
PÀRALLELIZATTON OF THE

PRECONÐTTIONED CONJUGATE GRADTENT METHOD

USING A PROCESSOR ARRAY

by

ROBERT A.M. ALLEN

A thesis
presented to the University of Manitoba

in partial fulfillment of the
requirements for the degree of

M"A,STER OF SCTENCE
tn

ELECTRICAL ENGINEERING

Winnipeg, Manitoba, 198 3

198 3(c) t/
ROBERT A.M. ALLEN,

PARALLELIZATION OF THE

PRECONDITIONED CONJUGATE GRADIENT METHOD

USING A PROCESSOR ARRAY

BY

ROBERT A.M. ALLEN

.ì:'
::rl

ii
t:

..t
4.

.:l
..:.,

:r.

t,l

A thesis submitted to the Faculty of Graduate Studies of
the university of Manitoba in partial fulfillment of the requirenrents

of the degree of

MASTER OF SCIENCE

@ 1983

Permission has been granted to the LIBRARy oF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of rhis thesis. to
the NATIONAL LIBRARY OF CANADA to microfilnr this
thesis a'd to le¡ld or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publicatio' rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's written pernrissiorr.

.:l

a,:

I hereby declare that I am the sole author of this thesis.
r authorize the university of Manitoba to rend this thesisto other institutions or individuals for the purpose of
schoJ-arIy research.

ROBERT À.M. ALLEN

r further authorize the university of Manitoba to reproduce
this thesis by photocopying or by other means, in tôtal orin part, ât the request of other institutions or individualsfor the purpose of scholarly research.

ROBERT A.M. ÀLLEN

11

.aa

i:

'al

'a

,:.

:ì

',,

a

ABSTRÀCT

This thesis presents a parallel implementation of the

Polynomial Preconditioned Conjugate Gradient (ppCC) method

for the solution of large, sparse, and symmetric sets of

linear equations. The algorithm uses a truncated Neumann

series expansion to obtain an approximate inverse of the

system matrix for use as the preconditioning matrix. The

PPCG atgorithm incorporates a sparse matrix storage scheme

so that large sparse systems can be handled with the maximum

of efficiency.
The algorithm is specifically implemented on the Interna-

tional Computers Ltd. Distributed Àrray Processor. It is
shown to be suitable for solving linear systems arising from

both finite-differerÍce and finite-element discretization of

elliptic partial- differential equations.

¡tr

:::,

r.rì':

ACKNO9ILEDGEMENTS

The author wishes to thank Dr. A. wexler for his supervi-
sion and guidance during the evolution of this y¡ork.

The author arso wishes to thank his correagues in the Nu-

merical Àpplications Group at the university of Manitoba for
their herpfql discussions. rn particurar, the author wishes

to thank Mr. R. Nakonechny for his ínvaluable help.
In addition, the author is indebted to Mr. Dennis Jackson

and Dr. David Fincham at Queen Mary College, to Dr. John

simkin and Dr. Bilr Trowbridge at Rutherford Laboratories,
and to other anonymous peopre in Engrand. without their
help, the practical side of this thesis would not have come

to fruition.
Finally, financial assistance from the university of Man-

itoba Ferrowship Fund and from the Natural sciences and En-

gineering Research Council is gratefully acknowledged.

1V

CONTENTS

ABSTRÀCT....
ACKNOT{LEDGEMENTS

CONTENTS . .

LIST OF TIGURES O

LIST OF TABLES .

LIST OF PRINCIPAL

aoaa

aaaa

aaaa

aaaa

aaaa

SYMBOLS

a ltt

. lv

a a .v
vtr

vtt I

.ix

Chapter page

.l

.4

I I NTRODUCT I ON

I I . CONCEPTS IN PÀR.ALLEL PROCESSING

The Need for ParalleI Processing
Problems to be Addressed . .
Roots of Para1le1ism
An Architectural Taxonomy . . ,

4
5
6
9

I I I. SOI{E PARÀLLEL ARCHITECTURES L2

Special Purpose Function Units . . .
Systolic Arrays o

Systolic Banded Matrix-Vector
Multiplication.o..o

Pipelined Processors
Associat,ive Processors
Processor Arrays
Data Flow Architecture
Multiprocessing Systems

T2
t2

13
t7
18
20
2I
23

IV. THE DISTRIBUTED ARRAY PROCESSOR 24

Facilities at Queen Mary College
The Distributed Array Processor

DAP Hardware Overview . .
DAPFORTRAN...

DataTypes........
Numerical Operations o . .
Indexing Techniques . . .
Control Statements . ,

a 24
25
25
30
31
33
36
38

(oep)

a

o

v

Program Structure . .

THE CON.IUGATE GRADIENT ALGORITHM

39

v. 42

The Classical Conjugate Gradient Algorithm
The Preconditioned Conjugate Gradient' Algorithm o
Choice of the Preconditioning Matrix - K .
Sparse Matrix Storage Scheme
Matrix-Vector Multiplication Algorithm . .

42

50
54
59
62

VI. TEST PROBLEM RESULTS a 65

The Finite-oifference Problem
The Finite-nlement Problem

66
73

VII. CONCLUSION a 77

Appendix page

.81

.85
À CONiIUGATE GRÀDIENT LISTING

SPÀRSE MULTIPLY ROUTINE .B.

':.a

a:

t.:.

REFERENCES a 87

vl

LIST OF FIGURES

F iqure

3.1.

3 .2.

4.1.

4.2.

4.3.

4.4.

5.1.

6.1 .

5.2.

The inner product step processor.

Banded matrix-vector multiplication. o .

DÀP - ICL 2980 system . . o

Internal organization of the DAP.

DAP - DAP store relationship.

The DAP processing element. . . . o o .

Example of matrix storage scheme.

Finite-difference problem geometry. . . .

Iteration count vs. exit criterion for the
finite-difference problem.

Execution time vs. exit criterion for the
finite-difference problem.

Convergence of DÀP and Amdahl PpCG(z)
algorithms.

Finite-Element Problem Geometry

Iteration count vs. exit criterion for the
finite-elementproblem. o. o

Execution time vs. exit criterion for the
finite-elementproblem. . o o....

page

.14

.16

.26

. 2'l

.29

. 30

.61

.66

68

:'

6.3.
69

6.4

6. 5.

6.6.
a

72

73

75

6.',| .
76

vl1

LIST OF TABLES

Table page

. 33

.38

.39

4.1 .

4.2.

4.3 .

6.1.

Variable Declarations in DAP FORTRAN

Examples of Left Side Indexing

Examples of Right Side Indexing . o . o . .

Execution Time per Iteration for the DAP and
Amdahl..r....... 70

v1r I

LTST OF PRINCIPAL SYI,IBOLS

A

x

Þ

!

r

g

F

symmetric system matrix

unknown vector of linear sYstem

source vector of linear sYstem

exact solution of linear sYstem

residual vector

direction vector of exact line search

(x) quadratic energy functional

g(x) gradient of F(x)

E(x) error functional

q optimum line search constant for x and r

Þ optimum line search constant for d

Pk(A) matrix polynomial of degree k in A

K precondi tioning matrix

lower triangular factor of KL

lX-

Ar transformed sYstem matrix

xl transformed unknown vector

br transformed source vector

dr transformed direction vector

rl transformed residual vector

M part of system matrix sPlitting

N part of system matrix sPlitting

p spectral radius

z parameter governing accuracy of the approximate inverse

of the system matrix

K-1 approximate inverse of the system matrix
z

M-I splitting of A chosen to be (DIAGONAL(A))-1

.:l

x

ljl

ì::,

Chapter I

I NTRODUCT I ON

The Conjugate Gradient (CG) method is, at first, a very

appealing candidate for parallel implementation. In its un-

preconditioned form, it involves only vector operations and

ís often said to be 'trivially vectorizable'.
Preconditioning has, however, become a necessary part of

the CG method. One discovers that without preconditioning,

there may be no convergence or very slow convergence. The

affect of preconditioning is to reduce the spectral radius

of the system matrix so that the conjugate gradient proce-

dure is more stable (i.e. converges), and converges in far

fewer iterations.
with the introduction of preconditioning, the romance be-

tween para'IleI processors and the CG algorithm quickly dis-
solves. It is very difficult to find a preconditioning

method that is parallelizable. For example, consider the

íncomplete Cholesky preconditioning method which is highly

successful on scalar computers. The preconditioning process

involved in the Cholesky algorithm is highly recursive. Be-

cause recursive processes are inherently serial, the incom-

plete Cholesky algorithm cannot be put into a parallel form.

I

l:l

The problem is further aggravated if one nishes to imple-

ment a sparse storage scheme in conjunction with'a precondi-

tioning method. Since the choice for one may preclude a de-

sirable choice for the other, the two must be carefully cho-

sen so that there will be a minimum of compromise.

At the same time, whatever decisions are made, must be

made with an intimate understanding of the architecture of

the processor that is being used. The architecture is per-

haps the most overriding consideration. Its capabilities
wilI dictate exactly what options are available for a spar-

sity and preconditioning scheme.

The preconditioning scheme used in this work is the poly-

nomial preconditioning method first proposed by Dubois et

aI. Í,t919,257-268J. It is discussed in Chapter 5 along with

the conjugate gradient and sparsity algorithms" This choice

for a preconditioning scheme has the advantage of making no

special requirements on the sparsity scheme, save that it
allows efficient matrix vector muLtiplication (i.e. it re-

quires no special data structure for efficient implement,a-

tíon). with one less constraint to consider, the integra-

tion of the sparsity scheme with the parallel architecture

is made much easier.

The parallel processor used in this thesis is the Inter-
national Computers Ltd. (ICL) Distributed Àrray Processor

(oep). with 4095 processors, the DAP has a great potential

for paralJ,elism. Chapter 4 gives an overview of the DAP and

2

i:

the facilities associated with it. Chapters 2 and 3 give

some background material on parallelism and paraIIel archi-

tectures so that the position of the DÀP in the hierarchy of

paraIIeI processors can be better appreciated.

Chapter 6 presents results f rom t,he application of the

Polynomial Preconditioned Conjugate Gradient (ppCC) algor-

ithm to some field problems. Scalar and vector versions of

the algorithm are compared with each other and with a scalar

implementation of the Incomplete Cholesky Conjugate Gradient

(rccc) algorithm.

3

ChaPter II

CONCEPTS IN PAR^ÈLLEL PROCESSING

2.T THE NEED FOR PARALLEL PROCESSING

The need for paralleÌ processing is increasing for sever-

al reasons:

1. The absolute speed of computer hardware is Iimited.
Even the promise of Josephson junction switching

technology can only increase raw computer speed by a

factor of 10 or so. Propagation delay is another

factor limiting circuit speed. Its effects can be

reduced by making circuits physically smaller using

very large scale integration (VLSI) . The advance of

VLSI is, however, reaching fundamental Iimits that
will halt further improvement.

2. Computational needs in scientific algorithrns have

reached levels where no foreseeable scalar computer

will be adequate.

To illustrate the latter point, consider that the Nation-

aI Aeronautics and Space Administration (HeSe) has contract-

ed Cont,rol Data Corporation (COC) and Burroughs Computer

Corporation to produce processors capable of perforrning in

excess of 10' floating point operations per second (flops)
(Hockney and Jesshope [1981,19]). This perforr¡ance is need-

4

ed to run three-dimensional aerodynamic simulation codes.

$then these needs are compared to the 10 million flop per-

formance that current scalar computers are capable of, the

hopelessness of the scalar approach can be seen.

NASÀ also has heavy computational needs for the process-

ing of satellite imagery. It has contracted Goodyear Aero-

space to build a highly parallel computer ca1led the Mas-

sively ParalleI Processor (tqpp) (Schafer and Fischer

[rgAz,327). The machine is configured as a 128 x 128 pro-

cessor array (see Section 3.3), and will be capable of per-

forming 5 X 10' 8-bit additions per second and almost

2 X 10' 8-bit multiplications.

2.2 PROBLEMS TO BE ADDRESSED

Up to this point in time, the development of numerical

algorithms has been geared toward implementation on scalar

processors. The conversion of scalar algorithms to parallel

algorithrns is not a straightforward process. There is no

way of predicting whether or not an efficient parallel im-

plementation of a scalar algorithm exists.
The issue is further complicated by the existence of many

different paralle1 architectures. A parallel algorithm de-

veloped for one architecture nay not be suitable for an-

other. It may be that a totally new architecture will have

to be developed to implement an algorithm. VLSI could allow

the paratlel programmer to design specific hardware to meet

his needs.

5

2.3 ROOTS OF PÀRÀLLELISM

Parallelism means different things to different people.

Each person has different applications to apply it to and

his measure of performance is based upon different goa1s.

For example, in time-sharing environments, t,he goal is to
process separate jobs at as fast a rate as possible. The

rate at which jobs are processed is referred to as through-

put" Greater throughput can be achieved by adding multipro-
cessing capabilities to the system, but this does nothing to
speed up the execution time of a single program. As a re-
sult, the system programmer and the system user will have

conflict.ing opinions about the gains achieved with the mul-

tiprocessing system.

Throughput is of no interest herer âs the goal is to
achieve speedup. That is, to decrease the total execution

time of a single task or program.

Parallelism, in a broad sense, can appear at many levels.
The various levels of parallelism may be described as fo}-
lows (Hockney and Jesshope Ifg8r ,257) z

1. Job Level

a) Between jobs This level describes the system

level and is implement,ed using multiprocessors.

Parallelism at this level irnproves system through-

put, and does nothing to improve the execution

time of a single program.

6

b) Between phases of a job This level of parallel-
ism refers to the overlapping of slow syst,em I/O

(such as disk access) wittr fast program execution.

One program can execute while others (assuming

more than one r/O channel) are performing slow I/o
operations. Again, this leve1 of parallelism

serves to increase system throughput.

2. Program Level

a) Between parts of a program - This level of paral-

Ielism does serve to decrease the total execution

tiure of a single program. This scheme, implement-

ed in a multiprocessing environment, âIlows the

sinnultaneous execution of unrelated parts of a

program. Special language constructs, such as

those in concurrent Pascal, are used to signal

which phases of a program are unrelated. Some

spec ial ized compi 1'ers are also able to perf orm

some parallel (data flow) analysis automatically.

b) Within do loops If each execution of a loop is
independent of the previous, each processor may

execute the loop at the same time as the others.

3. Instruction LeveI

a) Between phases of instruction execution This

level describes the ability to divide the execu-

tion of a process or instruction into a succession

of independent steps. This a]Iows a number of

7

4

identical processes to be in various stages of ex-

ecution at the same time and is referred to as

pipel in ing.

b) Between elements of a vector operation This lev-
eI of parallelism reflects the fact that many pro-

cesses perform identical and independent actions
with each element of a vector. Àn example of such

a process is the rnultiplication of a vector by a

scalar. All of the element,al multiplications may

be performed concurrently. This type of operation

nay be implemented by processor arrays (see Sec-

tion 3.3)r or by pipeline processors (see Section

3.1.2) .

Arithmetic and bit level
a) Within arithmetic logic circuits It is possible

to perform arithmetic operations on numbers by

processing aI1 bits in parallel or by processing

each bit of the numbers internal representation

seguentially. The advantages,/disadvantages of the

two approaches stem mainly from the desired com-

plexity of the hardware needed to irnplement them.

The bit serial method is usually opted for in the

processor array designs as it leads to simple pro-

cessors thaÈ use litt1e silicon area, thereby en-

abling the assembly of larger arrays.

I

2,4 AN ÀRCHITECTURAL TÀXONOMY

Many parallel processor designs have been suggested over

the last two decades. There have been a number of attempts

to group the various architectures into classes that share

some common basis. Like the architectures they attempt to

group, they have had varying degrees of success. Most nota-

ble are those due to Flynn Ltglz,949'l , Shore If 923,95-109],

and Hockney and Jesshope Ifggf ,3I-471.
Flynn's classification scheme describes the interrelation

between machine instructions and t,he data upon which the in-
structions operate. ft does not attempt any description of

the details of the hardware that an architecture is built
fron. The result is that broad groupings of architectures

are lumped under the SIIID (single-instruction stream - mul-

tiple-data stream) and MIMD (multiple-instruction stream -
multiple-data stream) classes. Individual members of these

groupings are indistinguishable from each other, and it is
possible for an architecture to belong to more than one

group. Confusion also exists about the location of pipe-

lines ín the scheme.

Taxonomies based upon the architectural features them-

sel.ves (shore's and Hockney's), are more specif ic and de-

scriptive, but at the same time, ßây be confusing. Since

detailed semantics serve only esoteric purposes, Flynn's

general taxonomy wilL serve the purpose here.

-9

Flynn's taxonomy is the one most frequent,ly seen in the

literature. The following classifications are observed:

1. The Single-Instruction stream Single-Data stream

(SrSo) - This describes the conventional scalar pro-

cessor and the pipelined scalar processor. Depending

on the point of view, this class may also be ext,ended

to include the pipelined vector processor.

2" The SingIe-Instruction stream - Multiple-Data stream

(Srup) - This group includes most processor arrays,

associative processors, and pipelined vector proces-

sors. In this class, a single instruction stream is
broadcast to control a number of processors, each op-

erating in lockstep. The processors each perform

their operations on local menory.

3. MuItiple-Instruction stream Single-Data stream

(ur so) - Although somewhat l imited in scope, t,hi s

class is said by Flynn to describe specialized

streaming operations where a single data stream is
used to produce a number of result streams.

4. Multiple-Instruction stream - Multiple-Data stream

(urlo) - att multiprocessing systems are lumped under

this heading. That is, a group of processors each

executing a separate program with local memory, and

sharing results via a common memory or a switched

communicat ions network.

10

There is some confusion about the exact placement of

pipelined vector processors in this taxonomy. F1ynn places

them under the SIIID classification owing to the fact that

they have specialized vector instructions that can mimic

those possible with a processor array. The argument against

t,hat placement is that a pipelined vector processor only op-

erates upon a single data stream and the pipeline itself
only performs a single instruction upon that data stream.

The given version of Flynn's taxonomy is the one that is
in common use, and will be used here.

11

Chapter III
SOME PARÀLLEL ARCHITECTURES

3.1 sPECrÀL PUBPOgE FUNCTTON UNITS

This category includes both systolic arrays and pípelined

execution units. They are similar in concept but differ
mainly in the scale at which they address parallelism. Sys-

tolic arrays are designed to implement whole algorithms

while pipelines are usually designed to implement a single

instruction (vector or scalar). In some respects, though,

the terms are interchangable.

Svstol ic Arrays

Systolic arrays derive their name from the way data moves

through them. They consist of a group of processors con-

nected in a rigid communication pattern, much like the cÍr-
culatory system of man. À clock cycle, analogous to a heart

systole, 'pumps' the data through the array at regular in-
tervals. Therefore, the movement of data through the array

is similar to the movernent of blood through a circulatory
system and hence the term systolic.

Systolic arrays are designed so that data need only be

given to thern once. Thereafter, internal communication

paths shuttle the data to where it is needed. Thus, a good

systolic design will realize two savings:

t2

1. Computations are pipelined. This introduces paral-

lelism within the algorithm.

2. Data is loaded into the array only once, reducing ex-

pensive memory references to a minimum.

The main disadvantage of the systolic approach is the in-
flexibility caused by the rigid internal communication

paths. These paths are designed for the execution of a sin-
gle algorithm, and a complete redesign is needed to imple-

ment different algorithms. It ßây, however, be possible to

remove this difficulty with a configurable processor array

in which the communication paths are redirectable (snyder

lrgaz ,47-s6)).
Because of their importance in light of recent advances

in VLSI design, a detailed discussion of a systolic array

foLlows. In addition, they are architecturally similar to
the ICL DAP, which is the main thrust of this thesis.

Systolic - Banded Matrix-Vector t'{ultiplication
Much of the pioneering work with systolic arrays was done

by H.T. Kung. This example is taken from his work in Conway

and Mead IfgAO,263-3321.

The workhorse of Kung's systolic designs is the inner

product, step processor shown Ín its linear connection

configuration in Figure 3.1. This basic processor performs

the calcul-ation Y = Y + A*X. In calculation, the operands

(e and x) are passed through unchanged while Y is augmented

13

by

nal

the addition of the product (A*x). The following inter-
basic processor:

registers - RA, RX, and

structure can be

l. each processor

RY,

2. each register
and

assumed for the

contains three

has an input and an output connection,

3. the output lines are latched and the logic is
so that neighbouring processors in the array

interact during a conputation cycle.

c Ioc ked

do not

A

Figure 3.1: The inner product step processor.

In one cycle the inner product step processor performs

the following operations¡

1. shifts data off of the A, X, and Y lines into their
respective registers,

2. computes RY = RY + RA*RX, and

3. puts'contents of the registers onto their respective

output lines.

T4

A

Y

X

Y

X

With proper connections to its nearest neighbours, and per-

haps the int,roduction of a few functionally different cells,
the inner product step processor can be used to irnplement a

large number of important numerical algorithms (Conway and

Mead IfgAO ,263-3321, Kung IfgeZ ,37-467, and Snyder

11982,47-56J) .

The banded matrix-vector multiplier can be seen in Figure

3.2. The figure depicts the data input into the array

through seven cycles of the computation process along with

the array states at the end of each cycle. The array multi-
plies a matrix with a bandwidth of 4 and order N with a vec-

tor of order N, where N is arbitrary.
The general geometry used in this example can be extended

to matrices of larger bandwidth simply by adding more pro-

cessors. In general, A matrix of bandwidth W and order N

can be multiplied into a vector of order N using w proces-

sors. The computation is carried out in 2N+W time units, a

much faster result then å"he WN time units needed for a sca-

Iar processor.

15

t3 t23 ttz

t22 t3¡ 13-o

t2 t12 t21

trr 0t 2

¡ t

0tl

v

lllD DAlt

a

t!
3

¡
12 l¿-o CYCLE- 6

CYCLE 5

crcl.E 4

CYCLE 3

ctct.E 2

CTCLE I

CYCLE O

SÎATB O

STATE ¡

81A18 2

It"t rtt

STATE 3

it"lrtl+ttzt2 f 2-t 2t'I

tl oolPIrT STAîE 4

f 2" 2r' r+t 22'2 t3"3 tt l

slAlB 5

lZ-.Zttl+.22t2+.23t! l3-.3¡tl+.3212

t2 otlPul sl^lE 6

t3-r! tt r+r3 2t2+t3 3t3 f 1"12'2

Figure 3.2t Banded matrix-vector nultiplication.

tl
l_J

-{

vl

trT'
xt

v2

=

F-tl
tr2

*2 t¡

fz
t2l

,!
t3r

t¡

l----
t2

t2t
r3 'r;tF*2

,a
ta2

r2
t

-{
r3

,
t33

15

Pipelined Processors

Pipelíning refers to the disassembly of an instruction or

process into a number of independent stages. These stages

are cascaded so that each one, after processing its con-

t,ained data, will pass data to the next element of the pipe

line. Data enters one end of the pipelíne and emerges from

the other end al-tered by the complete operation that the

pipeline implements. Data is shuttled from stage to stage

once every clock period, which is defined as the longest ex-

ecution time of the various stages in the pipeline. In this
manner, a pipeline is able to produce a result once every

clock period, which is generally much shorter than the time

required for the whole instruction (sum of times for each of

the stages).

A familiar example of pipelining is in the decoding and

execution of instructions. The separate units allow the in-
struction stream to be processed in an overlapped fashion.

When one instruction is in the execution unit, the operands

for the subsequent instruction are being fetched etc.. In

this fashion, instructions can be executed at a much faster
rate then is possible with an unpipelined execution unit.

Other variations on the theme exist. Pipelines have been

designed to implement addition, multiplication, and other

special functions. Perhaps the nost natural application,

though, is to the processing of vectors of numbers. If two

vectors have to be added, a pipeline can be used to imple-

T7

nent the addition. Operands can be given to the pipe once

every cycIe, resulting in very efficient vector operations
(especially for long vectors).

Most modern-day mainframes use pipelines somewhere in

their architecture. ScaLar computers such as the Amdahl

470V/6 and the IBM 360/195 have pipelined execution and

arithmetic units, although they do not possess any vector

instructions.
Vector pipelined processors are (arguably) the most pow-

erful. numeric processors in existence. The nost notable of

this breed are the CDC STÀR 100, Texas Instruments TIASC,

and the Cray Research CRÀY 1.

An excellent review of pipeline architectures and princi-
ples is given in Ramamoorthy and Li ftgll,6l-1021.

3.2 ASSOCIATIVE PROCESSORS

An associative processor can generally be described as a

processor with the following two capabilities (yau and Fung

Í,tgzz ,4-267\ t

l-. It, is able to retrieve stored data based on their
content or parts of their content (i.e. content ad-

dressing). This is very different from conventional

computers where data is accessed via an absolute mem-

ory address.

2. It is able to perform both arithmetic and logical
data transformations over many sets of data with a

single instruction.

18

The first property places associative processors in a

class by themselves, but because of the second property,

they are generally grouped under the SIIÍD class. They dif-
fer from processor arrays (see Section 3.4) in that their
addressing is based upon data content rather then on memory

addressing.

The obvious application for associative processors is in

data-base searching where they are able to do much of the

work ín parallel. With associative techniques, data-base

machines can be made very efficient.
The two most inportant associative architecÈures are:

1. FuIly ParalleL

a) Word Organized - Comparison logic is present at

each bit of every word and the logical result is
available at the output of every word.

b) Distributed Logic The comparison logic is asso-

ciated with whole characters (groups of bits) or

groups of characters.

2. Bit-Serial One bit column (or bit-slice) of all
words is operated on at one time. All words, then,

are operated on in parallel.
An example of a fully parallel associative processor is

the Parallel Element Processing Ensemble (pepe) (Cornell

Ltglø, 171-1901). The Goodyear Aerospace STARÂN is an exam-

ple of a bit-serial word-para1lel associative processor

(l¿eilander Ltgl ø,345-37 471 .

19

3.3 PROCESSOR ARRAYS

A processor array is generally a SIMD machine (an array

of processors that perform identical operations in Lockstep

upon different data). This class shoutd not be confused

with the various 'array processors' that are on the market

(so called because they are designed to process arrays of

numbers). These special purpose function units are general-

ly high-speed pipelined processors and not processor ar-
rays.

Each processor in a processor array usually has nearest

neíghbour communication. To date, most arrays are arranged

in a grid pattern with connections to their north, south,

east, and west neighbours (orthogonally connected).

The processors used, such as those in the ICL DAP or the

Goodyear MPP, are generally very simple bit-serial devices,

The advantage of having sirnple processors can be seen by

contrasting the ILLIÀC Iv (g+ complicáted processors) with

the DAP (4096 simple processors) or the MPP (16384 simple

processors). The use of a simple processor allows'the as-

senbly of nuch larger arrays and thus a potential for much

¡nore parallel i sm.

Another advantage of using simple bit-serial processors

is that they may be implemented with VLSI very easily. Many

processors could be put on one chip, simplifying the overall

systern design and reducing costs substantially.

20

The ICL DÀP, a particular example of a processor array,

is discussed more fully in Chapter 4.

3.4 DATA FLOI{ ARCHITECTURE

Data flow is as much a programming philosophy as it is an

architecture. In fact, it is the philosophy that dictates
what the hardware should do and the form it should take.

Data flow is based upon the principle that instructions
contained within programs shouJg be executed when their op-

erands are available. If two or more instructions have

their operands available simultaneously, then the instruc-
tions are executed concurrently. Programs executed in thís
manner are said to be 'data driven'.

Consider, for example, the following FORTRAN assignment

statements:

1. A = X t Y,

2. B = t/A,
3. c = Y/A,

4. þ=BaCrand
5. E = D/A.

Clearly, stat,ements 2 and 3 can be executed concurrently,

but only after the result of statement 1 is available. In a

data flow machine, therefore, statement I would be dis-
patched to an execution unit first. When its result is
ready, operations 2 and 3 would then be sent. to separate ex-

ecution units (along with their operands) and executed sí-

2T

multaneousLy. Each instruction carries information abou!

¡vhere its result is to be sent, enabling the execution pro-

cess to be done efficiently. This strategy requires, how-

ever, a large amount of preprocessing by the compiler to de-

termine the data dependencies within a program.

The data flow concept, has no overhead associated with

the synchronization of processors. Instructions are dis-
patched for execution when their operands are available,

causing an automatic synchronization to occur. In addition,

as long as there are enough execution units available to the

program, its full parallelism can be exploited. Processor

usage is al-so maximized to the point that the parallelism of

the problem will a1low.

It can be seen that the data flow approach (which gives a

MIMD type of architecture) is very appealing. It offers the

most efficient use of hardware that is possible. Implemen-

tation of a data flow machine is not an easy task, however,

and there are other problems that need to be worked out be-

fore viable data flow machines wiII appear on the market

(cajstri er at. Irgez,58-691).
For more information on data flow concepts see IEEE Com-

puter Í,ßAZl which deals with the subject.

3 5 MULTIPROCESSING SYSTEMS

A multíprocessor is a MIMD device and has the basic defi-
nition given in the last chapter. Each processor stores its
ovrn program (perhaps a different program), and executes it
independently from the other processors. The processors

have both shared and local memory so that they may communi-

cate with one another and share data.

Multiprocessor systems are more flexible than other par-

allel architectures (except perhaps data flow), but at the

same time, their control is much more complex. One would

expect that the speedup realized by using a multiprocessor

would increase linearly with the number of processors, but

oúerheads associated with Èhe control and synchronization of

the processors often reduce the speedup to far.below linear.

23

Chapter IV

THE DISTRIBUTED ARRAY PROCESSOR

4.I FACILITIES ÀT oUEEN MARY COLLEGE

Queen Mary correge (QMc) forms part of the university of
London, England. The QMC computer centre operates in affil-
iation with the university of London, which is also associ-
ated with a number of other installations.

The central processor used at eMC is an rnternationar
computers Ltd. (rcr,) 2980. rt provides the general services
that one expects from a mainframe operation. Àccess to the

2g8O is provided by an interactive terminal communications

facility carred Murti-Àccess service (MAc) and a batch ser-
vice.

users external to QMC may communicate with the 2980 via
three routes:

1. PSS British Telecom's Packet Switch Stream network.

This communications link also provides access to the

IPSS international network.

2. SERC Network A network operated by England's Sci-
ence and Engineering Research Council.

3. METRONET - A network linking together the major com-

puter centres affiliated with the University of Lon-

don.

24

PSS/IPSS and SERC allow connection to MÀC, while METRONET

only provides access to the batch service.

MAC provides access to the CPU and filestore. A major

rimitation of the system ís the rather small amount of disk
space alloted each user¿ 226K. Any requirements beyond this
amount require archival storage on catalogued tape. This

process is made more or less automatic as files on tape can

be referenced in a manner similar to that used for disk"
Tape urounti.ng is then done automatically by the operator.

User interaction with MAC is mediated by an ICL product

called system contror Language (scL). rt allows the user to
interact with his filestore and submit jobs.

The facilities at QMC are described in the eMC Computer

Centre Handbook. The handbook consists of a number of sepa-

rate documents, each describing various features of the op-

erating system, hardware, and available software.

IT.2 THE DISTRIBUTED ARRÀY PROCESSOR (PAP)

DÀP Hardware Overview

The DAP is installed at QMC as part of its 2980 service

and forns an integral part of the computing environment. It
is a SIMD processor array consisting of 4096 processors in a

64 X 64 configuration.
The DAP itself is configured as part of the main store of

the ICL 2980 as shown in Figure 4.1. The DAP appears as a
main store nodule of the 2980, but has

25

MCU

DAP
STORE

DAC

ORDER CODE

PROCESSOR

SMAC

STORE ACCESS

CONTROLLER

PERIPHERAL

CONTROLLERS

CONVENTIONAL

STORE

Figure 4.1: DAP - ICL 2980 system

(SuaC, Store Multiple Access Controller; DAC
Controller; MCU, DAP Master Control Un

,
I

DAP Access
t).

the additional capability of processing its contents with an

integral processor array.

The major components of the DAp memory module (oaC - DAp

STORE - MCU) are shown in Figure 4.2n

Two principal conmunication paths exist within the mod-

ule. Both are 64 bit wide data paths, and provide communi-

cations between the 2980, DAP store module, and the MCU.

The row highways have the specific task of feeding data into
the MCU registers, while the column highways perform that
task in addition to providing communications to t,he 2980 and

26

fetching instructions for the execution unit in the MCU.

Data may be transmitted to all processors simultaneously via

the row or column highways, or each processor may 'AND' data

onto the highways to allow globa1 inquiries about the state

of the processing elements.

DAC DAP STORE MCU

ROW

2980
COMMUNICATIONS

COLUMN HIGHWAY

Figure 4.2t Internal organization of the DAP"

The MCU, âs its name implies, is responsible for coordi-
nating the operation of the DAP as a whole. It fetches in-
structions from DAP store, decodes them, and broadcasts ap-

propriate commands to the processing elements (pps) in the

array. The MCU components, shown in Figure 4.2, have the

following functions:

27

H

8X64BtT

MCU

REGISTERS

N

64X64
PROCESSOR

ARRAYw E

s

MODIFIER

DAP

ACCESS

CONTROL

ST

STRUCTION

BUFFER

x32

nYù t Ffut/ ilun
COUNTER

1. MCU registers - Used for data and/or instruction mod-

ification. Ànother use is to select (or transmit)

data from (to) all processors in a ro$r or column.

2. Modifier register - Used to hold operands in data and

instruction modification, as well as to hold an ad-

dress offset for instructions that reference memory.

3. Instruction register - Holds current instruction.
4. Instruction buffer Buffers a sequence of 60 in-

structions for repeated execution in a hardware DO

loop. The instructions contained in a loop are

fetched only once, and can be executed repeatedty for
up to 254 iterations.

For a detailed explanation of instruction execution on the

DÀP, the DAP. APAL reference manual ICL llglgJ can be con-

sulted. APAL ís the low'level assembly language in which

the DAP is programmed.

The DAP store can be viewed as a 64 X 64 X.16K-bit cube,

where each processor has a 16K-bit local store (see Figure

4.3). The 2980 is able to address DÀP menory just as it
does its normal memory. It sees each row of DAP memory (oc-

cupying a single store plane), as a 54-bit word. Higher ad-

dresses occupy first higher-numbered rows, and then deeper

store planes.

The DAP processor array is orthogonally connected. Pro-

cessors on the edge of the array nay be configured to con-

nect with the corresponding processor on the opposite edge

28

64

64

PROCESSING
ELEMENT

I6K BIT PE LOCAL STORE

Figure 4.3: DAP - DAP store relationship.

of the array (cyclic aeometry), or to receive zero for any

communication with a nonexistent neighbour (planar geom-

etry).
A schematic diagram of a DÀp processor is shown in Figure

4.4. The processor contains three one-bit registers (A, e,
c) and a fulI adder that performs simpre arithmetic on the

contents of the registers or memory. The e and c registers
are generally used for the accumulation of sum and carry
bits (respectively) generated by the full adder.

The A register, called the activity register, is of fun-
damental importance in the imprementation of algorithms on

29

(t
l¡Jz
J
fL
l¡J
Got-
Ø
v

64X64
PE ARRAY

64 X 64 X t6K BtT

DAP STORE

64

the DAP. It can be used as a switch that enables or inhib-
its the execution of an instruction by a pE. This is neces-

sary since it is a rare algorithm that will require the same

operation to be performed by every PE always. Using the A

register in this way is called MASKING.

ONE BIT
TO / FROM
MCU HIGHWAYS

CARRY / ROUTE
TO
NEIGHBOURS

INPUT

N S EW
INPUT FROM NE]GHBOURS

Figure 4.4t The DÀP processing element.

DÀP FORTRAN

DAP FORTRAN is the high-level programming language sup-

ported on the DAP. It is a fairly standard FORTRAN with

specific extensions designed to allow the parallel process-

ing capabilities of the DAP to be used easily. The language

I6KXIBITSTORE

OUTPUT MULTIPLEXER

oA

I- BIT FULL ADDER

c

SELF
INPUT MULTIPLEXER

30

affords a user much more convenient access to the DAp than

provided by APAL assembly language. It should be pointed

out, however, that the use of ÀPAL can be expected to yield
more efficient programs.

DAP FORTRAN is fully described in two rcl, documents: IcL

[fg8Ol and ICL [1981a]. The language is also described in
Hockney and Jesshope IfgAf t242-246] and in parkinson

lrgez ,230-236J "

Data Types

DAP FORTRÀN is able to manipurate data objects consisting
of vectors or matrices in much the same way that normal

FORTRAN diarects manipulate their data objects (scalar vari-
ables). DAP FORTRÀN'S data objects assume three forms or

modes

1. Scalar NormaI equivalent of FORTRAN variables.
2. Vector An object consisting 64 independent ele-

ments. It is similar to a FORTRAN one dimensional

vector but is lirnited in its length.

3. Matrix - A data object which contains a 64 X 64 array

of elements, Besides the rnatrix representation, this
object can also be used as a'long vector' where suc-

cessive columns are stacked underneath one another

and referenced using a single index in the range

[1,4096].

31

The three modes differ in the way that they are mapped

onto t,he DAP store. The dif f erences arise f or reasons of
efficiency when performing numerical calculations. In ma-

trix mode, for example, the elements of a rnatrix (S+ x 64)

are stored one per PE. The operands for a calculation by a

PE are then whorry rocated in its own store and the calcula-
tion proceeds bit-seria1ly. In vector mode, on the other

hand, elements of the vector are stored one bit per pE ac-

cross a row. operations with vector elements are performed

by a whole row of processors working in a cascaded fashíon
(scalars are also processed this way).

The data modes may be of type integer (l-B bytes), real
(3-8 bytes), doubLe precision (8 bytes), character (1 byte),
and logical (f bit). Although integer and real variables
are allowed to have different byte lengths, there is no

storage efficiency to be gained by using the shorter lengths

for vector and scalar variables. The only saving realízed
is in computation time, âs arithmetic with shorter variables
is faster. Table 4.L shows some examples of variable decla-

ratíons in DAP FORTRAN. Note the use of constrained dimen-

sions (i.e. the null subscripts in'(,)') in the declara-

tion statements. This type of decl-aration produces a vector

or matrix of the maximum dimension allowed by the size of

the DAP processor array (Sq in this case).

32

TABLE 4.1

Variable Declarations in DAp FORTRAN

DECLARATION RESULTING VARIABLE

INTEGER VI()

REAL IôA(,)

INTEGER VI (,5)

REAL MA(. . IO)

REAL,+8 VI()

LOGICAL LB()

CHARACTER SK

A lX64 lnteger vecton

A 64X64 neal anray.

A 1X5 anray of lX64 lnteger vectons.

A lXlO array of 64X64 real matrices.

A real 1X64 vector containing I byte

A '1X64 logicaì vecton.

A 6cåìar characten variabte.

i ntegens

Numerical Operations

Arithmetic using DÀP FORTRAN variables is essentialty the
same as that defined for scarar FORTRÀN implementations.

There are, however, some sensibre extensions made to accom-

modate vector and matrix mode objects.
Assignment statements are exactly anarogous to normar

FORTRAN assignment statements. rf vector or matrix node

variables are involved, the assignment is ¡nade via a parar-
ler component assignment. That is, components on the reft
side of the assignment statement are made equar to the cor-
responding components on the right side of the assignment

statement.

33

,.1:,1:

.t:

A natural restriction arising from this extension is that
the quantities on either side of the equal sign be of the

same node, type, and length (numerical precision). Type in-
êompatibilities are handled in a manner similar to that of

scalar FORTRAN dialects. If possible, the type of the right
side is changed to natch that of the left side. Similarly,
if the mode of the right side can be unambiguously 'expand-

ed' so that its new mode matches that of the left side, âD

unlike mode assignment can be made. For¡example, consider a

statement of the form:

VECTOR VAR = SCALAR VAR.

In this case, the scalar variable will be expanded into a

vector with aII of its components equal to the original sca-

lar variable. On the other hand, the statement

MÀTRIX_VAR = VECTOR_VAR,

is not valid since there are two ways in which the vector to
matrix expansion could be made (i.e. equal rows or equal

columns). In this case, the desired expansion must be spec-

ified using built in DAP FORTRAN functions.
The unary operators '*', and '-', as well as the binary

operators t*t, t-t, t*t, '/' , and t**t, have extensions to

allow use of nonscalar variables. The unary operations ap-

p1y to aII components of their argument, while the binary

operations are performed between corresponding components of

the two arguments. Thus, âD expression of the form:

34

MATRIX_RESULT = Mi{TRIXI*MATRIX2,

wirl produce a resurt matrix whose components are defined by

MATRIX_RESULT(l,J) = MATRIXI (I,J) *MÀTRI Nz(I,J'),

and not by the matrix nultiplication formula.

À fulI comprenent of boolean unary and binary operators
with vector and matrix extensions are provided. These oper-
ations are very usefur in constructing logicar masks for the
indexing operations described in the next section. The mask

can be used to inhibit operations for certain components of
a vector or natrix variable.

rn addition to the above, DAp FORTRÀN provides many use-
fur built-in functions. These functions can be divided into
two groups:

1. COMPENENTTAL FuNcrroNS: exampres of this group in-
clude the trigonometric and exponential functions.
These functions operate on arl modes in a pararlel
manner. For example,

sIN(MATRTX_VAR) ,

will produce 4096 simultaneous results.
2. AGGREGATE FuNcrroNS¡ these functions perform basíc

manipulations on vector and matrix node objects. Ex-

amples of t,his class are shifting and expansion oper-

ations.

35

.:.::.,,.

These two groups are fu1ly described in the rnanuals ICL

[1980], and IcL [1981a].

Indexing Techniques

DAP FORTRAN has very powerful indexing constructs that
can be applied to vector and matrix mode variables. Arrays,

vectors, or scalars can be selected from both declared vari-
ables and the results of functions and numerical expres-

sions.

Indexing may be applied to both the right and left sides

of an assignment statement. Indexing _on the left selects

those elements of a variable that are to be altered by the

assignment, and indexing on the right selects the elements

in a variable that are to be used in computation.

Indexing on the right can be used to make the following

selections:
1. a scalar from a vector, vector array, natrix, or ma-

trix array, and

2. a vector from a vector array, matrix, or matrix ar-
FâY, and

3. a matrix from a matrix array.

The mode of the value selected by an indexing expression is
determined by the number of null subscripts in the expres-

sion. If no nuII subscripts exist, a scalar is selected.

if one null subscript exists, a vector is selected, and if
two exist, a matrix is selected.

36

A constrained subscript position (defined as the first of

second index position), in an indexing expression may con-

tain any of the following:
1. a null subscript,

2, an integer scalar value,/expression in range I to 64,

3. an integer vector expression with component values in
range 1 to 64,

4. a logical vector expression,

5. a logical matrix expression, and

6. a r+r or a r-r for shift indexing.

The shift indexing mentioned in point 5 makes use of the

nearest neighbour communications that exist in t,he DAp ar-
chitecture. À PE is allowed to share data via the row and

column highways with its neighbours to the north, south,

east, and west. The GEOMETRY statement controls how proces-

sors on the edge of the array are treated. Set.ting geometry

to 'cyclic' gives an edge processor data from the corre-
sponding processor on the opposite edge of the array, while

setting it to 'planar' aLways gives a processor a zero val-
ue. The geometry is separately switchabLe for the N-S and

E-W edges via the statement

GEOMETRY(N-S,E-W) ,

where the

to select

words 'plane' and 'cyclic' are placed as arguments

the proper geometry.

37

Tables 4"2 and 4.3 show some examples of indexing techni-
ques. The following declarations are assumed:

INTEGER V(), VARRAY(,5,5), M(,), IVO, MARRAY(,,5)

LOGICAL LVO, LM(,).

TABLE 4.2

Exanples of Left Side Indexing

ASSIGNMENT ACTION

M(,3)=v

v1(2)=v2

M(, IV)=v

v1(LV)=v2

M1(t-ltt)=¡,¡2

M(lv,e¡=5

Coples V into selected column of M

Assigns selected component of V'l the cornesponding
component of V2.

Assigns the selected component of vecton M(,IV) the
conresponding component of V.

Assigns V2(i) to V1(i) if and only if Lv(i) is tnue
All othen components of V1 ane unchanged.

Simi lan to pFevious

Assigns the scalan S to all components in the thind
column of M r,rhich cornespond to a true eìement of LV

Control Statements

DAP FORTRAN supports aII the control statements common to
most standard FORTRANS! IF, GOTO, DO, CONTINUE, CÀLL, STOP,

and RETURN. These structures are enhanced somewhat to a1low

the use of vector and natrix mode variables in logical and

loop limit calculations. In addition some debugging aids

are provided by the TRACE and ERROR statements (rcr, lrgara]
and ICL [1981bJ).

-38

TÀBLE 4.3

Exanples of Right Side Indexing

EXPRE SS I ON ACT I ON R E SULT

v(3)

V(LV)

vo
VARRAY(,3,2)

M(2,3)

M(LM)

M(2,)

M(LV,)

M(rv,)

M(LM,)

M(,)

M(+,)

Selects third component vector Vof

LV is tnue,
of V lsthe conresponding component

se I ected .

Sel ects ent i ne vector .

Selects a singìe column fnom the anray

Selects single component of matrix
vaniable.

If onìy one component of LV is true,
a singìe component of M is Eelected.

Selects a single now fnom M

hlhen a slngle component of LV ìs true,
the now corresponding to the non-zero
element is selected

Selects å vector V whene V(i)=M(Iv(i),i)
Urhen LM has onìy one true component pen
coìumn, a vecton is seìected whose comp-
onents come fnom connespondlng components
of the columns of M.

Selects entire matnix

Selects (or fonms) a matrlx whose comp-
onents ane shifted one now position down
from M's. The top no\./ will be all zeros
or equal to the bottom now if the
geometny is plane or cycì ic nespectlveìy

If a sing'ì e component of

Sca I ar

Sca I ar

Vector

Vector

Sca I an

Vecton

Vector

Vector

Vector

Vector

Matr i x

Matrix

Program Structure

AIl DÀP programs consist of two sections a DÀP FORTRAN

or APAL section and a 2900 FORTRAN 'host' section.

The host section is needed to provide a call to the DÀp

section of the program and to provide a1I inputr/output fi/Ol

39

that may be needed for the job. This is a result of the

fact that DAP FORTRAN has no I/O facilities.
.

Communication between the DAP and host sections of a pro-

gram is periormed via named common blocks. Owlng to the

fact that the two parts of the program use different data

formats in memory, special DAP FORTRÀN subroutines are pro-

vided to perform data napping conversion. The ENTRY subrou-

tine must convert relevant data from 2980 FORTRAN format to

DAP FORTRAN format when called, and then back again when re-

turning to the host program for data output.

The DAP FORTRÀN section may be made up of subroutines,

function subprograms, or block data subprograms. DAP

FORTRAN subroutines can be declared in three ways:

1. SUBROUTINE name,

2. SUBROUTINE name(dummy arguments), and

3. ENTRY SUBROUTINE NaME.

Thd first two forms of declaratíon correspond to normal

FORTRÀN constructs with the natural extensl.on to allowing

vector and matrix mode paraneters. The latter declaration

denotes a subroutine that is to be called by the host sec-

tion of the program. ENTRY subroutines provide the only ac-

cess to the DAP facilities from the host FORTRAN section of

the program. There uray be more than one ENTRY subroutine if
the user wishes.

DAP FORTRAN funct,ion subprogram declarations differ from

standard FORTRAN declarations in the addition of á mode des-

ignator to the basic syntax:

40

type*length mode FUNCTION name(dummy arguments) .

Thus DAP FORTRAN functions can return vector or matrix mode

results c

OS

IIBR

R$

41

Chapter V

THE CONJUGATE GR.ADIENT ALGORITHM

The conjugate gradient method (algorithm) wiIl be derived

from an optimization point of view. An iterative method

will be developed that seeks a solution to a set of linear
equations by requiring that each iterant minimize an error
functional. The error functional is designed to give a

measure of the current iterative solutions 'closeness' to
the exact splution, and as such, the solution vector that
minimizes the error functional wilt be the solution to the

system of linear equations.

The derivatíon of the conjugate gradient method presented

here follows that given by Axelsson Í.19771.

5.1 THE CLASSICAL CONiIUGATE GRADIENT ÀLGORITHM

The solution to the system of equations

Ax- Þ (5.1)

ís sought, where À is a symmetric positive definite N x H

matrix, and x and þ are respectively the unknown and forcing

vectors (length N). Let the exact solution to the equations

(5.1) be denoted by

42

..i',:

(5:2)

Given an estimate x of

dual to be

the solution vector, define the resi-

(5.3)

with the above definitions, consider the quadratic func-
tional (I{exIer IrgaO ,S-2]-l , Axelsson Llgll, s-6])

I
ÞA!

r E b Ax.

(5.4)

which is a so-called energy functional. The solution which

rnininizes (5.4) is the solution of minimum energy. Note

that r< ,)' denotes the standard inner product, which is
assumed valid for real spaces.

As the name of the cG method implies, information about

the gradient of the functional (5.4) is used to determine a

path to its minimum. The gradient of (5.4) is given by

€.(x) È GRAD(r(x)) (5.5)

Noting the definition of the residual, (5.5) can be rewrit-
ten as

e(x) = -r. (5.6)

Observe here, that in following a path to the minimum of the

functional, the negative of (5.6) is used since it is in the

direction of the ninimum.

43

=Aå-Þ.

Rewriting (5.4) in the form

rlF(x) = *<(h-x),4(h-x)) - *<h,Ah),
¿--L

(5.7)

and using the fact that the last term is constant, it can be

seen that minimizing (5.4) is equivalent to minimizing

(5.8)

which shall be called the error functional. Two alternate
forms of (5.8) are

E(x) - Trr,A-1r), (5.9)

and

E(x) = +<s(x),A-ls(x)), (5.10)
L--

where g(x) is given by (5.6). Note, that the gradients of
(5.4), (5.8), (5.9), and (5.10) are equal.

In a CG iteration, one constructs a path through the

space of solution vectors such that (5.10) is minimized and

a solutíon is obtained on the Nth step. Each iterative step

may be considered as an exact line.search of the form

(5.11)

That is, in proceeding from the current solution vector to
the next, one travels along a direction dk a distance ok.

The dírection vector is chosen with some idea of the gradi-

ent, and the parameter ok is chosen so that xk+l will be 1o-

44

n(x)

k+1 k.k
x * gr-d

Ã
x

cated at the ¡nininum of (5.10) along the tíne pk. The re-
guirement that e(x) be minimized successively by each step

of the CG algorithm enables the value of on to be deter-
nined.

Observe that

k
) -l(t-e(*k*

%g))>, (5.12)k

can be written as

tr(xk+sn d

(5.13)

k k (5.15)r - ak Ad

The matrix product in this formula can be used elsewhere in

the algorithm, giving greater efficiency.

45

r(xk+cqjk) = -2ou(rk,dk) * oí<ak,Adk).

Setting the derivative with respect to ou of (5.13) equal to

zero gives the níninization requirement that

(5.14)

Now consider the calculation of the residual vectors for
each CG iteration. WhíIe they may be calculated from (5.3),

the matrix multiplication involved ís not helpful. Using

(5.3) and (5.11), the following recursive definition for the

residual is obtained:

ok =
(rk rdk)
(dk , Agk>

k+1r É

Àt this juncture, recursive definitions for both x and r

have been deter¡nined. All t,hat is needed to complete the

algorithm is a definition for d. It is the choice made for

d that separates the CG method from the more general conju-

gate direction (CD) method. The conjugate direction method

makes no specification on how the direction vectors are to

be derived, save that they be À-orthogonal (i.e. <d,Ad>=0).

The conjugate gradient rnethod on the other hand, requires

that the direction vectors be constructed via A-orthogonali-

zation of the residual vectors generated by (5.15).

The orthogonalization could be realized by a Gram-schmidt

process (Lang LlglZ,138-1391), but it is undesirable to

store each r vector that is generated. Instead, the follow-

ing iterative procedure is used:

(5.16)

followed by

d
k+l ßn

(5.17)

To prove the validity of this process, the orthogonality

of the residual vect,ors must be demonstrated. With that

fact, the A-orthogonality of the direction vectors can be

proved, and finalty the value of ßo determined.

using (5.16), (5.15) can be rewritten as

0rd0

r kk+I

k

q+

+ckAk) ro,(r+c, e+cre2+ (5.18)r

or

46

k (r + Pk(A))
0 (5.19)r r

where Pk
(n) is a polynomial of degree k in A with no con-

Substituting (5.19) into the error functionalstant term.

(5.9) produces

n(*k) = < (r+Pk(a))ro,e-1(r+rn(A))ro>. (5.20)

Interpreting (5.20) as defining the square of ¡t norm with

respect to the matrix A-r , the minimization of (5.20) is
equivalent to requiring t,hat -en(a)¡' be an approximation to

ro (so their sum will be zero). The best approximation to

ro will be when the error is orthogonal (in the A-r norm) to

the basis of approximating vectors (oavis Irgz5,l-76]).
It is therefore required that

< (r+Pk(e)) ro , A- lP, (A) ro> 0 (j<k). (5.21)

But

P j (A)=A+AP J-l (A). (5.221

Substituting (5.22) into (5.21) gives

<(r+Pk(A)) ro, (r+p, (A)) ro> 0 15<t-t), (5.23)

which (using (5.19)) demonstrates t,he orthogonality of the

residual vectors.

47

with the result in (5.23), the A-orthogonality of the di-
rection vectors can be proved. Let j be Less than k, then

(using (5.15) and (5.17))

<d
k

,AdJ) !H. ('k-'
0
k

k+l),dJ-l). ß.24)

Extending (5.24) by induction leaves

k J>
Ê ßo <(rk- k+ t

) , uor.<d Ad ß J-1 j-2 r
(5.25)

cr
k

Using (5.16) and the orthogonality of the residual vectors

shows that (5.25) equals zero, which proves the A-orthogo-

nality of the direction vectors.

It remains for the value of ßu to be determined. The À-

orthogonality of the direction vectors gives

k 0 (5.26)r

Solving for ßn produces

k+1 Ad
k

ßk -(r (5 .27)

<d
IC

'Ad
k

It is profitable to put (5.14) and (5.27) into more com-

puLationally efficient for¡ns. Using (5.L7) and the orthogo-

nality of the residual vectors gives

48

k k
ok r r

(5.28)

<d t Ad

Substituting (5.15) and then (5.28) into (5.27) yields

ßk - arn*t r.**t, (5.29)
(tk , t*)

The derivation of the classicaL conjugate gradient algor-

ithm is now complete. Using equations (5.3), (5.11),

(5.15), (5.16), (5.li), (5.28), and ß.29r, the argorithm

can be summarized as follows:

0 = ARBITRARY, (5.30)x

0 =b-Ax 0 (5.31)r

g0 0 (s"32)r

k k
ok r) r (5.33)

<d
k

Adt

k+l k .k+okg' (5.34)x x

49

k+1 k k
(5.35)r t r - ckAd

(5.36)
k t((r ,r

and

+ tu d
k (5.37)

r¡here þ= 0, 1, 2, and the iteration terminates when

the Eucridean norm of the residual vector is ress than some

prescribed va1ue.

The listing in Appendix A incrudes the implementation of
the above equat,ions in DAp FORTRÀN.

5.2 THE PRECONDITIONED CONJUGATE GRADIENT ÀLGORITHM

Theoretically, the cG method should terminate in a finite
number of steps (less than or equar to N - the dimension of
the linear system). rf round-off error occurs, or if the
system matrix has a large spectral condition number (defined

as the ratio of the largest to the smallest eigenvarue),
however, convergence nay never occur or may take considera-
bly more than N iterations. ÀIso, for large N, even a
werr-conditioned system will require a large amount of exe-

cution time owing to the fact that each cG iteration is
fairly expensive.

50

k+l
,tk*l)tßn

r

k+1rdk+ I

aa.
.la

The slow convergence rate of the CG algorithm can be im-

proved by performing a preconditioning process on the system

matrix. The effect is to reduce the spectral "ondition
num-

ber of the system matrix which in turn improves the conver-

gence rate (Kershaw Ifgz8 ,46J, Àxelsson 11977 ,I7-23)l .

Preconditioning is realized by multiplying the original
systen (5.1) by a matrix K-r which is an approximate inverse

to the system matrix. The ultimate preconditioning matrix

would be the precise inverse of the system matrix, as multi-
plying by such a matrix would solve the system exactly in

one iteration. The effect of preconditioning, then, is to

put the linear system'closer'to its solution.

Since our system matrix is symmetric, the matrix K will
also be symmetric, and can be written as

t(= (LLT
(5.38)

Multiplying (5.1) by K-' gives the nevr system

T I T
I

(LL Ax r (Lt Þ
(5.39)

For the present purpose, it (5.L) as

I

I

I

;,,, ,:]

)

))

is necessary to rewrite

(r-lÀL-T) (lTx) (L-t b) '
(5.40)

(5.41)

or (to define the primed quantities),

51

xA b

The convergence properties of (5.41) and (5.39) wiII be

identical since (LLT¡-Ia and (r,-Iar-T) are similar matrices

and have the.same eigenvalues. The CG method, now called

the Preconditioned Conjugate Gradient (pCC) methód, can be

applied to the system (5.41) in a manner identical to its
application to (5.1). This results in a set of equations

'identical' to equations (5.30)-(5.37), but with primed

quantities replacing the normal quantities.

A', Þ', and x' are as defined in (5.4). As for r', rê-

writing (5.9) in the form

r

allows the definition of r' as

= å.,t
- I -'F),(L ^AL ^) I o)r,rIL)

kx

, A' - lr'k)
,

-l k (5 .42)

(5.43)

(5.44)

(5.46)

(E (

giving finally

kIk rLr

Similarly to (5.16),

(5.45)

The relationship between d and dr is somewhaL arbitrary.
The choÍce

d
0 ,0rf

d' lTakk

52

is made as it results in a considerable simplification in
the equations defining the PCG method.

With the above definitions for the primed variables, it
is possible to transform the equations back to normal vari-
ables. The resulting algorithm is given in the following
equations:

0 = ARBITRARY, (5.47)x

0 =b-Aå0, (5.49)r

d0 K
I 0

(5.49)r ,

k
K

I kr t r
(5.50)c¡

k k
<d 'Ad

k+1 k-k= I + ot9 ,x (5.51)

k+l k k (5.52)r r - a, AdK_

ßk
<rk+l ,K-lrk+1, (5.53)t

(rk,x-ttk>
and

g.
k+t

K
I k+l + ß n4n' (5.54)r

53

Trhere k=0, 1, 2, and the iteration terminates when

the Euclidean norm of the residual is less then some pre-

scribed value.

The PCG algorithm presented in (5.47, - (5.54)- is a spe-

cial case of the generalized CG method first presented by

Hestenes IfgSe,83-102J. In his derivation, Hestenes places

no requirements on the properties of the natrix K . Às a

result, the choice for K is not entirely obvious. The deri-
vatiqn presented here has the advantage of indicating exact-

Ly what properties K should possess.

The implementation of the PPCG algorithm in DAP FORTRAN

is included in Appendix A.

5.3 CHOICE OF THE PRECONDITIONING I'IATRIX - K

Àt this point, the only constraint put on the matrix K-r

is that it be an approxirnate inverse of the system matrix.

The method by which K-r is obtained has not been specified.

For scalar processors, the most efficient way to obtain

an approxinate inverse seems to be the incomplete Cholesky

factorization method put forth by Meijerink and van der

vorst ltgll,148-1621 (en implementation of which is dis-
cussed by Kershaw Irgzg,43-651). Arso, Nakonechny [1983]

has shown that the the Incomplete Cholesky Conjugate Gradi-

ent (ICCC) method has the advantage of allowing efficient
inplementation of a Iinked-list sparsity scheme.

54

Despite its advantages, ICCG is not suitable for imple-

mentation on a parallel- computer (webb et al.
IrgAz ,325-3291r. The incomplete Cholesky decomposition is
inherently a recursive process that does not lend itself to

paralleJ. implementation. Successive column eliminations

must proceed serially. While some parallelism can be ex-

tracted from a colunn elimination when a sparsity scheme is
not used, wit.h a sparsity scheme, parallel imptementation is
hopeless (especially on the DAp).

The goal here, then, is to arrive at an algorithm that:
f. incorporates preconditioning in its framework,

2. allows sparse storage of generally sparse system ma-

trices, and

3. is efficiently implementable on the DÀP.

The above requirements are met by combining the basic PCG

algorithm with a class of polynomial preconditioners dis-

cussed by Dubois et al. [1979,257-268] and Johnson et aI.

lrges ,362-3761.

The Polynomial Preconditíoned Conjugate Gradient (ppCC)

algorithm approximates the inverse of the system matrix À by

a truncated Neumann series expansion. This approxirnate in-
verse is then used as K-' in the PCG algorithm ((S.¿Z) -
(5.54)). Consider the splitting of the system matrix

I r (U - N) Ë]r(f - M-l*). (5.55)

55

rn exact analogy with the theory of scarar series (as op-
posed to matrix series), A- ¡ can be represented exactry by

A-1 E (r u-lt*)-lu-I, (5.55)

which can be written as

I (rlo (M-lH)r)M-1,
(5.57)

or

Eo (r M (5.58)

provided that (tri rsky I f ge 2 ,332j)

o(lt-lr,r¡ = p(I - u-le) (l, (5.59)

where p is the speetral radius of its matrix argument. The
latter point (s-s9), forrows from the fact that a matrix
raised to higher and higher powers wirl approach zero onry
if its spectral radius is less than one (Mirsky IfgAZ,32g]).

owing to the fact that the carculation of (b.sg) is int-
ractabre, ân approximation to the inverse of the system ma-
trix can be constructed by truncating the series (s.sg) af-
ter a few terms (typically 1-4). Let the truncated inverse
be defined by

A

-l¡,)t)"-1,A'- (i

where the possible z values (one to
degree to which A- r is approxímated.

(5.50)

infinity) determine the

The PpCc algorithm is

K-l
z

z-I to)t)n-1,

56

therefore parameterized by t,he quantity z and shall, here-

after, be denoted as PPCG(z).

The matrix K-' need not be explicitly calculated and

stored. It is needed only for the matríx vector product in
(5.47) ' (5.54) of the form

K
I

c r (5.61)z

This product can be evaluated whenever ít is needed, saving

great storage costs (n-' will be denser than A itself).
This is a great advantage over the ICCG method which re-

quires additional storage equal to the storage required for

the À matrix. PPCG(z) requires only the storage of an addi-

tional vector of length N over ttre basic CG algorithm.

The value of z should be user-specifiable since the ma-

trix vector muLtiplication required to evaluate (5.61) is
very expensive. For increasing values of z, there is a def-

inite trade-off between:

l. the decrease in total execution t,ime resulting from

the decrease in the number of iterations needed to

achieve a specified accuracy, and

2. the increase in total execution time resulting from

the increased execution time of a sÍngle iteration
for higher z values.

The choice for M-¡ in (5.60) is of fundamental impor-

tance. It must be such that (5.59) holds. An exceptional

choice is to take

57

a:::

lf I (DIAGONAL(A)) -T (5"62)

wit,h M-l of this form, (5.59) is guaranteed to hold if A is
strictly or irreducibly diagonally dominant (varga

[fgSS,73]). rn particular, if A is a real N x N matrix, and

(a,*) <
1l

ducible, and convergent if (varga IfgSS,84J):

l. A is nonsingular and À-1 is > 0, or

2. the diagonal entríes of A are positive real numbers.

Matrices of this type arise in many cases of interest.
varga [1965,161-208] demonstrates that matrices with the

above properties arise naturally from the finite-difference
solution of elliptic partial differential equations.

An additional advant,age of ß.62) is that any matrix-vec-

tor products involving M-I in the evaLuation of (5.51) can

be replaced by a vector-vector product. The latter is espe-

cially efficient on the DAP.

It can be seen that the preconditioning algorithm pre-

sented here is only as good as the matrix-vector multiplica-
tion routine used to implement it. It is inportant that the

sparsity scheme chosen allows a very efficient routíne to be

coded. This poínt is especially inportant with paraIIeI

processors since the architecture wiIl often linit the usa-

ble sparsity schemes with a resulting limitation in the op-

tions available for matrix-vector multiplícation routines.

58

The implementation of PPCG(z) on parallel processors will
involve compromises between sparsity schemes and multiplica-
tion routines. These considerations as applied to the ICL

DAP are discussed in the following two sections.

5.4 SPÀRSE I.ÍATRIX STORAGE SCHEME

The use of sparse matrix storage in numerical analysis is
an absolute necessity. In general, the matrices arising
from finite-element and finite-difference analysis are very

large and very sparse. Dense storage of such matrices is
impossible, and as such, schemes must be devised that store

only the nonzeros of a given matrix.

There are special problems associated with storing sparse

matrices on the DAP. It is of fundament,al importance that
the data structure chosen a1low the full parallelism of the

DAP (4096 simultaneous operations) to be exploited. This

goal can be achieved only if numerical operations are per-

formed using matrix mode data objects.

À problem arises, however, when it becomes necessary to

reorder data so that matrix arithmetic can be used. The

data reordering process can consume considerable amounts of

time. Indeed, the matrix vector multíplication algorithm

presented in the next section spends most of its time per-

forming data reorganization and a very minimal amounÈ of

time doing actual addition and multiplication.

59

It is here that a deficiency in the DAP design comes to

light. The limited processor interconnection pathways do

not allow for efficient data reorganization. If it were

possible to implement a perrnutation network along with the

DAP, its pov¡er would be greatly enhanced.

The storage scheme and its associated matrix vector

multipLication algorithm used here, are adaptations of those

suggested by Parkinson [1981]. The system matrix is stored

so that the nonzero coefficients are stored one row per pro-

cessor. That is, the contents of a rolr are entirely con-

tained within the local store of a single processor. The

row number that a processor stores is given by its long vec-

tor order number defined in Section 4.2.2.I. Each coeffi-
cient is stored along with an integer number that indicates

which column it belongs to.
Thus, the system matrix is entirely described by the fol-

lowing three quantities:

1. the coefficient values stored as a matrix array'

2. the long vector position that the coefficients occu-

PY' and

3. an integer matrix array whose entries give the column

position of the corresponding element in the coeffi-
cient array.

Figure 5.1 shows an exanple of this data structure for a hy-

pothetical 2 t 2 DAP storing a 4 X' 4 matrix. Note t,hat the

symmetry of the system matrix is Ígnored in this scheme.

60

STORAGE SCHEME

SYSTEM MATRIX COEFFICIENT
VALUE

COLUMN
POINTER

2004
o 2-'t 'l

o -1 3 0

4102

I;;] t;

t:

;l STORE PLANE 1

I; ;l
;l

;l STORE PLANE 2

t: t; STORE PLANE 3
4

Figure 5.1: Example of matrix storage scheme.

One small point should be mentioned here. Since it is
probable that not every row will have the same number of

nonzero coefficients, some zero entries wiIl need to be

stored in the coefficient matrix array. This happens in the

store planes (defined in Figure 5.1) subsequent to the one

that the last nonzero of a row is stored in. The column

pointer corresponding to these zeros is arbitrarily set to
1. This is done with a view to using a standard system sub-

routine in the matrix vector multiplication algorithm

which requires that the column pointer values be in the

range [1,4096].

61

5. 5 I{ATRIX-VECTOR MULTIPLICATION ALGORITHI{

A natrix vector product of the form

v Ax (5.63)

is to be evaluated. To this end, the A - matrix is assumed

to be stored in the manner described in the previous sec-

tion. Let the problem be of order N, where N is in the

range [1r4095]. In addition, let processor k contain the

kth component of I and ¿.
The matrix vector multiplication process can, in gener-

ê1, be viewed as N independent row vector column vector

scalar products. Since all of these scalar products are in-
dependent, they nay be evaluated in para}lel. This is done

by processing the matrix store one plane at a time. Each

plane contains one nonzero multiplier from a term in each of

the N scalar products. Alt that is needed is to generate a

matrix containing the proper multiplicand in each position

so that t,he DAP FORTRAN matrix mode multiplication can be

used, generating 4096 scalar product terms. This matrix of

product terms can then be summed into the I vector to accu-

mulate alI the scalar products simultaneously.

The problem is to generate a matrix of multiplicands for

every plane of matrix store. This matrix is best defined by

the following formula:

MULTIPLICAND(I) =)T(COLT,MNS(I))

62

where the matrix COLUMNS indicates to what column the multi-
plier of MULTIPTICÀNÐ(I) belongs and is equal to the present

plane of the column pointer matrix array.
There are two convenient ways to generate the above

transformation.

The first is by using an existing subroutine in the DAP

subroutine library at QMC (f,iaaet and Bowgen [1982]). This

routine, cal}ed MOI_PERMUTEI, performs precisely the re-
quired transformation. The main disadvantage to this ap-

proach is that the subroutine takes a considerable amount of

time to execute (11 ms).

The second way is by use the DAP FORTRAN broadcast facil-
ity. The transf ormed matrix is built by testing t,he values

contained in COLTMNS sequentially, and broadcasting the vaI-
ue x(TESTED VALUE) to all matrix positions in the

MULTIPLICAND array which correspond to an occurrence of the

tested value in the COLUMNS array. The assignments (broad-

casts) in each step are done in parallel and are implemented

using the logical. mask indexing facilities of DAP FORTRAN.

If fewer than about 500 broadcasts are needed for a particu-
l-ar plane of the matrix store, this approach will be faster
than using M0I_PERMUTEI.

The scheme used for a particular store plane is deter-
mined by counting the number of broadcasts needed for that
plane. Since this analysis is quite expensive, it is not

really necessary if only one multiplication is being done.

63

If there are many multiplications using the same À matrix,

however, the analysis can be done once and used for all sub-

sequent multiplications, making the extra costs incurred

negligible.
The code implementing this nultiplication algorithm is

listed in Appendix B. The listing is heavily documented and

should help to explain some of the finer points of the aI-
gor i thm.

64

Chapter VI

TEST PROBLEM RESULTS

The examples presented in this chapter serve two purpos-
Aê '

1. to study the properties of the ppcG(z) algorithm, and

2. to study the efficiency of the ppcG(z) argorithm on

the DÀP.

Parallel and serial versions of the ppcG(z) and cG algor-
ithms are compared and contrasted with each other, and with
a serial imprementation of the rccc algorithm for two elec-
tric field problems.

The first, a Dirichret finite-difference problem, was im-
plemented on both an rcL DAp and an Andahl 59s0. This exam-

pre provides comparisons of the cG, rccc, and ppcG(z) algor-
ithms, âs welr as giving a measure of the performance of the
ICL DAP.

The second example is a finite-element problem. It was

incruded to show that, while not appricable in theory, the
pPCG(z) method provides a viable solution technique for such

probrems. This problem was impremented on the Amdahl 5850

only, and as such, serves only to characterize the ppcG(z)

argorithm in its orrn right, rather than the parallerization
of it.

65

The serial conjugate gradient routines used here are de-

rived from those of Nakonechny [1983]. These routines use a

linked-Iist technique as a sparse storage scheme. This

nethod is ideally suited to scalar processors, ás it mini-

mizes the searching time needed to implement a matrix-vector
multiplication algorithm. The serial processor, then, is
not penalized by asking it to implement the sparse storage

and multiplication algorithms described in Chapter 5.

6.T. THE FINITE-DIFFERENCE PROBLEM

Consider the Dirichlet field problem shown in Figure 6.1.

The solution of Laplace's equation for the potential 0 in

the interior region is sought (under the prescribed boundary

conditions). The finite-difference analysis of such a prob-

lem produces a Iinear system whose coefficient matrix obeys

precisely t,he properties reguired by the PPCG(z) method (see

Section 5.3).

ó=o

-v2 É =o É=l

#=z

Figure 5.1: Finite-difference problem geometry.

66

ó=g

In order to cater to the DAP processor parallelism, the

region in Figure 6.1 was discretized into a 64 ,l 64 grid.
This yielded 4096 unknowns, which precisely uratches the num-

ber of processors in the DAP. It was not n"""sÁ.ry to run

smaller problems than this, âs the DAP PPCG(z) algorithm is
such t,hat it will solve a 64 rl 64 problem just as fast as it
will a snaller problem

The resulting linear system (with a 4096 X 4096 coeffi-
cient matrix) was solved using CG and PPCG(z) on the DAP,

and using CG, ICCG, and PPCG(z) on the Amdahl 5850. Figures

6.2 and 6.3 show the iteration count and execution time

properties of the various methods (excluding the Amdahl

PPCG(z) results). As can be seen from the figures, paralle1

PPCG(z) competes very favourably with the scalar ICCG algor-
ithn. While ICCG is the winner in reducing the iteration
count (except for PPCG(4)), PPCG(2) is the clear winner when

execution time is considered.

An interesting property of the PPCG method can be seen in

Figure 6.2. A comparison of the PPCG(2) and PPCG(3) curves

shows that higher preconditioning orders (higher z values)

do not necessarily give lower iteration counts. This phe-

nomenon can be explained via analytic convergence estimates

given by Dubois If929,2647. rt, is analogous to truncating

an alternating scalar series at an undesirable term. For

example, the Nth partial sum may actually be closer to the

Iimit than the (tt+I)th partíaI sum. Theref ore, úy analogy,

67

I
T
E

R

A
T
I
o
N

c
o
u
N
T

oo

-----'-"""'-"'1

cG(3) 2\
PP P PCG

ÀÉL
)

cG(4)
GCG

(Àlt9 PP

5 1

0.0r 0.001 0.0001 0.00001

EXIT CRTTERTON

PPCG(2) r<--+

cc (A||DAHL)
'É-x-x

t .00000E-06 t ,00000E-07

LEGEND PPCG(1) e-++

cG (DAP) n--rê(

PPCG(3) il# PPcc(4)

ICCG (AIIOAHL) Y-+-Y'

#

Iteration count vs. exit criterion for the
f inite-dif ference problem.

Figure 6.2

68

r 200

E

x
E

c
U
T
I
o
N

T
I
M

E

I
N

It
I
L
L
¡
s
E

c
o
N
D
s

oì

oø

70

60

\l
-\ I

Àì 2l

::..

30

20

0.0r 0.00r 0. 000 t 0. 0000 r 1.00000E-06 1.00000t-07

EXIT CRITERION

LEGEND PPCG(r)

CG (DAP)

€..æ

t€H+

pPCc(2).--.+

Cc (AMDAHL) r+-x-x

PPCQ(3) r-+--+ PPCG(4) ór-+--+

Iccc (AMDAHL) Y-à'-Y'

6.3: Execution time vs. exit criterion for the
f inite-di f ference problem.

Figure

69

.::.

the Nth estirnate of the inverse of the system matrix may be

closer to the actual inverse than is the (tt+l)th estimate.

As mentioned in t.he previous chapt,er, the expense of sin-

gle PPCG(z) iteration is highly dependent on the-va1ue cho-

sen for z. The interaction of this property with the reduc-

tion in iteration count can be observed in Figure 6.3.

While the iteration count for PPCG(4) is lower than thaÈ of

PPCG(2), the great,er expense of each iteration of the former

causes it to do worse in terms of total execution time'

The expense of appending successively more terms onto the

inverse series is also evident in Table 5.1. Each increment

of z increases the execution time for a PPCG(z) iteration by

30 ms on the DAP and by 36 ms on the Amdahl. For the z val-

ues of interest (E o¡: Iess), this increase is very signifi-
cant.

TABLE 6.1

Execution Time per Iteration for the DAP and Amdahl

PPCG(1) PPCG(2) PPCG(3) PPCG(4) CG I CCG

DAP

AI'DAHL

3334 64 94 125

52 'lo354 90 125 162

70

Tabre 6.1 also gives performance comparisons between the

DÀP and the Amdahr 5850 (an exampre of a fast scalar proces-

sor). I{hen comparing CG and PPCG(z) results, it can be seen

that in alr cases the DAP executes a single iteraiion faster
than the Àmdahl.

When comparing iteration counts for equivalent CG and

PpcG(z) algorithms on the DAP and the Amdahl, an interesting
observation comes to Iight. Comparing the curves for
CG(DAP) and CG(Amdahl) in Figure 6.2, and corresponding

curves for the PPCG(z) algorithm in Figure 6.4, one observes

that the algorithms on the Àmdahr require more iterations to
satísfy a specified convergence requirement. Since the a1-

gorithms are identical in function, one can only conclude

that the DÀP algorithms produce less round-off error than do

the Amdahl algorithms.

This phenomenon is due to the fact that the paralle1 al-
gorithm is able to conserve precision by using a number of
accumuLators when evaluating the scalar products. Adding a

small number to a large number occurs less often, and as a

result, less rounding occurs.

7t

I
T
E

R

A
T
T

o
N

c
o
U

N
T

lu

0.0r 0.00r 0. 000 l 0. 0000 I t.00000E-06 l.00000E-07

EXIT CRITER¡ON

LEGEND DAP

AIIOAHL

PPCG(1)

PPCG(f)

ã..€.€

Ê'€-o

PPCG(2)

PPCG(2)

++--a

+{-o

PPCG(3)

PPCG(3)

a--{+

-{-
PPCG(4)

PPCG(4)

È++

T-G-A

Figure 6.4¿ Convergence of DAP and Amdahl pPCG(z)
algorithms. ,

72

6.2 THE FINITE-ELEMENT PROBLEM

As a second exampre, consider the geometry shown in Fig-
ure 5.5. In this fierd probrem, the z-component of the mag-

netic vector potentiar (a") is to be determined (under the
boundary conditions indicated). The region itserf is divid-
ed into a number of areas of different magnetic permeabirity
p.

Az =o

Az =Q lLt Az=o

Az=o

Figure 6.5: Finite-Elenent problem Geometry

The finite-erement soluÈion of this probtem produces a

positive definite system matrix that does not meet the re-
quirements of the PPCG(z) nethod (see section 5.3). Despite

this, the results presented here indicate that ppcG(z) is
useful for solving finite-element problems.

73

Figures 6.5 and 6.7 show the iteration count and execu-

tion time resuLts for the cG, rccc, and PpcG(z) -argorithms
running on an Amdahl 5850 scarar processor. Note that a so-

lution of this problem was not attempted on the oÁp.

rccc again excels in its ability to reduce the iteration
count. unlike the previous exampre, no ppcc argorithm of
interest exhibits a lower iteration count than ICCG.

Total execution tine is the telling factor, however. The

execution time of PPCG(I) is nuch lower than that of IccG

for the full range of exit criteria considered, while
PPCG(2) and PPCG(3) have lower execution times for those

ranges of exit críteria where round-off error is not preva-

lent. The round-off error for tighter exit criteria indi-
cated in figures 6.6 and 6.7 should not occur for the paral-
Iel PPCG(z) solution of this problem.

74

220

e00

180

160

tl¡0

t?o

t00

80

60

g0

20

----__--te-

cG --..

I
T
E
R

A
T
I
o
N

c
o
U
N
T

PPCG(2)
PPCG PPCG(4)

- ----Y- -- ----- --- --

0

0.0r 0.001 0.0001 0.00001

EXIT CRITERION

1.00000E-06 L00000E-07

LEGEND PPCG(T)

PPCG(2)

€'+H}

a--a---;

PPCG(3)

PPCG(4)

,Þ-{a

H

cG x--x-+(

ICCG Y-+-Y-

Iteration count vs. exit criterion for the
f inite-element problem.

Figure 6.6t

75

E

x
E

c
u
T
¡
o
N

T
I
H
E

I
N

il
I
L
L
T

s
E

c
o
N
D

s

PP cc(4)

ICCG

2

PPcG(1)

2

0,0t 0.00r 0.0001 0. 0000 r ¡.00000E-06 l.00000E-07

EXIT CRITER¡ON

LEGEND PPCG(1)

PPCG(2)

ê-æ

+<>4

PPCG(3)

PPCG(4)

i}-r+

t-+--t

CG)+-x-r

ICCG Y-ì'-+

6 .7 t Execut ion t irne
finite-element

vs. exit criterion for the
problem.

Figure

76

Chapter VI I

CONCLUSION

This thesis has shown that polynomial preconditioning a1-

lows efficient parallelization of the preconditioned conju-

gate gradient algorithm on a processor array. The paralle1

implementation of PPCG(z) on the DAP attains faster solution
times than an implementation of the ICCG algorithm on a fast
scalar processor. The paraIIeI PPCG(z) performance ranges

from 1-2 times that of scalar ICCG. Also, both the PPCG(z)

and ICCG algorithms are applicable to the same classes of

natrices so that the two methods should be interchangeable.

Dubois performed polynomial preconditioning on a CDC STAR

100, which is a pipelined vector processor. His algorithm

incorporated a sparsity scheme that was matrix dependent.

The DÀP PPCG(z) algorithm, however, nas implemented with a

general sparse matrix storage scheme. This feature is irn-

portant as many of the solution techniques used in numerical

analysis produce large, generally sparse matrices.

The parallel CG and PPCG(z) algorithms were shown to be

more resistant to round-off error. The ability to easily
accumulate into a number of locations when performing scalar

products allows round-off effects to be reduced.

77

The PPCG(z) algorithm's performance is highly dependent

upon the efficiency of the matrix'vector nultiptication aI-
gorithm. If a more efficient multiplication algorithm could

be found, the DÀP could offer even greater speed advantages

over a scalar processor running ICCG. This would, in turn,
require the formulation of a different sparsity scheme.

One option is t,o adapt the sparsity scheme to the topolo-
'gy of the problem at hand. In the case of the finite-dif-
ference example, one could store only nonzero diagonals.

The uratrix-vector multiplication would then take the form of

the algorithm suggested by Madsen et aI. [1976]. This ap-

proach, however, has the disadvantage of decreasing the gen-

erality of the PPCG(z) algorithm.

Since the permutation operation is the bottleneck in the

present matrix-vector nultiplication algorithm, greater per-

formance could be achieved by streamlining this operation.

Sof t,ware options to achieve this are Iimited. It would have

to be realized with hardware additions to the DÀP. A

switching network like that used in the Burroughs FMP (Cott-

Iieb and Schwattz [1982,30]) could be used to interconnect

the DAP processing elements, resulting in faster long vector

permutations. Such a hardware addition to the DAP would

make it a much ¡nore powerful processor.

The incentive to either improve the DÀP or the PPCG(z)

algorithm increases if one considers the performance of the

present algorithm when the number of unknowns exceeds the

parallelism of the DAP.

78

Consider, f.or example, a problem with 8192 unknowns. The

matrix for such a problem would be stored in two blocks,

each identical to the storage scheme descríbed in Chapter 5,

one representing the first 4095 rows, and the second repre-

senting the last 4096 rows (low and high order respective-

}y). Since the column pointer array for both the high and

low order blocks may contain values in the range [1,8192]

(i.e. from both row blocks), a permutation done for a plane

in the low order matrix store must be accompanied by one us-

ing the corresponding plane in the high order matrix store

(and vice versa). Thus, two permutations are required to

process each plane in each matrix storage block. Since

t,here are twice the number of matrix storage blocks, the

number of permut,ations in the 8192 unknown problem exceeds

that in the 4096 unknown problem by a factor of 22 (assurning

that the number of nonzeros per row is the same for both

problems) .

Generalizing the above result, then, if the number of un-

knowns exceeds the number of DAP processors by a factor of

j, the nunber of permutations needed to perform a matrix-

vector multiplication increases by a factor of i" . Exceed-

íng the DÀP parallelism by tno or three may be acceptable,

but any larger a problem size would require reworking the

algor i thm.

The most natural way to extend the present PPCG(z) algor-

ithm to larger problem sizes is to increase the size of the

79

DAP. A L28 X 128 DÀP could solve matrices of order 16384 in

the same tine as the present DAP solves matrices of order

4096. A DAP of this size is entirely feasible (indeed, the

L28 x L28 MPP processor array has already been built), and

with the advances in VLSI technology of late, has a good

probability of being built.
The major conclusion that can be reached from t,his the-

sis, in conjunction with Dubois' work, is that the precondi-

tioned conjugate gradient algorithm does have a future in
the world of parallel processing. It has been argued that,
because of the inherent recursiveness of preconditioning a1-

gorithms, it would never be competitive with other direct or

iterative methods. The incorporation of a general sparsity

scheme into the parallel algorithm can only serve to
strengthen thís conclusion. The performance of the PPCG(z)

algorithm on the DAP, while not earthshaking, indicates a

potential for it to be a serious parallel Iinear-equation

solver.

80

Àppendix À

CONJUGÀTE GRÀDIENT LISTING

SUBROUTINE CG(SN,SP,SMAXPLANES,HA,HCOLUMNS, LVX, LVB,
& SEXIT,SNUMITER,SPRECON-ORDER)

c
C*+*+*+*+*+*+*+*+*+*+¡*+*+*+*+*+*+*+*+*+*+¡*+*+*+*+,f+*+*+*+*+*+*+*+*+*+*
c
c PERFoRMS GoNJUGATE GRADIENT SoLUTIoN oF (ma¡*1Lvx) = (LVB)
C UIITH OR U'ITHOUT THE POLYNOMIAL PRECONDITIONING SCHEME
c
c*+*+*+*+*+*+*+*+*+*+r*+*+*+rr+¡Ì+*+*+*+*+*+*+*+*+¡*+*+*+*+*+¡r+*+*+*+*+*+*
c
C PARAMETER DICT]ONARY
c
c,Í+*+*+*+*+*+*+*+¡*+¡t+*+¡l+,t+*+*+ri+*+*+*+*+*+*+ri+'i+*+*+*+*+'r+*+*+*+*+*+x
c
C SN - DIMENSION LINEAR SYSÎEM.
C SP - NUMBER OF PLANES OCCUPIED BY MA.
C SMAXPLANES - NUMBER OF STORAGE PLANES TAKEN BY MA
C MAXIMUM VALUE FOR SP.
C MA - MATRIX OF COEFFICIENTS STORRED ONE ROW PER PROCESSOR.
C MCoLUMNS - GIVES COLUMN NUMBER OF CORRESPONDING ttA ELEMENT.
C LVX - UNKNOWN (RESULT VECTOR).
C LVB - SOURCE VECTOR,
C SEXTT - EXIT CRITERION. WHEN THE EUCLIDEAN NORM OF THE RESIDUAL
C IS LESS THAN THIS VALUE, THE SUBROUTINE EXITS.
C SNUMTTER . THE NUMBER OF ITERATIONS TAKEN FOR CONVERGENCE.
C SPRECON-ORDER - INDICATES TO T,IHICH ORDÊR THE PRECONDIT¡ONING
C POLYNOMIAL IS EVALUATED. ZERO INDICATES NO
C PRECONDITIONING.
c
c*+*+*+*+r+r+*+*+*+'Ì+*+*+'t+*+*+*+'r+¡r+*+*+r*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
c

¡NTEGER SN,SP,SMAXPLANES,SNUM]TER,SLOOPLTM
INTEGER MCOLUMNS(, ,SMAXPLANES), MTEMP(,)
REAL MA(,,SMAXPLANES)
INTEGER I,J,K,VCOUNT()
REAL LVX(,), LVB(,)
REAL SALPHA , SBETA . S-OLD-PROD , S-NEW-PROD
REAL LVANS(,), LVR(;), LVD(,)
REAL SEXIT
INTEGER SPRECON-ORDER
LOGTCAL SFIRST
REAL LVDIAG_INV(,), LVFTRST-TERM(,), LVRESULT(,)
INTEGER MLONG-INDEX(.),VTEMP(),PLACE

c
c¡t+*+*+*+*+*+*+'É+*+*+ *+*+*+*+*+*+*+*+ *+*+,t+ *+*+*+*+*+*+ *+ *+ *+*+ *+ *+ *+ *
c
C VARIABLE DICTIONARY
c
c *+*+*+*+ *+*+*+*+*+*+*+*+ *+*+ *+*+*+ *+*+ *+*+*+*+*+ *+*+*+*+*+*+ *+ *+*+*+*
c
C LVANS - RETURNS RESULT FROM SPARSE MULTIPLY.
C SALPHA. EXACT LINE SEARCH CONSTANT FOR NEIJ X VECTOR CALCULATION,
C SBETA - EXACT LINE SEARCH CONSTANT FOR NEId DIRECTION VECTOR
C CALCULATION.
C LVD - DIRCTION VECTOR.
C LVR - RESIDUAL VECTOR.

8.1

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

LVDIAG-INV - VECTOR HOLDING THE INVERSE OF THE DIAGONAL
OF THE SYSTEM MATRIX,

LVFIRST-TERM - THE FIRST TERM IN THE POLYNOMIAL EXPANSION,
LVRESULT . ACCUMULATOR FOR THE POLYNOMIAL EXPANSION.
S-OLD-PROD, S-NEþJ-PROD - TEMPORARIES FOR SCALAR PRODUCTS USED

¡N THE SALPHA AND SBETA CALCULATIONS.
MLONG TNDEX - HOLDS THE LONG VECTOR ORDERING OF THE PROCESSOR,ARRAY. THIS ORDERING ASSIGNS EACH PROCESSOR

A NUMBER TN THE RANGE [1..4096], U'ITH THE FIRST
COLUMN GETTING VALUES [1. .64], THE SECOND COLUMN
VÀLUES [65..128] Erc.

PLACE - USED TO GENERATE MLONG-INDEX.
VTEMP - USED TO GENERATE MLONG-INDEX.
SFIRST - ¡NDICATES FIRST CALL TO SPARSE-MULTIPLY,
VCOUNT - HOLDS NUMBER OF BROADCASTS NEEDED FOR EACH LAYER

OF THE SYSTEM MATRIX.

++*+*+rf+*+*+*+*+*+¡*+*+*+*+*+*+*+*+*+*+*+*+rÌ+*+*+*+*+*+x+*+*+*+*+¡i++

EXTERNAI- SUBROUTINE

EXTERNAL SPARSE-MULTI PLY
c
C U.IHICH ROUTINE SHOULD BE USED?
c

IF (SPRECON-ORDER.NE.O) GOTO lOOO
c
C*+*+*+*+¡*+*+*+*+*+*+*+*+*+*+*+*+*+¡++*+*+*+,fi +*+x+*+*+*+*+*+*+*+*+¡*+*+*

CONJUGATE GRADIENT ROUTINE (NO PRECONDITIONTNG)

++'t+*+*+*+'ß+*+*+*+*+*+*+*+*+*+*+*+x+*+*+*+*+¡t+*+*+*+*+*+*+'f+*+*+*+*

INTTIALIZE VARIABLES.
SET UP SFIRS'T FOR FIRST CALL TO SPARSE-MULTTPLY 50 THAT
VCOUNT U'ILL BE GIVEN PROPER COMPONENTS

SNUMITER=O
LVX= 1

SFIRST È .TRUE.
VCOUNT Ê O
CALL SPARSE-MULTIPLY(SN, SP,SMAXPLANES,MA,MCOLUMNS,

& LVX,LVANS,VCOUNT,SFIRST)
SET SFIRST TO FALSE SO SPARSE-MULTIPLY WILL NOT
RE-EVAULATE VCOUNT,
SFIRST . .FALSE.
LVR=LVB-LVANS
LVD = LVR
S-OLO-PROD - SUI.I(LVR*LVR)

BEGIN CG ITERATION

c
c

c
c
c

&

CONT I NUE
CALL SPARSE-MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS

LVD , LVANS , VCoUNT , SF I RST)
SALPHA . S-OLD-PROD/SUM(LVD*LVANS)
LVX¡LVX+SALPHA*LVD
LVR=LVR-SALPHA*LVANS
S_NE!r_PROD . SUM(LVR*LVR)
SBETA . S_NEU_PROD/S_0LD_PROD
S OLD PROD - S NEhr PROD
LVD-LVR+SBETA*LVD
SNUMITER"SNUMTTER+ 1

CHECK EXIT CRITER¡ON, STOP ITERAT¡NG IF MET
rF (soRT(SUr.!(LVR*LVR)) .er. SEXrT) OOTO S
coTo 2000
CONT I NUE

82

c

c
looo

c *+ *+ *+*+ *+*+ *+ ¡r+*+ *+*+ *+*+ *+ *+*+*+ *+*+*+*+ *+*+ *+ *+*+ *+'1.+ *+¡t+ *+ r.+ *+ *+ *

POLYNoiIIAL PRECONDITIONED C,G. ROUTINE

*+ *+ *+ *+ *+*+*+x+ *+ *+ *+ *+ *+*+ *+*+ *+ *+*+*+*+ *+ *+ *+ *+ ¡ß+¡*+*+ *+ *+ *+ *+ tl.+ *+'t

PRODUCE AN INTEGER MATRIX T{IIOSE ENTRI ES
CORRESPOND TO LONG-VECTOR ORDER 1 TO 4096
FROM INTRO TO DAP FORTRAN PROGRAMING PG. 5-5
USE THIS TO OBTAIN THE DIAGONAL OF THE SYSTEM MATRIX

c
c
c
c
c
c
c
c
c
c

c
c

c
c
c

10

VTEMP=O
PLACE= 1

DO 10 K=1,6
VTEMP(ALT(PLACE)) = VTEMP + PLACE
PLACE = PLACET2
MLONG INDEX = MATC(VTEMP) + m¡tn(64*VTEMP) + 1

NOW LOAD DIAGONAL ENTRIES OF SYSTEM MATRIX INTO A LONG
VECTOR AND INVERT THE RESULTTNG VECTOR,
THIS VECTOR IS THE BASIS OF POLYNOMIAL PRECONDITIONING

LVDIAG_INV = O.O
DO 20 1=1,SP

MTEMP=MCOLUMNS(,,I)
LVDIAG-INV(MTEMP.EQ,MLONG-INDEX) - MA(,, I)

CONTINUE
LVDIAG-TNV = 1.O/LVDIAG-INV

INITIALIZE VARIABLES.
SET UP SFIRST FOR FIRST CALL TO SPARSE-MULTIPLY SO THAT
VCOUNT WILL BE GIVEN PROPER COMPONENTS

SNUMITER=O
LVX='l
SFIRST = .TRUE.
VCOUNT = O

CÀLL SPARSE-MULTIPLY(SN,SP, SMAXPLANES,MA, MCOLUMNS,
& LVX , LVANS , VCOUNT , SF I RST)

SET SFIRST TO FALSE SO SPARSE-MULTIPLY ¡'ILL NOT
RE-EVAULATE VCOUNT.
SFIRST = .FALSE.
LVR=LVB-LVANS

PERFORM POLYNOMIAL EVALUATION FOR PRECONDITIONING

LVFIRST_TERM = LVDIAG_INV*LVR
LVRESULT = LVFIRST TERM
SLOOPLIM = (SPRECOÑ-ORDER - 1)
IF (SLOOPLIM.EO,O) GOTO 40
D0 30 I = 'l , SLOOPLIM

CALL SPARSE-MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS,
& - LVRESULT , LVANS, VCOUNT, SF I RST)

LVRESULT = LVFIRST TERM + LVRESULT - LVDIAG INV,TLVANS
CONT I NUE
LVD=LVRESULT
S-OLD-PROD = SUM(LVR*LVRESULT)

BEGIN PPCG ITERATION

CONTINUE
CALL SPARSE-MULTIPLY(SN,SP,SMAXPLANES,MA,MCOLUMNS.

& LVD, LVANS, VCOUNT, SFIRST)
SALPHA . S-OLD-PROD/SUM(LVD*LVANS)
LVX=LVX+SALPHA*LVD
LVRELVR-SALPHA*LVANS

83

c
c
c
c
c

20

c
c
c
c
c

30
40

c
c
c
50

c
c
c

PERFORM POLYNOMIAL EVALUATION FOR PRECONDITIONING

LVFIRST-TERM = LVDIAG_INV*LVR
LVRESULT e LVFIRST TERM
IF (SLOOPLIM.EO.O)-GOTO 70
DO 60 I = 1, SLOOPLIM

CALL SPARSE-MULTIPLY(SN,SP,Sl¡tAXPLANES,MA,MCOLUMNS,
& LVRESULT, LvANs, vcOUNT, SFIRST)

LVRESULT = LVFIRST TERM + LVRESULT - LVDIAG INV*LVANS
CONT I NUE
S-NEt¡J-PROD . SUM(LVR*LVRESULT)
SBETA - S-NEI/-PROD,/S_OLD-PRoD
S_OLD-PROD = S-NEW-PROD
LVD . LVRESULT + SBETA*LVD
SNUMITER=SNUMITER+ 1

CHECK EXIT CRITERION. STOP ITERATING IF MET
IF (SORT(SUM(LVR*LVR)) .GT. SEXIT) GOTO 50
CONTI NUE
RETURN
END

60
70

c

2000

84

Àppendix

SPÀRSE I¡IULTI PLY

B

ROUTINE

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBRoUT¡NE SPARSE-MULTIPLY(SN,SP, SMAXPLANES,HA,MCoLUMNS,
& LVMULCANO, LVANS, VCOUNT , SF IRST)

c
c*+*+*+*+*+*+*+'t+*+*+*+*+*+*+++*+*+*+*+*+*+*+,*+*+*+*+*+*+*+*+*+*+x+*+*
c
C PARKINSONS ALGORITHM FOR SPARSE MATRIX-VECTOR MULT,
c
c*+*+*+*+*+*+¡r+*+*+*+*+*+*+*+*+*+*+*+*+ *+'i+++x+++*+*+x+'l+*+*+*+*+*+*+*
c
C PARAMETER DICT]ONARY
c
C * + * + *+ * + * + * + * + '* + + + 'l + * + *+ * + * + * + * + * + * + * + * + * + * + * + * + * + '* + * + * + * + * + * + * + * + * + *

SN. DIMENSION LINEAR SYSTEM
SP - NUMBER OF PLANES OCCUPIED BY MA

SMAXPLANES - NUMBER OF STORAGE PLANES TAKEN BY MA

MAXIMUM VALUE FOR SP
MA - MATRIX OF COEFFTCIENTS STORRED ONE ROIJ PER PROCESSOR

MCOLUMNS - GIVES COLUMN NUMBER OF CORRESPONDING MA ELEMENT

LVMULCAND . MULTIPLICAND
LVANS - RESULT
VCOUNT - NEEDED FOR EFFICIENTCY OF ROUTINE

VCOUNT(I) CONTAINS THE NUMBER OF BROADCASTS NEEDED

TO PROCESS ONE PLANE OF THE COEFFICIENT MATRIX.
IF VCOUNT(I) > 5OO, IT IS CHEAPER TO USE PERMUTE.

SFIRST - INDTCATES THE FIRST CALL OF THTS PROCEDURE

+'t++,t+*

INTEGER SN,SP,SMAXPLANES
REAL MA(, , SMAXPLANES)
INTEGER MCOLUMNS(, ,SMAXPLANES), MCOLUNruSET(') ' VCOUNTO
INTEGER MTEMP¡NT(,)
REAL LVMULCAND(,), LVANS(') ' MTEMP(,)
LOGICAL SFIRST, MTEST(,)
INTEGER XEY(,), IFAIL

c
C*+*+*+*+*+*+*+*+,t+*+*+*+¡*+*
c
C VARTABLE DICTIONÀRY
c
c*+*+'l+*
c
C }ICOLUMNSET . TEMPORARY THAT HOLDS A LAYER OF THE

''COLUMNS
ÂRRAY.

C MTEÍIIPINT - HOLDS RESULT FROM SORT SUBROUTINE '
C MTEMP - HOLDS RESULT OF PERMUTING LVMULCAND VIA BROADCASTING

C OR THE PERMUTATON SUBROUTINE.
C MTEST - LOGICAL MATRIX USED FOR MASKED ASSIGNMENT IdHEN BROADCASTING.
C KEY . RETURNS THE PERMUTAT¡ON NEEDED TO EFFECT THE SORT PRODUCED

C BY MO1-SORT¡LV.
C IFAIL - ERROR INDICATOR..
c

85

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

C*+ *+'*+ *+*+*+++ *+ *+*+*+*+*+*+*+*+*+*+*+*+ *+*+*+*+*+f(+*+ ++*+ *+ *+*+*+ *+ *

THESE SUBROUTTNES AVAILABLE ON DAP SUBROUTINE LIBRARY

++*+*+*+*+*+++*+*+*+'t+*+*+¡r+++*+*+*+*+*+*+*+*+*+*+*+*+*+++*+*+*+*+*

MO1_PERMUTE-1 - GENERATES A NON-UNIOUE PERMUTATION OF AN INTEGER
LONG VECTOR. EFFECTS THE PERMUTATION

RESULT(I) - SOURCE-VÊCTOR(KEY(I))

WHERE MCOLUMNSET IS A GIVEN PLANE OF MCOLUMNS

MOI-SORTILV - SORTS AN INTEGER LONG VECTOR,
USED TO DETERMINE HOW MANY BROADCASTS ARE
NEEDED FOR A GIVEN PLANE OF THE SYSTEM MATRIX

x+*+*+x+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+x+*+*+*+*+*+x+*+*+¡f+*+*+*+*+*+*

IF (SFIRST.LEQ..FALSE.) GOTO 50

IF THIS IS THE FIRST CALL, COUNT NUMBER OF BROADCASTS
NEEDED FOR EACH LAYER OF THE SYSTEM MATRIX

10
50

Do 10 L=1,SP
PICK OFF FIRST LAYER OF THE COLUMN POINTER ARRAY

SORT IT AND COUNT HOW fitANY DIFFERENT NUMBERS ARE IN THE LIST
THIS IS THE NUMBER OF BROADCASTS THAT NEED TO BE DONE'
MCOLUMNSET=MC0LUMNS(, , L)
CALL MOlSORTILV(MCOLUMNSET,MTEMPINT,SN, .TRUE.'KEY, IFAIL)
VCOUNT(L) = SUM(MTEMPINT.NE.MTEMPINT(+,))
CONT I NUE
LVANS=O
NOhI PERFORM ACTUAL MULTIPLICATION. PROCEDE ONE LAYER AT A TIME
THROUGH THE MATRIX STORAGE ARRAY.
DO 1OO L=1,SP
IF NUMBER OF BROADCASTS FOR THIS LAYER > 5OO PERMUTE TS CHEAPER

IF (VCouNr(L) .GT. sOO) Goro lso

PERFORM BROAgCAST ASSIGNMENTS

MTEMP - O.O
MCOLUMNSET = MCOLUMNS(,,L)
ONLY UIORK UIITH VALUES THAT EXIST IN T.ICOLUMNS

T,E. BET¡'EEN THE MAXIMUM AND MINTMUM COLUMN POINTERS
DO 75 I = MINV(MCOLUMNSET),MAXV(MCOLUMNSET)
BUILD A LOGICAL MASK MATRIX CONTAINING .TRUE. I'HEREVER A
VALUE OF 'I' IS PRESENT IN MCOLUMNSET
IITEST ' MCOLUMNSET .EQ. I
BROADCAST MULTIPLICAND VALUES TO PROPER POSITION IN
TEMPORARY MATRIX.
IF (aNY(MTEST)) MrEMP(MTEST) ' LVMULCAND(I)
G0T0 'roo

c
c
c
c

c
c
c

c
c

c

c
c
c

c
c

c
c

c
c
c
c
c
I
c
c
c
c
I

c
c
75

50

oo

PERFORM PERMUTATION ¡'HERE MCOLUMNS(,,L) IS THE'KEY'
LVMULCANO IS THE VECTOR TO BE PERMUTED' AND

MTEMP IS THE LONG VECTOR RESULT'

CALL MOTPERMUTEl (MTEMP, LVMULCAND'MCOLUMNS('' L))

NOW MULTIPLY ACCUMULATED MATRIX VTITH THE CURRENT

LAYER OF THE COEFFICIENT MATRIX,

LVANS Ê LVANS + tlA(,,L)*MTEMP
RETURN
END

85

REFERENCES

Axelsson, O
I terat iv
Notes in
ffiger

. I rSolution Of Linear Systems of Equations:
e Methods", in Sparse Matrix Techniques (Lecture
Mathematics f¡jØFBã?ËÇ Vl. I€ilI,

-

-ærriãlcermany, pö. t-sr , !9i7.
Conway, L. and Mead, C., Introduction !o VLSI Systems.

AdAi son-!{esley Inc ., Dól-ñiTfffiltar iõf961.
Cornell¡ J.A.¡ "PEPE: Parallel Element Processing Ensemble"

in Multiorocessinq Systems Infotech State of the Art
nepffiH-(õI, -I ñ:Eõtecñ-r ñTãiñaEïoñãT EF .,
ñffiIson House, Mâidenhead, Berkshire, England, 1976.

Davis, P.J., I nte lation and Approximation. Dover
Publications Inc., e$¡ or , 1975.

GottIieb, A
for Very
Computer

Hestenes, M.R. , "The

Dubois, P.F., Greenbaum, 4., and Roodrigue
"Approximating the Inverse of a Matrix
Iterative Algorithms on Vector Processo
Vol. 22, pp. 257-268, 1979.

Flynn, M.J.¡ "Some Computer Organizgtions and Their-Efiectivenessn, in feep Trañsactions on Computers, C'zI
(9), pp. 948-960, 1972.

Gaiski, D.D., Padua' D.4., Kuckr D.J., and Kuhnr R.H.,-Secónd Opinion on Oata Flow Machines and_Languagesn
IEEE Combuter, VoI. 15(2), pp. 58-69, 1982-

., and SchwarEz¡ J.T. ¡ rNetworks and.ÀIgorithms
-iarqe-Scale ParalLel Computation', in IEEE
, vol. 15(1), pp. 27-36, 1982.

njugate-gradient Method for Solving.
píoõeediñqs of the Fixth.SvTpgsiYm. in
of the American Mathematlcar socletv
-t¿ffiaffi'ITÏToõEGmþanl1 r nc .,

in
Comput ing

, G.H.,
for Use
f stt, in

nA

, in

,

ear Systems", i
Iied Mathematic

(Curtiss ¿.8. (9¡|)).
Toronto, L956.

Hockney, R.W. and JesshoPe
Hilger Ltd., BEistol, 1

Lin
App

Co
n
s

¡ C.R. ¡
98J.

ParalLel Computers. Adam

CLI DAP: APAL LaNgUA ge. ICL technical Publication TP 6919,

87

9TT
I
1

CL : Introduction to FORTRAN Programming. ICLDÀP
eãffi

I

I CL' DAP: FORTRAN Language. ICL technical publication TP

,t icallGf EãEioñ-tÞ-67Ð 1980.

6eE L 98Ia.

ICL, DAP: Developinq DÀP Proqrams.
publication TP 6920, 1981b.

ICL technical

, G., "Polynomialt Calculations", in
), pp. 362-376,

IEEE Computer, special issue on Data FIow Svstems, VoI.
15(2), tgg2.-

Johnson,
Preco
Siam
sTir 983.

o
nd

.G., Micchelli, C.H. , and PauI
itioners for Conjugate Gradien
Numerical Analysis, VoI 20 (ZJ.

-L

Kershaw, D.S., ÌThe Incomple
Method for the Iterative
Equations', in Jou¡¡AL of
pp. 43-55, 1978.

uD9, H.T., nWhy Systolic Àrchitectures?n,
15(1), pp. 37-46, 1982.

te Cholesky-Co
Solution of Sy
Computat ional

njugate Gradient
stems of Linear
Physics, Vol. 26,

K

Lang, S., Linear Al ebra.
Company, on s,

in Computer , VoI.

Àddi son-Wesley PubI i shing
tario, 1972.

Liddel, H
L i brar
pp. 31

Madsen¡ N.K. ¡
Mult ipl icat
Processor",

Rodr igue , G.H. ,
ion by Diagonals
in Information

.M.
YN,
1-315, t982.

, and Bowgen, G.S.J., "The DAP Subr
in Computer Physics Communications

out ine
, VoI. 26,

and Karush, J.I., "Matrix
on a Yector/Parallel

Processinq Letters, Vol. 5(2r,
pp. 4L-45t I97b.

Mei jerink, J.À., and van der Vorst, H.4., 'Àfi Iterative
Solution Method for Linear Systems of Which the
Coefficient Matrix is a Symmetric M-Matrixn, in
Mathematicg of Computation, voI. 31(137), pp. 148-162,
,JAtl . L>l t.

Infotech State of the Àrt Report. White, C.H. (ed.),
ïnEffi-ïnffitiõnãT-r,ffi, -Iliõõr son House , Ma i denhead ,
Berkshire, England, J-976.

Mirsky , L., Àn Introduction to Linear
Publications, Inc., New York, 1982,

Meilander, W.C., "STARAN, An Àss
Mult, iprocessor Architecturer,

-88

ociative Àpproach to
in Multiprocessing Systems

Àlqebra. Dover

Nakonechny, R.L., À Preconditioned Coniuqate Gradignt Method
Usinq ã Soarse Eiffinffitñæõmion oT-
F-ieTA Þrõllñs.-iliãæ.rhffifñõ unlvffiity oT- -ManTEo6ffinipeg, Manitoba, 1983.

Parkinson, D., Sparse Matrix Vecto¡ ltultipliseljon on the
DAP. nep suÞñõfuñTffipffiImcõlllõF,
Lon-don, nngláñd, 198L.

Parkinson, D., "Practical parallel processors and their
uses', in Parallel processing systems. Evans, D.J.
(ed.), camEiì@nï@rffiw York, 1982.

Ramamoorthy
Comput in

.V. and Li , H.F.,
1. 9(1),

,cqS

ts on
Enqi

urveys ,vo
"Pipe1ine Architecturetr, in
pp. 62-102, March 1977,

Schaef er, D.H
Supercompu
March 1982

Shore¡ J.E., "Second though
Cgmputers and Electrical

nd Fischer, J.R., "Beyond the
n

I in IEEE spec trum Vol. 19(3), pp. 32-37 ,

parallel processing", in

.ê
ter

neer ing , VoI. 1, pp. 95-109,
1973.

Snyder , L., rlntroduction to the Config
Parallel Computer', in Computer, VoI
1982.

Varga¡ R.S., Matrix Iterative Anef¡sis.Inc., Toronto, 1962,

urable
. 15(1

HighIy
, pp. 47-56,

Prent ice-Ha1I,

Webb, S.J., McKeown, J.J
Linear Equations on a
Iterative Àlgorithm",
Vol. 26, pp. 325-329,

Yau, S.S. and Fung¡ H.S.,
Architecture-A Survey",
pp. 3'27, L977.

., and Hunt, D.J
SIMD Computer U
in Computer Phy

., iThe Solution of
sing a Parallel
sics Communications ,

1982.

t{exIer, 4., Finite Elements for lqchnolog-i-sts.. Department
of slectrTænffisfcffiìãffiõTE rR-80-4,
Universíty of Manitoba, winnipeg, Manitoba, Canada, 1980.

trAssociative Processor
in Computing Surveys, Vol. 9(1),

89

