutions of three-dimensional problems. In addition,
several new crack propagation problems were solved. Cruse
concluded that the boundary element method was superior for
problems requiring good resolution. This was due to the reduced
problem size and run time.

Cruse [12] altered his formulation the following year to
improve the accuracy of solution. Instead of using constant
boundary data over each element, he used a 1linear variation
between the end-points of elements. This was accomplished by
formulating the unknown boundary data in terms of a double Taylor
series expansion and retaining the linear terms.

A significant advancement of the direct method was
accomplished by Lachat and Watson [13] in 1977. These
researchers used quadratic shape functions to describe the curve
of three-dimensional elements and to describe the quadratic
variation of the unknown displacements and stress tractions on
the surface. This improvement was found to increase the accuracy
of solutions and required far fewer elements to model a surface
accurately.

Since this improvement, the direct boundary element theory
applied to elastostatics has remained essentially unchanged. In
1977 Brebbia [14] described a procedure for coupling the direct
method to finite elements so that a new hybrid algorithm was
possible. Brebbia [15] also consolidated the previous research
in a comprehensive publication on two and three-dimensional,
linear and quadratic elements. Recently, the research into

direct methods has concentrated on elastoplastic methods.



2.3 Indirect School of Research

While direct approaches have remained at the fore-front of
past research, indirect methods have evolved much more slowly.
This is primarily due to a lack of any rigorous justification for
~ the fictitious quantities that arise in the indirect approaches.
However, Brebbia and Butterfield [16] have proven that the
indirect method and direct method are actually equivalent by
deriving one from the other. The indirect method has proven to
be a short-cut to the same solution, which avoids the excessive
mathematical treatment. Thus, the resulting integral equations
are very much simpler than those solved in direct methods.

The first true boundary element method was an indirect
approach proposed by Massonet [17] in 1965. This was the first
integral equation solution suitable for numerical implementation.
Massonet used Flamant's half plane problem as a fundamental
solution. Fictitious 1loads of unknown magnitudes were
distributed around the solid imbedded in a half plane and their
strengths were determined from the given boundary conditions. An
iterative method was used to solve the integral equations. Once
the magnitude of the fictitious loads was determined, Flamant's
solution provided stresses at any interior points.

In 1968 Oliveira [18] advanced this research by using
Kelvin's solution for a point force in an infinite plane in place
of Flamant's solution. The fictitious forces were distributed on
an auxiliary boundary, removed some distance from the " actual
boundary. This improved results near the boundary and near

corners. However, this technique applied only to plane stress




problems and, in some instances, the resulting system of
equations could become unstable.

Important research which contributed to the advancement of
indirect methods was done by Kupradze [19] in 1964. He described
an integral formuation based on an elastic body subjected to
' periodic body forces and boundary conditions, where the static
problem was a special case. Kupradze introduced the concept of
elastic potentials which arise from the simple and double layers
of fictitious force. In 1972 Watson [20] described both two and
three-dimensional elastostatic boundary element methods based on
Kupradze ideas of elastic potentials.

In 1970 and 1971, Banerjee and Butterfield [21] applied a
fictitious stress method to the analysis of compressible piles.
This formulation used Mindlin's sclution for a point force in the
interior of a semi-infinite solid as a fundamental solution.
Their approach was very similar to Massonet's original
formulation. In 1972 Butterfield and Tomlin [22] extended this
formulation to nonhomogeneous and anisotropic problems using a4
fundamental solution for a point force in orthotropic lamina.

In the same year Benjumea and Sikarskie [23] presented two
approaches. The first was similar to Oliviera's method but the
auxiliary boundary was made tangent to the real boundary. The
second approach was a refined version of Massonet's method and,
although very dgeneral, included all of the essential integral
equations of the current level of advancement.

In 1976 Banerjee [24] outlined an indirect method in detail
using Kelvin's solution. This was an integral equation method

which extended Benjumea's work to piece-wise, nonhomogeneous,



three-dimensional elastic bodies using elements composed of
multiple flat surfaces. This formulation is indicative of the
current state of research since all later developments are
variations on this technique.

Crouch [25], also in 1976, introduced the displacement
discontinuity method which used fictitious displacements instead
of fictitious stresses. Though different, this method is no more
sophisticated than any previous techniques.

In 1978, Altiero and Gavazza [26] proposed the dislocation
dipole method. This method used a double layer theory, applying
one layer of fictitious body force and one layer of fictitious
displacements. This ensured that all the resulting integral
equations were singular, as 1is convenient for numerical
integration. However, the algorithm used only straight 1line
elements and any refinements have yet to be reported.

A new concept in elements was described by Mahajerin [27] in
1983. These elements were circular and defined by a radius of
curvature. However, problems with straight boundaries or corners
could not be solved (because the radius approaches infinity or
zero) and special trigonemetric equations were required to
describe the boundary shape and the boundary conditions. No real
physical problems could be solved.

Though many variations on the indirect approach have been
proposed, no researcher has advanced his formulation to a level
where it is useful for solving complex engineering problems. In
all cases, the boundary elements are straight lines (or flat

surfaces in three-dimensions) and the fictitious layer is




distributed in constant blocks over the boundary. Obviously,

advancements in these areas are necessary in order to make the

poundary element method useful to industry.
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CHAPTER TII

Solutions to Problems in Elasticity

3.1 Introduction

The foundations for the boundary element method presented in
this thesis are found in the theory of elasticity. This chapter
reviews the topics in elasticity which are necessary for a
complete understanding of the boundary element solution.

The boundary element technique is applicable to the solution
of elastostatic boundary value problems. The physical problem
must be modelled accurately by the biharmonic equation,
subject to a set of continuous boundary conditions.

The boundary element method is capable of solving complex
engineering problems by superimposing fundamental solutions to
the biharmonic equation. Kelvin's solution for a point load in
an infinite solid forms the basis on which to develop the

essential integral equations of this technique.

3.2 Boundary Value Problems

In order to obtain a boundary element solution, an
engineering problem must be posed in the form of a "boundary
value problem" [28]. From the physical problem, a mathematical
model is created which simplifies though closely approximates
reality. The problem is then formulated mathematically, usually
in the form of a partial differential equation. This equation is
solved, subject to certain constraints, to yield an approximate
solution to the original physical problem.

Consider a region of material R which is defined by a

11



poundary C as shown in figure 3.1. External factors are applied
to the boundary such as electropotential, temperature or forces
and the resulting conditions at some point P(x,y,2) in the

region are desired.

Y A
Region
R
External —~;?
Factors
7 | Boundary ¢~ X

Figure 3.1: A Boundary Value Problem

A partial differential equation, such as lLaplace's equation,
Poisson's equation or the biharmonic equation, describes the
conditions in R as a function of position. By specifying the
conditions at all points on C to the partial differential
equation, a unique condition at each point in the region may be
determined by solving the equation.

Therefore, a boundary value problem is characterized by a
partial differential equation and a continuous set of boundary
conditions. If the problem is well posed, an approximate
solution may be obtained for a physical problem that is well

described by this equation.

12




3.3 Biharmonic Equation

A partial differential equation that is used to solve two-
dimensional problems in elasticity is called the biharmonic
equation [29].

Consider the equilibrium of a small block with a rectangular
| section of width w, height h and unit depth as shown in figure
3.2. The rectangular section consists of faces 1, 2, 3 and 4
which are each acted upon by a shear and a normal stress that

result from some applied forces.

(c&y)u yf
(oxy)a N
(o, 0s 3 P (ol
S (o1
1 (oyy )2
(oyy)z

Figure 3.2: Equilibrium of Small Block
The magnitude of the stress components at the midpoint of each
£ i ted b . d . Th
ace 1 are represen Y (oxy)_' an (o‘xx)i or (gyy)_i e
force acting on any face may be approximated by multiplying the

midpoint stress by the area of the face. If X, Y denote
components of the body force per unit volume, the equation of

equilibrium of forces in the x-direction is
(Oxx)l h - (oxx)3 h + (oxy)2 W - (oxy)4 w+ X hw=20 (3.1)

13



pividing this expression by the rectangular area hw gives

(opy )y = (oxx)3 + (cxy)2 - (cxv)4 +X=0 . (3.2)
W h

In the limit as the area of the rectangular section approaches
zero, the term| (OXX)1 - (oxx)3 1/w becomes 80, /3X and the term
[(oxy)2 - (oxy)4]/h becomes agxy/ay . The equation of equilibrium

in the x-direction is then

90y ¥ %ky+x =0 . (3.3)
3x 3y

By a similar derivation the equation of equilibrium in the vy-

direction is

30 + acx +Y=0 . (3.4)
3y X

The normal and shear strains at a point are defined in terms

of the components of elastic displacement u, v as

3 = 3u € = 3V
XX —_— —
Txy = 3U + 3V .

Yy X

This definition implies that the components of strain are not

independent but are related by relationships called
"compatibility equations". Differentiating €yx twice with
respect to x and €y twice with respect to y yields
3ZEX = 33u ’ a2exi= 33v (3.6)
ay?  ay2ax ax<2 3x23y

14




and differentiating Yxy once with respect to each of x and vy
gives
32 = 3%u + 3dv

Yxy (3.7)
aX oy  oX dy?  dx“ay

It follows that the two-dimensional equation for compatibility

requires

2 2. _ 932
d2e, + 3Ty = FVyy (3.8)
3y? ax?2 X 3y

Generalized Hooke's law for plane stress [29] relates strain

and stress components as follows

fox =L (o = voy ) vy T gy 7 v
(3.9)
Txy =_%_0 = 2(1+v) Oyy

Xy E

Substituting these into the compatibility equations (3.8) yields

32 (0. = vo. ) + 232 (o, «vo ) =2(1+v)3%0 (3.10)
£\ %%x ol XX Xy

This expression may be simplified by using the equations of
equilibrium. Differentiating equation (3.3) with respect to x
and equation (3.4) with respect to y and summing the two yields

(assuming a constant body force)

2 = - 52 _ 32
2 3 OX P GXX ] Oyy (3.11)
X 3y ax2 ay?

which may be substituted into equation (3.10) to yield the

15




compatibilty equation for stress

_ (3.12)
( 82/5%x2 + 32/3y2 ) ( Oy * %y ) =0

In the absence of body forces, the equations of equilibrium

~and compatibility are satisfied if Oyy 7 oy andc%qlare defined
in terms of the so-called Airy stress function ¢ . This function
is related to the stress tensor by
o,, = 329 o,, = 220 o = - 32 (3.13)
X a2 Wooax2 Yoo ey

Substituting these relations into the compatibility equation for

stress implies that the function must satisfy

o4e + 2 % + 3% =0 . (3.14)

Equation (3.14) is called the biharmonic equation of
elasticity. A two-dimensional boundary value problem may be
solved by enforcing a set of boundary conditions associated with
the physical problem on the biharmonic equation. The stress
tensor components at any points may be found by integrating the
solution ¢ in accordance with the definition of the stress
function. Note that the Airy stress function is a fictitious
quantity, without physical meaning, which is used indirectly to

obtain a solution to the equilibrium and compatability equations.

3.4 Boundary Conditions

In addition to specifying the partial differential equation

which governs the problem, boundary conditions must be specified
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to indicate the applied loading. In elastostatics, boundary
conditions are specified in the form of stress tractions and
displacements.

The stress tensor components in a solid at a point very
_near the boundary must be in equilibrium with the external
forces. In this sense, the external forces may be regarded as a
continuation of the internal stress distribution. The external
force per unit area is a vector representation of the stress

acting on a boundary and is call a stress traction. It may be

defined in terms of the stress tensor as

t, = *
x © %x " T %y My

(3.15)
by % "x T oy Ty
where Ny and ny are components of the unit outward normal to the
boundary. Thus, the boundary condition at a point is reduced to
a vector from a second rank tensor representation because the
plane on which the stress acts is defined by the tangent plane to
the boundary.

Displacements may also be specified as boundary conditions
of an elastostatic problem. In particular, if the external
forces are not self-equilibriating then the displacement of at
least one point must be specified for the body to remain static.

To properly pose an elastostatic boundary value problem,
either a stress traction or a displacement must be specified at
every point on the boundary of the solid. For a mixed problem,
stress tractions may be specified on some parts of the boundary

and displacements on others, or different components of each may

be specified over the same portion of the boundary.
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Sections of the boundary which are not subjected to external
forces, displacements or constraints are called "traction free".
They are defined by applying a zero stress traction so that the
poundary conditions will be continuous over the entire boundary.

Note that an applied force is not a valid boundary
condition in elastostatics. A boundary condition must be
compatible with the variables in the partial differential
equation. Therefore, forces must be divided by the area of

application and prescribed as stress tractions.

3.5 Singular Solutions

Analytical solutions have been derived in many disciplines
for the case where is some sort of disturbance in an infinite
homogeneous region. These solutions are useful because they give
the effect of the disturbance upon any point in the region. Such
cause and effect relationships are referred to as singular
solutions because they are well behaved everywhere in the region
except at the point of the disturbance. At this point the
solution usually tends to infinity as a result of a mathematical
anomaly.

One such singular solution of the biharmonic equation is
Kelvin's solution for a point force in an infinite solid. In
this example, the disturbance is a concentrated force that
induces stress in the surrounding field. At the application
point of the force the stress is theoretically infinite because a
finite force is acting over an infinitesimal area.  However,
since the region very close to the force is in fact plastically

strained, Kelvin's solution does not apply here (see figure 3.3).
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Figure 3.3: A Singular Solution

3.6 Kelvin's Solution

Kelvin's solution for plane strain [3oj yields stress and
displacement components at a point in an infinite plane when a
concentrated force is applied to another point. Figure 3.4 shows
a plane within an infinite solid subjected to a point force F at
the source point B. Assuming a plane strain condition, then any
cross-section of the solid will be representative of the whole
body. Referring to figure 3.4, the displacement components at a

field point A are described by

uy =_E£ [(3-4v)g - R, g’x] +.;% ['RY g,x]
G
(3.16)
u, = F IR 91+ F [(3-4v)g - R, g,,]

26 26
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where g(x,y) = 1 In/RZ+R (3.17)

An(1-v) X M

g and g,y are the partial derivatives of g(x,y), G is the shear
X
modulus and v is Poisson's ratio. These equations may be written

in tensor notation as

u; = Ugy

* F. (3.18)
J

where Uij are called the influence functions for displacement and

represent the coefficients of Fx and Fy in equation (3.16).

These functions measure the contribution of the point force F to

the displacement of an arbitrary point A.

Figure 3.4: Kelvin's Solution
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If the expressions for displacement are substituted into
the Lamé equation that relates displacement to stress, the

following three components of the stress tensor will result:

Q
]

XX FX [2(1‘V)gsx - RX g’XX] + Fy [ZV g:y - Ry g’XX]

(3.19)
= F 2 3 - R » + - ’ - '
oy = Fx (29 90 =R g0 T+ F [20-v)g,, - R g, ]
oy = Fx L2918, = Ry g5y 1+ Fy [O-2)g,, - R g, ]
or more concisely
013 = Sijk * Fk (3.20)

where Sijk are the influence functions for stress.

In elasticity, boundary stresses are usually represented by
a stress traction vector ti . These components were defined in
terms of the stress tensor in equation (3.15). By this
definition, the Kelvin solution for stress traction is

ti = Oij * nj = Tij * Fj (3.21)

whereT].j are the influence functions for stress traction.

Equations (3.18), (3.20) and (3.21) are expressions for the
components of displacement, the stress tensor and stress traction
(on some plane) at a point on an infinite plane, due to a

concentrated point force. For simplicity, the equations for

displacement and stress traction may be written collectively as
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= * (3.22)
where
B; = Displacement or stress traction component Ui r g
Co — 1
ijj = Influence functions Uij' or Tij
Fj = Applied point force

Kelvin's solution for plane strain provides the basic
analytical solution on which to develop this boundary element
method for elastostatics. In fact, any fundamental singular
solution of elasticity, such as Flamant's or Mindlin's solution,
may be used in place of Kelvin's solution. However, Kelvin's
solution was selected because it yields the most generally

applicable boundary element formulation.
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CHAPTER IV

Fictitious Stress Method

4.1 Introduction

The "Fictitious Stress" boundary element technique was first
proposed by Massbnet [17] in 1965 and has since been refined and
generalized by researchers such as Banerjee [24] and Crouch and
Starfield [30]. In this chapter, the fictitious stress method is
developed with an emphasis on the physical interpretation of all
mathematical derivations. Presently, this technique is only
suitable for solving simple engineering problems because of the
excessive computation required and the difficulty of formulating
problens. However, in chapters 5 and 6 this fictitious stress
method is used as a basis for deriving a new technique that can

be used to solve complex problems easily and accurately.

4.2 Infinite Plane Model

Stress and displacement components obtained from Kelvin's
solution are valid only when the region of interest is infinite
in all directions and without cavities. However, Kelvin's
solution may be applied to finite solids or infinite solids
containing cavities by modelling these bodies as a portion of an
infinite region.

Figure 4.1 illustrates the cross-section of a finite solid
that is defined by a boundary C. Stress tractions and

displacements are applied to C so that the solid is in a state of
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plane strain. Figure 4.1 also shows an infinite plane on which a

tracing of the finite solid boundary C' is drawn. If the

Fictitious

Stress N\ Loading

Traction

o L

\v

e

Infinite
Plane

-~/
1 |
Tk

Rl

Figure 4.1: Infinite Plane Model

boundary conditions on C can be identically matched at all points
on the tracing C', then the conditions in the interior of C' will
duplicate those within the finite solid. The matching of
interior conditions is gquaranteed by the uniqueness of solutions
to the biharmonic equation for a particular set of boundary
conditions. Since the boundary conditions are reproduced, so must
all other conditions, regardless of the extent of the region.

In order to develop an infinite plane model, a fictitious
loading is applied to the infinite region along C'. This loading

is selected to duplicate the effect of boundary conditions on C
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that create stress and displacement fields within the interior.
The distribution of fictitous loading takes into account the
material exterior to C!' and therefore it will not be the same as
to the real forces applied to the finite solid.

Once the stress field in the finite solid is duplicated
within the tracing C', Kelvin's solution may be applied to the
model to obtain displacement and stress tensor components at any
point within the tracing. The loading applied to C' is called
fictitious because it is not part of the real physical problemn.
A fictitious loading is used in the model to indirectly obtain a
solution to the finite solid problem by replacing it with an
equivalent infinite plane problem for which Kelvin's solution is
applicable.

The infinite plane model may also be‘used to represent a
finite or infinite solid containing cavities. Infinite solid
problems arise in the analysis of mine shafts, wells and other
rock mechanics applications. In this case, C' traces the
boundary of the cavity and a fictitious loading is applied to
duplicate the conditions on the cavity walls. Kelvin's solution
is then applicable to the infinite plane model to determine the
stress tensor and displacement components at any points outside

the cavity.

4.3 Fictitious Stress

To create an infinite plane model it 1is necessary to
determine the distribution of fictitious 1loading which will
accurately reproduce a given set of boundary conditions. The

attainable accuracy of Kelvin's solution is largely determined by

25




how well the boundary conditions can be duplicated.

To select a fictitious loading distribution it is useful to
divide the boundary tracing into a series of line segments called
poundary elements. The order of loading distribution, which may
. pe constant, linear, quadratic or higher, is then assumed over
each individual element. By dividing the boundary into elements,
the fictitious loading distribution around the entire tracing C'
is represented by a piece-wise continuous function composed of a

series of polynomial distributions, as shown in figure 4.2.

ey,

~

Fictitious ™~
Loading AN

Distr,

Boundary Elements

Figure 4.2: Piece-wise Distribution of Fictitious Loading

This discretization allows for a highly variable distribution of
loading around the boundary tracing which is governed by the
number of boundary elements and the order of distribution on
each.

A suitable order of fictitious loading distribution depends
mainly on the complexity of the boundary conditions (ie. the
variability and discrete nature). Acceptable accuracy may be

expected by choosing either a large number of elements and a 1low
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order loading distribution (such as constant) or a smaller number
of elements with a higher order distribution over each. Both of
these approaches will be considered.

Figure 4.3 illustrates an infinite region model that results
from the first approach. A portion of an arbitrary solid is
'modelled by a series of straight line elements and a constant
fictitious loading is applied over each. Assuming that a point
force is equivalent to an infinitesimal portion of a stress

distribution, then a point force F may be represented by

dF = ¢(s) ds (4.1)

where ¢(s) is a fictitious stress applied over source element b.

Substituting this point force representation into Kelvin's

solution and integrating the expression over element b yields

B, = fb Cis 65(s) ds . (4.2)
This integral form of Kelvin's solution yields stress and
displacement components at a field point 'a' caused by a stress
applied to a curvilinear element in the infinite plane. In
effect, the stresses caused by a series of point forces along the
element are superimposed. A problem for which the integral form
of Kelvin's solution is applicable is illustrated in figure 4.4.
For a constant fictitious stress distribution over a
straight source element, the term ¢ may be moved outside the

integral so that equation (4.2) becomes
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Figure 4.3: Constant Distribution of Fictitious Stress
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B. = ¢j Ib Cij ds. (4.3)

» Field
Point A

Element B

Figure 4.4: Integral Form of Kelvin's Solution

Letting Lﬁ = f (%j ds , the integral of the influence function,
b

equation (4.3) may be written

B.=¢j I_ij . ) (4‘4)
Superimposing the contribution of every source element b to the

stress on a point 'a' in the field gives

N

Bi(a) = bzl ¢j Iij . (4.5)

where N is the total number of boundary elements.

Equation (4.5) is an expression for the displacement and
stress components at a point, due to a known fictitious stress
distribution. However, to develop an infinite plane model a
fictitious stress distribution must be determined from a known

set of boundary conditions. If field point'a' is moved to a point
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on a boundary element, then B becomes the known boundary
condition and ¢; represents the unknown fictitious stress on that
element. If field point 'a' is then moved to each and every
element, a system of linear equations is assembled where the
unknowns are the fictitious stress components on each element.

The resulting system of 2N equations in 2N unknowns ¢  is of the
i

form

R NN 11 ] IN N

- + ... + 1
N N1 1 NN N NT 1 ?N N
= + + ., + ¢
Bx Ixx X * Ixx ¢x Ixy ¢y Xy 'y (4.6)
N N
1 11 1 TN N 11 1 1
+ .., + 1
By = Iyx o F e ¥ Iyx bx Iyy ¢ yy ¢y
\ N
N N1 1 NN N NT 1 NN
+ + 1
By = Tyy 0x * oo ¥ Tyx O fyy by vy by

where Bi are the displacement and stress traction boundary |

conditions and Iij are the influence functions integrated over

each source element.

When the field point is moved to an element where a

displacement boundary condition is prescribed, then




However, when the field point is moved to a stress traction
element the equation must be modified. Application of the
fictitious stress layer causes a discontinuity in the wvariation
of stress across the boundary. This generates a singularity in
the stress traction equation, the limit of which is one half the
fictitious stress on element 'a' (see page 110 of appendix for

details). Thus for elements where a stress traction is prescribed

B. =t, and I..=1/ T,

i i iJ po ds (4.8)

except that Iij = 1/2 when the field point corresponds to the
source element b.

The equations. of system (4.6) may be solved numerically
using techniques such as Gaussian elimination or Cholesky's
method to yield two components of fictitious stress for each
element. Once these components are obtained, the finite solid
boundary value problem is replaced by an equivalent infinite
plane model. Displacement and stress tensor components can.then
be calculated by substituting the fictitious stress components
into Kelvin's solution. The effect of all fictitious stress

values on a point 'a' in the field is given by

N N

u.(@a) = = ¢, [ U,, ds o.;(a) = & ¢ S.:, ds . 4.9
i b=1 1 ‘p 1 o b=1 K fb 1 (4-9)

4.4 Fictitious Stress Boundary Element Algorithm

The preceding boundary element method for -elastostatic

boundary value problems may be summarized in the following 5




steps;

1) Divide the boundary of the solid into straight line segments

connected end to end.

2) Assume a constant fictitious stress is applied over each
element. The mid-point co-ordinate may be used to

represent the entire element.

3) Apply the integral form of Kelvin's solution to each element
of the boundary and thereby assemble a system of linear

equations in unknowns ¢j .

4) Solve numerically for ¢j .

5) Substitute ¢j into the integral form of Kelvin's soution to
determine the stress tensor and displacement components at

any desired points.

The fictitious stress method, or singularity method as it is
called by some 'researchers, is part of a general group of
"indirect" approaches. Other indirect methods include the
"Displacement Discontinuity Method" of Crouch [25],which utilizes
fictitious displacements, and the "Dislocation Dipole Method" of
Altiero and Gavanzza [26]. Each of these indirect approaches is
characterized by replacing the actual problem with an equivalent
fictitious problem for which a singular solution is applicable.
These boundary element researchers, however, have yet to develop
advanced formulations using curved elements and’ high-order

distributions of the fictitious quantity.




CHAPTER V

Isoparametric Elements

5.1 Introduction

The boundary element method developéd thus far is based on
several simplifyihg assumptions which limit the accuracy and
usefulness of the method. By reviewing these assumptions the
algorithm can be modified to improve the attainable accuracy and
to greatly simplify the formulation of problems.

In the first step, the boundary of the finite region is
modelled by a series of straight line elements. If the boundary
of the region contains curves, a very large number of elements
may be required to accurately model the shape. This would
reqﬁire a tedious problem formulation and excessive computer time
and memory. An obvious improvement to the method would be to use
curved elements that could more closely model the shape of a
complex body. A quadratic element shape is especially convenient
since one or two elements may be chosen to model each curve in
the boundary, as shown in figure 5.1. Each element is defined by
two end-point nodes and one mid-point node. Element equations

would then take the form
y = ax2 + bx + ¢ (5.1)

In the second step, a constant distribution of fictitious
stress is assumed over each element. Assuming a higher order of
distribution over each element could vastly improve the accuracy

with which boundary conditions could be duplicated in the
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Quadratic
Elements

Figure 5.1: Quadratic Elements

infinite plane. This implies that the fictitious stress becomes

a function of position, or

¢ = ¢(x,y) . (5.2)

Step 3 of the algorithm assembles a set of linear equations
in unknowns'¢i . An alternative procedure that can optimize the
solution is called Galerkin's method and is introduced into the
algorithm in chapter 6.

The implementation of curved elements and polynomial
fictitious stress distributions can be unified by wusing the

concept of shape functions.

5.2 Shape Functions

5.2.1 Linear Interpolation

It 1is now necessary to digress from the theory of boundary

elements to develop a useful mathematical tool. It will then be
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demonstrated how shape functions can be incorporated into the
existing theory to improve the current bbundary element method.
Shape functions or, more descriptively, interpolation
functions, are derived from interpolation methods, where some
function value f(f) is determined by assuming the distribution
of the function between known values f(gi). An example of linear

interpolation is illustrated in figure 5.2

f
(£) 4 f(ey)

()
fgq)

bk -

Y

Figure 5.2: Linear Interpolation

The two end points, or nodal function values, f(g;) and f(¢,) are
known and the value corresponding to some point ¢ in between is
desired. Assuming a linear distribution of the function, two
equivalent ratios of the co-ordinate lengths are found from
similar triangles to be

E -~ & L f1‘ (5.3)
€y = &1 fy -

Solving equation (5.3) for f(t) , then
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fle) =g - 5,(f, - f1) + f) (5.4)
€2 - &1

Rearranging equation (5.4) in order to isolate the nodal

function values gives

fg) =[1-¢ -g1f,+[g -1 (5.5)
Er - &3 E2 = &1

Equation (5.5) may be written in the form
f(g) = Lify + Lof, (5.6)

where L; and L, are linear interpolation or shape functions and
f, and f, are nodal values. A general fofm_for any order of

interpolation n is

n+1
fle) = 1z a;(g) f, (5.7)
i=1
where n+l is the number of nodal values and a; = Li for linear
interpolation. Note that the shape function values are equal to

1 at the home node (ie. node 1 for o; ) and zero at all other
nodes. This is a property of all shape functions.
Now, assume that the fictitious stress values are known at
the end-points, or nodes, of a series of line elements. ILetting
fi = ¢; (the nodal fictitious stress values) in equation (5.7),
then f(g) = ¢(¢) is a description of a linear distribution of
fictitious stress over an element, as illustrated in figure 5.3.
Notice that the variation over the boundary more closely

resembles a continous distribution than the constant fictitious

stress model.
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Figure 5.3: Linear Fictitious Stress Distribution

5.2.2 Lagrange Interpolation Formula

The ILagrange interpolation formula is a general expression
for interpolation of any order, of which the linear interpolation
functions of equation (5.5) are a special case. With this
formula, fictitious stress distributions and curved elements of
any order may be defined.

Assume that £,, &, ..., &1 are the co-ordinates at which
the function values f(gi) are known. The interpolation functions

ai(g) of order n must have the property that
a:(£:) = 0 jAi33=1,2,3, ..., n.

(5.8)
1.

Q
—~
[Iaa
~—

il

This requirement states that the functions a; must be equal to 1
at the home point j and zero at all other points i. Therefore, a

set of polynomials ai(g) are required with roots

El’ Ez, vees &i_] s €i+] s c--sgn+]




Such a polynomial must be of the form

a;(g) = k(g -£1)(g -£2) ... (€ -£;_1)(€ -E449) -0 (€ -E ) (5.9)

where k is selected such that ai(s) =1 .

polynomial at a specific point Es yields

Evaluating this

oy (8) = klg-62)(g5-82) v (585 1) (E5mE5q) o (E4mE4q)  (5410)

Setting “1(51) = 1 in equation (5.10), as required by condition

(5.8), and solving for k gives

k = 1
(e-e0)(E5-82) v (55785 ) (EimEqyq) oot (E4mE 1)

(5.11)

Substituting this expression for k into the polynomial equation
(5.9) gives the result

a;(8) = (e-ga)(e-ga)..  (E-gs ) (E-E5,0) .0 (6= ) - (5.12)
(g5-81)(85-82) o (E5-85 () (E4-E )0 (6578 49)

Equation (5.12) is the lLagrange interpolation polynomial of order
n for any points i = 1 ... n. Note that any polynomial of order
n may be formed by omitting the term involving £; from both the
numerator and denominator.

Consider a linear element defined by the normalized co-
ordinate ¢ as shown in figure 5.4. Linear shape functions may be
formed by setting n = 1 in equation (5.12). The shape functions
associated with node 1 and node 2 of figure 5.4 are found by

setting 1 = 1 and i = 2, yielding
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ay(g) = (£ - £5) .
ey e
ar(e) = (& -¢,). (5.14)
i E2 - &1

For a normalized element &3 = 0 and £, =1 which reduces the

functions to

ap (&) = 5% : 1; =1 - (5.15)

ap(g) = £ - 8 = . (5.16)

These correspond to the linear shape functions of equation (5.5)

when £; = 0and &y = 1,

a; (g) a
T =~ =
1 \\\t;:><f’
_— ™~
~—
£E=0 _— \\g-= 1
Node 1 Node-Z

Figure 5.4: Linear Interpolation Functions
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These functions are plotted along the element in figure 5.4. The

linear variation of any function f(¢) may be defined by

flg) = (1 - £)f(gy) + ¢ f(g2) (5.17)

where ¢ is a normalized co-ordinate over the intervalfi-fs.

Quadratic interpolation may be performed over the 1linear
normalized element of figure 5.5. In this case, three nodes are
required to define the quadratic functions. Quadratic
interpolation functions are formed by setting n = 2 in equation
(5.12) and setting i =1, i =2 and i = 3, yielding

a;(€) = (8 - £,)(g - £4) (5.18)
(£1- £2)(&1- €3)

a(£) = (& - £1)(e - £3) | (5.19)
(€2- £1) (€2~ &3)
ag(e) = (& - £1)( ~ £5) (5.20)

(£3~ £1)(E3- £3)

For the normalized. elementé; = 0, €, = 1/2 and &3 = 1 , which

reduces these interpolation functions to

a;(g) = 282 - 3¢ + 1 _ (5.21)
as(g) = 4(g - £2) (5.22)
as(g) = 262 - ¢ . : (5.23)

The quadratic variation of any function f(z) may be defined

by
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3
fle) = za;(e) £y . (5.24)
i=1

where ai(i) are given by equations (5.21) - (5.23).

T
A X
Ll st

g

g=1/2 =~ T =]

Figure 5.5: Quadratic Interpolation Functions

The shape functions for cubic or quartic ihterpolation may
be obtained by settingn =3 and n = 4 in equation (5.12) and
reducing the expressions in a similar fashion. Note that an
interpolation of order n will always require n+l nodes

distributed over the element.

5.2.3 Curved Elements

The shape functions (5.21) - (5.23) may be used to describe
the curve of a boundary element in the x - y plane. Letting
f(¢) = x and then f(£) = y in equation (5.24) then the quadratic

variation of the space co-ordinates over a normalized co-ordinate

£ are
3 .
x(g) = T a.(g) X; (5.25)
sl
3
y(€) = z_ a.(g) Y, (5.26)

i=1
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where Xi and Yi are the nodal co-ordinates specified in some
global co-ordinate systemn. Figure 5.6 illustrates the quadratic
variation of the global co-ordinates x and y over the local co-
ordinate £ . This implies that a curved element in x - y space
can be defined parametrically in terms of a normalized 1linear

element in ¢ space.

0 1/2 1 0 1/2 1

Figure 5.6: Quadratic Variation of x - y

The global co-ordinates of any point lying on a parabolic
curve formed by the three nodes may be determined from equations
(5.25) and (5.26). This is calculated by summing the product of
the global nodal co-ordinates and the shape functions evaluated

at the corresponding local nodal co-ordinate.

5.2.4 Fictitious Stress Distributions

The same shape functions (5.21) - (5.23) may be used to
describe a quadratic variation of fictitious stress over an
element. Ietting the function f(f) in equation (5.24) be the

fictitious stress ¢(t), the relation becomes
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o(g) = “1(5) 3 (5.27)

n~Mw

1

where ®i are the three nodal values and a, are the three

.i

quadratic shape functions. Figure 5.7 illustrates the cquadratic
distribution of fictitious stress as a function of the normalized
co-ordinate ¢ . A specified value of ¢ between 0 and 1 will
correspond to a value of fictitious stress that lies on a
quadratic variation between the end nodes. Using this equation
form, a piece-wise quadratic distribution of fictitious stress
may be specified around any boundary,which is composed of a

series of quadratic distributions over each element.

oy —
Y
¥y

Figure 5.7: Quadratic ¢ Distribution

Recognize that defining both space co-ordinates and

fictitious stresses in terms of shape functions implies a

relationship between them. Figure 5.8 shows a curved element in
the x - y plane and perpendicular to the plane is the quadratic
distribution of fictitious stress over the element. Figure 5.8
illustrates that for any £ there exists a unique value for %, vy,

and ¢ . Thus each value of the parameter £ specifies a single
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peint on an element and the applied‘fictitious stress at that

point.

o(g) A

‘/////f—— Fictitious Stress Distr,

g=1/2 £=1

Curved Boundary Element

AN
x(g})

Figure 5.8: Relation Between x - y and ¢

5.2.5 Shape Functions as a Solution Basis
The group of shape functions associated with a specific
order of interpolation n form an orthogonal set. That is, no two
or more shape functions of the same order are linearly dependent.
Thus a linear combination of the shape functions a; may be formed
to approximate any function f(f) by determining the necessary
coefficients fi . In this sense, equation (5.24)
3
f(e) = 2 a,(g) f, (5.24)
i=1-
may be viewed as a quadratic functional expansion of f(g) to

three terms. Because f(t£) is formed from a linear combination of
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o; , all values of the function f(£) must lie within the domain
of the three shape functions. Thus the shape functions form a
mathematical basis that defines the space in which f(¢) must be.
The essential task required to solve any boundary value
problem using the boundary element method is to determine the
distribution of fictitious stress. The ability of this
distribution to accurately reproduce boundary conditions applied
to the solid, governs the accuracy of the solutions. The
quadratic variation of fictitious stress over an element takes
the same form as equation (5.24), ﬁhere
3
o(g) = =
i=1

This implies that the variation of fictitious stress is

ai(g) ? (5.27)

restricted to the domain of the shape functions. Thus, the shape
functions define the basis of the boundary element solution. If
the exact value of fictitious stress required lies outside this
domain, then egquation (5.27) can only provide an approximate
solution.

Increasing the number of shape functions (and therefore the
order of interpolation) will greatly increase the size of the
solution domain. As a result, when solving a complex engineering
problem, quadratic fictitious stress elements can provide a more
accurate solution that constant and linear elements, and cubic
elements can give a better solution than all three. This,
however, is at the expense of much added computation. An
acceptable compromise between the attainable accuracy and the
computational expense is found using quadratic fictitious stress

elements.
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CHAPTER VI

Isoparametric Boundary Element Method

6.1 Introduction

In chapter 5, the mathematical foundations were established
for a new type of boundary element formulation. It was shown
that the variation of any function of order n may be represented
by a set of n+l shape functions and specific values of the
function. Shape function representations are especially well
suited to numerical applications because they are defined
parametrically in terms of a local coordinate which always varies
between 0 and 1. Therefore, a point along the local co-ordinate
between 0 and 1 will correspond to a point along the function.

In this chapter it is shown that a shape function
representation of the fictitious stress can be used to solve the
integral equations of the boundary element method. In addition,
integrations over the boundary can be performed more precisely by
representing the space co-ordinates in terms of shape functions.
Within this solution, the fictitious stress can be given any
order of distribution over an element.

Galerkin's method of solving the integral equations is also
presented in this chapter. This technique uses a different
application of the shape function representation which results in
an optimized solution.

These extensions to the boundary element method lead to a
new method of accurately solving elastostatic problems which has

not been attempted before.
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6.2 Integral Equations

Recall from chapter 4 that stress and displacement
components in an infinite plane are defined by

By =1 Cij ¢

ds (6.1)

where ¢ is the fictitious stress distributed in some manner over
a curvalinear element b. If the fictitious stress is allowed to
vary over element b, then ¢ becomes a function of position.
Since ¢ is no longer a constant over b, it can not be taken

outside of the integral.

If field point 'a' is moved to any node on the boundary at

which a displacement is applied, then equation (6.1) represents
u; = fb Usy 93(sy) ds (6.2)

where u; are components of the applied displacement and
¢j(x,y) is the unknown fictitious stress distribution over b.
Since the unknown quantity ¢ appears within the integral,
equation (6.2) takes the form of a Fredholm integral equation of
the first kind [31]. If a stress traction is applied to field

node 'a', then equation (6.1) represents

t, = fb Tij ¢306y) ds +_12_ ¢:(a) (6.3)
whereqw(a) is the fictitious stress at field node 'a'. In this

expression, the unknown quantity appears within and outside of
the integral so that equation (6.3) takes the form of a Fredholm
integral equation of the second kind. Notice thatlthese equations
have the same form as those solved in chapter 4 except that<hiwas

"removed from the integral for mathematical convenience. This
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implies that the algorithm of chapter 4 is equivalent to a
numerical solution of these integral equations. = This was
accomplished by reducing these integral equations to a system of
linear equations with constant coefficients Lﬁ and unknowns o5 -
The solution of integral equations (6.2) and (6.3) by
forming a system of 1linear equations is no longer straight
-forward because the unknown ¢ must remain within the integral.
However, this difficulty may be overcome by incorporating shape

functions into these equations.

6.3 Solution of Integral Equations

Consider the quadratic variation of fictitious stress over a
curvalinear element b, given by
3n '
Z ®. o (6-4)

¢1(€) = i %

n=1
where a, are three quadratic shape functions and 21 are the three
nodal fictitious stress values on an element. Substituting this
expression into integral equation (6.1) and expanding the
summation yields

1 2 3
By = jb L 05 01 F 05 02 * 2y ag ] Cij ds (6.5)

which may be separated into three integrals over b:

1 2 3

. = . . + . . + . s 2 . .
B, Ib o5 o C1J ds fb o5 oz Ci ds fb %5 ag Cyy ds (6.6)

Recall from chapter 5 that ¢;, ¢, and ¢; are constant nodal values
of fictitious stress. Therefore, these terms may be taken

outside of the integrals, giving
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1 2 ’ 3
B'l = (I)j fb o1 C'Ij ds + QJ Ib oo C'ij ds + Qj fb 0.3 C.. ds
or using the summation convention

3 n

B, = 1 ¢,  a C.,:ds, (6.8)
Vol 3 MY

Superimposing the effects of all source elements b on field point

'a' leads to

N 3
Bi(a) = 3§ I

n
. . ds .
RIS [ onCyyds (6.9)

b N
where the quadratic wvariation of fictitious stress over each
element is guaranteed by incorporating the shape functions into
the integral of the influence functions.

If the boundary condition at field node 'a' is a displacement

then equation (6.9) represents
N 3

n
u;(@) = = % e, [ a U,
! b=1 n=1 J °p " W

ds . (6.10)
If the boundary cordition is a stress fraction then equation
(6.9) represents
N 3 n
ti(a) = bzl nz} % Ib o Tij ds +‘%_ ?.(a) (6.11)
where the second term is the limit of the singularity in Kelvin's

solution for stress traction. Letting

in equation (6.9), then

B.(a) = = & o, 1I... (6.12)
i b=l n=1 3 9

Thus, integral equation (6.1) has been reduced to a 1linear




equation in which]:j is the constant coefficient and.¢j is the
unknown nodal fictitious stress.

If field point 'a' is moved to each and every node on the
boundary, then equation (6.12) assembles a system of 2N linear
equations in 2N unknowns %j’ siﬁilar in form to system (4.6).
The resulting solution of this system igs two components of
fictitious stress o s ¢y associated with each node on the
boundary. The displacement or stress tensor components may now
be determined at any points in the solid by substituting the

nodal values of ¢ into these integral Kelvin solutions:

3 n

u.(@a) = = 1z o, f a U, ds (6.13)
! b=1n=1 J "p N 1

N 3 n

= (6.14)
o1J(a) bil n£1 ® fb @, Sigp ds
6.4 Isoparametric Form of the Integral
| The integral in equation (6.12)

= C.. d (6.15)

is a 1line integral which must be evaluated over each source
element b. These elements may be straight or curved so that a
general integration technique is required.

The differential ds of equation (6.15) can be approximated
by the tangential straight line length

R LR A | (6.16)
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The global co-ordinates x and y were defined in chapter 5 as
varying quadratically over an element in terms of the parameter ¢

by

™M W

x(g)

e
1]
—
s
-

(6.17)

y(&) Yi ai(g)

—

1]
s
MW

where Xi and Yi are nodal co-ordinates. This definition implies

that an equivalent expression for ds in terms of £ would be

ds = /(dx/dg)? + (dy/de)?  de (6.18)

where /(dx/dg)? + (dy/dg)2! is herein called the Jacobian of
transformation J(¢) . Substituting the shape function expressions

into equation (6.18) gives

ds = J(c) dg = /{ds )7+ (dsy)z" de (6.19)
where

(30‘1/35) X'i ’

(6.20)
: y i (BQi/BE) Y. .

i

(=8

w

it
[ e AR OV

Q.

w

1]
I~ w

i 1
Recognize that x and y and the Jacobian J are all functions of &.

The influence functions C,; are expressions in terms of x and vy

J
and are therefore functions of ¢ also. By definition,an = an(EL

so the integral of equation (6.15) may be written as

*

Ly =1, enl8) Cy5(e) (e de (6.21)

where all quantities are integrated with respect to parameter ¢ .
Because equation (6.21) is a function of only one parameter, this

expression is said to be in isoparametric form.
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This isoparametric form 1lends itself well to numerical
integration techniques such as Simpson's rule and Gaussian
quadrature because all integration can be performed over a
normalized linear element and transformed into integration over a
curvilinear element by the Jacobian J. A Gaussian quadrature
formulation for this integral is shown in chapter 7 and a
presentation of suitable quadrature formula is provided on page

107 of the appendix.

6.5 Isoparametric Boundary Element Algorithm

The preceding isoparametric boundary element method for
elastostatic boundary value problems may be summarized in the

following 5 steps:

1) Divide the region boundary into quadratic 1line segments
connected end to end with each element defined by three

adjacent nodes.

2) Assume a quadratic variation of fictitious stress over each

element using shape functions.

3) Apply the integral form of Kelvin's solution to the boundary
in order to assemble a system of linear equations where the

unknowns are the nodal fictitious stress components s -
4) Solve the system of linear equations for o .

5) Substitute o, into the integral Kelvin's solution to
calculate the displacement and stress tensor components

at any desired points in the solid.
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These 5 steps describe a modified fictitious stress method
which affords many advantages over the linear element algorithm
presented in chapter 4. The equations were derived for any
order of shape functions so that a linear, quadratic, cubic or
quartic model of any physical problem may be constructed by

selecting the appropriate shape functions.

6.6 Galerkin's Method of Solution

The isoparametric boundary element method can be optimized
by incorporating an alternative numerical solution to integral
equation (6.1). Galerkin's method [32] is a numerical technique

for finding an approximate solution to a problem posed in the

fornm

Lw=4g (6.22)

where L is a linear operator (such as integration or
differentiation ), g are known quantities and w are unknown
functions. Assuming the function  can be expanded as a linear

combination of functions H; , then

w = 151 Ay wsoo (6.23)
where Ai are coefficients to be determined. An approximation to
w is obtained from

_ n
wy = T A. oy, (6.24)

where n is a finite number.

Equation (6.22) may be written in the form
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Lo-g=0 . | (6.25)

Substituting the approximation wy into equation (6.25) yields

Ajus ) -9 (6.26)

where R 1is defined as the residual of the approximation and
represents the error in wy . Since summation is a linear operator

and Ai are constants, an alternative form of this expression is

n _

R=z A, (Luyp;)-g . (6.27)

e i

i=1
To optimize the solution the residual R must be forced to zero.
Notice that R is composed of a linear combination of ui(minus a
constant g) and must therefore be linearly dependent on u; .

Galerkin's method is applied by setting the inner product of

<R,p.>-—f RU-dS-O . ' (6.28)
d

This inner product forces R to be orthogonal to all My Two
functions can be both orthogonal and linearly dependent only if
one function or both are zero. Clearly R is linearly dependent on
piand therefore, to be orthogonal, R must be forced to zero.
However, sincelH is not a complete set of expansion functions, R
will not actually approach zero. Rather, R will be minimized so
that the best solution possible will be obtained.

Recall that the quadratic distribution of fictitious stress

over an element was given in terms of shape functions as

n
T (6.29)
1

™M w

n
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This expression is equivalent in form to the functional expansion

(6.24) where $; = w5, %y T Wjand o, = A. . Incorporating this

i
distribution into Kelvin's solution resulted in the linear

equation
N 3 n
Bi(a) = bz] nfl X j’b o Cij ds (6.9)
which may be rewritten as
N 3 n
R = 2 ] nz1 q>j Ib o C1.J. ds - B}.(a) . (6.30)

Applying Galerkin's method as in equation (6.28) requires

< R, 4, > = 0 . (6.31)

Substituting the residual into the inner product and rearranging

gives

N 3 n

[ o B.(m)ds =[ o [ a C..ds_ds §.32)
g M a a ™ pe 1 n] j b %n ij b ~~a

m=1, 2, 3
where 'a' now represents a field element. Because ¢1 are constant

nodal values, they may be taken outside of the integral so the
relation becomes

N 3

f o, Bi(m) ds_ = = 2

n
Ity om S en Ciydspdsy g g

a b
=1, 2, 3
If field element 'a' is moved to each and every element on
the boundary, then equation (6.33) assembles a system of 1linear
equations in unknowns ?:.  Upon solution of the system, the
values of ¢ may be substituted into equations (6.13) and (6.14)

to calculate displacement and stress tensor components at any
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prescribed field points.

Recall that the previous isoparametric algorithm ﬁatches the
conditions on the boundary of the real problem with those on the
tracing in the infinite plane at the nodes’only. Conditions on
the boundary between the nodes are allowed to vary freely, though
it is assumed that there are no large oscillations. Galerkin's
method offers an improvement in results by giving the boundary
conditions and the fictitious stress the same order of
distribution. 1Instead of matching discrete points exactly,
Galerkin's method approaches the exact conditions on the boundary
of the solid at every point. Figure 6.1 illustrates the
difference between point matching the two sets of boundary

conditions and Galerkin's method of evenly distributing the

error.

Boundary

Condition_-‘\\v/

Point Matched
Sol'n ,::X»uA

[~

Boundary Elements

Figure 6.la : Point Matching
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" Boundary
Condition

Galerkin's
Method

Boundary Elements

Figure 6.1b : Galerkin's Method

Galerkin's method, in general, will not give an exact
solution because the set of expansion functions uiis incomplete.
It was stated in section 5.2.5 that the shape functions define
the domain in which the approximate solution must lie. If the
exact solution lies outside of this domain, Galerkin's method
will determine the projection of the exact solution on the shape
function domain. As an illustration, consider the case when
there are two shape function o; and o) which define a plane in
which all boundary element solutions must be found (see figure
6.2). Point A is the location of the exact solution which does
not lie in the o;-0, plane because it contains a component in the
z-direction. Galerkin's method will select point A' as a best
approximation to A within the domain of the shape functions. The
length AA' is the smallest distance between point A and the aj-ay

plane and represents the magnitude of the residual R.
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Figure 6.2: Optimization Using Galerkin's Method
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CHAPTER VII

Numerical Implementation

7.1 Introduction

The isoparametric boundary element theory is designed to be
readily programmable. This theory may be programmed in any
number of ways, -depending on the flexibility, accuracy and speed
required.

In this chapter, the isoparametric boundary element program
BEAST (for Boundary Element Analysis of STress) is described.
This program uses curved elements and quadratic fictitious stress
distributions, and the point matching technique to assemble the
linear equations. The theory has been successfully programmed in
FORTRAN, BASIC and Pascal and used to solve several theoretical
elasticity problems. The results from these tests are presented
in order to demonstrate the validity of the theory and to

evaluate the attainable accuracy and speed of the program.

7.2 M"BEAST" - An Isoparametric Boundary Element Program

7.2.1 Program Structure

The boundary element program BEAST consists of 7 subroutines
plus a control program. These subroutines perform the following

functions:
i) Read in the input file
ii) Initialize the integration data and shape functions

iii) Generate Jacobians and outward normals
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iv) Generate influence coefficient matrix
v) Solve linear equations
vi) Calculate the stress tensor and displacements

vii) Print-out results

In addition there are two graphics routines which are used to
draw the boundary element mesh and to graph the solution on the
screen.

The TURBO Pascal version of BEAST, without the graphics
routines, occupies about 23k of memory on a diskette. The amount
of available RAM required to run the program depends on the
number of nodes N, since a 2N x 2N matrix is generated by the
program. A listing of BEAST is contained in the appendix on page
113.

The function of the first subroutine is to read in the
parameters which describe the boundary element model, the
boundary conditions and the required solution points.
Subroutines 2, 3 and 4 are used to evaluate the isoparametric

integral

*
liy = fb an(e) C;5(8) I(e) de . (6.21)

Within this task, subroutine 2 initializes the Gaussian
quadrature integration data, subroutine 3 determines an(a) and
J(g) , and subroutine 4 calculates Cij(g) and integrates the

product over the boundary elements.
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Subroutine 5 is a linear equation éolver which solves the
system formed by the coefficient matrix and the boundary
condition vector. Finally, the last two subroutines calculate
the stress tensor and displacement components at the prescribed

points and write the results to a file.

7.2.2 Input File

The input file contains the information necessary to
accurately describe a boundary value problem. The program BEAST
is aécompanied by an interactive data preparation program called
BEDAP (for Boundary Element DAta Preparation) which prompts the
user for the information and creates a proper input file. A

listing of BEDAP is contained in the appendix on page 137.

The data required to solve a problem is divided into four
parts. The first section consists of the control data and

material properties including the following:

i) Title of the problem

ii) Name of the output file
iii) Number of boundary nodes
iv) Young's modulus E

v) Poisson's ratio v

The second section contains the x and y co-ordinates of the
nodes. For a contour which describes the exterior boundary of a
problem the nodes must be ordered in a clockwise manner.
Conversely, the nodes on the boundary of a cavity must be 6rdered
counter-clockwise. The order of the nodes is used by the program

to determine the direction of the unit outward normal, which is
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contained in Kelvin's solution for stress traction.

The third section contains the components of the boundary
conditions applied to each node. These must be either a stress
traction or a displacement. Finally, the last section consists
of the co-ordinates of points in the field at which solutions are
required.

When the program BEAST is run, all input information is
echoed to the output file. To ensure the location of the nodes
will accurately describe the shape of the boundary, BEAST will
draw the model on the screen. The drawing routine uses quadratic
shape functions to interpolate points between the nodes as is
done by the calculations within the program. Therefore, this
picture is an accurate description of how the program interprets
the shape of the boundary from the prescribed nodal co-ordinates.

A more detailed presentation of how to model a physical

problem using boundary elements is presented in section 7.3.

7.2.3 Integration Data

The isoparametric integral of equation (6.21) is evaluated
by BEAST using two types of Gaussian quadrature. 1Integration
over each element is performed over the interval 0 to 1 and
scaled to account for the actual size and shape of the element by
the Jacobian J.

When integrating Kelvin's solution over the element which
contains the field node 'a' as a mid-point node, care must be
taken to avoid this point as a sampling point of the Gaussian
quadrature. At this point Kelvin's solution contains a

singularity which can not be integrated well using Gaussian
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quadrature. Therefore, 5 point quadrature is used over two
intervals, one on either side of the field node. The two
solutions are then summed to yield the integral over the entire
element. To complete the integral, the limit of the singularity
must be added, since this portion of the integral was avoided.
The 1limit of the displacement singuiarity is 0 and the limit of
the stress traction singularity is 1/2. All other integrals are
evaluated using 10 point quadrature over the entire element.

In order to use Gaussian quadrature for evaluatihg the
integral (6.21), the shape functions and their derivatives are

evaluated at all Gauss sampling points for both 5 and 10 point

quadrature.

7.2.4 Jacobians

In the third subroutine, the global co-ordinates of all
Gauss sampling points (or Gauss points) are calculated for use in
evaluating the isoparametric integral. These are interpolated

from the nodes assuming a quadratic curve of the element. Co-

ordinates are determined from

a,(g) X. (5.25)

(5.26)

where Xi and Yi are the global co-ordinates of the three nodes
which compose an element and ai(i) are the three quadratic shape
functions evaluated at the Gauss points ¢ .

In addition, the Jaccbians are determined for every element

and evaluated at each Gauss point for use in the isoparametric




integral. These are calculated from

J(g) = 7 (zg; X;)% + (285 Y4)? (7.1)

where g; are the derivatives of the shape functions o with
respect tocg. Note that one set of co-ordiﬁates and Jacobians
is required for each type of Gaussian quadrature.

The unit outward normals are also initialized in this
routine for use in the stress traction equations. The normals

are calculated from the Jacobians using

n
X

= n = AX
Lyt o5 (7.2)
n n

where Jn are the Jacobians evaluated at the nodes and py, ax are

the rise and run between adjacent nodes.

7.2.5 Influence Coefficient Matrix

After reading in the problem and initializing the
integration data, the program begins to assemble the system of
linear equations. Two equations are formed for each node on the
boundary, one for the x-component and one for the y-component.

Firstly, node 1 becomes the field node and the isoparametric
integral is evaluated over each and every element around the
boundary. If a boundary condition at the field node is a
displacement, then the following Gaussian Quadrature formulation
is used:

* 10
li = €§1 Wt(e) o (&) Uij(r) J(a) (7.3)

where Wt are the weights for integration, ¢ are the Gauss
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sampling points , n is\the source node (1,2,3) and r is the
distance from the field poiﬁt to the Gauss point. Equation (7.3)
represents the influence of one source element on the field node.
The ~ integral is evaluated over each element using this
formulation exdept the element which containsvthe field node as a

mid-point node. For this case, the integration formula is

* )
Iij = ( g;z] We(e') a (g') Uj5(rt) a(e")) _—
10
*+ ( s He(et) o (e") Ugs(rt) 3(e"))

where t¢' denotes two sets of 5 point Gaussian quadrature sampling
points, one from 0 to 0.5, the other from 0.5 to 1.

Next, node 2 becomes the field node and if a component of
the boundary condition is a stress traction, then the Gaussian
quadrature formulation is

* 10

Iij = g§=] Wt(g) o (&) Tij(r) J(g) . (7.5)

For the case when 'a' is a mid-point node on a stress traction

element, the integration is performed over the two intervals

using ;
= (5, M) ag(h) Ty () 3(e))
10 (7.6)
e (n We(e') a(e') Tyy(rt) 3(2")) + 172
£'=6

where the 1/2 accounts for the integral over the singular point.
The field node is moved to each and every node on the
*
boundary and the solution of the integrals Iij are stored in a

matrix. The final system of equations is stored in the form
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1 i I . B (7.7)

where o, 4 @ represents all of the x and y components of the

y
unknown fictitious stress, and BX and By are the corresponding

boundary condition components at the nodes.

' 7.2.6 Solving Linear Equations

The program BEAST uses a method _attributed to Cholesky
[33] to solve the system of linear equations (7.7) for the
fictitious stress components. This method has proven to be the
most economical of all elimination methods in terms of computer
time and memory.

Cholesky's method is useful for solving a problem of the

form
Ax=Db (7.8)

where A is a square matrix of coefficients, b are given numbers
and x is a vector of unknowns. The matrix A can be decomposed

into the product of two matrices such that
A=LU (7.9)

where L and U are lower and upper triangular matrices. Thus,

equation (7.8) may be represented by

LUZX=hb. | (7.10)
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Premultiplying both sides of (7.10) by L'] gives
Ux =2 where z = |_'1 b . (7.11)

The system of equation (7.8) is solved by first determining 2z

from
Lz=5b> (7.12)
and then determining x from
Ux=12. (7.13)

Since L and U are triangular matrices these equations may be
solved directly through back substitution. Therefore, no row
operations are required.

Cholesky's method is especially economical of computer
memory because the U and L matrices may overlay the A matrix
storage locations. This may be done since there is no néed to
store the zeros and ones of the U and L matrices. Therefore, no
extra arrays in addition to A, x and b are required to solve a

system of linear equations.

7.2.7 Obtaining Field Solutions

Once the fictitious stress components at each node have been
determined, the problem is essentially solved. The stress tensor
and displacement components can be calculated at any point in the
field by integrating Kelvin's solution evaluated at the point.

These are determined from
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NE 10

u;(a) = bE] §=] We(e) ap(e) Us;(a) o4(a) a(e)
(7.14)
NE 10
O'.ij(a) = bi] §=] Wt(E) un(g) S1Jk(a) q’k(a) J(g)

where NE represents the number of elements. These equations sum
the effect of the fictitious stress distributions on each element

upon a point 'a' in the field.

7.3 Boundary Element Models

Boundary element models of physical problems are much
simpler and more versatile than models used in finite element
techniques. Thus, the important advantage of using boundary
elements, and in particular isoparametric elements, is that a
minimum amount of information is required to solve a physical
problem accurately.

Once a problem is posed in the form of a boundary value
problem, a suitable model must be created. The information
required to formulate and solve a problem using the isoparametric

boundary element technique is as follows:

i) The location of points, within an arbitrary co-ordinate
system, which are indicative of the general shape of

the boundary(s).

ii) The components of the boundary conditions at each of

these points (displacements and stress tractions).
iii) Properties of the material (E, v).
iv) The location of points at which a solution is required.
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The quality of a boundary element solution may be increased
by increasing the number of boundary nodes (until affected by
computer round-off error). However, for most problems the number
of points required to describe the shape and the variation of
boundary conditions is a sufficient number of nodes to cbtain an
acceptable solution. The optimum number of nodes may then be
found by increasing the density of nodes until the solutions
converge to a single set of values.

As an illustration of a boundary element model, consider the
case of a bracket used to connect two members of a linkage, as
shown in figure 7.1. The outer halves of each hole are subjected
to a specified distribution of force. The bracket is made

of steel with material properties E = 30,000 ksi, v = 0.3 and a

e 172"

Figure 7.1: Connecting Bracket
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force of 100 lbs. is applied,

Before a boundary element model can be created, the problem
must first be posed as a boundary value problem. The problem
contains two axes of symmetry so that only one quarter need be
considered. Next a suitable co-ordinate system must be selected,
which is chosen to originate at the centre of the hole.

Boundary conditions must then be determined from the applied
loading. Assuming the force is applied uniformly to a contact

area of 1/4 the hole circumference then

t = B/mrd (1/2) = 100/ v (1/2) (1/2) (1/2) = 254.6 psi

is the stress traction applied radially over 1/4 of the hole.
The 1link is allowed to move freely along the axes of symmetry
but is constrained across these iines, and the remainder of
the boundary is traction free. Thus, the boundary value problem

becomes as shown in figure 7.2.

254.6 psi

(AU ARAN

Q. Q O Qg O O O

[@ 20K @ 2. & 20K N © IR o NN NN & R0 ) |
/ /]/ = =
0,0

Figure 7.2: Boundary Value Problem Representation
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To create a boundary element model, points on the boundary
must be selected which are indicative of the shape of the
bracket. Each isoparametric element consists of three nodes
which represént a parabola. Therefore, an element should not be
bent around a right angle since this is not well modelled by a
parabola. Given this requirement, the minimum number of nodes
needed to describe this problem is 14 (ie. 7 elements), as shown

in figure 7.3.

Figure 7.3: Boundary Element Model

The nodes are numbered in a clockwise order to specify an
external boundary. The co-ordinates of these points constitute
the nodal information. Notice that it is imperative to place a
node at the junction of two different boundary conditions. -

Next, the boundary conditions must be prescribed at every
node on the boundary. As a result of symmetry nodes 1, 2
- and 3 have zero displacement in the x-direction and nodes 1, 7,
8, 9, 13 and 14 have zero displacement in the y-direction. Nodes

2 and 3 have zero stress traction in the y-direction and nodes
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7, 8, 13 and 14 have zero stress traction in the x-direction.
Nodes 4, 5, 6, 11 and 12 are unaffect by loading and are
therefore traction free. The loading is applied to the hole such
that node 9 has a 254.6 psi stress traction in the x-direction
and node 10 has a 180.0 psi stress traction in both the x and y-
directions.

In some instances when a stress traction is applied to a
corner, it is useful to place an extré node very near the corner
and to apply the load here instead of the corner. This is
because the outward normal, and therefore the direction of the
stress traction, is not well defined at corners.

The material properties required for a solution are those
used 1in Kelvin's solution. In general, Young's modulus E and
Poisson's ratio v are specified from which the shear modulus G
may be calculated. If the problem is best modelled as plane

stress then v' should be specified where

The location of points where the solution is required must
then be determined. For this problem, the location of the
maximum stress should lie somewhere to the right of a vertical
line through the hole center. Thus, field points should be
selected in this area such as the points marked by '+!' in figure
7.3.

All of the information required to solve this problem is
- listed in figure 7.4. Alternative designs of this bracket may
easily be tested by changing the locations of tbe nodes. For

example, to test the effect of different hole sizes on the stress
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around the hole, nodes 9-13 may be moved outward and inward from
the origin. By moving nodes 3-7 the effect of different widths

may also be tested.

Node X Yy BC-x BC-y
1l ~2.0 0.0 0.0 4 0.0 d
2 -2.0 0.5 0.0 d 0.0 t
3 -2.0 1.0 0.0d 0.0t
4 -1.0 1.0 0.0 t 0.0 t
5 0.0 1.0 0.0 t 0.0t
6 0.625 0.625 0.0 t 0.0 t
7 1.25 0.0 0.0 t 0.0 4
8 0.875 0.0 0.0 t 0.0 d
9 0.5 0.0 254.6 t 0.0d
10 0.25 0.25 180.0 t 0.0 t
11 0.0 0.5 0.0 t 0.0 t
12 -0.25 0.25 0.0 t 0.0t
13 -0.5 0.0 0.0 t 0.0 4
14 -1.25 0.0 0.0 t 0.04d

E = 30 E06 psi , PR = 0.3

Figure 7.4: Problem Information

7.4 Program Applications and Results

7.4.1 Kelvin Solution Test

The boundary element program BEAST was applied to the
problem of a point load in an infinite plane to determine whether
the results could match those predicted by Kelvin's solution.
The results from this test would not confirm that BEAST could be
used to solve any elastostatic boundary value problem, but would
confirm that the entire algorithm could duplicate the results of
the fundamental solution on which it was based.

Since a point load in an infinite plane is not a boundary
value problem, a new problem with approximately the same solution

was required. A method of converting a point load problem into a
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displacement boundary value problem was developed by Allan
Dolovich at the University of Manitoba. Figure 7.5 illustrates a
point force of 100 lbs in an infinite plane. Surrounding the
load is a ring at a radius of 0.1 inches on which 4 points are

marked. Kelvin's solution for displacement was used to determine

Figure 7.5: Kelvin Solution Test

the displacements of these 4 points, which were then used as
boundary conditions on a small hole in an infinite plane. This
boundary value pfoblem was used as an approximation to Kelvin's
problen.

The boundary element model of this problem consisted of two
approximate semi-circles as illustrated in figure 7.6a. The
problem was solved by the program BEAST and the stress tensor and
displacement components were determined at 4 points (A, B, C, D)
at a radius of 2 inches. These results are tabulated in figure
7.6b along with the results predicted by Kelvin's solution.

The maximum error in the solution found by BEAST was about
2.5 %. Most of this error was attributed to the inexact model

used to approximate Kelvin's problem. Both the displacements and
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* A,

Figure 7.6a: BE Model of Kelvin Solution Test

Pt Kelvin's Sol'n BEAST % Error
u, x 10% inches

Ay -1.4077 -1,3722 2.5

A, -7.0919 -6.9214 2.4

As -1.4077 -1.3722 2,5

Ay -7.0919 -6.9214 2.4
o L psi)

A, -13.642 -13,329 2,3

A, 0,0 0.0 -

As 13.642 13.329 2.3

A, 0.0 | 0.0 -

Figure 7.6b: Kelvin Solution Test Results
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stresses were found to be in close agreement with the fundamental
solution.

The results of this test could not prove the generality of
the isoparametric boundary element solution technique. However,
they did prove that this method could solve at least one

elastostatic problem accurately.

7.4.2 Rigid Die Dispiacement Problem

The successful results of the Kelvin solution test were used
as a premise to begin solving theoretical elastostatic boundary
value problenms. Though of no practical importance, these
problems were chosen because analytical solutions exist which
could be used to evaluate the results of BEAST.

The first theoretical problem solved by BEAST was the
indentation of a half plane by a 1ubri¢ated‘ rigid die. This
boundary value problem and the accompanying boundary conditions
are shown in figure 7.7.

The problem is characterized by a rigid block, 1lying on the
surface of a half plane, which is given a vertical displacement
of -u. The die is assumed to impart no shear stress on the half
plane and the surface of the half plane, not under the die, is
assumed to be traction free. The analytical solution for the y-

component of displacement along the surface is [30]

u, = -u Ix] <« b, y=0

(7.15)

u

y = U [1-Tn(x/b+Vx%/bZ-T) ] x| 2b,y=0
In 2

where displacements beneath the die are measured relative to the

displacement of the surface at a point x = 1.25b.
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Conditions: uy, = - x| < by y
GX.‘/=0 Ix] < =,y
Ovv= IXI >b9y

1l

Figure 7.7: Rigid Die Problem




To approximate this problem, a boundary element model of a
thin crack in an infinite plane was used, as shown in figure
7.8b. For this problem, the two stress traction boundary
conditions could be eliminated since these were implied in the
model.  Each crack surface was modelled by 1 isoparametric
element for a total of 4 nodes.  These nodes were given a total
displacement of =-0.1 inches and the displacements were measured
at points cbrresponding to the surface of the half plane.

Figure 7.8a shows a graph of the displacements of the half
plane surface as a fraction of the applied displacement for both
the 2 element BEAST solution and the analytical solution. The
results from BEAST show a close correlation between displacements
which gradually diverge from the exact 'solution at distances
away  from the die. At a distance of 2 créck lengths from the
origin, the error was found to be about 29 % . The model
accurately predicted the location of the point of zero
displacement at x = 1.25b.

This test was repeated using a 4 element model of the crack
surfaces, as shown in figure 7.9b. Figure 7.9a shows that the
addition of these elements produced results much closer to the
exact solution at points away from the die. At a distance of 2
crack lengths from the origin the error was reduced to about 8 %.

Finally, an 8 element model of the crack was tested, as
shown in figure 7.10b. The results in figure 7.10a show an
excellent correlation between results. In fact, between x = 1.4b
and x = 1.7b the exact solution was calculated by BEAST. At 2

crack lengths from the origin the error was reduced to about 4 %.
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Boundary Element Analysis of STress
RIGID DIE PROBLEM

1.80
1.60
1.40 —
1.20
1.00
0.80
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~0.20 ~
-0.40

Uy(x,0).”Ua

-0.80 -
-0.80 -

~1.00 - T v T v ¥ ! T T T ! T T 7 v
0 1.1 1.3 1.5 1.7 1.8 - 24 2.3 2.5

. x/b
g  Analytical Sol'n -+ 2 Element Sol'n

Figure 7.8a: 2 Element Die Results

l k_____ 0.514 ___.'
>
T I

t —

0.0001"

Figure 7.8b: 2 Element Die Model
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Boundary Element Analysis of STress
- RIGID DIE PROBLEM

1.60
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1.20
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~0.80 —

-1.00 ‘$’ T v T v T ' T v T ¥ T v T v
0 1.1 1.3 1.5 1.7 1.8 2.1 2.3 2.5

x/b
0  Analytical Sol'n + 4 Element Sol'n

Figure 7.9a: 4 Element Die Results

Figure 7.9b: 4 Element Die Model
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Boundary Element Analysis of STress

RIGID DIE PROBLEM
1.40
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Figure 7.10a: 8 Element Die Results
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Figure 7.10b: 8 Element Die Model
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Notice how the curves of figures 7.8a - 7.lba converge
towards the exact solution with the addition of more elements.
Ofcourse the exact solution could never be produced at all points
because the models wused are only appfoximations to the real
problem.

The quality of results at points near the edge of the die
did not significantly improve with the addition of elements.
This effect 1s a by-product of the ‘indirect boundary element
technique. The formulation of the fidtitious stress method
required that the fictitious stress layer be distributed in a
piece-wise continuous manner over the boundary. As well, the
numerical implementation assumed that the fictitious stress could
be applied at discrete points along each element. The assumption
that this is equivalent to the effect of a continuous
distribution of fictitious stress over the boundary could only be
made by invoking Saint Venant's principle [34]. This principle
states that for points sufficiently far. from the point of
application of the load, the stresses and displacements at these
points are independent of the manner in which the load is
distributed. Since Saint Venant's principle does not apply to
points close to the application points of the fictitious stress
layer, neither does the isoparametric boundary element method.

The extent of this limitation of the method is explored in
the next section and the available means of overcoming this

problem are discussed in chapter 9.
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7.4.3 Circular Hole in an Infinite Plate Under Internal Pressure

The isoparametric algorithm was tested again by solving the
problem of a circular hole in an infinite plate subjected to an
internal pressure. The analytical solution to this problem [35]

for the radial stress distribution is given by

where R is the radius of the hole, P isythe internal pressure and
r is the radius of an arbitrary point.

The first boundary element model created to solve this
problem contained 4 elements, as shown in figure 7.11b. The
radius of the hole was chosen to be 3 inches and a 20 ksi
internal pressure was applied to the boundary. The radial stress
was measured at 0.1 inch intervals between a radius of 3.1 inches
and 4.5 inches.

The computer time on an IBM PC-XT required by BEAST to
obtain a solution at 15 points was about 21 seconds. The results
from this test as well as the analytical solution are plotted in
figure 7.11a. Close to the boundary (r = 3.1 inches), the
solution from BEAST was found to be in error by 17.6 %. This
error decreased steadily to 1.0 % at a radius of 4.5 inches.
Thus, it was found that results within 1 inch of the boundary
were affected by the manner in which the fictitious stress was
distributed, and results outside this range were in excellent
agreement with the analytical solution.

A second model was created which consisted of 6 elements, as

shown in figure 7.12b. In addition to solving this problem using
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Boundary Element Analysis of STress
Hole in an Infinite Plate

Radial Stress (icsi)

Compressive

3.1 3.3 3.5 3.7 3.9 - 4.1 4.3 4.5
Radius (inches)
o  Analytical Sel'm + 4 Element BEAST

Figure 7.1la: 4 Element Hole Results

Figure 7.11b: 4 Element Hole Model
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BEAST, a two-dimensional fictitious stress program was used.
This program, called TWOFS, was published by Crouch and Starfield
[30] in 1983 and uses straight line elements with constant
fictitious stress distributions. Since this prograﬁ requires
only one node per element and BEAST requires two, the 6 element
BEAST vsolution was compared to the 12 1line element TWOFS
solution. Therefore, the amount of input information was equal.

The results from‘these tests are shown in figure 7.12a. For
6 elements, BEAST required a computer time of about 43 seconds.
The quality of results outside a radius of 3.2 inches increased
dramatically. The error in this range decreased from 1.4 % at 3.2
inches to 0.2 % at 4 inches, and remained less than 1.0 % outside
this range. At 0.1 inches from the boundary, the error decreased
to 15 % with the addition of 2 elements. Thus, the range
affected by the discrete distribution of fictitious stress was
reduced to less than 0.2 inches.

The results from TWOFS were in error by 25 % at a 3.1 inch
radius. At a 3.2 inch radius the érror decreased to 16.3 %, as
compared to the 1.4 % error in BEAST. Even at large distances
from the boundary the error in TWOFS remained above 7.0 %,
compared with less than 1.0 % error in BEAST.

Finally, a third model was tested which consisted of 8
elements, as shown in figure 7.13b. BEAST required 70 seconds
for a solution at 15 points. A listing of the output file for
this test is contained in the appendix on page 131 . The results
in figure 7.13a show that the error at 0.1 inches from the
boundary decreased to 5.8 %. Further testing showed the area

affected by the discrete distribution of fictitious stress was
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Boundary Element Analysis of STress
Hole in an Infinite Plate

Compressive Radiml Stress (ksi)

3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5

Radius (inches)
0 Analytical Sol'n ¢ 12 Line El TWOFS

+ '8 Element Sol'm BEAST

Figure 7.12a: 6 Element Hole Results

Figure 7.12b: 6 Element Hole Model
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Boundary Element Analysis of STress
Hole in an Infinite Plate
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Figure 7.13a: 8 Element Hole Results

Figure 7.13b: 8 Element Hole Model
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restricted to within 0.12 inches of the boundary. The error
outside of a 3.3 inch radius was less than 0.2 %.

With 16 line elements, TWOFS was in error by 16.8 % at 0.1
inches from the boundary and the results did not improve beyond
6.1 % error at points away from the boundary.

The problem of a circular hole in an infinite plate confirmed
the wvalidity of the isoparametric'algorithm for solving stress
traction problens. Results were found to be excellent with a
small number of elements, often less than 1.0 % error. The area
near the boundary affected by the discrete distribution of
fictitious stress was found to be small and to decrease in size
rapidly with the addition of elements. If L is the length of an
element and 1.0 % error is the maximum allowable, then the range
affected decreased from 0.33L with 4 elements to 0.13L with 6
elements and 0.05L with 8 elements.

The isoparametric algorithm was found to yield far more
accurate results than the current line element method for the
same amount of input information. Increasing the number of
isoparametric elements dramatically increased the quality of
results but this was not found to occur with 1line elements.
Thus, the isoparametric boundary element method has proven to be
a more efficient use of the input data, and therefore to
require far fewer elements to obtain a solution of a given

accuracy.

7.4.4 Current Research

Thus far, the isoparametric algorithm has been applied to

the solution of theoretical elasticity problems only. The
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solution of these problems has confirmed the validity of the
theory and has illustrated the accuracy and simplicity of the
method.

Although BEAST has been used successfully for solving
displacement problems and for solving stress traction problems,
the program has not yet successfully solved problems involving
both boundary conditions. In fact, the pressurized cavity
problem of section 7.4.3 has been solved as both a displacement
problem and a stress traction problem, yielding excellent results
in each case. However, mixing the boundary conditions has
resulted in very poor quality results. .This difficulty was
unexpected since the solution of each coefficient matrix yielded
very similar nodal fictitious stresses, yet mixing equations
resulted in an entirely different solution.

No conclusions have yet been drawn as to the cause of the
problem. However, it is believed that the dilemma arises in the
programming of the algorithm since the theory does not indicate
any abnormalities should arise from mixing equations in the
coefficient matrix.

Galerkin's method has been successfully programmed into the
isoparametric algorithm in a BASIC program called  BEASTG.
Preliminary vresults from this program have shown a faster
convergence to the exact solution with the addition of elements
than the point matching technique. However, a comprehensive
evaluation of the accuracy of Galerkin's method could not be
derived from the theoretical elasticity problems presented here.

For a complete assessment, BEASTG must first be programmed in a
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high level language (such as Pascal) to compare with the floating

point accuracy of BEAST.

In the numerical implementation of Galerkin's method, each

Gauss point becomes a field point instead of every node, as in
the.point matching technique. Thus, BEASTG has been found to run
much siower than the equivalent point matching method (programmed
in BASIC) and also requires a larger code size. It is believed
that the efficiency of BEASTG would benefit from reducing the
Gaussian gquadrature from 10 to 5 points, which should allow the

program to run much faster with no significant loss in accuracy.




CHAPTER VIIT
Conclusions

Over the past 20 years, research into indirect boundary
element methods has yielded no advanced formulations suitable for
industry. It has been the purpose of this thesis to elevate the
formulation of an indirect method to a level comparable to
similar numerical solution techniques in order to demonstrate
the power of this method.

The boundary element formulation developed here was designed
to solve two-dimensional elastostatic boundary value problems. A
foundation for the method was provided by Kelvin's solution, a
singular solution which satisfies the biharmonic equation.

From this research the following conclusions were drawn:

i) It was demonstrated that a complex physical problem could be
- replaced by an edquivalent infinite plane problem, for which
Kelvin's solution was applicable. This was accomplished by
distributing a fictitious stress layer over a tracing of the
boundary in an infinite plane, which duplicates the effect of

boundary conditions on the physical problem.

ii) The existing elementary applications of the concepts in i)
were advanced using isoparametric elements, characterized by
polynomial fictitious stress distributions and curved boundary

elements. In addition, an alternative formulation was presented

which optimizes the isoparametric solution.




iii) The isoparametric boundary element algorithm was implemented
in a program called BEAST. This program was determined to be
quick, expandable and flexible enough to incorporate any order of

solution.

iv) The program BEAST was used to solve several theoretical
elasticity problens. The results showed a close correlation
between the isoparametric solution and the analytical solution
for both displacement and stress traction problems. Dramatic
improvements in the quality of results were found with the
addition of a small number of elements. BEAST proved to be a

more efficient use of input data than the line element method,
and therefore to require far fewer elements to obtain a solution

of a given accuracy.

V) The quality of results was found to deteriorate at points
close to the boundary. This was attributed to the discrete
distribution of fictitious stress that was used to approximate an
actual continuous distribution. However, this effect was found

to decrease rapidly with the addition of elements.

vi) Although BEAST has been used successfully to solve
displacement and stress traction problems, the solution of mixed
boundary condition problems has yet to be accomplished. This
capability is necessary if the program is to be useful to
industry. It 1is believed that this shortcoming can be overcome

with additional research.
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CHAPTER IX

Recommendations

9.1 Introduction

The emphasis in this work has been on deriving and
demonstrating the validity of the isoparametric boundary element
method. The development of a generalized stress analysis package
based on this theory has beén left to future research.

The potential of this technique to replace finite element
~and other boundary element‘ methods has been demonstrated
throughout this work. For this to be realized, research must be
conducted on generalizing the method to solve more elasticity
problems and to make the program BEAST more user-friendly.

This chapter outlines some concepts which could be
implemented into the theory and the program. With these
features, the isoparametric boundary element technique could

become a useful industrial tool.

9.2 Extensions of the Boundary Element Formulation

9.2.1 Multi-Media Solutions

The boundary element theory developed in chapter 6 is only
applicable to the solution of problems with homogeneous material
properties. However, many real engineering problems consist of
several materials joined by bolts, rivets or welds. The domain
of such a problem is sometimes called a multiply connected

region because it consists of several homogeneous media connected

to form a single body.




As an example, consider the stress problem illustrated in
figure 9.1. Here, a copper ring anchored by a shaft is welded to
a brass rod under a vertical load P. In this case, material 1 is
the brass bar, material 2 is the copper ring and material 3 is
the weld itself. A boundary element solution to problems of this

type can be obtained with minor changes to the existing theory.

Figure 9.1: Multi-Media Problem

To solve this problem, the boundaries and the interfaces
between materials must be divided into elements. The problem may
then be viewed as three dependent homogeneous region problens.
The boundary conditions would include the stress traction on the
bar created by P, a zero displacement line within the ring, and
zero stress tractions over the remainder of the free boundary.
Boundary conditions can not be applied to the interfaces because
these are unknown.

In place of boundary conditions, equilibrium and continuity

conditions can be enforced to eliminate the interface conditions
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as unknowns. These conditions require at the interface between

materials 1 and 2

u; = o, (9-1)

t. +t, = 0. (9.2)

where ¥ and ti'represent the displacement and stress traction
vectors respectively. However, condition (9.1) is implicit in

the method (ie. a point can only have one displacement) so that

only (9.2) need be enforced.

Interface condition (9.2) implies that the Kelvin solution
for stress traction becomes
1

2 1 2 a
to+to= [ O[T 6.(xy) - Tal 6.(6,y)] ds + (1 + 1)e, = 0 (9.3)
; i L tTig % i ¢J( y)] g? ?Q i

where the negative sign arises because the outward normal of two

adjacent materials are in opposite directions, or

3 = -3
anl 8n2 (9.4)

Since only one distribution of ¢ can exist on an element,

equation (9.3) may be written as

1 2 a

[ (Tig = Tig) o50xy) ds + 0 = 0. (9:3)

This equation may be transformed into isoparametric form for
numerical integration.

The incorporation of equation (9.5) into the algorithm would
allow for the solution of problems composed of any number of

connected homogeneous regions.
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9.2.2 Improved Accuracy Near Boundaries

Another important feature which could be added to augment the
present method is to improve the solution near boundaries and
corners. Section 7.4.2 discussed the decrease in quality of
solutions near the boundary which was attributed to the manner in
which the fictitious stress layer was distributed.

An excellent method of circumventing this problem, inherent
in all indirect methods, is currently under investigation by the
Electrical Engineering Dept. at the Univgrsity of Manitoba. When
a field point is sufficiently close to the boundary, elements in
the vicinity of the point are divided into sub-elements as shown
in figure 9.2. This occurrence is determined when the distance
from the field point to the source node is less than a minimum

value, say 10 % of an element length.

r\\\\\\((/p_ Sub=-element

Sub-element
/—_

Point e node

Figure 9.2: Sub-elements
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The fictitious stress at the sub-element nodes may be found
by interpolating between the actual nodes using the shape
function equations. The Kelvin solutions can then be integrated
over each individual sub-element and summed to form the integral
over the entire element. In this way, the effective distance
between the field point and the source nodes has been increased
in relation to the element size. This is an automated method of
clustering a large number of small elements in the vicinity of a
point near the boundary at which a solution is desired.

An improvement in results near the boundary requires no
fundamental changes to the boundary element theory. Therefore,
it is recommended that such a special use subroutine be added to

the program.

9.2.3 Three-Dimensional Solutions

A natural extension of the isoparametric boundary element
method is to solve three-dimensional problems. An equivalent
three-dimensional formulation is entirely analogous to that
developed in chapters 5 and 6 with some alterations to the
theory.

When solving a three-dimensional problem using boundary
elements, the surface of the body must be divided into curved
triangular or square elements as illustrated in figure 9.3.
Three-dimensional isoparametric elements can be defined in terms
of two-dimensional shape function equations [36] similar to those
used in two-dimensional finite element solutions. A unit
triangular element,‘ consisting of 6 nodes, is mapped into curved

space as shown in figure 9.4. In this case, two orthogonal
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Figure 9.3: 3~D Problem

Figure 9.4: 3-D Isoparametric Elements
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normalized co-ordinates are usea to form elements in the x-y-z
co-ordinate system.

A three-dimensional form of Kelvin's solution [24], similar
to Kelvin's solution for plane strain, may be used as the
fundamental solution. This  solution yields stress and
displacement components caused by a point load in an infinite
solid. A two-dimensional isoparametric integration scheme is
required to assemble the coefficient matrix and to determine
field point solutions.

A three-dimensional isoparametric boundary element
formulation most wvividly illustrates the advantages of this
method over three-dimensional finite element solutions. All
calculations are performed using two-dimensional elements and
only the surface need be discretized. Therefore, the formulation
of problems is greatly simplified and the number of unknowns is
very much reduced.

The development of a three-dimensional formulation would
require much research and testing and would not be suitable for
programming on a micro-computer. However, the result would be an
extremely powerful stress analysis tool which could eventually

rival three-dimensional finite element programs.

9.3 A Tool For Industry

The isoparametric boundary element program BEAST is capable
of solving many stress and displacement problems quickly and
accurately. The program is also much easier to use than any
available finite element program. With the addition of a multi~

zoned capability and a routine for finding accurate solutions
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close to the boundary, BEAST could become a generally applicable
stress analysis package.

The unique solution procedures within this method allow for
the addition of some convenient input/output features. The
current version of the program is capable of drawing the boundary
element model and graphing the field point results on the screen
but more sophisticated features may also be added.

Rather than specify the co-ordinates of each node, the
boundary could be traced using a digitizing tablet and the
program would divide the boundary into a specified number of
elements. Sections of the boundary could be marked, using the
tablet, for a given boundary condition, which the program would
divide into components and assign to individual nodes. The
program would then solve for the distribution of fictitious
stress and pause to display several output options.

Output options would include the plotting of stress contours
on the screen or plotter and the colouring of zones of stress
within a given range. The digitizing tablet could be used to
select points at which the stress components are desired. This
could be done by moving cross-hairs on the screen to the point
and entering. The program could also allow for the calculation
of stress and displacement components along straight or curved
lines which may be entered by selecting points along the 1line.
The program would calculate the solution components at several.
points along the line and graph the results as a smooth curve on
the screen or plotter. These solutions would be obtained very
quickly because the problem would have already been solved by

determining the fictitious stress distribution.
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With the addition of these input/output features, BEAST
could develop into a useful stress analysis tool for industry.
The ease of formulating problems and the potential output
features are unique to this type of solution. BEAST is a small,
efficient program which can run quickly on a personal computer.
With the advent of the personal computer in almost every
engineering office, the isoparametric boundary element solution

has the potential to become an attractive software package.
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A.l1 Gaussian Quadrature

Gaussian quadrature is a numerical technique for
approximating the definite integral
b
[ f(x) dx. (A.1)
a
In this technique, the integral is replaced by a summation over a

finite number of points N, and a series of weighting factors Aj

so that

Ay Tlxs) . (A.2)

These weighting factors measure the contribution of each f(xi) to

the integral.

If a function R(x) could be found to satisfy

fb f(x) dx = fb R(x) dx (A.3)
a a

where R(x) is of lower degree than f(x), then the integration of
f(x) could be found more efficiently by instead determining the
integral R(x). However, it is unnecessary to obtain R(x), but

rather to determine the sampling points at which R(x) = £(x),

called Gauss points. This implies that

N
A, f(x;) = ¢ A, R(x.) (A.4)

where x; are the Gauss points.

To determine the location of the Gauss points, consider the

expression
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f (x) = L, ,(x) + R(x)
2N-1 N-1 (A.5)
P(xX) PpX

which states that the division of a polynomial £(x) of degree
2N-1 by another ploynomial P(x)'of degree N yields a polynomial
L(x) of degree N-1 plus a remaider R(x), divided by P(x).
Multiplying both sides of equation (A.5) by P(x) yields

fon-1(x) = Py(x) Ly-1(x) + R(x) . (A.6)

Recall that the Gauss points occur when f(x) = R(x). If P(x) is

specified to be the Lagrange polynomial of degree N, then at the

roots X; of P(x)

PN(Xi) =0 (A.7)

which reduces equation (A.6) to

f(x.) = R(x;) . (A.8)

Thus, the Gauss points are located at the roots of the Lagrange
polynomial. Note that any lLagrange polynomial is defined for a
particular interval [a,b], which is usually chosen to be either
[-1,1] or [O,1].

The weighting factors Ai of equation (A.2) may be determined

by enforcing that

A f(x.) (A.9)
;

will give exactly the integral of any polynomial R(x) of degree

N-1. To enforce this, a system of linear equations is formed in
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unknowns Ai from
N .
/ R(x) dx = £ A, R(x.) (A.10)

by setting R(x) =1, X,..., X - Once the values of A, are
determined, these weighting factors can be used to integrate

exactly any polynomial R(x), and therefore any f(x).
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A.2 Stress Traction Singqularity

Kelvin's solution for stress traction contains an infinite
discontinuity when the source point b coincides with the field

point ‘a', For example, the xx-component of the influence

function is given by

= _ - 2
TXX —E_]_ [(] 2\)) + EE& ][Rxnx + Ryny] (A.ll)
2R= R2
where Cy= ] , RZ=R24+R2
4n(1-v) X y
Ny > ny = components of the unit outward
normal to the boundary
As the source point approaches the field point R - 0. However,

the denominator of (A.11) approaches zero faster than the
numerator so that near R=0, the influence function tends to

infinity as illustrated in figqure A.1.
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Figure A.1l: Stress Traction Singularity
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To integrate Kelvin's solution for stress traction around a
boundary, it must also be integrated over this "singular" point,
if the field point is on the boundary. To accomplish this,

recall the integral is

‘ti(a) = IB'¢1(X’y) T;5(x.y) ds. (A.12)

where B represents the boundary of some region. Equation (A.12)

may be separated into the two integrals

tila) = [ 0i06y) Tooboy) ds + f  6.(6y) To (xy) ds  (A.13)
B-4B J AB 1

where AB represents a small portion of the boundary around the

singular point. For the second integral it can be shown that

Tim [ 6. (x,y) Ti;(6y) ds = ¢(a) (A.14)

AB-0 4B 2

where the 1/2 assumes the load is applied internally. Thus, the

stress traction at a point 'a' on the boundary is given by
ti(a) = [ ¢1(x,y) Ti.(x,y) ds + ¢(a) (A.15)
B J 2

where the second integral represents the contribution of the

fictitious stress at point 'a' to the stress traction at this

point, and the first integral must be interpreted in the Cauchy
principal value sense (ie. does not include point 'a').

Equation (A.14) is often stated in the literature without a
formal proof or the source of the derivation. Though it was
attempted, this proof could not be duplicated here. Therefore,
it was assumed that this result was obtained through a set of
simplifying assumptions which also apply to the isoparametric

formulation.
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B.1l BEAST in Pascal
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BEASTP.PAS Thursday, December 5, 1985

(********************************************************)

(* ' *)

* *)
(* BEAST *)
(* *)
(* *)
(* Boundary Element Analysis of STress *)

* *
(* ‘ *§
‘g* Point Matching Solution *)

%* *)
(* Pascal Version *)
(* *)
(* *)
(* By  W. Neil Aitken *)
(* *)
(* and *)
(* *)
(* Allan T. Dolovich *)
(* *)
(* *

(********************************************************)
Program BEAST;
{$I typedef.sys)}

CONST

MaxElem=15;
MaxNodes=30;
NumGaussPts=10;
MaxPhi=60;
MaxFldPts=25;
ExtPhi=61;

TYPE

OneToTen =ARRAY(1..10] OF REAL;

ThreeByTen =ARRAY(1..3,1..10] OF REAL;
NumElemByTen =ARRAY[l..MaxElem,l..10] OF REAL;
OneToNumNodes =ARRAY[1l..MaxNodes] OF REAL;
NumElemByThree=ARRAY[1l..MaxElem,1..3] OF INTEGER;
Code =STRING[1];

CodeType =ARRAY({1..MaxNodes] OF Code;
OneToMaxPhi  =ARRAY[1l..MaxPhi] OF REAL;
MaxPhiByExtPhi=ARRAY[1..MaxPhi,1l..ExtPhi] OF REAL;
OneToMaxF1dPts=ARRAY[1..MaxF1ldPts] OF REAL;
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FileNameIn, FileNameOut
title

InFile,OutFile

Wwt,wt2
alpha,beta,alpha2,beta2
Xs,ys,xs2,ys2,ds,ds2
X,Y,Nx,Ny ‘

NodeNum

xCode,yCode

Nu,E,cl,c2

Coeff

phi,B

Xpt, ¥pt,Ux,Uy,Sx, Sy, Ss
NumNodes, NumElem,
NumFldPts

(ST
{sI
(ST
(s8I
(8T
{SI
(s
{sI

graphix.sys}
kernel.sys}
windows.sys)
Polygon.hgh}
Axis.hgh}
spline.hgh}
findwrld.hgh}
Intro.bst)

Var
. : INTEGER;
Begin

for j:=1 to n do
writeln(OutFile);

End;

Begin
ClrScr; gotoxy(18,12);
TextColor (15) ;
TextBackground(4) ;

Halt;
End;

Procedure Heading;

|

Thursday, December 5, 1985

:String[80];
:String[80];
tText;
tOneToTen;
:ThreeByTen;
:NumElemByTen;
:OneToNumNodes ;
tNumElemByThree;
tCodeType;
tReal;
:MaxPhiByExtPhi;
:OneToMaxPhi;
tOneToMaxF1ldPts;

: INTEGER;

Procedure blankln(n:integer); (*** Prints n blank lines in output

Procedure ErrorOut; (*** Error Message for Linear Equation Solver *#x)

writeln('--- Matrix Solution Impossible --=1');
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Begin

TextBackground (4) ;

gotoxy(22,5);

writeln('Boundary Element Analysis of Stress'): .
TextBackground (1) ; |

End;

{SI graph.bst)
$I plot.bst)

{

e :
| Read and Echo Input File |
|

- }

Procedure ReadInFile;

Var
i ¢ INTEGER;
blank, choice :CHAR;
Begin
Intro;

TextBackground (1) ;

TextColor(15) ;

ClrScr;

'Heading;

gotoxy(15,12) ; write('Enter the input datafile name ---> ');
readln(FileNameln) ;

ClrScr;

Heading;

gotoxy(15,12); write('Enter the output file name ---> !');
readln(FileNameOut) ;

Assign(InFile,FileNameIn) ;

Reset (InFile);

Assign(OutFile, FileNameOut) ;

Rewrite (OutFile) ;
writeln(OutFile, ' ':15, Mhkkkdkdkdddhhdkdddddoddhodokdoddddoddodkkhdddddddoddokdokkddk

*');
blankln(1l):;

writeln(OutFile,' ':15,! BEAST ");

blankln(2);

writeln(OutFile,' ':15," Boundary Element Analysis of STress');
blankln(2) ;

writeln(OutFile, ' ':15, '&kkkhkkkkkhhdkhhkkdhkhdhdhhkhhhhhhhhhhhdhhhhkhhhhhrks

*');
blankln(3):
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(**%* Read Problem Parameters and Write them to a File #*#*%)

ClrScr;
Heading;
gotoxy (27,12) ;
writeln('--- Reading Input File ---');
readln(InFile,title);
writeln(OutFile,' ':25,title);
readln(InFile,NumNodes, NumElem) ;
blankln(l);
writeln(OutFile,' ':24, 'Number of Boundary Elements = ' ,NumElem:2);
blankln(l):;
writeln(OutFile,' ':26, 'Number of Boundary Nodes = ', NumNodes:2) ;
readln(InFile,E,Nu); blankln(l);
writeln(OutFile,' ':27, 'Youngs Modulus
writeln(OutFile,' ':29,'Poissons Ratio
blankln(2);
writeln(OutFile,' ':31, 'NODAL CO-ORDINATES');
writeln(OutFile,' ':31,' ")
blankln(2);
writeln(OutFile,' ':21, 'Node No.',' ':8,'X Co-ord',' ':6,'Y Co-ord');
blankln(1);
for i:=1 to NumNodes do
begin
readln(InFile,x[i],y[1]):
writeln(OutFile,' ':24,i:3,' ':9,x[1]:9:4,"' ':5,y[i]:9:4);
blankln(l);
end {i};
blankln(3);
writeln(OutFile, ':30, 'BOUNDARY CONDITIONS') ;
writeln(OutFile,' ':30,° "):
blankln(2) ;
writeln(OutFile,' ':15, 'Node No.',' ':5, 'X-Boundary Value',' ':5,
'Y-Boundary Value'); blankln(l);
for i:=1 to NumNodes do
begin
readln(InFile,B[i],blank,xCode[i],B[i+NumNodes],blank,yCode[i]);
writeln(OutFile,' ':17,i:3,' ':5,B[i]:15:8,' ',xCode[i]:1,' ':4,
B[i+NumNodes]:15:8,"' !',yCode[i]:1);
if xCode[i] = 't' then xCode[i]:='T';
if yCode[i] = 't' then yCode[i]:='T';
blankln(l);
end {i};
readln(InFile,NumF1dpPts) ;
blankln(2):
writeln(OutFile,' ':28,'FIELD POINT CO-ORDINATES') ;
writeln(OutFile,' ':28," ')
blankln(2);
writeln(OutFile,' ':21, 'Point',' ':8,'X Co-ord',' ':6,'Y Co-ord');
blankln(l):;
for i:=1 to NumFldPts do
begin
readln(InFile,Xpt[i],Ypt[i]):

',E:11:2); blankln(l);
',Nu:4:2);
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writeln(OutFile,' ':24,i:3,' ':6,Xpt[i]:9:4,' ':5,¥pt[i]:9:4);
blankln(l) ;

(**** Zero the Field Solution Vectors ##%)

Ux[1i]:=0.0; Uy[i]:=0.0;

Sx[1]:=0.0; Sy[i]:=0.0; Ss[i]:=0.0;
end (i};

ClrScr;
Heading;

gotoxy(27,12) ; writeln('Would you like to view the!');
gotoxy(24,13); write('Boundary Element model (y/n) —-> ');
readln(choice) ;

if (choice = 'y') or (choice = 'Y') then PlotMesh;
TextColor(15) ;

TextBackground (1) ;

End;

I
Initialize Gauss Points and Weights For Gaussian Quadrature. |
Calculate Quadratic Interpolation Values at Gauss Points |

l

T e e e e e e e e e e e e e e e e e e e e }
Procedure Initialize;

{ -
I
|
|
I

Const

pi=3.1415926535;

Var
Gs,eta,eta2 tREAL;
i,j,km : INTEGER;
GaussPt,GaussPt2 :ARRAY[1..10] OF REAL;

Begin ({initialize)

ClrScr;

Heading;

gotoxy(12,12);

writeln('--- Initializing Shape Functions and Quadrature Data ---');

(**%* Gauss Points and Weights for
Regular Gaussian Quadrature ***¥)

.0130467358;
.0674683167;

GaussPt[1
GaussPt[2

e S
I
co
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GaussPt[3]:= 0.1602952159;
GaussPt[4]:= 0.283302303;
GaussPt[5]:= 0.4255628305;
GaussPt[6]:= 0.5744371695;
GaussPt[7]:= 0.7166976971;
GaussPt[8]:= 0.8397047842;
GaussPt{9]:= 0.9325316834;
GaussPt[10]:= 0.9869532643;
WE[1l]):= 0.0333356722;
Wt[2]:= 0.0747256746;
WE[3]:= 0.1095431813;
Wt[4]:= 0.1346333597;
WE[5]:= 0.1477621124;
WE[6]:= 0.1477621124;
Wt[7]:= 0.1346333597;
Wt[8]:= 0.1095431813;
WE[9]:= 0.0747256746;
Wt[10]:=0.0333356722;

(**** Gauss Points and Weights for
2-Interval Gaussian Quadrature ***x)

GaussPt2[1]:= 0.023455039;
GaussPt2[2]:= 0.115382673;
GaussPt2[3]:= 0.25;
GaussPt2[4]:= 0.384617328;
GaussPt2[5]:= 0.476544961;
Wt2[1]:= 0.059231721;
Wt2[2]:= 0.119657168;
WE2([3]:= 0.142222222;
Wt2[4]:= 0.119657168;
Wt2[5]:= 0.059231721;
GaussPt2[6]:= 0.523455039;
GaussPt2[7]:= 0.615382673;
GaussPt2[8]:= 0.75;
GaussPt2[9]:= 0.884617328;
GaussPt2[10]:=0.976544961;
Wt2[6]:= 0.059231721;
Wt2[7]:= 0.119657168;
Wt2[8]:t= 0.142222222;
Wt2[9]:= 0.119657168;
Wt2[10]:=0.059231721;

(**** Shape Functions ##%#*)

for i:=1 to NumGaussPts do
begin
eta:=GaussPt[i]:
alpha[l,i]:=2.0%eta*eta-3.0*eta+1.0;
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alpha{2,i]:=4.0%(eta~eta*eta);
alpha(3,1i]:=2.0*eta*eta-eta:
beta[l,1i]:=4.0%eta-3.0;
beta[2,i]:=4.0%(1.0-2.0%eta);
beta[3,i]:=4.0%eta-1.0;
eta2:=GaussPt2[i];
alpha2[1,i]:=2.0%eta2*eta2~3.0*eta2+1.0;
alpha2(2,i]:=4.0%(eta2~-eta2*eta2);
alpha2{3,i]:=2.0%eta2*eta2~eta2;
beta2[1,i]:=4.0%eta2-3.0;
beta2[2,i]:=4.0%(1.0-2.0%eta2);
beta2[3,1]:=4.0%eta2-1.0;

end; {i)

(***%* Zero Coefficient Matrix **#*x);

for i:=1 to 2*NumNodes do
begin
for j:=1 to 2*NumNodes+l do
Coeff[i,j]:=0.0;
end; .

(**** Create a Global Node No. Matrix from Element No. *kkk)
{ and ILocal Node No. }

k:=1;
for i:=1 to NumElem do
begin
for j:=1 to 3 do
begin
me=k+j=-1;
if m = NumNodes+1 then m:=1;
NodeNum[i,j]:=m;
end {j}:
t=k+2;
end {i};

(**%* Material Constant Coefficients of Kelvin Solutions #*#%)
Gs:=0.5%E/(1.0+Nu) ;

cl:=1.0/(8. O*pi*GS* (1L.0-Nu));
c2:=1,0/(4.0*pi*(1' O-Nu)) 7

End; {initialize}

Calculate the Global Co-ordinates of Gauss Poin@s.
Generate the Jacobians and Components of the Unit Normal. |

{ —— - [y - -
|
|
|
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Procedure Jacobians;

Var
dsx,dsy,dsx2,dsy2,dx,dy,dsn tREAL;
j,n,m,k,node $ INTEGER;

Begin {jacobians}

ClrScr;

Heading;

gotoxy(26,12) ;

writeln('--- Generating Jacobians ---');

(**** Global Gauss Points **%x)

for j:=1 to NumElem do
begin
for n:=1 to NumGaussPts do
begln
xs[j,n]°—0 0; ys[],n] =0.0;
xs2{j,n):=0.0; ys2[j,n]:=0.0;
for m:=1 to 3 do
begin
node.—NodeNum[j,m],
xs[j,n] xs[j,n]+alpha[m n]*x[node];
ys[j,n]:=ys[],n]+alpha[m,n]*y[node];
xsZ[j,n] -xsz[j n]+alpha2[m,n]}*x[node];
ys2[j,n]:=ys2[j,n]+alpha2[m,n]*y[node];
end; {m)
end;{n}
end;{j}

(**** Jacobians #**%%*)

for j:=1 to NumElem do
begin
for n:=1 to NumGaussPts do
begin
dsx:=0.0; dsy:=0.0;
dsx2:=0.0; dsy2:=0.0;
for m:=1 to 3 do
begin
node:=NodeNum[j,m];
dsx:=dsx+beta[m,n]*x[node];
dsy:=dsy+beta[m,n]*y[node];
dsx2:=dsx2+beta2[m,n}*x[node];
dsy2:=dsy2+beta2[m,n]*y[node];
end; {m)
ds[Jj,n] :=sqgrt (dsx*dsx+dsy*dsy) ;
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ds2[j,n]:=sqrt (dsx2*dsx2+dsy2*dsy2) ;
end; {n}
end;{j}

(*%%% Unit Outward Normals *#*%x)

for j:=1 to NumNodes do
begin
if j=1 then k:=NumNodes else k:=j-1;
if j=NumNodes then m:=1 else m:=j+1;
adx:=x[m]-x[k];
dy:=y[m]-y[k];
dsn:=sqrt (dx*dx+dy*qdy) ;
Nx[j]:= =-dy/dsn;
Ny[jl:= dax/dsn;
end; {j}

End; {jacobians)

| Generate Influence Coefficient Matrix |

- —-mmmn)

Procedure CoeffMatrix;

vVar

FldNode, SrcElem, SrcNode, GaussPt,
1,m,n $ INTEGER;

sumXX, sumXY, sumYX, sumYY,Rx, Ry, Rs,
GaussQuad, G,Gx, Gy, Gxy,Gxx,Gyy,a,b,
XX, XY, ¥YX,YY sREAL;

self ¢ BOOLEAN;

Begin  {coeffmatrix}

ClrScr;

Heading;

gotoxy(19,12);

writeln('--- Generating Influence Coefficient Matrix —---');

TextBackground(2) ;
for FldNode:=1 to NumNodes do
begin

gotoxy(33,14);
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writeln('Field Node ',FldNode);
self:=false;
for SrcElem:=1 to NumElem do
begin
if SrcElem=FldNode div 2 then self:=true;
for SrcNode:=1 to 3 do
begin
sumXX:=0.0; sumX¥:=0.0; sum¥X:=0.0; sumYY:=0.0;

(**** Integrate Kelvin's Solution Evaluated
at the Boundary Nodes *###*)

for GaussPt:=1 to NumGaussPts do

begin

if self = true then
begin :
Rx:=x[FldNode]-xs2[SrcElem,GaussPt];
Ry:=y[FldNode]~-ys2[SrcElem, GaussPt];
GaussQuad:=Wt2[GaussPt]*alphaZ[SrcNode,GaussPt]

*ds2 [SrcElem,GaussPt];

end

else

begin
Rx:=x[FldNode]-xs[SrcElem,GaussPt];
Ry:=y[FldNode]-ys[SrcElem,GaussPt];
GaussQuad:=Wt [GaussPt]*alpha[SrcNode,GaussPt]
*ds[SrcElem,GaussPt];
end; {(if)
Rs:=Rx*Rx+Ry*Ry;

G:= ~In(Rs)/2.0;

Gx:= -RX/Rs;

Gy:= -Ry/Rs;

Gxy:=2.0*Rx*Ry/ (Rs*Rs) ;
Gxx:=(RX*Rx~Ry*Ry) / (RS*Rs) ;
Gyy:= ~Gxx;

a:= Nx[FldNode]; b:=Ny[FldNode];

if xCode[FldNode] = 'T' then begin

{x traction solution}

XX:=C2*% ((2.0% (1.0-Nu) *Gx-Rx*Gxx) *a
+((1.0-2.0*Nu) *Gy-Rx*Gxy) *b) ;

Xy:=c2* (((2.0*Nu*Gy) -Ry*Gxx) *a
+((1.0-2.0*Nu) *Gx~Ry*Gxy) *b) ;

end

else begin
{x displacement solution)
XX:=Cl¥*((3.0-4.0%Nu) *G-RxX*GX) ;
Xy:= =Cl*Ry*Gx;
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end; {if)
if yCode[FldNode] = 'T' then begin

{y traction solution)
yx:=c2* (((1.0-2.0*Nu) *Gy-Rx*Gxy) *a
+ (2. 0*NU*GxX~-Rx*Gyy) *b) ;
yy:=c2#%(((1l.0-2.0%Nu)*Gx~Ry*Gxy) *a
+(2.0%(1.0-Nu) *Gy-Ry*Gyy) *b) ;
end
else begin

{y displacement solution)

YX:i= =Cl*Rx*Gy;

Yy:= cl*((3.0-4.0%Nu) *G-Ry*Gy) ;
end; (if)

sumXX s =sumXX+xx*GaussQuad;
sumXY : =sumXY+xy*GaussQuad;
sumYX:=sumYX+yx*GaussQuad;
sumYY :=sum¥YY+yy*GaussQuad;
end; {GaussPt)

l:=FldNode;
m:=NodeNum[SrcElem, SrcNode] ;
n:=NumNodes

(***%* Store in Influence Coefficient Matrix #%#%)

Coeff[l,m]:=Coeff[l,m]+sumXX;
Coeff[l,mtn]:=Coeff[l,mtn]+sumXy;
Coeff[l+n,m]:=Coeff[1l+n,m]+sumy¥yX;
Coeff[l+n,m+n]:=Coeff[l+n,m+nj+sumyy;
end; {SrcNode}
end; {SrcElem}
end; {FldNode}

(**%%* Add Traction Discontinuity ##*xx)

for n:=1 to NumNodes do
begin
m:=n+NunNodes;
if xCode[n] = 'T' then Coeff[n,n]:=Coeff[n,n]+0.50;
if yCode[n] = 'T' then Coeff[m,m]:=Coeff[m,m]+0.50;
end;{n}

End; {coeffmatrix)

{ o S e 2 s S e S e e s e S D S Y P S B S A e D L S Y B (A S i e e S o S 4 S e S e 0
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| Cholesky Linear Equation Solution for Fictitious Stresses |
| |
---------- }

Procedure Cholesky;

Var
NumVar,m,n,1,3j,i,1ii,Jj,k,m ¢ INTEGER;
sum ¢REAL;

Begin  {cholesky}

TextBackground(1l) ;

ClrScr;

Heading;

gotoxy (24,12) ;

writeln('--- Solving Linear Equations ---');
NumVar:=2*NumNodes ;

m:=NumVar+1l;

n:=Numvar;

for 1l:=1 to n do
- Coeff[l,m]:=B[1l];

if abs(Coeff[1l,1]) < 1.0e-20 then Errorout;
for j:=2 to m do Coeff[1,j]:=Coeff[1,]]/Coeff[1,1];

for i:=2 to n do

begin

Je=1i;

for ii:=j to n do
begin
sum:=0.0;

for k:=1 to j~1 do
sum:=sum+Coeff[ii,k]*Coeff[k,j];
Coeff([ii,j]:=Coeff[ii,j]-sum;
end; {ii}
for jj:i:=i+l to m do
begin
sum:=0,0;
for k:=1 to i-1 do
sum:=sumt+Coeff[i,k]*Coeff[k,jj];
if abs(Coeff[i,i]) < 1.0e-20 then Errorout;
Coeff[i,jj]:=(Coeff[i,jj]-sum)/Coeff[i,i];
end; {jJ}
end; {i}

(*#*** Store Linear Equation Solution in Fictitious Stress Vector #*#x)

phi[n]:=Coeff[n,n+l];
for nm:=1 to n-1 do
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begin

sum:=0,0;

i:=n-mm;

for j:=i+l to n do
sum'—sum+Coeff[1,j]*phl[]],

phi[i):=Coeff[i,m]-sum;

end; {nm}

End; {cholesky)

Mu1t1p1y Nodal Fictitious Stress Values By Shape Functions. |
Calculate Displacement and Stress Components at Field Points. |
|

— s e

- e Gt (i, S G i G . PP i 40 S T YD S S S SV AR Gl S S A o S S B S St i S S e S S48 A T }
Procedure FieldPts;
Var
Uxx,Uyy, Sxx, Sxy,Syy,Rx,Ry,Rs, G,Gx,
Gy,Gxy,Gxx, Gyy, XX 1 XY YX, VY XXX, XXY,
xyx,xyy,yyx,yyy,phlx,ple tREAL;
node,i,j,k,1,n,pt,elem,GaussPt ¢t INTEGER;
phlAlpha tARRAY[1..MaxNodes,1..10] OF REAL;
choice :CHAR;

Begin {fieldpts}

ClrScr;

Heading;

gotoxy(18 12);

writeln('--- Calculating Displacement and Stress =133
gotoxy(18 13);

writeln(! Components at Field Points');

(**%%* Multiply Nodal Fictitious Stresses By Shape Functions *#%%)

i:=NumNodes;
j :=NumElem;
for k:=1 to NumElem do
begin
for 1:=1 to NumGaussPts do
begin
phiAlpha{k,1]:=0.0;
phiAlpha[k+3,1]:=0.0;
for n:=1 to 3 do
begin
node:=NodeNum[k, n];
phlAlpha[k 1]: —phlAlpha[k 1]+ph1[node]*alpha[n 11:
phiAlpha[k+j,1]:=phiAlpha[k+j,1]+phi[node+i]*alphal[n,1];
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end; {n)
end; (1}
end; (k}

(*¥*** Integrate Kelvin Solutions over Boundary *#*)

for pt:=1 to NumFldPts do

begin

for elem:=1 to NumElem do
begin
Uxx:=0.0; Uyy:=0.0;
Sxx:=0.0; Sxy:=0.0; Syy:=0.0;
for GaussPt:=1 to NumGaussPts do

begin

Rx:=Xpt[pt]-xs[elem,GaussPt];
Ry:=Ypt[pt]-ys[elem,GaussPt];
Rs :=Rx*Rx+Ry*Ry;

G:= -In(Rs)/2.0;

Gx:= -Rx/Rs;

Gy:= -Ry/Rs;

Gxy:= 2.0*Rx*Ry/ (Rs*Rs) ;
Gxx:= (RxX*RxX-Ry*Ry)/(Rs*Rs) ;
Cyy:= -Gxx;

{Displacement Soln}
XX:=Cl*((3.0-4.0%Nu) *G~-Rx*GXx) ;
Xyi= =Cl*Ry*Gx;

YX:i= =Cl*RX*Gy;
yy:=cl#((3.0-4.0%Nu) *G~Ry*Gy) ;

{Stress Tensor Soln}

XXX :=C2% (2.0% (1.0-Nu) *GX-RX*GxXX) ;
XXy 1=C2% (2. 0¥Nu*Gy-Ry*Gxx) ;
Xyx:i=c2*((1l.0-2.0%Nu) *Gy-RxX*Gxy) ;
Xyy:=c2*((1l.0-2.0*%Nu) *Gx~-Ry*Gxy) ;
YyX:=c2#*(2.0*Nu*Gx-Rx*Gyy) ;
YYy:=c2%(2.0%(1.0-Nu) *Gy-Ry*Gyy) ;

phiX:=phiAlpha[elem,GaussPt]*ds[elem, GaussPt]
*Wt [GaussPt];
phiY:=phiAlpha[elem+NumElem,GaussPt]*ds[elem,GaussPt]
*Wt [GaussPt];

Uxx s =Uxx+xx*phiX+xy*phi¥;
Uyy :=Uyy+yx*phiX+yy*phi¥;
SxxX : =Sxx+xx*phiX+xxy*phi¥;
Sxy ¢ =Sxy+xyx*phiX+xyy*phiY;
SYy :=Syy+yyx*phiX+yyy*phi¥;

end; {GaussPt)}
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(**** Store Displacement and Stress components *k¥¥*)

Ux[pt]:=Ux[pt]+Uxx;
Uy[pt]:=Uy[pt]+Uyy;
Sx[pt]:=Sx[pt]+Sxx;
Ss[pt]:=Ss[pt]+sSxy:;
Sy(pt]:=Sy[pt]+Syy:

end; {elem)
end; {pt}
Clrscr;
Heading:;
gotoxy(22,12) ; writeln('Would you like to plot the solution');
gotoxy(22,13) ; write('on a graph? (y/n) --> ');
readln(choice) ;
if (choice = 'y') or (choice = 'Y') then graph;

End {fieldpts};

{

| Print Fictitious Stress Components at the Nodes.
| Pr

I

|
int Displacement and Stress Components at Field Points. |
I

- [P —— o e G o P S e i O P Sl S B S Y S e . S B S SO e S }

Procedure PrintOutFile;

Var
i ¢ INTEGER;
Begin
ClrScr;
Heading;
gotoxy (24,12);
writeln('--- Printing Results to File ---');

gotoxy (24,14);
TextColor(14);

writeln(' ' ,FileNameOut) ;
blankln(3);
writeln(OutFile, ':30,'FICTITIOUS STRESSES');
writeln(OutFile, ' ':30," ")
blankin(2); :
writeln(OutFile, ' ':20, 'Node No. Phi-X Phi-Y');
blankln(2):;
for i:=1 to NumNodes do
begin
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writeln(OutFile,' ':22,i:3,' ':10,phi[i]:11:4,' ':4,
phi[i+NumNodes]:11:4);

blankln(1)
end {i};
blankln(3);

writeln(OutFile,' ':20, 'DISPIACEMENT COMPONENTS AT FIELD POINTS'
- writeln(OutFile,' ':20,"

blankln(1) ;

~e weo

X Co-ord

writeln(OutFile,' ':15,'Point
'orill,'Uy');

blankln(1) ;

Y Co-ord',' ':12,'Ux',

for i:=1 to NumFldPts do

begin

writeln(OutFile,' ':17,1i:3,' ':3,Xpt{i]:7:4,' ':4,Ypt[i]:7:4,
' 1:5,0x[1]:12:7,0y[1]:12:7);

blankln(l);
end (i};
blankln(3):;

writeln(OutFile,! ':24, 'STRESS COMPONENTS AT FIELD POINTS!') ;
writeln(OutFile, ' ':24,"

blankln(1l) ;

writeln(OutFile,' ':5,'Point

'Sigma
writeln(OutFile) ;

X Co=-ord

Y Co-ord!','
Sigma-YY

Sigma=XY');

for i:=1 to NumFldpts do

begin

writeln(OutFile,
' 1:10,8Sx[1i]

blankln(l);
end (i};
TextColor(15) ;

':7,1i:3,°! ':5,Ypt[i

':5,S8s[i]:8

TextBackground (4) ;
gotoxy(1,24); writeln('Program BEAST has finished...');

close (OutFile) ;
close(InFile) ;

End {printoutfile};

| Control Progr |
|

- -}

BEGIN

TextMode (3) ;
ReadInFile;
Initialize;
Jacobians;
CoeffMatrix;
Cholesky;
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FieldPts;
PrintOutFile;

END.
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BEAST

Boundary Element Analysis of STress

ek e e e e e e e e e ok ok ok ook ok ok ok e e e e e e v vk ok ok ok ok ok ok ok o e o v o vk e ok ok ok ok

Hole in an Infinite Plate
8 elements/ traction b/c
Number of Boundary Elements = 8
Number of Boundary Nodes = 16
Youngs Modulus = 30000000.00

Poissons Ratio = 0.30

NODAL CO-ORDINATES

Node No. X Co-ord Y Co-ord
1 3.0000 0.0000
2 2.7720 1.1480
3 2.1210 2.1210
4 1.1480 2.7720
5 0.0000 3.0000
6 -1.1480 2.7720
7 =-2.1210 2.1210
8 -2.7720 1.1480
9 -3.0000 0.0000

10 -2.7720 -1.1480
11 -2.1210 -2.1210
12 -1.1480 -2,7720
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Node No.

W O 4 o U

10
11
12
13
14
15
16

133

t
t

13 0.0000 -3.0000
14 1.1480 =-2.7720
15 2.1210 =-2.1210
16 2.7720 ~1.1480
BOUNDARY CONDITIONS
X-Boundary Value Y-Boundary Value
20000.00000000 t 0.00000000
18477.60000000 t 7653.70000000
14142.10000000 t 14142.10000000
7653.70000000 t 18477.60000000
0.00000000 t 20000;00000000
=7653.70000000 t 18477.60000000
=14142.10000000 t 14142.10000000
-18477.60000000 t 7653.70000000
=20000.00000000 t 0.00000000
~18477.60000000 t ~7653.70000000
=-14142.10000000 t =14142.10000000
~7653.70000000 t -18477.60000000
0.00000000 t =20000.00000000
7653.70000000 t -18477.60000000
14142.10000000 t -14142,10000000
18477.60000000 t =7653.70000000

o o o o o o o o o o & o o




FIELD POINT CO-ORDINATES

Point

W 60 3 O U

10
11
12
13
14
15

Node No.

X Co-ord
3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000
4.0000
4.1000
4.2000
4.3000
4.4000
4.5000

Y Co-ord
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

FICTITIOUS STRESSES

Phi-X

69215.8668
64454.4807
49037.5179
26717.4922

2.4554
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Phi-Yy

-0.0001
26727.5921
49035.9036
64455.3221
69319.7585




Point X Co-ord

1

O 0 3 o U b W

10

11
12

W 0 g o

10
11
12
13
14
15
16

-26712.4126

=49031.6350
~64451.0263
=-69315.9701
-64451.0265
-49031.6349
-26712.4132
2.4556
26717.4915
49037.5180
64454.4810

DISPLACEMENT COMPONENTS

64454.4028
49034.5834
26715.2045
-0.0001
-26715.2040
-49034.5835
-64454.4026
-69319.7585
~64455.3224
=49035.9034

=26727.5922

3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000
4.0000
4.1000

4.2000

Y Co-ord
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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AT FIELD POINTS
Ux Uy

0.0024960 -0.0000000
0.0024175 -0.0000000
0.0023444 -0.0000000
0.0022756 ~0.0000000
0.0022107 -0.0000000
0.0021495 =0.0000000
0.0020916 +-0.0000000
0.0020367 <0.0000000
0.0019846 =0.0000000
0.0019352 =0.0000000
0.0018881 =0.0000000
0.0018433 =-0.0000000




Point X Co-ord

1

2

[ B

10
11
12
13
14
15

13

14
15

4.3000 0.0000 0.0018005 =-0.0000000
4.4000 0.0000 0.0017597 =0.0000000
4.5000 0.0000 0.0017207 -0.0000000

STRESS COMPONENTS AT FIELD POINTS

Y Co-ord Sigma~-Xx Sigma-YY
3.1000 0.0000 -19629.77 19507.75
3.2000 0.0000 ~17274.32 17464.51
3.3000 0.0000 -16323.22 16472.81
3.4000 0.0000 =15374.43 15508.63
3.5000 0.0000 =14501.90 14618.76
3.6000 0.0000 -13707.09 13807.09
3.7000 0.0000 =12978.75 13063.98
3.8000 0.0000 -12308.23 12380.99
3.9000 0.0000 -11688.97 11751.33
4.0000 0.0000 -11115.60 11169.31
4.1000 0.0000 -10583.53 10630.04
4.2000 0.0000 -10088.78 10129.29
4.3000 0.0000 -9627.88 9663.39
4.4000 0.0000 =9197.79 9229.08
4.5000 0.0000 -8795.80 8823.54
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(************************************************************)

(*

BEDAP

* Boundary Element DAta Preparation

(* ) By W. Neil Aitken

and

Allan T. Dolovich

(************************************************************)

Program BEDAP (output) ;

TYPE

Code
CodeType

VAR

NewFile
FileName, title
choice,choice2

NumNodes, NumElen, i,3j,k,

NumFldpts
)B{IYIXptIth

xCode yCode
E,Nu

LABEL 1;

Procedure Header:
Begin

ClrScr;

=STRING[1];
=ARRAY[1..50] OF Code;

s TEXT;
:STRING[80];
:STRING[1]:

: INTEGER;
:ARRAY[1..50] OF REAL;
ARRAY[1..100] OF REAL;

CodeType;
REAL;

gotoxy (35,8); wrlteln('B EDAP"); ‘
gotoxy(23,12); wrlteln('Boundary Element DAta Preparation'):;

Delay (3000) ;

gotoxy(30,15); writeln('By W. Neil Aitken');
gotoxy(38,17); writeln('and'): .
gotoxy(32,19) ;writeln('Allan T. Dolovich');
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Delay (2000) ;
ClrScr;

End;

Procedure ReadInFile;
Begin;

ClrScr;

gotoxy(15,12) ; write('Enter the New DataFile Name —---> ');
readln(FlleName),

ClrScr;

A551gn(NewF11e FileName) ;

Rewrlte(Newflle),

gotoxy (19, 12),wr1te1n('--- Enter the Title of the Problem ---');
writeln;writeln;write (' Y):

readln(tltle),

writeln(NewFile,title);

ClrScr;

gotoxy(15,12) ; write('Enter the Number of Boundary Nodes =--> 'Y
readln(NumNodes) ;
NumElem:=NumNodes 4div 2;

writeln(NewFile,NumNodes,' ',NumElem);
ClrScr;

gotoxy(30,5); wrlteln('MATERIAL PROPERTIES') ;
gotoxy(30,6); wrlteln(' ')

gotoxy(26,13) ; write('Youngs Modulus --—-> ');
readln(E) ;

gotoxy(26,15) ; write('Poissons Ratio ---> ');
readln(Nu) ;

writeln(NewFile,E," ', Nu);

ClrScr;

gotoxy(31,5); wrlteln( NODAL CO-ORDINATES') ;
gotoxy(31,6) ; writeln(! ')
for i:=1 to NumNodes do

begin
gotoxy(36,10) ; writeln('NODE ',i);
gotoxy(36,11) ; writeln('=—====- ') ;

gotoxy (28, 13); write('X Co-ordinate ---> ');
readln( x[1i] );

gotoxy (28, 15); write('Y Co-ordinate =--> ');
readln( y[i] ):

gotoxy(1,13) ;ClxEol;

gotoxy(l,lS);ClrEcl:

writeln(NewFile,x[i],' ':10,y[1i]):

end {i};
ClrScr;
gotoxy(30,5); writeln('BOUNDARY CONDITIONS');
gotoxy (30,6); writeln(' '):
for i:=1 to NumNodes do

begin
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End;

gotoxy(36,10) ; wrlteln('NODE ',1).

gotoxy (36,11) ; wrlteln(' ------- 'Y

gotoxy(25,13) ; write('X Boundary Value ---> ');

readln( B[i] );

gotoxy (24, 15),wr1te( T') ;LowVideo;write('raction or ');
NormVideo;write('D') ;LowVideo;
wrlte( isplacement ') ;NormvVideo;
write('=-=> 1);

readln( xCode[i] )i

gotoxy (25, 17); write('Y Boundary Value ---=> ');

readln( B[1+NumNodes] )’

gotoxy(24,19) ;write('T') ;LowVideo; wrlte( raction or ');
NormvVideo;write('D') ;lowVideo;
wrlte( isplacement ') ;NormVideo;
wr1te('-——> '):

readln( yCode[i] ):

gotoxy(1,13) ;ClrEol;

gotoxy(1,15) ;ClrEol;

gotoxy(1,17) ;ClrEol;

gotoxy(l 19) ;ClxEol:;

wrlteln(NewFlle B[i],' ',xCode[i],' ':10,B[it+NumNodes],"

end {i};
ClrScr;

',yCode[i]);

gotoxy(25,12) ; wrlteln('Enter the Number of Field Points!');
gotoxy (25,13) ; wrlteln( at which Stress and Displacement');

gotoxy (25,14) ; wr1te1n('Components are to be Calculated!');

gotoxy(25,16) ; write (! —-—> 1);
readln(NumFldPts) ;
writeln(NewFile,NumFldPts) ;
ClrScr;
gotoxy (28,5); wrlteln( FIELD POINT CO-ORDINATES'):
gotoxy(28 6); writeln( 'y
for i:=1 to NumFldPts do
begin
gotoxy(36,10) ; writeln('POINT ',i);
gotoxy(36,11) ; wrlteln(' -------- ')
gotoxy(28,13); write('X Co-ordinate ---> ');
readln( Xpt(i] ):
gotoxy(28,15) ; write('Y Co-ordinate ---> ');
readln( ¥Ypt[i] ):
gotoxy(1,13); ClrEol;
gotoxy(l 15); ClrEol;
wrlteln(NewFlle Xpt[i],' ':10,¥pt[i]):
end {(i};
Clrscr:;

Procedure PrintOutFile;

Begin
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ClrScr;

gotoxy(35,5) ; writeln('MATERIAL PROPERTIES');
gotoxy(35,6); writeln("' ')

gotoxy (29,13); writeln('Youngs Modulus ',E:11:2);
gotoxy (29,15) ; wrlteln('P01ssons Ratio ', Nu:4:2);
gotoxy(1,25); writeln('Press any key to continue ees');

J .""0]
repeat
gotoxy(31,3); writeln('NODAL CO-ORDINATES');
gotoxy(31,4); wrlteln(' ')
gotoxy(22,6); writeln('X Co-ord Y Co-ord');
gotoxy(22,7); writeln('=—==wee=- s ')
gotoxy(1,9);
for i:=1 to 8 do
begin
ki=i+j;
writeln;
if k <= NumNodes then
writeln(' NODE ',k,' ':12,x[k]}:8:4,' ':20,y[K]:8:4);
end {i};
gotoxy (1, 25),wr1te1n( Press any key to continue ...');
repeat until Keypressed;
ClrScr;
j:=j+8;
until j >= NumNodes ;
J:=0;
repeat

gotoxy(30,3); writeln('BOUNDARY CONDITIONS');

gotoxy(30,4); writeln(' )
gotoxy(22,6); writeln(' X B/V Y B/V'");
gotoxy(22,7); writeln(' ===~  em——— ");
gotoxy(1,9):
for i:=1 to 8 do
begin
ki=i+j;
writeln;
if k <= NumNodes then
writeln(! NODE ',k,' ':9,B[k]:14:7,' ',xCode[k],
' ':13,B[k+NumNodes]:14:7,"' ',yCode[k]):;
end {i};
gotoxy (1, 25), writeln('Press any key to continue ...');
repeat until KeyPressed;
ClrScr;
Ji=j+8;
until j >= NumNodes ;
j:=0;
repeat _
gotoxy(28,3); writeln('FIELD POINT CO-ORDINATES') ;
gotoxy(28,4); writeln(' ')
gotoxy(22,6); writeln('X Co-ord Y Co-ord'):
gotoxy(22,7): writeln('=======— eeemeeo '):
gotoxy(1,9);
for i:=1 to 8 do

begin
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ki=it+]j;
writeln;
if k <= NumFldpPts then
writeln(' POINT ',k,' ':12,Xpt[k]:8:4,' ':20,Ypt[k]:8:4);
end {i):
gotoxy(1,25) ;writeln('Press any key to continue ...');
repeat until Keypressed;
ClrScr;
Ji=j+8;
until j >= NumFldpts ;
repeat until KeyPressed;

End;

BEGIN

Header:;

1:

ReadInFile;

gotoxy(20,12); write('Would you like to review the datafile? —---> ');
readln(choice);

if (choice = 'y') or (choice = 'Y') then PrintOutFile;

ClrScr;

gotoxy(20,12) ; write('Would you like to create another file? ---> ');
read (choice2) ;

if (choice2 = 'y') or (choice2 = 'Y') then goto 1;

ClrScr;

gotoxy(20,10) ; writeln('The input file for the problem');
gotoxy(22,13); writeln('" ',title,' "');

gotoxy(20,16) ; writeln('has been created and is stored in'):
gotoxy(35,20) ; write(FileName);

close (NewFile) ;

END.
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