DSVM Consistency Protocols For Nested
Object Transactions

Yahong Sui

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in
Computer Science

Winnipeg, Manitoba, Canada, 1998

(©Yahong Sui 1998

L |

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Weilington
Ottawa ON K1A ON4

Canada Canada

Your Sle Votre refersnce

Our fl@ Notre référonce
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’ auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-32257-2

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

ik dd

COPYRIGHT PERMISSION PAGE

DSVM CONSISTERCY PROTOCOLS FOR NESTED OBJECT TRANSACTIONS

BY

YAHONG SUL

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

Yahong Sui ©1998

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

Abstract

In this dissertation, we consider a distributed shared virtual memory (DSVM) sys-
tem that allows multiple concurrent nested object transactions to make transac-
tional updates to the shared object space from different nodes across a network. To
maintain correctness, the multiple copies of any object which are “cached” in the
nodes’ memories must be kept consistent. This dissertation presents a new memory
consistency protocol, lazy object transactional entry consistency (LOTEC), that
has lower communication requirements in an object-based software DSVM system.
and can consequently achieve higher performance. LOTEC achieves this reduction
in communication by deferring the transfer of an object’s updated pages across the
network until those pages are referenced by an acquiring transaction. Further, it
is compatible with a newly developed concurrency control protocol, nested object
two-phase locking.

We show the correctness of the developed protocols and then evaluate the per-
formance of a simulated DSVM system using LOTEC by comparing it with two
other DSVM consistency protocols (object transactional entry consistency (OTEC)
and conservative object transactional entry consistency (COTEC)) which are also
described in the dissertation. The simulation results indicate that LOTEC will
have the best performance in the described object-based DSVM system.

il

Acknowledgements

[would like to thank my advisor Dr. Peter Graham who has provided me with
guidance, advice, encouragement, and support throughout my Master studies. I
wish to thank the members of my committee, Dr. K Barker and Dr. R.D. McLeod.
for reading the thesis and offering invaluable advice to me. [would like to take
this opportunity to give a special thanks to my dear friends, Tim Fletcher. his
wife Kim Fletcher, and their three children, who were the first friends [made
in Winnipeg. Their hospitality and kindness left me many beautiful memories of
friendly Manitobans.

[would like to thank my parents, sisters, and brother for their constant love
and support. Most of all, [would like to thank my husband, for without his
understanding and encouragement this work would never have been finished.

iii

Contents

1 Introduction

1.1 Challenges o
1.2 Motivation oL
1.3 Organization

2 Background and Related Work

2.1 Persistent Object Systems
2.2 Distributed Shared Virtual Memory Systems
2.3 Transactions and Serializability
2.3.1 Flat Transactions
2.3.2 Nested Transactions
2.4 Memory Consistency Models in DSM Systems

2.4.1 DSM Systems and the Memory Consistency Problem

2.4.2 Memory Consistency Models

3 Problem Evaluation and Environment

3.1 Assumed Environment
3.1.1 Object Model and Properties
3.1.2 Nested Object Transactions
3.1.3 Object Access in a Page based DSVM System

3.2 Memory Consistency in a DSVM System

3.3 Consistency Protocol Design Issues

iv

o

[GIR)}

-1

10
11
13
17
13

21

DSVM Consistency Protocols for Nested Object Transactions

3.3.1 Serializability with Closed Nested Object Transactions

3.3.2 Memory Consistency and Performance [ssues.

4 Lazy Object Transactional Entry Consistency
4.1 Serializability of Closed Nested Object Transactions
4.1.1 Closed Nested Object Two-phase Locking Rules
4.1.2 Algorithms Implementing the Closed Nested Object Two-

phase Locking Rules

4.13 AnExample.
4.1.4 Correctness e

4.2 Object Transactional Entry Consistency
4.2.1 Object Transactional Entry Consistency
4.2.2 Algorithms for OTEC

4.2.3 Example of Updated Page Transfer under OTEC
4.3 Lazy Object Transactional Entry Consistency
4.3.1 Lazy Object Transactional Entry Consistency
4.3.2 Algorithms for LOTEC
4.3.3 Example of Updated Page Transfer under LOTEC

5 Network Load Analysis

5.1 Simulation Strategy L L
5.1.1 Message Counts L.
5.1.2 Parameters for the Simulation

52 TheSimulator

5.3 Resultsand Discussion
53.1 Results.
53.2 Discussion e e e e

6 Conclusions and Future Work
6.1 Contributions e e e
6.2 Future Work L .

DSVM Consistency Protocols for Nested Object Transactions vi

A Detailed Simulation Results 112

List of Tables

A.l Simulation results under COTEC fortestcase 1

A.2 Simulation results under OTEC for test case |

A.3 Simulation results under LOTEC for test case 1

...........

A.4 Simulation results under COTEC fortestcase2

A.3 Simulation results under OTEC for test case 2

A.6 Simulation results under LOTEC for test case 2

...........

A.7 Simulation results under COTEC fortestcase3

A.8 Simulation results under OTEC for test case 3

A.9 Simulation results under LOTEC for test case 3

...........

A.10 Simulation results under COTEC for test case 4

A.11 Simulation results under OTEC for test case 4

A.12 Simulation results under LOTEC for test case 4

vii

............

List of Figures

ST S I T (S
~1 & U W

!\J
(2]

4.1
4.2
4.3
1.4
4.3
4.6
4.7
4.8
4.9

Shared Memory System with Caches
Distributed Shared Memory System
Sequential Consistency in Ivy
Pipelining Invalidationsin Dash
Buffering and Merging Updates in Munin
Remote Memory Accesses in Munin with the [nvalidate Policy . . .
Remote Memory Accesses in TreadMarks with the Invalidate Policy

Remote Memory Accesses in Midway under the Update Policy . .

High Level Structure of the DSVM System
An Example of False Sharing

Conflicting Sub-transactions in One Transaction Family
ACaseof Deadlock L.
A Case of Dependent Sub-transactions
A GDO Entry with Corresponding Lock Structure
A Cached GDO Entry with Corresponding Local Lock Structure . .
A Example of the Execution of Nested Object Transactions
O;’s Lock Structure after Global Lock Acquisition Requests
Lock Operations for Q4 for Family 7§ on Node A
Lock Operations for O4 for Family T¢* on Node A

4.10 Lock Operations from Different Transaction Families in GDOy4 Entry

viii

DSVM Consistency Protocols for Nested Object Transactions ix

4.11 An Example of an Execution of Four Transaction Families 70
4.12 An Example of Updated O; Transferred under OTEC 72
4.13 Lock Operations and Page Updates Information in GDO; under OTEC 80
4.14 An Example of Updated O; Transferred under LOTEC 33
4.15 Lock Operations, Page Updates Information in GDQO4 under LOTEC 91
5.1 1-5 pages/object, 20 objects, 33-102 conflicting transactions 99
5.2 10-20 pages/object, 20 objects, 33-85 conflicting transactions 100
5.3 1-5 pages/object, 100 objects, 5-24 conflicting transactions 101
5.4 10-20 pages/object, 100 objects, 3-22 conflicting transactions 102
5.5 The results by changing the size of the short and the long messages 103
5.6 Message cost for Oy4 when transmission rate is 10Mbps 106
5.7 Message cost for O4 when transmission rate is 100Mbps 106
5.8 Message cost for O4 when transmission rate is IGbps 107

Chapter 1

Introduction

The Distributed Shared Virtual Memory System (DSVMS) described by Peters, et
al. [PGB97] builds a distributed persistent object programming environment in a
single, 64 bit, shared address space. It provides a uniform view of a persistent object
space in memory that is visible to all processes on all interconnected nodes across
time. Similar to Distributed Shared Memory (DSM) systems [LH89, LLG*92,
CBZ95, KDCZ94, BZS93|, the local memory at each node is treated as a cache of
the global persistent object space. Since distinct and possibly distributed processes
can concurrently access any shared object in the system and because objects are
operated on locally, a shared object can be cached in several local memories. Thus.
the system must provide an efficient mechanism for ensuring cache (i.e. processor
local memory) consistency between nodes. Consistency maintenance is related to
concurrency control and the nesting of invocations on objects makes concurrency
control more difficult. Method invocations on objects must be serializable [BHGST]

as nested object transactions and this impacts consistency maintenance.

This thesis addresses the design and simulation of novel consistency protocols

CHAPTER 1. INTRODUCTION

V)

for maintaining memory consistency with closed nested object transactions in a

persistent object system implemented in a page based distributed shared memory.

1.1 Challenges

Existing memory consistency models [Lam79, LLG*92, KCZ92, BZS93, CBZ95]
were designed and used in DSM systems for parallel computing. The characteris-
tics of such systems are different from those of the proposed DSVMS. Rather than
focusing on the parallel execution of a single program, the DSVMS must support
consistent virtual memory for multiple concurrent processes that perform trans-
actional updates to the shared memory space from different nodes. Thus, new

memory consistency protocols must be developed to make DSVMS practical.

All processing in a persistent object system is performed as method invocations
on objects at their persistent locations. A method of one object may invoke a
method on another object. Thus, method invocations may be nested and should
be treated as nested atomic object transactions. To ensure that each nested object
transaction accesses only consistent object states, the system must ensure the se-
rializability of object transactions. Simple mutex locks, as are conventionally used
in controlling consistency protocols in DSM systems, do not support serializabil-
ity in an object system. The fundamental difference between mutex locks and the
locks required to support nested object transactions is the need for a delayed lock
release process. The existing two-phase locking rules for flat transactions need to

be modified to support nested object two-phase locking.

Due to the possibility of concurrent access, multiple copies of a shared object
can exist in one or more memories (i.e. caches) at the same time. The cost of

transferring updated object pages to maintain memory consistency is potentially

CHAPTER 1. INTRODUCTION 3

high communication overhead in the proposed DSVMS. A highly efficient mecha-
nism for maintaining memory consistency across the network is critical to keep this
overhead to a minimum. Any such mechanism must also be compatible with nested

object two-phase locking.

1.2 Motivation

Memory consistency is key to the success of building a DSVMS. An efficient mem-
ory consistency protocol enables the use of a DSVMS to store persistent objects
which are operated on using nested object transactions. An execution environment
offering transactional guarantees greatly simplifies programming in a distributed
system. Efficient memory consistency allows shared objects to be cached, thereby
significantly reducing the effective latency of remote memory access and yielding

higher overall system performance.

Processing in a large scale DSVMS is extremely network intensive. The high cost
of network communications can hurt performance in two ways. First, large amounts
of communications can lead to bottlenecks on conventional networks. (The best
results in DSM systems for parallel processing have been obtained using high band-
width, low latency, switched Asynchronous Transfer Mode (ATM) networks [MS95]
which partially address this problem.) Second, the software overhead incurred dur-
ing message sending or receiving may introduce high end-to-end message latencies.
(Each message sent or received has to pass through the operating system kernel
and between multiple levels of network communication protocols from/to the user

application to/from the network interface.)

The communication overhead associated with memory consistency maintenance

in the proposed DSVMS is critical because the implementation of method invocation

CHAPTER 1. INTRODUCTION 4

is by shipping object pages to the invoking node. Reducing both the number of
messages exchanged by memory consistency maintenance and the size of those

messages is very important.

1.3 Organization

The rest of this thesis is organized as follow: Chapter 2 discusses background
material and related work. Chapter 3 presents the assumed environment and de-
tails the problem of maintaining memory consistency in a page based. distributed
persistent object system. Chapter 4 describes new memory consistency protocols
for closed nested object transactions in the proposed DSVMS and also shows their
correctness. Chapter 5 presents and discusses some results obtained from a net-
work load analysis performed using randomly generated transaction structures and
object reference patterns. Finally, Chapter 6 provides conclusions and discusses

directions for future work.

Chapter 2

Background and Related Work

As the working environment of this thesis, Distributed Shared Virtual Memory
(DSVM) systems will be presented in this chapter. Further, since a DSVM system
is a base for the development of Persistent Object Systems (POSs), the discussion
will begin with an introduction to POSs. Then, transactions and serializability will
be discussed as well as memory consistency models in DSM systems. The reason for
surveying memory consistency models in DSM systems is that memory consistency
maintenance in a DSVM system is based on that used in DSM systems which is

where memory consistency protocols were originally developed.

2.1 Persistent Object Systems

An object, as discussed in [Kim90], represents a real-word entity. It is an abstraction
defined by a system wide unique object identifier (OID), a set of attributes which
define the state of the object, and a set of methods which are the only means of

manipulating the attributes and thereby modifying the object’s state.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

While an object may be used simply as an abstract data type, many additional
benefits are offered, such as support for complex structure, encapsulation, inher-
itance, and improved software re-use. These features are desirable in simplifying

the process of developing applications using object-oriented techniques.

Persistence [ABC*383] offers the potential to greatly simplify application pro-
gramming. The idea behind persistence is that all data in a system should be able
to persist for as long as that data is required. Furthermore, with orthogonal persis-
tence, all data may be persistent and that data may be manipulated in a uniform

manner regardless of the length of time it persists.

In conventional operating systems, long lived data is treated in a fundamentally
different manner from short lived data. Traditionally, long term data is held on a
backing store (e.g. a database or a file system) and cannot be directly addressed:
short term data, on the other hand, is managed by a programming language which
accesses it in directly addressable physical or virtual memory. To map between
the two types of data, two different mechanisms must be used. A file system. or
database management system, must provide storage capability and explicit format
translation code must be written and included in each program to convert from

in-memory to on-disk format.

Persistent systems simplify programming because they hide the traditional dis-
tinction between short term and long term storage from the application program-
mer. They allow all data to persist for an arbitrary length of time, possibly longer
than the life time of the creating process, and they support manipulation of data
in a uniform manner, regardless of how long it persists. Such systems usually store
all data in a persistent store which automatically manages the transfer between
long and short term storage in a manner that is transparent to the application

programmer. This makes program development significantly easier.

-

CHAPTER 2. BACKGROUND AND RELATED WORK

Adding persistence and transparent distribution to object systems, to create
so called distributed persistent object systems [VRH93, VBD*+92, JR92|, provides
significant benefits including a flexible and powerful programming environment, en-
hanced sharing, and improved performance for many applications. However, it also
presents implementation difficulties due to the limitations of both the software and
hardware supporting environments. Peters, et al. [PGB97] describe a distributed
shared virtual memory system and its use as a base for the development of POSs.
This system provides an excellent implementation platform for distributed POSs

due to its inherent transparency.

2.2 Distributed Shared Virtual Memory Systems

A Distributed Shared Virtual Memory system [GB93, GBBZ93, BPG95. MGB96.
PGB97] provides a transparently distributed persistent object programming envi-
ronment in a single, 64 bit. shared address space. It gives a uniform view of the
persistent object space in memory across multiple interconnected machines. In such
a system. objects can be shared and transparently accessed in memory by partic-
ipating processes from different nodes concurrently. This makes it possible for a
system user to work in the simplest possible programming environment since the
DSVM system hides the unnecessary distinctions between local and remote objects.

and between primary and secondary memory.

The introduction of wirtual memory made it easier for programmers to deal
with the limited amount of physical memory available. Most conventional virtual
memory systems, however, support only private address spaces. In such systems,
each process has its own private, virtual address space. Since a process is only

allowed to reference addresses within its own address space, there are effective

CHAPTER 2. BACKGROUND AND RELATED WORK 8

protection boundaries between processes. Because a process is prevented from
accessing addresses within another process’ address space, private address spaces
make sharing data more difficult among processes even though sharing data is a
fundamental requirement for modern, multi-process applications. In particular,
pointer-based data structures cannot be shared among processes because pointers
lose significance across address spaces. Systems have to copy shared data between
private virtual memories and ensure the shared data are placed within the same
range of virtual addresses as in the original private virtual memory to permit pointer
passing. This is inconvenient and expensive. In object oriented systems, any given
persistent object can refer to other persistent objects. Such references are expressed
via unique object identifiers (OID,). Private virtual addresses are not suitable
for use as unique system wide object identifiers because theses addresses would
not be valid in all private address spaces. One of the main difficulties to the
implementation of persistent object-oriented systems is the need to construct and
efficiently handle such unique systemwide object identifiers. A software address
translation mechanism, pointer swizzling [KK93, Wil92, WD92|, has been provided
to manage persistent object references. Unfortunately, pointer swizzling can also

cause significant overhead in accessing shared objects.

The recent appearance of architectures supporting linear 64-bit virtual ad-
dress spaces makes it possible to create a shared virtual address space (SVAS)
model [CLFL94] which can accommodate all processes and objects in a system.
Such an address space is large enough to directly incorporate all the secondary
memory of most computer systems, even distributed systems. This fundamentally

changes the way that operating systems can use the address space.

In a SVAS, all processes share a single, large virtual address space. All processes

can access any address within the shared address space. Data appear at the same

CHAPTER 2. BACKGROUND AND RELATED WORK 9

memory locations to all processes [PGB97]. Without address space separation
to provide protection among processes, however, protection domains [CLFL94] or
some other technique must be used to restrict a process’ access to a specific set of

virtual pages.

A SVAS enhances data sharing because all processors see the same address
space regardless of their location and therefore pointer values are meaningful to all
processes. Thus, data may be conveniently shared between processes in memory.
Since each byte of data in the system has a unique address in the SVAS, issuing an

appropriate address is all that is required for accessing shared data.

A SVAS offers additional benefits in implementing persistent object-oriented
systems. Since the 64 bit virtual address space is linear and virtual addresses
within a shared virtual memory are consistent across all processes, the persistent
location of each object in the SVAS can be used as its unique, system wide object
identifier. Such a large virtual address space can also contain all the active processes
and the data on which the processes operate. Since the shared address space is
never destroyed and is valid across all processes, the SVAS can provide persistence
for an object’s state [MGB95]. All data are referenced in a uniform manner by
providing their persistent virtual addresses (OID;,), and these addresses can be
passed freely because a pointer retains its meaning independent of its location.
even across nodes or on secondary storage. Therefore, the overhead involved in

swizzling object references and changing data formats is eliminated.

A DSVM system is created by providing a SVAS across a distributed system, so
that the same address space is visible to all processes on all nodes. Once persistence
is added, data appear at the same memory locations to all processes across all nodes

for all time [PGB9T].

In a DSVM system, distribution is completely transparent to user processes. If

CHAPTER 2. BACKGROUND AND RELATED WORK 10

a shared data item is not already local, when its address is referenced, the system
will obtain the corresponding object from the network. Thus, a process does not

need to know the location of a shared object.

A DSVM system may store any kind of data. The DSVM system described
in {PGB97] and used in this thesis stores objects. It offers specific advantages over
other forms of POSs. For example, object method invocations are accomplished by
a simple subroutine call without swizzling. Additionally, support for such advanced

features as nested object transactions may be transparently provided [PGB97].

2.3 Transactions and Serializability

A transaction [OV91] is a basic, atomic execution unit of consistent and reliable
computing, composed of a sequence of indivisible operation executions. Transac-
tions have four properties (the so-called ACID properties). They are Atomicity.
Consistency, Isolation, and Durability. Atomicity refers to the fact that a transac-
tion must be a single unit of work., namely, either all or none of its operations should
be executed. Consistency ensures the correctness of a transaction. In other words,
a transaction should leave the shared data in a consistent state after it commits or
aborts. [solation means that transactions cannot unintentionally affect each other.
Durability declares that the effects of committed transactions must persist even in
the presence of failures. These ACID properties of transactions guarantee correct

concurrent execution as well as reliability.

Transactions may be divided into two broad categories: flat transactions and

nested transactions.

CHAPTER 2. BACKGROQUND AND RELATED WORK 11

2.3.1 Flat Transactions
Flat Transactions

Conventional transactions are flat. A flat transaction has a single starting point, a
body which consists of read and write actions on atomic data, followed by a single
commit or abort operation. The correct execution of a set of flat transactions on
a consistent system will leave the system in a new consistent state. When a set
of transactions execute concurrently, their operations may be interleaved. A serial
execution represents an execution order in which there is no interleaving of the op-
erations of different transactions. Each transaction executes from beginning to end
before the next one can start. By definition, a serial execution of transactions is
correct. Serial executions can, however, lead to poor performance because they do
not take advantage of possible concurrency. On the other hand, transaction concur-
rency must be managed carefully because arbitrary concurrency in the execution

of conflicting operations can lead to inconsistency.

Serializability for Flat Transactions

Conflict serializability [BHGS87] is the most widely used correctness criterion for
concurrent executions of flat transactions. The serializability theory represents ex-
ecutions of transactions as partial orders of operations. The conflicting operations
of two transactions must be ordered such that transactions appear to execute seri-

ally.

The concurrent execution of a set of transactions is serializable if and only if
it is equivalent to some serial execution of the transactions. From this correctness

criterion, a concurrency control algorithm is regarded as correct if it ensures that

CHAPTER 2. BACKGROUND AND RELATED WORK 12

any interleaved execution of transactions is equivalent to some serial execution of

the transactions.

Concurrency control algorithms are commonly classified into two categories:
optimistic and pessimistic. Optimistic concurrency control tends to avoid delay-
ing conflicting operations. Under this scenario, transactions are allowed to execute
concurrently and their correct execution is verified once a transaction completes.
Invalid transactions must be “rolled back” (i.e. have their effects cancelled). Pes-
simistic concurrency control delays potentially conflicting operations when first
identified. It ensures that executions will be correct before they are allowed to

occur but sometimes limits potential, valid concurrency.

Two-phase Locking

The most common pessimistic concurrency control algorithm is two-phase locking
(2PL). It ensures serializability because of the way that locks are obtained. Two
operations are said to conflict if they both operate on the same data item and at
least one of them is a write [BHG87]. Two-phase locking associates two types of
locks with data items: read locks and write locks. Multiple transactions are allowed
to concurrently hold the same read lock, but a write lock may be held by only one
transaction at a time. Two locks are in conflict if their corresponding operations
are conflicting. A transaction is required to obtain the appropriate lock for each
data item it accesses. If a write lock is held by another transaction, it must wait for
that transaction to release the lock. No locks can be freed until all necessary locks
have been acquired. When a transaction releases a lock it can no longer obtain
any additional locks. This results in two phases, namely, a lock acquisition phase
followed by a lock release phase. By obtaining and releasing locks in this manner,

two-phase locking produces only conflict serializable executions. Bernstein, et al.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

[BHG87] provide a formal proof of the correctness of two-phase locking.

Two-phase locking guarantees serializability, but deadlock and cascading aborts!
are still possible. A strict two-phase locking technique forces a transaction to
retain all of its locks until it completes. It guarantees a strict execution which is
recoverable and avoids cascading aborts. In this thesis, strict two-phase locking

will be extended to accommodate closed nested object transactions.

2.3.2 Nested Transactions

Nested Transactions

The concept of nested transactions was introduced by Eliot Moss [Mos85]. Weih! [Wei89]
describes two kinds of nesting in transactions. One is the nesting of procedures
which corresponds to nested transactions as proposed by Moss. The other is the
nesting of layers of data abstractions. Since the invocations of an object’s methods

result in the nesting of procedures, only procedural nesting is discussed here.

In addition to read and write operations, a nested transaction may “contain”
other transactions (sub-transactions) with their own beginning and termination
points. These sub-transactions have the same properties as their parents. One
transaction (parent) may have one or more sub-transactions (children) which may
themselves in turn have their own sub-transactions, therefore, nesting may be to
arbitrary depth. A transaction with no parent is a root transaction and it, which
along with its descendants, forms a transaction tree which is also called a trans-
action family. Transaction families normally appear to be atomic with respect to

other transaction families. Sub-transactions of one transaction family, however,

!When a transaction aborts, its effects may affect other transactions. Aborting these transac-

tions may trigger further abortions. This is called cascading abort.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

can execute simultaneously. Each parent transaction controls the execution of its
sub-transactions with respect to one other so that all sub-transactions in the fam-
ily are properly synchronized. In other words, parent transactions specify which

sub-transactions execute concurrently.

Nested transactions offer two fundamental benefits. One is that they provide
a potentially finer-level of concurrency among transactions. The other is that it is
possible for sub-transactions to recover from failures independently of other sub-
transactions. Nested transactions are naturally suited to object systems as method

invocations introduce new nesting levels.

There are two forms of nested transactions which are determined by their ter-
mination characteristics: open nested transactions and closed nested transactions.
Both closed and open nested transactions hide updates to data items, which are
made by one sub-transaction, from all other transactions until the sub-transaction
completes. Closed nesting permits only sub-transactions of the same parent to
see changes after the sub-transaction completes. Other transactions outside of the
transaction family see the updates only after the root transaction successfully com-
mits. The fundamental principle of closed nesting is that no partial results of any
transaction family can be made visible to other transaction families. Open nesting
allows all other transactions (within and outside the transaction family) to see up-
dates after a sub-transaction completes. The focus of this thesis is on closed nested

transactions.

Serializability for Nested Transactions

In cenventional flat transactions, conflict serializability is classically defined between

transactions because there is no concept of sub-transactions. The system may exe-

CHAPTER 2. BACKGROUND AND RELATED WORK 15

cute transactions in any order, as long as the effect of any concurrent execution of
the transactions is the same as that of some serial execution, even though different
serial orders may produce different effects. Since the sub-transactions of a nested
transaction family can execute simultaneously, the correctness of sub-transaction
concurrency within a transaction family must also be ensured. Thus, conflict seri-
alizability should not only be defined between nested transaction families, but also

between sub-transactions within one transaction family.

In a nested transaction family, sub-transactions may, of course, be nested and
they will be executed in the order in which they are encountered. Since sub-
transaction execution is synchronous, sub-transactions complete before subsequent
sub-transactions are executed. Thus, the only correct serial execution order for a
set of sub-transactions in one transaction family is depth-first. The condition for
serializability with a set of sub-transactions in one transaction family is the same as
with a set of flat transactions. A concurrent execution of a set of sub-transactions
in one transaction family is serializable if and only if its execution is equivalent to
the serial execution order of the set of sub-transactions. However, unlike with flat
transactions, this serial execution order does not depend on user specification but is
strictly depth-first. Therefore, a concurrent execution of a set of nested transactions
(transaction families) is serializable if and only if its execution is equivalent to some

serial execution of the nested transactions.

Moss’ Nested Two-phase Locking rules

The work of Moss focused primarily on the closed nested transaction model. In a
closed nested transaction, the results of a sub-transaction are not visible outside
its parent before its parent commits. Thus, the results of any sub-transaction in

a transaction family are not visible to any other transaction family until the root

CHAPTER 2. BACKGROUND AND RELATED WORK 16

transaction completes. In Moss’ model, only leaf transactions can directly access

data. Parent transactions perform only coordination and supervisory functions.

Traditional two-phase locking rules do not suffice for the synchronization of
nested transaction families with each other. Additional rules are needed to man-
age concurrency between the sub-transactions in each transaction family because
of nesting. Moss® work enhanced concurrency between sub-transactions (leaf trans-
actions) from different transaction families which are encountered in a depth-first

order in each nested transaction family.

Simple mutex locks are insufficient to support serializability with nested trans-
actions. Moss uses a lock inheritance mechanism to enhance concurrency between
the sub-transactions of a single nested transaction. When a sub-transaction com-
pletes successfully, it is said to have “committed”. Any updates become “perma-
nent” (visible to other transaction families) only if all sub-transactions and the
root transaction also commit. However, such commitment is relative. An addi-
tional operation introduced for the purpose of nesting is the “pre-commit”. When
a sub-transaction pre-commits. the locks cannot be entirely released. The reason
is that the sub-transaction’s ancestors can still abort, undoing its changes. The
solution is to pass all the sub-transaction’s locks up to its parent who retains them.
A retained lock may subsequently be acquired by a descendant of the transaction
which retains it. Similarly, when a sub-transaction aborts, the locks cannot be
released, because some of its locks might have been acquired from an ancestor.
This means that some other sub-transactions have also accessed the data guarded
by these locks before the aborted sub-transaction. The changes made by those
sub-transactions should not be seen outside of the ancestor. Therefore, when a
sub-transaction aborts, not all its locks are released. If any of its ancestors retain

any of its locks, those ancestors continue to retain those lock.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Moss has shown how to extend the (strict) two-phase locking rules to accommo-
date closed nested transactions. He defines nested two-phase locking concurrency
control rules for the closed nested transaction model. His rules ensure serializability
among nested transactions (transaction families) if all of them are encountered in
a user's preferred order and all sub-transactions of each nested transaction family
are encountered in depth-first order. Lynch [Lyn83] has proved the correctness of
Moss’ nested two-phase locking rules, that is, by using Moss’ nested two-phase lock-
ing rules, ail executions of nested transactions are shown to be serializable. Moss’
exclusive nested two-phase locking rules for exclusive locking are summarized as

follows:

1. Sub-transaction T may hold a lock if no other transaction holds the lock or

all transactions that retain the lock are ancestors of T.

[

When sub-transaction T commits, the parent of T inherits T's locks (either

held or retained). After that, the parent retains the locks.

3. When a transaction aborts, it releases all locks it holds or retains. If any of

its ancestors retain any of these locks they continue to do so.

2.4 Memory Consistency Models in DSM Sys-

tems

This section provides details about research specific to memory consistency models
in DSM systems. It begins by presenting DSM systems and the memory consistency
problem in DSM systems in Section 2.4.1. Section 2.4.2 follows with a survey of

various memory consistency models and protocols used in DSM systems.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

2.4.1 DSM Systems and the Memory Consistency Prob-

lem

There are two basic paradigms for parallel programming and for building parallel
machines, shared memory and distributed memory (i.e. message-passing). The
shared memory paradigm provides a single physical memory shared by multiple-
processors via hardware. Thus. any update to shared data is visible to all processors
in the system. Since the shared memory model is a natural extension of a single
CPU system., it is easier to program. However, it has a serious bottleneck because
the memory is accessed via a system bus which quickly becomes saturated. This
limits the system size. Cache memories may be added as an important way to
reduce the average memory access time. This is especially important as a first step

fowards scaleable multiprocessor architectures (See Figure 2.1).

Shared Memo
Yoo
System Bus
i Cache
CIl q C, O O O Cx.n Memories
"

Figure 2.1: Shared Memory System with Caches

This approach gives rise to the cache consistency problem because data sharing

CHAPTER 2. BACKGROUND AND RELATED WORK 19

can result in several copies of a shared data item in one or multiple caches and
main memory at the same time. When a process accesses an in-cache shared data
item, and if the data itern is not consistent with the most recent version of the
data item, the process observes stale data. To maintain a consistent view of the
shared memory, these in-cache copies must be kept consistent in a manner that
is completely transparent to the user of the machine. Since data that has been
read-cached in distributed memories can become inconsistent only when a process
updates the data, there are two policies for maintaining cache consistency: write-
invalidate and write-update. With an invalidation policy, once a processor acquires
exclusive ownership it invalidates all copies before performing the write. With an
update policy, writes to shared data are buffered, and consistency is enforced at
synchronization points. Instead of invalidating all copies, the processor updates

them.

Distributed memory machines consist of a collection of independent processors
with their own, local memories connected by a high speed interconnection network.
Communication between processors is via message passing. Distributed memory
machines do not suffer from the aforementioned bottleneck or the cache consistency
problem. However, they do require the programmer to partition the data between

memories and manage communication explicitly.

Distributed shared memory (DSM) systems combine the advantages of shared
memory and distributed memory machines. A DSM system provides an abstraction
of shared memory in a physically non-shared (i.e. distributed) memory machine.
Each memory is physically independent and communication takes place through
explicit massage passing. Thus, DSM systems offer many benefits including ease of
programming, ease of implementation, and enhanced scalability. Figure 2.2 shows

the conceptual structure of a DSM system.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

Interconnection Network

Logically
shared
memory

Figure 2.2: Distributed Shared Memory System

A DSM system provides the illusion that all memories are globally and transpar-
ently shared via an interconnection network. They allow each process to access any
shared data item in the system directly without the programmer having to worry
about where the data item is and how it can be obtained. To achieve this goal.
the DSM system provides a virtual address space shared among processes across
the entire network, and the local memory of each processor is effectively used as a
cache of the global address space. Hence, the cache (memory) consistency problem
is still a concern. Independent processes executing at different nodes must see a
consistent view of the shared memory. Changes to cached data have to be detected
and updates or invalidates have to be propagated to other processors caching the
data. A consistency mechanism is required to ensure that processors reference only

current data which are up-to-date.

CHAPTER 2. BACKGROUND AND RELATED WORK 2]
2.4.2 Memory Consistency Models

A memory model for a DSM system is a specification of how the memory operations
of a program will appear to execute to the programmer [Adv93]. In other words, it
is a model of how updates to shared memory are reflected to the processes in the
system. The memory model, therefore, specifies the values that may be returned by
the read operations of a process executed on a DSM system. For a uniprocessor, a
correct memory model is well defined. A memory is consistent if the value returned
by a read operation is always the same as the value written by the most recent
write operation to the same address. For multi-cached shared memory systems.
caching of data complicates the ordering of accesses by introducing multiple copies
of the same location. The cache consistency model is complicated because the
definition of “most recent write operation” becomes unclear when there may be
multiple processors accessing different copies of the same address. For a DSM
system. however, the memory consistency problem differs from that in multi-cached
shared memory systems and is even more complex because there is no physical

shared memory and there may also be a far greater number of processors in the

DSM.

The memory model affects the performance of a DSM system in many ways. [t
determines when a processor can execute multiple memory operations in parallel
or out of program order, when memory operations are allowed to overlap other
memory operations, when updates for a shared data item by one processor can be
made visible to other processors, and how much inter-processor communication a
memory operation will cause. Many verified solutions to the memory consistency
problem in DSM systems have been proposed and successfully implemented. The
design goal for consistency protocols is to achieve the best possible performance in

a DSM system. However, high memory latency and limited bandwidth make this

CHAPTER 2. BACKGROUND AND RELATED WORK 22

difficult. Therefore, the key issue in designing memory consistency protocols is to
reduce both the memory latency caused by remote memory accesses and the large

amount of communication required by memory consistency maintenance.

There are two kinds of memory consistency models for DSM systems: strong
consistency or sequential consistency [Lam79] and relaxed/weak consistency (e.g..
release consistency [LLG*92, CBZ95], lazy release consistency [KCZ92], entry con-
sistency [BZS93], etc.). These models have all been implemented in either hardware

or software or both in the past few years.

Sequential Consistency (SC) is a natural extension of the uniprocessor model. A
system is sequentially consistent if (1) all memory operations appear to execute one
at a time in some total order, and (2) all memory operations of a given processor
appear to execute in program order. In other words. sequential consistency requires
that any update to shared data becomes visible to all other processors before the
updating processor is allowed to issue another memory access. Essentially, sequen-
tial consistency ensures that the view of the memory is consistent at all times from

all processors.

Such a strict requirement imposes serious restrictions on efficient performance.
The Ivy system [LH89] supports a page-based single-writer, invalidate protocol to
implement sequential consistency. The weakness of Ivy is that it can cause an
excessively large amount of communication overhead because invalidate messages
for updated shared data must be sent out immediately and for every write oper-
ation. For example, in Figure 2.3, data item r is updated by the same processor
(P,) repeatedly with no intervening access by other processors. If P, and P, both
cache shared data item z, P, must send invalidate messages for data item z to P,
immediately for every write operation before it is allowed to issue another read or

write to shared data.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

w(Xx) w(x) r(x)

P x]

inv(x inv(x)
) ack ack

Plx]
Figure 2.3: Sequential Consistency in Ivy

Sequential consistency precludes many performance enhancing optimizations
in both hardware and software. such as write buffers, pipelining execution and
reordering of operations. To improve the performance of shared virtual memory
systems, researchers have proposed relaxed memory models that impose constraints
weaker than sequential consistency. Relaxed consistency takes advantage of the
fact that programmers use synchronization operations, such as lock acquisition and
barrier entry, to separate accesses to shared data by different threads running on
different processors. Therefore the system only needs to guarantee that the memory
is consistent at selected synchronization points. Relaxed consistency models are far

more efficient in implementing DSM systems.

Release Consistency (RC) [GLL*90] is a form of relaxed memory consistency.
In release consistency, each shared memory access is classified as either a synchro-
nization access or an ordinary access. Furthermore, synchronization accesses are
made explicit and categorized into “acquires”, which signal the beginning of a series
of accesses to shared memory, and “releases”, which signal the end of a series of
accesses to shared memory. Release consistency exploits the fact that in a critical
section a programmer has already assured that no other processor is accessing the
protected data. Thus, all previous updates of shared data are consistent only before
a release of a synchronization variable is observed by any processor. Release consis-

tency allows the effects of shared memory accesses to be delayed until a subsequent

CHAPTER 2. BACKGROUND AND RELATED WORK 24

release is performed by the same processor.

Researchers in hardware DSM have proposed the release consistency model to
reduce the memory latency associated with remote memory accesses, for instance.
Dash [LLG*92] implements a form of release consistency using a write-invalidate
policy. It reduces the memory latency by pipelining the invalidation messages
caused by writes to shared data. The processor is stalled only when it executes a
lock release, at which time it must wait for all its previous writes to be performed

remotely(see Figure 2.4).

stalled
P:IX.y.Z] acq(l) w(x) w(y) w(z) rcj}(l);
inv(y) inv(z)
ack ack
P [x,y,z}—

Figure 2.4: Pipelining Invalidations in Dash

In a software DSM system, the overhead of exchanging messages is very high.
Since sending a message is more expensive than it is in a hardware DSM system, it
is more important to reduce the number of messages exchanged than it is to hide
their latency by pipelining. Ideally, the number of messages exchanged in a software
DSM system should equal the number of messages exchanged in a message-passing
implementation of the same application [KCZ92]. For this reason, the Munin sys-
tem’s write-shared protocol with update-with-timeout policy [CBZ95] implements
RC and reduces the number of messages exchanged by buffering modifications until
a lock is released. Ideally, it reduces the number of messages transferred from one

per write to one per critical section when there is a single replica of the shared

CHAPTER 2. BACKGROUND AND RELATED WORK 25

data.? At the release point, all modifications are sent to all processors who cache
the data modified by the releasing processor. All modifications going to the same
destination are merged into a single message. In the example shown in Figure 2.5.
pages X, Y, and Z are cached in both processor P, and P,. The updates for page
X.Y and Z by processor P; are buffered. At the time P; releases the lock, the
updates are merged into a single message and propagated to processor P, which

also caches those pages.

sta{led

acq (I) wi(x) w(y) w(z) rel (1) Yy

P [x,y.z]

Single update message ack

for x,y,z

B[x.y.z]
Figure 2.5: Buffering and Merging Updates in Munin

Munin’s protocol, however, may still send a number of unnecessary messages.
because it propagates updated data to all processors who cache the data when
the corresponding lock is released. Keleher [PK95] has shown that there may be
two forms of unnecessary communication using Munin’s protocol with an update
or invalidate policy. First, since some targets of the invalidations or updates never
access the invalidated or updated data, they would not notice if their copies became
inconsistent. Hence, invalidation or update messages which are propagated to them
are useless. Second, some invalidation or update messages travel the same route as
a subsequent lock transfer. Therefore, an invalidation or update message could be
eliminated by piggybacking the invalidation or update message on the lock transfer.

This is shown in Figure 2.6. Three processors P;, P, and P; all cache shared pages

2If there are z replicas of the shared data, it reduces the number of messages transferred from

r per write to z per critical section.

CHAPTER 2. BACKGROUND AND RELATED WORK 26

X and Y, and exchange the lock for the shared pages. Processor P; updates page
X and then releases the lock. The invalidate messages for page X are sent to
processor P and P;. After processor P, updates page Y, at the time of the release.
invalidate messages for page Y are sent to P, and P5. Then processor P reads page
Y and releases the lock. First, since processor P; and Ps do not access page X and
P, does not access page Y, all invalidation messages except the one from P, to Ps
for page Y are useless. Second, the invalidate message to p, travels the same route
as the lock transfer requested by P,. Similarly, the invalidate message to p; travels

the same route as the lock transfer requested by P;.

acq(l) w(x) rel(l)

P [x,y] Y
ac
P[x.y] acq(l) w(y) frel(l)
nv(x ek mv(y)ac k/l \\

acq(l) " r(y) rel()

Bixy]

Figure 2.6: Remote Memory Accesses in Munin with the Invalidate Policy

Logically, it suffices to update or invalidate a cached shared data item for a pro-
cessor only when the processor acquires access to the data. TreadMarks [KDCZ94]
implements Lazy Release Consistency (LRC) [KCZ92] which does not make modi-
fications globally visible at the time of a release. Instead, lazy release consistency
guarantees only that a processor that acquires a lock will see all modifications that
precede the lock acquisition. By not propagating modifications globally at the time
of the release, and by piggybacking data movement on lock transfer messages, lazy
release consistency reduces both the number of messages and the amount of data

transferred between processors. Figure 2.7 shows the same example as Figure 2.6

(8N
-1

CHAPTER 2. BACKGROUND AND RELATED WORK

under lazy release consistency with the invalidate policy.

acq(l) w(x) rel(l)

Pl [X’Y] / \
mnv(x)

acq(I) w(y) rel (1)
B xy]

inv(x,y)

acq () (y) rel(l)

Px.y]
Figure 2.7: Remote Memory Accesses in TreadMarks with the Invalidate Policy

Midway’s memory consistency protocol {BZS93, BNBMJZ91] uses an update
policy and implements Entry Consistency (EC) which is similar to lazy release con-
sistency. Entry consistency guarantees that shared data become consistent at a
processor only when the processor acquires a synchronization object. Furthermore.
entry consistency requires each shared data object to be attached to a synchroniza-
tion object. The only data that is guaranteed to be consistent is that guarded by the
acquired synchronization object. As a result, entry consistency generally requires
less data traffic than lazy release consistency. This can be shown by comparing
Figure 2.8 to Figure 2.7. Processor P, updates data item z on page X. When pro-
cessor P, attempts to update a data item y on page Y, since the corresponding lock
for y is free, it acquires the lock and updates y without any modification transfer.
Once processor P acquires the lock for data item y, the modification for y is sent

to P3.

CHAPTER 2. BACKGROUND AND RELATED WORK

acq(l) w(x) rel(ll)

P(xy]

acq (IL) w(y) rel(l)

B x.y]
\update(y)

acq(l) r(y) rel(l)

Bx.y]

Figure 2.8: Remote Memory Accesses in Midway under the Update Policy

Chapter 3

Problem Evaluation and

Environment

Before discussing memory consistency problems in DSVM systems, it is necessary
to introduce the assumed environment of this thesis. This includes the definitions
associated with objects, a nested object transaction model for the DSVM system.
and object access in a page based DSVM system. The memory consistency problem
in a persistent DSVM system and design issues for memory consistency protocols

will then be discussed.

3.1 Assumed Environment

This section begins by formally defining objects following the notation of Gra-
ham [PCG94]|. It is followed by defining the nested object transaction model. The
model uses conflicts at the object level to define correct executions between [sub]-

transactions. This allows serialization based on two-phase, object-level locking.

29

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 30

Finally, object access in a page based DSVM system will be presented.

3.1.1 Object Model and Properties

The proposed DSVM system contains large collections of uniquely identified per-
sistent objects. To concentrate on memory consistency issues in a DSVM-based
persistent object system and ignore the irrelevant details that would unnecessar-
ily complicate the design, the core object concepts of [Kim90] are assumed but
unnecessary details are omitted. Objects, as discussed previously, logically con-
tain structural and behavioural components. The structural component is a set of
uniquely identified data items (attributes) whose values constitute the state of the
object. The behavioural component is a set of procedures (methods) which are the
only means of accessing and manipulating the structural component, namely, of
modifying the state of the object. Each object has its own unique object identifier
(OID). In the proposed DSVM system, the OID is the object’s virtual address in

the persistent object space.

The following formal definition for objects is by Graham [PCG94]. The j**
attribute of object O; is denoted a;;, and an object’s k** method is identified using

the notation m;.
Definition 3.1 An object O; = (S;,B;) where:

1. ¢ is the unique identifier of the object,

2. S; is the object’s structure composed of attributes such that Va;j, ai(y #

k) € Si, ai; # aix,

.

3. B; is the object’s behaviour composed of methods such that Ym;;, mix(; #
k) € B;, m;; # Mik. [|

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 31

Point (1) assigns a system-wide unique identification to each object. Point (2)

identifies the attributes of the object. Point (3) specifies the methods of the object.

Hadzilacos, et al. [HH91] divide the steps of a method’s execution into local
steps and message steps. The local steps access an object’s local attributes and

message steps access non-local attributes via method invocations on other objects.

All objects which share the same set of attributes and methods are grouped into
a class. A class is associated with a single object type from which specific objects
may be instantiated. An object type defines attributes which are stored in each
object instantiated from it as well as a set of methods which may be applied to

those attributes. An object belongs to only one class as an instance of that class.

Encapsulation, Inheritance, and Polymorphism are supported by the object
model in this thesis. Encapsulation is a fundamental feature of object-orientation.
[t provides data abstraction and data independence. It also ensures that objects’
attributes may only be accessed and updated by their local methods. This property
guarantees locality of effect from which a benefit is provided to infer the correctness
of concurrent method invocations. Classes are potentially related by inheritance.
A class may be derived from another class (the base class). The derived class is
called a sub-class of the base class and the base class is called a super-class of the
derived class. Both attributes and methods may be inherited. Inheritance provides
an important basis for software re-use which increases programmmer productivity.
Polymorphism permits objects of one class to be treated as if they were of their

declared class or any super class thereof.

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 32

3.1.2 Nested Object Transactions

In a DSVM system, multiple, concurrent users access objects by invoking methods
that manipulate their attributes. An access submitted by a DSVM user consists
of a single object method invocation, and that method execution may invoke other
methods. Thus. method invocations may be nested, and method executions either
by users or other objects should be treated as nested atomic object transactions.
Each method invocation begins a new [sub-]transaction. A root transaction is the
initial method invocation made by a DSVM user and therefore it has no ancestors.
The root transaction and its descendants, together, constitute a transaction tree.

which we refer to as transaction family.

The following nomenclature is used to describe nested object transactions. The
system contains a set of objects O = {01,0,,...,On}. An invocation of method
k on object i made by a DSVM user j is denoted mJ,. It begins a nested object
transaction (the root transaction) T7. Recall that each execution of method m?,
has local steps which access object local attributes, and message steps which access
non-local attributes via method invocations on other objects. Operations of a
nested object transaction then may contain reads and writes which operate on
attributes of the object the transaction is executing on. They may also contain
sub-transactions which are initiated by method invocations on other objects. As
mentioned previously, when the execution of a sub-transaction completes, it enters
a pre-commit state indicating it is ready to commit. Thus, the operation set of
T‘-j may contain reads, writes, pre-commits, and sub-transactions. The operation
‘pc’ denotes entry into the pre-commit state by a sub-transaction. The set of sub-
transactions of a root transaction T is denoted oT; = {mi;tn miztz,..., m) . }.

such that mi,‘ € OT; denotes a method invocation of 77 where the method ¢, is

invoked on object s;. The set of all operations of a nested object transaction T! is

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 33

denoted OS; = {UxO;r} U OT;, where Oji € {read, write, pc} is an operation k of
the nested object transaction T7. A transaction’s termination condition is denoted

by N, € {Commit, Abort}.

One advantage of nested over flat transactions is that sub-transactions may
execute concurrently in one transaction family. To ensure serializability between
such sub-transactions, the internal semantics of the nested object transactions must
be considered. Zapp [MEZ93] defines a boolean function depends. It takes two
operations as inputs. at least one being a sub-transaction, and returns “true” if
there is a dependence relation between the operations due to the internal semantics

of the nested object transaction.

In the proposed DSVM system, operations of one nested transaction are reads.
writes, pre-commits, and method invocations. The notion of conflict between reads
and writes is well understood. Graham [PCG94] provides the following definition

of conflicting methods.

Definition 3.2 Two methods in an object conflict if they contain steps which

1

access attributes in a conflicting manner'. If two methods m;; and m; conflict

then this is denoted m,;©m. |

Object-level locking is employed in this thesis. Thus, conflicts only occur be-
tween method invocations (i.e. [sub-|transactions). For exclusive object-level lock-
ing, the definition of conflicting methods is that two methods conflict if they are

invoked on the same object. This is a very simple and conservative conflict criterion.

The nested object transaction model which is used for this thesis is now defined

by referencing the definition of Graham [PCG94).

1Two steps conflict if they both access the same attribute and at least one is a write operation.

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 34

Definition 3.3 A nested object transaction is a partial order T/ = (X;.<;) where:

P

. x; = 08U {N;},

2. (a) for any two Oji, O;x € OS;, if Oy = mJ,, O;x = mJ,, then either

Oji <, Oji or Ojx <; Oju,
(b) for any two Oy, Ojx € OS;. if O = my, and depends(Oji, O;i). or

depends(O;i,Ojt), then Oj; <; Oji, or Ojk <; Oj, respectively.

3.1if Oﬂ = pc. 0_,‘1 1S unique and VOJ';, € OSj, [95 k, Ojk =<; O_,'z,
4. VOj(€ OSJ‘. OJ‘[= ZVJ',
5. the termination conditions of all m} € OS; are consistent and equal to V.

Point (1) enumerates all the operations performed by the nested object trans-
action. Point (2) addresses the ordering relation of the nested object transaction.
Point (2a} orders the conflicting method invocations of the nested object trans-
action. Point (2b) allows concurrent execution of sub-transactions of the nested
object transaction as long as a partial order of all the operations obeys the depends
function. Point (3) indicates that all operations of the nested object transaction
must occur before its only pre-commit operation. Point (4) prevents any opera-
tion of a nested object transaction from occurring after the transaction terminates.
Point (5) ensures that all of a transaction’s sub-transactions either commit or abort

with their parents.

For the purpose of this thesis, it is assumed that the dependence relationship
of point (2b) has been defined, and dependence analysis has been performed to

determine the appropriate partial order (see [PCG94] for details).

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 35
3.1.3 Object Access in a Page based DSVM System

The high level structure of the DSVM system proposed by [PGB97, MGBY96] is
shown in Figure 3.1. The DSVM system is assumed to consist of some number of
nodes connected by a high bandwidth, low latency network. Each node is disked
and contains a significant physical memory. The SVAS is globally distributed across
all nodes. Therefore, the same SVAS is visible to all processes regardless of their
physical execution location. The persistent object store is stored collectively on the

disks provided by each processor.

Node 1 Physical Memory

\ Persistent

Storage

Node 2 Physical memory/
J\ I I |
a]
—]
— agf table
SVAS Persistent
Storage
@)
_ O
Interconnection O
Network

Figure 3.1: High Level Structure of the DSVM System

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 36

In a page based DSVM system, the SVAS is partitioned into virtual memory
pages. The local memory of each processor is used as a cache for the SVAS. A
per-processor page table is used to map virtual pages into page frames. Object
management takes place as a direct consequence of virtual memory operations.
During a virtual memory access, there are two types of faults that may occur and
which are detected in hardware: a segmentation fault, which occurs if a process
references a region of virtual memory for which no mapping exists in the page
table; or a page fault, which occurs if a reference is made to a mapped region of a

processor’s address space but the corresponding page is not resident in real memory.

Mathew, et al. [MGB96] presented the design of a Global Directory of Objects
(GDO) to manage the potentially huge number of objects in a DSVM system. [t
provides object lookup by virtual address for all objects and persistently stores all
the management information for the objects which may include persistent storage
information, concurrency control and consistency information. All method invoca-
tions on an object are assumed to execute beginning at the start address for that
object (i.e. its OID) in virtual memory. Thus, when an object transaction invokes a
method on an object, the virtual address corresponding to the start of the accessed
object is referenced. On a segmentation fault, control is transferred to the DSVM
system. The faulting virtual address is used as the key in searching the GDO. If
an entry is not found in the GDO, an invalid object reference has been detected.
Otherwise, a valid object was referenced and the DSVM system adds page table
entries to the processor’s page table for the object’s pages. Initially, these entries
indicate that the corresponding pages are not memory resident. The system then
also retrieves an up-to-date copy of the object’s first page into the memory (page
in) to avoid a page fault immediately occurring. Page table entries are built using

information contained in the corresponding GDO entry. In response to a page fault,

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 37

the DSVM system uses the information in the page table entry for the faulting page

to retrieve a copy of the object’s page and make it resident in the real memory.
p J pag

To ensure memory consistency and proper concurrency control, the system must
unmap an object’s pages once access to it is complete. By doing so, a segmentation
fault is guaranteed to occur when the object is accessed again, thereby permitting
the DSVM system to effect any required object management functions. For exam-
ple, it is necessary to have the DSVM system gain control so that object-level lock
management may be performed. It is also important that the DSVM system gains
control at access completion to permit the freeing of locks and other management
functions. Unmapping an object, however, does not mean that its pages need to
be flushed back to persistent storage. An object’s pages can be flushed lazily using
a write back queue from which available page frames are replaced as needed in a
Least Recently Used (LRU) fashion. If the subsequent acquiring [sub-]transaction
is from the same node that last updated the object, it may reclaim any pages that
are in the write back queue. If the subsequent acquiring [sub-]transaction is from a

different node, the up-to-date pages of the object must be transferred to that node.

3.2 Memory Consistency in a DSVM System

Distinct and possibly distributed processes can concurrently access any shared ob-
ject in a DSVM system. This sharing can result in several copies of a shared object
existing in multiple memories at the same time. This requires that the DSVM
system must ensure that the in-memory copies of persistent objects at each node

are always consistent.

In most existing software DSM systems for parallel computing [LH89, KDCZ94,
BZS93, CBZ95], the sequentially consistent execution is chosen as the base system

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 38

view of all memory models, where a sequentially consistent execution is an exe-
cution of a program that could have been produced by a sequential consistency
system. Therefore, the correctness criterion for memory models is that certain
memory operations on which various optimizations can be applied do not violate
sequentially consistent execution and provide significant performance benefits. [n
other words, memory models should guarantee that certain programs (i.e. data-race-
free programs [Adv93]) execute as if they were running on a sequentially consistent

memory system.

Rather than focusing on the parallel execution of a single program, a DSVM-
based system must support consistent virtual memory for multiple processes that
perform transactional updates to the shared memory space concurrently from dif-
ferent nodes. Additionally, when a persistent object system is built in DSVM. the
nesting of invocations on objects makes consistency maintenance more complicated.
Serializability is a suitable correctness criterion for concurrent executions of nested
object transactions in the proposed DSVM based persistent object system. To
ensure that in-memory copies of persistent objects at each node are always consis-
tent, in other words, to ensure that each transaction sees only consistent persistent
objects, the DSVM system must ensure that method invocations on objects are
serializable as nested transactions and must use a memory consistency model that
is compatible with the serialization of nested object transactions. Thus, an object

transactional consistency protocol is needed for the proposed DSVM system.

3.3 Consistency Protocol Design Issues

This section presents the issues that arise in the design of memory consistency

protocols for the proposed DSVM based persistent object system. It begins by

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 39

discussing serializability with closed nested object transactions, emphasizing the
difference between Moss’ [Mos85] and our transaction model. The effects of the
differences in serializability with closed nested object transactions are also analyzed.
Factors that affect the performance of such consistency protocols are then examined

and problems arising in page based DSVM systems are discussed.

3.3.1 Serializability with Closed Nested Object Transac-

tions

Simple mutual exclusion (mutex) locks, as are used in conventional consistency pro-
tocols, do not support serializability with nested object transactions. As discussed.
Moss provides rules for nested two-phase locking to support serializability for closed
nested transactions in a non-object system. The fundamental difference between
mutex locks and the locks required to support closed nested transactions is the
multi-stage release process. Locks are released first for access by sub-transactions
which have the same parent transaction as the releasing sub-transaction, then. for
sub-transactions which have the same ancestors in turn, and finally, for all other
transactions after commitment of the root transaction. Moss’ rules also restrict
internal transactions to manipulate data directly. If a parent transaction needs
to access data, one need only introduce a new child to perform the action on the
parent’s behalf. Thus, only leaf transactions can manipulate data directly in Moss’

model.

In the proposed DSVM system, all data are objects. Due to encapsulation, the
only way to access an object is via a method invocation on it. Object method
executions have local steps which access on object’s local attributes and message

steps which access non-local attributes via method invocations on other objects.

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 40

Thus, both leaf and non-leaf transactions in a given transaction family are allowed

to access object attributes as well as to create sub-transactions.

Two problems immediately present themselves because of encapsulation. First.
unlike Moss’ transaction model, parent transactions not only just retain locks from
their descendent transactions, but must also hold locks for their own needs because
all sub-transactions of a nested object transaction including the root transaction

can access object attributes directly.

Secondly, by using Moss’ two-phase locking rules, deadlock may be introduced
in one transaction family if both a parent and its descendent access the same object
directly or indirectly (so called recursive invocations). When a parent transaction
locks an object first, none of its descendent transactions can obtain the lock to
access the same object because the lock will be held until the parent transaction
commits. On the other hand, the parent transaction cannot commit without its

descendant transactions committing.

Therefore, Moss’ closed nested two-phase locking rules need to be extended to

ensure the serializability of nested object transactions as defined in this thesis.

3.3.2 Memory Consistency and Performance Issues

Once the serializability of closed nested object transactions is guaranteed. a con-
sistency model which supports nesting and objects is needed which is compatible
with the serialization of closed nested object transactions in a distributed persistent
object environment. The performance of such an object transactional consistency
model becomes the next important design criterion. There are two primary ob-
stacles to obtaining better performance in a software implementation of a memory

consistency model.

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 41

Since shared objects may be accessed concurrently by different object transac-
tions from different nodes in the DSVM system, several copies of a shared object
may exist in one or multiple memories at the same time. Thus, maintaining mem-
ory consistency may lead to significant network traffic due to the required transfer
of updated object pages. The high cost of network communication can hurt per-
formance because large amounts of communication can lead to bottlenecks. More
important, in a DSVM system is the software overhead associated with a message
being sent or received. Since sending a message in a software DSVM system is
more expensive then in a hardware DSVM system, it is very important to reduce
the number of consistency related messages (which consist of both short control
messages and large object updates) which must be sent. A highly efficient mecha-
nism for maintaining memory consistency across processors is critical to a practical
DSVM implementation. To minimize the cost of consistency maintenance in the

DSVM system, a relaxed memory consistency model is needed.

In page based systems, the shared virtual address space is divided up into pages.
Transfers between memory and disk are always in units of pages. With virtual mem-
ory pages as the units of consistency, the potentially large size of pages makes the
system prone to false sharing [KJE93]. This problem also limits the performance
of page based systems. False sharing occurs when two or more separate processors
concurrently update different shared data items that co-exist within a shared page
which is cached in their local memories. This may lead to memory inconsistency
(i.e. lost updates) because the transfer unit is a page. Consider the example shown
in Figure 3.2. Processors P, and P, concurrently update different shared data items
z and y respectively which are both located on the same page Z (shown in Fig-
ure 3.2 (1)). If P; then attempts to access data item z, with the invalidate policy

the page Z which is cached in its own memory is invalidated and the page which

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT 42

contains the updated z; is transfered from P, to P,. As a result, however, the

up-to-date y; updated by processor P, is lost (shown in Figure 3.2 (2)).

To prevent false sharing, conventional protocols require processors to grant ex-
clusive access to an entire page before it can be modified. Therefore, multiple
processors may contest the ownership of a page. Thus, the false shared page has
to travel across the network, even though the local copy of the page would have
sufficed since the access is to different data items. The page then “ping-pongs”
back and forth between different processors. This results in heavy network traffic
and represents unnecessary communication. Consider the following scenario. As-
sume that processor P, holds a writable copy of a given page. When processor P,
attempts to write to the page. the system retrieves the page from P; and invali-
dates P,’s own copy. When P, attempts to write to the page again, the opposite
sequence of events will occur. As each processor writes to the page which is held by
the other processor, the page will travel across the network. Consistency protocols

for a page-based system have to deal with this problem.

CHAPTER 3. PROBLEM EVALUATION AND ENVIRONMENT

—_—— - - e = = = = = =y

- e | e e . e = - = - -

Figure 3.2: An Example of False Sharing

43

Chapter 4

Lazy Object Transactional Entry

Consistency

This chapter introduces a novel consistency protocol known as Lazy Object Trans-
actional Entry Consistency (LOTEC) for maintaining memory consistency with
closed nested object transactions in a DSVM-based persistent object system. The
design of the protocol is based on certain initial assumptions. First, consistency
control will be provided on a per-object basis via object-level locking which can
be achieved by including lock and cache consistency information in each entry in
the GDO [MGB96]. Second, to avoid false sharing, it is assumed that attribute
values of multiple objects will not be stored on a single page but attribute values

1 Third, only exclusive

of a single object will be allowed to span multiple pages
locks are supported to simplify the design. Support for shared (“read”/“write”)

locks can be easily derived from what is presented. Fourth, all sub-transactions of

1Since an object’s methods are never modified, we are only concerned about attribute values of
an object when we discuss transferring updated object pages as required for memory consistency

maintenance.

44

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY45

a given root transaction will normally execute at the same node. Finally. directly
or indirectly recursive invocations are not allowed within one transaction family

because handling deadlock is not discussed in this thesis 2.

4.1 Serializability of Closed Nested Object Trans-

actions

This section discusses serializability of closed nested object transactions in the pro-
posed DSVM system. It begins by giving the definition of closed nested object
two-phase locking rules in Subsection 4.1.1. Algorithms for lock operations are
provided in Subsection 4.1.2. Following this, an example of the execution of nested
object transactions under the closed nested object two-phase locking rules is pre-
sented in Subsection 4.1.3. The correctness of the closed nested object two-phase

locking rules is discussed in Subsection 4.1.4.

4.1.1 Closed Nested Object Two-phase Locking Rules

This subsection provides the modifications necessary to Moss’ closed nested two-
phase exclusive locking rules (N2PL) to support closed nested object two-phase
exclusive locking rules (O2PL). Based on Moss’ N2PL rules, the rules for closed

nested object transactions are:

1. Transaction T may acquire a lock if:

(a) no other transaction holds the lock or all transactions that retain the

lock are ancestors of T, and

?Deadlock management is generally a well understood problem.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY46

(b) if T depends on a transaction T", T’ has completed (this will be clarified
shortly).

(8]
H

Once a lock has been acquired by transaction T, the lock is held until T

commits or aborts.

3. A transaction cannot [pre-Jcommit until all its sub-transactions have pre-
committed. When a sub-transaction T pre-commits, the parent of T inherits
all its locks (both holds and retains). After that, the parent retains all the

locks.

4. When a transaction T aborts, it releases all locks it and its sub-transactions
hold and retain unless any of its ancestors retain any of these locks in which

case they continue to do so.

5. When the root transaction T commits, it releases all locks which were held
by itself and all of its sub-transactions. This makes them available to other

transaction families.

Rule (1) enforces an order on nested object transactions. Rule (la) prevents
two nested object transactions from concurrently accessing the same object in a
conflicting manner. Conflicting nested object transactions are ordered in the same

order in which the relevant lock is obtained.

If conflicting transactions are from different transaction families and the lock
is held by one transaction, the requesting transaction has to wait until the root
transaction of the transaction holding the lock releases it. Thus, an order is forced
between conflicting transactions as well as between corresponding transaction fam-

ilies.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY47

If conflicting transactions are from the same transaction family, special consider-
ations are required. Figure 4.1 illustrates a case of conflicting sub-transactions that
may arise in one transaction family. In this case, object O; is accessed by multiple
method invocations made by a root transaction T}. The conflict occurs between two
sub-transactions T7, and T}, created by method invocations mj, and mjg respec-
tively. Sub-transaction T}, holds the lock for object O, needed by sub-transaction
T}, from the same transaction family. If T}, has completed (pre-committed), T},
should be permitted to obtain the lock. If this is not permitted, a deadlock occurs
(shown in Figure 4.2). In this case. T}, waits for T}, to release the lock; T}, waits
for the root transaction T} to commit so that the lock can be released; and the root
transaction T} waits for T}, to pre-commit so that it can commit and release the
lock. Since a completed conflicting sub-transaction will not execute further oper-
ations, this deadlock can be avoided if a sub-transaction is permitted to acquire a
lock when a conflicting sub-transaction from the same transaction family has com-
pleted. In addition, to satisfy the closed nested object transaction definition as well
as to avoid cascading aborts, an acquiring sub-transaction can hold a conflicting
lock only when its ancestor retains the lock. In Figure 4.1, once sub-transacticn T},
pre-commits, sub-transaction T}, is allowed to acquire the lock from its parent T}
which retains the lock from T},. Therefore, an order is enforced between conflicting
sub-transactions in one transaction family. This conflicting order is the same order

in which the relevant lock for O, is obtained.

Rule (1b) enforces an order between dependent object transactions in one trans-
action family to satisfy serializability. Figure 4.3 illustrates an example which may
arise between dependent sub-transactions in one transaction family. In this ex-
ample, method m!, and method mj, are invoked on different objects, so the sub-

transactions T}, and T, created by them do not conflict. However, method my;, is

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY48

Figure 4.1: Conflicting Sub-transactions in One Transaction Family

(%)

Figure 4.2: A Case of Deadlock

dependent on method m{, based on its access (within mi;) to attribute z. There-
fore, sub-transaction T7, should not be executed until after sub-transaction 77, has
completed. Without rule (1b), sub-transaction T}, and sub-transaction T}, could
execute concurrently if they both obtained the required locks. To ensure equiva-
lence to a serial execution, two dependent method invocations must be executed
sequentially in an order consistent with the order of method invocations in their
parent transaction. Therefore, rule (1b) ensures that sub-transaction Tj, will be

blocked until sub-transaction T}, pre-commits.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY49

Figure 4.3: A Case of Dependent Sub-transactions

Rule (2) ensures that each nested object transaction uses strict two-phase lock-
ing in which no locks are released until the termination of the transaction. Strictness

is necessary to avoid the problem of cascading aborts.

Rule (3) defines the partial release of corresponding object locks. This release
permits other sub-transactions in the pre-committing sub-transaction’s immediate
family to see internally committed changes and to make further updates. It also

precludes other sub-transactions from doing so.

Rule (4) defines the activities necessary when a nested object transaction aborts.
When a transaction aborts, its locks and its sub-transactions’ locks that are not
retained by any of its ancestors are released so that blocked transactions can resume.
For an aborting sub-transaction, locks are first released locally to sub-transactions
within the transaction family. If there is no sub-transaction waiting for the locks
in the transaction family at the time it aborts, the locks are then released globalily

to other transaction families.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY50

Rule (5) defines the activities required when a root transaction commits. When
a root transaction commits, it releases all the locks (both held by itself and retained
from all its sub-transactions) to other transactions families. This makes the up-
dates made by itself and all its sub-transactions visible to all transaction families.

Serialization, therefore, is at the level of root transactions.

4.1.2 Algorithms Implementing the Closed Nested Object
Two-phase Locking Rules

Before discussing the details of the algorithms for lock operations, transaction iden-

tifiers (T1D,) and a lock structure for each object must be described.

Transaction Identifiers (T'/D,)

An invocation of method k on object O; made by a DSVM user j is denoted m,.
A root transaction created by method invocation mJ, is denoted T/. A generic

unique [sub-]transaction identifier has the form: T.{“ where z is the root

veedgmadg—1
transaction identifier, d is the depth of the transaction nest, and {;...[4—; uniquely
identifies the sub-transaction by enumerating its location in the transaction family’s

tree.

Lock Structures

Each object has a corresponding lock structure which contains lock information
for the object. Each lock structure has one lock variable to indicate the state of
the lock on the corresponding object. It also has a current holder pointer to a

‘holder’ structure which contains the transaction identifier (TID) of the transaction

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYS51

which currently holds the lock and the node identifier (NID) of the node on which
the transaction executes. Since lock requests may come from different transaction
families or from the same transaction family, the current_holder (see Figure 4.4)
also contains a pointer to a non_locallist. All [sub-|transactions which attempt to
acquire the lock from different transaction families are linked onto the non_local list.
Each element of the non_local list uses the same data structure as the current_holder
to enumerate the transactions requesting the lock. The current_holder also contains
a pointer to a locallist. All sub-transactions from the same transaction family as
the [sub-]transaction holding the lock attempting to acquire the lock are linked onto
the locallist. Each element of the local list also uses the same data structure as

the current_holder. Therefore, a lock structure for object O; is composed of:

lock._variable: a flag. When lock_variable is *0’, the lock for O; is free: When it is

*1’. the lock for O; is held.
current_holder_pointer: points to the current_holder.

current_holder: indicates the [sub-]transaction which currently holds the lock. It
has a Tid field to indicate the holding [sub-]transaction and a Nid field to
indicate the node on which the [sub-]transaction executes. It also contains a

pointer to a non_local list and a pointer to a locallist.

non_locallist: is a FIFO queue for pending lock requests from [sub-]transactions
in transaction families other than that of the current holder. Each element
of the non_ocal list utilizes the same data structure as the current_holder

including pointers to next element in the non_local list and to a localist.

locallist: is a FIFO queue (one per transaction family) for pending lock requests

from the same transaction family as the [sub-]transaction in the corresponding

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY52

element of the non_local list. Each element of the local list utilizes the same
data structure as the current_holder including a pointer to next element of

the local_list.

As mentioned earlier, the GDO [MGB96]| is a global directory of objects used
for managing large collections of persistent objects in a distributed environment. A
GDO entry contains an object’s identifier (OID) which is used as the key value for
searching the GDO. Graham, et al. {GB93, MGB96] suggest that a lock variable
for an object could be placed in each GDO directory entry. By maintaining lock
variables in the globally visible object directory, the state of a lock on an object is
available to all nodes. Each lock structure is thus associated with the corresponding
object’s GDO entry. Together with certain cache consistency information, the lock
information can be used to ensure the consistency of objects when accessed by
distinct and possibly distributed transactions. Figure 4.4 shows an object’s GDO

entry with a corresponding lock structure.

When a [sub-|transaction Y}{,l acquires the lock for object Ok, the re-

S PP
quired GDO entry, GDO, should be cached in memory to speed up subsequent
object management functions. The information contained in GDOj is used to build
page table entries in the current node for object Ok. In one transaction family, mul-
tiple sub-transactions may attempt to acquire the lock for O,. Since it is assumed
that all the sub-transactions of a given root transaction will execute at the same
node, lock operations for object Oy from the same transaction family will be han-
dled locally. That is all local lock requests for a mapped object from the same
transaction family may be queued on a waiting queue in the local lock structure

without remote references. Thus, a local lock structure is desirable for each mapped

object.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY53

Lock Structure

: current !
. holder :
! jock Pointer current_holder X
t .
varable non_local_list :
GDO Entry :ai -
i
- —] |
o | ... 1 — o !
1
: ! I
! (1D TIPNID[—] !
: Y local_lists .
! !
; I
\)
t
! 1
: '
I

Figure 4.4: A GDO Entry with Corresponding Lock Structure

The local lock structure could. theoretically, be associated with the object’s
page entries in the page table. Since the page table is a hardware-read table whose
structure we cannot change, we build the local lock structure in the cached GDOx

entry (CGDOy). Once a [sub-]Jtransaction T7 is granted a lock Lo,, it

voeddm2dat
becomes the current lock holder. Since the current holder’s non.ocallist in GDO;
is unnecessary for handling local lock requests, the CGDO; entry does not contain
the non_local list. Thus, the lock_variable, current_holder_pointer, current_holder,
and local list compose the entire local lock structure for object O in the cached
GDO entry CGDOx. If more sub-transactions in the same transaction family at-

tempt to acquire the lock for object Ok, they will be linked onto the locallist in
CGDOy.

When an object needs to be unmapped from the page table, the object’s CGDO
entry is unlinked from the CGDO, and then is linked onto a delayed write_back

queue.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY54

Figure 4.5 shows a cached GDO entry with its corresponding local lock structure.

When the current holder T{;,1 commits, the current holder is changed to

veeedd—2.0a—1

its parent T,»’;,l.___, and the lock variable is changed to ‘0’ (retain) in the CGDO

wd—2
entry. If the next sub-transaction in the locallist is a descendant of the current
retainer, it acquires the lock becoming the current holder and the lock variable is
set to ‘1’ (hold). Otherwise, transaction T,»’;,h"_‘,a_2 retains the lock until it commits

or aborts, or a sub-transaction acquires it.

: current .

' holder !

! lock pointer current_holder \

Cached GDO Entry variable local_list |
(CGDO) ‘Y o
oD | ... 1] o rON =, i

i

]

]

}

Local Lock Structure

Figure 4.5: A Cached GDO Entry with Corresponding Local Lock Structure

Algorithms

The closed nested object two-phase locking rules are implemented by the trans-
action manager operating on certain lock structures. Each object O; has a cor-
responding lock structure (LS,,) which handles all lock operations for object O;.
When the transaction manager receives a method invocation on object O;, it “trans-
lates” the method invocation into an object transaction. The transaction manager
then sends the lock operation to the appropriate lock structure, LSo,. When the

lock structure, LSp,, acknowledges that the lock is set, the transaction manager

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY55

allows the object transaction to execute. Otherwise, the object transaction will be
blocked until the lock is available. Thus, the transaction manager combined with
the lock structures ensure that a lock is acquired before the corresponding operation

is performed.

Algorithm 4.1 describes the local lock acquisition process. When an object [sub-

transaction 77 attempts to access object Ok, the transaction manager
.l p g

veedd—2da—1
invokes the Local_Lock_Acquisition routine to acquire the lock for Ok. If the object
Oy is unmapped, the request is forwarded to a Global Lock_Acquisition routine
(which uses the virtual address of object O, as the key in searching the GDO)
to manage lock acquisition operation. The requesting transaction is blocked un-
til the lock is granted from the Global_Lock_Acquisition routine. When an object
Ok is mapped, if the requesting transaction and the current holder (or retainer)
do not belong to the same transaction family the request is also forwarded to the
Global.Lock_Acquisition routine. Otherwise, if the lock is retained by an ancestor
of the requesting transaction, the request is immediately granted. If the lock is

held or retained and the retainer is not an ancestor of the requesting transaction

T? , then T7,,

Llendgeada—y

wdaoaly, 2long with the node identifier (N ID,) correspond-
ing to the node on which the requesting transaction executes are linked onto the
locallist in CGDO;.. The requesting transaction is blocked until the lock is granted
following a Local_Lock_Release routine (which releases all locks held and retained

by one sub-transaction to its parent).

Algorithm 4.1 Local_Lock_Acquisition

INPUT : T/, 1, .u, i /*TID of the requesting transaction*/
INPUT : Ok; /*Object being accessed */
INPUT : CGDOg; [* cached GDOj entry for object Or*/

INPUT : NID,; /* the node-id on which the requesting transaction executes */

IF (O is unmapped) THEN

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY56

Forward request to Global Lock_Acquisition;
ELSE /* O is mapped*/
IF (T}, . 1, .1, belongs to the same transaction family as the current holder

or retainer) THEN ‘

IF (the lock is retained by an ancestor of T‘-" I
CGDOy.lock.variable — *1’; /* T, | =
current_holder.Tid — T7; , . ;
current_holder.Nid — NID,
CGDOy.current _holder_pointer — current_holder;
Send the lock grant to the requester;

ELSE ‘

/*lock is held or retained but retainer is not an ancestor of Ti" lodgoadas */

vdyada,) THEN
_gets the lock */

Link T/, . .., , along with NID, onto the lock list of CGDO;
ELSE
/* T‘-{,h.m,d_‘z',d_l is from a different family than the current holder or retainer*/

Forward request to Global_Lock_Acquisition;

End of Algorithm

Algorithm 4.2 describes the global lock acquisition process. This process uses
the object identifier O as the key to search the GDO to find the GDOy entry. If the
lock for object Oy is free, the request is immediately granted. When the lock is not

free, if there is a [sub-]Jtransaction in the non_locallist which belongs to the same

transaction family as the requesting transaction T'J.'h , then T,{,l

Ll ,nla—2.da-s seresld=2:dd 1

along with the node identifier (N/D,) corresponding to the node on which the
requesting transaction executes are linked onto the locallist of that transaction.

T?

& v'"vld—Qvld—l

is blocked until the lock is granted by the Local_Lock_Release rou-

tine. Otherwise, the requesting transaction’s identifier T-J",1 along with the

e dd—24da—1
node identifier NID, are linked onto GDO\’s non_local list. Then the requesting
transaction is blocked until the lock is granted by a Global Lock._Release routine
(which releases all locks held or retained by one transaction family at its completion

to other transaction families).

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY57

Algorithm 4.2 Global_Lock_Acquisition

INPUT : T}, . .., i /*TID of the requiring transaction*/

INPUT : Oy; /*Object being accessed */

INPUT : GDOy; /* GDOg entry for object Or*/

INPUT : NID,; /* the node-id on which node the requesting transaction executes */

G DO = GDO_Lookup(Og);
IF (GDOg.lock_variable = 0) THEN /*the lock is free*/
G DOy lock variable — *1’; /* T! gets the lock*/

. dieeddo2idan
current_holder.Tid — T7, ., ., .
current.holder.Nid — NID;y;
G DOy.current _holder — current_holder;
Send the lock grant to the requester with a copy of GDOg to build CGDOy;
ELSE /*lock is not free*/

IF (there is a transaction in the non_local list which belongs to the same family

as T/), 1, s1ay) THEN
Link T}y ;. .., and NID, onto the locallist of that family;
ELSE |
Link T/, , _, . and NID, onto the nonlocallist:
tlpedd=—240d—1

End of Algorithm

Algorithm 4.3 describes the local lock release process. When a sub-transaction
pre-commits, locks retained and held by the sub-transaction are passed up to its
parent who retains the locks. If the next requesting sub-transaction in the lo-
callist of the CGDO entry is a descendant of the current retainer, it acquires
the lock. When a root transaction commits or aborts, the release request is for-
warded to the Global_Lock_Release routine. When a sub-transaction aborts, the
locks which are not retained by any of its ancestors are first released locally to
sub-transactions within the transaction family. If there is no sub-transaction in the
family waiting for the lock at the time it aborts, the release request is forwarded to
the Global_Lock_Release routine. If the aborting sub-transaction’s ancestors retain
the locks, they continue to do so until they [pre-Jcommit, abort, or the locks are

acquired by their descendants.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY58

Algorithm 4.3 Local_Lock_Release
INPUT : T}

'vll"--vld—2!ld—l
INPUT : OID_LIST;
/*all objects retained and held by the releasing or aborting transaction*/
INPUT : Release-mode; /* € {PC, RCA, SA} */

INPUT : CGDO; /* cached GDO entries for objects in OID_LIST*/

;*/*TID of the releasing or aborting transaction*/

CASE (Release-mode = PC): /*a sub-transaction pre-commits*/
FOREACH (O in the OID_LIST) DO
current _holder.Tid — T}, , ;' /* releases the lock to the parent*/
CGDOg.lock_variable — '0°; /*parent retains the lock*/
IF (T}, is an ancestor of the next transaction in the local list)
THEN
CG DOQOg.current _holder_pointer — next TID in the locallist;
CGDOyg lock_variable — ‘1’; /*holds the lock*/
Send the lock grant to the requester;
CASE(Release-mode = RCA): /*a root transaction commits or aborts*/
Forward release request to Global_Lock_Release;
/*Releases locks to other transaction families*/
CASE(Release-mode = SA): /*a sub-transaction aborts*/
FOREACH (O in the OID_LIST) DO
IF (O is retained by an ancestor of T; bodgzolat
current.holder.Tid — TID of the ancestor;
CGDOg lock_variable — ‘0’;/*the ancestor retains the lock*/
Unlink O from OID_LIST;
IF (the next transaction in the local list is the ancestor’s descendant)
THEN
CGDOy.current _holder_pointer — next TID in the locallist;
CG DO lock_variable — ‘17; /*holds the lock*/
Send the lock grant to the requester;

1reerrddm2

) THEN

ELSE
IF (CGDOyg.current_holder_pointer '= NULL) THEN
CGDOyg.current _holder.pointer — next TID in the locallist;
Unlink O from OID_LIST; /* releases the lock locally first */
IF (OID_LIST != NULL) THEN
Forward release request to Global_Lock Release;
/* releases locks globally */

End of Algorithm

Algorithm 4.4 describes the global lock release process. Since an original lock

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY59

holder in a GDO entry may not be a root transaction, the lock is released to other
transaction families by its root transaction at the time the root transaction commits
because it passed the lock up to its parent when it pre-committed. This implies
that when a root transaction commits and releases a lock to other transaction
families, the current lock holder transaction in the corresponding GDO entry may
actually be recorded as a descendant of the releasing root transaction. When a
root transaction commits, if there is no other transaction waiting for the lock in
the non_locallist, the lock is set to free. Otherwise, the current lock holder will be
changed from the releasing transaction or a descendant of the releasing transaction

to the next requesting [sub-|transaction in the nonocallist.

Algorithm 4.4 Global_Lock_Release
INPUT : T},

divendg—2,q-t
INPUT : OID_LIST;
/*all objects retained and held by the releasing or aborting transaction*/

INPUT : GDO; /* GDO entries for objects in OID_LIST*/

; /*TID of the releasing or aborting transaction*/

FOREACH (O in the OID_LIST) DO _
Ir ((Ti{lh---qld—bld—l = current_holder.Tid) or (T,-J_,l
current_holder.Tid)) THEN
IF (no other transaction waits for the lock) THEN
G DOy .lock . variable — “0’; /*lock is free*/
G DOj..current _holder_pointer — "NULL’;
ELSE
/*the next requesting transaction in the non_localist gets the lock*/
G DOj..current_holder_pointer — the next TID in the non.local list;
Send the lock grant to the requester with a copy of GDO\ to build

CGDOy;

Lrsl., 1S an ancestor of
reerrbd2vbdm)

End of Algorithm

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®60

4.1.3 An Example

To understand lock management under the closed nested object two-phase lock-
ing rules, and especially to understand exactly what happens when the locks are
released. an example of the execution of the nested object transactions shown in
Figure 4.6 is presented. There are three transaction families 735°, 75", and Té"’ in
this example. Transactions 72° and T¢' execute on node A, and transaction Tg°
executes on node B. Assume that both nodes A and B initially have a copy of

O, but they were unmapped after their last accesses. Conflicting sub-transactions

arrive at the shared object O, in the order: Tg9, — Tal, — T — TS, — Td3.

Figure 4.6: A Example of the Execution of Nested Object Transactions

On node A, the transaction manager invokes the Local_Lock_-Acquisition routine
to acquire lock Lg, for sub-transaction Tyd,. Since Oy is unmapped on node A, the
request is forwarded to the Global_Lock_Acquisition routine. If the lock is free, T8,
becomes the current holder in GDO4. GDQy is then cached in memory on node

A as CGDOy4. When the transaction manager invokes the Local_Lock_Acquisition

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®61

routine to acquire lock Lo, for sub-transaction T5gy on node A, although object O,
is mapped on node A, because T34, and the current holder 7§, do not belong to the
same transaction family the request is forwarded to the Global_Lock_Acquisition
routine. The Global Lock.Acquisition routine then links T5g, onto the non_local list
in GDO4 because the lock is not free. When the transaction manager invokes the
Local_Lock_Acquisition routine to acquire lock Lo, for sub-transaction 737, on node
A. since T3¢, belongs to the same transaction family as the current holder 75§, it
is linked onto the local list in CGDQO,. When the transaction manager invokes the
Local_Lock_Acquisition routine to acquire lock Lo, for T3}y, since it and the current
holder T8, do not belong to the same transaction family, the request is forwarded to
the Global_Lock_Acquisition routine. There, it is linked onto the local list of Tsg,
because sub-transaction T3, is from the same transaction family as the waiting
transaction Tggo which is already in the non_ocallist of GDQO,. When the trans-
action manager invokes the Local_Lock_Acquisition routine to acquire lock Lo, for
sub-transaction T on node B, since O, is not mapped on node B, the request is also
forwarded to the Global_Lock.Acquisition routine. The Global_Lock_Acquisition
routine then links T¢3 onto the non_local list in GDO,. Figure 4.7 shows G DO, for

the example following all global lock acquisition requests.

[}

current_holder non_local_list !

GDO4 \ u — — o :
— —t T ou

04| ...] T2 A Tl AT | Tol B

! ! :

, - l

: ’I;j‘(‘, Al focal_l sts:

[} !

Lock Structure

Figure 4.7: O;'s Lock Structure after Global Lock Acquisition Requests

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY62

On node A, when T§§, pre-commits, the Local_Lock_Release routine is invoked to
release lock Lo, to its parent Tgd which retains the lock. When T§§ pre-commits, the
Local_Lock_Release routine is invoked to release the lock to its parent T;° and the
next waiting sub-transaction Tgf, acquires lock Lo, (because T3° is an ancestor of
the waiting sub-transaction Ty%,). When T3}, pre-commits, the Local_Lock_Release
routine is invoked to release Lo, to its parent 737?. Then when Tg{ pre-commits, its
root transaction Ty° retains the lock. Once the root transaction Ty commits, the
Global Lock_Release routine is invoked to release all the locks it holds and retains
to other transaction families. At this point, lock Lo, is released to other conflicting
[sub-]transactions waiting in the non_locallist of GDOy. Figure 4.8 shows each
state of the lock structure in CGDO, handling the lock operations. just described,

for object O4 from transaction family 73° on node A.

When the Global _Lock_Release routine is invoked to release lock Lo, from the
root transaction T,°, the lock appears to be released from its descendant trans-
action Ty, in GDO,4 because Tys, was the original lock holder. The next waiting
transaction T, in the non_locallist of GDOy4 acquires the lock. GDO, is cached
without its non_local list in the memory of node A as CG DO, once again. When
T¢go pre-commits, the Local _Lock_Release routine is invoked to release the lock to its
parent T5J which retains the lock. When T4 pre-commits, the Local_Lock_Release
routine is invoked to release the lock to the root transaction Tg' of T5y and the
next waiting transaction Ty;q acquires the lock (because 75" is an ancestor of Tg}y).
Similarly, the lock is passed up to Tgf from Tgyy, then up to T3' from T3} af-
ter Tg)y and T} complete in sequence. Once the root transaction T3' commits.
the Global Lock_Release routine is invoked to release all the locks 75’ holds and
retains to other transaction families. At this point, lock Lo, is released to other

[sub-]transactions waiting in the non_locallist in GDO,. Figure 4.9 shows the state

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®63

CGDOs«
State 1: 'I‘m“‘]’is the current holder, Tg‘l’ois waiting in the local_list;
Os| .. 1| TP A] T9 A

State 2: after T, 2% pre-committed, its parent T30 retains the lock;

Os | ... 0 = T A [© A

- 10

State 3: after T, 2pre-committed, its parent T,** retains the lock:

5 - —=0 -
O, ... 0 = TIA T A

- 010

Since ’I'n;g is a descendant of retainer T ® , it hoids the lock;

o | .. 1 "_Tm“gAFI—

4

State 4: after T 2 pre-committed, its parent T ¢ retains the lock;
O, | .o 0 > T% A |

State 5: after T 2 pre-committed, its parent T 3’ retains the lock;
O, | wu 0 = T A =

£

Figure 4.8: Lock Operations for O4 for Family 73° on Node A

of the lock structure for object Oy from the transaction family 75' on node A as

the lock operations are handled.

When the Global_Lock_Release routine is invoked to release lock Lo, from root
transaction T2', the next waiting transaction Teg in the nonocal list of GDOy
acquires the lock. GDQ; is cached in node B as CGDO,. Figure 4.10 shows each
state of the lock structure in GDQO4 while handling the lock operations for object

O, from different transaction families.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®64

CGDO«
1
State 1: T ‘;('nis the current holder; T :lois waiting in the local_list;
04/ ... 1| T T2 A] T2 A [

State 2: after T, pre-committed, its parent T 3 ~retains the lock:

o i - 1
0s | . o] T{T¥ AT A

State 3: after T2 pre-committed, its parent T 2' retains the lock:

Os | ... 0 = T A S ThH| A
Since TS;‘(; is a descendant of T ;‘. it holds the lock;

] N
o, | . 1 T A

State 4: after T 3, | pre-committed, its parent T;, retains the lock;

Os | .. 0 > T3 A [

State 5: after T | pre-committed, its parent T;' retains the lock;

P I |]
0, | .. 0 - T A I

4

Figure 4.9: Lock Operations for O, for Family 7¢! on Node A

4.1.4 Correctness

The closed nested object two-phase locking rules are similar to Moss’ closed nested
two-phase locking rules. They both employ strict two-phase locking which is conflict
serializable for each [sub-|transaction. Since the transaction model is not the same
as Moss', the characteristics of objects and their access (via method invocation)
make a non-object system and a persistent object system different. As discussed
in Chapter 3, in a nested object transaction family, any transaction (not just leaf

transactions) can directly access object attributes. The closed nested object two-

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®65

State 1: after all global lock acquisitions are processed;

non_local_list

T
2

GDO, .
Osf .. T TOA | T2 A T B [
Y
. local_list
AL
State 2: after T jtommits, T 3 holds the lock;
0+ | .. =T A | TY B [
Y
Tl A [T

State 3: after T 3 commits, T} holds the lock:

04 | 1| 4 T% B

Figure 4.10: Lock Operations from Different Transaction Families in GDO, Entry

phase locking rules take into account these special features and differences and add

additional functionality.

A method invoked by a nested object transaction does not affect the serialization
of the nested object transaction unless it is on the same object (i.e., a directly or
indirectly recursive invocation). When a parent transaction invokes a method on
another object, due to encapsulation, the parent transaction and its descendant
transaction can not conflict with each other. When a parent transaction invokes
a method on the same object directly or indirectly, it introduces deadlock because
the parent transaction can directly access the objects’ attributes too. To avoid this
kind of deadlock, we assume that no directly or indirectly recursive invocations

occur in a transaction family.

Due to encapsulation, transactions executed on different objects cannot conflict

with each other. Only when multiple object transactions execute concurrently on

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY66

the same object can conflicts occur. To ensure serializability, conflicting method
invocations must execute in the same order as in some serial execution (i.e., be
serializable). Rule (1), discussed in Subsection 4.1.1, prevents two nested object

transactions from concurrently accessing an object in a conflicting manner.

If conflicting object transactions are from different transaction families. they
are delayed until the root transaction of the conflicting transaction holding the
lock commits or aborts. As a result, an order is introduced between conflicting
transactions as well as corresponding transaction families. This order is the same
order in which the relevant lock is obtained. A partial order produced using nested
object two-phase locking rules among a set of transaction families is equivalent to

a serial order which is the user’s preferred order.

If conflicting transactions are from the same transaction family, no two conflict-
ing sub-transactions will have an ancestor-descendant relationship because there
are no recursive invocations allowed. Therefore, no deadlock occurs. By rule
(1a), a sub-transaction is permitted to hold a conflicting lock only if all the con-
flicting sub-transactions which execute before the requesting sub-transaction have
pre-committed and the lock has been retained by an ancestor of the requesting
sub-transaction. Thus, only one sub-transaction within a transaction family may
hold a lock at a time. Any other sub-transaction that requests the same lock will
be blocked until the sub-transaction holding the lock pre-commits and an ances-
tor of the requesting sub-transaction comes to retain the lock. Consequently, an
order will result between conflicting sub-transactions within a transaction family.
This order is the same order in which the relevant lock is obtained. Therefore, if
all sub-transactions in one transaction family are invoked in a depth-first order.
which is the only correct serial order within a transaction family, the enforced or-

der among conflicting sub-transactions is consistent with the depth-first order. In

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®67

addition, rule (1b) precludes all dependent sub-transactions from executing concur-
rently. [t makes such sub-transactions execute sequentially in an order consistent
with the order of method invocations in their parent transaction. Therefore, if
all sub-transactions in one transaction family are invoked in the depth-first order.
a partial order scheduled according to the closed nested object two-phase locking

rules in one transaction family is equivalent to a depth-first serial order.

Since the special features made by objects and the closed nested object trans-
action model do not affect the serialization order in one transaction family or in a
set of transaction families. a serializable execution order will be produced by using

closed nested object two-phase locking rules.

4.2 Object Transactional Entry Consistency

The QObject Transactional Entry Consistency (OTEC) protocol is presented in this
section. This is followed by a discussion of the necessary modifications to the
lock operation algorithms provided in Subsection 4.1.2 to support OTEC. Then
the update transfer algorithm for OTEC and modified lock release algorithms are
provided. An example is given to illustrate how OTEC works to ensure memory

consistency in the proposed page based DSVM system.

4.2.1 Object Transactional Entry Consistency

The closed nested object two-phase locking rules ensure that the concurrent exe-
cution of a set of nested object transactions is serializable. To maintain memory
consistency, a DSVM system needs to ensure that concurrently executing nested

object transactions reference only object copies which are up-to-date. A DSVM

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®68

system must ensure that each nested object transaction never accesses a shared
object without having received all updates to the shared object. Thus, a mem-
ory consistency protocol is required which efficiently transfers all updated objects

(guarded by corresponding locks) to maintain memory consistency.

When a partial release of a lock is performed in one transaction family, the lock
is granted to a single sub-transaction from the local lock list in the object’s CGDO
entry. Due to the data shipping nature of the DSVM system, all sub-transactions
of a given root transaction will normally execute at the same node. Therefore,
nc network communication is required for such partial releases. When a lock is
fully released from a root transaction, the object guarded by the lock is free to be
acquired by other transaction families which may be from different nodes. Thus.
to ensure the consistency of in-memory copies of an object across interconnected
nodes. network communication is required to transfer the updated object at this
time. This may result in significant network traffic. Instead of propagating an
updated object to all nodes which cache the object, it can be propagated to other
in-memory copies in a lazy fashion thereby reducing the amount of consistency
information communicated. For example, propagation may be done as in lazy
release consistency [KCZ92| or entry consistency [BZS93]. The updated object is
transferred to a remote node only when an existing [sub-|transaction from another

family at the remote node is granted object access.

Lazy release consistency and entry consistency are refinements of release consis-
tency. To ensure the efficient update of cached data, lazy release consistency and
entry consistency both lazily pull modifications across the interconnection network
during lock acquisition (i.e. only for the acquiring processor). In this way, both the

number of control messages and the amount of data exchanged are reduced.

On a lock acquisition, lazy release consistency requires all updates to any shared

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY®69

data that precede the acquisition to be propagated to the acquiring processor. Since
entry consistency requires each shared data object to be attached to a synchroniza-
tion object, on a lock acquisition, only updates to the shared data object associated
with the acquired lock that precede the acquisition must be propagated to the ac-
quiring processor. As a result, entry consistency requires less data traffic than lazy

release consistency.

In the proposed DSVM system, locking is explicitly tied to data objects. there-
fore, the entry consistency model provides a natural fit. The Object Transactional
Entry Consistency protocol is defined by combining the closed nested object two-

phase locking rules with the entry consistency model.

Definition 4.1 A memory model is said to be object transactional entry consis-

tent, if:

When a lock is fully released from a root transaction, the subsequent acquiring
[sub-]transaction T'ID, from another family at a remote node is not allowed to
access the shared object guarded by the lock until all updates to the object have

been performed with respect to T1D,. |

Informally, a shared access is considered performed at a process when its re-
sult is visible at that process [PK95]. In a page based system since one object’s
attributes can span multiple pages, instead of transferring all the pages of an up-
dated object, only the pages which were updated more recently than those residing
at the remote node need to be transferred. By doing this, OTEC can ensure that
distinct, concurrent method invocations on objects executing at different nodes see
a consistent view of the shared memory. Further, since OTEC pulls only an object’s
updated pages across network, only during the global lock acquisition, and only for

the subsequent acquiring [sub-|transaction from a remote node, it further reduces

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYT70

both the number of control messages and the amount of data exchange required

for memory consistency maintenance.

This can be clarified by considering the example as shown in Figure 4.11. Trans-
action families 77! and Tg¢? execute on node A. Transaction families T} and T} ex-
ecute on nodes B and C respectively. Assume that all three nodes initially have an
identical copy of object O; that spans five pages in their memories (in the write-back
queues since O; has been unmapped at all nodes). Conflicting [sub-|transactions

arrive at the shared object O; in the order:

Tet = Ty —= T} — T2 — Tt

t

Figure 4.11: An Example of an Execution of Four Transaction Families

Transaction 77! is granted the lock for O; first and modifies page 0, 1, 2, and 3
of O;. When it releases the lock, the next waiting sub-transaction T}, is granted the
lock. Before T;’O can access the object, the four updated pages must be transferred
to node B from node A (shown in Figure 4.12 (A)). After T}, modifies pages 0
and 3, it releases the lock to it parent 7}. Then the waiting sub-transaction T

is granted the lock from its ancestor T7}. Since T}, and T}, are from the same

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYT1

transaction family on the same node B. no network traffic is required at this time
(TJ-b0 and T}’l shared a single copy of O; on node B). After TJ‘-’l modifies page 1, it
releases the lock to its parent ij. Once the root transaction T;’ releases the lock.
the next waiting sub-transaction T2 on node A is granted the lock. Pages 0, 1, and
3 which were updated by T§, and T7, are transfered to node A from node B before
T2? modifies page 4 (shown in Figure 4.12 (B)). When T§? pre-commits, its parent
T2? retains the lock. Once the root transaction T¢? commits, the lock is released to
the next waiting transaction T¢ on node C. The pages 0, 1, 2, 3, and 4 updated by
Tet, TP, and T¢? are transferred to node C from node A before Tf modifies pages
0 and 2 (shown in Figure 4.12 (B)). Under OTEC, the last updating node C has
all up-to-date pages of object O;. However, not all the up-to-date pages may be
updated on node C (e.g. the up-to-date pages 1, 3, and 4 on node C were updated

on other nodes A and B respectively).

4.2.2 Algorithms for OTEC

Object access in a page based DSVM system was described in Subsection 3.1.3.
If a set of [sub-]transactions at different nodes concurrently access a shared object
O;, when the lock for O; is released by a sub-transaction’s root transaction on one
node the object O; is unmapped from that node’s page table and the object’s pages
are linked into the node’s write-back queue. Once the subsequent requesting [sub-
Jtransaction is granted the lock, its segmentation fault is resolved and object O;’s
pages are mapped into the requesting node’s page table. The required subset GDO;

is cached in the requesting node’s memory as CGDO;.

Under OTEC, if the subsequent acquiring [sub-]transaction is from the same

node as the releasing transaction, the acquiring [sub-]transaction can reclaim O;’s

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYT72

\
\

e . - - — - - — - - e e - e e . e = e o - e e = -

]
.
q -

1
1
L |
I
|

b
After T jexecuted

o

&

o

w

\\

- -{--

Y

\

Figure 4.12: An Example of Updated O; Transferred under OTEC

pages from the write-back queue without transferring any updated pages from other
nodes. If the subsequent acquiring [sub-]transaction is from a different node, the
system uses the information in CGDO; to transfer object O;’s updated pages to
the acquiring node. Since object O;’s pages are all up-to-date on its last updater
which is the node on which the last updating transaction executed, each object’s
last updater must be tracked to allow the system to transfer updated object pages.
Although object O;’s pages may not be all up-to-date on other nodes, some of the
nodes (specific pages’ last updaters) may still have some up-to-date pages. When

a [sub-]transaction acquires the lock for O; on such nodes, those pages do not need

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYT3

to be transfered from the object’s last updater.

To determine which pages were updated more recently than the pages residing
at a remote acquiring node, the system has to know each page’s last updater. In the
example shown in Figure 4.12, after transaction T releases the lock for object O;.
all O;’s five pages are up-to-date on its last updater (node B). When sub-transaction
T3? on node A is granted the lock, since page 2’s last updater is node A and since
page 4 has not been subsequently updated, these two pages are up-to-date on the
acquiring node A. Thus, only pages 0. 1, and 3 which were updated more recently
than the pages residing at node A are transfered to node A from O;’s last updater
(node B) before T3? modifies page 4. When transaction TY is granted the lock on
node C, all five pages are stale on node C because they were updated on nodes
A and B respectively. Thus, object O;’s five pages are transfered from O;’s last
updater (node A) to node C before Tf accesses pages 0 and 2. Therefore, each

page’s last updater must be maintained to allow the system to determine which

pages have the most recent version of the data.

Each object’s last updating node identifier as well as each page’s last updating
node identifier are maintained in the object’s GDO entry. The last updating node
identifier for each object and each page can be updated during lock release using
information on “dirty” pages from the virtual memory hardware. The algorithms
defined in Subsection 4.1.2 for the local lock release process and the global lock

release process need to be modified to deal with this information.

Before discussing the modification of the algorithms for lock release and the
update transfer algorithm for OTEC, modifications to the data structures must be

described.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY74
OID_LIST

In Algorithm 4.3 (Local_Lock_Release) and Algorithm 4.4 {Global lock_Release).
the data structure OID_LIST was used for linking all objects held or retained by
the releasing or aborting transaction. Each OID_LIST’s element simply contained
the objects’ identifier (OID). Now, it needs to include a field to indicate whether
or not the corresponding object has been updated. [t also needs a field to indicate
how many pages the object spans and a field for each object page to indicate if that

page was updated. Therefore, each element of an OID_LIST is now composed of:

oid: indicates the object that is held or retained by the releasing or aborting trans-

action.

update: a flag. When it is ‘0’, the object has not been updated; When it is °1°,

the object has been updated.
page_no: indicates how many pages the object spans.

page_l: a flag for each page [. When it is ‘0’, the page [has not been updated:
When it is ‘1’, the page [has been updated.

GDO

Each object’s GDO entry needs a field, last_updater, to indicate the object’s last
updating node (i.e. the object’s “last updater”). It also needs a field, page_no.
to indicate how many pages the object spans and a field, page;, for each page to
indicate page I’s last updating node (i.e. the page’s last updater). When an object’s
GDO entry is built, its page,; fields are set to empty to indicate the object has the

same version as in persistent storage. As discussed, an object’s last updater is not
p g J P

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY75

necessarily the same as each page’s last updater. but once the object’s pages which
were updated more recently than those residing at a remote acquiring node are

determined. they can always be retrieved from the object’s last updater.

Algorithms

Algorithm 4.5 describes the modified local lock acquisition process for OTEC?.
When a root transaction aborts, all updates to objects made by it and its sub-
transactions have to be removed. So all update fields in its OID_LIST must be set
to ‘0’ to indicate that no updates were made to the objects linked in the OID_LIST.
Then the release request is forwarded to the Global_Lock_Release routine. When a
sub-transaction aborts, the locks which are not retained by any of its ancestors are
first released locally to sub-transactions within the transaction family. If there is no
sub-transaction in the family waiting for the locks at the time it aborts. the release
request is forwarded to the Global_Lock_Release routine with all update fields in its
OID_LIST set to 0.

Algorithm 4.5 Local_Lock_Release

INPUT : T/ . ; /*TID of the releasing or aborting transaction*/

i1 peenld—2.0d—1
INPUT : OID_LIST;
/*all objects retained and held by the releasing or aborting transaction*/
INPUT : Release-mode; /* € {PC, RC, RA, SA} */
INPUT : NID,; /*node-id on which the releasing or aborting transaction executes*/

INPUT : CGDO; /* cached GDO entries for objects in OID_LIST*/

CASE (Release-mode = PC): /*a sub-transaction pre-commits*/
FOREACH (O in the OID_LIST) DO
current holder.Tid — T7; , 5 /* release locks to the parent*/
CGDOg.lock_variable — ‘0’; /*parent retains the lock*/

3This is a modification of Algorithm 4.3. The new lines are italicized in the pseudo-code of

Algorithm 4.5.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY76

IF (Ti{ll.--..la-z
THEN
CG DOy.current_holder_pointer — next TID in the local list;
CG DOg.lock_variable «— ‘1’; /*holds the lock*/
Send the lock grant to the requester;
CASE(Release-mode = RC): /*a root transaction commits*/
Forward release request to Global_Lock_Release;
/*Releases locks to other transaction families*/
CASE (Release-mode = RA): /*a root transaction aborts*/
FORFEACH (O in the OID_LIST) DO
OID_LISTy.update — ‘0’;
Forward release request to Global_Lock_Release;
/*Releases locks to other transaction families*/
CASE(Release-mode = SA): /*a sub-transaction aborts*/
FOREACH (O in the OID_LIST) DO _
IF (O is retained by an ancestorof 77, ., .
current.holder.Tid «— TID of the ancestor;
CGDOg.lock_variable — ‘0’;/*the ancestor retains the lock*/
Unlink Ok from OID_LIST;
IF (the next transaction in the local list is the ancestor’s descendant)
THEN
CGDOyg.current_holder_pointer — next TID in the local list;
CGDO lock_variable — ‘1’; /*holds the lock*/
Send the lock grant to the requester;

is an ancestor of the next transaction in the locallist)

) THEN

ELSE
IF (CGDOg.current_holder_pointer '= NULL) THEN
CG DOy..current _holder_pointer — next TID in the local list:
Unlink O from OID_LIST; /*releases the lock locally first;*/
ELSE
OID_LIST,.update — °0’;
IF (OID_LIST '= NULL) THEN
Forward release request to Global_Lock_Release;

End of Algorithm

Algorithm 4.6 describes the global lock release process for OTEC!. For each
object O in a committed root transaction’s OID_LIST, the node identifier (NI D;)

4This is a modification of Algorithm 4.4. The new lines are italicized in the pseudo-code of

Algorithm 4.6.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY77

on which node the root transaction executed is stored in the last_updater field in
GDOy entry as object Oi’s last updater. Then for each page [, if page [has been
updated. the NID, is stored in the page, field in GDOy as page ['s last updater
to indicate that page ! was updated at node NID,. When a root transaction or
a sub-transaction aborts, updates are discarded. Therefore, it is not needed to

update the last_updater field in a released object’s GDO entry.

Algorithm 4.6 Global_Lock_Release
INPUT : T/,

1, ,...,ld-g,ld_l
INPUT : OID_LIST;
/*all objects retained and held by the releasing or aborting transaction*/
INPUT : NID,; /*node-id on which the releasing root transaction executes*/

INPUT : GDO; /* GDO entry for objects in OID_LIST*/

; /*TID of the releasing or aborting transaction*/

FOREACH (O in the OID-LIST) DO ‘
IF (T}, .1, su,, = current_holder.Tid) or (T oty e
current _holder.Tid)) THEN

[F (OID_LISTy.update = ‘1’) THEN /*O\ has been updated™/
GDOy. last_updater — ‘NID,’: /*stores object’s last updater */
FORFEACH (page; of O in GDOy) DO
IF (OID _LISTy.pagel = *1') THEN
/* page | has been updated */
GDOy.Page; = ‘NID,’;
/¥ stores each page’s last updater in GDOy */
IF (no other transaction waits for the lock) THEN
G DOg.lock_variable — ‘0’; /*lock is free*/
G DOg.current _holder _pointer — ‘NULL’;
ELSE
/*the next requiring transaction in the non_local list gets the lock*/
G DOy.current_ _holder_pointer — the next TID in the nonlocallist:
Send the lock grant to the requester and copy of GDOy to build
CGDOy;

is an ancestor of

End of Algorithm

Algorithm 4.7 describes the update transfer process for OTEC. When a lock is

fully released from a root transaction, if an existing [sub-|transaction from another

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYTS8

family is granted access to the corresponding object at a remote node, the object’s
pages which were updated more recently than those residing in the remote node’s
memory must be transferred to the remote node. To determine which updated
pages of an object on the releasing node are more recent than those residing on the
remote node. the Updates_Transfer algorithm compares each page I’s last updater
stored in CGDO; with the remote acquiring node identifier. If the remote acquiring
node identifier is not the same as page [’s last updater and the page; field in the
CGDO entry is not empty, then the page in the remote acquiring node is stale.
In this case, the up-to-date page ! needs to be transferred from the object’s last

updater to the remote acquiring node.

Algorithm 4.7 Updates_Transfer

INPUT : T}, i1, /*TID of the releasing transaction*/

INPUT : NID,; /*node-id on which the acquiring transaction executes*/
INPUT : Oy; /* Object being accessed */
INPUT : CGDOg; /*CGDO entry for object Oy */

VAR Page_List : list of Or’s updated pages which need to be transferred from object
Oy’s last updater to the acquiring node NID,;

FOREACH CGDOg.Page; DO
I¥F (CGDOk.Page; # NID,) and (CGDOy.Page; # ‘NULL’) THEN
Link page ! into Page_List;
Transfer all pages in the Page_List from CGDOy.last_updater to the remote acquiring
node NIDg;

End of Algorithm

4.2.3 Example of Updated Page Transfer under OTEC

We use the example shown in Figure 4.11 to illustrate how OTEC ensures memory
consistency, especially, how it determines an object’s up-to-date pages in a page-

based DSVM system. The lock operations on shared object O;’s lock structure in

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY79

GDOQO; and in each cached CGDO; are the same as was described in Subsection 4.1.3.
A partial order is enforced among [sub-|transactions within a transaction family as
well as among a set of transaction families as shown in the initial state of GDO; in
Figure 4.13. How the updated pages of O; are transferred across the three nodes
was shown in Figure 4.12. Now we focus on how to determine which object’s pages
were updated more recently than their local copies by using the algorithms defined

in Subsection 4.2.2.

When T?! globally releases the lock on node A, the node identifier A is stored in
GDO;’s last _updater field and in the pageo, page,, pagez, and page; fields (shown in
Figure .13, State 1). After the next transaction T}, is granted the lock, each page
I’s last updater stored in CGDO; is compared with the acquiring node identifier B.
If they are not the same and the page; field in CGDO; is not empty, then page {
in the acquiring node, B, is stale. Therefore, the updated pages 0, 1, 2, and 3 are
transferred from O;’s last updater node A to node B before T ;’0 modifies pages 0
and page 3 of O;. After T}’o pre-commits, the lock is locally released to its parent
T? and sub-transaction T? is then granted the lock by T7. T}, modifies page 1
without network traffic because T}, and Tfl belong to the same transaction family
and therefore share a single copy of O; at node B. After Tf’l pre-commits, the lock
is passed up to its parent Tf. Once T} commits, during the global lock release
process, node identifier B is stored in GDO;’s last_updater field as well as in the
pageo, page,, and page; fields (shown in Figure 4.13, State 2). When the next sub-
transaction T@2 is granted the lock, since page 2’s last updater (node A}, stored in
CGDO;’s Page, field, is the same as the acquiring node A, and since the Page,
field is empty, they are up-to-date on the acquiring node A. So only the updated
pages 0, 1, and 3 are transfered from node B to node A. T3} then modifies page

4. Once the lock is globally released from the root transaction T2, node identifier

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY80

A is stored in GDO;’s last_updater field as well as in the page, field (shown in
Figure 4.13, State 3). When the next transaction 77 is granted the lock, the last
updaters of pages 0, 1, 2, 3 and 4 (which are nodes B, B, A, B, and A respectively)
are all different than the acquiring node C. Therefore, the updated pages 0, 1, 2, 3.
and 4 are transferred from O;’s last updater node B to node C before T is allowed
to modify pages 0 and 2. Finally, when TY globally releases the lock, the node
identifier C is stored in GDQO;’s last_updater and pageg and pages fields (shown in
Figure 4.13, State 4).

The initial state:

page_no last_updater
Lock
J P P] P? Pl P4 ' B =
oi ... 5 1] 1A T, B I T2A T,
T?|B
State 1: after T *! released the lock:
oi ... s| alajalal [a] 1| ~{T2B T2|A (T, |c
L
T®|B
State 2: after T® released the lock:
0. 5|/B|BJA|B| |B]I — T2 A]| TS| CH

State 3: after T 2! released the lock:

Oi

...... siIBI|B|A|B|A|A|1l | —T¢| CF=

State 4: after T f released the lock:

0.

...... S5|C{ BjC| BlA| C| O

Figure 4.13: Lock Operations and Page Updates Information in G DO; under OTEC

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYS1

4.3 Lazy Object Transactional Entry Consistency

This section introduces the Lazy Object Transactional Entry Consistency (LOTEC)
protocol for a page based DSVM system. It begins by providing the definition of
lazy object transactional entry consistency. Then the update transfer algorithm for
LOTEC and the modified lock release algorithms are provided. Following this, an
example to show how LOTEC works to ensure memory consistency in the proposed

DSVM system is presented.

4.3.1 Lazy Object Transactional Entry Consistency

In a page based virtual memory environment, there may still be some unnecessary
data transferred while using OTEC. It is possible that a nested object transaction
will not update all the pages of a shared object and it is also possible that a
subsequent {sub-]Jtransaction may not access all the stale pages of the shared object.
This means that only a subset of the pages to be referenced by a subsequent [sub-

Jtransaction may actually be stale.

In a persistent object system, each method of an object may access certain
attributes. The compiler knows which attributes are in which pages (assuming
objects are aligned to page boundaries). Therefore, the compiler can conservatively
estimate which attributes a method may access. Thus, in the proposed DSVM
system, it is possible for the system to transfer only the stale pages which may
actually be referenced by the subsequent [sub-]transaction at the time of a lock
acquisition. By doing so, we can further reduce unnecessary data transfer between

nodes.

In the example shown in Figure 4.12, transaction TJ{’0 attempts to modify pages

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYS2

0 and 3 of O;. The OTEC model requires all updated pages for object O; made by
T*! (in this case, pages 0, 1, 2 and 3), to be transferred to node B from O;’s last
updater node A, even though Tfo is not going to access page 1 and page 2. When
sub-transaction T2 is granted the lock, updated pages 0, 1, and 3 are transfered
from node B to node A even though TZ! is not going to access those pages. Once
transaction T is granted the lock released by T¢? and attempts to modify pages 0
and 2, all updated pages 0, 1, 2, 3, and 4 made by T7' and T? and T¢Z respectively
are transferred to node C from the object’s last updater, node A, even though T is

not going to access pages 1. 3, and 4. In total, twelve updated pages are transferred

across the network.

Figure 4.14 shows the same example using the modified LOTEC protocol. When
T}, is granted the lock released by T7! and attempts to modify pages 0 and page 3.
only the updated pages 0 and 3 are transferred to node B. When T]{’1 is granted the
lock from its root transaction T} which retained the lock from T}, the referenced
updated page 1 is transferred from page 1’s last updater, node A, to node B (Shown
in Figure 4.14 (A)). When sub-transaction T is granted the lock from Tf and
attempts to modify page 4, there is no transfer needed because page 4 is up-to-
date on node A. Once T¥ is granted the lock from Tg? and attempts to modify
pages 0 and 2, the referenced updated page 0 and page 2 made by T}, and T?! are
transferred to node C from page 0’s last updater node B and page 2’s last updater
node A respectively (shown in Figure 4.14 (B)). In total, only five updated pages

are transferred across the network. Therefore, using LOTEC, the number of pages

exchanged is reduced relative to OTEC.

There are two issues associated with using LOTEC in a page based system.
First, under the non-lazy OTEC protocol, the system retrieves all updated pages

of an object for the next acquiring transaction at lock acquisition. All object’s pages

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY83

Page 0

Page 1

Page 2

Page 3

Page 4

1
|
1|t
11!
V!
1L
1 ¢
)t
]!
1!
1
]

i
After T ?exccuted:

Oi
Page 0

Page 1

Page 2

Page 3

Page 4

b
After T j executed

Figure 4.14: An Example of Updated O; Transferred under LOTEC

are up-to-date on the releasing node (the object’s last updater). Therefore, if a [sub-
Jtransaction releases a lock locally or globally, the next acquiring [sub-]transaction
from the same node may access the object guarded by that lock without needing to
get up-to-date pages from other nodes. Thus, no network traffic is involved at the
time the lock is exchanged within one transaction family or between transaction
families on the same node. Under the LOTEC protocol, the system retrieves only
the required subset of an object’s updated pages that will be referenced by the
next acquiring transaction. So there may still be stale object pages in the releasing

node (i.e. the object’s last updater). If the next acquiring [sub-]transaction from

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY84

either the same transaction family or a different transaction family at the same node
attempts to access different pages than the releasing [sub-]transaction, and if those
pages are stale, then the next acquiring [sub-]transaction needs to communicate
with other nodes to get the up-to-date pages. Thus, network traffic may be required
at the time the lock is exchanged within one transaction family as well as between
transaction families on the same node. This is not additional communication only
deferred communication. This delayed transfer is illustrated using the example
shown in Figure 4.14 (A). When transaction T}, on node B is granted the lock
retained by its root transaction Tf and attempts to access page 1, the system must
then transfer page 1 from page 1’s last updater (node A) to the acquiring node B.
This is because the last updating sub-transaction T%, did not access page 1. Page

1 is still stale at node B.

The second issue arising when using LOTEC is that it is possible that the up-
dated pages of an object might need to be transferred from multiple nodes (shown in
Figure 4.14 (B) for node C) during lock acquisition. All updated pages of an object
are transferred from the same node during lock acquisition under OTEC (shown in
Figure 4.12). So LOTEC requires more message exchanging than OTEC, but the
messages are smaller. Note, however, that LOTEC effectively distributes transfers
over different links in a switched network. This allows beneficial concurrency in

communication.

LOTEC pulls the updated pages of an object across the the network only when
those pages are referenced by the next acquiring [sub-]transaction. Thus, LOTEC
will require more short control messages than OTEC because the system may need
to retrieve referenced updated pages from different nodes and communication may
be required during the lock acquisition within one transaction family. Compared

with exchanging large object updates, however, LOTEC will reduce unnecessary

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY85
data exchange in a page based system.

Definition 4.2 A memory model is said to be lazy object transactional entry con-

sistent, if:

When a lock is released from a [sub-]transaction, the subsequent acquiring [sub-
Jtransaction T/ D, is not allowed to access the shared object guarded by the lock
until updates to the object’s pages which may be referenced by it have been per-

formed with respect to T'1D,. N

4.3.2 Algorithms for LOTEC

Since LOTEC lazily pulls a subset of an object’s updated pages across the network
when those pages are accessed by a subsequent [sub-]transaction, the last updater
of an object may not have all the up-to-date pages in its memory. Thus, all updated
pages may not be retrieved from the object’s last updater and the last_updater field
for an object’s last updater is no longer necessary in its GDO entry. Because, under
LOTEC. the system may need to transfer the referenced updated pages for the next
acquiring sub-transaction at the time the lock is exchanged within one transaction
family, the pages updated by the releasing sub-transaction need to be recorded in
the object’s CGDO entry once the lock is locally released to releaser’s parent. This
allows the system to retrieve referenced updated pages from the pages’ last updaters
at the time the lock is granted to the subsequent acquiring sub-transaction in the

same transaction family running on the same node.

Algorithm 4.8 describes the modified local lock release process for LOTECS.

When a sub-transaction pre-commits, during local lock release (to its parent), node

5This is a modification of Algorithm 4.5.The new lines are italicized in the pseudo-code of

Algorithm 4.8.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY86

identifier NI D, needs to be recorded in the corresponding page fields in CG DOy

to indicate that those pages were updated on node NID,.

Algorithm 4.8 Local_Lock_Release
INPUT : T-J;, ; /*TID of the releasing or aborting transaction*/

INPUT : OID 15T

/*all objects retained and held by the releasing or aborting transaction*/
INPUT : Release-mode: /* € {PC, RC, RA, SA} */

INPUT : NID,;

/*node-id on which the releasing or aborting transaction executes*/

INPUT : CGDO; /* cached GDO entries for objects in OID_LIST*/

CASE (Release-mode = PC): /*a sub-transaction pre-commits*/
FOREACH (0O in the OID_LIST) DO
FOREACH (OID_LISTy.page_l in OID_LIST;) DO
IF (page.l = 1) THEN
CGDOy.page; — NID,;
current_holder.Tid — T7, , . ;/* releases locks to the parent*/
CG DOg.lock_avriable — “0’; /*parent retains the lock*/
IF (T}, .., is an ancestor of the next transaction in the locallist)
THEN
CGDOg.current_holder_pointer — next TID in the local list;
CG DOy lock_variable — ‘1’; /*holds the lock*/
Send the lock grant to the requester;
CASE(Release-mode = RC): /*a root transaction commits*/
Forward release request to Global_Lock_Release;
/*Releases locks to other transaction families*/
CASE(Release-mode = RA): /*a root transaction aborts*/
FOREACH O in the OID_LIST DO
OID_LIST;.update — ‘0’;
Forward release request to Global_-Lock_Release;
/*Releases locks to other transaction families*/
CASE(Release-mode = SA): /*a sub-transaction aborts*/
FOREACH (O in the OID_LIST) DO
IF (O is retained by an ancestorof T/, ., .
current.holder.Tid — TID of the ancestor;
CGDOy.lock_variable — ‘0’;/*the ancestor retains the lock*/
Unlink O from OID_LIST;
IF (the next transaction in the local list is the ancestor’s descendant)
THEN

) THEN

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCYS7

CGDOg.current_holder_pointer — next TID in the local list:
CG DOy lock_variable — *17; /*holds the lock*/
Send the lock grant to the requester;
ELSE
IF (CGDOg.current_holder_pointer '= NULL) THEN
CG DOyg.current_holder_pointer — next TID in the local list;
unlink Oy from OID_LIST; /*releases the lock locally first:*/
ELSE
OID_LISTi.update — ‘07;
IF (OID_LIST != NULL) THEN
Forward release request to Global_Lock_Release;

End of Algorithm

Algorithm 4.9 describes the modified global lock release process for the LOTEC
protocol 6. The only difference from Algorithm 4.6 is that there is no need to set

the last_updater for each object’s GDO entry.

Algorithm 4.9 Global_Lock_Release

INPUT : Ti{l;.---.ld_z.ld-;’- /*TID of the releasing or aborting transaction*/
INPUT : OID_LIST;

/*all objects retained and held by the releasing or aborting transaction*/
INPUT : NID,; /*node-id on which the releasing root transaction executes*/

INPUT : GDO; /* GDO entry for objects in OID_LIST*/

FOREACH O in the OID_LIST DO 7
IF (T}, 1, si1,., = GDOg.current holder) or (T},
G DOy.current_holder)) THEN
IF (OID_LISTk.update = *1’) THEN /* O has been updated*/
/*The following line from Algorithm 4.6 has been removed*/
/*GDOy.last_updater — ‘NID,’;*
/*stores object’s last updater */
FOREACH page; of O in GDO; DO
IF (OID_LISTi.pagel = ‘1’) THEN
/* page | has been updated */

Lol is an ancestor of
1ererdda2ibd—1

5This is a modification of Algorithm 4.6. One line is removed from Algorithm 4.6 and it is

italicized in the pseudo-code of the Algorithm 4.9.

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY88

GDOg.page; = ‘NID,;
/*stores each page’s last updater in GDOg. */
IF (no other transaction waits for the lock) THEN
G DOg.lock_variable — “0’; /*lock is free*/
G DO .current _holder.pointer — ‘NULL’;
ELSE
/*the next requiring transaction in the nonlocal list gets the lock*/
G DOyg.current _holder_pointer — the next TID in the non_ocal_list:
Send the lock grant to the requester and copy of GDO; to build
CGDOy;

End of Algorithm

Algorithm 4.10 describes the update transfer process for LOTEC. To determine

which referenced updated pages of object Ok are more recent than others, the

Updates_Transfer algorithm compares the last updater of each referenced page [

stored in CG DOy with the acquiring node identifier. If the acquiring node identifier

is not the same as a referenced page [’s last updater and the page; field in CGDOx is

not empty, then the referenced page { in the acquiring node is stale and the updated

page needs to be transferred from page ['s last updater. Different pages may, of

course. be transferred from different nodes depending on their last updaters.

Algorithm 4.10 Updates_Transfer

INPUT : T?
INPUT :
INPUT :
: CGDOg; /* CGDO entry for object Oy */
INPUT :

INPUT

: ; /*TID of the releasing transaction*/
Ldy,enld—2da—y

NID,; /*node-id on which the acquiring transaction executes*/
Ok; /*Object being accessed*/

Page_List; /* list all pages of O which will be referenced; each element of

Page_List has a last_updater field to store the page’s last updater */

FROEACH (Page_List; for O in Page_List) DO
IF (CGDOg.page; # NID,) and (CGDOk.page; # ‘NULL’) THEN

Page_List; last_updater — CGDOg.pagey;

ELSE

Unlink page; from the Page_List;

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY89

Transfer pages listed in the Page_List from pages’s last updating nodes. if some pages
have the same last updating node, they will be transferred from the same node all in
one;

End of Algorithm

4.3.3 Example of Updated Page Transfer under LOTEC

The same example shown in Figure 4.11 is used to illustrate how LOTEC ensures
memory counsistency, especially, how an object’s updated pages which will be ref-
erenced by the next acquiring transaction are determined in a page based DSVM
system. The lock operations in the shared object O;’s lock structure in GDO; and
in each cached CGDO; entry are the same as was described in Subsection 4.1.3. A
partial order is enforced among [sub-|transactions within one transaction family as
well as among a set of transaction families as shown in the initial state of GDO;
in Figure 4.15. How the referenced updated pages of O; are transferred across the
three nodes was shown in Figure 4.14. We now focus on how to determine which
referenced updated pages of an object are more recent than others by using the

algorithms defined in Subsection 4.3.2.

When transaction T?! globally releases the lock on node A, the node identifier
A is stored in GDO;’s pageg, page,, pagea, and pages fields as their last updater
(shown in Figure 4.15, State 1). After the next transaction, T, is granted the lock
on node B, each referenced page’s last updater stored in CGDO; is compared with
the acquiring node identifier B. Since TJ% attempts to modify page 0 and page 3, and
they were both last updated at the releasing node A which is not the same as the
acquiring node B, the updated pages 0 and 3 of O; are transferred to node B. After
T}, pre-commits, the lock is locally released to its parent T? and node identifier B is

stored in CGDO;’s pageg and page; fields. Sub-transaction T;’l is then granted the

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY90

lock from Tf. Since the referenced page 1's last updater in CG DOy is not the same
as the acquiring node B, the updated page 1 is transferred from its last updater.
node A, to the acquiring node B before T}, is allowed to modify it. After T}, pre-
commits, the lock is locally released to its parent T}’ and nede identifier B is stored
in CGDO;’s page, field. When T}’ commits, during the global lock releasing, node
identifier B is stored in GDO:;’s pagey, page:, and page; fields as the corresponding
pages’ last updater (shown in Figure 4.15, State 2). When the next sub-transaction
Tg? is granted the lock on node A, because the referenced page, field in CGDO; is
empty (which means that it has not been updated), no transfer is needed before T}
modifies page 4. After 722 commits, page 4’s last updater, node A, is stored in the
page; field in GDO; (shown in Figure 4.15, State 3). Once the next transaction 77
running on node C is granted the lock, since the node identifiers in the referenced
pageo and page, fields of CGDO; are B and A respectively, which are not the same
as the acquiring node C, the updated pages 0 and 2 are transferred from their last
updaters node B and A, respectively, to the acquiring node C. After Tf commits.
it globally releases the lock and node identifier C is stored in GDO;’s pageo and

page; fields as their last updater (shown in Figure 4.15, State 4).

CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTENCY91

The initial state:
page_no

Lock
P P P,P. P ¥
] . | R b |+ 22 | — c
Oil ... 5 ! TlA =] |T,|B T2 A 7| T,
Y
a T®|B |-
State 1: after T ; released the lock: '
O ... 5| Alalaja | T T tela T | c
Y
T®|B [
b i
State 2: after T . released the lock:
0. 5 |B|B|A|B 1 = T2 AT |T¢|C
State 3: after T *! released the lock:
Oif SIB{B|A|B|A 1 >Tic C

State 4: after T f released the lock:
O]l... 5/|C] B{C| BlA 0

L

Figure 4.15: Lock Operations, Page Updates Information in GDO4 under LOTEC

Chapter 5

Network Load Analysis

This chapter presents the results of analysis performed to assess the network perfor-
mance of OTEC and LOTEC. The closed nested object two-phase exclusive locking
rules (O2PL) are used to provide concurrency control on a per-object basis in a sim-
ulated DSVM system. We then measure the number of short control messages and
the number of object data exchange messages required to maintain memory consis-
tency for an arbitrary shared object using each of three protocols: OTEC, LOTEC.,
and a conservative object transactional entry consistency protocol (COTEC) which
transfers the entire object state at the time the lock is granted to a remote node.
The simulation strategy and parameters are discussed first. This is followed by a
description of the design of the simulator. The chapter concludes by presenting the

results of the study.

While this is not a “traditional” simulation, it does provide a suitable abstrac-
tion of the described consistency protocols that allows us to gather information
on the network load induced by their use. This is the key consideration in the

acceptance of a consistency protocol. By incorporating the actual consistency and

92

CHAPTER 5. NETWORK LOAD ANALYSIS 93

lock management algorithms into the simulation process we also increased our con-
fidence in their correctness and gained insight into potential implementation issues.

Some readers may consider our approach to be emulation rather than simulation.

5.1 Simulation Strategy

In a DSVM system, when closed nested object two-phase exclusive locking is used
to synchronize conflicting nested object transactions, deadlock may occur between
transaction families. Since deadlock is not discussed in this thesis, rather than
measuring the number of exchanged messages for all objects shared by all concur-
rently executing nested object transaction families, we simply measure the number
of exchanged messages for an arbitrary individual object shared by the concur-
rently executing nested object transaction families. By doing so, we can evaluate
the performance of the three memory consistency protocols for any object shared

by [sub-]Jtransactions without concern for deadlock between transaction families.

For any selected shared object, a partial order among a set of conflicting trans-
action families which concurrently execute in the system is produced using O2PL.
Since blocked conflicting transaction families cannot execute until the acquiring
transaction family commits, this partial order is equivalent to a serial order in
which all conflicting transaction families execute sequentially. Therefore, we can
randomly select an execution order for a set of concurrently executed transaction
families as the partial order produced by O2PL for any shared object. When all
transaction families execute in the randomly selected order sequentially, an exe-
cution order produced using O2PL for any selected object among all conflicting

[sub-]transactions is the same as the partial order which is assumed.

We evaluate the network performance of the three memory consistency protocols

CHAPTER 5. NETWORK LOAD ANALYSIS 94

(OTEC, LOTEC, and COTEC) by counting the number of short control messages
and the amount of data exchanged for large object updates in maintaining memory
consistency. The simulation allows us to compare the performance of the three

protacols.

5.1.1 Message Counts

Since concurrency control is provided on a per-object basis via object-level locking,
communication occurs on lock and unlock operations. To maintain consistency,
an updated object is transfered only when a transaction acquires the lock using

any of COTEC, OTEC, or LOTEC. Thus messages are counted for the acquiring

transaction during lock acquisition.

When a {sub-|transaction acquires a lock from a remote node, two short control
messages and one long data message are required to maintain memory consistency
under COTEC and OTEC. One short control message is sent to the object’s last
updating node to request forwarding of the updated object to the acquiring node.
Then the object’s last updating node sends a long data message (consisting of the
updated object’s pages) in response to the acquiring node'’s request. After the
acquiring node receives the updated object, it sends a short control message to
the object’s last updating node to acknowledge successful receipt of the data. For
OTEC, the long data message includes only the object’s updated pages while for
COTEC it includes all the object’s pages.

For LOTEC, two short control messages and one long data message are required
not only when the acquiring [sub-]transaction is from a remote node, but possibly
also when the acquiring [sub-|transaction is from the same node. Only three mes-

sages are required if referenced stale pages have the same last updater. Otherwise,

CHAPTER 5. NETWORK LOAD ANALYSIS 95

more messages are required. These are exchanged between the acquiring node and
the different pages’ last updaters. For LOTEC, the long data message includes only

the object’s updated pages that are referenced by the acquiring {sub-|transaction.

To compare the three different memory consistency protocols, exchanged mes-
sages are counted by size, in bytes. We simulate where each control message is 32.

64 or 128 bytes, and where the page size is 1024, 2048, or 4096 bytes.

5.1.2 Parameters for the Simulation

We have designed a set of experiments to study the performance of the three mem-
ory consistency protocols described earlier. In the simulated system, there are 16
nodes. To ensure that every node has active transactions, we assume that each node
creates 4 nested object transaction families. Each parent transaction can have 0
to 10 sub-transactions and the depth of a nested transaction family can be 1 to 3.
Therefore, there are 64 nested transaction families concurrently executing across 16
nodes in the system. Each transaction family is created randomly, and can have at
most 11,110 sub-transactions. [t is assumed that there are no directly or indirectly
recursive invocations on an object (to avoid deadlock in one transaction family).
When each transaction family and its sub-transactions are randomly created, the

objects they invoke are randomly selected and checked to avoid deadlock.

The maximum number of pages for each object and the maximum number of
objects in the system are specified as input parameters. When the GDO is created.
the number of pages for each object is set between 1 and the maximum number
of pages. This ensures that objects in the system have varying numbers of pages.
When a nested transaction family is randomly created, each transaction can update

any number of pages in the invoked object.

CHAPTER 5. NETWORK LOAD ANALYSIS 96

The values chosen for these parameters have been selected to maximize the prob-
ability of conflicting transactions since this is the interesting case. Fewer conflicting

transactions will never affect network load negatively.

5.2 The Simulator

We have constructed a simple simulator to evaluate the protocols presented ear-
lier. The DSVM system modeled by the simulator consists of a collection of nodes
interconnected by a network. Each node in the network has a processor and lo-
cal memory which acts as a cache. The simulator also maintains a GDO, and a
global lock server using the closed nested object two-phase exclusive locking rules

for synchronization among transaction families across all nodes.

Each node is modeled as a set of three processes: a transaction generator. a
transaction manager, and a local lock server. The transaction generator generates
a set of nested object transaction families which concurrently execute on the node.
Each transaction family can access any shared object described in the GDO as
long as no directly or indirectly recursive invocations occur within the transaction

family.

The transaction manager receives lock operation requests from transactions and
then sends the requests to the local or global lock server. For a lock request, once
the local or global lock server acknowledges that the lock is set, the transaction
manager allows the acquiring transaction to execute. Otherwise the requesting
transaction will be blocked until the lock is available. When the lock is granted
from the global lock server, the transaction manager caches the object’s GDO entry
in the local memory. Before the acquiring transactions are allowed to execute, the

transaction manager builds an updated version of the object using the current

CHAPTER 5. NETWORK LOAD ANALYSIS 97

memory consistency protocol (COTEC, OTEC, or LOTEC). For a lock release
request, when a root transaction requests lock release, the transaction manager
“unmaps” all objects which are held or retained by the root transaction, then sends
a request to the global lock server to release the locks to other transaction families.
When the release request is from a sub-transaction, the transaction manager sends
the request to the local lock server. Once the local or global lock server responds, the
lock is released to the next waiting {sub-]transaction and the transaction manager

resumes that [sub-]transaction.

Using O2PL, the local lock server handles all lock operations locally which are
sent by the transaction manager for the sub-transactions from the same transaction

family as the current lock holder.

5.3 Results and Discussion

This section evaluates the performance of COTEC, OTEC, and LOTEC in the
simulated DSVM system. We analyze differences in performance by changing the
maximum number of pages per object and the maximum number of objects in the
system for a randomly selected subset of the objects which are shared by randomly
created nested transactions. The size of control messages and the size of pages
are also varied. It is assumed that all 16 nodes initially have an updated copy
of any shared object in their memories (caches). Subsection 5.3.1 presents some
of the simulation results. It is followed by a discussion of their significance in

Subsection 5.3.2.

CHAPTER 5. NETWORK LOAD ANALYSIS 98

5.3.1 Results

Figures 5.1 to 5.4! present the results obtained by changing the maximum num-
ber of pages per object and the maximum number of objects in the system, and
show the total number of bytes for messages transfered during lock acquisition un-
der the three memory consistency protocols for a randomly selected subset of the
shared objects. The short control message size is fixed at 64 bytes, and the page

size is 2048 bytes.

Figure 5.1 shows the results for the three protocols when each object spans 1 to
5 pages and 20 objects are shared repeatedly by 33 to 102 randomly created {sub-
Jtransactions across 10 to 16 nodes. When objects have a small number of pages
and are shared by many [sub-jtransactions repeatedly, COTEC and OTEC have
very similar performance. This is because when an object with a small number of
pages is shared by multiple sub-transactions repeatedly within one transaction fam-
ily, although conflicting sub-transactions may update different sets of the object’s
pages, all its pages or nearly all its pages may be updated at the time the lock is
released from the root transaction. In such a case, OTEC will transfer the same or
nearly the same number of pages as LOTEC for a subsequent remote access. The
same reasoning applies to LOTEC’s performance. However, since LOTEC delays
transferring updated pages until they are referenced, LOTEC achieves slightly bet-
ter performance than both COTEC and OTEC. In one case LOTEC may actually
have to transfer more bytes than both COTEC and OTEC because it may transfer
the same pages as COTEC and OTEC but does so using more control messages
(e.g. object Og). When a shared object has a single page, the three protocols

always have the same performance (e.g. objects Og and O,s).

'Raw result data is presented in Appendix A.

CHAPTER 5. NETWORK LOAD ANALYSIS 99

oo 02 04 06 o8 011 013 Ot5 017 019
Shared Objects

Figure 5.1: 1-5 pages/object, 20 objects, 33-102 conflicting transactions

Figure 5.2 shows the results for three protocols when each object spans 10 to
20 pages (i.e. larger objects) and 20 objects are shared by 33 to 85 randomly
created {sub-]Jtransactions across 12 to 16 nodes. Compared with the previous
scenario, OTEC has better performance than COTEC in every case although their
performance is still very close. LOTEC has much better performance than both
COTEC and OTEC in every case. This is because when an object spans a large
number of pages the possibility that all its pages are updated by multiple sub-
transactions within one transaction family is smaller than when an object spans a

small number of pages.

Figure 5.3 shows the results for the three protocols when each object spans 1 to
5 pages and 100 objects are shared by 5 to 24 randomly created [sub-|transactions
across 3 to 9 nodes. Compared with the first test case, an object is now shared by
less sub-transactions within one transaction family. OTEC has better performance
than COTEC in most cases, and LOTEC also has better performance than both
COTEC and OTEC in most cases. This is because when an object with a small

CHAPTER 5. NETWORK LOAD ANALYSIS 100

Bytes

Ol0 O11 o012 013 O14 015 016 017 018 019
Shared Objects

Figure 5.2: 10-20 pages/object, 20 objects, 33-85 conflicting transactions

number of pages is shared by fewer sub-transactions from the same transaction
family, the possibility that all its pages are updated within one transaction family
is smaller than when it is shared by a large number of sub-transactions repeatedly
within one transaction family. As discussed previously, when an object has a single
page, the three protocols have the same performance (e.g. object Ojs), and when
LOTEC transfers the same pages as COTEC and OTEC but requires more short
control messages than they do, it has worse performance (e.g. object Osz). In such
a situation, the performance of LOTEC is only marginally worse because the size
of a control message is relatively small compared to the size of a page. There is one
case in the results where LOTEC has the same performance as both COTEC and
OTEC but the shared object does not have a single page. This is because LOTEC
transfers the same number of pages and requires the same number of short control
messages as COTEC and OTEC (e.g. object O4). This happens when conflicting
[sub-]transactions access all of an object’s pages. When an object has fewer pages,

this is more likely to happen.

CHAPTER 5. NETWORK LOAD ANALYSIS 101

8588883 8888558838

Shared Objects

Figure 5.3: 1-5 pages/object, 100 objects, 5-24 conflicting transactions

Figure 5.4 shows the results for the three protocols when each object spans
10 to 20 pages and 100 objects are shared by 3 to 22 randomly created [sub-
|transactions across 2 to 11 nodes. Compared with the previous three test cases.
objects now span a large number of pages and are shared by less [sub-|transactions
within one transaction family. In this case, both OTEC and LOTEC achieve better
performance. LOTEC appears to offer increased benefit as the level of concurrent
sharing across distributed nodes increases (e.g. comparing object O;s shared by
22 [sub-]transactions from 11 nodes to O;; shared by 12 [sub-]transactions from 3

nodes).

Figure 5.5 shows the total number of bytes of all the messages transferred under
COTEC, OTEC, and LOTEC for object 0,3 in the second test case. The size of
short control messages varies between 32, 64 and 128 bytes, and the size of pages
varies between 1024, 2048 and 4096 bytes. 68 short control messages and 34 long
data messages (646 pages under COTEC and 618 pages under OTEC) among 15
nodes are transferred under COTEC and OTEC. 210 short control messages and 105

CHAPTER 5. NETWORK LOAD ANALYSIS 102

WCOTEC

600000 1 ROTEC
RLOTEC

Bytes

g o ™ =
8 83888555388 8
Shared Objects

09
012
o18
o3

Figure 5.4: 10-20 pages/object. 100 objects, 3-22 conflicting transactions

long data messages (420 pages) are transferred under LOTEC. Note that LOTEC
transfers less bytes than both COTEC and OTEC as the page size increases. When
the size of short control messages decreases, the benefit of LOTEC increases only
slightly. The large number of short control messages required by LOTEC does not

hurt its performance in terms of the amount data sent.

5.3.2 Discussion

All simulation results indicate that LOTEC has the best performance in terms
of the amount of data sent by the three memory consistency protocols. Results also
show that LOTEC transfers at most the same set of pages as COTEC and OTEC.
but it may require more short control messages than COTEC and OTEC because

there is no single last updater for all an object’s pages.

LOTEC only transfers referenced updated pages to an acquiring transaction

during lock acquisition. When a [sub-]transaction (pre-)commits, only the refer-

CHAPTER 5. NETWORK LOAD ANALYSIS 103

BCOTEC

g 3
§§§

-~

Short control message size/Page size

128/1024
64/1024
32/1024

128/4096
64/4096
32/4096

Figure 5.5: The results by changing the size of the short and the long messages

enced pages are updated and other pages may still be stale in the memory of the
acquiring processor. If the acquiring transaction is from the same node as the releas-
ing transaction but references different object pages which are stale, LOTEC needs
to retrieve the updated pages from those pages’ last updating nodes. If referenced
pages are last updated on different nodes, LOTEC needs to retrieve the pages from
different nodes. Therefore, there are two cases when LOTEC has potentially the
same or worse performance than COTEC or OTEC. The first case is when LOTEC
transfers the same number of updated pages and requires the same number of short
control messages as the other protocols. The other case is when LOTEC retrieves
the same number of pages or a few pages less than them but requires more short
control messages. Since the size of control messages is typically much smaller than
the size of data messages, in the worse case, LOTEC will only transfer a few more

bytes than OTEC.

The results show that, in general, LOTEC transfers less pages than COTEC

CHAPTER 5. NETWORK LOAD ANALYSIS 104

and OTEC in the simulated DSVM system especially when the sharing level among
distributed nodes increases. Since the worst case for LOTEC will happen only oc-
casionally and it hardly hurts the performance when compared to the number of
large data updates reduced by LOTEC, we conclude from our simulation results
that LOTEC will, generally, transfer far fewer bytes than both COTEC and OTEC
in total in a large scaled distributed persistent object system. Further, when ob-
Jects span more pages or the page size is bigger, LOTEC achieves even better

performance.

We have assessed the effectiveness of the three consistency protocols by count-
ing messages and their lengths, then we evaluated the cost of each message in
terms of its length alone (i.e. time to send was determined solely by the number
of bytes sent). However, the real message cost is actually a function of message
length and network communication protocol overhead which is the time required
to push a message into the network interface at the sending end and pull it out at
the receiving end. Thus, the message cost is composed of both software overhead
and network latency. Recent advances in network technology have dramatically
improved communication performance for network applications. The development
of high bandwidth, and low latency networks has shifted the bottleneck in com-
munication from the limited bandwidth of networks to the high latency of the
network communication software. Despite this, small messages are important in

many applications (e.g. LOTEC).

To investigate the value of the consistency protocols presented in this thesis
in a conventional network environment with high software overhead and in a2 new
network environment with much lower software overhead, we re-assessed the perfor-
mance of the three protocols in terms of message cost based on both the estimated

software overhead and the transmission rate of the network. Message cost is mea-

CHAPTER 5. NETWORK LOAD ANALYSIS 105

sured as Tegsage = 2N Ty + Li / Ty, where N, is the number of messages (small
and large), T, is the software cost for each message sent or received, L; is the total

length of the transfered messages, and T} is the transmission rate.

Figures 5.6, 5.7, and 5.8 show the results of the modified message cost under
the three protocols for object Oy4 in the second test case. 68 short control messages
and 34 long data messages (510 pages) are transfered under COTEC, while with
the same number of messages required as COTEC, 495 pages are transferred under
OTEC. 188 short control messages and 94 long data messages (316 pages) are
transferred under LOTEC. The software cost for each message sent and received
varies between 100usec, 20usec, Susec, lusec, and 500nsec. The transmission rate
of the network varies between 10Mbytes/sec, 100Mbytes/sec. and 1Gbyte/sec 2.

The size of short control messages is 32 bytes, and the page size is 4096 bytes.

Figure 5.6 shows that in a network environment with 10Mbytes/sec transmis-
sion rate, the message cost decreases under LOTEC as the software cost is reduced.
In a network environment with 100Mbytes/sec transmission rate, the message cost
decreases again when the software cost decreases (shown in Figure 5.7). However.
in a network environment with 1Gbyte/sec transmission rate, the software cost be-
comes critical and must be very low. LOTEC achieves better performance than
both COTEC and OTEC until the software cost reduces to 1usec (shown in Fig-
ure 5.8). Therefore, the importance of reducing per-message software overhead is
significant to make our protocols practical particularly for high speed networks.
Development of new mechanisms with much lower software overhead will provide
a better environment to support applications which have many short messages like

LOTEC. Recently, such mechanisms have been developed which reduce software

2Good performance for LOTEC would also be expected for lower transmission rates more

typical of wide area networks (e.g. 100Kbps).

CHAPTER 5. NETWORK LOAD ANALYSIS 106

overhead successfully (e.g. Active messages [ECGS92] and U-Net [EBBV95]).

250000 1 M COTEC

Microseconds

100us 20us Sus 1us 500ns
Software cost

Figure 5.6: Message cost for O;4 when transmission rate is 10Mbps

Microseconds

100us 20us Sus 1us 500ns
Software cost

Figure 5.7: Message cost for O14 when transmission rate is 100Mbps

CHAPTER 5. NETWORK LOAD ANALYSIS

Microseconds

10Qus 20us Sus 1us 500ns
Software cost

Figure 5.8: Message cost for 0,4 when transmission rate is 1Gbps

107

Chapter 6

Conclusions and Future Work

This thesis has presented two new DSVM consistency protocols, OTEC and LOTEC.
for closed nested object transactions in a page based persistent object system. The

performance of the protocols has been demonstrated via a simulated DSVM system.

6.1 Contributions

A model of nested object transactions has been introduced to suit method exe-
cutions in a persistent object system. In the proposed DSVM system, multiple.
concurrent users can access objects by invoking methods that manipulate their at-
tributes. An access submitted by a DSVM user consists of a single object method
invocation that may invoke other methods on other objects producing method in-
vocations that are nested. Method executions, either by users or other objects, are

therefore treated as closed nested atomic object transactions.

Moss’ closed nested two-phase exclusive locking rules have been modified to de-

fine the closed nested object two-phase exclusive locking rules (O2PL). O2PL takes

108

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 109

into account the characteristics of a persistent object system, and adds additional
functionality. It provides for correct concurrent executions of closed nested object

transactions in the DSVM system.

A DSVM memory consistency protocol, OTEC, for closed nested object transac-
tions in a page based persistent object system was also presented. It was defined by
combining the closed nested object two-phase locking rules developed and the DSM
memory consistency protocol, entry consistency. OTEC pulls all updated pages of
a shared object across the network when the object is subsequently accessed by
an acquiring [sub-]transaction at a remote node. To achieve better performance. a
second DSVM consistency protocol that also supports closed nested object trans-
actions was developed. LOTEC defers communication by pulling updated pages
of a shared object across the network only when those pages may be referenced
by an acquiring [sub-]transaction. In this way, LOTEC often transfers fewer pages
than OTEC. Since there is no unique last updating node for a given shared ob-
ject, LOTEC may need more short control messages than OTEC. Compared to
transferring large updated object pages, the LOTEC protocol successfuily reduces

unnecessary data exchange.

A simple DSVM simulator has been developed to assess the network perfor-
mance of the developed protocols under vari'ous load and sharing conditions. We
evaluate the performance of OTEC, LOTEC,and a conservative baseline protocol
known as COTEC by counting the total number of bytes of transferred messages
(both short control messages and large object updates) for maintaining memory
consistency in the simulated DSVM system. Overall, the results indicate that
LOTEC has the best performance of the three protocols.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 110

6.2 Future Work

The work presented in this thesis is a first step towards providing efficient mem-
ory consistency in the proposed DSVM system. There is still much work to be done
in this area including the elimination of certain assumptions made in the disserta-

tion and extensions of the work.

One simplifying assumption was that multiple pages would not be stored on
a single page to avoid false sharing. Without this assumption, an exclusive-write
protocol can handle the false sharing problem, but it may result in additional net-
work traffic due to unnecessary communication. Modifications of certain multiple

write-protocols [CBZ95, KCZ92] might be used to address this problem.

Another simplifying assumption was that all sub-transactions of a given root
transaction will normally execute at the same node. This constraint can be relaxed
to achieve greater parallelism. The lock structure for each object in the GDO may
need to be changed to handle the lock operations for conflicting sub-transactions
within a transaction family but which are executing on different nodes. Local lock
release operations within a transaction family may also need to be handled globally

to support the multi-stage release process across distributed nodes.

Our simulation results generally show that when objects span multiple pages
LOTEC’s performance improves. However, object-level locking is likely too coarse
when objects span a large number of pages as it may prevent concurrency within the
object. Additionally, since object-level locking is supported in this thesis, to avoid
deadlocks in one transaction family, it was assumed that no directly or indirectly
recursive invocations on the same object are allowed within a transaction family.
Page-level locking can relax this constraint as long as no directly or indirectly

recursive invocations on the methods that manipulate the same pages occur. It

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 111

also can enhance concurrency within the object. To facilitate page-level locking,
Mathew, et al. [MGB95] suggest the use of a persistent global page table with one

entry for each persistently stored page and a lock variable in each entry.

Consistency protocols presented in this thesis load pages individually on demand
to keep communication overhead to a minimum. If a consistency protocol can
predict which pages will be accessed by a method, communication latency can be
hidden by prefetching and thereby overlapping communication with computation.
This might be particularly useful in a system without support for low software

overhead messaging,.

Finally, only exclusive locks were supported in the thesis. Adding support for

shared (“read”) locks rather than just exclusive locks should be straight forward.

Appendix A

Detailed Simulation Results

Tables A.l to A.12 present the raw data of simulation results for test cases 1
through 4 under the three consistency protocols, COTEC, OTEC, and LOTEC.
Each table lists a set of randomly selected shared object identifiers, the number of
pages transferred, the number of short control messages and long data messages

required, and how many [sub-]transactions access the shared object concurrently.

112

APPENDIX A. DETAILED SIMULATION RESULTS

Table A.l: Simula

tion results under COTEC for test_case |

113

OID, | #transferred pages | #short messages | #long data messages | #{sub-]transactions
0 26 52 26 61
2 78 52 26 92
4 165 66 33 102
6 52 52 26 95
8 112 56 28 101
11 36 36 18 33
13 92 16 23 66
15 21 42 21 60
17 57 38 19 16
19 95 38 19 48

Table A.2: Simulation results under OTEC for test case 1

OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
0 26 52 26 61
2 78 32 26 92
4 165 66 33 102
6 52 52 26 95
8 110 56 28 101
11 34 36 18 33
13 85 46 23 66
15 21 42 21 60
17 57 38 19 46
19 95 38 19 48

APPENDIX A. DETAILED SIMULATION RESULTS 114

Table A.3: Simulation results under LOTEC for test case 1
OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
0 26 52 26 61
2 74 78 39 92
4 129 118 59 102
6 52 54 27 95
8 85 36 43 101
11 23 42 21 33
13 63 36 28 66
15 21 42 21 60
17 44 60 30 46
19 66 63 34 48

Table A.4: Simulation results under COTEC for test case 2

OID, | #transferred pages | #short messages | #long data messages | #[sub-|transactions
10 385 70 35 85
11 276 46 23 40
12 351 34 27 19
13 294 42 21 48
14 510 68 34 5
15 384 48 24 4
16 476 56 28 64
17 360 40 20 33
18 646 68 34 7
19 920 52 26 50

APPENDIX A. DETAILED SIMULATION RESULTS

Table A.5: Simul

ation results under QTEC for test case 2

OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
10 384 70 35 85
11 264 46 23 40
12 347 54 27 49
13 271 42 21 48
14 495 68 34 75
15 355 48 24 54
16 469 56 28 64
17 328 40 20 33
18 618 68 34 17
19 506 52 26 50

Table A.6: Simulation results under LOTEC for test case 2

OID, | #transferred pages | #short messages | #long data messages | #[sub-|transactions
10 256 160 80 85
11 141 116 58 40
12 204 122 61 19
13 170 100 50 18
14 316 188 94 75
15 211 86 43 54
16 326 152 76 64
17 178 110 55 33
18 420 210 105 77
19 272 164 82 50

APPENDIX A. DETAILED SIMULATION RESULTS

Table A.7: Simul

tion results under COTEC for test case 3

116

OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
9 30 12 6 T
18 40 20 10 14
25 6 12 6 9
32 27 18 9 11
37 9 6 3 5
42 33 22 11 18
46 18 18 9 18
54 45 18 9 13
64 65 26 13 20
67 15 10 5 6
71 6 6 3 3
74 65 26 13 17
83 32 16 8 13
92 42 28 14 24
99 30 12 6 8

APPENDIX A. DETAILED SIMULATION RESULTS

Table A.8: Simul

ation results under OQTEC for test case 3

117

OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
9 21 12 6 T
18 38 20 10 14
25 6 12 6 9
32 24 18 9 11
37 9 6 3 3
42 32 22 11 18
46 18 18 9 18
54 45 I8 9 13
64 61 26 13 20
67 15 10 3 6
71 5 6 3 b)
74 62 26 13 17
33 25 16 8 13
92 41 28 14 24
99 27 12 6 8

APPENDIX A. DETAILED SIMULATION RESULTS 118

Table A.9: Simulation results under LOTEC for test case 3
OID, | #transferred pages | #short messages | #long data messages | #[sub-]transactions
9 15 18 9 T
18 27 24 12 14
25 6 12 6 9
32 19 24 12 11
37 6 6 3 5
12 26 30 15 18
16 18 18 9 18
54 27 30 15 13
64 38 44 22 20
67 15 12 6 6
71 3 6 3 b)
74 50 38 19 17
83 11 18 9 13
92 32 42 21 24
99 16 22 11 8

APPENDIX A. DETAILED SIMULATION RESULTS 119

Table A.10: Simulation results under COTEC for test case 4

OID, | #transferred pages | #short messages | #long data messages | #[sub-]Jtransactions
9 80 16 8 9
12 91 14 7 12
18 304 32 16 22
31 36 6 3 5
37 36 4 2 3
39 100 10 b) 8
54 130 24 12 18
56 221 26 13 17
58 152 16 8 k7
70 143 26 13 17
73 112 16 8 10
77 108 12 6 10
91 60 10 5 7
96 136 16 8 12
99 80 8 4 6

APPENDIX A. DETAILED SIMULATION RESULTS 120

Table A.11: Simulation results under OTEC for test case 4
OID, | #transferred pages | #short messages | #long data messages | #{sub-|transactions
9 67 16 8 9
12 78 14 7 12
18 251 32 16 22
31 21 6 3 5
37 20 4 2 3
39 92 10 3 8
54 167 24 12 18
56 203 26 13 L7
58 143 16 3 17
70 130 26 13 17
73 94 16 8 10
T7 103 12 6 10
91 56 10 5 7
96 123 16 8 12
99 68 8 4 6

APPENDIX A. DETAILED SIMULATION RESULTS

Table A.12: Simul

tion results under LOTEC for test case 4

121

OID, | #transferred pages | #short messages | #long data messages | #[sub-|transactions
9 28 20 10 9
12 43 28 14 12
18 85 72 36 22
31 8 8 4 3
37 2 4 2 3
39 47 20 10 8
54 97 54 27 18
56 121 62 31 17
38 105 34 17 L7
70 55 62 31 17
73 44 30 15 10
7T 61 30 15 10
91 39 20 10 7
96 82 40 20 12
99 26 10 5 6

Bibliography

[ABC*83]

[Adv93]

[BHGST]

[BNBMJZ91]

[BPG93]

[BZS93]

[CBZ95]

[CLFL94]

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott. and R.
Morrison. An Approach to Persistent Programming. The Computer
Journal, 26:360-365, November 1983.

S.V. Adve. Designing memory Consistency Models for Shared Mem-
ory Multiprocessor. PhD thesis, University of Wisconsin, December
1993.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison Wesley, 1987.

Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared Mem-
ory Parallel Programming with Entry Consistency for Distributed
Memory Multiprocessors. Technical Report CMU-CS-91-170. School
of Computer Science, Carnegie Mellon University, September 1991.

K. Barker, R. Peters, and G. Graham. Distributed Shared Virtual
Memory DSVM for Interoperability of Heterogeneous Information
Systems. In OOPSLA Workshop on Object Interoperability, 1995.

B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway
Distributed shared Memory System. In Proceedings of the Spring
COMPCON, pages 528-537, February 1993.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques
for Reducing Consistency-Related Communication in Distributed
Shared-Memory Systems. ACM Transaction on Computer Systems,
13(3):205 - 243, August 1995.

J.S. Chase, H. M. Levy, M.J. Feeley, and E.D. Lazowska. Sharing
and Protection in a Single-Address-Space Operating System. ACM
Transaction on Computer Systems, 12(4):271 - 307, November 1994.

122

BIBLIOGRAPHY 123

[EBBV95)

[ECGS92]

[GB93]

[GBBZ93]

[GLL*90]

(HH91]

[JR92]

[KCZ92)

[KDCZ94]

T.V. Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A User-
level Network Interface for Parallel and Distributed Computing. In
Proceedings of the 15th ACM Symposium on Operating Principles,
December 1995.

T.V. Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active
Messages: a Mechanism for Integrated Communication and Com-
putation. In Proceedings of the 19th [nternational Symposium on
Computer Architecture, pages 256 — 266, May 1992.

P. Graham and K. Barker. Distributed Object Base Implementation
Using a Single Shared Address Space. In Proceedings of the Mid-
Continent [nformation Systems Conference, pages 62 — 77, 1993.

P. Graham, K. Barker, S. Bhar, and M. Zapp. A Paged Distributed
Shared Virtual Memory System Supporting Persistent Objects. Tech-
nical report. The University of Manitoba, 1993.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ording in Scalable
Shared Memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 15 — 26.

May 1990.

T. Hadzilacos and V. Hadzilacos. Transaction Synchronisation in
Object Bases. Journal of Computer and Systems Science, 43:2 - 24.
1991.

John Rosenberg. Architecture and Operating System Support for
Orthogonal Persistence. USENIX Computing Systems, 5(3):305-335.
1992.

P. Keleher, A.L. Cox, and W. Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In Proceedings of the [9th
Annual International Symposium on Computer Architecture. pages

13 - 21, May 1992.

P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and
Operating Systems. In Proceedings of the Winter 1994 USENIX Con-
ference, pages 115 — 131, January 1994.

BIBLIOGRAPHY 124

[Kim90]

(KJE93]

(KK93]

{Lam79]

[LHS9]

[LLG*92]

[Lyn83]

[MEZ93)

[MGBY3]

[MGB96]

Won Kim. [Introduction to Object-Oriented Databases. The MIT
Press, 1990.

V. Khera, R.P. LaRowe Jr., and C.S. Ellis. An Architecture-
independent Analysis of False Sharing. Technical Report DUKE-
TR-1993-13, Department of Computer Science., Duke University,
October 1993.

A. Kemper and D. Kossmann. Adaptable Pointer Swizzling Strate-
gies in Object Bases. In Proceedings of the [nternational Conference
on Data Engineering, pages 155-162, 1993.

L. Lamport. How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs. [EEE Transaction on Computers,
C-28(9):690 -691, September 1979.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Mem-
ory Systems. ACM Transaction on Compuler Systems, 17(4):321 -
359, November 1989.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M.S. Lam. The Stanford Dash Multi-
processor. [EEE Computer, 25(3):63 -70, March 1992.

N. A. Lynch. Concurrency Control for Resilient Nested Transactions.
Proc. 2nd ACM SIGACT-SOGMOD Symp. on Prin. of Database
Sys., pages 166-181, March 1983.

Michael Edward Zapp. Concurrency Control in Object-Based Sys-
tem. Master’s thesis, University of Manitoba, Computer Science.
June 1993.

J. Mathew, P. Graham, and K. Barker. Object Directory Design
[ssues for a Distributed Shared Virtual Memory System Supporting
Persistent Objects. Technical Report TR-95/04, The University of
Manitoba, Department of Computer Science, July 1995.

J.A. Mathew, P. Graham, and K. Barker. Object Directory Design
for a Fully Distributed Persistent Object System. Object Oriented
Database System Symposium of the Engineering Systems Design and
Analysis Conference, 2:75 — 88, July 1996.

BIBLIOGRAPHY 125

[Mos85]

[MS95]

[OV91]

[PCG94]

[PGB97]

[PK95]

[VBD*92]

[VRH93]

[WD92]

[Wei89]
[Wilg2]

J.E.B. Moss. Nested Transactions, An Approach to Reliable Dis-
tributed Computing. The MIT Press, 1985.

D.E. McDysan and D.L. Spohn. ATM: Theory and Application. Mc-
Graw Hill, 1995.

M.T. Ozsu and P. Valduriez. Principles of Distributed Database Sys-
tems. Englewood Cliffs, NJ:Prentice-Hall, 1991.

Peter C. J. Graham. Applications of Static Analysis to Concurrency
Control and Recovery in Objectbase Systems. PhD thesis, University
of Manitoba, Computer Science, September 1994.

R.J. Peters, P. Graham, and K.E. Barker. A Shared Environment
to Support Multiple Advanced Application Systems. In Proceedings
of Workshop on Information Technologies and Systems (WITS' 97).
December 1997.

Peter Keleher. Lazy Release Consistency for Distributed Shared
Memory. PhD thesis, Rice University, January 1995.

F. Vaughan, T. L. Basso, A. Dearle, C. Marlin, and C. Barter.
Casper: a Cached Architecture Supporting Persistence. USENIX
Computing Systems, 5(3):337-359, 1992.

J. Vochteloo, S. Russell, and G. Heiser. Capability-Based Protection
in a Persistent Global Virtual Memory System. Technical Report
SCSE 9303, The University of New South Wales, School of Computer
Science and Engineering, March 1993.

S. J. White and D. J. Dewitt. A Performance Study of Alternative
Object Faulting and Pointer Swizzling Strategies. In Proceedings of
the 18th International Conference on Very Large Data Bases, Octo-
ber 1992.

W.E. Weihl. Theory of Nested Transactions. ACM Press, 1989.

P. R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently and
Compatibly Supporting Huge Addresses on Standard Hardware. In
Proceedings of the International Workshop on Object Orientation in
Operating Systems, pages 364-377, 1992.

16

14

150mm

125

IMAGE EVALUATION
TEST TARGET (QA-23)

-rouw

© *983, Applied Image. Inc.. All Rights Resarved

