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This study investigates procedures to get higher correlations between gauge and radar 

measurements of precipitation at high time resolution (e.g. 10-minute), explores the 

performance of artificial neural network models compared to the Z-R relationship, and 

generates surface precipitation maps from the atmospheric precipitation measured by the 

radar. Although higher correlation between gauge and radar at hourly or daily 

accumulations are reported by many authors, it is rarely observed at higher time 

resolution (e.g. 10 -minute). This study investigates six major rainfall events in year 2000 

in the greater Winnipeg area with durations varying from four to nine hours. The 

analyzed weather maps provided by the Environment Canada shows that these rainfalls 

are the result of synoptic scale frontal systems. The correlation between gauge and radar 

measurements of precipitation is found to be only 0.3 at 10-minute resolution and 0.55 at 

hourly resolution using Marshall-Palmer’s Z-R relationship (Z=200R1.6). Other 

reflectivity-rain rate relationship are tested (e.g. Z=300R1.4), but they generally show 

similar or lower correlation. The rainfalls are classified into convective and stratiform 

regions using Steiner et al. (1995)’s algorithm and two different Z-R relationships are 

tested to minimize the error associated with the variability of drop-size-distribution, 

however no improvement is observed. 

The performance of the artificial neural network is explored as a reflectivity-

rainfall mapping function. Three different types of neural networks are explored: the back 

propagation network, the radial basis function network, and the generalized regression 

neural network. It is observed that the neural network’s performance is better than the Z-
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R relationship to estimate the rainfall events which was used for training and validation 

(correlation 0.67). When this network is tested on a new rainfall its performance is found 

quite similar to that obtained from the Z-R relationship (correlation 0.33). Based on this 

observation neural network may be recommended as a post-processing tool but may not 

be very useful for operational purposes - at least as used in this study. Variability in 

weather and precipitation scenarios and uncertainties associated with radar affects the 

gauge and radar measurements which apparently makes it impossible for the neural 

network or the Z-R relationship to show consistent performance at every rainfall event.  

It appears necessary to account for variability in weather and rainfall scenarios to 

get a better correlation between gauge and radar measurements. Hence, conventional 

correction schemes for attenuation and hail contamination are applied and a trajectory 

model is developed to account for rainfall advection due to wind drift. Reflectivity from 

the July 7th, 2000, rainfall appears significantly attenuated due to its larger spatial extent 

of convective rain showers. The weather observers reported hail occurrence during three 

of the six storms; among them it appears that the July 23rd rainfall was severely affected 

by hail (reflectivity beyond 60 dBZ). The June 10th rainfall appeared to be significantly 

affected by wind shear as the mean wind speed is computed as 14 m/s from the Velocity 

Azimuth Display (VAD) profile. The trajectory model uses velocity obtained from the 

single-doppler observation and the quality of the VAD data is ensured by comparing the 

direction obtained from the VAD profile with the direction obtained from a correlation 

based storm tracking algorithm at the precipitation generation level (4 km assumed). The 

near-surface direction is compared with the anemometer data located at Winnipeg 

International Airport. A space-time interpolation technique is applied to generate 
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reflectivity maps at one-minute resolution based on the direction obtained from the 

correlation based tracking algorithm. The trajectory model uses the generated reflectivity 

maps having one-minute resolution which help to account for the travel time by the 

rainfall mass to reach to the ground. It is observed that the correlation between the gauge 

and the radar measurement is 0.81 after applying the various algorithms. The 

precipitation processing model developed in this study generates more accurate rainfall 

estimates at the surface from radar observations and may be a better choice for rainfall-

runoff modellers.  

It was found that the attenuation correction algorithm adversely increases the 

reflectivity which is observed in the case of the June 10th and the July 23rd rainfall events. 

This study assumes that the higher reflectivity caused by hail contaminated regions is one 

reason for the overestimation in the attenuation correction process. It was observed that 

the hail capping method applied prior to the attenuation correction algorithm helps to 

improve the situation. An attempt is made to develop an expression to account for 

radome attenuation. It is assumed that the underestimation observed even after applying 

the attenuation correction algorithm is due to radome attenuation.  

Although Marshall-Palmer’s relationship is recommended for stratiform 

precipitation only, this study found it suitable for both convective and stratiform 

precipitation when attenuation is properly taken into account. It is expected that the high 

time resolution structure of the model will make it more compatible for flash-flood 

forecasting and for now casting purposes. 
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Radar estimated precipitation is found very useful for flood and rainfall forecasting, for 

now casting, for detecting tornadoes, etc. The underlying reason for its usefulness is its 

ability to provide spatial distribution of rainfall. Ensuring the quality of radar data is 

deemed necessary for getting accurate results from the applications that uses radar data. 

This is an issue on which researchers have made relentless efforts since its advent in the 

early 1940s. 

Radar became a long range detection tool after the development of a powerful 

transmitting device in 1940 (Doviak and Zrnic, 1993). During the Second World War, 

radar was deployed in many parts of the world to detect enemy aircrafts. It is documented 

that the potential for detecting precipitation using radar was identified during its 

application in the war (Maynard, 1945). Although radar is efficient in detecting 

precipitation regions, its ability to make quantitative measurement of precipitation is still 

a concern. Variability in atmospheric conditions and rainfall characteristics influence 

radar quantification of precipitation. Attenuation, anomalous propagation, hail and bright 

band contamination, variability of drop-size-distribution, etc. are but a few of the 
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conditions that affect radar quality. It is then necessary to correct radar derived 

precipitation before applying it in a rainfall-runoff model; otherwise severe attenuation 

may suppress peak values and hail may show erroneously high peaks. 

Reliable correction algorithms for several problems are devised and available in 

the literature. The Next Generation Weather Program (NEXRAD) assimilates up-to-date 

correction algorithms to improve the quality of radar precipitation products so that it can 

be directly used by the flood and weather forecasters (Klazura and Imy, 1993). The 

algorithm is known as the ‘Precipitation Processing System’ (PPS) (Fulton et al., 1998). 

In Canada, such processed precipitation products are not yet available (Donaldson 2005, 

personal communication) for operational purposes. One objective of the current study is 

to develop an integrated model that embeds several corrections in the radar product 

applicable for the summer rainfalls (typically May to August) within a-100 km radial 

distance from the radar site. For this purpose, six major summer rainfalls occurring in 

year 2000 in the Winnipeg area are selected. The gauge data is used to validate the 

correction schemes. 

There is some concern regarding the use of gauge data to validate radar products. 

The reason is that radar measures the average precipitation intensity of a volume at a 

certain distance aloft and the gauge measures the precipitation accumulation at a point on 

the earth surface. Strong wind may advect rainfall mass up to several kilometres and it 

may also lead to under-catch at the gauge data due to turbulence. These are some of the 

reasons that gauge and radar data do not show better correlation at high temporal 

resolution and that radar precipitation in the atmosphere is not always representative of 

the precipitation at the surface. To solve the intensity-accumulation conflict, the proposed 
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model uses tracking and a space-time interpolation algorithm to generate reflectivity 

maps at one minute resolution which should help to compute accumulation in an efficient 

way. To get the reflectivity map at the surface this model uses a trajectory algorithm to 

track the precipitation mass from the atmosphere to the earth surface by using the 

velocity profile obtained from the doppler scanning. This trajectory algorithm shifts both 

the space and the time coordinates of a rainfall mass from the atmosphere to its arrival at 

the earth surface. In this way, the model attempts to generate reflectivity maps at the 

earth surface at one minute resolution. Thereafter accumulation can be computed at any 

spatial location for a chosen time interval and can be compared with the gauge data.  

The NEXRAD precipitation processing system generates hourly rainfall 

accumulations (Fulton et al., 1998) which may not always be sufficient for now-casting 

or flash-flood forecasting purposes. It has been found that the gauge-radar correlation 

significantly increases when radar data is integrated over time and space (Doviak and 

Zrnic, 1993, p. 226). Hence, hourly accumulations are usually used to determine bias 

with respect to gauge or other quality checks of the radar data. One reason for the higher 

correlations at the hourly time step may be that hourly (or daily) accumulations smoothen 

the error associated with the time shifting during its travel from the atmosphere to the 

earth surface and partially eliminates the need for accurate time synchronization between 

gauge and radar sampling. The trajectory model coupled with space-time interpolation 

techniques may be useful for obtaining better correlations with gauges at high time 

resolutions and may be more useful for now-casting and flash-flood forecasting in small 

urban watersheds. 
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Radar incorporates numerous sources of errors mainly caused by the variability 

and complexity of the atmospheric conditions. Proper correction schemes for all possible 

errors are not available due to the lack of physical knowledge or the lack of necessary 

atmospheric data. For example, the drop-size-distribution of a rainfall mass in the 

atmosphere may change due to wind shear or due to coalescence of rainfall masses and 

the real Z-R relationship will change. It is not possible to measure rainfall intensity 

accurately during a hail storm as hail causes an unusual increase in reflectivity. It is 

reported that pixel-by-pixel attenuation correction algorithms often create unusual high 

reflectivity at the far edge of the rainfall area (Li and Illingworth, 2001). Hence, 

performance of a ‘black box’ model, which can efficiently map any input-target pairs 

should be explored. Artificial neural networks are widely believed to be capable of 

mapping any complex, non-linear relationship between input-target data sets (Hsu et al., 

1995). It is also believed that the neural network is relatively more insensitive to noisy 

data (Zealand 1997, p. 11). The interest of exploring the possibility of the neural network 

is partly motivated by the results of Liu et al. (2001) who obtained a correlation between 

gauge and radar equal to 0.95 in an hourly accumulations comparison using the adaptive 

radial basis function neural network. It is of interest to explore the capability of neural 

networks with higher time resolution data (e.g. 10-minute) and to compare the 

performance with the trajectory model described above. 
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The main objective of the research is to develop a precipitation processing system 

applicable to summer rainfall (typically May to August). The case study area is Winnipeg 
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located at 50-70 km radial distance from the radar site. The performance of the system 

will be compared to a ‘black-box’ model and to Z-R relationships.  

The performance evaluation of the model is based on high temporal resolution 

data (e.g. 10-minute). The precipitation processing model generates rainfall at the earth 

surface at one-minute resolution. The performance is assessed based on 10-minute 

accumulations. 

It is expected that the research will help to assess the potential usefulness of the 

correction schemes and the ‘black-box’ models ability to handle the uncertainties in 

reflectivity-rainfall relationships due to the variability of atmospheric conditions. It is 

also expected that the precipitation processing algorithm will be helpful in now-casting 

and in flash-flood forecasting for urban watershed due to its high time resolution 

structure. 

The other objectives of the study are: 

• to develop a Z-R relationship using hourly accumulations data;  

• to assess the performance of a rainfall classification algorithm for minimizing the 

error associated with the variability in drop-size-distribution;  

• to develop a ‘climatological’ Z-R relationship using probability matching 

techniques; 

• to assess the quality of the velocity data obtained from single doppler scanning in 

synoptic scale precipitations; 

• to develop a statistical expression for attenuation due to radome wetting; and  

• to check the performance of a smoothing algorithm on radar-derived precipitation. 
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This study will develop a precipitation processing model for summer rainfall in 

Winnipeg. The proposed model generates reflectivity maps at the 1.5 km CAPPI at one-

minute resolution. This is possible by applying a correlation based tracking algorithm to 

assess the speed and direction of the precipitation system and then applying space-time 

interpolation techniques to generate intermediate reflectivity maps within the available 

time resolution. A trajectory scheme transports each pixel to the ground using velocity 

data obtained from single doppler scanning and thereafter generates reflectivity maps at 

the earth surface. Both space and time coordinates of a pixel in the atmosphere change 

when it reaches the earth surface. An optimum attenuation and radome-wetting correction 

scheme is also developed and incorporated in the model. The model also accounts for 

unusually higher echoes generated by hail. Bright band and anomalous propagation issues 

are not considered assuming these factors are not a serious issue in convective rainfalls in 

the summer season in Winnipeg. 

The performance of an artificial neural network is explored for mapping the 

reflectivity to rainfall. The performance of three different neural networks is explored; 

these are the back-propagation network, the radial basis function network, and the 

generalized regression neural network. The performance of each network is further 

evaluated by using two different input vectors, one consisting of a short time series of 

reflectivity at a particular location and the other consisting of reflectivities of nine 

surrounding pixels at a fixed time coordinate. 

Chapter 2 provides a brief literature review of research work carried out on 

different aspects of radar meteorology. Attention is focused on the work carried out to 



� ��

improve the quality of radar data and to reduce the discrepancy between gauge and radar 

measurements. Chapter 3 provides a brief description of the storm events employed in the 

study and the discrepancy of gauge and radar measurement observed when radar data is 

interpreted by a Z-R relationship. Chapter 4 discusses the algorithm of the neural network 

and the results obtained from the analysis. Chapter 5 provides a description and output 

from the precipitation processing model and finally Chapter 6 summarizes results and 

describes some future research directions. 

�
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Radar has been used for measuring precipitation for over 40 years. Despite significant 

progress in radar technology, there is still much uncertainty associated with quantitative 

radar rainfall estimates. This chapter discusses radar principles, reasons for discrepancies 

between radar and rain gauge measurements and improvement initiatives to reduce the 

discrepancy. 
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A radar transmits pulses of energy towards the atmosphere. If the energy is obstructed by 

hydrometeors, a portion of the energy is backscattered and the rest is transmitted through 

the hydrometeor and may be backscattered by other hydrometeors. This pulse of energy 

is usually termed a signal. The radar measures the strength of the backscattered signal. By 

measuring the time interval between the transmitted and the received signal, it is possible 

to estimate the position of the hydrometeor. The higher the rainfall intensity, the greater 

will be the strength of the backscattered signal. The strength of the back-scattered signal 
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is usually expressed by ‘reflectivity’ (Z). From the reflectivity, it is possible to estimate 

the intensity of the rainfall at different points. After transmitting a pulse, the radar waits 

for a while to ‘listen’ to the returned signal and then it transmits another pulse. If the 

hydrometeors are not stationary, there will be a phase difference between the transmitted 

signal and the received signal. By measuring the phase shift, it is possible to estimate the 

radial velocity of the hydrometeor. This phenomenon is known as doppler effect. 

A weather radar will usually make a series of rotations at different elevation 

angles. After completing one 360o rotation, it increases its elevation angle and completes 

another 360o rotation. In this way, it completes scanning in several elevation angles and a 

3D volume scan of the atmosphere is done. It is thus possible to extract reflectivity map 

at any horizontal, vertical or inclined ‘slice’. When a reflectivity map is displayed on a 

horizontal surface at a particular elevation, it is usually termed a Constant Altitude Plan 

Position Indicator (CAPPI). Figure 1 shows 1.5 km CAPPI for the Woodlands radar. The 

‘1.5 km’ indicates the elevation of CAPPI at the radar site. Although ‘CAPPI’ considers 

the effect of earth curvature and standard refraction, it does not consider local topography 

(Donaldson 2005, personal communication).  

 
 Figure 1: The 1.5 km CAPPI (Source: Environment Canada). 
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Weather radars are usually classified according to their wavelength and frequency 

and termed C-band radar, S-band radar, etc. Table 1 shows a classification system. 

Current weather radars can be divided into three broad categories, the 

conventional radar, the doppler radar, and the polarimetric radar. Polarization is the 

direction of the wave crest. The wave crest may lie either in a horizontal plane or in a 

vertical plane. The conventional doppler radar sends and receives only horizontal pulses 

of energy whereas the polarimetric radar transmits and receives both horizontal and 

vertical pulses. Hence, the doppler radar is a ‘single polarization radar’ and the 

polarimetric radar is a ‘dual polarization radar’.  

By analyzing both horizontal reflectivity (ZHH) and vertical reflectivity (ZVV), one 

can compute some other useful parameters such as differential reflectivity (ZDR) and 

differential phase (KDP) (Goddard et al., 1991). These parameters help to assess the size 

and shape of precipitation particles and thereby improve the quantitative measurements 

of rainfall. 

Space-borne radar adds a new dimension in radar meteorology. The Tropical 

Table 1: Classification of weather radars. 

Band Wavelength (cm) Frequency (GHz) Remark 

L  15-30 1-2 suitable for clear air turbulence study 

S  8-15 2-4 not susceptible attenuation, suitable for long 
range weather study 

C  4-8 4-8 susceptible to attenuation 

X  2.5-4 8-12 suitable for cloud study 

K  1.7-2.5 12-18 Similar to X band but more sensitive 
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Rainfall Measuring Mission (TRMM) is jointly being carried out by the National Space 

Development Agency of Japan (NASDA) and the National Aeronautics and Space 

Administration (NASA). This mission carried the first space-borne precipitation radar to 

get the three dimensional structure of the precipitation for tropical and sub-tropical 

regions (Hiroshima, 1999). 

)")"- ���	��������	$���
	(����
�	

In Canada, a total of 31 radars have been installed so far mainly in the southern portion of 

the country. Figure 2 shows the location of the radars. These radars perform both 

‘conventional’ scans and ‘doppler’ scans. They complete one scanning schedule in ten 

minute during which the first five minutes are used for the conventional scan and the last 

five minute are used for the Doppler scan. In conventional mode, no radial velocity is 

computed; in Doppler mode radial velocity is recorded. The conventional mode performs 

scanning in 24 elevation angles and the Doppler mode performs scanning in 4 elevation 

angles. All these radars are C-band radars except McGill University’s S-band dual 

polarization radar. 

 
Figure 2: The Canadian radar network (Source: Environment Canada). 
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During World War II, radar systems were extensively used for the first time to detect 

enemy aircrafts. It was observed that precipitation caused unwanted echoes in the radar 

scanning. Commander Maynard reported these weather echoes in a scientific journal in 

1945 (Maynard, 1945). Bent (1946) undertook a comprehensive study of precipitation 

detection by radar and reported that 10-cm wavelength radar may be the most suitable for 

detecting precipitation. Wexler (1947) proposed an equation to get a quantitative 

estimation of rainfall intensity from radar echoes. Marshall et al. (1947) carried out 

extensive research on this topic and proposed the Z-R relationship. This relationship has 

been extensively used to estimate rainfall rate from radar reflectivity over the last four 

decades. Attempts have been made by researchers to develop other Z-R relationships. 

Battan (1973) compiled and reported 69 different Z-R relationships. The key steps of 

Marshall’s derivation are described hereafter. 

A radar measures the strength of the backscattered signal which is proportional to 

the reflectivity (Z). The reflectivity is a function of the drop-size distribution (DSD) of 

the rainfall event. Rain is made up by raindrops of different diameters and typical 

raindrop diameters vary from 0.2 to 5 mm (Ahrens, 1994). The DSD of a rainfall event is 

the histogram of raindrop diameters of which the X-axis contains the drop diameters (D) 

and the Y-axis contains the number of drops corresponding to that diameter. Using a 

Disdrometer, one can collect a rainfall sample from the ground and can calculate the 

drop-size distribution of the rainfall at a particular time. The disdrometer used by 

Marshall et al. (1947) was dyed paper exposed to the rainfall for a very short period. 

Raindrops when dropped on the paper produce a stain and provide information on the 
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drop-diameters and number of drops. Much more sophisticated disdrometers are available 

today. From the DSD, one can compute the reflectivity Z using the following 

relationship, 

           �
=
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iiDNZ

1

6  Eq 2.1 
 

where n is the number of drop-size bins in a sample volume, Ni is the number of drops in 

the ith bin, Di is the diameter of the drops in the ith bin, and Z is the measured reflectivity 

in mm6/m3. 

Rainfall rate is a function of the drop-size-distribution and fall velocity, and can 

be computed as follows, 
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where R is the rainfall rate and Vi is the fall velocity of the drop-sizes of the ith bin. 

Marshall et al. (1947) determined the DSDs for 135 samples and for each sample they 

calculated Z and R using Eq 2.1 and Eq 2.2, respectively. They got fall velocity 

information from the meteorological literature available at that time. Fall velocity is 

usually given as a function of the drop-diameter in the form V=aDb, where a, b are 

empirically derived coefficients, V is the fall velocity, and D is the diameter. For 

example, Atlas and Ulbrich (1977) reported the following equation to compute fall 

velocity, 

           67.06.386 DV =  Eq 2.3 
 

where D is in meter and V is in m/s. Curve-fitting of observed Z and R values produced 

the following relationship: 
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           72.1190RZ =  Eq 2.4 
 

One year later, Marshall and Palmer (1948) proposed a statistical relationship to get the 

drop-size-distribution when the rainfall rate is known, based on the drop-size data they 

collected earlier for developing the Z-R relationship. This relationship is exponential and 

takes the form,  

           DeNN Λ−= 0  Eq 2.5 
 

where N is the number of drops with diameter D in a unit volume, 

          No = 0.08 cm-4, 

         21.041 −=Λ R  cm-1. 

where R is the rainfall rate in mm/hr. Using this fitted drop-size-distribution, Marshall 

and Palmer (1948) revised their work and found the following Z-R relationship,  

           60.1220RZ =  Eq 2.6 
 

Gunn and Marshall (1955) later revised their equation as follows, 

           60.1200RZ =  Eq 2.7 
 

The Z-R relationship expressed in Eq 2.7 has been extensively used for the last four 

decades. 

In practice, one does not compute Z from the DSD, rather it is measured by the 

radar. The power P received by the radar is related to the reflectivity, Z, in the following 

way (Marshall et al., 1947): 
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where P is the returned power, Po is the power transmitted by radar, A is the effective 

area of the antenna, h is the length of the wave train, r is the range, � is the refractive 

index, and � is the wavelength. As P and other parameters are known, one can obtain Z 

from Eq 2.8. Marshall et al. (1947) found fairly good agreement between Z and R 

measured from disdrometer data (Figure 3a). A time series of P obtained from the radar 

and Z obtained from the disdrometer showed fairly close agreement (Figure 3b). 

 An important issue that should be mentioned is that Marshall et al. (1947) 

collected DSD samples at a range of 8.8 km from the radar location, which allowed beam 

elevations from 120 m to 350 m above the ground. This small elevation range should 

minimize the movement of rainfall mass due to wind and travel time required by the 

rainfall mass. Marshall et al. (1947) in their paper calculated that if the beam is located at 

an elevation of 2 km above the ground, then the rainfall mass should take 6 minutes to 

reach the ground in calm air and should horizontally drift 3 km to 9 km if a shower 

moves at a speed of 60 km/hr. They recommended taking 50 km2 to 100 km2 aerial 

averages when comparing radar signals and rate of rainfall at a range of 100 km or above 

     

Figure 3: [a] logZ-logR association [b] Z-P association (Marshall et al. 1947). 
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to compensate for the drift of rainfall.  

The CAPPI images are usually presented in terms of dBZ or ‘decibel of 

reflectivity’ which is the logarithmic transformation of Z and can be obtained using the 

following equation, 

           dBZ = 10 log10Z Eq 2.9 
 

Environment Canada is currently using this relationship for light rain to 

thunderstorm. Different Z-R relationships for stratiform and convective and other types 

of rainfall events are suggested. Table 2 provides a list of Z-R relationships 

recommended by NOAA. The equation Z=300 R1.4 is termed the ‘standard NEXRAD’ Z-

R relationship as it is believed that this relationship is a compromise between convective 

and stratiform rainfall (Krajewski and Vignal, 2000). 

While determining the drop-size-distribution in Marshall et al. (1947)’s 

experiment, the maximum measured rainfall intensity was 35 mm/hr and this equation 

produced 100 mm/hr rainfall at a dBZ equal to 55. However, in such intense rainfall the 

radar signal may be highly attenuated (especially in case of C-band radars) and 

Table 2: Z-R relationships. 

Relationship Optimum for Also recommended for 

Marshall-Palmer 
(Z=200R1.6) 

General stratiform precipitation  

East-Cool Stratiform 
(Z=130R2.0) 

Winter stratiform precipitation - east of 
continental divide 

Orographic rain – East 

West-Cool Stratiform 
(Z=75R2.0) 

Winter stratiform precipitation - west 
of continental divide 

Orographic rain – West 

WSR-88D Convective 
(Z=300R1.4) 

Summer deep convection Other non-tropical convection 

Rosenfeld Tropical 
(Z=250R1.2) 

Tropical convective systems   

Source: http://www.roc.noaa.gov/ops/z2r_osf5.asp 
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reflectivity may be much lower than that. In such cases, a Z-R relationship which 

measures intense rainfall at relatively low dBZ may be useful.  

Figure 4 shows the reflectivity and corresponding rainfall rate of three widely 

used Z-R relationships (Marshall-Palmer, WSR-88D convective, and Rosenfeld tropical). 

This figure shows that all three relationships yield the same rainfall intensity up to 35 

dBZ (about 5 mm/hr). The Marshall-Palmer and WSR-88D convective measures the 

same rainfall up to 42 dBZ (15 mm/hr). Hence, for light to moderate rainfall, there is no 

real difference between these equations. Several classification systems of rainfall events 

based on reflectivity is available in the literature. One such classification is available on 

the link http://grappa.meteo.mcgill.ca/mcgill_img.html. 

)"3 �$$%$
	�(.	/(��$��!(�!�
	

)"3"  4���
��	

Radar derived rainfall usually does not provide good correlation with raingauge 

measurements. Seo et al. (2000) compared radar and raingauge data for 11 convective 
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Figure 4: Rainfall rate and corresponding reflectivity.  
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storms and 12 stratiform events. Their study concluded that radar overestimates 

convective rainfall by 72% on the average and underestimate by 91% in case of 

stratiform events. Their study used Z=300R1.4 for conversion from reflectivity to rainfall 

rate. Legates (2000) reported that the standard Z-R relationship overestimates light 

precipitation and underestimate heavy precipitation. Austin (1987) found that radar 

underestimates light widespread rainfall and overestimates intense convective storms. 

Smith and Krajewski (1991) worked on the hourly radar data of the Norman, Oklahama, 

radar and found the bias varies within a range of 1.6 to 2.5 for all hours. The word ‘bias’ 

means the ratio of the summation of the gauge rainfall to the summation of the radar 

estimated rainfall. Anagnostou et al. (1998) compared the Tulsa, Oklahama, radar data 

with 240 raingauges and found that correlation coefficients between radar and raingauges 

vary within a range of 0.3 to 0.95. Baeck and Smith (1998) reported that significant 

underestimation of rainfall occurs at ranges greater than 100 km and at ranges smaller 

than 40 km and overestimation occurs within the intermediate range. 

It is interesting to mention that the discrepancy reported by various authors also 

shows wide variations. While some authors reported that radar overestimates convective 

precipitation, others have reported underestimation in such case. Krajewski and Smith 

(2002) concluded that “....there is much that we do not understand about the instrument 

that has been in use for over 40 years”. The reason for the inconsistencies in conclusions 

may be due to the difference in data processing and experimental scenarios carried out by 

different researchers. For example, if one does not apply correction for attenuation, radars 

may underestimate peak thunderstorms whereas a different result may be obtained if a 

correction for attenuation is employed for C-band radars. If one works with gauges 
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located close to the radar station and use the lowest elevation angle, one may get better 

correlation due to the reduction in the error caused by the wind drift.  

In general, three factors may be held responsible for the discrepancies between 

gauge and radar measurement, (i) errors in radar estimation (e.g. anomalous propagation, 

attenuation, ground clutter, updraft-downdraft, variations in the drop-size-distribution 

etc.), (ii) errors in the gauge estimation (e.g. wind), and (iii) errors while comparing the 

two sensors (difference in temporal and spatial sampling, wind-drift, etc.). Even if one 

can eliminate all possible errors in the radar and the gauge measurements, one should not 

expect perfect correlation between gauge and radar measurement due to the third factor 

mentioned above. These factors are discussed briefly below. 
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Radar measures the aerial average rainfall over several square kilometres whereas a 

gauge measures point rainfall. Radar takes a snap shot of precipitation whereas a gauge 

measures the rainfall accumulation. These sampling issues may hinder good correlation 

between radar and raingauge estimation (Jayakrishnan et al., 2004; Ciach and Krajewski, 

1999; Seed et al., 1996). Figure 5 shows 24 revolutions at different elevation angles in a 

complete volume scan produced in five minutes. It takes approximately 10 seconds to 

complete one 3600 revolution at a particular elevation angle. If a raingauge is located 50 

km from the radar location, it may be assumed that the seventh revolution provides the 

rainfall information over this raingauge location for the 1.5 km CAPPI. Hence, the 1.5 

km CAPPI data provides rainfall information after 1.1th minute (10 seconds multiplied by 

7) of each 5-minute cycle. On the other hand, a raingauge provides the total rainfall that 

occurred in the 5-minute time period at that point. If the rainfall intensity varies 
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appreciably within the 5-minute time bin, it should result in a discrepancy between gauge 

and radar data even if both sensors measure rainfall 100% accurately. In fact each region 

of a CAPPI reflects rainfall rate at a different time, so this time difference may vary from 

several seconds to several minutes. Krajewski (2004) concluded that “one should not 

expect high correlation between raingauge observed rainfall and radar-estimated rainfall 

at short time scales”. 

Kitchen and Blackball (1992) computed the error structure between two 

raingauges located below the same radar pixel having 3 km�3 km spatial resolution. They 

found that the standard deviation of log(r/g) for a gauge located at the center of the radar 

pixel and another gauge located at 1.2 km from the center is 0.23 and 0.3, respectively, 

where r and g are the two-minute rainfall accumulations of radar and gauge, respectively. 

When the same analysis was carried out with one-hour rainfall accumulations, the 

 
Figure 5: Radar beam elevation angles (Source: Environment Canada). 
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standard deviation for these gauges was found to be 0.14 and 0.24, respectively. This 

implies that the variance is reduced when accumulation time is increased.  

Time-space synchronization often creates problems as radars measure aerially-

averaged rainfall 1-2 km aloft and there may be significant time displacement (up to 

several minutes) between radar and gauge measurement (Krajewski, 2004). 
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The signal received by the radar is associated with white noises due to thermally induced 

random motion of electrons in the detectors of the receivers and due to atmospheric and 

cosmic radiation (Doviak and Zrnic, 1993, pp 97). Although algorithms based on Fourier 

transformation and other empirical relationships are used to account for these errors in 

radar hardware, a precision error of 1 dBZ is accepted for WSR-88D radars. Hunter 

(2005) pointed out that due to the exponential formulation of Z-R relationships, this small 

error in reflectivity should cause significant error in rainfall estimation. Figure 4 shows 

rainfall rate obtained for reflectivity in the range of 10 to 60 dBZ using three common Z-

R relationships. This figure shows that rainfall doubles for an increment of reflectivity of 

only 5 dBZ with the Z=200R1.6 relationship. This implies that one dBZ error in radar 

hardware is not negligible. 
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It has been noted that two different drop-size-distributions may produce the same 

reflectivity (Hunter, 2005). For example, in a 1 m3 volume, 4096 drops each having 1 

mm diameter will produce the same reflectivity as produce by 1 drop having 4 mm 

diameter (NOAA website). This reflectivity should be equal to 4096 mm6/mm3 (using Eq 
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2.1) or 36 dBZ. Fall velocity and the rainfall rate for these two DSDs can be computed 

using Eq 2.2 and Eq 2.3. It is found that rainfall rate for these two cases are equal to 

29.15 mm/hr and 1.15 mm/hr, respectively. 

Gunn and Marshall (1955) showed that the drop-size-distribution may also vary 

along a vertical column of the atmosphere due to the wind shear. This should also lead to 

different rainfall measurements in the atmosphere and on the ground. 
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Sometimes atmospheric precipitation evaporates before reaching the ground. This rainfall 

will be recorded by the radar, but will not be recorded by the raingauge. This is a 

potential source of error known as ‘virga’. This is more likely to occur in the case of light 

precipitation associated with low humidity in the atmosphere (Austin, 1987). This 

phenomenon is graphically shown in Figure 6. 
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Due to temperature or humidity inversion in the atmosphere, radar signals may be bent 

down and reflected from the ground (MSC, 2004). This type of refraction is known as 

‘super-refraction’. This might erroneously be interpreted as intense precipitation and is 

 
Figure 6: Demonstration of Virga. 
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also known as ‘anomalous propagation’. Alberoni et al. (2001) reported that anomalous 

propagation may cause dBZ values up to 50-60. It is also well-understood that during 

thunderstorms, updraft-downdraft hinders the possibility of developing a stable 

temperature/moisture gradient in the atmosphere, making it susceptible for anomalous 

propagation (Raghaban, 2003, p. 59).  

However, in the wake of the thunderstorm, due to downdraft cold air may spread 

in the lower atmosphere keeping warm air in the higher altitude. This situation may cause 

anomalous propagation (Austin, 1987). 
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Radar signals may be partially intercepted by ground targets (e.g. buildings, towers) and 

this source of error is known as ‘ground clutter’ (MSC, 2004). If the beam is completely 

blocked by mountains, it is known as ‘beam blockage’ as shown in Figure 7.  
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Attenuation is the weakening of the radar beam when it passes through hydrometeors. 

Radar calibration system possesses correction for gaseous attenuation, but it does not 

provide any correction for attenuation due to rainfall or wet radome. Austin (1987) 

 
Figure 7: Demonstration of beam blockage. 
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reported that for radars with 10 cm wavelength (S-band), attenuation caused by rainfall or 

wet radome should be negligible. For example, a 50 dBZ rainfall located at a range of 

110 km will be attenuated 1 dBZ in case of an S-band radar (Doviak and Zrnik, 1984). 

Gunn and East (1954) provided the following relationship to quantify attenuation, 

           drcRk
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2  Eq 2.10 
 

where kR is the two-way attenuation in dBZ and Rr is the rainfall rate in mm/hr at a range 

r. For C-band radars, c=0.0022 and d=1.17. To compute attenuation at a range r2 one 

needs the spatial distribution of rainfall along the radar beam up to the range r2 which 

makes it computationally intensive. The computed attenuation at a range should be added 

to the measured reflectivity at that range. 
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Melting snow below the zero degree isotherm altitude causes an enhancement of 

reflectivity. The line of enhanced reflectivity in the vertical profile is commonly known 

as the bright band. Fabry and Zawadzki (1987) reported that the bright band can cause 5-

10 dB enhancement of reflectivity which translates to rainfall rates five times greater than 

the actual one. 
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The width of a 1o beam increases with range. The width of a 1o beam is 0.9 km at a range 

of 50 km and 3.5 km at a range of 200 km. Hence, at far range the radar resolution 

gradually decreases. This spreading may weaken the bright band (Fabry et al., 1992) and 

may cause problems in the detection of severe weather (Hunter et al., 1993). 
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Far away from the radar (>110 km), even the lowest elevation angle may overshoot 

precipitation or may intercept snows or snow-rain mixtures. In such cases, the radar may 

produce erroneous precipitation. The earth’s curvature may worsen this problem.  

Kitchen and Jackson (1993) considered overshooting as the major cause of radar 

estimation error at far range. They reported that radars underestimate rainfall by a factor 

10 at far range. Chumchean et al. (2003) computed error variances as a function of range 

and found that beyond a distance of 55 km from the radar location, error variance 

gradually increases. This increase in error variance occurs not only for overshooting, but 

also for bright band contamination, beam spreading, and other range dependent causes.  

Faisal et al. (2004) computed accumulated rainfall for radar scans at two different 

CAPPIs (the 1.5 km CAPPI and the 4.5 km CAPPI). Their study concluded that the radar 

hyetograph for the 1.5 km CAPPI showed much closer agreement with the gauge 

hyetograph compared to the 4.5 km CAPPI. The authors recommended using radar scans 

as close to the ground as possible. One reason for getting inferior result with higher 

altitude scans may be that the higher altitude CAPPI may exceed the zero degree 

isotherm or is affected by the brightband. 
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Blanchard and Spenchar (1975) found that the median diameter of raindrops remains 

constant for rainfall events varying from 100 mm/hr to 700 mm/hr. In such cases, drop 

growth is balanced by the drop brake up. List (1991) theoretically proved that in such 

cases a linear Z-R relationship will exist, that is, the power of R should be one in the Z-R 
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relationship. If it is true then conventional Z-R relationship may estimate erroneous 

rainfall rate at this range. 
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Radar meteorologists usually compare gauge rainfall with the radar pixel located above 

the gauge location. However, wind may cause horizontal displacement of rainfall mass 

and the radar pixel located directly above the gauge may not represent the corresponding 

gauge rainfall. Gunn and Marshall (1954) reported that larger particles will be exposed to 

less horizontal displacement than smaller particles. They proposed a simplified approach 

for computing particle displacement due to wind drag which is as follows: 
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where u(z) is the x-component of the wind velocity at elevation z, and w  is the vertical  

velocity. The y-component of the drift can be computed using a similar approach.  

This procedure assumes that the drift of hydrometeors at any level is equal to the 

wind velocity at that level. This may be true for snow flakes or very tiny hydrometeors, 

but may not be true for raindrops having larger diameter. Another limitation of Eq 2.11 is 

that the vertical velocity is assumed constant while in reality it may vary due to up-draft 

and down-draft.  

Harrold et al. (1974) measured the advection distance to be about 1-2 km if rain 

drop has a fall speed of 5 ms-1 and radar elevation is 500 m above the ground level. 

Dalezios and Kouwen (1990) found the advection distance close to the distance measured 

by Harrold et al. (1974). If one works with the 1.5 km CAPPI, the advection distance 



� ���

could be higher than 1-2 km. Collier (1999) worked on wind drift in a small town in the 

UK where strong secondary flows were observed due to a large difference in sensible 

heat fluxes between the city and the surrounding rural areas. Due to the secondary flow 

system, surface winds could be in the opposite horizontal direction of winds 500 m aloft. 

The author stressed the need for real time velocity measurement in urban areas and the 

necessity to account for wind drift in high resolution radar data especially in urban areas. 

Ignoring the complexity of the wind profile, the authors proposed some simplified graphs 

to measure wind drift assuming wind velocity varies linearly or remain constant with 

increasing elevation. The author concluded that “it appears that for very small urban 

catchments real-time measurements of wind-profile are necessary to identify the wind 

drift, and if necessary, allow for it”. This statement appears reasonable as wind changes 

speed and direction in the vertical due to various meteorological factors and estimating 

drift from a simplified graph may be misleading. 

Lack and Fox (2004) concluded that “wind drift has been identified as a problem, 

but it is never addressed as something that leads to large errors in estimating surface 

rainfall fields or as an error that could be corrected.” 

It should be noted that, according to Mittermaier et al. (2004), “Although such 

movements are important for gauge calibrations, they are less significant for operational 

radar which produces rainfall estimates with a resolution of 1-2 km for use in hydrology.” 
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The cone of silence is usually defined as the area very close to the radar site (Figure 5). A 

radar scans to a certain elevation angle but does not usually reach 90o. As its elevation 
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angle does not reach 900, regions vertically above the radar will not be available at 

CAPPI (Mizzell, 1999).  
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Battan (1976) reported that updraft causes overestimation of radar measured rainfall, 

whereas downdraft underestimates rainfall. Austin (1987) reported that downdraft 

underestimates rainfall by 15-50%. Mizzell (1999) worked with three convective rainfall 

events and found that two of them overestimated gauge rainfall whereas one 

underestimated. He reported updraft-downdraft as the prime reason behind this 

discrepancy. Updraft causes an upward movement of hydrometeors and thereby increases 

the concentration of hydrometeors which may lead to enhanced reflectivity. On the other 

hand, downdraft will increase the fall velocity. Rainfall rate measured at the ground is a 

function of drop-size-distribution and fall velocity of hydrometeors whereas radar 

reflectivity is a function of the drop-size-distribution only (not the fall velocity) (Eq 2.1 

and Eq 2.2). For this reason updraft will cause the radar to overestimate rainfall rates 

whereas downdraft will cause underestimation by radar. 
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Hail is often the cause of enhanced reflectivity. A basic assumption of Z-R relationships 

is that the wavelength of the radar signal is far greater than the diameter of the 

hydrometeors (Rayleigh approximation). This assumption is valid for raindrops which 

have typical diameters of 2 mm, much less than the radar wavelength (5-10 cm), but is 

not valid for hail which may have diameters as large as 2 cm. This and a number of other 

factors are the reason for getting higher echoes from hail storms. Hunter (2005) suggested 
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to discard reflectivities above 53 dBZ, considering that reflectivity beyond this would be 

due to hail. 
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Gauge readings are not considered accurate when strong winds are present. The error 

associated with wind/turbulence is usually not more that 5%, but during severe 

thunderstorms, errors may be as high as 40% (Wilson and Brandes, 1979).  

The tipping bucket gauge may also underestimate heavy rainfall due to its tipping 

process and underestimate light rainfall due to evaporation (http://www.criacc.qc.ca/ 

villes/term_e.html). 
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Research has been carried out for the last four decades to improve the quality of radar 

data products. This research may be divided into several categories which are discussed 

below. 
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Jordan (2000) and Viux (2002) attempted to classify radar-gauge errors in the two broad 

categories (i) systematic errors and (ii) random errors. Systematic errors are associated 

with specific problems such as incorrect Z-R relationships, which causes systematic 

underestimation/overestimation by radar and which can be removed by adding a 

multiplicative constant in the Z-R relationship. For example, if one measures length with 

a wrongly calibrated measuring tape, it will systematically underestimate/overestimate 
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measurements but one can easily correct errors in measured lengths after identifying the 

error in the measuring tape. To eliminate the systematic error, Wilson and Brandes 

(1979) proposed to compute multiplicative ‘mean field bias’ using radar and gauge 

measured rainfall. The ‘mean field bias’ (B) is computed by the following equation: 

           

�

�

=

==
n

i
i

n

i
i

R

G
B

1

1  Eq 2.12 
 

where G is the gauge rainfall, R is the radar estimated rainfall, and n is the number of 

observations. The calculated bias is then multiplied with Z-R relationship as follows: 
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where Rb is the bias corrected rainfall rate. 

Borga and Tonolli (2002) suggested taking daily accumulations when computing 

bias to avoid uncertainty associated with the temporal and the spatial mismatch. 

Hydrologists have also tried to update the bias in real time by assuming it follows 

an Autoregressive (AR1) process. The estimated time-varying bias can then be corrected 

using a Kalman filtering approach. Chumchean et al. (2004) proposed a correction 

scheme of real time radar rainfall bias using the Kalman filtering approach. In their 

model, the bias is estimated using an AR1 model and if new raingauge data become 

available, the model process variance is updated using Kalman filter techniques. The lag-

one correlation coefficient of the mean field bias and the stationary variance of the 

logarithmic bias process is estimated through trial and error in the calibration process. It 

is observed that Chumchean’s model is not effective in predicting biases of large (greater 
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than 3) or small (less than 0.8) magnitudes. It is also noteworthy that the authors 

discarded biases greater than 5 and smaller than 0.2 during their calibration considering 

these to be outliers. Earlier attempts with Kalman filtering were done by Krajewski and 

Smith (2002), Anagnostau et al. (1998), and others. 

Rosenfeld at al. (1994) attempted to apply probability matching techniques to 

correct radar data using gauge data. This method assumes that the probability density 

function of radar derived rainfall is the same as that of the gauge derived rainfall. The 

parameters of the Z-R relationship are determined so as to satisfy this criterion. 

Even after removing systematic errors, radar measured rainfall may contain 

residual random errors due to updraft-downdraft, real time variation of the drop-size-

distribution, sampling errors, etc. Vieux (2002) suggested quantifying the residual 

random errors using the following relationships: 
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where G is the gauge rainfall, Rb is the bias corrected radar rainfall, and � is a parameter  

measuring the residual error.  
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As mentioned earlier, radars take a snap shot of precipitation while gauges measure 

accumulation of precipitation. When comparing the two sensor types, development of a 

suitable algorithm to assess accumulated rainfall from instantaneous rainfall is important. 

The usual practice is to assume rainfall intensity to be constant throughout the time step 

(say, 10-minute) in case of radar data (Hannesen, 2002). This may lead to a discrepancy 
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between radar and gauge data in case of fast moving convective cores. To solve this 

problem, it is necessary to estimate the spatial rainfall patterns in between two scans. This 

requires tracking a convective core between two consecutive scans. Once one is able to 

identify the spatial movement of a convective core, it is easy to estimate its position and 

shape at an intermediate time. For tracking, a cross-correlation based technique has been 

described by Li et al. (1995) and Bellon and Austin (1978). Austin (1987) tracked the 

convective cores by manual observation.  

One problem in the tracking of convective cells is the formation of new cells in 

the vicinity of existing cells and disappearing of existing cells. Downdraft from existing 

cells in their mature stage triggers new cells in the surrounding areas in a preferred 

direction (Raghaban, 2003, p. 189). This behaviour may impose erroneous result in the 

cross-correlation algorithm.  
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There has been a significant interest in combining radar and raingauge estimated rainfall 

optimally using statistical techniques such as Bayesian methods, Co-kriging, and 

multivariate regression. The objective of such techniques is to take radar estimated 

precipitation and gauge data and generate a new precipitation field combining 

information obtained from the two sources. 

Co-kriging based radar and gauge data merging techniques was explored by 

Krajewski (1987). Co-kriging is an interpolation tool that combines two sources of data 

in a way that minimizes the error variance. It determines the interpolation weights based 

on the spatial correlation. As rainfall has a high degree of spatial correlation, co-kriging 
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appears to be an appropriate tool for merging radar and gauge data. Todini (2001) 

attempted to develop a model based on combining block kriging and Kalman filtering in 

a Bayesian framework. The author added a known noise to signal ratio of 30% as the true 

error structure is not known. The author reported that his approach could work well in 

eliminating noise. This approach was developed under the framework of the MUSIC 

(Multi Sensor Precipitation Measurements Integration Calibration and Flood Forecasting) 

project funded by the EU. Lee (2004) attempted to combine gauge and radar data for the 

City of Winnipeg with a co-kriging approach. In this city, 24 raingauges are located in an 

area of approximately 18 km x 22 km. Lee (2004)’s result showed that with this dense 

network of gauges, the performance of gauge interpolation is close to the co-kriging 

based radar-gauge merging approach. 

Sokol (2003) proposed a regression model to combine radar and rainfall 

estimates. His model interpolates raingauge data over the catchment and takes radar 

rainfall and interpolated gauge rainfall as two input vectors in the regression equation. 

Gauge data is interpolated based on the Euclidian distance from gauge locations. 

Bayesian methods for combining radar and gauge observations have been 

considered by several authors. These methods attempt to combine different sources of 

information optimally by quantifying the uncertainties in terms of probability 

distributions (Harouche and Rasmussen, 2002). 

One common problem with the various merging techniques is that they will not 

work well far from the gauge locations. In such cases, the model output will reflect the 
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radar estimation since weights from the gauges may be insignificant at far distance. 

Despite this fact, merging is an appealing way to get improved spatial precipitation data. 
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As neither radar nor raingauge can simulate the true rainfall structure, hydrograph 

generation based on radar, raingauge, or a combination of the two has been attempted by 

many researchers. The model generated hydrograph is then compared with the actual 

measured hydrograph. The underlying assumption behind this approach is that the most 

accurate estimation of the precipitation system will generate the most accurate 

hydrograph.  

Todini (2001) attempted to generate hydrographs for a gauging site of the Reno 

river. His simulation showed that during part of the simulation period the radar 

significantly underestimated peak discharge whereas a merging approach could estimate 

the peak discharge more successfully. 

Borga (2002) simulated hydrographs based on radar-derived data at different 

elevation angles. His study showed that the simulated hydrograph is more accurate for 

lower scans compared to that of higher scans. He also obtained better results with bias 

adjusted radar data than with unadjusted radar data.  

Sun et al. (2000) carried out hydrograph simulation based on radar derived 

rainfall, gauge interpolated rainfall using kriging, and a combination of gauge and radar 

data based on co-kriging. The authors reported that radar precipitation causes large 

amplitude error and gauge interpolated precipitation failed to simulate one peak in the 

hydrograph. The overall best agreement was obtained with the co-kriging approach. 
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However, hydrologic rainfall-runoff models also have inherent errors and uncertainties 

and results will depend on model calibration. 
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Some researchers have explored Artificial Neural Networks (ANN) and Fuzzy logic to 

estimate rainfall rates from radar reflectivity. Xiao and Chandrasekar (1997) may have 

been the first to explore the performance of neural networks in this area. They 

emphasized the inherent robust nature of ANN’s, in particular that errors at a few input 

neurons will not undermine the overall performance of the model. As radar data have 

different sources of errors which are not easy to remove, the application of neural 

networks in this field seems appealing. Xiao and Chandrasekar (1997) used a multilayer 

feed forward back propagation neural network in their study. Out of 20 raingauge 

stations, they used data of six raingauge stations for training the network while the 

remaining 14 gauges were used for validation. Their experiment showed a 17% error for 

two-day rainfall accumulations and a 12% error for four-day accumulations. However, a 

good agreement for two or four day accumulations does not guarantee a good agreement 

for high resolution data (e.g. 10-minute accumulations). Another limitation is that they 

did not report model output for rainfall events that were not used for the training. If the 

ANN model does not work well for a new rainfall event, the network will need to be 

trained further using both old and new data sets for several raingauges.  

Xiao and Chandrasekar (1998) developed a radial basis function (RBF) neural 

network for snowfall estimation. This work employs a training data set from one gauge 

and validates the model using data from two other gauges for the same snowfall events. 

Liu et al. (2001) developed an adaptive radial basis function (RBF) neural network 
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algorithm for estimating rainfall from radar. The network is trained by the initial data and 

thereafter can be further trained any time new raingauge data become available. This 

implies that when new gauge data become available, the RBF neural network model will 

not be retrained with the whole data set (combining both old and new data), rather it will 

add or replace the neurons and change the center vector to account for the new data only. 

The author mentioned that “This procedure ensures that the new data have higher priority 

in the determination of weights of the modified network”. However, if the new data are 

associated with a high degree of error, it may deteriorate the model performance for 

estimating a new rainfall event.  

For example, if radar data are contaminated with serious attenuation in an intense 

thunderstorm (for C-band radars), and a model fitted with this attenuated radar data is 

used to estimate another storm in which attenuation is not significant, the model is likely 

to appreciably overestimate the rainfall. An adaptive scheme that updates the model using 

gauge information for each and every rainfall should be useful. Alternatively one could 

train the model frequently with a huge ensemble of data.  

Hessami et al. (2003) proposed an adaptive neuro-fuzzy system for post-

calibration of weather radar using CAPPIs of one-hour rainfall accumulations and 

corresponding gauge data.  The author used subtractive clustering to generate the initial 

fuzzy inference system. However, the need to improve 1-hour rainfall accumulations 

using ANN may not be critical for hydrologists because radar and gauge show 

sufficiently better correlation with hourly accumulation data using conventional Z-R 

relationship.  
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Hessami et al. (2004) compared the performance of a feed forward error back-

propagation network and a radial basis network. For the back-propagation network, the 

authors tried five different training algorithms, quasi Newton, one-step secant, resilient 

back propagation, Levenberg-Marquardt method and Levenberg-Marquardt algorithm 

with Bayesian regularization. They found the back-propagation network with the 

Levenberg-Marquardt algorithm using Bayesian regularization most suitable for post-

calibration of radar data. However, the authors used all their 15 rain gauge data sets for 

training and they compared the nets based on the quantitative performance (correlation 

and rmse) in the training sessions. They did not carry out any quantitative comparison of 

model performance on unused raingauge data or on new rainfall events. 

Other related work associated with neural networks includes the development of 

the detection of rain/no-rain conditions based on a radial basis function neural network 

(Chandrasekar and Gorgucci, 2001), and on Kohenen neural network (Xiao et al., 1998).  
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Several correction algorithms are available in the literature to remove errors such as 

ground clutter and anomalous propagation. 

Moszkowicz et al. (1993) proposed a statistical method to detect and eliminate 

anomalous propagation from radar reflectivity. Their study included statistical pattern 

classification techniques for detecting such echoes. Bech et al. (1998) used mesoscale 

Numerical Weather Prediction (NWP) model data to determine the atmospheric condition 

likely to produce anomalous propagation. Grecu and Krajewski (2000) developed a 

neural network based algorithm to detect anomalous propagation. Pamment and Conway 
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(1998) used Bayesian statistics to determine the probability of an echo being due to 

anomalous propagation.  

Torres and Zrnic (1999) developed an algorithm based on regression filters to 

remove ground clutter. Sachidanada and Zrnic (2000) developed an algorithm that use 

Fourier transform and magnitude deconvolution procedures to remove clutter. Steiner and 

Smith (2002) used three dimensional reflectivity profiles to determine the presence of 

anomalous propagation. The vertical extent, vertical gradient, and spatial variability of 

reflectivity are assessed by means of a ‘decision tree’ in their algorithm. 

Cheng and Collier (1993) and Kitchen et al. (1994) proposed an algorithm to 

correct bright band signals. This algorithm detects the bright band on the basis of a 

significant increase in reflectivity in the vertical profile and then replaces it with 

background reflectivity. However, Seo et al. (2000) reported that a thick bright band with 

mild enhancement in reflectivity will not be detected. A detailed description of these 

algorithms is beyond the scope of this study. 
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Dual polarization radars provide reflectivity in both a horizontal (ZH) and a vertical plane 

(ZV), as discussed in Section 2.2.2. Based on these variables, a new precipitation 

classification system has been proposed where rainfall is classified as drizzle, rain, snow, 

graupel, etc. if several atmospheric criteria are met.  

Table 3 shows a microphysical classification system proposed by May and 

Keenan (2003). In this classification system, ZDR is the ratio of the horizontal and the 

vertical reflectivity, often termed the differential reflectivity, KDp is the rate of change of 
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differential phase in propagation, and �HV is the correlation coefficient. Fuzzy logic is 

usually applied to combine polarimetric estimators. 
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As reflectivity is a function of the DSD (drop size distribution) and DSD depends on 

rainfall type, the classification of rainfall and the associated Z-R relationships may 

improve radar measurements. Uijlenhoet et al. (2003) measured drop-size-distributions 

while a squall line passed over the Northern Mississippi region and reported significant 

variation in mean drop diameters, standard deviation of drop-sizes, and drop 

concentrations between convective, stratiform and transition part of the storm and 

reported different Z-R relationships suitable for these conditions. The classification 

algorithms are based on the analysis of the vertical profile of reflectivity (VPR), except 

for the algorithm proposed by Steiner et al. (1995). To calibrate/validate an algorithm 

researchers often use the TRMM space borne radar precipitation products. 

The main focus of this classification system is to separate convective and 

stratiform region in a radar scan. Stratiform rainfall may results from mid-latitudes 

frontal systems, especially when a warm front moves from the south/south-west 

direction. It may also be caused by wide-spread updraft due to upslope flow. Convective 

systems may develop due to the movement of a cold front from the west/north-west 

direction (frontal convection) or updraft due to any local uneven heating of the earth’s 

surface due to solar radiation (Stull 1995). 

Recent studies show that convective cells may be found in stratiform rainfall 

because updraft destabilizes the atmosphere and stratiform rainfall may also occur in a 
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mesoscale convective system in its mature and decaying stage (Houze, 1993). In the 

mature stage of the mesoscale convective system (MCS), stratiform rainfall may cause 

10-50% of the total precipitation amount. 

Parker and Johnson (2000) classify mid-latitudes MCS in three broad categories: 

(i) leading stratiform where the stratiform umbrella is observed in front of the convective 

line, (ii) trailing stratiform, where the convective line leads the stratiform umbrella and 

(iii) parallel stratiform where both regions lie in a line. Their study reveals the co-

existence of convective and stratiform regions in mid-latitudes precipitation systems.  

Figure 8 shows the movement of a cold front and warm front over Winnipeg. The 

cold frontal precipitation shows a parallel stratiform system. It is observed that both 

frontal systems show a wide range of echoes. 

Table 3: Microphysical precipitation classification system (May and Keenan, 2003) 
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Stratiform rainfall usually contains smaller drop diameters and convective rainfall 

usually consists of larger drop diameters. As noted earlier, convective rainfall exhibits 

sharp spatial and temporal gradients of precipitation. Based on these observations, Steiner 

et al. (1995) proposed an algorithm to separate convective and stratiform regions. His 

algorithm is also known as the SHY algorithm. 

This algorithm works with 2D PPI’s. It employs three criteria to determine 

whether a point is convective or not. A pixel is considered convective if at least one of 

the following criteria is satisfied: (i) reflectivity greater than 40 dBZ, (ii) the surrounding 

pixels are convective, (iii) the difference between reflectivity of a pixel and reflectivity of 

its background exceeds a given threshold. This background reflectivity is determined by 

the linear average of the nonzero reflectivity of an area of 11 km radius with the center 

located at the pixel. If none of the above criteria is satisfied, the pixel is considered 

stratiform. 

The TRMM classifies rainfall based on the existence of a bright band. If a bright 

    
Figure 8: Movement of a [a] cold front and [b] warm front over Winnipeg 
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band is detected in the vertical profile, rain is considered stratiform; if not and if 

reflectivity exceeds a threshold, it is considered convective (http://trmm.gsfc.nasa.gov/). 

This nature of reflectivity is also reported by Houze (1993) and Steiner et al. (1995). 

Classifying rainfall solely based on the bright band criteria has been criticized by Steiner 

et al. (1995). These authors reported that as the vertical thickness of the bright band is 

typically 0.5 km, it may not be captured by radar at ranges greater than 100 km. The 

reason is that at high range, both the horizontal and the vertical resolution decreases 

appreciably due to beam spreading. Steiner et al. (1995) also reported that stratiform 

rainfall may exhibit distinct bright band during its emerging and decaying stage. Some 

recent methods for classifying rainfall are using both the horizontal and the vertical 

reflectivity profile. Johnson et al. (1998) developed an algorithm to classify rainfall based 

on the 3D analysis of reflectivity. His algorithm is known as “Storm Cell Identification 

and Tracking” (SCIT). Rigo and Llsat (2003) classified rainfall as mesoscale convective 

systems, multicell systems, isolated convection, convection embedded in stratiform 

rainfall, and stratiform rainfall based on horizontal and vertical profile. They used 

classification from the TRMM algorithm for calibrating their model. Anagnostou (2004) 

developed a neural network based algorithm for rainfall classification. He selected storm 

height, reflectivity at 2 km elevation, standard deviation of the reflectivity in pixels 

within an 11 km radius, difference in height between the rain column top and its 

maximum reflectivity level, vertical gradient of reflectivity, and the product of rain 

column top and the 2 km reflectivity value as predictors. Seo et al. (2000) identified three 

very useful parameters for separating convective/stratiform regions: the maximum 

apparent rain rate in the vertical, the local spatial correlation coefficient of the maximum 
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apparent rain rate in the vertical, and the local spatial correlation coefficient of the height 

of the top of the apparent convective core. They recommended classifying rainfall based 

on the conditional probability of these three variables and a set of threshold values. 

Al-Sowayan and Chandrasekar (2001) used wavelet analysis for classifying 

precipitation obtained from the TRMM space-borne radar. They performed a 1-D multi-

resolution analysis using the dyadic wavelet transform on the vertical profile of 

reflectivity ranging from 1.25 to 8.5 km elevation. They calculated a decision index for 

each vertical profile vector and judged the profile to be convective if the decision index 

was greater than a certain threshold. The threshold value is determined experimentally. 

Anagnostou (2004) developed a neural network based precipitation classification system. 

For training and validating the algorithm, precipitation information from the TRMM 

space borne radar and ground based radars was used. 

The above algorithms do not make use of synoptic scale weather charts and are 

solely based on the morphology of the reflectivity map. In mid-latitudes, precipitation 

systems are often governed by frontal movements. A movement of a cold front may 

cause convection in a wide area (frontal convection) and can cause thunderstorm 

associated with cumulonimbus clouds, whereas a movement of a warm front may cause 

stratiform rainfall associated with nimbostratus clouds. Convective rainfalls may also be 

associated with local convection due to uplift of air masses as a result of unequal heating 

of the earth surface (Lutgens and Tarbuck, 2001). Mizzel (1999) used synoptic scale 

weather charts for classifying rainfall events based on the analysis of frontal movement. 

He classified rainfall events in three categories, namely convective, stratiform, and 
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tropical. Austin (1987) classified rainfall synoptically and suggested different Z-R 

relationships for different systems.  
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Precipitation estimation using satellite data is an emerging technology. The University of 

Arizona is carrying out a long term research project known as “Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Network” (PERSIANN) (Hsu 

et al., 1997). This project developed an adaptive ANN based model to incorporate 

satellite IR image and ground data to estimate precipitation. The ground data is mainly 

used for updating the network parameters and are applied when available. The spatial 

resolution is 0.25ox0.25o and the temporal resolution is half-an-hour. This product covers 

50oN to 50oS globally and uses data from the GOES-8, GOES 9-10, GMS-5, Metsat-6, 

and Metsat-7 geostationary satellites. Bellerby et al. (2000) developed a neural network 

based algorithm to estimate precipitation using the TRMM space-borne precipitation 

radar and multispectral Geostationary Operational Environment Satellite (GOES) 

imagery. The algorithm produces half hourly rainfall data at 0.12o resolution.  

Several satellite based initiatives are also focusing on rainfall classification. 

Anagstou and Kummarow (1996) and Hong et al. (1998) developed an algorithm for 

classifying convective and stratiform areas over oceans using microwave brightness 

temperature considering the differences in latent heat profiles in convective and 

stratiform clouds. Due to the low spatial resolution, satellite based initiatives are 

attractive mainly for ocean and ungauged areas of the earth surface. However, for radar 

covered areas, satellite based initiatives may have limited practical interest. 
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Lack and Fox (2004) proposed an algorithm to correct rainfall advection due to wind 

drift. In this algorithm, the vertical velocity is assumed to vary linearly from the ground 

to the CAPPI. The x and y component of wind velocity is obtained from a single-doppler 

scan and the fall speed is computed using Lacy’s equation relating the rainfall rate to the 

fall velocity. The fall time is computed by dividing the fall speed by the CAPPI altitude. 

Using the velocity obtained from the doppler scan, it is then easy to locate the pixel on 

the ground whereto the rainfall mass from a pixel in the atmosphere will be advected.  

A major concern with this algorithm is the fact that wind direction may change 

with altitude due to the Coriolis force or due to movement of fronts. In addition, wind 

velocity may not follow a linear variation in the vertical. The authors also did not make 

any validation of their scheme based on gauge data and it is not clear whether the 

corrected radar data at ground level is really improving. 
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There have been considerable efforts to obtain a satisfactory agreement between radar 

derived rainfall estimates and raingauges. As these two methods measure rainfall at two 

different spatio-temporal scales and as numerous sources of errors are still unresolved, 

one should not expect a high degree of correlation between the two sources. Merging data 

from two systems is an appealing option that has showed promising results when 

hydrographs are generated based on the merging schemes. One drawback of merging 

schemes is that they require a fairly dense gauge network.  
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Extensive research is being carried out to improve the quality of radar data and 

validation of these schemes is sometimes done using rain gauge data. The fact that radar 

and gauge measures rainfall at different temporal and spatial scales leads to problems in 

validating the correction techniques. Even if a correction scheme applied to radar shows 

improvement in correlation between gauge and radar data, it is valid to ask whether it 

improves in reality as radar and gauge measures the ‘real’ rainfall from two different 

perspectives. It would be of significant interest to compare radar data and gauge data at 

the same temporal and spatial scale. For example, radar measures precipitation several 

kilometres aloft and hence one should try to locate the position where the rainfall mass 

will reach the ground as well as the required travel time. When comparing gauge and 

radar data, this time and space displacement should be taken into account especially in 

the case of high resolution data. Unfortunately, very few studies have addressed these 

issues. If the mean field bias is determined without considering the time-space 

displacement between gauge and radar data and applied to develop a Z-R relationship, the 

resulting relationship may not be optimal. As reliable wind profiles may be available 

from dual-doppler scanning, it should be possible to increase the accuracy of radar 

precipitation accumulation on the ground. To eliminate residual random errors from 

CAPPI images, one could consider the use of wavelet denoising schemes. Although this 

scheme has been used for denoising images for a decade, no application to images of 

CAPPI reflectivity could be found in the literature. The performance of neural networks 

in estimating high resolution rainfall accumulation is yet to be explored as previous work 

has been based on at least one-hour accumulations. 
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This chapter discusses sources of radar and gauge data as well as the basic preprocessing 

carried out on these data. The chapter also comments on error statistics and the quality of 

the data. 
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The radar data used in this study is collected from the Woodlands radar located 

approximately 50 km to Winnipeg, Manitoba. The latitude and longitude of the radar site 

is 50.15377oN and 97.77820oW, respectively. The scanning area of the radar is divided 

into 360 azimuth radials. Hence, the angular distance between each two consecutive 

radials is 1o. The horizontal length of a radial is 256 km and it is divided into 256 range 

bins. Each bin contains reflectivity data of that area. In this study, a data window located 

over Winnipeg is used. The window is located from azimuth 100 to 150 and range bin 30 

to 75. A total of 2346 (=51x46) points are covered by this window. Figure 9 shows the 

Woodland radar’s scanning area and the study window. 
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This study considered the 1.5 km CAPPI (Constant Altitude Plan Position 

Indicator). Beyond a certain range (around 110 km), reflectivity at this level is not 

available even with the lowest elevation angle. Hence, the 1.5 km CAPPI is not available 

at far range (MSC, 2004).The study area contains 24 raingauges. Figure 10 shows the 

location of these raingauges and location of radar bins. The raingauges are of the tipping 

bucket type with a resolution of 0.2 mm. The time resolution of the radar data is 10 

minutes. Bodiroga (2004) processed Winnipeg’s raingauge data to get rainfall 

accumulation at each 10 minute interval to compare with the radar data. This is done by 

summing the number of recorded tips within 10-minute interval and then multiplied by 

0.2 which produce 10-minute accumulation in millimetre. This processed rainfall data set 

is used here. In this study, raingauges are numbered from 1 to 24 to facilitate the 

programming. The gauges are administered by the City of Winnipeg who uses alphabetic 

identifiers for each gauge. Table 4 shows the actual identifier, the locations of raingauges, 

and the corresponding numerical numbers assigned in this study.  

 
Figure 9: Woodlands radar’s scanning area and the study area (Environment Canada). 
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Several major rainfall events occurring in the year 2000 are selected for this study. These 

events are shown in Table 5. The column of ‘Interpolated gauges’ contains the ID 

number of the inoperative gauges. The rainfall at these gauges has been interpolated 

using the ‘inverse distance’ method. The last column of the table shows the rainfall 

intensity at gauge #15. The rainfall intensity is computed by dividing the rainfall 

accumulation by the duration of the rainfall event. The total rainfall accumulation at 

gauge #15 is 190.13 mm. The statistics of gauge #15 is provided because the station is 

located close to the center point of the study area. 
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Figure 10: Location of radar bins and raingauges in the study area. 
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Table 4: Raingauge locations, identifiers and numbering. 

ID No Location Latitude Longitude 
AD 1 43 Whitehall Blvd 49°54' 11.318544" -96° 59' 5.198676" 

AP 2 West of Hangerline Rd 49° 53' 30.402816" -97° 14' 13.948584" 

AW 3 1520 Jefferson Ave 49° 57' 29.68704" -97° 10' 33.406212" 

CG 4 Corner of Rover Ave and Anabella St 49° 54' 20.49228" -97° 7' 18.676884" 

CL 5 Corner of Clarence Ave and Hamelin 
Ave 

49° 49' 49.152396" -97° 10' 4.725588" 

D5 6 Corner of Granby Ave and Wales St 49° 49' 54.693156" -97° 5' 22.186752" 

EN 7 45 Ave De LaDigue 49° 46' 1.462692" -97° 9' 9.186156" 

ET 8 2300 Corydon Ave 49° 51' 57.57912" -97° 13' 1.18758" 

FR 9 99 Killerney Ave 49° 47' 31.704612" -97° 9' 8.654256" 

FS 10 Corner of Mclvor Ave and Rothesay 
St. 

49° 56' 56.767344" -97° 4' 8.081364" 

LS 11 960 Wolsey Ave 49° 52' 44.7222" -97° 10' 21.00162" 

MC 12 360 McPhillips St 49° 54' 59.386284" -97° 10' 26.140836" 

MG 13 Corner of Mager Dr and St. Mary’s 
Rd 

49° 51' 45.0027" -97° 6' 43.668468" 

MN 14 West side of Bournais Dr. 49° 53' 20.986908" -97° 2' 37.813092" 

MY 15 Intersection of Mayfair Ave and 
Main St 

49° 53' 5.758188" -97° 8' 1.209876" 

NE 16 2230 Main St 49° 57' 9.05094" -97° 6' 36.247752" 

PL 17 Between Parklane Ave and King 
Edward St. 

49° 55' 37.209576" -97° 12' 6.122952" 

PM 18 Corner of Perimeter and Wilkes Ave. 49° 50' 8.89836" -97° 19' 16.842324" 

PP 19 227 Provencher Ave 49° 53' 36.737376" -97° 7' 12.043812" 

PR 20 545, Watt St 49° 55' 5.990052" -97° 5' 46.19454" 

SB 21 598, Plinguet St 49° 53' 32.198208" -97° 5' 58.752492" 

TW 22 Corner of Tecumseh St and William 
Ave 

49° 54' 24.167196" -97° 9' 44.5104" 

WN 23 Corner of Cottonwood Rd and 
Autumnwood Dr. 

49° 51' 42.527556" -97° 4' 38.374644" 

WW 24 Corner of Portage Ave and 
Westwood Dr. 

49° 52' 52.73094" -97° 17' 37.86828" 
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The analyzed weather charts provided by Environment Canada shows that the 

June 13th and the July 4th rainfall is the result of the passing of a warm front, the June 10th 

and July 7th rainfall is the result of the passing of an occluded front, and the remaining 

rainfalls are due to the presence of a cold front. 

Figure 11 shows the cumulative probability distribution of the gauge rainfall and 

radar reflectivity over the gauge location. The 10-minute gauge accumulations are 

converted to the equivalent rainfall intensity in mm/hr by multiplying by six. This figure 

shows that in around 36% of cases, the equivalent rainfall intensity measured by the 

gauge is less than or equal to 2 mm/hr, in around 27% of cases the intensity ranges from 

2 to 5 mm/hr, in around 29% of cases the intensity ranges from 5 to 20 mm/hr, in around 

7% of cases the intensity varies from 20 to 50 mm/hr, and in only 2% of cases the 

intensity is above 50 mm/hr. Hence, according to the classification provided in the link 

http://grappa.meteo.mcgill.ca/mcgill_img.html, these rainfall events consists of almost 

equal portions of light rain (36%), moderate precipitation (27%), and heavy rain (29%). 

The portion of very heavy rain is significantly less (8%).  

Table 5: Rainfall events used in the study. 

Date Time 
(CDT*) 

Duration 
(hh:mm) 

Interpolated 
gauges  

Avg. intensity 
at gauge #15 
(mm/hr)  

Peak intensity 
at gauge #15 
(mm/hr)  

June 10, 2000 3:00 to 12:00 09:00 12,14,17,21 4.31 27.6 

June 13, 2000 10:00 to 14:30 04:30 7,14,17 3.64 10.8 

July 4, 2000 18:00 to 22:00 04:00 9 5.4 22.8 

July 7, 2000 3:00 to 8:00 05:00 13 11.64 80.4 

July 23, 2000 22:00 to 5:00 07:00 13 5.96 37.2 

Aug 6, 2000 15:00 to 18:50 03:50 9 5.3 36 

*Central Daylight Time 
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An animation of rainfall events from the lowest elevation angle scanning was created 

using MATLAB in order to detect ground clutter. Any reflectivity persistent over a 

prolonged duration at a given location may be considered as ground clutter. However, the 

animation did not show any evidence of ground clutter. The animation also helped to 

appreciate visually the direction of rainfall movement, its lateral extent and distribution at 

each time step. The conventional scan data does not contain any correction for 

attenuation, anomalous propagation, virga, or any other sources of errors (Patrick 2004, 

personal communication). Furthermore, during summer thunderstorms the bright band 

should be well above 1.5 km and hence the 1.5 km CAPPI should not be contaminated by 

bright band enhancement. 
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Figure 11: Cumulative probability distribution of equivalent gauge intensity and reflectivity over the 

gauge locations. 
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As the study area is located within a 50 km to 70 km radial distance from the 

radar location, it may be assumed that range dependent errors (e.g. overshooting beam) is 

not affecting the data and it will not be within the ‘cone of silence’ region. The weather 

observer reported the occurrence of hail on July 10th, July 7th, and July 23rd (Patrick 2005, 

personal communication). Hence, these rainfall events are affected by enhancement of 

reflectivity associated with hail. The correlation coefficient between two closely located 

raingauges (gauge #15 and #19) is estimated as 0.9 for these rainfall events. The 

geographic distance between these two gauges is 1.37 km. As the radar resolution is only 

1 km, we may assume that the spatial variability of rainfall within a 1 km distance is not 

significant for the considered rainfall events. Hence, aerial average sampling by the radar 

and point sampling by the gauge should not be a major reason for radar-gauge 

discrepancy, at least for these rainfall events. Huff and Ship (1969)’s study also shows 

that gauge-to-gauge correlation is about 0.95 for geographic distances up to 5 km in case 

of thunderstorms and rain showers for one-minute rain-rates. For steady rains gauge-to-

gauge correlation for such distances may be even greater than 0.95. As the rainfall events 

selected for this study are thunderstorms or rain showers, it may be assumed that 

anomalous propagation is not a serious issue except in the cases of the wake of 

thunderstorm. The animation of rainfall shows movements of precipitation consistent 

with the Velocity Azimuth Display (VAD) data at 3 km to 6 km altitude which would not 

be the case if AP echoes were the source of the signal. 

In summary, the main reason for the discrepancy between the radar and the gauge 

measurements should be wind drift, temporal sampling issues, attenuation, and hail. 
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The radar data (N) provided by Environment Canada varies within a range of 0 to 255. 

The following equation is used to obtain the logarithmic reflectivity (dBZ), 

           32*5.0 −= NdBZ  Eq 3.1 
 

Rainfall rates are computed using Marshall-Palmer’s equation in the following form, 

           )10/(10 dBZZ =  Eq 3.2 
 

           ( ) )6.1/1(200/ZR =  Eq 3.3 
 

where R is the radar estimated rainfall rate in mm/hr and Z is the reflectivity in mm6/m3. 

A few rain gauges occasionally did not provide data. Rainfall values for 

inoperative gauges were interpolated from other gauges using the inverse distance 

method. The equation for the inverse distance method is 
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Eq 3.4 
 

where di,j is the Euclidian distance between interpolated points and other gauges, Gi is the 

rainfall value at the surrounding gauges, and Gj  is the interpolated rainfall accumulation. 

The power of the inverse distance is chosen as two as it is considered the most common 

choice (Issaks and Srivasta, 1989). The location of raingauges is provided by their global 

coordinates (latitude and longitude) and hence to calculate the Euclidian distance 

between gauges, the study area is re-plotted in a coordinate system with kilometre as 

scale unit. A 1o latitude difference is equivalent to 111.15 km and 1o longitude difference 

is equivalent to 72.08 km in this area. This scale is used to calculate the Euclidian 

distance between gauges. The gauges subjected to interpolation are listed in Table 5. A 
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cross-validation scheme was undertaken by removing a gauge (gauge #10) from the 

network for a rainfall event and then comparing its interpolated rainfall with the actual 

rainfall. The correlation coefficient between the interpolated and the actual rainfall was 

found to be 0.96 which may be considered satisfactory. 

It was observed that in many cases the radar is inoperative for a prolonged period 

(more than 1 hour). The periods with missing radar data were not included in the study. 

It is necessary to extract the radar reflectivity at the point located above or at 

some distance away from the gauge location. To accomplish this, a triangular based 

linear interpolation method is applied. This method computes the reflectivity at a 

geographic point from three neighbouring radar pixels by solving the linear equations  
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 Eq 3.5 
 

where {(x1,y1), (x2,y2), (x3,y3)} is the set of spatial coordinates of three vertices of the 

triangle, and R1, R2,and R3 are the radar pixel values corresponding to the corner points. 

The value of the parameters a, b, c can be determined by solving the system of linear 

equations. Once solved, the radar echo at any intermediate point in the triangle can be 

determined using the following expression: 

           cbyaxR jjj ++=  Eq 3.6 
 

where (xj,yj) is the coordinate of the point to be interpolated and Rj is the interpolated 

radar echo. 

In some cases (e.g. for rainfall classification, storm tracking, etc.) it is necessary 

to rearrange radar echoes in a Cartesian coordinate system. To do this, a Cartesian grid  
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with1 km grid spacing in both x and y directions is constructed. The radar echoes are then 

interpolated onto the Cartesian grid using the same interpolation scheme (triangular based 

linear interpolation). 
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In this section, the error structure of the radar and gauge measurements is analyzed. It is 

assumed that the radar pixel located over the gauge represents the radar rainfall 

corresponding to that gauge location. It is also assumed that the rainfall intensity within 

each 10-minute cycle is constant. Hence, in the case of radar the rainfall accumulation for 

a 10-minute period will be equal to the rainfall intensity (mm/hr) divided by six. In the 

same way, rainfall intensity from gauge measurements will be equal to the gauge 

accumulation multiplied by six. The radar and gauge data corresponding to the same time 

point are compared. 

-"7") 12$	�����������	

The Z-R relationships are usually constructed by fitting a straight line to the scatter points 

of logZ and logR, where Z is in mm6/m3 and R is in mm/hr. Both variables can be 

measured from the disdrometer data. A Z-R relationship will be significant only when 

these two variables show a specific trend. As an alternative to disdrometer data, it is 

possible to check the association of logZ and logR by taking Z from radar observations 

and R from gauge observations. Rainfall rates computed from gauge data, are referred to 

as G instead of R to distinguish the difference. Figure 12 shows the logZ-logG association 
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of the six rainfall events used in the study. The rainfall rate is computed by multiplying 

the 10-minute gauge accumulations by six. 

The scatter plots of these rainfalls (Figure 12) do not look encouraging for 

developing a relationship. Even if a Z-R relationship works well in one rainfall period, it 

may not work in other rainfall events. For example, in the case of the June 10th rainfall, a 

value of Z 105 mm6/m3 is found at a gauge rainfall rate of 20 mm/hr, whereas in the case 

of the July 7th rainfall, a value of similar magnitude has a gauge rainfall rate of 100 

mm/hr.  

One possible reason for the underestimation of Z in the case of the peak rainfall of 

July 7th may be attenuation as attenuation is a function of rainfall rate. Hence, an equation 

that provides a good fit for the June 10th rainfall may not produce acceptable results in the 

case of the July 7th rainfall. On the other hand, it is observed that for a rainfall rate equal 

to 10 mm/hr, Z varies within a range of 101 to 105 mm6/mm3. One possible reason behind 

this may be wind drift which advects the rainfall mass at 1.5 km CAPPI to a different 

location. It is observed that the June 13th and July 4th rainfall shows relatively better 

association between the two variables, and that the July 23rd and August 6th rainfall shows 

no association at all. No Z-R relationship will work for these two rainfall events unless 

possible errors are eliminated and a better association is identified. Despite this fact, the 

following section explores the performance of two common Z-R relationships. 
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From Table 2, it is observed that Z=200R1.6 is recommended for stratiform precipitation 

and Z=300R1.4 is recommended for non-tropical convection. Hence, the performance of 
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these two relationships is explored. It was mentioned in Section 2.5.9 that rainfall 

systems are often composed of convective and stratiform regions and that raindrop 

characteristics are different within each region. Rainfall regions used in this study is 

classified using Steiner et al. (1995)’s algorithm. This algorithm is described in brief 

below: 

1. Any pixel is considered convective if its reflectivity is greater than forty dBZ. 

2. If the difference between reflectivity at a point and its background reflectivity 

exceeds a threshold, the point is considered convective. The background 

reflectivity is the average reflectivity of nonzero echoes in a circle of 11 km 
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Figure 12: logZ-logG association in six rainfall events used in the study.  
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radius centered at the pixel of interest. The following three criteria are 

proposed as threshold for deciding that a pixel is convective: 

                  
	



	
�

�

≥′
≤′≤

<′
′−>∆

43.42
43.420

0

0
180/10

10
2

ZdB

ZdB

ZdB

ZdBdBZ  Eq 3.7 
 

where ZdB ′ is the background reflectivity and dBZ∆ is the difference between 

the reflectivity at a pixel and its background reflectivity. 

3. The surrounding areas of any pixel identified as convective from these two 

criteria is also convective. The radius of the surrounding area to be convective 

depends on the background reflectivity at that point and is provided in the 

following equation, 
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where rs is the radius of the surrounding area in kilometres.  

Figure 13 shows the rainfall classification using this algorithm for a scan of the 

study area on June 10, 2000, 8:00 UTC. Inside the study area, the white color indicates 

areas with no precipitation, the grey color is areas of stratiform precipitation, and the 

black color is convective precipitation.  

For the six events considered in this study, it is found that 55% pixels are 

identified as convective pixels, and the rest (45%) are stratiform pixels. Figure 13 is 

consistent with the gauge data where in 36% of cases, the rainfall intensity is found to be 

in the range 0-2 mm/hr. If precipitation echoes for the whole study area are considered, 
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21% of the pixels are found to be convective and the rest are stratiform pixels. Although 

the selected precipitations are all intense convective storms, they also include widespread 

stratiform regions.  

After the classification, convective pixels are converted to rainfall rate using 

Z=250R1.2 and stratiform pixels are converted using Z=200R1.6. The reason for not using 

Z=300R1.4 for convective pixels is that this equation and Marshall-Palmer’s equation 

produce the same rainfall rate up to 42 dBZ (Figure 4) and reflectivity above 40 dBZ is 

considered convective according to Steiner et al. (1995)’s algorithm. Hence, 

classification using Z=300R1.4 and Z=200R1.6  will produce the same performance as 

obtained by using solely Z=300R1.4. The rainfall rate is divided by six to get the 

equivalent 10-minute rainfall accumulations to compare with gauge accumulations. Table 

6 shows the performance of the two Z-R relationships and the classification system for 

the six rainfall events. 

 
Figure 13: Rainfall classification using Steiner et al. (1995)’s algorithm, June 10, 2000, 8:00 UTC. 
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It may be observed from Table 6 that using Z=200R1.6 for all pixels irrespective of 

their classification as convective or stratiform shows relatively better result. Indeed, the 

magnitude of the correlation coefficient for classified precipitation is quite poor in all 

rainfall events. Figure 14 shows scatter plots of 10-minute rainfall accumulations 

measured from the gauge and the radar data. The radar rainfall is obtained using 

Z=200R1.6. This figure shows that the radar underestimates rainfall in cases where gauge 

accumulations are greater than 5 mm. Significant overestimation is also observed when 

gauge accumulations are less than 5 mm. Hence, if one attempts to fix the 

underestimation of peak rainfall using a multiplicative bias, this correction will cause 

excessive overestimation for the points corresponding to gauge accumulations less than 5 

mm. Absence of systematic underestimation or overestimation prevents a simple 

application of bias corrections. 
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The multiplicative bias, mean error, and error variance are computed for each rainfall 

event using the Z=200R1.6 relationship and 10-minute rainfall accumulations. The 

multiplicative bias correction factor varies from 0.5 to 1.8 in the different rainfall events, 

Table 6: Performance of Z-R relationships. 

Correlation Coefficient RMSE (mm) Date of 
Rainfall 

(200,1.6) (300,1.4) Classification (200,1.6) (300,1.4) Classification 

June 10, 2000 0.25 0.21 0.16 2.29 3.30 9.22 

June 13, 2000 0.58 0.56 0.54 0.56 0.56 0.64 

July 4, 2000 0.40 0.38 0.35 0.86 0.89 1.18 

July 7, 2000 0.66 0.66 0.65 2.75 2.66 3.56 

July 23, 2000 0.22 0.21 0.19 4.64 7.34 22.74 

Aug 6, 2000 0.28 0.27 0.25 1.32 1.54 3.2 
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as shown in Table 7. This implies that the radar is overestimating (on average) in some 

rainfall events and underestimating in others. For example, if one calculates the bias 

using the July 7th rainfall (bias=1.8) where the radar is underestimating and applies this 

bias correction to the July 23rd rainfall (bias=0.5) where the radar is overestimating, one 

should expect results that are worse than if no bias correction had been used at all. The 

overall bias for the six rainfall events is 1.05 which implies that there is no long term 

systematic underestimation or overestimation by the radar when using Z=200R1.6. The 

error variance is particularly high in the case of the June 10th, the July 7th, and the July 

23rd rainfall events. When the multiplicative bias is greater than 1, the mean error is 

positive. 

It is of interest to explore the variation of error statistics as a function of range. 

Six gauges are selected and are grouped into three pairs. The first pair (gauges #3 and 

#18) is the closest to the radar, and the third pair (gauges #1 and #7) is the farthest from 

the radar among the 24 gauges. The second pair (gauges #10 and #15) is located halfway 

between the other two pairs. Table 8 shows error statistics for these six gauges. This table 

shows no particular trend in error statistics as a function of range. Probably the distance 

between gauges is insufficient to capture any range dependent variation of error statistics. 

Table 7: Bias, mean error, and error variance. 

Date of  Rainfall Multiplicative Bias Mean Error (mm) Variance of Error (mm2) 

June 10, 2000 0.84 -0.12 5.25 

June 13, 2000 1.62 0.19 0.28 

July 4, 2000 1.26 0.15 0.72 

July 7, 2000 1.80 0.87 6.83 

July 23, 2000 0.51 -0.59 21.2 

Aug 6, 2000 1.02 0.01 1.74 
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The hourly accumulations show a significantly improved correlation between gauge and 

radar data. Figure 15 shows scatter plots of the gauge and the radar data in the case of 10- 
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Figure 14: The 10-minute rainfall accumulations from gauge and radar data.  

Table 8: Error statistics at some selected gauges. 

Gauge # Multiplicative 
 bias 

Correlation 
coefficient 

Variance  
of error (mm2) 

3 0.82 0.26 11.4 

18 1.75 0.43 4.33 

10 0.85 0.06 13.1 

15 1.28 0.48 2.95 

1 1.07 0.33 3.39 

7 1.39 0.44 3.54 



� 
��

minute accumulations and hourly accumulations, respectively.  

The correlation coefficient for the two cases is 0.3 and 0.55, respectively, which is 

a significant improvement. An hourly time resolution apparently smoothens out sampling 

errors due to the temporal mismatch between the two datasets.  

Despite the improvement in the hourly accumulations, overestimation is still 

observed in the case of the July 23rd rainfall event. Overall the data show a systematic 

underestimation. In particular, an excessive underestimation occurred in the peak rainfall 

of the July 7th rainfall. The systematic underestimation can be removed by applying a 

multiplicative bias correction factor. The multiplicative bias changes the multiplicative 

coefficient of the Z-R relationship and essentially creates a new Z-R relationship. It does 

not change the exponent of the Z-R relationship. Hence, a bias correction is equivalent to 

new Z-R relationship.  

A new Z-R relationship that reduces the underestimation can be developed from 

the data. Admittedly, the application of a bias correction will further deteriorate the 
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Figure 15: Comparison of gauge and radar data [a] 10-minute accumulations, [b] hourly accumulations. 
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overestimated points of the July 23rd rainfall. Considering these points as a result of error, 

the following Z-R relationship is found as optimum: 

           5.1150RZ =  Eq 3.9 
 

where R is the rainfall rate in mm/hr and Z is the reflectivity in mm6/m3. Figure 16 shows 

the comparison of hourly gauge and radar accumulations using this relationship. 

From Figure 11 it is possible to extract rainfall intensity and reflectivity 

associated with similar cumulative probability (e.g. 0.1, 0.2, 0.3,...,0.9,1). It is also 

possible to plot reflectivity and rainfall rate having the same cumulative probability. 

Figure 17 shows the probability matching curve and the Z=150R1.5 relationship. It can be 

seen that the two curves match fairly closely up to 50 dBZ. It was found that the 

probability matching curve agreed perfectly with Z=30R2
. 

 It is observed that the gauge-radar correlation at an hourly time step increases to 

0.6 using the Z-R relationship obtained from the probability matching techniques. 

However, this relationship increases bias to 0.71 from 1.05. 
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Figure 16: Hourly accumulations using Z=150R1.5 relationship. 
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The objective of this study is to investigate methods for achieving a better correlation in 

the case of 10-minute accumulations. The 10-minute accumulations show a wide range of 

variations between radar and gauge measurements which leads to questions regarding the 

use of high resolution rainfall data in flood forecasting models or in urban drainage 

system management. The displacement of rainfall mass due to wind drift and the time 

taken to reach the ground may be an important reason for the mismatch. It would seem 

that a proper correction algorithm is necessary when working with high resolution radar 

data. A statistical approach based on neural networks is explored in the next chapter with 

the objective to obtain a better correlation between gauge and radar 10-minute 

accumulations. In Chapter 5, a trajectory model is developed to assess the impact of wind 

drift and time shifting on the 10-minute accumulations. This model also accounts for 

attenuation and hail contamination.  
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Figure 17: Comparison with the probability matching curve. 
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Artificial Neural Networks (ANN) can fit any type of nonlinear input-output relationships 

(Hsu et al., 1995) and also considered a robust/error tolerant method of estimation. 

Hence, using neural networks in the case of radar rainfall estimation is an appealing idea. 

A brief summary of earlier work on neural networks in radar-rainfall estimation was 

given in Section 2.5.6. These attempts used spatial reflectivity patterns to estimate 

rainfall rate at the centre. The performance of the trained ANN was tested with the same 

rainfall event used for training but for different locations, and time resolutions were at 

least one hour. It is of interest to explore the performance of the ANN model compared to 

the conventional Z-R relationships at high time resolution and for different rainfall events 

that was not included in the training data.  

This chapter explores the performance of ANN for rainfall estimation. A 

comparative study on the performance of back propagation network, radial basis function 

network, and the generalized regression network is presented. All simulations are carried 

out for a temporal resolution of 10 minute. Section 4.2 provides a short description of the 

algorithm of the ANN’s used in the study and Section 4.3 presents the results obtained. 
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Figure 18a shows the system behind the back propagation network. When input is 

provided to the network, the network generates output which is compared to the target 

data. The error is the difference between the target and the output. Based on the error, the 

weights and biases in the network are then adjusted. This adjustment is called the training 

of the network. In this study, the input is the radar reflectivity and the target is the rain 

gauge rainfall.  

Figure 18b shows the schematic of the network, consisting of neurons, 

connections, and layers. Each connection is associated with a weight and each neuron is 

associated with a bias. The weights and biases are updated during the training stage. 

Figure 18c shows the data processing inside a neuron. Data provided to the input 

neuron is multiplied by weights and added up to produce the data inside a neuron of the 

1st hidden layer. A bias is added to the summed value and the result is then passed 

through a transfer function. Three common transfer functions are the log-sigmoid, the 

tan-sigmoid, and the linear. The log-sigmoid function is used in this study.  

A network is trained by a series of dataset. If the network has three input neurons, 

it takes three input data at a time from the series and generates output. This small block of 

input data is usually termed ‘pattern’. The output error may be computed for each pattern 

and weights may be updated based on this error. This process may be repeated for the 

whole data series and after completing the data series, it may retrain the data series in the 

same way. This type of training is called incremental training (Demuth and Beale, 1994)  
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Figure 18: [a] The ANN system, [b] the network [c] a neuron [d] the log-sigmoid transfer function. 
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and the training of one cycle of the data series is usually referred to as an ‘epoch’. For 

example, if the model trains the data series one hundred times, it will complete one 

hundred epochs. One problem of incremental training is that the network may be skewed 

to the last pattern presented in the network (Zurada, 2000). 

Alternatively, weights may be updated after all patterns have been processed by 

the network. This type of training process is usually called ‘batch’ training. The ‘batch’ 

training process is employed in this study. 

When the log-sigmoid transfer function is used, the equation for computing the 

generated data inside a neuron is as follows: 

 
Eq 4.1 

 

where N is the value of a neuron, w is the weight connecting two neurons, and b  is the 

bias. The subscript j refers to the neurons of the lth layer and subscript i refers to the 

neurons of the layer preceding the lth layer. The superscript p refers to the pattern.  

The advantage of using transfer functions is that it allows for nonlinearity in the 

data and yields output in a certain range of values whatever the input is (Zealand, 1997). 

For example, the log-sigmoid transfer function provides output between 0 and 1. The 

advantage of adding a bias lies in the fact that it allows to shift the data in a desirable 

range other than [0, 1]. The desirable range is shown in Figure 18d by the shaded region.  

Eq 4.1 is used to compute values of neurons in the first hidden layer from the 

neurons of the input layer. When data inside all neurons in the first hidden layer have 

been computed, the program proceeds to the next layer and generates the value inside 
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( ) ( ) ( )



�
�



�
�

�
�
�

�
�
�� +−−−+

=

=

I

i

p
j

p
ij

p
i

p
j

lblwlN
lN

1
, 1.1exp1

1



� ���

each neuron in the same fashion. Eq 4.1 is used to compute the value inside each neuron 

of the second hidden layer. In this case, subscript j refers to the neurons in the second 

hidden layer and subscript i refers to the neurons in the first hidden layer. Finally, the 

model output is generated. The program then computes the error between the output and 

the target and based on the error, weights and biases are updated. Weights and biases are 

usually updated using a gradient descent algorithm. The objective of the gradient descent 

algorithm is to minimize the error by updating the weights and biases. Initially, weights 

are assigned randomly. There is no guarantee that the global minimum will be reached. A 

detailed derivation of gradient descent algorithms is available in textbooks on neural 

networks (e.g. Zurada, 2000). The derived equations are provided below. 

For the output layer, the error function can be determined from the following 

equation: 

           ( ) ( ) ( ) ( )]1[][2 LNLNLNTL p
j

p
j

p
j

p
j

p
j −−=δ  Eq 4.2 

 

where subscript j refers to the neurons of the output layer and superscript p refers to the 

pattern. The notation (L) refers to the output layer. The notation T refers to the target and 

N(L) refers to the values produced in the neurons of the output layer. This error function 

is back-propagated to the hidden layers and may be computed as follows: 

           ( ) ( ) ( ) ( ) ( ) 1,...,1,]11[11
1
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LLllwllNlNl
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j
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p
j

p
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p
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p
i δδ  Eq 4.3 

 

where subscript j refers to the neurons in the lth layer and subscript i refers to the neurons 

in the layer preceding the lth layer. The notation wj,i(l)  refers to the weights connecting 

the jth neuron of the lth layer and the ith neuron of the (l-1)th layer. Eq 4.3 is used 

iteratively to compute error functions for neurons in all hidden layers. In each iteration, 
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the notation (l-1) refers to the layer for which the error function is to be calculated and 

the notation (l) refers to the layer following the (l-1)th layer. After computing error 

functions for each neuron and for each pattern, the gradient of error can be computed for 

each weight and for each pattern as, 

           ( ) ( )llN
w
e p

j
p

il
ij

p

δ1
,

−=
∂
∂

 Eq 4.4 
 

where subscript j refers to the neurons of the lth layer and subscript i refers to the neurons 

of the (l-1)th layer. The term l
ij

p we ,/∂∂  refers to the gradient of error corresponding to the 

weight connecting the jth neuron of the lth layer to the ith neuron of the (l-1)th layer. Each 

pattern generates a set of error gradients. 

The error gradient for biases is determined in a similar fashion (Mukto, 2001) and 

is given by 

           ( )l
b
e p

jl
j

p

δ=
∂
∂

 Eq 4.5 
 

In case of batch training, the average error gradient is computed by averaging 

error gradients for a weight or bias for all patterns. This averaging is expressed 

mathematically as follows: 
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 Eq 4.6 

 

The average gradient for biases is computed in the same fashion. The change of 

each weight in the network is computed by multiplying the corresponding error gradient 

with a constant, known as the learning constant, which in fact determines the step size at 
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each epoch. The smaller the learning constant, the slower will be the rate of convergence. 

Mathematically, the change of weights is computed as 

           ( ) ( )lwElw ijij ,, ∇=∆ η  Eq 4.7 
 

where � is the learning constant. The change of bias is computed in the same fashion. It is 

customary to add a small fraction of the changes of weights obtained in the previous 

training cycle or epoch. This is known as the momentum method which helps to 

accelerate convergence. In that case Eq 4.7 is modified as follows: 

           ( ) ( ) ( ) 1
,,, ][])[1(][ −∆+∇−=∆ t
ij

t
ij

t
ij lwlwElw ααη  Eq 4.8 

 

where superscript t refers to the current epoch and superscript (t-1) refers to the previous 

epoch. The added term is known as the momentum term and the parameterα  is known as 

the momentum constant. The optimum value is selected by experimentation. The same 

procedure is applied for the bias updating.  

All these processes complete one training cycle or epoch. The changes of weights 

should be added to the initially randomly generated weights to get the weights for the 

next epoch. Mathematically, this is expressed as 

           ( ) ( ) ( ) t
ij

t
ij

t
ij lwlwlw ][][][ ,,

1
, ∆+=+  Eq 4.9 

 

The next training cycle or epoch uses the weights and biases obtained from Eq 4.9 

and determines another set of changes of weights and biases. After completion of a 

training cycle or epoch, the sum of squared errors for all patterns used in the training 

cycle is computed. If the error is smaller than a selected threshold, the training is 

terminated. The excessive computational requirements of the gradient descent method 

have prompted researchers to look for faster training algorithms using variable learning 
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and/or momentum parameters. Another research direction has focused on applying 

numerical optimization techniques to accelerate convergence, leading to the application 

of quasi-Newton methods, nonlinear least squares methods, etc. as training algorithms 

(Hagan and Menhaj, 1994).  

Hagan and Menhaj (1994) attempted to apply Levenberg-Marquardt optimization 

techniques as a training algorithm. This method computes error gradients for all weights 

and biases using Eq 4.4 and Eq 4.5. However, the error function for the outer layer (Eq 

4.2) is computed as follows: 

           ( ) ( ) ( )]1[ LNLNL p
j

p
j

p
j −−=δ  Eq 4.10 

 

A Jacobian matrix is constructed combining the error gradients for all weights and 

biases for all patterns in an epoch (Castro, 2004, p. 55). The Jacobian matrix is given by 
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Eq 4.11 
 

 
where the superscript p refers to the number of patterns and the subscript q refers to the 

number of neurons in the output layer.  
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The change of weights and biases is calculated using the following expression: 

           eJIJJx T1T −+=∆ ][ µ  Eq 4.12 
 

where µ  is a scalar and I is the identity matrix. The vector e contains errors for all 

neurons in the output layer and for all patterns. Hence, its size should be equal to [n�1], 

where n is the product of the number of neurons in the output layer and the number of 

patterns. This error is computed by subtracting the target vector from the model output 

vector. If the total number of weights and biases in a network is m, the dimension of J is 

[n�m]. The dimension of e is [n�1], the dimension of �x is [m�1] and the dimension of I 

is [m�m]. The elements of �x represent the change of weights/biases. The weights/biases 

for the next iteration are 

           ttt ][][][ 1 xxx ∆+=+  Eq 4.13 
 

where superscript t stands for epoch. 

To avoid over-fitting, the available data set is usually divided into three 

categories: the training data, the validation data, and the test data. After completing one 

training cycle or epoch, the mean square error in the validation data set is computed. It is 

usually observed that the error in the training data decreases gradually with the number of 

epochs, however the error in the validation dataset may decrease initially but after a 

certain number of epochs begin to increase. This is an indication of over-fitting and the 

training is usually terminated at this point.  

The trained network may then be tested using the test data set. Figure 19 shows 

the point where training should be stopped. 
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The radial basis function networks usually involve lower computational time than the 

error back propagation networks. This type of neural net consists of one input layer, one 

hidden layer, and one output layer. Usually it possesses a large number of neurons in the 

hidden layer. Values of neurons in the hidden layer is computed using the following 

expression: 
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where Ni are the neurons of the input layer, Nj are the computed values of the neurons of 

the hidden layer, wj,i are weights (also known as center), and the parameter σ is known as 

the ‘width’ (or radius or spread).  

The term is the weighted input to the jth neuron of the hidden layer. The 

weighted input to the jth neuron of the hidden layer is the square of the Euclidian distance 

between the input vector and its corresponding weights connecting the input neurons to 

the jth neuron of the hidden layer. 

 
Figure 19: Demonstration of the stopping criteria. 
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The output produced from Eq 4.14 is a Gaussian bell-shaped curve. If the 

weighted input to a neuron in the hidden layer is zero, the output of the function is one. 

The higher the weighted input to a neuron in the hidden layer, the lower is the output. 

The width parameter determines the spread of the ‘bell’. The lower the width, the steeper 

is the peak of the ‘bell’. 

The output of the network is the output of the neurons of the output layer. These 

are computed from the output of the neurons of the hidden layer. Like back-propagation 

networks, radial basis network may also have several outputs. In that case, the network 

will have several neurons in the output layer instead of just one neuron. The output 

neurons have no activation function but a bias is added. The output of neurons in the 

output layer is usually computed by the following expression, 

           �
=

+=
I

i
jiijj bNwN

1
,  Eq 4.15 

 

where i refers to the neurons in the hidden layer and j refers to the neurons in the output 

layer. The term b refers to the added bias. 

To develop the radial basis function model, one needs to determine the value of 

the weights for the hidden layer and the output layer and a reasonable value for the 

‘width’. A detailed description of the radial basis function network is available in the 

textbook “Neural Networks” (Phil, 2000). This study uses MATLAB’s built-in functions 

to construct radial basis network. 

The number of neurons in the hidden layer is kept the same as the number of input 

patterns presented in the network during the training session. The weights connecting the 
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input neurons to the jth neuron in the hidden layer is equal to the jth pattern presented in 

the network. Thus the network attempts to memorize the whole training data series 

resulting in a huge number of neurons in the hidden layer. When an input pattern equal to 

the weight vectors connecting a hidden neuron is presented, the output of that neuron 

should be one, and for other hidden neurons, whose weights are not close to the input 

vector, the output should be close to zero. Hence, the output from different hidden 

neurons is different, ranging from zero to one due to the application of a Gaussian 

activation function in the hidden neurons. The optimum value for width should be chosen 

by trial and error and may be kept the same for all neurons in the hidden layer. 

Weights and biases for the output layer are determined from the target data for 

different input patterns. If the total number of neurons in the hidden layer is I and the 

total number of neurons in the output layer is J and the total number of patterns presented 

in the network is P, weights and biases for the output layer can be determined by solving 

the following system of equations, 
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Eq 4.16 
where wj,i refers to weights, bj refers to biases, Ni,p refers to neurons in the hidden layer, 

and Tj,p refers to the target. The elements of N and T are known. The value of I and P 

should be equal. 
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These weights and biases yields an exact solution, that is, if an input vector from 

the training data series is presented in the network, the output will be exactly the same as 

the target vector provided for that input vector during the training of the network. 

In order to avoid large number of hidden neurons, clustering the input patterns is 

often recommended. This study applies a k-means clustering algorithm. This algorithm 

starts by generating k patterns randomly. The distances from each input pattern vector to 

the randomly generated pattern vectors are calculated and the input patterns are divided 

into k clusters based on the minimum distance criterion. The mean of each cluster is 

calculated. In the next iteration, the distance from each input pattern to the mean-pattern 

of each cluster is re-calculated. This iterative process continues until the mean patterns 

between successive iterations do not change appreciably. The number of neurons in the 

hidden layer is equal to k and the mean value of each cluster is then used as the weights 

connecting the input neuron to the hidden neuron. The mean value of the target of each 

cluster is computed and used as the target for training the network. 
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The algorithm for the Generalized Regression Neural Network is quite similar to the 

algorithm for the radial basis function neural network. Like radial basis function 

networks, it has three layers, one input layer, one hidden layer, and one output layer. The 

hidden layer neurons also have a Gaussian activation function. The determination of 

weights and width for the hidden layer is the same as that of the radial basis function 

networks and can be determined using Eq 4.14. However, the determination of weights 

for the output layer is quite different. A description of the generalized regression network 
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is available in the reference, “Advanced Method in Neural Computing” (Wasserman, 

1993). 

Like radial basis function networks, the number of patterns presented in the 

network during training is equal to the number of neurons in the hidden layer. The only 

difference is that the target provided for an input pattern is directly used as weight 

connecting the corresponding hidden neuron to the output neuron. Mathematically, if the 

number of neurons in the hidden layer is I and the number of neurons in the output layer 

is J, and the number of patterns presented to the network is P, the weights connecting the 

hidden layer to the output layer can be determined from the following expression: 
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Eq 4.17 
where Tj,p refers to the target elements. The values of I and P are equal. Using these 

weights, the output is computed as, 
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 Eq 4.18 
 

where Ni refers to the neurons in the hidden layer and Nj refers to the neurons of the 

output layer. Unlike radial basis function networks, no bias term is added in the output 

layer.  

As the underlying principle of radial basis networks and generalized regression 

networks is based on regression and not inspired by the biological neural system, these 

models are also known as statistical neural networks (Phil, 2000).  
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Three different types of neural network are explored: (i) the back propagation network, 

(ii) the radial basis function network, and (iii) the generalized regression network. In each 

case, the input data for the network is the radar reflectivity in dBZ and the output is the 

10-minute rainfall accumulations in mm. The raingauge data of 10-minute accumulations 

is used as the target while training the network. It was mentioned earlier that there are 24 

rain gauges in the study area and six rainfall events are extracted for use in the study. The 

location of gauges is shown in Figure 10. Out of these 24 gauges, data from 16 gauges  

(gauge # 1 to 16) are used for training the network and the rest are used for validation 

(gauge #17 to 20) and testing (gauge #21 to 24) purposes. The process of training, test, 

and validation is carried out using the rainfall data of the first five rainfall events listed in 

Table 5. The calibrated networks are tested using the sixth rainfall event for all gauges. 

This is done to explore the capability of the neural networks to estimate rainfall 

accumulations for new rainfall events with different spatial distribution of rain. Hence, a 

total of four data sets are used in this study. It is of interest to look at how the gauge and 

radar data sets correlate with each other when using Marshall-Palmer’s Z-R relationship 

(Z=200R1.6). Figure 20 shows scatter plots of gauge and radar for the four data sets. The 

root mean square error (RMSE) and the correlation coefficient (CC) are indicated in the 

figures. The correlation coefficients are quite small in all four data sets. This error 

statistic will be used to compare the neural networks output with that of a traditional Z-R 

relationship. As the Z-R relationship provides rainfall rate in mm/hr, the rainfall rate is 
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divided by six to get 10-minute rainfall accumulations in mm. This should work if the 

rainfall intensity within the 10 minute interval remains fairly uniform. 

Each of the neural networks is tested for two different input patterns: (i) a 

temporal pattern and (ii) a spatial pattern. The temporal input data contains reflectivity 

for the past several time bins of the radar pixels located above the raingauges. The spatial 

input data contains reflectivity located above and in the neighbourhood of the raingauge 

locations for the same time bin. The radar pixel value located above or at a certain 

distance from a gauge is determined using the triangular based linear interpolation 

method described in Section 3.5. 

In summary, a total of six (=3x2) different scenarios are tested. The results of the 

six scenarios are presented in Table 9 and the best network is selected based on the 

minimum RMSE of the validation dataset. 
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To determine “the best” back propagation network is an impossible task for two reasons: 

(i) it is impossible to know if a global minima has been reached, (ii) the back-propagation 

network can be designed an indefinite number of ways. Hence, the optimum back 

propagation network is reported based on the limited number of trials carried out.  

The excessive time requirement of the gradient descent algorithm prevents a 

comprehensive study using this training algorithm. Hence, the Levenberg-Marquardt 

algorithm will be employed. However, as this algorithm converges too fast, it causes 

problems if µ  (described in Eq 4.12) is taken too small and the stopping criteria described 
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in Figure 19 are used. In such cases, it is recommended to employ a larger value of µ . 

Hence, in this study µ is set to 0.9.  

A total of 50 networks are tested, varying the number of input neurons, number of 

neurons in the hidden layer, and the number of hidden layers. Figure 21 shows the 

performance of the network that produced optimum result from the 50 networks tested. 

The parameters of this network are: 

No of input neuron: 5 

No of hidden layers: 2 

No of neurons in hidden layer: 12 

No of output neurons: 1 

Transfer function between layers: log-sigmoid 
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Figure 20: Comparison of the gauge and the radar accumulations using Z-R relationship (200, 1.6) at four 
data sets used in the study. 
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This network uses reflectivity in the five previous time bins and hence it uses a 

temporal pattern as input data. The stopping criterion shown in Figure 19 is applied here. 

To implement this, 16 raingauges are used for training (gauge #1 to 16), 4 raingauges are 

used for validation (gauge #17 to 20), and the remaining 4 gauges are used for test (gauge 

#21 to 24). Training is stopped when the mean-square-error of the validation data begins 

to increase. Training, validation, and test are carried out for first five rainfall events listed 

in Table 5. The trained network is tested using the sixth rainfall event. The purpose of 

this procedure was discussed in the Section 4.3.1. The input and the target data are 

linearly scaled. The input data are divided by 68, while the target data are divided by 15. 

Figure 21 shows scatter plots between gauge and radar accumulations in the training, 

validation, and test data sets. Two test data sets are shown in the figure. One (Figure 21c) 

is for gauges 21 to 24 for the first 5 rainfall events listed in Table 5 and the other (Figure 

21d) is for the all gauge data of the sixth rainfall event. 

The neural network works fairly well for the first test data set (Figure 21c) 

compared to the Z-R relationship, however its performance for the second test data set is 

not satisfactory (Figure 21d). In the case of the second test data set, the performance of 

the neural network is quite similar to that observed for the Z-R relationship (Figure 20d). 

This issue is discussed in detail later in this chapter. 

It was observed that with increasing neurons in the input layer, the correlation 

coefficient in the validation and the test data set increased. Despite this, more than 5 input 

neurons were not tested because in such case it may not work well in the case of short-

lived thunderstorms or rain showers. However, the correlation coefficient in the second 

set of test data was found to decrease except when there was only one input neuron. 
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Increasing the number of hidden neurons while keeping the other parameters the same 

does not show any systematic increase or decrease in the performance functions. The 

relative performance of networks having one and two hidden layers with a constant total 

number of hidden neurons was examined. For example, a total of 16 hidden neurons can 

be arranged in two hidden layers each having 8 neurons or in one hidden layer having 16 

neurons. A comparison was made between these two arrangements. It was observed that 

two hidden layers works better in 56% of cases in case of the first test data and 52% cases 

in case of the second test data. However, as the ratio is close to 50%, it may be concluded 

that the arrangement of hidden neurons has relatively insignificant impact on model 

performance. 

Table A.1 of Appendix A shows the weight matrix connecting the input layer and 

the first hidden layer. The sixth column of the table contains the bias vector of the first 
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Figure 21: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with back-
propagation network for temporal input pattern. 
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hidden layer neurons and is shaded in grey to separate it from the weight matrix. The 

weight matrix is a [12�5] matrix and is shown in the first five columns of the table. This 

is a [12�5] matrix because the network has 12 neurons in the first hidden layer and 5 

neurons in the input layer. The [m�n]th element of the matrix refers to the weights 

connecting the mth element of the hidden layer to the nth element of the input layer. The 

bias vector is a [12�1] vector because there are 12 hidden neurons. Table A.2 shows the 

weights connecting to the first hidden layer to the second hidden layer and the bias for the 

second hidden layer. The weight matrix is a [12�12] matrix as there are 12 neurons in the 

second hidden layer and 12 neurons in the first hidden layer. The bias vector for the 

output layer contains 12 elements because there are 12 neurons in the second hidden 

layer. Table A.3 shows the weights and bias for the output layer. 

Table B.1 of the Appendix B shows outputs of 50 test runs carried out to 

determine an optimum network. Each test run creates a network which is listed in the first 

column of the table under the ‘net ID’ heading. The fifth column refers to the number of 

epoch required by the program to achieve the minimum error in the validation data set. 

Beyond this epoch, the mean square error of the validation data set started to increase. 

The performance of the back-propagation network in case of the spatial data is 

now explored. In this case, nine surrounding radar pixels are considered as input. The 

gauge is located at the centre of the nine radar pixels. The training, the test, and the 

validation data sets are used as in the previous case. A total number of 10 networks are 

tested, varying the number of neurons in the hidden layers and the number of hidden 

layers. The optimum network obtained has the following characteristics: 
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No of input neuron: 9 

No of hidden layers: 2 

No of neurons in hidden layer: 8 

No of output neurons: 1 

Transfer function between layers: log-sigmoid 

The same scaling functions as in the previous case are used. Figure 22 shows the 

comparison of the gauge and the radar accumulation for the training, validation, and the 

two sets of test data. The error statistics (the RMSE and the correlation coefficient) are 

indicated on the figure. The overall error statistics are inferior to the previous case 

(temporal input), except for the new rainfall event (Figure 22d). Although performance 

improved statistically, the visual observation of the scatter plot is not satisfactory at all. 

This model is unable to estimate rainfall greater than 5 mm (10-minute accumulations) in 

all four data sets. Increasing the number of hidden neurons does not show any systematic 

improvement or deterioration of the model performance.  

The early stopping criterion is used in this case too, that is, the training ceases 

when the error statistics in the validation data set begins to increase. Table A.4 shows the 

weight matrix connecting the input layer with the first hidden layer and the bias vector 

for the first hidden layer.  

Table A.5 shows the weight matrix connecting the first hidden layer to the second 

layer and the bias vector for the second hidden layer. Table A.6 shows weights and biases 

for the output layer. Table B.2 shows the performance of all the networks tested in this 

category.  
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The width or radius is an important model parameter for the radial basis network that 

affects the model performance. Hence different widths have been tested. As the model 

creates one neuron in the hidden layer for each input pattern, a clustering of the input 

patterns was done. Hence, the model is tested for different numbers of clusters. A total of 

150 networks were tested and the optimum model parameters are shown below: 

No of input neuron: 3 

No of clusters: 50 

Width: 0.2 

No of output neuron: 1 

The scaling of the input and the target is done as in the previous cases. The scatter 

plots of the four data sets are shown in Figure 23. Like the other cases, this network also 
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Figure 22: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with back-

propagation network for spatial input pattern. 
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failed to show satisfactory performance for the new rainfall event (Figure 23d). In case of 

the test data (Figure 23c) and the validation data (Figure 23b), it is found that the model 

overestimates when gauge accumulations (10-minute) are less than 2.5 mm and 

underestimates when gauge accumulations are greater than 2.5 mm. 

The correlation for the validation data is lower than that of the back propagation 

network. However, correlation in the second test data set is improved in this model 

although the scatter plot shows serious underestimation of rainfall. 

The clustering is important in radial basis networks, as otherwise the solution of 

the matrix system for determining the weights of the output layer becomes ill-

conditioned. Ill-conditioned matrices were encountered when the number of clusters was 
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Figure 23: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with the radial-
basis network for the temporal input pattern. 
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greater than 50 and/or the number of input neurons is one. The optimal width was found 

to be 0.2. Table B.3 shows the performance of the networks tested. 

Ill-conditioned matrices are not found frequently in the spatial input data probably 

because of the larger size of the input vector. A total of 30 networks are tested by varying 

widths and k values. The optimum model parameters obtained is shown below: 

No of input neurons: 9 

No of clusters: 50 

Width: 0.2 

No of output neurons: 1 

The scatter plots for the four data sets are shown in Figure 24. The performance of 

all the networks tested in this category is shown in Table B.4. 
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Figure 24: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with the radial-
basis network for the spatial input pattern. 
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Like the radial basis network, the generalized regression network is also tested for 

different widths and different numbers of clusters. Unlike the radial basis function 

network, the training algorithm of the generalized regression network is free from the ill-

conditioning problem. A total of 150 networks are tested and the optimum network 

obtained is 

No of input neuron: 5 

No of clusters: N/A 

Width: 0.1 

No of output neuron: 1 

The optimum network has no clustering of the input patterns. Hence, the total 

number of hidden neurons is equal to the total number of training patterns (=2812). The 

dimension of the weight matrix connecting the input layer to the hidden layer is [2812�5] 

and the dimension of the weight matrix connecting the hidden layer to the output layer is 

[1x2812]. In fact the first weight matrix is the input data and the second weight matrix is 

the target data. If I is the input vector having 2812 elements and T is the target vector 

having 2812 elements, the first weight matrix is [ I(1:5) ; I(2:6);…….; I(2807:2812)] and 

the second weight matrix is [T(1) T(2) …….T(2812)].  

The scatter plots of the four data sets are shown in Figure 25. Like the other 

networks, this network also fails to show good correlation in the second test data set 

(Figure 25d). The performance of the network tested is shown in Table B.5. 

A total of 30 networks are tested with the spatial input data, varying widths and k 

values. The optimum network obtained is 
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No of input neuron: 9 

No of clusters: 500 

Width: 0.05 

No of output neuron: 1 

The width is varied from 0.05 to 1. It was observed that with increasing width, the 

model performance in terms of the correlation coefficient initially increases and then 

decreases. The best performance is observed at a width equal to 0.2 in 50% of cases, and 

equal to 0.1 in 27% of cases. Increasing the number of clusters has little impact on the 

model performance at widths greater than or equal to 0.2. At widths equal to 0.05 and 

0.1, it is observed that increasing the number of clusters results in better performance in 

the validation and first test data set and worse performance in the second test data set.  
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Figure 25: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with the 
generalized regression network for the temporal input pattern. 



� 
��

As the optimal number of clusters is found to be 500, the dimension of the weight 

matrix connecting the input to the hidden layer is [500�9] and the dimension of the 

weight vector connecting the hidden layer to the output layer is [1�500]. The 

performance of the network tested is shown in Table B.6. The scatter plot of the four data 

sets is shown in Figure 26. 
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So far optimum networks for three different types of neural networks with two different 

input data have been selected. At this point, the best overall network among these 

optimum networks is sought. The performance figures for the different neural networks 

in the case of the validation and two sets of test data are listed in Table 9. 
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Figure 26: Comparison of 10-minute accumulations of gauge rainfall and radar estimation with the 
generalized regression network for the spatial input pattern. 
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From Table 9, it is observed that the performance of the temporal input pattern is 

consistently better than the spatial input pattern with the exception of the second test data 

set of the back-propagation network, where the spatial input pattern shows better 

performance. 

The best network is the back propagation network with a temporal input pattern as 

it has the minimum RMSE in the validation data set. Table 10 shows a comparison of this 

model with the Z-R relationship.  

From Table 10, it is observed that the selected BPNN shows improvement in the 

case of first test data (120%); however, the improvement in the case of second test data is 

not significant, suggesting the models inability to estimate new rainfall events. 

In general, it is observed that the models that show better performance in the 

Table 9: Performance of optimum networks. 

Validation Test set (i) Test set (ii) 
Net Input 

RMSE CC RMSE CC RMSE CC 

Temporal 1.37 0.75 1.60 0.67 1.06 0.33 Back-
propagation 
network Spatial 1.68 0.56 1.91 0.45 0.94 0.41 

Temporal 1.61 0.61 1.73 0.62 1.09 0.44 Radial basis 
network Spatial 1.72 0.55 1.85 0.56 1.01 0.28 

Temporal 1.44 0.72 1.69 0.62 1.01 0.33 Generalized 
regression  
network Spatial 1.66 0.56 1.80 0.55 1.05 0.28 

Table 10: Comparison of the performance of the Z-R relationship and the BPNN. 

Validation data Test set (i) Test set (ii) 
Model 

RMSE CC RMSE CC RMSE CC 

Z-R (200,1.6) 3.26 0.23 2.53 0.31 1.32 0.28 

BPNN 1.37 0.75 1.60 0.67 1.07 0.33 

% Improvement 57.8 223.6 36.6 120.0 19.25 16.63 
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validation data set, show worse performance in the second test data set and better 

performance in the first test data set. For example, in case of the back-propagation 

network with temporal input data, the correlation coefficient in the validation data set is 

0.75, but the correlation in case of the second test data set is only 0.32. On the other hand, 

the radial basis network with temporal input data has a correlation coefficient equal to 

0.61 in the case of the validation data and 0.44 in the case of the second test data set. This 

trend is also observed in the case of the performance of the individual groups of 

networks.  

For example, Figure 27a shows a scatter plot of the correlation coefficients 

between the validation data and the first test data, and Figure 27b shows the correlations 

between the validation data and the second test data for different back propagation 

networks tested with temporal input pattern. It is observed that the correlation for the first 

test data is increasing with increase in the correlation of the validation data whereas the 

correlation of the second test data is decreasing with increasing correlation of the 

validation data. The x-values of these two plots are column 9 of Table B.1 and the y 

values of these two plots are column 11 and column 13 of the same table, respectively. 

It is also observed that when the correlation of the first test data set is the 

maximum (=0.71), the correlation of the second test data set is only 0.38, whereas when 

the correlation of the second test data set is the maximum (=0.65), the correlation of the 

first test data set is 0.64 which may be an acceptable value. This trend is also observed 

for other networks. 
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It is of interest to explore the probable reason for this trend. One may recall that 

these networks are tested with the data from 16 gauges and five rainfall events. The 

validation data is from four gauges of the same rainfall events, and the first test data is 

another four gauge data of the same rainfall events. Hence, these data sets represent the 

same rainfall events at different spatial locations. On the other hand, the second test data 

set is a completely new rainfall event. It is well known that rainfall shows a high degree 

of spatial correlation up to certain geographical distance. Figure 28 shows correlation of 

gauge #15 with the surrounding gauges as a function of distance. This figure shows that 

correlation is at least 0.6 for distances up to 8 km.  

Due to the high degree of spatial correlation between gauges, training, validation, 

and the first test data sets represent quite similar time-series of rainfall. Hence, the model 

may try to over-fit, thereby deteriorating its ability to estimate new rainfall events. It is 

also understood that a similar trend may not be observed if the experiment is carried out 

on another set of rainfall events. 
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Figure 27: Comparison of correlations of validation data set with [a] test data (i) and [b] test data (ii) for 
back propagation network with temporal input.  
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Earlier works on neural network on radar rainfall estimation used different gauge 

locations for the same rainfall events as training, validation, and test data (Hessami et al., 

2004; Hessami et al., 2003; Liu et al., 2001; Xiao et al., 1998; Xiao and Chandrasekar, 

1997). This approach to training may be useful if one uses the model to obtain rainfall for 

other spatial locations for the same precipitation events used in the training. However, it 

may not be wise to use such models to obtain rainfall maps for new rainfall events 

without proper test with the new rainfall events. 

It is of interest to check the model performance when it is validated with the new 

rainfall event. Hence, the neural network models are validated with the rainfall event that 

occurred on August 6, 2000 (second test data set) and tested with another new rainfall 

event that occurred on June 9, 2002. Table 11 shows the performance of the optimum 

models in each category for this particular event. The optimum model is selected based 

on the minimum RMSE in the validation data set. In this table, the first test data set is the 

same as previously and the third test data set is the new rainfall event that occurred on 

June 9, 2002. 
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Figure 28: Correlation with Gauge #15 with other gauges as a function of distance. 
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It can be observed that increasing the performance of the validation data set 

ensures better performance in the case of the third test data set as well as the first test data 

set. However, the performance in the case of the first test data set is slightly worse than 

the previous validation set (Table 9). This suggests that if a new rainfall event is used as 

validation data set, the resulting model may be useful for getting rainfall maps of the 

rainfall used in the training purposes as well as of new rainfall events. It is observed from 

Table 11 that the temporal input pattern yields better result for all networks in this case 

too.  

The best network according to Table 11 is the generalized regression network 

using the rainfall that occurred on August 6, 2000 as validation data set. The parameters 

of this network is:  

No of input neurons: 2 

No of clusters: 50 

Width: 0.1 

No of output neurons: 1 

The weights of the hidden  layer and the output layer for this network are shown in Table 

A.7.  

Table 11: Reconstruction of Table 9 using August 6th rainfall as the validation data set. 

Validation Test set (i) Test set (iii) 
Net Input 

RMSE CC RMSE CC RMSE CC 

Temporal 0.81 0.62 1.70 0.63 0.45 0.80 Back-
propagation 
network Spatial 0.93 0.44 1.89 0.48 0.54 0.70 

Temporal 0.84 0.60 1.67 0.64 0.47 0.79 Radial basis 
network Spatial 1.00 0.28 1.85 0.56 0.51 0.74 

Temporal 0.80 0.63 1.74 0.62 0.45 0.80 Generalized 
regression  
network Spatial 0.96 0.36 1.98 0.42 0.57 0.69 
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It should be emphasized, however, that the performance of the radial basis 

function network and the back-propagation network for temporal input pattern is quite 

similar to the generalized regression network. It is of interest to check the performance of 

this network with the performance of the Z-R relationship for the three test data sets.  

Table 12 shows 9% improvement in the third test data set. The improvement is 

significant in the case of the first and the second test data sets, but this is not surprising as 

the first test data contains the rainfall used in the training and the second data is the 

validation data itself. Hence, the improvement over the Z-R relationship is not significant 

in the case of estimation of a new rainfall event. Figure 29 shows the rainfall 

accumulation map (10-minute) of a scan from the back-propagation network and the 

Marshall-Palmer’s Z-R relationship. This rainfall is appreciably underestimated by radar 

compared to the gauge data.  

Neural network may be an appealing choice if one trains a model using several 

gauges for a rainfall event and wants to obtain rainfall estimate for other geographic 

locations of the same rainfall event. This conclusion is based on the fact that the networks 

shown in Table 10 and Table 12 show significant improvement in the first test data set 

(120% and 101%, respectively). Hence, this study recommends using neural networks as 

Table 12: Comparison of the performance of the Z-R relationship and the GRNN. 

Test set (i) Test set (ii) Test set (iii) 
Model 

RMSE CC RMSE CC RMSE CC 

Z-R (200,1.6) 2.53 0.31 1.32 0.28 0.59 0.74 

GRNN 1.74 0.62 0.80 0.63 0.45 0.80 

% Improvement 31.34 101.5 39.3 123.2 23.8 9.09 
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a post-processing tool to obtain rainfall maps of a precipitation event, using gauge data 

for that event to train and test the network. 

3"3 
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This chapter has investigated the use of neural networks to improve the interpretation of 

reflectivity. It was found that neural networks may be useful as a post-processing tool, 

that is, a trained network should be used only for the same rainfall event as used in the 

training. Its performance is not much better than the Z-R relationship for interpreting new 

rainfall events. However, this conclusion is drawn based on the high temporal resolution 

mapping (10-minute accumulations). Another recommendation is to use time series as 

input data as this data type yields better result compared to input of concurrent 

reflectivities at surrounding spatial points.  
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Figure 29: The rainfall accumulation map (10-minute) obtained from [a] BPNN, [b] The Marshall-Palmer’s 

Z-R relationship, (July 7, 2000, 9:00 UTC).   
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The objective of this chapter is to apply various correction schemes to the Z-R 

relationship in order to achieve a better correlation between gauge and radar 

accumulations at high time resolution (10-minute). The sensitivity of each scheme is 

analyzed. It is also attempted to generate precipitation maps at one minute time resolution 

to reduce the uncertainty in the computation of rainfall accumulation associated with 

small scale convective cells. The generated maps are passed through a trajectory model 

which derives the precipitation map at the earth surface. 
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Whenever one tries to compare gauge data with radar data, a problem pertaining to the 

temporal structure of the data of these two sensors arises. The gauge provides rainfall 

accumulation on the ground while the radar provides rainfall intensity at a certain 

distance above the ground. It is often of interest to estimate rainfall accumulation from 

radar data. This is usually done by assuming the rainfall intensity is constant within the 
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radar’s temporal resolution. This assumption may be valid for stratiform rainfall which 

shows small spatial gradients of echoes. However, for thunderstorms this assumption 

may not be valid for 10-minute resolution. The reason is that the single-cell 

thunderstorms usually last for 20-30 minutes (http://ww2010.atmos.uiuc.edu/(Gh)/ 

wwhlpr/single). Although multicell thunderstorms developed in a frontal passage system 

may last for several hours, an individual cell usually decays quickly and a new cell is 

developed in a preferred direction. The cluster of cells forms a convective line which may 

persist for several hours or even days. Such storms exhibit steep spatial gradients of 

reflectivity which introduces uncertainties due to the assumption of uniform intensity 

within 10-minute cycles. This is further explained with an example.  

Figure 30 shows two consecutive reflectivity scans over gauge #1. The first scan 

(June 10, 2000, 8:00 UTC) shows a cell south-west of the gauge location and the second 

scan (June 10, 2000, 8:10 UTC) shows that the cell has moved to the north-east direction 

of the gauge location. These cells are marked by a white ellipse and the gauge is shown 

with the symbol ‘o’. The reflectivities above the gauge location in the two scans are 

found to be 28 and 34.4 dBZ, respectively, from the nearest neighbour interpolation. The 

peak intensity of the cell passing over the gauge is found to be 50.2 dBZ. Hence, the 

intensity at any time between the two scans, e.g. at 8:05 UTC, may be quite different 

from the value of 28 dBZ and 34.4 dBZ or linear average of the two; it may be as high as 

50 dBZ. The gauge measures the true accumulation at this point, so one should expect 

significant differences from the radar measurement.  
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A coarser time resolution may increase the correlation between the gauge and the 

radar measurement. The time resolution of radar data may also be increased by tracking 

the convective cells and locating their geographic position at intermediate times between 

successive scans. Such an algorithm is described by Hannesen (2002).  

Tracking convective cells for precipitation forecasting of short lead time (also 

known as now-casting) and for estimating wind motion has been practiced since 1960 (Li 

et al., 1995) and is often used by airport authorities (Wolfson et al., 1995). Hence, 

conventional tracking algorithms may be used to increase time resolution of the radar 

data. 
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Rinehart and Garvey (1978) describe a method to track the precipitation based on 

correlation to derive the motion of the small scale patterns. This algorithm is closely 

related to algorithms used for identifying patterns in images. In this method, a 

10km�10km area is selected and this area is translated over a region of the radar scan of 

[a] June 10,2000, 8:00 UTC
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Figure 30: Two consecutive reflectivity scans over gauge #1 (shown with ‘o’ symbol, latitude 49° 54' 

11.38", longitude -96° 59' 5.19"). The axes are distance in kilometre.  
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the next time step. This area is termed the ‘window’. For each position of the window 

over the radar scan during the translation, the correlation coefficient is determined 

between the window and the 10 km�10 km area of the radar scan over which the window 

is placed is determined. The position of the maximum correlation coefficient is 

determined. It is assumed that the storm cell has moved to the position where the 

correlation coefficient attains its maximum. 

It is noteworthy that during multi-cell thunderstorms, convective cells may 

continuously grow on one side of the convective line and decay on the other side which 

creates an apparent motion which may be different from the large scale wind direction. 

This apparent movement is known as ‘propagation’ (Li and Schmid, 1995). Raghabhan 

(2003) explained that when a convective cell reaches its mature stage, the downdraft from 

it generates new cells. Thus old cells decay and new cell emerge creating an apparent 

motion. The tracking algorithm described above is suitable for determining the apparent 

direction of the convective cells but may not be suitable for deriving the actual direction 

of the precipitation system. 

Browning (1979) developed an algorithm to track the ‘storm envelope’ instead of 

individual cells. He degraded the reflectivity map to 20 km�20 km scale from the original 

5 km�5 km scale. This smoothing operation helps to track the large scale movement. 

Wolfson et al. (1999) introduced an elliptical filter to track the large scale features. 

This study assumes that the movement of the large scale features is more 

representative of the mean motion of the precipitation system. To track the large scale 

features Rinehart and Garvey (1978)’s procedure is followed, except that a 75 km�75 km 
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window is selected. The rainfall events selected for this study are all synoptic scale in 

nature and covers the whole radar umbrella. This 75 km�75 km window is translated over 

a 100 km�100 km area of the next radar scan. It is assumed that storms will not move 

more than 15 km in a 10-minute time step. Mathematically, the cross-correlation is 

calculated as, 
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where W is the window matrix, S is the radar scan of the next time step, and C is the 

cross-correlation matrix. The size of the window is [I�J]. Both W and S are reflectivity 

matrices in dBZ. 

Figure 31 shows the time series of movement vectors of precipitation. The length 

of an arrow at a time reflects the movement of the precipitation system at that time and its 

angle from the vertical reflects the angle from the north direction. This vector plotting 

shows that the change in movement vectors is gradual and consistent with the movement 

vector of the previous time step. The exception is the July 4th rainfall during which two 

vectors show an abrupt change in direction (00:20 and 01:20 UTC). Such anomalous 

movement may be corrected by comparing the current direction with the direction 

obtained in the previous time step, and if the change of direction is greater than a 

threshold (e.g. 45O), the direction obtained in the previous time step may be used. This 

simplified filtering approach is used in this study. Alternatively, a Kalman filtering 

approach may be recommended to predict and update the direction vector at each time 

step. Another observation is that the precipitation system is not changing its direction 

more than 90o within a rainfall. 
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The movement of precipitation can also be derived from the Velocity Azimuth 

Display (VAD) of the radar data. VAD provides velocity at given elevation and the 

displacement in a 10-minute time period can be computed by multiplying by an 

appropriate factor.  

Figure 32 shows the scatter plot of the magnitude and direction of precipitation 

movement derived from the correlation based tracking and from the VAD data 

corresponding to 4 km altitude. It is assumed that precipitation is generated from the 4 

km altitude. The linear association suggests consistency between the two methods. The 

variations in the direction measured from the two procedures are found within 30o. 
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Figure 31: Time series of movement vector of rainfall. Time is in UTC. The first vector represents 7.5 km 

and 450 from North. 
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Once the movement of precipitation has been determined by applying the tracking 

algorithm, it is easy to generate the reflectivity maps within each 10-minute time period. 

The reflectivity map at an intermediate time can be generated using the method described 

by Hannesen (2002). If the X and Y component of the movement vector of the 

precipitation system at any time t is dx and dy and if the time interval between two 

successive scan is dt, the precipitation map at any intermediate time (t+�dt) can be 

generated using the following expression, 

           dtt
dyydxx

t
yx

dtt
dyydxx dBZdBZdBZ +

++
+

++ +−= ,,, )1( ηηη
ηη  Eq 5.2 

 

where � is a coefficient whose value varies from 0 to 1. Using this equation, nine 

intermediate reflectivity maps have been generated for each 10-minute cycle. Here, 

t
yxdBZ ,  is the reflectivity at a location (x,y) and time t is associated with the 1.5 km 

CAPPI. 

Figure 33 is an extension of Figure 30 with two additional scans generated by 

space-time interpolation. The generated scans are shown in Figure 33c and Figure 33d. It 

is observed that the convective cell is passing over the gauge (marked with white circle) 
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Figure 32: Comparison of precipitation [a] displacement and [b] direction obtained from correlation 

tracking (without filtering) and from VAD data. 
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which suggests that the interpolation should provide more accurate rainfall 

accumulations. Figure 34 shows one-minute rainfall accumulations over gauge #1, within 

the 10-minute time interval. This figure shows significant increase in rainfall within the 

time range due to the passing of the cell. 
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Figure 33: Convective cell is passing over the gauge #1, [a] and [d] is from conventional scan, [b] and [c] is 

generated scan from space-time interpolation. The axes show distance in km. The location of gauge is 
marked with white circle. 
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Figure 34: The one minute radar rainfall accumulations over gauge #1 for the June 10th rainfall from 8:00 to 

8:10 UTC. 
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Accurate determination of the time coordinates of pixels in the CAPPI appears important 

in order to establish a good correlation for 10-minute accumulations. Although a CAPPI 

is stamped with a time, it does not reflect the rainfall rate at that time. For example, the 

radar used in this study takes 10-minute to complete a cycle. During the first-half of this 

time span, it operates in conventional mode and in the second-half it operates in doppler 

mode (Patrick 2005, personal communication). It completes scanning the 24 elevation 

angles in the conventional mode and the four elevation angles in the Doppler mode. 

These scannings are stamped at the median time of each 10-minute cycle. For example, if 

a scanning product shows time stamped at 10:20 am, it means that the conventional 

scannings lasted from 10:15 to 10:20 am and the doppler scan lasted from 10:20 to 10:25. 

As the conventional scanning schedule is started from the highest elevation angle 

(Donaldson 2005, personal communication), rainfall intensity at locations closest to the 

radar site is five minutes older than the time stamped at the CAPPI and the rainfall 

intensity at locations farthest from the radar site is the nominal. 

The Winnipeg city raingauges are located within a 50 km to 70 km radial distance 

from the Woodland radar. Out of 24 complete rotations, the 1.5 km CAPPI for this study 

area will be captured from the 19th  and 20th rotations (Figure 5). This rotation will occur 

at the beginning of the 5th minute of each 10-minute cycle. If the time stamp of a CAPPI 

of this study area shows 10:20 am (hh:mm), it can be calculated that this portion of the 

CAPPI shows rainfall intensity in the time interval ranging from 10:18:57 to 10:19:22 

(hh:mm:ss). For simplicity, it may be assumed that the CAPPI of the study area shows 

the rainfall echo at time 10:19 am when time is stamped as 10:20 am.  
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It was mentioned earlier that Bodiroga (2004) prepared 10-minute gauge 

accumulations for Winnipeg’s rain gauges which are used in this study. To synchronize 

the time between gauge accumulations and radar accumulations, it is necessary to 

compute radar accumulations from the second scan, which is a generated scan from the 

space-time interpolation. By summing up radar accumulations from 10 consecutive 1-

minute rain fall at a geographic location, it is possible to get 10-minute rainfall 

accumulations from the radar. 
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It is of interest to check the correlation of 10-minute gauge accumulations and 10-minute 

accumulations computed from the radar using the aforementioned procedures. Figure 35 

shows the comparison between the radar and the gauge accumulations (10 minute). The 

performance is measured in terms of the correlation coefficient (CC) and the bias. The 

bias is the ratio of the summation of all gauge accumulations to the summation of all 

radar accumulations. Obviously, radar accumulations are computed only at the gauge 

locations. The value of the correlation coefficient and the bias is shown on the respective 

figures.  

The correlation coefficient measures the strength of linear association; its value 

may be close to 1 even if the radar appreciably underestimates or overestimates the 

precipitation. Hence, a good agreement between the gauge and radar should be ensured if 

both of these parameters have values close to 1. Comparing these values with the 

tabulated values in Table 6, it is observed that the correlation coefficient is significantly 

increased in all cases. Figure 36 shows the bar diagram of the correlation coefficients of 

two methods of time integration. Here method 1 refers to the method adopted in Chapter 
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3, that is, rainfall intensity obtained from radar is assumed constant within 10-minute 

cycles and the accumulation is computed from this intensity, and method 2 is the 

computed accumulations following the tracking algorithm, space-time interpolation, and 

accurate time synchronization. The correlation coefficient for the whole ensemble of six 

rainfalls is 0.3 and 0.57, respectively, for the two methods which implies a 90% 

improvement. It should be mentioned that Marshall-Palmer’s relationship is used in both 

estimations. 

It is observed that radar underestimates the June 13th, the July 4th and the July 7th 

rainfall and overestimates the July 23rd rainfall event. 

The space time interpolation is used to get the rainfall intensity at each minute of 

a 10-minute cycles. It is of interest to explore which intensity is the most representative 

relative to the gauge accumulation. Figure 37 shows the correlation between gauge 

accumulations and radar accumulations. Nine scans are generated for each 10-minute 

cycle using the space-time interpolation. Each bar shows the correlation between the 

gauge accumulation and the set of each generated radar scan. The 10th bar shows the 

correlation of the original radar scan with the gauges. It appears that the first seven scans 

show better correlation with the gauge accumulations. Thereafter, the correlation begins 

to fall sharply. One possible reason behind this trend may be the time lag for a rainfall 

mass from the atmosphere to reach the ground. This study attempts to compute travel 

time of a rainfall mass from 1.5 km CAPPI to the ground. Several sources are available to 

estimate fall velocity of hydrometeors and once fall velocity has been computed, the 

travel time can be computed by dividing the 1.5 km distance by the fall velocity.  
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Figure 35: Comparison of 10-minute gauge and radar accumulations for the six rainfall events. Radar 

accumulation is computed using generated scan from space-time interpolation.  
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Figure 36: Comparison between two methods of time integration. 
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Ahrens (1994) tabulated fall velocities of raindrops having different diameters. 

This table suggests that the travel time for small raindrops, typical raindrops, and large 

raindrops should be 6.26 minutes, 3.83 minutes, and 2.78 minutes, respectively. The fall 

velocity may also be computed using the equation proposed by Atlas and Ulbrich (1977) 

as shown in Eq 2.3. It is noteworthy that most sources for estimating fall velocity of 

raindrops do not consider the effect of updraft and downdraft. Based on the literature, it 

may be concluded that a rainfall mass at the 1.5 km CAPPI may take 2 to 6 minutes to 

reach the ground. Hence, rainfall at the eighth scan and onward of each 10-minute cycle 

contributes to the next 10-minute accumulations. This may be the reason that the 

correlation sharply falls after the seventh scan of 10-minute cycles. Obviously, in the case 

of hourly accumulations this should not be a serious issue. If the timing of the radar scan 

falls on the last minute of a 10-minute cycle, only one scan out of six scans should 

contribute to the gauge accumulation of the next hour. Hence, a better correlation should 

be expected. This may be the reason for getting better correlations with hourly 

accumulations as described in Section 3.6.5. It is further observed that gauge to radar 

correlations for hourly accumulations using Marshall-Palmer’s relationship is 0.55 which 
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Figure 37: Correlation between gauge accumulation and radar intensity. Each bar shows correlation of a set 

of radar scan with gauge accumulation. 
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is fairly close to the correlation obtained for the first several scans of each 10-minute 

cycle. 

It is also observed that the correlation for the ensemble of the first six generated 

scans of each 10-minute cycle is close to 0.5 whereas the correlation for the accumulation 

algorithm using space time interpolation techniques is 0.57. Obviously, one may question 

the necessity of applying this complicated algorithm when accumulations computed from 

a single scan shows fairly close correlation. The answer is that the necessity of this 

algorithm may be case specific. For example, this algorithm should be useful for fast 

moving isolated cell. If a 50 km radius cell moves 10 km in 10 minutes, this algorithm 

may not be useful. On the other hand, if a 5 km radius cell moves 10 km in 10 minutes, 

this algorithm appears essential for computing accurate rainfall accumulations. 

It may be concluded that if one wants to avoid the use of a complicated space-

time interpolation algorithm without significantly loss of accuracy, one should (i) exactly 

measure the time when the study area is scanned by the radar, and (ii) determine the time 

cycle/interval for gauge accumulations so that the radar scan times falls within the first 

half of the time interval used for the gauge accumulation. 
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Instead of comparing radar and gauge accumulations at the same time point, one may be 

interested in keeping a time lag between the two accumulations to account for the travel 

time from the atmosphere to the ground. This travel time will generally be affected by 

localized updraft/downdraft and accurate determination is not possible without dual-
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doppler scanning. Despite this fact, one may attempt to determine a ‘climatological’ 

travel time. In this study, the correlation between gauge and radar accumulation is 

determined by examining time lags from zero to 10 minutes. The generated scans from 

the space-time interpolation are used for this purpose. In Figure 38, each bar shows the 

gauge and radar correlation with time lags shown on the x axis. This figure shows that the 

correlation at two minutes lag is 0.6 whereas correlation at zero lag is 0.57. However, 

absence of a sharp peak probably indicates that travel time is varying in a wide range. 

It should be expected that allowing for travel time may improve the rainfall 

estimation at the earth’s surface from radar observation. This study makes an attempt to 

generate the reflectivity/rainfall map at the surface from the atmospheric radar 

observation considering time shifting. The travel time should vary depending on the 

drop-diameters and the vertical velocity of the air due to updraft/downdraft. Roger’s 

(1964) provides an expression for computing fall velocity based on reflectivity which is   

           072.08.3 ZV f =  Eq 5.3 
 

where Z is in mm6/m3 and Vf is the fall velocity in m/s. The travel time (tf) for a pixel is 

computed by dividing the elevation of the CAPPI by the fall velocity (Vf). 
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Figure 38: Correlation between gauge and radar accumulations by keeping time lag. 
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This study uses Roger’s (1964) expression to compute travel time. Each pixel will 

have a particular tf value, reflecting the fact that different Z-values will yield different tf. 

Hence, an algorithm is developed that takes the generated CAPPI at one minute 

resolution as input, computes the tf  for each pixel, transfers each pixel to the earth surface 

by changing its time coordinate and keeping the space coordinate the same and finally 

computes the rainfall accumulation at any space coordinate for any suitable time interval. 

In fact, this algorithm generates a new set of CAPPI’s which represents the reflectivity at 

the earth surface. It appears that as the travel time is in the order of 2 to 6 minutes, the 

original radar scans having 10-minute resolution are not useful for this model. Hence, the 

generated scans having one minute resolution are used. The generated scans at the earth 

surface can be represented by reflectivity (dBZ) or by rainfall rate using a Z-R 

relationship or by rainfall accumulations at one minute resolution. This model can be 

expressed as follows, 

           t
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where tf is the travel time taken by the rainfall mass to reach the ground, za stands for 

elevation of CAPPI, and zo stands for earth surface. It is worth noting that a situation may 

arise where two reflectivities having the same space-coordinate but two different time 

coordinates may reach the ground at the same space-time coordinate. In such case 

reflectivity may not be additive. Hence, each reflectivity is converted to rainfall 

accumulation and the accumulations are added together. 
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Figure 39 shows the scatter plot of the 10-minute gauge and radar accumulations after 

applying the time-shifting algorithm integrated with the space-time interpolation 
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algorithm. This figure still shows significant underestimation in case of the June 13th, the 

July 4th, and the July 7th rainfall events and overestimation in case of the July 23rd rainfall 

event. Indeed this correction scheme should not change the bias as the total accumulation 

measured by the gauge and radar will not change. 

Figure 40 shows the correlation coefficients of six rainfall events with and 

without consideration of time shifting. It is observed that the correlation coefficient 

increases in four rainfall events and decreases in two events. This behaviour is not 

unexpected as computation of travel time does not consider the updraft/downdraft which 

may alter the fall velocity. Despite this limitation, the correlation of the ensemble is 

increased to 0.59 from 0.57 which implies a 3.5% improvement. 
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The usual practice is to compare the gauge accumulation with the radar intensity located 

vertically above the gauge location. The underlying assumption of this practice is that 

wind is not advected more than the radar’s spatial resolution. For high spatial resolution 

radars (e.g. 1 km�1o), this assumption may not be valid. If it is valid, the correlation 

between gauge and radar pixel located overhead should be higher than the correlation 

obtained from surrounding radar pixels. 

Figure 41 shows contour of correlations between gauges and surrounding radar 

pixels for the first two hour of the rainfall occurring on June 10, 2000. For example, the 

value of a pixel with coordinates (2, 4) is the correlation between gauges and radar pixels 

located at 2 km East and 4 km North from the gauge location. 
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Figure 39: The comparison of 10-minute accumulations of gauge and radar data after considering travel time of 

the rainfall mass. 
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Figure 40: The correlation coefficients of the six rainfall events with and without considering travel time. 
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The radar value at a particular position is determined using triangular based linear 

interpolation. The correlation is calculated using all gauges. The figure shows that the 

correlation between gauge and overhead radar pixel (0, 0) is 0.5 whereas correlation at 

pixel (0, 3) is 0.8. This may imply that rainfall is advected 3 km to the west during this 

time period. The white spaces in this figure refer to correlations below 0.4. It is observed 

that regions having correlation above 0.4 takes an elliptical shape aligned along a 45o 

line. The reason for this shape may be that rainfall passed over the study area from the 

south-west direction. This direction was already observed in Figure 31a derived from the 

correlation tracking algorithm. The shape of the convective line passing over the area is 

elongated and narrow in width (Figure 13a). Rainfalls show spatial correlation between 

surrounding pixels to a considerable extent. Hence, pixels in the neighbourhood of the 

maximum correlation also show higher correlations creating a ‘shadow’ of the convective 

line passing over the region. 

It is observed from the VAD profile that the wind changes its direction from the 

north-east to the east from the earth’s surface to 1.5 km elevation. This change of 

direction with elevation may also be responsible for spreading the high correlation 

regions. It is also observed that the wind speed is the maximum (around 20 m/s) at 0.5 

km elevation and wind direction at this elevation is from the east. Above and below 0.5 

km, the wind speed gradually decreased. This may be the reason for getting the peak of 

correlations from east. If the average wind speed is 15 m/s, it is possible that the 

precipitation may travel 2.7 km in 3 minutes. Hence, it is reasonable to get the peak of 

correlation at a distance of 3 km. Other reasons that may affect the advection is the radial 

outflow of wind during downbursts, change of wind speed and direction with time, etc., 
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which may also have some contribution to the spread of the maximum correlation region. 

If wind speed and direction were constant at all space and time coordinates, one should 

expect a sharper peak. 

6"3") ���	�
�A����
�	'����	

This study attempts to develop a trajectory model in order to get the locus of the 

precipitation mass from 1.5 km CAPPI to the ground. Trajectory models are widely used 

in the atmospheric sciences to track air pollutants, smoke, etc. (Draxler, 1996). The 

proposed model is similar to pollutant trajectory models except dispersion is not 

accounted for as it is not appropriate for precipitation. The first attempt in this direction 

was probably made by Lack and Fox (2004). A description of this algorithm is provided 

in Section 2.5.11. The algorithm developed in this study needs three dimensional gridded 

velocity components and can be described in three steps: 

Step 1: A suitable time step dt is chosen. The x, y, and z components of 

displacement for the first iteration is computed using the following expressions: 
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Figure 41: Contour of correlation between gauges and surrounding radar pixels.  
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where u and v are the two horizontal components and w is the vertical component 

of the precipitation movement vector. Here w refers the net vertical movement per 

unit time due to the fall speed of the hydrometeors and due to updraft/downdraft. 

It is also assumed that the velocity components remain constant within the 

distance traveled by the precipitation mass in time step dt. This assumption should 

be valid if dt is small. 

Step 2: The space-time coordinates of the rainfall mass after first iteration are as 

follows: 

           t
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 Eq 5.6 
 

where R is the radar rainfall rate. dz1 is subtracted from z to indicate decreasing 

elevation. At this stage, a radar pixel at 1.5 km CAPPI is getting a new space-time 

coordinate after time dt without changing its value. 

Step 3: The velocity components at this new space-time coordinate is then 

retrieved from the 3D gridded velocity components and used to compute 

horizontal and vertical displacement for the next time step. This process is 

repeated until the pixel reaches the ground (e.g. z-�dzi =0).  

In other words, the whole system can be represented in a single equation as 

follows, 
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Eq 5.7 

 

where n is the number of iterations needed for the rainfall mass to reach the ground. The 

expressions to compute dx(i), dy(i), and dz(i) are as follows: 
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The initial values for dx, dy, and dz (at i=1) is set to zero, that is, dx(0)=0, dy(0)=0 

and dz(0)=0. The objective of this model is to generate rainfall accumulation map at the 

ground level based on the reflectivity at the 1.5 km CAPPI. 
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To simulate this model, one needs to have the 3D gridded velocity components. Doppler 

radars measure only the radial velocity. The u, v and w components of velocity of a 

rainfall mass in the atmosphere can be related to the radial velocity Vr using the following 

relationship (Lhermitte, 1970), 

           θθϕθϕ sincoscoscossin wvuVr ++=  Eq 5.9 
 

where � and � are azimuth and elevation angle, respectively. The azimuth is computed 

from north and clockwise direction. 

In Eq 5.9, u, v and w are unknowns. Hence, three equations are required to 

determine the values of u, v, and w at a space coordinate. This can be achieved by 

scanning a space by three doppler radars concurrently. It is also possible to retrieve 

velocities using two doppler radars by using the equation of continuity in the following 

form:  
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The boundary condition to solve this system of equations is that the vertical 

velocity at storm top or at ground level is zero. The velocity components cannot be 

retrieved from single doppler radial velocity. Despite this fact, Lhermitte and Atlas 

(1961) described a method to get velocity components assuming uniform flow at an 

elevation, which is known as Velocity Azimuth Display (VAD). In this method, wind 

direction and magnitude are constant at a fixed elevation but can vary with elevation.  

The radial velocities at an elevation plotted against the azimuth angle should 

produce a sinusoidal curve if wind is spatially uniform at that elevation. The azimuth 

corresponding to the maximum positive amplitude of this sinusoid should represent the 

wind direction (with positive implying movement away from the radar). The radial 

velocity at this azimuth can be determined by the following expression: 

           θθ sincos wVV hr +=  Eq 5.11 
 

where Vh is the resultant horizontal velocity [=	(u2+v2)] and w is the vertical velocity. 

The radial velocity at 180o opposite to this azimuth can be expressed as, 

           θθ sincos wVV hr +−=′  Eq 5.12 
 

By solving these two equations, one can obtain values of Vh and w. Browning and 

Wexler (1968) later modified the VAD algorithm assuming a linear wind model. As dual 

or triple doppler radar data is not available here, this study uses single doppler radar data 

and the VAD algorithm.  
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Doviak and Zrnic (1993) stated that weather systems covering several hundred 

kilometres especially generated from low/high pressure system should not cause 

significant variation in wind speed within the radar covered area. Figure 32 shows that 

precipitation movement obtained from the correlation tracking algorithm and from VAD 

at 4 km elevation are consistent.  

Environment Canada’s online data archive system provides point wind 

measurements using anemometer and vane at 10 m elevation from the ground at 

Winnipeg International Airport. It is of interest to compare the point near-surface data 

with the VAD near-surface data. The lowest elevation is found as 21 m for the 0.5o 

scanning angle. One problem is that airport data is on an hourly scale; hence the VAD is 

averaged to one hour.  

Figure 42 shows a comparison of near-surface hourly averaged wind obtained 

from the two sensors. The figure shows fairly good agreement between the two sensors 

except for some outliers.  

It is observed that VAD is overestimating speed which may be due to its higher 

elevation (21 m) compared to the point measurements (10 m). It is noteworthy that hourly 

averaged point data do not reflect small scale features such as microburst which may last 

for just 5-30 minutes (Fujita, 1985). Another point is that wind instruments measure the 

wind speed and direction whereas VAD measures an ‘average’ speed and direction of 

wind/ precipitation. The wind speed at a point and the speed of precipitation may not be 

the same except in the case of snowfall. This may be one reason for the discrepancy 

between the two sensors. 
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Although this study focuses on synoptic scale precipitation systems, the application of 

VAD data in the trajectory model is still a concern. The reason is that convective 

precipitation is usually associated with downdraft which may create a radial outflow and 

divergence at the lower elevations. However, local velocities at a point should be a vector 

sum of large scale wind (>100 km) motion and local velocity created by downdraft or for 

some other reasons. This resultant velocity may have greater magnitude at the leading 

edge of the storm where the two components are co-linear and smaller magnitude (or 

reverse) at the trailing edge of the storm where the two components are in opposite 

direction. Hence, a greater portion of the precipitation mass may be advected towards the 

storm direction and a lesser portion may be advected in other directions. In Figure 41, the 

higher correlation core is found spread in an area (rather than a point), but skewed 

towards the VAD wind direction which perhaps implicitly supports this assumption. 

Admittedly, the trajectory model would be more efficient if velocity data obtained from  

dual doppler or triple doppler scanning were used. 
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Figure 42: Comparison of hourly [a] wind speed and [b] direction close to the ground using the VAD and 

anemometer. 
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The vertical velocity is assumed equal to the fall velocity/terminal velocity of the 

rainfall mass obtained from the reflectivity. Hence, the effect of updraft and downdraft is 

ignored and w is not changing with respect to x, y, z and t as the precipitation mass of a 

pixel is traveling towards the earth surface. However, the vertical velocities between two 

pixels are different, being dependent on their reflectivity. The horizontal velocity 

components, u and v, are changing along z, but not along x, and y as the VAD assumes 

uniform velocity at a horizontal plane. The model also neglects the change of the velocity 

components with time over the trajectory of rainfall mass, as the total time needed for a 

rainfall mass to reach the ground should not be more than 6 minutes. With these 

simplifications, Eq 5.8 becomes 
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The selection of the time step is a critical issue in the trajectory model. Draxler 

and Hess (1998) stated that the time step should be such that the advection distance per 

unit time step is less than 0.75 times the grid spacing. Based on this criterion, a time step 

of 10 seconds is selected for the trajectory of rainfall mass. The VAD corresponding to 

the 1.5o elevation angle is used as this elevation angle intersects the 1.5 km CAPPI 

surface at about 50 km radial distance from the radar location. Hence, the velocity 

provided by the scanning should be representative for Winnipeg which is located 

approximately 50-70 km from the radar. The assumption behind this segment of VAD 

scanning is that the wind/precipitation movement is uniform at an elevation up to 1.5 km 

of the 50 km radius circular area. Due to the geographic location of Winnipeg, one does 



� ����

not need to assume that wind is uniform over the 200 km radius circular area at a 

particular elevation. 

The reflectivity field at 1.5 km is generated using the tracking algorithm and 

space-time interpolation with 1-minute resolution. These generated reflectivity fields are 

passed through the trajectory model. Travel time obtained for each pixel to reach the 

ground is rounded to the nearest one minute and the displacements in the x and y 

directions are rounded to the nearest one km. These steps yield reflectivity maps at the 

earth surface at one-minute resolution. It is then easy to calculate rainfall accumulations 

with 10-minute or hourly resolution. The space-time interpolation technique thus permits 

to increase the precision of the trajectory model. As the travel time of the rainfall mass 

typically varies from 2-6 minutes (less than radar’s temporal resolution of 10 minutes), it 

is indeed necessary to use the interpolated maps when considering space and time 

shifting criteria. 

It is possible that the rainfall mass at two different space-time coordinates may 

reach the earth surface at the same space-time coordinate. In such cases, the rainfall 

accumulations corresponding to the two rainfall masses are added together. 
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The radar rainfall accumulations at the gauge locations are calculated at the 10-minute 

scale. Marshall-Palmer’s Z-R relationship is used in this context. Figure 43 shows the 

scatter plot of the gauge and radar accumulations. Figure 44 shows the comparison of the 

correlations between the two methods, one considers time shifting only (as described in 

Section 5.3 ) and the other considers both time and space shifting achieved through the 
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trajectory model. It is observed that the correlation is significantly increased in case of 

the June 10th and the August 6th rainfall events. For all other cases, the change in 

correlation is insignificant. The probable reason is that this correction scheme may also 

be case specific, that is, it should improve only when the wind velocity is strong enough 

to advect the rainfall mass more than 1 km. Wind direction may also have significant 

impact on the net advection. For example, if the wind direction is fairly constant within 

1.5 km vertical distance, it should cause more advection than a veering or backing wind, 

even if the magnitude of the wind speed is the same in both cases. Figure 45a shows the 

mean speed obtained from the VAD profile for the six rainfall events. Figure 45b shows 

the standard deviation of the direction of wind/precipitation relative to the near-surface 

direction for the six rainfall events. It is expected that storms with higher variability in 

direction along the vertical (veering or backing) will have larger standard deviation. It is 

observed that the June 10th rainfall shows the highest wind/precipitation speed and the 

August 6th rainfall shows the least standard deviation in direction. These two factors may 

be held responsible for more advection and thereby improvement in correlation. 

Admittedly, another important factor is the travel time. If the vertical velocity is 

significantly high due to downdraft, net advection should be lesser even if the horizontal 

wind speed is higher. 

Another point is that this model should not improve in case of spatially uniform 

rainfall (e.g. stratiform) even if the wind is strong enough to advect the rainfall mass. For 

example, the June 13th rainfall appears as stratiform in nature as low intensity rainfall 

covers the radar umbrella without any convective core and is the result of the movement 

of a warm front. The July 4th rainfall is also due to the movement of a warm front and 
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shows widespread stratiform rainfall. However, several unorganized convective cells are 

found in this rainfall which did not pass over Winnipeg. Due to their widespread spatial 

uniformity, these two rainfalls may not show significant change due to the wind driven 

trajectory. 

It is interesting to observe that although the VAD represents large scale wind 

direction (e.g. >100 km) at a particular elevation and does not include small scale 

movements (e.g. vortex, tornadoes, microburst, divergent flow due to downdraft), it still 

seems useful in improving radar gauge correlation. This may be due to the fact that 

precipitation shows a ‘net’ advection along the large scale wind direction during its 

‘journey’ towards the earth surface. 
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It is widely believed that the Marshall-Palmer’s relationship is useful for stratiform 

rainfall events but underestimates convective thunderstorms (Sauvageot, 1991, pp 116). 

Unfortunately, Figure 43 is not supporting this statement. It is observed that the July 7th 

rainfall is significantly underestimated by radar (bias =1.88) while the July 23rd rainfall is 

overestimated (bias =0.7) although these two rainfall are both convective thunderstorms. 

On the other hand, the June 13th and the July 4th rainfall events appear stratiform in 

nature, but are underestimated by radar (bias 1.69 and 1.28, respectively). The June 10th 

and the August 6th rainfall events appear convective in nature, but are generally well 

fitted (bias 0.89 and 1.17, respectively). 
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Figure 43: Comparison of 10-minute accumulations of gauge and radar data after space-time interpolation and 

passing through the trajectory model. 
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Figure 44: Comparison of correlation obtained with time shifting model and trajectory model. The trajectory 

model incorporates both time and space shifting. 
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Similar trends are also observed in Figure 14 which shows an ‘unprocessed 

comparison’ and in Figure 35 which shows the comparison after space-time interpolation 

and integration. It is clear that using a different Z-R relationship will not solve this 

problem. The reason is that if the underestimated rainfall is adjusted by using a suitable 

Z-R relationship or applying a bias correction, the overestimated rainfall will be further 

deteriorated. One possible solution that might work well in this case is merging gauge 

and radar with Co-kriging or other statistical methods. This study attempts to dig out 

possible meteorological reasons responsible for these chaotic scenarios. 

As Environment Canada uses C-band radars, attenuation may be one driving 

factor for the underestimation. The C-band radars are also being used in Europe and 

Japan (Liu and Illingworth, 2001), whereas in the USA, S-band radars which are less 

susceptible to attenuation are being used (Austin, 1987). However, attenuation should not 

be the reason for overestimation in the case of the July 23rd rainfall event. As the weather 

observer reported occurrence of hail during the June 10th, July 7th, and July 23rd rainfall 
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Figure 45: [a] Mean speed of the rainfall events, [b] standard deviation of wind direction (deg) relative to 

the near-ground direction. 
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events (Patrick 2005, personal communication), hail may be another driving factor for the 

associated discrepancies. As reported by Geotis (1963), reflectivity exceeding 55 dBZ 

and persistent for several minutes is a definite indication of hail storm. The WSR-88D 

rainfall algorithm uses 51 dBZ as ‘hail cap’ for the western mountainous part of the USA 

(Fulton et al., 1998). Reflectivity above 51 dBZ is replaced with 51 for the 

aforementioned area considering reflectivity above this threshold to be due to hail. The 

nationwide default ‘hail cap’ in the USA is 53 dBZ.  
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This study attempts to apply correction for attenuation. The conventional attenuation 

correction algorithm is given in Eq 2.10. However different values for the coefficients are 

reported by different researchers. A list is shown in Table 13 for two-way specific 

attenuation (attenuation per unit distance). 

The equation by Gunn and East (1954) is operationally used in the UK met office 

(Liu and Illingworth, 2001) and is used in this study. Environment Canada’s operational 

software does not provide any correction for attenuation (Donaldson 2005, personal 

communication). Figure 47 shows the scatter plot of gauge and radar accumulations after 

applying the attenuation correction algorithm. It appears that the attenuation correction 

algorithm makes some improvement in the case of the July 7th rainfall event (correlation 

increases from 0.72 to 0.83), however it shows no improvement in the June 13th and the 

Table 13: Two-way specific attenuation proposed by different researchers. 

 Equation 

Gunn and East (1954) ks=0.0044R1.17 

Wexler and Atlas (1963) ks=0.006-0.008R 

Liu and Illingworth (2001) kS=0.00124R1.31 
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July 4th rainfall events. 

As Gunn and East (1954)’s expression provides the highest specific attenuation 

for a given reflectivity among the three expressions considered (Figure 46), the other 

expressions should not be able to improve the situation. It is interesting to note that 

although this expression failed to improve the underestimated rainfall events, it adversely 

increases the radar estimation of the June 10th and the July 23rd rainfalls. These two 

rainfall events were already overestimated by radar and the attenuation correction scheme 

further deteriorated the situation. This study will attempt to explore the possible reasons 

behind this situation. 

It has been reported that the attenuation correction algorithm often causes unusual 

increase of reflectivity at the far end of the radar scan. To eliminate ‘unwanted’ 

enhancement of the reflectivity due to attenuation correction, Lee et al. (2002) proposed 

to apply a constraint from the gauge data. It appears that it may be better to apply gauge 

constraints to fix errors due to attenuation rather than errors due to the ‘attenuation 

correction algorithm’. It is interesting to observe that the ‘unusual’ increase of reflectivity 
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Figure 46: Comparison of three attenuation correction equations 
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due to attenuation is not observed in case of the August 6th, the June 13th, and the July 4th 

rainfall events. Hence, certain weather conditions may be held responsible for such 

adverse enhancement of reflectivity. This study assumes that hail is one reason for such 

adverse enhancement of reflectivity as hail was reported during the June 10th, the July 7th, 

and the July 23rd rainfall (Patrick 2005, personal communication). 

One prime reason for using polarimetric radar is to identify hail covered regions. 

Hail particles usually tumble and gyrate and therefore produce different differential 

reflectivity (ZDR). The logarithmic ratio of horizontal reflectivity (ZHH) and vertical 
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Figure 47: Comparison of gauge and radar accumulations (10-minute) after applying attenuation correction 

algorithm. 
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reflectivity (ZVV) is known as the differential reflectivity (ZDR). Table 3 shows how the 

differential reflectivity (ZDR) and the horizontal reflectivity (ZH) are simultaneously used 

to identify hail covered areas. 

The polarimetric radar is not available in Winnipeg and improved identification of 

hail covered area is beyond the scope of this study. However, this study assumes that 

reflectivity higher than 55 dBZ may result in specific attenuation as high as 1-5 dBZ/km 

(Figure 46) and an increment of 5 dBZ produces 100% increment in rainfall rate using 

Marshall-Palmer’s Z-R relationship. As the total attenuation of a pixel is the cumulative 

sum of the specific attenuations, the error generated by the attenuation correction 

algorithm due to hail will be propagated along the radial till the far edge of the storm and 

may cause serious overestimation of rainfall. Based on this discussion, this study 

recommends employing the hail capping algorithm prior to the application of the 

attenuation correction algorithm. 
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At this point, one may argue that the actual attenuation caused by the hail storm should 

compensate for the error in measuring specific attenuation. In light of this opposite 

argument, it may be better to look at the gauge-radar correlation system when hail 

capping is applied prior to the attenuation correction algorithm. The ratio of gauge to 

radar accumulation is computed for all individual scatter points in Figure 43 and plotted 

against the corresponding radar accumulations in Figure 48. This figure shows that the 

G/R ratio is less than one for radar accumulations (10-minute) greater than 7 mm which 

is equivalent to the reflectivity of 49 dBZ. The solid line in this figure shows a 25 point 

moving average line which falls below one at accumulations greater than 7 mm. Based on 
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this observation, this study assumes 50 dBZ as the upper limit of the reflectivity. Figure 

49 shows the output from the trajectory model when hail capping is applied prior to the 

attenuation correction algorithm. This figure shows that the adverse enhancement of 

reflectivity disappeared and the correlation of the ensemble increases from 0.61 to 0.77. 

The attenuation correction algorithm alone reduces the correlation from 0.61 to 0.59. 

Figure 50 shows the comparison of correlations after applying the hail and attenuation 

correction algorithms. This figure shows that the correlation is improved in the case of 

the July 7th and the June 10th rainfall events. 
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It is observed that the attenuation correction algorithm has not been able to 

improve the radar estimates for the June 13th and the July 7th rainfall events (Figure 49b 

and Figure 49d). The other attenuation equations are not anymore useful as they yield 

specific attenuations lower than that computed by Gunn and East (1954)’s equation. 

Another point to observe is that the June 13th rainfall is still underestimated by radar. 

These issues motivated the consideration of radome attenuation. 
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Figure 48: Ratio of gauge to radar accumulation vs corresponding radar accumulation for all scatter pairs 

of Figure 45. 
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Figure 49: Comparison of gauge and radar accumulation after hail capping is applied prior to the 

attenuation correction algorithm. The trajectory model is used. 
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Figure 50: Comparisons of correlation when hail and attenuation correction is considered. The trajectory 

model is used. 
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Radome attenuation is caused only when there is rainfall at the radar site, in 

which case a thin film of water on the radome surface is created (Sauvageot, 1991, pp 

32). A wet radome may lead to some attenuation despite the fact that the radome is 

coated with hydrophobic materials (Patrick 2005, personal communication). Lee et al. 

(2002) assessed the two-way loss of reflectivity to be around 5 dBZ by using a variational 

approach.  

This study attempts to develop an expression for quantification of wet radome 

losses to minimize the attenuation in the June 13th and the July 7th rainfall events. The 

assumption is that the underestimation caused in these two rainfalls is due to the radome 

attenuation and the parameters of the proposed equation are fitted so that the attenuation 

in these two rainfalls is minimized. Hence, these two rainfalls are used as a calibration 

data set. The other rainfalls are used for test purposes. The following expression is found 

as optimum, 

           45.06.0 dBZkr =  Eq 5.14 
 

where kr 
 is the two way radome attenuation for non-zero reflectivity (dBZ). The unit of kr 

 

is dBZ. 

Figure 51 shows the comparison of gauge and radar accumulation after applying 

the proposed radome attenuation scheme. It appears that the June 13th and July 7th rainfall 

attenuation is alleviated creating no major disturbances in the other rainfall events. The 

correlation of the ensemble increased from 0.78 to 0.81, indicating a 4% improvement.  
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It should be emphasized that radome attenuation occurs only when there is 

precipitation at the radar site. However, precipitation vertically above the radar is not 

available at 1.5 km CAPPI as radar scans are limited to a 24.8o tilt angle which produces 

a ‘cone of silence’ region (unless a vertically pointing radar is available). Hence, echoes 

at the second range bin of a radial is used in this scheme.  
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Divjak (1999) emphasized the need to carry out a smoothing operation on the radar 

products as radar products might have various artefacts. These artefacts may be the result 
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Figure 51 : Comparison of gauge and radar accumulation after applying the proposed radome 
attenuation correction. 
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of speckles due to unrecognized clutters (e.g. migratory birds), the synthesis of CAPPI 

from the discrete scanning, etc. These artefacts may produce discontinuities and sharp 

gradients. The trajectory model used in the study may cause discontinuities due to 

incorrect horizontal and vertical velocities.  

On the other hand, the smoothing operation may remove fine scale details from 

the rainfall map. Hence, another assessment of the performance of the smoothing 

operation is necessary. 

This study explores the possibility of a wavelet thresholding approach as a 

smoothing tool. Wavelet thresholding schemes have been used for eliminating Gaussian 

white noise from images since the early 1990s (Lin et al., 1998; Starck et al., 2002). The 

advantage of this technique over linear filtering techniques lies in the fact that it does not 

distort the edges.  

Figure 52 shows a demonstration of the performance of a wavelet-based de-

noised scheme. A normally distributed noise (mean 0 and standard deviation 40) is added 

to an air photo of a city pixel-by-pixel and thereafter it is denoised with a wavelet 

scheme. If one considers the CAPPI as an image containing random noise, this tool may 

be helpful in eliminating random noise. This study uses the ‘Wavelab’ toolbox developed 

at Stanford University. The description of the algorithm is provided in Appendix C-1.  

This study applied several threshold parameters, however improvement in 

correlation is not observed in any case. Figure 53 shows the scatter plot of gauge and 

radar accumulations (10-minute) after applying 5 dBZ as threshold parameter. 
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Figure 52: Performance of the wavelet based denoising. 
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Figure 53: Comparison of gauge and radar accumulations (10-minute) after applying smoothing with 

wavelet scheme.  
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The correlation of the ensemble is reduced to 0.78 from 0.81 and bias is reduced 

from 0.82 to 0.98 for the 5-dBZ threshold parameter. One possible reason may be the 

smoothing operation reduces peaks which results in reducing bias. Although the bias is 

improved, the reduction in correlation probably implies that ‘real’ peaks were eliminated. 

This is also observed in the case of the July 7th rainfall and the June 10th rainfall events 

(Figure 53a and Figure 53d). Hence, despite significant improvement in bias, this study is 

not recommending post smoothing. 
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This study attempts to derive surface rainfall maps from radar observations of the 

atmosphere. The performance is assessed based on 10-minute accumulations. The very 

high time resolution allows the model to account for space and time shifting of the 

rainfall mass as it travels to the earth surface. The model also accounts for the error 

associated with attenuation and hail.  

One drawback of hail capping is that it forces the model not to generate rainfall 

greater than the ‘capped’ value, even if the actual rainfall is greater than that. For 

example, a model is not able to generate rainfall intensities greater than 100 mm/hr if 

reflectivity is capped at 55 dBZ. This obviously is a problem in flood forecasting models 

used to estimate peak flows. Although the ‘cap’ reflectivity is selected based on the long 

term observation of past weather, there is no guarantee that rainfall will never exceed that 

limit. This study suggests applying capping prior to the attenuation correction algorithm. 

In this way, the attenuation correction algorithm may enhance the reflectivity minimizing 

the adverse effect that may be caused by the capping method. For example, among the six 
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rainfall events used in the study, the most extreme rainfall is observed during the July 7th 

rainfall event where 10-minute gauge accumulation reached 25.6 mm (equivalent to 

153.6 mm/hr intensity), but the radar reflectivity above the gauge location is only 49 

dBZ. The reflectivity is not found higher than 50 dBZ in its upwind direction either. 

According to the Marshall-Palmer relationship this amount of rainfall should cause 

reflectivity around 58 dBZ. This suggests that the extreme rainfall may be significantly 

attenuated based on its spatial distribution and the hail capping method should not cap the 

real extreme rainfalls. It should cap the ‘pseudo’ extreme rainfalls caused by hail or by  

anomalous propagation. An attenuation correction algorithm applied after the hail 

capping may enhance the reflectivity of the ‘real’ extreme rainfalls. 

The bias of the ensemble is found to be 0.82 which implies that the radar is 

overestimating to some extent. This is not unexpected as gauge under-catch is not 

considered. Under-catch may be as high as 40% due to strong winds during 

thunderstorms (Wilson and Brandes, 1979). No correction is available for the tipping-

bucket gauge currently installed in Winnipeg (Hanesiak 2005, personal communication).  

Underestimation at gauges may also occur in heavy showers due to the loss of 

precipitation during the tipping process (http://www.webmet.com/). During light rain or 

drizzle, evaporation is another reason for gauge underestimation. These issues do not 

affect the accuracy of the radar measurement, but affect the performance evaluation when 

radar data are compared to gauge data. 

Figure 54 shows how correlations improved for each rainfall event as a function 

of the various correction steps. The correlation of the ensemble of all rainfall events 

increases from 0.3 to 0.81 after applying all the corrections - a 170% improvement. 
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Figure 70 shows gauge and radar accumulations (10-minute) for the ensemble of 

six rainfall events and Figure 71 shows a simplified flow diagram of the proposed model. 
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This model does not consider anomalous propagation (AP) although wake of the 

thunderstorm is susceptible to be AP echoes. However, it is believed that the precipitation 

scans generated from the lowest elevation angles are susceptible to anomalous 

propagation. The WSR-88D precipitation processing algorithm compares the reflectivity 

map obtained from the lowest elevation angle to the second or higher tilt angle and uses 

the higher tilt angle if AP is detected (Fulton et al., 1998). This algorithm detects AP if 

the lowest tilt angle scanning shows precipitation area much higher than suggested by the 

higher tilt angle scanning. 
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Figure 54: Correlation of each rainfall at each correction step, 0: ‘raw’ comparison, 1: time integration, 2:  

time shifting, 3: space-time shifting, 4: attenuation and hail.  
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Figure 55: Comparison of 10-minute accumulations of gauge and radar measurement for the ensemble of 

six rainfall events. 

This study uses the 1.5 km CAPPI instead of the lowest tilt angle scanning. The 

1.5 km CAPPI at Winnipeg are obtained from scanning corresponding to the 1.1o and 

1.4o tilt angles. The scanning at these elevation angles should not be affected by AP.  

 

 

 

 

 

 

 

 

Figure 56: A simplified flow chart for the proposed model. 
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The current study is focused on a range smaller than 100 km. Beyond this range, 

more errors are generated due to bright band, beam spreading, beam overshooting, etc. 

which are not considered here. The current study only focused on summer rainfall and the 

wind drift model developed herein is not applicable to snowfall. This model does not 

account for atmospheric evaporation of precipitation which may be significant for light 

rainfall. 

6": �%(��/.!(4	$�'�$?
	

It may be a better choice to use the lowest tilt angle instead of the 1.5 km CAPPI to 

minimize the error associated with wind shear. The disadvantage of the lowest tilt angle 

is that it may be affected by the Anomalous Propagation and ground clutter. The WSR- 

88D algorithm uses the lowest tilt angle and when AP is detected it uses a higher tilt 

angle and thus a ‘hybrid’ scan results (Fulton et al., 1998). At higher range (greater than 

70 km), the elevation of the lowest tilt angle is approximately 1 km. At such elevations 

significant errors associated with wind shear may arise. Hence, the lowest tilt angle 

scanning is also susceptible to errors associated with drift. Given the relative advantage 

and disadvantage of the CAPPI and the lowest scan, this study arbitrarily selected the 

CAPPI to work with. At far range (greater than 110 km), the lowest elevation angle is 

used as the CAPPI and more errors are generated due to bright band, beam spreading, etc. 

The present study has not focused on these issues. 

Although Marshall-Palmer’s Z-R relationship is not recommended by NOAA for 

convective rain showers and thunderstorm, this study found that this expression is 

suitable for both stratiform and convective rainfall events when attenuation is accounted 
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for. The attenuation may be the reason for underestimating rainfall by this expression 

during thunderstorms. Although S-band radars are considered insensitive to attenuation, 

Ryzhkov and Zrnic (1995) showed that an intense squall line caused significant 

attenuation in an S-band radar. If Marshall-Palmer’s equation is used in the case of S-

band radars, it may show underestimation, but this may due to attenuation of the S-band 

radar rather than the equation itself. 
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Efforts have been made over the last forty years to improve the quality of radar data for 

meteorological applications. The objective of this study is the same. The quality of the 

radar data is assessed based on gauge data. The basic assumption of this study is that the 

higher the correlation between the gauge and the radar data, the higher is the quality of 

the radar data. This study differentiates between the reflectivity map in the atmosphere 

and at the surface and an attempt is made to get the surface rainfall map from the 

atmospheric reflectivity map. It is expected that the generated surface rainfall map will be 

more applicable for hydrologic applications than the atmospheric rainfall map. The 

overall outcome of this study is summarized in the following sections. 

It was initially observed that the performance of the traditional Z-R relationship is 

below the satisfactory level. The study worked with the six major rainfall events 

occurring in the year 2000. The correlation coefficient between the gauge and the radar 

for the ensemble of six rainfall events was found to be 0.3. Besides the Marshall-Palmer’s 

Z-R relationship, alternative Z-R relationships recommended by NOAA for convective 

(Z=300R1.4) and tropical rainfall (Z=250R1.2) were explored. These two relationships 
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gave correlations lower than the Marshall-Palmer’s relationship (0.22 and 0.18, 

respectively). Rainfall was classified into convective and stratiform regions and two 

different Z-R relationships were applied for the two regions (Z=200R1.6 for the stratiform 

regions and Z=250R1.2 for the convective regions), however the correlation was not 

improved (= 0.18). 

It was then assumed that accurate time synchronization plays a vital role in radar-

gauge correlation at high time resolution (10-minute accumulations). Before preparing 

the radar and gauge ensemble used to assess the quality of radar data, one needs to know 

the exact time when the study area is scanned by the radar. The time interval for gauge 

accumulations should be prepared in such a way that the time when the radar scans the 

area falls within the first half of the gauge time interval for a 10-minute radar cycle. In 

this study, it was found that this time synchronization increased the correlation to 0.5 for 

the ensemble. Although this is neither error of radar nor error of gauge, it seems 

important to account for when assessing the quality of radar data or validating any 

correction scheme with the support of gauge data. 

Hourly accumulations show a somewhat higher correlation (0.5). The possible 

reason for the improvement may be that it smoothens out the error associated with time 

synchronization. Despite the improvement, hourly accumulations also contain outliers 

which may be due to hail contamination. Disregarding the outliers, the overall data 

structure shows an underestimation by radar. The underestimation may be removed by 

using a different Z-R relationship (e.g. Z=150R1.5). Another conclusion may be that the 

underestimation is a result of attenuation which is not negligible for the C-band radar 

used in the study. 
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Development of ‘climatological Z-R relationship’ was attempted by Miller 

(1972), Calheiros and Zawadski (1987), and Atlas et al. (1989) by matching the 

cumulative probability distribution functions. Using this method, this study found the 

relationship Z=30R2 using the rainfall events from the study. The correlation for hourly 

accumulations with this relationship was found to be 0.6, which is higher than the 

Marshall-Palmer’s relationship (=0.5). However, correlation measures the linear 

association and do not account for any systematic overestimation/underestimation. It was 

observed that the climatological Z-R relationship produces a bias of 0.71 and the 

Marshall-Palmer’s relationship produces a bias of 1.05. Hence, in terms of bias, 

Marshall-Palmer’s relationship may be climatologically more accurate. 

The performance of various black-box models was explored by considering that 

the complexity of the reflectivity-rainfall relationship arises due to variability in the 

weather system. It is expected that a black-box model trained with a group of rainfall 

events subjected to different weather conditions may work better than the Z-R 

relationships. The test data was divided into two groups, one containing the reflectivity-

rainfall set for the same rainfall events used in the training but at different geographic 

locations, and the other set containing a new rainfall event. Artificial neural networks 

were used as a ‘black-box’ models and three different types of networks were explored: 

the back propagation network, the radial basis function network, and the generalized 

regression neural network. Each network was tested with two different types of input data 

set, one containing a short time series of reflectivity of a pixel and the other containing 

reflectivity of several pixels pertaining to the same time. It was expected that these two 

input patterns would help assess the relative impact of temporal /spatial smoothing of the 
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input data. It was observed that neural networks have some potential to estimate 

precipitation at new geographic locations in the same rainfall event used for training. The 

method did not significantly improve the estimation of completely new rainfall events. 

When applied to the same rainfall event, the correlation was found to be 0.67 which is 

much higher than the correlation obtained using the Z-R relationship (=0.28). For new 

rainfall events, its performance is similar to the Z-R relationship (0.32 and 0.28, 

respectively). One possible reason may be the spatial correlation of rainfall. Frontal 

precipitation systems are usually synoptic scale phenomena and may extend over the 

whole radar coverage area. When such precipitation systems pass the area, two 

geographic points may show similar time series of rainfall, apart from a certain time lag. 

Zawadski (1973) developed a method to track rainfall using the gauge data based on the 

space-time autocorrelation of rainfall patterns. This may be what enables the neural 

network to estimate the rainfall more consistently with gauge data for the same rainfall 

event used in the training. Hence, the neural network may be recommended as a post-

processing tool rather than an operational estimator. The short time series of rainfall as 

input was found better than the spatial input in all the models tested. Perhaps the trend in 

the short time series helps to better estimate the rainfall. Among the networks tested, the 

back-propagation network was found to perform best. 

An integrated model has been developed to generate precipitation maps at the 

surface from the atmospheric precipitation at 10-minute resolution. This model applies 

correction for attenuation and hail. Using a correlation based tracking algorithm, the 

speed and direction of movement of precipitation is identified and using this direction 

nine maps are generated at each 10-minute cycle using the space-time interpolation 



� �	��

technique. The generated scan is then passed through a trajectory model which transfers 

the rainfall mass to the earth surface using the velocity field obtained from the VAD 

scanning. The vertical velocity component is assumed equal to the fall velocity and is 

computed by Rozer’s (1964) equation. It was found that the model produced correlations 

of 0.61.  

It was observed that the June 10th and the August 6th rainfall events benefited the 

most from the model. These two rainfalls were subjected to the least variation in wind 

direction from the earth surface to the 1.5 km elevation and had significantly higher wind 

speed than the other events. These two factors may be held responsible for advecting 

rainfall masses more than the radar’s spatial resolution. Although the VAD profile 

assumes uniform wind at a given elevation, its performance in the trajectory model is 

encouraging. One possible reason for obtaining a better performance may be that 

precipitation shows a ‘net’ advection along the large scale wind direction given by the 

VAD scanning. 

The quality of the VAD profile is checked by comparing it with the velocity 

measured by an anemometer at the near ground level and by comparing it with the 

velocity obtained from the tracking algorithm. The direction obtained from the tracking 

algorithm should reflect the wind direction at the precipitation generation level and the 

VAD data at 4 km or above shows good agreement with the direction obtained from the 

tracking algorithm. The maximum variation in direction is about 30o. The maximum 

variation in direction obtained from the anemometer and the VAD is about 50o. One 

possible reason behind this higher variation may be that the anemometer acts as a point 

estimator of velocity. 
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This study found that the attenuation correction algorithm makes an enhancement 

of reflectivity which is not always beneficial. This enhancement improved the highly 

attenuated July 7th rainfall but deteriorated the radar performance for the June 10th and the 

July 23rd rainfall events. However, a hail capping method applied prior to the attenuation 

correction may resolve the situation. Hail produce very high reflectivity (greater than 55 

dBZ), and these reflectivities result in high specific attenuation due to the power-law 

nature of the existing attenuation correction algorithms. The cumulative addition of the 

specific attenuations along the radial produces overestimated reflectivities at the far edge 

of the precipitation region and contaminates the whole reflectivity map. Hence, a hail 

capping method applied prior to the attenuation correction is recommneded. 

This study proposes an expression to account for the radome attenuation. The 

parameters of this expression are chosen by trial and error so that the two underestimated 

precipitations (June 13th and the July 7th) will fit with the gauge measurements. It is 

observed that the remaining four rainfall events do not deteriorate with this correction 

algorithm.  

It is observed that the computed rainfall accumulations using the generated scans 

at one-minute resolution perform better (correlation 0.57) than the computed 

accumulations using the 10-minute resolution scans. In the latter case, one needs to 

assume that the rainfall intensity is constant over the 10-minute radar cycle which is not 

necessarily true for fast moving convective cells. Hence, an improved time integration 

may be achieved by generating precipitation maps at one-minute resolution. It should be 

emphasized that the generated scans are useful for executing the trajectory model in a 

more efficient way. 
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It appears from the study that the quality of both gauge and radar data is influenced by 

weather conditions. Heavy rainfall extending over large areas may produce severe 

attenuation as observed in the July 7th rainfall. On the other hand, hail may have caused 

excessive overestimation by radar in the case of the July 23rd rainfall. A stratiform 

rainfall may also show underestimation by radar due to the localized heavy rainfall at the 

radar site. Strong wind shear may advect the rainfall mass horizontally. These issues will 

not be solved by modifying the Z-R relationship. Hence, integration of various correction 

schemes in a unified model is deemed necessary. The correction schemes may need a 

wide range of atmospheric data which may not be readily available to an individual. In 

such cases, a merging with available gauge data is strongly recommended. The reason is 

that merging with gauge data can implicitly account for attenuation, hail, atmospheric 

evaporation, bright band issues, etc., by applying constraints from the gauges. In such 

cases, gauge under-catch due to strong wind and other sources of errors should be 

accounted for.  

The determination of bias or similar correction schemes with the help of gauge 

data ignoring other possible sources of errors may be misleading. For example, a rainfall 

may be underestimated due to attenuation or overestimated due to atmospheric 

evaporation. Hence, bias computed based on one rainfall event may not be applicable to 

other rainfall events where attenuation is not significant. The attenuation depends on the 

intensity and the spatial extent of the rainfall and may vary from rainfall to rainfall. If a 

model is adaptive in nature or is tuned to a particular rainfall, its use for other rainfall 

events may deteriorate the rainfall estimation rather than improving it. Determining the 
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bias based on an ensemble of precipitation events may be a solution. This study found the 

bias for the ensemble of six rainfall events close to unity which implies that a general bias 

correction will not improve any of the rainfall events. A bias computed for each of a 

rainfall may be recommended and should improve the precipitation estimate. This 

process is similar to the merging process. 

It is observed that strong winds may advect the precipitation mass up to 3 km. 

This advection implies that precipitation at the earth surface may differ from atmospheric 

precipitation above a point. Hence, to feed a hydrologic model, precipitation maps at the 

earth surface must be derived from the precipitation in the atmosphere. The total 

accumulation over larger area may not be seriously affected by this advection, but 

hydrograph generated from a smaller urban watershed may be affected by this advection. 

This issue is also important when one attempts to measure bias or similar correction 

schemes or attempt to check the quality of the radar data using the gauge data. 

Although the radar provides scans at 10-minute resolution, it is possible to 

generate scans at higher resolution using a tracking algorithm and space-time 

interpolation techniques. The generated scans at higher time resolution may be useful for 

more precise computation of rainfall accumulations which may increase the accuracy of 

rainfall-runoff models. 

In the application of the correlation based tracking algorithm, it is recommended 

that the size of the window be large enough (e.g. 75km x 75km) to identify the large scale 

movement. Small scale movements may be associated with the ‘propagation’ effect. The 

VAD obtained from the single doppler scan may be recommended for obtaining the 



� �	
�

direction for the trajectory model in case of frontal precipitation systems. However, the 

VAD is not recommended for small-scale isolated thunderstorms. 

The rainfall selected in this study contains both convective and stratiform 

components which were identified and separated using Steiner et al. (1995)’s algorithm. 

It was observed that a single Z-R relationship works fairly well for both convective and 

stratiform rain in case of hourly accumulation. In the case of 10-minute accumulations, 

after applying the various correction schemes, classification of rainfall into convective 

and stratiform regions and the use of two different Z-R relationships did not seem 

warranted.  

Any attenuation correction scheme without prior application of hail-capping may 

be misleading. The expressions used for computing specific attenuation are exponential 

in nature with respect to reflectivity and hence generate very high specific attenuation for 

regions contaminated by hail. When the cumulative addition of specific attenuation is 

carried out for the whole precipitation covered area, unusually high reflectivity may 

appear at the far end of the precipitation area from the radar site. Hence, hail capping 

before attenuation correction is strongly recommended. 

Although Marshall-Palmer’s relationship is usually recommended for stratiform 

precipitation, this study found it applicable to both convective and stratiform precipitation 

when attenuation is properly accounted for. Hence, this relationship is recommended for 

future studies for both convective and stratiform precipitation events. 
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It has been observed that the proposed correlation-based tracking algorithm shows 

anomalous directions in a few cases (1%). Hence, the performance of Kalman filtering 

may be explored to smooth the direction and to remove anomalous directions.  

The performance of the trajectory model may be explored with the velocity field 

obtained from the dual/triple doppler scan. This would provide information on localized 

updraft and downdraft and may be useful in other meteorological applications. 

Effort should be directed to the effect of hail contamination. Reflectivity derived 

from hail contaminated regions does not follow the conventional Z-R relationship. It 

might be possible to develop some statistical relationship to estimate the rainfall 

accumulation using gauge data if a hail contaminated area is identified. Lemon (1978) 

reported some criteria to identify hail regions using the volume scan which may be 

utilized if polarimetric data are not available. If reflectivity in the hail covered region and 

the gauge rainfall in that regions show some trend, it might be possible to estimate 

rainfall accumulations fairly accurately in those regions. Research should also focus on  

assessing the effect of hail on tipping-bucket gauge. 

Finally, a precipitation processing system similar to NEXRAD PPS (Fulton et al. 

1998) should be developed suitable for the Canadian environment including other 

correction schemes which were not considered in this study. These include bright band 

contamination and anomalous propagation. The conventional correction scheme of bright 

band and anomalous propagation requires the volume scans only which are readily 

available. 
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Table A.1: Weight matrix connecting the input layer and the hidden layer and the bias vector for the hidden 
layer (back-propagation network on temporal pattern). 

0.044218 0.025613 -0.033935 -0.054842 0.02226 -5.056 

-0.1742 0.53014 0.31079 0.21091 0.28428 3.009 

0.026776 -0.1242 -0.11801 -0.0054976 0.10656 4.5422 

0.91916 -0.14152 -2.2581 -0.77173 -0.7293 3.0881 

-0.73799 -0.70116 -2.2947 -2.6188 1.4091 1.8302 

3.151 1.6781 0.41823 1.3729 -0.3139 -2.1704 

0.13259 -1.58 -5.2624 2.9197 3.5311 -1.0481 

1.4979 1.6757 -3.3774 -0.31387 -0.3875 3.8112 

-0.19077 0.31233 0.6892 0.27341 -4.1603 2.4716 

1.9168 1.5506 0.70504 2.207 6.1254 -4.0941 

0.032303 0.019221 0.0096734 -0.055956 -0.071487 5.6381 

-0.012003 0.011914 0.058388 0.041171 0.047437 -7.0037 

 

 

Table A.2: Weight matrix connecting the 1st hidden layer to the 2nd hidden layer and the bias vector for the 
2nd hidden layer (back-propagation network on temporal pattern).  

1.892 -2.892 -3.1006 1.872 -0.3834 3.5013 -1.2063 -0.5771 2.2374 -0.8158 -1.1938 -1.0397 -2.5908 

-3.0542 3.576 0.29897 0.06769 1.0791 3.0549 -0.1555 -0.5789 1.874 -3.2722 -0.1511 -0.3716 2.263 

-1.0049 0.56898 2.4971 -0.8354 1.4688 1.7271 2.444 -2.9286 2.147 2.7374 -1.6211 -0.8234 -2.616 

-0.5605 -0.2672 2.7305 -1.9068 -1.1792 2.9718 -1.4348 0.08024 -4.7661 1.5693 -3.4314 0.45312 4.4054 

2.2811 -2.2097 -2.9081 -2.4938 0.59494 -0.6687 0.09758 0.65929 -0.8689 -4.1759 -1.6559 -1.771 4.8485 

1.5647 3.0916 -2.572 2.1636 0.38443 -1.382 2.5425 1.6245 -2.7155 1.3587 -1.9579 -0.1861 -2.0762 

2.9084 0.6955 -0.3437 -1.7512 3.893 -3.6291 3.3262 -1.5696 -6.796 4.8026 1.2262 0.73119 -2.3278 

2.7605 -0.6308 1.0019 -0.4660 -2.4141 3.0057 -1.752 -2.2825 0.24868 1.8637 1.2405 3.1374 -3.7346 

-0.2743 -1.8784 0.9197 4.2998 3.9784 -1.3734 -1.8483 4.1265 -3.5061 -1.9674 -2.5731 -0.6338 -0.3317 

-1.4727 -1.6779 -1.8693 0.94218 -4.0499 0.75911 -3.0822 0.271 0.41549 0.68491 1.752 3.03 -1.6313 

-0.8509 3.4219 2.1464 -0.0521 0.59249 2.3825 3.8474 -0.1830 -3.6227 5.4305 -0.9155 -1.3279 -7.6036 

-2.2908 1.0293 0.21652 -1.9033 3.5653 1.4188 2.4074 -0.8396 -3.0505 -1.6921 2.1109 2.8456 -4.6889 

 

 

Table A.3: Weight matrix connecting the 2nd hidden layer to the output layer and the bias vector for the 
output layer (back-propagation network on temporal pattern). 

0.48143 -0.5569 -2.4115 -3.3946 1.5692 -1.5083 5.366 -1.9091 -6.3809 -1.4566 3.2471 -2.6566 2.94 
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Table A.4: Weight matrix connecting the input layer and the 1st hidden layer and the bias vector for the 
hidden layer (back-propagation network on spatial pattern). 

0.082895 0.096541 0.14608 0.06817 0.011954 0.16102 0.090499 -0.008960 0.23129 2.6488 

0.67677 0.41278 0.98111 0.42535 -0.018136 0.62271 0.66866 0.19636 1.2006 -3.0561 

0.96309 0.32116 1.4556 0.48228 -0.58333 0.48762 1.1994 -0.13566 1.6598 -3.918 

-0.33836 0.48879 -0.7201 0.16151 1.2595 0.11868 -0.21632 0.94857 -1.0792 -0.61681 

0.41233 0.09323 0.83811 0.20029 -0.42168 0.43057 0.30854 -0.18643 1.0214 0.48154 

-0.029896 0.29573 0.11165 0.069264 0.29026 0.23547 0.098294 0.23879 0.069171 -1.036 

-0.054599 0.14602 -0.41258 0.037283 0.48505 -0.24739 -0.001873 0.29293 -0.72164 2.1943 

-0.19981 -0.14387 -0.30538 -0.14189 -0.1285 -0.25359 -0.14234 -0.10131 -0.3472 -3.2251 

 

 

Table A.5: Weight matrix connecting the 1st hidden layer to the 2nd hidden layer and the bias vector for the 
2nd hidden layer (back-propagation network on spatial pattern). 

0.85896 -1.7965 -2.2804 3.7612 -3.0486 1.361 3.4667 -3.251 -2.4636 

1.5394 -1.6105 -2.9385 -1.1243 2.8556 -0.51062 -3.0602 -4.4964 2.7233 

-2.4002 -1.9047 3.0175 -2.0432 1.6399 -2.3223 -0.32272 -4.4523 6.6583 

2.0928 -3.7643 -1.3435 -3.7882 -0.32151 -3.1824 0.39959 3.0081 3.3479 

-2.4627 2.4702 2.8748 3.0475 -2.174 2.978 -1.1395 2.8136 -4.9382 

2.0111 2.657 -1.8154 2.5434 -3.1753 1.1355 -4.6255 -1.5867 0.42237 

0.022257 -1.9504 -5.1959 3.6499 -2.0813 -0.46152 0.1273 4.3224 2.8203 

-2.8321 3.4397 3.1473 -3.115 -2.8497 1.7423 -1.484 -0.17076 -3.0443 

 

 

Table A.6: Weight matrix connecting the 2nd t hidden layer to the output layer and the bias vector for the 
output layer (back-propagation network on spatial pattern). 

-2.4872 1.516 -2.5639 1.7678 0.79923 1.634 -4.4181 2.7866 1.1008 
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Table A.7: Weight matrix for the generalized regression network for new validation data. 

-0.062459 -0.08825 0.0024154 

0.16297 -0.13862 0.012998 

0.062235 0.011091 0.0039195 

0.5687 0.36301 0.10163 

0.18426 0.23722 0.0097669 

0.50477 0.013531 0.034382 

0.06052 0.43213 0.0098935 

-0.46077 -0.45976 0.0015972 

-0.24557 -0.18007 0 

-0.45922 -0.041619 0.0018657 

0.48021 0.29559 0.043518 

0.74994 0.71496 0.31912 

0.33975 0.61713 0.083293 

-0.0067774 0.27261 0.0040376 

0.6149 0.66064 0.2779 

0.15491 0.82153 0.16452 

0.34799 0.10569 0.024135 

0.71745 0.55218 0.30822 

0.59018 0.54278 0.13837 

0.33148 -0.034013 0.018479 

0.28411 0.33157 0.013213 

0.11216 -0.44619 0.0073372 

0.45014 0.4576 0.053268 

0.50518 0.79441 0.21773 

0.49818 0.61833 0.13429 

0.69091 -0.090168 0.20923 

0.62929 0.25122 0.090864 

0.52186 0.52841 0.080874 

0.37953 -0.44585 0.033914 

-0.10503 0.11813 0.0049966 

-0.44432 0.34522 0.0094774 

0.45426 0.37755 0.050682 

0.7996 0.11088 0.2323 

0.16158 0.3394 0.0094813 

0.076826 0.14011 0.0038779 

0.28844 0.21546 0.010361 

0.36588 0.4947 0.038355 

0.35645 0.40482 0.043991 

0.4617 0.1687 0.037675 

0.44724 0.54003 0.057162 

0.21074 0.10692 0.011497 

0.82218 0.30591 0.2487 

-0.11434 -0.44923 0.0023614 

0.24242 0.47346 0.034701 

0.092733 0.61392 0.08839 

-0.10146 0.41933 0.024963 

0.63256 0.45222 0.17168 

-0.064397 0.76371 0.12386 

0.52951 0.45781 0.087891 

0.37077 0.28854 0.023364 

�
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Table B.1: Performance of the back-propagation network for the temporal input pattern 

Net 
ID 

Input 
Neuron 

Hidden 
layer 

Neuron 
in 
Hidden 
Layer Epoch 

RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC 
Validation 

RMSE 
Test (i) 

CC     
Test (i) 

RMSE  
Test (ii) 

CC        
Test (ii) 

1.1 1 1 8 1 1.8761 -0.3192 2.1994 -0.3297 2.3475 -0.3049 1.0947 -0.2795 

1.2 2 1 8 1 1.8765 -0.3316 2.201 -0.3322 2.3492 -0.3225 1.0956 -0.3710 

1.3 3 1 8 30 1.3098 0.6341 1.5697 0.63233 1.6901 0.62792 0.90167 0.50361 

1.4 4 1 8 24 1.2519 0.67388 1.5523 0.64626 1.6478 0.65729 0.83897 0.58133 

1.5 5 1 8 19 1.2013 0.70693 1.461 0.69094 1.5908 0.67679 0.91462 0.48898 

1.6 1 1 12 31 1.4935 0.47119 1.756 0.49128 1.9314 0.4422 1.0499 0.32321 

1.7 2 1 12 71 1.3391 0.61218 1.5783 0.62875 1.692 0.6339 0.82054 0.60203 

1.8 3 1 12 10 1.3945 0.58197 1.5964 0.60247 1.7078 0.61112 0.86121 0.557 

1.9 4 1 12 15 1.2888 0.6517 1.5135 0.67079 1.6565 0.64786 0.89859 0.51404 

1.10 5 1 12 19 1.297 0.64428 1.5132 0.6701 1.6309 0.6716 0.9143 0.4905 

1.11 1 1 16 1 1.8761 -0.2736 2.1994 -0.2793 2.3475 -0.2601 1.0947 -0.2576 

1.12 2 1 16 41 1.3437 0.61072 1.5611 0.63361 1.6727 0.63916 0.79243 0.63789 

1.13 3 1 16 32 1.3199 0.62828 1.5609 0.63146 1.6731 0.63448 0.93826 0.45195 

1.14 4 1 16 23 1.2573 0.67248 1.5244 0.65829 1.6591 0.64114 0.93558 0.43937 

1.15 5 1 16 23 1.1491 0.73519 1.4326 0.71831 1.5738 0.693 1.0254 0.36132 

1.16 1 1 20 14 1.5046 0.45877 1.7607 0.48488 1.9418 0.42976 1.047 0.3097 

1.17 2 1 20 26 1.3394 0.61247 1.5749 0.62757 1.687 0.63244 0.82024 0.60452 

1.18 3 1 20 24 1.3236 0.62528 1.5721 0.62487 1.6782 0.63471 0.9313 0.45573 

1.19 4 1 20 29 1.2778 0.65677 1.5357 0.673 1.681 0.64199 0.90025 0.51399 

1.20 5 1 20 19 1.2447 0.68336 1.4623 0.6891 1.6097 0.66781 1.2912 0.36402 

1.21 1 1 24 23 1.4927 0.47211 1.7556 0.49155 1.931 0.44276 1.0506 0.32304 

1.22 2 1 24 35 1.3383 0.61456 1.5647 0.63135 1.6757 0.63573 0.80547 0.62152 

1.23 3 1 24 34 1.265 0.66551 1.5169 0.67073 1.6593 0.64464 1.0015 0.37094 

1.24 4 1 24 22 1.2638 0.666 1.5583 0.64512 1.6379 0.67274 0.92269 0.45466 

1.25 5 1 24 25 1.1169 0.75327 1.4629 0.6872 1.5409 0.70358 1.2834 0.25219 

1.26 1 2 4 35 1.4976 0.46673 1.7604 0.48708 1.9372 0.43602 1.0525 0.31056 

1.27 2 2 4 39 1.3347 0.61555 1.5834 0.62617 1.6874 0.63733 0.81488 0.61461 

1.28 3 2 4 30 1.2868 0.65034 1.5561 0.64521 1.6617 0.64805 0.95596 0.3996 

1.29 4 2 4 16 1.3098 0.6353 1.5743 0.6315 1.6879 0.63384 0.86788 0.5431 

1.30 5 2 4 21 1.228 0.68925 1.4739 0.68434 1.6446 0.64795 0.92473 0.47801 

1.31 1 2 6 35 1.5021 0.46153 1.7615 0.48673 1.9408 0.43244 1.044 0.31182 

1.32 2 2 6 47 1.3462 0.60698 1.5765 0.62777 1.6901 0.63209 0.82331 0.59948 

1.33 3 2 6 25 1.2417 0.68367 1.5564 0.62885 1.6395 0.64586 0.9454 0.49037 

1.34 4 2 6 13 1.3374 0.61405 1.5811 0.63232 1.6806 0.64884 0.88229 0.51763 

1.35 5 2 6 16 1.2271 0.6899 1.4677 0.6904 1.5914 0.68168 0.82717 0.59897 

1.36 1 2 8 36 1.4803 0.48827 1.7435 0.48987 1.8914 0.47317 1.1228 0.30743 

1.37 2 2 8 27 1.3327 0.61713 1.565 0.63869 1.673 0.64475 0.81193 0.61502 

1.38 3 2 8 41 1.2366 0.68346 1.5564 0.64404 1.685 0.62355 0.99225 0.39534 

1.39 4 2 8 43 1.136 0.74194 1.5115 0.66844 1.6444 0.64608 1.0424 0.29125 

1.40 5 2 8 23 1.1706 0.7231 1.4533 0.70282 1.5898 0.68432 0.94195 0.44627 
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1.41 1 2 10 26 1.5027 0.46093 1.7607 0.48603 1.9407 0.43151 1.0467 0.31088 

1.42 2 2 10 28 1.319 0.62719 1.5729 0.63197 1.6779 0.63998 0.77785 0.65395 

1.43 3 2 10 1 1.8768 -0.3306 2.2025 -0.3256 2.3508 -0.3223 1.0966 -0.2313 

1.44 4 2 10 17 1.2591 0.66909 1.5303 0.66787 1.6485 0.65375 0.94919 0.46461 

1.45 5 2 10 24 1.138 0.74317 1.3962 0.72808 1.5244 0.7087 1.0124 0.37875 

1.46 1 2 12 1 1.8761 0.36636 2.1994 0.38063 2.3475 0.34904 1.0947 0.30018 

1.47 2 2 12 33 1.3395 0.61284 1.5654 0.63174 1.6825 0.6327 0.82619 0.59464 

1.48 3 2 12 23 1.3375 0.61356 1.5773 0.62803 1.6913 0.63327 0.91206 0.48797 

1.49 4 2 12 21 1.2714 0.66089 1.5383 0.66539 1.6485 0.66479 0.89426 0.51495 

1.50 5 2 12 34 1.1204 0.75033 1.3748 0.75099 1.6047 0.67347 1.0654 0.32795 

 

 

Table B.2: Performance of the back-propagation network for the spatial input pattern. 

Net 
ID 

Input 
Neuron 

Hidden 
layer 

Neuron 
in 
Hidden 
Layer Epoch 

RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC 
Validation 

RMSE 
Test (i) 

CC     
Test (i) 

RMSE  
Test (ii) 

CC        
Test (ii) 

2.1 9 1 8 10 1.4938 0.49423 1.6838 0.53793 1.9202 0.44611 0.99407 0.39725 

2.2 9 1 12 13 1.4398 0.52639 1.6868 0.55362 1.9217 0.44589 0.94351 0.41115 

2.3 9 1 16 17 1.4278 0.54362 1.6764 0.54391 1.9016 0.46145 0.95906 0.39544 

2.4 9 1 20 12 1.4453 0.52253 1.6871 0.54383 1.9222 0.44279 0.94631 0.41006 

2.5 9 1 24 12 1.4383 0.52815 1.6957 0.54005 1.9278 0.4388 0.94324 0.40875 

2.6 9 2 4 15 1.4253 0.54082 1.6809 0.54566 1.9108 0.45344 0.94533 0.40471 

2.7 9 2 6 15 1.4353 0.53539 1.6856 0.53719 1.9186 0.44674 0.9647 0.37153 

2.8 9 2 8 15 1.433 0.53316 1.6756 0.55625 1.9108 0.45422 0.94441 0.40925 

2.9 9 2 20 26 1.4347 0.53133 1.6828 0.55203 1.9254 0.44079 0.93758 0.41473 

2.10 9 2 24 10 1.451 0.52131 1.678 0.55061 1.9204 0.44371 0.9471 0.4125 
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Table B.3: Performance of the radial basis network for the temporal input pattern 

Net ID No of 
Cluster 

Input 
Neuron 

Width RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC  
Validation 

RMSE  
Test set (i) 

CC      
Test  set (i) 

RMSE  
Test  set (ii) 

CC        
Test  set(ii) 

3.1 N/A 1 0.05 1.4395 0.52651 13.812 0.13326 1.91 0.45622 1.1381 0.29004 

3.2 10 1 0.05 1.524 0.44574 1.8278 0.42341 1.946 0.45185 1.0489 0.28015 

3.3 50 1 0.05 7495.8 0.039446 9617.2 0.020887 8840.9 0.024593 23113 0.028706 

3.4 100 1 0.05 48091 0.036812 1.29E+5 -0.08986 27952 0.06037 67798 -0.00412 

3.5 500 1 0.05 1.4411 0.52532 171.53 0.1062 2.0171 0.38474 1.18 0.28235 

3.6 1000 1 0.05 1.4684 0.51655 3.6327 0.23916 1.9661 0.41765 1.2696 0.26038 

3.7 N/A 1 0.1 1.4569 0.50954 2.1731 0.21098 1.8418 0.52251 1.1306 0.30284 

3.8 10 1 0.1 1.4837 0.48283 1.7682 0.47939 1.9216 0.45544 1.0452 0.3262 

3.9 50 1 0.1 9429.2 -0.01380 9756.1 -0.05700 8251.3 -0.06173 22072 -0.01061 

3.10 100 1 0.1 23.446 0.054904 27.276 -0.03485 23.689 0.035002 34.303 0.022153 

3.11 500 1 0.1 1.4572 0.50939 13.643 -0.07449 1.8751 0.49122 1.1217 0.30445 

3.12 1000 1 0.1 1.4703 0.5057 2.3948 0.18444 1.8341 0.51813 1.2313 0.29833 

3.13 N/A 1 0.2 1.4624 0.50407 1.8357 0.39853 1.8592 0.50882 1.1185 0.30952 

3.14 10 1 0.2 1.5236 0.44693 1.8793 0.35634 1.9177 0.45237 1.2416 0.25264 

3.15 50 1 0.2 57.244 0.018183 226.85 0.11278 34.775 0.006200 1.1567 0.2955 

3.16 100 1 0.2 5.6933 0.078266 40.956 -0.09464 2.0733 0.35917 1.1122 0.31076 

3.17 500 1 0.2 1.4709 0.50132 1.854 0.39289 1.8488 0.50762 1.1978 0.29884 

3.18 1000 1 0.2 1.466 0.50068 1.8202 0.41398 1.8711 0.49546 1.1288 0.31182 

3.19 N/A 1 0.5 1.4761 0.48994 1.7592 0.48031 1.9027 0.46907 1.086 0.32322 

3.20 10 1 0.5 5.5077 0.13349 6.6294 0.007500 4.8026 0.17615 8.8416 0.043812 

3.21 50 1 0.5 1.5926 0.40544 2.7758 0.26056 1.9185 0.44871 1.1081 0.31267 

3.22 100 1 0.5 1.4741 0.49247 1.8104 0.42366 1.903 0.46872 1.1165 0.31496 

3.23 500 1 0.5 1.475 0.49437 1.7488 0.48314 1.8832 0.48255 1.1354 0.32225 

3.24 1000 1 0.5 1.4751 0.49437 1.7454 0.48453 1.8866 0.47824 1.1363 0.32332 

3.25 N/A 1 1 1.4855 0.47996 1.8029 0.43221 1.9119 0.46043 1.0652 0.32013 

3.26 10 1 1 1.5295 0.43397 1.9807 0.26704 1.9367 0.44033 1.0813 0.30007 

3.27 50 1 1 1.478 0.48814 1.7467 0.4868 1.9057 0.46418 1.0967 0.31795 

3.28 100 1 1 1.4776 0.48951 1.7549 0.49012 1.9069 0.46942 1.0656 0.32055 

3.29 500 1 1 1.5083 0.46359 1.7854 0.44393 1.925 0.43962 1.1615 0.28219 

3.30 1000 1 1 1.4911 0.47704 1.7725 0.46215 1.9202 0.44841 1.1088 0.31686 

3.31 N/A 2 0.05 0.68291 0.91508 23.824 0.10521 30.963 0.13758 56.063 0.15375 

3.32 10 2 0.05 1.9812 0.17717 2.1934 0.16289 2.2737 0.20539 1.8794 0.10484 

3.33 50 2 0.05 1.4669 0.5245 1.7872 0.50017 1.9206 0.50449 0.92778 0.50377 

3.34 100 2 0.05 1.3881 0.5793 1.6814 0.55343 1.8002 0.57051 1.0361 0.40097 

3.35 500 2 0.05 44975 -0.08355 1.02E+5 -0.02578 1.01E+5 -0.03874 2.28E+5 -0.14485 

3.36 1000 2 0.05 90737 -0.01613 4.79E+5 -0.06662 4.29E+5 -0.00073 1.25E+6 -0.13953 

3.37 N/A 2 0.1 1.0461 0.78639 28.84 -0.11028 67.327 -0.00182 198.54 -0.06785 

3.38 10 2 0.1 2.0483 0.27129 2.2269 0.24699 2.2885 0.29497 2.4631 0.16046 

3.39 50 2 0.1 1.4453 0.54419 1.7182 0.5099 1.8271 0.52494 1.6956 0.33319 

3.40 100 2 0.1 7.5611 0.15865 7.3681 0.11665 8.0281 0.098464 20.953 0.19486 

3.41 500 2 0.1 13687 0.066216 43237 0.10031 42464 0.046301 1.27E+5 0.096457 

3.42 1000 2 0.1 822.24 -0.00723 3973.9 0.14221 8010.3 0.017687 22878 0.06719 

3.43 N/A 2 0.2 1.2172 0.69526 4.7984 0.081358 5.7935 0.11368 11.272 0.11168 

3.44 10 2 0.2 1.4592 0.51712 1.738 0.50904 1.8794 0.50176 1.0286 0.44714 

3.45 50 2 0.2 5.1312 0.17351 3.6797 0.20582 5.4722 0.14587 16.055 0.16065 

3.46 100 2 0.2 488.77 -0.01827 324.67 -0.07333 648.13 -0.01193 1890.8 -0.06751 

3.47 500 2 0.2 254.59 0.079415 1319.5 0.11414 602.26 0.098195 691.37 0.043839 

3.48 1000 2 0.2 1.8424 0.43338 10.347 0.15733 8.6963 0.059998 18.947 0.011094 

3.49 N/A 2 0.5 1.2844 0.65173 1.8471 0.44667 1.795 0.55137 1.1928 0.43714 

3.50 10 2 0.5 1.3899 0.57426 1.6404 0.58043 1.7586 0.5865 1.0396 0.47735 

3.51 50 2 0.5 14.095 -3.43E-5 11.387 0.071736 13.039 2.82E-02 40.497 -0.04769 

3.52 100 2 0.5 25.823 0.032788 11.624 0.025394 40.974 -0.00816 132.03 0.012755 

3.53 500 2 0.5 1.3448 0.61275 2.8545 0.31081 3.8571 0.16699 8.7236 0.050396 



� ('��

3.54 1000 2 0.5 1.2973 0.64345 1.8756 0.43302 1.758 0.57451 1.4516 0.34345 

3.55 N/A 2 1 1.3198 0.62659 1.624 0.58592 1.6746 0.64002 0.83522 0.59759 

3.56 10 2 1 5.1738 0.30479 4.1349 0.34061 5.2963 0.32063 8.0296 0.27839 

3.57 50 2 1 62.662 0.028224 39.48 0.001560 38.03 0.019386 241.13 0.003901 

3.58 100 2 1 18.408 0.052204 10.759 0.11684 49.925 0.032502 88.993 0.029641 

3.59 500 2 1 1.3242 0.62565 1.9707 0.36842 1.7947 0.54875 1.1391 0.45123 

3.60 1000 2 1 1.323 0.62425 1.6441 0.57038 1.6767 0.63728 0.8501 0.58759 

3.61 N/A 3 0.05 0.12854 0.99712 517.31 0.003627 485.55 -0.03493 1049.6 -0.22646 

3.62 10 3 0.05 1.8676 0.10405 2.1014 0.092443 2.2336 0.10031 1.6081 0.064653 

3.63 50 3 0.05 1.6909 0.27231 1.9529 0.29687 2.106 0.26113 1.3546 0.12459 

3.64 100 3 0.05 1.5919 0.41033 1.9625 0.30596 2.0924 0.3343 1.0373 0.1239 

3.65 500 3 0.05 1.3493 0.62355 1.8363 0.45035 2.0138 0.3907 1.068 0.1406 

3.66 1000 3 0.05 184.04 -0.04822 343.95 0.001796 334.84 -0.02989 626.19 -0.20285 

3.67 N/A 3 0.1 0.32176 0.98179 379.28 -0.01820 461.63 0.14012 1353.2 0.24409 

3.68 10 3 0.1 1.7678 0.20563 2.024 0.18682 2.1644 0.18189 1.4933 0.12669 

3.69 50 3 0.1 1.5549 0.42352 1.8312 0.44774 1.9656 0.45373 1.0527 0.23954 

3.70 100 3 0.1 2.9352 0.20883 3.1413 0.16741 3.1451 0.204 5.4629 0.21995 

3.71 500 3 0.1 23.052 0.009405 34.28 0.015919 34.981 -0.01104 86.398 -0.23554 

3.72 1000 3 0.1 90249 -0.0496 2.51E+5 -0.00891 2.45E+5 -0.04426 7.35E+0 -0.23168 

3.73 N/A 3 0.2 0.67264 0.91776 39.995 -0.02386 39.643 0.093122 58.709 0.089639 

3.74 10 3 0.2 1.6175 0.37486 1.8886 0.36853 2.0414 0.34994 1.3263 0.28012 

3.75 50 3 0.2 1.3544 0.60775 1.6086 0.61277 1.726 0.62352 1.0892 0.43911 

3.76 100 3 0.2 4.7289 0.17384 4.1002 0.12017 4.2529 0.19258 13.381 0.23616 

3.77 500 3 0.2 2871.5 0.063831 3294 0.043893 5371.1 0.041959 14057 0.18537 

3.78 1000 3 0.2 1792.8 -0.00164 4838 0.10926 6544.6 0.072167 17532 0.15231 

3.79 N/A 3 0.5 1.0557 0.782 3.3483 0.24047 8.2722 0.12948 6.3645 0.039108 

3.80 10 3 0.5 1.5482 0.40732 1.8266 0.41795 1.9867 0.39605 0.96913 0.3749 

3.81 50 3 0.5 1.8224 0.40288 1.7112 0.52907 2.0432 0.44076 3.6012 -0.13006 

3.82 100 3 0.5 13.007 0.063318 7.7719 0.03208 15.507 0.063717 41.726 0.29371 

3.83 500 3 0.5 91.364 0.021626 119.14 -0.04892 519.66 -0.02184 533.28 -0.11112 

3.84 1000 3 0.5 2.5571 0.39592 10.625 0.004565 3.1745 0.31405 11.06 0.19657 

3.85 N/A 3 1 1.204 0.70332 1.7566 0.50042 1.8722 0.5225 1.6657 0.14088 

3.86 10 3 1 1.4869 0.48108 1.7533 0.49842 1.9029 0.48609 0.99289 0.36403 

3.87 50 3 1 17.729 0.10587 11.687 0.15519 22.251 0.06559 43.527 0.21858 

3.88 100 3 1 135.2 0.007150 82.458 0.009227 137.6 -0.01120 410.98 0.067896 

3.89 500 3 1 3.9427 0.22414 6.6837 0.052283 20.264 0.047119 18.359 -0.01527 

3.90 1000 3 1 1.2341 0.69089 2.3472 0.31427 1.6716 0.62922 3.3966 0.050735 

3.91 N/A 4 0.05 0.01695 0.99995 2613.4 -0.01850 2598.6 -0.04185 4055.3 -0.14303 

3.92 10 4 0.05 2.1208 -0.01903 2.302 0.015542 2.4246 -0.04910 1.9995 0.026362 

3.93 50 4 0.05 1.7329 0.14216 1.9994 0.17034 2.1485 0.13932 1.3546 0.046486 

3.94 100 4 0.05 1.7649 0.17821 2.0164 0.20674 2.1695 0.1531 1.4772 0.074994 

3.95 500 4 0.05 1.5855 0.43019 2.026 0.24905 2.1352 0.31716 1.0865 0.037839 

3.96 1000 4 0.05 3.669 0.22149 5.0631 0.060929 5.1671 0.062803 7.0724 0.12172 

3.97 N/A 4 0.1 0.050231 0.99956 465.19 -0.02462 465.61 -0.08911 1231.7 -0.20434 

3.98 10 4 0.1 1.7779 0.14703 2.0327 0.15415 2.1768 0.13303 1.4573 0.081286 

3.99 50 4 0.1 2.532 0.080458 2.6673 0.081302 2.7429 0.099492 3.0916 0.10057 

3.100 100 4 0.1 1.5667 0.40052 1.8978 0.35001 2.0602 0.32508 1.0199 0.15748 

3.101 500 4 0.1 3.0713 0.30186 3.9771 0.12888 3.9364 0.18651 7.3736 0.17922 

3.102 1000 4 0.1 744.21 -0.02342 1307.1 -0.00657 1315.4 0.078004 2916.9 0.17144 

3.103 N/A 4 0.2 0.17848 0.99443 12421 0.10231 22702 0.09818 1.01E+5 0.15542 

3.104 10 4 0.2 1.6843 0.29129 1.9507 0.29382 2.0983 0.28587 1.3976 0.17909 

3.105 50 4 0.2 1.5128 0.46329 1.7441 0.53379 1.9306 0.48106 1.0615 0.13942 

3.106 100 4 0.2 1.4056 0.57679 1.6502 0.57905 1.7881 0.57228 1.4911 0.29735 

3.107 500 4 0.2 72.975 -0.09073 78.802 -0.04600 94.417 -0.11978 358.32 -0.19858 

3.108 1000 4 0.2 245.88 -0.04684 421.34 -0.02159 572.35 -0.09634 2404.8 -0.18881 

3.109 N/A 4 0.5 0.56354 0.94305 10.456 0.23007 29.687 0.065706 68.453 -0.09749 
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3.110 10 4 0.5 1.5806 0.36282 1.8535 0.38509 2.0125 0.36805 1.0092 0.25675 

3.111 50 4 0.5 2.7619 0.33518 2.2967 0.38458 2.6643 0.34407 7.69 0.19772 

3.112 100 4 0.5 1.6389 0.52105 1.6489 0.57653 1.9845 0.47911 3.549 0.18581 

3.113 500 4 0.5 952.59 0.039651 537.64 0.022508 2071.7 0.067858 7701 0.12608 

3.114 1000 4 0.5 249.62 -0.02097 254.74 -0.00278 987.08 -0.04938 3473.6 -0.13804 

3.115 N/A 4 1 0.98347 0.81422 2.2027 0.39268 2.6033 0.35298 9.1772 0.026978 

3.116 10 4 1 1.5965 0.37817 1.8413 0.40021 1.9804 0.40452 1.3947 0.13928 

3.117 50 4 1 2.6914 0.27331 2.1966 0.35868 2.7606 0.29525 6.6936 -0.03119 

3.118 100 4 1 9.7207 0.051273 6.0515 0.13794 10.678 0.093259 33.465 -0.18342 

3.119 500 4 1 38.692 -0.02062 25.63 -0.02857 89.629 -0.03527 223.49 -0.07725 

3.120 1000 4 1 8.4897 0.14253 15.91 0.014239 20.37 0.018338 177.45 0.021697 

3.121 N/A 5 0.05 0.003876 1 4117.4 -0.03256 4153.6 0.001400 5237.8 -0.07718 

3.122 10 5 0.05 1.8137 0.063123 2.1427 0.03254 2.2916 0.06877 1.0558 0.029397 

3.123 50 5 0.05 1.6919 0.097873 2.0035 0.066635 2.1545 0.10073 1.091 0.029681 

3.124 100 5 0.05 1.9778 0.090326 2.196 0.07307 2.3205 0.069013 1.8188 0.036045 

3.125 500 5 0.05 1.6168 0.31733 1.9838 0.16789 2.1274 0.18909 1.0686 0.054805 

3.126 1000 5 0.05 1.4309 0.57444 2.0736 0.14849 2.2018 0.19691 1.0582 0.061468 

3.127 N/A 5 0.1 0.003889 1 15488 0.079984 15952 0.053525 30872 0.1298 

3.128 10 5 0.1 1.7748 0.086648 2.0353 0.089625 2.1809 0.07141 1.4226 0.048732 

3.129 50 5 0.1 1.7444 0.18145 2.0855 0.11245 2.2152 0.18153 1.0569 0.04107 

3.130 100 5 0.1 1.7075 0.21542 2.0366 0.18093 2.1643 0.22993 1.0539 0.049389 

3.131 500 5 0.1 1.5491 0.43588 1.9551 0.28878 2.0766 0.32855 1.0498 0.089021 

3.132 1000 5 0.1 5.6798 0.15719 8.9139 0.02156 9.1615 0.012735 14.22 -0.10517 

3.133 N/A 5 0.2 0.004453 1 2679.1 -0.12188 3446.9 -0.09964 14235 -0.11391 

3.134 10 5 0.2 1.8252 0.18098 2.0487 0.21263 2.2001 0.17647 1.7244 0.11854 

3.135 50 5 0.2 1.6453 0.29199 1.9618 0.26491 2.1064 0.27134 1.0611 0.17611 

3.136 100 5 0.2 1.5222 0.4764 1.8089 0.45423 1.94 0.46582 1.3893 0.1839 

3.137 500 5 0.2 9.3209 0.17057 10.932 0.17776 11.923 0.15977 36.624 0.15078 

3.138 1000 5 0.2 160.19 0.10669 262.09 0.10518 305.97 0.09763 1080.6 0.14067 

3.139 N/A 5 0.5 0.43255 0.96686 10.289 0.16043 17.512 0.12143 100.11 0.069558 

3.140 10 5 0.5 1.6303 0.28374 1.9171 0.30338 2.0783 0.28377 1.0324 0.17284 

3.141 50 5 0.5 1.446 0.52346 1.6723 0.56807 1.7943 0.57443 1.1617 0.31636 

3.142 100 5 0.5 2.4818 0.36933 2.1492 0.44268 2.5282 0.36008 7.3917 0.10093 

3.143 500 5 0.5 91.909 0.11925 78.769 0.13287 129.84 0.046001 645.22 0.009160 

3.144 1000 5 0.5 83.795 0.004852 90.524 0.13662 136.28 0.01255 436.11 0.12625 

3.145 N/A 5 1 0.70932 0.90815 2.3344 0.50357 3.0276 0.32826 19.714 0.069566 

3.146 10 5 1 2.0049 0.34193 1.9386 0.4038 2.1643 0.36221 3.0856 0.33032 

3.147 50 5 1 2.2167 0.22873 2.15 0.26226 2.3486 0.27739 5.0003 0.003617 

3.148 100 5 1 18.053 0.12727 13.059 0.15388 17.577 0.034168 53.892 -0.00642 

3.149 500 5 1 915.12 0.11069 821.51 0.18131 1283.5 0.005026 5794.6 0.008436 

3.150 1000 5 1 42.879 -0.03867 37.792 -0.04084 59.873 -0.02891 326.27 0.022812 
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Table B.4: Performance of the radial basis network for the spatial input pattern. 

Net ID No of 
Cluster 

Input 
Neuron 

Width RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC  
Validation 

RMSE  
Test  set (i) 

CC      
Test  set (i) 

RMSE  
Test  set (ii) 

CC        
Test  set(ii) 

4.1 N/A 9 0.05 0.049231 0.99958 5802.1 0.041109 5798.4 0.028 7982 -0.06452 

4.2 10 9 0.05 1.7807 0.16879 2.0283 0.21667 2.175 0.19941 1.4496 0.10179 

4.3 50 9 0.05 1.6753 0.21425 1.9553 0.234 2.1213 0.16306 1.2224 0.10571 

4.4 100 9 0.05 2.1888 0.14209 2.3751 0.11803 2.4933 0.1029 2.3168 0.095149 

4.5 500 9 0.05 1.547 0.46082 1.966 0.26631 2.0905 0.33154 1.0127 0.16903 

4.6 1000 9 0.05 1.2605 0.68994 1.8881 0.38585 2.0336 0.3804 1.0269 0.16105 

4.7 N/A 9 0.1 0.049723 0.99957 611.58 -0.15527 590.65 -0.0927 1043.5 0.050041 

4.8 10 9 0.1 1.6031 0.44253 1.9186 0.38828 2.0538 0.45426 1.1212 0.15821 

4.9 50 9 0.1 1.5553 0.47381 1.9039 0.41238 2.0576 0.42593 1.0605 0.15676 

4.10 100 9 0.1 1.55 0.46238 1.8635 0.44675 2.0403 0.41362 1.0463 0.16584 

4.11 500 9 0.1 9.5686 0.17368 13.034 0.18866 12.858 0.11871 20.503 -0.02897 

4.12 1000 9 0.1 1.4578 0.64839 2.5572 0.3879 2.7207 0.30056 3.2184 0.012974 

4.13 N/A 9 0.2 0.049697 0.99957 11373 -0.13237 8645.3 -0.0763 21439 0.06004 

4.14 10 9 0.2 1.5432 0.46394 1.8375 0.42833 1.9636 0.4618 1.3218 0.18442 

4.15 50 9 0.2 1.4194 0.55946 1.7161 0.54747 1.8498 0.56333 1.0087 0.27987 

4.16 100 9 0.2 4.358 0.044316 5.3109 -0.03771 4.9756 0.01292 8.9644 0.063728 

4.17 500 9 0.2 15.945 -0.03664 30.516 -0.13929 25.723 -0.0533 55.662 0.039351 

4.18 1000 9 0.2 28.75 -0.03944 96.746 -0.13479 76.569 -0.0666 177.99 0.055318 

4.19 N/A 9 0.5 0.59834 0.93548 33.572 0.038928 27.537 0.04696 82.661 -0.00332 

4.20 10 9 0.5 1.962 0.25478 2.3538 0.14286 2.2941 0.24281 2.8462 0.16897 

4.21 50 9 0.5 3.0063 0.14632 3.8034 0.040579 3.3736 0.10771 6.5984 0.095444 

4.22 100 9 0.5 2.1077 0.33025 2.6713 0.20399 2.6662 0.20147 4.0016 -0.00438 

4.23 500 9 0.5 63.072 -0.04128 138.14 -0.08421 108.57 -0.0613 322.75 0.015328 

4.24 1000 9 0.5 380.11 0.047515 1651.4 0.089904 1082.7 0.04764 4081.5 -0.03693 

4.25 N/A 9 1 0.82117 0.87453 32.195 0.01901 20.456 0.03747 82.587 0.028076 

4.26 10 9 1 3.3596 0.11355 4.3284 0.01335 3.6751 0.1088 6.8009 0.17889 

4.27 50 9 1 36.127 0.1084 46.825 0.15185 37.74 0.091 96.422 0.001884 

4.28 100 9 1 17.915 0.11654 23.364 0.1618 20.892 0.09666 53.452 0.010023 

4.29 500 9 1 24.868 0.082403 62.692 0.042187 42.83 -0.0049 113.42 0.11829 

4.30 1000 9 1 96.513 -0.01899 564.78 -0.06818 334.89 -0.003 1638.4 0.028556 
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Table B.5: Performance of the generalized regression network for the temporal input pattern. 

Net ID No of 
Cluster 

Input 
Neuron 

Width RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC  
Validation 

RMSE  
Test  set (i) 

CC      
Test  set (i) 

RMSE  
Test  set (ii) 

CC        
Test  set(ii) 

5.1 N/A 1 0.05 1.4724 0.49673 1.7655 0.48446 1.895 0.48818 1.0518 0.32271 

5.2 10 1 0.05 1.4995 0.99986 1.7687 0.4803 1.9446 0.43071 1.033 0.32881 

5.3 50 1 0.05 1.4696 0.89338 1.7578 0.48783 1.8928 0.48738 1.063 0.32269 

5.4 100 1 0.05 1.4715 0.94858 1.762 0.48553 1.8891 0.49076 1.0607 0.31995 

5.5 500 1 0.05 1.4769 0.63079 1.7686 0.48683 1.9063 0.48411 1.0412 0.32147 

5.6 1000 1 0.05 1.4678 0.57609 1.7529 0.48622 1.8888 0.48357 1.0858 0.32202 

5.7 N/A 1 0.1 1.5085 0.46403 1.7958 0.47737 1.9492 0.44803 1.0001 0.32793 

5.8 10 1 0.1 1.5049 0.99119 1.7722 0.47952 1.9468 0.43015 1.022 0.3258 

5.9 50 1 0.1 1.4908 0.8679 1.7732 0.48329 1.9345 0.45072 1.0241 0.32861 

5.10 100 1 0.1 1.4925 0.8503 1.7822 0.48344 1.9392 0.45574 1.0124 0.32926 

5.11 500 1 0.1 1.5034 0.62079 1.7921 0.47627 1.9418 0.45437 1.0051 0.32699 

5.12 1000 1 0.1 1.4906 0.5214 1.7663 0.4839 1.9237 0.45439 1.0352 0.32654 

5.13 N/A 1 0.2 1.5572 0.41733 1.8474 0.43608 2.0119 0.39472 0.98348 0.31876 

5.14 10 1 0.2 1.5283 0.97253 1.7993 0.4567 1.9706 0.41007 1.0086 0.32344 

5.15 50 1 0.2 1.5449 0.68439 1.8216 0.43218 1.9887 0.39188 1.0073 0.31798 

5.16 100 1 0.2 1.5411 0.79821 1.824 0.44737 1.9901 0.40485 0.99214 0.32167 

5.17 500 1 0.2 1.5451 0.54888 1.8329 0.44976 1.9968 0.40824 0.98671 0.32172 

5.18 1000 1 0.2 1.5414 0.46728 1.8237 0.4502 1.9899 0.40647 0.99237 0.32216 

5.19 N/A 1 0.5 1.6224 0.35493 1.9229 0.36779 2.0798 0.33826 1.0103 0.2952 

5.20 10 1 0.5 1.5976 0.83923 1.8917 0.39878 2.0507 0.36411 1.0057 0.30696 

5.21 50 1 0.5 1.6136 0.75465 1.9093 0.38632 2.0666 0.35381 1.0202 0.30248 

5.22 100 1 0.5 1.613 0.62492 1.9021 0.38178 2.0589 0.34993 1.0376 0.30085 

5.23 500 1 0.5 1.6046 0.46762 1.8961 0.38755 2.054 0.35485 1.0195 0.30287 

5.24 1000 1 0.5 1.6151 0.41721 1.9123 0.38694 2.0696 0.35436 1.017 0.30267 

5.25 N/A 1 1 1.6654 0.34957 1.968 0.36238 2.1218 0.33342 1.0694 0.29304 

5.26 10 1 1 1.6567 0.79811 1.9592 0.37402 2.1135 0.34341 1.0576 0.29768 

5.27 50 1 1 1.6639 0.7184 1.9649 0.37114 2.1185 0.34094 1.0766 0.29652 

5.28 100 1 1 1.6691 0.58072 1.964 0.36529 2.1166 0.33592 1.1139 0.29422 

5.29 500 1 1 1.6641 0.45359 1.9588 0.36932 2.1117 0.33938 1.1061 0.29581 

5.30 1000 1 1 1.6665 0.39918 1.9611 0.36858 2.1139 0.33875 1.1109 0.29551 

5.31 N/A 2 0.05 1.2566 0.6751 1.5988 0.61739 1.7112 0.62309 0.92262 0.54971 

5.32 10 2 0.05 1.4677 1 1.7522 0.49083 1.8982 0.47736 0.87629 0.53642 

5.33 50 2 0.05 1.3262 0.99968 1.6038 0.61523 1.7193 0.61882 0.81898 0.61306 

5.34 100 2 0.05 1.3049 0.99375 1.5976 0.61511 1.7345 0.60351 0.81657 0.61242 

5.35 500 2 0.05 1.2697 0.89262 1.5962 0.61624 1.6983 0.62422 0.97361 0.53423 

5.36 1000 2 0.05 1.2509 0.81818 1.5974 0.60868 1.7227 0.60797 0.94179 0.55897 

5.37 N/A 2 0.1 1.3512 0.61746 1.6474 0.61743 1.7573 0.62881 0.82772 0.59262 

5.38 10 2 0.1 1.4554 0.99718 1.7429 0.51015 1.8887 0.49878 0.87341 0.5465 

5.39 50 2 0.1 1.3486 0.99016 1.6213 0.61274 1.7386 0.617 0.80091 0.62761 

5.40 100 2 0.1 1.3423 0.97398 1.6242 0.61424 1.7303 0.63013 0.83611 0.58946 

5.41 500 2 0.1 1.3521 0.83909 1.6528 0.61068 1.7544 0.62945 0.83825 0.58195 

5.42 1000 2 0.1 1.3419 0.70394 1.6348 0.61731 1.748 0.62321 0.82335 0.60186 

5.43 N/A 2 0.2 1.4552 0.55086 1.7565 0.54827 1.8926 0.5521 0.85119 0.61386 

5.44 10 2 0.2 1.4587 0.95195 1.7421 0.5224 1.8873 0.51348 0.86748 0.5587 

5.45 50 2 0.2 1.403 0.94876 1.6877 0.57346 1.8167 0.57705 0.81502 0.63493 

5.46 100 2 0.2 1.4276 0.9086 1.7182 0.5547 1.8487 0.56083 0.8239 0.62086 

5.47 500 2 0.2 1.4389 0.7747 1.744 0.54628 1.869 0.55861 0.83446 0.58774 

5.48 1000 2 0.2 1.4422 0.6609 1.743 0.5528 1.8752 0.55963 0.83887 0.61453 

5.49 N/A 2 0.5 1.5691 0.43736 1.8729 0.43587 2.0223 0.43208 0.92282 0.48965 

5.50 10 2 0.5 1.5876 0.85901 1.8974 0.43147 2.0475 0.42938 0.92845 0.49094 

5.51 50 2 0.5 1.5508 0.79616 1.8305 0.4486 1.974 0.44505 0.9259 0.50294 

5.52 100 2 0.5 1.5482 0.74915 1.8345 0.44848 1.978 0.44765 0.92179 0.50611 

5.53 500 2 0.5 1.5544 0.64174 1.8527 0.44576 1.9979 0.44769 0.91757 0.50624 
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5.54 1000 2 0.5 1.5614 0.51445 1.8612 0.44173 2.0092 0.43888 0.92271 0.49784 

5.55 N/A 2 1 1.6368 0.40605 1.942 0.40566 2.0934 0.40138 1.0194 0.45321 

5.56 10 2 1 1.6527 0.79654 1.9659 0.41194 2.1184 0.4071 0.99741 0.45786 

5.57 50 2 1 1.6378 0.73058 1.9263 0.4155 2.074 0.41198 1.0843 0.46206 

5.58 100 2 1 1.6511 0.69138 1.9356 0.41067 2.0824 0.40789 1.1184 0.45824 

5.59 500 2 1 1.6375 0.56758 1.9345 0.41038 2.0841 0.40743 1.0574 0.45826 

5.60 1000 2 1 1.639 0.49394 1.9365 0.41027 2.0863 0.40684 1.0586 0.45776 

5.61 N/A 3 0.05 0.84372 0.87382 1.5085 0.67627 1.7438 0.58638 0.93886 0.47057 

5.62 10 3 0.05 1.543 1 1.8317 0.40235 1.9907 0.38158 0.99678 0.27546 

5.63 50 3 0.05 1.3535 0.99999 1.5955 0.61975 1.7615 0.58258 0.96662 0.3905 

5.64 100 3 0.05 1.3003 0.99979 1.5532 0.64577 1.671 0.65442 0.92336 0.47862 

5.65 500 3 0.05 1.1687 0.9906 1.5646 0.63568 1.7166 0.61494 0.95261 0.45925 

5.66 1000 3 0.05 0.98503 0.96776 1.4866 0.68194 1.731 0.59372 0.92739 0.47651 

5.67 N/A 3 0.1 1.1953 0.73171 1.5977 0.66336 1.737 0.62065 0.88216 0.52163 

5.68 10 3 0.1 1.5488 1 1.8396 0.39616 1.9961 0.37957 0.95928 0.37394 

5.69 50 3 0.1 1.3485 0.99644 1.6013 0.62651 1.7463 0.60347 0.90116 0.48646 

5.70 100 3 0.1 1.3252 0.99173 1.5901 0.6353 1.7173 0.63101 0.90588 0.48544 

5.71 500 3 0.1 1.2136 0.91007 1.5725 0.66888 1.7007 0.64029 0.88422 0.51995 

5.72 1000 3 0.1 1.2041 0.84734 1.6199 0.63525 1.7185 0.62862 0.9481 0.44207 

5.73 N/A 3 0.2 1.4275 0.58003 1.7541 0.55564 1.8773 0.56542 0.88314 0.56049 

5.74 10 3 0.2 1.5325 0.98677 1.8249 0.43569 1.9807 0.41875 0.94779 0.39941 

5.75 50 3 0.2 1.3988 0.96467 1.6748 0.5872 1.8184 0.57595 0.87605 0.53249 

5.76 100 3 0.2 1.3833 0.91993 1.6764 0.5897 1.8094 0.58491 0.859 0.56129 

5.77 500 3 0.2 1.3927 0.78742 1.7175 0.57826 1.838 0.58196 0.87352 0.53947 

5.78 1000 3 0.2 1.4006 0.67087 1.7237 0.56891 1.8467 0.56885 0.87795 0.52458 

5.79 N/A 3 0.5 1.5657 0.43185 1.8722 0.42295 2.0202 0.42308 0.94477 0.42885 

5.80 10 3 0.5 1.6049 0.8685 1.9189 0.39899 2.0701 0.39618 0.95275 0.43444 

5.81 50 3 0.5 1.543 0.76646 1.8362 0.44033 1.9805 0.44075 0.9242 0.4697 

5.82 100 3 0.5 1.5491 0.71689 1.8341 0.43584 1.9767 0.43596 0.94127 0.44454 

5.83 500 3 0.5 1.556 0.53735 1.8573 0.43137 2.0035 0.4324 0.93612 0.45041 

5.84 1000 3 0.5 1.5536 0.48741 1.854 0.43205 2.0013 0.43036 0.93753 0.44436 

5.85 N/A 3 1 1.6302 0.38907 1.9368 0.38341 2.0876 0.38267 1.0211 0.36878 

5.86 10 3 1 1.6596 0.86193 1.9776 0.39254 2.13 0.39061 0.9968 0.37929 

5.87 50 3 1 1.6249 0.69377 1.9232 0.39596 2.0722 0.39517 1.0438 0.39817 

5.88 100 3 1 1.6331 0.60503 1.9213 0.3905 2.0676 0.39047 1.082 0.39828 

5.89 500 3 1 1.6292 0.52232 1.9333 0.39158 2.0838 0.39002 1.0283 0.39423 

5.90 1000 3 1 1.6296 0.42877 1.9332 0.38971 2.0836 0.38819 1.0325 0.38561 

5.91 N/A 4 0.05 0.48277 0.95946 1.4903 0.67336 1.7129 0.60863 1.3578 0.21688 

5.92 10 4 0.05 1.5523 1 1.8424 0.39029 1.9937 0.3832 0.98672 0.30117 

5.93 50 4 0.05 1.4149 1 1.6092 0.60752 1.8366 0.52457 1.002 0.31351 

5.94 100 4 0.05 1.3456 1 1.6123 0.59922 1.788 0.56563 0.95675 0.42382 

5.95 500 4 0.05 1.1375 0.99859 1.5413 0.65243 1.7646 0.57142 0.99303 0.38076 

5.96 1000 4 0.05 0.92787 0.99268 1.5911 0.61656 1.6756 0.63286 1.0986 0.26613 

5.97 N/A 4 0.1 0.85065 0.88051 1.5409 0.66715 1.6546 0.66214 1.0339 0.33198 

5.98 10 4 0.1 1.5523 1 1.8582 0.37201 2.0009 0.37497 0.98832 0.35558 

5.99 50 4 0.1 1.3717 0.9984 1.6526 0.57482 1.7714 0.59248 0.95921 0.40481 

5.100 100 4 0.1 1.273 0.99651 1.6078 0.60349 1.6887 0.63596 0.98727 0.33961 

5.101 500 4 0.1 1.1798 0.9798 1.562 0.65177 1.6819 0.6566 0.94205 0.43505 

5.102 1000 4 0.1 1.0018 0.96068 1.5859 0.64719 1.666 0.65592 1.0026 0.36024 

5.103 N/A 4 0.2 1.3261 0.6759 1.7232 0.58787 1.8364 0.60599 0.90315 0.5135 

5.104 10 4 0.2 1.5602 0.99726 1.8543 0.39542 2.0033 0.39104 0.98311 0.32796 

5.105 50 4 0.2 1.3988 0.97554 1.6857 0.58034 1.8226 0.57706 0.90179 0.48327 

5.106 100 4 0.2 1.3714 0.95587 1.6727 0.5994 1.8145 0.58727 0.92767 0.43813 

5.107 500 4 0.2 1.3312 0.87878 1.7054 0.58365 1.8157 0.60664 0.90626 0.48396 

5.108 1000 4 0.2 1.3062 0.77873 1.7114 0.58255 1.8288 0.58642 0.89692 0.49437 

5.109 N/A 4 0.5 1.5628 0.44093 1.8751 0.42235 2.0227 0.42425 0.94682 0.42612 
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5.110 10 4 0.5 1.5757 0.86803 1.8785 0.40763 2.0278 0.40658 0.9642 0.36797 

5.111 50 4 0.5 1.5423 0.77212 1.8399 0.44119 1.9843 0.44236 0.93394 0.44919 

5.112 100 4 0.5 1.5442 0.72439 1.8437 0.43321 1.9863 0.43751 0.93549 0.44854 

5.113 500 4 0.5 1.5458 0.5973 1.8555 0.43785 2.0015 0.4397 0.93466 0.45139 

5.114 1000 4 0.5 1.5524 0.50392 1.863 0.42872 2.0091 0.43114 0.93291 0.45445 

5.115 N/A 4 1 1.6297 0.37731 1.9373 0.37232 2.0882 0.37146 1.0207 0.34497 

5.116 10 4 1 1.6425 0.77574 1.9563 0.37974 2.1084 0.37882 1.0076 0.34895 

5.117 50 4 1 1.6247 0.65907 1.923 0.38808 2.0715 0.38836 1.0492 0.37706 

5.118 100 4 1 1.6339 0.62832 1.9277 0.38271 2.0754 0.38284 1.0737 0.3843 

5.119 500 4 1 1.6278 0.51554 1.928 0.37757 2.077 0.37835 1.0475 0.35899 

5.120 1000 4 1 1.6269 0.45987 1.9316 0.38396 2.0817 0.38369 1.0313 0.36597 

5.121 N/A 5 0.05 0.32581 0.98152 1.4873 0.67459 1.9024 0.5114 1.1147 0.23352 

5.122 10 5 0.05 1.575 1 1.8322 0.41535 2.0221 0.351 1.0877 0.15247 

5.123 50 5 0.05 1.4578 1 1.7422 0.49875 1.8861 0.48485 0.96292 0.42188 

5.124 100 5 0.05 1.3832 1 1.6365 0.59156 1.8448 0.52353 1.1207 0.33185 

5.125 500 5 0.05 1.1762 0.99976 1.7032 0.52853 1.8432 0.51933 1.0147 0.36877 

5.126 1000 5 0.05 0.9446 0.99898 1.5281 0.64841 1.8279 0.53828 1.0845 0.18534 

5.127 N/A 5 0.1 0.60167 0.93846 1.4416 0.72131 1.6907 0.6215 1.014 0.32871 

5.128 10 5 0.1 1.5717 1 1.8539 0.38391 2.0132 0.36359 0.98754 0.34815 

5.129 50 5 0.1 1.4568 0.99978 1.7121 0.53818 1.887 0.49245 1.033 0.4031 

5.130 100 5 0.1 1.3858 0.99821 1.6755 0.56627 1.8929 0.48072 1.107 0.32359 

5.131 500 5 0.1 1.2037 0.98435 1.5751 0.63308 1.6423 0.65916 0.97994 0.36971 

5.132 1000 5 0.1 0.95301 0.98045 1.4708 0.68847 1.6293 0.66504 1.0486 0.27773 

5.133 N/A 5 0.2 1.2073 0.75899 1.6547 0.65383 1.7865 0.63858 0.90308 0.50377 

5.134 10 5 0.2 1.5642 0.99879 1.8444 0.40871 2.0091 0.37818 1.0284 0.25426 

5.135 50 5 0.2 1.484 0.97964 1.7717 0.49775 1.9075 0.50075 0.96537 0.38532 

5.136 100 5 0.2 1.3924 0.97957 1.7072 0.55271 1.812 0.59404 0.9747 0.36922 

5.137 500 5 0.2 1.2675 0.92489 1.6178 0.64598 1.7802 0.61262 0.93557 0.42602 

5.138 1000 5 0.2 1.1948 0.86758 1.5811 0.67952 1.7718 0.61811 0.92988 0.4419 

5.139 N/A 5 0.5 1.5544 0.46083 1.8672 0.44461 2.0185 0.43892 0.94629 0.43096 

5.140 10 5 0.5 1.5866 0.92808 1.8831 0.41633 2.0409 0.39385 0.97968 0.33035 

5.141 50 5 0.5 1.5583 0.78184 1.8645 0.42914 2.0147 0.42355 0.94562 0.43133 

5.142 100 5 0.5 1.543 0.77663 1.844 0.45032 1.9932 0.44426 0.94305 0.43466 

5.143 500 5 0.5 1.5313 0.6468 1.835 0.46745 1.9862 0.45854 0.93803 0.44089 

5.144 1000 5 0.5 1.5291 0.5639 1.8332 0.46996 1.9852 0.45967 0.93198 0.45169 

5.145 N/A 5 1 1.6298 0.37667 1.9387 0.37206 2.0898 0.37085 1.0186 0.34587 

5.146 10 5 1 1.6405 0.86121 1.952 0.38982 2.1054 0.37847 1.0205 0.3196 

5.147 50 5 1 1.6307 0.6807 1.9374 0.38421 2.0883 0.38159 1.031 0.3611 

5.148 100 5 1 1.6308 0.62244 1.9288 0.39135 2.0784 0.38645 1.063 0.37372 

5.149 500 5 1 1.6258 0.54408 1.931 0.38108 2.0811 0.38047 1.0294 0.35737 

5.150 1000 5 1 1.6264 0.47426 1.9311 0.3891 2.0819 0.38532 1.0302 0.37727 
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Table B.6: Performance of the generalized regression network for the spatial input pattern. 

Net ID No of 
Cluster 

Width RMSE 
Training 

CC 
Training 

RMSE 
Validation 

CC  
Validation 

RMSE  
Test (i) 

CC      
Test (i) 

RMSE  
Test (ii) 

CC        
Test (ii) 

6.1 N/A 0.05 0.77433 0.89408 1.7628 0.4802 1.862 0.5037 1.0488 0.34869 

6.2 10 0.05 1.4661 1 1.7198 0.52391 1.9079 0.46313 0.98065 0.35931 

6.3 50 0.05 1.4122 1 1.7322 0.50285 1.8639 0.4984 0.99219 0.39295 

6.4 100 0.05 1.3972 0.99992 1.7171 0.51505 1.8855 0.47978 0.99869 0.39891 

6.5 500 0.05 1.2341 0.99363 1.6588 0.55751 1.7985 0.54928 1.0524 0.28006 

6.6 1000 0.05 1.1196 0.98337 1.6759 0.54476 1.7898 0.55568 1.0686 0.29763 

6.7 N/A 0.1 1.205 0.70814 1.7138 0.51391 1.8037 0.54795 1.0035 0.3657 

6.8 10 0.1 1.4659 1 1.7571 0.48612 1.9122 0.46334 0.98748 0.36473 

6.9 50 0.1 1.4187 0.99912 1.7203 0.51547 1.8579 0.51241 1.0122 0.34957 

6.10 100 0.1 1.3854 0.99386 1.7136 0.52331 1.8474 0.51878 0.96885 0.40098 

6.11 500 0.1 1.2998 0.93929 1.6896 0.54028 1.8181 0.54438 1.0284 0.32488 

6.12 1000 0.1 1.2252 0.89916 1.6674 0.56083 1.8185 0.54152 0.99816 0.35022 

6.13 N/A 0.2 1.4124 0.55996 1.7271 0.53152 1.8787 0.50519 0.98014 0.35258 

6.14 10 0.2 1.4564 0.99972 1.7327 0.51311 1.9063 0.46821 0.98292 0.36563 

6.15 50 0.2 1.4186 0.96653 1.7236 0.52578 1.8718 0.51183 0.96857 0.37729 

6.16 100 0.2 1.431 0.93977 1.7361 0.52375 1.8788 0.50819 0.97057 0.36937 

6.17 500 0.2 1.4184 0.78889 1.7404 0.52841 1.8912 0.50726 0.96675 0.36962 

6.18 1000 0.2 1.4093 0.66528 1.7343 0.53572 1.8921 0.50878 0.97476 0.35575 

6.19 N/A 0.5 1.531 0.4513 1.8208 0.46926 1.9923 0.41392 0.96461 0.34952 

6.20 10 0.5 1.4983 0.96174 1.77 0.48993 1.9468 0.43517 0.98218 0.34239 

6.21 50 0.5 1.5283 0.85017 1.8132 0.46954 1.985 0.41609 0.96058 0.36487 

6.22 100 0.5 1.5233 0.74295 1.8013 0.46848 1.9756 0.415 0.96915 0.35896 

6.23 500 0.5 1.5379 0.57179 1.8294 0.46385 1.9999 0.40996 0.96186 0.35537 

6.24 1000 0.5 1.5382 0.48926 1.8308 0.4683 2.0016 0.4122 0.96114 0.35527 

6.25 N/A 1 1.5869 0.39199 1.8847 0.40299 2.0478 0.36109 0.97574 0.33176 

6.26 10 1 1.5484 0.88541 1.8365 0.44468 2.0052 0.39527 0.97361 0.33952 

6.27 50 1 1.5836 0.76783 1.8813 0.41766 2.0447 0.37302 0.9746 0.34023 

6.28 100 1 1.5841 0.69151 1.8816 0.41539 2.0452 0.37094 0.97409 0.34088 

6.29 500 1 1.589 0.51137 1.8845 0.39942 2.0478 0.35726 0.97869 0.33546 

6.30 1000 1 1.5938 0.41743 1.8912 0.39595 2.0536 0.3546 0.98049 0.33276 
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The wavelet based denoising is usually done in three steps, (i) the image is converted to 

wavelet coefficients using a 2D discrete wavelet transform (DWT), (ii) low coefficients 

are replaced with zero, which is known as hard thresholding, and (iii) the image is 

reconstructed from its coefficients (Ghazel, 2004). The magnitude of the lower 

coefficient threshold can be determined from median filtering techniques or from trial.  

The image is considered as a 2D matrix of dimension m�n where m and n are the 

total number of rows and columns respectively. One restriction on the size (the number of 

rows or the number of column) of the matrix is that it should be expressed by 2a where a 

is an integer. It is not necessary that the number of rows and the number of columns be 

equal. Each element of the matrix represents brightness of the pixel located in that 

position. 

The 2D discrete wavelet transform mentioned in step 1 is done in two steps-(i) 

performing 1D wavelet transform on each row of the image and then (ii) performing 1D 

wavelet transform on each column of the image (Walker, 1999, pp 66). Performing 1D 

DWT on each row of the image is again done in two steps (i) applying a low pass filter 

on each element of the row which will produce n/2 elements in each row and storing 

them in a separate matrix of dimension m�n/2 and (ii) applying high pass filter on each 

element of the row and storing them in a separate matrix having dimension m�n/2 and 

horizontally concatenate these two matrices together which will again produce an m�n 

matrix (Aboufadel and Schlicker, 1999, pp 71). Each elements of this matrix is the 

wavelet coefficients of the original image matrix. 
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The filters applied to get the wavelet coefficients are orthogonal wavelets such as 

Haar wavelets, Coiflet wavelets, Symmlet wavelets, Daubechies wavelets, Vaidanathan 

wavelets, etc. This study uses symmlet 4 wavelet which is shown in Figure C.1. The 1D 

DWT is done by the convolution of the signal and the wavelet and the values obtained is 

termed as wavelet coefficients. In case of image denoising, signal will refer to each row 

or column vector of the image. 

The symmlet wavelet itself is used as a low pass filter. The low pass filtering 

operation can be mathematically described as follows: 
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where J is the length of the wavelet, lj refers to each element of the filter, S refers to the 

signal, m is the length of the signal, and Lk refers to the derived wavelet coefficients after 

low pass filtering. If the subscript of S exceeds the length of the signal, elements starting 

from the leading edge of the signal should be used. This will occur in case of J>2.   

Applying the high pass filter is a little more complicated. It can be derived from 

the low pass filter used and can be mathematically described as follows: 
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Figure C.1: The Symmlet wavelet. 
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where hj is the mirror filter and J is the number of elements in the filter. A set of low pass 

and high pass filter is termed as quadratic mirror filter.  

The high pass filtering operation can be mathematically described as follows, 
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where Hk is the wavelet coefficients obtained after high pass filtering. If the subscript of S 

gets negative, the elements starting from the trailing edge should be used. This will occur 

when J>2. This way of resolving the boundary problem is known as the periodic method 

(Aboufadel and Schlicker, 1999, pp 76). 

Performing 1D wavelet transform on each column is done in the same way as for 

the rows. The only difference is that this transformation will produce two matrices each 

having m/2 rows and n columns and these two matrices should be vertically concatenated 

to obtain an m�n matrix of wavelet coefficients.  

Performing a set of row-wise and column-wise transformations is called 1st level 

of decomposition. This process may be iterated and the wavelet coefficient matrix 

obtained after the previous iteration will be used for decomposition. However, the 

number of rows and columns on which the decomposition is to be performed will be 

halved. For example, if the size of the image is 256x256, and if a total 3 levels of 

decomposition are done, the 1st level of decomposition will be carried out over a 256x256 

data matrix, the 2nd level of decomposition will be done on 128x128 data matrix and the 
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rest of the data will remain unaffected. The 3rd level will be done on the 64x64 data 

matrix. 

 After completing the decomposition, the lower values of wavelet coefficients are 

set to zero and this is termed hard thresholding. Then the image is reconstructed from the 

thresholded wavelet coefficient matrix. The process is termed as re-composition.  The re-

composition will start column-wise on the dimension on which the final level of 

decomposition was done. After that, row-wise re-composition will be carried out and a 

set of column wise and row wise re-composition will complete 1st level of re-

composition. Thereafter, the 2nd level re-composition will be carried out. This will 

continue until the numbers of re-composition is equal to the total number of 

decompositions employed. If no wavelet coefficient is set to zero or changed, the re-

composition process should reproduce exactly the initial image. 

During re-composition of a column at a particular level, it is necessary to separate 

the vector in two halves, the upper half should convolute through a low pass filter and the 

lower half should convolute through a high pass filter. These filtering will make the 

length of the vector twice the previous one. For example if the column has eight 

elements, the first four elements will convolute through a low pass filter and will form 

eight elements, and the last four elements will convolute through a high pass filter and 

will form another eight elements. The two generated vectors each having eight elements 

will then be added together. These process will continue for each column and then for 

each row and thus the 1st level of re-composition will be completed. The signal re-

composition equations are shown below, 
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           hklkk SSS +=   Eq C.6 
 
 

where the L and the H are the wavelet coefficients obtained after low pass and high pass 

filtering at a particular level and S is the signal reconstructed from the wavelet 

coefficients. The n is the length of the column which is twice the length of the L or H, 

and J is the length of the filter. The l and h are the low pass and the high pass filter as 

used previously. If the subscripts of L or H are negative, it will pick elements from the 

trailing edge of the L or H and if the subscript is positive and greater than the length of 

the L or H, values should be picked from the leading edge of the signal. This will be 

needed when J>2. 

 

 


