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Abstract

Frequent pattern mining from uncertain data allows data analysts to mine frequent pat-

terns from probabilistic databases, within which each item is associated with an existential

probability representing the likelihood of the presence of the item in the transaction. When

compared with precise data, the solution space for mining uncertain data is often much

larger due to the probabilistic nature of uncertain databases. Thus, uncertain data mining

algorithms usually take substantially more time to execute. Recent studies show that the

MapReduce programming model yields significant performance gains for data mining algo-

rithms, which can be mapped to the map and reduce execution phases of MapReduce. An

attractive feature of MapReduce is fault-tolerance, which permits detecting and restarting

failed jobs on working machines. In this M.Sc. thesis, I explore the feasibility of apply-

ing MapReduce to frequent pattern mining of uncertain data. Specifically, I propose two

algorithms for mining frequent patterns from uncertain data with MapReduce.
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Chapter 1

Introduction

As frequent pattern mining [AS94] discovers frequently occurring sets of items (hereafter

referred to as frequent patterns) from data, it permits data analysts to determine interesting

correlations in the dataset being examined. Previously, most of the research effort in the area

of frequent pattern mining was concentrated on mining frequent patterns from traditional

databases of precise data such as shopping market basket data. Here, every transaction item

is guaranteed to exist.

In this M.Sc. thesis, I primarily focus on mining frequent patterns from databases having

uncertain data. For uncertain data mining, we can suspect, but cannot guarantee, the

presence or absence of an item. For example, a doctor is 90% certain (but cannot guarantee)

that a patient suffers from a particular disease. The uncertainty associated with each item

can be expressed in terms of existential probabilities, which indicate the likelihood of the

presence or existence of an item. The problem of mining frequent patterns from uncertain

datasets is nontrivial as the input datasets can be large and contain many unique items,

having different existential probabilities. Here, the search space is significantly larger than
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that when mining patterns from datasets having precise data.

Briefly, to find frequent patterns for a given dataset, a user specifies the minimum sup-

port threshold, which denotes the percentage of transactions in the dataset containing a

pattern for that pattern to be frequent. In uncertain data mining, to account for the exis-

tential probabilities associated with items, a new measure called the minimum expected

support, was introduced by Chui et al. [CKH07] to act as a threshold for mining uncertain

datasets. The expected support of an itemset specifies the sum of the expected probabilities

of an itemset in each of the transactions in the database.

Commonly used algorithms for discovering patterns from uncertain and precise data can

be broadly divided into three categories, such as candidate generate-and-test algorithms (e.g.,

Apriori [AS94], U-Apriori [CKH07]), hyper-structure algorithms (e.g., H-Mine [PHL+01],

UH-Mine [ALWW10]), and tree-based pattern growth algorithms [HPY00]. Among them,

tree-based algorithms, which operate entirely in main memory and avoid expensive disk

accesses, are usually faster. This is why I am focusing on them.

Examples of tree-based algorithms include FP-growth [HPY00], UF-growth [LMB08], and

UFP-growth [CGG10]. The FP-growth algorithm, which mines precise data, (1) represents

the compressed input database in the form of a tree, (2) traverses that tree in a depth-first

manner to read-off frequent patterns and their corresponding supports, and (3) recursively

builds sub-trees (commonly referred to as conditional trees) and reads frequent pattern from

them.

The UF-growth algorithm retrofits the FP-growth algorithm, allowing it to directly

work with items’ existential probabilities (i.e., it directly works with uncertain data). To

reduce the memory consumption, this approach, however, requires the probabilities of items

in the initial database to be rounded to (commonly) two decimal places. By rounding

2



probabilities, we limit the possibly infinite number of expected support values to 102 values,

in the range of (0, 1].

The UFP-growth uncertain data mining algorithm adds a pre- and a post-processing

step to the FP-growth precise data mining algorithm. For each transaction in the uncertain

database, the pre-processing step samples transaction items according to their existential

probabilities. In essence, the pre-processing step converts an uncertain database to a larger

database, containing precise data, which can be attacked by algorithms mining precise data.

At the end of the mining process, the post-processing step computes the average expected

support of patterns over all samples. Patterns with an average expected support value meet-

ing the user-specified threshold are considered frequent. This technique is straightforward

because it employs existing algorithms used for mining precise data to mine uncertain data.

Both of the discussed approaches for mining uncertain data differ principally in terms

of arriving at the final result. The UF-growth algorithm modifies the FP-growth algorithm

such that, at each execution step, UF-growth performs numerous, potentially slow, float-

ing point calculations. Moreover, the UF-tree, which represents an in-memory compressed

version of the uncertain database, achieves lower compressions ratios than the FP-tree used

in the FP-growth algorithm. On the contrary, the UFP-growth algorithm avoids modify-

ing the FP-growth algorithm by using a sampling technique at the cost of converting the

initial uncertain dataset to a larger dataset containing precise data. In addition, while the

UF-growth algorithm always produces accurate results, the accuracy of the UFP-growth

algorithm depends on the number of samples taken.

3



1.1 Problem Definition

In general, algorithms that mine patterns from uncertain data take more time to execute

than their precise counterparts due to the probabilistic nature of the dataset. In addition,

when the input dataset is large, the tree representing the given dataset often does not fit in

the main memory. This calls for distributed mining of uncertain datasets.

When looking at the prominent parallel systems, which are currently used by researchers

to process large datasets, a noteworthy example is the MapReduce programming model [DG08],

which is currently enjoying a resurgence of popularity. The two biggest strengths of MapRe-

duce are (i) the fault-tolerance feature as well as (ii) the ability to parallelize computations

on large datasets. Recent research [LWZ+08] shows that MapReduce was successfully used

for mining frequent patterns from precise data. Given this result, I chose to investigate the

feasibility of using the MapReduce programming model to parallelize the execution of UF-

growth and UFP-growth. Moreover, to further speed-up the mining process, I investigated

the feasibility of combining the use of the MapReduce programming model and the ForkJoin

framework, which allows us to distribute the mining tasks among the processing cores of a

multi-core processor.

For the sake of clarity, let us briefly overview what ForkJoin and MapReduce are.

ForkJoin [Lea00] is a framework for distributing work between cores of a multi-core pro-

cessor on a single computing node. It is built around the producer-consumer principle,

where the producers generate tasks and consumers work on them. In contrast to the parallel

frameworks which use a single work queue for maintaining tasks, the ForkJoin framework

maintains an intrinsic queue bound to each thread. The use of multiple queues avoids ex-

pensive locking operations required when accessing a single queue by either consumer or
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producer threads. An additional benefit of using ForkJoin is that, when a thread exhausts

its work queue, it can become a thief, meaning that it can randomly select a thread from a

pool of available threads and tries to steal a task from the tail of the queue of the chosen

thread.

MapReduce, on the other hand, is a programming model that allows us to process

large amounts of data in parallel using relatively inexpensive commodity hardware. Cur-

rently, the most widely-used approaches for implementing parallel algorithms are through

the use of MPI [MPI12] and OpenMP [Ope12] libraries. They provide message-passing ca-

pabilities and access to shared memory, respectively, by multiple threads. Both libraries

require programmers to explicitly control the inter-process communication and synchroniza-

tion. Moreover, algorithm implementers often have to carefully analyze the program code

to avoid concurrency issues such as livelocks, deadlocks, and race conditions. These con-

currency issues are challenging to analyze and debug because each possible execution of the

concurrent program is difficult to reproduce. Conversely, in MapReduce, the programmer

does not need to explicitly manage the inter-process communication. Instead, MapReduce

provides the capacity to define computation tasks as user-defined jobs containing the “map”

and “reduce” functions, which operate on portions of the dataset independently. In some

cases, a combiner function is useful. This function is often defined in the same way as the

reducer function.

One of the most attractive features of MapReduce is fault-tolerance, which automatically

detects and reschedules failed jobs. For example, when a failure occurs in MPI and OpenMP

environments, to recover from it, we normally need to restart the whole computation from

the beginning. As the datasets used in frequent pattern mining can be quite large, it would

be highly inefficient to restart the mining process.
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As data mining algorithms commonly process large datasets, researchers started to ap-

ply the MapReduce programming model in the development of data mining libraries. For

instance, the latest version of Apache Mahout [Apa12c], a MapReduce-based data mining

and machine learning library, supports four use cases: recommendation mining, clustering,

classification, and frequent itemset mining from precise data. Most importantly, Apache

Mahout contains a parallel implementation of the FP-growth algorithm, called Parallel

FP-growth (PFP-growth) [LWZ+08]. The current version of Apache Mahout, however,

does not contain algorithms that support the mining of frequent patterns from uncertain

data.

Although there exists a parallel implementation of the FP-growth algorithm (i.e., PFP-

growth), it can only process precise data and cannot handle uncertain data. Further, al-

though the UFP-growth algorithm works with uncertain data, no attempts have been made

to execute its steps in parallel. To the best of my knowledge, no research has been done

in the area of parallel frequent pattern mining of uncertain data. Given that this work

has never been attempted, and given the need to develop distributed versions of uncertain

data mining algorithms, the questions that I am aiming to answer in my research are: By

using MapReduce, can we decompose our problem to multiple smaller problems, which can

be attacked by multiple machines, such that each smaller-sized problem can fit in the main

memory? Moreover, will such means of distribution speed-up the execution of uncertain

data mining algorithms? Also, as MapReduce distributes the work between the computing

nodes in the network, will we be able to further divide mining tasks between the processing

cores on a multi-core machine?

To answer these questions, I propose (in Chapter 4) parallel versions of two tree-based

uncertain data mining algorithms, namely UF-growth [LMB08] and UFP-growth [CGG10],
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by adapting them to the MapReduce programming model. In addition, as MapReduce

distributes portions of a bigger mining task between machines in the network to capitalize

on computing nodes’ multi-core facilities, I also employ the ForkJoin Framework [Lea00] to

distribute the work between processing cores of a multi-core processor (in Chapter 3).

1.2 Thesis Statement

My M.Sc. thesis statement is as follows. To speed up the mining process of uncertain

data mining algorithms, I propose to:

(a) adapt two uncertain data mining algorithms, namely UF-growth and UFP-growth, to

MapReduce, which will facilitate the construction of smaller-sized trees on distributed

machines; and

(b) combine the use of the MapReduce programming model with the use of the ForkJoin

framework to further speed-up the mining process; and

(c) develop an optimized technique for building conditional trees.

I will further assess the effectiveness of using MapReduce and ForkJoin in the context of

frequent pattern mining of uncertain data. The key contributions of my thesis include the

following:

• the development of parallel implementations of the UF-growth and UFP-growth algo-

rithms, which handle uncertain data using the MapReduce programming model;

• the application of the ForkJoin framework for frequent pattern mining of precise and

uncertain data on multiple processing cores of a multi-core processor; and
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• the proposal of a conditional tree building technique, which reduces the overall mining

time as well as minimizes memory use.

Since not all algorithms can be mapped to MapReduce in a straightforward manner, one

of the key challenges for my research was to map the execution steps of UF-growth and

UFP-growth to MapReduce as well as to effectively combine the use of both MapReduce

and ForkJoin.

I execute my algorithm implementations in the Apache Hadoop [Apa12b] environment

using Amazon EC2 [Ama12a] clusters. Amazon EC2 allows us to set up a requested number

of nodes in a relatively short time. To verify the correctness of my parallel algorithm imple-

mentations, I compared my mining results with the mining results obtained from running

the U-Apriori [CKH07] algorithm. Both UF-growth and U-Apriori yielded the same results.

On the other hand, because UFP-growth uses a sampling technique, it always arrived at a

different high-quality approximation of the results.

1.3 Thesis Organization

Apart from selectively presenting a number of alternative frequent pattern algorithms,

Chapter 2 uses a tree-based algorithm to introduce frequent pattern mining of precise and

uncertain data. It covers earlier research efforts targeted at speeding up frequent pattern

mining algorithms as well as provides an overview of the parallel frameworks and systems

used during my research, specifically MapReduce and ForkJoin. To demonstrate the benefits

of employing MapReduce in the process of mining frequent patterns from precise data, the

chapter also covers the PFP-growth algorithm, which I used as a base for developing my

parallel versions of the UF-growth and the UFP-growth algorithms.
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Chapter 3 introduces my proposed optimizations for tree-based frequent pattern mining

algorithms, which facilitate a faster construction of conditional trees as well as permit ex-

ploitation of the multi-core capacities of a processor. The chapter also discusses the benefits

and the mechanism of caching FP-trees. Chapter 4 proposes two novel algorithms—the

MapReduce versions of UF-growth and the UFP-growth algorithms—for mining frequent

patterns from uncertain data on distributed machines using MapReduce and ForkJoin. Chap-

ter 5 provides experimental results describing (a) the benefits of using the proposed opti-

mizations to tree-based algorithms; (b) the benefits of the proposed MapReduce versions of

the UF-growth and the UFP-growth algorithm and concludes by (c) comparing both devel-

oped approaches. Finally, Chapter 6 presents a summary of this thesis as well as suggests

some possible future work.
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Chapter 2

Related Work

In this chapter, I first introduce the main concepts behind frequent pattern mining and

discuss commonly used algorithms for mining frequent patterns from precise and uncertain

data. Then, I discuss two frameworks, namely MapReduce and ForkJoin (which facili-

tate parallel data processing on distributed machines and processor cores, respectively) and

present a number of parallel computing techniques for speeding up frequent pattern min-

ing. Moreover, I also provide a summary of recent work targeted at converting data mining

algorithms to MapReduce.

2.1 Frequent Pattern Mining of Precise Data

Before discussing the related work done in the area of executing frequent pattern mining

algorithms in parallel, let us introduce the fundamentals of frequent pattern mining of precise

and uncertain data. The introduction to traditional frequent pattern mining algorithms in

the following sections will help the interested reader to get a better understanding of the

forthcoming sections, describing frequent pattern mining of uncertain data.
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2.1.1 Key Concepts of Mining Frequent Patterns from Precise

Data

As an introduction to frequent pattern mining, researchers commonly use the pattern

generate-and-test Apriori [AS94] algorithm as part of their discussion. As (1) tree-based

algorithms are superior [KKR10] to Apriori-based algorithms and (2) my thesis is focused

on tree-based algorithms only, I chose to base my introduction primarily on tree-based algo-

rithms.

Frequent pattern mining was initially introduced by Agrawal et al. [AIS93]. The task

of frequent pattern mining is to detect items that commonly co-occur in the input dataset.

Let I be a set of items. A set X = {i1, . . . , ij} ⊆ I is called an itemset. An itemset having

a single item in it is called a singleton itemset or just a singleton. A database transaction

is defined by a tuple T = (id, I), where id is the transaction id and I is an itemset. We

consider a universe of m items occurring in transactions. Formally, a transaction database

D over I is a set of transactions over I. A transaction T = (id, I) contributes to the support

(or supports) an itemset X ⊆ I, if X ⊆ I. The support of an itemset X in D is the number

of transactions in the database D containing X. A frequent itemset or pattern is a subset

of items, the frequency of which is no less than a user-specified threshold value called the

minimum support σ, where 0 ≤ σ ≤ |D|. If an itemset appears in a large enough portion of

the dataset (i.e., large number of transactions in the dataset), it is considered frequent. The

collection of itemsets, which fall above the minimum support threshold value, is denoted by

F(D, σ) = {X ⊆ I | support(X,D) ≥ σ}.

The overall problem of frequent pattern mining is that, given a set of items I, a

transaction database D, and a minimum support threshold σ, find F(D, σ) as well as the

11



Table 2.1: A sample market basket transaction database

id Transaction X

10 {beer, chips, wine}
20 {beer, chips}
30 {pizza, wine}
40 {chips, pizza}

Table 2.2: Corresponding frequent patterns

Itemset Support

{beer} 2
{chips} 3
{pizza} 2
{wine} 2

{beer, chips} 2
{beer, wine} 1
{chips, pizza} 1
{chips, wine} 1
{pizza, wine} 1

{beer, chips, wine} 1

support count of each frequent patter F(D, σ).

Example 2.1 Consider the example database in Table 2.1. where I = {beer, chips, pizza,

wine}. For a minimal support threshold of 1, Table 2.2 shows the mining result.

Given a set of domain items I, represented in the database, perhaps the simplest ap-

proach for finding frequent patterns is to generate all possible 2|I| combinations, or candidate

itemsets and count the occurrence of each one, outputting itemsets, which pass the minimum

support threshold. For a low value of |I| (e.g., 0 ≤ |I| ≤ 20), the task of generating all

possible combinations is not computationally challenging. But, for larger values of |I| it can

be impractical to compute all the combinations in a reasonable amount of time.

The algorithms in the Apriori-family make use of several optimizations of the aforemen-

tioned näıve technique, as well as take advantage of several properties of frequent itemsets.
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One of the key properties of frequent itemsets is the support monotonicity property. This

property ensures, that if an itemset is infrequent it cannot serve as a prefix for different fre-

quent itemset. More formally, given a transaction database D, let X, Y ⊆ I be two itemsets.

Then,

X ⊆ Y ⇒ support(Y ) ≤ support(X),

which means, that if an itemset is infrequent, all its proper supersets or extensions are

guaranteed to be infrequent. Conversely, if an itemset is frequent, all of its subsets must

also be frequent. Recall Table 2.2. If the itemset {beer, chips, wine} is frequent, then all its

proper subsets, namely {beer, chips}, {beer, wine}, {chips, wine}, {chips}, {wine}, {beer},

must also be frequent.

Despite all the research efforts devoted to improving the performance of the algorithms

in the Apriori family, they are always required to generate and test candidate patterns. This

scheme results in a significantly large number of database scans, which is very I/O inefficient

and degrades the overall performance.

2.1.2 A Tree-Based Approach

Let us consider the FP-growth [HPY00] algorithm, which uses a more efficient approach

for finding frequent patterns. FP-growth is a depth-first algorithm, which was developed

to address the limitations of the first generation Apriori algorithm. FP-growth scans the

database in two passes, building a tree-based, compressed, in-memory representation of the

input database. The algorithm then traverses the resulting tree, reading off itemsets and

constructing new smaller-sized sub-trees recursively. This process effectively eliminates the

subsequent database scans, required by Apriori-based algorithms to test candidate itemsets.
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Table 2.3: A sample transaction database

ID Items (Ordered) Frequent Items

10 a, b, c, d, u a, b, c, d
20 a, c, q, t, u, g, w, d a, c, q, t, u, w, d
300 a, j, b, c, i, d a, b, c, d
400 g, a, n, b a, b
50 l, a, b, m, c a, b, c
60 a, b, p a, b
70 h, a, q, t, u, w a, q, t, u, w
80 b, c, q, u, t, w, k b, c, q, t, u, w

FP-growth scans the database the first time to count the support of each unique item,

retaining only frequent singleton items, along with their occurrence (or support) counts.

These items are then arranged in frequency descending order and inserted into a header

table. The next scan compresses the database into an extended prefix tree—a frequent

pattern tree called the FP-tree. Apart from storing the (1) item name, each tree node

contains information about (2) the number of times this sorted prefix of items (up to and

including that node item) was encountered (referred to as the occurrence count), as well as (3)

node links, which facilitate efficient tree traversal and provide special means of navigation

between nodes, having the same item. For each encountered transaction, the algorithm

prunes the infrequent singleton items from it and sorts the leftover items according to the

order in the header table. Then, starting at the root node, the algorithm tries to merge the

transaction with the nodes in the existing tree, where the same item exists in the child node

and the transaction. Otherwise, a new node is created with a count of 1. In other words, if

a path in the tree and the sorted transaction contain the same prefix (i.e., the same series of

items, without any intermediate nodes), the transaction items can be merged with existing

nodes in the tree, increasing their counts by one.
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Figure 2.1: The FP-tree construction process
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Example 2.2 Given the transaction database in Table 2.3 and a minimum support of 3, the

algorithm builds the FP-tree depicted in Figure 2.1. Here, each step represents the state of

the tree after the insertion of each transaction.

The header table stores all the unique tree items, their corresponding occurrence counts

in the tree, as well as maintains the links, connecting all nodes containing the same item

with each other. The in-memory representation of the final tree is shown in Figure 2.2. For

the sake of clarity, Figure 2.2 demonstrates node links for item d only. In general, to mine

patterns from the FP-tree, the FP-growth algorithm recursively builds conditional trees and

mines patterns from them, until it can no longer create any new conditional trees.

Figure 2.2: Final FP-tree with header links

Let us elaborate on the mining process in more detail. For each item {i} in the header

table, the algorithm (1) follows its links, (2) traverses the tree bottom-up, (3) extracts all

the tree paths, and (4) builds a new conditional tree using the information encountered

during the traversal process. At the end of traversing all the links for a given item, the

algorithm arrives at a new sub-tree, called an {i}-projected tree, which represents a database

Di containing only the transactions having item i in them.
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During the creation of a projected tree, the algorithm records all unique items encoun-

tered, and their accumulated occurrence counts in a new header table. Then, the algorithm

prunes the {i}-projected tree to an {i}-conditional tree by traversing the projected tree once

again and removing items that become locally infrequent (i.e., whose accumulated occur-

rence counts fall below the minimum support threshold in the newly-constructed tree). In

summary, the first traversal from each node links items i in the main tree and builds a new

projected sub-tree. The second traversal visits each node of the projected tree, removes in-

frequent nodes having infrequent items, and creates a conditional tree. To avoid confusion,

in the rest of this thesis, we refer to projected trees as trees comprising both (1) the locally

frequent and (2) locally infrequent items, and conditional trees as trees having only the

locally frequent items.

For every item in the conditional tree, the algorithm recursively repeats the described

procedure (i.e., for each item in the conditional header table, it first creates a projected tree

and then prunes it to create a conditional tree). The recursion terminates when there are no

more frequent local singletons in the next conditional tree. In essence, the conditional trees

created by the FP-growth algorithm represent many smaller-sized non-overlapping databases,

which do not have any computational dependencies on each other and thus can be mined

independently.

Example 2.3 Let us continue with Example 2.2. Consider item d in the header table in

Figure 2.2. The algorithm follows the d-links extracting two paths, namely 〈c:2, b:2, a:2〉

and 〈w:1, u:1, t:1, q:1, c:1, a:1〉. The extracted tree paths indicate, that the transactional

database contains (1) two patterns containing items a, b, c and (2) one pattern containing

items a, c, q, t, u, w. Using these two paths, the algorithm builds the {d}-projected sub-tree.

Specifically, the new tree is created using the following two paths: 〈a:2, b:2, c:2〉 and 〈a:1,
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c:1, q:1, t:1, u:1, w:1〉. Notice that the initial bottom-up traversal discovered a node having

item a with a count of seven. However, a appears only three times together with d. Hence,

all the items in the first and the second extracted paths can contribute a maximum of two and

one item occurrence counts to a new sub-tree, respectively. Figure 2.3 depicts all projected

trees extracted from the tree in Figure 2.2.

Figure 2.3: Projected FP-trees

Following the previous example discussing the construction of projected trees, the algo-
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rithm progresses to create conditional trees. For our {d}-projected tree, the previous traversal

recorded 3 as the overall count for items a, c; 2 as an overall count for item b; and 1 as the

overall count for items q, t, u, w. As the minimum support is equal to 3, the algorithm prunes

nodes, having items b, q, t, u, w. Figure 2.4 contains all conditional trees, constructed from

the main tree in Figure 2.2.

Figure 2.4: Conditional FP-trees

Using the information in the {d}-conditional tree, the algorithm can read off two frequent

patterns. This is done by concatenating each locally frequent item with its conditional (i.e.,

in our example with {d}). The support (i.e., the number of times the pattern occurred in

the database) of the newly-created pattern is inherited from the count of the local item in

the conditional tree. In our example, items c and d have an overall count of 3 in the {d}-
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conditional tree, hence the algorithm reads off (ad:3) and (cd:3) as frequent patterns in this

conditional tree. Recall that the process of creating projected trees, then conditional trees

and the reading off of frequent patterns is performed recursively, until the search space is

exhausted. In the {d}-conditional sub-tree example, the algorithm recursively constructs the

{d, c}-conditional tree and outputs (dca:3) as the only pattern. At this point, the algorithm

exhausts the search space of item d, and moves on to create and mine a {w}-conditional tree.

The tree representation of the input dataset takes less space than the original dataset.

When the input dataset is dense, the algorithm achieves the best compression rates. For

sparse datasets, the constructed tree becomes bushy. Hence, due to little node sharing, the

space-saving benefits are less apparent.

2.1.3 Existing Approaches to Mine Frequent Patterns from Pre-

cise Data

The survey by Tiwari et al. [TGA08] gives an overview of the current state and the

challenging issues related to frequent pattern mining. Besides the commonly used FP-

growth [HPY00] algorithm (which I am focusing on in my research), the survey also discussed

other frequent pattern mining algorithms, including Apriori [AS94], H-Mine [PHL+01], and

Eclat [Zak00].

Kumar et al. [KKR10] provided a thorough comparison of tree-based and Apriori-based

algorithms. The Apriori-based algorithms suffer from the level-wise candidate generation-

and-test problem, where, at each step, these algorithms generate a huge number of candidate

patterns and need several database scans to check whether the candidate patterns are fre-

quent. The number of scans is directly dependent on the maximum length of the candidate
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patterns. In contrast, the tree-based algorithms (e.g., FP-growth) perform at most two

database scans to build a compressed representation of the database. The major drawback

in using tree-based frequent pattern mining algorithms is in that they extensively use mem-

ory, which limits their wide application on commodity hardware, where the memory size

may be limited.

2.2 Frequent Pattern Mining of Uncertain Data

This section introduces the key concepts of frequent pattern mining of uncertain data as

well as discusses the most popular algorithms, which mine uncertain data. Also, because this

thesis is targeted at executing the UF-growth algorithm in parallel, this chapter discusses

the specifics of the UF-growth algorithm.

2.2.1 Key Concepts of Mining Frequent Patterns from Uncertain

Data

Frequent pattern mining of uncertain data considers the case, in which each item in the

database is associated with an existential probability. Let us consider some possible use

cases, of how and where uncertain data can be observed or/and collected.

1. Privacy. Prior to the analysis of medical data, artificial noise can be added to it to

protect patients’ privacy.

2. Inherent noise in data or data corruption. Data collected by sensors (e.g., satellite

sensors) is never precise, and is represented with a probability of its existence.
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3. Medical data. When a doctor is uncertain about the type of illness that the patient has,

he can express his observations with existential probabilities (e.g., cold:70%; flu:30%).

4. Data aggregation by customer. Instead of analyzing certain items per transaction,

analysts can analyze the probability of a customer buying a product, creating estimated

purchase probabilities, which are then represented with datasets having uncertain data.

In contrast to frequent pattern mining of uncertain data, frequent pattern mining of precise

data algorithms work exclusively with binary data, where each item is either present in, or

absent from a transaction. Hence, for precise data mining algorithms to work with uncertain

data, the data needs to be converted/instantiated to a binary data model.

This conversion is commonly carried out by extra data pre-processing steps, which are

executed before running the mining algorithm. Given a predefined threshold, (1) the quan-

tization step converts the items’ probabilities into 1 (present) or 0 (absent), and removes

the absent items from further processing. Then, (2) the conversion step removes itemsets

having marginally low probabilities. When the threshold value is incorrectly set too high, the

conversion step may create a problem for datasets having many items with low probabilities,

because it can potentially remove many items, distorting the final mining result.

It is also worth noting that the quantization step instantiates only one possible world

from the total of 2m possible worlds, where m is the number of distinct items in the dataset.

Briefly, the possible world interpretation of uncertain data [CKH07] means that, for each

item x in the dataset, there exist two possible worlds: One where x exists, and another where

x does not exist. For example, given two items a and b in a transaction ti, there are four

possible worlds: (1) both a and b in ti, (2) a in ti but b not in ti, (3) a not in ti but b in ti,

and (4) neither a nor b in ti.
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Algorithms for frequent pattern mining of uncertain data address the aforementioned

problems by working directly with probabilistic data. In uncertain data mining, the occur-

rence frequency of an itemset is defined differently from traditional frequent pattern mining

and is captured by the expected support threshold. The expected support of an itemset in a

database DB is obtained from the following equation [DYM+10]:

expSup(X) =

|DB|∑
i=1

(∏
x∈X

P (x, ti)

)
, (2.1)

where P (x, ti) denotes the existential probability of item x, occurring within the itemset X

in transaction ti. Hence, the algorithms, which mine uncertain data directly, account for

items with both marginally low and high probabilities.

2.2.2 The UF-growth Algorithm

Leung et al. [LMB08] proposed a tree-based equivalent of FP-growth [HPY00] for mining

uncertain data, called UF-growth, which modifies the FP-growth algorithm in terms of

how the transaction tree is built. Recall that FP-growth uses a tree-based data structure,

called the FP-tree, to store a compact representation of the transaction database, which

contains frequency information for all frequent items. The FP-tree, however, does not store

existential probabilities associated with items. During the first scan, UF-growth finds all

the frequent singleton items by recording the accumulated support values for each item in

the transaction database and pruning the items below the minimum support threshold. To

construct the header table, the algorithm sorts the frequent singletons in descending order of

expected support. During the second scan, the algorithm builds the main UF-tree (a variant

of the FP-tree) which facilitates the storage of probabilistic information.
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Table 2.4: A sample uncertain transaction database

ID Items

10 f :1.00, a:0.75, c:0.90, d:0.12, g:0.08, i:0.13, m:0.62, p:0.60
20 a:0.75, b:0.60, c:0.90, f :1.00, l:0.21, m:0.10, o:0.18
300 b:0.15, f :0.95, h:0.08, j:0.06, o:0.02
40 b:0.50, c:0.50, k:0.25, s:0.15, p:0.05
50 a:0.70, f :0.95, c:0.70, e:0.25, l:0.01, p:0.45, m:0.50, n:0.11

Table 2.5: A sample uncertain transaction database: sorted and pruned

ID (Ordered) Frequent Items

10 f :1.00, c:0.90, a:0.75, m:0.62, p:0.60
20 f :1.00, c:0.90, a:0.75, b:0.60, m:0.10
30 f :0.95, b:0.15
40 c:0.50, b:0.50, p:0.05
50 f :0.95, c:0.70, a:0.70, m:0.50, p:0.45

Each node in the UF-tree stores (1) the item name, (2) expected support of the item as

well as (3) the number of times such an item appeared together with such expected support

(i.e., node count). When the algorithm creates the main tree, it merges the transaction

items with the nodes in the tree when the item-probability pairs of a node match with the

item-probability pairs in the database transaction.

Example 2.4 Table 2.4 presents an example of an uncertain database. Given a minimum

support threshold of 1.00, the algorithm scans the database for the first time, and, for items

f, c, a, b, m, p, e, k, l, o, s, i, d, n, g, h and j accumulates 3.90, 2.30, 2.20, 1.25, 1.22,

1.10, 0.25, 0.25, 0.22, 0.20, 0.15, 0.13, 0.12, 0.11, 0.08, 0.08 and 0.06 as the corresponding

commutative support counts. Table 2.5 contains a filtered representation of the uncertain

database, where each transaction contains frequent items only, which are sorted according to

the non-ascending frequency order. Note, that to increase the chance of path sharing, each

node contains the rounded value (i.e., up to two decimal places) of the expected support.

After the algorithm inserts the first transaction into the tree, the tree contains one tree
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Figure 2.5: A UF-tree

branch, being 〈(f :1.00):1, (c:0.90):1, (a:0.75):1, (m:0.62):1, (p:0.60):1〉. Moving on to the

second transaction, the UF-growth algorithm merges items f, c, a from the current transaction

and the first three nodes in the first branch of the existing UF-tree, as their expected supports

are the same, resulting in 〈(f :1.00):2, (c:0.90):2, (a:0.75):2〉. Items 〈b:0.60,m:0:0.10〉 cannot

be merged with any existing items in the tree; hence, new nodes are created for them and

inserted after the 〈f(1.00):2, c(0.90):2, a(0.75):2〉 prefix. The tree construction process

continues in the same fashion for the subsequent transactions. In the end of this process, the

algorithm builds a tree, presented in Figure 2.5.

Although the structure of the UF-tree as well as its construction is similar to that of the

FP-tree, there are subtle differences in mining both trees. Recall that, to build conditional

and projected sub-trees, the FP-growth algorithm had to maintain the occurrence of X only;

in UF-growth we need to maintain the expected support value as well as the occurrence count
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of X. Further, to compute the expected support of X ∪ y (i.e., the extension to pattern X,

where y is an item), we need to multiply the expected support of X by the expected support

of each y encountered while traversing the tree path.

Example 2.5 Let us continue with Example 2.4. To create the {p}-projected tree, UF-

growth extracts three tree paths, namely 〈(f :1.00):1, (c:0.90):1, (a:0.75):1, (m:0.62):1〉 oc-

curring with the conditional probability of 0.60, 〈(f :0.95):1, (c:0.70):1, (a:0.70):1, (m:0.50):1〉

occurring with the conditional probability of 0.45 and 〈(c:0.72):2, (b:0.90):2〉 occurring with

the conditional probability of 0.05. The existential support of {p,m} = 0.60 × 1 × 0.62 +

0.45 × 1 × 0.50 < 1, {p, a} = 0.60 × 1 × 0.75 + 0.45 × 1 × 0.70 < 1, {p, c} = 0.60 ×

1 × 0.90 + 0.45 × 1 × 0.70 + 0.05 × 1 × 0.50 < 1, {p, b} = 0.05 × 1 × 0.50 < 1 and

{p, f} = 0.60×1×1.00+0.45×1×0.95 = 1.0275; as the existential support of {p,m}, {p, a},

{p, c} and {p, b} are below the minimum support threshold, they are pruned from the tree,

creating a {p}-conditional tree. Figure 2.6(a) and Figure 2.6(b) represent the {p}-projected

and {p}-conditional trees respectively.

A detailed analysis of the FP-growth and UF-growth algorithms shows, that UF-growth

requires both the item name and its corresponding existential probability to match to merge

nodes. In fact, the UF-growth algorithm arrives with a UF-tree, having a much lower

compression ratio than in the FP-tree, constructed by the FP-growth algorithm. While

the complexity analysis of the FP-growth and the UF-growth algorithms is out of scope of

this thesis, interested readers may refer to the paper by Kosters et al. [KPP03] for more

information on this topic.
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Figure 2.6: UF-trees

2.2.3 Existing Approaches to Mine Frequent Patterns from Un-

certain Data

To mine frequent patterns from uncertain data, researchers developed a wide variety

of algorithms, which are, in their great majority, based on the frequent pattern mining

algorithms of precise data. A survey by Leung [Leu11] contains a comprehensive review of

uncertain data mining algorithms, which include U-Apriori [CKH07], UF-growth [LMB08],

UFP-growth [CGG10], UH-Mine [ALWW10], U-Eclat [CGG10], and UV-Eclat [LS11].

The U-Apriori algorithm inherits the same performance bottlenecks as Apriori-based

algorithms. I therefore did not work with that algorithm in my research. Instead, I developed

parallel versions of the tree-based UF-growth and UFP-growth algorithms, which do not

incur the performance overhead associated with generating candidate itemsets.

Calders et al. [CGG10] proposed a sampling approach to mining frequent patterns from

uncertain data. They did so by adding a pre-processing step (taking samples) and a post-
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processing step (obtaining the real supports of frequent patterns) to the regular pattern

mining algorithms and considering them as black boxes. They retrofitted the FP-growth

algorithm and created the UFP-growth algorithm. To obtain an answer where the support

of itemsets is approximated with a 99% probability having less than 1% error, UFP-growth

needs to take one sample per transaction for 100,000 frequent items. Note that, given a

transaction with m domain items (say, five items), the sample only captures one instance

of 2m (i.e., 25 = 32) possible worlds. To guarantee the approximation quality for 10 times

more frequent itemsets (i.e., 1,000,000 itemsets), the algorithm needs to take four samples

per transaction. To deal with such data growth, I explored methods targeted at improving

the speed of frequent pattern mining algorithms.

2.3 Overview of MapReduce, Hadoop and ForkJoin

Before moving on to discussing the existing approaches for executing frequent pattern

mining algorithms in parallel, let me introduce the main concepts behind the MapReduce

programming model and the ForkJoin framework.

2.3.1 Overview of MapReduce and Hadoop

This section provides an introduction to MapReduce and ForkJoin, which were the main

frameworks that I used for developing parallel versions of UF-growth and UFP-growth.

Dean and Ghemawat [DG08] introduced the fundamentals of the MapReduce program-

ming model, and demonstrated, that it is capable of processing vast amounts of raw data

solving a number of distributable problems using relatively cheap commodity hardware. It

is best suited for algorithms, which do not require shared state between computing nodes

28



and are not communication-intensive. Dean and Ghemawat showed how the model could

be applied for log processing and distributed grep tasks, as well as data mining and ma-

chine learning tasks. Apache Hadoop [Apa12b] is a widely used open-source system for

implementing and running MapReduce algorithms.

MapReduce functions work exclusively with 〈key, value〉 pairs, that is, the input and

the output of these functions must be a list of 〈key, value〉 pairs. The input and output

〈key, value〉 pairs, however, are not required to be of the same type. The input dataset

can be structured, semi-structured, or unstructured. It can also be stored in a database

or in a file system. To access the data, Apache Hadoop uses a distributed file system—

Hadoop Distributed File System (HDSF), which automatically replicates information on

many computing nodes.

The ideas behind MapReduce can be described as follows. The dataset is first divided

into chunks (or splits), and each chunk is then processed by a separate mapper. The mapper

functions convert the 〈key, value〉 pairs from the initial data domain to 〈key, value〉 pairs

in a different data domain. Afterwards, the system advances to the shuffle-and-sort phases.

During these phases, the system retrieves all the data produced by instances of the mapper

function and groups values by keys. Different instances of the mapper function can output

different values for the same key. Then, the reducer function is run for each key as well as

the list of values that are mapped to that key. Sometimes, it is useful to define a reducer

function. The key difference between the reducer and the combiner functions is that the

reducer function is run against the list of values associated with a specific key from all the

mapping instances, while the combiner function is run against the values produced by one

mapping instance only. Note that the mapper and the reducer functions process the 〈key,

value〉 pairs in parallel. These processes are best illustrated using a MapReduce word count
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example, as depicted in Figure 2.7, taken from van Groningen [vG12]. The initial text file

is divided into pieces and is distributed among mapper functions, which emit a 〈word, 1〉

for each word encountered. Then MapReduce groups values by keys, and executes a reducer

functions for each key and its corresponding values. This effectively permits to counts all

the 1’s (or values, associated with each word) emitted by the mapper functions.

When explaining MapReduce in SQL programming terms, the map function specifies

how the initial data grouping is performed (which corresponds to the SQL GROUP-BY

clause), and the reduce function reassembles the aggregation function (such as SUM) that is

applied to each group. In Apache Pig [Apa12d] terminology, the structure of the MapReduce

program can be described as follows:

map_result = FOREACH input GENERATE FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

The first statement parses the input data and applies the user-defined map function.

Then, the data is grouped by the key ($0 denotes the first column of the key). Finally, the

system applies the user-defined reduce function for each list of values associated with the

key.

The key benefits of the Google MapReduce system are automatic load balancing, fault-

tolerance, and the ease of scalability. Briefly, the load balancing feature of MapReduce tries

to distribute the work between each computing node evenly, such that each node stays idle as

little time as possible. MapReduce achieves fault-tolerance by monitoring nodes’ “heartbeat”

to check is they are still “alive”. Once a node has not responded for a predefined period of

time, it is considered “dead”; and the jobs, which were running on that node, are rescheduled
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Figure 2.7: MapReduce word count example, from van Groningen [vG12]. ©2009, Search-
Workings. Used with permission from Searchworkings Team.

on other working nodes. Lastly, MapReduce contains mechanisms, which allow employing

thousands of nodes at the same time for working on a particular task.

2.3.2 Overview of the ForkJoin Framework

The main goal of the ForkJoin framework is to split computationally intensive tasks

into multiple pieces, which can be performed in parallel independently, to minimize the

execution time of the algorithm. ForkJoin is different from MapReduce in that the developer

has to explicitly control the work distribution process. The ideas of ForkJoin are not new,

and are heavily used in popular parallel processing systems such as OpenMP. In the Java

programming language, the framework also uses the concept of work stealing, where the

thread (which completes the work assigned to it) can steal tasks from other threads, assigning

ready tasks to idle threads as efficiently as possible.

Each thread maintains a task queue in the form of a double-ended queue, which supports

LIFO (Last-In-First-Out) push and pop as well as FIFO (First-In-First-Out) take operations.

When the thread completes executing the current task, it fetches the next task from the

head of the queue. When the queue becomes empty, the thread becomes a thief. It selects a
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Result solve ( Problem problem ) {
i f ( problem is small )

directly solve problem

e l s e {
split problem into independent parts

fork new subtasks to solve each part

join all subtasks

compose results from subresults

}
}

Figure 2.8: Problem decomposition in ForkJoin

different thread at random, and tries to steal a task from the tail of the queue of the chosen

thread.

Most of the ForkJoin algorithms are recursive in nature, and work in a divide-and-conquer

manner by splitting subtasks until they can be efficiently solved sequentially. Figure 2.8

demonstrates how a computational problem can be solved with the help of the ForkJoin

framework.

Here, the fork function creates new subtasks and the join function pauses the current

threads until the forked subtasks complete.

2.4 Parallel Data Mining

To the best of my knowledge, there do not exist any parallel data mining algorithms that

mine uncertain data. Hence, this chapter overviews the noteworthy attempts to execute

frequent pattern mining of precise data algorithms in parallel. Most of the research in this

area concentrated on using MPI and OpenMP as the primary parallel processing tools.
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2.4.1 Existing Parallel Frequent Pattern Mining Algorithms

The primary disadvantage of tree-based algorithms is that they use memory excessively.

Even for relatively smaller-sized datasets, when the minimum threshold is set to a small value,

the main tree can grow to billions of nodes, leading to substantial memory consumption.

Hence, significant research efforts have been devoted to developing parallel implementations

of frequent pattern mining algorithms of precise data, which make it feasible to construct

and mine smaller-sized trees on multiple machines in parallel. Recall that each conditional

tree does not have any computational dependencies on other conditional trees. This property

was exploited by a number of parallel implementations of FP-growth.

A noteworthy algorithm developed by Liu et al. [LLZT07] demonstrated a multi-core

version of the FP-growth algorithm. Liu et al. enhanced the sequential version of the

algorithm, improving data locality. They independently decomposed both, the conditional

tree construction routine as well as the mining routine. To eliminate cache misses, associated

with the traversal of the FP-tree, a cache-friendly FP-array structure was proposed.

Recent work by Tlili and Slimani [TS11] proposed a method for mining frequent patterns

with the use of grid computing. The authors proposed a load balancing technique, which

dynamically determines the effectiveness of the potential migration of a given portion of a

data mining task. The main limitation of this approach is that it is partially based on the

Apriori algorithm. Other research works by Lin and Luo [LL10], for example, proposed a

mining algorithm that works in a cloud environment. They constructed the main FP-tree

on a single machine, and did not support fault tolerance.
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FP-growth using MPI

Javed and Khokhar [JK04] created a parallel version of the FP-growth algorithm in the

MPI [MPI12] environment. For each item in the header table of the main tree, the algorithm

creates projected trees and sends them to different computing nodes (i.e., worker nodes),

which perform the actual mining of those conditional trees. When all the computing nodes

complete the mining process, they send the mined patterns back to the main computing

node (i.e., master node), which agglomerates the mined patterns and returns the final result

to the user. Linear speed-up by their algorithm was reported.

There are a number of limitations to this algorithm. The first limitation is that the

MPI environment does not have inherent fault-tolerance facilities. Hence, when any one

node fails during the execution of the algorithm, the whole computation terminates, as MPI

cannot recover gracefully from failures. Such faults can be costly (e.g., in an industrial

setting), where the input dataset is large and the minimum support threshold is low. Here,

even when we use the discussed parallel technique, the mining time can be substantial. The

second limitation is that, when the number of computing nodes is much smaller than

the number of projected trees, the algorithm sends more than one projected tree to each

of the computing nodes. For big databases, where each projected tree is large, it is costly

to send them over the network to different computing nodes (especially in networks with

low bandwidth). Moreover, only one computing node is responsible for building the main

tree and sending it to the other worker nodes. Thus, the worker nodes have to stall until

they receive the assigned projected tree(s). Such behavior deteriorates the runtime of the

algorithm and does not promise linear speedup.

34



FP-growth using OpenMP

Zheng [Zhe02] proposed an OpenMP version of the FP-growth algorithm. Zheng paral-

lelized the tree construction phase and the mining phase of the algorithm as well as showed

that it was scalable. The scalability tests were, however, performed on a limited number of

datasets.

2.4.2 Data Mining with MapReduce

Many systems have been developed for running MapReduce jobs. The most widely used

of these is the Java-based Apache Hadoop [Apa12b]. Hadoop permits running parallel jobs on

inexpensive commodity hardware. It has a built-in fault-tolerance system that automatically

reschedules failed jobs. The fault-tolerance feature is especially beneficial in large clusters,

and is one of the biggest assets of Apache Hadoop.

Apache Hadoop is used by Apache Mahout [Apa12c], a scalable machine-learning and

data mining library, which contains numerous MapReduce algorithm implementations. Un-

like WEKA [HFH+09], a different data mining library that contains algorithm implementa-

tions capable of executing on only one machine, most of the algorithms implemented as part

of Apache Mahout leverage the power of MapReduce for executing algorithms in parallel.

The algorithms implemented in the Apache Mahout library include collaborative filtering,

user-and item-based recommenders, k-means, fuzzy k-means clustering, mean shift clus-

tering, Dirichlet process clustering, latent dirichlet allocation, singular value decomposition,

complementary näıve bayes classifier and a random forest decision-tree-based classifier. Most

importantly, the library contains the implementation of the aforementioned PFP-growth al-

gorithm, which I used as a base for developing the MapReduce versions of UF-growth and
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UFP-growth.

There are a number of other data mining problems, for which techniques that employ

the MapReduce programming model have been used. For example, Corderio et al. [CJT+11]

proposed an approach for processing very large datasets to cluster their points. For datasets

having billions of points, they could successfully use up to 1,024 cores in parallel. In addition,

MapReduce was successfully applied by Zhu and Wang [ZW10] for community mining using

genetic algorithms. Here, a variation of MapReduce, called the Chain MapReduce model,

was used to do the mining. Zhu and Wang reported significant speedup of their developed

parallel algorithm, as opposed to using its sequential counterparts.

Most of the current algorithms in the literature that use MapReduce are, however, not

concentrated on frequent pattern mining. Nevertheless, researchers started to develop gen-

eral guidelines for converting sequential algorithms to MapReduce for various types of al-

gorithms. For example, Chu et al. [CKL+06] developed a set of guidelines for adapting a

wide variety of machine-learning algorithms to the MapReduce programming model. Specif-

ically, they authors covered locally-weighted linear regression, k-means, logistic regression,

näıve Bayes, support vector machine, independent component analysis, principal components

analysis, Gaussian discriminant analysis, expectation maximization, and back-propagation

algorithms. This guideline does not concentrate on any particular algorithm, and covers al-

gorithms that fit the Statistical Query Model [Kea93]. The research conducted by Chu et al.,

however, does not contain guidelines for converting frequent pattern mining of uncertain data

algorithms to MapReduce.

FP-growth on MapReduce

Parallel FP-growth (PFP-growth) addresses the limitations of the MPI-based imple-
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mentation of FP-growth by employing MapReduce for mining frequent patterns. The key to

the runtime efficiency of this approach is that it never builds the main tree on one machine,

but partitions the main database such that each machine, which receives a database chunk,

can build projected trees locally. PFP-growth performs such partitioning by constructing

smaller, disjoint representations of the database on many nodes, which are more likely to fit

in the main memory of each node. Hence, in this scenario, no one machine is responsible

for (1) building the main tree, (2) building projecting trees and (3) sending these projected

trees to different machines. This is beneficial for use-cases, where the main tree cannot fit in

main memory. Moreover, the inherent fault-tolerant nature of MapReduce allows recovery

from node failures by transparently restarting the computation, which was running on the

failed node, on some other working node in the MapReduce network.

Below is a description of the PFP-growth algorithm, specifying the input and the output

values of mappers and reducers at each stage:

1. The Parallel Counting stage counts the support of singleton itemsets (i.e., frequent

itemsets of size 1). Specifically, each time the algorithm locates an item in the trans-

action, it increments the support count of that item by 1. This stage further sorts

frequent singleton itemsets in decreasing frequency order so as to maximize the chance

for path sharing in the FP-tree.

At this stage, during the mapping phase, mapper functions receive 〈key, value = Ti〉

as input, where Ti denotes a unique transaction (note, that the value of key represents

the file offset of Ti in the database, and is ignored in the calculations). For each item

x in transaction Ti mappers output 〈key′ = x, value′ = 1〉.

Then, during the reduction phase, for each key representing a singleton, MapReduce
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automatically collects S(key), representing all values, associated with a key, and feeds

it to the reducer in the form of 〈key = x, value = S(key)〉 as input. Generally, S(key)

is represented as a list; as such, we simply calculate the sum of all the items in the

list to calculate the support of a singleton itemset. In the end, each reducer outputs

〈key′ = x, value′ = sum(S(key))〉.

2. The Grouping stage splits the list containing frequent singletons into distinct groups

and assigns a unique id to each group. The new list, containing group-to-singleton

mappings, is called a group list (G-list). The Grouping stage identifies, which condi-

tional trees should be mined together on one computational node. This stage is not

computationally intensive, and can run on one machine.

3. The Parallel FP-growth stage identifies group-dependent transactions and mines

patterns from these transactions. The mapping phase identifies all group-dependent

transactions, which are then fed to reducer functions. This is done by performing the

following steps:

First, on each machine executing the mapper functions, the algorithm loads the G-list

into main memory, and creates a reverse map, mapping singletons to their correspond-

ing group id. Then, each mapper receives 〈key = gid, value = DB(gid) as input.

For every transaction Ti in the received list DB(gid), the algorithm a) substitutes all

transaction items with their corresponding group ids from the reverse map and creates

a new list T (of the same size) as the transaction size. b) For each group-id gid in

T , the algorithm locates the right-most appearance L of gid in T , and outputs a new

(truncated) transaction, in the form of 〈key′ = gid, value′ = {Ti[1] . . . Ti[L]}〉.

Recall that Javed and Khokhar [JK04] used one computational node to create the main
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FP-tree, extract conditional trees and send each conditional tree to worker nodes. In

MapReduce, however, at any point of time, no one node receives a complete database

representation. At the current mapping stage, each node receives a chunk of the

database only; hence, for each transaction, mappers identify transaction items, which

contribute to the construction of conditional trees for singletons, belonging to a par-

ticular group.

Next, at the reduction phase, the MapReduce framework agglomerates all the group-

dependent transactions and, for each group, assigns a different reducer to work with

them. Here, each reducer constructs a sub-tree, and then executes the FP-growth

algorithm to perform the mining of frequent patterns for group items.

4. Finally, the Aggregating stage aggregates the resulting frequent patterns, produced

by the previous stage.

One of the important aspects of the PFP-growth algorithm to note, is that it does not build

the main tree on any one given node. As UF-trees are normally larger than FP-trees, the

benefits of employing the aforementioned partitioning technique, which facilitates distributed

construction and mining of conditional trees, would be even more evident for my proposed

parallel versions of UF-growth and UFP-growth discussed in Chapter 4.

Although Li et al. [LWZ+08] reported linear speedup of their proposed PFP-growth

algorithm, it may not perform as well for some types of datasets. For example, the maximum

number of computing nodes, which can theoretically participate in the mining process, is

limited to the number of frequent singleton items. The described behavior is not a problem,

however, under the assumption that we have more frequent singletons than machines in the

MapReduce network.
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Figure 2.9: Parallel FP-growth execution stages, from Li et al. [LWZ+08]. ©2008, ACM,
Inc. Reprinted by a license to reuse in a thesis.
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2.5 Summary

This chapter (1) covered the fundamentals of frequent pattern mining of precise and

uncertain data and (2) outlined the key algorithms, which are commonly used to target

frequent pattern mining tasks. Also, it (3) outlined the current approaches for executing

frequent pattern mining algorithms of precise data in parallel.

The approaches, based on the algorithms from the Apriori-family, struggle from the can-

didate generate-and-test problem, which significantly degrades the performance of the mining

algorithms. On the contrary, tree-based approaches avoid generating candidate patterns by

constructing a compressed representation of the database, which is stored in a tree-based

structure. Tree-based approaches are beneficial in that they do not incur disk access over-

heads, requiring only two scans of the input database. Nevertheless, when the input dataset

is large, the tree cannot always fit into main memory.

Given this limitation, I explored methods, targeted at distributed frequent pattern min-

ing. One of the available approaches was to distribute the mining process between the

computing nodes using MPI-based clusters. The limitations of this approach, however, are

in that it (1) builds the main tree representation of the database on one computing node,

which is not always possible to do, given a large input dataset, and (2) does not provide

fault-tolerance compatibilities. In networks that contain a large number of commodity com-

puting nodes, the nodes have a higher probability of failing sporadically. If any given node

in the MPI-network fails, the process of recovery is not straightforward, and often involves

restarting the whole computation from the beginning.

In response to these challenges, a MapReduce version of the algorithm can be used.

MapReduce is a programming model, which was specifically developed to target the pro-
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cessing of large datasets on commodity hardware. It provides transparent fault tolerance

facilities, which detect node failures and restart computations on working nodes in the net-

work. In addition, I explored the feasibility of using the ForkJoin framework to further divide

the mining process of different conditional trees across processor cores in each node.

Overall, the PFP-growth algorithm will serve as a blueprint for developing my proposed

uncertain data mining algorithms. The following chapter will discuss a conditional tree

construction technique as well as reveal the specifics of using the ForkJoin framework for

mining FP-trees in parallel.
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Chapter 3

Improvements to Tree-Based Frequent

Pattern Mining Algorithms

Recall that one of the issues with the PFP-growth algorithm is that it does not exploit any

available multi-core facilities of the MapReduce computation nodes. This chapter discusses

my application of the ForkJoin programming model, which takes advantage of processing

cores of a multi-core machine, as well as discussing a tree caching technique. Further, I

proposes in this chapter an optimization for constructing conditional trees, which reduces

memory use as well as the number of node visits. All my optimizations are equally applicable

for tree-based algorithms of precise and uncertain data.
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3.1 Optimization 1: Exploiting Multi-core Processors

in the ForkJoin Framework

Recall that, during the Parallel FP-growth stage of the PFP-growth algorithm, each

mapper receives group-dependent transactions in the form 〈key = gid, value = DB(gid)〉.

Using these transactions, the algorithm constructs the group-dependent main tree, which is

then used for building and mining conditional sub-trees for each group-dependent item. If

a given group is mapped to more than one item, then the algorithm sequentially builds and

mines each conditional tree, which can be slow for large datasets.

To increase the mining speed, I exploit machines having multi-core processors by using

the ForkJoin framework [Lea00]. My improvement performs the following steps:

1. detects the number of processing cores Ncores on a multi-core processor;

2. divides the list of group-dependent items Gi into approximately equal parts, such that

each thread (running on a different processing core) is responsible for mining |Gi|
Ncores

items, and inserts them into the queue of each thread;

3. when any given thread finishes constructing and mining conditional trees for all its

assigned singletons, it attempts to steal a singleton from the queue of a random thread.

This approach is particularly beneficial in MapReduce infrastructures having limited number

of computing nodes. Here, each group id is mapped to many singleton items; hence, each

computational node in the cluster is responsible for the construction and the mining of

conditional trees for a number of singleton items.

This approach, however, requires more main memory to execute, as multiple conditional

trees are built and stored in main memory concurrently. In contrast, when the sequential
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FP-growth algorithm finishes the mining process for a given item, it destroys all the sub-

trees, which were used for that item, and then starts constructing new conditional trees

for a different item. Moreover, recall that the MapReduce infrastructure is commonly built

around commodity hardware. As such, not all systems have the processing capacities (i.e.,

many cores, large main memory), required for the ForkJoin framework to run effectively.

As these two issues in question are hardware-dependent, when newer hardware is used

for building a MapReduce cluster, the proposed approach would make use of the available

computing power in the most effective way. In summary, MapReduce divides the processing

of all conditional trees among the processing nodes in the network, where each node is

responsible for mining conditional trees for items that are mapped to a given group id.

Then, on a single computational node, the ForkJoin framework employs multiple threads to

mine conditional trees for a given items (i.e., distributes conditional trees between threads’

task queues). Figure 3.1 shows an example of these processes, where P1 and P2 represent

two different processing cores of a multi-core processor.

Here, the choice to use the ForkJoin framework (which uses Java threads under the hood)

for distributing work between different cores of a multi-core processor stems from the fact

that the Parallel FP-growth algorithm, which I extended, was implemented in Java as part

of the Apache Mahout project.

3.2 Optimization 2: Tree Caching

Recall from Section 2.1.2 that, after mining frequent patterns from any given conditional

tree, we dispose of that tree object and then move on to creating an object of the same type

again. Another approach for speeding up the mining process of tree-based frequent pattern
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Figure 3.1: Mining conditional trees on multiple processing cores concurrently

mining algorithms is to reduce memory allocation/deallocation.

Before proposing a solution for reducing memory allocations, let us briefly look at the

mechanics of Java memory management. In Java, we cannot directly deallocate memory used

by any object and have to rely on the garbage collector. Garbage collection is a mechanism

provided by the Java Virtual Machine to reclaim the heap space from objects that are eligible

for garbage collection. To make an object eligible for garbage collection, we need to set all

references to that object to null explicitly (e.g., treeObject = null). The garbage collector

will defer the garbage collection process until we are running low on free memory; the process

of garbage collection cannot be started manually.

As we are frequently instantiating and disposing of objects (read-memory), we would get

frequent pauses during algorithm execution. When the garbage collector has enough unused

tree objects scheduled for disposal, it will execute the garbage collection process, pausing

the execution of the FP-growth algorithm. To avoid frequent garbage collections, I propose
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to not dispose of trees, which are no longer needed, and store them in main memory.

My implementation of the FP-growth algorithm (and later, the MapReduce versions of

the UF-growth and the UFP-growth algorithm) uses a thread-local cache maintained as a

stack. The stack maintains a predefined number of cached trees; each thread maintains a

different cache stack. When a given thread exhausts its stack, it will try to peek at the

bottom of other cache stacks, maintained by different threads, to avoid instantiating an

additional tree object. When this process fails, the thread has no choice but to create a new

instance of a tree.

Caching, however, uses memory extensively. Hence, to avoid OutOfMemoryExceptions,

I used the java.lang.ref.SoftReference class for wrapping my tree instances. SoftRefer-

ences are commonly used to implement memory-sensitive caches. Specifically, my implemen-

tation maintains a cache stack, which contains trees, wrapped in SoftReferences. When the

program is running low on memory, the garbage collector will evict objects, wrapped in a

SoftReference. Hence, this class provides us with a fail-safe mechanism, which automatically

controls the size of our cache. This behavior can be useful in cases, when the cache size was

initially set too big.

Although the steps presented here are valid for the Java programming language only,

they are equally applicable to any programming language, which supports automatic garbage

collection and has an equivalent to SoftReferences.
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3.3 Optimization 3: Efficient Conditional Tree Con-

struction

This section discusses the third optimization, which allows constructing conditional trees

without constructing projected trees first. Recall that to construct a conditional tree, the FP-

growth algorithm first constructed a projected tree and then pruned the locally-infrequent

nodes from it to create a conditional tree. As a result, the process required two tree traversals.

Using my optimized approach to constructing conditional trees, the conditional tree is

constructed using two traversals of the main tree. The general idea of this process is as

follows. The first bottom-up traversal accumulates the counts of all encountered items on

the path, flagging all visited nodes. Then, by following the same path top-down again, which

is accomplished by recursively visiting the flagged child nodes only, the second scan of the

main tree traverses it in a depth-first manner building a conditional tree. Specifically, the

algorithm performs the following steps:

1. for each item {i} in the header table, traverse the tree bottom-up and count the

occurrence of each encountered item on the tree path;

2. if the parent node of the current node has more than one child, flag the current node

with item {i} (i.e., childNode.flag=i);

3. determine which items are locally frequent, and insert them into the new header table,

which will be associated with the conditional tree;

4. traverse the tree again in a top down fashion; when a node with multiple children is

encountered, visit each child node, flagged with item {i};
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Figure 3.2: The construction of a {p}-conditional tree by the optimized algorithm

5. for each visited node, check if it is frequent, and if it is, add it to the new conditional

tree;

6. stop traversing the current branch if all children of the current node are guaranteed to

be infrequent.

Example 3.1 Let us consider the same datasets as in Example 2.2. Without loss of general-

ity, when building a {d}-conditional tree, the optimized algorithm first traverses each {d}-link

(circled nodes denote {d}-link nodes) bottom-up, (1) accumulates encountered items’ counts

in the header table and (2) for nodes, having multiple children, flags each child node with

{d}. Figure 3.2 demonstrates the process of building a {d}-conditional tree; nodes, visited

during the first traversal appear in squares and nodes, visited during the second traversal, are
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bolded. In both branches during the second traversal, after visiting a node with element c, we

can stop the traversal early, as we are guaranteed to not have any frequent items after item c

in any path, given the information collected during the first traversal of the tree.

Using the tree in Figure 3.2, let us count the number of memory allocations and node

visits that my optimization performed and compare them to the baseline FP-growth algorithm.

During the first bottom-up traversal, my optimized algorithm visited 9 nodes in the main tree

and did not allocate any new nodes. Then, my optimized algorithm traversed the tree once

again in the top-down fashion, visiting 4 nodes in the main tree and allocating 2 nodes for

the new conditional tree. The baseline FP-growth algorithm, on the other hand, visited 9

nodes (in the main tree) + 8 nodes (in the projected tree) = 17 nodes as well as allocated 9

new nodes for the projected tree, 7 of which were deallocated in the conditional tree. In total,

my optimized algorithm traversed 13 nodes and allocated 2 new nodes. It did not perform

any memory deallocations.

As observed from the above example, the benefits of employing my optimization include:

1. efficient tree node allocation, which removes the need to allocate memory for infrequent

nodes in a projected tree and free it, when pruning a projected tree to a conditional

tree;

2. efficient tree traversal, which visits all of the tree nodes only twice in the worst case.

The main limitation of this optimization reveals itself in cases, where the main tree is bushy,

having many nodes with a large number of children. When a node having a large number

of children is reached during the second tree traversal, the algorithm needs to check all the

flags of each child node to determine, whether it needs to be visited. Although such datasets

are not common, they could deteriorate the behavior of my proposed optimization.
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3.4 Summary

In this chapter, I proposed three optimizations. The first optimization involves the ap-

plication of the ForkJoin framework for harnessing the power of multi-core processors. The

application of the ForkJoin framework allows us to further divide the process of mining dif-

ferent conditional trees on many cores of a multi-core processor by launching multiple Java

threads, which allow the mining of different FP-trees concurrently. The second optimiza-

tion involves the use of tree caching for reducing the number of garbage collections. The

third optimization is the proposal of an efficient technique for building conditional trees.

This technique allows us to omit constructing projected trees and thus eliminates unneeded

memory allocations and deallocations. Although the examples in the previous sections cov-

ered frequent pattern mining algorithms of precise data, all three optimizations are equally

applicable to uncertain tree-based data mining algorithms.
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Chapter 4

Uncertain Frequent Pattern Mining

Using MapReduce

Recall that the main problem with tree-based frequent pattern mining algorithms for

uncertain data is that they result in a much larger tree, then the tree-based precise data

mining algorithms. Hence, it takes more time to mine a larger UF-tree.

In Section 1.1, we asked whether it was feasible to deconstruct the steps of the UF-

growth algorithm and the UFP-growth algorithm and execute some of these steps in parallel

using the MapReduce programming model. By making a number of modifications to the

PFP-growth algorithm, I discovered that this is indeed possible. Briefly, to implement the

UFP-growth algorithm using MapReduce, this chapter retrofits the PFP-growth algorithm

by introducing the mapper and reducer functions, responsible for taking samples and calcu-

lating final itemset supports. Conversely, to develop a MapReduce version of the UF-growth

algorithm, I change the PFP-growth algorithm so that it executes the UF-growth algorithm

instead of the FP-growth algorithm. Additionally, I propose the use of a new combiner
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function, which reduces the communication overhead associated with the sending and the

receiving of the input database chunks.

I also enhance the baseline FP-growth and UF-growth algorithms, which are executed

during the stages of the MapReduce version of the UFP-growth algorithm and the MapRe-

duce version of the UF-growth algorithm respectively, with the tree-based algorithm en-

hancements, presented in Chapter 3. Lastly, this chapter discusses the benefits along with

the limitations of MapReduce in the context of frequent pattern mining of uncertain data.

4.1 UF-growth on MapReduce

Recall from Section 2.4.2 that FP-growth on MapReduce involves (1) partitioning the in-

put database into non-overlapping sub-databases of smaller size (during the mapping phase

of the Parallel Counting stage), (2) mining sub-databases in parallel (during the reduc-

tion phase of the Parallel Counting stage), and (3) consolidating the obtained patterns

(during the Aggregating stage). When handling uncertain data, the main challenge is that

we can no longer use the FP-growth algorithm for mining uncertain sub-databases. Conse-

quently, the MapReduce version of the UF-growth algorithm can be described as follows.

1. As each item under the uncertainty data model is associated with an existential prob-

ability, instead of calculating the actual support of singleton itemsets (which is done

in the FPF-growth algorithm), the Parallel Counting stage now calculates the ex-

pected support of singleton itemsets. For a singleton itemset {x}, Equation (2.1) can

be simplified as follows:
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expSup({x}) =

|DB|∑
i=1

P (x, ti). (4.1)

Recall that P (x, ti) represents the probability, associated with a given transaction item.

Specifically, at the mapping phase, instead of outputting 〈key′ = x, value′ = 1〉,

mapper functions output 〈key′ = x, value′ = expSup(X)〉.

2. The steps at the Grouping stage do not require any changes. This stage splits the

list containing frequent singletons into distinct groups and assigns a unique id to each

group.

3. The Parallel FP-growth stage now comprises one additional combiner phase. As

before, at the mapping phase, mapper functions identify all group-dependent trans-

actions.

Then, during the new combiner phase, combiner functions receive group-dependent

transactions in the form of 〈key = gid, value = {T1 . . . Tn}〉, where Ti represents the

ith transaction, and insert them into the UF-tree, creating a compressed tree-based

representation of these group-dependent transactions.

At the reduction phase, the algorithm collects all the group-dependent UF-trees (as

output by the previous combiner phase) and merges them into one single UF-tree.

Then, this phase executes an optimized implementation of the UF-growth algorithm,

which (a) mines a number of conditional trees concurrently using the ForkJoin frame-

work, (b) uses tree caching and (c) uses the conditional tree optimization technique,

all discussed in Chapter 3.

4. The Aggregating stage does not require any changes. This stage continues to collect
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the mined patterns and store them to disk.

Let us consider some of the implementation specifics of implementing the discussed algorithm

steps. In the UF-growth algorithm used at the Parallel FP-growth stage, to reduce the size

of a node, I used byte values (0..99) for storing probabilities, as we are limited to 100 distinct

values. Leung et al. [LMB08] reported, that such quantization does not drastically skew the

final result. Note, that when multiplying probabilities, we still need to convert byte values

to float values and then perform floating point arithmetic.

During the implementation of this algorithm, the problem that I encountered was that,

during the Parallel FP-growth stage, the reducer functions, arranged the group-dependent

transaction items in an order, different to the one defined in the F-list. The baseline UF-

growth algorithm, counted the expected frequency of singleton items (the second time),

arranging singleton items in a non-descending order and constructing the main tree using

a different order than in the F-list. This behavior resulted in generating just a subset of

patterns, as was fixed by removing the redundant singleton counting step.

The newly-created combiner phase of the Parallel FP-growth stage not only reduces

the communication cost of sending trees (and not group-dependent transaction items) be-

tween computation nodes, but also permits us to preserve the frequency-descending order

of the items in the input database. Recall that, before generating group-dependent trans-

actions, the Grouping stage first sorts the original transactions according to the frequency

non-descending order of frequent singletons. Hence, the local instances of the UF-growth al-

gorithm do not need to build the group-dependent main trees on their local machines—they

receive them as input from previous MapReduce iterations.
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4.2 UFP-growth on MapReduce

Recall that the UFP-growth algorithm adds a pre- and a post-processing step to the

FP-growth algorithm to take samples from transactions and calculate final itemset supports.

Although Calders et al. [CGG10] demonstrated the benefits of using such a sampling tech-

nique by applying it to different precise data mining algorithms, they did not apply it to

precise data mining algorithms developed to run in the MapReduce environment. As the

sampling technique can be used together with any frequent pattern mining algorithm work-

ing with precise data, my MapReduce version of the UFP-growth algorithm adds a pre- and

a post-processing step to the PFP-growth algorithm. As the PFP-growth algorithm executes

the FP-growth algorithm at one of its execution stages, I enhanced the FP-growth algorithm

with my proposed optimizations to tree-based frequent pattern mining algorithms, as dis-

cussed in Chapter 3. The following describes the changes to the PFP-growth algorithm,

which enabled the construction of the Parallel UFP-growth algorithm.

1. At the Parallel Counting stage, mapper functions receive 〈key, value = Ti〉, where

Ti represents the ith transaction, as input, and, for each item x in transaction Ti, output

〈key′ = x, value′ = expSup(x)〉.

2. The steps at the Grouping stage do not require any changes. This stage continues

to split the list containing frequent singletons into distinct groups and assign a unique

id to each group.

3. The Parallel FP-growth stage performs the most important part of the algorithm.

Specifically, besides identifying group-dependent transactions, the mapping phase

also performs sampling. As before, the algorithm loads the G-list into main memory,
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and creates a reverse map, in which a singleton is mapped to its corresponding group

id. Each mapper receives 〈key, value = Ti〉, where Ti represents the ith transaction, as

input. Then, the received transaction is sampled using the Concatenating the Samples

method [CGG10]. For every transaction item, the method generates a random real

number r ranging from 0 to 1. If r is bigger than the existential probability of the

current item, then that item is included in the transaction sample Γ , otherwise it is not.

For the current transaction sample, the algorithm (a) substitutes all its items with their

corresponding group ids from the reverse map, creating a new list T of the same size,

as the transaction size. (b) For each group-id gid in T , the algorithm locates the right-

most appearance L of gid in T , and outputs 〈key′ = gid, value′ = {Γi[1] . . . Γi[L]}〉.

For each received transaction by the mapper functions, this process is repeated s times,

where s is the number of samples taken.

Then, at the combiner phase, combiner functions receive the group-dependent trans-

actions in the form of 〈key = gid, value = {T1 . . . Tn}〉 and insert them into the FP-tree,

creating a compressed tree-based representation of these transactions.

At the reduction phase, the reducer functions collect all the group-dependent FP-

trees (as output by the combiner stage) and merge them into one FP-tree. After,

the algorithm executes an optimized implementation of the FP-growth algorithm,

which (a) mines a number of conditional trees concurrently using the ForkJoin frame-

work, (b) uses tree caching, and (c) uses the conditional tree optimization technique,

discussed in Chapter 3. For each mined pattern v, the reducer functions output

〈key′ = null, value′ = v + support(v)〉.

4. Finally, to calculate the estimated support of an itemset, the Aggregating stage

57



divides the itemset support, obtained from the output of the previous reduction phase,

by n, where n is the number of samples.

At the mapping phase mapper functions receive frequent patterns in the form of

〈key = null, value = v + support(v)〉 and output the real support values of a pattern

in the form of 〈key′ = null, value = v + support(v)
n
〉 (given that support(v)

n
≥ minsup).

At this stage, the reduction phase does not perform any work.

In this algorithm, some of the stages do not need to execute reducer functions. In Apache

Hadoop, it is legal to set the number of reduce tasks to zero if no reduction is desired.

4.3 Algorithm Comparison

When contrasting the MapReduce version of the UF-growth algorithm and the MapRe-

duce version of the UFP-growth algorithm we can observe, that the latter requires a post

processing step to calculate final itemset supports. Hence, at the Aggregation stage, when

the minimum support threshold is set to a low value, the MapReduce version of the UFP-

growth algorithm can spend a significant amount of time calculating real itemset supports

and pruning itemsets, the support of which lies below the minimum support threshold.

On the contrary, while the MapReduce version of the UF-growth algorithm does not

perform any calculations at the Aggregation stage, it can spend a significant amount of time

executing the Parallel UF-growth stage. As we will see in Chapter 5, the amount of time

spent at the Parallel FP-growth stage is a couple of times bigger, then the execution time of

all the steps of the MapReduce version of the UFP-growth algorithm.
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4.4 Fine-Tuning

This section provides some additional implementation details for both algorithms. It also

provides some recommendations in terms of tuning Apache Hadoop.

Both algorithms allow specifying the number of items in a group manually (as a command

line parameter), which allows us to vary the number of conditional trees that get mined

during one pass of the reducer function during the Parallel FP-growth stage. When a small

number of items per group is set, the algorithm is very responsive in that it can output

patterns dynamically, as when, during the Parallel FP-growth stage, the reducer functions

finish their work, the resulting patterns are automatically flushed to the HDFS and are

available for viewing.

To collect patterns, the PFP-growth algorithm uses a max-heap indexed by the support

value of the patterns found, which stores the top-k most frequent items. In my algorithm

implementations, I output the patterns directly to the HDFS, as the use of a max-heap

permits storing only the k-max patterns, and does not give a complete picture of all the

frequent patterns.

Also, we need to modify the default number of mapper/reducer functions, which can

be spawned simultaneously on a given computation node. By default, that number is

set to 2; hence, a maximum of 2 mapper and 2 reducer functions can run on one com-

puting node. As we are using ForkJoin, we need to ensure that only one instance of

a mapper or a reducer function is executed at any point of time on a given node. To

make these changes, two parameters in the hadoop-default.xml configuration file, namely

mapred.tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.

maximum, need to be set to 1. Please refer to the Apache Hadoop Official Wiki [Apa12a] for

59



more information.

One can observe that the effects of using ForkJoin to divide the mining of conditional trees

between the processor cores can be equivalent to running two reducer functions, executing

independent instances of the FP-growth algorithm on one computing node. Let us elaborate

on the cons of using such an approach. First, the implementation of MapReduce versions of

the UF-growth and the UFP-growth algorithms use a tree caching technique, which recycles

old conditional trees. Two independent reducer functions do not have the benefit of sharing

cached trees. Moreover, by using ForkJoin, we get the benefit of work stealing, which allows

to load balance more effectively. When executing multiple reducers on one node, we do not

have this load balancing benefit.

Overall, when looking at Apache Hadoop configuration options, a number of tuning

parameters need be set for running a MapReduce job on Hadoop. By changing these param-

eters, we can modify the number of mappers and reducers, memory allocation settings as well

as controls for I/O and network use. When executing the algorithms on a local MapReduce

cluster, to get an optimal configuration automatically, a system that adjusts these param-

eters, called Starfish [HLL+11], would be recommended. Starfish is, however, not available

on the baseline Amazon EC2 MapReduce nodes, where I conducted my experiments.

4.5 Discussion

Recall that UF-growth has a lower tree compression ratio then FP-growth, and to merge

two nodes in the tree, node items as well as their probabilities have to match. Nevertheless,

the header table maintains links to items only, connecting nodes having the same item but a

different probability. As such, the UF-growth algorithm is required to mine the conditional
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tree for each item on the same machine (in the case of MapReduce), or using the same thread

(in the case of ForkJoin).

Moreover, to yield the final mining result, every computing node has to perform the min-

ing of the assigned conditional trees. Hence, the mining speed is limited by the slowest node

to complete the mining process. As MapReduce uses commodity hardware, we could have

scenarios, where slow nodes are performing the most computationally challenging work. Yet,

by design, when MapReduce has many nodes available in the network, it assigns the same

mining task to different machines, removing this problem altogether. When one machine

completes the mining process, MapReduce notifies other nodes working on the same task to

cancel their redundant jobs.

Real-life databases, however, contain at least one hundred domain items, making MapRe-

duce an attractive choice. In the case of mining such datasets, the cost of sending conditional

trees to the nodes in the network constitutes only a negligible fraction of the overall runtime

of both the Parallel UF-growth and the Parallel UFP-growth algorithms. In Section 1.1, we

also asked whether it would be possible to effectively mix the use of ForkJoin and MapReduce.

As previously discussed, the use of multiple threads, facilitated by the ForkJoin framework,

is beneficial in cases where we do not have many nodes in the MapReduce environment;

here, each thread is responsible for mining a number of conditional trees sequentially. The

ForkJoin framework offloads conditional trees, as well as the responsibility for mining them,

to available threads. When we have as many computing nodes as frequent singleton items

(i.e., where each node is responsible for mining only one conditional tree), the ForkJoin

framework would not be useful, as we cannot divide any computations to multiple threads

on one computational node. Such cases, where we have as many computing nodes as frequent

singleton items are, nevertheless, extremely rare.
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4.6 Summary

This chapter proposed MapReduce versions of the UF-growth and the UFP-growth al-

gorithms. It also overviewed the steps, required to construct such algorithms. The algo-

rithms were developed by employing the previously discussed tree-based optimizations and

by using the PFP-growth algorithm as a blueprint. Also, in the process of transmitting sub-

databases between computing nodes, a combiner stage was introduced, which compressed

database transactions into an FP-tree, to reduce the communication footprint of the algo-

rithm. Lastly, this chapter provided recommendations on how to fine-tune the developed

algorithms as well as how to configure some of the key parameters in Apache Hadoop for

optimized performance. The next chapter provides experimental results, which compare the

execution time of the developed parallel algorithms.
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Chapter 5

Experimental Results

In this chapter, I measure the performance benefits of applying the FP-tree traversal

optimization, used for building conditional trees. I also evaluate the benefits of executing

the FP-growth algorithm in the ForkJoin framework. Lastly, I compare the execution times

of the Parallel UF-growth algorithm and the Parallel UFP-growth algorithm.

5.1 Experimental Setup

The first two sets of tests were done on a machine with an Intel Core i7 4-core proces-

sor (1.73 GHz), 8 GB of main memory, and the 64-bit Windows 7 operating system. All

the algorithms were implemented in the Java programming language. The stock version

of Apache Hadoop 0.20.0 was used as an implementation of the MapReduce programming

model. The benchmarks used datasets from the UCI Machine Learning Repository [AN12] as

well as datasets from the FIMI repository [Goe11]—namely, accidents, connect4 and mush-

room, which are commonly used to benchmark frequent pattern algorithms. The number of

transactions in each dataset varies from 8000 to 34000 transactions.
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For the last batch of experiments, targeted at testing the MapReduce implementations

of UF-growth and UFP-growth, I used the Amazon EC2 cluster [Ama12a] with 11 m2.xlarge

computing nodes [Ama12b], with each node having 17.1 GB of main memory, 6.5 EC2

Compute Units (2 virtual cores with 3.25 EC2 Compute Units each) and 420 GB of instance

storage. Since Amazon EC2 is mainly built on commodity hardware, there may be several

different types of physical hardware underlying EC2 instances. As per the official Amazon

documentation, one EC2 Compute Unit provides the equivalent CPU capacity of a 1.0–

1.2 GHz 2007 Opteron or 2007 Xeon processor, which is also the equivalent to an early

(2006) 1.7 GHz Xeon processor. Lastly, I did not perform all experiments using the Amazon

cloud due to limited financial resources.

For the UFP-growth algorithm, Calders et al. [CGG10] reported that 2 samples per

transaction were sufficient to accurately approximate (i.e., with less than 0.02% error) the

expected supports of the mined itemsets for most datasets. Following these observations,

the Parallel UFP-growth algorithm also takes 2 samples from each transaction.

I completed a variety of tests of the Parallel UF-growth algorithm as well as compared the

execution times of the Parallel UF-growth algorithm and the Parallel UFP-growth algorithm.

Due to the financial cost associated with running the experiments in the Amazon cloud, I

conducted every test only once; also, I tested the UFP-growth algorithm on two datasets

only.

As the datasets from the FIMI repository are generally less than 1 million transactions

in size, I generated three new synthetic datasets using the IBM Quest Dataset Genera-

tor [AS12]. The generated data ranges from 2 million to 5 million transactions with an

average transaction length of 10 items, and a domain of 150 items. As these datasets con-

tain precise data, I assigned an existential probability from the range (0,1] to each item in
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every transaction according to the normal distribution. Here, I chose to use normal distri-

bution, as datasets with a normal distribution usually take less time to mine than datasets

with a uniform distribution. Normal distribution assigns higher probabilities to the values

near the central value of an interval; hence, the number of frequent base intervals decreases.

5.2 Efficient Conditional Tree Construction

Experiment 5.1 Recall from Section 3.3, I proposed an optimization, which enhances the

conditional tree construction process. Hence, in the first experiment, I examined the benefits,

associated with using this optimization. Specifically, I compared the execution time of the

baseline FP-growth algorithm with my optimized version of the FP-growth algorithm, which

used the top-down conditional tree construction technique, discussed in Section 3.3.

Figure 5.1: Accidents dataset—optimized tree construction (Experiment 5.1)

Figure 5.1 demonstrates, that for small minimum support values both algorithms yield the

final result in less than 200 seconds for the accidents dataset. The performance differences
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become apparent only when minsup is lowered to 30%. When the algorithm executes for less

than 20 seconds, the optimization benefits are less apparent.

Figure 5.2: Connect4 dataset—optimized tree construction (Experiment 5.1)

As for the connect4 and mushroom datasets, the optimized version of the FP-growth

algorithm outperforms the baseline FP-growth algorithm. Figure 5.2 and Figure 5.3 highlight

that the optimized FP-growth algorithm performs better, when executed for more than 300

seconds. As noted in previous chapters, the runtime benefits are heavily dependent on data

characteristics; as such, we get different running time improvements for mushroom, connect4

and accidents datasets.

Note the difference scale on the x-axis—the minimum support values need to be manually

adjusted for each dataset.

5.3 ForkJoin with FP-growth

Experiment 5.2 Recall from Section 2.1.2 that the original FP-growth algorithm does not

exploit multi-core processors. Hence, in Section 3.1, I proposed an optimization, which used
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Figure 5.3: Mushroom dataset—optimized tree construction (Experiment 5.1)

the ForkJoin framework to leverage the multi-core facilities of processors. As a result, this

experiment demonstrates the effect of employing multiple threads for mining frequent patterns

using the FP-growth algorithm. As the tests were executed on a 4-core machine, I varied the

number of threads from 1 to 4. To get some intuition about the effectiveness of mining

multiple trees concurrently, the executed tests reflected the performance of the algorithm for

datasets with both, short and long execution times.

One of the most commonly used performance metrics for parallel processing is speed-up,

which reflects the performance gain of parallel execution versus sequential execution. Hence,

I calculated the speed-up obtained from running the FP-growth algorithm in the ForkJoin

framework.

For the accidents dataset, when the execution time is small, the algorithm executes slower

on multiple threads than on one thread. Here, the algorithm cannot take advantage of multiple

cores, as there is not enough work to do in parallel to amortize the overhead of thread creation,

dispatch, join and teardown. The overhead of thread creation, however, is not magnified
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Figure 5.4: Accidents dataset—execution times on multiple threads (Experiment 5.2)

Figure 5.5: Accidents dataset—speedup obtained (Experiment 5.2)

because threads have to be started and stopped only once. In Figure 5.4, the run times for

all threads level off when the algorithm executes for 10 seconds. With a minimum support

set to less than 10%, the additional costs of starting and stopping threads are largely offset

by the overall execution time reductions. By reducing the value of minsup, we generate

more patterns, which increases the running time. Here, Gustafson’s Law [Gus88] comes into
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Figure 5.6: Connect4 dataset—execution times on multiple threads (Experiment 5.2)

Figure 5.7: Connect4 dataset—speedup obtained (Experiment 5.2)

action, providing consistent speedup, as shown in Figure 5.5.

For the connect4 and mushroom datasets, Figure 5.6 and Figure 5.8 demonstrate, that we

can see that for small runtimes the performance benefits are not evident. Conversely, when

the algorithm executes for a longer period of time (e.g., more than 100 seconds), sub-linear

speedup is achieved. As can be seen, when the algorithm has a sufficient amount of work to
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Figure 5.8: Mushroom dataset—execution times on multiple threads (Experiment 5.2)

Figure 5.9: Mushroom dataset—speedup obtained (Experiment 5.2)

perform, it efficiently offloads this work to multiple threads, reducing the overall execution

time.

The above results illustrate the effectiveness of the tree-based algorithm optimization de-

scribed in Chapter 3. Specifically, my tests reflected some performance improvements for the

accidents dataset, whereas for the connect4 and mushroom datasets, we saw drastic running

70



Figure 5.10: Parallel UF-growth benchmarks (Experiment 5.3)

time improvements.

5.4 Parallel UF-growth vs. Parallel UFP-growth

To verify the correctness of my parallel algorithm implementations, I compared the ob-

tained mining results with the results produced by the U-Apriori algorithm [CKH07]. The

Parallel UF-growth algorithm consistently arrived at the same result as the U-Apriori al-

gorithm, while the Parallel UFP-growth algorithm always yielded different but high-quality

approximate results.

Experiment 5.3 In this experiment, I executed the UF-growth algorithm in the MapReduce

environment with 11 nodes. Figure 5.10 suggests that even when the sequential version of the

UF-growth algorithm executed for more than 120,000 seconds, it never reached the 20,000

second mark in the MapReduce environment.

According to Figure 5.10 and Figure 5.11, when the total execution time of the Parallel
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Figure 5.11: Parallel UF-growth speedup; as executed on 11 nodes (Experiment 5.3)

UF-growth algorithm is low, the achieved speedup of 7 times to 8 times over its sequential

version was observed. As we increased the problem size, the algorithm achieved a speedup of

around 8.5 times on 11 nodes. Interestingly, for 2 million transactions, the speedup rose to

as high as 9 times.

The first source of overhead in the Parallel UF-growth algorithm was due to communica-

tion cost. In particular, the algorithm had to perform the partitioning of the input database

before it could proceed with the mining process. For our algorithm to be beneficial, the data

distribution costs need to be more than offset by the gain of parallelization.

To test the capacity of the Parallel UF-growth algorithm to further offload work to different

processor cores by using the ForkJoin framework, I compared the execution times of the

algorithm on one thread versus two threads. From Figure 5.12 it can be observed that while

the execution time of the algorithm on two threads is lower, the overall benefits of distributing

work to multiple threads is not particularly significant in general. This behavior is expected, as

Amazon uses virtualization to expose virtual processing cores on shared commodity hardware
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Figure 5.12: Parallel UF-growth with ForkJoin (Experiment 5.3)

resources, degrading potential speedup; significant performance improvements can be observed

in MapReduce environments built from high-performance machines [LPD+11].

Experiment 5.4 The last experiment compared the execution times of the Parallel UF-

growth algorithm with the Parallel UFP-growth algorithm. Figure 5.13 shows that the Par-

allel UFP-growth algorithm consistently yielded the final result faster, when compared to the

Parallel UF-growth algorithm.

5.5 Summary

This chapter tested the proposed optimizations to tree-based frequent pattern mining

algorithms as well as benchmarked the Parallel UF-growth algorithm and the Parallel UFP-

growth algorithm in the MapReduce environment. Judging by the obtained results, we see

that, by distributing the construction and mining of conditional trees to different processor

cores, we effectively increased the memory use, associated with the mining, because we have
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Figure 5.13: Parallel UF-growth vs. Parallel UFP-growth (Experiment 5.4)

to keep many more trees in memory when executing the algorithm in many threads. Hence,

the choice to distribute the mining of conditional trees to multiple threads by means of using

the ForkJoin framework can be justified when there is a limited number of high-performance

machines in the MapReduce network. Unfortunately excessive memory requirements of the

ForkJoin framework renders it inapplicable for MapReduce networks built using commod-

ity hardware. Often, these machines do not have multi-core processors and/or their main

memory does not have the capacity to hold all conditional trees. In such cases, users should

opt to employ the MapReduce framework alone. This can be done by setting the thread

count to 1, which effectively turns off the ForkJoin mechanisms. In essence, depending on

the network specifics, each of the above techniques can play an important role in speeding

up tree-based frequent pattern mining algorithms.

The MapReduce versions of the UF-growth and UFP-growth algorithms are also tailored

towards specific use cases. When an analyst needs to rapidly mine a given dataset, he ought

to consider using the UFP-growth algorithm, as it yields a high quality approximate result
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faster than the UF-growth algorithm. Then, to get the exact mining result, if necessary, the

dataset can be processed by means of using the UF-growth algorithm again, which has a

higher execution time.

Here are some additional aspects to consider when evaluating the results produced by

using the Parallel UF-growth and the Parallel UFP-growth algorithms:

• In cases when the input datasets are constructed based on the data obtained from

satellite imaging or doctor diagnosis reports, the probabilities associated with items

in the input dataset are also approximated. For example, even highly skilled doctors

cannot indicate the exact probability of a patient having a certain disease.

• As the UF-growth algorithm uses numerous floating point calculations, the final mini-

mum support values are not exact, due to the inexact nature of floating point compu-

tations. The sampling approach in the parallel UFP-growth algorithm does not have

this problem.

Given these observations, there might not be a big difference in terms of result accuracy

when comparing the Parallel UFP-growth and the Parallel UFP-growth algorithm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

There are many real-life situations, where we observe uncertain data, such as in tem-

perature and wind speed readings, patient diagnosis, and satellite imaging, among many

others. Given the probabilistic nature of this data, it takes more time and resources to mine

it. Currently, the state-of-the-art frequent pattern mining of uncertain data algorithms do

not provide sufficient performance, as most of them are not crafted to execute in parallel.

This M.Sc. thesis research described techniques that reduced the execution time of two un-

certain data mining algorithms—UF-growth and UFP-growth, by executing them using the

MapReduce programming model and the ForkJoin framework.

Chapter 3 of my thesis discussed my proposed improvements to tree-based algorithms.

The first improvement reduced the time to construct conditional trees by removing the

construction of intermediate projected trees. This improvement reduced both the number

of visited nodes and the number of redundant memory allocations and deallocations. The
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second improvement employed the ForkJoin framework for concurrently mining condi-

tional trees on multiple cores of a multi-core processor and the third improvement used

tree caching to reduce memory consumption. Chapter 4 overviewed the steps for executing

the UF-growth and UFP-growth algorithms in parallel using MapReduce. Both of the algo-

rithms use the proposed improvements, discussed in Chapter 3. Finally, Chapter 5 presented

experimental results, confirming the effectiveness of the proposed optimizations to tree-based

algorithms. The MapReduce programming model leveraged numerous performance benefits

for algorithms which process large amounts of data, and the ForkJoin programming model

further distributed computations between the processing cores of a multi-core processor.

In Section 1.1, I asked the questions: “Can we decompose our frequent pattern mining

of uncertain data problem to multiple smaller problems, which can be attacked by multiple

machines, such that each smaller-sized problem can fit in the main memory on one computing

machine? Moreover, will such means of distribution speed-up the execution of uncertain data

mining algorithms? As to the parallel techniques, will we be able to employ the MapReduce

programming model together with the ForkJoin framework as tools for parallelizing UF-

growth and UFP-growth? If so, will the use of MapReduce and ForkJoin be beneficial for

executing UFP-growth and UF-growth in parallel?”

In response to these questions, Chapter 4 introduced algorithms, which provided the

possibility to construct and mine smaller-sized FP-trees and UF-trees on distributed ma-

chines as well as provided experimental results demonstrating the effectiveness of employing

the MapReduce programming model for mining frequent patterns from uncertain databases.

As for the use of the ForkJoin framework, Section 4.5 discussed the use cases, where the

use of ForkJoin together with MapReduce yielded the most benefits. In my experiments,

I used computing nodes, provided by the Amazon cloud for benchmarking my algorithms.
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The nodes provided by Amazon had virtual (and not real) processing cores, hence the use

of the ForkJoin framework did not significantly improve the running time of my proposed

algorithms, presumably because the multiple threads were run on virtual machines mapped

to the same physical machine. Nevertheless, the use of MapReduce alone yields significant

speedups for the proposed frequent pattern mining of uncertain data algorithms.

6.2 Future Work

Currently, the primary limitation of the proposed MapReduce implementations of un-

certain data mining algorithms is that they do not consider the associated amount of work,

required for mining a given conditional tree. The algorithms uniformly divided the respon-

sibility for mining first-level conditional trees between available nodes in the MapReduce

network. They did not, however, consider cases, where a small number of level 1 conditional

trees took the bulk of execution time. In such cases, most of the nodes would stall, waiting

for the few nodes to finish the most computationally challenging work. In such cases of load

imbalance, we would not reduce the execution time of the algorithm by employing more

computing power. Although Zhou et al. [ZZC+10] proposed a load balancing technique for

PFP-growth, it addressed and was beneficial for only a limited subset of datasets restrict-

ing its wide application in practice. Briefly, the proposed technique uses a basic heuristic,

instrumented to predict the amount of work associated with mining a given conditional tree.

To the best of my knowledge, the baseline version of MapReduce does not currently pro-

vide the capacity to schedule new MapReduce sub-phases on the fly; MapReduce algorithms

are required to follow a predefined execution path, specified in the main controller. The pri-

mary issue with the stock version of MapReduce is that it cannot perform load balancing in
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a straightforward way. As such, future work could be targeted at finding such a framework,

possibly an extension of MapReduce, which would allow us to recursively build sub-trees

and schedule their mining on available computation resources.

Furthermore, no research work has been done in the area of executing stream mining

algorithms using MapReduce. Condie et al. [CCA+10] developed a system called MapReduce

Online, which was capable of working with data streams. This system allowed the processing

of batches of transactions on the fly. Such a system can be used to analyze uncertain data,

which is arriving over time. Leung and Jiang [LJ11] proposed a number of methods for mining

data streams of uncertain data using tree-based algorithms and focused mainly on the sliding

window model, the time-fading model and the landmark model as means of measuring and

maintaining the frequency of itemsets overtime. Nevertheless, Leung and Jiang have not

yet considered sampling the input data streams and applying algorithms, which mine data

streams from precise data. In this scenario, MapReduce Online could be used as a module

for fetching and sampling the incoming transaction batches. In this scenario, the computing

nodes in the MapReduce network would have to be working in an online mode waiting for

the arrival of new data batches, which could be costly when executed using the Amazon EC2

computing nodes. Nevertheless, the use of MapReduce would enable us to process data at a

much higher rate.
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