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Abstract

This thesis examines algorithmic problems involving k-crossing visibility. Given

two points p and q and a set of polygonal obstacles in the plane, where p and q are in

general position relative to the vertices of the obstacles, p and q are k-crossing visible

to each other if and only if the line segment pq intersects obstacle boundaries in at

most k points. Given a simple polygon P and a query point q, we show that region of

P that is k-crossing visible from q can be calculated in O(kn) time, where n denotes

number of vertices in P . With preprocessing of the polygon P , and using a data struc-

ture of size O(n5), the k-crossing visible region for any query point q can be reported in

O(log n+m) time, wherem is the size of the output and q is given at query time. When

there is a constraint on the amount of memory available, the k-crossing visible region

of q in P can be determined inO(cn/s+n log s+min{dk/sen, n log logs n}) time, where

s denotes the number of words available in the limited workspace model. Finally,

given an x-monotone polygonal chain, i.e., a terrain, we present an O(n4 log n)-time

algorithm to determine the minimum height of a watchtower point, located above the

terrain, such that any point on the terrain is k-crossing visible from that point. Addi-

tionally, we propose an O(n3)-time algorithm for the discrete version of the problem,

in which the watchtower is restricted to being positioned over vertices of T .
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Chapter 1

Introduction

Wireless technologies have evolved to meet our needs, from transferring morse

coded messages to transmitting images of the vistas of distant worlds. We can en-

gage in real-time communication with friends and family across the world. As a

result of the progress and success of the field of wireless communications, a new area

of research has developed to address problems related to range, throughput, and

reliability, called k-crossing visibility or k-visibility. The two parameters that most

strongly affect the ability for two wireless devices to communicate successfully are

the distance between the devices and the number of walls (or obstacles) that exists

between these devices. As technological progress in this field is fast, transmission

range has increased rapidly, allowing better connectivity across longer distances. The

latter parameter is, however, still a constraint, as passing through barriers reduces

the energy of the wireless signal; after a wireless signal passes some number of walls,

it is impossible for a device to receive a wireless transmission. This area of research

and related problems studying geometric properties and algorithms related to wire-

1



2 Chapter 1: Introduction

less communication across walls or barriers is referred to as k-crossing visibility or

k-visibility. Informally, two points p and q in a polygon P are said to be k-crossing

visible when the line segment pq intersects the interior of P in at most k times. A

formal definition is provided in Chapter 2.

In the field of Computational Geometry, k-crossing visibility was initially studied

by Mouawad and Shermer [81] and also Dean and Lingas [49] for the special case

where k is 1. As wireless network access became more commonplace, the need for ef-

ficient algorithms for wireless communication was heightened as global adoption and

reliance on the technologies increased [67]. At this point, the k-crossing visibility for

the case where k can be any arbitrary positive integer has become a topic of inter-

est [57; 13; 50; 29; 3]. This thesis studies some problems in this area.

The first problem studied is to calculate the region in which a wireless device can

communicate in the presence of obstacles, when a given building is modeled as a two-

dimensional polygon. This problem is studied under two different settings, with and

without a constraint on memory, with corresponding results presented in Chapters 6

and 4, respectively. In Chapter 5, we also study the problem when the building is

given as a fixed input, but the position of wireless device changes in each run of the

algorithm. Each time the algorithm runs, for a given device location, the requested

output is the region k-crossing visible for this new location. Last, in Chapter 7, algo-

rithms are proposed to calculate the minimum height of towers located along a road;

a road travels along a straight line horizontally while moving up and down vertically.
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The application of this problem is in the case that some towers must be located along

a road so that mobile devices are connected to at least one tower at all times.

We begin by providing necessary definitions, followed by a summary of related

works. The subsequent chapters investigate the problems of visibility query without

preprocessing, visibility query with preprocessing, visibility query with constrained

memory, and selecting positions for watchtowers, respectively. Chapters 4 and 6 rep-

resent algorithms that compute a region as a function of the input, Chapter 5 proposes

a data structure with an associated query algorithm, and Chapter 7 investigates a

geometric optimization problem, all of which relate to k-crossing visibility. Finally,

we conclude by going over some interesting open problems.

Some of the results presented in this thesis are published or submitted to the

following conferences and journals:

1. Finding the k-visibility region of a point in a simple polygon in the memory-

constrained model. In Proc. 32nd European Workshop Comput. Geom.(EWCG),

2016.

2. Time-space trade-off for finding the k-visibility region of a point in a polygon. In

WALCOM: Algorithms and Computation: 11th International Conference and

Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings,

volume 10167, page 308. Springer, 2017.

3. A time-space trade-off for computing the k-visibility region of a point in a

polygon. Theoretical Computer Science, 2018.
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4. Computing the k-Visibility Region of a Point in a Polygon. To appear in

IWOCA: 30th International Workshop on Combinatorial Algorithms, IWOCA

2019, Pisa, 23-25 July, 2019.

5. Watchtower for k-crossing Visibility. To appear in CCCG: 31st Canadian Con-

ference in Computational Geometry, CCCG 2019, Edmonton, August 8-10,

2019.



Chapter 2

Background and Definitions

In this section, we give precise definitions for the k-visibility problems examined

in this thesis.

A simple polygon (P ) is defined as a sequence of points v0, v1, ..., vn−1, v0 in the

plane, and a corresponding sequence of line segments or edges v0v1, v1v2, ..., vn−2

vn−1, vn−1v0, where non-consecutive edges in the sequence do not intersect. By this

definition, a simple polygon P is a closed Jordan curve. A simple closed Jordan

curve is a curve that does not intersect itself and divides the plane into three disjoint

regions: the set of points inside P (the interior), the set of points outside P (the

exterior), and the set of points on P (the boundary). ∂P denotes the set of points

on the boundary of P . In this thesis P refers to the interior and boundary as the

polygon. A polygon with holes is a simple polygon that excludes a given set of simple

polygons that lie inside it.

5



6 Chapter 2: Background and Definitions

q

Figure 2.1: This figure illustrates one polygonal obstacle P in the plane. The shaded
region is the region of P that is 2-visible from the query point q. The dotted line
denotes the part of this boundary which is not an edge of the polygon.

2.1 Visibility

2.1.1 Visibility

Given a simple polygon P , two points p and q are said to be visible to each other

if and only if the line segment pq does not intersect the exterior of P . If p and q

are mutually visible and the line segment pq lies inside P (possibly overlapping the

boundary of P ), then they are said to be internally visible to each other. In contrast,

if the line segment pq lies outside P , then they are said to be externally visible. Given

a simple polygon P and a query point q inside P , the part of P visible from q is called

the visibility region or visibility polygon of q. Visibility between p and q can also be

considered among more general obstacles in the plane, such as a set of line segments

in the plane. Various algorithmic problems have been studied related to visibility,

such as those defined in Section 2.1.2.



Chapter 2: Background and Definitions 7

2.1.2 k-Visibility

The geometric concept of visibility has been generalized in a variety of ways. The

generalized visibility definition in this study is k-crossing visibility. First we define k-

crossing visibility formally. Two paths P and Q are disjoint if P ∩Q = ∅. To provide

a general definition of visibility requires a robust definition for a crossing between a

line segment and a polygon boundary, in particular, for the case when points are not

in general position.

Definition 1 (Weakly disjoint paths [Chang et al. (2014)[36]]). Two paths P and Q

are weakly disjoint if, for all sufficiently small ε > 0, there are disjoint paths P̃ and

Q̃ such that dF(P, P̃ ) < ε and dF(Q, Q̃) < ε.

dF(A,B) denotes the Fréchet distance between A and B.

Definition 2 (Crossing paths [Chang et al. (2014)[36]]). Two paths cross if they are

not weakly disjoint.

Definitions 1 and 2 apply when P and Q are Jordan arcs. We use Definition 2 to

help to define k-crossing visibility.

Definition 3 (k-crossing visibility). Two Jordan arcs (or polygonal chains) P and

Q cross k times, if there exist partitions P1, . . . , Pk of P and Q1, . . . , Qk of Q such

that Pi and Qi cross, for all i ∈ {1, . . . , k}. Points p and q in a simple polygon P

are k-crossing visible if the line segment pq and the boundary of P do not cross k+ 1

times.
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Consequently, when p and q are in general position relative to the vertices of the

obstacles (p, q and a vertex of the obstacles do not lie on the same line), p and q

are k-crossing visible to each other if and only if the line segment pq crosses obstacle

boundaries in at most k points. Figure 2.1 shows the 2-crossing visible region of the

polygon for the given query point. When k = 0, k-crossing visibility and visibility are

equivalent. Given a simple polygon P and a query point q, the k-crossing visibility

region of q is the parts of P which is k-crossing visible from q; the k-crossing visible

part of the plane is called the k-visibility polygon. Notice that when k = 0 and q ∈ P ,

the k-crossing visibility polygon and the k-crossing visibility region are the same.

Problem 1: Visibility Query without Preprocessing

Input: A simple polygon P , a point q in P , and a number k

Problem: Finding the k-visibility region of the plane for the point q.

We study visibility query without preprocessing in Chapter 4.

Problem 2: Visibility Query with Preprocessing

Input: A fixed polygon P , a query point q in P , and a fixed number k

Problem: Preprocessing P for the given integer k to construct a data structure to

support efficient visibility queries where, for an arbitrary query point q, the k-visibility

region of q in P must be returned.

Visibility query with preprocessing is studied in Chapter 5.

A polygon P is said to be star-shaped if and only if there exists a point p from
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which the entire polygon P is visible. The polygon P is said to be k-star-shaped if

there exists a point p from which the entire polygon P is k-crossing visible. The set

of all such points is called the k-kernel of the polygon P . The 0-kernel is usually

referred to as the kernel.

2.1.3 Constrained Memory

In real world settings, computers can be limited by the amount of memory avail-

able for computation. As a result, designing algorithms which can solve different

problems with with a limited memory is of importance; such algorithms are called

memory-constrained algorithms. The model in which researchers study these algo-

rithms is described as follows: the input memory consists of a set of read-only words.

The workspace that the algorithm uses for processing is a set of read-write words

which generally can store O(log n) bits of information. The output is a set of write-

only cells. The goal is to minimize the running time of algorithms while operating

within the available memory.

Problem 3: Visibility Query with Constrained Memory

Input: A polygon P , a query point q in P , and a number k

Problem: Designing an algorithm to report the k-visibility polygon for q when

constant or constrained memory space is available.

We study visibility query with constant and constrained memory space in Chap-

ter 6.
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q

q′0 q′1

Figure 2.2: The gray region denotes the 2-link visible region of the polygon for a
query point q. q′0 and q′1 are 2-link visible for q as the dotted lines show.

2.2 Guarding

2.2.1 Art Gallery

A set of points W in the polygon P is said to guard P if and only if every point in

P is visible to at least one point in W . Each point in W is called a guard. The Art

Gallery problem, introduced by Klee [93], seeks to identify a minimum cardinality set

of points that guards a given polygon P . If each point in P must be visible from at

least β guards, the problem is called β-guarding and P is called β-guarded 1. When

β = 1, Art Gallery and β-guarding problems are equivalent. In these problems the

set of guards may be static or mobile. If static guards are located on vertices of P ,

they are referred to as vertex guards. A mobile guard, can patrol on an edge of the

1This problem is often called K-guarding in the literature. To avoid confusion, it is called β-
guarding in this document.
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p1 q1

p0

q0

Figure 2.3: An x-monotone polygonal chain (terrain). p0 and q0 can see each other,
while p1 and q1 can not.

polygon (edge guard), on a chord of the polygon (chord guard), or along a poly-line

inside P (poly-line guard) [93]. Different kinds of visibility can be defined for the

guard: the guard may see the entire region around itself, have a limited field of view

such as α-radian (α-visibility), or have k-crossing visibility.

2.2.2 Guarding on the Terrain and Watchtower Problem

A terrain T is a 2-dimensional x-monotone polygonal chain, consisting of a set of

points v0, v1,...,vn, where the x-coordinate of vi < vj for i < j; see Figure 2.3. In this

thesis T always denotes an x-monotone polygonal chain with n vertices. A point p is

said to lie below T if a vertical line through p intersects T at a point above p. Two

points p and q on T are visible if and only if the line segment pq does not intersect

the region below T ; this is the usual definition of visibility, with the added constraint

that the region below the terrain is opaque.
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The Art Gallery problem for terrains is to find the minimum number of guards

(W ) needed on T such that each point on T is visible by at least one guard in W . If

W is located above T , the problem is called the Watchtower problem. A watchtower

is a point located above the terrain. The goal is to determine the minimum distance

of one or a set of watchtowers above T from which the entire terrain T is visible.

Watchtowers above a given terrain T can be either discrete, or continuous; in the

discrete setting, the watchtowers’ positions are restricted to points on the vertical

lines emanating from vertices of P , while in the continuous version, watchtowers can

be located at any point above T . Similar to the Art Gallery and β-guarding problems

in polygons, many varieties of visibility can be studied for the Watchtower problem

on terrains including k-crossing visibility.

Problem 4: Watchtower

Input: A terrain T , and a number k

Problem: Finding a watchtower with minimum height such that the entire terrain

T is k-visible from the watchtower.

The algorithm for watchtower is proposed in Chapter 7.



Chapter 3

Related Work

Visibility problems have been of interest in Computational Geometry over the

past few decades [86; 60]. In this section, we discuss previous results on problems

related to visibility and the Art Gallery problem.

3.1 Visibility

3.1.1 Visibility

Given a polygon P with n vertices and a query point q inside P , a fundamental

problem is to compute the visibility polygon for q: the region of P visible from q.

This problem was first introduced by Davis and Benedikt [47], who gave an O(n2)-

time algorithm. However the number of vertices of the visibility polygon of q in P is

proportional to the number of vertices of P in the worst case, i.e., Θ(n) [53; 75]. El

Gindy and Avis proposed the first approach for finding the visibility polygon in O(n)

time without preprocessing [53], followed by Lee’s work [75]. However, the approach

13
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was in error as it was shown not to be applicable to all polygons, and a correction

was provided by Joe and Simpson [69].

Given a polygon with n vertices, by using O(n3) space for preprocessing the poly-

gon P , the visibility query can be answered more efficiently in time O(log n + m),

where m refers to the number of vertices in the output polygon (the size of the out-

put) [24]. Aronov et al. [6] introduced a new approach to answer the visibility query

in O(log2 n+m) time by using a O(n2)-space data structure, constructed in the pre-

processing step in O(n2 log n) time.

3.1.2 k-Visibility

In recent years, research focus has turned to the application of k-crossing visi-

bility in wireless networks. The concept of k-crossing visibility was first introduced

by Dean et al. [49]. In [49], pseudo-star-shaped polygons in which each point was

visible through one edge were studied, corresponding to k-crossing visibility where k

is 1. Later, Mouad and Shermer [81] also studied the concept of k-crossing visibility,

in what they originally called the Superman problem. Given a simple polygon P and

a sub-polygon Q, the goal in this problem is to determine the minimum number of

edges which must be made opaque so that the given point q located in the exterior

of P cannot see any point in Q. Recently, the concept of k-crossing visibility was

explored for arbitrary k, where an algorithm to construct the k-visible region from

the query point q in O(n2) time was presented [12].
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Other visibility problems that have been studied involve star-shaped and k-star-

shaped polygons [79; 91; 55]. Evans and Sember [55] show how to calculate the

k-kernel of a given polygon where the kernel of the polygon may lie outside of the

polygon. Furthermore, the authors showed that the number of vertices of the k-kernel

can be O(n4).

3.1.3 Constrained Memory

Given the proliferation of small mobile devices, a branch of algorithm design fo-

cuses on the development of algorithms for memory-constrained systems [82]. These

algorithms are based around a variety of memory models and usage constraints.

There are several notable variants of memory-constrained algorithms. In-place al-

gorithms are the most basic. In this model, there is no limitation on the num-

ber of times the input can be read while there exist constraints on the available

workspace [26; 27; 33; 34]. If a problem can be solved in O(log n) bits of workspace,

it belongs to a class of problems called LOGSPACE [7]. Additionally, there are

streaming models which are bounded by the number of times the input can be read,

in addition to having a constraint on the workspace memory [84; 30; 14]. For solving

problems for these different models, succinct data structures can be used to mini-

mize the number of bits of space needed to store and represent the input [63; 85].

There have been a variety of problems in computational geometry which have been

studied in this class of problems, such as computing the visibility region in a simple
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polygon, among others. Perhaps the most well-studied problem in this area is sorting.

The optimal solution for reporting the 0-crossing visibility polygon from a given

query point takes O(n) time and O(n) space [69] where n refers to the number of ver-

tices of the polygon. Considering the in-place model, when the size of the workspace

is O(1), there exists an algorithm that needs O(nr̄) time, where r̄ refers to the number

reflex vertices which are critical for the point q [16]. A vertex vi is called critical for

the point q when both edges of the polygon P adjacent to vi lie one the same side of

the line determined by qvi.

If there exists O(s) workspace, where s is O(log r) and r is the number of reflex ver-

tices, Barba et al. [16] propose a solution for computing the 0-crossing visibility poly-

gon from a given query point which runs in O(nr/2s+nlog r2) and O(nr/2s+n log r),

deterministic and expected time respectively. Their algorithm uses a recursive ap-

proach where the constant memory algorithm is used as the base case. At each phase,

the boundary of P is divided into two parts, such that the number of visible reflex

vertices for q in these two sub-chains is roughly half of the visible reflex vertices in

the original polygon. For stack-based algorithms, there exists a method proposed

by Barba et al. [15] which gives a constrained memory algorithm for the 0-visibility

query problem. This algorithm takes O(n2 log n/2s) time when s is o(log n).

In addition to computing the visibility polygon from a given query point q inside

a simple polygon P with n vertices, an O(mn)-time algorithm is given to calculate
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the weak visibility polygon from an edge of P using constant workspace [1], where m

denotes to the size of the output polygon.

3.2 Guarding

3.2.1 Art Gallery

The original Art Gallery problem was introduced by Klee and Chvátal where

the problem was to find the minimum number of guards needed such that each

point within a given polygon is visible to at least one guard [93]. Chvátal and

Fisk [42; 58; 93] proved that bn/3c guards are sufficient and sometimes necessary

to guard a polygon P with n vertices. It has also been shown that for a given

polygon P , determining the minimum number of point or edge guards needed is NP -

hard [76]. For approximation algorithms, Eidenbenz et al. [52] showed that the Art

Gallery problem cannot have any polynomial-time algorithm with an approximation

factor better than a fixed constant unless P = NP . In addition to the above prob-

lems, some researchers have looked at approximation and randomized algorithms for

locating a set of given guards g in a given polygon P to maximize the fraction of P

that is guarded [62; 51].

The β-guarding problem has been studied for fixed β and different kinds of guards,

such as vertex and edge guards. It has been shown that every simple polygon can be

2-guarded by at most n− 1 edge guards [17]. Furthermore, every simple polygon can
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be 1-guarded by at most dn/2e edge guards [17]. Belleville et al. also have shown

that any polygon with holes can be 1-guarded by edge guards, while not all polygons

with more than one hole can be 2-guarded [17]. Salleh proposed upper bounds of

b2n/3c and b3n/4c for 2-guarding and 3-guarding simple polygons, respectively, by

vertex guards [89]. The β-guarding problem has been shown to be NP -hard [28], and

as a result, research has shifted to exploring approximation algorithms [28]; however

for special polygons, such as spiral polygons, the 2-guarding problem can be solved

in polynomial time [21].

3.2.2 k-Visibility

A guard g is called a k-modem (or k-transmitter) if it guards all points that

are k-crossing visible from g. Recently Aichholzer et al. [3] have shown that
⌈
n−2
2k+3

⌉
k-modems are sufficient, and in some cases necessary, for guarding monotone poly-

gons. The authors also proved that a monotone orthogonal polygon can be guarded

by bn/(2k + 4)c k-modems. Duque and Hidalgo-Toscano [50] showed that at most

O(n/k) k-modems are needed to guard a simple polygon P ; however, given a polygon

P , determining the minimum number of modems to guard P is an NP -hard problem,

both for point k-modems (where 2 ≤ k ≤ n) and edge 2-modems (an edge k-modem

is an edge guard that is a k-modem) [29]. Given a set of line segments and a k-

modem gk, Fabila et al. investigated and proposed solutions for finding the minimum

k needed such that the entire plane is k-crossing visible from gk [57]. Additionally,

k-crossing visibility can be considered in the plane with obstacles when the goal is to
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guard the plane or boundary of geometric shapes. For instance, Ballinger et al. [13]

developed upper and lower bounds on the number of k-modems needed to guard a

set of orthogonal line segments, as well as for a few other special types of geometric

objects.

3.2.3 Guarding on a Terrain

Chen et al. [40] claimed that Art Gallery problem on terrains is NP -hard, though

the proof was later presented by King and Krohn [71]. As a result, research has since

focused on approximation algorithms to solve the problem. In 2007, Ben-Moshe et

al. [19] proposed the first constant-factor approximation algorithm forming the base

of other algorithms in this area. A second constant-factor approximation algorithm

was presented by Clarkson and Varadarajan where the more general class of problems

were studied [43]. King introduced an approximation algorithm with constant factor

five [70]. A 4-approximation algorithm was later presented by Elbassioni et al. [54].

Gibson et al. were also able to achieve a polynomial-time approximation scheme for

a terrain (1.5D) by using a local search technique [61].

3.2.4 Watchtower Problem

The original terrain watchtower problem was introduced by Sharir for polyhedral

terrains [92]. The minimum height for one watchtower can be found in O(n log n)

time for both the continuous and discrete problems under 0-crossing visibility on an
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x-monotone polyhedral terrain in R3 [96].

Bespamyatnikh et al. [22] proposed an O(n4)-time algorithm for the discrete 2-

watchtower problem under 0-crossing visibility on a terrain in R2. They also general-

ize their approach for the continuous version of the problem with assumptions on the

time required to solve a specific cubic equation with three bounded variables. Under

the assumption that the equation can be solved in O(f3) time, their approach takes

O(n4 + n3f3) time. Using parametric search, they show that the discrete and con-

tinuous versions of the problem can be solved in O(n3 log2 n) and O(n4 log2 n) time,

respectively. Ben-Moshe et al. [18] improved the time to O(n3/2
√
m′(n)) for the dis-

crete 2-watchtower problem, where m′(n) denotes the time required to multiply two

n × n matrices, resulting in a time of O(n2.88) using the current fastest matrix mul-

tiplication algorithm [44]. Using parametric search, Agarwal et al. [2] improved the

time complexity of the discrete and continuous 2-watchtower problems for 0-crossing

visibility to O(n2 log4 n) and O(n3α(n) log3 n) respectively, where α(n) denotes the

inverse Ackermann function.
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Visibility Query without

Preprocessing

Given a polygon P , an integer k, and a query point q ∈ P , we propose an algo-

rithm that computes the region of P that is k-crossing visible from q in O(nk) time,

where n denotes the number of vertices of P . This is the first such algorithm pa-

rameterized in terms of k, resulting in asymptotically faster worst-case running time

relative to previous algorithms when k is o(log n), and bridging the gap between the

O(n)-time algorithm for computing the 0-visibility region of q in P [53; 75; 69] and

the O(n log n)-time algorithm for computing the k-visibility region of q in P [10].

21
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P

q

Figure 4.1: a polygon P , a point q, and the k-visibility polygon of q in P when k = 2

4.1 Introduction

Given a simple n-vertex polygon P , two points p and q inside P are said to be

mutually visible when the line segment pq does not intersect the exterior of P . When

p and q are in general position relative to the vertices of P (i.e., no vertex of P is

collinear with p and q) p and q are mutually k-crossing visible when the line segment

pq intersects the boundary of P in at most k points. For a formal definition of k-

crossing visibility see Chapter 2. Various applications require computing the region

of the plane that is visible or k-visible from a given query point q in P [4]. This region

is called the k-visibility polygon of q in P . See Figure 4.1.

Our goal is to design an algorithm that reduces the time required for computing

the k-visibility polygon for a given point q in a given simple polygon P . O(n)-time al-
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gorithms exist for finding the visibility polygon of q in P (i.e., when k = 0) [53; 75; 69],

whereas the best known algorithms for finding the k-visibility polygon of q in P re-

quire Θ(n log n) time in the worst case for any given k [10]. A natural question that

remained open is whether the k-visibility polygon of q in P can be found in o(n log n)

time. In particular, can the problem be solved faster for small values of k? This chap-

ter presents the first algorithm parameterized in terms of k to compute the k-visibility

polygon of q in P . The proposed algorithm takes O(nk) time, where n denotes the

number of vertices of P , resulting in asymptotically faster worst-case running time

relative to previous algorithms when k is o(log n), and bridging the gap between the

O(n)-time for computing the 0-visibility polygon of q in P and the O(n log n)-time

algorithm for computing the k-visibility polygon of q in P .

Given a polygon P with n vertices and a query point q inside P , a fundamental

problem in visibility is to compute the visibility polygon for q. Motivated by ap-

plications in wireless networks, where transmissions can pass through a number of

obstacles before the signal degrades, this chapter focuses on finding the k-visibility

polygon of q in P . Bajuelos et al. [12] subsequently explored the concept of k-crossing

visibility for an arbitrary given k, and presented an O(n2)-time algorithm to construct

the k-crossing visible region of q in P for an arbitrary given point q. Recently, Bahoo

et al. [10] examined the problem under the limited-workspace mode, and gave an

algorithm that uses O(s) words of memory and reports the k-visibility polygon of q

in P in O(n2/s+n log s) time. When memory is not constrainted (i.e., Ω(n) memory

is available) their algorithm computes the k-visibility polygon in O(n log n) time.
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The chapter begins with an overview of definitions, followed by the presentation

of the algorithm, and an analysis of its running time.

4.2 Preliminaries and Definitions

4.2.1 Crossings and k-Visibility

In this chapter, the definition of k-visiblity is as in Chapter 2.

Given a simple polygon P , we refer to the set of points that are k-crossing visi-

ble from a point q as the k-crossing visibility region of q with respect to P , denoted

Vk(P, q). When the polygon P is clear from the context, we simply refer to set as

the k-crossing visibility region of q and denote it as Vk(q). Our goal is to design an

efficient algorithm to compute the k-crossing visibility region of a point q with respect

to a simple polygon P .

To simplify the description of our algorithms, we assume that the query point q

and the vertices of the input polygon P are in general position, i.e., q, pi and pj are

not collinear for any vertices pi and pj in P . Under the assumption of general position,

two points p and q are k-crossing visible if and only if the line segment pq intersects

the boundary of P in fewer than k points. That is, Definition 3 is not necessary under

general position. All results presented in this chapter can be extended to input that

is not in general position.
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4.2.2 Trapezoidal and Radial Decompositions

A polygon decomposition of a simple polygon P is a partition of P into a set of

simpler regions, such as triangles, trapezoids, or quadrilaterals. Our algorithm uses

trapezoidal decomposition and radial decomposition. A trapezoidal decomposition

(synonymously, trapezoidation) of P partitions P into trapezoids and triangles by

extending, wherever possible, a vertical line segment from each vertex p of P above

and/or below p into the interior of P , until its first intersection with the boundary

of P . A radial decomposition of P is defined relative to a point q inside or outside

P . Similarly, for each vertex p of P , a line segment is extended, wherever possible,

toward/away from p into the interior of P on the line determined by p and q, until

its first intersection with the boundary of P . A radial decomposition partitions P

into quadrilateral and triangular regions. The number of vertices and edges in both

decompositions is proportional to the number of vertices in P (i.e., Θ(n)). Note that

a trapezoidal decomposition corresponds to a radial decomposition when the point q

has its y-coordinate at ±∞ (outside P ). Chazelle [37] gives an efficient algorithm for

computing a trapezoidal decomposition of a simple n-vertex polygon in O(n) time.

4.2.3 Projective Transformations

Another topic we must cover in this section is homogeneous coordinates and its

related concepts.

In computer graphics it is often necessary to perform operations such as rotation,

shearing, scaling and translation on a two-dimensional image. A 3 by 3 matrix can
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be used to perform a combination of these operations easily through a dot product

with points of the image. To do so, each point x in the plane must be expressed

with a 3D coordinate also referred to as homogeneous coordinates. The homogeneous

coordinate of a point (x, y) is (x, y, 1). The plane Z = 1 is called real plane in this

setting. The points at infinity have representations in the homogeneous coordinates

which lie in the plane Z = 0. Each set of parallel lines will meet at a point at infinity

in the plane Z = 0.

For projecting an image from one plane to another plane in 3D, computer graphics

researchers consider another geometry called projective geometry; a classical topic in

mathematics. The projection of a point x of an image in the plane H to another

plane H ′ from a point c (c /∈ H), is the intersection of H ′ with the line cx. The

point c is called the central point. If cx is parallel to H ′, the projective image of x

appears at infinity and x is called a vanishing point. This transformation is called

a projective transformation, and the plane to which the image projected called pro-

jection plane. After applying the projective transformation, we must bring back all

points with z 6= 0 to the real plane Z = 1. As a result, a point (x, y, z) is represented

as (x/z, y/z, 1) in homogeneous coordinates and (x/z, y/z) in Euclidean coordinates.

The transformation matrix can be shown as follows:


h11 h12 h13

h21 h22 h23

h31 h32 h33

.

Values in the first two rows will result in shearing, scaling, rotation, and transi-
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tion. Values in the last row result in a projective transformation. When the rows

are respectively [1 0 0], [0 1 0], and [0 0 1], the identity transformation is applied; no

points will change under this transformation.

As mentioned, after projective transformation, each point must be transferred

to the real plane. This is done by dividing all coordinates of each point to its z

coordinate. As a result point (wx,wy, wz) and (x, y, z) represent the same point.

Considering this, a point x in the real plane equals to a line in 3D which passes the

plane Z = 1 at x. Expanding this discussion, each line L in the real plane is equal

to a plane passing through the plane Z = 1 at L in 3D. In projective geometry, set

of parallel lines meet at a point at infinity. This intersection point is a point in the

plane Z = 0.

Suppose we have a simple polygon P and a point q in the Euclidian coordinates

such that q lies below P . In the remainder of this section, we show how to define the

matrix transformation so that the point q goes to infinity and the rest of P changes so

that no point of P goes to infinity. Then, we explain how to use this transformation

in order to report the radial decomposition of P from q.

Suppose a simple polygon P and a query point q are given so that q has the mini-

mum y coordinate (as we want to move q to infinity but not the polygon P ). Without

loss of generality, suppose point q = (0, 1). If not, we transfer P and q in the plane

such that the x-coordinate and y-coordinate of q becomes 0 and 1, respectively. After
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applying a projective transformation on P , if there is no point on the boundary of

P that is transformed to the plane Z = 0, then the transformation of P remains a

simple polygon. This is because in the projective transformation a point lies on a line

if and only if the projective transformation of that point lies on the projective trans-

formation of the line [23]. Also, notice that the projective transformation preserves

lines [25]. So, if all vertices of the transformed P have positive z coordinates, P re-

mains a simple polygon. The goal is to transform the query point q with coordinates

(xq, yq, zq) to +∞ and the rest of P will change so that no point of P goes to infinity.

After the transformation, the new coordinate of q must be [x′q y
′
q 0]. Suppose each

vertex vi of P with coordinates [xvi yvi zvi ] be projected to point v′i with coordinate

[x′vi y
′
vi
z′vi ]. If for each vertex vi of P , z′i remains positive (or negative), no point of

the boundary of P will go to infinity and intersect with the plane Z = 0.

By considering these facts, there are two criteria which must be satisfied:

• h31xq + h32yq + h33 = 0

• ∀vi ∈ P : h31xvi + h32yvi + h33 > 0

By satisfying the above conditions the point q will move to +∞ and the rest of

the polygon changes so that no point of P goes to infinity.

By defining the transformation matrix


1 0 0

0 1 0

0 1 −1

 for transforming the polygon

P and the point q, both the above criteria will be satisfied. Notice that the point
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q will be transformed to the point (0, 1) in the plane Z = 0. Let’s call this matrix TM .

Lemma 1. Given a simple polygon P and a point q where q lies below P , the rays

emanating from q going through vertices of P are transferred to the vertical lines in

the projective image under the transformation matrix TM and their ordering based on

their x-coordinate is the polar ordering of the equivalent rays around q in the original

image.

Proof. Suppose x′ and L′ are the projective transformation of a point x and a line L.

x′ lies on L′ if and only if x lies on L. When applying the projective transformation

the point q will go to infinity. This point is the only common point between the

rays emanating from q that were passing the vertices of P . This is because we are

assuming that the vertices of P are in general position with respect to q. As a result,

the transformation of these rays will never meet in the real plane. Consequently, they

are parallel in the real plane.

Suppose the projective plane and the real plane intersect at a line called L. The

rays emanating from q will intersect with L in the order they appear around q. These

rays equivalent to parallel lines in the projective plane. L is also in the projective

plane and the points of the intersection of the rays with L belong to the parallel lines

which are equivalent to the rays emanating from q in the projective image. So, their

ordering is the same as their polar order around q in P .

We now show that these parallel lines will be vertical lines in the transformed
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image. Any set of parallel lines will intersect at a point at infinity in the plane Z = 0

in projective geometry. Each point at infinity can be shown as (x, y, 0), which can be

rescaled to the point (x, 1, 0) where x is 1/m and m is the slope of a set of parallel

lines. So, a set of vertical lines in the plane intersecting at (0, 1, 0). (0, 1, 0) is the

transformed version of q where q goes to +∞. q is the intersection of the set of

parallel lines equal to the transformation of the rays passing through q and vertices

of P . Consequently, these parallel lines are vertical.

Using Lemma 1, we conclude that the radial decomposition of a simple polygon P

around the point q corresponds to the trapezoidal decomposition of the transformed

polygon P ′ under the transformation matrix TM , and can be calculated in Θ(n) time.

Lemma 2. The radial decomposition of a simple n-vertex polygon P around a query

point q can be calculated in Θ(n) time.

Proof. Given a simple polygon P and a query point q, P can be transformed to a

simple polygon P ′ in linear time by transformation matrix TM , where q goes to

infinity. Chazelle showed that the trapezoidal decomposition can be found in linear

time [37]. By Lemma 1, a vertical line segment of the trapezodial decomposition of P ′

corresponds to a ray emanating from q and passing a vertex of P . If this vertical line

segment intersects edges of P ′, called e′2 and e′1, it must intersect the corresponding

edges e1 and e2 in P ; and it cannot intersect any other edges of P as a point lies on

a line if and only if the transformation of that point lies on the transformation of the

line [23]. So, the trapezoidal decomposition of P ′ equals to the radial decomposition

of P around the point q. The trapezoidal decomposition can be transformed back by

applying the transformation matrix TM−1 to obtain the radial decomposition of P .
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This process needs O(n) time complexity. As a result, the radial decomposition of P

can be constructed in O(n) time complexity.

4.3 k-Visibility Algorithm

4.3.1 Overview

Given as input an integer k, an array storing the coordinates of vertices whose

sequence defines a clockwise ordering of the boundary of a simple polygon P , and a

point q in the interior of P , our algorithm for constructing the k-visibility polygon of

q in P executes the following steps, each of which is described in detail in this section:

1. Partition P into two sets of disjoint polylines, corresponding to the boundary

of P above the horizontal line ` through q, and the boundary of P below `.

2. Nesting properties of Jordan sequences are used to close each set by connecting

disjoint components to form two simple polygons, Pa above ` and Pb below `.

3. The two-dimensional coordinates of the vertices of Pa and Pb are mapped to

homogeneous coordinates, to which a projective transformation, fq, is applied,

with q as the center of projection.

4. Compute the trapezoidal decompositions of fq(Pa) and fq(Pb) using Chazelle’s

algorithm [37].

5. Apply the inverse tranformation f−1q on the trapezoidal decompositions to ob-

tain radial decompositions of Pa and Pb.
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6. Merge the radial decompositions of Pa and Pb to obtain a radial decomposition

of P .

7. Traverse the radial decomposition of P to identify the visibility of cells in in-

creasing order from visibility 0 through visibility k, moving away from q and

extending edges on rays from q to refine cells of the decomposition as necessary.

8. Traverse the refined radial decomposition to reconstruct and output the bound-

ary of the k-visibility region of q in P .

Steps 1–6 can be completed in O(n) time and Steps 7–8 can be completed in O(nk)

time.

4.3.2 Partitioning P into Upper and Lower Polygons

We begin by describing how to partition the polygon P into two pieces across the

line `, where ` denotes the horizontal line through q. We rotate P so that no vertices

of P lie on `. Let ε denote the minimum distance between any vertex of P and `.

Let {x1, . . . , xm} denote the sequence of intersection points of ` with the boundary of

P , labelled in clockwise order along the boundary of P , such that x1 is the leftmost

point in P ∩ `. This sequence is a Jordan sequence [65]. We now describe how to

construct the upper polygon Pa and the lower polygon Pb. Notice that the following

Lemma holds:

Lemma 3. Suppose that the intersection points between the horizontal line and poly-

gon P is labeled as 1, 2, . . . , and m; then m is always an even number.
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Proof. P is a closed Jordan curve. The number of points of intersection of a closed

Jordan curve and a line h is odd when the line is tangent to the curve. This occurs

when there is a vertex of P on h so that h is tangent to P at that vertex. But we

rotate P so that no vertex of P lies on h. As a result, the number of intersections is

even.

Between consecutive pairs (x2i−1, x2i) of the Jordan sequence, for i ∈ {1, . . . ,

m/2}, the polygon boundary of P lies above `. Notice that x1 was leftmost in P ∩ `;

a walker walking along ∂P in clockwise order always traverses from the region below

` to the region above `. Similarly, between pairs (x2j, x2j+1), for j ∈ {1, . . . ,m/2−1},

and between (xm, x1), the boundary of P lies below `. We call the former upper pairs

of the Jordan sequence, and the latter lower pairs. These pairs possess the nested

parenthesis property [88]: every two pairs (x2i−1, x2i) and (x2j−1, x2j) must either nest

or be disjoint. That is, x2j−1 lies between x2i−1 and x2i in the sequence if and only if

x2j lies between x2i−1 and x2i. This is because if they are not nested, the part of ∂P

between x2j−1 and x2j in clockwise order (which is above `) must intersect the part

of ∂P between x2i−1 and x2i in clockwise order which is above `. As P is a simple

polygon such an intersection can not exist.

As shown by Hoffmann et al. [65], the nested parenthesis property for the upper

pairs determines a rooted tree, called the upper tree, whose nodes correspond to pairs

of the sequence. The nodes in the subtree rooted at the pair (x2i−1, x2i) consist of all

nodes corresponding to pairs that are nested betweeen x2i−1 and x2i in the Jordan

sequence order. The leaves of the tree correspond to pairs that are consecutive in the
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sorted order (sorted by their x-coordinates). If a node (x2j−1, x2j) is a descendant of

a node (x2i−1, x2i) in the tree, then the points x2j−1 and x2j are nested between x2i−1

and x2i. The lower tree is defined analogously.

If the boundary of P intersects ` in more than two points, the resulting discon-

nected components must be joined appropriately to form the simple polygons Pa and

Pb. To build the lower polygon Pb, we replace each portion of the boundary of P

above ` from x2i−1 to x2i with the following 3-edge path: x2i−1, u, v, x2i. The first

edge (x2i−1, u) is a vertical line segment of length ε/2di, where di denotes the depth

of the node (x2i−1, x2i) in the tree (we insert a dummy root vertex to ensure that no

nodes of the tree has the depth of zero). Notice that if ` be the x-axis, all such u and

v are located below (or above) ` while constructing Pb (or Pa). The next edge (u, v)

is a horizontal line segment whose length is ||x2i−1−x2i||. The third edge (v, x2i) is a

vertical line segment of length ε/2di. Figure 4.2 illustrates this construction. Notice

that all parts of these paths are located below the line `.

The nesting property of the Jordan sequence ensures that all of the 3-edge paths

are similarly nested and that none of them intersect. Consider two pairs (x2i−1, x2i)

and (x2j−1, x2j). Either they are disjoint or nested. If they are disjoint, then without

loss of generality, assume that x2i−1 < x2i < x2j−1 < x2j. Their corresponding 3-edge

paths cannot cross since the intervals they cover are disjoint. If they are nested, then

without loss of generality, assume that x2i−1 < x2j−1 < x2j < x2i. The only way

that the two paths can cross is if the horizontal edge for the pair (x2j−1, x2j) is higher
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than for the pair (x2i−1, x2i). However, since (x2j−1, x2j) is deeper in the tree than

(x2i−1, x2i), the two paths do not cross. Thus, we form the simple polygon Pb by

replacing the portions of the boundary above ` with these three edge paths. Sorting

the Jordan sequence, building the upper tree, computing the depths of all the pairs

and adding the 3-edge paths can all be achieved in O(n) time using the Jordan sort-

ing algorithm outlined by Hoffmann et al. [65]. The upper polygon Pa is constructed

analogously. We conclude with the following lemma.

Lemma 4. Given a simple n-vertex polygon P and a horizontal line ` that intersects

the interior of P such that no vertices of P lie on `, the upper and lower polygons of

P with respect to ` can be computed in O(n) time.

4.3.3 Computing the Radial Decomposition

The two-dimensional coordinates of the vertices of each polygon Pa and Pb are

mapped to homogeneous coordinates, to which a projective transformation, fq, is ap-

plied with q as the center of projection. These transformations take constant time per

vertex, or Θ(n) total time. Chazelle’s algorithm [37] constructs trapezoidal decompo-

sitions of fq(Pa) and fq(Pb) in Θ(n) time, on which the inverse transformation, f−1q is

applied to obtain radial decompositions of Pa and Pb. Merging the radial decompo-

sitions of Pa and Pb gives a radial decomposition of the original polygon P without

requiring any additional edges. All vertices x1, . . . , xm of the Jordan sequence, all

vertices of the three-edge paths, and their adjacent edges are removed. The remain-

ing edges are either on the boundary of P , between two points on the boundary on
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(c)

Pa

(b)

P Pb

(a)

qq

q

Figure 4.2: (a) a polygon P , a point q, and the horizontal line ` through q; (b)–(c)
the upper polygon Pa and lower polygon Pb of P with the additional 3-edge paths
highlighted.

a ray through q, or between the boundary and q. The entire process for constructing

the radial trapezoidation takes Θ(n) time. This gives the following lemma.

Lemma 5. The radial decomposition of a simple n-vertex polygon P around a query

point q can be computed in Θ(n) time.

4.3.4 Reporting the k-Visible Region

The 0-visibility region of q in P , denoted V0(q), is a star-shaped polygon with q

in its kernel. A vertex of V0(q) is either a vertex v of P or a point x on the boundary

of P that is the intersection of an edge of P with a ray emanating from q through

a reflex vertex r of P . In the latter case, (r, x) is an edge of V0(q) that is collinear

with q, called a window or lid, because it separates a region in the interior of P that

is 0-visible from q and an interior region that is not 0-visible. The reflex vertex r

is the base of the lid and x is its tip. There are two types of base reflex vertices.

The reflex vertex r is called a left base (respectively, right base) if the polygon edges
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incident on r are to the left (respectively, right) of the ray emanating from q through r.

We now describe the algorithm to compute the k-visible region of q in P , denoted

Vk(q). The algorithm proceeds incrementally by computing Vi+1(q) after computing

Vi(q). We begin by computing V0(q) in O(n) time using one of the existing linear-time

algorithms, e.g. [53; 75; 69]. Label the vertices of V0(q) in clockwise order around

the boundary as x0, x1, . . . , xm. Triangulate the visibility polygon by adding the edge

(q, xi) for i ∈ {0, . . . ,m}; this corresponds to a radial decomposition of V0(q) around q.

If xi is a left base vertex, then notice that the triangle 4(qxixi+1)
1 degenerates to

a segment. Similarly, if xi is a right base vertex, then 4(qxixi−1) is degenerate. If we

ignore all degenerate triangles, then every triangle has the form 4(qxixi+1), where

(xi, xi+1) is on the boundary of P . The union of these triangles is V0(q). To compute

V1(q), we show how to compute a superset of triangles whose union is V1(q).

We start with an arbitrary triangle 4(qxixi+1) of V0(q), where (xi, xi+1) is on the

boundary of P . Note that (xi, xi+1) is either an edge of P or a segment within the

interior of an edge of P , where each endpoint is either a vertex of P or on the interior

of an edge of P. It is this segment (xi, xi+1) of the boundary that blocks visibility.

We show how to compute the intersection of V1(q) with the cone that has apex q and

bounding rays ~qxi and ~qxi+1, denoted C(q, xi, xi+1). We call this process extending

the visibility of a triangle. We have two cases to consider. Either one of xi or xi+1 is

a base vertex or neither is a base vertex. It is not possible for xi and xi+1 to both be

1All indices are computed modulo the size of the corresponding vertex set: m+ 1 in this case.
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q

xi, y1

xi+1, y8

y′2

y′3

y′4
y′5 y′6 y′7

y2
y3

y4 y5
y6

y7
y′1

y′8y′′2
y′′5

Figure 4.3: Edges of the radial decomposition are extended where critical vertices
cast a shadow. Portions of the polygon in the blue region that were processed in
previous iterations are omitted from the figure.

base vertices. We start with the latter case where neither is a base vertex.

Let Y be the set of vertices of the radial decomposition that lie on the edge

(xi, xi+1). If Y is empty, then (xi, xi+1) lies on one face of the radial decomposition

since neither xi nor xi+1 is a base vertex. We show how to proceed in the case when

Y is empty, then we show what to do when Y is not empty. Let f be the face of the
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decomposition on the boundary of which (xi, xi+1) lies. By construction, this face

is either a quadrilateral or a triangle. In constant time, we find the intersection of

the boundary of f excluding the edge containing (xi, xi+1) with ~qxi and ~qxi+1. Label

these two intersection points as x′i and x′i+1. Extending the visibility of 4(qxixi+1)

results in4(qx′ix
′
i+1). Note that4(qx′ix

′
i+1) is the 1-visible region of q in C(q, xi, xi+1)

and (x′i, x
′
i+1) is on the boundary of P .

We now show how to extend the visibility of 4(qxixi+1) when Y is not empty. La-

bel the points of Y as yj for j ≥ 1 in the order that they appear on the edge (xi, xi+1)

from xi to xi+1. Each yj is an endpoint of an edge of the radial decomposition. Since

yj is a point on the boundary of P , there are 2 faces of the radial decomposition with

yj on the boundary. Let y′j be the other endpoint of the face on the left of yj and y′′j

be the endpoint for the face on the right. Either y′j = y′′j or y′j 6= y′′j . In the former

case, we simply ignore y′′j . In the latter case, we note that either y′j is a left base of

V0(yj) or y′′j is a right base. See Figure 4.3 where y′2 is a left base and y′′5 is a right base.

Thus, the edges of the radial decomposition that intersect segment (xi, xi+1) are

of the form (yj, y
′
j) or (yj, y

′′
j ). Note that y1 is either xi or the point closest to xi

on the edge. For notational convenience, if y1 6= xi, relabel xi as y0. Let f be the

face of the radial decompostion on the boundary of which (y0, y1) lies. Let y′0 be the

intersection of ~qy0 with the boundary of f excluding the edge of f containing (y0, y1).

We call this operation extending xi. Similarly, for yj that is closest point in Y to xi+1,

if yj 6= xi+1, relabel xi+1 as yj+1 and compute the edge (yj+1, y
′
j+1), i.e. extend xi+1.
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(a) (b)

(f)

(c)

(d) (e)

Figure 4.4: (a) a simple polygon P and a query point q; (b) the radial decomposition
of P ; (c) the 0-visibility polygon, V0(q), of q in P computed in the first iteration;
(d) the 1-visibility polygon, V1(q), of q in P computed in the second iteration, with
extended edges highlighted in light blue; (e) the refined radial decomposition, with
extended edges highlighted in light blue; (f) the 4-visibility polygon, V4(q), of q in
P computed in the fourth iteration, with the algorithm’s output highlighted in black
(two components of the boundary of V4(q) ∩ P ), and cells of the decomposition with
depth ≤ 4 coloured by depth, as computed by the algorithm.

We are now in a position to describe the extension of the visibility of trian-

gle 4(qxixi+1) when neither xi nor xi+1 is a base vertex. The set of triangles are

4(qy′ky
′
k+1) and 4(qy′′ky

′
k+1) (when y′′k exists). The union of these triangles is the 1-
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visible region of q in C(q, xi, xi+1). Furthermore, notice that each triangle 4(qy′ky
′
k+1)

(respectively, 4(qy′′ky
′
k+1)) has the property that (y′k, y

′
k+1) (respectively, (y′′k , y

′
k+1)) is

on the boundary of P . This is what allows us to continue incrementally since at each

stage we extend the visibility of a triangle4(qab) where (a, b) is on the boundary of P .

Now, if xi is a base vertex, then it must be a right base. Of the two edges of P

incident on xi, let e be the one further from q. The procedure to extend 4(qxixi+1)

is identical except that we only extend xi when xi+1 ∈ e. Notice that e is defined as

such due to the fact that when xi+1 is not located on e, the ray is already extended

for the next step of the algorithm and if xi+1 is locate on e, we need to start extending

the ray for the next step. Similarly, if xi+1 is a base vertex, then it must be a left

base. Of the two edges of P incident on xi+1, let e be the one further from q. Again,

the procedure to extend 4(qxixi+1) is identical except that we only extend xi+1 when

xi ∈ e.

The general algorithm proceeds as follows. At iteration i, the visibility region

Vi(q) is represented as a collection of triangles around q with the property that the

edge of the triangle opposite q is on the boundary of P and it is the edge blocking

visibility. We wish to extend past this edge to compute Vi+1(q) from Vi(q). To do

this, we extend each triangle in Vi(q). There are at most O(n) triangles at each level.

Therefore, the total time to extend all the triangles in Vi(q) is linear. Thus, we can

compute Vi+1(q) from Vi(q) in O(n) time and computing Vk(q) takes O(nk) time since

we repeat this process k times.



42 Chapter 4: Visibility Query without Preprocessing

The algorithm can report either only the subregion of P that is k-visible from q,

i.e., Vk(q) ∩ P , or the entire region of the plane that is k-visible from q, including

parts outside P . To obtain the region inside P , it suffices to traverse the boundary

of P once to reconstruct and report portions of boundary edges that are k-visible.

The endpoints of these sequences of edges on the boundary of P meet an edge of the

refined radial decomposition through the interior of P that bridges to the start of the

next sequence on the boundary of P . The entire boundary of P must be traversed

since the k-visible region in P can have multiple connected components (unlike the

k-visible region in the plane that is a single connected region). See Figure 4.4 for an

example. We conclude with the following theorem.

Theorem 1. Given a simple polygon P with n vertices and a query point q in P , the

region of P that is k-crossing visible from q can be computed in O(kn) time without

preprocessing.



Chapter 5

Visibility Query with

Preprocessing

In this chapter, we examine the problem of preprocessing a given simple polygon

P for a given integer k to construct a data structure to support efficient visibility

queries, where each query consists of a point q inside P for which the k-visibility

region of q in P must be returned. The objective is to balance the trade-off between

the size of the data structure and the query time. Given a polygon P and an integer

k, we describe how to preprocess P in O(n5 log n) time to construct a data structure

of size O(n5). Using this data structure the k-visibility region for any query point q

given at query time can be found in O(log n+m) time, where m refers to the number

of vertices of the k-visibility region.

43
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5.1 Introduction

Given a simple polygon P with n vertices and a query point q inside P , a funda-

mental problem in visibility is to compute the visibility region for q: the region of the

the polygon P 0-visible from q.

For a formal definition of k-crossing visibility see Chapter 2. Given a point q

inside the polygon P , the goal in this chapter is to design a data structure that can

determine the k-crossing visible part of the polygon for a query point q, the k-visibility

region. To simplify the description of the presented algorithms, it is assumed that

the query point q and the vertices of the input polygon P are in general position, i.e.

q, pi and pj are not collinear for any vertices pi and pj in P .

Section 5.2 describes a data structure and a query algorithm for constructing the

k-visibility region for the query point q. Section 5.2.1 proposes a query data struc-

ture and associated query algorithm for determining the k-visibility region from q by

preprocessing P , for a point q and a positive number k given at query time.

5.2 Query Data Structure and Algorithm for a

Fixed Polygon and a Fixed k

Given a polygon P , the goal is to preprocess P so that the k-crossing visibility

region of a query point q given at query time is determined efficiently. The purpose
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of this preprocessing step is to reduce the overall query time by shifting some of the

computation specific to P and independent of q by constructing a query data struc-

ture. Note that the preprocessing step only has knowledge of the input polygon P

and the number k; the query point q is provided only at query time.

To achieve this goal, the polygon can be decomposed into a set of cells; Figure 5.1

represents such a decomposition. For each cell, some information about the k-visibility

region must be stored so that for a point lying in that cell, the k-visibility region can be

quickly determined using the stored information. We denote such information as the

combinatorial representation of the k-visibility region, henceforth simply referred to

as the combinatorial representation. In this section, we first define the decomposition

of P , provide a precise definition of the combinatorial representation, and then show

how the proposed decomposition maintains the combinatorial representation in each

cell. Finally, we present the process of constructing the k-visibility region of a given

query point q by using the combinatorial representation stored in the cell containing

q.

We decompose a polygon into a set of cells by considering the following:

1. The boundary of the k-visibility region of each vertex of P .

2. The boundary of the v-region of each vertex of P .

3. The order lines.

We describe each of these below.
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Figure 5.1: The combinatorial representation of the 2-visibility region remains the
same at any point inside any given cell.

Consider the k-visibility region of a vertex in P . The boundary of this region is

a set of line segments in P whose endpoints lie on the boundary of P , and are used

to decompose the polygon. The k-visibility region of each vertex in P is calculated

in O(n log n) time [10], as shown in Chapter 6. Hence, the k-visibility regions for

all vertices of P can be determined in O(n2 log n) time. As each k-visibility region

has O(n) vertices [10], this step introduces O(n2) line segments for the decomposition.

Next, we present the definition of the the v-region proposed by Evans and Sember

[55].

Definition 4 (Evans and Sember [55]). The v-region of a vertex v in P includes the

points x where x is k-crossing visible for any point in P on the ray −→xv.

In other words, the v-region of a vertex v can be defined as any point x whose
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c1

c2

Figure 5.2: The bold red lines are added as order lines when k = 3.

emanating ray passing through v does not cross the edges of P more than k times. If

both edges incident to v lie on the same side of the ray −→xv, its edges are counted as two

intersection points. We calculate the v-region of each vertex of P , where the boundary

of each v-region is a set of rays and line segments. The boundaries of the regions are

considered for the decomposition. Each v-region can be calculated by the approach

proposed by Evans and Sember in O(n log n) time for each vertex of P , resulting a

total time of O(n2 log n) needed to calculate all regions [55]. As each v-region has

O(n) edges [55], this step introduces O(n2) new line segments and rays into the plane.

We define the vertex c to be critical for q when the edges incident to c lie on one

side of the ray −→qc. Suppose two vertices c1 and c2 are critical and k-visible from each

other, and n′ edges of P intersect the segment c1c2 where n′ ≤ k. Consider the two

rays on the line c1c2, emanating from c1 and c2, respectively, traveling away from both

c1 and c2 until encountering at most k + 1 − n′ edges of P (the two edges incident

to c1 are counted as two intersection points, as are the edges incident to c2); this is
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illustrated in Figure 5.2. If the number of intersection points of these rays with the

polygon is less than k + 1− n′, we consider the ray for the decomposition, otherwise

the line segment is used. These line segments or rays used for the cell decomposition

are referred to as order lines. As there are O(n2) order lines, and the intersection

of one order line with the polygon can be found in O(n) time, this step takes O(n3)

time in total.

Lemma 6. The decomposition of P , constructed by the boundary of the k-visibility

region and v-region of each vertex of P , and order lines, has O(n4) cells.

Proof. There are O(n2) line segments and rays considered for the decomposition, and

the polygon P has O(n) edges. Considering the entire plane, all these line segments

and rays can intersect O(n4) times. As a result, they partition the entire plane into

O(n4) cells. The polygon P is a subset of the plane, so there exist O(n4) cells in the

decomposition of the polygon.

The decomposition of P constructed by the boundary of the k-visibility region

and v-region of each vertex of P , and order lines, is called k- cell decomposition.

Lemma 7. There exists a polygon P whose k- cell decomposition has Θ(n4) cells.

Proof. The k-kernel is a region from which every point in P is k-crossing visible.

Evans and Sember [55] demonstrated a case where the k-kernel has Θ(n4) vertices,

and Θ(n4) components, each of which lies inside P . Each such component is the

intersection of the v-regions of all the vertices of the polygon P . Furthermore, this

example showed that there exists a case for the proposed cell decomposition in which



Chapter 5: Visibility Query with Preprocessing 49

Ω(n4) cells exist. Hence, Θ(n4) is the tightest bound on the number of cells in the

worst case.

q

Figure 5.3: The gray polygons are the components of the 2-visibility region.

The vertices of the k-visibility region are either the vertices of the polygon P , or

lie on an edge of P . The boundary of the k-visibility region is composed of some parts

of the boundary of P and some line segments, which will be referred to as windows.

Each window lies on a ray emanating from a point q, and passes through a critical

vertex b k-visible from q so that the ray
−→
qb intersects the boundary of the polygon

more than k + 1 times (edges of b count as two intersection points). Such a critical

vertex is called the base of the window. Also, notice that the k-visibility region of
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a query point can be disconnected, consisting of a set of simple polygons called the

components of the k-visibility region, as shown in Figure 5.3.

Observation 1. A base vertex b creates a window whose endpoints are the (k + 2)th

and (k + 3)th intersections of the ray
−→
qb with the polygon boundary (considering the

edges of b as two intersection points), where there exists more than k+2 intersections

between the edges of P and the ray
−→
qb; see Figure 5.5.

With the above definition of the k-cell decomposition, we can now define the

combinatorial representation of the k-visibility region of a query point q as follows.

Consider a component of the k-visibility region. This component can be represented

by the vertices of the polygon P on the boundary of the component of the k-visibility

region, and the endpoints of the windows on the boundary of the component. The

endpoints of the windows can be represented by a single element defined by the base

vertex of the window and the two edges that the window lies on; see the third element

in Figure 5.4a. This information will be stored in the order that the vertices appear

along the border of a component of the k-visibility region of q and represents that

component of the k-visibility region of q. If the component includes any vertex of

the polygon P , this list starts from the vertex with minimum index, and if there is

no vertex of P in the component, the representative list starts from the base with

minimum index. The set of such lists for all components of the k-visibility region

is called the combinatorial representation. Figure 5.4 illustrates an example of the

combinatorial representation.
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P

Figure 5.4: The gray region is the k-visible part of the polygon P for the point q.
Figure (a) is the representation of the component a of the k-visibility region, and (b)
shows the corresponding representation of the component b. These two representation
together correspond to the combinatorial representation of the 2-visibility region for
the point q. Notice that a window is shown by its base vertex and two edges on which
its endpoints lie; see the third element in Figure (a) which corresponds to the window
w in the k-visibility region.
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q

b2

w1

w2

b1

Figure 5.5: When k = 2, w1 and w2 are the windows of 2-visibility with base vertices
b1 and b2 respectively.

We next show that all points inside a given cell of the k-cell decomposition have

the same combinatorial representation.

Lemma 8. Points lying in each face of the k-cell decomposition have the same com-

biniatorial representation for their k-visibility region.

Proof. Suppose two points x1 and x2 are in a cell, and have different combinatorial

representations. Notice that a cell of the k-cell decomposition is connected. So,

without loss of generality, we can consider that the points x1 and x2 are some distance

ε from each other. The difference in their combinatorial representation is one of the

following cases:

1. Difference in a vertex of P that exists in the combinatorial representation of

one, but not the other’s.

2. The difference between a base vertex.

3. The changes of the endpoint of a base vertex.
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Figure 5.6: When k = 3, moving from q to q′ changes the angular order of b1 and b2.
As a result, the position of their equivalent windows change.

4. The changes of the location of a base vertex or the vertex of the polygon P in

the list.

We explain each of the above cases in the following.

Suppose x1 and x2 lie in the same cell but their combinatorial representation is

different at a vertex vi. If vi is visible from x1 but it is not visible from x2, then the k-

visibility region of vi divides x1 and x2 into two different cells. This is a contradiction.

Suppose x1 and x2 lie in the same cell but their combinatorial representation is
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different at a base vertex bi. If bi is a base vertex for x1, but not a base vertex for

x2, this in turn means that bi acts as an obstacle of visibility for x1, but that bi does

not block x2. So, the v-region of bi disconnects x1 and x2 in the k-cell decomposition.

This is a contradiction.

Suppose for a base vertex b1, that the endpoints of the window created by b1 lie

on different edges for some query points x1 and x2. Suppose there exist the same

sets of vertices and base vertices appear in the combinatorial representations of x1

and x2. This is a valid assumption; if base vertices or vertices are different in the

combinatorial representation of x1 and x2, then x1 and x2 must lie in two different

cells as we explained above. Consider the ray x1b1. There must exist another base

vertex b2 that as a result of moving from x1 to x2, changes the angular order of b2

and b1 around the query point. This change introduces or removes an obstacle on the

ray x2b1, and causes the location of the endpoints of the window created by b1 from

x2 to change. See Figure 5.6. Consequently, the order line made by b1 and b2 must

separate x1 and x2, a contradiction.

All the vertices of each component of the k-visible region in a given cell are always

in order for each cell in the combinatorial representation, as the vertices appear in the

same order as on the boundary of the polygon P . If the ordering of two base vertices in

a component of the combinatorial representation changes, either their corresponding

edges representing the location of the endpoints of their windows change or the edges

remain the same. The first case is shown to be a contradiction above. Suppose
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the edges representing the endpoints of their corresponding windows stay the same.

Notice that while walking along the boundary of a component of the k-visibility

region, the windows in this component appear in the angular order that their base

vertices appear around the point q. This is because the windows all emanate from the

query point q, and pass through the base vertices. The combinatorial representation

of the k-visibility region is saved based on the ordering of the elements as they appear

on the boundary of the k-visibility region. As moving from x1 to x2 causes the angular

order of b1 and b2 to change around the query point, this in turn causes the order

line made by b1 and b2 to separate x1 and x2, a contradiction. This is to say, all the

elements representing windows (base vertices with the edges on which their endpoints

lie) in a given cell are always in order for each cell in the combinatorial representation.

As the combinatorial representation of the k-visibility region is saved based on the

ordering of the elements as they appear on the boundary of the k-visibility region, if

the location of a vertex of P changes with the location of a base vertex in the list,

the corresponding edges for the base vertex must change as well; shown above to be

a contradiction.

Hence, all points in a cell of the k-cell decomposition have the same combinatorial

representation.

By saving the corresponding combinatorial representation for each cell, we show

that the k-visibility region of a query point in a given cell can be restored without loss.

Lemma 9. Given the combinatorial representation of the cell containing the query

point q, the k-visibility region of q can be restored in O(m) time, where m is the
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number of vertices of the k-visibility region.

Proof. Looking at the given combinatorial representation, the k-visibility region can

be reconstructed as follows. If the current element is a vertex vi of the polygon P , vi

is reported in the output along with an edge between the previous element of the list

(if vi is not the first element) and vi. If the current element is a base vertex bi stored

with edges e and e′ in the list, the endpoints of its corresponding window can be cal-

culated in constant time considering the intersection points of the ray
−→
qbi and edges

e and e′. Let these endpoints be xi and xi′ . One of these endpoints must lie on the

same edge of P that the previous element of the list lies on; let xi be that endpoint.

The edge between the previous reported element of the list (if bi is not the first el-

ement) and xi is reported. Following this edge, xi, xixi′ , and xi′ are reported in order.

There are O(m) elements in the combinatorial representation. For each element,

the corresponding vertices and edges of the k-visibility region can be found in constant

time. So, by knowing the combinatorial representation of the k-visibility region, the

region can be retrieved in O(m) time.

Next, we propose a query algorithm for preprocessing P to find k-visibility region

of a given query point.

5.2.1 Preprocessing Steps and the Query Algorithm

In this section, the high-level description of the preprocessing and the query algo-

rithm are presented.
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Preprocessing

1. Construct the k-visibility region of each vertex of P .

• This step takes O(n log n) time for each vertex [10], resulting in O(n2 log n)

total time.

2. Construct the v-region of each vertex of the polygon P .

• This step takes O(n log n) time for each vertex [55], resulting in O(n2 log n)

total time.

3. Where possible, construct the order line between each pair of vertices of P .

• For each pair vi and vj, O(n) time is needed to find the intersection of the

line segment vivj with the edges of the polygon in one pass over the polygon

P . So, in O(n) time it can be found whether vi and vj are k-visible from

each other. If the point pair is k-visible, it can be determined in constant

time if these vertices are critical for each other. Consider the ray −−→vivj, the

(k+ 1) intersection points of this ray with the edges of the polygon can be

found in O(n) time. Simultaneously, the (k + 1) intersection point of the

ray −−→vjvi with the edges of the polygon P can be found in O(n) time. So,

for a pair of vertices of P , it takes O(n) time to determine the order line,

if necessary. As there are O(n2) different pairs of vertices, this step takes

O(n3) time overall.

4. Construct the planar subdivision made by the above decomposition rays and

line segments.
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• By applying Bentley and Ottmann’s algorithm [20], this step can be per-

formed in O(n4) time as there are O(n2) rays and line segments and O(n4)

points of intersection in the k-cell decomposition.

5. Process the above subdivision for the point location.

• This can be done in O(n4 log n) time [72; 77; 87; 90].

6. Assign the corresponding combinatorial representation to each cell.

• Consider an arbitrary query point q in a cell. The k-visibility region of

q can be calculated in O(n log n) time [10]. Notice that in the proposed

algorithm by Bahoo et al. [10] the boundary of the k-visibility region is

reported out of order. This output can be sorted in O(n log n) time as all

the vertices of the k-visibility region are on the boundary of the polygon

P given in counterclockwise order.

• Passing over each component of the k-visibility region of q, if a vertex of

P is encountered it will be saved in the corresponding list. If we pass

over a window, the base vertex bi of the window, and the edges of P the

endpoints of the window lie on are stored. Notice that the base of each

window can be stored when the k-visibility region is found. The size of

the k-visibility region is O(n), so storing the combinatorial representation

of each cell takes O(n) time.

• There are O(n4) cell. As a result, it takes O(n5 log n) time to assign the

combinatorial representation to the cells of the k-cell decomposition.
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As the number of vertices of the k-visibility region is O(n) [9], for each cell O(n)

space is needed to save this data. Consequently, O(n5) space is required to store the

entire k-cell decomposition and the information of each cell, and O(n5 log n) time for

preprocessing.

Query Algorithm

Given a query point q, the k-visibility region of q can be constructed by using the

information stored in the preprocessing.

1. Query which cell of the k-cell decomposition q lies in.

• This step takes O(log n) time, as the point location query algorithm takes

O(log n) time [48].

2. Retrieve the k-visibility region k.

• This step takes O(m) time by Lemma 9 where m denotes the number of

vertices on the boundary of the k-visibility region.

This data structure and its accompanying query algorithm can be modified to

report the k-visibility polygon, the region of the plane which is k-crossing visible for

the query point q. Also, this result can be generalized for arbitrary non-crossing line

segments instead of a simple polygon. The same approach can be used to decompose

the plane. In this case the endpoints of the line segments are processed as the vertices

of the polygon and when two line segments have a common endpoint they may act like

a critical vertex of the polygon P . As there exist O(n2) line segments which create the
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cell decomposition, there exists O(n4) cells. As a consequence, O(n5) space is required

for the cell decomposition of the plane with a set of n non-crossing segments, and

the k-visibility region of the plane for a query point can be reported in O(log n+m)

time, where m is the size of the output.

Suppose for each cell in the cell decomposition, the corresponding k-visible regions

are stored for all k ∈ {0, . . . , n}. The previous structure for fixed k has size O(n5).

We store, for each value of k, one of these structures. This gives a structure of size

O(n6) that can answer queries for arbitrary k by simply answering the query in the

data structure constructed for the given value of k.



Chapter 6

Visibility Query with Constrained

Memory

In this chapter, we investigate the problem of computing the k-visible parts of a

given simple polygon P from a given query point q under constrained-memory model.

Motivated by the limited resources available to mobile and low-power devices,

new categories of algorithms have emerged to address the problems related to these

limitations. These algorithms are analyzed under the limited workspace model [8]. In

this model, there is a read-only memory which stores the input consisting of O(n)

words where each word has Ω(log n) bits. Memory required for algorithm’s computa-

tion takes place in separate read-write memory, consisting of O(s) words, where s is

a parameter in the limited workspace model. Finally, there is a write-only memory

for the purpose of writing the output.

61
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q q

(a) (b)

Figure 6.1: The 2-visible part of the polygon from q is disconnected (a), while the
2-visible part of the plane in connected, (b).

Given a simple polygon P and a query point q, the goal is to report the parts of

P which are k-crossing visible from q, denoted by Vk(P, q). The formal definition of

k-crossing visibility and the problem definition are provided in Chapter 2.

Notice that given a simple polygon P and a query point q, the k-visibility region

of the plane is always connected, while the k-visibility region of the polygon P from

the query point q can be disconnected; see Figure 6.1. The approach proposed in this

chapter will work for both the plane and the polygon.
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As the properties of 0-visibility and k-visibility regions are quite different, none

of the approaches for 0-visibility works for k-crossing visibility.

In the following sections, we show how to calculate the k-visibility region of P from

q using O(s) workspace. We present two algorithms, one for s ∈ O(1), and another

parameterized in terms of a general s. The algorithm proposed for constant workspace

requires O(kn+cn) time, where c refers to the number of critical vertices. Having O(s)

workspace, the other algorithm runs in O(cn/s+ n log s+ min{dk/sen, n log logs n})

expected time.

In Section 6.4, we will explain how to generalize these ideas to report the k-

visibility region from a query point q in a polygon with holes, or in the plane with

non-crossing line segments. If q is inside a polygon with holes, the algorithm needs

O(cn/s + n log s + min{dk/sen, n log logs n}) expected time when the workspace is

of size O(s). If there are n non-crossing line segments in the plane, the k-visibility

region from q requires O(n2/s+ n log s) deterministic time.

6.1 Preliminaries and Definitions

As mentioned, in this chapter, we are studying k-crossing visibility which is de-

fined formally in Chapter 2.

Suppose there exist s words available in the workspace in our model where s ∈

{1, . . . , n}. A simple polygon P which is represented in counterclockwise order is
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given. Given a query point q inside P , and a parameter k, the goal is to determine

the k-visible region of P from q, denoted by Vk(P, q). As q is inside P , it can be as-

sumed that k is always even. When k is odd, the k-visibility region of P corresponds

to (k−1)-visibility region of P from q. It can also be assumed that the input is given

in a general position: for any two vertices u and v of P , the three points u, v, and q

are not collinear. The boundary of Vk(P, q) includes a subset of the edges, as well as

a set of chords of P . A chord is a segment that lies inside P and its endpoints lie on

the boundary of P .

Let rθ denote the ray emanating from q, and let θ be the angle of this ray with

respect to the positive x-axis where q is the origin. The intersecting edge of rθ is an

edge of P that intersects rθ. The intersecting edges are stored in the edge list of rθ

sorted by their increasing distance from q. Let eθ(j) refer to the jth element of this

list, where j also denotes the rank of eθ(j).

The positive angle θ of the ray qv with the positive x-axis is called the angle of

the vertex v. A vertex v is called a critical vertex of q when both edges of v are on the

same side of the line determined by qv; v is non-critical otherwise. Deciding whether a

vertex is a critical vertex for a given q takes O(1) time. If both edges of a critical ver-

tex v lie on the left side of the ray qv, v is called a start vertex. If both edges of v lie to

the right of the ray qv, v is considered to be an end vertex; see Figure 6.2. A minimal

continuous set of edges of P with one start vertex and one end vertex at the oppo-

site ends in P is referred to as a chain. Each ray rθ intersects each chain at most once.



Chapter 6: Visibility Query with Constrained Memory 65

v3

v1

v2

q

v4

v5v6

v7

v8

P

Figure 6.2: An example with k = 2. The hatched regions are not 2-visible for q.
The vertices v1, . . . , v8 are critical for q. More precisely, v1, v2, v3, v6 are start vertices,
and v4, v5, v7, v8 are end vertices. ∂P is partitioned into 8 disjoint chains, e.g, the
counterclockwise chain v3v5.

Starting from r0 and increasing the angle of rθ continuously, the edge list of rθ

only changes when rθ intersects with a vertex v of P . If v is a non-critical vertex, the

edge of v which lies to the right of rθ must be removed from the edge list. The other

edge of v must be added to the edge list in the same position as the removed edge;

the rest of the edge list is unchanged. If v is a critical vertex, there are two cases:

either v is a start vertex, or is an end vertex. In the first case, edges of v must be

added to the list, while in the latter the edges of v must be removed from it; the rest

of the edge list is unchanged. As such, the edge list of rθ is equivalent to the edge list

of rθ+ε when v is a start vertex, and it is equivalent to the edge list of rθ−ε when v is

an end vertex (ε is a small positive number).
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When considering the edge list of rθ, the first k + 1 intersecting edges of this list

are k-crossing visible from the given point q. Increasing rθ continuously from θ = 0,

the chains intersecting rθ are unchanged until rθ encounters a k-visible critical vertex.

In other words, intersecting chains change when the critical vertex along the ray rθ

is among the first k + 1 elements of the intersecting edge of rθ.

Lemma 10. Let θ ∈ [0, 2π) such that rθ contains a k-visible start or end vertex v.

The segment on rθ between eθ(k + 2) and eθ(k + 3) is an edge of Vk(P, q), provided

that these two edges exist.

Proof. First, suppose v is a critical end vertex which is k-crossing visible from q.

When rθ intersects with the vertex v, the edges of v must be removed from the edge

list of rθ. The vertex v is k-crossing visible, so its edges must lie among the first k+ 2

elements of the edge list. The k-visibility region on the ray rθ−ε extends to eθ(k+ 1);

though on the ray rθ+ε the k-visible region extends to eθ(k+ 3). This means that the

segment with endpoints eθ(k + 2) and eθ(k + 3) must be a part of the boundary of

the k-visibility polygon from q. In the case that v is a critical start vertex k-crossing

visible from q, the lemma can be proven symmetrically. An example of this case is

presented in Figure 6.3.

Let rθ intersect a critical vertex which is either a start or end vertex. By Lemma 10,

the segment with endpoints eθ(k+2) and eθ(k+3) is part of the boundary of ∂Vk(P, q).

Notice that this segment is not on the boundary of P . Such a segment is referred to

as a window; see Figure 6.3.
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Figure 6.3: An example with k = 4. The hatched regions are not 4-visible for q. (a)
The ray rθ encounters the end vertex v. The 4-visibility region of q before v extends
until eθ(5) and after v extends until eθ(7). (b) The ray rθ encounters the start vertex
v. The 4-visibility region of q before v extends until eθ(7) and after v extends until
eθ(5). The segment w in both figures is the window of rθ.

Observation 1. The k-visibility region Vk(P, q) has O(n) vertices.

Proof. ∂Vk(P, q) consists of windows, and some subset of ∂P . As a result, a vertex

of ∂Vk(P, q) is either a vertex of P or an endpoint of a window. Each window has

two endpoints, and lies on a ray emanating through q passing a critical vertex; see

Lemma 10. Critical vertices are a subset of vertices of the polygon, there exist O(n)

critical vertices. Hence, the total number of vertices of ∂Vk(P, q) is O(n).

6.2 An Algorithm Using O(1) Words

In this section we present an algorithm that computes the k-visibility region of

a given vertex q in a given polygon P when the algorithm’s workspace is limited to

O(1) words each of length Ω(log n). When there does not exist any critical vertex

of P for the point q, ∂Vk(P, q) = P , there also exists no window. Checking whether
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there exists a critical vertex for q takes O(n) time. Let us assume there is at least one

critical vertex, called v0. With a scan on the vertices of P , v0 can be found in O(n)

time using O(1) words of memory. Next, we consider the ray qv0 while q is the origin.

Let v0, v1, . . . , vc−1 refer to the critical vertices in the order they are encountered by

rθ in counterclockwise order. In this section the notations ri and ei(j) will refer to

rθi and erθi (j) respectively, where θi refers to the angle of vi.

Considering the ray r0, the edge e0(k+ 1) can be found in O(nk) time using O(1)

workspace perfoming a selection subroutine as follows: scan the input k + 1 times,

and at each iteration find the next intersecting edge with rθ until e0(k+1) is reached.

If v0 is encountered among the first k + 1 intersection, v0 is k-crossing visible. As a

result, the window which lies on r0 , if it exists, must be reported based on Lemma 10.

The window is the segment e0(k+ 2)e0(k+ 3) which can be found by two more scans.

This is because e0(k+ 2) and e0(k+ 3) can be found by two more scans as explained

above.

In the next step, v1 can be found in O(n) time by a simple scan. Determining

e1(k + 1) can be found in O(n) time by using e0(k + 1) as follows: If v0 is an end

vertex, then the edges of v0 vanish in the edge list of r1. When v1 is a start vertex,

its edges are added to the edge list of r1; the rest of the chains are unaffected and

remain unchanged. eθ0+ε(k+ 1) is either e0(k+ 1) or e0(k+ 3) based on the type and

position of v0, and can therefore be found in O(n) time. Let this edge be referred to

as e′. Scan along the boundary of the polygon P from e′ until reaching rθ1−ε. This
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Figure 6.4: For the above examples, let k = 4. (a) Both v0 and v1 are end vertices.
e0(5) is used to find e0(7) and follow the chain until e1(5). (b) Both v0 and v1 are
start vertices. The chain of e0(5) can be followed until e1(7), which is then used to
find e1(5). Finally, the window from e1(6) to e1(7) is reported.

can be found in O(n) time. Denote by e′′ the last edge encountered on this scan, and

note that e′′ belongs to the same chain as e′. Based on the type and position of v1,

e′′ is either e1(k + 1) or e1(k + 3). As a consequence, e1(k + 1) can be determined in

O(n) time by using e′′. An example of this process is given in Figure 6.4.

If v1 is k-crossing visible from q, there exists a window on r1 which can be reported

in O(n) time by the above process. The subchains of ∂Vk(P, q) between r0 and r1

must also be reported. This can be done by scanning ∂P by first traversing along the

boundary of P counterclockwise. When entering the counterclockwise cone between

r1 and r0, it must be checked whether the intersection of ∂P and r1 or r0 takes place

at or before e1(k + 1) or e0(k + 1), respectively. If this is the case, the subchain of

∂P must be reported until the cone is exited.

This process is repeated until all critical vertices are encountered. The full pro-
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Algorithm 6.2.1: The constant workspace algorithm for computing Vk(P, q)

input: Simple polygon P , point q ∈ P , k ∈ N
output: The boundary of the k-visibility region of q in P , ∂Vk(P, q)

1 if P has no critical vertex then

2 return ∂P

3 v0 ← a critical vertex of P

4 Find e0(k + 1) using selection

5 i← 0

6 repeat

7 if vi lies on or before ei(k + 1) on ri then

8 Report the window of ri (if it exists)

9 vi+1 ← the next counterclockwise critical vertex after vi

10 Find ei+1(k + 1) using ei(k + 1)

11 Report the part of ∂Vk(P, q) between ri and ri+1

12 i← i+ 1

13 until vi = v0

cess is represented in Algorithm 6.2.1. In Algorithm 6.2.1, if there are less than k+ 1

elements in the edge list of ri, the last edge in that list and its rank will be used in

place of ei(k+ 1), to find ei+1(k+ 1) or the last element in the edge list of ri+1 and its

rank. As there are c critical vertices which take O(n) time to process, and processing

v0 takes O(kn) time, the following theorem can be derived:

Theorem 2. Given a simple polygon P with n vertices, a point q ∈ P , and a param-

eter k ∈ {0, . . . , n− 1}, the k-visibility region of q in P can be reported in O(kn+ cn)

time using O(1) words of workspace, where c is the number of critical vertices in P .
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6.3 Time-Space Trade-Offs

In this section we present an algorithm that computes the k-visibility region of a

given vertex q in a given polygon P when the algorithm’s workspace is limited to O(s)

words of length Ω(log n) each, for a fixed s ∈ [1, n]. Using this workspace, there are

faster algorithms than the previous one which reports the k-visibility region. First,

we propose a simple algorithm that includes the main idea behind the trade-off. The

second algorithm is more complicated, but with better time complexity. In the first

algorithm, vertices are processed in angular order in continuous batches of size s. By

using the edge list of the last processed vertex, a data structure can be created with

which the windows of the batch can be reported. From the windows of each batch,

∂Vk(P, q) can be output between the first and last rays, per batch. It can be noted

that the edges of the k-visibility polygon are not reported in order, but all edges are

reported in the algorithm. In the second approach, the running time is improved by

focusing on critical vertices instead of processing all vertices. We process a batch of

s critical vertices in each iteration. A data structure will be constructed in order to

find the windows, though a more involved approach is needed to maintain this data

structure. In the following Lemma, an efficient way to find the continuous batches of

vertices in the angular order is presented. This procedure is based on Theorem 2.1

of Chan and Chen’s work [32].

Lemma 11. Suppose that we are given a read-only array A with n pairwise distinct

elements from a totally ordered universe and an element x ∈ A. For any given

parameter s ∈ {1, . . . , n}, there is an algorithm that runs in O(n) time and uses O(s)
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words of workspace that finds the set of the first s elements in A that follow x in the

sorted order. This is applicable for finding the last s elements which appear before x

in the sorted order.

Proof. Let A>x denote a subset of A which contains the elements of A larger than x.

Notice that there is no need to calculate A>x. We pass over A and skip the elements

less or equal than x which corresponds to A>x. The algorithm makes one pass over

A>x, where the elements are processed in batches as follows: the first 2s elements of

A>x are stored in the workspace (without sorting). The median of these 2s elements

can be found in O(s) time by using O(s) workspace [45]. After this, the s elements

which are greater than the median are removed from the workspace using O(s) time

and space. The next s elements of A>x are then inserted into the workspace, and

the same process is applied: the median of the 2s elements saved in the workspace is

found and elements greater than the median are removed. This process is repeated

until all of A>x is processed. This proccess results in the smallest elements of A>x

remaining in the workspace. The above process is performed O(n/s) times, where

each iteration takes O(s) time and workspace. Hence, this algorithm runs in O(n)

time, using O(s) workspace.

Lemma 12. Suppose a read-only array A with n elements is given from a totally

ordered universe and a number k ∈ {1, . . . , n − 1}. For any given parameter s ∈

{1, . . . , n}, there is an algorithm that runs in O
(
dk/sen

)
time and uses O(s) words

of workspace and that finds the kth smallest element in A.

Proof. First, the first s smallest elements of A are found. This can be done in O(n)

time and O(s) workspace by Lemma 11. If k ≤ s, the kth smallest element stored
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in the workspace can be found in O(s) time. Otherwise, we proceed as follows: the

largest element in the workspace can be found in O(s) time; let it be called x. Using

Lemma 11, the first s elements greater than x in A can be determined. This process

continues such that in step i, the ith batch of s elements is found. If k ≤ s, the

(k− (i−1)s)th smallest element in the workspace is the output which can be found in

O(s) time. Otherwise, the largest element in the workspace is found and the process

continues. The result will be found in the dk/seth batch. So, the run time of the

algorithm is O(dk/sen).

There exist other selection algorithms in the read-only memory rather than the

simple algorithm in Lemma 12; see Table 1 of [35]. Specifically, there is a randomized

algorithm for selection which usesO(s) words of the workspace withO(n log logs n) ex-

pected time [31; 83]. We must choose between the latter algorithm and the algorithm

represented in Lemma 12 according to given k, s and n. The selection subroutine in

this text refers to the chosen selection algorithm chosen. In this work, we represent the

selection time by Tselection which refers to O(min{dk/sen, n log logs n}) expected time.

6.3.1 Processing All the Vertices

The process begins by first considering the ray emanating from q and parallel to

the positive x-axis. By Lemma 11, the batch that consists of s vertices with the small-

est angles can be found with O(s) words of memory; and can be sorted in O(s log s)

time. Let v0, v1, v2, . . . , vs be the vertices of P in the sorted order. By using the

selection subroutine, e0(k + 1) can be found. If v0 is not after e0(k + 1) on r0, v0 is
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k-visible from q, and the appropriate window can be reported, if it exists. It should

be noted that in case that there are less than k + 1 intersecting edges on r0, the last

intersecting edge and its rank will be stored.

By applying Lemma 11 four times consecutively, 4s + 1 intersecting edges with

rank k − 2s+ 1, . . . , k + 2s+ 1 can be found. Notice that Lemma 11 can be applied

as the edge e0(k + 1) is already calculated. These edges are added to a balanced

binary search tree T , sorted based on their rank on r0. These stored edges are the

candidates for ei(k+ 1) where i ∈ {1, . . . , s} (candidates for having the rank k+ 1 on

the next s rays). As mentioned, if ei(k + 1) is in the edge list of ri−1, the edge list

of ri−1 contains at most one edge between ei−1(k + 1) and ei(k + 1). So, in the case

where ei(k + 1) exists in the edge list of r0, at most 2i − 1 edges can occur between

e0(k + 1) and ei(k + 1) in the edge list of r0. This is because for each critical vertex

between r0 and ri two additional edges may be added to the edge list.

The algorithm then proceeds as follows: the next vertex v1 will be processed and

the tree T updated according to the type of v0 and v1. If v0 is a non-critical vertex,

one edge of v0 may be replaced with another in T . If v0 is an end vertex, we may

remove its edges from T . Finally, if v1 is a start vertex, its edges may inserted to

T . For other cases, no action is needed. The insertion and deletion happen only

for edges with a rank between the smallest and largest rank in T , with respect to

r1. Each update of the tree needs O(log s) time. After this update on T , e1(k + 1),

if it exists, can be reported in O(1) time by using the position of e0(k + 1) and its
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neighbor in T . Based on the type of the vertex v1, we need only to examine a constant

number of neighbours around e0(k+1). An example of this is presented in Figure 6.5.

This procedure is repeated for v2, . . . , vs. To determine ei(k + 1) and the win-

dow on ri for i ∈ {2, . . . , s}, the tree T and ei−1(k + 1) are used. This process uses

O(s log s) time. When a window is discovered, its end-points will be inserted into

another balanced binary search tree called W , requiring O(log s) time per window.

Notice that the endpoints in W are sorted based on their counterclockwise order

around q along ∂P . The part of ∂Vk(P, q) which lies between r0 and rs consists of W

and ei(k+1) for i ∈ {0, . . . , s}. The set of these ei(k+1) for i ∈ {0, . . . , s} is called E.

Next we show how to report the k-visible part of the boundary of P in O(n) time.

Let a 0s-segment of an edge e of P be the subset of e between r0 and rs. If the

0s-segment does not include an end-point of a window, it must be either completely

k-visible or not k-visible at all which can be found as follows: each endpoint of 0s-

segment can be checked in O(1) time to determine whether it is k-visible; this can be

done by using E. Also, by traversing W in parallel, it can determine whether there

exists an end-point of a window which lies on e. This part can be done in O(|we|)

time, where |we| refers to the number of end-points of windows which lie on e. This

information is sufficient to report the k-visible part of a 0s-segment. Since there exist

O(n) windows (Observation 1) and each one processed once, the k-visible part of ∂P

between r0 and rs can be reported in O(n) time.
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q

v1

v2

. . .

vs

v0

e1(3)

v3
e3(3)

e2(3)

e0(3)

r0

r1

r2

r3rs

Figure 6.5: The first batch v0, v1, . . . , vs of s vertices in angular order. The edge e1(3)
is the second neighbor to the right of e0(3) on r0, because v0 is an end vertex. The
edge e2(3) is the second neighbor to the left of e1(3) which is inserted in T before
processing v2. The edge e2(3) is exchanged with e3(3), after processing v3, because
v3 is a non-critical vertex.

After processing {v0, . . . , vs}, the next batch of s vertices after vs is calculated

according to their angular order. The same process as before will be applied in order

to report the k-visible part of ∂P between rs, . . . , r2s where v2s is the last vertex in the

batch. Notice that the binary search tree constructed from the previous batch is out

of use for the new batch as it does not necessarily include any right or left neighbour

of es(k + 1) on rs; consequently, a new binary search tree must be constructed. This

will continue until all vertices are processed. Also, it should be noted that the last

batch may include fewer than s vertices as n may not be fully divisible by s. The full

procedure for all the vertices is given in Algorithm 6.3.1.

The process is repeated for O(n/s) batches, where each batch takes O(n+ s log s)

time. Also, the selection subroutine runs for the first batch. Consequently, the algo-
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Algorithm 6.3.1: Computing ∂Vk(P, q) using O(s) words of workspace

input: Simple polygon P , point q ∈ P , k ∈ N, 1 ≤ s ≤ n

output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a vertex of P

2 E ← 〈e0(k + 1)〉 (using the selection subroutine with O(s) workspace)

3 T , W ← an empty balanced binary search tree

4 i← 0

5 repeat

6 vi+1, . . . , vi+s ← sorted list of s vertices following vi in angular order

7 T ← at most 4s+ 1 edges with rank in {k − 2s+ 1, . . . , k + 2s+ 1} on ri

8 for j = i to i+ s− 1 do

9 if vj lies on or before ej(k + 1) on rj then

10 Report the window of rj (if it exists)

11 Insert the endpoints of the window into W (according to their

position on ∂P )

12 Update T according to the types of vj and vj+1

13 E.append(ej+1(k + 1)) (find it using ej(k + 1) and T )

14 Report the part of ∂Vk(P, q) between ri and rmin{i+s,n} (using W and E)

15 i← i+ s

16 until i ≥ n

rithm runs in O((n/s)(n+ s log s)) + Tselection. As Tselection is dominated by the other

terms, the following theorem holds.

Theorem 3. Let s ∈ {1, . . . , n}. Given a simple polygon P with n vertices in a read-

only array, a point q ∈ P and a parameter k ∈ {0, . . . , n− 1}, the k-visibility region

of q in P can be reported in O(n2/s+ n log s) time using O(s) words of workspace.
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6.3.2 Processing Only the Critical Vertices

In this section, we present an algorithm that processes only the critical vertices in-

stead of all vertices. The algorithm is similar to the algorithm in the previous section,

except that the intersecting edges will be handled differently. In each iteration, the

next batch of s critical vertices is found and is sorted in O(s log s) while using O(s)

words of the workspace. As before, a balanced binary search tree T is constructed

which includes the possible candidates for the (k + 1)th intersecting edge that lies on

the rays emanating from q and passing the s critical vertices of each batch. Then,

the next critical vertex will be processed at each step. The tree T will be used to

calculate the windows, and updated as necessary. After all the windows in a batch

are reported, the k-visible part of ∂P between the first and last rays of the batch

can be found. Notice that T can be updated efficiently by using an auxiliary data

structure called Taux which is explained below.

If P does not have any critical vertices, P is completely k-visible from q. This can

be determined by scanning P once in O(n) time. So, let v0 be a critical vertex. The

coordinate system is chosen so that P the ray qv0 lies on the positive x-axis. First,

the first critical vertices v1, . . . , vs which occur after v0 are calculated and sorted in

angular order. This process can be done in O(n + s log s) time using O(s) words of

workspace, by Lemma 11. Then, e0(k + 1) can be calculated through the selection

subroutine. Additionally, 4s+1 intersecting edges {k−2s+1, . . . , k+2s+1} on r0 are

found if they exist. These intersecting edges will be inserted into the binary search

tree T , where they are ordered based on their rank on r0. This process up to now can
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be done in Tselection+O(n+s log s) time. Each edge e of T is then checked to determine

if it has a non-critical endpoint that lies between r0 to rs. The corresponding edges

of such endpoints will be added to another balanced binary search tree called Taux

based on their angular order. Each member of Taux has a cross-pointer to its equiv-

alent edge in T . The tree Taux can be constructed in O(s log s) time as T has O(s)

members by using O(s) words of workspace. Taux will be used to determine which

edges in T must be updated between two critical vertices. This is shown in Figure 6.6.

In order to find e1(k + 1), the next step is to update the tree T such that it con-

tains the edge list on r1. The update process happens as follows: for each non-critical

vertex v stored in Taux which is between the rays r0 and r1, we walk on the chain C

to which v belongs until the edge e of C intersecting r1 is visited. Notice that such an

edge e exists as there is no critical vertex between r0 and r1 that can be the endpoint

of C. If the endpoint of e which lies after r1 is non-critical, it will be added to Taux,

and the corresponding edge of v in T will be replaced by e. This process can be done

in O(n1 log s + n1) time where n1 is the number of non-critical vertices between r0

and r1. The trees T and Taux must be updated accordingly based on the vertex type

of v0 and v1. In case v0 is an end vertex, the two edges incident to v0 must be re-

moved from T . If v1 is a start vertex, its two edges must be added to T . This update

takes O(log s) time. After doing this process, T includes at most 4s + 1 intersecting

edges on the ray r1. Using the chain of e0(k + 1) and its neighbours in T , e1(k + 1)

can be found in O(1) time as we just need to check constant number of neighbors of

e0(k + 1) in the tree. This process will be repeated for all the critical vertices in the
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batch. As a result, updating T for a batch (for critical and non-critical vertices) takes

O(n′ log s + n′ + s log s) time where n′ refers to the number of non-critical vertices

between r0 and rs.

When processing a batch, all ei(k + 1) will be stored in E; as before, E is the

sequence e0(k + 1), e1(k + 1), . . . , es(k + 1) of the edges of rank k + 1. Additionally,

when a window is discovered, its endpoint will be added to the binary search tree W ,

sorted based on their angular order around q in O(log s) time. After processing the

entire batch, E and W can be used to report all parts of ∂P which are k-visible from q

that lie between r0 and rs. The reporting process is the same as that in Section 6.3.1,

though here we must keep track of the entire chains between r0 and rs instead of

single edges. This takes O(n) time.

In the next iteration, the following batch of s critical vertices will be repeated. This

process will be repeated until all critical vertices are processed; see Algorithm 6.3.2.

Notice that each non-critical vertex is handled in exactly one iteration. As there

exist O(c/s) iterations, and the update of T takes O(n log s) time, the overall time

complexity of the algorithm is O(cn/s+n log s) plus Tselection, which runs for the first

batch. As a result, we have the following Theorem.

Theorem 4. Let s ∈ {1, . . . , n}. Given a simple polygon P with n vertices in a read-

only array, a point q ∈ P and a parameter k ∈ {0, . . . , n−1}, the k-visibility region of

q in P can be reported in O(cn/s+ n log s+ min{dk/sen, n log logs n}) expected time
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q

v1

. . .

vs

v0

v2

e0(4)e0(1) r0

r1

r2rs

Figure 6.6: The first batch v0, v1, . . . , vs of s critical vertices in angular order. The
non-critical endpoint of e0(1) is between r1 and r2, so e0(1) will be replaced in T right
before processing v2. The non-critical endpoint of e0(4) is between r0 and r1, so e0(4)
will be replaced in T right before processing v1.

using O(s) words of workspace, where c is the number of critical vertices of P for q.

6.4 Variants and Extensions

The results presented in this chapter can be expanded in different ways, such as

calculating the k-visibility region inside a polygon P when P may include holes, or

calculating the k-visible region for a point q which lies in the planar arrangement of

non-crossing line segments inside a bounding box (this bounding box is only used to

bound the k-visible region). In the case of a polygon with holes, all previous prop-

erties for a simple polygon will be applied except the use of ∂P for reporting the

k-visible segment of ∂P . For a polygon with holes, after processing the outer part of

∂P , the boundary of each hole will be processed sequentially. The same procedure
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Algorithm 6.3.2: Computing ∂Vk(P, q) using O(s) words of workspace

input: Simple polygon P , point q ∈ P , k ∈ N, 1 ≤ s ≤ n

output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a critical vertex of P

2 E ← 〈e0(k + 1)〉 (using the selection subroutine with O(s) workspace)

3 T , Taux, W ← an empty balanced binary search tree

4 i← 0

5 repeat

6 vi+1, . . . , vi+s ← sorted list of s critical vertices following vi in angular

order

7 T ← at most 4s+ 1 edges with rank in {k − 2s+ 1, . . . , k + 2s+ 1} on ri

8 Taux ← for each edge in T , its non-critical endpoint between ri and ri+s

(if it exists)

9 for j = i to i+ s− 1 do

10 if vj lies on or before ej(k + 1) on rj then

11 Report the window of rj (if it exists)

12 Insert the endpoints of the window into W (according to their

position on ∂P )

13 for any v ∈ Taux between rj and rj+1 do

14 Find the edge e on v’s chain that intersects rj+1

15 Exchange the corresponding edge of v in T with e

16 If e has a non-critical endpoint between rj+1 and ri+s, insert it into

Taux

17 Update T according to the types of vj and vj+1

18 E.append(ej+1(k + 1)) (find it using ej(k + 1) and T )

19 Report the part of ∂Vk(P, q) between ri and rmin{i+s,n} (using W and E)

20 i← i+ s

21 until i ≥ n
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will be applied while walking on the boundary of each hole. Notice that if there does

not exist any window on the boundary of a hole, it is either completely k-visible or

it is completely not k-visible. Each hole is checked to determine if it is k-visible, and

holes that are k-visible will be reported completely. So, the following corollary holds.

Corollary 1. Let s ∈ {1, . . . , n}. Given a polygon P with h ≥ 0 holes and n vertices

in a read-only array, a point q ∈ P and a parameter k ∈ {0, . . . , n−1}, the k-visibility

region of q in P can be reported in O(cn/s + n log s + min{dk/sen, n log logs n}) ex-

pected time using O(s) words of workspace. Here, c is the number of critical vertices

of P for the point q.

For the case that the query point q is in a planar arrangement of non-crossing

segments inside a bounding box, the output consists of the parts of the segments

which are k-visible from q. Notice that all endpoints of the segments are critical and

must be processed. Instead of performing a walk on the boundary of the polygon,

we apply a sequential scan of the input, as this outputs a similar result. Also, there

may exist some segments such that there is no window endpoints on them. For such

a case, it can be determined whether the segment is either completely k-visible or

completely not k-visible simply by checking the visibility of an endpoint. So, we have

the following corollary.

Corollary 2. Let s ∈ {1, . . . , n}. Given a set S of n non-crossing planar segments

in a read-only array that lie in a bounding box B, a point q ∈ B and a parameter

k ∈ {0, . . . , n− 1}, there is an algorithm that reports the k-visible subsets of segments
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in S from q in O(n2/s+ n log s) time using O(s) words of workspace.

Notice that the same approach can be applied to report the slightly different

definition of k-visibility proposed by Bajuelos et al. [12]. As a consequence, the

running time of the algorithm of Bajuelos et al. [12] can be reduced from O(n2)

time to O(n log n) time by applying an algorithm analogous to that described in this

section, using O(n) words of workspace.



Chapter 7

Watchtower

Given a 1.5D terrain T , consisting of an x-monotone polygonal chain with n ver-

tices in the plane, and a positive integer k, we propose an algorithm to place one

point, called a watchtower, whose vertical height above T is minimized, such that

every point x on T is k-crossing visible from the watchtower w. That is, the line

segment from w to any point x on T crosses T at most k times. Our algorithm runs

in O((n2 +m) log n) time, where m denotes the number of vertices on the boundary

of the k-kernel of T . For arbitrary k, m ∈ O(n4), and for k = 2, m ∈ O(n2). When

the watchtower is restricted to being positioned over a vertex of T , we can improve

the time complexity. We show this improvement step by step in this chapter. We

start from the O(n4)-time algorithm and end with an O(n3)-time algorithm.

85
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p′
q′

p
q

Figure 7.1: The points p and q mutually 2-crossing visible, while p′ and q′ are not.

7.1 Introduction

A terrain T in R2 is an x-monotone polygonal chain consisting of a sequence of

vertices v0, v1, . . . , vn−1, each of which is a point in R2, such that vi is to the left of

vj for all i < j and vivi+1 is an edge for i ∈ 0, . . . , n− 2. See Figure 7.1. Two points

p and q are k-crossing visible if and only if the line segment pq crosses T at most k

times. For a formal definition of k-crossing visibility see Chapter 2.

A watchtower w is a point on or above T . Given a terrain T and a positive

integer k, the goal in the 1-watchtower problem is to place a watchtower w with

minimum height on or above T (length of the vertical line segment from w to T )

such that the entire terrain T is k-crossing visible from w. This definition can be

generalized to the M-watchtower problem where the goal is to assign positions to a

set W = {w1, . . . , wM} of M watchtowers, such that each wi is a point on or above T ,

and for each point p on T , there exists a watchtower w ∈ W such that p is k-crossing

visible from w.
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The watchtower problem presents itself in two forms: discrete and continuous.

In the discrete version, the watchtower must be located on a vertical line through a

vertex of the terrain, while in the continuous version the watchtower can be located

anywhere above the terrain. Solutions to the discrete and continuous watchtower

problems can vary significantly. Figure 2 shows an instance for which the solution to

the continuous 1-watchtower problem has height zero (on the terrain), whereas the

solution to the discrete 1-watchtower problem on the same terrain requires a watch-

tower to be positioned significantly higher.

The watchtower problem generalizes to the setting of k-crossing visibility for any

k. We consider the problem of placing one watchtower. In Section 7.2, we present an

algorithm for the continuous problem, and then propose an algorithm for the discrete

problem in Section 7.3. For both algorithms we describe how the running time can

be decreased when k = 2 and k = 0.

7.2 k-Kernel Algorithm

In this section, we solve the continuous 1-watchtower problem under k-visibility

for general k, and then describe how the running time can be reduced when k = 2

and k = 0.

Consider a simple polygon T ′, bounded from above by a horizontal line segment

hP that lies above T , and on its sides by vertical line segments aligned with the re-

spective left and right endpoints of T ; see Figure 7.3. Since the watchtower must be
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h1

h2

a

b

c

h3

d

Figure 7.2: When k = 2, the solution to the 1-watchtower problem for the continuous
problem can have much lower height than that for the discrete problem on the same
terrain. The points b and d represent the locations of the watchtower in the continuous
and discrete versions, respectively (suppose h3 < h1). In the continuous version, the
tower is located on the edge of the terrain with height zero, while in the discrete
version it must be located above the terrain with height h3, significantly larger than
zero. Notice that the points below d cannot see the edges adjacent to the vertex v.

located above the terrain, it must be inside T ′.
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T

hP

T ′

Figure 7.3: The shaded region is a simple polygon P constructed for a given terrain.

Figure 7.4: 2-kernel

We first find the k-kernel of T ′. The k-kernel of a given polygon P is the set of all

points p such that every point in P is k-crossing visible from p; see Figure 7.4. The

algorithm of Evans and Sember [56] finds the k-kernel of T ′ in O(n2 log n+m) time,

where m denotes the complexity (the number of boundary vertices) of the k-kernel.

The k-kernel consists of O(n4) disjoint simple polygons. The worst-case number of

vertices of the k-kernel is Θ(n4). For k = 2, the complexity of the k-kernel is Θ(n2),

and for k = 3, the complexity of the k-kernel is O(n4) and Ω(n2) [56].
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The lower envelope of the portion of the k-kernel above T is the locus of feasible

locations for the top of the watchtower from which the entire terrain T is k-crossing

visible. Finding the minimum-length vertical line segment between this lower enve-

lope and T yields the optimal solution for the 1-watchtower problem; see Figure 7.6.

Notice that given line segments s1 and s2 that intersect a vertical line, the distance

between s1 and s2 along the vertical line is minimized at a vertex of s1 or a vertex

of s2. Hence, to find the optimal height for the continuous 1-watchtower problem,

it suffices to examine vertical line segments from the vertices of the lower envelope

of the k-kernel to T , and vertical line segments from the vertices of T to the lower

envelope of the k-kernel. The minimum length of these line segments is the minimum

height of the continuous 1-watchtower problem.

The minimum height of a watchtower can be found by partitioning the edges of the

k-kernel into those that lie above T and those that lie below T . Following this parti-

tion, the lower envelope of the edges above T is computed. By sweeping a vertical line

across T and the lower envelope, we stop at all vertices to evaluate the distance on the

sweep line between these two x-monotone chains, maintaining the minimum distance

thus far. These steps can be implemented in a single sweep using a modification of the

algorithm of Bentley and Ottmann [20]. At each event during the sweep, it suffices

to measure the distance along the sweep line between T and the closest line segment

above T . If this distance is less than the previously recorded minimum, we update

the minimum distance and the current x-coordinate of the sweep line. Observe that

no two edges of the k-kernel cross, and that no two edges of T cross. Furthermore,
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Ω(n) Ω(n)

Ω(n) Ω(n)

Figure 7.5: The 4-kernel of a monotone chain has O(n4) vertices. There are O(n2)
cells in the arrangement of dotted lines that form the v-regions of the vertices on the
terrain. These lines have O(n2) points of intersection.

if any edge of the k-kernel crosses T , then this point of intersection corresponds to

the location of a watchtower of height zero: this is the solution, and the algorithm

terminates. Consequently, the number of intersection events processed is at most 1.

Since the number of edges in the k-kernel is m ∈ O(n4) and the number of edges in T

is n, the total running time of the algorithm is O((n2 +m) log n). This is due to the

time complexity needed for making the k-kernel first and the sweep line algorithm on

the terrain.

Although we seek the k-kernel in a restricted type of polygon, i.e., a monotone
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polygon, the k-kernel for a monotone polygon has Θ(n4) complexity in the worst

case when k ≥ 4; see Figure 7.5. The complexity of the k-kernel when k = 3 is

unknown [56]. When k = 2 its complexity is O(n2).

When k = 0, the 0-kernel corresponds to the kernel of the polygon T ′. This kernel

is a convex polygon with O(n) vertices from which the entire polygon is 0-crossing

visible. Additionally, the kernel is the feasible region for the watchtower, and can be

determined in O(n) time [78; 79]; see Figure 7.6. As mentioned above, to find the so-

lution for the continuous 1-watchtower problem, it is sufficient to examine the vertical

line segments from the vertices of the kernel to T , and the vertical line segments from

the vertices of T to the kernel. The boundary of the 0-kernel is an x-monotone chain

consisting of O(n) vertices given in order. The terrain T is an x-monotone chain of

n vertices given in order. By merging the two sets of sorted vertices of T and of the

kernel in O(n) time, for each vertex in the merged sorted list the corresponding edge

intersected by the vertical line segment can be found in O(1) time by comparing the

current vertex against the previous vertex in the list. If the previous vertex is on the

same chain, then the current vertex intersects the same edge as the previous vertex.

Otherwise, if the previous vertex is not on the same chain, then the edge that starts

from the previous vertex is the intersected edge. At each step, the minimum vertical

line segment encountered is maintained. Thus, the minimum length segment can be

found in O(n) time.

When k = 2, the boundary of the 2-kernel has O(n2) vertices [56]. Consequently,
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d

Figure 7.6: The shaded region is the intersection of the visible part of the plane for
each vertex; dotted lines show the boundaries of some of these regions.

we can find the minimum length vertical line segment between the 2-kernel and the

terrain T in O(n2 log n) time, so the continuous 1-watchtower problem for 2-visibility

can be solved in O(n2 log n) time using our algorithm.

Theorem 5. The continuous 1-watchtower problem can be solved in O((n2+m) log n)

time under k-crossing visibility, where m ∈ O(n4) is the size of the k-kernel. For

k = 0 and k = 2, the continuous 1-watchtower problem can be solved in O(n) and

O(n2 log n) time, respectively.

7.3 Discrete 1-Watchtower Problem

In this section, first, we explain the main lemmas which hold for the discrete

1-watchtower problem. Then, we propose an O(n4)-time algorithm for the discrete

k-crossing visible watchtower problem on a terrain T . We propose how to reduce the

time complexity to O(n3 log n). Finally, we express an algorithm with O(n3) time

complexity.
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Evans and Sember [56] defined the v-region of a vertex v as the region of all

points q that are k-crossing visible from every point on the ray from q through v,

with respect to the polygon P . The boundary of each v-region is a simple polygon

with O(n) vertices [56]. Computing the v-region of each vertex of the polygon takes

O(n log n) time. We compute the v-region for each vertex of T ′ in O(n log n) time per

vertex using the algorithm of Evans and Sember [56], using O(n2 log n) total time.

The intersection of v-regions of the polygon P is the k-kernel of the polygon P [56].

In other words, the intersection of v-regions of the vertices of P is the locus for the

top of the watchtower. So, the intersection of the v-regions is the k-kernel of T ′ [56],

which is the region where the entire region T ′ (including T ) is k-crossing visible from.

So, T is k-crossing visible from any watchtower located in this region.

Observation 2. The intersection of the v-regions of the vertices of T corresponds to

the set of feasible locations for the top of the watchtower.

In the discrete problem, the watchtower must be located on a vertical line ema-

nating from a vertex of the terrain. Consider a vertical line passing through a vertex

of the terrain. We find the intersection of the v-regions of the vertices of T with this

vertical line.

Lemma 13. Any vertical line crosses the boundaries of the v-regions of the vertices

of T , and the number of such crossings is O(n2).

Proof. The number of vertices on the boundary of each v-region is O(n). So each

v-region may intersect a vertical line O(n) times. As there exist n v-regions, the

number of intersections between v-regions and any given vertical line is O(n2).
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Figure 7.7: The v-regions and their intersection with Hi for three vertices V1, V2 and
V3 are shown in dashed, dotted, dashed and dotted respectively.

Let Vi denote the v-region of vertex vi in T . We have the following lemma:

Lemma 14. The intersection of any v-region with any vertical line is a set of at most

n disjoint intervals on the line, where the topmost interval is open.

Proof. Consider a bounding box around T ′. The v-region of a vertex vi is a closed

Jordan curve with O(n) complexity. The intersection between the vertical line and

the inside of this closed Jordan curve is a set of O(n) intervals. The last interval is

open as after moving sufficiently high above the terrain T all of T will be visible while

looking toward the vertex vi.

Consider a vertical line `i passing through a given vertex vi of T , and the in-

tersections with the v-regions V1, . . . , Vn for the vertices v1, . . . , vn of T . Let each

v-region be determined by a specific colour. As a result, we have n different colours

of intervals on the line `i. Each colour is a set of O(n) intervals, and intervals with
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the same colour do not intersect. If the optimal watchtower lies on this vertical line,

it is in the interval with the lowest y-coordinate which intersects all n v-regions. We

define depth-n intervals as the intervals on `i on which all n v-regions intersect.

Lemma 15. The minimum height of a watchtower located above the vertex vi is the

closest depth-n interval.

Proof. Intervals with the same colour do not intersect each other. So, the maximum

number of intersection is n where n v-regions intersect. So, a depth-n interval is in

the k-kernel and T is k-crossing visible from such intervals. Among all such depth-n

intervals we look for the one which has the smaller distance with the terrain.

As a result of Lemma 15, we can remove the colour on the intervals. This trans-

forms the problem to that of finding the depth-n intervals among O(n2) intervals.

7.3.1 O(n4)-Time Algorithm

In the following, we propose theO(n4)-time algorithm for the discrete 1-watchtower

problem.

Fix a vertex vi and consider the vertical line `i passing through vi. We find the

sorted list (by y-coordinate) of the intersections of each v-region Vj with the line `i

in O(n2 log n) time. So we have n sorted lists each containing O(n) intervals. Let’s

label these lists as L1, L2, ..., Ln. For these n sorted lists, build a fractional cascading

data structure in O(n2) time[38; 39]. Given a point p on `i, this data structure allows

in O(n) time to find, for each list, the interval where p lies (if any).
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Lemma 16. The deepest interval with the minimum y-coordinate for a given line `i

can be found in O(n3) time.

Proof. For each Li, take the bottom point of the interval with smallest y-coordinate,

and let x be the maximum of all such points. This can be done in O(n) time since

each list of intervals is sorted by y-coordinate. The number of v−regions intersecting

x can be computed in O(n) time, denoted as the depth of x, using fractional cascading

while searching for x. If the depth of x is n, then we are done. Otherwise, there are

some lists Lj that do not contain x in any interval. For each of these lists, take the

point above x that is closest to x. Finding all of these points can be done in O(n)

time since fractional cascading gave us a pointer to each of these when we computed

the depth of x. We compute the highest of these points and repeat the process to

find the depth of this new interval.

Among all the points for which this algorithm computed the depth, consider the

ones with depth n. At least one such point will be found since the topmost interval in

each list is open. Among those, the lowest one is the deepest lowest point. Each step

takes O(n) time and the algorithm repeats O(n2) times. So in total, the algorithm

takes O(n3) time.

Theorem 6. The discrete 1-watchtower problem can be solved in O(n4) time under

k-crossing visibility.

Proof. There are n vertices in T corresponding to n candidate vertical lines for the

watchtower. By Lemmas 15 and 19, finding the minimum height of a watchtower
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located at the vertex vi takes O(n3) time. So, the total required time is O(n4).

7.3.2 O(n3 log n)-Time Algorithm

The approach proposed in the section 7.3.1 can be improved. This new approach

takes O(n3 log n) time to solve the discrete 1-watchtower problem.

Lemma 17. The deepest interval with the minimum height for a set of O(n2) intervals

on a given line `i can be found in O(n2 log n) time.

Proof. First, we suppose O(n2) intervals’ endpoints are sorted (by y-coordinate). Let

x be a counter variable initialized as 0. We start from the vertex vi and move above the

terrain T along the line `i. Parameter x increases by 1 at the beginning of an interval,

and decreases by 1 when the end of an interval is reached. The first place which x

equals n, is the placement of the watchtower with the minimum height located at

the vertex vi. As there exist O(n2) intervals, there are O(n2) such events, each takes

constant time to process. So, this process takes O(n2) time complexity. As sorting

O(n2) intervals takes O(n2 log n) time, the overall time complexity is O(n2 log n).

Theorem 7. The discrete 1-watchtower problem can be solved in O(n3 log n) time

under k-crossing visibility.

Proof. There are n vertices in T corresponding to n candidate vertical lines for the

watchtower. By Lemmas 15 and 17, finding the minimum height of a watchtower lo-

cated at the vertex vi takes O(n2 log n) time. So, the total required time is O(n3 log n).
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7.3.3 O(n3)-Time Algorithm

An improvement can be applied to the above algorithm so that it takes O(n3)

time to solve the discrete 1-watchtower problem for k-crossing visibility.

Lemma 18. Given a v-region of a vertex of the terrain T , finding and sorting the

intersections of this v-region with a given vertical line takes O(n) time.

Proof. We can find the intersection of a v-region with the vertical line `i in O(n) time

as the number of edges of each v-region is O(n). This gives a set of O(n) intervals on

`i. We can sort these intervals in O(n) time as the v-region is a Jordan arc [59].

Fix a vertex vi and consider the vertical line `i passing through vi. We find the

sorted list (by y-coordinate) of the intersections of each v-region Vj with the line `i

in O(n2) time, using Lemma 18. So we have n sorted lists each containing O(n)

intervals. Let these lists be labeled as L1, L2, ..., Ln. We have the following lemma:

Lemma 19. The deepest interval with the minimum y-coordinate for a set of O(n2)

intervals on a given line `i can be found in O(n2) time.

Proof. As mentioned in Lemma 18, each set of n intervals in the list Li can be sorted in

linear time. There exist n lists, so it takes O(n2) time to sort all L1, . . . , Ln. Consider

two lists L1 and L2. First, we find the intersections between L1 and L2. Given two

sets of sorted intervals X and Y , their intersection can be found in O(|X|+ |Y |+m)

time, where m denotes the number of output intervals [97]. As X and Y are of size

O(n) for the lists L1 and L2, m is also of size O(n). This is because if an interval in L1
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intersects m intervals of L2, remaining intervals in L1 can intersect at most n−m+ 2

intervals in L2. As a result, finding the intersection between L1 and L2 takes O(n)

time; let the output list be called L′1. Notice that the intersection of two intervals

of size n includes at most n intervals. Next, we find the intersection of L′1 and L3

(called L′2) in O(n) time. Repeating this process, the intersection between L′n−1 and

Ln results in the intersections of L1, L2, ..., Ln. There are n steps, each taking O(n)

time. The algorithm takes O(n2) total time.

Theorem 8. The discrete 1-watchtower problem can be solved in O(n3) time under

k-crossing visibility.

Proof. There are n vertices in T corresponding to n vertical lines as the candidates for

the location of the watchtower. By Lemmas 15 and 19, finding the minimum height

of a watchtower located at the vertex vi takes O(n2) time. So, the total required time

is O(n3).

Considering 0-crossing visibility, the kernel is the potential location of the top of

the watchtower as described for the continuous version. The difference between the

discrete and continuous versions is that in the discrete version, the algorithm restricts

the possible watchtowers to those whose x-coordinates coincide with a vertex of T .

As a result, the discrete 1-watchtower problem under 0-crossing visibility can also be

solved in O(n) time.
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Figure 7.8: a. Colored intervals on a vertical line `i. b. Intervals can be considered
as a set of O(n2) intervals without color.

In the case of 2-crossing visibility, we apply the same approach as for the contin-

uous version. The key difference is that only the vertical line segments emanating

from vertices of the terrain are of interest as the possible locations for the watchtower.

As a result, the discrete version of the 2-watchtower problem can also be solved in

O(n2 log n) time.

7.3.4 Comparison Between k-Visibility and 0-Visibility

As mentioned, both the discrete and continuous versions of the 1-watchtower

problem for 0-crossing visibility can be solved in O(n) time, while for k-crossing

visibility the time complexity increases significantly when k > 0. The main reason
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Figure 7.9: Going up and losing visibility: On point a, the entire terrain T is 2-crossing
visible. At point b, a part on the right sight of the horizontal line is not 2-crossing
visible anymore. At point c, the entire terrain T becomes 2-crossing visible, while on
d apart on the left side of the horizontal line is not 2-crossing visible. At point e, T
is 2-crossing visible again.

is the fact that when k 6= 0, the k-kernel can be disconnected. Under 0-visibility,

increasing the height of a watchtower always increases its visibility; that is, if p and

q are two points on a vertical line above T , where p lies above q, then the region of T

visible to q is contained in the region of T visible to p. This property does not hold

when k > 0; q could see all of T (i.e., q is in the k-kernel), whereas p does not see all

of T , even though p lies above q. See Figure 7.9.
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Conclusion

While in this thesis several fundamental questions related to k-visibility are an-

swered, many questions remain open.

Chapter 4 presents the first algorithm parameterized in terms of k for computing

the k-visible region for a given point q in a given polygon P , resulting in asymptoti-

cally faster worst-case running time relative to previous algorithms when k is o(log n),

and bridging the gap between the O(n)-time algorithm for computing the 0-visibility

region of q in P [53; 75; 69], and the O(n log n)-time algorithm for computing the

k-visibility region of q in P [10]. It remains open whether the problem can be solved

faster. In particular, an O(n log k)-time algorithm would provide a natural parame-

terization for all k. Alternatively, can a lower bound of Ω(n log n) be shown in the

worst-case time when k is ω(log n)?

Chapter 5 proposes data structures to report the k-visibility region of a query
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point more efficiently. The remaining open question is whether the size of this struc-

ture can be reduced. This may be possible with the price of increasing the query

time. Another interesting question is whether we can design a data structure where

the query time depends on not only n, but also on k.

In Chapter 6, we proposed algorithms for reporting the k-visibility polygon in the

limited workspace model, and we provided time-space trade-offs for this problem. We

leave it as an open problem whether there exists an output-sensitive algorithm whose

running time depends on the number of windows in the k-visibility region, instead of

the critical vertices in the input polygon.

In Chapter 7 the watchtower problem was discussed. The 1-watchtower problem

generalizes to the M -watchtower problem, where instead of positioning a single watch-

tower to guard the terrain T , an algorithm must select positions for M watchtowers.

The goal is to minimize the maximum height of any watchtower, while ensuring that

each point on T is k-crossing visible from at least one watchtower. To solve the

continuous 1-watchtower problem, it suffices to consider candidate locations for the

watchtower whose x-coordinate coincides with that of a vertex of T or a vertex of the

k-kernel of T . This property is not true in general for the continuous M -watchtower

problem, even when M = 2; see Figures 8.1 and 8.2. It remains open to find an

efficient algorithm to solve the (discrete or continuous) M -watchtower problem under

k-crossing visibility, even for M = 2.

A polygon P is said to be weakly visible from a region s inside P if and only if
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w1
w2

Figure 8.1: The x-coordinates of the watchtowers w1 and w2 do not coincide with that
of a vertex of T or a vertex of the 2-kernel of T , and each point on T is 2-crossing
visible from either w1 or w2.

each point in P is visible from at least one point in s. If each point in P is visible

from all points in s, then P is said to be strongly visible from s. Besides the problem

discussed in this thesis, k-visibility can be studied under different settings, likewise

weak visibility and strong visibility. Approximation algorithms may be of interest in

attempting to solve these problems.

For wireless communication, in addition to considering the number of obstacles

between two devices, some models also consider the distance between obstacles. For

example, we can consider a model where two points p and q are mutually visible when
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w1 w2

Figure 8.2: Even when k = 0 for 2-watchtower problem, the x-coordinates of the
watchtowers does not coincide with those of vertices of the terrain, vertices of the
k-kernel, nor of the intersections of the n2 lines determined by pairs of vertices of the
terrain.

the line segment between pq intersects at most k times with the obstacles in the plane

and the distance between p and q is at most d, for some given d. This may be a more

realistic model of wireless communication.

Recently, the Pursuit-Evasion problem, an extension of the Art Gallery problem,

has gained significant attention. The most basic form of the Pursuit-Evasion problem

is as follows: given a simple polygon P , there exists a set of mobile agents, called the

intruders, inside P whose positions move along continuous unknown trajectories. A

trajectory is a continuous function f : R → R2, i.e., a mapping of time to position

in the plane; specific problems may impose additional constraints, such as bounding

the maximum speed ||f(t1) − f(t2)||/|t1 − t2|. The goal of the problem is to assign

a set of trajectories inside P to another set of mobile agents, called the pursuers,

such that the pursuers are able to detect every intruder by moving on these defined

trajectories. By detection we mean either to touch or see the intruder. When the goal

of detection is to see the intruder, we can distinguish a variety of types of visibility

for the pursuer; such as the case of pursuers with k-crossing visibility.
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The Pursuit-Evasion problem is widely studied in robotics, graph theory, and

computational geometry [5; 41]. The problem was first considered inside a polygonal

environment by Suzuki and Yamashita [95]. Different versions of the Pursuit-Evasion

problem can be defined based on four parameters [68]:

• the environment in which the pursuers attempt to find the intruders (e.g. plane

or polygon)

• the manner of pursuer and intruder movement (e.g. bounded or unbounded

speed)

• the definition of detection (seeing or touching)

• the information the pursuers and intruders have about each other

Changing any of the above parameters can create a completely new problem. For

instance, the visibility-based Pursuit-Evasion problem for a single omnidirectional

pursuer has been widely studied [95; 46; 74; 73]. This problem was considered for a

pursuer who can see along a line whose direction can be modified by the pursuer [94].

Icking and Klein [66], and also Hefferman [64] designed algorithms for cases with

two mutually visible pursuers capable of movement along the boundary in a simple

polygon P to detect the intruders. In another recent study, the pursuers and intrud-

ers move inside a room which is a polygon with one point that has to be seen all the

time by a pursuer [80].
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For all the varieties of visibility based Pursuit-Evasion problem, k-crossing visi-

bility can be considered for the pursuer. Such a setting was only considered in [11].

This leaves great potential to work on k-visibility in this field.
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