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Abstract

The temperature dependence of the collisional interference in the pure ro-
tational band of gaseous HD and its mixtures was experimentally investigated
at 77 K, 195 K and 296 K. Values of the allowed dipole moment matrix ele-
ments, the absolute frequencies, the spectral line shape parameters (broadening
and frequency shift coeflicients), and the interference parameters, for the first
four rotational lines, were deduced from the spectra. Theoretical calculations of
the interference parameter a, and the line width were performed based, respec-
tively, on the intracollisional theory developed by Herman, Tipping and Poll® and
a semiclassical theory developed by Robert and Bonamy?. The induced dipole
moments for HD — Ne and HD — N, were estimated, with reference to the in-
tracollisional theory. A comprehensive discussion of experimental results with
theoretical calculations is given. Better agreement between experimental results
and the predictions by the above theories are found for R(2) and R(3) and for
HD perturbed by large molecules. The behaviour of temperature dependence of
collisional interference in the pure rotational band for HD and its mixtures is
found to be more complicated than the prediction of the intracollisional theory.
In particular a change in sign of the interference parameter a, is not explainable

by the above theory.

!R. M. Herman, R. H. Tipping and J. D. Poll, Phys. Rev., A20, 2006 (1979).
’D. Robert and J. Bonamy, J. Phys., 40, 923 (1979).
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Chapter 1
INTRODUCTION

During the past 20 years, considerable effort has been put forth to study the
pressure-broadened infrared absorption spectrum of HD. There are several rea-
sons for the fundamental importance of this study. First, the hydrogen molecular
isotope HD has a very small dipole moment on the order of 1072 D (Debye=10-18
esu =0.39343 eap =3.33564 x 1073® Cm) [1]. This dipole moment is about 10~4
smaller than the usual dipole moment of a polar molecule and is about 10~ of the
average magnitude of the typical collision-induced dipole moment [2]. The small
magnitude of the dipole moment makes HD an almost unique case for the study
of intracollisional interference. This phenomenon arises from constructive or de-
structive interference between the optical transitions involving the allowed and
collision-induced dipole moment during a collision [1]. Second, the role of collision-
induced transitions are intrinsically interesting to spectral line broadening studies,
which can, in principle, give valuable information regarding the anisotropic molec-
ular forces and various intermolecular interactions [3][4][5]. Third, because of the

simplicity of the molecule, it is amenable to theoretical treatment. The theoretical



interpretations and generalizations could lead to a better understanding of more
complicated molecular systems [6]. And fourth, it has important applications in
astronomy [7][8]. The abundance of deuterium and the ratio D/H are very im-
portant astrophysical parameters with respect to to the evolution of the primitive
solar nebula and the formation of the planets [9][10]{11]. However, its estimation
from the D, spectrum is extremely difficult because the abundance of D, in the
solar system is only about 107° that of H, and D, does not have an allowed dipole
moment. The D/H ratio could be obtained from the measurements of the HD
spectra of an astronomical source if the corresponding laboratory and theoreti-
cal data on the frequencies and intensities are known [12][13][14]. Consequently,
much interest in the infrared spectrum of HD has been motivated by the need to

measure the absolute frequencies and the allowed dipole moment element of its

spectral lines.

1.1 Historical Scope

The possibility of the existence of pure rotational and vibrational- rotational
transitions in the HD molecule was first discussed by G. C. Wick in 1935. He
recognized that the HD molecule should have a weak allowed dipole moment and
made the first theoretical estimate of its strength, 10~¢ D for the fundamental
band {15]. G. Herzberg first observed a number of lines in the 2 — 0 and 3 — 0
bands, and subsequently in the 3 — 0 and 4 — 0 bands, of the HD spectrum in
1949 and 1950 [11][16], thereby verifying Wick’s prediction.

In 1952 T. Y. Wu published a paper in which he extended the perturbation



theory treatment of Wick to the overtones and estimated the ratio of the 4 — 0 to
the 3 — 0 band intensities to be approximately 0.27 which proved to be consistent
with the more refined data obtained by Durie and Herzberg in 1960 [17][18].
At about the time of Herzberg’s refined experiments, S. M. Blinder made the
first quantitative calculation of the pure rotational matrix element of the dipole
moment of HD using perturbation theory {19}, obtaining a value of 8.89 x 10~*
D. This calculation was improved by Blinder himself one year later by applying a
variational method. Finally he arrived at an estimated value of 5.67 x 10* D for
the pure rotational matrix element of the allowed dipole moment of HD, about
70% of the currently accepted value [20].

It is rather interesting to look back at this research field in 1960s. Five years
after Blinder’s calculation, Kolos and Wolniewiez [21] calculated the rotational
matrix element of the allowed dipole moment of HD using a variational calculation
and obtained an estimated value of 1.54 x 1072 D, about three times as large as
Blinder’s value. Two years later, the pure rotational spectra of HD in the density
range of 50-100 amagat was first experimentally investigated by M. Trefler and
H. P. Gush [22]. Not only did they find the J dependence of the rotational dipole
moment in the pure rotational band of HD (the magnitude of the dipole moment
increasing with increasing J), but they also found, surprisingly, that the average
value of the rotational matrix element of the allowed dipole moment over R(0) to
R(3) was (5.85 £ 0.17) x 10™* D, in excellent agreement with Blinder’s calcula-

tion. At about the same time, Karl investigated the question of the J-dependence

from the theoretical point of view by extending Blinder’s calculation and reached



two conclusions: the J-dependence was very small and the J-dependence had the
opposite sign to the experimental results [23]. Thus, although the experimental
result of Trefler and Gush agreed well with Blinder’s calculation, it qualitatively
disagreed with the calculation concerning the J-dependence of the transition mo-
ments.

This dramatic agreement and disagreement, however, stimulated new inter-
est in the investigation of the HD spectra and resulted in the fruitful period of
the 1970s to 1980s.

From 1972 to 1974, A. R. W. McKellar investigated the spectrum of gaseous
HD at a temperature of 77 K with the densities from 1 to 60 amagat, and first
reported the quantitative intensities for several lines in the fundamental and over-
tone bands [24]]25][26][27]. Furthermore, he found an unexpected feature in the
spectra; the spectral lines were symmetric at low densities while broad and quite
pronounced asymmetry developed at high densities. The dipole moment elements
for the fundamental and overtone bands reported by McKellar agreed well with
another measurement by Bejar and Gush [28] as well as with the calculation by
Poll and Karl [29]. During the period of 1975 to 1977, R. D. G. Prasad and S.
P. Reddy observed the collision-induced infrared absorption in the fundamental
band of pure HD and HD with inert gas mixtures [30][31][32]. They found the
enhancement of the integrated intensity due to interference not only in the pure
HD spectrum, but also in the spectra of HD with inert gases. After 1975, the
investigation of the higher overtone bands of HD, such as the 5 — 0 and 6 — 0

bands, became possible. Those bands were observed by McKellar and Oka in



1976 [33], then by F. W. Dalby and J. Vigue in 1979 [34], and by W. H. Smith
and J. Gelfand in 1980 {35].

In the theoretical work at that time, on the other hand, Wolniewicz and
Kowalski reported new calculations for the pure rotational dipole moment ma-
trix elements in 1973 [36]. The estimated value was reduced to 9.2 x 10~* D,
60% of their previous calculation and 160% of Blinder’s calculation. Two years
later, Wolniewicz published two papers [37][38] in which he showed the possibility
of determining the transition moments by performing an accurate perturbation-
variational calculation in two steps, treating the ¥, and II, contributions to the
wavefunctions and the transition moments separately. Along with an improved
numerical procedure, he re-calculated the HD dipole moment matrix elements for
the first four rotational lines in the pure rotational, fundamental and first three
overtone bands. His results agreed well with the experimental results of McKel-
lar for all the fundamental and overtone bands, but significantly disagreed with
Trefler and Gush’s results for the pure rotational band. The new estimated value
for the pure rotational band was about 8.38 x 107* D, 143% of the experimental
value. This ab initio value was in excellent agreement with the calculations by
Ford and Browne [39] in 1977 (8.3 x 10~* D), by D. Bishop and L. Cheung [40]
in 1978 (8.65 x 10™* D), and a later different approach made by W. R. Thorson,
J. H. Choi and S. K. Knudson [41][42] in 1983 (8.44 x 10~* D).

The other important accomplishment at this time was the observation and
the first interpretation of éntracollisional interference in HD spectrum by Poll,

Tipping, Prasad and Reddy in 1976 [43]. This new interference phenomenon be-



tween the allowed and induced dipole moments was found to be either constructive
or destructive. They first calculated the contribution of the intracollisional inter-
ference to the absorption coefficient in HD—Kr system. This pioneer work marked
the begining of the establishment of the intracollisional interference theory for the
HD spectra. Two years later, Tipping, Poll and McKellar calculated the effect
of intracollisional interference on the integrated intensity of lines in the pure ro-
tational and fundamental bands within the approximation that the translational
and rotational states of a collision pair do not mix [44]. They found that the
intracollisional interference in pure HD was destructive and that the discrepancy
between theoretical and experimental pure rotational dipole moment matrix el-
ements for HD could be interpreted in terms of such an interference. With the
important papers published by R. M. Herman [45] and by Herman, Tipping and
Poll [46] in 1979, the theory, within the classical path impact formalism and re-
flecting the interplay between the allowed dipole and induced dipole in binary
collisions, was basically formed.

With the development of the theory, considerable confirmation of the intra-
collisional interference in HD followed. The first detailed experimental investiga-
tion of interference effects for the pure rotational spectra of HD, and of HD with
inert gases was performed by Nelson and Tabisz in 1982 [47][48]. They found that
the asymmetry in those lines was small while the dependence of the integrated
intensity on perturber density was significant. Rich and McKellar observed the
fundamental spectra of HD and HD—X (X=He, Ne, Ar) at 77 K in 1983 [49]

and then McKellar, Johns, Majewski and Rich observed pure rotational spectra



of HD and HD—Ne at 77 K in 1984 [50]; Essenwenger and Gush investigated the
pure rotational spectral lines R(3)—R(6) at room temperature in 1984 [51]. They
generally agreed with others on the dipole moment matrix element but disagreed
on the interference parameters.

In 1985, Tabisz and Nelson published a paper in which the contributions
to the intracollisional interference from the rotational-level mixing were consid-
ered and formulated [52]. As a supplement to the theory developed by Herman,
Tipping and Poll, it significantly improved the agreement between the calculated
and experimental results on the interference parameter for R(0) [52][53]. This
effect was further confirmed by extensive studies of the pure rotational spectra
of HD and HD-X (X=H,, He, Ne, Ar, Kr, Xe, N;) at room temperature by
Drakopoulos and Tabisz in 1987 [54][55]. About a year earlier, in 1986, McKellar
investigated the pure rotational spectrum of HD at room temperature [66]. Again,
these two experiments agreed quite well on the dipole moment matrix element
but agreed less on some line shape parameters, and the interference parameters.
Morever, the discrepancy between the theoretical and experimental values of the
dipole moment matrix element, and, especially, of the interference parameters was
obvious.

In the mean time, the spectrum of solid HD had been first observed by
Crane and Gush in 1966 [57] and then by Trefler, Cappel and Gush in 1969
[58]. In 1987, Tipping and Poll gave a detailed theoretical analysis of the pure
rotational R(0) transition in solid HD [59]. The calculation was in the framework

of the above intracollision theory using ab initio values. The result showed a



dramatic disagreement between the theoretical value of the integrated intensity
of R(0) and the experimental value obtained by Trefler et al. (1.6 em™2 versus
0.37 em™?). More dramatically, one year later, two independent experiments
were carried out by McKellar and Clouter [60] and by S. Y. Lee, S. Lee, J.
Gains, Tipping and Poll [61]. The experimental results for the R(0) intensity
were (1.7140.15)em™? and (1.6840.05)cm ™2 respectively, in excellent agreement
with each other, and with the theoretically predicted value of Tipping and Poll.
This suggested that, at least for the relatively simpler system of solid HD, the
basic mechanism for intracollisional interference could be well described by the
theory [53]. Nevertheless the questions concerning gaseous HD remained. |

This survey concludes at 1987 when the present study started. There were
several excellent reviews on this topic by Tipping and Poll [6] in 1985, by Poll[62]
in 1986 and by Tabisz [1] in 1990. Interested readers should consult these refer-

€nces.

1.2 The Problems

It is clear, as described in the previous section, that although there has
been comsiderable progress achieved both in the experimental and theoretical
investigation in HD spectrum, this research field is still far from exhausted.

For the pure rotational spectrum of HD, experimental data only at room
temperature, very few at 77 K, are available. Furthermore, even for the existing
experimental data, the discrepancies remain significantly large between different

experiments [63].



The intracollisional interference theory developed by Herman, Tipping and
Poll can predict an accurate interference strength of pure rotational line of solid
HD, a relatively simple system in which the molecules are fized in the lattices.
But the theory does not do so well for the systems of gaseous HD, in which the
molecule has more freedom of motion and the intermolecular interaction is much
more complicated than that of solid HD.

Therefore, the interference mechanism for gaseous HD is not as clear. What
1s needed, is a systematic investigation of the pure rotational spectral lines at
different temperatures, to provide more information reflecting the intermolecular
interaction in HD, or between HD and other molecules.

This study experimentally investigated the pure rotational absorption spec-
tra of pure HD, and HD with foreign gases at 77K, 195K and 296K . Theoretical
calculations were performed according to the existing theory to compare with the
experimental results. It is thus an attempt to fulfil the need.

The organization of the thesis is as follows. In chapter 2, a review of the
relevant theory is given. The concepts of the intracollision interference theory
and its development are introduced and discussed. Details of the experiment and
data analysis are presented, respectively, in chapter 3 and chapter 4. In chapter
5, the interference parameters are calculated based on the theory developed by
Herman, Tipping and Poll, and by Tabisz and Nelson as well; the line broadening
1s calculated following a semiclassical theory developed by Robert and Bonamy.
Chapter 6 centres on a comparison and discussion of experimental results and

theoretical calculations. The thesis ends with a brief summary in chapter 7.



Chapter 2

THEORETICAL
BACKGROUND

As was discussed in chapter one, the development of the research in HD
spectrum centres on the allowed dipole moment, the collision-induced dipole mo-
ment and the interference between them. In this chapter, we will first describe
the quantum approaches to the dipole moments of HD in a conceptual way, and
then will focus on the discussion of the intracollisiona] interference based on the
existing theory. The chapter will conclude with a very brief introduction of a new

development of the theory [64].

2.1 The Allowed Dipole Moment of HD

Since the first calculation of the allowed dipole moment matrix element
of HD by Wick in 1935, the numerical techniques and the approximations have
been improved in various ways. Among those calculations, there are, basically,
two different quantum mechanical approches. One is the indirect approach, i.e.,

a nonadiabatic coupling approach, and another is the direct approach, i.e., a

10



canonical transformation approach [41][42].

2.1.1 Nonadiabatic Coupling Approach

This is the most common approach used in the calculations of the allowed
dipole moment of HD. The Born-Oppenheimer approximation is applied, at an
early stage in solving the Schrodinger equation, to obtain adiabatic wavefunctions,
and then the nonadiabatic correction in the kinetic energy part of Hamiltonian is
made; the result is the existence of non-vanishing transition moments.

The Born-Oppenheimer approximation is good for the case of HD due to
the smallness of the electron mass with respect to the mass of nuclei. Within
the limits of the approximation, the centre of mass motion between electrons and

nuclei is separated, and the Schrodinger equation is written as [65][66]
HY(X;R) = EY(X; R) (2.1)

where X = (1,2) represent the electronic coordinates and K denotes the inter-

nuclei coordinates. The Hamiltonian,
H=Hy,+ H', (2.2)

where Hy is the clamped nuclei Hamiltonian,

h2
Hy = —ﬁ(vf + Vi) + V. (2.3)

Here m is the electron mass, and V" is the total potential. The second part of the

11



Hamiltonian, H’, is the perturbation describing the kinetic energy of the relative
motion of the c. m. (centre of mass) of the nuclei to the c. m. of the whole system

[65], and the coupling between the electronic and the nuclear motions [66],

H' = H + H, + H; (2.4)
with
B2 ”
H = *'8#—+(V1 + Va)%, (2:3)
B
h2
H, = —WVR-(Vl—}—VZ). (2.7)

Here p, is the reduced mass of nuclei and g is the mass asymmetry,

M4+ Mg

S VNP (2.8)
M- Mg
po = Malls (2.9)

The corresponding eigenvalue equation of Hy is well known and is given by
Hopua(X; R) = En(R)¢na(X; R) (2.10)

In the absence of external fields, E, depend only on the magnitude of E, while

@np describe the motion of the electrons in the field of two nuclei which are not

12



XY

Figure 2.1: The fixed space coordinate and the c.m. coordinate of molecule HD.

- spherically symmetric, and so depend on both X and R [65].

To separate the rotational motion, we follow Kolos and Wolniewicz [66][67].
In the c.m. éoordinates, there are common orthonormal eigenfunctions for the
square of the angular momentum K of the system, for the component of K in
the direction of a fixed axis Z’, and for the component of the electronic angular
momentum L in the direction of Z, i.e. along the internuclear axis R. If Q IMA
denotes this eigenfunction, then the total wavefunction in Equation 2.1 may be

written in the form

J
¥ = Z CraSdinma, (2.11)
A=-J

where the functions ¢, depend only on the relative position of particles. Since
Lz does not commute with H’, the Hamiltonian in Equation 2.1 is not diagonal

in this representation. In the adiabatic approximation, those off-diagonal terms

13



of Hamiltonian are neglected. Therefore the approximate total wave function,

adiabatic wavefunction, can be written in the form [6]

U4 = (27 + 1) /471 *Qsara bna Xntos - (2.12)

These adiabatic wavefunctions will be used as a basis set for the calculations

of nonadiabatic corrections. For convienence, we follow Tipping and Poll [6],

defining
(2.13)

lnAvJ M) = §4P

In a constant electric field E, The Hamiltonian has an extra term and becomes
H=Hy+H —jiE, (2.14)

where [ is the allowed electric dipole moment operator of the molecule and defined

by [19]
0f (2.15)

It is well known that applying the perturbation theory, we can write the energy

of the molecular system to the second order based on the adiabatic wavefunction.

By applying Equation 2.15 to the energy of the molecular system, we finally have

(Zlalf)
’ (niAiviJiMiIH’ln’A'v’J'.M’) (’I’L'A"U'JIM'Iﬁ]anf’UfJfo>

i Au! T MY En’A’v'J’M’ . Ez'
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, (nihaos M| Ao’ T MY (! A’ T MY H (g A o s M)
En'A"U’J/ﬂ'I’ had Ef .

>

n/Au' J M/
(2.16)

For the pure rotational band or roto-vibrational band of HD, the initial and final

state are all in the ground electronic state, i.e., n and A are zero [6],

(z] ] f)
oy o OO M A AL (A 000 T, )
- o' JTM? En’A’v’J’ILI’ - Ei
ooy o (OO E A AT (A BB 0003 T M) 2.1
o T M En’A’v’J’M’ - Ef

The nonzero electric dipole moment requires the nonzero matrix elements in the
two summations of Equation 2.17. The ground electronic state of HD is X1y,
with even inversion symmetry. Thus, for the nonzero fi;y, it requires that the in-
termediate states must be ungerade, i.e., with odd inversion symmetry. It follows
that all terms in H' with even inversion symmetry will vanish in Equation 2.17
leaving the asymmetry term Hj. It is this nonadiabatic perturbation term which
is responsible to the occurance of electric dipole moment of HD. It remains to
construct suitable adiabatic wavefunction as a basis set and to find an efficient
numerical procedure.

This approach, starting with the Born-Oppenheimer approximation and
ending with the break-down of the Born-Oppenheimer approximation, indirectly

obtains the dipole moment. On the contrary, as we shall see below, Thorson, Choi
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and Kundson directly obtained the nonzero dipole matrix element for D by the
canonical transformations associated with the Born-Oppenheimer approximation

without considering the nonadiabatic perturbation [41][42].

2.1.2 Canonical Transformation Approach

The principle of this approach is to find a coordinate system such that the
electrical asymmetry and the resulting dipole moment arise as purely electronic
properties within a suitable Born-Oppenheimer approximation and the nonadi-
abatic perturbations play no role, i.e., in such coordinate system the electrical
asymmetry appears directly in the electronic Hamiltonian through the potential
and the nonadiabatic couplings depending only on the mass asymmetry parameter
vanish exactly. To do that, a series of canonical transformations are performed.
Instead of the detailed formalism, we follow Thorson et al [41][42] and simply list
the transformations step by step.

First, let us consider an HD molecule in a space fixed coordinate system,
where electrons are described by r—? (i=1, 2), and nuclei are described by ];’:2 (7=A,
B). The masses of electron and nuclei are denoted by mg and M, Mp (M4 > Mp)
respectively.

1. Relative coordinates.

The coordinate system and related quantities are defined as follows,

7= 0-R (i=1,2), (2.18)
E = RBA-F, (2.19)
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= M4RY + MpRY

R} = Mt i (2.20)
- e
m, = ;jfg{;fﬁi (2.22)
A= H (2.23)

and the geometric centre electron coordinates
N
p;: =T, — 5/\]’?,, (’L = 1,2) (224)

Let P. (i=1, 2) and Pg represent canonical momenta conjugate to 7; and R.
Then the kinetic energy of relative motion and the electrostatic potential energy

are given by

B FiiF _B.A

T =
2'11/ 2’m1 A’.{A + J‘JB

(2.25)

and

V = V(7,7 R). (2.26)

2. Symmetric and antisymmetric electron coordinates.

These coordinates are defined by

iy

= (7 +7)/V2, (2.27)
(71— 71)/V2, (2.28)

oy
il
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mg(MA -+ J\IB) (2 29)
My + Mg +2mg '

Transforming to this coordinate system, the kinetic and potential energy become

_ﬁz ]32 _;3‘2
T=284p 2 4 =t 2.30
2,[L 2m2 2m0 ( 3 )

and

V =V(5iR), (2.31)

where P, and P, are the canonical momenta conjugate to & and ¢ respectively.
3. Mass-scaled coordinates.

In these coordinates,

5 o= \Jms, (2.32)
R = iR, (2.33)

and so their conjugate momenta become

P, = P,/\/ma, (2.34)

Pr = ﬁR/ﬁ- (2.35)
Now the T and V are in the form

1 — - —
T = §(PR+_3)+£?/2mo, (2.36)

V = V(5L ER). (2.37)



4. New coordinates.

The transformation to the New coordinates is made by performing a rotation
O

as follows,

_{ = ECOS oo + §sin oy, (2.38)
] = —Esinao—'rgcoscro, (2.39)
with
)
t = M=2)V2, 2.
an oy ( 2% ) (2.40)

Thus, with their canonical momenta Eﬁ and —ém the kinetic and potential energy

are written

T = 5(Be+ By)+ B /2m, (2.41)
Vo= V(1. (2.42)
5. Heavy-particle and symmetric electron coordinates.
These are defined by
£ = (Vicosoo) B, (2.43)
and
sec o (2.44)




with their conjugate momenta,

P

E,

(\//7 cos 00)257

(y/m4 cos UO)ETI.

Making use of the definitions in the New coordinates and Equation 2.24, we

obtain the relationships

and

(f‘fyl

=3y

— Amg

R+ 2225,
Vopu

01+ p2

The kinetic and potential energy are now given by

T =

52
Py

D2
Pn

52
P

pcos?og  2mycos? oy

Vo= V(7,§1).

6. Electron and heavy particle coordinates

2m0

?

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

These coordinates are based on the geometric centre electron coordinate

and the heavy particle coordinate mentioned in sections 1 and 5

p1 =

(7-9)/v2,

20
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and

g2 = (T+8)/V2. (2.53)

With the conjugate momenta of electrons, 7; and 7%, the exact relative kinetic

and potential energy are expressed by

— —

P} #aF o

T = —+4 + ) 2.54
2u! Y 4p ( )
Vo= ‘Q‘(ﬁhﬁ%g% (2.55)
where
p = pcos® ag, (2.56)
and
m' = mo(1 + mo/dp)~?. (2.57)

Thus, the canonical transformations are completed in the coordinates (43, g3; £).
We now discuss the Hamiltonian applying the Born-Oppenheimer separation in

the usual way. The electronic Hamiltonian is given by

—2 =2 — —

T &+ Ty Ty - Mo - - T
Ve i €) . 2.
2m/ + 4:# + f(p17p27 ) ( 58)

H =

The potential V in the (p1, p3; fé) coordinates has the form

Vi pi B = e Yl —me b =) S S (2.59)
y P2, - - - = — = + — — - ]
1 =2 |Pi+R| |gi— Rl lpi—pl R
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Note that in this expression V' is invariant under the inversion g; — —p;. To

— —

transform V(p1, pa; R) to Ve(p1, p2; €), we use the the relationship

— ~ 1. dm, _ .
R = [{= (== (p + p2)] cos” oo
L
= o — ao(f: + ), (2.60)
where
b = Ecosoy, (2.61)
1. dm °
g = 5(—#—)cos“cro. (2.62)

The explicit form of V; is now written as

- 1 1
Ve(i, i R) = —€* 3 (——= — —
i=Te |Pi + 360 — L(p1 + p2)| lpi—% o+ % (p1 + p2)]

82

2
o 4+ — —. (2.63)
161 = Fa2|  |Ep — ao(Fy + 52)]

(81}

Now that because of the coupling of £ with 7;, 1/’5(,6'1,/3'2;5) does not have
Do symmetry with respect to the ga,xis any more. It means that 1 is the sum of
a symmetric part V¢, and an asymmetric part Vi, which further implies that in the
new coordinate system the two nuclei appear electrically different. Conseqently
a permanent electric dipole moment would directly arise in the usual way as for
the polar molecule, and for the ground electronic state it could be computed with

a purely electronic basis set. Indeed, the calculation by Thorson et al. was in
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Table 2.1: The theoretical calculations of the matrix elements of the allowed
dipole moment transitions of HD (10~ *debye), in the direction H+D~.

(ST + 1)
Reference Year
: J=0 J=1 J=2 J=3
Wolniewicz? 1976 8.36 8.38 8.39 8.41

Ford and Browne® 1977 8.31 8.30 8.29 8.26
Bishop and Cheung® 1978 8.65

Thorson et al? 1985 8.463 8.455 8.440 8.420

a: Reference [38].
b: Reference [39].
c: Reference [40].

d: Reference [42].

excellent agreement with the nonadiabatic calculation by Ford and Browne. The
published theoretical calculations of the two different approaches are collected in

Table 2.1.2.
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2.2 Collision-Induced Dipole Moment

The induced dipole moment of a collision pair, such as HD — X, con-
tains an isotropic part directed along the intermolecular axis, and an anisotropic
part which can have any orientation [65]. The mechanisms which generate the
induced dipole are clearly related to the interaction terms in the intermolec-
ular potential: multipolar induction, dispersion interaction and electronic ex-
change [1][68](69][70]. Thus, in general, for the collision pair of HD and a linear

molecule, the induced dipole moment is a function of the internuclear separations

—

1= (71, 61),

—

5 = (72,W2) and the separation between the c.m. of the two inter-
acting molecules, R = (R,Q). The total dipole moment of the collision pair is
given by [44]

(7T, B) = pa (1) + pal) + pd (71,7, B), (2.64)
where p; and g, are the allowed dipole moments of molecule 1 and 2, and pl is

the induced dipole moment. The total dipole moment is defined in the limit of

adiabatic approximation [44],
(7,7, R) = (WP |59 2P), (2.65)

where WAP is the electronic part of the adiabatic eigenfunction of the collision
pair. Then the induced dipole moment matrix elements are calculated with the
adiabatic nuclear wave functions with the assumption that the rotational and
translational motions of nuclei are separated completely [44]. The most efficient

way of characterizing the induced dipole moment is to expand the angular depen-
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dence in terms of a complete set of eigenfunctions of the total angular momentum

[6][62], i.e.,
I 47 )3/2 Ay o =
uy(rl,rz,R):(\/)g Z AA()\lz\zL;rl,rz,R)\Ilg,)j“\?L’A)(wl,wg,Q), (2.66)
A2 LA
or
- (47r)3/2

AA()\1)\2L; 71,72, R)

XY C(ALL; v — p)C (AL Ash; pa, p — pa)

g

/‘LV('FM FZ) R) =

XY, 01 (@1) Vg ey (@2) Yo () (2.67)

Here v = 0, £1 is the index of the spherical component related to the Cartesian
components according to po = pz, and pi1 = F(u, + ipy)/v/?2, the C's are
the Clebsch-Gorden coefficients [71] and the Y’s are spherical harmonics. The
real expansion coefficients Ax(A1A;L; 71,72, R), with the same dimension of Loy
are thus the components of the pair dipole moment and provide an invariant
classification of the induction effects in terms of parameters Ay, Ao, L and A [72].
There are a few restrictions on these parameters concerning the parity of p, and

the well known triangle relations of the C’s [73][74]:
M+ A+ L — odd, A(AL 1) and A(A, Az, A). (2.68)

In addition, for homonuclear diatomic molecules like Hy, only ) even can occur.
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The allowed dipole moment of molecule 1 can be expressed in the form of
Equation 2.67 with the only argument 7;. By the substituting of A = 1, A\; = 1
and A\; = L = 0, one has [62]

4w

pi(r) = \/?‘Al(wo;m)}a,y(wl). (2.69)

Note that the intracollisional interference occurs only if the induced dipole com-
ponent has the same symmetry as that of allowed dipole moment, i.e. A =
1, Ay = L and A3 = L = 0. Conventionally, the induced dipole component
Ar(A1A2L; 71,72, R) is named by referring to the dipole associated with the isotropic
or anisotropic part of the polarizability of the collision partner. As well, the sym-
metry depends on the parameters A, A1, A, and L. Thus, 4¢(001;71,7, R) is the
isotropic overlap induced dipole and A4,(201;7,, 73, R) is the anisotropic overlap
induced dipole, etc. For details of A coefficients in the standard representation
for multipolar induction, we refer the reader to Reference [6].

In the case of HD, the electronic distribution is the same as that of H,. They
have the same adiabatic wavefunction for the electronic part of the Hamiltonian.
The only difference is that in HD, the c. m. (the centre of mass) of the molecule
is shifted by d relative to the c. c. (the centre of the static charge of the molecule)
due to the different mass of atom H and D, as shown in Figure 2.2. Thus the
induced dipole components for H, systems are suitable for the systems of HD

with a coordinate transformation, i.e.

pEP=% (11,72, R) = p=% (11,75, 5), (2.70)
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Figure 2.2: Orientation of HD — HD.



with

3

Applying the standard coordinate transformation to the first order in (aﬁ - d_;)

one has [75]
#:{{D_X(Tl,?‘z, Ry=[1+ (Cfl - d_.“Z) - VR] ﬂ:{b—X(Tl:m? R). (2.72)

Under a similar transformation, though the calculations are complicated [71], one
can rewrite the second term of Equation 2.72 in the same form as in the standard

representation [6]

AA(ZA:;L +7;7'1,7’2,R) = d][O,‘?/‘lA()\l)\zL;Tl,’f‘z,R)](“l)L+A_1
x[(2A1 4+ 1)(2A + 1)(2L + 1)(2X + 1)]2C(1M1; 00)
X C(LLL + ; 00)W (11AXg; M A)W (L + yLAA; 11)

(2.73)
and

AA()\1ZL+’)’;7°1,7‘273) = dz[O-J;JAA(/\V\zL;’f‘h?‘z,R)](‘l)L+A—1
x[(2X2 + 1)(2A + 1)(2L + 1)(2X + 1)]7C(1x,1; 00)
XC(1LL + 7; 00)W (11AX; A \)W(L + v LAA; 11),

(2.74)



with

0y = { %g ; {LL/i /R 4= o (2.75)
Obviously, for HD — atom system,
dy =0 (2.76)
and
d; = r./6, (2.77)

where 7. is the equilibrium separation of the nucleis of HD. Meyer et al. calculated
ab initio induced dipole components for H, — X systems by using self-consistent
(SCF), configuration interaction (CI) and coupled electron pair approximation
(CEPA). They also calculated induced dipole components for HD — X systems
by a coordinate transformation including high order terms [69][76][77]. Their

results will be used in our calculations in chapter 5.

2.3 Intracollisional interference

2.3.1 Impact Theory

The existing theories regarding line shape, including the theory developed
by Herman, Tipping and Poll for HD, are essentially within the limits of the
impact theory. There are two important approximations, impact approxima-
tion and the classical path approximation [78][79]. The impact approximation

assumes that the duration of collision is much smaller, and so is negligible, com-
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pared to the time between collisions. Within this limit, only the final changes
produced by the collision are taken into account, while the direct influence of the
happenings during the collision on the spectra is entirely ignored [4]. It leads to
two sub-assumptions; only binary collisions are of importance, and the binary
collisions are statistically independent.

The impact approximation requires, in the spectroscopy, that for the fre-
quencies of absorption or emission of our interests, the detuning from resonance

is small compared with the inverse of a collision duration [80], i.e.,

Ary < 1, (2.78)

where A is the detuning and 74 is the duration of collision. In the case of HD,

for the pure rotational band and up to 100 amagat of density(Table 4.9),

A < 10%° Hz. (2.79)

The duration 74 is usually of order 1071% — 10~* sec [81][64]. Therefore,

Aty ~ 1072 — 107, (2.80)

1s suitable for the impact approximation in the range of our study.

The classical path approximation assumes that the translational motion of
molecule can be treated as that for a classical particle without significant error
[4]. It permits the density matrix of the collision pair to be written as a product

of absorber and perturber density matrices; therefore, the correlation function
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can be written as the sum over all substates of the Boltzmann ensemble average
of the correlation of the absorber density matrices [46].
The impact and classical path approximations are both applied in the theory

developed by Herman, Tipping and Poll [46].

2.3.2 interference between the Collision Pair

The picture of the system is the following [46]. The absorbing molecule

1s immersed in a bath of perturbers. Only the molecule, referred to as absorb-
ing molecule, can absorb radiation. The others are all referred to as perturber
molecules in a total number of N.

The total dipole moment operator of the system is defined by
/z(t) — eth/hﬁe—th/h , (281)

and

() = EA0) + L) (2.82)

where g4 is the allowed dipole moment operator of the absorber, and ﬁ;’ 1s the
induced dipole moment operator in a binary collision between absorber and per-
turber. The dipole moment correlation function is defined as the ensemble average

of the product of the time correlated dipole moments,
C(t) =< [I:(O) : ﬁ(t) Zens - (283)

With the substitution of Equation 2.82 in Equation 2.83, the correlation function
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can be written in the form

C(t) = CH(t)+ CH(t) + CTA) + C(t) + C (1), (2.84)
with
CH4) = < F*0)- Z4(t) >ens, (2.85)
CH(t) = N < ig*0) F1(t) >ens, (2.86)
CH@) = N < @(0)- () >ens, (2.87)
CY(t) = N <@0) @) >ens (2.88)
Cyl(t) = N < E(0)- ZL(t) >eme, (2.89)

where 7 and k refer to different perturbers.

The first term C44(¢) represents the allowed-allowed dipole contributions.
The strength of this term obviously depends on the number density of the ab-
sorber.

The second and third term, C4/(t) and C'4(t), are the contributions from
allowed-induced dipoles. These are the terms representing the intracollisional
interference between allowed dipole moment and the collision-induced dipole mo-
ment produced by a binary collision of absorber and perturber, and hence the
strength depends on both the number densities of absorber and perturber molecules.
We have to keep in mind that such interference could occur only if the allowed
dipole moment and induced dipole moments have the same symmetry. In the

standard representation, as was described in previous sections, only the induced
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dipole component with the symmetry of 4;(100;7;,7,R) can interfere with the
allowed dipole.

The fourth term, C{(t) refers to the correlation of an induced dipole mo-
ment produced by a binary collision of absorber and perturber with itself at a
later time. For a single binary collision the correlation between F/(0) and gL(t)
extends only over the duration 74, resulting in a very broad spectrum with a typ-
ical width Aw ~ 7%, i.e. of order 100 ecm™" at normal condition [62]. Due to this
reason, we will not discuss this term further in this thesis.

The last term, C7%(t), describes the absorption due to the induced dipoles
created by two binary collisions of the absorber with perturbers 7 and k. Usual-
ly this term is referred to as intercollisional interference presenting the narrow
features as a sharp dip at the transition frequency in the spectra of H,, which
was first discussed by J. C. Lewis and J. Van Kranendonk in 1972 [82]. But
in the case of HD, this interference behaves entirely differently. The induced
dipole component of A4;(100; 71,74, R), with L = 0, now is a scalar function in the
translational variable ]%, rather than the L = 1 component in the case of H, which
is a vector. Herman named this interference, scalar collisional interference [83).
The scalar collisional interference is always constructive, and such constructive
interference can always happen between the dipoles induced by absorber in any
two subsequent collisions with perturbers 7 and k. The correlation function then
extends over arbitrarily long time and results in sharp spectral lines [62][83]. Since
these binary collisions involve two perturber molecules, the strength of this term

depends on the number density of the absorber and the density squared of the
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perturber.

2.3.3 Spectral Profile

In the spectrum, the absorption coefficient per unit wavenumber at fre-

quency w 1s given by

alw) _ pANO(;lg )[1 — exp(~hw/kT)]d(w), (2.90)

w

where p4 is the density of absorber, Ny is Loschmidt’s number, and ¢(w) is the
spectral line shape function or spectral density function defined by a Fourier

transformation of the correlation function [54],

B(w) = %Re[ [ e an (2.91)

From the additive property of the Fourier transformation, the total contribution
to the spectral density function, and therefore to the absorption coefficient, will be
the sum of the contributions from the different terms in the correlation function,
as was discussed in the previous section. Within the impact and classical path

approximation the first term, C44(¢) may be expressed as [46]
<) ) >una= TR < (0 ) > (202)

where P; is the density matrix of absorber, ¢ and f denote the substates associated
with snitial and final energy levels respectively and < -+ >7 is the Boltzmann

ensemble average over the translational motion. To consider this term with the
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effects associated with the time average of the dipole operator magnitude itself,
which is modulated by the collision strength, the above expression may be re-

written as [83]

< FA0) - () Sene= 3 P < |4(0) - BA(E)] > 4T (2.09)
1,f

Here wyg is the unshifted frequency centre of the resonance line, and
I'o=7/2+ 18, (2.94)

where 7 is the full width at half intensity (FWHM) and § represents the line shift
with respect to wg. For the isolated pure rotational lines, the Fourier transform

of Equation 2.93 gives a pressure broadened Lorentzian contour

~/2x

#H) = U+ DRI + 1 s T,

(2.95)

where J is the rotational quantum number, wy = w@ — § is the shifted frequency

peak and Pg(J) is the Boltzmann factor normalized according to

> (20 + 1)Pp(J) = 1. (2.96)

This is obviously a symmetric line shape with v as FWHM, and the shifted peak
frequency wyg.

Now let us consider the intracollisional interference terms C4!(t) and CT4(t).
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In analogy with the calculation of C44(t), the term C4/(¢) may be written by
< EH0) - A(t) >ens= Y Pu < [pi(0) - ph(2)] >p e0-To), (2.97)
uf

In order to interpret the dispersion line shape observed in the fundamental band
of HD [25], Herman et al. introduced a dipole weighted phase factor A to describe,

phenomenologically [62] the phase shift produced during the dipole induction itself

46][83],
/Lffi = I#?iA
= I'[L‘;}i(AI-}-’Z:A”), (2.98)
where

_J° BT Js #h(R)g(R)R?sin 6 dR dg df

I
#}42'

(2.99)

Here g(R) is the pair correlation function. The phase factor A, according to
Herman et al., can also be expressed in terms of an average over single collisions

in the so-called double space or line space [46][84]

_ < ifIP[R(t)]Ui(Tc)U}(TC)lz’f >

A , (2.100)

where

P(R) = /Lf‘i(R)//L?i' (2.101)
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With the introduction of the complex phase factor A, Equation 2.97 becomes

< EA0) BHE) Sene= 3 Pt < |t (0) - ph(DI(A +iA")| > bt (2,102
i, f

and the corresponding Fourier transform gives the spectral density function as a

sum of Lorentzian contour and a dispersion part,

$1(0) = (74 1)Pa(I) A1 + P[22 o) (vg;gw-.:(: 0—)/«1)2 |
(2.103)

It can be seen in Equation 2.102 that the C74(¢) term has the same contribution
to the spectral density function as that of C4%(¢).
The intercollisional interference term, C{¥(¢), can be treated in the same

manner. With the phase factor A, the correlation function is then in the form

Oyl =" P < [E4(0) - f(6)TP(A" + A")?| >p elivd-Tol (2.104)
i,f
and its contribution to the spectral density function is given by

¢3' (w) = (J+1)Pe(I)J|ph|J + 1)212
X[ (AIZ _ A"2)7/27r B 2A'A"(w _ UJQ)/W
(7/2)? + (w — wo)? (v/2)? + (w — wp)?”

(2.105)

Therefore, for a system with p4 Ny absorber and pNo perturber molecules (p4 <

p), with all of the above contributions taken into account, the total absorption
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coefficient 1s obtained in the form

a(w) 4’ A 2
itk S - pP J J+1
L = paNalG )T + DPIA +1)
2%
i N A/]—f' 2N2 AIZ___AII2 ]21 ‘)/
X{HT2P 0 P 0( ) J(7/2)2+(w_w0)2

2w —wo)/m

+ N. AI’I+ 2]\72A1AII]'2 ,
(,0 0 P 1] )(7/2)2 n (w R wo)z

(2.106)

with

P(J) = Pp(J)[1 — exp(—hw/kT)] .

Since the dispersion part is odd symmetric with respect to w, this part will not
contribute to the integrated absorption coefficient,

/_‘: S‘f%dw = pANo(g—’g)(u1)P(J)<Jin’*lJ+1>2

X[1+2pNoA'T 4+ p* NZ(A” — A") [, (2.107)

2.4 Rotational-level Mixing

As was mentioned in earlier sections, the basis set for the calculation of
the induced dipole moment components is the nuclear wavefunction with the as-
sumption that the rotational and translational motions are separated completely,
le., the mixing of the rotational and translational states is ignored. The possible
significance of the rotational-level mixing is however well understood [44].

In the case of H, — H,, the intermolecular potential is almost spherical
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with a negligible anisotropic quadrupole-quadrople interaction term. But in the
HD — HD system, the intermolecule potential has an additional anisotropic term

due to the shift of the c.m. with respect to the c.c, as described in Figure 2.2,

—

Vap(R) = [1+d-VEe|Va(R)

= Vi, (R) + Vaniso(R, ). (2.108)

Here § is the angle between d and intermolecular distance R, as shown in the
figure. When this anisotropic potential term is taken into account in the Hamil-
tonian, the mixing of rotational states ensues [52].

Tabisz and Nelson derived the expression of the rotational-level mixing for
the pure rotational band in 1985 [52]. The calculation was performed assuming
that the quantum numbers of the translational states do not change in the mixing
process. The mixing was calculated for a fixed intermolecular separation and then

was averaged over the separation R. The total anisotropic potential was written

as

X/Q(RJ 6) = VQ1Q2 + V:zniao(R; 9)7 (2109)

where Vp, o, denotes the quadrupole-quadrupole term. The rotational wavefunc-

tions then were corrected as follows,

(T M|Vl T M)
Emyn — Ej

cI)JM = CbJM + Z ! ¢JI/M/I. (2110)

JI/’MI/

This calculation was corrected by Ma, Tipping and Poll in 1988 who showed that
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a nonzero contribution to the interference occurs only for R(0) [53]. With the
same wavefunctions in the calculations leading to Equation 2.107, the additional
contribution to the integrated absorption coefficient for R(0) for HD — HD and

HD — X systems is given by [53}[85]

pNO ( 6.7,0 )
2v2B, 2J +1

oo 27 T
x / / / A5(201; R)Va(R, 0)g(R)R? sin §dRdds,
0 0 0

(2.111)

alf a—E:’—)M _ pANo(;—;Lr—z)(J PN ANT + 1) %

Here By is the rotational constant of HD. Details of the numerical calculations
of the contributions to the interference parameter for HD — HD and HD — X
systems will be presented in chapter 5.

There is another type of rotational-level mixing mechanism, the near-res-
onance rotational-level mixing, which was calculated by Ma, Tipping and Poll
in 1988 [53]. This mechanism involves the rotational levels of both molecules in
a colliding pair HD — HD. This type of rotational-level mixing is due to the
relatively small energy difference between two resonance rotational levels of a
colliding pair compared to the anisotropic interaction of the proper symmetry re-
quired to mix these levels [53]. Figure 2.3 schematically illustrates the mechanism
of the near- resonance rotational-level mixing, where |JiM;y; JoM,; LM) denotes
the unperturbed states of colliding pair, LM designates the angular part of the
relative translational wavefunction [53] and |J;M;) denotes the unperturbed ro-

tational states of #D molecule in a colliding pair. Note that only R(2) and R(3)
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Figure 2.3: Near-resonance rotational-level mixing.

in the HD — HD system are significantly affected by this mixing. The calculated
results showed that the additional contribution from this mixing was so impor-
tant that it even caused a sign change in the interference parameter for R(2) with
respect to the calculated value in which this mixing was ignored. The calculated
contributions to the interference parameter of R(2) and R(3) for HD — HD are

listed in Table 5.4 along with other calculations for discussion.

2.5 New Development in the Theory

Very recently, B. Gao, G. C. Tabisz, M. Trippenbach and J. Cooper de-
veloped a new approach resulting in a new theory to describe the intracollisional
interference for HD [64]. In their derivation the fundamental approximation was

the impact binary collision approximation. A master equation formulation in the
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Liouville space was used. The density matrix of the gas, in which the collisions
take place, was constructed first, and then the evolution of the density matrix in
the presence of the incident radiation was described. Finally the absorption and
stimulated emission of spectrum was obtained by solving the master equation.
In this approach, the allowed and collision-induced transitions were treated in
a consistent manner. The expression for the absorption coefficient contains all
the contributions as were discussed in this chapter including the effects due to
rotational-level J— and m—mixing. Consideration of this new theory in detail is
beyond the scope of the present thesis, but it will be used as a point of discussion

in chapter 6.
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Chapter 3
EXPERIMENT

The experiments in this research were typical of far infrared absorption
spectroscopy. The information collected concerned the slight changes in the pure
rotational spectra of HD and of its mixtures under varying physical conditions. A
high resolution Fourier transform spectrometer constituted the main equipment.
This chapter begins with an overview of the experimental system. It is followed
by detailed descriptions of the spectrometer, absorption sample cell, detector, gas

handling system and the operation of the experimental system.

3.1 An Overview of the Experimental System

A schematic overview of the experimental system is illustrated in Figure
3.1. The infrared radiation from a Globar source (G) was first collimated by a
parabolic mirror M1 before entering the Michelson interfereometer. This incident
beam was then split about equally in intensity by a beamsplitter producing a
partially reflected beam and a partially transmitted beam. The reflected beam

was subsequently reflected from the fixed mirror, M2, while the transmitied beam
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was reflected from the moving mirror, M3. The beams were recombined and then
again split at the beamsplitter, with one weak beam returning to the source and
the other proceeding to a flat mirror M5. This latter beam was collimated again
by a spherical mirror M4, and focused on the entrance window of the absorption
sample cell. The absorption sample cell was mounted inside an external container
to allow its immersion in a cooling bath for operation at low temperature. The
opposite end of the absorption sample cell was connected to an optical transfer
system which consisted of a cylindrical vacuum chamber, containing a spherical
mirror M6. M6 collected the output beam and focused it on the entrance window
of the bolometer. Finally, a mirror, M7, inside the bolometer, focused the beam
on to the germanium crystal.

The preamplified signal from the detector was sent to the data system and
stored on the hard disk for later analysis.

An ATARI MEGA ST2 computer served as an intermediary station to ac-
cept the data from the NICOLET data system after the first step of data analysis
and then to transfer these data to the main frame computer afterwards with

KERMIT software support.

3.2 Spectrometer

The spectrometer used in this experiment was a commercial NICOLET
series 7000 Fourier Transform Infrared Spectrometer (Nic-7199 FT-IR System).
It consists of a computer controlled scanning Michelson interfereometer system

(Nic-7100 Interferometer) along with a data system. The Nic-1180 data system
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Figure 3.2: interfereometer

was used for the experiments performed prior to 1990. Subsequently in 1990, 1t
was replaced by a new Nic-660sx computer system.

The Michelson interfereometer actually consists of three different interfereo-
meters: a He-Ne laser reference interfereometer, a white light interferometer and
an infrared interfereometer, as shown in Figure 3.2.

All moving mirrors of these three interfereometers were mounted on a com-
mon moving mirror assembly, and all fixed mirrors were mounted on a common
fixed mirror assembly.

- Since the Fourier transform of a delta function is a Sine function, the inter-
fereogram of a single frequency beam from the He-Ne laser is a Sine wave with a

typical interval of 0.3165 p between its zero crossings. These zero Crossings were
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used to trigger the sampling logic that initiates the analog to digital conversion
cycle. An absolute frequency accuracy of better than 0.01 em™! was thus claimed
by the manufacturer. However in practice a fine calibration is still needed for
an accurate determination of frequency for spectra as we will discuss later. In
addition to specifying the sampling points, the laser interfereometer signal was
used to measure the moving mirror velocity to an accuracy of 0.125%.

The white light interfereometer, on the other hand, has a broad band visible
source. Therefore the interfereogram is the superposition of an infinitely large
number of different Sine waves and consequently general constructive interference
occurs only for a zero path difference between the distances of the beamsplitter
to the moving and fixed mirror. The fixed mirror was factory adjusted so that
the ZPD (point of zero path difference) of the white light interfereogram occured
just 0.3 mm earlier than the ZPD of the main IR interfereometer. Moreover the
control system was designed to ensure that on each scan, the peak of the white
light signal occured just prior to the zero crossing of the laser reference signal.
Thus, the unique zero crossing of white light interfereometer on each scan was
chosen as a starting point of data taking by the main IR interfereometer.

The optical aperture of the main IR interfereometer allowed a full, clear
2-inch diameter incident beam. The total optical retardation length was 16 cm,
yielding a theoretical highest resolution of 0.06 em™! as stated by the manufac-
turer. The moving mirror assembly was mounted on dual air bearings to prevent
rotation and to reduce the friction to ensure mechanical stability.

The infrared light source was a water cooled globar (a silicon carbide rod).
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The radiation curve of the glowbar is shown in Figure 3.3 [86).

The beam splitter selected was capable of efficiently dividing the incident
beam into two approximately equal intensity beams in the frequency region of
interest. A 6.25 p thick Mylar film has a good efficiency in the range of 70-390
em™! and thus could serve as a beam splitter in all the experiments. The efficiency

curve is shown in Figure 3.4 [87].

Theoretically, the Fourier transform of the interfereogram is given by [88]:

1) = [ 1) a, (3.1)

— 00

where I(v) is a Fourier transformed spectrum, I(t) is an interfereogram and t is
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time. In practice, only a limited number of data points are taken in the measure-
ment. As a result the spectrum obtained is the Fourier transform of a convolution

of the interfereogram with a box function:
“+o0 +o00 ) ,
I(v) = / / I H(E — £)e>™ dedy!, (3.2)

where
1 if [t —t] <t
0 otherwise.

H(t' —t) = { (3.3)

This effect was minimized by a technique called apodization which improves the
lineshape at the expense of lower resolution [89]. A modified trigonometric func-

tion, called the Happ-Genzel function [86], suggested by the manufacturer, was
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applied for apodization in the experiment:
F(H — G) = 0.54 + 0.46605{“]\/}' — NZPDV(]\TDP — NZPD)}W/fZ}; (34)

where N, is the displacement of i th point from the start of the scan, Nzpp 1s the
location of the ZPD data point and NDP is the total number of data points.
As a result of the refractive index of the optical elements, as well as the
fact that ZPD point does not correspond to the first point in the spectrum,
a phase error in the Fourier transform is inevitable [90][91][92]. To correct the
phase error, a short double-sided interfereogram was taken from the measured
interfereogram to be used to calculate a phase array. As set by the manufacturer,
this spectrometer used sixty points around ZPD for phase array calculations [86].
The new Nic-660sx data system includes 1.28 Megabytes of RAM memory,
a storage module device (SMD) hard-disk interface and two 640 Kbyte 3.5 inch
microfloppy diskette drives [93]. The 660 high-resolution color display monitor
was used with the data system for fast spectral display and data assessment.
The standard Nic-660sx comes equipped with four software programmable RS-
232 ports and two high speed differential RS-422 ports for fast data transfer and
communication with other computers. The data system controls the spectrometer
using a series of data-collection parameters and performs data manipulation with

its FT-IR command language.
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3.3 Absorption Sample Cell

The absorption sample cell was constructed by Nelson and Tabisz in 1983
[47] following the 1978 design of Horne and Birnbaum [94]. It consists of two
parts: a 1 m long stainless steel tube with 1.3 c¢m inside diameter and 1.9 cm
outside diameter which is a sample cell proper and a 92 ¢m long, 16 em wide and
23 cm high stainless steel case which acts as a cooling bath container.

There are two flanges on each end of the sample cell. Five circular con-
centric V grooves about 0.5 mm deep were cut into each flange and six equally
spaced bolts clamped the two flanges together. A 6.3 cm diameter high density
polyethylene disk was compressed between two flanges and served as a window.
When the six bolts are tightened, the polyethylene flows into the circular grooves
and effectively forms a series of O-ring seals. The inside of the sample cell was
polished to make the tube behave as a light pipe in order to enhance the signal.
The sample cell demonstrated an excellent low leakage rate over 36 hours with
both 3.2 mm and 4.8 mm thick windows at 560 psi. At 760 psi, this hold time
dropped to 18 hours with the same windows.

The cooling bath container, designed by Ulivi in 1987 [5], allows over 92%
of the sample cell to be completely immersed in the coolant. The temperature
stability over the remaining 3.8 cm from each end of the windows was achieved
through thermal conduction by the cell walls and the thick high pressure flanges.
On the external side of input window, there was a stainless steel connecting
tube between the spectrometer chamber and the sample cell. One end of this

connector was welded on the outside flange, and the other end was attached to
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the wall of the interfereometer chamber with a 1.5 mm thick polyethylene sheet
as its vacuum window. On the output window side of the sample cell, there
was a similar connector between the cell and an optical transfer system. Both
of the connector regions were under vacuum during operation. This is crucially
important at low temperature to prevent condensation or ice formation on the
windows of the sample cell.

The cooling bath container, as well as the two connectors were covered with
2-3 inch-thick foam layer to achieve good thermal isolation. Eight thermocouple
(TC) detectors were uniformly distributed along the length of the sample cell to
monitor the temperature gradient. Five of them were soldered on to the wall of
the cell and coated with Multi-purpose Foam to avoid direct contact with the
coolant. Three of them were removable. The high thermal conductivity oxygen-
free copper sensors of the thermocouples were held in direct mechanical contact
with the cell wall by means of teflon clamps. No temperature gradient was found
within the container both at 77 K and 195 K. In the 3.8 cm end region of the
sample cell, a 8-16 degree difference was found during the experiments at 77 K. At
195 K, this temperature gradient was down to 7-10 degree. Thus, the assurance
can be given that at the worst case, the error in the density determination of the
sample gas caused by the incomplete immersion is less than 1%.

The coolant for the experiment at 77 K was liquid nitrogen. A 100 litre
dewar was used as a coolant supply vessel and connected to the cooling bath
container with a rubber transfer tube. A compressed nitrogen gas cylinder was

connected to the supply dewar via a polyethylene tube to provide the necessary
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pressure to transfer liquid nitrogen into the bath container to maintain the coolant
level. At 195 K, the coolant was a mixture of ethyl alcohol and dry ice. Approx-
imately 7.5 kg of dry ice were added each day to keep the coolant stable at the

desired temperature.

3.4 Detector

The detector used in the experiment was a liquid helium cooled FTS Ger-
manium Bolometer System manufactured by Infrared Laboratories, Inc.

This system consists of a germanium bolometer with an effective area of 9
mm?, a model HD-3 dewar, a model LN-6 preamplifer and two far-infrared cut-off
filters passing the wavenumber regions 10-375 cm ™! and 10-100 e¢m ™! respectively.
The 10-375 cm™! filter was used in all experiments in this study. It was a 0.75
~inch diameter wedged Sapphire coated with 4-8 u diamond powder and ZnO
powder layer to cut off the near-infrared radiation. The outer vacuum window
was wedged polyethylene, coated on the inner face with a 4-8 micron diamond
layer. As illustrated in Figure 3.5 [95], the spectral response was dominated by
the cut-off filter.

The model HD-3 dewar has two containers: one for liquid nitrogen and the
other for liquid helium. Care has to be taken to top up the liquid nitrogen before
each run. A 33 hours hold time with a liquid helium fill was achieved under
continuous operation in the 1990 experiments.

The entire detector system was mounted on a lab jack fastened to the optical

table which provided stability and fine adjustment capability.
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3.5 Gas Handling System

The gas handling system includes a vacuum system, a nitrogen purge system
and a sample supply system, as shown in Figure 3.6.

A GDA-1 rotary vacuum pump and a water cooled 80 cc fluid charge diffu-
sion pump with a liquid nitrogen trap were the main components of the vacuum
system. The entire vacuum system was made from stainless steel tube or copper
tube, soldered or coupled with high vacuum elements. The vacuum condition
was monitored with two CP25-EK penning gauges (PG) and five thermocouple
gauges (TC). The vacuum within the sample cell was usually on the order of 104

torr when the background was taken. This vacuum was monitored by a penning
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gauge connected directly to the sample cell.

The effect of water vapour, which has very strong absorption in the far-
infrared, was essentially eliminated in the sample cell, optical transfer system and
two connectors because of the vacuum. However, since the interfereometer cham-
ber itself is not evacuable, the introduction of dry nitrogen into it is neccessary to
reduce the concentration of water vapour and therefore to reduce the water noise
in the spectra. Two 50 Ib capacity nitrogen dewars were used to provide dry ni-
trogen to the chamber through a purge network and controlled by a relay switch.
The gas flow was controlled by a suitable voltage supplied to a heater inside the
dewar, and was monitored by a tube flowmeter (FM). Two filters were used at
the entrance of the chamber to prevent dust contamination. In addition to the
purge system, compressed nitrogen gas for the air bearings of the spectrometer
was also introduced into the chamber to supplement the purging procedure.

The sample supply system basically consisted of a manifold with five control
valves and a pressure gauge system as shown in Figure 3.6. There are two cold
traps (CT) along the input route from sample cylinder to the manifold, and
another one in the route from the manifold to the sample cell. Liquid nitrogen
or a mixture of ethyl alcohol and dry ice were the coolants used for these cold
traps in order to freeze the water vapour in the sample gas and also to pre-
cool the sample gas for low temperature experiments. When the pressure of the
sample gas in the experiment was below 25000 torr, the pressure was measured
by an MKS Baratron 220CA absolute pressure transducer with a PDR-D-1 power

supply digital readout. At higher pressures, a Heise gauge (0-1500 psi) was used.
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The accuracy of MKS system was + 0.01% of full scale + 1 count, while for the
Heise gauge (HG) it was 0.1% of full scale (FS). Both of these instruments were
calibrated by the manufacturers.

For the sample gases used in this study, HD was obtained from MSD Iso-
topes with a purity of 98%, and the other gases from Matheson, all with a purity

above 99.99%.

3.6 Operation

To obtain a good spectrum, the signal to noise ratio (SNR) must be as
high as possible. Obviously the optical path alignment is vitally important to the
experiment.

A TGS detector was used for pre-alignment of the path from the light source
to the output window of the sample cell with the assistance of a 0.5 mw He-Ne
laser. All polyethylene windows were removed at this first step of alignment. The
peak to peak voltage (V},) of the interfe'reogra,m was monitored by an oscilloscope
taking the signal from the IR port and the trigger from the output of the TKDA
(taking data) port of the spectrometer control panel. Fine adjustments were made
to ensure the sample cell was horizontal and the signal received at the output
window was a maximum. Then the TGS detector was replaced by the optical
transfer system connected with the bolometer. The signal should be monitored
before the windows were installed. The optimum condition was achieved when
Vpp of the signal was maximized by performing a fine and careful adjustment to

the optical transfer system and lab jack, i.e. the bolometer position.
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The optical path alignment must be completed at least 24 hours before the
experiment begins, because a minimum of 24 hours is neccessary to evacuate the
operating system, to purge the spectrometer chamber and for the infrared light
source to reach thermal equilibrium.

For the low temperature experiments, the cooling process was begun when
the vacuum in the sample cell and the connection components was better than
1072 torr. Repeated tightening of the couplings to the sample flanges was contin-
ued during the cooling process which took about 2.5 hours for 77 K and 2 hours
for 195 K. All connectors to the sample cell were covered with thermal insulating
materials before the end of cooling process.

For each sample gas, the experiment started with a background measure-
ment, then a small amount of pure HD (about 3 amagat for the 77 K experiment,
3—5 amagat for 195 K and 7 amagat for 296 K) was introduced and the spectrum
was measured as a zero perturber density value. It was followed by a series of mea-
surements with a series of perturbers at increasing densities and completed with
another background measurement. Thus, the noise, especially the water noise
contribution from variations in the environment, was recorded. This is important
in the data analysis, as we will discuss in the next chapter

There are two parameters which affect the amplitude of the interfereogram:
the electronic gain GAN and the scan velocity of the mirror VEL. Obviously one
should use as low a GAN and as high a VEL as possible to prevent electronic
noise and to shorten the measurement time. In the 1987 experiments, GAN=16

and VEL=26 (V=0.8988 cm/sec) were used at 77 K to achieve a V,, value of 5

58



V for the background, and at 195 K, GAN=16 VEL=20 (V=0.5611 cm/sec) gave
Vep=8.7 V. In the 1990 experiments, GAN=16 and VEL=26 were chosen for both
195 K and 296 K. The V,, was typically 13.7 V at 195 K and 10.7 V at 296 K
during the experiment. To reduce the random noise, 400 scans were taken for
signal averaging at each density in all cases. About 3 hours and 50 minutes were
needed for each run when VEL=20, while when VEL=26 this period was reduced
to 2 hours and 20 minutes.

The spectrometer was controlled by a macro program with a set of data
collection parameters. These parameters were selected based on the high resolu-
tion requirements as well as on the experimental conditions. The control program

used in the experiments is listed in the Appendix.
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Chapter 4
DATA ANALYSIS

As was mentioned in the previous chapters, the information of interest is the
variation in the pure rotational spectra of HD, namely its intensity and its line
shape, in the presence of different perturber molecules under different physical
conditions. The experiments completed in this study are listed in Table 4.1.

The data analysis began with a Fourier transform of the collected raw data
to obtain absorption spectra. Following a baseline correction, the individual pure
rotational absorption spectral lines of HD were obtained. These data were trans-
fered to the main frame AMDAHL computer via an ATARI computer. A suitable
lineshape was chosen to fit these spectra data to obtain fitted parameters related
to the intensity and line shape. After a density determination, a series of calcu-
lations followed leading, finally, to the magnitude of the matrix element of the
allowed dipole moment of HD and the line shape parameters for individual rota-
tional lines. The details of the data analysis will be given in the following sections
in the same order that each step occurs in the analysis. The experimental results

will be presented at the end of this chapter.

60



Table 4.1: Experiments completed

Temperature Sample
(K)
77 HD-HD HD-H, HD-He HD- N,
195 HD—-HD HD-H, HD-He HD - Ne

HD—- AR HD-Kr HD - N,

296 HD—-H, HD-Kr HD- N,

4.1 Absorbance Spectra

The raw data recorded by the spectrometer were the interfereograms cor-
responding to an unapodized theoretical resolution of 0.06 ¢cm~!. Figure 4.1.A
shows a typical interfereogram for the background taken at 195 K. The corre-
sponding transmittance spectra as illustrated in Figure 4.1.B was obtained by
using the Fast Fourier Transform (FFT) [96] procedure supplied by NICOLET.

If Io(w) is the background intensity and /(w) is the sample intensity, then

the absorbance is given by

Aw) = —logio[I(w)/Io(w)] (4.1)

or

A(w) = logiolo(w) — logioI(w). (4.2)
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Figure 4.1: Interferogram (A) and its corresponding transmittance spectra (B)
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Obviously, if

10910](60) = loglOIaample(w) + loglOIO(w)a (43)

then

A(UJ) - '—loglo-[sample(w)> (4.4)

as expected in the ideal situation. However, as we mentioned earlier, the pres-
ence of water vapour in the optical path, especially through the variation of its
concentration, always results in some water absorption lines, more or less, in
A(w) of the sample and the background. These lines effectively introduce noise
into the desired spectrum. To solve this problem, more than one background at
the same temperature and under the same experimental conditions was recorded.
These backgrounds usually contain water lines with different intensities. Some
are clean, i.e. contain low intensity water lines, and some are relatively noisy,
i.e. show strong water absorption. Among the backgrounds taken at the same
temperature, the cleanest one was taken as a background file, and the one with
the greatest number of water lines was taken as a reference file. The reference
file was then adjusted by an appropriate factor determined by when the intensity
of the strong characteristic water lines (170 crn~! and 202 ¢cm™!) in the sample
absorbance exactly matched those in the reference absorbance. Finally the wa-
ter noise in the sample absorbance was removed by subtraction. The underlying
assumption in this procedure is that the water lines have the same width and
frequency in all spectra. This is a good assumption as the water concentration

1s low and all broadening and frequency shifts occur through interaction of the
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Figure 4.2: Absorbance of HD at 50 amagat 195 K

water molecules with foreign perturbers and not with each other.

For this study, only the pure rotational transitions R(0), R(1), R(2) and
R(3) could be recorded. They are sharp lines located upon the broad collision-
induced background, as illustrated in Figure 4.2. The continuous background
around the individual rotational lines (about 5 cm~* on each side) was removed
by the Base Line Correction (BLC) routine supplied by NICOLET [93]. The basic
1dea of BLC is to fit the base line of individual R(J) lines by a quadratic function
and then subtract the fitted base line numerically. This is a first order base line
correction. A more precise correction is still necessary as we will discuss later.

The spectral data containing R(J) lines with their approximately 5 em=?

wing part on both sides were converted to ASCII code by a pre-edited BASIC
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program and then saved in individual data files. These data were first transfered
to an ATARI MEGA ST2 using KERMIT software provided by NICOLET, and

then to the AMDAHL main frame for further analysis.

4.2 Profile Fitting Process

As described in the previous chapters, the lineshape of the sharp rotational
line R(J) is considered to be the sum of a Lorentzian profile and a dispersion part.
The following equation was used as a basic equation to fit the absorbance spectra

of each R(J) line at each density:

Aw) Dy

w  (7/2) + (0 = w)?

2(w — wo) Ey
(7/2)? + (w — wo)?

(4.5)

This is similar to the profile equation introduced by Herman, Tipping and Poll

[46]:

Alw) Dyr s ~/27 g 2(w —wo)/m
(7/2)7 + (w = wo)? (7/2)* + (@ — wo)?

. (4.6)

To improve the base line correction in the NICOLET system, a straight line
Aw + BK was added into the fitting process. Therefore there were a total of six
adjustable parameters taken in this procedure; base line correction factors A and
BK, the full width at half intensity (FWHM) v, the shifted line peak frequency
wo, the intensity parameter Dy and the asymmetry parameter E,.

A SAS program employing Marquardt algorithms was used for the above

fitting, and is presented in the Appendix.
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Occasionally there was an oscillatory type noise, or Sine noise, that ap-
peared in the spectra. This was caused by the interference from internal reflec-
tions from the parallel surfaces of the window, and the interference fringes present
in the sample and background spectra did not cancel each other out [60]{86]. How-
ever, a Sine function was found adequate to represent this type of noise. Thus,
for the spectra with such noise, the base line (with the peak region removed) was

first fitted by a Sine function plus a straight line:
Base = Aw+ BK + DSin|B + 27 (w — wyg)/C], (4.7)

where BK, A, B,C and D are adjustable parameters. Then the noise was sub-
tracted numerically from the spectra before the profile fitting procedure. Figure
4.3 and Figure 4.4 demontrate the effectiveness of this approach. A shows spec-
trum with Sine noise before correction, B is the fitted Sine wave and corrected
base line, C shows the corrected spectrum with the fitted curve given by Equation

4.5

4.3 Density

The unit of density used in this study is the amagat defined as follows,
1 amagat = 2.68675 x 10'° molecules/cm® (4.8)

at NTP (0°C temperature and 1 atm pressure).

The raw pressure data for HD and its mixtures were recorded by an MKS
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electronic pressure transducer and a Heise pressure gauge simultaneously in the
pressure range up to 25000 torr. These data were used to assess the agreement
between the two gauges. Since the highest pressure used in this study was ap-
proximately 700 psi, it was safe to calibrate the readings on the Heise gauge using
the MKS transducer to achieve maximun accuracy.

A virial expansion and the second virial coefficient were used to calculate
the amagat density from the pressure data:

22414.0
(RT/P)+ B(T) ’

Density(amagat) = (4.9)

where R is universal gas constant in atmem?®/moleK and B is the second inter-
action virial coefficient in em®/mole. For the density of mixtures of HD with

foreign gases, B was evaluated by the following equation [97]:

B(T) = fBu(T) + 2f1f2B12(T) + f3 Bao(T), (4.10)

where B1;(T) is the virial coeflicient of HD, Byy(T) is that of the foreign gas
and Bq»(T) is the interaction virial coefficient of HD with the foreign gas. In
the above equation f; and f, are the fractional concentrations of the two gases.
B(T) usually converged within a few iterations of a FORTRAN program with the
initial value of f; and f, taken from the pressure data. Details of the computer
program are presented in the Appendix.

The virial coefficients at different temperatures were mostly obtained from

J. H. Dymond and E. B. Smith [97]. B15(T) of HD — Kr at 296 K was obtained
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from Reference [63] which was estimated following References [98] and [99]. No
data was available for By,(T) of HD — Kr at 195 K. For this case, the pressure
data at 195 K were converted to the pressure at 296 K based on an ideal gas
model and then the density was determined by using the B15(T) of HD — Kr at

296 K. All virial coefficients used in this study are listed in Table 4.2.

4.4 Absorption Coefficient

The integrated absorption coefficient was obtained via an integration of

Equation 4.5:

a(w) Alw)
./prNodw - J:X/wa |
_ Do 2((.0 b wo)E'O w
L e vy R o7 e
(4.11)
where
F = (palNoLlogioe) ™, (4.12)

L is the length of the absorption cell which is 100 em, py is the density of the
absorber HD in amagat and Ny is the Loschmidt’s number. The integration of
Equation 4.11 is straight forward. Since the dispersion part does not contribute

to the integral, one finds

/ ;O—;if"_]\)/_odw _arDe arctan[%(—‘i’;“-’ﬁ]. (4.13)

v g
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Table 4.2: Virial coeflicients (cm®/mole) used in the density determination.
B (T) for HD is —11.05 cm®/mole at 77 K, 10.79 c¢m®/mole at 195 K and
14.37 em®/mole at 296 K respectively.

Virial Coefficient

Sample 77T K 195 K 296 K
B Bas B B, B By,
HD - HD —11.05 —11.05 10.79 10.79 - -
HD - H, —11.05 —11.05 10.79 10.79 14.37 14.37
HD — He 15.13 9.60 16.40 11.97 — -
HD — Ne 3.16 —14.15 11.23 7.90 - -
HD — Ar - - —4.16 —49.13 — —
HD - Kr — - - - 2.80 —52.60
HD - N, - - 1.20 —37.48 13.04 —4.90
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In the above integral the limits were set to be 3~ so that the total of six FWHM
served as the integration range to avoid overestimating the intensity of the spec-

trum in the region of wings [63][100].

4.5 Dipole Moment and interference Parame-
ters

According to the intracollisional theory developed by Herman, Tipping and

Poll, the integrated absorption coefficient may be expressed as follows [44](46],

. A
/a—(“’)—dw - / —O‘—Mu + 2pNoA'T + p? NE(A? — A")[?)duw
wpaNg wpaNg

Comparing Equation 4.14 with Equation 2.107, one finds immediately:

Co = (4m*/3he)(J + L)P(J)(J|p?]|J +1)?

= C(J)(J|p?J +1)? (4.15)
Cl = 2N0AIIOO (416)
Cy = NZA"” ~ A"™)[2(C,. (4.17)

Clearly Cy leads to the magnitude of the matrix element of the allowed dipole
moment while C; and C, lead to interference parameters.
There were two approaches employed in the fitting of Equation 4.14; a

free fitting and a theory fitting. The free fitting consisted of fitting a second order
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polynomial without any restriction. This was applied to the 1990 experiment data
for comparison and discussion. The theory fitting used Equation 4.17 to specify
the relationships between Co, C1 and C,. It was applied for all the experiment
data of 1987 and 1990. The theory fitting was made by introducing a parameter

g such that:
1 pNeA'T

= 1

where ¢™* was calculable from the fitted parameters by comparison of Equation 4.5

with Equation 4.6 and Equation 4.14:

-1 — EO’)’/-DO
I+ \/1 + (Eov/Do)?

g (4.19)

Furthermore, Equation 4.14 may be linearized as follows,

(L] a@)/(paNow)da /(1 — g} = CHL+pNoA'T)  (4.20)

{[f alw)/(palNow)dul/(a* — )P/ = Ci(pNoA'T).  (4.21)

Thus Cy, NoA'l and NyA”I were obtained from the above two linear fittings.

In the fitting of above curves, the spectra fitting parameters at zero per-
turber density of the HD — X experiments were first determined. These values
were added to the HD — HD data to improve the accuracy of the intercept deter-
mination. Also the average value of the zero perturber density of HD — X with
the same HD density was taken as a zero density value to improve the fitting

in HD — X cases. All fitting was weighted with the error calculated from the
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statistical error of parameters in the profile fitting. An estimated error in the
density determination was also included. The magnitude of the matrix element
for the allowed dipole moment transitions of HD was determined from Cy of the

HD — HD curve via Equation 4.15:
(Jig2 ()Y = [C(J)1Co)V?, (4.22)

with

C(J) = (4n2/3ke)(J + 1)P(J), (4.23)

where J is the rotational quantum number and P(J) is the Boltzmann function

(c. . Equation 2.106):

plyy = Sz et 4.2
- . 24
) S (27 + 1)eFEs (4.24)
J

The rotational energy in the above equation were estimated from the approximate

equation [101]
E(J)y=BJ(J+1)=DJ*J+ 1+ HJ3(J +1)*, (4.25)

where the rotational constants B = 44.6645cm™!, D = 0.02576ecm™! and H =
2.31x107*cm ™! are the average values of three determinations [51][102][103]. The
numerical values of C(J) at 77 K, 195 K and 296 K are calculated and listed in'
Table 4.3.
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Table 4.3: C(J) (debye~?cm™'amagat™') calculated at different temperatures

Temperature C(J)
(K) J=0 J=1 J=2 J=3
77 5.657 2.547 0.143
195 1.586 2.488 1.181 0.239
296

1.685 1.333 0.553

The interference parameter a = 2Ny A’ was obtained from the ratio of C;
and Cp. To determine NoA"I, the interference parameter causing the asymmetry,

we have plotted ¢g~' against density as expressed in Equation 4.18.

The results for (Jju#|J + 1), a and NyA"I are presented in the last section
of this chapter.

4.6 Lineshape Parameters

The lineshape parameters are the broadening coefficient By and the fre-
quency shift Sg.

The density dependent line width FWHM was obtained from the profile

fitting parameter . According to the impact theory, there is a linear relationship
between v and p [5][54]:
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where Ky is the line width at zero perturber demsity. To obtain By, a straight
line was fitted to the v versus p and weighted with the statistical error in ~.

There is also a linear relationship between S, and p:

where wp is the line frequency obtained from the profile fitted and wg is the
frequency at zero perturber density. The same procedure was employed to obtain
So.

In the case of HD — HD, wyg is the absolute frequency of the individual R(J)
lines. As we mentioned in the previous chapter, although NICOLET calibrated
the frequency of the spectrometer to the stated accuracy, a precise calibration is
still needed for the determination of the line positions. This was done by a linear
calibration with the water lines measured with the sample cell under vacumn
assuming no collision frequency shift. Then, these water lines were fitted with a
Lorentzian profile and compared with the highly accurate water line frequencies
measured by J. W. C. Johns in 1985 [104].

The results of the absolute frequency of the R(J) lines of HD and the
corresponding line shape parameters in the different cases are all presented in the

next section.

4.7 Experimental Results

The experimental results from the data analysis described in this chapter

are collectively presented in this section for the convenience of comparison. These
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results will be discussed in chapter 6.

There are three parts in this section. Part one contains the magnitude of
the matrix elements of the allowed dipole moment transitions and the absolute
frequency of pure rotational lines of pure H D, and part two presents the interfer-
ence parameters. All line shape parameters are presented in part three. Diagrams
in this section were selected from 240 diagrams representing the different samples

at different temperatures with different fitting procedures.
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Part One

The magnitude of the matrix
elements of the allowed
dipole moment transitions
and the absolute
frequency of pure

rotational lines of pure HD.
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Table 4.4: The magnitude of the matrix elements of the allowed dipole moment
transitions of HD (10 *debye). The uncertainty appears in parentheses.

(JIlptJ + 1)

Experiment

K 7.19(3)  7.68(4) 7.79(6)
195K*  8.03(12) 8.01(4) 8.12(6) 7.84(23)
195K  8.75(4) 8.09(3) 8.15(2) 8.62(15)

206K°  8.83(28) 7.94(2) 7.88(3) 8.43(10)

Average  T.77(4) 7.95(4) 8.05(4) 8.41(13)

a: 1987 experiment.
b: 1990 experiment.
c: 1986 experiment, c.f. Reference [63].
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Table 4.5: The absolute frequency of pure rotational lines of HD (cm™!). The
uncertainty appears in parentheses.

Experiment

1986  89.19(1) 177.84(1) 265.23(1) 350.85(1)
1987°  89.22(1) 177.84(1) 265.24(1) 350.86(1)

1990°  89.21(1) 177.84(1) 265.246(5) 350.86(1)

Average  89.21(1) 177.84(1) 265.24(1) 350.86(1)

a: average value from 295 K experiments, c.f. Reference [63].
b: average value from 77 K and 195 K expriments in 1987. c.f. Reference [5].
c: from 195 K experiment in 1990.
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Part Two

The interference parameters
of
HD —-HD and HD - X.
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Table 4.6: The interference parameter a (107% amagat~!). The uncertainty ap-
pears in parentheses.

Sample T R(0) R(1) R(2) R(3)

()

HD~HD 77  +3.1(4)  +22(2) -3.7(8)
195*  —2.2(11)  —1.59(76) +1.09(62) —14.4(26)
195> -2.86(25) —0.5(2)  +0.20(14) —12.6(8)
206°  —-2.5(19) -1.1(2)  +1.31(1) +2.1(6)

HD—H, 77°  +54(15) +2.2(14) -+0.8(29)
195*  +2.5(52)  +0.6(12)  +0.03(14) +3.9(10)
195> 4+2.0(13) —3.6(5)  +0.14(40) —6.2(41)
296° —11.5(31) —9.7(24) —11.4(53)
296° —7.1(11)  —7.62(79) —4.4(18)

a: free fitting.
b: theory fitting.

c: 1986 experiment, c.f. Reference [63].

85



Table 4.7: The interference parameter a (107° amagat™'). The uncertainty ap-
pears in parentheses.

Sample T R(0) R(1) R(2) R(3)

(K)

HD—He 77°  +6.0(16) +6.2(7)  +4.4(15)
195 —31.5(84) —4.4(21) —3.4(22) -+18(10)
195>  —11.4(38) —0.4(9)  +2.34(92) +3.5(28)
296¢ +5.7(9)  +3.9(8)  +10.0(19)

HD —Ne 77°  +6.0(16) +6.2(7)  +4.4(15)
195 —0.3(37) +1.9(13) +6.68(68) -+9.1(107)
195 F4.7(12)  —-1.0(4)  +4.34(23) +12.2(29)
296¢ +2.1(4)  +6.9(4)  +5.3(12)

HD—Ar 195°  —0.3(24) —0.9(21) -+3.5(10) —0.4(90)
195> +1.08(97) -3.93(72) +9.5(67)  +2.5(31)
296° +1.8(3)  +6.1(2)  +9.4(11)

HD — Kr 195>  +5.9(32) —1.0(26) —5.4(46) +21(32)
195°  +3.8(11) —18.4(21) +11.3(25) +13.8(93)
296® —21.0(35) —11.6(21) +4.2(36)
296° —19.3(14) —8.63(69) —7.1(12)

HD - N, 195  +22(153)  +7.7(95) +8.9(40)  +12(37)
195P +15.8(47) —10.6(21) +4.2(13)  +12(10)
296® —-16.2(26) +13.3()  —4.1(89)
296 —22.2(14) +8.28(82) —4.5(25)

a: free fitting.

b: theory fitting.

c: 1986 experiment, c. f. Reference [63]

5
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Table 4.8: The interference parameter NoA"J (1074 amagat™?). The uncertainty
appears 1n parentheses. ‘

Sample. T R(0) R(1) R(2) R(3)
(K)
HD—-HD 77  -2.0(8) =0.7(7)  +1.7(27)
195>  —0.05(158) ~4.61(76) —6.01(35) -+12.4(18)
HD-H, 77  —13(3) +10(2) +3.8(14)
195> —4.0(57)  —10.0(10) —10.1(14) -+10.0(33)
296° —-17.8(30) +8.6(27)  +8.9(31)
HD —He 77  +15(3) +13(3) +40(10)
195*  +17(12) +10.9(23) +8.9(33)  +33.4(96)
HD—Ne 77°  +15(3) ~11(2) ~6(30)
195> 425.3(52)  +17.5(10) +11.3(72) +2.4(20)
HD —Ar 195>  —72.5(61) +8.0(11) —20.3(15) -+96(23)
HD — Kr 195>  4+26.7(66) -+11.1(81) +29.9(54) +11(35)
296° +12.9(25) +1.0(29)  +0.2(27)
HD - N, 195 +8.7(83)  +18.4(27) -—20.4(24) +4.8(34)
296° +10.2(17) —4.3(14)  +14.0(63)

a: 1987 experiment.

b: 1990 experiment.
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Figure 4.8: Integrated absorption coefficient for R(0), R(1) and R(2) of HD — He
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at 77 K as a function of density. Points are experimental. The solid line is the

theory fitted curve.
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HD — Kr at 195 K as a function of density. Points are experimental. The dashed
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Part Three

Line shape parameters
of
HD—-HD and HD-X.
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Table 4.9: The FWHM broadening coeflicients By (1072 ¢m™! amagat™'). The
uncertainty appears in parentheses.

Sample T R(0) R(1) R(2) R(3)
(X)
HD—HD 77  0.544(26) 0.879(6) 0.822(32)
195 1.80(1)  1.610(9) 1.508(4) 1.23(2)
296°  3.32(16) 2.53(1)  2.20(1)  1.81(3)
HD—-H, 77  0.577(35) 0.785(11) 0.610(87)
195 1.788(16) 1.525(16) 1.555(13) 1.303(66)
296° 2.273(55) 1.885(36) 2.309(67)
HD—He 77*  0.293(12) 0.391(11) 0.234(40)
195°  1.05(12) 1.01(2)  0.81(1)  0.75(11)
296¢ 2.13(6)  1.35(4)  1.17(9)
HD — Ne 77 0.474(14) 0.665(13) 0.366(79)
195> 1.608(27) 1.217(13) 1.040(2)  0.954(49)
296¢ 1.68(3)  1.50(2)  0.68(6)
HD — Ar 195 2.879(57) 2.079(42) 1.730(21) 1.27(15)
2906¢ 2.96(4)  2.19(2)  1.35(5)
HD— Kr 195  3.053(33) 2.375(63) 2.194(73) 1.821(87)
296° 2.681(32) 1.972(37) 1.091(74)
HD— N, 195°  4.100(40) 2.791(51) 1.972(11) 1.67(11)
296° 2.70(13)  2.844(31) 1.36(9)

a: 1987 experiment.

b: 1990 experiment.

c: 1986 experiment, c. f. Reference[63].
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Table 4.10: The frequency-shift coeflicients Sy (1072 ecm™ amagat™!). ”+” and
?—" refer to blue and red shift respectively. The uncertainty appears in paren-
theses.

Sample T R(0) R(1) R(2) R(3)
(K)
HD - HD 77 +0.305(67) +0.074(18) —0.24(10)
195 +1.07(4)  +1.21(4)  +0.61(4) —0.31(8)
206°  +3.5(5) +0.6(1) +0.6(1) —0.4(1)
HD - H, 77 +4031(5)  +0.37(3)  —3.15(31)
1955 41.02(26) +1.15(5)  +0.64(8)  —2.4(7)
296° +1.51(25)  +0.29(13)  —3.01(44)
HD — He 77 +0.58(4)  +0.65(3)  —1.11(22)
195 40.98(13)  +2.15(12) +1.22(8)  —0.45(58)
296° +2.4(2) +2.8(1) +1.8(3)
HD - Ne 77® +1.01(6)  +1.13(5)  —0.86(32)
195> 4+0.98(13)  +1.76(4)  +0.32(4)  +0.87(28)
296¢ +4.4(1) +2.4(1) +0.3(2)
HD — Ar 195> +4.78(47) +251(7)  +0.51(8)  —5.8(3)
296P +8.3(3) +1.3(1) ~1.1(2)
HD — Kr 195° +1.6(1) +3.28(2)  —3.0(17)  —5.4(5)
296° +3.52(23)  —0.515(54) —2.03(16)
HD — N, 195> +2.08(57) +3.54(10) +0.17(11)  —3.11(47)
296> +5.28(16)  +0.713(99) —2.65(33)

a: 1987 experiment.
b:1990 experiment.

c: 1986 experiment, c¢. f. Reference[63].
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Figure 4.15: Linewidth, full width at half maximum (FWHM), for R(0), R(1)
and R(2) of HD — HD at 77 K as a function of density. Points are experimental.

The solid line is the fitted curve.
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Figure 4.16: Linewidth, full width at half maximum (FWHM), for R(0), R(1),
R(2) and R(3) of HD — HD at 195 K as a function of density. Points are

experimental. The solid line is the fitted curve.
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Figure 4.17: Linewidth, full width at half maximum (FWHM), for R(0), R(1),
R(2) and R(3) of HD — Ar at 195 K as a function of density. Points are experi-
mental. The solid line is the fitted curve.
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Figure 4.18: Linewidth, full width at half maximum (FWHM), for R(1), R(2)
and R(3) of HD — K at 296 K as a function of density. Points are experimental.
The solid line is the fitted curve.
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Figure 4.20: The frequency shift for R(0), R(1), R(2) and R(3) of HD — Ne at
195 K as a function of density. Points are experimental. The solid line is the
fitted curve.
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Figure 4.21: The frequency shift for R(0), R(1), R(2) and R(3) of HD — Ar at

195 K as a function of density. Points are experimental.
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Chapter 5

THEORETICAL
CALCULATIONS

In order to compare our experimental results to the existing theory, we
will now calculate the interference parameters a and Aa, based on the theory
developed by Herman, Tipping and Poll, with refinements introduced by Tabisz
and Nelson and Ma et al. [44][46][52][53], and with the line broadening following
the semiclassical theory developed by Robert and Bonamy [105][106][107][108].

The details of the above calculations are the main topics of this chapter.

5.1 Calculations of the Interference parame-
ters a and Aa

To calculate the interference parameter a, we take Equation 4.14 as a

starting point;

a(w) at(w)
) :/~————1 2o NoA'T + P N2(A™ — A" [214 1
[ o= [ o+ 2eNoa T + 92N )Pldw, (1)
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with

A=A 4iA (5.2)

and [46]

A

< IPROWAIU) ()i >
- P(R) ’
where the notation is as the same as that used in chapters 2 and 4.
The phase shifts A’ and A” depend on the interacting species and the
temperature and have not been theoretically evaluated [5]. However, in view
of the unitarity property of the time-development operators U;(7.) and Uj('rc),
which are diagonal, the absolute magnitude of either A’ and A” can never exceed
unity [46]. Therefore in the so-called gentle-encounter limit defined by Herman,
Tipping and Poll, the time-development operators remain real and essentially
equal to unity [46]. The line shape at this limit is pressure-broadened Lorentzian
[45]. From the expression for a given in the previous chapter, within the GE

limit, a now becomes

a=2Nyl, (5.4)
and Equation 5.1 becomes
a(w) ot (w) a?
2o = [ (1 4 pa + %), .
[ o= | o et pet ) (5.5)

On the other hand, we have [44][53]

o(w) ot (w) atl(w)
) :/—dw+/-—dw+--~, 5.6
-/wPANo “ wp4No wpaNo ( )
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where the superscript A/ denotes the contribution to the integral intensity result-
ing from the interference between allowed and induced dipole, and dots refers to
the higher order terms involving the intercollisional interference proportional to

p?. Comparing the above two equations, one finds,

a :/%w—)dw/[p/mdw]. (5.7)

w

The integrated intensity of allowed — induced is given by [44][53]

oAl 872 ,
[ i = S Npap(d + PN AT

x [ uhg(V)av, (5.8)
Recalling the expression for the allowed intensity,
A 42
/g-w—)dw = ——ZngA(J—:— DP(IWJT|p?]J)? (5.9)

and substifuting these two equations into Equation 5.7, we have,

_ONo J5° i (R)g(V)dV

A1 (5:10)

or

_2No J3T fT Js° uhi(R)g(R)R? sin 8dpdddR

= (TaALT) (5:11)

In Equation 5.11, /L%,(R) 1s the induced dipole component with the same sym-

metry as the allowed dipole component and g(R) is the pair correlation function.
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In classical statistical mechanics, it is expressed to the zeroth order as [52][123]

9(R) = exp [-BV(R)], (5.12)

where 8 = (kT')~!, V'(R) is the intermolecular pair potential and R is the inter-
molecular separation.

There are a number of semiempirical calculations available for the Hy, — H,
and H, — X intermolecular potential but not for the HD — HD or HD — X
system. Considering the difference between the HD and H; molecules, as was
described in chapter 2, we calculated the intermolecular potential for HD to
perturber molecule by carrying out a coordinate transformation. To the first

order approximation,

Viap-x(R) = [1+d-Va]Vi,_x(R)

— Vi, x(R) + (re/6)V}s, _x(R)cosé, (5.13)

where 7, 1s the equilibrium internuclear separation of HD, 6 is the angle between
the internuclear axis of HD (from H to D) and the intermolecular distance R
(from the centre of the mass of HD to that of perturber molecule). Vi, x(R) is
the potential for Hy — Hy or Hy — X (Norman et al.) [110] and Vg, _x(R) is the
first derivative of Vg,_x(R) with respect to R.

Applying Equations 5.12 and 5.13 to the integral in Equation 5.11, and

carrying out the integral over ¢ and 6, one obtains the following expression for a,

8w N oo
a = MTI(}"?/O phs exp [~ Vi, - x (R)B]
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sinh {Vyy, _x(R)Br./6]
Vi, _xBre/6

x{ }R*dR. (5.14)

As was described in chapter 2, the allowed dipole component has the sym-
metry of A;(100;7). Therefore, only if ul,(R) has the same symmetry can it
contribute to the intracollisional interference. Namely, ,u§j, in Equation 5.14 must

have the symmetry of A4;(100;7,7,, R);
P’_{g'(R) = <‘]l‘41(1001 T1,7T2, R)’Jl>) (515)

where 7; and 7, denote the internuclear distances of molecule 1 and 2, and R is
the intermolecular distance between the centres of mass.
Similarly, as in the calculation of the intermolecular potential, the coordi-
nate transformation is applied to the case where only H, data are available.
From the general form, as was introduced in chapter 2, the relationship
between the induced dipole component for HD with a perturber atom and that

of H, with a perturber atom is given by

ABP=X(1),L 4+ ~; 71,79, R)
= (re/6)[OLAF™* (AA2L;re,ra, R))(—1)FH21
x[(2M1 + 1)(2A + 1)(2L + 1)(2X + 1)]7C(1A,1; 00)
X C(1LL -+ ~; 00)W (11AAz; MA)W(L + yLAA; 11)

(5.16)

110



with

Il

ov_ [ d/dR - L/R ~,
" T\ djdR+ (L +1)/R ~

1
e

(5.17)

=t et

Taking A = 1,1 =1, Ay = 0 and L+~ = 0 yields AFP~*(100; R) on the left hand
of Equation 5.16, and applying the further restrictions on A, [, Ay, Ay, L and v, as
were mentioned in chapter 2, one finds that only the following two combinations

are allowed for these parameters

=
nn
= - O O O
P
ot
—t
co
A —

and

D
o
I

(5.19)

>
!
e =R

Substituting the above two sets of parameters into the right hand side of
Equation 5.16, one finally obtains the expression for AFP=%(100; R) in terms of

A% (M A2 L; R), namely,

AHD=X(100; R) = (r, /18)(;1% + %){Agb-"f(om; R) = V24577 (201, R)]. (5.20)

Assuming the J-dependence is neglible [69], combining Equation 5.15 with
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Equation 5.20 yields the following expression for the induced dipole moment,

p(R) = (7"6/18)(2% )[AE=%(001; R) — vV24H=-%(201; R)). (5.21)

=

b

Up to this point in the calculations of a, the collisional mixing of rotational
levels, as described in chapter 2, has been ignored. To calculate this additional
contribution to the intracollisional interference of R(0), we apply the same po-
tential and pair correlation function from the calculations of a. Making use of
Equations 2.111, 2.112 and 5.7, one obtains the following expression for Aa,

N, 21 pw poc . o
B <Jiwu?>f230/o // AZ P (200 R)(re /6) Vi, - x cos

X exp [~BV,-x(R) — (re/6)BVy,_x (R) cos 8] sin R*dpdfdR

(5.22)

or

2m Ny * HD-X
= A 201; R —BVa,_x(R U'deR, 5.23

with
I'= /O "(re/6) Vi, - x (R) cos 6 exp [~ (re/6)8V}y, _x(R) cos 6] sin 649, (5.24)

This 1s easily integrated by parts to give

J_ 2L (re/6)8VE, _x(R)

Bl(re )68V, g (B)] nbl(re/6)BV, x (R)] (5.25)
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Finally, Aa is expressed as

47 N, o _X - ]
s = <J|;L-41J/)\0/§Bﬁ/o AP (201 R) exp [~ BV, - x (R)]
| 0

1= (re/6)BVE, _x(R)] . ; 2
(re/6)BVY, _x(R) sinh [(r./6)8Vy, _y(R)IR°dR.  (5.26)

Because of the nature of the perturbation theory, the integral in Equation 5.26 can
not be taken to small R and it must be cut off so that the first order wavefunction
(c.f. Equation 2.110) remains accurate [52]. In accord with the theory of Herman
et al., it 1s assumed that the maximum amount of intensity that can be borrowed
from a transition starting at level J is equal to the intensity in the transition in
the absence of anisotropic interactions [109]. Namely, in the above integral, R

should satisfy [52]

aFeso0 Ry 2 Loy, artreor), o)
where
ﬂj):2Ji3 (5:28)
and
J=0. (5.29)

In the numerical evaluations of a and Aa, r. = 0.76318 A or 1.4422 q,
[5]. Values of Ax(A1A2L; R) used are from the ab initio calculations of Borysow,
Fromnhold and Meyer [69]. They calculated the induced dipole moment com-

ponent of HD—X by using ab initio induced dipole data for H,—X, through the
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coordinate transformation correct to all orders. The accuracy of the calculated
induced dipole data was stated within 2% at the experimentally significant sepa-
rations (2.1 — 4.3 4). The analytical expression of A;(MA2L; R) for the systems

of HD — HD, HD — Hy, HD — He and HD — Ar is given in the following form,

—Itg)+ —Ry)? 07 ¢
Ax(AAsL; R) = AeB(R-Bo)+C(R-Ro)* & R—z . (5.30)
For HD — Kr, only the strength of the induced dipole ‘452“1’{’(001; R) in

the translational band of Hy, — K7 has been semiempirically calculated by Poll

and Hunt [73] assuming the form,
AB=Er(001; R) = AePBE-Ro) (5.31)

Therefore Equation 5.21 was only applied for HD — K.

The intermolecular potential used in the computations were different in each
case. For HD — HD and HD — H,, a Hartree-Fock dispersion type potential was
used [110],

, Ce Cs C
Vi, -m,(R) = Aexp(—a1R — a,R?) — (j{% + R—Z + Ei%)D(R), (5.32)
with
_J exp[-(Ri//R-1)] R< R,
D(R) = { : R> R, (5.33)
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For HD — He, an ab initio potential was employed [111][112],

G, s, Cu

Vi,_me(R) = Aexp (13.335 — a; R — ay R*) — (RG - T8 + Tio

)D(R), (5.34)

with

1 —exp[—0889(R—-R;))] R>R;
D(R) = { 0 R<R,. (5.35)

For HD — Ar and HD — Kr, we used the Buckingham-Corner semiempirical

potential given by [113][114].

Vit,_x(R) = Aexp(—a1R) — (% + %Z,—)D(R) , (5.36)
with
D(R) = { or 4R/ R = 1] g 2 gi_ (5.37)

The parameters of the induced dipole component are listed in Table 5.1,
and the intermolecular potential parameters are collected in Table 5.2.

The numerical results for @ and Aa at 77 K, 195 K and 296 K for the
various systems (for which the necessary data for such calculation are available)
are presented in Table 5.3. Also given are the calculations of Aa’ (see chapter 2)
for HD — HD made by Ma et al. [53], in which the near-resonance rotational-level

mixing mechanism was considered for R(2) and R(3).



Table 5.1: Parameters of the induced dipole component used in the calculations

of a and Aa
Parameter HD-HD?® HD-H3 HD-He® HD-Ar® H,-Kr®
Ro(ao) +6.00 +6.00 +5.70 +6.00 +6.16
A(1073%eaq) —0.094675  —0.087018  —0.35317 —0.62200 6.295
B(agl) —1.568660 —1.611988  —1.480215 —1.734827 —1.476
C( 52) —0.033502 —0.058241 —0.010277  —0.134086 0
Cr(ead) +21.078145 +23.815393 +12.776708 +4.951582 0
Cs(ead) —61.223719 —75.179287 0 0 0
Parameter HD-HD?® HD-H3 HD-He® HD-Ar*  Hy,-Kr®
Ro(ao) +6.00 +6.00 +5.70 +6.00 -
A(107%eaq) —0.32725 —0.34375 —0.36835 —1.5901 -
B((Lgl) —1.817194  —-1.781377 —1.725920 —1.573635 —
C’(aaz) —0.091933  —0.075904  —0.042242  +0.028285 -
Cr(eag) —46.526417 —27.868561 —5.663447 +1.718736 —
Cs(ead) +11.918610 —3.649204 0 0 -

a: Reference [69].

b: Reference [73], the sign of A for H, — K7 is unknown.
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Table 5.2: Parameters of the intermolecular potential used in the calculations of

a and Aa.

Parameter Hy, — H} H,— He®> H,— Ar¢ H, — Kr¢

A(107K) 0.118 3.2x 1077 4.108 3.732
a (A1) 2.78 2.957 3.692 3.462
as(A2) 0.08 0.183 0 0

Ce(105 K A8) 0.84 0.309 1.963 2.794
Cs(108 K A8) 0.417 0.109 1.474 2.728
Cio(108 K A10) 2607 0.535 0 0

Ry(4) 5.10 1.571 3.574 3.719

a: Reference [110].
b: References [111] and [112].
c: Reference [113].
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Table 5.3: Calculated interference parameters a and Aa (1072 amagat™).

Sample T  Parameter R(0) R(1) R{(2) R(3)

()
HD - HD 77 a +1.04 +1.04 +1.04 -
Aa -+0.29 0 0 —
Aa' 0 0 -34 -
Gtheory  +1.33 +1.04 —2.36 —
195 a +1.48 +1.48 +1.48 +1.48
Aa +0.64 0 0 0
Aa’ 0 0 -3.1 =0.2
Qtheory +2.12 +1.48 —1.62 +1.28
296 a +1.86 +1.86 +1.86 +1.86
Aa +0.93 0 0 0
Aad’ 0 0 -3.2 —0.2
Qtheory +2.79 +1.86 —1.34 +1.66
HD — H, 7 a +0.73 +0.73 +0.73 -
Aa +0.32 0 0 -
Qtheory +1.05 +0.73 +0.73 -
195 a +1.17 +1.17 +1.17 +1.17
Aa +0.68 0 0 0
Qtheory +1.85 +1.17 +1.17 1.17
296 a +1.52 +1.52 +1.52 +1.52
Aa +0.99 0 0 0

Qtheory +2.51 +1.52 +41.52 +1.52

a: Equation 5.14.

Aa: Equation 5.26. The Ry equals 3.880 A and 3.742 A for HD — HD and
HD — H, respectively.

Ada': Reference [53].
Qtheory: @+ Da + Ad'.
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Table 5.4: Calculated interference parameters a and Aa (1072 amagat™?).

Sample T  Parameter R(0) R(1) R(2) R(3)

(X)
HD — He 77 a +4.46  +4.46 +4.46 —
Aa +0.03 0 0o -
Gtheory ~ +4.49  +4.46  +4.46 —
195 a +6.18  4+6.18 +6.18 +6.18
Aa +0.09 0 0 0
Gtheory  +6.27 +6.18  +6.18 +6.18
206 a +7.36  +7.36 +7.36 +7.36
Aa +0.13 0 0 0
Gtheory  +TA49  +7.36  +7.36 +7.36
HD — Ar 195 a +8.83 +8.83 +8.83 +8.83
Aa +0.46 0 0 0
Gtheory  +9.29 +8.83 +8.83  +8.83
206 a +9.49  +9.49 +9.49 +9.49
Aa +0.68 0 0 0
Gtheory  +10.17 4949 +0.49  +9.49
HD — Kr 195 a 1.5 115 115 115
Gtheory 1.5 115 115 115
206 a 11.66 11.66 11.66  11.66
Gtheory 11.66  11.66 11.66 11.66

a: Equation 5.14.

Aa: Equation 5.26. The R,y for HD — He and HD — Ar are, respectively, 4.684
A and 4.723 A.

Qtheory: @ + Aa. The sign for HD — Kr is unknown.
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5.2 Calculations of Line Broadening

The theory developed by Robert and Bonamy is semiclassical within the
framework of the impact theory [105]. It has been applied with success in the
calculations for Raman and infrared P and Q branches for linear molecules per-
turbed by atoms or linear molecules, such as CO—Ar and CO—-CO [105][107][115].
The main features of the theory may be summarized as follows,

1. The geometry of the collision is described through sc-called equivalent
straight path, that is, a parabolic trajectory model determined by the isotropic
part of the interaction potential which allows a satisfactory treatment to be made
of the close collisions. This treatment is more appropriate than the usual one
which is a straight line trajectory at constant velocity [105][116].

2. In the extension to diatom-diatom collisions, the anisotropic potential
1s expressed by an atom-atom model which takes both the long and short range
contributions into account without any adjustable parameters [105][117]{118].

3. The matrix elements of the relaxation operator are computed by means
of the linked-cluster theroem, so that the treatment remains nonperturbative and
no cut off procedure is needed [105][107].

The general expression for the half width at half intensity v (HWHM) is
given by [107]

YHE = — <vo >b,v,j

= R[S pori, /0°° vf(v)dv/:’ 2wbS (b, v)db), (5.38)

v2,J2
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where N, is the perturber density, v is the relative velocity, and b is the impact

parameter. The subscript 2 of the quantum numbers denotes the perturber, and

SO pu,,;, 15 the probability density that the perturber is in |vyj,) state. S(b,v),

the collision efficiency function or the differential cross section function [119], is

expressed through the linked-cluster theorem as a product of a linked term and

of an exponential of the connected term [105],

with

and

S(b,v) =1 —[1 — 57 5 (cos 0 — isin Q), (5.39)
Se = Sagz+ Saiz+ S5 (5.40)
.Q = (Sl,ﬂ + Sé,fz) - (Sl,iZ - Sé,iz)a (5-41)
SéL) = Z Sa,f2,i2(1 — 5u§,uz5j;,j2), (5.42)
V3.3
SLE,CJ)’z,iz = S2,712,i12001 0,61 3, - (5.43)
v3.d

Here the subscripts 1 and 2 of S denote the first and second order contribution; 2

and f denote the initial and final state with vibrational and rotational quantum

number vj and v'j’ respectively. The explicit expressions for S(b,v) were calcu-

lated using an osculating parabolic trajectory [105]. In this model, the encounter
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of the collision pair is described by

(5.44)

where 7. is the relative velocity at the closest approach and F. is defined by

= 0Viso Te

FC = —( 67’ )T=7’c;;
= DTy (T, e
or r T =T,
= P Zym (Tynle (5.45)
o Te r.” 1.

Here a Lennard-Jones (6-12) potential is taken as Vjso. The apparent velocity v.

1s defined by

ut =yt 4 Lo Te (5.46)
m
With this expression, the 7(¢) modulus is written as
r(t) = [r? + o222 (5.47)

From the equation for conservation of energy and angular momentum at » = r,
one has

1 1 o o

—mv? = -2—mvf + 4e[(—)? - (=) (5.48)

2 Te Te

and

bv = r.v, . (5.49)
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Combining above equations with Equation 5.45 and Equation 5.46, one obtains

B iy

o
2! .
muv? 7, Te

b=rdl - )61}/ (5.50)

and

Ve _ o 1-— (8¢/mv?)[(a/re)® = (0/7e)®] (1) .
vl {1 + (8¢/mv?)[5(c/r. )12 — 2(0'/7’c)6]} ‘ (5.51)

c

Note that the above expressions, coming from the parabolic trajectory model,
result in the function S(b, v) being properly expressed in terms of b and v through

r. and vl; also the area element 27b db 1s

omh db = 2ma{1S — S[o( Ly _ 52

[+
o v r, Te

Y1)} dre . (5.52)

Since 7. 1s well defined, the conventional requirement for the previous treatments
of introducing a cut-off procedure in order to avoid a divergence for small values
of the impact parameter b is dismissed.

The intermolecular potential used was an atomic site model which was con-
sidered the most suitable potential model for this type of calculations [105][115].
This model describes the molecular interaction as the superposition of atorm-atom

interactions in the collision pair

di; €5
V= Z( 1ZJ - 6] ) + Vvlixuz + 1/;110_3 + - 3 (553)

i Tii2;  Tiiz;

where the indices 7 and j refer to the 7 th atom of molecule 1 and the 5 th

atom of molecule 2, 7y;5; is the distance between these two atoms, d;; and e;;
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are the atomic pair energy parameters, and g and @) are the permanent dipole
and quadrupole moment, respectively, of the colliding molecules. On expansion of
T1;2; 10 the a series in the intermolecular distance r, the intermolecular potential

may be expressed in the more convenient form [105]

V=475 "> Ubtym(r)Y0 m (01, 1) Ve —m (62, @), (5.54)
Li; ™
where § and ¢ define the orientation of the twointeracting molecules. The function
S(re,v]) then is expressed as a sum of direct components coming from each term
of the intermolecular potential and of crossed components between the terms of
the same harmonic order [106]. The detailed expressions for Uy, j,m(7) and S(7., v?)
can be found in the appendix of Reference [105].

In the case of HD — X, for the pure rotz;tional lines, the quantum numbers
vy, v; and vy v4 are zero. In HD — atom systems, there are no rotational levels of
the perturber involved. Furthermore, even for those perturber molecules which
involve rotational levels, the S;Lf)z,iz contribution, resulting from non-diagonality
is negligible [107]. If we neglect the imaginary part of the differential cross section,
as is frequently adopted in line broadening calculations [107], we have a simplified

form for Equation 5.38,

No _

=t th/ 2mb(1 — e2(57) b, (5.55)

where 7 is the mean velocity from Maxwell distribution and

CZ(b7 'U) = 52,f2 + SZ,i2 + S;g’c_,)tz)iz- (556)
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In the calculations of the intermolecular potential for HD — HD or HD — X,
only atom-atom contributions are of importance. The pair energy parameters d;;
and e;; and the Lennard-Jones parameters for the collision pair were evaluated

through the usual combination rules [81][120],

ar = (ae)? (5.57)
o1z = (o1+02)/2, (5.58)
e1n = (erez)'/?, (5.59)
dis = 612(012)6, (5.60)

where €; was obtained from the atomic Lennard — Jones parameters ¢; and o; by
[105]

€ = emﬁ (561)

2

di = (‘21'0'€3 . (562)

The computation program used was the code of Bonamy originally for CO-
Ar, with modification to suit our cases. The important parameters used in the
calculations are listed in Table 5.5 and the results of HWHM from numerical
calculations are presented in Table 5.6 together with the experimental HWHM

broadening coeflicients (Bog = —;—Bo).
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Table 5.5: Parameters used in the line broadening calculations

7

Sample o2 €12/k € d;; By, B

(4) (K) (107?ergA®) (10-%ergA!?) (em™1) (em™)

HD - HD* 296 364 3.37 0.225 44.66 44.66
HD - H, 296 364 3.37 0.225 44.66 44.66
HD — He® 275 19.27 1.14 0.05 44.66 0.0
HD — Neb  2.87 33.7 2.70 0.15 44.66 0.0
HD — Ar®  3.27 66.09 9.64 1.03 44.66 0.0
HD - Kr®> 3.28 79.0 12.2 1.5 44.66 0.0
HD - NP 3.30 57.66 10.3 1.38 44.66 2.0

a: deduced from L-J potential parameters taken from Reference [108].

b: deduced from L-J potential parameters from the average value of Reference
121].
L
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Table 5.6: Calculated and experimental values of HWHM broadening coeflicients
Bog (107 2cm™amagat™?).

Sample T R(0) R(1) R(2) R(3)
(K) Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal

HD—-HD 77 0.27 0.85 0.44 058 041 0.29
195 090 21 08 16 075 12 062 0.7
296 1.7 31 13 25 11 1.9 090 14

HD — H, 77 029 0.82 0.40 055 032 0.29
195 0.90 20 0% 16 078 12 065 0.7
296 1.1 25 095 19 1.0 14

HD — He 77 0.15 0.61 0.20 041 0.12 0.19
195 052 1.7 051 13 041 091 0.38 0.55
296 1.1 20 063 16 059 1.1

HD — Ne 77 0.24 0.8 033 051 018 0.21
195 0.80 18 061 14 052 0.88 048 047
296 084 21 075 15 034 .98

HD — Ar 195 1.4 1.6 1.0 1.1 086 0.64 0.63 0.29
296 1.5 1.8 1.1 1.2 0.68 0.67

HD — Kr 195 1.5 21 1.2 1.5 1.1 0.87 0.91 0.39
296 1.3 24 099 15 0.54 0.84

HD — N, 195 2.1 26 14 1.9 099 11 084 0.51
296 1.4 28 14 1.9 068 1.1
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Chapter 6
DISCUSSION

In order to reach the appropriate conclusions regarding the temperature
dependence of the collisional interference in the pure rotational spectrum of HD,
we will compare our experimental measurements with the published experimental
results and with theoretical calculations.

In this chapter, we will first discuss the relative quality of the spectra and the
accuracy of the data in our experiment. Then we will discuss the allowed dipole
moment matrix element, the line shape parameters, and finally the interference

parameters, within the context of the original theory.

6.1 The Relative Quality of the Spectra and
the Accuracy of the Data

Before the comparisons are made, the relative quality of the spectra at
different temperatures and the accuracy of the data should be assessed and then
assimilated into the discussion.

As was discussed in chapter 3, the quality of the infrared absorption spectra

depends on the S/N ratio, which is affected by many factors. If the optical
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alignment is in the optimum condition and the water vapour along the light path
is reduced to the minimum, then from the instrumental point of view, the‘ S/N
ratio is mainly affected by the radiation efficiency of the infrared source, the
efficiency of the beam splitter, the transmittance of the window and of the filter,
and the spectral response of the detector. The spectral lines of HD measured
in the experiment are located at about 89em™', for R(0), 178cm™!, for R(1),
265cm ™1, for R(2) and 351em™?, for R(3). From the radiation curve of the globar
source, as shown in Figure 3.3, there is roughly an order of magnitude difference
in the radiation efficiency among these locations, with the weakest radiation near
the R(0). On the high frequency side, because of the filter of the bolometer, the

! resulting in a sharp decrease in the

spectrum 1is effectively cut off at 360cm™
spectral region of R(3). The transmittance spectrum of the empty cell at 296 K,
as illustrated in Figure 6.1, shows the net result of those instrumental factors.
On the other hand, the relative strength of the absorption lines is greatly
affected by the thermal distribution of the population in the rotational energy
levels of the sample molecules. This can be seen clearly in the calculated values
of C(J) listed in Table 4.3. Roughly, at 77 K, R(0) is the strongest line and R(2)
is the weakest; at 195 K, R(1) is the strongest, next is R(0) and the weakest
is R(3); at 296 K, the strength of R(1) and R(2) are close while R(0) is the
weakest. In all cases, R(3) is the most difficult to measure accurately. Due to
the abundance of the water noise at low frequency, the quality of R(0) is usually
lower than R(1) and R(2) at 195 K and 296 K, and even at 77 K lower than

R(1). In summary, the spectral quality in terms of J dependence decreases as

follows: R(1), R(0), R(2) at 77 K; R(2), R(1), R(0), R(3) at 195 K; R(2), R(1),
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Figure 6.1: The transmittance spectrum of the empty cell at 296 K.

R(3) at 296 K.

In addition, there is a spread in the experimental determinations, especially
for the measurements of the integrated intensity of the spectra. Figure 4.6 shows
clear evidence of such spread. At the same temperature (195 K), and the same
density (3.9 amagat), the spread of the measured integrated absorption coeffi-
cients of HD is about +4.5% for R(0), £3.0% for R(1), £1.5% for R(2) and

+4.7% for R(3). For HD — HD at 77 K, the same spread is approximatly +7%

for R(0), £6% for R(1) and =7.3% for R(2). The fluctuations in the measure-
ments of line width are slightly less but of the same order, but they are much less
for the frequency shift measurements. If this type of uncertainty is due to the

narrow spectra affected by the random noise, then the smaller spread is expected
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at the higher densities of HD — HD, and to be slightly different at different
temperatures. In the HD — X systems, on the other hand, when the perturber
density increases, the S/N ratio decreases, resulting in relatively lower quality of

the spectra and larger uncertainties compared to those for HD — HD.

6.2 The Allowed Dipole Moment Matrix Ele-
ments

The experimental results for the allowed dipole moment matrix elements
presented in Table 4.4 are the average values from the HD — HD spectra at
different temperatures and different experiments. With the existing theory, for
example from Equation 4.14, the allowed dipole moment matrix elements can be
obtained also from the HD — X systems, although the statistical error may be
larger for the reason mentioned in the previous section. Using Equation 4.14 and
4.15, and the theory fitting results, we deduced the allowed dipole matrix elements
from the HD — X spectra at different temperatures. The results from all systems
are collected in Table 6.1.

The dipole moments in Table 6.1 are generally reasonably consistent except
for HD — He at 195 K, in which case we failed to remove effectively the hidden
water noise, causing the intensity measurements for R(0) and R(3) to be far from
accurate. Table 6.1 also reflects the fluctuations among the different experiments
at different temperatures and among the different experiments at the same tem-
perature. There is not sufficient evidence for a systematic trend with temperature
at a given J. Therefore it is justified to perform a weighted average over the all

measurements for a given J. It is obvious that the results from HD — HD play an
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Table 6.1: The magnitude of the matrix elements of the allowed dipole moment
transitions of HD (10~*debye) deduced from HD — HD and HD — X systems.

The uncertainty appears in parentheses.

System  Temperature (J|pA]|J + 1)
(K)

HD - HD 77 7.19(3) 7.68(4) 7.79(6)
1952 8.03(12) 8.01(4) 8.12(6)  7.84(23)
195® 8.75(4) 8.09(3) 8.15(2) 8.62(15)
296¢ 8.83(28) 7.94(2) 7.88(3)  8.43(10)
HD - H, 77" 7.30(15) 7.93(11) 9.17(29)
195° 8.76(49) 8.32(5) 8.29(5) 8.39(15)
206° 8.18(6) 8.05(6)  8.84(12)
HD — He 77 7.35(12) 7.83(5) 8.79(13)
1952 12.2(34) 8.78(7) 8.76(7) 11.1(30) -
HD — Ne 778 7.95(9) 8.77(13) 7.44(12)
195 8.61(10) 8.33(5) 8.25(3)
HD — Ar 1952 7.78(8) 7.93(3) 8.18(5) 8.07(30)
195° 8.73(5) 8.08(5) 7.97(7) 8.19(16)
HD — Kr 195 8.72(4)  8.47(11) 7.96(12) 8.43(11)
206° 8.11(7) 8.09(5) 9.22(13)
HD — N, 195° 8.93(12) 8.29(9) 8.49(8) 7.91(34)
296> 8.31(7) 8.12(5) 8.73(19)
a: 1987 experiment. b: 1990 experiment.

c: 1986 experiment, c.f. Reference [63].
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important role in the averaging process because of their small errors. The dipole
moments so averaged are presented in Table 6.2, together with the average results
from only HD — HD, the experimental results of other workers and the theoret-
ical calculations. For the average dipole moment, three standard deviations are
taken as the uncertainty appearing in parentheses. Thus the average value with
its uncertainty is at the 99% confidence level. Because of the reasons discussed
above, we believe that the average dipole moments from both the HD — HD and
HD — X systems are more reliable than the average values from HD — H D alone.
We will, therefore, take the former as the experimental result of the allowed dipole
moments of this laboratory for comparison and discussion.

Our results in Table 6.2 agree very well with McKellar for the value of
R(0), R(1) and R(2), and with Essenwenger for the value of R(3). For R(3), the
coefficient of C(J) at room temperature is about 1/3 smaller than C(J) for R(1)
and R(2); therefore, the determination of the dipole moment for R(3) is 1.7 times
more sensitive to the integrated intensity compared the cases of R(1) and R(2).
The measurement of Essenwenger was made at low pressure; therefore, the zero
density intercept should be reliable. The dipole moments of Trefler et al. are
significantly lower compared to the other experimental results. The reasons are
believed due to the low resolution instruments used by Trefler et al. (0.4cm™1),
and to the fact that the results of the dipole moment were not determined from

the zero density intercept [22].
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Our dipole moments also agree quite well with the theoretical calculations
listed in Table 6.2 in general, and are in favour of Wolniewicz’s calculation in
particular. Figure 6.2 shows the experimental results plotted with the theoreti-
cal calculations. Although the calculation of Ford and Brown is close to the
experimental values, the J-dependence is different. We should point out that the
J-dependence in our experimental result is not predicted by any of Wolniewicz,
Ford and Brown, or Thorson et al. Within the 99% confidence error bars, the
J-dependence predicted by Wolniewicz is possible, namely that the magnitude of
the allowed dipole moment increases with increasing of J, while the the opposite
direction in J dependence seems to be ruled out. If the J dependence can be

represented by [124]
WA = 8T+ 1Y, (6.1)

our experimental results yield
p? = [8.015 + 0.016(J + 1)*] x 107*D, : (6.2)

as illustrated by the dotted line in Figure 6.2. Neglecting the J dependence, one
obtains an average dipole moment, (8.11 + 0.14) x 10~*D, 3% low with respect
to the averaged value of the theoretical calculations.

It is interesting to note that although the magnitudes of the dipole moments

obtained by Trefler et al. are far lower than ours, the J dependence is similar.
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Table 6.2: The allowed dipole moment transitions of HD (107*debye). Uncer-
tainty appearing in parentheses for present work is three standard deviations.

(TuAl + 1)
Reference
J=0 J=1 J=2 J=3

Experiment
Present work?® 8.10(15) 8.04(12) 8.13(12) 8.55(42)
Present work® 7.77(12) 7.95(12) 8.05(12) 8.41(40)
Trefler et al.c 5.42 5.52 6.18 6.41
Essenwenger and Gush® 8.47(9)
McKellare 7.5(4) 7.8(4) 7.4(4)
McKellar et al.f 8.18(26) ~ 7.9(4)

Calculations
Wolniewicz® 8.36 8.38 8.39 8.41
Ford and Browne® 8.31 8.30 8.28 8.26
Thorson et al.! 8.463 8.455 8.440 8.420
Bishop and Cheung’ 8.65

a: averaged over HD — HD and HD — X spectra.
b: averaged over HD — HD spectrum only.
c: Reference [22]. d: Reference [47].
e: Reference [56]. f: Reference [50].
g: Reference [38] h: Reference [39].
i: Reference [42] j: Reference [40].
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Allowed Dipole Moment of HD (10%D)

Rotational Quantum Number J

Figure 6.2: Comparision of our experimental results with theoretical calculations.
The dotted line represents Equation 6.2.

o: experimental.

o: Reference [39).
o: Reference [42].
A: Reference [38].

136



6.3 Line Shape Parameters
6.3.1 Broadening Coefficient

There is a general tendency in the experimental FWHM broadening coef-
ficients, as shown in Table 4.9. That is, generally, By decreases with increasing
J for all temperatures and systems (except for R(0) at 77 K), and increases with
increasing temperature at all J for all systems (except for R(3) at 296 K for sev-
eral systems). The reason behind the tendency is the fact that, as J increases,
the energy gap between the rotational energy level E(J) and E(J+1) increases,
thereby reducing the efliciency of inelastic transitions between adjacent levels,
giving rise to longer coherence times, and hence resulting in the decreasing of
the line shape cross section and consequently the broadening coefficient. On the
other hand, generally, when the temperature increases, the relative velocity of the
molecules increases, thereby increasing the frequency of collision between absorber
and perturber molecules, resulting in the increase of the broadening coefficient.
The impact theory suggests a simple power law describing the temperature de-

pendence of the line width [4][107]:

Yor(T) = Yorr(Tres (T Tres )™, (6.3)

where vop 1s the HWHM, T is the temperature and 7.y is the reference temper-

ature. If this is true, the broadening coefficient should obey the same rule,

Bo(T) = Bo(Tres )T/ Tres)". (6.4)
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Table 6.3: N deduced from experimental broadening coefficients. Uncertainty
appears in parentheses.

System  (K)

Tpes =TT K
HD—HD 195  1.31(6) 0.65(1) 0.68(4) -
296 1.34(7) 0.78(4) 0.74(1) -
HD-H, 195 0.71(8) 0.96(10) —
296 0.78(2) 0.82(7) —
HD — He 195 1.02(5) 1.31(13) —
296 1.26(4) 1.29(9) -
HD— Ne 195 0.66(3) 1.12(22) —
296 0.69(3) 1.05(17) —

The exponent N deduced from the experimental broadening coeflicients in Table
4.9 are presented in Table 6.3.

The exponents in Table 6.4 for all systems are, in general, reasonably con-
sistent within their uncertainties at different temperatures for a given R(J) and
system. This fact may provide evidence of the validity of the simple power law to
describe the temperature dependence of line width to some degree. However, only

three temperatures are involved and such a generalization may not be appropriate.
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Figure 6.3: Line width (107 *cm~*amagat™') of R(0) for HD — Ne at 77 K as a
function of density. Points are experimental. The solid line is the fitted curve.

A comparison of our experimental broadening coefficient with published
experimental results at low temperature 1s only available for R(0) and R(1) for
HD — HD, and R(0) for Ne at 77 K. These results are collected in Table 6.4
together with the Boy for HD — HD at 296 K (for the convenience, we use Boy
instead of By in the following discussion). There is generally a good agreement
among various laboratories. The results of McKellar et al. at 77 K are system-
atically about 11% larger than ours. Nevertheless the ratio of the broadening
coeficients, R(0) and R(1) for HD — HD at 77 K and of R(0) for HD — Ne and
for HD — HD, are very similar (0.619 and 0.871 from our results versus 0.604
and 0.885 from McKellar’s results). This fact indicates that there is a systematic
difference in the determination of broadening coeflicient between the two labora-
tories. The reliability of our experimental results may be assessed in Figures 4.15

and 6.3.
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Table 6.4: Comparison of HWHM experimental broadening coeflicient Bogy
(107%2cm~'amagat™'). Uncertainty appears in parentheses.

T Bor
Reference system  (K)
R(0) R(1) R(2) R(3)

Present work HD—-HD 77 0.272(13) 0.440(3)

HD - Ne 77 0.237(7)
1986 ezperiment® HD — HD 298 1.265(5)  1.10(1) 0.905(15)
McKellar et al> HD — HD 77 0.305(10) 0.505(15)

HD - Ne 77 0.270(5)
Essenwenger HD - HD 296 0.915(5)
and Gush®
McKellard HD - HD 296 1.22(1) 1.13(1) 0.995(10)

a: Reference [63].
b: Reference [50].
c: Reference [51].
d: Reference [56].
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The theoretical calculation using a simplified model within a semiclassical
theory developed by Bonamy and Robert, as described in chapter 5, consistently
agrees with the general tendency of the J-dependence and temperature depen-
dence of the experimental results, as illustrated in Figure 6.4 to 6.6. However,
quantitatively, this calculation overestimates Bog at 296 K for most systems and
also overestimates low J lines for most cases. Relatively, the calculated results
agree better for R(2) and R(3), and for the cases where HD is perturbed by
large molecules. The source of the discrepancy is probably due to the classical
trajectory approximation which may not be proper for light molecules such as
HD. Morever, the decoupling between translation and rotation for the molecule
HD is questionable {125]. In addition, in this simplified model, the higher order
terms of the angular dependent potential, as well as the static electric contribu-
tions are neglected, while the line width is sensitive to short-range anisotropic
interactions [115]. Finally, as is well known, the atom-atom potential model is
incon;ect at long range. This inadiquacy will affect the calculation, particularly
at low temperatures.

There 1s an exception to the general tendency of the J-dependence in that
the broadening coefficient for R(0) at 77 K for HD — HD, HD — H,, HD — He
and HD — Ne are all clearly lower than that for R(1) for the same systems. This
can not be attributed to the experimental uncertainty because of the good qual-
ity of the R(0) spectra at 77 K and the large difference between the broadening
coeflicients for R(0) and R(1). However the observed anomalous behaviour is con-
firmed by a quantum mechanical calculation by J. Schaefer and L. Monchick [126].

They calculated the pressure broadening line shape cross section for HD — H,
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Rotational Quantum Number J

Figure 6.4: The HWHM broadening coefficient Boy vs. quantum number J for
HD—HD and HD — H,. Straight line segments are drawn to connect the points.

¢: experimental.

¢: semiclassical calculation.
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Figure 6.5: The HWHM broadening coeflicient By vs. quantum number J for
HD — Neand HD — Ar. Straight line segments are drawn to connect the points.

s: experimental.

¢: semiclassical calculation.
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Figure 6.6: The HWHM broadening coeflicient Bogy vs. quantum number J for
HD — Kr and HD — N,. Straight line segments are drawn to connect the points.

e: experimental.

¢: semiclassical calculation.
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and HD — He with the Ben-Reuven-Fano-Baranger formalism using the explicit
formula of Ben-Renven in which the rotational angular momentum of the bath
molecule is first coupled to the orbital angular momentum of the collision and the
resultant is then coupled to the rotational angular momentum of the radiating
molecule [126]. The potential used in their calculation was a six-term Legendre
polynomial expansion grid. Their calculation is in excellent agreement with our
experimental results. Whether this type of calculation gives consistent results
for R(2) and R(3), as well as for other systems remains unknown. The HWHM
deduced from their calculated line shape cross section and the corresponding
experimental HWHM broadening coefficient Bog are collected in Table 6.5 and

plotted in Figure 6.7.
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Table 6.5: comparison of experimental and theoretical HWHM broadening coeffi-
cients Bog (1072cm ™ amagat™!) for R{0) and R(1) for HD — H, and HD — He.

Uncertainty appears in parentheses.

T By
Reference system  (K)
R(0)  E(1)
Experiment

Present work HD — H, 77 0.28(2)
195 0.89(2)

HD—He 771  0.15(1) 0.20(1)
195 0.53(6) 0.51(1)
1986 experiment® 296 1.07(3)

Calculation

Schaefer and HD - H, 77 0.35
M onchickP 195 0.89

HD — He 77 0.17 0.22
195 0.64 0.62
296 1.05

a: Reference [63].
b: Reference [126].
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Figure 6.7: The HWHM broadening coefficient Bog (1072cm™'amagat™!) for
HD — Hy and HD — He as a function of temperature.

o: R(0), HD — H,, experimantal.

o: R(0), HD — He, experimental.

o: R(1), HD — He, experimntal.

Dotted line: R(0), HD — H,, deduced from Reference [126].
Dashed line: R(0), HD — He, deduced from Reference [126].
Solid line: R(1), HD — He, deduced from Reference [126].
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6.3.2 Absolute Frequency and Frequency Shift Coeffi-
cient

Now we turn to the absolute frequencies of the four pure rotational lines of HD
and the frequency shift coefficients for HD — HD and HD — X systems. As
illustrated in Table 4.5, the absolute frequency measured in this laboratory is
quite consistent in the 1990, 1987 and 1986 experiments. The average values,
with the existing experimental measurements of other workers, are collected 1n
Table 6.6. From the frequency determinations, new rotational constants for HD

may be deduced following [101]
E(J)=BJ(J+1)-DJJ+ 1P+ HJJ+1)*.

These are presented in Table 6.7 along with published rotational constants for
comparison.

Our absolute frequency determinations are in good agreement with the ex-
perimental results of other workers, and in excellent agreement with the frequen-
cies calculated from the published rotational constants. However, the measure-
ments of McKellar et al. and of McKellar are consistently lower than ours. Note
that their results are also lower than the calculated frequencies if any set of the
rotational constants in Table 6.7 1s used.

As for the broadening coeflicient, the frequency shift coefficient in Table 4.10
shows a general tendency in J-dependence and temperature dependence. Specif-
ically, So goes from positive (blue shift) to negative(red shift) for all systems at
all temperatures with increasing J, and Sy increases with increasing temperature

at a given J for most cases. A comparison of various experimental frequency shift
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Table 6.6: Comparison of experimental absolute frequencies w) (em™!) of the pure
rotational lines of HD. Uncertainty appears in parentheses.

“o
Reference
R(0) R(1) R(2) R(3)
Present work 89.21(1) 177.84(1) 265.24(1) 350.86(1)
McKellar et al.® 89.226(3)
Essenwenger and Gush® 350.852(2)
MecKellar® 177.828(2) 265.207(2) 350.844(2)

a: Reference [50].
b: Reference [51].
c: Reference [56].
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Table 6.7: Rotational constants (cm™') of HD deduced from experimental ab-
solute frequencies of the pure rotational lines of HD. Uncertainty appears in
parentheses.

Reference B D H
Present work 44.6626(14) 0.02554(21) 0.0000165(73)
Essenwenger and Gush® 44.6614(21)  0.02558(6) 0.0000174(5)
Rich et al P 44.6656(17)  0.02583(29)  0.000030(19)
McKellar et al.© 44.6665(15)  0.02586(12)  0.0000217(25)

a: Reference [51].
b: Reference [102].
c: Reference [103].

coefficients at low temperature can be made only for R(0) and R(1) for HD - HD
and HD — Ne at 77 K (Table 6.8). Although these two laboratories agree quite
well for the frequency shift for HD — Ne at 77 K, a significant disagreement
appears on Sy for R(0) and R(1) for HD — HD at 77 K. We notice that Sp is
sensitive to the quality of the spectra as well as to the technique of profile fitting.
Namely the different experiments with different S/N ratios or the same exper-
iment with different profile fitting procedures will result in different frequency
shifts. Tests have been made for HD — HD at 77 K in two other independent
experiments in this laboratory. When the Fano line shape profile was applied,
the frequency shifts for R(0) and R(1) for the first experiment were 0.318(52)

and 0.055(26) respectively, in units 1073cm~*amagat™. For the second experi-
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Table 6.8: Comparison of experimental frequency shift coefficients S
(10~2cm~*amagat™?) for HD — HD and HD — Ne at low temperature. Un-
certainty appears in parentheses.

Reference system (K)

Present work HD-HD 77 0.305(67) 0.074(18)
HD —Ne 77 1.01(6)
McKellar et al® HD - HD 77 0.09(3) 0.9(3)

HD — Ne 77 1.08

a: Reference [50]

ment, the corresponding values were, respectively, 0.595(101) and 0.157(109), in
the same units. A different answer was given when the Lorentzian profile was
applied, for example, the corresponding values for the first experiment became
0.464(83) and 0.024(66) in the same units. However,the magnitude of Sy for R(1)
never exceeded Sp for R(0) for HD — HD at 77 K, regardless of the experiment
and the fitting procedure. This is an exception in contradistinction to HD — Ho,
HD — He and HD — Ne at 77 K, where S, for R(1) is always greater than that
for R(0). .

A comparison with theoretical calculation of Schaefer and Monchick 1is

shown in Table 6.9. The values of Sy for R(0) for HD — H,, and for R(0) and

151



R(1) for HD — He agree very well for our experimental result and the theoret-
ical calculations. They are plotted in Figure 6.8. This result suggests that our

frequency shift cofficients are generally accurate.

6.4 Interference Parameters
6.4.1 Interference Parameter a

The interference parameter a is defined to be positive for the construc-
tive interference between allowed dipole moment and collision- induced dipole
moment, and negative for the destructive interference. Experimentally, a 1s de-
termined by the slope and the intercept of the curve of integrated absorption
coefficient versus perturber density, as described in chapter 4. This determina-
tion is quite sensitive to the fluctuation of the measured integrated intensity as
discussed in the early section of this chapter. The magnitude of a 1s usually of the
order 10"2amagat™!, a fairly small quantity. As a result, the determination of a
from different experiments, or from the same experiment with different ranges of
perturber density will possibly give very different answers. Because of the above
reasons, the agreement among various experiments in different density ranges, or
the agreement between the theory and experiment may not be considered to the
same accuracy as with other parameters. In all comparisons, the quality of the
spectra, the number of data points and the density range should be kept in mind.
The number of data points and the density range for different rotational lines and
different samples at different temperatures used for the determination of a in this
study are summarized in Table 6.10.

There were two fitting procedures used,b as described in chapter 4, to obtain

152



Table 6.9: Comparison of experimental and theoretical frequency shift coefficients
(10~2cm~*amagat ™) for R(0) and R(1) for HD — H; and HD — He. Uncertainty

appears in parentheses.

T So
Reference System  (K)
R(0) R(1)
Experiment
Present work HD - H, 77 0.31(5)
195 1.02(26)
HD—He 77  0.58(4) 0.65(31)
195  0.98(53) 2.15(12)
1986 ezperiment® 296 2.4(2)
Calculation

Schaefer and HD - H, 77 0.46

M onchickP 195 1.03
HD — He 77 0.73 1.03
195 1.28 2.06
296 2.50

a: Reference [63].
b: Reference [126].
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Table 6.10: The number of data points N and the hightest perturber density pmaz
(amagat) used in the determination of a.

Sample T N Pmazx

HD—-HD 77° 41 41 41 4] 81 81 81 81
195° 15 15 15 15 60 60 60 60
296¢ 32 32 32 32 68 68 68 68

HD - H, (i 16 16 14 — 40 40 35 —
195° 5 15 15 6 17 60 60 22
296> - 16 17 14 — 37 39 32
HD — He 7 20 20 20 - 64 64 64 -~
195% 12 12 12 12 44 44 44 44
296°¢ - 10 10 10 - 57 57 o7
HD — Ne 7 18 18 12 - 69 69 35 —
195° 13 14 14 12 51 56 56 47
296¢ — 12 12 12 — 62 62 62

HD — Ar  195° 10 10 15 9 43 43 72 38
296°¢ - 8 9 17 - 40 48 53

HD — Kr 195° 11 16 17 8 23 36 40 18
296° - 15 15 15 - 40 40 40

HD - N, 195° 11 17 17 12 15 40 40 18
296° - 15 15 15 — 37 37 37

a: 1987 experiment.
b: 1990 experiment.
c: 1986 experiment, c.f. Reference [63]; =



the interference parameter a. The free fitting, although correct in principle, is
in practice too sensitive to the data points of curvature. Thus the spread or
fluctuation in the absorption coefficient can lead the free fitting to an essentially
unreliable result. Unless the measurements of integrated absorption coefficients
span a wide density range, the free fitting procedure cannot accurately determine
the coefficient of the p? term. Figure 6.9 shows the typical examples. The theory
fitting on the other hand, mostly gives reasonable results. Thus we will essentially
use the theory fitting result for discussion.

The experimental interference parameters a at low temperature from other

workers are compared with our experimental determinations in Table 6.11.

Table 6.11: The comparison of experimental interference parameter a (1072
amagat~!) at low temperature. Uncertainty appears in parentheses.

Reference system T

(K)  R(0) R(1)

Present work HD—-HD 77 +43.1(4) +42.2(2)
HD - Ne 77 +5.8(15)

McKellar et al® HD - HD 77 +0.6(4)® +40.6(10)
HD—Ne 77 +3.4(2)F

a: Reference [50].
b: pmaz 15 84.4 amagat.

C! Pmaz 15 123 amagat.
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Table 6.12: comparison of experimental integrated absorption coeflicient (107°
em™! amagat™') at 77 K for HD — HD. The data are deduced from Table 6.11.

p is in amagat. Uncertainty appears in parentheses.

Integrated Absorption Coefficient

Reference R(0) R(1)

Present work 2.97(2)  3.71(12) 1.48(2) 1.74(4)

McKellar et al® 3.84(26) 4.03(15) 1.56(16) 1.64(30)

a: Reference [50].

For HD — HD at 77 K, the results of McKellar et al. are much lower than
ours. Remember that their corresponding zero density intercepts are higher than
ours (c.f. Equation 4.15 and Tables 4.3 and 6.2). If we convert the corresponding
data to the integrated absorption coeflicient by using Equation 4.15, Tables 4.3
and 6.2, we obtain the integrated absorption coefficient at zero and at about 80
amagat density; these are listed in Table 6.12.

The small statistical error quoted in our results arises because of the large
number of data points (41). The actual uncertainty may be larger, as was dis-
cussed in section 6.1. Keeping this in mind when comparing the converted inte-
grated absorption coeflicient in Table 6.12, we see that the determination of the

integrated absorption coefficient in these two laboratories agrees reasonably well.
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The difference in their slopes is probably due to the fluctuation of the integrated
absorption coefficient at low densities, as discussed in the previous section. For
HD — HD, the interference parameters a are positive, indicating a constructive
interference between allowed and induced dipole moment. It is interesting to note
that the constructive interference is also observed in the condensed phases of HD
for R(0) [60][61][127]. For HD — Ne, there is 40 amagat density range difference
between the two laboratories while the agreement on experimental ¢ is reasonably
good. As can be seen in Tables 4.6 and 4.7, the general trends in the interference
parameter a from our experimental results may be summarized as follows:

1. The interference parameter a changes sign for all J from 77 K to 296 K
for HD — HD.

2. For HD — atom and for a given temperature, a is positive for all J and
all systems at 77 K; at 195 K, in general, a is positive for R(0), R(2) and R(3),
but negative for R(1) for all systems; at 296 K, usually, a is positive for R(2) and
R(3) while negative for R(1).

3. For a given J, a is always positive for R(0) for all temperatures and all
systems in general; for R(1), a changes sign frequently for all systems; for R(2)
and R(3) there is less frequent sign change in a.

4. For a given system, the sign change of a occurs at low J for small
perturber such as He, Ne and so on, but at high J for large perturbers such as Kr
and N,.

5. Generally the small perturbers give mostly constructive interference while
large perturbers give mostly destructive interference for all J and at all tempera-

tures.

159



The above general trends may not be explained consistently by a simple
picture. The mechanism involved in the interference for individual rotational
lines, especially for R(0) and R(1), seems much more complicated.

Comparing the experimental interference parameter a (Tables 4.6 and 4.7)
With @ihreory calculated (Table 5.4) according to the theory developed by Herman,
Tipping and Poll, we find that about 57% agree well on the magnitude only; 63%
agree on the sign (H D — Kr not included) only; 34% agree reasonably well on both
sign and the magnitude (HD — Kr not included), as can be seen in Table 6.13
where the ratio of a/atheory, 1. €. A’, are listed. The better agreement between
experiment and theory is found for R(2) and R(3) for HD — atom systems.

If this result is taken as a demonstration of the validity of the theory, we can
then use it to estimate the induced dipole moment for HD — Ne and HD — N,
from the experimental interference parameter a. It is assumed that the induced
dipole moment for HD — Ne and HD — N, are dominated by the isotropic overlap

component, which is normally true [69], and has the form [73]
WI(R) = AeP(R-R), (6.5)

where R is the intermolecular distance and A, B and Ry are parameters to be

determined. Making use of Equation 5.14, we have the following integral equation,

1.23657a = A/Ow exp [B(R — Ro) — Va,-x(R)B]

sinh [V}, _x (R)Br./6)
Vi, _xBre/6

x{ }RYdR. (6.6)
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Here a is the interference parameter and the other symbols are the same as in
chapter 5. From the experimental results, there are three integral equations for
HD — Ne corresponding to three temperatures, and two for HD — N,. The poten-
tials used in the calculation were the same Lennard-Jones (6-12) potentials used
in the calculation of line width in chapter 5. The IMSL (International Math-
ematical and Statistical Library) routines DCADRE (for numerical integration
of a function using cautious adaptive Romberg extrapolation) and DMLIN (for
numerical integration of a function of several variables with a hyper-rectangle
method) were employed in a FORTRAN program for the fitting procedure. For
the integral equations, the solution is not unique. It is known that the value of
(BRy)™! for Hy, — He is about 0.11 [128][129]. We adapt the same assumption, i.
e. (BRo)™* ~ 0.11 for HD — Ne and HD — N,, as used by Poll and Hunt [73].
The estimated values of A, B and Ry for HD — Ne and HD — N, together with
the estimated values for H, — Ar and H; — Kr by Poll and Hunt [73] are pre-
sented in Table 6.14 and are plotted in Figure 68 The accuracy of the estimated
value depends on the accuracy of the interference parameter a and the potential
model, and thus is hard to determine. From the point of view that the induced
dipole moment is roughly proportional to the polarizability of perturber molecule
[63], the above estimated values are of the right order. The possibility of the de-
duction of such information provides another justification of further experimental

and theoretical study of the interference parameter a.
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Table 6.13: The ratio of a/atheory The uncertainty appears in parentheses.

a/a'theory
System T R(0) R(1) R(2) R(3)
()
HD—HD 77  +23(3) +42.1(2) +1.5(3)
195 —13(1) -03(1) -0.1(1) -—9.8(5)
206 —1.2(9) —0.7(1) —0.8(1) +1.6(5)
HD - H, 77  +51(14) +3.0(19) +1.1(40)
- 195 +1.1(7) —2.3(4) +0.1(3) —5.3(35)
296 —46(7)  +5.0(5) —2.9(12)
HD — He 77 +1.3(4) +1.4(2) +1.0(3)
195  —18(6) —0.1(1) +0.4(1) -+0.6(5)
296 40.8(1)  +0.5(1)  +1.3(3)
HD — Ar 195  +0.1(1) —04(1) +L1(T) +0.3(4)
296 +02(1)  +0.6(1)  +1.0(1)
HD—Kr* 195  0.3(1)  16(2)  1.0(2)  1.2(8)
206 1.6(1)  0.7(1)  0.6(1)

a: the sign of induced moment is unknown.
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Table 6.14: Estimated parameters A(107*D), B(A™!) and Ry {A4) of induced

dipole moment.

Syatem A B Ry
HD — Ne —6.5 —3.03 2.99
HD — N, —12.8 —2.89 3.15
Hy — Ar® 10.0 —2.86 3.17
H, — Kr® 16.0 —2.79 3.26

a: Reference [73], the sign of A is unknown.
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Figure 6.10: The estimated magnitude of the induced dipole moment for HD—Ne,
HD — N,, Hy — Ar and Hy — K7 as a function of intermolecular distance R.
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6.4.2 Interference Parameter NyA"I

The experimental NoA”I and the published experimental determination at
low temperature of other workers are collected in Table 6.15. Unlike the vibration-
rotational band of HD— HD [24][25][26)[27}, the asymmetry of the pure rotational
line profile is found to be very small. The difficulties in the base-line correction
due to the broad collision-induced background make the determination of such a
small asymmetry even more difficult. Consequently the results for NoA"I may
be even less reliable than that of a. However the agreement on both the sign and
the magnitude between the two laboratories, as shown in Table 6.15 is fairly good
except for R(1) for HD — HD at 77 K. Comparing the experimental interference
parameters carefully, one finds that in quite a few cases, even with the uncertain-
ties, the magnitude of NoA"I is larger than that of a/2. For example, HD — H
[R(2)] at 195 K, HD — He [R(2)] at 77 K, HD — Ne [R(0) and R(1)] at 195 K
and HD — Ar [R(0) and R(3)] at 195 K, etc. This result also occured in the 1986
experimental results [63] in HD— HD [R(1) and R(2)] and HD — Ne [R(1)] at 296
K. It also appeared in McKellar’s experimental results [56] in HD — HD [R{1),
R(2) and R(3); 0.0213 vs. 0.00073, 0.0345 vs. 0.00099 and 0.00214 vs. 0.00122
for NoA”I and a respectively| at 296 K. From the theory of Herman Tipping and
Poll, as expressed in Equations 2.107, 2.89 and 2.105, the p* term arises purely
from the intercollisional interference or the scalar interference which should be
always positive [45][62]. Thus the magnitude of NoA'l = a/2 should be always
larger than that of NoA”I, if the theory adequately represents the experimental
results. The existence of the contradiction is possibly due to the difficulties in

the determination of small asymmetry factor, but also may possibly be due to
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difficulties with the theory itself.

Table 6.15: The comparison of experimental interference parameter NoA”J (107*
amagat™?!) at low temperature. Uncertainty appears in parentheses.

Reference system T

Present work HD - HD 77 -=2.0(8) —0.7(7)
HD —Ne 77 +15.3(3)

McKellar et al® HD - HD 77 —1.§(
HD - Ne 77 +4186.5

a: Reference [50].

6.5 Further Discussion on the Theory

As has been discussed so far, the data analysis guided by the theory develo-
ped by Herman, Tipping and Poll gives the correct allowed dipole moment matrix
elements for the pure rotational band of HD. The theoretical calculation of the
interference effects for the pure rotational band of HD — HD and HD — X are
generally consistent with the experimental determinations with respect to order
of magnitude, but quantitatively, relatively good agreement is achieved only for

R(2) and R(3) for HD — atom systems. There is an obvious J dependence in
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the interference effects from the experimental results which is not predicted by
the theory. Furthermore a change in sign of the interference parameter a with
temperature at constant J for HD— HD and HD— X is evident in the experiment
but not predicted by the theory. Frem the theory, the temperature enters the
calculation of @ through the pair distribution function by which, as shown in
Figure 6.11, the average dipole moment has a small temperature dependence.
The refinements due to rotational-level mixing and near-resonance rotational-level
mixing improve the agreement between theory and experiment to some degree
but still give results not consistent with experiment both with respect to sign
and magnitude. The discrepancies may be due to the phase factor A’, but ratio
of a/asheory shows 1/3 of the corresponding A’ including their uncertainties are
larger than unity. The method of introduction of A into the theory requires,
however, that the absolute magnitude of either A’ or A” never exceed unity [46].
These facts may indicate that the mechanism in the interference effects in the
pure rotational band for gaseous HD — HD and for the low J lines of HD — X,
are more complicated than the description in the pioneering theory of Herman,
Tipping and Poll.

As was mentioned in chapter 1, there is a new theory recently develo-ped by
Gao, Tabisz, Trippenbach and Cooper. In this new theory, the system considered
is a single neutral radiator contained within a gas of N neutral foreign perturbers
and immersed in a radiation field. The radiator has a series of low-lying, closely
spaced energy levels while the perturbers have widely spaced levels. Electric-
dipole allowed transitions are assumed possible between levels in both the radiator

and perturbers. Thus it applies to HD — inert gas systems. The absorption and
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Figure 6.11: The averaged induced dipole moment of HD — HD at 77 K, 195 K

and 296 K as a function of intermolecular distance R.
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stimulated emission events and the induced cluster dipole moments transition
are considered. Both elastic and inelastic collisions and the transitions among
the radiator states occuring through such collisions are permitted. This may be
the most important difference from the theory of Herman, Tipping and Poll in
which only non-J- and non-m-changing collisions are considered. The abéorption
coefficient from the new theory contains four terms which contribute significantly

to the sharp spectral feature,

a(w)
_ 47rwnR(1 _ B_M/kT)Re{(A+i,y)—1;1<J | 2rliJ, >|2__}__ i
3he TR 9, 1) 17,
+H(A +1y) Yng(Je|lr] | Jg) ZG
1 B
X K Jeme; ngg‘UI(OO, 0)[,21(0)]%04(07 —-OO)‘Jimi, Jimi >>av] X Z
2Ji+1 57,

+(A + i) ing (el 2D G
4]

X K JaMa, Jama![ﬂI(O)];CUI(Oa —oo)}Jeme, Jgmyg >>av] X

+(A +iy)in2 EG
x L Jama:JamaHﬂ (0 )] UI( 00)|Jemme, Jgmy > a0]

X [Z G < Jeme, ngg!UI(oo, 0)[/2[(0)]%[][(0: —00)|Jims, Jim; 3> a)
0

>h (6.7)

+ 1 J;Ji
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with

Q= Ji) Qe e, Mg, T

and

G:(_)J«—m«( Jeo 1 Jg ) (6.8)

—Me Gc Mg

Here A is the detuning (w-wey); ng and n, is the number density of the radiator
and perturber respectively, fig is the dipole moment operator of the radiator and
fil is the induced dipole moment operator; U(t,t') is the one perturber collisional
propagator, the superscript I denotes the interaction picture, and the subscript
g. and av, respectively, denote the spherical component and the average over
velocity, impact parameter and the time of closest approach. The subscripts g
and e on the quantum numbers J and m denote the intial state and final state,
while 7 and « refer to an intermediate state. The rest of the notations have their
usual meaning in the literature.

Similar to the original theory discussed in chapter 2, the absorption coef-
ficient contains an allowed-allowed term (the first term), allowed-induced terms
(the second and third terms) and effect of successive collisions, i.e. the intercolli-
sional interference term (the fourth term). The matrix elements in the last three

terms can be further written as

L Jemme, ngg]UI(oo, 0)[/11(0)]%[]](& —oo)|Jim;, Jim; >
= S erieemendo & Jome, Jymg|U (00, to)| Jams, Jymy >

JM

X<J3m3|[/2[(t0)]qc J2m2> < szz, J1m1|UI(t0, —OO)lJimi, Jz‘mi >>,
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with

J=J,Js,J3 and M = m;,my,ma,
and

< JaMa, JamalmI(O)];UI(O: —00)|Jeme, Jymg >

_ Z e—i(wcg—W1a)t<)<J1m1|[ﬂl(t0)]qC]Jama>x

Jimy

x & Jymy, Jama|U(to, —00)|Jeme, Jomy >, (6.10)

where to represents the time between the radiative event and the time of closest
approach. This time is of the order of duration of a collision, i.e. ty ~ 7q.

Now, taking UZ(t,t') to be diagonal in J, letting

pr = (JellErllJg) (6.11)
and
po= X G [ dtee et (Lm0 (o0, b0 (t0)]a 0 (00, 10) Tymg)en,
gememy
(6.12)
where U7 is the Hilbert space evolution operator, and writing
pr = |prle® = lur|(A" +1A"), (6.13)

170



and

v =" +19", (6.14)

one obtains a simplified form of absorption coefficient as follows:

/

a(w) - n 4n _ o—Tw/kT 2l
R( ){ (7/)2 € (A _ ,),//)2

w 3o\
x[u} + 2npA'pr|ur| + n2(A — A")u]]

Z(A — ’7”) " 1 Z
- A |+ AA"R2 pgf? Y.
(7,)2 + (A — ,),//)2{ in'Ri/JI, + an#I! ]}QJQ +1 =
(6.15)

This is the same form of Equation 2.106 except that the A’ and A” are not the
same as in Equation 2.106, since here the m-changing collisions are permitted.
In this manner, the theory developed by Herman, Tipping and Poll as dis-
cussed in chapter 2 is seen to be a special case in which the propagator is diagonal
in both m and J [46][64], that is, in which only pure elastic collisions are permitted.
In general case, the propagator is not diagonal in m and J. It can be proved
that the leading term in the expansion of the propagator with respect to time ¢
beyond the diagonal term is of the same form as the first-order time-independent
perturbation theory result used by Tabisz and Nelson to describe rotational-level
mixing [52][64]. However the new theory goes further because the full propagator
is used and the inelastic transitions can occur at times during the collision; thereby
the mechanism is different from the previous work. It actuaﬂy provides that, in
the general case where both elastic and inelastic collisions are permitted, there

will be an additional contribution to the second term of Equation 6.15, so that the
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phase factor will become an effective phase factor which will not be constrained
to remain between +1 and —1. As was discussed in the last section, this is what
the experimental results have made evident.

The new theory, at least in its frame work, gives a better description for
the pure rotational band for gaseous HD, although its full justification requires,
however, detailed calculation and comparison with the experimental results. Such

detailed calculations are not available at the time of the writing of this thesis.
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Chapter 7
CONCLUSIONS

Characterization of the density and temperature dependence of spectral line
shape parameters and absorption coefficient is reasonably complete based on the
experiments at 77 K, 195 K and 296 K. After the detailed discussion in chapter
6, we reach the following conclusions:

1. The allowed dipole moment of HD for the first four transitions of the
pure rotational band as determined from HD — HD and HD — X systems at
different temperatures and is found to be 8.10(15) for R(0), 8.04(12) for R(1),
8.05(12) for R(2) and 8.41(40) for R(3), in units 107* debye (the quoted errors
are three standard deviations). The J dependence in the allowed dipole moment
of HD is not the same as predicted by the theory. Within the 99% confident
error bar, the J dependence predicted by Wolniewicz is possible. The averaged
ab initio calculations agree well with, but are about 3% larger than, the current
experimental determinations.

2. The absolute frequency for the four pure rotational lines as determined
from the averaged measurements at different temperatures are found to be 89.2(1)

for R(0), 177.84(1) for R(1), 265.24(1) for R(2) and 350.86(1) for R(3), in the units
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em~!. They are in very good agreement with the published rotational constants
of HD.

3. The line broadening coefficient for the pure rotational band for HD—-HD
and HD — X were determined at different temperatures. Calculations based on a
simplified model within semiclassical theory agree in the general trends and order
of the magnitude with the experimental determinations, and temperature depen-
dence. Better agreement is found for R(2)and R(3), and for HD perturbed with
large atoms. Quantum mechanical calculations for R(0) and R(1) for HD — H,
and HD — He [126] are found to be in very good agreement with the experimental
result, for both the line broadening coefficient and frequency shift. It suggests, as
expected, that for the small molecule collision pair such as HD — HD, HD — H,,
HD — He and perhaps HD — Ne, the quantum mechanical calculation is more
suitable.

4. The integrated absorption coeflicient, or the interference effect, for the
pure rotational band of gaseous HD in HD — HD and HD — X systems gen-
erally agree in order of magnitude with the prediction of the theory developed
by Herman, Tipping and Poll. Better agreement is found for R(2) and R(3) for
HD — atom. Based on this fact, the induced dipole moment for HD — Ne and
HD — N, was estimated from the experimental interference parameter a for R(2)
according to the theory, and to be found pkp n.(R) = —6.5 x 107%~3-03(R-2.99)
debye and php_y,(R) = —11.3 x 107*e~*#(E-215) debye respectively, where R
is in units A. However the experimental results show that the interference ef-
fect has a more complicated behaviour than predicted by the above theory. The

J dependence and the temperature dependence of the interference parameter a,
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particularly its change in sign for HD — HD and HD — X, can not be explained
by the above theory.

5. A new theory developed by Gao, Tabisz, Trippenbach and Cooper [64]
contains the earlier efforts as special cases and gives more general description in
its theoretical frame work. Its full justification awaits for the detailed calculations

and comparison with the experimental results.
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Appendix A

Control Program for Data
Collection

This MACRO program is used to control the data collection of NICOLET
system in the experiment. The raw data are recorded in the hard disk for data
analysis. The meaning of the statements in the program can be found in Reference

[93].

TEM=4

NPR

PMD

OMD

Automatic data collection 400 scans.
PMD

OMD

Type PFN for data collection:

PFN

RPF
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NSS=200
NSD=200
SFN=2
OFN=2
OMD
Type scratch file number [>= 5i:

DFN

SPF

OMD

Type the name for permanent file [§ CHARACTERS.3 NUMBER/:
IFN

CLD

PMD

OMD

Scans collected:

PRN NSD

PMD

CLS

CAD

OMD

Scans collected:

PAD

PRN NSS

AFP
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OMD

The experiment for
PRN DFN

OMD

is complete!
TEM=4

NPR

PMD

OMD

Press EXPT.0 to begin next data collection.
PMD

PMD

END
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Appendix B

Macro Program for the Fourier
Transform Process

This program is used for automatic Fourier transforming of a set of raw data
files. LP1, LP2 and LP3 are subroutines. The statements in the program can
be found in Reference [93].

TEM=4

NPR

OMD

Auto FT process: from interferogram to absorbance.
PMD

PMD

OMD

Type PFN for F'T process:
PFN

RPF

BFN=3
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OMD

Type background file name:
GDB

OMD

Type title for background file:
TIB

PRN BFN

STB

PMD

PMD

OMD

Now assign sample files to distination files.
PMD

PMD

OMD

How many sample files?
QIT

LP1

LP2

LP3

PMD

PMD

OMD

Automatic FT process is complete!
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PMD
PMD
END

LP1

DFN=5

FOR III=1 TIL QIT

PMD

PMD

PRN DFN

OMD

Type sample file name:

GDD

OMD

Type title for the sample file:
TID

STD

DFN=DFN+1

NXT III

PMD

PMD

OMD

This set of sample files is complete!

PMD
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PMD
END

LP2

OMD

Now FT starts.
PMD

PMD

PRN BFN
STB

FPB

OMD
Complete!
PMD

DFN=4

FOR III=1 TIL QIT
DFN=DFN+1
PRN DFN
STD

FPD

RAD

ABD

OMD

Complete!
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PMD
NXT III
PMD
OMD

FT is complete in all sample files!

PMD
PMD
END

LP3

OMD

Now save the absorbance files.
PMD

PMD

PRN

BFN

STB

OMD

Input file name for background:

PDB
PMD
DFN=4
OMD

Input SIX-character file name:
IFN
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EXT=001

FOR IlI=1 TIL QIT
DFN=DFN+1

PRN DFN

STD

AFP

EXT=EXT+1

PMD

NXT III

END
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Appendix C
BASIC Program

This BASIC program is used to convert absorbance data to ASCII for
transfer to another computer for further data analysis. This is the modified

version of the code in Reference [63] to fit the new data system Nic-660.

100 REM This program is to convert data to ASCII and to
110 REM store them in the disk. MODE filename 7 before transfer.
120 DIM A(2), B(2),F(352)

130 DIM X(2000),Y(2000)

140 LET N=1

150 LET M=10

160 PRINT ”Enter filename in process.”

170 INPUT A8$(0),A8(1)

180 CALL BDEFINE(10,A$)

190 CALL FREAD(10,F,352)

200 PRINT ”Enter NEW filename to store data.”

210 INPUT B$(0),B§(1)

220 LET M=M+1
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230 CALL FALLOC(M,BS$,352)
240 LET D§="EXP”

250 LET E§="NTP”

260 LET G$="SSP”

270 CALL FILSTA(F,D$,D1)
280 CALL FILSTA(F,E$,E1)
200 CALL FILSTA(F,G$,G1)
300 CALL FAINT(352,1)

310 CALL IAFLT(F,352)

320 LET W=F(234)—F(233)+1
330 LET L=W

340 CALL FREAD(10,Y,W)
350 CALL FAINT(W,1)

360 CALL TAFLT(Y,W)

370 LET E1=E1/2

380 LET T=2A(D1-19)

390 LET S=15798/G1/E1

400 LET W=L

410 FOR I=0 TO W-1

420 LET X(I)=S*(1+F(233))
430 LET Y(I)=T*Y(I)

440 PRINT#M: X(I);Y(I)

450 PRINT ” ** » A§(0);A8(1);
7 >> 7;B§(0);B8(1);"1s done.”
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460 PRINT ”Program is ended. Type RUN to continue.”
470 END

187



Appendix D
SAS Program

This SAS program is used for fitting R(1) data file for HD — Ne at 195
K. Tt first corrects the base line, then uses a Fano profile to fit the spectrum, as
described in chapter 2. The diagrams are automatically plotted after base line

correction and profile fitting, as shown in chapter 2.

//STEP1 EXEC SASV5

//SYSIN DD *

GOPTIONS DEVICE=XEROX HSIZE=3.5
VSIZE=4.8 COLORS=(R,BL,G,B);

TITLE 'FITTING A FANO LINESHAPE
TO HD—Ne AT FILE NEI103 ;

DATA FDAT;

INPUT X 1-7 Y 9—20;

CARDS;

. +EMBED F=NEI103R GR=NEL;

DATA F2DAT;

INPUT X2 1-7 Y2 9-20;
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CARDS;

++EMBED F=NEI103 GR=NEI;

DATA MATCH;

MERGE FDAT F2DAT,;

Y=Y/X;

Yo=Y2/X2;

PROC NLIN METHOD=MARQUARDT EFORMAT
CONVERGE=1E-9;

PARMS BK=2.638E—-04 A=0.0
D=9.6E-05 B=1.65 C=0.986;

BETA=6.2831825%(X—173.0)/C;

ALFA=B+BETA;

CALFA=1.570796+ALFA;

MODEL Y=A*X+BK-+D*SIN(ALFA);

DER.A=X;

DER.BK=1:

DER.B=D*SIN(CALFA);

DER.C=D*SIN(CALFA)*(—BETA/C);

DER.D=SIN(ALFA);

BOUNDS 0.000002< D <0.00025;

BOUNDS 0.94< C <1.1;

BOUNDS —6.28<= B <=6.28;

OUTPUT OUT=DATI1

PREDICTED=YFIT RESIDUAL=RESTO PARMS=BK A D B C;
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DATA DATI2;
MERGE MATCH DATI;
Y2=(Y2-YFIT);
TITLE H=1.0 F=XSWISS 'B—L CORRECTION R(1) HD-Ne AT
195 K’;
PROC GPLOT DATA=DATI2;
AXIS1 VALUE=(f=duplex h=1.5)
LABEL=(F=TRIPLEX H=2 A=0 R=0
'FREQUENCY IN WAVENUMBERS’)
ORDER=173.0 TO 183.0 BY 2.0
MAJOR=(H=-2.0) MINOR=NONE;
AXIS2 VALUE=(f=duplex h=1.5)
MAJOR=(N=5 H=—2.0) MINOR=NONE
LABEL=(F=TRIPLEX H=2 A=90 R=0
'’ABSORBANCE/FREQUENCY (cm)’);
PLOT
YFIT*X2=1
Y2¥X2=2
JHAXIS=AXIS1
VAXIS=AXIS2 FRAME
OVERLAY;
SYMBOLI I=SPLINE V=NONE C=R;
SYMBOL2 I=NONE V=] F=SPECIAL H=2 C=R;
FOOTNOTE1 J=L F=SIMPLEX
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'SIN BASELINE CORRECTION;
FOOTNOTE?2 J=L F=SIMPLEX "HD—Ne NEI103’;
DATA DATII2;
MERGE DATI2;
PROC NLIN METHOD=MARQUARDT EFORMAT
CONVERGE=1E-9;
PARMS D0=2.0482E—6 FWHM=0.3 MU=177.80
HALE(0=0.0 AK=0.0 BKG=0.0;
D1=(X2-MU),
DE=(0.5*FWHM)**2+D1%¥2;
MODEL Y2=D0/DE+HALE0*2*D1/DE+AK*X2+BKG;
DER.AK=X2;
DER.BKG=1;
DER.D0=1/DE;
DER.MU=(D0+HALE(0*2*D1)*2*D1/DE**2—HALE0*2/DE;
DER.FWHM=—(FWHM)*(D0O+HALE0*2*D1)/DE**2;
DER.HALE(O=2*D1/DE;
OUTPUT OUT=DATI3
PREDICTED=YOK RESIDUAL=REST
PARMS=D0 FWHM MU HALEQ;
TITLE H=2 F=XSWISS ’R(1) LINE OF HD—Ne AT 195 K’;
PROC GPLOT;
AXIS1 VALUE=(f=duplex h=1.5)
LABEL=(F=TRIPLEX H=2 A=0 R=0
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'FREQUENCY IN WAVENUMBERS’)
ORDER=173.0 TO 183.0 BY 2.0
MAJOR=(H=-2.0) MINOR=NONE;
AXIS2 VALUE=(f=duplex h=1.5)
MAJOR=(N=5 H=—2.0) MINOR=NONE
LABEL=(F=TRIPLEX H=2 A=90 R=0
’ABSORBANCE/FREQUENCY (cm)’);

PLOT

YOK*X2=1

Y2%X2=2

JHAXIS=AXISI

VAXIS=AXIS2 FRAME

OVERLAY;

SYMBOL1 I=SPLINE V=NONE C=R;

SYMBOL2 I=NONE V=J F=SPECIAL H=2 C=R;

FOOTNOTE1 J=L F=SIMPLEX 'FANO+SIN(A) SFR1’;

FOOTNOTE2 J=L F=SIMPLEX 'HD—Ne NEI103’;

/*

/]
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Appendix E
FORTRAN Program

This FORTRAN program is used for the calculation of number density
of HD-N, mixture at 195 K. Input P is pressure in torr and NFIL is the order

number of the data file.

// EXEC WATFIV SIZE=240K
//SYSIN DD *
$JOB WATFIV
DIMENSION P(30),NFIL(30),PMIX(30),G1(30),GII(30),G1(30)
DIMENSION G2(30),B(30),BI(30),DEN(30),DENI(30),PDEN(30)
1 T=195.0
BHD=10.79
R=82.05
BPERT=—37.48
PHD=2715.0/760.0
BINT=1.20
DENHD=4.99211
WRITE (6,400)
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5 DO 230 N=1,18
READ,P(N),NFIL(N)
PMIX(N)=P(N)/760.0
GI(N)=PHD/PMIX(N)
GII(N)=(PMIX(N)—PHD)/PMIX(N)
B(N)=BHD*GI(N)*GI(N)+2.0*BINT*GI(N)*GII(N)+
L+ BPERT*GII(N)*GII(N)
DEN(N)=22414.0/(R*T /PMIX(N)+B(N))

10 DO 50 I=1,14
G1(N)=DENHD/DEN(N)
G2(N)=(DEN(N)~DENHD)/DEN(N)
BI(N)=BHD*G1(N)*GI1(N)+2.0*BINT*G1(N)*G2(N)+
+BPERT*G2(N)*G2(N)
DENI(N)=22414.0/(R*T/PMIX(N)+BI(N))
IF (ABS(DENI(N)—DEN(N))—1E~8)60,60,40

40 DEN(N)=DENI(N)
GOTO 50

50 CONTINUE

60 PDEN(N)=DENI(N)~DENHD
WRITE (6,70)NFIL(N),P(N)

70 FORMAT (2X,’FILE: I3,2X 'PRESSURE="F9.2,” TORR’)

150 WRITE (6,200) BI(N),G1(N),G2(N)

200 FORMAT (2X,BMIX=",F10.5,2X,’G1=",F8.5,2X,’G2= ’,F8.5)

910 WRITE (6,220) DENI(N)
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920 FORMAT (2X,’M.DENCITY=",F10.5, AMAGAT’)

9291 WRITE (6,222) PDEN(N)

929 FORMAT (2X,’P.DENSITY=",F10.5 AMAGAT")

230 CONTINUE

400 FORMAT (2X/###%%% DENSITY OF HD—N2 AT 195 K

0o

250 STOP
END
SENTRY
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