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Abstract 

In this dissertation. we consider a distributed shared virtual memory (DSVM) sys- 

tem that allows multiple concurrent nested ob ject transactions to make t ransac- 
tional updates to the shared object space from different nodes across a network. To 
maintain correctness. the multiple copies of any object which are "cached" in the 
nodes' memories must be kept consistent. This dissertation presents a new memory 
consistency protocol, lazy object transactional entry consistency (LOTEC), that 
has lower communication requirements in an ob ject- based software DSVM system. 
and can consequently achieve higher performance. LOTEC achieves this reduction 
in communication by deferring the transfer of an object's updated pages across the  
network until those pages are referenced by an acquiring transaction. Further, it 
is cornpat i ble wit h a newly developed concurrency cont rol protocol, nested object 
two-phase locking. 

We show the correctness of the developed protocols and then evaluate the per- 
formance of a simulated DSVbI system using LOTEC by comparing it with two 
other DSVM consistency protocols (object transactiond entry consistency (OTEC) 
and conservative ob ject transactional entry consistency (COTEC) ) which are also 
described in the dissertation. The simulation results indicate t hat LOTEC will 
have the best performance in the described object-based DSVM system. 
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Chapter 1 

Introduction 

The Distributed Shared Virtual Memory System (DSVMS) described by Peters. et  

al. [PGB97] builds a distributed persistent object programming environment in a 

single, 64 bit? shared address space. It provides a uniform view of a persistent object 

space in memory that is visible to al1 processes on al1 interconnected nodes across 

time. Similar to Distributed Shared Mernory (DSM) systems [LH89. LLG+S2. 

CBZ95, KDCZ94. BZSSS], the local memory at  each node is treated as a cache of 

the global persistent object space. Since distinct and possibly distributed processes 

can concurrently access any shared object in the system and because objects are 

operated on locally, a shared object can be cached in several local mernories. Thus. 

the system must provide an efficient mechanism for ensuring cache ( i x .  processor 

local memory ) consistency between nodes. Consis tency maintenance is related to 

concurrency control and the nesting of invocations on objects makes concurrency 

control more difficult. Method invocations on objects must be serializable [BHGS?'] 

as nested object transactions and this impacts consistency maintenance. 

This thesis addresses the design and simulation of novel consistency protocols 



CK4 PTER 1 .  INTRODUCTION 3 

for maintaining memory consistency with closed nested object transactions in a 

persistent object system implemented in a page based distributed shared memory. 

1.1 Challenges 

Existing memory consistency models [Lam79, LLG+92, KCZ92, BZS93, CBZ951 

were designed and used in DSM systems for parallel cornputing. The characteris- 

tics of such systems are different from those of the proposed DSVMS. Rather than 

focusing on the parallel execution of a single program, the DSVMS must support 

consistent virt ual memory for multiple concurrent processes t hat perform t rans- 

actional updates to the shared memory space from different nodes. Thus* new 

memory consistency protocols rnust be developed to  make DSVMS practical. 

Al1 processing in a persistent object system is performed as method invocations 

on objects at their persistent locations. A method of one object may invoke a 

method on another object. Thus, method invocations may be nested and should 

be treated as nested atomic object transactions. To ensure that each nested object 

transaction accesses only consistent object states, the system must ensure the se- 

rializability of object transactions. Simple mutex loch t  as are conventionally used 

in controlling consistency protocols in DSM systems, do not support serializabil- 

ity in an object system. The fundamental difference between mutex locks and the 

locks required to support nested object transactions is the need for a delayed lock 

release process. The existing two-phase locking rules for Rat transactions need to  

be modified to support nested object two-phase locking. 

Due to the possibility of concurrent access, multiple copies of a shared object 

can exist in one or more mernories (i.e. caches) a t  the same time. The cost of 

transferring updated object pages to  maintain memory consistency is potentidly 
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high communication overhead in the proposed DSVMS. A highly efficient mecha- 

nism for maintaining memory consistency across the network is critica to keep this 

overhead to  a minimum. Any such mechanism must also be compatible with nested 

object two-phase locking. 

1.2 Motivation 

Memory consistency is key to the success of building a DSVMS. An efficient mem- 

ory consistency protocol enables the use of a DSVMS to store persistent objects 

which are operated on using nested object transactions. An execution environment 

offering t ransactional guarantees great ly simplifies programming in a dis t ri buted 

system. Efficient memory consistency allows shared objects to be cached, thereby 

significantly reducing the effective latency of remote memory access and yielding 

higher overall systern performance. 

Processing in a large scale DSVMS is extremely network intensive. The high cost 

of network communications can hurt performance in two ways. First, large amounts 

of communications can lead to bot tlenecks on conventional networks. (The best 

results in DSM systems for parallel processing have been obtained using high band- 

width, low latency, switched Asynchronous Transfer Mode (ATM) networks [MS95] 

which partially address this problem.) Second, the software overhead incurred dur- 

ing message sending or receiving may introduce high end-to-end message latencies. 

(Each message sent or received has to p a s  through the operating system kernel 

and between multiple levels of network communication protocols from/to the  user 

application to/from the network interface.) 

The communication overhead associated with memory consistency maintenance 

in the proposed DSVMS is critical because the implementation of method invocation 



is by shipping object pages to the invoking node. Reducing both the number of 

messages exchanged by memory consistency maintenance and the size of those 

messages is very important. 

Organizat ion 

The rest of this thesis is organized as follow: Chapter 3 discusses background 

material and related work. Chapter 3 presents the assumed environment and de- 

tails the problem of maintaining rnemory consistency in a page based. distributed 

persistent object system. Chapter 4 describes new memory consistency protocols 

for closed nested object transactions in the proposed DSVMS and a150 shows their 

correctness. Chapter 5 presents and discusses some results obtained from a net- 

work load analysis performed using randomly generated transaction structures and 

object reference patterns. Finally, Chapter 6 provides conclusions and discusses 

directions for future work. 



Chapter 2 

Background and Related Work 

As the working environment of this thesis, Distributed Shared Virtual Memory 

(DSVM) systems will bc presented in this chapter. Further, since a DSVM system 

is a base for the  development of Persistent Object Systems (POSs), t he  discussion 

will begin with an introduction to POSs. Then, transactions and serializability will 

be discussed as  well as  memory consistency rnodels in DSM systems. The reason for 

surveying memory consistency rnodels in DSM systems is that memory consistency 

maintenance in a DSVM system is based on that  used in DSM systems which is 

where mernory consistency protocols were originally developed. 

2.1 Persistent Object Systems 

An object, as discussed in [KimSO], represents a real-word entity. It is an abstraction 

defined by a system wide unique object identifier (OID), a set of at tr ibutes which 

define the state of t he  object, and a set of methods which are the  only means of 

manipulating the attributes and thereby modifying the object's state. 
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While an object may be used sirnply a .  an abstract data type, many additional 

benefits are offered, such as support for complex structure. encapsulation, inher- 

itance. and improved software re-use. These features are desirable in simplifying 

the process of developing applications using object-oriented techniques. 

Persistence [ABC+83] offers the potential to  greatly simplify application pro- 

gamrning. The idea behind persistence is that  al1 data in a system should be able 

to persist for as long as that data is required. Furthermore, with orthogonal persis- 

tence,  al1 data may be persistent and that  data  may be manipulated in a uniform 

manner regardless of the length of time it persists. 

In conventional operating systems, long lived data is treated in a fundamentally 

different manner from short lived data. Traditionally, long term da ta  is held on a 

backing store (e.g. a database or a file system) and cannot be directly addressed: 

short term data, on the other hand. is managed by a programming language which 

accesses it in directly addressable physical or virtual memory. To map between 

the two types of data, two different mechanisms must be used. A file system. or 

database management system, must provide storage capability and explicit format 

translation code must be written and included in each program to convert from 

in-rnemory to on-disk format. 

Persistent systems sirnplify prograrnming because they hide the  traditional dis- 

tinction between short term and long term storage from the application program- 

mer. They allow al1 data  to  persist for an  arbitrary length of time, possibly longer 

than the Iife time of the creating process, aad they support manipulation of data 

in a uniform rnanner, regardless of how long it persists. Such systems usually store 

al1 data in a persistent store which automatically manages the transfer between 

long and short term storage in a manner that  is transparent to  the application 

programmer. This makes program development significantly easier. 
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Adding persistence and transparent distn but ion to object systems, to create 

so called distributed persistent object systems [VRH93, VBDC92, JR921, provides 

significant benefits including a flexible and powerful programming environment. en- 

hanced sharing, and improved performance for many applications. However, i t also 

presents implementation difficulties due to the limitations of both the software and 

hardware supporting environments. Peters, et al. [PGB97] describe a dist ributed 

shared virtual memory system and its use as a base for the developrnent of POSs. 

This system provides an excellent implementation platform for distributed POSs 

due to its inherent transparency. 

2.2 Distributed Shared Virtual Memory Systems 

A Distributed Shared Virtual Memory system [GB93, GBBZ93, BPG95. MGB96. 

PGBS?] provides a transparently distributed persistent object programming envi- 

ronment in a single, 64 bit. shared address space. It gives a uniform view of the 

persistent object space in memory across multiple interconnected machines. In such 

a system. objects c m  be shared and transparently accessed in memory by partic- 

ipating processes from different nodes concurrently. This makes it possible for a 

system user to work in the simplest possible programming environment since the 

DSVM system hides the  unnecessary distinct ions between local and remote objects. 

and between primary and secondary memory. 

The introduction of virtual memory made it easier for programmers to deal 

with the limited amount of physical mernory available. Most conventional virtual 

memory systems, however, support only private address spaces. In such systems, 

each process has its own private, virtual address space. Since a process is only 

allowed to reference addresses within its own address space, there axe effective 
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protection boundaries between processes. Because a process is prevented from 

accessing addresses within another process' address space, private address spaces 

make sharing data more difficult among processes even though sharing data is a 

fundamental requirement for modern, multi-process applications. In particular. 

pointer-based data structures cannot be shared among processes because pointers 

lose significance across address spaces. Systems have to copy shared data between 

private virtual memories and ensiire the shared data are placed within the same 

range of virtual addresses as in the original private virt ual memory to permit pointer 

passing. This is inconvenient and expensive. In object oriented systems, any given 

persistent object can refer to other persistent objects. Such references are expressed 

via unique object identifiers (O I D,). Private virtual addresses are not suitable 

for use as unique system wide object identifiers because theses addresses would 

not be valid in al1 private address spaces. One of the main difficulties to the 

implementation of persistent object-oriented systems is the need to construct and 

efficiently handle such unique systemwide ob ject identifiers. A software address 

translation mechanism. pointer swiztling [KK93, Wi192, WD921, has been provided 

to manage persistent ob ject references. Unfortunately, pointer swizzling can also 

cause significant overhead in accessing shared ob jects. 

The recent appearance of architectures supporting linear 64- bit virtual ad- 

dress spaces makes it possible to create a shared uirtual address space (SVAS) 

mode1 [CLFL94] which can accommodate al1 processes and objects in a system. 

Such an address space is large enough to directly incorporate al1 the secondary 

mernory of most computer systems, even distributed systems. This fundamentally 

changes the way that operating systems can use the address space. 

In a SVAS, al1 processes share a single, large virtual address space. Al1 processes 

con access any address within the shared address space. Data appear a t  the same 
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memory locations to al1 processes [PGB97]. Without address space separation 

to provide protection among processes, however, protection domains [CLFL94] or 

some other technique must be used to restrict a process' access to a specific set of 

virtual pages. 

A SVAS enhances data sharing because ail processors see the same address 

space regardless of their location and therefore pointer values are meaningful to al1 

processes. Thus, data may be conveniently s hared between processes in rnemory. 

Since each byte of data in the system has a unique address in the SVAS, issuing an 

appropriate address is al1 that is required for accessing shared data. 

A SVAS offers additional benefits in implementing persistent object-oriented 

systems. Since the 64 bit virtual address space is linear and virtual addresses 

within a shared virtual memory are consistent across al1 processes, the persistent 

location of each object in the SVAS can be used as its unique, system wide object 

identifier. Such a large virtual address space can also contain a11 the active processes 

and the data on which the processes operate. Since the shared address space is 

never destroyed and is valid across al1 processes, the SVAS can provide persistence 

for an object's state [MGB95]. Al1 data are referenced in a uniform manner by 

providing their persistent virtual addresses (O1 D,), and these addresses can be 

passed freely because a pointer retoins its meaning independent of its location. 

even across nodes or on secondary storage. Therefore, the overhead involved in 

swizzling ob ject references and changing data formats is eliminated. 

.4 DSVM system is created by providing a SVAS across a distributed system, so 

that the same address space is visible to  al1 processes on all nodes. Once persistence 

is added, data appear at the same memory locations to al1 processes across al1 nodes 

for all time [PGB97]. 

In a DSVM system, distribution is completely transparent to user processes. If 
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a shared data item is not already local, when its address is referenced, the system 

will obtain the corresponding object from the network. Thus, a process does not 

need to know the location of a shared object. 

A DSVM system may store any kind of data. The DSVM system described 

in [PGB97] and used in this thesis stores objects. It offers specific advantages over 

other forrns of POSs. For example, object rnethod invocations are accomplished by 

a simple subroutine cal1 without swizzling. Additionally, support for such advanced 

features as nested object transactions may be transparently provided [PGB97]. 

2.3 Transactions and Serializability 

A transaction [OV91] is a basic, atomic execution unit of consistent and d i ab le  

cornputing, composed of a sequence of indivisible operat ion execut ions. Transac- 

tions have four properties (the so-called ACID properties). They are Atomici ty. 

Consistency, Isolation, and Durability. Atomici ty refers to the fact t hat a t ransac- 

tion must be a single unit of work. namely. either al1 or none of its operations should 

be executed. Consistency ensures the correctness of a transaction. In other words. 

a transaction should leave the shared data in a consistent state after it commits or 

aborts. Isolation rneans that transactions cannot unintentionally affect each other. 

Durability declares that the effects of cornmitted transactions must persist even in 

the presence of failures. These ACID properties of transactions guarantee correct 

concurrent execution as well as reliability. 

Transactions may be divided into two broad categories: flot transactions and 

nested transactions. 
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2.3.1 Flat Transactions 

Flat Tkansactions 

Conventional transactions are fiat. A Bat transaction has a single starting point a 

body which consists of read and write actions on atomic data, followed by a single 

commit or abort operation. The correct execution of a set of Bat transactions on 

a consistent system will leave the system in a new consistent state. When a set 

of transactions execute concurrently, their operations may be interleaved. A senal 

execution represents an execution order in which there is no interleaving of the op- 

erations of different transactions. Each transaction executes from beginning to  end 

before the next one can start. By definition, a serial execution of transactions is 

correct. Serial executions can, however, lead to poor performance because they do 

not take advantage of possible concurrency. On the other hand, transaction concur- 

rency must be managed carefully because arbitrary concurrency in the execution 

of conflict ing operat ions can lead to inconsistency. 

Serializability for Flat Transactions 

Conflict serializabzlity [BHG87] is the rnost widely used correctness criterion for 

concurrent executions of Bat transactions. The serializability theory represents ex- 

ecutions of transactions as partial orders of operations. The conflicting operat ions 

of two transactions must be ordered such that transactions appear to execute seri- 

al1 y. 

The concurrent execution of a set of transactions is serializable if and only if 

it is equivalent to  sorne serial execution of the transactions. From this correctness 

criterion, a concurrency control algorithm is regarded as correct if it ensures that 
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any ioterleaved execution of transactions is equivaleot to some serial execution of 

the transactions. 

Concurrency control algorithms are commonly classified into two categories: 

optimistic and pessimistic. Optimist ic concurrency cont rol tends to  avoid delay- 

ing conflicting operations. Under this scenario. transactions are allowed to execute 

concurrent ly and t heir correct execution is verified once a transaction complet es. 

Invalid transactions rnust be "rolled back" (i.e. have their effects cancelled). Pes- 

simistic concurrency control delays potentially conflicting operations when first 

identified. It ensures that executions will be correct before they are allowed to 

occur but sometimes limits potential, valid concurrency. 

Two- phase Locking 

The most common pessimistic concurrency control algorithm is two-phase locking 

(ZPL). It ensures serializability because of the way that locks are obtained. Two 

operations are said to  conflict if they both operate on the same da ta  item and at 

least one of them is a write [BHG87]. Two-phase locking associates two types of 

locks with data items: read locks and s r i t e  locks. Multiple transactions are allowed 

to concurrently hold the sarne read lock, but a write lock may be held by only one 

transaction at a tirne. Two locks are in conflict if their corresponding operations 

are conflicting. A transaction is required t o  obtain the appropriate lock for each 

data item it accesses. If a write lock is held by another transaction, it must wait for 

that transaction to  release the lock. No locks can be freed until al1 necessary locks 

have been acquired. When a transaction releases a lock it can no longer obtain 

any additional locks. This results in two phases, namely, a lock acquisition phase 

followed by a lock release phase. By obtaining and releasing locks in t his rnanner, 

two-phase locking produces only conflict serializable executions. Bernstein, et al. 
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[BHG87] provide a forma1 proof of the correctness of two-phase locking. 

Two-phase locking guarantees serializability, but deadlock and cascading aborts' 

are still possible. A strict two-phase locking technique forces a transaction to 

retain al1 of its locks until it completes. It guarantees a strict execution which is 

recoverable and avoids cascading aborts. In t his t hesis, strict two-phase locking 

will be extended to accommodate closed nested objeet transactions. 

2.3.2 Nested Transactions 

Nested Transactions 

The concept of nested transactions was introduced by Eliot Moss [Mos85]. Weihl [Wei891 

describes two kinds of nesting in transactions. One is the nesting of procedures 

which corresponds to nested transactions as proposed by Moss. The other is the 

nesting of layers of data abstractions. Since the invocations of an object's methods 

result in the nesting of procedures, only procedural nesting is discussed here. 

In addition to read and wri te operations, a nested transaction rnay "contain" 

other transactions (sub-transactions) wit h their own beginning and termination 

points. These sub-transactions have the same properties as their parents. One 

transaction (parent) rnay have one or more sub-transactions (children) which rnay 

themselves in turn have their own sub-transactions, t herefore, nesting rnay be to 

arbitrary depth. A transaction with no parent is a root transaction and it, which 

dong with its descendants, forrns a transaction tree which is also called a trans- 

action farnily. Transaction families normally appear to be atomic with respect to 

ot her transaction families. Sub- transact ions of one transaction farnily, however, 

' When a transaction aborts, its effects rnay affect ot  her transactions. Aborting these transac- 

tions rnay trigger further abortions. This is called cascading abort. 
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can execute simultaneously. Each parent transaction controls the execution of its 

sub-transactions with respect to one other so that al1 sub-transactions in the fam- 

ily are properly synchronized. In other words, parent transactions specify which 

sub- transactions execute concurrently. 

Nested transactions offer two fundamental benefits. One is that they provide 

a potentially finer-level of concurrency arnong transactions. The other is that it is 

possible for sub-transactions to recover from failures independently of other sub- 

transactions. Nested transactions are naturally suited to object systems as method 

invocations introduce new nesting levels. 

There are two forms of nested transactions which are determined by t heir ter- 

mination characteristics: open nested transactions and closed nested transactions. 

Both closed and open nested transactions hide updates to data items, which are 

made by one sub- transact ion, from all ot her transactions until the sub- t ransac t ion 

completes. Closed nesting permits only sub-transactions of the same parent to 

see changes after the sub-transaction completes. Other transactions outside of the 

transaction family see the updates only alter the root transaction successfully com- 

mits. The fundamental principle of closed nesting is that no partial results of any 

transaction farnily can be made visible to other transaction families. Open nesting 

allows al1 other transactions (within and outside the transaction family) to see up- 

dates after a sub-transaction completes. The focus of this t hesis is on closed nested 

transactions. 

Serializability for Nested Transactions 

In ccnventional flat transactions, conflict serializability is classically defined between 

transactions because there is no concept of sub-transactions. The system may exe- 
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cute transactions in any order, as long as the effect of any concurrent execution of 

the transactions is the same as that of some serial execution, even though different 

serial orders may produce different effects. Since the sub-transactions of a nested 

transaction family can execute simultaneously, the correctness of sub- transaction 

concurrency within a transaction family must also be ensured. Thus, conflict seri- 

alizability should not only be defined between nested transaction families. but also 

between sub- transactions wit hin one transaction family. 

In a nested tramaction family, sub-transactions rnay, of course, be nested and 

they will be executed in the order in which they are encountered. Since sub- 

transaction execution is synchronous, sub-transact ions complete before subsequent 

sub-transactions are executed. Thus, the only correct serial execution order for a 

set of sub-transactions in one transaction family is depth-first. The condition for 

serializability with a set of sub-transactions in one transaction farnily is the same as 

with a set of fiat transactions. A concurrent execution of a set of sub-transactions 

in one transaction family is serializable if and only if its execution is equivalent to 

the serial execution order of the set of sub-transactions. However, unlike with Bat 

transactions, this serial execution order does not depend on user specification but is 

strict ly dept h-first. Therefore, a concurrent execution of a set of nested transactions 

(transaction families) is serializable if and only if its execution is equivalent to some 

serial execution of the nested transactions. 

Moss' Nested Two-phase Locking rules 

The work of Moss focused primarily on the closed nested transaction model. In a 

closed nested transaction, the results of a sub-transaction are not visible outside 

its parent before its parent commits. Thus, the results of any sub-transaction in 

a transaction family are not visible to any other transaction farnily until the root 
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transaction completes. In Moss' rnodel. only leaf transactions can direct ly access 

data. Parent transactions perform only coordination and supervisory functions. 

Traditional two-phase locking rules do not suffice for the synchronization of 

nested transaction families with each other. Additional rules are needed to man- 

age concurrency between the sub-transactions in each transaction farnily because 

of nest ing. Moss' work enhanced concurrency between su b- t ransac t ions (leaf t rans- 

actions) from different transaction families which are encountared in a depth-first 

order in each nested transaction family. 

Simple mu tex locks are insuficient to support serializability wi t h nested trans- 

actions. Moss uses a lock inheritance mechanism to enhance concurrency between 

the sub-transactions of a single nested transaction. When a sub- transaction corn- 

pletes successfully, it is said to have "committed". .4ny updates become "perma- 

nent" (visible to ot  her transaction families) only if a11 sub-transactions and the 

root transaction also commit. However, such cornmitment is relative. An addi- 

tional operation introduced for the purpose of nesting is the "pre-commit". When 

a sub-transaction pre-commits. the locks cannot be entirely released. The reason 

is that the sub-transaction's ancestors can still abort. undoing its changes. The  

solution is to pass al1 the sub-transaction's locks up to its parent who retains them. 

h retained lock may subsequently be acquired by a descendant of the transaction 

which retains it. Similarly, when a sub-transaction aborts, the locks cannot be 

released, because some of its locks might have been acquired from an ancestor. 

This means that some other sub-transactions have also accessed the data guarded 

by these locks before the aborted sub-transaction. The changes made by those 

sub-transactions should not be seen outside of the ancestor. Therefore, when a 

sub-transaction aborts, not al1 its l o c h  are released. If any of its ancestors retain 

any of its locks, those ancestors continue to  retain those lock. 
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Moss has shown how to extend the (strict) two-phase locking rules to accommo- 

date closed nested transactions. He defines nested two-phase locking concurrency 

control rules for the closed nested transaction model. His rules ensure serializability 

among nested transactions (transaction families) if al1 of them are encountered in 

a user's preferred order and al1 sub-transactions of each nested transaction family 

are encountered in depth-first order. Lynch [Lyo83] has proved the correctness of 

Moss' nested two-phase locking rules, that is. by using Moss' nested two-phase Iock- 

ing rules, ail executions of nested transactions are shown to be serializable. Moss' 

exclusive nested two-phase locking rules for exclusive locking are summarized as 

folIows: 

1. Sub-transaction T may hold a lock if no other transaction holds the lock or 

al1 transactions that retain the lock are ancestors of T. 

2. When sub-transaction T commits, the parent of T inherits T's loch  (either 

held or retained). After that, the parent retains the locks. 

3. When a transaction aborts, it releases al1 locks it holds or retains. If any of 

its ancestors retain any of these locks they continue to do so. 

2.4 Memory Consistency Models in DSM Sys- 

tems 

This section provides details about research specific to memory consistency models 

in DSM systems. It begins by presenting DSM systems and the rnemory consistency 

problem in DSM systems in Section 2.4.1. Section 2.4.2 follows with a survey of 

various memory consistency models and protocols used in DSM systems. 
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2.4.1 DSM Systems and the Memory Consistency Prob- 

lem 

There are two basic paradigms for parallel programming and for building parallel 

machines, shared mernory and distributed memory (Le. message-passing). The 

shared memory paradigm provides a single physical memory shared by multiple- 

processors via hardware. Thus. any update to shared data is visible to al1 processors 

in the system. Since the shared memory mode1 is a natural extension of a single 

CPU system. it is easier to program. However, it has a serious bottleneck because 

the memory is accessed via a system bus which quickly becomes saturated. This 

limits the  system size. Cache mernories may be added as an important way to 

reduce the average memory access time. This is especially important as a first step 

fowards sealeable multiprocessor architectures (See Figure 2.1). 

Shared Memory 
Q 

l System Bus 

Figure 2.1: Shared Memory Systern with Caches 

This approach gives rise to the cache consistency problern because data sharing 
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can result in several copies of a shared data item in one or multiple caches and 

main memory at the same time. When a process accesses an in-cache shared data 

item, and if the data item is not consistent with the most recent version of the 

data item, the process observes stale data. To maintain a consistent view of the 

shared memory, these in-cache copies must be kept consistent in a manner that 

is completely transparent to the user of the machine. Since data that has been 

read-cached in distributed mernories can become inconsistent only when a process 

updates the data, there are two policies for maintaining cache consistency: write- 

invdidate and write-update. With an invalidation policy, once a processor acquires 

exclusive ownership it invalidates al1 copies before performing the write. With an 

update policy, writes to shared data are buffered, and consistency is enforced at 

s ynchronizat ion points. Inst ead of invalidat ing al1 copies. the processor updates 

t hem. 

Distributed memory machines consist of a collection of independent processors 

with their own, local memories connected by a high speed interconnection network. 

Communication between processors is via message passing. Distributed memory 

machines do not suffer from the aforementioned bottleneck or the cache consistency 

problem. However, they do require the programmer to partition the data between 

memories and manage communication explicitly. 

Distnbvted shared memory (DSM) systems combine the advantages of shared 

memory and distributed memory machines. A DSM system provides an abstraction 

of shared memory in a physically non-shared (i.e. distributed) memory machine. 

Each mernory is physically independent and communication takes place through 

explicit massage passing. Thus, DSM systems offer many benefits including ease of 

prograrnming, ease of implementation, and enhanced scalability. Figure 2.2 shows 

the conceptual structure of a DSM system. 
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Figure 2.2: Distributed S hared Memory System 

.4 DSM system provides the illusion that al1 mernories are globally and t ranspar- 

ently shared via an interconnection network. They allow each process to access any 

shared data item in the system directly without the programmer having to worry 

about where the data item is and how it can be obtained. To achieve this goal. 

the  DSM system provides a virtual address space shared among processes across 

the entire network, and the local memory of each processor is effectively used as a 

cache of the global address space. Hence, the cache (memory) consistency problem 

is still a concern. Independent processes executing at different nodes must see a 

consistent view of the shared memory. Changes to cached data have to be detected 

and updates or invalidates have to be propagated to  other processors caching the 

data. A consistency mechanism is required to ensure that processors reference only 

current data which are up-to-date. 
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2.4.2 Memory Consistency Models 

A memory model for a DSM system is a specification of how the memory operations 

of a program will appear to execute to the programmer [Adv93]. In other words, it 

is a model of how updates to shared rnemory are reflected to the processes in the 

system. The memory model, therefore. specifies the values that may be ret urned by 

the read operations of a process executed on a DSM system. For a uniprocessor~ a 

correct memory model is well defined. A memory is consistent if the value returned 

by a read operation is aiways the same as the value written by the most recent 

write operation to the sarne address. For multi-cached shared memory systems. 

caching of data complicates the ordering of accesses by introducing multiple copies 

of the same location. The cache consistency model is complicated because the 

definition of "most recent write operation" becomes unclear when there may be 

multiple processors accessing different copies of the same address. For a DSM 

system. liowever. the memory consistency problem differs from that in multi-cached 

shared memory systems and is even more complex because there is no physical 

shared memory and there may also be a far greater number of processors in the 

DSM. 

The memory model affects the performance of a DSM system in many ways. It 

determines when a processor can execute multiple memory operations in paralle! 

or out of program order, when memory operations are allowed to overlap other 

memory operations, when updates for a shared data item by one processor can be 

made visible to other processors, and how much inter-processor communication a 

memory operation will cause. Many verified solutions to the memory consistency 

problem in DSM systems have been proposed and successfully implemented. The 

design goal for consistency protocols is to achieve the best possible performance in 

a DSM system. However, high memory latency and limited bandwidth make this 
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difficult. Therefore, the key issue in designing mernory consistency protocols is to 

reduce both the memory latency caused by remote memory accesses and the large 

amount of communication required by memory consistency maintenance. 

There are two kinds of memory consistency models for DSM systems: strong 

consistency or sequential consistency [Lam791 and relaxedlweak consistency (e.g.. 

release consistency [LLG+92. CBZ951, lazy release consistency [KCZ92], entry con- 

sistency [BZS93], etc. ). These models have d l  been implemented in either hardware 

or software or both in the past few years. 

Sequential Consistency (SC) is a natural extension of the uniprocessor rnodel. A 

system is sequentially consistent if (1) al1 memory operations appear to execute one 

a t  a time in some total order, and (2)  al1 rnemory operations of a given processor 

appear to execute in program order. In other words. sequential consistency requires 

that any update to shared data becornes visible to al1 other processors before the  

updating processor is allowed to issue another memory access. Essent ially, sequen- 

tial consistency ensures that the view of the memory is consistent a t  al1 times from 

al1 processors. 

Such a strict requirement imposes serious restrictions on efficient performance. 

The Ivy system [LH89] supports a page- based single-wri ter, invalidate protocol to 

implement sequential consistency. The weakness of Ivy is that it can cause an 

excessively large amount of communication overhead because invalidate messages 

for updated shared data  must be sent out immediately and for every write oper- 

ation. For example, in Figure 2.3, data item x is updated by the same processor 

( P l )  repeatedly with no intervening access by other processors. If Pi and P2 both 

cache shared data item x, Pl must send invalidate messages for data item x to Pz 

immediately for every write operation before it is allowed to issue another read or 

write to shared data. 
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Figure 2.3: Sequential Consistency in Ivy 

Sequential consistency precludes many performance enhancing optirnizations 

in both hardware and software. such as write buffers, pipelining execution and 

reordering of operations. To improve the performance of shared virtual memory 

systems, researchers have proposed relaxed menory models t hat impose constrai nts 

weaker than sequential consistency. Relaxed consistency takes advantage of the 

fact that programmers use synchronization operations, such as lock acquisition and 

barrier entry, to separate accesses to shared data by different threads running on 

different processors. Therefore the system only needs to guarantee that the memory 

is consistent at selected synchronization points. Relaxed consistency models are far 

more efficient in implementing DSM systems. 

Release Consistency (RC) [GLL+SO] is a form of relaxed memory consistency. 

In release consistency. each shared memory access is classified as either a synchro- 

nization access or an ordinary access. Furthermore, synchronization accesses are 

made explicit and categorized into "acquires", which signal the beginning of a series 

of accesses to shared memory, and "releases", which signal the end of a series of 

accesses to shared memory. Release consistency exploits the fact that in a critical 

section a programmer h a .  already assured that no other processor is accessing the 

protected data. Thus, al1 previous updates of shared data are consistent only before 

a release of a synchronization variable is observed by any processor. Release consis- 

tency allows the effects of shared memory accesses to  be delayed until a subsequent 
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release is performed by the same processor. 

Researchers in hardware DSM have proposed the release consistency mode1 to 

reduce the memory latency associated wit h remote memory accesses. for instance. 

Dash [LLG+92] implements a form of release consistency using a write-invalidate 

policy. It reduces the memory latency by pipelining the invalidation messages 

caused by writes to shared data. The processor is stalled only when it executes a 

lock release, at which time it rnust wait for d l  its previous writes to be performed 

remotely(see Figure 2.4). 

Figure 2.4: Pipelining Invalidations in Dash 

In a sojlware DSM system, the overhead of exchanging messages is very high. 

Since sending a message is more expensive than it is in a hardware DSM system, it 

is more important to reduce the nurnber of messages exchanged than it is to hide 

their latency by pipelining. Ideally, the number of messages exchanged in a software 

DSM system should equal the number of messages exchanged in a message-passing 

implementation of the sarne application [KCZ92]. For this reason, t he  Munin sys- 

tem's write-shared protocol with update-with-timeout policy [CBZ95] implements 

RC and reduces the nurnber of messages exchanged by buffering modifications until 

a lock is released. Ideally, it  reduces the number of messages transferred frorn one 

per write to one per critical section when there is a single replica of the shared 
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data.2 At the release point, al1 modifications are sent to al1 processors who cache 

the data modified by the releasing processor. -411 modifications going to the same 

destination are merged into a single message. In the example shown in Figure 2.5. 

pages X 1  Y, and Z are cached in both processor Pi and Pz. The updates for page 

.Y. Y and Z by processor Pl are buffered. At the time Pl releases the lock, the 

updates are merged into a single message and propagated to processor Pz which 

also caches those pages. 

Single update message ack 

for x,y,z 

P, [LYA 

Figure 2.5: Buffering and Merging Updates in Munin 

Munin's protocol, however? may still send a number of unnecessary messages. 

because it propagates updated data to al1 processors who cache the data when 

the corresponding Iock is released. Keleher [pK951 h a .  show-n that there may be 

two forms of unnecessary communication using Munin's protocol with an update 

or invalidate policy. First, since some targets of the invalidations or updates never 

access the invalidated or updated data, they would not notice if tbeir copies became 

inconsistent. Hence, invalidation or update messages which are propagated to thern 

are useless. Second, some invalidation or update messages travel the sarne route as 

a subsequent lock transfer. Therefore, an invalidation or update message could be 

eliminated by piggybacking the invalidation or update message on the lock transfer. 

This is shown in Figure 2.6. Three processors Pl, Pz and P3 al1 cache shared pages 

2 ~ f  there are r replicas of the shared data, it reduces the number of messages transferred from 

x per write to x per critical section. 
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X and Y. and exchange the lock for the shared pages. Processor Pl updates page 

.Y and then releases the lock. The invalidate messages for page X are sent to 

processor P2 and P3. After processor P2 updates page Y, at the time of the release. 

invalidate messages for page Y are sent to Pi and P3. Then processor P3 reads page 

Y and releases the lock. First, since processor Pz and P3 do not access page X and 

Pl does not access page Y, al1 invalidation messages except the one from Pz to P3 

for page Y are useless. Second, the invalidate message to p2 travels the same route 

as the lock transfer requested by Pz. Similarly, the invalidate message to  travels 

the same route as the lock transfer requested by P3. 

Figure 2.6: Remote Memory Accesses in Munin with the Invalidate Policy 

Logically, it suffices to update or invalidate a cached shared data item for a pro- 

cessor only when the processor acquires access to the data. TreadMarks [KDCZ94] 

implements Lazy Release Consistency (LRC) [KCZ92] which does not make modi- 

fications globally visible at  the time of a release. Instead, lazy release consistency 

guarantees only that a processor that acquires a lock will see al1 modifications that 

precede the lock acquisition. By not propagating modifications globally at the time 

of the release, and by piggybacking data movement on lock transfer messages, lazy 

release consistency reduces both the number of messages and the arnount of data 

transferred between processors. Figure 2.7 shows the same exarnple as Figure 3.6 
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under laz y release consistency wi t h the invalidate policy. 

Figure 2.7: Remote Memory Accesses in TreadMarks with the Invalidate Policy 

Midway's memory consistency protocol [BZS93, BNBMJZSl] uses a n  update 

policy and irnplements Entry Consistency (EC) which is similar to lazy release con- 

sistency. Entry consistency guarantees that shared data becorne consistent at a 

processor only when the processor acquires a synchronization object. Furthermore. 

entry consistency requires each shared data object to be attached to a synchroniza- 

tion ob ject . The only data t hat is guaranteed to be consistent is that guarded by the 

acquired synchronization object. As a result, entry consistency generally requires 

less data  trafic than lazy release consistency. This can be shown by comparing 

Figure 2.8 to Figure 2.7. Piocessor Pl updates data  item x on page X. When pro- 

cessor Pz attempts to update a data item y on page Y, since the corresponding lock 

for y is free, it acquires the lock and updates y without any modification transfer. 

Once processor P3 acquires the lock for data item y, the modification for y is sent 

to  P3. 
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Figure 2.8: Remote Memory Accesses in Midway under the Update  Policy 



Chapter 3 

Problem Evaluation and 

Environment 

Before discussing memory consistency problerns in DSVM systems, it is necessary 

to introduce the  assumed environment of this thesis. This includes the definitions 

associated with objects. a nested object transaction model for the DSVM system. 

and object access in a page based DSVM system. The memory consistency problem 

in a persistent DSVM system and design issues for memory consistency protocols 

will then be discussed. 

3.1 Assumed Environment 

This section begins by formally defining ob jects fotlowing the notation of Gra- 

ham [PCG94]. It is followed by defining the nested object transaction model. The 

model uses conflicts at the object level to define correct executions between [subl- 

transactions. This allows serialization based on two-phase, object-level locking. 
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Finally, object access in a page based DSVM system will be presented. 

3.1.1 Object Mode1 and Properties 

The proposed DSVM system contains large collections of uniquely identified per- 

sistent ob jects. To concent rate on memory consistency issues in a DSVM- based 

persistent object system and ignore the irrelevant details that would unnecessar- 

ily complicate the design, the core object concepts of [Kim901 are assumed but 

unnecessary details are omitted. Objects, as discussed previously, logically con- 

tain structural and behavioural components. The structural component is a set of 

uniquely identified data items (attributes) whose values constitute the state of the 

object. The behavioural component is a set of procedures (methods) which are the 

only means of accessing and manipulating the structural component, namely. of 

modifying the state of the object. Each object h a  its own unique object identifier 

(OID). In the proposed DSVM system, the OID is the object's virtual address in 

the persistent object space. 

The following forma1 definition for objects is by Graham [PCG94]. The j th 

attribute of object Oi is denoted a;j7 and an object 's kth method is identified using 

the notation m;k. 

Definition 3.1 An object Oi = (Si,Bi) where: 

1. i is the unique identifier of the object, 

2. Si is the object's structure composed of attributes such that Vaij, a ik ( j  # 

k) E Si, aij # a i k ,  

3. Bi is the object's behaviour composed of methods such that Vmij, mik( j  # 

k) E Bi, mij # mis. I 
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Point (1) assigns a system-wide unique identification to each object. Point ( 2 )  

identifies the attributes of the object. Point (3) specifies the methods of the object. 

Hadzilacos, e t  al. [HH91] divide the steps of a method's execution into local 

steps and message steps. The local steps access an object's local attributes and 

message steps access non-local attri butes via met hod invocations on ot her ob jects. 

Al1 objects which share the s m e  set of attributes and methods are grouped into 

a class. A class is associated with a single object type from which specific objects 

may be instantiated. An object type defines attributes which are stored in each 

object instantiated from it as well as a set of rnethods which rnay be applied to 

those attributes. An object belongs to only one class as  an instance of that class. 

Encapsulation, Inheritance, and Polymorphism are supported by the object 

mode1 in this thesis. Encapsulation is a fundarnental feature of object-orientation. 

It provides data  abstraction and data independence. It also ensures that objects' 

attributes may only be accessed and updated by their local methods. This property 

guarantees locality of effect from which a benefit is provided to  infer the correctness 

of concurrent met hod invocations. Classes are potent ially related by in heritance. 

-4 class rnay be denved from another class ( the base class). The derived class is 

called a sub-class of the base class and the base class is called a super-class of the 

derived class. Both attributes and methods may be inherited. Inheritance provides 

an important basis for software re-use which increases programmer productivity. 

Polymorphism permits objects of one class to be treated as if they were of their 

declared class or any super class thereof. 
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3.1.2 Nested Object Transactions 

In a DSVM system, multiple, concurrent users access objects by invoking methods 

that manipulate their attributes. An access submitted by a DSVM user consists 

of a single object method invocation, and that method execution may invoke other 

methods. Thus. method invocations may be nested, and method executions either 

by users or other objects should be treated as nested atomic object transactions. 

Each method invocation begins a new [sub-]transaction. A mot transaction is the 

initial method invocation made by a DSVM user and therefore it has no ancestors. 

The root transaction and its descendants. together, constitute a transaction tree. 

which we refer to  as transaction family. 

The following nomenclature is used to describe nested object transactions. The 

systern contains a set of objects O = {Oi, Oz, ..., O,}. An invocation of method 

h on object i made by a DSVM user j is denoted m*. It begins a nested object 

transaction (the root transaction) T;'. Recall that each execution of method m:k 

has local steps which access object local attributes, and message steps which access 

non-local attributes via method invocations on other objects. Operations of a 

nested object transaction then may contain reads and writes which operate on 

attributes of the object the transaction is executing on. They may also contain 

sub-transactions which are init iated by method invocations on ot her objects. As 

mentioned previously, when the execution of a sub-transaction completes, it enters 

a pre-commit state indicating it is ready to commit. Thus, the operation set of 

T/ may contain reads, writes, pre-commits, and sub-transactions. The operation 

'pc' denotes entry into the pre-commit state by a sub-transaction. The set of sub- 

transactions of a root transaction ~ , f  is denoted OT, = {rn:,,, , rn;,,, ...., rn:n,n}. 

such that mi,,  E OTj denotes a method invocation of ~j ivhere the rnethod ti is 

invoked on object si- The set of al1 operations of a nested object transaction T: is 
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denoted OS, = {ukOjk) U OTj,  where Oji E {read,  wri te ,pc)  is an operation k of 

the nested object transaction T: . A transaction's termination condition is denoted 

by X, E (Commit, Abort}. 

One advantage of nested over Rat transactions is t hat su b-transactions may 

execute concurrently in one transaction family. To eosure serializabili ty between 

such sub-transactions, the interna1 semantics of the nested object transactions must 

be considered. Zapp [ME2931 defines a boolean function depends. It takes two 

operations as inputs. at least one being a sub-transaction, and returns -truc" if 

there is a dependence relation between the operations due to the interna1 semantics 

of the nested object transaction. 

In the proposed DSVM system, operations of one nested transaction are reads. 

writes, pre-commits, and met hod invocations. The notion of conflict between reads 

and writes is well understood. Graham [PCGM] provides the following definition 

of conflicting methods. 

Definition 3.2 Two methods in an object conpiet if they contain steps which 

access attributes in a conflicting mannerl. If two methods mij and m ; k  conflict 

then this is denoted m;j@mik. I 

Object-level locking is employed in this thesis. Thus, conflicts only occur be- 

tween method invocations (i.e. [sub-] t ransactions). For exclusive ob ject-level lock- 

ing, the definition of conflicting methods is that two methods conjlict if they are 

invoked on the same object. This is a very simple and conservative conflict criterion. 

The nested object transaction mode1 which is used for this thesis is now defined 

by referencing the definition of Graham [PCGM]. 
--- - 

'Two steps conflict if they both access the same attribute and at least one is a write operation. 
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Definition 3.3 A nested object transaction is a partial order T: = (Cl,+,) where: 

2. (a) for any two O,[ ,  Ojr  E 0%. if Oji  = mi,, Ojk  = mi,, then either 

Oji  4, Ojh Or Ojk  4 j  O j ~ .  

(b)  for any two O j l ,  Ojk  E OS,.  if Ojl  = rn:( and depends(Ojr, O , i ) .  or 

depends(Ojk,Oj1), then Ojl  + j  O,*, or Ojk + j  Oj l ,  respectively. 

3. if Oj i  = Pc. Ojr is unique and VOjk E OS,, # k.  Ojk i j  0ji7 

5- the termination conditions of al1 mi E OS, are consistent and equal to N,. 

I 

Point (1) enurnerates d l  the operations performed by the nested object trans- 

action. Point (2)  addresses the ordering relation of the  nested object transaction. 

Point (%a) orders the conflicting method invocations of the nested object trans- 

action. Point (2b) allows concurrent execution of sub-transactions of the nested 

object transaction as long as a partial order of al1 the  operations obeys the depends  

function. Point (3) indicates that a11 operations of the nested object transaction 

must occur before its only pre-commit operation. Point (4)  prevents any opera- 

tion of a nested object transaction from occurring after the transaction terminates. 

Point ( 5 )  ensures that  al1 of a transaction's sub-transactions either commit or abort 

with their parents. 

For the purpose of this thesis, it is assumed that  the dependence relationship 

of point (2b) has been defined, and dependence analysis has been performed to 

determine the appropriate partial order (see [P CG941 for details ) . 
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3.1.3 Object Access in a Page based DSVM System 

The high level structure of the DSVM system proposed by [PGB97. MGB961 is 

shown in Figure 3.1. The DSVM system is assumed to  consist of some number of 

nodes coonected by a high bandwidth, low latency network. Each node is disked 

and contains a significant physical memory. The SVAS is globally distributed across 

al1 nodes. Therefore, the same SVAS is visible to al1 processes regardless of their 

physical execution location. The persistent object store is stored collectively on the 

disks provided by each processor. 

Interconnection 
Network 

Persistent 
Stonge 

Figure 3.1: High Level Structure of the DSVM System 
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In a page based DSVM system, the SVAS is partitioned into virtual memory 

pages. The local memory of each processor is used as  a cache for the SVAS. A 

per-processor page table is used to map virtual pages into page frames. Object 

management takes place as a direct consequence of virtual memory operations. 

During a virtual memory access, there are two types of iaults that may occur and 

which are detected in hardware: a segmentation fault. which occurs if a process 

references a region of virtual memory for which no mapping exists in the page 

table: or a page fault, which occurs if a reference is made to a mapped region of a 

processor's address space but the corresponding page is not resident in real memory. 

Mathew. et  al. [MGB96] presented the design of a Global Directory of Objects 

(GDO) to  manage the potentially huge number of objects in a DSVM system. I t  

provides object lookup by virtual address for al1 objects and persistently stores al1 

the management information for the objects which may include persistent storage 

information, concurrency control and consistency information. Al1 method invoca- 

tions on an object are assumed to execute beginning at the start address for that 

object (i.e. its OID) in virtual memory. Thus, when an object transaction invokes a 

met hod on an object , t h e  virtual address corresponding to the start of the accessed 

object is referenced. On a segmentation fault, control is transferred to the DSVM 

system. The faulting virtual address is used as the key in searching the GDO. If 

an entry is not found in the GDO, an invalid object reference has been detected. 

Otherwise, a valid object was referenced and the DSVM system adds page table 

entries to  the processor's page table for the object's pages. Initiaily, these entries 

indicate that the corresponding pages are not memory resident. The system then 

also retrieves an up-to-date copy of the object's first page into the memory (page 

in) to avoid a page fault immediately occurring. Page table entries are built using 

information contained in the corresponding GD0 entry. In response to a page fault, 
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the DSVM system uses the information in the page table entry for the faulting page 

to retrieve a copy of the object's page and make it resident in the real memory. 

To ensure memory consistency and proper concurreocy control, the  system must 

unmap an object's pages once access to  it is complete. By doing so, a segmentation 

fault is guaranteed to  occur when the object is accessed again, thereby permitting 

the DSVM system to effect any required object management functions. For exarn- 

ple, it is necessary to have the DSVM system gain control so that object-level lock 

management may be performed. It is d s o  important that the DSVM system gains 

control at  access completion to permit the freeing of locks and other management 

functions. Unmapping an object, however, does not mean that its pages need to 

be Aushed back to persistent storage. An object's pages can be flushed lazily using 

a write back queue from which available page frames are replaced as needed in a 

Least Recently Used (LRU) fashion. If the subsequent acquiring [sub-] t ransact ion 

is from the same node that last updated the object, it may reclaim any pages that 

are in the write back queue. If the subsequent acquiring [sub-]transaction is from a 

different node, the up-to-date pages of the object must be transierred to  that node. 

3.2 Memory Consistency in a DSVM System 

Distinct and possibly distributed processes con concurrently access any shared ob- 

ject in a DSVM system. This sharing can result in several copies of a shared object 

existing in multiple mernories a t  the same time. This requires that  the DSVM 

system must ensure that the in-memory copies of persistent objects a t  each node 

are always consistent. 

In most existing software DSM systems for parallel computing [LH89, KDCZ94, 

BZS93, CBZ951, the sequentially consistent execution is chosen as the base system 
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view of al1 memory models, where a sequentially consistent execution is an exe- 

cution of a program that could have been produced by a sequential consistency 

system. Therefore, t h e  correctness cri tenon for memory models is t hat certain 

memory operations on which various optimizations can be applied do not violate 

sequentially consistent execution and provide significant performance benefits. In 

ot  her words, memory models s hould guarantee t hat certain programs (i .e. dat a-race- 

free programs [Adv93]) execute as if they were running on a sequentially consistent 

memory system. 

Rather than focusing on the parallel execution of a single program, a DSVM- 

based system must support consistent virtual memory for multiple processes that 

perform transactional updates to the shared memory space concurrently from dif- 

ferent nodes. Additionally, when a persistent object system is built in DSVM. the 

nesting of invocations on ob jects makes consistency maintenance more complicated. 

Serializability is a suitable correctness criterion for concurrent executions of nested 

object transactions in the proposed DSVM based persistent object system. To 

ensure that in-memory copies of persistent objects a t  each node are always consis- 

tent, in other words. to ensure that each transaction sees only consistent persistent 

objects, the DSVM systern must ensure that method invocations on objects are 

serializable as nested transactions and must use a memory consistency mode1 that 

is compatible with the  serialization of nested object transactions. Shus. an object 

transactional consistency protocol is needed for the proposed DSVM system. 

3.3 Consistency Protocol Design Issues 

This section presents the issues that arise in the design of memory consistency 

protocols for the proposed DSVM based persistent object system. It begins by 
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discussing serializability with closed nested object transactions, emphasizing the 

difference between Moss' [Most451 and our transaction model. The effects of the 

differences in serializability wit h closed nested object transactions are also analyzed. 

Factors that affect the performance of such consistency protocols are then examined 

and problems arising in page based DSVM systems are discussed. 

3.3.1 Serializability with Closed Nested Ob ject Transac- 

t ions 

Simple mutual exclusion (mutex) locks. as are used in conventional consistency pro- 

tocols. do not support serializability with nested object transactions. As discussed. 

Moss provides rules for nested two-phase locking to support serializability for closed 

nested transactions in a non-object system. The fundamental difference between 

mutex locks and the locks required to support closed nested transactions is the 

multi-stage release process. Locks are released first for access by sub-transactions 

which have the same parent transaction as the releasing su b- transact ion. t hen. for 

sub-transactions which have the same ancestors in turn, and finally, for al1 other 

transactions after commit ment of the root transaction. Moss' rules also rest rict 

interna1 transactions to manipulate data directly. If a parent transaction needs 

to access data, one need only introduce a new child to perform the action on the 

parent's behalf. Thus, only leaf transactions can manipulate data directly in Moss' 

rnodel. 

In the proposed DSVM system, al1 data  are objects. Due to encapsulation, the 

only way to access an object is via a method invocation on it. Object method 

executions have local steps which access on object's local attributes and message 

steps which access non-local attributes via met hod invocations on ot her ob jects. 
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Thus? both leaf and non-leaf transactions in a given transaction family are allowed 

to access object attributes as well as to create sub-transactions. 

Two problems immediately present t hemselves because of encapsulation. First . 

unlike Moss' transaction model, parent transactions not only just retain locks from 

their descendent transactions, but rnust also hold locks for their own needs because 

a11 sub-transactions of a nested object transaction including the root transaction 

can access object attributes directly. 

Secondly, by using Moss' two-phase locking rules, deadlock may be introduced 

in one transaction family if both a parent and its descendent access the same object 

directly or indirect ly (so called recursive invocations). When a parent transaction 

locks an object first, none of its descendent transactions can obtain the lock to 

access the same object because the lock will be held until the parent transaction 

commits. On the  other hand, the parent transaction cannot commit without its 

descendant transactions commit ting. 

Therefore, Moss' closed nested two-phase locking rules need to  be extended to 

ensure the serializability of nested object transactions as defined in this thesis. 

3.3 -2 Memory Consistency and Performance Issues 

Once the  serializability of closed nested object transactions is guaranteed. a con- 

sistency mode1 which supports nesting and objects is needed which is compatible 

with the  serialization of closed nested object transactions in a dist ributed persistent 

object environment. The performance of such an object transactional consistency 

model becomes the next important design criterion. There are two primary ob- 

st acles to  obtaining better performance in a software implementation of a memory 

consistency model. 
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Since shared objects may be accessed concurrently by different object transac- 

tions [rom different nodes in the DSVM system, several copies of a shared object 

may exist in one or multiple memories a t  the same time. Thus. maintaining rnem- 

ory consistency rnay lead to significant network trafic due to  the required transfer 

of updated object pages. The high cost of network communication can hurt per- 

r- -- 
LU. ~dance because large amounts of communication can lead to  bot t lenecks. More 

important, in a DSVM system is the software overhead associated with a message 

being sent or received. Since sending a message in a software DSVM system is 

more expensive then in a hardware DSVM system, it is very important to reduce 

the number of consistency related messages (which consist of both short control 

messages and large object updates) which must be sent. A highly efficient mecha- 

nism for maintaining memory consistency across processors is critical to a practical 

DSVM implementation. To minimize the cost of consistency maintenance in the 

DSVM system. a relaxed memory consistency mode1 is needed. 

In page based systems. the shared virtual address space is divided up into pages. 

Transfen between memory and disk are always in units of pages. With virtual mem- 

ory pages as the units of consistency, the potentially large size of pages makes the  

system prone to false sharing [KJE93]. This problem also limits the performance 

of page based systems. False sharing occurs when two or more separate processors 

concurrently update different shared data items that CO-exist within a shared page 

which is cached in their local memories. This rnay lead to rnemory inconsistency 

(Le. lost updates) because the transfer unit is a page. Consider the example shown 

in Figure 3.2. Processors Pl and PÎ concurrently update different shared data items 

x and y respectively which are both located on the same page Z (shown in Fig- 

ure 3.2 (1)). If PZ then attempts to access data item x, with the invalidate policy 

the page Z which is cached in its own memory is invalidated and the page which 
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contains the updated xl is transfered from Pl to Pz. As a result, however, the  

up-to-date yi updated by processor Pz is lost (shown in Figure 3.2 (2)).  

To prevent false sharing, conventional protocols require processors to grant ex- 

clusive access to an entire page before it can be modified. Therefore, multiple 

processors may contest the ownership of a page. Thus, the false shared page has 

to travel across the network, even though the local copy of the page would have 

sufficed since the access is to differeat data items. The page then "ping-pongs" 

back and forth between different processors. This results in heavy network traffic 

and represents unnecessary communication. Consider the following scenario. As- 

sume that processor Pl holds a writable copy of a given page. When processor P2 

attempts to write to the page. the system retrieves the page from Pl and invali- 

dates Pi's own copy. When Pl attempts to write to the page again, the opposite 

sequence of events will occur. As each processor writes to the page which is beld by 

the other processor, the page will travel across the network. Consistency protocols 

for a page-based system have to deal with this problem. 
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Figure 3.2: An Example of False Sharing 



Chapter 4 

Lazy Ob ject Transactional Entry 

Consistency 

This chapter introduces a novel consistency protocol known as Lazy Object Trans- 

actional Entry Consistency (LOTEC) for maintaining memory consistency with 

closed nested object transactions in a DSVM-based persistent object system. The 

design of the protocol is based on certain initial assumptions. First, consistency 

control will be provided on a per-object basis via object-level locking which can 

be achieved by including lock and cache consistency information in each entry in 

the G D 0  [MGB96]. Second, to avoid fdse sharing, it is assumed that attribute 

values of multiple objects will not be stored on a single page but attribute values 

of a single object will be allowed to span multiple pages1. Third, only exclusive 

Iocks are supported to simplify the design. Support for shared ("readn/"writen) 

loch can be easily derived from what is presented. Fourth, al1 sub-transactions of 

'Since an object's rnethods are never rnodified, we are only concerned about attribute values of 

an object when we discuss transferring updated object pages as required for memory consistency 

maintenance. 
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a given root transaction will normally execute a t  the same node. Finally. directly 

or indirectly recursive invocations are not allowed within one transaction lamily 

because handling deadlock is not discussed in this thesis 2.  

4.1 Serializability of Closed Nested Ob ject Trans- 

actions 

This section discusses serializability of closed nested object transactions in the pro- 

posed DSVM system. It begins by giving the definition of closed nested object 

two-phase locking rules in Subsection 4.1.1. Algori t hms for lock operat ions are 

provided in Subsection 4.1.2. Following this, an example of the  execution of nested 

object transactions under the closed nested object two-phase locking rules is pre- 

sented in Subsection 4.1.3. The correctness of the closed nested object two-phase 

locking rules is discussed in Subsection 4.1.4. 

4.1.1 Closed Nested Object Two-phase Locking Rules 

This subsection provides the modifications necessary to Moss' closed nested tivo- 

phase exclusive locking rules (N2PL) to  support closed nested object two-phase 

exclusive locking rules (02PL).  Based on Moss' N'SPL rules, the rules for closed 

nested object transactions are: 

1. Transaction T may acquire a lock if: 

(a) no other transaction holds the lock or a11 transactions that retain the 

Iock are ancestors of T, and 

'Deadlock management is generally a well understood problem. 
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(b) if T depends on a transaction T', T' has completed (this will be clarified 

shortly). 

2. Once a lock has been acquired by transaction T, the lock is held until T 

commits or aborts. 

13. A transaction cannot [pre-]commit until al1 its sub- transactions have pre- 

committed. When a sub-transaction T pre-commits, the parent of T inherits 

al1 its locks (both holds and retains). After that, the parent retains al1 the 

locks. 

4. When a transaction T aborts, it releases al1 locks it and its sub-transactions 

hold and retain unless any of its ancestors retain any of these locks in which 

case they continue to do so. 

5. When the root transaction T commits, it releases al1 locks which were held 

by itself and al1 of its sub-transactions. This makes them available to other 

transaction families. 

Rule (1) enforces an order on nested object transactions. Rule ( l a )  prevents 

two nested object transactions from concurrently accessing the same object in a 

conflicting manner. Conflicting nested object transactions are ordered in the same 

order in which the relevant lock is obtained. 

If conflict ing transactions are from different transaction families and the lock 

is held by one transaction, the requesting transaction has to wait until the root 

transaction of the transaction holding the lock releases it. Thus, an order is forced 

between conflicting transactions as well as between corresponding transaction fam- 

ilies. 
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If conflicting transactions are from the same transaction tamily, special consider- 

ations are required. Figure 4.1 illustrates a case of conflicting sub-transactions that 

may arise in one transaction family. In t his case, object Oz is accessed by multiple 

method invocations made by a root transaction T;. The conflict occurs between two 

sub-transactions Ti, and T:, created by method invocatiom miï and mi, respec- 

tively. Sub-transaction TL holds the lock for object Oz needed by sub-transaction 

Ti, frorn the same transaction family. If T:o has completed (pre-committed), T,', 

should be permitted to obtain the lock. If this is not permitted, a deadlock occurs 

(shown in Figure 4.2). In this case. T:, waits for T& to release the Lock; Ti, waits 

for the root transaction Ti to commit so that the lock con be released; and the root 

transaction Ti waits for Ti, to pre-commit so that it can commit and release the 

lock. Since a completed conflicting sub-transaction will not execute further oper- 

ations, this deadlock can be avoided if a sub-transaction is permitted to acquire a 

lock when a conflicting sub-transaction from the same transaction family has corn- 

pleted. In addition, to satisfy the closed nested object transaction definition as well 

as to avoid cascading aborts, an acquiring sub-transaction can hold a conflicting 

lock only when its ancestor retains the lock. In Figure 4.1, once sub-transacticn Ti, 

pre-commits, sub-transaction Ti, is allowed to acquire the lock from its parent Ti 

which retains the lock from T;,. Therefore, an order is enforced between conflicting 

sub-transactions in one transaction family. This conflicting order is the same order 

in which the relevant lock for O2 is obtained. 

Rule ( 1 b)  enforces an order between dependent object transactions in one trans- 

action family to satisfy serializability. Figure 4.3 illustrates an example which may 

arise between dependent sub-t ransactions in one transaction family. In t his ex- 

ample, method mi, and method mi, are invoked on different objects, so the sub- 

tramactions Ti, and Ti, created by them do not conflict. However, method mi, is 
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Figure 4.1: Conflicting Sub-transactions in One Transaction Family 

Figure 4.2: A Case of Deadlock 

dependent on method mi, based on its access (within mi,) to attribute x. There- 

fore, çub-transaction T:l should oot be executed until after sub- transaction T:o has 

completed. Without rule ( lb) ,  sub-transaction Tio and sub-transaction T;, could 

execute concurrently if they both obtained the required locks. To ensure equiva- 

lence to a serial execution, two dependent method invocations must be executed 

sequentially in an order consistent with the order of method invocations in their 

parent transaction. Therefore, rule (1 b) ensures t hat sub-transaction TI, will be 

blocked until sub-transaction Tio pre-commits. 
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Figure 4.3: A Case of Dependent Sub-transactions 

Rule (2) ensures that each nested object transaction uses strict two-phase lock- 

ing in which no locks are released until the termination of the transaction. Strictness 

is necessary to avoid the problem of cascading aborts. 

Rule (3)  defines the partial release of corresponding object locks. This release 

permits other sub-transactions in the pre-committing sub-transaction's immediate 

family to see internally committed changes and to make further updates. It also 

precludes ot her su b- t ransactions from doing so. 

Rule (4) defines the activities necessary when a nested object transaction aborts. 

When a transaction aborts, its locks and its sub-transactions' locks that are not 

retained by any of its ancestors are released so that blocked transactions can resume. 

For an  aborting sub- transact ion, locks are first released locally to sub-t ransactions 

within the transaction family. If there is no sub-transaction waiting for the locks 

in the transaction family at  the time it aborts, the locks are t hen released globaily 

to other transaction families. 
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Rule (5) defines the activi t ies required when a root transaction commi ts. When 

a root transaction commits, it releases al1 the locks (both held by itself and retained 

from al1 its sub-transactions) to other transactions families. This makes t h e  up- 

dates made by itself and al1 its sub-transactions visible to al1 transaction families. 

Serializat ion, t herefore, is at the levei of root transactions. 

4.1 -2 Algorit hms Implementing the Closed Nested Ob ject 

Two-phase Locking Rules 

Before discussing the details of the algorithms for lock operat ions. transaction iden- 

t if ier~ ( T I D , )  and a lock structure for each object must be described. 

Transaction Identifiers (T ID.) 

.An invocation of method k on object Oi made by a DSVM user j is denoted mi,. 

A root transaction created by method invocation ml, is denoted T:. .A generic 

unique [sub-] transaction identifier has the forrn: T(/ l , . . .  , where i is the root 

transaction identifier. d is the depth of the transaction nest, and l l . . . ld-L uniquely 

identifies the sub-transaction by enumerating its location in the transaction familfs 

t ree. 

Lock Structures 

Each object bas a correspondiog lock structure which contains lock information 

for the object. Each lock structure has one lock variable to indicate the state of 

the  lock on the corresponding object. It also has a current holder pointer to a 

'holder' structure which contains the transaction identifier (TID ) of the transaction 
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which currently holds the lock and the node identifier (NID) of the node on which 

the transaction executes. Since lock requests may corne from different transaction 

families or from the same transaction family, the current holder (see Figure 4.4) 

also contains a pointer to a nonlocallist.  Al1 [sub-]transactions which attempt to 

acquire the lock from different transaction families are linked ont0 the nonlocall is t  . 

Each element of the nonlocall is t  uses the same data  structure as the currentholder 

to enumerate the transactions requesting the lock. The  currentholder also contains 

a pointer to a locallist. Al1 sub-transactions from the same transaction family as 

the [sub-] transaction holding the  lock attempting t o  acquire the lock are linked onto 

the locallist. Each element of the locallist also uses the same data structure as 

the currentholder. Therefore, a lock structure for object Oi is composed of: 

lock-variable: a flag. When lock-variable is ' O 1 ,  the lock for Oi is free: When it is 

' 1'. the lock for 0; is held. 

currentholder-pointer: points to the currentholder. 

currentholder: indicates the  [sub-]transaction which currently holds the  lock. It 

has a Tid field to  indicate the holding [sub-]transaction and a Nid field to 

indicate the node on which the [sub-]transaction executes. It also contains a 

pointer to a nonlocall is t  and a pointer to a locallist. 

non-local Aist: is a FIFO queue for pending lock requests from [sub-1 transactions 

in transaction families other than that of the  current holder. Each element 

of the non loca l~ i s t  utilizes the same data structure as the current holder 

including pointers t o  next element in the  non-locallist and to a locallist. 

local-list: is a FIFO queue (one per transaction family) for pending lock requests 

from the same transaction family as the [sub-] transact ion in the corresponding 



element of the nonlocallist. Each element of the locallist utilizes the same 

data structure as the currentholder including a pointer to next element of 

the locailist. 

-4s mentioned earlier, the G D 0  [MGBSG] is a global directory of objects used 

for managing large collections of persistent objects in a dist ributed environment. A 

G D 0  entry contains an object's identifier (OID) which is used as  the key value for 

searching the GDO. Graham, et al. [GB93, MGBSG] suggest that a lock variable 

for an object couid be placed in each G D 0  directory entry. By maintaining lock 

variables in the globally visible object directory, the state of a lock on an object is 

available to  al1 nodes. Each lock structure is thus associated with the corresponding 

object's G D 0  entry. Together with certain cache consistency information, the lock 

information can be used to ensure the consistency of objects when accessed by 

distinct and possibly distributed transactions. Figure 4.4 shows an object 's G D 0  

ent ry wit h a corresponding lock structure. 

When a [sub-] t ransaction q-'tJl, ,..- i l d - 2 i l d - l  acquires the lock for object Ob, the re- 

quired G D 0  entry, GDOi, should be cached in memory to speed up subsequent 

object management functions. The information contained in GDOk is used to  build 

page table entries in the current node for object Ok.  In one transaction family, mul- 

tiple sub-transactions may attempt to acquire the lock for Ok. Since it is assumed 

that al1 the sub-transactions of a given root transaction will execute at the same 

node. lock operations for object Ok from the same transaction family will be han- 

dled locally. Thot is al1 local lock requests for a rnapped object from the same 

transaction family may be queued on a waiting queue in the local lock structure 

without remote references. Thus, a local lock structure is desirable for each mapped 

object. 
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Figure 4.4: A G D 0  Entry with Corresponding Lock Structure 

The local lock structure could. theoreticaliy, be associated with the object's 

page entries in the page table. Since the page table is a hardware-read table whose 

structure we cannot change, we build the local lock structure in the cached GDOh 

entry (CGDOk).  Once a [sub-]transaction T(lIi..,ild-lild-l is granted a lock Lo,, it 

becomes the current lock holder. Since the current holder's nonJocal1ist in GDOk 

is unnecessary for handling local lock requests, the CGDOç entry does not contain 

the nonlocall ist  . Thus, the Iock-variable, current holder-pointer, current holder: 

and locallist compose the entire local lock structure for object Oc in the  cached 

G D 0  entry CGDOk. If more sub-transactions in the same transaction family at- 

tempt to  acquire the lock for object Ok, they will be linked onto the locallist in 

CGDOk. 

When an object needs to be unmapped from the page table, the object's CGDO 

entry is unlinked from the CGDO, and then is linked onto a delayed write-back 

queue. 
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Figure 4.5 shows a cached GD0 entry with its corresponding local lock structure- 

When the current holder T$,, .--, ld-2 , id- l  commits, the current holder is changed to 

ts parent Tl~i and the lock variable is changed to 'O' (retain) in the CGDO 

entry. If the next sub-transaction in the locallist is a descendant of the current 

retainer, it acquires the lock becoming the current holder and the lock variable is 

set to ' 1' (hold). O t herwise, transaction T(i, i - - i l d - 2  retains the lock until it commits 

or aborts, or a sub-transaction acquires it. 

I 1 current 
I I 

1 holdet I 

I l a k  porter I I 

Cached GD0 Envy 4ajable local-list I I 

(CGDO) I 
I 

Local Lock Structure 

Figure 4.5: A Cached GD0 Entry with Corresponding Local Lock Structure 

Algorithms 

The closed nested object two-phase locking rules are implemented by the trans- 

action manager operating on certain lock structures. Each object 0; has a cor- 

responding lock structure (LS,,) which handles al1 lock operations for object O;. 

When the transaction manager receives a method invocation on object Oi, it "trans- 

lates" the method invocation into an object transaction. The transaction manager 

then sends the lock operation to the appropriate lock structure, LSo,. When the 

lock structure, LSo,, acknowledges that  the lock is set, the transaction manager 



allows the object transaction to execute. Otherwise. the object transaction will be 

blocked until the lock is available. Thus, the transaction manager cornbined with 

the lock structures ensure that a lock is acquired before the corresponding operation 

is performed. 

Algorithm 4.1 describes the local lock acquisition process. When an object [sub- 

]transaction T : l 1  ..... ~ , 4 . ~ d - i  attemp ts to access ob ject Or,  the transaction manager 

invokes the Local-LockAcquisition routine to acquire the lock for Ok. If the object 

Ob is unmapped, the  request is forwarded t o  a Global-Lock Acquisi t ion routine 

(which uses the virtual address of object Ok as the key in searching the GDO) 

to  manage lock acquisition operat ion. The  requesting transaction is blocked un- 

til the lock is granted from the Global-LockAcquisition routine. When an object 

Oc is rnapped? if the  requesting transaction and the current holder (or retainer) 

do not belong to t he  same transaction family the request is also forwarded to the 

Global-LockAcquisition routine. Otherwise, if the lock is retained by an ancestor 

of the requesting transaction, the request is immediately granted. If the lock is 

held or retained and the retainer is not an  ancestor of the requesting transaction 

q : l 1  ...., ld-2,1d-l 7 
T( l l  . . . . . ~ d _ ~ . l ~ - ~  along with the node identifier ( N I D , )  correspond- 

ing to the node on which the requesting transaction executes are linked onto the 

locallist in CGDOk. The requesting transaction is blocked until the lock is granted 

following a LocalLockRelease routine (which releases al1 locks held and retained 

by one sub-transaction to its parent). 

Algorit hm 4.1 Local_Lock-Acquisition 

INPUT : q(l l,..*, l d - l , l d - l ;  /*TID of the requesting transaction*/ 
INPUT : Ok; /*Object being accessed */ 
INPUT : CGDOk; /* cached GDOk entry for object Ok*/ 
INPUT : NID,; /* the node-id on which the requesting transaction executes */ 

IF (Ok is unmapped) THEN 
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Forward request to GlobalLockAcquisition; 
ELSE /* Ok is mapped*/ 

IF ( q l 1  ..... l&2,1&l belongs to the same transaction family as the current holder 
or retainer) THEN 

IF (the lock is retained by an ancestor of Tll, 1 ,-2, id- ,  ) THEN 
CGDO k.lock-variable - '1'; /* T(ll  ,..., ld- , , ld- ,  gets the lock */  
current _holder.Tid - T(ll ,..., d-2, l d - ,  ; 
current-ho1der.Nid - NID, 
CGDOk .current holder-pointer - current holder ; 
Send the lock grant to the requester; 

ELSE 
/*lock is held or retained but retainer is not an ancestor of T ~ l , , . - - , l d - 2 , 1 d - l  */  

Link Tt$I i . . . i ~ d - l i ~ d - l  dong with N I D ,  ont0 the lockiist of CGDOk; 
ELSE 

/* * ~ ~ l . . . . . l ~ - ~ . ~ ~ ~ ~  is from a different famiiy than the curent holder or retainer*/ 

Forward request to GlobalLock Acquisit ion; 

End of Algorithm 

Algori t hm 4.2 describes the global lock acquisition process. This process uses 

the object identifier Ot as the key t o  search the GD0 to find the GDOk entry. If the 

lock for object Oi, is free? the request i s  immediately granted. When the lock is not 

free, if there is a [sub-]transaction in the non-locailist which belongs to the  same 

along with the node identifier (NID,) corresponding to the node on which the 

requesting transaction executes a re  linked ont0 the locallist of that transaction. 

T ( ~ l  is blocked until the  lock is granted by the Local-LockRelease rou- 

tine. Ot  herwise, the requesting transaction's identifier T(f i . . - , ld-2i ld- l  along wit h the 

node identifier NID, are linked ont0 GDOk's nonlocallist. Then the requesting 

transaction is blocked until the  lock is granted by a Global_LockJlelease routine 

(which releases al1 locks held or retained by one transaction family at  its completion 

t o  other transaction families). 
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Algorithm 4.2 Global,LtxkAcquisition 

INPUT : T(ll ,. . . , ld-2rld-l  ; /*TID of the requiring transaction*/ 
INPUT : Ok; /*Object being accessed */ 
INPUT : GDOk; /* GDOk entry for object Ok*/ 
INPUT : NID,; /* the node-id on which node the requesting transaction executes */ 

GDOk = G D O L O O ~ U ~ ( O ~ ) ;  
IF (GDOk.lock-variable = O )  THEN /*the lock is free*/ 

G DOt .lock-variable - '1'; /' T,$, , ..., ld-2ild-l gets the Lock*/ 

current holder-Tid - T & ,  ---, l d - l , l d - I  ; 
current ,holder.Nid - 1V I D,; 
G DOk .current holder + current holder; 
Send the lock grant to the requester with a copy of GDOk to build CGDOk; 

ELSE /*lock is not fret?*/ 
IF ( t  here is a transaction in the nonlocallist which belongs to the same family 

as Tl11 .... . l d - ~ , l d - l  
) THEN 

Link ....,1d-2,1d-1 and N I D ,  onto the locallist of that family; 
ELSE 

Link T(h....1d-2,~d-i and N I D ,  ont0 the nonlocallist: 

End of Algorithm 

Algorit hm 4.3 describes the local lock release process. When a sub- t ransact ion 

pre-commits, locks retained and held by the sub-transaction are passed up to its 

parent who retains the locks. If the next requesting sub-transaction in the lo- 

callist of the CGDO entry is a descendant of the current retainer. it acquires 

the lock. When a root transaction commits or aborts, the release request is for- 

warded to the GlobaIJlockRelease routine. When a sub-transaction aborts, the 

locks which are not retained by any of its ancestors are first released locally to 

sub-transactions within the transaction family. If there is no sub-transaction in the 

family waiting for the lock at  the time it aborts, the release request is forwarded to 

the Global_LockRelease routine. If the aborting sub-transaction's ancestors retain 

the locks, they continue to do so until they [pre-]commit, abort, or the loch  are 

acquired by their descendants. 
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/*TID of the releasing or abort ing transaction* / INPUT ' T(i l  ,..., ld-2,1d-1 ' 
INPUT : OIDLIST; 
/*a& objects retained and held by the releasing or aborting transaction*/ 
INPUT : Release-mode; /* E {PC. RCA, SA} */ 
INPUT : CGDO; /* cached G D 0  entries for objects in OID-LISTt/ 

CASE (Release-mode = PC): /*a sub-transaction pre-commits*/ 
FOREACH (Ok in the OID-LIST) DO 

/* releases the lock to the parent */ current holder.Tid - Tllt , - - - i ld-2  

CGDOi.lock-variable - '0'; /*parent retains the lock*/ 

IF ( T(l l  v...,ld-2 is an ancestor of the next transaction in the loca lh t  ) 
THEN 

CGDO .curent holder-pointer - next TID in the local As t ; 
CGDOk.lock-variable - '1'; /* holds the lockt/ 
Send the lock g a n t  to the requester; 

CASE(Re1ease-mode = RCA): /*a root transaction commits or aborts*/ 
Forward release request to Global-Lock_Release; 
/*Releases locks to ot her transaction families*/ 

CASE(Re1ease-mode = SA): /*a sub-transaction aborts*/ 
FOREACH (Ok in the OIDLIST) DO 

IF (Ok is retained by an ancestor of T(lt i  --*, l d - 2 i l d - L  ) THEN 
current .holder.Tid - TID of the ancestor; 
CGDOk.lock-variable - '09;/*t he ancestor retains the lock*/ 
Unlink Ok from OIDLIST; 
IF (the next transaction in the locallist is the ancestor's descendant ) 
THEN 

CGDOk.current holder-pointer - next TID in the local_list; 
CG DOk.lock-variable - '1'; /*holds the lock*/ 
Send the lock g a n t  to the requester; 

ELSE 
IF (CGDOk.current 4older-pointer != N U  LL) THEN 

CGDOk.current holder-pointer - next TID in the local-list : 
Unlink Ok from OID-LIST; /* releases the lock locady first */ 

IF (OIDLIST != NULL) THEN 
Forward release request to Global-Lock-Release; 
/* releases locks globally */ 

End of Algorithm 

Algorithm 4.4 describes the global lock release process. Since an original lock 
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holder in a G D 0  entry may not be a root transaction, the lock is released to other 

transaction families by its root transaction a t  the time the root transaction commits 

because it passed the lock up to  its parent wben it pre-committed. This implies 

that  when a root transaction commits and releases a lock to other transaction 

families. the current lock holder transaction in the corresponding GD0 entry may 

actually be recorded as a descendant of the releasing root transaction. When a 

root transaction commits, if there is no other transaction waiting for the lock in 

the nonlocallist.  the lock is set to free. Otherwise, the current lock holder will be 

changed from the releasing transaction or a descendant of the  releasing transaction 

t o  the next request ing [sub-]transaction in the  nonlocallist.  

Algorit hm 4.4 Glo balJockRelease 

INPUT : T'l - /*TID of the releasing or aborting transaction*/ 
v 1 v- - , ld -2 i ld - t  ' 

INPUT : OIDLIST; 
/*ad objects retained and held by the releasing or aborting transaction*/ 
INPUT : GDO; /* GD0 entries for objects in OIDLIST*/ 

FOREACH(Ok in the OIDLIST) DO 

IF ( (T[il ,...,ld-2,1d-l = current holder-Tid) or ( T : ~ ~ ,  ld-Z, ld i l  is an ancestor of 
current holder.Tid)) THEN 

IF (no other transaction waits for the lock) THEN 
GDOk.lock-variable - '0'; /'lock is free*/ 
GDOk.currentJtolder-pointer - 'NULL'; 

ELSE 
/*the next requesting transaction in the nonlocallist gets the lock*/ 

GDOk.current holder-pointer - the next TID in the nonlocal-list ; 
Send the lock g a n t  to the requester with a copy of GDOk to build 
CGDOk; 

End of Algorithm 
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To understand lock management under the closed nested object two- phase lock- 

ing rules, and especially to understand exactly what happens when the locks are 

released. an example of the execution of the nested object transactions shown in 

Figure 4.6 is presented. There are three transaction farnilies T;O, T;', and T$' in 

this example. Transactions TF and T;l execute on node A, and transaction T$' 

executes on node B. Assume that both nodes A and B initially have a copy of 

O4 but t hey were unmapped after t heir last accesses. Conflicting sub- transact ions 

arrive at the shared object O4 in the order: TGl + Tt&, -, T,qO, -t T,::, + T::. 

Figure 4.6: A Example of the Execution of Nested Object Transactions 

On node A,  the transaction manager invokes the Local-Lockd4cquisition routine 

to acquire lock Lo, for sub-transaction Tt:,. Since O4 is unmapped on node A,  the 

request is forwarded to the GlobalLockAcquisition routine. If the lock is free, T::, 

becomes the current holder in GD04.  GD04 is then cached in memory on node 

A as CGD04. When the transaction manager invokes the Local-LockAcquisition 
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routine to  acquire lock Lo4 for sub-transaction T& on node A, although object Os 

is mapped on node A. because T& and the current holder TZ1 do not belong to the 

same transaction family the request is forwarded to the GlobalLockAcquisition 

routine. The Global-LockAcquisition routine then links Tt& onto the non-locallist 

in GD04 because the lock is not free. When the transaction manager invokes the 

LocaLLockAcquisition routine to acquire lock Lo4 for sub-transaction Tofo on node 

A. since TaP, belongs to the same transaction family as the current holder Tt&. it 

is linked onto the locallist in CGDO4. When the transaction manager invokes the 

Local~LockAcquisition routine to acquire lock Lo, for T,"o, since it and the current 

holder TW, do not belong to the sarne transaction family, the request is forwarded to 

the Global-LockAcquisition routine. There, it is linked ont0 the locallist of T& 

because su b- t ransact ion T::o is from the same transaction family as the wai t ing 

transaction T& which is already in the nonlocallist of GD04. When the trans- 

action manager invokes the LocalLockAcquisition routine to acquire lock Lo, for 

sub-transaction T:: on node B, since o4 is not rnapped on node B, the request is also 

forwarded to  the Global-LockAcquisition routine. The Global-Lock Acquisi tion 

routine then links TZ onto the nonlocallist in GDO+ Figure 4.7 shows GD04 for 

the example following al1 global lock acquisition requests. 

1 

GD04 1 
current holder non-local-Iist I 

I r 1 

Lock Structure 

Figure 4.7: Oi's Lock Structure after Global Lock Acquisition Requests 
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On node A, when T z 1  pre-commits, the Local_LockRelease routine is invoked to 

release lock Lo, to its parent TG which retains the lock. When T$ pre-commits, the 

Local-LockRelease routine is invoked to release the lock to its parent T,DO and the 

next waiting sub-transaction T,O:,, acquires lock Lo4 (because T;O is an ancestor of 

the wai ting sub-transaction T&). When T:fo pre-commi ts, the Local.LockRelease 

routine is invoked to release Lo4 to its parent Tc. Then when Tl; pre-commits. its 

root transaction Ta0 retains the lock. Once the root transaction T? commits, the 

GlobalJlock~elease routine is invoked to release ail the locks it holds and retains 

to ot her transaction families. At this point, lock Lo4 is released to ot her conflicting 

[sub-] transactions waiting in the nonlocallist of GDOs.  Figure 4.8 shows each 

state of the lock structure in CGDOl handling the lock operations. just described, 

for object O4 from transaction family TZ0 on node A. 

When the Global-LockRelease routine is invoked to release lock Lo4 from the 

root transaction T,OO, the lock appears to be released from its descendant trans- 

action T s ,  in GD04 because T:& was the original lock holder. The next waiting 

transaction Tt&-, in the nonlocallist of GDOc acquires the lock. GD04 is cached 

without its nonJocal1ist in the memory of node A as CGDOj once again. When 

T;Wo pre-commits, the Local_LockRelease routine is invoked to release the lock to its 

parent Tt; which retains the lock. When T;O pre-commits, the Local-LockRelease 

routine is invoked to release the Iock to the root transaction T,"l of T$ and the 

next waiting transaction T& acquires the lock (because T;l is an amestor of TgDo). 

Similarly, the lock is passed up to TSq' from Tz0 ,  then up to T:' from T,ql af- 

ter Tt;;, and T,: complete in sequence. Once the root transaction T,D1 commits. 

the Global_LockRelease routine is invoked to release al1 the locks T:' holds and 

retains to other transaction families. At this point, lock Lo, is released to other 

[sub-]transactions waiting in the nonlocallist in G D 0 4 .  Figure 4.9 shows the state 
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CGDOJ 

State 1: ~ ~ y i s  the cunent holder, l ' s i s  waiting in the local-list; 

State 2: after T~? presommitted. its parent T: retains the lwk; 

State 3: after ~~!re -commit ted ,  its parent T~" retains the lock; 

Since T~: is a descendant , it holds the lock; 
r 1 

State 4: after T f,, pre-comrnitted. its parent T retains the lock: 

O , ...... O f-l~t1.H 
Siate 5: after T pre-comm tted. its parent T i0 retains the lock: 

Figure 4.8: Lock Operations for Oq for Family Tto on Node A 

of the lock structure for object O4 from the transaction family T51 on node A as 

the lock operat ions are handled. 

When the GlobalLockRelease routine is invoked to release lock La, from root 

transaction Tt1, the next waiting transaction T$ in the oonlocallist of GD04 

acquires the lock. GDOr is cached in node B as CGD04. Figure 1.10 shows each 

state of the lock structure in GD04 while handling the lock operations for object 

O4 [rom different transaction families. 



CGDOd 
ai 

State 1: T 3 s  the cumnt holder; T ,,,is waiting in the local-list: 

State 2: after ~~:~re-cornmitted. its paremt T ;: retains the lock; 

State 3: after T I! ~re-committed, its parent T C' retains the lock; 

Since T,: is a descendant of T ;'. it holds the lock; 

State 4: afier T ::, pre-committed, its parent 'I;: retains the lock; 
1 , 

State 5: d e r  T :! pre-committed, its partnt x1 retains the lock: 

Figure 4.9: Lock Operations for O4 for Farnily Tt1 on Node A 

4.1.4 Correctness 

The closed nested ob ject two-phase locking rules are sirnilar to Moss closed nested 

two-phase locking rules. They bot h employ strict two-p hase locking which is conflict 

serializable for each [sub-]transaction. Since the transaction mode1 is not the same 

as Moss', the characteristics of objects and their access (via method invocation) 

make a non-object system and a persistent object system different. As discussed 

in Chapter 3. in a nested object transaction family, any transaction (not just leaf 

transactions) can directly access object attributes. The closed nested object two- 
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State 1: d e r  al1 global lock acquisitions an processed: 

non-local-list 

W H  1 locai-list 

State 2: afier T 3ommits. ~Aholds  the lock; 

Figure 4.10: 

State 3: after T ;kommits. cholds the lock: 

Lock Operations from Different Transaction Families in CD04 Entry 

phase locking rules take into account these special features and differences and add 

additional functionali ty. 

A method invoked by a nested object transaction does not affect the serialization 

of the nested object transaction unless it is on the same object (Le.? a directly or 

indirectly recursive invocation). When a parent transaction invokes a method on 

another object, due to encapsulation, the parent transaction and its descendant 

transaction can not conflict with  each other. When a parent transaction invokes 

a method on the same object directly or indirectly, it introduces deadlock because 

the parent transaction can directly access the objects' attributes too. To avoid t his 

kind of deadlock, we assume that no directly or indirectly recursive invocations 

occur in a transaction family. 

Due to encapsulation, transactions executed on different objects cannot conflict 

with each other. Only when multiple object transactions execute concurrently on 
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the same object can conflicts occur. To ensure serializability, conflicting method 

invocations must execute in the same order as in some serial execution (i.e., be 

serializable). Rule ( l),  discussed in Subsection 4.1.1, prevents two nested object 

transactions from concurrently accessing an object in a conflicting manner. 

If conflicting object transactions are from different transaction families. they 

are delayed until the root transaction of the conflicting transaction holding the  

lock cornmits or aborts. As a result, an order is introduced between conflicting 

transactions as well as corresponding transaction families. This order is the same 

order in which the relevant lock is obtained. A partial order produced using nested 

object two-phase locking rules among a set of transaction hmilies is equivalent to 

a serial order which is the user's preferred order. 

If conflicting transactions are from the same transaction family, no two conflict- 

ing sub- transactions will have an ancestor-descendant relationship because t here 

are no recursive invocations allowed. Therefore, no deadtock occurs. By rule 

( la),  a sub-transaction is permitted to hold a conaicting lock only if al1 the con- 

Bicting sub-transactions which execute before the requesting sub- transaction have 

pre-committed and the lock bas been retained by an ancestor of the  requesting 

sub-transaction. Thus, only one su b-transaction wit hin a transaction family may 

hold a lock a t  a time. Any other sub-transaction that  requests the sarne lock will 

be blocked until the sub-transaction holding the lock pre-commits and an ances- 

tor of the requesting sub-transaction cornes to retain the lock. Consequently, an 

order will result between conflicting sub-transactions within a transaction family. 

This order is the same order in which the relevant lock is obtained. Therefore, if 

al1 sub-transactions in one transaction family are invoked in a depth-first order. 

which is the only correct serial order within a transaction family, the enforced or- 

der among conflicting sub-transactions is consistent with the depth-first order. In 
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addition' rule (1 b) precludes d l  dependent sub-transactions from executing concur- 

rently. It makes such sub-transactions execute sequentially in an order consistent 

with the order of method invocations in their parent transaction. Therefore, if 

al1 sub-transactions in one transaction family are invoked in the deptb-fint order. 

a partial order scheduled according to the closed nested object two-phase locking 

rules in one transaction family is equivalent to a dept h-first seriai order. 

Since the special features made by objects and the closed nested object trans- 

action mode1 do not affect the serialization order in one transaction family or in a 

set of transaction families. a serializable execution order will be produced by using 

closed nested ob ject two-phase locking rules. 

4.2 Ob ject Transactional Entry Consistency 

The Object Transactional Entry Consistency (OTEC) protocol is presented in this 

section. This is followed by a discussion of the necessary modifications to the 

lock operation algorithms provided in Subsection 4 - 1 2  to support OTEC. Then 

the update transfer algorithm for OTEC and modified lock release algorithms are 

provided. An example is given to illustrate how OTEC works to ensure memory 

consistency in the proposed page based DSVM system. 

4.2.1 Object TYansactionaI Entry Consistency 

The closed nested object two-phase locking rules ensure that the concurrent exe- 

cution of a set of nested object transactions is serializable. To maintain memory 

consistency, a DSVM system needs to ensure that concurrently executing nested 

object transactions reference only object copies which are up-to-date. A DSVM 
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system must ensure that each nested object transaction never accesses a shared 

object without having received al1 updates to the shared object. Thus, a mem- 

ory consistency protocol is required which efficient ly t ransfers al1 updated ob jec ts 

(guarded by corresponding locks) to  rnaintain memory consistency. 

When a partial release of a lock is perforrned in one transaction family, the lock 

is granted to a single sub-transaction from the local lock List in the object's CGDO 

entry. Due to the data shipping nature of the DSVM system. al1 sub-transactions 

of a given root transaction will normdly execute at the same node. Therefore. 

no network communication is required for such partial releases. When a lock is 

fully released from a root transaction, the object guarded by the lock is free to be 

acquired by other transaction families which may be from different nodes. Thus. 

to ensure the consistency of in-memory copies of an object across interconnected 

nodes. network communication is required to transfer the updated object at this 

time. This may result in significant network traflic. Instead of propagating an 

updated object to al1 nodes which cache the object, it can be propagated to other 

in-rnemory copies in a lazy fashion thereby reducing the amount of consistency 

information communicated. For example, propagation may be done as in lazy 

release consistency [KCZ92] or entry consistency [BZS93]. The  updated object is 

transferred to a remote node only when an existing [sub-] transact ion from anot her 

fâmily at the remote node is granted object access. 

Lazy release consistency and entry consistency are refinernents of release consis- 

tency. To ensure the efficient update of cached data, lazy release consistency and 

entry consistency both lazily pull modifications across the interconnection network 

during lock acquisition (i.e. only for the acquiring processor). In this way, both the 

number of control messages and the amount of data exchanged are reduced. 

On a lock acquisition, lazy release consistency requires al1 updates to any shared 
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data that precede the acquisition to be propagated to the acquiring processor. Since 

entry consistency requires each shared data object to be attached to a synchroniza- 

tion object. on a lock acquisition, only updates to the shared data object associated 

with the acquired lock that  precede the acquisition must be propagated to the ac- 

quiring processor. As a result, entry consistency requires less data traffic than lazy 

release consistency. 

In the proposed DSVM system, locking is explicitly tied to data objects. there- 

fore, the entry consistency model provides a natural fit. The Object Transactional 

Entry Consistency protocol is defined by combining the closed nested object two- 

phase locking rules wit h the ent ry consistency model. 

Definition 4.1 A memory model is said to  be object transactional entry consis- 

tent, if: 

When a lock is fully released from a root transaction, the subsequent acquiring 

[sub-]transaction TID, from another family at  a remote node is not allowed to 

access the shared object guarded by the  lock until al1 updates to the object have 

been performed with respect to TID,. 

Informally, a shared access is considered perfonned at a process when its re- 

sult is visible a t  that process [PK95]. In a page based system since one object's 

attributes can span multiple pages, instead of transferring al1 the pages of an up- 

dated object. only the pages which were updated more recently than those residing 

at  the remote node need to be transferred. By doing this, OTEC can ensure that 

distinct, concurrent method invocations on objects executing at  different nodes see 

a consistent view of the shared memory. Further, since OTEC pulls only an object's 

updated pages across network, only during the global lock acquisition, and only for 

the subsequent acquiring [sub-] t ransaction from a remote node, it furt her reduces 
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both the number of control messages and the amount of data exchange required 

for memory consistency maintenance. 

This can be clarified by considering the example as shown in Figure 4.11. Trans- 

action families T,?' and Tr2 execute on node A. Transaction lamilies T! and T: ex- 

ecute on nodes B and C respective[. Assume that al1 three nodes initially have an 

identical copy of object O, that spans five pages in their memories (in the write-back 

queues since 0; has been unmapped at al1 nodes). Conflicting [sub-]transactions 

arrive at the shared object Oi in the order: 

Figure 4.11: An Example of an Execution of Four Transaction Families 

Transaction Tp' is granted the lock for Oi first and modifies page O, 1, 2, and 3 

of Oi. When it releases the lock, the next waiting sub-transaction T:~  is granted the 

lock. Before T$ can access the object, the four updated pages must be transferred 

to node B from node A (shown in Figure 4.12 (A)) .  After TjO modifies pages O 

and 3, it releases the lock to it parent T!. Then the waiting sub-transaction T,' 

is granted the lock from its ancestor T,6. Since T f ,  and T,' are from the same 
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transaction family on the same node B. no network tr&c is required a t  this time 

( T i  and T), shared a single copy of Oi on node B). After TA modifies page 1, it 

releases the lock to its parent Tt. Once the root transaction T,b releases the lock. 

the next waiting sub-transaction Tg on node A is granted the lock. Pages O, 1, and 

3 which were updated by T i  and TA are transfered to  node A trom node B before 

Tg modifies page 4 (shown in Figure 4.12 (B)). When Tg pre-commits, its parent 

Tc2 retains the lock. Once the root transaction Tt2  commits, the lock is released to 

the next waiting transaction TF on node C. The pages O, 1, 2, 3, and 4 updated by 

Trl. T,b. and Tt2 are transferred to node C from node A before T: modifies pages 

O and 2 (shown in Figure 4.12 (B)).  Under OTEC, the last updating node C has 

dl up-to-date pages of object Oi. However, not al1 the up-to-date pages may be 

updated on node C (e.g. the up-to-date pages 1, 3, and 4 on node C were updated 

on other nodes A and B respectively). 

4.2.2 Algorithms for OTEC 

Object access in a page based DSVM system was described in Subsection 3.1.3. 

If a set of [sub-]transactions a t  different nodes concurrently access a shared object 

0; when the lock for Oi is released by a sub-transaction's root transaction on one 

node the object Oi is unmapped from that node's page table and the object's pages 

are linked into the node's write-back queue. Once the subsequent requesting [sub- 

]transaction is granted the lock, its segmentation fault is resolved and object Oi's 

pages are mapped into the requesting node's page table. The required subset GDOi 

is cached in the requesting node's memory as CGDOi. 

Under OTEC, if the subsequent acquiring [sub-] transaction is from the same 

node as the releasing transaction, the acquiring [sub-] t rmsact ion can reclaim Oi 's 
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Figure 4.12: An Example of Updated Oi Transferred under OTEC 

pages from the write-back queue without transferring any updated pages from other 

nodes. If the subsequent acquiring [sub-]transaction is from a different node, the 

system uses the information in CGDOi to t r a d e r  object Oi's updated pages to 

the acquiring node. Since object Oi's pages are al1 up-to-date on its last updater 

which is the node on which the last updating transaction executed, each object's 

last updater must be tracked to allow the system to transfer updated object pages. 

Although object Oi's pages may not be al1 up-to-date on other nodes, some of the 

nodes (specific pages' last updaters) may still have some up-to-date pages. When 

a [sub-]transaction acquires the lock for Oi on such nodes, those pages do not need 
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to be transfered from the object's last updater. 

To determine which pages were updated more recently t han the pages residing 

at a remote acquiring node, the system h a .  to know each page's last updater. In the 

example shown in Figure 4.12, after transaction T! releases the lock for object O;. 

al1 0 , ' s  five pages are up-to-date on its last updater (node B). When sub-transaction 

T g  on node A is granted the lock. since page 2's last updater is node A and since 

page 4 has not been subsequently updated, these two pages are up-to-date on the 

acquiring node A. Thus, only pages O. 1, and 3 which were updated more recently 

than the pages residing at node A are transfered to node A from Oi's last updater 

(node B) before T g  modifies page 4. When transaction TF is granted the lock on 

node C, al1 five pages are stale on node C because they were updated on nodes 

X and B respectively. Thus, object 0;'s five pages are transfered from 0 i 7 s  last 

updater (node A )  to node C before T: accesses pages O and 2. Therefore, each 

page's last updater must be maintained to allow the system to determine which 

pages have the most recent version of the data. 

Each object's last updating node identifier as well as each page's last updating 

node identifier are rnaintained in the object's G D 0  entry. The last updating node 

identifier for each object and each page can be updated during lock release using 

information on "dirty" pages from the virt ual memory hardware. The algorit hms 

defined in Subsection 4.1.2 for the local lock release process and the global lock 

release process need to be modified to  deal with this information. 

Before discussing the modification of the algorithms for lock release and the 

update transfer algorithm for OTEC, modifications to the data  structures must be 

descri bed. 
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In Algorit hm 4.3 ( Local-Lock-Release) and Algorithm 4.4 ( GloballockRelease). 

the data structure OIDLIST was used for linking al1 objects held or retained by 

the releasing or aborting transaction. Each OID-LIST'S element simply contained 

the objects' identifier (OID). Now, it needs to include a field to indicate whether 

or not the corresponding object has been updated. It also needs a field to indicate 

how many pages the  object spans and a field for each object page to  indicate if that 

page was updated. Therefore, each element of an OIDLIST is now composed of: 

oid: indicates the object that is held or retained by the releasing or aborting trans- 

action. 

update: a Bag. When it is 'O', the object has not been updated; When it is -1'. 

the object has been updated. 

pageno: indicates how rnany pages the object spans. 

pagel: a flag for each page 1. When it is 'O', the page 1 h a  not been updated: 

When it is 'l', the  page 1 has been updated. 

Each object's G D 0  entry needs a field, last-updater, to indicate the object's last 

updating node (i.e. the  object's "last updatern ). It also needs a field, pageno. 

to indicate how many pages the object spans and a field, pagel, for each page to 

indicate page 2's last updating node (i.e. the page's last updater). When an object's 

G D 0  entry is built, its pagel fields are set t o  empty to indicate the object has the 

sarne version as in persistent storage. As discussed, an object's last updater is not 
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necessarily the same as each page's last updater. but once the object's pages which 

were updated more recently than those residing a t  a remote acquiring node are 

determined. they can always be retrieved from the object's last updater. 

Algorit hms 

Algori thm 4.5 describes the modified local lock acquisition process for 0TEC3. 

When a root transaction aborts, al1 updates to  objects made by it and its sub- 

transactions have to  be removed. So al1 update fields in its OIDLIST must be set 

to 'O' to indicate that no updates were made to the objects linked in the OID-LIST. 

Then the release request is forwarded to the GlobalLockRelease routine. When a 

sub-transaction aborts, the locks which are not retained by any of its ancestors are 

first released locally to sub-transactions within the transaction family. If there is no 

sub-transaction in the family waiting for the locks at the time it aborts. the release 

request is forwarded to the Global-Lock-Release routine with al1 update fields in its 

OIDLIST set to '0'. 

/*TID of the releasing or aborting transactiont/ INPUT : T( l l  i...ild-2ild-1 ' 
INPUT : OID-LIST: 
/*d objects retained and held by the releasing or aborting transaction'/ 
INPUT : Release-mode; /* E {PC, RC, RA, SA) */ 
INPUT : NID,; /*node-id on which the  releasing or aborting transaction executest/ 
INPUT : CGDO; /* cached GD0 entries for objects in OIDLIST*/ 

CASE ( Release-mode = PC): /*a sub-transaction pre-commits*/ 
FOREACH (Ok in the OIDLIST) DO 

/* release locks to the parent*/ current holder.Tid - T[llr 
CGDOk.lock-variable - '0'; /*parent retains the lockc/ 

3This is a modification of Algorithm 4.3. The new lines are italicized in the pseud-code of 

AIgorithm 4.5. 
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IF (T(li ,....4-2 is a n  ancestor of the next transaction in the local-list) 
THEN 

CGDOk .curent holder-pointer + next TID in the local-list ; 
CGDOk.lock-variable - '1'; /* holds the lock* / 
Send the lock gan t  to the requester; 

CASE( Release-mode = RC): /*a root transaction commits* / 
Forward release request to CilobaLLockltelease; 
/* Releases locks to ot her transaction families*/ 

CASE (Release-mode = RA): /*a root transaction aborts */ 
FOREACH (Ok in the OID-LIST) DO 

OIDAiSTk.update  - 'O*; 
Fortvani reiease request to Global_LockRelease; 
/*Releases locks to other tmnsaction families*/ 

CASE(Re1ease-mode = SA): /*a sub-transaction aborts4/ 
FOREACH (Ok in the OIDLIST) DO 

IF (Ok is retained by an ancestor of Tll 
ld-2 ,1d-L ) THEN 

current.ho1der.Tid - TID of the ancestor; 
CGDOk.lock-variable - '(l';/*the ancestor retains the lock*/ 
Unlink Ok from OIDLIST; 
IF (the next transaction in the locallist is the ancestor's descendant) 
THEN 

CGDOk.current holder-pointer - next TID in the locallist ; 
CG DO k.lock-variable - '1'; /*holds the lockt/ 
Send the lock grant to the requester; 

ELSE 
IF (CGDOk.current holderpointer != XCLL) THEN 

CGDOk.current bolder-pointer - next TID in the locallist : 
Unlink Ok irom OIDLIST; /*releases the lock locdy first;*/ 

ELSE 
OID-LISTk.update - '0'; 

IF (OIDLIST != NULL) THEN 
Forward release request to Global_LockRelease; 

End of AIgorit hm 

Algorithm 4.6 describes the global lock release process for OTEC". For each 

object Ot in a committed root transaction's OID-LIST, the node identifier (NID,) 

4This is a modification of Algorithm 4.4. The new lines are italicized in the pseudo-code of 

Algorithm 4.6. 
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on which node the root transaction executed is stored in the last-updater field in 

GDOk entry as object Ok's last updater. Then for each page 1 . i f  page 1 has been 

updated. the NID, is stored in the pagel field in GDOk as page 1's last updater 

to indicate that page 1 was updated a t  node NID,. When a root transaction or 

a sub-transaction aborts. updates are discarded. Therefore, it is not needed to  

update the last-updater field in a released object's GD0 entry. 

Algorit hm 4.6 Global-LockRelease 

INPUT : T'Ill i---rld-2ild-l  * /*TID of the releasing or aborting transactiont/ 
INPUT : OIDLIST; 
/*d objects retained and held by the releasing or aborting transaction*/ 
INPUT : iV ID,; /*node-id on which the releasing root transaction executest/ 
INPUT : GDO; /* GD0 entry for objects in OID-LISTt/ 

FOREACH (Ok in the OID-LIST) DO 

IF ( (Tl1 . . . . , ~ ~ - ~ . l ~ - ~  = current holder.Tid) or (T(lI ,--., ld-2 ,1d- l  
is an  ancestor of 

current holder.Tid) ) THEN 
IF (OiDLISTk.update = '1 7 THEN /*Ok hos been updated*/ 

GDOk. lastupdater - 'NID,'; /*stores object 's last updater */ 
FOREACH (pagel of Ok in GDOk) DO 

IF (OIDJISTk.page-l = ' 1  ') THEN 
/* page 1 has been updated */ 

GDOk.Pagei = 'iVID,'; 
/* stores each page's last updater in GDOk */ 

IF (no other transaction waits for the lock) THEN 
GDOk.iock-variable - '0'; /*lock is free*/ 
GDOk.current holder-pointer - 'NULL'; 

ELSE 
/*the next requiring transaction in the nonlocallist gets the lock*/ 

GDOk.current holder-pointer - the next TID in the  nonlocd_list: 
Send the lock grant to the requester and copy of GDOk to build 
CGDOk; 

End of Algorithm 

Algonthm 4.7 describes the  update t r a d e r  process for OTEC. When a lock is 

fully released from a root transaction, if an existing [sub-] t ransaction from m o t  her 
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family is granted access to the corresponding object at a remote node, the object's 

pages which were updated more recently than those residing in the remote node's 

memory must be transferred to  the remote node. To determine which updated 

pages of an object on the releasing node are more recent than those residing on the 

remote node. the Updates-Transfer algorithm compares each page 1's last updater 

stored in CG DOk with the remote acquiring node identifier. If the remote acquiring 

node identifier is not the same as page 1's last updater and the pagel field in the 

CGDO entry is not ernpty, then the page in the remote acquiring node is stale. 

In this case, the up-to-date page Z needs to be transferred from the object's last 

updater to  the remote acquiring node. 

Algorithm 4.7 Updates- Tmnsfer 

INPUT : T : ~  ,,..,. l d -Z , l d - l  ; /*TID of the releasing transactioni/ 
INPUT : N I D s ;  /*node-id on which the acquiring transaction executes*/ 
INPUT : O k ;  /* Ob ject being accessed */ 
INPUT : CGDOk; /*CGDO entry for object Oi */ 

VAR Page-List : Est of Or's updated pages which need to be transferred from object 
0k7s  last updater to the acquiring node N I D s ;  

FOREACH CGDOk.Pager DO 
IF (CGDOk.Page1 # N I D , )  and (CGDOk.Pagei # 'NCLL') THEN 

Link page 1 into PageList; 
Transfer d pages in the Page-List from CGDOk.last -updater to the remote acquiring 
node -MID,; 

End of Algorithm 

4.2.3 Example of Updated Page Transfer under OTEC 

We use the exarnple shown in Figure 4.11 to illustrate how OTEC ensures rnemory 

consistency, especially, how it determines an object's up-to-date pages in a page- 

based DSVM system. The lock operations on shared object Oi's lock structure in 



CHAPTER 4. LAZY OBJECT TRANSACTIONAL ENTRY CONSISTEIVCY~~ 

GDO; and in each cached CGDO; are the same as was described in Subsection 4.1.3. 

A partial order is enforced among [sub-]transactions wit hin a transaction lamily as 

well as among a set of transaction families as shown in the initial state of GDOi in 

Figure 4.13. How the updated pages of Oi are transferred across the three nodes 

was shown in Figure 4.12. Now we focus on how to determine which object's pages 

were updated more recently tban their local copies by using the algorithms defined 

in Subsection 42.2. 

When T:' globally releases the lock on node A, the node identifier A is stored in 

GDOi's last-updater field and in the pageo, page,, page*, and pages fields (shown in 

Figure 4.13, State 1). After the next transaction T!~ is granted the lock, each page 

l y s  last updater stored in CGDO; is compared with the acquiring node identifier B. 

If they are not the same and the pagel field in CGDOi is not empty, then page 1 

in the acquiring node, B, is stale. Therefore. the updated pages 0: 1, 2, and 3 are 

transferred from 0;'s last updater node A to node B before Th modifies pages O 

and page 3 of Oi. After T,b, pre-commits, the lock is locally released to its parent 

T,b and sub-transaction TA is then granted the lock by T,b. T!l modifies page 1 

without network tr&c because Tfo and T!~ belong to the same transaction family 

and therefore share a single copy of Oi at node B. After TA pre-commits, the lock 

is passed up to its parent T,b. Once T! comrnits, during the global lock release 

process, node identifier B is stored in GDOi's last-updater field as well as in the 

page(], pagel, and pages fields (shown in Figure 4.13, State 2). When the next sub- 

transaction T g  is granted the lock, since page 2's last updater (node A ) ,  stored in 

CGDOils Page, field, is the same as the acquiring node A. and since the Page4 

field is empty, they are up-to-date on the acquiring node A. So only the updated 

pages O, 1, and 3 are transfered from node B to node -4. Tt: then modifies page 

4. Once the lock is globally released from the root transaction Tt2, node identifier 
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.4 is stored in GDOils last-updater field as well as in the page4 field (shown in 

Figure 4.13, State 3). When the next transaction TF is granted the lock, the last 

updaters of pages O. 1 ,2 ,  3 and 4 (which are nodes B, B, A, B, and A respectively) 

are all different than the acquiring node C. Therefore, the updated pages O, 1, 2, 3. 

and 4 are transferred from Oi's last updater oode B to node C before T: is allowed 

to modify pages O and 2. Finally, when Tf globally releases the lock, the node 

identifier C is stored in GDOi's last-updater and page0 and page3 fields (shown in 

Figure 4.13, State 4). 

The initial state: 

State I : after T 8' released the lock: 

last-updater pages0 

State 2: after T b reIeased the lock: 

) P B P ,  P 7 P i P 4  

State 3: afier T .' released the lock: 

Lock 
'I y 

State 4: after T r released the lock: 

O i ...... s I I I I I  1 T, 1 B mcl~ I C  H 
1 

Figure 4.13: Lock Operations and Page Updates Information in GDOi under OTEC 
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4.3 Lazy Ob ject Transactional Entry Consistency 

This section introduces the Lai9 Object Transactional Entry Consistency ( LOTEC)  

protocol for a page based DSVM system. It begins by providing the definition of 

lazy object transactional entry consistency. Then the update transfer algorit hm for 

LOTEC and the modified lock release algorithms are provided. Following this: an 

example to show how LOTEC works to ensure memory consistency in the proposed 

DSVM system is presented. 

4.3.1 Lazy Ob ject Transactional Entry Consistency 

In a page based virtual memory environment, there may still be some unnecessary 

data transferred while using OTEC. It is possible t hat a nested object transaction 

will not update al1 the pages of a shared object and it is also possible that a 

subsequent [sub-]transaction may not access ali the stale pages of the shared object. 

This means that only a subset of the pages to be referenced by a subsequent [sub- 

]transaction may actually be stale. 

In a persistent object system, each method of an object may access certain 

attributes. The compiler knows which attributes are in which pages (assuming 

objects are aligned t o  page boundaries). Therefore, the compiler can conservatively 

estimate which attributes a method may access. Thus, in the proposed DSVM 

system, it is possible for the system to transfer only the s t d e  pages which ma?; 

actudly be referenced by the subsequent [sub-]transaction at the time of a lock 

acquisition. By doing sol we can further reduce unnecessary da ta  transfer between 

nodes. 

In the example shown in Figure 4.12, transaction ~ , b o  attempts to  modify pages 
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O and 3 of O,. The OTEC mode1 requires al1 updated pages for object Oi made by 

T:' (in this case, pages O, 1, 2 and 3),  to be transferred to node B from Oi's Iast 

updater node A, even though T!* is not going to access page 1 and page 2. When 

sub-transaction Tg is granted the lock, updated pages O, 1, and 3 are transfered 

from node B to node A even though T g  is not going to access those pages. Once 

transaction Tt  is grmted the lock released by Tl2 and attempts to modify pages O 

and 2, al1 updated pages O, 1, 2, 3, and 4 made by Tpl and T: and Tg respectively 

are transferred to node C from the object's last updater, node A, even though TF is 

not going to access pages 1. 3, and 4. In total, twelve updated pages are transferred 

across the network. 

Figure 4.14 shows the same exarnple using the modified LOTEC protocol. When 

TA is granted the lock released by TP1 and attempts to modify pages O and page 3.  

only the updated pages O and 3 are transferred to node B. When T f ,  is granted the 

lock from its root transaction T: which retained the lock lrom Th, the referenced 

updated page 1 is transferred from page 1's 1 s t  updater, node A, to node B (Shown 

in Figure 4.14 (A) ) .  When sub-transaction Tî;: is granted the lock from TJ and 

attempts to modify page 4, there is no transfer needed because page 4 is up-to- 

date on node A. Once Tf is granted the lock from T,"2 and attempts to rnodify 

pages O and 2, the referenced updated page O and page 2 made by Tk and T:' are 

transferred to node C from page 0's last updater node B and page 2's last updater 

node A respectively (shown in Figure 4.14 (B)).  In total, only five updated pages 

are transferred across the network. Therefore, using LOTEC, the number of pages 

exchanged is reduced relative to OTEC. 

There are two issues associated with using LOTEC in a page based system. 

First, under the non-lazy OTEC protocol, the system retrieves al1 updated pages 

of an object for the next acquiring transaction at lock acquisition. Al1 object 's pages 
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Figure 4.14: An Example of Updated Oi Transferred under LOTEC 

are up- to-date on the releasing node (the ob ject 's 1 s t  updater ). Therefore, if a [su b- 

]transaction releases a lock locally or globally, the  next acquiring [sub-]transaction 

from the same node may access the object guarded by that lock without needing to 

get up-to-date pages from other nodes. Thus, no network traffic is involved at the 

time the lock is exchanged within one transaction family or between transaction 

families on the same node. Under the LOTEC protocol, the system retrieves only 

the required subset of an object's updated pages that will be referenced by the 

next acquiring transaction. So there may still be stale object pages in the releasing 

node (i.e. the object's last updater). If the next acquiring [sub-]transaction from 
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either the same transaction family or a different transaction family at the same node 

at tempts to access difFerent pages t han the releasing [sub-] transact ion, and if t hose 

pages are stale, t hen the next acquiring [sub-] transact ion needs to communicate 

with other nodes to get the up-to-date pages. Thus, network trafic may be required 

at the time the lock is exchanged within one transaction family as well as between 

transaction families on the sarne node. This is not additional communication only 

deferred communication. This delayed transfer is illustrated using the example 

shown in Figure 4.14 (A) .  When transaction TA on node B is granted the lock 

retained by its root transaction T,b and attempts to access page 1, the system must 

then transfer page 1 from page 1's last updater (node A )  to the acquiring node B. 

This is because the last updating sub-transaction Th did not access page 1. Page 

1 is still stale at node B. 

The second issue arising when using LOTEC is that it is possible that the up- 

dated pages of an object might need to be transferred from multiple nodes (shown in 

Figure 4.14 (B)  for node C) during lock acquisition. All updated pages of an object 

are transferred from the same node during lock acquisition under OTEC (shown in 

Figure 4.1%). So LOTEC requires more message exchanging than OTEC, but the 

messages are smaller. Note, however, t hat LOTEC effect ively dist ributes t ransfers 

over different links in a switched network. This allows beneficial concurrency in 

communication. 

LOTEC pulls the updated pages of an object across the the network only when 

those pages are referenced by the next acquiring [sub-]transaction. Thus, LOTEC 

will require more short control messages than OTEC because the  system may need 

to retrieve referenced updated pages from different nodes and communication may 

be required during the lock acquisition within one transaction family. Com~ared 

with exchanging large object updates, however, LOTEC will reduce unnecessary 
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data  exchange in a page based system. 

Definition 4.2 A memory mode1 is said to  be lazy object transactional entry con- 

sistent, if: 

When a lock is released from a [sub-]transaction, the subsequent acquiring [sub- 

]transaction T I D ,  is not allowed to access the shared object guarded by the lock 

until updates to the object's pages which rnay be referenced by it have been per- 

formed with respect t o  TID, .  4 

4.3.2 Algorithms for LOTEC 

Since LOTEC l a d y  pulls a subset of an object's updated pages across the network 

when those pages are accessed by a subsequent [sub-] transact ion. the last updater 

of an object may not have al1 the up-to-date pages in i ts memory. Thus, al1 updated 

pages may not be retrieved from the object's last updater and the last-updater field 

for an object's 1 s t  updater is no longer necessary in its G D 0  entry. Because. under 

LOTEC. the system may need to transfer the  referenced updated pages for the next 

acquiring sub-transaction a t  the time the lock is exchanged within one transaction 

family. the pages updated by the releasing sub-transaction need to  be recorded in 

the object 's CGDO entry once the lock is locally released to releaser's parent. This 

dlows the system to  retrieve referenced updated pages from the pages' 1 s t  updaters 

a t  the time the lock is granted to the subsequent acquiring sub-transaction in the 

sarne transaction family running on the same node. 

Algorithm 4.8 describes the modified local lock release process for LOTEC5. 

When a sub-transaction pre-commits, during local lock release (to its parent ) , node 

'This is a modification of Algorithm 4.5.The new lines are italicized in the pseudo-code of 

Algorithm 4.8. 
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identifier NID, needs to be recorded in the corresponding page fields in CGDOk 

to  indicate that  those pages were updated on node NID,. 

Algorit hm 4.8 Local_LockXelease 

/*TID of the releasing or aborting transactiont/ INPUT : T<fl .. . . , (d-li ld-l  ' 
INPUT : OIDLIST; 
/*a3 objects retained and held by the releasing or aborting transaction*/ 
INPUT : Release-mode: /* E (PC, RC, RA, SA} */ 
INPUT : NID,; 
/*node-id on which the releasing or aborting transaction executes*/ 
INPUT : CGDO; /* cached G D 0  entries for objects in OID-LIST*/ 

CASE ( Release-mode = PC): /*a sub-transaction pre-commits*/ 
F O R E A C H  (Ok in the OIDLIST) DO 

FOREACH (OID-LISTk.page-l in OID-LISTk) DO 
IF (page-1 = 1 ) THEN 

CGDOk.pagei - N I D , ;  
/* releases locks to the parent*/ currentholder-Tid - Tir ,..., 

CGDO k.lockiwriable - '0'; /*parent retains the !ock*/ 

IF ( T < ~ l  ..--i1d-2 is an ancestor of the next transaction in the Iocallist) 
THEN 

CGDOk.current holder-pointer - next TID in the localiist ; 
CGDOk.lock-variable - '1'; /*hoIds the lock*/ 
Send the lock grant to the requester; 

CASE(Re1ease-mode = RC): /*a root transaction cornmits*/ 
Forward release request to Global_LockRelease; 
/*Releases locks to ot her transaction families* / 

CASE(Re1ease-mode = RA): /*a root transaction aborts*/ 
F O R E A C H  Ok in the OIDLIST DO 

OID-LISTk.update - '0'; 
Forward release request to Global_LockRelease; 
/*Releases locks to ot her transaction families*/ 

CASE(Re1ease-mode = SA): /*a sub-transaction aborts* / 
F O R E A C H  (Ok in the OID-LIST) DO 

IF (Ok is retained by an ancestor of TLIf I , . - .  i l d - l i l d - I  ) THEN 
current .holder.Tid - TID of the ancestor; 
CGDOk.lock-variable - 'O';/*t he ancestor retains the lock*/ 
Unlink Ok from OIDLIST; 
IF (the next transaction in the localiist is the ancestor's descendant) 
THEN 
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CGDOk.current holder-pointer - next TID in the localiist : 
CGDOk.lock-variable - ' 1': /* holds the lock*/ 
Send the lock g a n t  to the requester; 

ELSE 
IF (CGDOk.current holder-pointer != NULL)  THEN 

CGDOk.current holder-pointer - next TID in the locallist ; 
unlink Ok from OIDLIST; /*releases the lock l o c d y  first:*/ 

ELSE 
OID-LISTk.update - '0'; 

IF (OIDLIST != NULL) THEN 
Forward release request to GlobaLLockJlelease; 

End of Algorithm 

Algori t h m  4.9 describes the modified global lock release process for the  LOTEC 

protocol 6. The only difference from Algorithm 4.6 is t h a t  there is no need to set 

the last -updater for each object's GD0 entry. 

Algorit hm 4.9 Global-LockRelease 

/*T'ID of the releasing or aborting transaction'/ INPUT : * ( ~ ~ , . - . , l d - ~ , l d - ~  ' 
I N P U T  : OIDLIST; 
/*d objects retained and held by the releasing or aborting transactions/ 
I N P U T  : NID,; /*node-id on which the releasing root transaction execut es*/ 
I N P U T  : GDO; /* GD0 entry for objects in OIDLIST*/ 

FOREACH Ok in the OIDLIST DO 

IF (( T ( ~ 1 , . . . , ~ d - 2 , 1 d - 1  = GD&-currenthdder) or (T$li  - m . ,  l d - D , ~ d - l  is a n  ancestor of 
GDOk .current holder) ) THEN 

IF (OIDLISTk.update  = '1') THEN /* Ob has been updated*/ 
/*The following Line from Algorithm 4.6 has been removedt/ 
/*GDOk .last-updater - ' N I D ,  ';*/ 
/+stores object's last updater */ 
FOREACH pagel of Ok in GDOk DO 

IF (OID-LISTk.pagel = '1') THEN 
/* page 1 has been updated */ 

'This is a modification of Algorithm 4.6. One line is rernoved from Algorithm 4.6 and it is 

italicized in the pseudecode of the Algorithm 4.9. 
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G DOk.pager = 'NID,'; 
/*stores each page's last updater in GDOk. '/ 

IF (no other transaction waits for the lock) THEN 
G DOk.iock-variable - '0'; /*lock is ireef / 
GDOk.currentholder,pointer - 'NULL'; 

ELSE 
/*the next requiring transaction in the nonlocallist gets the lock* / 

GDOk.current loider-pointer the next TID in the nonlocailist: 
Send the lock grant to the requester and copy of GDOk to build 
CGDOk; 

End of Algorithm 

Algorithm 4.10 describes the update transfer process for LOTEC. To determine 

which referenced updated pages of object Ok are more recent than others, the 

Updates-Transfer algorit hm compares the  last updater of each re ferenced page 1 

stored in CGDOK with the acquiring node identifier. If the acquiring node identifier 

is not the same as a referenced page 1's last updater and the pagel field in CGDOk is 

not empty, then the  referenced page 1 in the  acquiring node is stale and the updated 

page needs to be transferred [rom page 1's last updater. Different pages may, of 

course. be transferred from different nodes depending on their last updaters. 

INPUT : T$ l,--., ( d-2, 
/*TID of the releasing transaction*/ 

INPUT : NID.;  /*node-id on which the acquiring transaction executes*/ 
INPUT : Ok; /*Object being accessed*/ 
INPUT : CGDOk; /* CCDO entry for object Ok */ 
INPUT : PageList; /* List aU pages of Ok which will be referenced; each element of 
PageList has a last-updater field to store the page's last updater */ 

FROEACH ( PageList/  for Ok in PageList) DO 
IF (CGDOk.pagei # NID,) and (CGDOk.pagel # 'NULL') THEN 

Page-Listl.last-updater + CGDOk.pagel; 
ELSE 

Unlink pagel from the PageList; 
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Transfer pages listed in the PageList from pages's last updating nodes. if some pages 
have the sarne last updating node, they wiil be transferred from the same node al1 in 
one; 

End of Algorithm 

4.3.3 Example of Updated Page Transfer under LOTEC 

The same example shown in Figure 4.1 1 is used to illustrate how LOTEC ensures 

memory consistency, especially, how an object's updated pages which will be ref- 

erenced by the next acquiring transaction are determined in a page based DSVM 

system. The lock operations in the  shared object Oils lock structure in GDOi and 

in each cached CGDO; entry are the same as was described in Subsection 4.1.3. A 

partial order is enforced among [sub-] transactions wi thin one transaction family as 

well as among a set of transaction farnilies as shown in the initial state of GDO; 

in Figure 4.15. How the referenced updated pages of Oi are transferred across the 

three nodes was shown in Figure 4.14. We now focus on how to  determine which 

referenced updated pages of an object are more recent t h m  others by using the 

algorithms defined in Subsection 4.3.2. 

When transaction Tpl globally releases the lock on node A, the node identifier 

-4 is stored in GDOils pageo, p a g e l ,  pages, and page3 fields as their last updater 

(shown in Figure 4.15: State 1). After the next transaction, T$, is granted the lock 

on node B, each referenced page's last updater stored in CGDOi is compared with 

the acquiring node identifier B. Since T,6, at  ternpts to modify page O and page 3, and 

they were both last updated at t h e  releasing node A which is not the same as the 

acquiring node B, the updated pages O and 3 of Oi are transferred to node B. After 

Tf,  pre-commits, the lock is locally released to its parent ~ j 6  and node identifier B is 

stored in CGDOi9s page0 and pages fields. Sub-transaction TA is then granted the 
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lock from T,b. Since the referenced page 1's last updater in CGDOk is not the same 

as the acquiring node B, the updated page 1 is transferred from its last updater. 

node A. to the acquiring node B before TA is allowed to modify i t. After TA pre- 

commits, the lock is locally released to its parent ~ , b  and node identifier B is stored 

in CG DOi's pagel field. When T,b commits, during the global lock releasing, node 

identifier B is stored in GD0; 's  pageo, pagei, and page3 fields as the corresponding 

pages' last updater (shown in Figure 4.15, State 2). When the next sub-transaction 

T g  is granted the lock on node A, because the referenced page4 field in CGDO; is 

empty (which means that  it has not been updated), no transfer is needed before Tg 

modifies page 4. After Ti2 commits, page 4's last updater, n ~ d e  A, is stored in  the 

page4 field in GDOi (shown in Figure 4.15, State 3). Once the next transaction T;' 

runniog on node C is g a n t e d  the lock, since the node identifiers in the referenced 

page0 and page2 fields of CGDOi are B and A respectively, which are not the same 

as the acquiring node C, the updated pages O and 2 are transferred from their last 

updaters node B and A, respectively, to the acquiring node C. After Tf commits. 

it globally releases the lock and node identifier C is stored in GDOi's page0 and 

page* fields as their last updater (shown in Figure 4.15, State 4).  
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The initial state: 

t P, P l  P, P, P, y 
L I I I  1 $-(T;IFH T, B I F I A  W T ~  I C  H 

a 
State 1: d'ter T . released the lock: 

b 
State 2: after T . released the lock: 

1 $ - ( T Z ~ A ~  Tc  , 1 C H . 

State 4: after T f released the lock: 

State 3: after T "' released the lock: 

Figure 4.15: Lock Operations, Page Updates Information in GD04 under LOTEC 

A B 5 B Oi ...... 



Chapter 5 

Network Load Analysis 

This chapter presents the results of analysis perforrned to assess the net work perfor- 

mance of OTEC and LOTEC. The closed nested object two-phase exclusive locking 

rules (02PL) are used to  provide concurrency control on a per-object basis in a sim- 

ulated DSVM system. We then measure the nurnber of short control messages and 

the number of object data  exchange messages required to maintain memory consis- 

tency for an arbitrary shared object using each of three protocols: OTEC, LOTEC. 

and a conservative object transactional entry consistency protocol (COTEC) which 

transfers the entire object state at the time the lock is granted to a remote node. 

The simulation strategy and parameters are discussed first. This is followed by a 

description of the design of the simulator. The chapter concludes by presenting the 

results of the study. 

While this is not a "traditional" simulation, it does provide a suitable abstrac- 

tion of the described consistency protocols that allows us to gather information 

on the network Ioad induced by their use. This is the key consideration in the 

acceptance of a consistency protocol. By incorporating the actud consistency and 
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lock management algorithms into the simulation process we also increased Our con- 

fidence in their correctness and gained insight into potential implementation issues. 

Some readers may consider our approach to be emulation rather than simulation. 

5.1 Simulation Strategy 

In a DSVM system, when closed nested object two-phase exclusive locking is used 

to synchronize conflicting nested object transactions, deadlock may occur between 

transaction families. Since deadlock is not discussed in this thesis. rather than 

measuring the number of exchanged messages for al1 objects shared by al1 concur- 

rently executing nested object transaction families, we simply measure the number 

of exchanged messages for an arbit rary individual ob ject shared by the concur- 

rently executing nested object transaction families. By doing so, we can evaluate 

the performance of the three memory consistency protocols for any object shared 

by [sub-] transactions wit hout concern for deadlock between transaction families. 

For any selected shared object. a partial order among a set of conflicting trans- 

action families which concurrently execute in the system is produced using OZPL. 

Since blocked conflicting transaction families cannot execute until the acquiring 

transaction family comrnits, this partial order is equivalent to a serial order in 

which al1 conflicting transaction families execute sequentially. Therefore. we can 

randomly select an execution order for a set of concurrently executed transaction 

families as the partial order produced by 02PL for any shared object. When al1 

transaction families execute in the randomly selected order sequentially, an exe- 

cution order produced using 02PL for any selected object among al1 conflicting 

[sub-]transactions is the same as the partial order which is assumed. 

We evaluate the network performance of the three memory consistency protocols 



CHAPTER 5. NETWORK LOAD ANALYSE 94 

(OTEC, LOTEC, and COTEC) by counting the number of short control messages 

and the arnount of data exchanged for large object updates in maintaining memory 

consistency. The simulation allows us to compare the performance of the three 

protocols. 

5.1.1 Message Counts 

Since concurrency control is provided on a per-object basis via object-level locking, 

communication occurs on lock and unlock operations. To maintain consistency, 

an updated object is transfered only when a transaction acquires the lock using 

any of COTEC. OTEC, or LOTEC. Thus messages are counted for the acquiring 

transaction during lock acquisition. 

When a [sub-]transaction acquires a lock from a rernote node, two short control 

messages and one long data message are required to maintain mernory consistency 

under COTEC and OTEC. One short control message is sent to the object's last 

updating node to request forwarding of the updated object to the acquiring node. 

Then the object's last updating node sends a long data message (consisting of the 

updated object's pages) in response to the acquiring node's request. After the 

acquiring node receives the updated object, it sends a short control message to 

the object's last updating node to acknowledge successful receipt of the data. For 

OTEC. the long data message includes only the object's updated pages while for 

COTEC it includes al1 the object's pages. 

For LOTEC, two short control messages and one long data message are required 

not only when the acquiring [sub-]transaction is from a rernote node, but possibly 

also when the acquiring [sub-]transaction is from the same node. Only three mes- 

sages are required if referenced stale pages have the same last updater. Otherwise, 
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more messages are required. These are exchanged between the acquiring node and 

the different pages' last updaters. For LOTEC, the long data message includes only 

the ob ject 's updated pages t hat are r e  ferenced by the acquiring [sub-] transaction. 

To compare the three different memory consistency protocols, exchanged mes- 

sages are counted by size, in bytes. We simulate where each control message is 32. 

64 or 128 bytes, and where the page size is 1024, 2048, or 4096 bytes. 

5.1.2 Parameters for the Simulation 

We have designed a set of experiments to study the performance of the three mem- 

ory consistency protocols described earlier. In the simulated system, there are 16 

nodes. To ensure that every node has active transactions. we assume that each node 

creates 4 nested object transaction families. Each parent transaction can have O 

to 10 sub-transactions and the depth of a nested transaction farnily can be 1 to 5 .  

Therefore, t here are 64 nested transaction families concurrent ly execu t ing across 16 

nodes in the systern. Each transaction family is created randomly, and can have at 

most 11.1 10 sub-transactions. it is assumed that there are no directly or indirectly 

recursive invocations on an object ( to avoid deadlock in one transaction family). 

When each transaction farnily and its sub-transactions are randomly created. the 

objects they invoke are randomly selected and checked to avoid deadlock. 

The maximum number of pages for each object and the maximum number of 

objects in the system are specified as input parameters. When the GD0 is created. 

the number of pages for each object is set between 1 and the maximum number 

of pages. This ensures that objects in the system have varying numbers of pages. 

When a nested transaction family is randomly created, each transaction c m  update 

any number of pages in the invoked object . 
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The values chosen for these parameters have been selected to maximize the prob- 

ability of conflicting transactions since this is the interesting case. Fewer conflicting 

transactions will never affect network load negat ively. 

5.2 The Simulator 

We have constructed a simple simulator to evaluate the protocols presented ear- 

lier. The DSVM system modeled by the simulator consists of a collection of nodes 

interconnected by a network. Each node in the network has a processor and lo- 

cal memory which acts as a cache. The simulator also maintains a GDO, and a 

global lock server using the closed nested object two-phase exclusive locking rules 

for synchronizat ion arnong transaction families across al1 nodes. 

Each node is modeled as a set of three processes: a transaction generator. a 

transaction manager, and a local lock server. The transaction generator generates 

a set of nested object transaction families which concurrently execute on the node. 

Each transaction family can access any shared object described in t he  G D 0  as 

long as no directly or indirectly recursive invocations occur wit hio the transaction 

famil y. 

The transaction manager receives lock operation requests from transactions and 

then sends the requests to the local or global lock server. For a lock request, once 

the local or global lock server acknowledges that the lock is set, the transaction 

manager allows the acquiring transaction to execute. O therwise the request ing 

transaction will be blocked until the lock is available. When the lock is granted 

from the global lock server, the transaction manager caches the object's GD0 entry 

in the local memory. Before the acquiring transactions are allowed to execute, the 

transaction manager builds an updated version of the  object using the current 
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memory consistency protocol (COTEC, OTEC. or LOTEC). For a lock release 

request , when a root transaction reques ts lock release, the transaction manager 

LC unmaps" al1 objects which are held or retained by the root transaction, t hen sends 

a request to  the global lock server to release the locks to  other transaction families. 

When the release request is h m  a sub-transaction, the transaction manager sends 

the request to the local lock server. Once the local or global lock server responds, the 

lock is released to the next wai ting [sub-] tronsact ion and the transaction manager 

resumes that [sub-] transaction. 

Using 02PL, the local lock server handles al1 lock operations locally which are 

sent by the transaction manager for the sub-transactions from the same transaction 

family as the current lock holder. 

5.3 Results and Discussion 

This section evaluates the  performance of COTEC. OTEC, and LOTEC in the 

simulated DSVM system. We analyze differences in performance by changing the 

maximum number of pages per object and the maximum number of objects in the 

system for a randomly selected subset of the objects which are shared by randomly 

created nested transactions. The size of control messages and the size of pages 

are d s o  vâried. It is assumed that al1 16 nodes initially have an updated copy 

of any shared object in their mernories (caches). Subsection 5.3.1 presents some 

of the simulation results. It is followed by a discussion of their significance in 

Subsect ion 5.3.2. 



CHAPTER 5. NETWORK LOAD AN4LYSIS 

5.3.1 Results 

Figures 5.1 to 5.4' present the results obtained by changing the maximum num- 

ber of pages per object and the maximum nurnber of objects in the  system, and 

show the total number of bytes for messages transfered during lock acquisition un- 

der the three memory consistency protocols for a randomly selected subset of the 

shared objects. The short control message size is fixed at 64 bytes, and the  page 

size is 2048 bytes. 

Figure 5 .1  shows the results for the three protocols when each object spans 1 to 

5 pages and 20 objects are shared repeatedly by 33 to 102 randomly created [sub- 

]transactions across 10 to 16 nodes. When objects have a small number of pages 

and are shared by many [sub-1 transact ions repeatedly, COTEC and OTEC have 

very similar performance. This is because when an object with a small number of 

pages is shared by multiple sub-transactions repeatedly within one transaction fam- 

ily, although conflicting sub-transactions may update different sets of the object's 

pages, al1 its pages or nearly al1 its pages may be updated at  the time the lock is 

released frorn the root transaction. In such a case, OTEC will transfer the same or 

nearly the sarne number of pages as LOTEC for a subsequent remote access. The 

same reasoning applies to LOTEC's performance. However, since LOTEC delays 

transferring updated pages until they are referenced, LOTEC achieves slightly bet- 

ter performance than both COTEC and OTEC. In one case LOTEC may actually 

have to  transfer more bytes than both COTEC and OTEC because it rnay transfer 

the same pages as COTEC and OTEC but does so using more control messages 

(e-g. object OB). When a shared object has a single page, the three protocols 

always have the sarne performance (e.g. objects O. and Ois). 

'Raw result data is presented in Appendix A. 
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Figure 5.1 : 1-5 pageslobject, 20 objects, 33-102 conflicting transactions 

Figure 5.2 shows t h e  results for three protocols when each object spans 10 to 

20 pages (Le. larger objects) and 20 objects are shared by 33 to 55 randomly 

created [sub-]transactions across 12 to 16 nodes. Compared with the previous 

scenario, OTEC has better performance than COTEC in every case although t heir 

performance is still very close. LOTEC has much better performance than both 

COTEC and OTEC in every case. This is because when an object spans a large 

number of pages the possibility that al1 its pages are updated by multiple sub- 

transactions within one transaction family is smaller than when an object spans a 

small number of pages. 

Figure 5.3 shows the results for the three protocols when each object spans I to 

5 pages and 100 objects are shared by 5 to  24 randomly created [sub-]transactions 

across 3 to 9 nodes. Compared with the first test case, an object is now shared by 

less sub-transactions within one transaction family. OTEC has better performance 

than COTEC in most cases, and LOTEC also has better performance than both 

COTEC and OTEC in most cases. This is because when an object with a small 
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Figure 5.2: 10-20 pages/object. 20 objects, 33-85 conflicting transactions 

number of pages is shared by fewer sub-transactions from the same transaction 

family, the possibility that al1 its pages are updated within one transaction family 

is srnaller than when it is shared by a large nurnber of sub-transactions repeatedly 

within one transaction family. As discussed previously, when an object has a single 

page, the three protocols have the same performance (e.g. object &). and when 

LOTEC transfers the same pages as COTEC and OTEC but requires more short 

control messages than they do, it has worse performance (e.g. object Os;) In such 

a situation, the performance of LOTEC is only marginally worse because the size 

of a control message is relatively small compared to the size of a page. There is one 

case in the results where LOTEC has the same performance as both COTEC and 

OTEC but the shared object does not have a single page. This is because LOTEC 

transfers the same number of pages and requires the same number of short control 

messages as COTEC and OTEC (e.g. object 046). This happens when conflicting 

[sub-]transactions access al1 of an object's pages. When an object has fewer pages. 

this is more likely to  happen. 
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Figure 5.3: 1-5 pageslobject, 100 objects, 5-24 conflicting transactions 

Figure 5.4 shows the results for the three protocols when each object spans 

10 to 20 pages and 100 objects are shared by 3 to 22 randomly created [sub- 

]transactions across 2 to  11 nodes. Cornpared with the previous three test cases. 

objects now span a large number of pages and are shared by less [sub-]transactions 

within one transaction iamily. In this case. both OTEC and LOTEC achieve better 

performance. LOTEC appears to offer increased benefit as the level of concurrent 

sharing across distributed nodes increases (e.g. comparing object Ois shared by 

22 [sub-]transactions from 11 nodes to shared by 12 [sub-]transactions from 5 

nodes). 

Figure 5.5 shows the total number of bytes of a11 the messages transferred under 

COTEC, OTEC, and LOTEC for object in the second test case. The size of 

short control messages varies between 32, 64 and 128 bytes, and the size of pages 

varies between 1024, 2048 and 4096 bytes. 68 short control messages and 34 long 

data messages (646 pages under COTEC and 618 pages under OTEC) among 15 

nodes are transferred under COTEC and OTEC. 210 short control messages and 105 
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Figure 5.4: 10-20 pages/object. 100 objects, 3-22 conflicting transactions 

long data messages (420 pages) are transferred under LOTEC. Note that LOTEC 

transfers less bytes than both COTEC and OTEC as  the page size increases. When 

the size of short control messages decreases, the benefit of LOTEC increases only 

slightly. The large number of short control messages required by LOTEC does not 

hurt its performance in terms of the arnount data sent. 

5.3.2 Discussion 

Al1 simulation results indicate that LOTEC has the best performance in terms 

of the amount of data sent by the three memory consistency protocols. Results also 

show that LOTEC transfers at most the same set of pages as COTEC and OTEC. 

but it may require more short control messages than COTEC and OTEC because 

there is no single last updater for al1 an object's pages. 

LOTEC only transfers referenced updated pages to an acquiring transaction 

during lock acquisition. When a [sub-] transaction (pre-)commits, only the refer- 
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Short control message sizePage size 

Figure 5.5: The results by changing the size of the short and the long messages 

enced pages are updated and other pages may still be stale in the memory of the 

acquiring processor. If the acquiring transaction is from the same node as the releas- 

ing transaction but references different object pages which are stale, LOTEC needs 

to retrieve the updated pages from those pages' last updating nodes. If referenced 

pages are 1 s t  updated on different nodes, LOTEC needs to retrieve the pages from 

diflerent nodes. Therefore, there are two cases when LOTEC has potentially the 

sarne or worse performance than COTEC or OTEC. The first case is when LOTEC 

transfers the same number of updated pages and requires the  same number of short 

control messages as the other protocols. The other case is when LOTEC retrieves 

the sarne number of pages or a few pages less than them but requires more short 

control messages. Since the size of control messages is typically much smaller than 

the size of data messages, in the worse case, LOTEC will only transfer a few more 

bytes tban OTEC. 

The results show that, in general, LOTEC transfers less pages than COTEC 
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and OTEC in the simulated DSVM system especially when the sharing level among 

distributed nodes increases. Since the worst case for LOTEC will happen only oc- 

casionally and it hardly hurts the performance when compared to the number of 

large data updates reduced by LOTEC, we conclude from our simulation results 

that LOTEC will, generally, transfer far fewer bytes than both COTEC and OTEC 

in total in a large scaled distributed persistent object system. Further, when ob- 

jects span more pages or the page size is bigger, LOTEC achieves even better 

performance. 

We have assessed the efFectiveness of the three consistency protocols by count- 

ing messages and their lengths, then we evaluated the cost of each message in 

terrns of its length alone (i.e. time to send was determined solely by the number 

of bytes sent). However, the real message cost is actually a function of message 

length and network communication protocol overhead which is the time required 

to push a message into the network interface at  the sending end and pull it out at 

the receiving end. Thus, the message cost is composed of both software overhead 

and network latency. Recent advances in net work technology have dramatically 

improved communication performance for net work applications. The development 

of high bandwidth, and low latency networks has shifted the bottleneck in com- 

munication from the iirnited bandwidth of networks to the high latency of the 

network communication software. Despite t his, small messages are important in 

many applications (e-g. LOTEC). 

To investigate the value of the consistency protocols presented in this thesis 

in a conventional network environment with high software overhead and in a new 

network environment with much lower software overhead. we re-assessed the perfor- 

mance of the three protocols in terms of message cost based on both the estimated 

software overhead and the transmission rate of the network. Message cost is mea- 
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sured as = 2NcT, + LI / Tb, where N, is the number of messages (small 

and large), Ts is the software cost for each message sent or received, Lr is the total 

length of the transfered messages, and Tb is the transmission rate. 

Figures 5.6, 5.7. and 5.8 show the results of the modified message cost under 

the t hree protocols for object Olq in the second test case. 68 short control messages 

and 34 long data messages (510 pages) are transfered under COTEC, while with 

the sarne nurnber of messages required as COTEC, 495 pages are transferred under 

OTEC. 185 short control messages and 94 long data messages (316 pages) are 

transferred under LOTEC. The software cost for each message sent and received 

varies between 100psec. 20psec, fjpsec, lpsec, and 500nsec. The transmission rate 

of the network varies between lOMbytes/sec, lOOMbytes/sec. and lGbyte/sec 2. 

The size of short control messages is 32 bytes. and the page size is 4096 bytes. 

Figure 5.6 shows that in a network environment with lOMbytes/sec transmis- 

sion rate, the message cost decreases under LOTEC as the software cost is reduced. 

In a network environment with 100Mbytes/sec transmission rate, the message cost 

decreases again when the software cost decreases (shown in Figure 5.7). However. 

in a network environment with lGbyte/sec transmission rate, the software cost be- 

cornes critical and must be very low. LOTEC achievcs better performance than 

both COTEC and OTEC until the software cost reduces to lpsec (showo in Fig- 

ure 5.8). Therefore, the importance of reducing per-message software overhead is 

significant to make our protocols practical particularly for high speed networks. 

Development of new mechanisms with much lower software overhead will provide 

a better environment to support applications which have many short messages like 

LOTEC. Recently, such mechanisms have been developed which reduce software 

'Good performance for LOTEC would also be expected for lower transmission rates more 

typical of wide area networks (e.g. 100Kbps). 
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overhead successfully (e.g. Active messages (ECGS921 and U-Net [EBBV95]). 

I COTEC 
OTEC 

lOOus 20us Sus lus SOOns 

Software cost 

Figure 5.6: Message cost for OI4 when transmission rate is lOMbps 

COTEC 

LOTEC 

100us 20us 5us lus 50011s 

Software cost 

Figure 5.7: Message cost for OI4 when transmission rate is lOOMbps 
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U COTEC 

LOTEC 

100us 20us Sus 1 us 500ns 

Software cost 

Figure 5.8: Message cost for Qlq when transmission rate is lGbps 



Chapter 6 

Conclusions and Future Work 

This thesis has presented two new DSVM consistency protocols. OTEC and LOTEC. 

for closed nested object transactions in a page based persistent object system. The 

performance of the protocols has been demonstrated via a simulated DSVM system. 

6.1 Contributions 

A mode1 of nested object transactions has been introduced to suit method exe- 

cutions in a persistent object system. In the proposed DSVM system, multiple. 

concurrent users can access objects by invoking methods that manipulate their at- 

tributes. An access submitted by a DSVM user consists of a single object method 

invocation that may invoke other methods on other objects producing method in- 

vocations that are nested. Method executions, either by users or other objects' are 

therefore treated as closed nested atomic object transactions. 

Moss' closed nested two-phase exclusive locking rules have been rnodified to de- 

fine the closed nested object two-phase exclusive locking rules (02PL) .  02PL takes 
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into account the characterist ics of a persistent ob ject system, and adds addi t ional 

funct ionaii ty. It provides for correct concurrent executions of closed nested ob ject 

transactions in the DSVM system. 

A DSVM memory consistency protocol, OTEC, for closed nested object transac- 

tions in a page based persistent object system was also presented. It was defined by 

combining the closed nested object two-phase locking rules developed and the  DSM 

memory consistency protocol, entry consistency. OTEC pulls al1 updated pages of 

a shared object across the network when the object is subsequently accessed by 

an acquiring [sub-]transaction at a remote node. To achieve better performance. a 

second DSVM consistency protocol that also supports closed nested object trans- 

actions was developed. LOTEC defers communication by pulling updated pages 

of a shared object across the network only when those pages may be  referenced 

by an acquiring [sub-]transaction. In this way, LOTEC often t r a d e r s  fewer pages 

than OTEC. Since there is no unique last updatiog node for a given shared ob- 

ject, LOTEC may need more short control messages than OTEC. Compared to 

transferring large updated ob ject pages, the LOTEC protocol successful~y reduces 

unnecessary data exchange. 

A simple DSVM simulator has been developed to assess the network perfor- 

mance of the developed protocols under various load and sharing conditions. We 

evaluate the performance of OTEC, LOTEC.and a conservative baseline protocol 

known as COTEC by counting the total number of bytes of transferred messages 

(both short control messages and large object updates) for maintaining memory 

consistency in the simulated DSVM system. Overall, the results indicate t hat 

LOTEC has the best performance of the three protocols. 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.2 Future Work 

The work presented in this thesis is a first step towards providing efficient mem- 

ory consistency in the proposed DSVM system. There is still much work to be done 

in t his area including the elimination of certain assumptions made in the disserta- 

tion and extensions of the work. 

One simplifying assumption was that multiple pages woufd not be stored on 

a single page to avoid fdse sharing. Without this assumption, an exclusive-write 

protocol can handle the false sharing problem, but it may result in additional net- 

work traffic due to unnecessary communication. Modifications of certain multiple 

write-protocols [CBZ95, KCZ921 might be used to address this problem. 

Anot her simplifying assumption was t hat al1 sub-transactions of a given root 

transaction will norrnally execute a t  the  same node. This constraint can be relaxed 

to achieve greater parallelism. The lock structure for each object in the G D 0  may 

need to  be changed to handle the lock operations for conflicting sub-transactions 

within a transaction family but which are executing on different nodes. Local lock 

release operations wit hin a transaction family rnay also need to be handled globally 

to support the multi-s tage release process across distributed nodes. 

Our simulation results generally show that when objects span multiple pages 

LOTEC's performance improves. However, ob ject-level locking is likely too coarse 

when objects span a large number of pages as it may prevent concurrency within the 

object. Additionally, since object-level locking is supported in this thesis, to avoid 

deadlocks in one transaction family, it was assumed that no directly or indirectiy 

recursive invocations on the same object are allowed within a transaction family. 

Page-level locking c m  relax this constraint as long as no directly or indirectly 

recursive invocations on the methods that manipulate the  same pages occur. It 
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also can enhance concurrency within the object. To facilitate page-level locking, 

Mathew, et al. [MGB95] suggest the use of a persistent global page table with one 

entry for each persistently stored page and a lock variable in each entry. 

Consistency protocols presented in this thesis load pages individually on demand 

to keep communication overhead to a minimum. If a consistency protocol can 

predict which pages will be accessed by a method, communication latency can be 

hidden by prefetching and thereby overlapping communication with computation. 

This might be particularly useful in a system without support for Iow software 

overhead messaging . 

Finally, only exclusive locks were supported in the thesis. Adding support for 

shared ( "read" ) locks rather than just exclusive locks should be straight forward. 



Appendix A 

Detailed Simulation Result s 

Tables A.1 to 8 - 1 2  present the raw data of simulation results for test cases 1 

through 4 under the three consistency protocols, COTEC, OTEC, and LOTEC. 

Each table lists a set of randomly selected shared object identifiers, the  number of 

pages transferred, the number of short control messages and long da ta  messages 

required. and how many [sub-]transactions access the shared object concurrently. 



Table A.1: Simulation results under COTEC for test case 1 

0119. 1 #transferred pages 1 #short messages [ #long data messages #[sub-] transactions 

Table -4.2: Simulation results under OTEC for test case 1 

#long data messages 
- - 

# [su b-] t ransac t ions #transferred pages 1 #short messages 
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Table A.3: Simulation results under 

O I D. #t ransferred pages #short messages 

LOTEC for test case 1 
- - 

#[su b-] transac t ions #long data messages 

#[sub-] transactions 7 
Table A.4: Simulation results under COTEC for test case 2 

#long data messages 

35 

23 

O I D, 

10 

11 

# t ransferred pages 

i385 

'376 

#short messages 

70 

46 
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EC for test case 2 
#transferred pages #long data messages ( #[sub-] t ransactions #short messages 

Table A.6: Simulation results under LOTEC for test case 2 
OID,  1 #transferred pages 1 #short messages 1 #long data messages 1 #[sub-]transactions 
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#[su b-] t ransact ions 
- 
1 

14 

9 

11 

5 

18 

18 

13 

20 

6 

5 

11 

13 

24 

8 

Table A.7: Simulation results under COTEC for test case 3 
#long data messages 

6 

10 

6 

9 

3 

11 

#short messages 

12 

20 

12 

l S  

6 

-3 œœ 9 

O I D ,  

9 

18 

23 

32 

37 

42 

#transierred pages 

30 

40 

6 

2'7 

9 

33 

46 

54 

64 

67 

71 

74 

53 

92 

99 

18 

45 

65 

15 

6 

65 

32 

42 

30 

18 

18 

26 

10 

6 

26 

16 

28 

12 

9 

9 

13 

5 

3 

13 

8 

14 

6 
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Table AIS: Simulation results under OTEC for test case 3 
I I 

O 1 D 

9 

#transferred pages 

21 

#short messages 

12 

#long da ta  messages 

6 

#[sub-] transactions 

i 
c. 
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r 

O I D ,  

9 

18 

25 

32 

37 

42 

46 

54 

64 

67 

71 

74 

S3 

92 

99 

LOTEC for test case :3 
#long data messages 

9 

12 

6 

12 

3 

15 

9 

15 

3 a- 3 

6 

3 

19 

9 

'21 

11 

#[su b-] t ransactions 

7 

14 

9 

11 

5 

lS 

1s 

1 :3 

20 

6 

5 

I I  

13 

14 

S 

Table A.9: Simulation 

# transferred pages 

15 

27 

6 

19 

6 

26 

18 

27 

38 

15 

3 

50 

11 

32 

16 

results under 

#short messages 

18 

24 

13 

24 

6 

30 

18 

30 

44 

12 

6 

38 

1s 

42 

33 -- 
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Table A.10: Simulation results under COTEC for test case 4 
r I 1 

O I  D, # transferred pages #short messages / #long data messages 
1 

#[sub-] t ransactions 
I 



Table A.11: Simulation results under OTEC for test case 4 

O I D ,  1 #transferred pages 1 #short messages 1 #long data messages ( #[sub-]transactions 
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Table A.12: Simulation results under LOTEC for test case 4 

O I D, #transferred pages 1 #short messages #long data messages #[sub-]transactions 
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