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ABSTRACT

This thesis presents a parallel implementation of the

Polynomial Preconditioned Conjugate Gradient (PPCG) method

for the solution of large, sparse, and symmetric sets of

linear equations. = The algorithm uses a truncated Neumann

series expansion to obtain an approximate inverse of the

system matrix for use as the preconditioning matrix. The

PPCG algorithm incorporates a sparse matrix

storage scheme
so that large sparse systems can be handled with the maximum
of efficiency.

The algorithm is specifically implemented on the Interna-
tional Computers Ltd. Distributed Array Processor. It is
shown to be suitable for solving linear systems arising from
both finite-difference and finite-element discretization of

elliptic partial differential equations.
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Chapter 1
INTRODUCTION

The Conjugate Gradient (CG) method is, at first, a very

appealing candidate for parallel implementétion. In its un-

preconditioned form, it involves only vector operations and

is often said to be 'trivially vectorizable'.

Preconditioning has, however, become a necessary part of

the CG method. One discovers that without preconditioning,

there may be no convergence or very slow convergence. The

affect of preconditioning 1is to reduce the spectral radius

of the system matrix so that the conjugate gradient proce-

dure is more stable (i.e. converges), and converges in far

fewer iterations.

With the introduction of preconditioning, the romance be-

tween parallel processors and the CG algorithm quickly dis-

solves. It is very difficult to find a preconditioning

method that is parallelizable. For example, consider the

incomplete Cholesky preconditioning method which is highly

successful on scalar computers. The preconditioning process

involved in the Cholesky algorithm is highly recursive. Be-

cause recursive processes are inherently serial, the incom-

plete Cholesky algorithm cannot be put into a parallel form.




The problem is further aggravated if one wishes to imple-
ment a sparse storage scheme in conjunction with-a precondi-
tioning method. Since the choice for one may preclude a de-
'sirable choice for the other, the two must be carefully cho-
sen so that there will be a minimum of compromise.

At the same time, whatever decisions_are made, must be
made with an intimate understanding of the architecture of
the processor that is being used. The architecture is per-
haps the most overriding consideration. Its capabilities
will dictate exactly what options are available for a spar-
sity and preconditioning scheme.

The preconditioning scheme used in this work is the poly-
nomial preconditioning method first proposed by Dubois et
al. [1979,257-268]. It is discussed in Chapter 5 along with
the conjugate gradient and sparsity algorithms. This choice
for a pfeconditioning scheme has the advantage of making no
special requirements on the sparsity scheme, save that it
allows efficient matrix vector multiplication (i.e. it re-
quires no special data structure for efficient implementa-
tion). With one less constraint to consider, the integra-
tion of the sparsity scheme with the parallel architecture
is made much easier.

The parallel processor used in this thesis is the Inter-
national Computers Ltd. (ICL) Distributed Array Processor
(DAP). With 4096 processors, the DAP has a great potential

for parallelism. Chapter 4 gives an overview of the DAP and




the facilities associated with it. Chapters 2 and 3 give
some background material on parallelism and parallel archi-
tectures so that the position of the DAP in the hierarchy of
parallel processors can be better appreciated.

Chapter 6 presents results from the application of the
Polynomial Preconditioned Conjugate Gradient (PPCG) algor-
ithm to some field problems. Scalar and Qector versions of
the algorithm are compared with each other and with a scalar
implementation of the Incomplete Cholesky Conjugate Gradient

(1cCG) algorithm.




Chapter 11
CONCEPTS IN PARALLEL PROCESSING

2.1 THE NEED FOR PARALLEL PROCESSING

The need for parallel processing is increasing for sever-

al reasons:

1. The absolute speed of computer hardware 1is limited.
Even the p;omise of Josephson junction switching
technology can only increase raw computer speed by a
factor of 10 or so. Propagation delay 1is another
factor limiting circuit speed. Its effects can be
reduced by making circuits physically smaller using
very large scale integration (VLSI). The advance of
VLSI is, however, reaching fundamental limits that
will halt further improvement.

Computational needs in scientific algorithms have
reached levels where no foreseeable scalar computer
will be adequate.

To illustrate the latter point, consider that the Nation-

al Aeronautics and Space Administration (NASA) has contract-

ed Control Data Corporation (CDC) and Burroughs Computer

Corporation to produce processors capable of performing in

excess of 10° floating point operations per second (flops)

(Hockney and Jesshope [1981,19]). This performanée is need-




ed to run three-dimensional aerodynamic simulation codes.
when these needs are compared to the 10 million flop per-
formance that current scalar computers are capable of, the
hopelessness of the scalar approach can be seen.

NASA also has heavy computational needs for the process-
ing of satellite imagery. It has contracted Goodyear Aero-
space to build a highly parallel computer called the Mas-
sively Parallel Processor (MPP) (Schafer and Fischer
[1982,32]). The machine is configured as a 128 X 128 pro-
cessor array (see Section 3.3), and will be capable of per-
forming 6 X 10° 8-bit additions per second and almost

2 X 10° 8-bit multiplications.

2.2 PROBLEMS TO BE ADDRESSED

Up to this point in time, the development of numerical
algorithms has been geared toward implementation on scalar
processors. The conversion of scalar algorithms to parallel
algorithms is not a straightforward process. There 1is no
way of predicting whether or not an efficient parallel im-
plementation of a scalar algorithm exists.

The issue is further complicated‘by the existence of many
different parallel architectures. A parallel algorithm de-
veloped for one architecture may not be suitable for an-
other. It may be that a totally new architecture wiil:have
to be developed to implement an algorithm. VLSI could allow
the parallel programmer to design specific hardware to meet

his needs.




2.3 ROOTS OF PARALLELISM

Parallelism means different things to different people.

Each person has different applications to apply it to and

his measure of performance is based upon different goals.

For example, in time-sharing environments, the goal is to

process separate jobs at as fast a rate as possible. The

rate at which jobs are processed 1is referred to as through-

put. Greater throughput can be achieved by adding multipro-

cessing capabilities to the system, but this does nothing to

speed up the execution time of a single program. As a re-

sult, the system programmer and the system user will have

conflicting opinions about the gains achieved with the mul-

tiprocessing system.

Throughput is of no interest here, as the goal 1is to

achieve speedup. That is, to decrease the total execution

time of a single task or program.

Parallelism, in a broad sense, can appear at many levels.

The various levels of parallelism may be described as fol-

lows (Hockney and Jesshope [1981,25]):

l, Job Level

a) Between jobs - This level describes the system

level and is implemented using multiprocessors.

Parallelism at this level improves system through-

put, and does nothing to improve the execution

time of a single program.




" b) Between phases of a job - This level of parallel-

ism refers to the overlapping of slow system I/0
(such as disk access) with fast program execution.
One program can execute while others (assuming
more than one I/0 channel) are performing slow 1/0
operations. Again, this 1level of parallelism

serves to increase system throughput.

Program Level

a) Between parts of a program - This level of paral-

lelism does serve to decrease the total execution
time of a single program. This scheme, implement-
ed in a multiprocessing environment, allows the
simultaneous execution of unrelated parts of a
program, Special language constructs, such as
those in concurrent Pascal, are used to signal
which phases of a program are unrelated. Some
specialized compilers are also able to perform

some parallel (data flow) analysis automatically.

b) Within do loops - If each execution of a loop is

independent of the previous, each processor may

execute the loop at the same time as the others,

Instruction Level

a) Between phases of instruction execution - This

level describes the ability to divide the execu-
tion of a process or instruction into a succession

of independent steps. This allows a. number of




identical processes to be in various stages of ex-

ecution at the same time and 1is referred to as
pipelining.

b) Between elements of a vector operation - This lev-
el of parallelism reflects the fact that many pro-
cesses perform identical and independent actions
with each element of a vector. An example of such
a process is the multiplication of a vector by a
scalar. All of the elemental multiplications may
be performed concurrently. This type of operation

may be implemented by processor arrays (see Sec-

tion 3.3), or by pipeline processors (see Section
3.1.2).
4, Arithmetic and bit level

a) Within arithmetic logic circuits - It is possible
to perform arithmetic operations on numbers by
processing all bits in parallel or by processing
each bit of the numbers internal representation
sequentially. The advantages/disadvantages of the
two approaches stem mainly from the desired com-
plexity of the hardware needed to implement them.
The bit serial method is usually opted for in the
processor array designs as it leads to simple pro-
cessors that use little silicon area, thereby en-

abling the assembly of larger arrays.




2.4 AN ARCHITECTURAL TAXONOMY

Many parallel processor designs have been suggested over
the last two decades. There have been a number of attempts
to group the wvarious architectures into classes that share
some common basis. Like the architectures they attempt to
group, they have had varying degrees of success. Most nota-
ble are those due to Flynn [1972,949], Shore [1973,95-109],
and Hockney and Jesshope [1981,31-47].

'Flynn's classification scheme describes the interrelation
between machine instructions and the data upon which the in-
structions operate. It does not attempt ény description of
the details of the hardware that an architecture is built
from. The result is that broad groupings of architectures
are lumped under the SIMD (single-instruction stream - mul-
tiple-data stream) and MIMD (multiple-instruction stream -
multiple-data stream) classes. Individual members of these
groupings are indistinguishable from each other, and it is
possible for an architecture to belong to more than one
group. Confusion also exists about the location of pipe-
lines in the scheme.

Taxonomies based upon the architectural features them-
selves (Shore's and Hockney's), are more specific and de-
scriptive, but at the same time, may be confusing. Since
detailed semantics serve only esoteric purposes, Flynn's

general taxonomy will serve the purpose here.




Flynn's taxonomy is the one most frequently seen in the

literature. The following classifications are observed:

1. The Single-Instruction stream - Single-Data stream
(SI1SD) - This describes the conventional scalar pro-
cessor and the pipelined scalar processor. Depending
on the point of view, this class may also be extended
to include the pipelined vector processor.

2. The Single-Instruction stream - Multiple-Data stream
(SIMD) - This group includes most processor arfays,
associative processors, and pipelined vector prbces—
sors. In this class, a single instruction stream is
broadcast to control a number of processors, each op-
erating in lockstep. The processors each perform
their operations on local memory.

3. Multiple-Instruction stream - Single-Data stream
(MISD) - Although somewhat limited in scope, this
class 1is said by Flynn to describe specialized
streaming operations where a single data stream is
used to produce a number of result streams.

4., Multiple-Instruction stream - Multiple-Data stream
(MIMD) - All multiprocessing systems are lumped under
this heading. That is, a group of processors each
executing a separate program with local memory, and
sharing results via a common memory or a switched

communications network.,




There 1is some confusion about the exact placement of

pipelined vector processors in this taxonomy. Flynn places
them under the SIMD classification owing to the fact that
they have specialized vector instructions that can mimic

those possible with a processor array. The argument against

that placement is that a pipelined vector processor only op-

erates upon a single data stream and the pipeline itself

only performs a single instruction upon that data stream.
The given version of Flyﬁn's taxonomy is the one that is

in common use, and will be used here.




Chapter I1I

SOME PARALLEL ARCHITECTURES

3.1 SPECIAL PURPOSE FUNCTION UNITS

This category includes both systolic arrays and pipelined
execution units. They are similar in concept but differ
mainly in the scale at which they address parallelism. Sys-
tolic arrays are designed to implement whole algorithms
while pipelines are wusually designed to implement a single
instruction (vector or scalar). In some respects, though,

the terms are interchangable.

Systolic Arrays

Systolic arrays derive their name from the way data moves
through them. They consist of a group of processors con-
nected in a rigid communication pattern, much like the cir-
culatory system of man. A clock cycle, analogous to a heart
systole, ‘'pumps' the data through the arfay at regtlar in-
tervals. Therefore, the movement of data through the array
is similar to the movement of blood through a circulatory
system and hence the term systolic.

Systolic arrays are designed so that data need only be
given to them once. Thereafter, internal communication
paths shuttle the data to where it is needed. Thﬁs, a good
systolic design will realize two savings:

_12_




1. Computations are pipelined. This introduces paral-

lelism within the algorithm.

2. Data is loaded into the array only once, reducing ex-

pensive memory references to a minimum.

The main disadvantage of the systolic approach is the in-

flexibility caused by the rigid internal communication

paths. These paths are designed for the execution of a sin-

gle algorithm, and a complete redesign is needed to imple-

ment different algorithms. It may, however, be possible to

remove this difficulty with a configurable processor array

in which the communication paths are redirectable (Snyder

[1982,47-561]).

Because of their importance in light of recent advances

in VLSI design, a detailed discussion of a systolic array

follows. In addition, they are architecturally similar to

the ICL DAP, which is the main thrust of this thesis.

Systolic - Banded Matrix-Vector Multiplication

Much of the pioneering work with systolic arrays was done

by H.T. Kung. This example is taken from his work in Conway

and Mead [1980,263-332].

The workhorse of Kung's systolic designs 1is the inner

product step processor shown in its linear connection

configuration in Figure 3.1. This basic processor performs

the calculation ¥ = ¥ + A*X, In calculation, the operands

(A and X) are passed through unchanged while Y is augmented




by the addition of the product (A*X). The following inter-
nal structure can be assumed for the basic processor:
1. each processor contains three registers - RA, RX, and
RY,
2. each register has an input and an output connection,
and
3. the output lines are latched and the logic is clocked
so that neighbouring processors in the array do not

interact during a computation cycle.

’i‘

Y - Y

X— X
|
A

Figure 3.1: The inner product step processor.

In one cycle the inner product step processor performs
the following operations:
1. shifts data off of the A, X, and Y lines into their
respective registers,
2. computes RY = RY + RA*RX, and
3. puts- contents of the registers onto their respective

output lines.

_14..




Wwith proper connections to its nearest neighbours, and per-
haps the introduction of a few functionally different cells,
the inner product step processor can be used to implement a
large number of important numerical algorithms (Conway and
Mead [1980,263-332], Kung [1982,37-46], and Snyder
[1982,47-56]).

The banded matrix-vector multiplier can be seen in Figure
3.2, The figure depicts the data input into the array
through seven cycles of the computation process along with
the array states at the end of each cycle. The array multi-
plies a matrix with a bandwidth of 4 and order N with a vec-
tor of order N, where N is arbitrary.

The general geometry used in this example can be extended
to matrices of larger bandwidth simply by adding more pro-
cessors. In general, A matrix of bandwidth W and order N
can be multiplied into a vector of order N using W proces-
sors. The computation is carried out in 2N+W time units, a
much faster result then the WN time units needed for a sca-

lar processor.
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Pipelined Processors

Pipelining refers to the disassembly of an instruction or
process into a number of independent stages. These stages

are cascaded so that each one, after processing its con-

tained data, will pass data to the next element of the pipe-

line. Data enters one end of the pipeline and emerges from
the other end altered by the complete operation that the
pipeline implements. Data is shuttled from stage to stage

once every clock period, which is defined as the longest ex-

ecution time of the various stages in the pipeline. 1In this
manner, a pipeline 1is able to produce a result once every
clock period, which is generally much shorter than the time
required for the whole instruction (sum of times for each of
the stages).

A familiar example of pipelining is in the decoding and

execution of instructions. The separate units allow the in-

struction stream to be processed in an overlapped fashion.,

When one instruction is in the execution unit, the operands

for the subsequent instruction are being fetched etc.. In

this fashion, instructions can be executed at a much faster

rate then is possible with an unpipelined execution unit.

Other variations on the theme exist. Pipelines have been

designed to implement addition, multiplication, and other

special functions. Perhaps the most natural application,

though, is to the processing of vectors of numbers. If two

vectors have to be added, a pipeline can be used to imple-




ment the addition, Operands can be given to the pipe once
every cycle, resulting in very efficient vector operations
(especially for long vectors).

Most modern-day mainframes use pipelines somewhere in
their architecture. Scalar computers such as the Amdahl
470v/6 and the 1IBM 360/195 have pipelined execution and
arithmetic units; although they do not possess any vector
instructions.

Vector pipelined processors are (arguably) the most pow-

erful numeric processors in existence. The most notable of

this breed are the CDC STAR 100, Texas Instruments TIASC,
and the Cray Research CRAY 1,
An excellent review of pipeline architectures and princi-

ples is given in Ramamoorthy and Li [1977,61-102].

3.2 ASSOCIATIVE PROCESSORS

An associative processor can generally be described as a
processor with the following two capabilities (Yau and Fung
[1977,4-261):

1. It is able to retrieve stored data based on their
content or parts of their content (i.e. content ad-
dressing). This is very different from conventional
computers where data is accessed via an absolute mem-
ory address.

2, It is able to perform both arithmetic and 1logical
data transformations over many sets of data with a

single instruction.




The first property places associative processors in a

class by themselves, but because of the second property,

they are generally grouped under the SIMD class. They dif-

fer from processor arrays (see Section 3.4) in that their

addressing is based upon data content rather then on memory

addressing.

The obvious application for associative processors is in

data-base searching where they are able to do much of the

work in parallel. With associative techniques, data-base

machines can be made very efficient.

The two most important associative architectures are:

1. Fully Parallel

a) Word Organized - Comparison logic is present at

each bit of every word and the 1logical result is

available at the output of every word.

b) Distributed Logic - The comparison logic is asso-

ciated with whole characters (groups of bits) or

groups of characters.

2. Bit-Serial - One bit column (or bit-slice) of all

words is operated on at one time. All words, then,

are operated on in parallel.

An example of a fully parallel associative processor is

the Parallel Element Processing Ensemble (PEPE)  (Cornell
[1976, 171-190]). The Goodyear Aerospace STARAN is an exam-

ple of a bit-serial word-parallel associative processor

(Meilander [1976,345-3741).




3.3 PROCESSOR ARRAYS

A processor array 1is generally a SIMD machine (an array

of processors that perform identical operations in lockstep

upon different data). This class should not be confused

with the various 'array processors' that are on the market

(so called because they are designed to process arrays of

numbers). These special purpose function units are general-

ly high-speed pipelined processors and not processor ar-

rays.

Each processor in a processor array usually has nearest

neighbour communication. To date, most arrays are arranged

in a grid pattern with connections to their north, south,

east, and west neighbours (orthogonally connected).

The processors used, such as those in the ICL DAP or the

Goodyear MPP, are generally very simple bit-serial devices.

The advantage of having simple processors can be seen by

contrasting the ILLIAC IV (64 complicated processors) with

the DAP (4096 simple processors) or the MPP (16384 simple

processors). The use of a simple processor allows the as-

sembly of much 1larger arrays and thus a potential for much

more parallelism.,

Another advantage of using simple bit-serial processors
is that they may be implemented with VLSI very easily. Many
processors could be put on one chip, simplifying the overall

system design and reducing costs substantially.




The ICL DAP, a particular example of a processor array,

is discussed more fully in Chapter 4.

3.4

DATA FLOW ARCHITECTURE

Data flow is as much a programming philosophy as it is an

architecture. In fact, it is the philosophy that dictates

what the hardware should do and the form it should take.

Data flow is based upon the principle that instructions

contained within programs should be executed when their op-

erands are

available, If two or more instructions have

their operands available simultaneously, then the instruc-

tions are executed concurrently. Programs executed in this

manner are said to be 'data driven'.

Consider, for example, the following FORTRAN assignment

statements:
1. A X +Y,
2. B X/A,
3. C Y/A,
4, D B + C, and
5. E D/A.
Clearly, statements 2 and 3 can be executed concurrently,

but only after the result of statement 1 is available. 1In a

data flow machine, therefore, statement 1 would be dis-

patched to

an execution unit first. When its result is

ready, operations 2 and 3 would then be sent to separate ex-

ecution units (along with their operands) and executed si-




multaneously. Each instruction carries information about
where its result is to be sent, enabling the execution pro-
cess to be done efficiently. This strategy requires, how-
ever, a large amount of preprocessing by the compiler to de-
termine the data dependencies withiﬁ a program,

The data flow concept, has no overhead associated with
the synchronization of processors. Instructions are dis-
patched for execution when their operands are available,
causing an automatic synchronization to occur. 1In addition,
as long as there are enough execution units available to the
program, its full parallelism can be exploited. Processor
usage is also maximized to the point that the parallelism of
the problem will allow.

It can be seen that the aata flow approach (which gives a
MIMD type of architecture) is very appealing. It offers the
most efficient use of hardware that is possible. Implemen-
tation of a data flow machine is not an easy task, however,
and there are other problems that need to be worked out be-
fore viable data flow machines will appear on the market
(Gajski et al. [1982,58-691]).

For more information on data flow concepts see IEEE Com-

puter [1982] which deals with the subject.
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3.5 MULTIPROCESSING SYSTEMS

A multiprocessor is a MIMD device and has the basic defi-

nition given in the last chapter. Each processor stores its

own program (perhaps a different program), and executes it

independently from the other processors. The processors

have both shared and local memory so that they may communi-

cate with one another and share data.

Multiprocessor systems are more flexible than other par-

allel architectures (except perhaps data flow), but at the

same time, their control is much more complex. One would

expect that the speedup realized by using a multiprocessor

would increase linearly with the number of processors, but

overheads associated with the control and synchronization of

the processors often reduce the speedup to far below linear.




Chapter 1V
THE DISTRIBUTED ARRAY PROCESSOR

4.1 FACILITIES AT QUEEN MARY COLLEGE

Queen Mary College (QMC) forms part of the University of
London, England. The QMC Computer Centre operates in affil-
iation with the University of London, which is also associ-
ated with a number of other installations.

The central processor used at QMC 1is an International
Computers Ltd. (ICL) 2980. It provides the general services
that one expects from a mainframe operation. Access to the
2980 is provided by an interactive terminal communications
facility called Multi-Access Service (MAC) and a batch ser-
vice.

Users external to OQMC may communicate with the 2980 via
three routes:

l. PSS - British Telecom's Packet Switch Stream network.

This communications link also provides access to the
IPSS international network.

2. SERC Network - A network operated by England's Sci-

ence and Engineering Research Council.

3. METRONET - A network linking together the major com-

puter centres affiliated with the University of Lon-

don.
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PSS/IPSS and SERC allow connection to MAC, while METRONET
only provides access to the batch service.

MAC provides access to the CPU and filestore. A major
limitation of the system is the rather small amount of disk
space alloted each user: 226K. Any requirements beyond this
amount require archival storage on catalogued tape. This
process is made more or less automatic as files on tape can
be referenced in a manner similar to that used for disk.
Tape mountjng is then done automatically by the operator.

User interaction with MAC is mediated by an ICL product
called System Control Language (SCL). It allows the user to
interact with his filestore and submit jobs.

The facilities at QMC are described in the QMC Computer
Centre Handbook. The handbook consists of a number of sepa-
rate documents, each describing various features of the op-

erating system, hardware, and available software.

4.2 THE DISTRIBUTED ARRAY PROCESSOR (DAP)

DAP Hardware Overview

The DAP is installed at QMC as part of its 2980 service
and forms an integral part of the computing environment. It
is a SIMD processor array consisting of 4096 processors in a
64 X 64 configuration.

The DAP itself is configured as part of the main store of
the ICL 2980 as shown in Figure 4.1. The DAP appears as a

main store module of the 2980, but has
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ORDER CODE STORE ACCESS
PROCESSOR CONTROLLER

CONVENTIONAL
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STORE CONTROLLERS

Figure 4.1: DAP - ICL 2980 system

( SMAC, Store Multiple Access Controller; DAC, DAP Access
Controller; MCU, DAP Master Control Unit ).

the addifional capability of processing its contents with an
integral processor array.

The major components of the DAP memory module (DAC - DAP
STORE - MCU) are shown in Figure 4.2,

Two principal communication paths exist within the mod-
ule. Both are 64 bit wide data paths, and provide communi-
cations between the 2980, DAP store module, and the MCU.
The row highways have the specific task of feeding data into
the MCU registers, while the column highways perform that

task in addition to providing communications to the 2980 and




fetching instructions for the execution unit in the MCU.
Data may be transmitted to all processors simultaneously via
the row or column highways, or each processor may 'AND' data
onto the highways to allow global inguiries about the state

of the processing elements.

DAC DAP STORE MCuU

=
STRUCTION
2980 PROCESSOR HijoHway |
COMMUNICATIONS W aARrAY E [€=—p| REGISTERS
ﬁ 8X 64 BITS
S [NSTRUCTION
DAP A u 1
<
c ¢
ACCESS COLUMN HIGHWAY MODIFIER BUFFER
CONTROL
60 X 32 BITS
INSTRUCTION[ €=,

Figure 4.2: 1Internal organization of the DAP,

The MCU, as its name implies, 1is responsible for coordi-
nating the operation of the DAP as a whole. It fetches in-

structions from DAP store, decodes them, and broadcasts ap-

propriate commands to the processing elements (PEs) in the
array. The MCU components, shown in Figure 4.2, have the

following functions:




1. MCU registers - Used for data and/or instruction mod-
ification. Another use is to select (or transmit)
data from (to) all processors in a row or column.

2. Modifier register - Used to hold operands in data and
instruction modification, as well as to hold an ad-

dress offset for instructions that reference memory.

3. 1Instruction register - Holds current instruction.

4. 1Instruction buffer - Buffers a sequence of 60 in-
structions for repeated execution in a hardware DO
loop. The instructions contained in a loop are
fetched only once, and can be executed repeatedly for
up to 254 iterations.

For a detailed explanation of instruction execution on the
DAP, the DAP. APAL reference manual ICL [1979] can be con-
sulted. APAL is the low-level assembly language in which
the DAP is programmed.

The DAP store can be viewed as a 64 X 64 X 16K-bit cube,

where each processor has a 16K-bit local store (see Figure

4.3). The 2980 is able to address DAP memory just as it

does its normal memory. It sees eaéh row of DAP memory (oc-
cupying a single store plane), as a 64-bit word. Higher ad-
dresses occupy first higher-numbered rows, and then deeper
store planes.

The DAP processor array is orthogonally connected. Pro-
cessors on the edge of the array may be configured to con-

nect with the corresponding processor on the opposite edge
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Figure 4.3: DAP - DAP store relationship.

of the array (cyclic geometry), or to receive zero for any
communication with a nonexistent neighbour (planar geom-
etry).

A schematic diagram of a DAP processor is shown in Figure
4.4, The processor cqntains three one-bit registers (A, Q,
C) and a full adder that performs simple arithmetic on the
contents of the registers or memory. The Q and C registers
are generally used for the accumulation of sum and carry
bits (respectively) generated by the full adder.

The A register, called the activity register, 1is of fun-

damental importance in the implementation of algorithms on




the DAP, It can be used as a switch that enables or inhib-

its the execution of an instruction by a PE. This is neces-
sary since it is a rare algorithm that will require the same
operation to be performed by every PE always. Using the A

register in this way is called MASKING.

I6K X I BIT STORE ——

A

ONE BIT
TO/ FROM
MCU HIGHWAYS

v

OUTPUT MULTIPLEXER [¢——

A Q C CARRY / ROUTE
b—— 70
|- BIT FULL ADDER NEIGHBOURS

SELF
INPUT

INPUT MULTIPLEXER

F111

N § E W
INPUT FROM NEIGHBOURS

Figure 4.4: The DAP processing element.

DAP FORTRAN

DAP FORTRAN is the high-level programming language sup-
ported on the DAP. It is a fairly standard FORTRAN with
specific extensions designed to allow the parallel process-

ing capabilities of the DAP to be used easily. The language




affords a user much more convenient access to the DAP than
provided by APAL assembly language. It should be pointed
out, however, that the use of APAL can be expected to yield
more efficient programs.

| DAP FORTRAN is fully described in two ICL documents: ICL
[1980] and ICL [1981la]. The language is also described in
Hockney and Jesshope [1981,242-246] and in Parkinson
[1982,230-236].

Data Types

DAP FORTRAN is able to manipulate data objects consisting
of vectors or matrices in much the same way that normal
FORTRAN dialects manipulate their data objects (scalar vari-
ables). DAP FORTRAN'S data objects assume three forms or
modes:

l. Scalar - Normal equivalent of FORTRAN variables.

2. Vector - An object consisting 64 independent ele-
ments. It is similar to a FORTRAN one dimensional
vector but is limited in its length.

3. Matrix - A data object which contains a 64 X 64 array
of elements. Besides the matfix representation, this
object can also be used as a 'long vector' where suc-
cessive columns are stacked underneath one another
and referenced using a single index in the range

[1,4096].




The three modes differ in the way that they are mapped
onto the DAP store. The differences arise for reasons of
efficiency when performing numerical calculations. In ma-

trix mode, for example, the elements of a matrix (64 X 64)

‘are stored one per PE. The operands for a calculation by a
PE are then wholly located in its own store and the calcula-
tion proceeds bit-serially. In vector mode, on the other
hand, elements of the vector are stored one bit per PE ac-
cross a row. Operations with vector elements are perférmed
by a whole row of processors working in a cascaded fashion
(scalars are also processed this way).

The data modes may be of type integer (1-8 bytes), real
(3-8 bytes), double precision (8 bytes), character (1 byte),
and logical (1 bit). Although integer and real variables
are allowed to have different byte 1lengths, there is no
storage efficiency to be gained by using the shorter lengths
for vector and scalar variables. The only saving realized
is in computation time, as arithmetic with shorter variables
is faster. Table 4.1 shows some examples of variable decla-
rations in DAP FORTRAN. Note the use of constrained dimen-
sions ( i.e. the null subscripts in '(,)') in the declara-
tion statements. This type of declaration produces a vector
or matrix of the maximum dimension allowed by the size of

the DAP processor array ( 64 in this case ).




TABLE 4.1

Variable Declarations in DAP FORTRAN

DECLARATION RESULTING VARIABLE

INTEGER VI() A  1X64 integer vector
REAL MA(,) A 64X64 real array.
INTEGER VI(,5) A 1X5 array of 1X64 integer vectors.

REAL MA(,,10) A 1X10 array of 64X64 real matrices.

REAL*8 VI() A real 1X64 vector containing 8 byte integers.
LOGICAL LB() A 1X64 logical vector.

CHARACTER SK A scalar character variable.

Numerical Operations
Arithmetic using DAP FORTRAN variables is essentially the

-same as that defined for scalar FORTRAN implementations.

There are, however, some sensible extensions made to accom-
modate vector and matrix mode objects.

Assignment statements are exactly analogous to normal
FORTRAN assignment statements., If vector or matrix mode
variables are involved, the assignment is made via a paral-
lel component assignment. That is, components on the left
side of the assignment statement are made equal to the cor-
responding components on the right side of the assignment

statement.




A natural restriction arising from this extension is that
the guantities on either side of the equal sign be of the
same mode, type, and length (numerical precision). Type in-
compatibilities are handled in a manner similar to that of
scalar FORTRAN dialects. If possible, the type of the right
side is changed to match that of the left side. Similarly,
if the mode of the right side can be unambiguously 'expand-
ed' so that its new mode matches that of the left side, an
unlike mode assignment can be made. For;example, consider a

statement of the form:
VECTOR_VAR = SCALAR_VAR,

In this case, = the scalar variable will be expanded into a
vector with all of its components equal to the original sca-

lar variable. On the other hand, the statement
MATRIX_VAR = VECTOR_VAR,

is not valid since there are two ways in which the vector to
matrix expansion could be made (i.e. equal rows or equal
columns). In this case, the desired expaﬁsion must be spec-
ified using built in DAP FORTRAN functions.

The unary operators '+', and '-', as well as the binary
operators '+', '-=', '#' /' and '**', have extensions to
allow use of nonscalar variables. The unary operations ap-
ply to all components of their argument, while the binary
operations are performed between corresponding components of

the two arguments. Thus, an expression of the form:
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MATRIX RESULT = MATRIX1*MATRIX2,
will produce a result matrix whose components are defined by
MATRIX_RESULT(I,J) = MATRIX1(I,J)*MATRIX2(I,J),

and not by the matrix multiplication formula.

A full complement of boolean unary and binary operators
with vector and matrix extensions are provided. These oper-
ations are very useful in constructing logical masks for the
indexing operations described in the next section. The mask
can be used to inhibit operations for certain components of
a vector or matrix variable.

In addition to the above, DAP FORTRAN provides many use-
ful built-in functions. These functions can be divided into
two groups:

1. COMPENENTIAL FUNCTIONS: examples 6f this group in-

clude the trigonometric and exponential functions.
These functions operate on all modes in a parallel

manner. For example,
SIN(MATRIX_VAR),

will produce 4096 simultaneous results.

2. AGGREGATE FUNCTIONS: these functions perform basic
manipulations on vector and matfix mode objects. Ex-
amples of this class are shifting and expansion oper-

ations.




These two groups are fully described in the manuals ICL

[1980], and ICL [1981la].

Indexing Techniques

DAP FORTRAN has very powerful indexing constructs that
can be appliea to vector and matrix mode variables. Arrays,
vectors, or scalars can be selected from both declared vari-
ables and the results of functions and numerical expres-
sions. |

Indexing may be applied to both the right and left sides
of an assignment statement. Indexing on the left selects
those elements of a variable that are to be altered by the
assignment, and indexing on the right selects the elements
in a variable that are to be used in computation.

Indexing on the right can be used to make the following
selections:

1. a scalar from a vector, vector array, matrix, or ma-

trix array, and
2. a vector from a vector array, matrix, or mafrix ar-
ray, and

3. a matrix from a matrix array.
The mode of the value selected by an indexing expression is
determined by the number of null subscripts in the expres-
sion. If no null subscripts exist, a scalar is selected.
if one null subscript exists, a vector is selected, and if

two exist, a matrix is selected.
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A constrained subscript position (defined as the first of
second index position), in an indexing expression may con-.
tain any of the following:

1. a null subscript,

2. an integer scalar value/expression in range 1 to 64,

3. an integer vector expression with component values in

range 1 to 64,

4. a logical vector expression,

5. a logical matrix expression, and

6. a '+' or a '-' for shift indexing.

The shift indexing mentioned in point 6 makes use of the
nearest neighbour communications that exist in the DAP ar-
chitecture. A PE is allowed to share data via the row and
column highways with its neighbours to the north, south,
east, and west. The GEOMETRY statement controls how proces-
sors on the edge of the array are treated. Setting geometry
to 'cyclic' gives an edge processor data from the corre-
sponding processor on the opposite edge of the array, while
setting it to 'planar' always gives a processor a zero val-
ue. The geometry is separately switchable for the N-S and

E-W edges via the statement
GEOMETRY (N-S ,E-W) ,

where the words 'plane' and 'cyclic' are placed as arguments

to select the proper geometry.




Tables 4.2 and 4.3 show some examples of indexing techni-

ques. The following declarations are assumed:

INTEGER V(), VARRAY(,5,5), M(,), IV(), MARRAY(,,5)
LOGICAL LV(), LM(,).

TABLE 4.2

Examples of Left Side Indexing

ASSIGNMENT ACTION

M(,3)=V Copies V into selected column of M

vVi(2)=v2 Assigns selected component of Vi the corresponding
component of V2.

M(,IV)=V Assigns the selected component of vector M(, IV) the
corresponding component of V.

Vi(LV)=v2 Assigns V2(i) to Vi(i) if and only if LV(i) is true.
A1l other components of V1 are unchanged.

M1(LM)=M2 Similar to previous.

M(LV,3)=S Assigns the scalar $§ to all components in the third

column of M which correspond to a true element of LV.

Control Statements

DAP FORTRAN supports all the control statements common to
most standard FORTRANS: 1IF, GOTO, DO, CONTINUE, CALL, STOP,
and RETURN. These structures are enhanced somewhat to allow
the use of vector and matrix mode variables in logical and
loop limit calculations. In addition some debugging aids
are provided by the TRACE and ERROR statements (ICL [198la]
and ICL [1981b]).




TABLE 4.3

Examples of Right Side Indexing

EXPRESSION ACTION RESULT
v(3) Selects third component of vector V Scalar
V(LV) If a single component of LV is true, Scalar

the corresponding component of V is
selected.
v() Selects entire vector. Vector
VARRAY(,3,2) Selects a single column from the array. Vector
M(2,3) Selects single component of matrix Scatar
variable.
M(LM) If only one component of LV is true, Vector
a single component of M is selected.
M(2,) Selects a single row from M. Vector
M(LV,) When a single component of LV is true, Vector
the row corresponding to the non-zero
element is selected. )
M(1v,) Selects a vector V where V(i)=M(IV(i),i) Vector
M(LM,) When LM has only one true component per Vector
column, a vector is selected whose comp-
onents come from corresponding components
of the columns of M.
Mm(,) Selects entire matrix Matrix
M(+,) Selects (or forms) a matrix whose comp- Matrix
onents are shifted one row position down
from M’s. The top row will be all zeros
or equal to the bottom row if the
geometry is plane or cyclic respectively.

Program Structure
All DAP programs consist of two sections - a DAP FORTRAN

or APAL section and a 2900 FORTRAN 'host' section.

The host section is needed to provide a call to the DAP

section of the program and to provide all input/output (1/0)




that may be needed for the job. This is a result of the
fact that DAP FORTRAN has no I/0 facilities. |

Communication between the DAP and host sections of a pro-
gram is performed via named common blocks. Owing to the
fact that the two parts of the program use different data
formats in memory, special DAP FORTRAN subroutines are pro-
vided to perform data mapping conversion. The ENTRY subrou-
tine must convert relevant data from 2980 FORTRAN format to
DAP FORTRAN format when called, and then back again wheﬁ re-
turning to the host program for data output.

The DAP FORTRAN section may be made up of subroutines,
function subprograms, or block data subprograms. DAP
FORTRAN subroutines can be declared in three ways:

1. SUBROUTINE name,

2. SUBROUTINE name{dummy arguments), and

3. ENTRY SUBROUTINE name.

The first two forms of declaration correspond to normal
FORTRAN constructs with the natural extension to allowing
vector and matrix mode parameters. The latter declaration
denotes a subroutine that is to be called by the host sec-
tion of the program. ENTRY subroutines provide the only ac-
cess to the DAP facilities from the host FORTRAN section of
the program. There may be more than one ENTRY subroutine if
the user wishes.

DAP FORTRAN function subprogram declarations differ from

standard FORTRAN declarations in the addition of a mode des-

ignator to the basic syntax:
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type*length mode FUNCTION name(dummy arguments).

Thus DAP FORTRAN functions can return vector or matrix mode

“*  results.




Chapter V
THE CONJUGATE GRADIENT ALGORITHM

The conjugate gradient method (algorithm) will be derived

from an optimization point of view. An iterative method
will be developed that seeks a solution to a set of linear
equations by requiring that each iterant minimize an error
functional. The error functional 1is designed to give a
measure of the current iterative solutions 'closeness' to
the exact splution, and as such, the solution vector that
minimizes the error functional will be the solution to the
system of linear equations.

The derivation of the conjugate gradient method presented

here follows that given by Axelsson [1977].

5.1 THE CLASSICAL CONJUGATE GRADIENT ALGORITHM

The solution to the system of equations
Ax = b (5.1)

is sought, where A is a symmetric positive definite N X N
matrix, and x and b are respectively the unknown and forcing
vectors (length N). Let the exact solution to the equations

(5.1) be denoted by




h = A 'b. , (5.2)

Given an estimate x of the solution vector, define the resi-

dual to be

r =b - Ax. (5.3)

With the above definitions, consider the quadratic func-

tional ( Wexler [1980,5-21], Axelsson [1977,5-6] )

1

F(x) = 3

<x,Ax> = <b,x>, (5.4)

wvhich is a so-called energy functional. The solution which
minimizes (5.4) 1is the solution of minimum energy. Note
that '< , >' denotes the standard inner product, which is
assumed valid for real spaces.

As the name of the CG method implies, information about
the gradient of the functional (5.4) is used to determine a

path to its minimum. The gradient of (5.4) is given by
g(x) = GRAD(F(x)) = Ax - b. (5.5)

Noting the definition of the residual, (5.5) can be rewrit-

ten as
g(x) = -r. (5.6)

Observe here, that in following a path to the minimum of the
functional, the negative of (5.6) is used since it is in the

direction of the minimum.




Rewriting (5.4) in the form
F(x) = 2<(h=x),A(h=x)> - 3<h,Ah>, ' (5.7)

and using the fact that the last term is constant, it can be

seen that minimizing (5.4) is equivalent to minimizing
E(x) = 5<(h-x),A(h-x)>, (5.8)

which shall be called the error functional. Two alternate

forms of (5.8) are

1 1

2(_1'_,A_

E(x) = 1>, (5.9)

and

B(x) = <g(x),47 g(x)>, (5.10)

where g(x) is given by (5.6). Note, that the gradients of
(5.4), (5.8), (5.9), and (5.10) are equal.

In a CG iteration, one constructs a path through the
space of solution vectors such that (5.10) is minimized and
a solution is obtained on the Nth step. Each iterative step

may be considered as an exact line search of the form

AR LN (5.11)

That is, in proceeding from the current solution vector to
the next, one travels along a direction gﬁ a distance Oy e
The direction vector is chosen with some idea of the gradi-

ent, and the parameter o is chosen so that £k+l will be lo-

- 44 ~




cated at the minimum of (5.10) along the line Qk . The re-
guirement that E(x) be minimized successively by each step
of the CG algorithm enables the value of O to be deter-
mined.

Observe that

E(x 0, d) = <(b-A(x"+0,d%)), 87 (b-ax 40 a5, (5.12)

can be written as
k k k .k
E(x 4+ d) = -20,<r®,a"> + o2¢a®,ad%s. (5.13)

Setting the derivative with respect to o of (5.13) equal to

zero gives the minimization requirement that

g = T4 (5.14)

Now consider the calculation of the residual vectors for
each CG iteration. While they may be calculated from (5.3),
the matrix multiplication involved is not helpful. Using
(5.3) and (5.11), the following recursive definition for the

residual is obtained:

k+1 = £k - akAg_k. (5.15)

The matrix product in this formula can be used elsewhere in

the algorithm, giving greater efficiency.




At this juncture, recursive definitions for both x and r
have been determined. All that is needed to complete ;he
algorithm is a definition for d. It is the choice made for
d that separates the CG method from the more general conju-
gate direction (CD) method. The conjugate direction method
makes no specification on how the direction vectors are to
be derived, save that they be A-orthogonal (i.e. <d,Ad>=0).
The conjugate gradient method on the other hand, requires
that the direction vectors be constructed via A-orthogonali-
zation of the residual vectors generated by (5.15).

The orthogonalization could be realized by a Gram-Schmidt
process (Lang [1972,138-139]), but it is undesirable to
store each r vector that is generated. Instead, the follow-

ing iterative procedure is used:

a® = O (5.16)

followed by

i=n

FLARTIEL LS Bkik- (5.17)

To prove the validity of this process, the orthogonality
of the residual vectors must be demonstrated. With that
fact, the A-orthogonality of the direction vectors can be
proved, and finally the value of Bk determined.

Using (5.16), (5.15) can be rewritten as

or
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f* o= (1 o+ p (a2, (5.19)

where P, (A) is a polynomial of degree k in A with no con-
stant term. Substituting (5.19) 1into the error functional

(5.9) produces

E(x) = <(rep, (az®, a7 (e, (a2, (5.20)

Interpreting (5.20) as defining the square of 3 norm with
respect to the matrix a-* , the minimization of (5.20) is
equivalent to requiring that -Pk(A)£° be an approximation to
r° (so their sum will be =zero). The best approximation to
r® will be when the error is orthogonal (in the A-! norm) to
the basis of approximating vectors (Davis [1975,176]).

It is therefore required that

<(x+p, (AN’ a7 te ()% = o (3<k) . (5.21)

h|

But

P (A) = A+ AP, (A). (5.22)

Substituting (5.22) into (5.21) gives

<(I+Pk(A))£O,(I+Pj(A))£0> =0 (§<k-1), (5.23)

which (using (5.19)) demonstrates the orthogonality of the

residual vectors.,
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With the result in (5.23), the A-orthogonality of the di-
rection vectors can be proved. Let Jj be less than k[ then

(using (5.15) and (5.17))

#

<£k,A£j> =8 _1<(£k_£k+1),gj'1>, (5.24)
(o}
K

Extending (5.24) by induction leaves

k

k__k+l, 0
<a®,aad> -8 c e Bp<(zr T,

j—lBj-2

(5.25)
o

k
Using (5.16) and the orthogonality of the residual vectors
shows that (5.25) equals zero, which proves the A-orthogo-
nality of the direction vectors.
It remains for the value of B, to be determined. The A-

orthogonality of the direction vectors gives

<£k+1+8kik»A9_k> =0. (5.26)

Solving for By produces

g. = X < (5.27)

It is profitable to put (5.14) and (5.27) into more com-
putationally efficient forms. Using (5.17) and the orthogo-
nality of the residual vectors gives
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O, T = _— . (5.28)

Substituting (5.15) and then (5.28) into (5.27) yields

k+1 k+1
{r r
k

<3'_k

>
(5.29)

The derivation of the classical conjugate gradient algor-
ithm is now complete. Using equations (5.3), (5.11),
(5.15), (5.16), (5.17), (5.28), and (5.29), the algorithm

can be summarized as follows:

0

X = ARBITRARY, (5.30)
= b - a0, (5.31)
a% = £°, (5.32)
kK _k
Oy = <———-————-—————£ 22, (5.33)
<d*,Ad*>
Lo gk k ~ (5.34)




r =r - o Ads : (5.35)
k+1 k+1
B, = I x> (5.36)
k R
<r ,r>
and
gk+1 - E.k-!—l + Bkﬂk' (5.37)

where k= 0, 1, 2, ...... and the iteration terminates when
the Euclidean norm of the residual vector is less than some
prescribed value.

The listing in Appendix A ihcludes the implementation of

the above equations in DAP FORTRAN.

5.2 THE PRECONDITIONED CONJUGATE GRADIENT ALGORITHM

Theoretically, the CG method should terminate in a finite
number of steps (less than or equal to N - the dimension of
the linear system). If round-off error occurs, or if the
system matrix has a large spectral condition number (defined
as the ratio of the largest to the smallest eigenvalue),
however, convergence may never occur or may take considera-
bly more than N iterations. Also, for large N, even a
well-conditioned system will require a large amount of exe-
cution time owing to the fact that each CG iteration is

fairly expensive.
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The slow convergence rate of the CG algorithm can be im-
proved by performing a preconditioning process on the system
matrix. The effect is to reduce the spectral condition num-
ber of the system matrix which in turn improves the conver-
gence rate (Kershaw [1978,46], Axelsson [1977,17-23]).

Preconditioning is realized by multiplying the original
system (5.1) by a matrix K-* which is an approximate inverse
to the system matrix. The ultimate preconditioning matrix
would be the precise inverse qf the system matrix, as multi-
plying by such a matrix would solve the system exactly in
one iteration, The effect of preconditioning, then, 1is to
put the linear system 'closer' to its solution.

Since our system matrix is symmetric, the matrix K will

also be symmetric, and can be written as
T

Multiplying (5.1) by K-* gives the new system

-1
ax = (LT b, (5.39)

(LL™y™!
For the present purpose, it is necessary to rewrite (5.1) as
alahals = aly, (5.40)

or (to define the primed quantities),

A'x" = b’. (5.41)
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The convergence properties of (5.41) and (5.39) will be

identical since (LLT)_lA and (L"l

AL"T) are similar matrices
and have the same eigenvalues. The CG method, .now called
the Preconditioned Conjugate Gradient (PCG) method, can be
applied to the system (5.41) in a manner identical to its
application to (5.1). This results in a set of equations
'identical' to equations (5.30)-(5.37), but with primed
quantities replacing the normal quantities.

A', b', and x' are as defined in (5.4). As for r', re-

writing (5.9) in the form

E(x") = —;-<(L'1£k),(L'IAL‘T)’I(L’IE“», (5.42)
allows the definition of r' as
B(x) = %<£-'R,A"1£'k>’ (5.43)
giving finally
PN AL (5.44)
Similarly to (5.16),
a9 = £, | (5.45)

The relationship between d and d' is somewhat arbitrary.

The choice

d’" =174 (5.46)
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is made as it results in a considerable simplification in
the equations defining the PCG method.
With the above definitions for the primed variables, it

is possible to transform the equations back to normal vari-

ables. The resulting algorithm is given in the following

equations:
50 = ARBITRARY, (5.47)
_r_o =b - A}_O, (5.48)
a0 - K—ILO, (5.49)
<rk,K-1rk>
ak - — ’ (5.50)
<a®,ad">
k k
zkﬂ =x +a,d, (5.51)
_k+1 e rf - akAdk, (5.52)
k+1 _ =1 _k+1
< yK
B, = = r - (5.53)
<£k’K-1£k>
and
+ -1 _k+1 k
PRI ahd +Bd e ’ (5.54)
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where k=0, 1, 2, ...... and the iteration terminates when
the Euclidean norm of the residual is less then some pre-
scribed value. |

The PCG algorithm presented in (5.47) - (5.54) is a spe-
cial case of the generalized CG method first presented by
Hestenes [1956,83-102]. In his derivation, Hestenes places
no requirements on the properties of the matrix K . As a
result, the choice for K is not entirely obvious. The deri-
vatiqn presented here has the advantage of indicating exact-
ly what properties K should possess.

The implementation of the PPCG algorithm in DAP FORTRAN

is included in Appendix A.

5.3 CHOICE OF THE PRECONDITIONING MATRIX - K

At this point, the only constraint put on the matrix K-*
is that it be an approximate inverse of the system matrix.
The method by which K-* is obtained has not been specified.

For scalar processors, the most efficient way to obtain
an approximate inverse seems to be the incomplete Cholesky
factorization method put forth by Meijerink and van der
Vorst [1977,148-162)] (An implementation of which is dis-
cussed by Kershaw [1978,43-65]). Also, Nakonechny [1983]
has shown that the the Incomplete Cholesky Conjugate Gradi-
ent (ICCG) method has the advantage of allowing efficient

implementation of a linked-list sparsity scheme.
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Despite its advantages, ICCG is not suitable for imple-
mentation on a parallel computer (Webb et al.
[1982,325-329]). The incomplete Cholesky decomposition is
inherently a recursive process that does not lend itself to
parallel implementation. Successive column eliminations
must proceed serially. While some parallelism can be ex-
tracted from a column elimination when a sparsity scheme is
not used, with a sparsity scheme, parallel implementation is
hopeless (especially on the DAP).

The goal here, then, is to arrive at an algorithm that:

1. 1incorporates preconditioning in its framework,

2. allows sparse storage of generally sparse system ma-

trices, and

3. 1is efficiently implementable on the DAP.

The above requirements are met by combining the basic PCG
algorithm with a class of polynomial preconditioners dis-
cussed by Dubois et al. [1979,257-268] and Johnson et al.
[1983,362-376].

The Polynomial Preconditioned Conjugate Gradient (PPCG)
algorithm approximates the inverse of the system matrix A by
a truncated Neumann series expansion. This approximate in-
verse is then used as K-* in the PCG algorithm ((5.47) -

(5.54)). Consider the splitting of the system matrix

A= (M- N) = M(I - M 1Ny, (5.55)
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In exact analogy with the theory of scalar series (as op-

posed to matrix series), A-! can be represented ekactly by

- or

A-l = (I - M-IN)—IM-I, | (5.56)
which can be written as
-1 -1 i,,-1
A = E arim (5.57)
A”l - (1§0 (1 - ulytyn !, (5.58)
provided that (Mirsky [1982,332])
-1 -1
p(M "N) = p(I - M "4) < 1, (5.59)

where o is the spectral radius of its matrix argument. The
latter point (5.59), follows from the fact that a matrix
raised to higher and higher powers will approach zero only
if its spectral radius is less than one (Mirsky [1982,328]).

Owing to the fact that the calculation of (5.58) is int-
ractable, an approximation to the inverse of the system ma-
trix can be constructed by truncating the series (5.58) af-
ter a few terms (typically 1-4). Let the truncated inverse

be defined by

1 z-1

- -1,.1i,,.~1
K= = (150 (I - M "A)HM -, (5.60)

where the possible z values ( one to infinity) determine the

degree to which A-! is approximated. The PPCG algorithm is
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therefore parameterized by the quantity 2z and shall, here-
after, be denoted as PPCG(z).

The matrix K-* need not be éxplicitly calculated and
stored. It is needed only for the matrix vector product in

(5.47) - (5.54) of the form
c=KkK, r. : (5.61)

This product can be evaluated whenever it is needed, saving
great storage costs ( K-! will be denser than A itself ).
This is a great advantage over the ICCG method which re-
quires additional storage equal to the storage required for
the A matrix. PPCG(z) requires only the storage of an addi-
tional vector of length N over the basic CG algorithm.

The value of 2z should be user-specifiable since the ma-
trix vector multiplication required to evaluate (5.61) is
very expensive. For increasing values of z, there is a def-
inite trade-off between:

1. the decrease in total execution time resulting from
the decrease in the number of iterations needed to
achieve a specified accuracy, and

2. the increase in total execution time resulting from
the increased execution time of a single iteration
for higher z values.

The choice for M-* in (5.60) 1is of fundamental impor-

tance. It must be such that (5.59) holds. An exceptional

choice is to take
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w1l - (DIAGONAL(A))-I. (5.62)

With M-* of this form, (5.59) 1is guaranteed to hold if A is
strictly or irreducibly diagonally dominant (varga
[1965,73]). 1In particular, if A is a real N X N matrix, and
(aij) < 0 for all i # j, then M—lN is nonnegative, irre-
ducible, and convergent if (Varga [1965,84]):

1. A is nonsingular and A-! is > 0, or

2. the diagonal entries of A are positive real numbers.

Matrices of this type arise 1in many cases of interest.
Varga [1965,161-208] demonstrates that matrices with the
above properties arise naturally from the finite-difference
solution of elliptic partial differential eguations.

An additional’advantage of (5.62) is that any matrix-vec-
tor products involving M-* in the evaluation of (5.61) can
be replaced by a vector-vector product. The latter is espe-
cially efficient on the DAP.

It can be seen that the preconditioning algorithm pre-
sented here is only as good as the matrix-vector multiplica-
tion routine used to implement it. It is important that the
sparsity scheme chosen allows a very efficient routine to be
coded. This point is especially important with parallel
processors since the architecture will often limit the usa-
ble sparsity schemes with a resulting limitation in the op-

tions available for matrix-vector multiplication routines.
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The implementation of PPCG(z) on parallel processors will
involve compromises between sparsity schemes and multiplica-
tion routines. These considerations as applied to the ICL

DAP are discussed in the following two sections.

5.4 SPARSE MATRIX STORAGE SCHEME

The use of sparse matrix storage in numerical analysis is
an absolute necessity. In general, the matrices arising
from finite-element and finite-difference analysis are very
large and very sparse. Dense storage of such matrices is
impossible, and as such, schemes must be devised that store
only the nonzeros of a given matrix.

There are special problems associated with storing sparse
matrices on the DAP. It 1is of fundamental importance that
the data structure chosen allow the full parallelism of the
DAP (4096 simultaneous operations) to be exploited. This
goal can be achieved only if numerical operations are per-
formed using matrix mode data objects.

A problem arises, however, when it becomes necessary to
reorder data so that matrix arithmetic can be used. The
data reordering process can consume considerable amounts of
time. Indeed, the matrix - vector multiplication algorithm
presented in the next section spends most of its time per-
forming data reorganization and a very minimal amount of

time doing actual addition and multiplication.




It is here that a deficiency in the DAP design comes to
light. The limited processor interconnection pathways do
not allow for efficient data reorganization. If it were
possible to implement a permutation network along with the
DAP, its power would be greatly enhanced.

The storage scheme and 1its associated matrix - vector
multiplication algorithm used here, are adaptations of those
suggested by Parkinson [1981]. The system matrix is stored
so that the nonzero coefficients are stored one row per pro-
cessor., That is, the contents of a row are entirely con-
tained within the 1local store of a single processor. The
row number that a processor stores is given by its long vec-
tor order number defined in Section 4.2.2.1. Each coeffi-
cient is stored along with an integer number that indicates
which column it belongs to.

Thus, the system matrix is entirely described by the fol-
lowing three quantities:

1. the coefficient values stored as a matrix array,

2. the long vector position that the coefficients occu-

py, and

3. an integer ﬁatrix array whose entries give the column

position of the corresponding element in the coeffi-
cient array.
Figure 5.1 shows an example of this data structure for a hy-
pothetical 2 X 2 DAP storing a 4 X 4 matrix. Note that the

symmetry of the system matrix is ignored in this scheme.
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STORAGE SCHEME

SYSTEM MATRIX COEFFICIENT COLUMN

VALUE POINTER

2 0 0 4 [ 2 -1 ] (1 2]
STORE PLANE 1

0 2 -1 1 [ 2 4 ] [ 2 1]

0-1 3 © [ 4 3] [ 4 3]
STORE PLANE 2

4 1 0 2 (-1 1 ] | 3 2 ]

f o o] F 1 1]
STORE PLANE 3

| 1 2 ] | 4 4 |

Figure 5.1: Example of matrix storage scheme.

One small point should be mentioned here. Since it is
probable that not every row will have the same number of
nonzero coefficients, some zero entries will need to be
stored in the coefficient matrix array. This happens in the
store planes (defined in Figure 5.1) subsequent to the one
that the 1last nonzero of a row is stored in. The column
pointer corresponding to these zeros is arbitrarily set to
1. This is done with a view to using a standard system sub-
routine in the matrix - vector ﬁultiplication algorithm
which requires that the column pointer values be in the

range [1,4096].




5.5 MATRIX-VECTOR MULTIPLICATION ALGORITHM

A matrix vector product of the form
y = Ax, - (5.63)

is to be evaluated. To this end, the A - matrix is assumed
to be stored in the manner described in the previous sec-
tion. Let the problem be of order N, where N is in the
range [1,4096]. In addition, 1let ©processor k contain the
kth component of x and y.

The matrix - vector multiplication process can, in gener-
al, be viewed as N independent row vector - column vector
scalar products. Since all of these scalar products are in-
dependent, they may be evaluated in parallel. This is done
by processing the matrix store one plane at a time. Each
plane contains one nonzero multiplier from a term in each of
the N scalar products. All that is needed is to generate a
matrix containing the proper multiplicand in each position
so that the DAP FORTRAN matrix mode multiplication can be
used, generating 4096 scalar product terms. This matrix of
product terms can then be summed into the y vector to accu-
mulate all the scalar products simultaneously.

The problem is to generate a matrix of multiplicands for
every plane of matrix store. This matrix is best defined by

the following formula:

MULTIPLICAND(I) = X(COLUMNS(I)) -
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where the matrix COLUMNS indicates to what column the multi-
plier'of MULTIPLICAND(I) belongs and is equal to the pfesent
plane of the column pointer matrix array.

There are two convenient ways to generate the above
transformation.

The first is by using an existing subroutine in the DAP
subroutine library at QMC (Liddel and Bowgen [1982]). This
routine, called MO0l1_PERMUTEl, performs precisely the re-
quired transformation. The main disadvantage to this ap-
proach is that the subroutine takes a considerable amount of
time to execute (11 ms).

The second way is by use the DAP FORTRAN broadcast facil-
ity. The transformed matrix is built by testing the values
contained in COLUMNS sequentially, and broadcasting the val-
ue X(TESTED VALUE) to all matrix positions in the
MULTIPLICAND array which correspond to an occurrence of the
tested value in the COLUMNS array. The assignments (broad-
casts) in each step are done in parallel and are implemented
using the logical mask indexing facilities of DAP FORTRAN,
If fewer than about 500 broadcasts are needed for a particu-
lar plane of the matrix store, this approach will be faster
than using M0l_PERMUTEL.

The scheme used for a particular store plane is deter-
mined by counting the number of broadcasts needed for that
plane. Since this analysis is quite expensive, it is not

really necessary if only one multiplication is being done.
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If there are many multiplications using the same A matrix,
however, the analysis can be done once and used fqr ali sub-
sequent multiplications, making the extra costs incurred
negligible. -

The code implementing this multiplication algorithm is

listed in Appendix B. The listing is heavily documented and

should help to explain some of the finer points of the al-

gorithm,




Chapter VI .
TEST PROBLEM RESULTS

The examples presented in this chapter serve two purpos-

es:
l. to study the properties of the PPCG(z) algorithm, and
2. to study the efficiency of the PPCG(z) algorithm on
the DAP.
Parallel and serial versions of the PPCG(z) and CG algor-
ithms are compared and contrasted with each other, and with
a sérial implementation of the ICCG algorithm for two elec-
tric field problems.
The first, a Dirichlet finite-difference problem, was im-
plemented on both an ICL DAP and an Amdahl 5850. This exam-
ple provides comparisons of the CG, ICCG, and PPCG(z) algor-

ithms, as well as giving a measure of the performance of the

ICL DAP,

The second example is a finite-element problem. It was

included to show that, while not applicable in theory, the

PPCG(z) method provides a viable solution technique for such

problems. This problem was implemented on the Amdahl 5850

only, and as such, serves only to characterize the PPCG(z)

algorithm in its own right, rather than the parallelization

of it.
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The serial conjugate gradient routines used here are de-

rived from those of Nakonechny [1983]. These routines use a
linked-list technique as a sparse storage scheﬁe. This
method is ideally suited to scalar processors, as it mini-
mizes the searching time needed to implement a matrix-vector
multiplication algorithm. The serial processor, then, is
not penalized by asking it to implemént the sparse storage

and multiplication algorithms described in Chapter 5.

6.1 THE FINITE-DIFFERENCE PROBLEM

Consider the Dirichlet field problem shown in Figure 6.1.
The solution of Laplace's equation for the potential ¢ in
the interior region is sought (under the prescribed boundary
conditions). The finite~-difference analysis of such a prob-

lem produces a linear system whose coefficient matrix obeys

precisely the properties required by the PPCG(z) method (see
Section 5.3).

3| -Vi¢:=0 |¢=I

©
]

Figure 6.1: Finite-difference problem geometry.
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In order to cater to the DAP processor parallelism, the
region in Figure 6.1 was discretized into a 64 X 64 grida
This yielded 4096 unknowns, which precisely matches the num-
ber of processors in the DAP. It was not neceséary to run
smaller problems than this, as the DAP PPCG(z) algorithm is
such that it will solve a 64 X 64 problem just as fast as it
will a smaller problem.

The resulting 1linear system (with a 4096 X 4096 coeffi-
cient matrix) was solved using CG and PPCG(z) on the DAP,
and using CG, ICCG, and PPCG(z) on the Amdahl 5850. Figures
6.2 and 6.3 show the iteration count and execution time
properties of the various methods (excluding the Amdahl
PPCG(z) results). As can be seen from the figures, parallel
PPCG(z) competes very favourably with the scalar ICCG algor-
ithm, While ICCG 1is the winner in reducing the iteration
count (except for PPCG(4)), PPCG(2) is the clear winner when
execution time is considered.

An interesting property of the PPCG method can be seen in
Figure 6.2. A comparison of the PPCG(2) and PPCG(3) curves
shows that higher preconditioning orders (higher z wvalues)
do not necessarily give lower iteration counts. This phe-
nomenon can be explained via analytic convergence estimates
given by Dubois [1979,264]. It 1is analogous to truncating
an alternating scalar series at an undesirable term. For
example, the Nth partial sum may actually be closer to the

limit than the (N+1)th partial sum. Therefore, by analogy,
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the Nth estimate of the inverse of the system matrix may be
closer to the actual inverse than is the (N+1)th estimate.
As mentioned in the previous chapter, the expense of sin-
gle PPCG(z) iteration is highly dependent on the value cho-
sen for z. The interaction of this property with the reduc-

tion 1in iteration count can be observed in Figure 6.3.

While the iteration count for PPCG(4) 1is lower than that of
PPCG(2), the greater expensé of each iteration of the former
causes it to do worse in terms of total execution time.

The expense of appending successively more‘terms onto the
inverse series is also evident in Table 6.1. Each increment
of z increases the execution time for a PPCG(z) iteration by
30 ms on the DAP and by 36 ms on the Amdahl. For the z val-
ues of interest (4 or less), this increase is very signifi-

cant.

TABLE 6.1

Execution Time per Iteration for the DAP and Amdahl

PPCG(1) PPCG(2) PPCG(3) PPCG(4) ca ICcCG
DAP 34 64 84 125 33
AMDAHL 54 80 125 162 52 103
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Table 6.1 also gives performance comparisons between the
DAP and the Amdahl 5850 (an example of a fast scalar pfoces—
sor). When comparing CG and PPCG(z) results, it can be seen
that in all cases the DAP executes a single iteraiion faster
than the Amdahl.

When comparing iteration counts for equivalent CG and
PPCG(z) algorithms on the DAP and the Amdahl, an interesting
observation comes to 1light. Comparing the curves for
CG(DAP) and CG(Amdahl) in Figure 6.2, and corresponding
curves for the PPCG(z) algorithm in Figure 6.4, one observes
that the algorithms on the Amdahl require more iterations to
satisfy a specified convergence requirement. Since the al-
gorithms are identical 1in function, one can only conclude
that‘the DAP algorithms produce less round-off error than do
the Amdahl algorithms.

This phenomenon is due to the fact that the parallel al-
gorithm is able to conserve precision by using a number of
accumulators when evaluating the scalar products. Adding a
small number to a large number occurs less often, and as a

result, less rounding occurs.
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6.2 THE FINITE-ELEMENT PROBLEM

As a second example, consider the geometry shpwnviﬁ Fig-
ure 6.5. 1In this field problem, the z-component of the mag-
netic vector potential (A,) is to be determined (under the
boundary conditions indicated). The region itself is divid-
ed into a number of areas of different magnetic permeability

Ue

Az= H3 A, =0

A,=0

Figure 6.5: Finite-Element Problem Geometry

The finite-element solution of this problem produces a
positive definite system matrix that does not meet the re-
quirements of the PPCG(z) method (see Section 5.3). Despite
this, the results presented here indicate that PPCG(z) is

useful for solving finite-element problems.
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Figures 6.6 and 6.7 show the iteration count and execu-
tion time results for the CG, ICCG, and PPCG(z) algorithms
running on an Amdahl 5850 scalar processor. Note that a so-
lution of this problem was not attempted on the DAP.

ICCG again excels in its ability to reduce the iteration
count., Unlike the previous example, - no PPCG algorithm of
interest exhibits a lower iteration count than ICCG.

Total execution time is the telling factor, however. The
execution time of PPCG(1l) is much lower than that of ICCG
for the full range of exit criteria considered, while
PPCG(2) and PPCG(3) have lower execution times for those
ranges of exit criteria where round-off error is not preva-
lent. The round-off error for tighter exit criteria indi-
cated in figures 6.6 and 6.7 should not occur for the paral-

lel PPCG(z) solution of this problem.
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Figure 6.7: Execution time vs. exit criterion for the
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Chapter VII

~ CONCLUSION

This thesis has shown that polynomial preconditioning al-
lows efficient parallelization of the preconditioned conju-
gafe gradient algorithm on a processor array. The parallel
implementation of PPCG(z) on the DAP attains faster solution
times than an implementation of the ICCG algorithm on a fast
scalar processor, The parallel PPCG(z) performance ranges
from 1-2 times that of scalar ICCG. Also, both the PPCG(z)
and ICCG algorithms are applicable to the same classes of
matrices so that the two methods should be interchangeable.

Dubois performed polynomial preconditioning on a CDC STAR
100, which is a pipelined vector processor. His algorithm
incorporated a sparsity scheme that was matrix dependent.
.The DAP PPCG(z) algorithm, however, was implemented with a
general sparse matrix storage scheme. This feature is im-
portant as many of the solution techniques used in numerical
analysis produce large, generally sparse matrices.

The parallel CG and PPCG(z) algorithms were shown to be
more resistant to round-off error. The ability to easily
accumulate into a number of locations when performing scalar

products allows round-off effects to be reduced.
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The PPCG(z) algorithm's performance 1is highly dependent
upon the efficiency of the matrix-vector multiplication al-
gorithm, If a more efficient multiplication algorithm could
be found, the DAP could offer even greater speed advantages
over a scalar processor running ICCG. This would, in turn,
require the formulation of a different sparsity scheme.

One option is to adapt the sparsity scheme to the topolo-
gy of the problem at hand. In the case of the finite-dif-
ference example, one could store only nonzero diagonals.
The matrix-vector multiplication would then take the form of
the algorithm suggested by Madsen et al. [1976]. This ap-
proach, however, has the disadvantage of decreasing the gen-
erality of the PPCG(z) algorithm.

Since the permutation operation is the bottleneck in the
present matrix-vector multiplication algorithm, greater per-
formance could be achieved by streamlining this operation.
Software options to achieve this are limited. It would have
to be realized with hardware additions to the DAP. A
switching network like that used in the Burroughs FMP (Gott—i
lieb and Schwartz [1982,30]) could be used to interconnect
the DAP processing elements, resulting in faster long vector
permutations. Such a hardware addition to the DAP would
make it a much more powerful processor.

The incentive to either improve the DAP or the PPCG(z)
algorithm increases if one considers the performance of the
present algorithm when the number of unknowns exceeds the

parallelism of the DAP.
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Consider, for example, a problem with 8192 unknowns. The
matrix for such a problem would be stored in two blocks,
each identical to the storage scheme described in Chapter 5,
one representing the first 4096 rows, and the second repre-
senting the last 4096 rows (low and high order respective-
ly). Since the column pointer array for both the high and
low order blocks may contain values in the range [1,8192]
(i.e. from both row blocks), a permutation done for a plane
in the low order matrix store must be accompanied by one us-
ing the corresponding plane in the high order matrix store
(and vice versa). Thus, two permutations are required to
process each plane in each matrix storage block. Since
there are twice the number of matrix storage blocks, the
number of permutations in the 8192 unknown problem exceeds
that in the 4096 unknown problem by a factor of 22 (assuming
that the number of nonzeros per row is the same for both
problems).

Generalizing the above result, then, if the number of un-
knowns exceeds the number of DAP processors by a factor of
j, the number of permutations needed to perform a matrik—
vector multiplication increases by a factor of j* . Exceed-
ing the DAP parallelism by two or three may be acceptable,
but any larger a problem size would require reworking the
algorithm.,

The most natural way to extend the present PPdG(z) algor-

ithm to larger problem sizes is to increase the size of the
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DAP. A 128 X 128 DAP could solve matrices of order 16384 in
the same time as the present DAP solves matrices of order
4096. A DAP of this size is entirely feasible (indeed, the
128 X 128 MPP processor array has already been built), and
with the advances in VLSI technology of late, has a good
probability of being built.

The major conclusion that can be reached £from this the-
sis, in conjunction with Dubois' work, is that the precondi-
tioned conjugate gradient algorithm does have a future in
the world of parallel processing. It has been argued that,
because of the inherent recursiveness of preconditioning al-
gorithms, it would never be competitive with other direct or
iterative methods. The incorporation of a general sparsity
scheme into the parallel algorithm can only serve to
strengthen this conclusion. The performance of the PPCG(z)
algorithm on the DAP, while not earthshaking, indicates a
potential for it to be a serious parallel linear-equation

solver.

_80..




Appendix A
CONJUGATE GRADIENT LISTING

SUBRDUTINE CG(SN,SP,SMAXPLANES,MA ,MCOLUMNS,LVX,LVB,
& SEXIT,SNUMITER, SPRECON_ORDER)

c
O3 Kok K K e W K o K o 3K e 36 3K o K e 2 o K 3K e M 3K e 3K o 3K e 36 e 2K e 3K e 3K e 3K 3K o 3 a3 o 3K o K e 3 e o o 2K o oK o K o O
Cc
Cc PERFORMS CONJUGATE GRADIENT SOLUTION OF (MA)*(LVX) = (LVB)
Cc WITH OR WITHOUT THE POLYNOMIAL PRECONDITIONING SCHEME
c
C Kot Koo K K e Ko o e 2K o 3 e K e 3 e 2 o K e e 36 o 3K o B e 2K e 3K o 2K e 3 e 3K o 3K o 3K e 3K o 3K o 3K e 3K e 3o K o K e 3K o Ko 2
(o

c PARAMETER DICTIONARY
c
CRe Moah K W e W Ko X o X o KK o Ko W e K e K e 2 o Koo K o K o 3K o 3 o K e 3K e 0K o 3K o K o 3K e 3K o K e 3 e Ko 3o WK 2K 0K e O
c
C SN - DIMENSION LINEAR SYSTEM.
C SP - NUMBER OF PLANES DCCUPIED BY MA.
C SMAXPLANES -~ NUMBER OF STORAGE PLANES TAKEN BY MA
c MAXIMUM VALUE FOR SP.
C MA - MATRIX OF COEFFICIENTS STORRED ONE ROW PER PROCESSOR.
C MCOLUMNS - GIVES COLUMN NUMBER OF CORRESPONDING MA ELEMENT.
C LVX - UNKNOWN (RESULT VECTOR).
C LVB - SDURCE VECTOR.
C SEXIT - EXIT CRITERION. WHEN THE EUCLIDEAN NORM OF THE RESIDUAL
c IS LESS THAN THIS VALUE, THE SUBROUTINE EXITS.
C SNUMITER - THE NUMBER OF ITERATIONS TAKEN FOR CONVERGENCE.
C SPRECON_ORDER -~ INDICATES TO WHICH ORDER THE PRECONDITIONING
c POLYNOMIAL 1S EVALUATED. ZERO INDICATES NO
c PRECONDITIONING.
c
C*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
c
INTEGER SN,SP,SMAXPLANES,SNUMITER,SLOOPLIM
INTEGER MCOLUMNS(,,SMAXPLANES), MTEMP(,)
REAL MA(,,SMAXPLANES)
INTEGER I,J,K,VCOUNT()
REAL LVX(,), LVB(,)
REAL SALPHA,SBETA,S_OLD_PROD,S_NEW_PROD
REAL LVANS(,), LVR(,), LVD(,)
REAL SEXIT
INTEGER SPRECON_ORDER
LOGICAL SFIRST
REAL LVDIAG_INV(,), LVFIRST_TERM(,), LVRESULT(,)
INTEGER MLONG_INDEX(,),VTEMP(),PLACE
c

Cokoh W e K W o W W Ko B T e e e e W 3 B e R 3K e e 2K e M 2 o 2 e 2 e 3 3K o K e o e o o Mo 3
c

c VARIABLE DICTIONARY
C

(ol 2 T LR T PR S PR LS P P Y Y e T S Y e N I L S Y Y P A T e S S L P

LVANS - RETURNS RESULT FROM SPARSE MULTIPLY.

SALPHA - EXACT LINE SEARCH CONSTANT FOR NEW X VECTOR CALCULATION.

SBETA - EXACT LINE SEARCH CONSTANT FOR NEW DIRECTION VECTOR -
CALCULATION.

LVD - DIRCTION VECTOR.

LVR - RESIDUAL VECTOR.

[eReNoNoReNe el




LVDIAG_INV - VECTOR HOLDING THE INVERSE OF THE DIAGONAL
OF THE SYSTEM MATRIX.
LVFIRST_TERM - THE FIRST TERM IN THE POLYNOMIAL EXPANSION.
LVRESULT - ACCUMULATOR FOR THE POLYNOMIAL EXPANSION.
S_OLD_PROD, S_NEW_PROD - TEMPORARIES FOR SCALAR PRODUCTS USED
IN THE SALPHA AND SBETA CALCULATIONS.
MLONG_INDEX - HOLDS THE LONG VECTOR ORDERING OF THE PROCESSOR
'ARRAY. THIS ORDERING ASSIGNS EACH PROCESSOR
A NUMBER IN THE RANGE [1..4096], WITH THE FIRST
COLUMN GETTING VALUES [1..64], THE SECOND COLUMN
VALUES [65..128] ETC.
PLACE - USED TO GENERATE MLONG_INDEX.
VTEMP - USED TD GENERATE MLONG_INDEX.
SFIRST - INDICATES FIRST CALL TD SPARSE_MULTIPLY.
VCOUNT - HOLDS NUMBER OF BROADCASTS NEEDED FOR EACH LAYER
OF THE SYSTEM MATRIX.

K a3 o 2 K o 3K e K o B 3 e 2 e o 3K e e 3 o 3K o Ko K o S e e o o e Kb B W R SR B K o e O o K o o K
EXTERNAL SUBROUTINE

EXTERNAL SPARSE_MULTIPLY
WHICH ROUTINE SHOULD BE USED?
IF (SPRECON_ORDER.NE.O) GOTO 1000

L e L E L L L e e T T e e S P T e e L e R e S r
CONJUGATE GRADIENT ROUTINE (NO PRECONDITIONING)

L S e e L L T T e e R R e e e L e DL P S e
INITIALIZE VARIABLES.

SET UP SFIRST FOR FIRST CALL TO SPARSE_MULTIPLY SO THAT
VCOUNT WILL BE GIVEN PROPER COMPONENTS

[eReNoNoNeNoNoNoNe NS R o000 [eXsNeNsNeNeNoNeNoEeNeNoNoNoNoReNoNe RO N N

SNUMITER=0O
LVX=1
SFIRST = .TRUE.
VCOUNT = O
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& LVX, LVANS,VCOUNT,SFIRST)
c SET SFIRST TO FALSE SO SPARSE_MULTIPLY WILL NOT
c RE-EVAULATE VCOUNT,

SFIRST = .FALSE.

LVR = LVB - LVANS

LVD = LVR

S_OLD_PROD = SUM(LVR*LVR)

BEGIN CG ITERATION

oo

CONTINUE
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& LVD, LVANS , VCOUNT, SFIRST)
SALPHA = S_OLD_PROD/SUM(LVD*LVANS)
LVX = LVX + SALPHA*LVD
LVR = LVR - SALPHA*LVANS
S_NEW_PROD = SUM(LVR*LVR)
SBETA = S_NEW_PROD/S_OLD_PROD
S_OLD_PROD = S_NEW_PROD
LVD = LVR + SBETA*LVD
SNUMITER=SNUMITER+ 1
c CHECK EXIT CRITERIDN, STOP ITERATING IF MET
IF (SQRT(SUM(LVR*LVR)) .GT. SEXIT) GOTO 5 .
GOTO 2000
1000 CONTINUE
c



(o TE P PR S XY P N IS P P PR S FE P P AL RS TS PR S RS S PR LS PSS PSR L Rl AL
c

Cc POLYNOMIAL PRECONDITIONED C.G. ROUTINE

Cc

Gk ok 3 ok b Ko 3K e e oK e 2K o 2 e 3K oK 3K o 3 o SR oK M Ko M K W h oK e DK K Kb K Mo B e O e K K
PRODUCE AN INTEGER MATRIX WHDSE ENTRIES )
CORRESPOND TD LONG-VECTOR ORDER {1 TO 40896

FROM INTRO TO DAP FORTRAN PROGRAMING PG. 5-5

USE THIS TO OBTAIN THE DIAGONAL OF THE SYSTEM MATRIX

[sXeNoNsNeXe

VTEMP=0
PLACE=1
DO 10 K=1,6
VTEMP(ALT(PLACE)) = VTEMP + PLACE
10 PLACE = PLACE*2
MLONG_INDEX = MATC(VTEMP) + MATR(64*VTEMP) + 1

NOW LDAD DIAGONAL ENTRIES OF SYSTEM MATRIX INTO A LONG
VECTOR AND INVERT THE RESULTING VECTOR.
THIS VECTOR IS THE BASIS OF POLYNOMIAL PRECONDITIONING

[eNeNeNaXe!

LVDIAG_INV = 0.0
DD 20 I=1,SP
MTEMP=MCOLUMNS(,,I)
LVDIAG_INV(MTEMP.EQ.MLONG_INDEX) = MA(,,I)
20 CONTINUE
LVDIAG_INV = 1.0/LVDIAG_INV

c
c INITIALIZE VARIABLES.
Cc SET UP SFIRST FOR FIRST CALL TO SPARSE_MULTIPLY SO THAT
c VCOUNT WILL BE GIVEN PROPER COMPONENTS
c
SNUMITER=0
LVX=1
SFIRST = .TRUE.
VCOUNT = O
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& LVX,LVANS, VCOUNT ,SFIRST)
c SET SFIRST TO FALSE SO SPARSE_MULTIPLY WILL NOT
c RE-EVAULATE VCOUNT.
SFIRST = .FALSE.
LVR = LVB - LVANS
c
c PERFORM POLYNOMIAL EVALUATION FOR PRECONDITIONING
Cc
LVFIRST_TERM = LVDIAG_INV*LVR
LVRESULT = LVFIRST_TERM
SLOOPLIM = (SPRECON_ORDER - 1)
IF (SLODPLIM.EQ.O) GOTO 40
DO 30 I = 1, SLOOPLIM
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& LVRESULT,LVANS, VCOUNT,SFIRST)
30 LVRESULT = LVFIRST_TERM + LVRESULT - LVDIAG_INV*LVANS

40  CONTINUE
LVD=LVRESULT
S_OLD_PROD = SUM(LVR*LVRESULT)

BEGIN PPCG ITERATION

i XeNeNe

0 CONTINUE
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& LVD,LVANS, VCOUNT , SFIRST)
SALPHA = S_OLD_PROD/SUM(LVD*LVANS)
LVX = LVX + SALPHA*LVD
LVR = LVR - SALPHA*LVANS
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PERFORM POLYNOMIAL EVALUATION FOR PRECONDITIONING

LVFIRST_TERM = LVDIAG_INV*LVR
LVRESULT = LVFIRST_TERM
- IF (SLODPLIM.EQ.0) GOTO 70
‘ DO 60 I = 1, SLOOPLIM
CALL SPARSE_MULTIPLY(SN,SP,SMAXPLANES,MA, MCOLUMNS,

& LVRESULT, LVANS, VCOUNT ,SFIRST)
60 LVRESULT = LVFIRST_TERM + LVRESULT - LVDIAG_INV*LVANS
70  CONTINUE

S_NEW_PROD = SUM(LVR*LVRESULT)

SBETA = S_NEW_PROD/S_OLD_PROD

S_OLD_PROD = S_NEW_PROD

LVD = LVRESULT + SBETA*LVD

SNUMITER=SNUMITER+1
c CHECK EXIT CRITERION. STOP ITERATING IF MET

IF (SQRT(SUM(LVR*LVR)) .GT. SEXIT) GOTO 50
2000 CONTINUE

RETURN

END




Appendix B
SPARSE MULTIPLY ROUTINE

SUBROUTINE SPARSE_MULTIPLY(SN,SP, SMAXPLANES,MA, MCOLUMNS,
c & LVMULCAND, LVANS, VCOUNT ,SFIRST)
L T T T TS N N O T S R e e P R Ly N R T e N S e N Ty

c

c PARKINSONS ALGORITHM FOR SPARSE MATRIX-VECTOR MULT.
c
Gk o o ok e 3 ke ok 3 o o X o e e 3 S S o S K K ok M e Mo e K K ke o K Ko K o ko
c
c PARAMETER DICTIONARY
c
c*+*+*+*+*+t+*+*+*+*+*+*+*+*+*+*+*+t+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
c
C SN - DIMENSION LINEAR SYSTEM
C SP - NUMBER OF PLANES OCCUPIED BY MA
C SMAXPLANES - NUMBER OF STORAGE PLANES TAKEN BY MA
c MAXIMUM VALUE FOR SP
C MA - MATRIX OF COEFFICIENTS STORRED ONE ROW PER PROCESSOR
C MCOLUMNS - GIVES COLUMN NUMBER OF CORRESPONDING MA ELEMENT
C LVMULCAND = MULTIPLICAND
C LVANS - RESULT
C VCOUNT - NEEDED FOR EFFICIENTCY OF ROUTINE
(o VCOUNT(I) CONTAINS THE NUMBER OF BROADCASTS NEEDED
c TO PROCESS ONE PLANE OF THE COEFFICIENT MATRIX.
c IF VCOUNT(I) > 500, IT IS CHEAPER TO USE PERMUTE.
C SFIRST - INDICATES THE FIRST CALL OF THIS PROCEDURE
c
C*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*$*+*+*+*+*+*+*+*+*+*+*+*
c
INTEGER SN,SP,SMAXPLANES
REAL MA(,,SMAXPLANES)
INTEGER MCOLUMNS(,,SMAXPLANES), MCOLUMNSET(,), VCOUNT()
INTEGER MTEMPINT(,)
REAL LVMULCAND(,), LVANS(,), MTEMP(,)
LOGICAL SFIRST, MTEST(,)
INTEGER KEY(,), IFAIL
c
C*+*+*+*+*+¥+*+*+*+*+*+*+*+*+#+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
c
c VARIABLE DICTIONARY
c

© 3k e e Mo A o K 3 Mo Mo e o 3 o T i B W M e Bk o K Ko B Kb S S ok M ok

MCOLUMNSET - TEMPORARY THAT HOLDS A LAYER OF THE MCOLUMNS ARRAY.
MTEMPINT - HOLDS RESULT FROM SORT SUBROUTINE.
MTEMP - HOLDS RESULT OF PERMUTING LVMULCAND VIA BROADCASTING
OR THE PERMUTAION SUBROUTINE.

MTEST - LOGICAL MATRIX USED FOR MASKED ASSIGNMENT WHEN BROADCASTING.
KEY - RETURNS THE PERMUTATION NEEDED TO EFFECT THE SORT PRODUCED

BY MO1_SORTILV.
IFAIL - ERROR INDICATOR. -

[eNeNeNeNeNoNeNeNeN el




C*+*+*+*+*+*+*+*+*+*+t+*+*+*+*+*+*+*+*+*+*+-«+*+*+m+*+*+*+*+*+*+*+*+*+*
c

C THESE SUBROUTINES AVAILABLE ON DAP SUBROUTINE LIBRARY

(o] .

CRd K o ok R e b o Mg ok o o e e ok Kk Kb X b o Ko Ko b K ok Rk o e K K K Rk K

MO1_PERMUTE_1 - GENERATES A NON-UNIQUE PERMUTATION OF AN INTEGER
' LONG VECTOR. EFFECTS THE PERMUTATION -

RESULT( I ) = SOURCE_VECTOR( KEY(I1) )
WHERE MCOLUMNSET IS A GIVEN PLANE OF MCOLUMNS
MO1_SORTILV - SORTS AN INTEGER LONG VECTOR.
USED TO DETERMINE HOW MANY BROADCASTS ARE
NEEDED FDR A GIVEN PLANE OF THE SYSTEM MATRIX.
e 3 o 3K o 3 e oK o W o 2 e 3K o 3K K e 2K o K o M o 3K o N B o S o K o e o o o B K Ko oK o 3 o o o o K 2k K K

IF (SFIRST.LEQ..FALSE.) GOTO 50

IF THIS IS THE FIRST CALL, COUNT NUMBER OF BROADCASTS
NEEDED FOR EACH LAYER OF THE SYSTEM MATRIX

DO 10 L=1,SP

PICK OFF FIRST LAYER OF THE COLUMN POINTER ARRAY

SORT IT AND COUNT HOW MANY DIFFERENT NUMBERS ARE IN THE LIST
THIS IS THE NUMBER OF BROADCASTS THAT NEED TO BE DONE.
MCOLUMNSET=MCOLUMNS(,,L)

CALL MO1SORTILV(MCOLUMNSET,MTEMPINT,SN, .TRUE. ,KEY,IFAIL)
VCOUNT(L) = SUM(MTEMPINT.NE.MTEMPINT(+,))

CONTINUE

LVANS=0

NOW PERFORM ACTUAL MULTIPLICATION. PROCEDE ONE LAYER AT A TIME
THROUGH THE MATRIX STORAGE ARRAY.

DO 100 L=1,SP

IF NUMBER OF BROADCASTS FOR THIS LAYER > 500 PERMUTE 1S CHEAPER
IF (VCOUNT(L) .GT. 500) GOTO 150

o000 0000 OOOOOhOOOOOOOO

[4) =S
[eN e}

PERFDORM BROADCAST ASSIGNMENTS

[eReoNe] (9] oo

MTEMP = 0.0
MCOLUMNSET = MCOLUMNS(,,L)
ONLY WORK WITH VALUES THAT EXIST IN MCOLUMNS
1.E. BETWEEN THE MAXIMUM AND MINIMUM COLUMN POINTERS
DO 75 1 = MINV(MCOLUMNSET),MAXV(MCOLUMNSET)
BUILD A LOGICAL MASK MATRIX CONTAINING .TRUE. WHEREVER A
VALUE DF ‘I’ IS PRESENT IN MCOLUMNSET :
MTEST = MCOLUMNSET .EQ. I
BROADCAST MULTIPLICAND VALUES TO PROPER POSITION IN
TEMPORARY MATRIX.

5 IF (ANY(MTEST)) MTEMP(MTEST) = LVMULCAND(I)
GOTO 100

NOO 00 00

PERFORM PERMUTATION WHERE MCOLUMNS(,,L) IS THE ‘KEY’
LVMULCAND 1S THE VECTOR TO BE PERMUTED, AND
MTEMP IS THE LONG VECTOR RESULT.

CALL MO1PERMUTE 1(MTEMP ,LVMULCAND ,MCOLUMNS(,,L))

NOW MULTIPLY ACCUMULATED MATRIX WITH THE CURRENT
LAYER OF THE COEFFICIENT MATRIX.

AOOOO‘-"AOOOOO
o

00 LVANS = LVANS + MA(,,L)*MTEMP
RETURN .
END
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