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Abstract

This integrated thesis documents a series of complementary numerical investigations

aimed at an improved understanding of turbulent flows and heat transfer in a square

duct with ribs of different shapes mounted on one wall. Direct numerical simulation

(DNS) is used to accurately resolve the spatial and temporal scales of the simulated

flows. The first DNS investigates the turbulent flow in a ribbed square duct of different

blockage ratios. The results are compared with those of a smooth duct flow. It is

observed that an augmentation of the blockage ratio concurrently generates stronger

turbulent secondary flow motions, which drastically alter the turbulent transport

processes between the sidewall and duct center, giving rise to high-degrees of non-

equilibrium states. The dynamics of coherent structures are studied by examining

characteristics of the instantaneous velocity field, swirling strength, spatial two-point

auto-correlations, and velocity spectra. The impact of the blockage ratio on the

turbulent heat transfer is investigated in the second numerical study. The results

show that owing to the existence of the ribs and confinement of the duct, organized

secondary flows appear as large streamwise-elongated vortices, which have profound

influences on the transport of momentum and thermal energy. This study also shows

that the spatial distribution and magnitude of the drag and heat transfer coefficients

are highly sensitive to the rib height.

The final study focuses on a comparison of highly-disturbed turbulent flows in a

square duct with inclined and V-shaped ribs mounted on one wall. The turbulence

field is highly sensitive to not only the rib geometry but also the boundary layers

developed over the side and top walls. Owing to the difference in the pattern of the

cross-stream secondary flow motions of these two ribbed duct cases, the flow physics

in the inclined rib case is significantly different from the V-shaped rib case. It is found

that near the leeward and windward faces of the ribs, the mean inclination angle of
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turbulence structures in the V-shaped rib case is greater than that of the inclined rib

case, which subsequently enhances momentum transport between the ribbed bottom

wall and the smooth top wall.
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Chapter 1

Introduction

1.1 Background and motivation

The physical argument of the non-equilibrium three-dimensional (3-D) turbulent

flow confined within a ribbed square duct has important practical implications in

many engineering applications, such as turbine blade cooling, heat exchangers, and

mixing chambers (Yaglom and Kader, 1974; Han et al., 2012; Casarsa and Arts,

2005; Borello et al., 2015). Turbulent flow inside a ribbed duct is three-dimensional

(3-D), characterized by not only the existence of multiple turbulent separations but

also the interaction of four boundary layers developed over the four sidewalls. These

characteristics greatly complicate the flow physics and make turbulence characteristics

drastically different from those of a two-dimensional (2-D) rough-wall boundary layer

flow over a flat plate. These interesting physical features lead to the motivation of

this thesis, which aims to expound the influence of rib elements on the mechanism

underlying the organized secondary flows and their effects on the turbulence structures

in a ribbed square duct.

Notwithstanding the rib-induced variations in the near-wall mean flow and turbu-

lence statistics are commonly encountered in engineering applications; however, the

number of detailed DNS study of turbulent heat and fluid flows inside a ribbed square
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duct is currently lacking. Indeed, no DNS results on the ribbed square duct flows

have been published thus far. In view of this, this thesis aims at investigating the

effects of both the sidewalls and rib geometry on (i) the non-equilibrium turbulent

flow, (ii) transport of turbulent heat fluxes, (iii) the role of coherent structures in heat

transfer through characteristics of the instantaneous velocity and temperature fields,

swirling strength, temporal auto-correlations, spatial two-point auto-correlations and

velocity and temperature spectra, as well as (iv) the transfer of the energy between

different velocity fluctuating components through a budget analysis of the transport

equation of turbulent kinetic energy. The DNS study of turbulent flow and heat trans-

fer in square ribbed ducts is conducted at relatively low Reynolds numbers, with an

emphasis on the fundamental physics of turbulence theory.

1.2 Literature review

1.2.1 Conventional 2-D riblet flow

In the current literature, studies of 2-D turbulent boundary-layer flows over rough

walls are relatively abundant. For instance, Krogstad and Antonia (1994) studied

the effects of k-type rough walls on large-scale structures of a turbulent boundary

layer using X-wires in a wind tunnel. They found that turbulence structures were

profoundly influenced in the outer region by the transverse ribs. Wang et al. (2010)

measured 2-D riblet flows using particle image velocimetry (PIV), and the rib height

was up to 20% of their channel. There are many reported DNS studies of 2-D riblet

flows, well represented by the works of Choi et al. (1993), Bhaganagar et al. (2004),

Leonardi et al. (2004), Orlandi et al. (2006), Ikeda and Durbin (2007), Liu et al.

(2008), Burattini et al. (2008), and Chan et al. (2015). For instance, Leonardi et al.

(2004) conducted DNS of a fully-developed 2-D turbulent channel flow with square

bars mounted on the bottom wall. They showed that the coherence of streaky struc-
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tures decreased in the streamwise direction with an increasing pitch-to-height ratio

P/H, as a result of intense ejections of fluid from cavities. Here, P and H denote the

streamwise rib separation and the rib height, respectively.

According to Perry et al. (1969) and Bandyopadhyay (1987), the type of roughness

switches from the k- to d-type when the pitch-to-height ratio becomes less than three

(i.e. P/H ≤ 3). For the k-type roughness, unstable vortices generated by the ribs and

shed upwards to form roughness sublayer structures (Shafi and Antonia, 1997). Con-

versely, for the d-type roughness, stable vortices recirculate within cavities between

two nearby ribs. These prototypical physical features have been clearly visualized

by Bandyopadhyay (1987) who conducted experiments to investigate the effects of

surface roughness on the vortex-shedding pattern in a low-speed wind tunnel, and by

Leonardi et al. (2003) who studied turbulent boundary-layer flow developed over a

plate roughened with transverse ribs using DNS. The classical works reviewed here

(e.g., Perry et al., 1969; Bandyopadhyay, 1987) were conducted primarily based on

the 2-D rib-roughened boundary layers. If we follow the convention of these classical

papers, the present work would deal only with k-type riblet roughness mounted on

the bottom wall of a square duct. However, strictly speaking, the classical definitions

of k- or d-type roughnesses established based on the 2-D boundary layers are not

entirely applicable to the current 3-D flow, and it would be of interest to investigate

the riblet effect on the turbulent flow pattern confined peripherally within a duct.

1.2.2 Three dimensional smooth and ribbed duct flows

In contrast to 2-D ribbed flows briefly reviewed above, the flow inside a ribbed

duct is inhomogeneous in all directions, influenced by not only the ribs but also the

confinement of four sidewalls of the square duct. In a smooth square duct, mean and

turbulent secondary flow structures appear in the cross-stream directions. Gavrilakis

(1992) investigated the mechanism leading to secondary flow generation through the

analysis of the transport of mean streamwise vorticity in a smooth square duct at
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a Reynolds number of Reb = DUb/ν = 4410 (based on the duct width D and bulk

mean velocity Ub). Following this study, Mompean et al. (1996) performed Reynolds-

averaged Navier–Stokes (RANS) simulations using a non-linear k − ε model. Their

approach was capable of modelling mean secondary flows observed in the DNS study

of Gavrilakis (1992). Recently, Pirozzoli et al. (2018) conducted DNS study of a

fully-developed turbulent flow in a smooth square duct with a wide range of Reynolds

numbers, and observed that the mean flow characteristics (such as local skin friction

coefficient) were insensitive to the secondary flows. Similar to the flow pattern in a

smooth duct briefly reviewed above, dominant secondary flows also occur in the cross-

stream directions in a ribbed duct. This is evidenced by the studies of Casarsa and

Arts (2005) and Lohász et al. (2006), who investigated ribbed duct flows using PIV

and large-eddy simulation (LES), respectively. Since the generation of secondary flow

motions is strongly associated with the anisotropy of turbulent stresses, it is expected

that the strength and the pattern of secondary flows are noticeably altered in a

transversely rib-roughened duct due to the disturbances from the ribs. Hirota et al.

(1992) measured fully-developed turbulent flows in square and rectangular ducts with

perpendicular ribs mounted on one wall using a hot-wire anemometer. They showed

that the secondary flow appeared as a large streamwise-elongated vortex adjacent to

each vertical sidewall, which transports high momentum fluid from the duct center

towards the duct corner. To study the effect of secondary flow on the statistics of

the velocity field, Yokosawa et al. (1989) measured the mean velocities and Reynolds

stresses in a square duct with the bottom and top walls roughened by transverse ribs

and compared their results against measurements taken in a smooth square duct.

They showed that in comparison with the smooth duct, owing to the presence of

ribs and strong secondary flows, the spatial distribution of turbulent shear stress is

significantly altered in the rib-roughened duct. Liou et al. (1993) conducted laser-

Doppler velocimeter (LDV) measurements of a fully-developed duct flow with square

ribs mounted on the bottom and top walls. They observed that due to the appearance
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of the mean secondary flow, the impingement region close to the vertical sidewalls

resulted in high heat transfer rates. This research finding of Liou et al. (1993), was

later confirmed by Sewall et al. (2006) and Labbé (2013) using LES. Sewall et al.

(2006) also concluded that both the skin friction and form drags were less sensitive

to the secondary flow than the heat transfer coefficient on the ribbed wall. Coletti

et al. (2013) measured the turbulent flow confined in a rectangular duct using PIV.

In their experiment, transverse square ribs were mounted on the bottom wall of the

duct with a blockage ratio of Br = 0.1. Besides their study of this stationary ribbed

channel flow, Coletti et al. (2012, 2014) also conducted detailed PIV experiments to

investigate the effects of spanwise system rotation on turbulent flow in a transverse

rib-roughened rectangular duct. In their experiments, the measurement results of

rotating duct flows were compared against those of a stationary smooth duct flow.

The PIV experiments of Coletti et al. (2012, 2014) on rotating and non-rotating rib-

roughened duct flows were later reproduced using a hybrid RANS/LES approach by

Xun and Wang (2016), who used the PIV measurement data to validate a new forcing

model applied to the RANS-LES interface.

1.2.3 Effects of rib height on the turbulent heat tranfer rate

In the current literature, extensive experimental measurements and numerical

simulations were conducted to investigate the effects of rib elements on heat transfer

in 2-D plane-channel flows. For example, Hetsroni et al. (1999) measured temperature

field in turbulent channel and pipe flows using a hot-foil infrared technique, and a

significant increase of heat transfer was observed near the ribbed wall due to the

destruction of the thermal streaky structures. Nagano et al. (2004) conducted DNS of

a fully-developed turbulent channel flow to investigate the effects of transverse ribs on

both the velocity and temperature fields. Their results showed that k-type roughness

has optimal heat transfer performance due to the promotion of turbulent mixing in

the downstream region of the ribs. Hattori and Nagano (2012) performed DNS to
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study the mechanism of heat transfer in turbulent boundary-layer flow developed over

a plate roughened with a rectangular rib. They observed that the streamwise and

spanwise fluctuating vorticities had significant impacts on the near-wall heat transfer

rate, which further led to an enhancement of the wall-normal turbulent heat flux.

Leonardi et al. (2015) studied the effects of pitch-to-height ratios (P/H) and rib

shapes on heat transfer enhancement in a turbulent plane-channel flow. They found

that turbulent heat flux reaches its maximum at P/H = 7.5 for both square and

circular ribs. More recently, Li et al. (2018) investigated the effects of cube heights

on turbulence modulation and heat transfer enhancement in a channel flow using

DNS and observed a distinct correlation between enhancement of heat transfer and

increase of drag.

As reviewed above, studies of 2-D turbulent flow and heat transfer in ribbed plane

channels are relatively abundant, however, research on turbulent heat transfer within

3-D rib-roughened ducts is yet limited in the literature. Hirota et al. (1997) mea-

sured temperature variance and turbulent heat fluxes in a smooth square duct using

multiple-wire probes. They observed that due to the confinement of the four sidewalls

of the duct, secondary flows appear as four pairs of counter-rotating vortices in the

cross-stream direction, which have a significant impact on the characteristics of both

the velocity and temperature fields. Furthermore, in a transversely rib-roughened

duct, the strength and appearance of the secondary flow motions are noticeably al-

tered, as the rib elements impose significant disturbances to the flow field. Fujita

et al. (1989) measured turbulent flows in a rectangular duct with perpendicular ribs

mounted on one wall using a hot-wire anemometer. They observed that secondary

flows appeared as a pair of counter-rotating vortices, which exert a great influence on

both momentum and heat transfer.
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1.2.4 Influences of rib geometry on the turbulence structures

In addition to 2-D ribbed flows briefly reviewed above, numerous numerical and

experimental works have also focused on the effects of secondary flows on the mean

velocities and Reynolds stresses in either a smooth or a transverse rib-roughened

duct (Yokosawa et al., 1989; Gavrilakis, 1992; Hirota et al., 1992; Mompean et al.,

1996; Sewall et al., 2006; Lohász et al., 2006; Wang et al., 2007; Labbé, 2013; Coletti

et al., 2012, 2014; Mahmoodi-Jezeh and Wang, 2020). For instance, Brundrett and

Baines (1964) performed measurements of a smooth square duct flow using a hot-wire

anemometer to investigate the mechanism of secondary flow motions. By analyzing

the transport equation of the streamwise vorticity, they concluded that the gradients

of Reynolds stress in the cross-stream directions played an important role in the

generation of secondary flows. Hirota et al. (1992) performed measurement in a

turbulent ribbed duct flow using hot-wire anemometers and observed that secondary

flows drastically alter the distributions of TKE in the cross-stream directions. This

research finding of Hirota et al. (1992) was recently confirmed by Mahmoodi-Jezeh and

Wang (2020), who investigated the effects of rib height on turbulent flow structures in

a square duct using DNS. Mahmoodi-Jezeh and Wang (2020) compared three straight

transverse rib duct flows with a smooth duct flow, and concluded that secondary flows

in a ribbed duct generate a high degree of non-equilibrium states in a region between

the sidewalls and duct center. All these previous investigations have indicated that

the appearance of the secondary flows in the cross-stream directions represents a

major physical feature in a smooth or a ribbed 3-D duct flow, a mechanism that is

absent in a conventional 2-D rough-wall boundary-layer flow over a flat plate.

While there is considerable research dedicated to turbulent flow in a transverse

rib-roughened duct, much less is documented on turbulent flow in a duct with inclined

ribs. Gao and Sundén (2004a) performed measurements of a flow in an angled rib-

roughened rectangular duct using PIV and showed that the secondary flow appeared

as one large longitudinal vortex in the cross-stream directions. In their follow-up
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study, Gao and Sundén (2004b) conducted PIV measurements in a rectangular duct

with surface-mounted V-shaped ribs pointing towards both upstream and downstream

directions. They observed that owing to the disturbances from the sharp-angled ribs

and the presence of strong secondary flows, the magnitude of Nusselt number is

significantly enhanced on the two vertical sidewalls of the duct. Fang et al. (2017)

conducted a large-eddy simulation (LES) study of the turbulent flow in rib-roughened

ducts with three different rib angles, and showed that the spatial distribution of main

flow characteristics (such as the first- and second-order turbulence statistics) in the V-

shaped rib case is greatly different from those in the perpendicular rib case. Recently,

Ruck and Arbeiter (2018) performed detached eddy simulation (DES) to investigate

the effects of secondary flows on the statistics of the velocity and temperature fields in

V-shaped rib-roughened square ducts. They showed that the mean secondary flows

greatly affected the spatial distribution of both friction and pressure drags on the

ribbed bottom wall, resulting in an enhanced magnitude of Nusselt number.

1.3 Thesis objectives

The studies referenced in the preceding section indicate that the number of de-

tailed numerical studies on turbulent flow and heat transfer in a duct with transverse

or V-shaped ribs is still limited, and many questions regarding the fundamentals of the

flow physics remain open. Furthermore, no DNS results on rib-roughened duct flows

have been published in open literature thus far. In view of this, the proposed research

aims at conducting a detailed DNS study of rib-roughened duct flow to investigate

the effects of rib height and geometry on the mechanism underlying the organized

secondary flows and their effects on turbulent flow structures and heat transfer in

both physical and spectral spaces. The following outlines the objectives of the thesis

research:

1. Further develop, test, validate, and optimize a finite volume method (FVM)
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code based on an existing generalized curvilinear coordinate system for DNS

of turbulent flows and heat transfer. This objective is to provide a proper tool

to numerically study the effects of rib height and geometry on turbulent heat

transfer.

2. Systematically investigate the effects of rib height on the statistical moments

and premultiplied energy spectra of the turbulent velocity field, local non-

equilibrium of turbulence, large- and small-scale flow anisotropy, transport of

TKE, as well as the dynamics of mean and turbulent secondary flow motions.

In order to identify the rib effects on the flow field, an additional DNS of a

smooth duct flow has also been conducted at the same Reynolds number (as in

the three rib cases), which is used as a baseline comparison case.

3. Systematically study the effects of rib height on the first- and second-order sta-

tistical moments of the temperature field, spectral characteristics of temperature

fluctuations, and coherent structures that facilitate the turbulent transport of

thermal energy. The characteristics of the temperature field of ribbed duct cases

are compared with those of a heated smooth duct flow.

4. Investigate the influences of sidewalls and rib geometry (either inclined or V-

shaped) on the statistical moments of different orders, including the mean flows,

the pressure and viscous drag coefficients, Reynolds stresses, as well as the bud-

get balance of TKE. Furthermore, the production TKE term, which is con-

ventionally a function of Reynolds shear stresses and the mean velocity gradi-

ent, was decomposed into an “active” and an “inactive” components, following

the proposal of Hinze (1972). This decomposition is effective for determining

whether the difference in the magnitude of the TKE production term is caused

by the large- or small-scale eddies.

5. Compile detailed benchmark data of turbulent duct flows disturbed by trans-
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verse or V-shaped ribs mounted on one wall.

1.4 Outline

The remainder of this thesis is organized as follows:

In chapter 2, the computational approach, which includes a discussion of the

governing equations, the method for discretizing the governing equations, and the

method for solving the discretized system of equations are described. Also in this

section, to examine the predictive accuracy of the numerical approach, two simulations

are conducted based on two canonical test cases of (i) a 2-D ribbed plane-channel flow

at Reb = 5600, and (ii) a smooth duct flow at Reb = 4410. The DNS results of these

two additional test cases are validated against those reported in the literature.

In chapter 3, the turbulent flow in a ribbed square duct of different blockage ratios

(Br = 0.05, 0.1 and 0.2) at a fixed Reynolds number of Reb = 5600 is studied using

DNS (major findings of Chapter 3 have been published in J. F luid Mech.).

In chapter 4, the DNS study of turbulent heat transfer within a square duct with

transverse ribs mounted on one wall is studied (major results of Chapter 4 have been

published in Int. J. Heat F luid F low).

In chapter 5, highly-disturbed 3-D turbulent flow in a square duct with inclined or

V-shaped ribs mounted on one wall is investigated using DNS. The Reynolds number

based on the bulk mean velocity is fixed at Reb = 7000 for both ribbed duct cases,

while the Reynolds number based on the mean streamwise wall friction velocity of the

ribbed bottom wall is ReτR = 642 and 1294 for the inclined and V-shaped rib cases,

respectively. (major findings of Chapter 5 have been submitted to J. F luid Mech.).

In chapter 6, major conclusions of this thesis are summarized followed by com-

ments on future studies.
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Chapter 2

Numerical Method

2.1 Rib-roughened square ducts

In order to simulate the turbulent heat and fluid flow inside a square duct with trans-

verse or V-shaped ribs mounted on one wall, a parallel in-house finite volume method

(FVM) code is further developed and optimized to conduct DNS for chapters 3, 4

and 5. In addition, to examine the predictive accuracy of the numerical approach,

two simulations have been conducted based on two canonical test cases of (i) a 2-D

ribbed plane-channel flow at Reb = 5600, and (ii) a smooth duct flow at Reb = 4410.

The DNS results of these two test cases are validated against those reported in the

literature.

In this computer code, the continuity, momentum and thermal energy equations

are discretized based on a general curvilinear coordinate system (ξ1, ξ2, ξ3), which

takes the following form for an incompressible flow:

1

J

∂
(
βki ui

)
∂ξk

= 0 , (2.1)

∂ui
∂t

+
1

J

∂

∂ξk

(
βkj uiuj

)
= − 1

Jρ

∂
(
βki p
)

∂ξk
− 1

ρ
Πδ1i +

ν

J

∂

∂ξp

(
1

J
βpj β

q
j

∂ui
∂ξq

)
, (2.2)

∂T

∂t
+

1

J

∂

∂ξk

(
βkj Tuj

)
=
α

J

∂

∂ξp

(
1

J
βpj β

q
j

∂T

∂ξq

)
, (2.3)
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where ui, p, T , ν, ρ, α and δij represent the velocity, pressure, temperature, kinematic

viscosity, density, thermal diffusivity, and Kronecker delta, respectively. Also, Π is the

required streamwise pressure gradient that keeps a constant flow rate. Here, βji and J

denote the cofactor and Jacobian of tensor ∂xi/∂ξj, respectively. The above governing

equations are expressed using tensor notations, and the streamwise (x), vertical (y)

and spanwise (z) coordinates are denoted using xi for i = 1, 2 and 3, respectively.

Correspondingly, the velocity components u, v and w are denoted using ui (for i = 1,

2 and 3, respectively). It should be indicated that this computer code is developed

for the general purpose of dealing with complex computational domains of curved

boundaries using body-fitted mesh. Specific to the present numerical simulation of

the flow through a square duct with straight rectangular ribs mounted on the bottom

wall, the cofactor and Jacobian degenerate to Kronecker delta and unity, respectively.

2.1.1 Spatial discretization of continuity and momentum equa-

tions

To make the code suitable for the general curvilinear system (ξi), all the deriva-

tives are quantified in the curvilinear system, whereas the velocity, temperature and

pressure components are kept as in the physical Cartesian system (xi). The task of

determining the new coordinate system is to appropriately conduct transformations:

ξ = ξ(x, y, z), η = η(x, y, z) and ζ = ζ(x, y, z). More generally, these transformations

can be expressed as ξi = ξi(x1, x2, x3), for i = 1, 2 and 3. In the partial differential

governing equations, dξi is given as

dξj =
∂ξj
∂x1

dx1 +
∂ξj
∂x2

dx2 +
∂ξj
∂x3

dx3 or dξj =
∂ξj
∂xi

dxi for i = 1, 2, 3 , (2.4)

conversely,

dxi =
∂xi
∂ξ1

dξ1 +
∂xi
∂ξ2

dξ2 +
∂xi
∂ξ3

dξ3 or dxi =
∂xi
∂ξj

dξj for i = 1, 2, 3 . (2.5)
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The following coordinate transform between the curvilinear (ξi) and Cartesian (xi)

coordinate systems holds
∂

∂xi
=
∂ξj
∂xi

∂

∂ξj
. (2.6)

In matrix form, equation 2.4 becomes


dξ1

dξ2

dξ3

 =



∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2

∂ξ3

∂x3




dx1

dx2

dx3

 . (2.7)

Similarly,


dx1

dx2

dx3

 =



∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3




dξ1

dξ2

dξ3

 . (2.8)

Equations 2.4 and 2.5 can only be correct if the two three-by-three matrices that

appear in these equations are inverses of each other, such that

∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2

∂ξ3

∂x3


︸ ︷︷ ︸

Matrix B

=



∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3



−1

︸ ︷︷ ︸
Matrix A

. (2.9)

If matrix B is the inverse of matrix A then

B = A−1, and
∂ξj
∂xi

=
βij

Det(A)
=

(−1)j+iMij

Det(A)
, (2.10)

where Mij denotes the minor determinant. The minor determinant is used to define

the cofactor (i.e., βij = (−1)j+iMij). The determinant of the matrix on the right
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hand side of equation 2.9 is known as the Jacobian determinant

J = Det

(
∂xi
∂ξj

)
=



∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1
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∂ξ3
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∂x3
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∂ξ3
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(2.11)

Since all stored variables are at the centroids of adopted non-orthogonal control

volumes, ∂/∂ξj can be calculated using the finite difference approach whereas ∂/∂xj

can only be quantified using equation 2.6. Therefore, the component of Jacobian,

∂ξj/∂xi, needs to be quantified for each control volume as

∂ξ1

∂x1

=
1

J

[
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(2.12)

which can be expressed in a general tensor form as

∂

∂xi
=

1

J
βji

∂

∂ξj
. (2.13)

It should be noted that the equation (2.13) cannot be directly used to discretize

terms (such as continuity, momentum convection and thermal energy convection
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Figure 2.1: Schematic of a computational cell, its node, faces, and neighbors in 2-D
and 3-D configurations for the base grid.

terms) of a divergence form, as the conservation law would be broken in FVM. There-

fore, equation 2.13 can be further expressed as

1

J
βji
∂ui
∂ξj

=
1

J

(
∂βji ui
∂ξj

− ui
∂βji
∂ξj

)
=

1

J

∂βji ui
∂ξj

. (2.14)

To discretize equations (2.1), (2.2) and (2.3), the computation domain is divided into

body-fitted control volumes. Figure 2.1 shows the schematic of a 3-D computational

node and its neighbouring nodes.

In this thesis, a collocated second-order central differencing scheme was used to dis-

cretize the spatial derivatives for both the momentum and thermal energy equations.

As such, all the physical variables (velocity components, temperature and pressure)

were stored at the centroids of control volumes. Furthermore, interpolations were

required to approximate the values at faces and edges of control volumes. In order to

carefully control the variation of grid spacing in the computation domain, an arith-

metic average was utilized to calculate the interpolations, e.g., ue ≈ (uP + uE)/2 and

Tsw ≈ (TP + TS + TSW + TW )/4. In other words, this is to avoid the violation of
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energy conservation induced by the linear interpolation in non-uniform grids (Vasi-

lyev, 2000; Fukagata and Kasagi, 2002). Here, upper-case letter subscripts ‘P’, ‘W’,

‘E’, ‘S’, ‘N’, ‘B’ and ‘T’ indicate the centroids of computational nodes. However, the

lower-case letters ‘w’, ‘e’, ‘s’, ‘n’, ‘b’ and ‘t’ refer to the west, east, south, north, bot-

tom and top faces of a control volume, respectively. In the simulations of V-shaped

and inclined rib cases, the projection of a control volume onto the x-z plane is of a

parallelogram shape (see figure 2.1(b)). Curvilinear coordinates ξ1 and ξ2 correspond

to Cartesian coordinates x and y, respectively, and the angle between the ξ3 and z

axes is determined by the angle of V-shaped or inclined ribs (see figure 2.1(b)). In

the curvilinear coordinate system (based on ξi), a control volume has a unit length

in all three directions.

The integration of equation (2.1) within a control volume can be written as∫ e

w

∫ n

s

∫ t

b

1

J

∂(βji ui)

∂ξj
dξ1dξ2dξ3 =∫ n

s

∫ t

b

1

J

∂(βji ui)

∂ξj
dξ2dξ3

∣∣e
w

+∫ e

w

∫ t

b

1

J

∂(βji ui)

∂ξj
dξ1dξ3

∣∣n
s
+∫ e

w

∫ n

s

1

J

∂(βji ui)

∂ξj
dξ1dξ2

∣∣t
b

=

1

J

(
β1
i ui|ew + β2

i ui|ns + β3
i ui|tb

)
= 0 ,

(2.15)

and the mass flux through each face of the control volume can be derived as

CW = mw = ρβ1
i ui|w

CE = me = ρβ1
i ui|e

CS = ms = ρβ2
i ui|s

CN = mn = ρβ2
i ui|n

CB = mb = ρβ3
i ui|b

CT = mt = ρβ3
i ui|t .

(2.16)
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Term Cartesian Curvilinear

Velocity divergence
∂uj
∂xj

1
J

∂(βj
i ui)

∂ξj

Temporal derivative ∂ui/∂t ∂ui/∂t

Convection
∂uiuj
∂xj

1
J

∂
∂ξk

(
βkj uiuj

)
Pressure gradient −1

ρ
∂p
∂xi

− 1
Jρ

∂(βk
i p)

∂ξk

Viscosity ν ∂2ui
∂xj∂xj

ν
J

∂
∂ξp

(
1
J
βpj β

q
j
∂ui
∂ξq

)
Driving force Π Π

Table 2.1: Coordinate transformation of terms in the continuity and momentum
equations.

The momentum equation is more complex, which requires to be considered term

by term. A detailed description of the discretization schemes used for the momentum

equation are delivered in Appendix A. Table 2.1 summarizes the coordinate transfor-

mation of terms in the continuity and momentum equations.

2.1.2 Spatial discretization of advection-diffusion equation

With the above analysis, the convection term in equation (2.3) is discretized as∫ e

w

∫ n

s

∫ t

b

1

J

∂(βji Tui)

∂ξj
dξ1dξ2dξ3 =∫ n

s

∫ t

b

1

J

∂(βji Tui)

∂ξj
dξ2dξ3

∣∣e
w

+∫ e

w

∫ t

b

1

J

∂(βji Tui)

∂ξj
dξ1dξ3

∣∣n
s
+∫ e

w

∫ n

s

1

J

∂(βji Tui)

∂ξj
dξ1dξ2

∣∣t
b

=

1

J

(
β1
i Tui|e − β1

i Tui|w + β2
i Tui|n − β2

i Tui|s + β3
i Tui|t − β3

i Tui|b
)

.

(2.17)
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Term Cartesian Curvilinear

Temporal derivative ∂T
∂t

∂T
∂t

Convection ∂Tui
∂xi

1
J

∂
∂ξj

(
βji Tui

)
Diffusion ν ∂2T

∂xj∂xj

α
J

∂
∂ξp

(
1
J
βpj β

q
j
∂T
∂ξq

)
Table 2.2: Coordinate transformation of terms in the advection-diffusion equation.

The diffusion term in equation (2.3) is discretized as∫ e

w

∫ n

s

∫ t

b

α
1

J

∂

∂ξp

(
1

J
βpj β

q
j

∂T

∂ξq

)
dξ1dξ2dξ3 =

α
1

J

[
1

J
β1
jβ

q
j

∂T

∂ξq

∣∣∣∣e
w

+
1

J
β2
jβ

q
j

∂T

∂ξq

∣∣∣∣n
s

+
1

J
β3
jβ

q
j

∂T

∂ξq

∣∣∣∣t
b

]
=

α
1

J

[
1

J
β1
jβ

1
j

∂T

∂ξ1

∣∣∣∣e
w

+
1

J
β2
jβ

2
j

∂T

∂ξ2

∣∣∣∣n
s

+
1

J
β3
jβ

3
j

∂T

∂ξ3

∣∣∣∣t
b

]
+

α
1

J

[
1

J
β1
jβ

2
j

∂T

∂ξ2

∣∣∣∣e
w

+
1

J
β2
jβ

1
j

∂T

∂ξ1

∣∣∣∣n
s

+
1

J
β3
jβ

1
j

∂T

∂ξ1

∣∣∣∣t
b

]
+

α
1

J

[
1

J
β1
jβ

3
j

∂T

∂ξ3

∣∣∣∣e
w

+
1

J
β2
jβ

3
j

∂T

∂ξ3

∣∣∣∣n
s

+
1

J
β3
jβ

2
j

∂T

∂ξ2

∣∣∣∣t
b

]
.

(2.18)

In this thesis, the derivatives in the third last brackets in equation (2.18) are dis-

cretized by employing a second-order finite difference method based on two adja-

cent control volumes, e.g., ∂T/∂ξ1|e ≈ TE − TP . As for the derivatives in the last

two brackets of equation (2.18), they need to be first evaluated at the centroids

of control volumes, and then interpolated to the desired faces, e.g., ∂Ti/∂ξ3|e ≈

(TS +TSE−TN−TNE)/4. It should be indicated that the terms in the last two brack-

ets are cross-derivative diffusion fluxes, which vanish in an orthogonal grid system.

Table 2.2 summarizes the coordinate transformation of thermal equation.
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2.1.3 Temporal discretization

An explicit two-step Runge-Kutta scheme (RK) was utilized to discretize the

temporal derivative. Within each sub-step of the Runge-Kutta scheme, a fractional-

step method is also implemented to enhance the accuracy. The advection-diffusion

equation that governs the temperature field was implemented after the solution of

the momentum equations at each time step. For the first sub-step, equation (2.3) is

further evaluated as

J
T ∗ − T

∆t
+ Tui|e − Tui|w + Tui|n − Tui|s + Tui|t − Tui|b =

α

(
1

J
β1
jβ

1
j

∂T

∂ξ1

∣∣∣∣e
w

+
1

J
β2
jβ

2
j

∂T

∂ξ2

∣∣∣∣n
s

+
1

J
β3
jβ

3
j

∂T

∂ξ3

∣∣∣∣t
b

)

+ α

(
1

J
β1
jβ

2
j

∂T

∂ξ2

∣∣∣∣e
w

+
1

J
β2
jβ

1
j

∂T

∂ξ1

∣∣∣∣n
s

+
1

J
β3
jβ

1
j

∂T

∂ξ1

∣∣∣∣t
b

)

+ α

(
1

J
β1
jβ

3
j

∂T

∂ξ3

∣∣∣∣e
w

+
1

J
β2
jβ

3
j

∂T

∂ξ3

∣∣∣∣n
s

+
1

J
β3
jβ

2
j

∂T

∂ξ2

∣∣∣∣t
b

)
.

(2.19)

Here, T ∗ denotes an updated preliminary temperature field. Equation 2.19 can be

expressed in a more compact manner as

T ∗ = H − ∆t

J
, (2.20)

where H denotes all the explicit terms in equation (2.19). The first stage of any

explicit Runge-Kutta method simply samples the temperature field at the current

time-step as

T (1) = T n ,

K1 = H(T (1)) ,

T (2) = T (1) +K1∆t ,

K2 = H(T (2)) ,

(2.21)

and the second time-step as

T (n+1)∗ = T n + ∆t(
K1 +K2

2
) . (2.22)
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(a) Profiles of 〈v〉 at z/δ = −0.75 (b) Profiles of urms at z/δ = −0.7

Figure 2.2: Comparison of the vertical profiles of mean transverse velocity 〈v〉 and
streamwise RMS velocity urms against the reported DNS data of Gavrilakis (1992),
Pinelli et al. (2010b), Vinuesa et al. (2014) and Pirozzoli et al. (2018) for a smooth
square duct flow of Reb = 4410 in the off-center vertical planes located at z/δ = −0.75
and −0.7, respectively.

2.1.4 Code validation

Prior to the DNS study of ribbed square duct flows, the computer code was validated

based on two classical test cases of (1) a smooth square duct flow at Reb = 4410, and

(2) a 2-D ribbed plane-channel flow (with spanwise square bars mounted on one wall)

at Reb = 5600. The obtained DNS results were compared against the reported DNS

data of Gavrilakis (1992), Pinelli et al. (2010b), Vinuesa et al. (2014), and Pirozzoli

et al. (2018) on the smooth duct flow case, and against those of Orlandi et al. (2006)

and Ismail et al. (2018) on the 2-D ribbed planed-channel flow case. The comparisons

are shown in figures 2.2 and 2.3, respectively.

The DNS of the smooth duct flow was performed with a computational domain

of Lx × Ly × Lz = 6πδ × 2δ × 2δ. The streamwise computational domain was set

to Lx = 6π, identical to that used in Pirozzoli et al. (2018). Periodic boundary

condition was applied to the streamwise direction and no-slip boundary condition
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was prescribed at all four sidewalls. The number of grid points used in our DNS was

Nx × Ny × Nz = 512 × 128 × 128, identical to that used for “case A” of the DNS

study of Pirozzoli et al. (2018). As is evident in figure 2.2, the DNS results show

an excellent agreement with the reported data in terms of the prediction of the non-

dimensionalized the mean transverse velocity 〈v〉/Ub and root-mean-squares (RMS)

of the streamwise velocity fluctuations urms/Ub. Figure 2.2(a) clearly indicates the

presence of the secondary mean flow in the cross-stream directions, as the magnitude

of 〈v〉/Ub is non-negligible, and the profile is characterized by a “S-shaped” pattern

along the vertical direction. From figure 2.2(b), it is seen that the profile of non-

dimensionalized streamwise RMS velocity urms/Ub manifests a primary peak near the

sidewall, and again increases in value close to the duct center. Clearly, in a smooth

duct flow, the presence of the secondary flow has a significant impact on the mean and

turbulence fields. Later, it will be shown that the occurrence of the secondary flow is

characteristic of both smooth and ribbed duct flows, which is due to the confinement

of the four sidewalls of the duct.

For the second test case of a 2-D ribbed plane-channel flow, the DNS was per-

formed in a computational domain of Lx×Ly×Lz = 8δ× 2.2δ×πδ consisting of five

rib periods, identical to the setup of Orlandi et al. (2006). The same test case has

also been investigated by Ismail et al. (2018), and their data are also used here in our

comparative study. Periodic boundary condition was applied to both streamwise and

spanwise directions, and no-slip boundary condition was applied to all surfaces. Fol-

lowing Orlandi et al. (2006), the range of the vertical coordinate is −1.2 ≤ y/δ ≤ 1.0.

The number of grid points used in our DNS was Nx × Ny × Nz = 400 × 160 × 128,

identical to that used by Orlandi et al. (2006). Figure 2.3 compares the predicted

mean streamwise velocity and mean viscous shear stress profiles against the DNS

data of Orlandi et al. (2006) and Ismail et al. (2018). As shown in figure 2.3, the

results are in an excellent agreement with the reported data. The effects of ribs on

the velocity field is evident in both figures 2.3(a) and 2.3(b). The vertical profile of
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(a) Profiles of 〈u〉 (b) Profiles of τ12

Figure 2.3: Comparison of the vertical profiles of mean streamwise velocity 〈u〉 and
viscous shear stress τ12 against the DNS data of Orlandi et al. (2006) and Ismail et al.
(2018) for 2-D turbulent plane-channel flow of Reb = 5600 with transverse square ribs
mounted on one wall.

〈u〉/Uc becomes asymmetrical in the vertical direction due to the presence of the ribs.

Here, Uc = 3Ub/2 is the mean streamwise velocity at the center line of the channel

(Orlandi et al., 2006; Ismail et al., 2018). From figure 2.3(a), it is also clear that

the shear layer carrying the highest streamwise momentum is pushed towards the

smooth top wall. These characteristics of the mean streamwise velocity profile fur-

ther result in a viscous shear stress (τ12 = µ∂〈u〉/∂y) profile that is special for a 2-D

ribbed boundary-layer flow shown in figure 2.3(b). The viscous shear stress reaches

its maximum near the rib crest and decreases as the channel center is approached.

2.2 High-performance computing

Numerical simulations for the following chapters were conducted on the Western

Canada Research Grid (WestGrid) supercomputers, which encompasses 15 partner

institutions and is one of four consortia that provides high-performance computational
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resources across Canada. The precursor simulation was run for an extended duration

of 73 flow-through times (i.e., 930δ/Ub) until the turbulent flow field becomes fully-

developed and statistically stationary. Then, turbulence statistics were collected for

a time period over approximately 110 flow-through times (i.e., 1400δ/Ub). For each

simulated case in chapters 3 and 4, 240-254 cores were used for performing DNS, and

approximately 548,000 central processing unit (CPU) hours were spent for solving

the velocity field and for collecting the flow statistics (after the precursor simulation).
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Chapter 3

Direct numerical simulation of

turbulent flow through a ribbed

square duct

3.1 Introduction

In this chapter, a systematic DNS study of rib-roughened duct flows of three different

blockage ratios (Br = 0.05, 0.1 and 0.2) is conducted to obtain detailed knowledge of

the rib height effects on the statistical moments and premultiplied energy spectra of

the turbulent velocity field, local non-equilibrium of turbulence, large- and small-scale

flow anisotropy, transport of TKE, as well as the dynamics of mean and turbulent

secondary flow motions. In order to identify the rib effects on the flow field, an

additional DNS of a smooth duct flow has also been conducted at the same Reynolds

number (as in the three rib cases), which is used as a baseline comparison case.

This study also aims to bring new insights into the secondary flows and turbulence

structures characteristic of a three-dimensional (3-D) ribbed duct flow, which are

considerably different from those of a conventional two-dimensional (2-D) rough-wall

boundary-layer flow.
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The remainder of this chapter is organized as follows: in section 3.2, the numer-

ical algorithm for conducting DNS is introduced together with a detailed study of

the minimum computational domain required for capturing dominant turbulent flow

structures in a ribbed duct with various blockage ratios. In section 3.3, the influence

of rib height on the statistically averaged quantities is analyzed, including the mean

flows, the pressure and viscous drag coefficients, Reynolds stresses, production and

dissipation terms, budget balance of TKE, as well as the anisotropy of the turbu-

lence field characteristic of the ribbed duct. Furthermore, the impact of rib height on

sweep and ejection events is investigated. To this purpose, the third-order moments

and the joint probability density functions (JPDF) of streamwise and vertical velocity

fluctuations are studied. In section 3.4, the effect of rib height on the turbulent flow

structures is analyzed based on multiple tools such as vortex identifiers, two-point

correlation functions, and velocity spectra. Finally, in section 3.5, major conclusions

of this chapter are summarized.

3.2 Test cases and numerical method

Figure 3.1 shows a schematic of the computational domain for the ribbed squared

duct with a side length D (i.e., Ly = Lz = D). The streamwise domain is Lx = 6.4D

long and consists of eight rib periods (P ), with P = 0.8D. The height and width

of the rectangular bars are H and W , respectively. In our analysis, it is useful to

define half side length (δ = D/2), especially when the results are compared with

those of 2-D plane-channel flow. In our comparative study, DNS is performed based

on three different blockage ratios (for Br = H/Ly = 0.05, 0.1, and 0.2). The flow

field is assumed to be fully-developed and periodic boundary conditions are applied

to the inlet and outlet of the duct. A no-slip boundary condition is imposed on

all solid walls. The Reynolds number is fixed at Reb = DUb/ν = 5600, where Ub

denotes the average bulk mean velocity over the streamwise direction of the ribbed
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Figure 3.1: Schematic of a square duct with transverse ribs and coordinate system.
The origin of the absolute coordinate system [x, y, z] is located at the center of the inlet
(y-z) plane. Eight rib periods are simulated in the DNS. To facilitate the analysis
of each rib period, the relative streamwise coordinate x′ is defined, with its origin
located at the windward face of each rib.

duct. In comparison with a 2-D ribbed boundary-layer flow, more degrees of freedom

are involved in the analysis of a 3-D ribbed duct flow. For instance, the restriction of

spanwise homogeneity characteristic of a 2-D boundary-layer flow is lacking in a duct

flow. Given the high blockage ratio, a common fixed-valued bulk Reynolds number

Reb is chosen, which facilitates a comparative study under a constant mass flow rate.

This is similar to the study of Hirota et al. (1992) and Coletti et al. (2012), who

conducted comparative experimental studies of rib-roughened duct flows based on

bulk Reynolds number Reb. The rib effects on the flow field are studied by comparing

the DNS results of three rib cases against those of a baseline case of DNS of a smooth

duct flow at the same Reynolds number Reb. The geometrical setup of the smooth

duct is similar to that described by figure 3.1, except that there are no ribs on the

bottom wall and the streamwise length of the domain is Lx = 6πδ following the

approach of Pirozzoli et al. (2018).
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Table 3.1 compiles the flow parameters of three rib cases, including the Reynolds

number based on the rib height (defined as H+ = HuτR/ν), streamwise domain length

(defined as L+
x = LxuτR/ν), elevation of the virtual origin (d0) on the ribbed bottom

wall side, and Reynolds numbers (ReτS = δuτS/ν and ReτR = δuτR/ν) defined based

on the mean streamwise wall friction velocities of smooth top and ribbed bottom

walls (i.e., uτS and uτR, respectively) in the central vertical (x-y) plane located at

z/δ = 0. The calculation of the value of uτS for the smooth top wall is straightforward,

which is done based on the mean streamwise velocity gradient in the central (x-y)

plane. The method for calculating the value of uτR for the ribbed bottom wall in the

central (x-y) plane of the duct is analogous to that of Leonardi and Castro (2010)

and Ismail et al. (2018) for a 2-D ribbed turbulent channel flow, viz. u2
τR = Dp +Dv.

Here, term Dp and Dv are direct consequences of pressure and viscous drag forces

in the central (x-y) plane, determined as Dp = 1/(ρLx)
∑N

n=1

∫ H
0

(〈Pwind〉 − 〈Plee〉)dy

and Dv = µ/(ρLx)
∫ Lx

0
(∂〈u〉/∂y)w dx, respectively. In these equations, subscript ‘w’

denotes either the bottom wall or rib crest exposed to the streamwise flow, N is

the total number of rib elements, 〈·〉 denotes averaging over time and over the eight

rib periods, and Pwind and Plee represent the pressure on the windward and leeward

faces of a rib, respectively. The position of the virtual origin in the central (x-

y) plane can be determined analogously by following Thom (1971), Jackson (1981)

and Chan et al. (2015) who studied 2-D rough-wall boundary-layer flows, viz. d0 =∫ H
0
yDt(y)dy/

∫ H
0
Dt(y)dy, where Dt = Dp +Dv is the total drag forcing term.

From table 3.1, it is clear that as the blockage ratio increases from Br = 0.05

to 0.2, the elevation of the virtual origin d0/H increases monotonically as a result

of an increasing rib height; meanwhile, both values of ReτS and ReτR also increase

monotonically. The increasing trend in the elevation of the virtual origin in the

central (x-y) plane of a 3-D square duct observed here is similar to the DNS results of

Bhaganagar et al. (2004) and Chan et al. (2015) who systematically investigated 2-D

roughness boundary-layer flow in a plane channel and a circular pipe, respectively.
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Table 3.1: Flow parameters for DNS of three ribbed square duct flow cases of different
blockage ratios.

Br Dp (m2s−2) Dv (m2s−2) H+ L+
x d0/H ReτR ReτS

0.05 0.0095 0.00052 28 3587 0.38 280 183

0.1 0.0167 −0.00143 69 4428 0.69 346 208

0.2 0.0238 −0.00272 162 5203 0.84 406 236

The reason that the value of ReτS increases with the Br value is that this comparative

study is conducted under the condition of a constant bulk Reynolds number Reb. As

the rib height increases, the mean streamwise velocity increases in order to maintain

a constant mass flow rate. On the other hand, the physical mechanism underlying the

monotonic increasing trend of ReτR with an increasing Br value is rather complicated.

By definition, the value of ReτR is influenced by both values of Dp and Dv. From

table 3.1, it is evident that the value of Dv is one order of magnitude smaller than that

of Dp, indicating that the drag force is primarily contributed by the pressure drag

term Dp, which increases as the rib height increases. It is interesting to observe that

the value of the viscous drag term Dv transitions from being positive to being negative

as the Br value increases. A negatively-valued viscous drag is a direct reflection of

boundary-layer separation in the recirculation bubble behind a rib. The rib height

effects on the pattern of the recirculation bubble and on the spanwise variation of the

viscous and pressure drag coefficients will be detailed shortly in subsection 3.3.1.

It should be indicated here that the calculation of the values of Dp, Dv, ReτS, ReτR

and d0 in the central vertical (x-y) plane (located at z/δ = 0) follows the method

of analysis for a conventional 2-D rough-wall boundary layer. Strictly speaking, the

value of applying this method to the analysis for a 3-D ribbed duct flow is very

limited, simply because a 2-D boundary layer is absent in a 3-D ribbed duct flow and

the analysis is restricted to the selected central vertical (x-y) plane. Furthermore,

given the large value of the blockage ratio (up to Br = 0.2 in a square duct), it would

be more reasonable to treat the tall ribs as part of the domain geometry rather than
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2-D roughness elements.

DNS was performed with an in-house computer code developed using the FOR-

TRAN 90/95 programming language and parallelized following the message passing

interface (MPI) standard. In this computer code, the continuity and momentum

equations are discretized based on a general curvilinear coordinate system (ξ1, ξ2, ξ3),

and in the context of an incompressible flow, they are expressed as

1

J

∂
(
βki ui

)
∂ξk

= 0 , (3.1)

∂ui
∂t

+
1

J

∂

∂ξk

(
βkj uiuj

)
= − 1

Jρ

∂
(
βki p
)

∂ξk
− 1

ρ
Πδ1i +

ν

J

∂

∂ξp

(
1

J
βpj β

q
j

∂ui
∂ξq

)
, (3.2)

where ui, p, ν, ρ, and δij represent the velocity, pressure, kinematic viscosity, density,

and Kronecker delta, respectively. In addition, Π denotes a constant streamwise

pressure gradient that drives the flow, and βji and J denote the cofactor and Jacobian

of tensor ∂xi/∂ξj, respectively. It is worth noting that this computational code is

developed to tackle curved surfaces based on body-fitted mesh. Specific to the current

application to simulation of the flow through a square duct with straight rectangular

shaped ribs mounted on one wall, the Jacobian degenerates to Kronecker Delta. The

above governing equations are represented using tensor notations, and the streamwise

(x), vertical (y), and spanwise (z) coordinates shown in figure 3.1 are denoted using

xi for i = 1, 2, and 3, respectively. Correspondingly, the three velocity components

u, v and w are also denoted using u1, u2 and u3. Eight rib periods are simulated in

our DNS, and in our analysis of each rib period, we also use the relative streamwise

coordinate x′, with its origin located at the windward face of a rib (see figure 3.1).

The numerical algorithm of the computer code is based on the finite-volume

method (FVM) in which a second-order accuracy is achieved with respect to both

spatial and temporal discretizations. Within each sub-step of the second-order Runge-

Kutta scheme, a fractional-step method is applied and a pressure correction equation

is solved using the parallel algebraic multigrid solver (AMG), and the convergence of
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the solver is considered once the averaged residue of a discretized algebraic equation

drops below 10−6. For time advancement, the Courant-Friedrichs-Lewy (CFL) num-

ber is approximately 0.2. A momentum interpolation approach is used to obtain the

cell-face velocity components and based on the velocity and pressure values in two

adjacent control volumes in order to avoid the potential checkerboard problem of the

pressure field. The simulation started with an initial laminar flow solution superim-

posed with artificial perturbations to trigger turbulence. The precursor simulation

was run for an extended duration of 73 flow-through times (i.e., 930δ/Ub) until the

turbulent flow field becomes fully-developed and statistically stationary. Then, turbu-

lence statistics were collected for a time period over approximately 110 flow-through

times (i.e., 1400δ/Ub). All the simulations were conducted using the WestGrid (West-

ern Canada Research Grid) supercomputers. For each simulated case, 254 cores were

used for performing DNS, and approximately 548,000 CPU hours were spent for

solving the velocity field and for collecting the flow statistics (after the precursor

simulation).

3.2.1 Streamwise integral length scale and domain size

In the current literature, there are controversies over the proper choice of the

streamwise computational domain size (Lx) for transient simulation of ribbed turbu-

lent duct flow. For instance, Sewall et al. (2006) performed LES to investigate the

effects of transverse rib roughness on the turbulent flow and heat transfer within a

square duct at a fixed Reynolds number. The streamwise domain in their LES was

a single rib period (i.e., Lx = P = 2δ) with a periodic boundary condition applied

to the streamwise direction. Fang et al. (2017) studied turbulent flow and structures

in a square duct with perpendicular and V-shaped ribs mounted on the bottom wall,

and the streamwise domain size set to Lx = 4.8δ. They showed that this domain

size is insufficient for capturing the largest eddy structures in the duct center. In

view of this, a larger value of Lx = 6.4D (or, 12.8δ) is taken into account in the
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current DNS to ascertain that typical large-scale turbulent structures of the flow are

properly captured. To confirm, streamwise two-point correlation (Ruu) is computed

for different rib heights at various elevations. Note that since the flow in the vicinity

of ribs experiences various separation and reattachment phenomena, ribbed duct flow

is remarkably inhomogeneous in the streamwise direction. Consequently, the two-

point correlation of the fluctuating velocity components cannot be computed via fast

Fourier transform (FFT). In this regard, we follow the approach of Christensen and

Adrian (2001), who calculated auto- and cross-correlations of the velocity field in the

physical space at several points across the vertical direction. For a ribbed duct flow,

the streamwise two-point auto-correlation coefficient is defined as (Townsend, 1980;

Volino et al., 2009)

Ruu(xref ,∆x) =
〈u′(xref )u′(xref + ∆x)〉√
〈u′2(xref )〉〈u′2(xref + ∆x)〉

, (3.3)

where u′ represents the streamwise fluctuating velocity, and ∆x denotes the relative

displacement from the reference point located at xref , such that x = xref + ∆x.

Figure 3.2 compares the profiles of the normalized streamwise two-point auto-

correlation coefficient at different elevations along the vertical line located at approx-

imately the center of the domain of (xref/δ, zref/δ) = (5.9, 0.0) for two rib cases of

different blockage ratios. In terms of the relative streamwise coordinate measured

from the windward face of the upstream rib, the reference points are at x′ref/δ = 0.4.

It is evident from this figure that Ruu decays to zero over one-half the streamwise

domain length at all three elevations, indicating that the streamwise computational

domain size is sufficiently large to capture energetic turbulence structures. By com-

paring figures 3.2(a) with 3.2(b), it is observed that as the rib height increases, the

spread of the peak becomes greater as a result of larger streamwise length scales.

Indeed, the streamwise integral length scale (i.e., Lxx =
∫∞

0
Ruu(x)dx) of Br = 0.2

near the rib crest is 2.8 times that of Br = 0.05. From this figure, it is also clear

that for the two rib cases of different Br values, the length scales of turbulent ed-
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(a) Br = 0.05 (b) Br = 0.2

Figure 3.2: Streamwise profiles of two-point auto-correlations for ribbed duct flows
of two different blockage ratios (Br) at different elevations (y/δ). The reference
points are located approximately at the center of the computational domain (i.e.,
at xref/δ = 5.9 and zref/δ = 0.0). In terms of the relative streamwise coordinate
measured from the windward face of the upstream rib, the reference points are at
x′ref/δ = 0.4. In the vertical direction, the reference points at y/δ = −0.86 and −0.56
coincide with the peaks positions of 〈u′u′〉 and −〈u′v′〉 for Br = 0.05 and 0.2 cases,
respectively (which will be demonstrated later in section 3.3.3).

dies slightly increase with an increasing distance from the rib crest in the vertical

direction. Further from table 3.1, it is clear that as the blockage ratio increases from

Br = 0.05 to 0.2, the non-dimensional domain length increases monotonically from

L+
x = 3587 to 5203.

3.2.2 Grid resolution

In this study, we used body-fitted mesh (BFM) to resolve precisely each rib ge-

ometry, such that the entire flow field can be accurately calculated. The simulations

were conducted using Nx×Ny ×Nz = 1280× 148× 152 body-fitted grid points. The

mesh is non-uniform in all three directions, and is refined near all solid surfaces. It

should be mentioned that there are two popular meshing methods in the current liter-

ature that can be used for dealing with riblets. Besides BFM, the immersed boundary
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(a) Br = 0.05 (b) Br = 0.2

Figure 3.3: Contours of the ratio of the grid size to the Kolmogorov length scale
(∆/η) in the central plane at z/δ = 0.0 for two different blockage ratios of Br = 0.05
and 0.2.

method (IBM) can be also considered. The IBM method started with Peskin (1972)

and has been significantly developed since (Mittal and Iaccarino, 2005; Griffith and

Patankar, 2020). The IBM method has been successfully applied to DNS and LES

of turbulent flows over regular and irregular shaped roughness elements (Leonardi

et al., 2003; Scotti, 2006; Orlandi et al., 2006; Pinelli et al., 2010a; Bhaganagar, 2008;

Bhaganagar and Chau, 2015; Lee et al., 2011; Yuan and Piomelli, 2014; Rouhi et al.,

2019). As two popular methods, both BFM and IBM have advantages and disadvan-

tages. In comparison with the BFM method, the IBM method is computationally

less expensive, but it relies on an additional roughness-forcing model. Given that

the blockage ratio is relatively high (up to Br = 0.2), the tall ribs should be treated

as part of the domain geometry rather than 2-D roughness elements. Furthermore,

because the geometry of the square rib bars is regular and simple, we can use BFM

to resolve precisely each rib geometry (without a need for roughness forcing model as

in IBM), such that the flow field of the entire computation domain (including the rib

neighborhood) can be accurately calculated. The BFM method used here is similar to

those of Ikeda and Durbin (2007), Yang and Shen (2010), Philips et al. (2013), Chan
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Table 3.2: Grid resolutions in wall units for all three directions based on the mean
streamwise wall friction velocity (uτS) along the intersection line of the smooth top
wall (located at y = δ) and the central vertical (x-y) plane (located at z/δ = 0).

Br ∆+
x |max ∆+

y |max ∆+
z |max ∆+

x |min ∆+
y |min ∆+

z |min
0.05 6.5 5.4 5.9 0.65 0.48 0.61
0.1 7.7 6.5 7.2 0.69 0.57 0.69
0.2 8.9 7.9 8.1 0.73 0.68 0.76

et al. (2015), Wagner and Shishkina (2015), MacDonald et al. (2016), and Ismail et al.

(2018), who directly resolved regularly-shaped roughness elements (e.g., ribs, cubes,

and wavy surfaces) using body-fitted meshes.

To ensure that this mesh is sufficiently fine to capture the smallest scales of the

turbulence as demanded by DNS, the ratio of the grid size to the Kolmogorov length

scale is investigated. Based on their DNS study of turbulent channel flows, Moser

and Moin (1987) indicated that the grid size requires to be of the same order as

the Kolmogorov length scale (i.e., O(∆/η) ∼ O(1)) in order to accurately capture

the turbulence kinetic energy (TKE) dissipation pertaining to the smallest scales of

turbulence. The grid size considered here is based on the maximal dimension of a grid

cell in all three directions (i.e., ∆ = max(∆x,∆y,∆z)) and the Kolmogorov length

scale is calculated as η = (ν3/ε)1/4, where the local dissipation rate is defined as

ε = ν〈∂u′i/∂xj∂u′i/∂xj〉.

The contours of ∆/η in the central (x-y) plane for two different rib cases are

shown in figure 3.3. As indicated in figures 3.3(a) and 3.3(b), it is apparent that

the value of ∆/η is of the order of one (i.e., ∆/η = O(1)) in the two rib cases.

Furthermore, as is seen in these figures 3.3(a) and 3.3(b), the maximum value of ∆/η

is found to be around 6.2 at the leading corner of the rib. Other than this specific

location, the value of ∆/η never exceeds 4.5 over the rest of the computational domain

for all the simulations. This indicates that this grid spacing suffices for accurately

performing DNS of turbulent flows in all three ribbed duct cases tested. Contours

of non-dimensionalized grid size shown in figure 3.3 are comparable to those used by
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Ikeda and Durbin (2007) who conducted DNS study of the 2-D turbulent boundary

layer over periodic transverse rib roughness, and are finer than those employed for

DNS of turbulent flow over cuboidal obstacles mounted on a wall conducted by Coceal

et al. (2007). The spatial resolutions used in our DNS are summarized in table 3.2.

3.3 Statistics of the velocity field

3.3.1 Mean velocity field and mean flow structures

Figure 3.4 compares the time-averaged streamlines in the central plane located at

z/δ = 0.0 for three different rib blockage ratios. This figure clearly shows the effect

of rib height on the mean flow structures. As is seen in figures 3.4(a)-3.4(c), the

mean flow structures between the ribs consist of a large recirculation bubble (marked

with “B”), and two small secondary vortices located at corners on the leeward side

of the upstream rib and windward side of the downstream rib (marked with “A”

and “E”, respectively). By comparing these figures, it is clear that corner vortex A is

not apparently observed at Br = 0.05 due to the fact that the rib is not high enough

to cause a significant sudden expansion of the flow in the lee of the rib. The size of

corner vortex A increases as the rib height increases. Owing to the relatively small

velocity (roughly 15% of the free-stream velocity) within the recirculation zone B, an

adverse pressure gradient is induced, causing the flow to reattach onto the bottom

wall. Downstream of the reattachment point “C”, a new boundary layer builds up

and impinges on the next rib leading to the generation of the upstream vortex “E”

(starting at point “D”). Clearly, the recirculation bubble B becomes increasingly

elongated with an increasing rib height, which further leads to a reduction in the

horizontal distance between points C and D. This phenomenon inevitably impacts

both the local friction and form drags (which will be discussed in subsection 3.3.2).

By comparing figures 3.4(a)-3.4(c), it is interesting to observe that the mean flow
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.4: Mean streamline pattern near the ribbed bottom wall in the central plane
located at z/δ = 0.0 for three different rib cases of Reb = 5600.

patterns of cases of Br = 0.05 and 0.1 are typical of k-type rough-wall flows, but

that of Br = 0.2 exhibits features that are characteristic of a d-type rough-wall flow.

Specifically, as shown in figure 3.4(c), recirculation bubble B is well extended such

that it occupies almost the entire “cavity” between two adjacent ribs, there is no

touch point D, and the mean free-stream flow skims over the cavity. The pitch-to-

height ratios of these three rib cases are P/H = 16, 8 and 4 (for Br = 0.05, 0.1

and 0.2), respectively. If we strictly follow the proposal of Perry et al. (1969) and

Bandyopadhyay (1987) on 2-D rough-wall boundary layers, all these three rib cases

should be considered as k-type rough-wall flows because their pitch-to-height ratios

are larger than three. However, the 3-D rough-wall flow in a square duct under

current investigation is qualitatively different from the classical case of 2-D rough-

wall boundary-layer flow. As such, the case of Br = 0.2 features a d-type rough-wall

flow pattern.

To assess the effects of the rib height on the velocity field, the non-dimensional
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.5: Comparison of the non-dimensionalized mean streamwise velocity profiles
at three relative streamwise locations (for x′/δ = 0.4, 1.0 and 1.5) in the central
plane (located at z/δ = 0) of the ribbed square duct flows (of three blockage ratios
for Br = 0.05, 0.1 and 0.2) with that of the smooth square duct flow at the same
Reynolds number Reb = 5600. The vertical pink dashed line demarcates the rib crest.

vertical profiles of the mean streamwise velocity at different relative streamwise loca-

tions (x′/δ = 0.4, 1.0, and 1.5) are plotted in figure 3.5. The results of three rib cases

are compared with that of the smooth duct in the central vertical plane (located at

z/δ = 0). As expected, the profile of 〈u〉/Ub of the smooth duct flow is symmetrical

in the vertical direction. By contrast, the profiles of all three rib case are ‘skewed’

towards the smooth top wall. By comparing figures 3.5(a)-3.5(c), it is seen that the

37



vertical position corresponding to the maximum value of the mean streamwise velocity

elevates from y/δ = −0.07 to 0.28 as the blockage ratio increases from Br = 0.05 to

0.2. Owing to the presence of the ribs, the magnitude of the mean streamwise velocity

〈u〉/Ub is smaller than that of the smooth duct flow on the ribbed bottom wall side.

As the rib height increases, the profile of the mean streamwise velocity shifts down-

wards progressively, a pattern that is often seen in a 2-D rough-wall boundary-layer

with spanwise homogeneity. By contrast, on the smooth top wall side, the magnitude

of the mean streamwise velocity increases monotonically as the rib height increases.

This is due to the need of maintaining a constant mass flow rate under the test con-

dition of a constant bulk Reynolds number Reb. Clearly, as the rib height increases,

the flow convects downstream with higher momentum near the duct center associated

with a decrease in the mean streamwise velocity in the near-wall region below the rib

height. Furthermore, owing to the presence of the ribs, the mean streamwise velocity

is bumped up around the rib crest. From figures 3.5(a)-3.5(c), it is apparent that the

shear layer strength, as interpreted from the vertical gradient of the mean streamwise

velocity, decreases monotonically in the region immediately above the rib crest as

the rib height increases (i.e., the value of |∂〈u〉/∂y| at the rib crest decreases as the

blockage ratio increases from Br = 0.05 to 0.2). These mean flow features directly

influence the large-scale eddies induced by the roll-up of the shear layer near the rib

crest, which have a significant impact on the turbulent transport processes.

The study of the mean streamwise velocity can be refined by further examining

the effects of rib height on the mean viscous shear stress τ12 = µ∂〈u〉/∂y in the

central vertical plane (located at z/δ = 0), which is shown in figure 3.6. From the

figure 3.6(a)-3.6(c), it is clear that the profile of τ12 is symmetrical for the smooth duct

flow, but asymmetrical for all three ribbed duct cases at all three relative streamwise

locations of x′/δ = 0.4, 1.0 and 1.5. As indicated by the dominant peak of τ12 shown

in figure 3.6(a)-3.6(c), it is clear that the shearing effect is the highest near the rib

crest (in the vertical direction) and at x′/δ = 0.4 relative to the windward face of
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.6: Comparison of the non-dimensionalized mean viscous shear stress profiles
at three relative streamwise locations (for x′/δ = 0.4, 1.0 and 1.5) in the central
plane (located at z/δ = 0) of the ribbed square duct flows (of three blockage ratios
for Br = 0.05, 0.1 and 0.2) with that of the smooth square duct flow at the same
Reynolds number Reb = 5600. The vertical pink dashed line demarcates the rib crest.

the upstream rib (in the streamwise direction) in all three rib cases. This feature is

in sharp contrast to that of the smooth duct flow, in which the value of τ12 is the

maximum at the two walls. From figures 3.5 and 3.6, it is understood that magnitudes

of both the mean streamwise velocity gradient |∂〈u〉/∂y| and viscous shear stress τ12

are the largest near the rib crest at x′/δ = 0.4 in all three rib cases. A large value

of the mean streamwise velocity gradient often leads to high turbulent production
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rate and TKE level. In view of this, in the remainder of our analysis, we pay close

attention to this special relative streamwise location x′/δ = 0.4. Also, it is noticed

that this particular relative streamwise position was also used by Coletti et al. (2012)

in their PIV experimental study of turbulent flow and structures in a ribbed duct

with and without system rotations.

To understand the influence of secondary motions on the mean streamwise ve-

locity field, figure 3.7 demonstrates the contours of the non-dimensionalized mean

streamwise vorticity (defined as 〈ωx〉 = ∂〈w〉/∂y − ∂〈v〉/∂z) and the magnitude of

the non-dimensionalized mean streamwise velocity 〈u〉/Ub (superimposed with the

mean spanwise-vertical velocity vectors) in the cross-stream (y-z) plane located at

x′/δ = 0.4. Given the central symmetry of the flow field, only one half of the cross-

stream domain is shown. As is evident from the mean velocity vector map shown

in figure 3.7, in all three rib cases, there exists one large streamwise-elongated vor-

tex on each side of the duct. The appearance of this pair of large vortices is a

reflection of the mean secondary flows in the cross-stream plane. The centers of

these two vortices can be located using the vector map and are marked using white

dots in figure 3.7. The mean secondary flows exhibit two apparent trends as the

rib height increases. Firstly, the vortex center shifts upwards and transversely to

the sidewalls as the rib height increases. Specifically, the center of the vortex lies

at (y/δ, z/δ) = (−0.01, 0.64) for Br = 0.05, but moves to (0.32, 0.55) and (0.42,

0.51) as the blockage ratio increases to Br = 0.1 and 0.2, respectively. Secondly, the

impingement region on the sidewalls occurs at a higher elevation as the rib height

increases. The secondary flow patterns demonstrated using the non-dimensionalized

mean streamwise vorticity 〈ωx〉/(Ub/δ) in figures 3.7(a)-3.7(c) are consistent with

those shown using the mean spanwise-vertical velocity vectors. However, the crite-

rion of based on 〈ωx〉/(Ub/δ) is advantageous in differentiating vortices of opposite

rotating directions. Figures 3.7(a)-3.7(c) also show that the magnitude of 〈ωx〉/(Ub/δ)

decreases near the bottom corner of the ducts as the blockage ratio increases; however,
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.7: Contours of non-dimensionalized mean streamwise vorticity 〈ωx〉/(Ub/δ)
(left), and the magnitude of the non-dimensionalized mean streamwise velocity 〈u〉/Ub
superimposed with the mean spanwise-vertical velocity vectors (right) in the (y-z)
plane at the relative streamwise location x′/δ = 0.4 for different blockage ratios.
White dots denote the center of the secondary flow vortex. The vectors are displayed
at every four spanwise grid points and every three vertical points to ensure a clear
view of the velocity field.

the magnitude of 〈ωx〉/(Ub/δ) in regions adjacent to the side and top walls increases

monotonically with an increasing rib height. For example, in the region close to the

vertical sidewall (for −1.0 < z/δ < −0.95), the strength of 〈ωx〉/(Ub/δ) for the case
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.8: Contours of the skin friction coefficient Cf in the (x-z) plane on the
bottom wall located at y/δ = −1.0 for three different rib cases.

of Br = 0.2 is approximately 1.7 and 1.4 times larger than those of Br = 0.05 and

0.1, respectively.

3.3.2 Viscous and pressure drags

To better understand the effects of rib height on the mean flow, the distributions

of the skin friction and pressure coefficients are demonstrated in the (x-z) plane

(located below the rib height) in figures 3.8 and 3.9, respectively. The skin friction

and pressure coefficients are defined as Cf = τw/(ρU
2
b /2) and Cp = 〈p〉/(ρU2

b / 2)

42



respectively, where τw represents the local total wall friction stress calculated as τw =

µ[(∂〈u〉/∂y)2 + (∂〈w〉/∂y)2]
1/2
w . Figure 3.8 clearly shows that the formed mean flow

structures affect considerably the spatial distribution of the skin friction coefficient.

From this figure, it is clear that the highest value of Cf occurs around the leeward and

windward faces of the ribs corresponding to the cores of the recirculation bubble B

and upstream vortex E, respectively (see, figure 3.4). As also shown in this figure, the

effects of sidewalls on the corner vortex A and recirculation bubble B are found to be

negligible in the central region (for −0.5 < z/δ < 0.5), leading to a uniform spanwise

distribution of Cf in this region. However, as the sidewall is approached, the value of

Cf enhances significantly to reflect the boundary-layer effect near the two sideswalls

of the duct (see, figure 3.7). This result is consistent with the findings of Casarsa and

Arts (2005) who conducted a PIV experimental study of turbulent flow in a square

duct with square rib bars (of a high blockage ratio of Br = 0.3) mounted on one wall

in a wind tunnel.

In figure 3.9, the spatial distribution of pressure coefficient Cp for the three ribbed

duct cases is plotted in the (x-z) plane located at the middle height of the rib. As is

clear in this figure, the pressure drag is mostly contributed by the pressure difference

between the windward and leeward faces of the rib. From figures 3.9(a)-3.9(c), it

is observed that the magnitude of Cp near the windward face of the rib increases

with an increasing rib height, indicating an enhanced impinging effect of the flow.

The variation of the mean pressure value with the blockage ratio shown in figure 3.9

is consistent with the vortex pattern of the mean flow exhibited in figure 3.4. As

the blockage ratio increases from Br = 0.05 to 0.1, the size of vortex E increases,

which results in a stronger impinging effect on the windward rib face. However, as

the Br value further increases from 0.1 to 0.2, the mechanism underlying the vortex

impinging effect changes fundamentally. By comparing figures 3.4(c) with 3.4(b),

it is clear that the size of vortex B (instead of vortex E) increases significantly as

the blockage ratio increases from Br = 0.1 to 0.2, and consequently, the impinging
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(a) Br = 0.05 at y/δ = −0.95 (b) Br = 0.1 at y/δ = −0.9

(c) Br = 0.2 at y/δ = −0.8

Figure 3.9: Contours of the pressure coefficient Cp in the (x-z) plane at half rib height
for three different rib cases.

effect of the flow on the windward face of the rib is dominated by vortex B instead

of vortex E.

3.3.3 Turbulent stresses

Figure 3.10 compares the contours of “instantaneous turbulent kinetic energy”

(defined as kt = (u′2 + v′2 + w′2)/2, following the approach of Ikeda and Durbin

(2007) and Ismail et al. (2018)) in the central (x-y) plane of different rib cases. From

the qualitative results shown in the figure, it is intuitive that the characteristic length
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Figure 3.10: Contours of the instantaneous turbulent kinetic energy kt = (u′2 + v′2 +
w′2)/2 (non-dimensionalized using U2

b ) in the central (x-y) plane located at z/δ = 0.0
for three different rib cases. (a) Br = 0.05, (b) Br = 0.1, and (c) Br = 0.2.

scales of turbulence are sensitive to the rib height. From figure 3.10, it is evident

that owing to the disturbances from the ribs, the magnitude of kt in all three rib

cases is greatly enhanced on the ribbed bottom wall side than on the smooth top

wall side. Near the rib crest, unsteady eddies are triggered, which shed into the flow

above the rib crest and then are convected downstream. From figure 3.10, it is clear

that although the TKE production rate is the highest at the rib crest, the kt value is

actually low in the vicinity of the rib crest (due to the no-slip boundary condition).

Owing to the strong streamwise convection, the instantaneous TKE level is typically

higher downstream of the rib crest. Clearly, as the blockage ratio increases from
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(a) Profiles of 〈u′u′〉 (b) Profiles of 〈v′v′〉

(c) Profiles of 〈w′w′〉 (d) Profiles of −〈u′v′〉

Figure 3.11: Vertical profiles of Reynolds normal (〈u′u′〉, 〈v′v′〉, and 〈w′w′〉) and shear
(−〈u′v′〉) stresses along the vertical line positioned at (x′/δ, z/δ) = (0.4, 0.0) for three
ribbed square duct flows of different blockage ratios (of Br = 0.05, 0.1 and 0.2), in
comparison with those of the smooth duct flow.

Br = 0.05 to 0.2, the intensity of the spanwise vortices generated near the rib crest

increases, resulting in an enhancement of local turbulent transport of momentum and

energy between the ribbed bottom wall and duct center.

Figure 3.11 compares the vertical profiles of Reynolds stresses of three rib cases

along the central vertical line located at (x′/δ, z/δ) = (0.4, 0.0). The results of three

rib cases are compared against that of the smooth duct in the central vertical plane

located at z/δ = 0. Characteristic of a smooth duct flow, the profiles of the Reynolds

normal and shear stresses are symmetrical and anti-symmetrical about the duct center
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(y/δ = 0), respectively. By contrast, the profiles of all Reynolds stress components

are asymmetrical in all three rib cases due to the presence of the ribs. As is evident

in figure 3.11, in general, the magnitudes of the Reynolds normal and shear stresses

of the ribbed duct flows are much larger than those of the smooth duct flow due to

the disturbances from the ribs. Furthermore, it is apparent the turbulence level as

indicated by the magnitudes of the Reynolds normal and shear stresses are much larger

on the ribbed bottom wall side than on the smooth top wall side. From figure 3.11(d),

it is clear that the value of Reynolds shear stress 〈u′v′〉/U2
b of the three ribbed cases

is comparable to that of the smooth square duct flow in the central vertical plane.

However, the magnitude of 〈u′v′〉/U2
b is much smaller near the smooth top wall than

near the ribbed bottom wall. This observation is consistent with the findings of

Wang et al. (2007), Coletti et al. (2012) and Fang et al. (2015) who conducted PIV

experiments of ribbed duct flows of a similar setup, and with the LES results of ribbed

square duct flows of Xun and Wang (2016) and Fang et al. (2017).

For all three rib cases, the highest Reynolds stress levels occur slightly above the

rib crest, where the shear effect (as indicated by the magnitude of the vertical mean

velocity gradient ∂〈u〉/∂y, see figure 3.5) is the greatest. Specifically, for the 〈u′u′〉,

〈w′w′〉 and−〈u′v′〉 components, their peak values on the ribbed wall side occur around

y/δ = −0.86, −0.76, and −0.56 for Br = 0.05, 0.1 and 0.2, respectively. As clearly

shown in this figure, the peak values of the Reynolds normal (〈u′u′〉, 〈v′v′〉, and 〈w′w′〉)

and shear (−〈u′v′〉) stress components are progressively enhanced near the rib crest

with an increasing rib height, a feature that is fully consistent with the qualitative

result shown in figure 3.10. This enhancement is mainly owing to the promotion of

the shear layer strength emanating from the rib crest, which further augments the

TKE production term, −〈u′iu′j〉∂〈ui〉/∂xj. This observation is also consistent with

the DNS result of Nagano et al. (2004), who studied the effects of rib height on the

turbulence statistics in a 2-D plane-channel flow. They reported that the high level of

turbulence energy is attributed to large values of blockage ratios. From figures 3.11(a)-
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(a) Profiles of 〈u′u′〉 (b) Profiles of 〈v′v′〉

(c) Profiles of 〈w′w′〉 (d) Profiles of −〈u′v′〉

Figure 3.12: Spanwise profiles of Reynolds normal (〈u′u′〉, 〈v′v′〉, and 〈w′w′〉) and
shear (−〈u′v′〉) stresses along elevated lines positioned at (x′/δ, y/δ) = (0.4,−0.6),
(0.4,−0.5), and (0.4,−0.3) for three blockage ratios of Br = 0.05, 0.1 and 0.2, re-
spectively. Given the difference in rib heights, these three positions correspond to
the same relative elevation that is 0.3δ above the rib crest in each case. Owing to
spanwise symmetry, only one half of the duct is plotted.

3.11(c), it is evident that the magnitudes of normal components decrease as the duct

center is approached. Furthermore, it is interesting to observe that the discrepancies

between the streamwise, vertical and spanwise Reynolds normal stresses near the rib

crest decrease monotonically as the blockage ratio increases from Br = 0.05 to 0.2,

leading to an enhanced degree of isotropy. As is evident in figure 3.11(d), similar

to the normal components, the magnitude of the Reynolds shear stress component

−〈u′v′〉 also becomes insignificant upon approaching the duct center. Because the
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value of −〈u′v′〉 is contributed by the ejection and sweep events, this indicates that

the strength of these events decreases significantly in the central region, especially

for 0.0 <y/δ < 0.5. As the smooth top wall is approached, the Reynolds normal and

shear stress profiles displayed in figure 3.11 become increasingly similar to those of

the classical turbulent channel flow (Kim et al., 1987). Later in subsections 3.3.6 and

3.3.7, we will refine our discussion by examining the blockage effects on the Reynolds

stress anisotropy tensor and by conducting a quadrant analysis of the ejection and

sweep events.

To demonstrate the 3-D effects of the ribbed duct flow, figure 3.12 compares

the spanwise profiles of the Reynolds normal (〈u′u′〉, 〈v′v′〉, and 〈w′w′〉) and shear

(−〈u′v′〉) stresses along elevated lines positioned at (x′/δ, y/δ) = (0.4,−0.6), (0.4,

−0.5), and (0.4, −0.3) for three blockage ratios of Br = 0.05, 0.1 and 0.2, respectively.

Given the different heights of ribs in the three test cases, these three positions are

all at the same relative elevation that is 0.3δ (or, 0.15D) above the rib crest in each

case. As shown in figure 3.12, the maximum intensity of 〈u′u′〉 occurs in a region

between the sidewall and center of the duct (e.g., for the Br = 0.2 case, the profile

peaks at z/δ ≈ ±0.4). Furthermore, it is seen that the peak position of 〈u′u′〉 shifts

towards the duct center as the rib height increases, a pattern that is consistent with

the qualitative results shown in figure 3.10. As is clearly seen from figure 3.12(a)-

3.12(c), for the three rib cases tested, the magnitude of 〈u′u′〉 is much larger than

those of 〈v′v′〉 and 〈w′w′〉, making the largest contribution to the value of TKE among

the three Reynolds normal stress components. Figure 3.12(d) displays the spanwise

profile of the Reynolds shear stress −〈u′v′〉, which exhibits a similar trend to that for

the streamwise Reynolds normal stress 〈u′u′〉. Owing to the cross-stream secondary

flow motion, the profile of −〈u′v′〉 peaks in the region between the sidewall and duct

center. Also, as is evident from figure 3.12, at the same elevation relative to the rib

crest, the magnitude of −〈u′v′〉 increases with the increase of blockage ratio. In fact,

from figures 3.11 and 3.12, it is clear that the turbulence level as indicated by the
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magnitudes of Reynolds normal and shear stresses all increase monotonically as the

rib height increases in the central region of the duct.

3.3.4 Effect of rib height on non-equilibrium turbulence

To further understand the impact of the rib height on the turbulence statistics

discussed in subsection 3.3.3, the vertical profiles of the TKE production rate, Pk =

−〈u′iu′j〉∂〈ui〉/∂xj, dissipation rate, εk = ν〈∂u′i/∂xj∂u′i/∂xj〉, and their ratio, Pk/εk,

are plotted in figure 3.13 along the same central vertical line as for displaying Reynolds

stress profiles in figure 3.11. From figures 3.13(a) and 3.13(b), it is clear the production

rate Pk and dissipation rate εk are significantly higher on the ribbed wall side than

on the smooth top wall side in all three test cases. The high TKE production and

dissipation rates on the ribbed side of the duct are indeed characteristics of this

rib-roughened 3-D duct flow, which features strong secondary flows that facilitate

transport of TKE in the cross-stream directions. Similar observations were noted

by Hirota et al. (1992), who conducted LDV measurements of turbulent flows in a

square duct with ribs mounted on one wall. Both Pk and εk peak around the rib crest,

and their magnitude increases monotonically with the Br value. The appearance

of this TKE production peak is due to the strong shear layer formed immediately

above the rib crest, where the level of the mean spanwise vorticity (i.e., 〈ωz〉 =

∂〈v〉/∂x − ∂〈u〉/∂y) is significantly augmented. This peak of Pk coincides with that

in the Reynolds stress profiles shown previously in figure 3.11. Furthermore, the

presence of ribs in the duct imposes significant inhomogeneities on the turbulence

field such that the TKE production rate Pk is not balanced by its dissipation rate εk

(i.e., Pk/εk 6= 1). Figure 3.13(c) compares the ratio of the production to dissipation

of TKE along the vertical line located at (x′/δ, z/δ) = (0.4, 0.0) for the three different

rib cases. As shown in this figure, the maximum value of Pk/εk occurs slightly above

the rib crest, creating a zone of strong non-equilibrium turbulence. Furthermore, as

shown in figure 3.13(c), as the rib height increases, the degree of non-equilibrium as
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Figure 3.13: Vertical profiles of the TKE production term (Pk), dissipation term (εk),
and their ratio (Pk/εk) along the central vertical line located at (x′/δ, z/δ) = (0.4, 0.0)
for different blockage ratios. The values of Pk and εk are non-dimensionalized using
the duct half-height, δ, and bulk velocity, Ub. The gray area shown in panel (c)
pertains to the non-equilibrium region in which Pk/εk > 1.

indicated by the peak value of Pk/εk increases on the ribbed bottom wall side, but

remains invariant on the smooth top wall side. Specifically, close to the rib crest,

the rib case with Br = 0.2 exhibits a maximum value of Pk/εk that is approximately

16% and 9% higher than those of Br = 0.05 and 0.1, respectively. Figure 3.13(c) also

indicates that in all three rib cases, the magnitude of Pk/εk decreases significantly

upon approaching the duct center where Pk/εk almost vanishes. This reduction is

51



z/δ

P
k

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

(a) Profiles of Pk

z/δ

ε k

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10
Br = 0.05
Br = 0.1
Br = 0.2

Br

(b) Profiles of εk

z/δ

P
k /

 ε
k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

(c) Profiles of Pk/εk

Figure 3.14: Spanwise profiles of the TKE production term (Pk), dissipation term (εk),
and their ratio (Pk/εk) along elevated lines positioned at (x′/δ, y/δ) = (0.4,−0.6),
(0.4, −0.5), and (0.4, −0.3) for three blockage ratios of Br = 0.05, 0.1 and 0.2,
respectively. Given the difference in rib heights, these three positions correspond to
the same relative elevation that is 0.3δ above the rib crest in each case. Owing to
spanwise symmetry, only one half of the duct is plotted. The values of Pk and εk are
non-dimensionalized using the duct half-height, δ, and bulk velocity, Ub. The gray
area shown in panel (c) pertains to the non-equilibrium region in which Pk/εk > 1.

ultimately attributed to the more rapid decrease in the value of Pk compared to the

decrease in the value of εk in central regions well above the ribs and below the top

smooth wall.

Figure 3.14 compares the spanwise profiles of Pk, εk, and Pk/εk for the three rib
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cases. As is clear in figure 3.14(a), the profile of Pk exhibits two distinct peaks,

one near the sidewall and one distant from the sidewall at about z/δ = 0.4. These

two peaks reflect the wall-anisotropic effect and the occurrence of the secondary flow

pattern in the cross-stream direction demonstrated previously figure 3.7, respectively.

Consistent with the pattern shown in figures 3.12(a) and 3.12(d), turbulence of high-

level TKE and TKE production rate is convected towards the ribbed wall due to the

increasingly stronger secondary flow as the blockage ratio increases from Br = 0.05 to

0.2. By contrast, as shown in figure 3.14(b), although the magnitude of the dissipation

rate εk increases as the Br value increases, it is less sensitive to the rib height,

especially in the central region of the channel. Consequently, the profile of Pk/εk

displayed in figure 3.14(c) exhibits a similar trend to that of Pk. From figure 3.14(c),

it is also seen that the value of Pk/ε deviates from unity on most occasions at all three

rib cases, which is a clear indication of non-equilibrium turbulence characteristic of a

ribbed duct flow.

3.3.5 Effect of rib height on TKE budget

To further understand the rib effects on turbulence energy transfer in the vertical

direction, the transport equation of TKE (defined as k = 〈u′iu′i〉/2) for a statistically

stationary flow can be studied, which reads

〈uj〉
∂k

∂xj︸ ︷︷ ︸
Ck

= −1

ρ

∂〈p′u′j〉
∂xj︸ ︷︷ ︸

Πk

−1

2

∂〈u′iu′iu′j〉
∂xj︸ ︷︷ ︸
Tk

+ ν
∂2k

∂x2
j︸ ︷︷ ︸

Dk

−〈u′iu′j〉
∂〈ui〉
∂xj︸ ︷︷ ︸

Pk

− ν〈∂u
′
i

∂xj

∂u′i
∂xj
〉︸ ︷︷ ︸

εk

, (3.4)

where Ck, Πk, Tk, and Dk represent the convection, pressure diffusion, turbulent

diffusion and viscous diffusion, respectively. Figure 3.15 shows the vertical profiles of

the budget terms of TKE along the central vertical line positioned at (x′/δ, z/δ) =

(0.4, 0.0) for the smooth duct case and all three rib cases. The profiles of the TKE

budget terms of the smooth square duct flow are plotted in figure 3.15(a), which shows

that the budget balance of TKE is dominated by viscous diffusion Tk and viscous
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(a) Smooth duct (b) Br = 0.05

(c) Br = 0.1 (d) Br = 0.2

Figure 3.15: Vertical profiles of budget terms of the TKE transport equation along
the vertical line positioned at (x′/δ, z/δ) = (0.4, 0.0) for the smooth duct flow and
three ribbed duct flows of different blockage ratios. The budget terms are non-
dimensionalized using the duct half-height, δ, and bulk velocity, Ub. In panel (a),
for the smooth duct case, only one-half the duct is plotted due to vertical symmetry.
For the three rib duct cases, in order to show clearly the profiles of the budget terms
around the rib crest, they are partially enlarged and replotted in inset graphs in
panels (b)-(d). The vertical pink dashed line demarcates the rib crest in inset graphs.

dissipation εk in the vicinity of the wall as the source and sink terms, respectively.

The turbulent diffusion term Tk is zero at the wall, becomes positively-valued in the

vicinity of the wall (for y/δ < −0.95), and then changes its sign and reaches its
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negatively-valued peak at y/δ = −0.9. At this elevation y/δ = −0.9, the primary

source of TKE is the production term Pk, which is mainly balanced by three sinks,

i.e., viscous dissipation ε, viscous diffusion Dk, and turbulent diffusion Tk. As the

duct center is approached, the magnitudes of all budget terms diminish, although

the balance is primarily between Pk and ε (which are almost mirror images of each

other). The characteristics of the TKE budget terms analyzed here are consistent

with those of Vinuesa et al. (2014), who conducted DNS study of duct flows at a

similar Reynolds number.

By comparing figures 3.15(b)-3.15(d) with figure 3.15(a), it is apparent that the

budget balances of the three rib cases exhibit more complex patterns than that of the

smooth duct flow, especially around the rib crest. Furthermore, owing to the fact the

vertical profiles of the budget terms are asymmetrical in the vertical direction due

to the presence of ribs, the entire vertical profiles between the ribbed and smooth

walls need to be plotted in figures 3.15(b)-3.15(d). In comparison with the smooth

duct flow, the dominant source term is still the production term Pk, which peaks at

a position that is slightly above rib crest in all three rib cases (as shown in the inset

graphs). By comparing figures 3.15(b)-3.15(d), it is seen that the magnitudes of the

three sinks (Dk, Tk and ε) around the rib crest are comparable at Br = 0.05; however,

the turbulent diffusion term Tk becomes increasingly dominant as the blockage ratio

increases to Br = 0.1 and 0.2. By comparing the three rib cases with the smooth duct

case, it is observed that the convection of TKE by the mean flow is vanishingly small

as the convention term Ck does not make a remarkable contribution to the budget

balance of TKE in the smooth duct flow. By contrast, as shown in figures 3.15(b)-

3.15(d), the effect of the convection term Ck becomes more pronounced due to the

complex mean flow pattern and high TKE level around the rib crest in all three rib

cases. From figures 3.15(b)-3.15(d), it is clear that the magnitudes of the budget

terms are much larger on the ribbed bottom wall side than on the smooth top wall

side. A careful perusal of figures 3.15(b)-3.15(d) further indicates that the profile
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patterns of the budget terms on the smooth top wall side are, actually, similar to

those of the smooth duct flow shown in figure 3.15(a).

3.3.6 Effect of rib height on turbulence anisotropy

The effects of rib height on turbulence anisotropy can be studied through the

Reynolds stress anisotropy tensor, defined as (Pope, 2000)

bij =
〈u′iu′j〉
〈u′ku′k〉

− 1

3
δij . (3.5)

Previous studies of turbulence anisotropy in 2-D turbulent plane-channel flows

with surface-mounted perpendicular ribs (Krogstad and Antonia, 1994; Keirsbulck

et al., 2002; Krogstad et al., 2005) showed that the anisotropic states of turbulence

become less apparent near the rough wall. However, Mazouz et al. (1998) showed

that the degree of anisotropy enhances with the use of k-type surface roughness

in a 3-D duct flow. These results indicate that turbulence anisotropy varies with

not only roughness configurations but also the 2-D or 3-D flow conditions. The

profiles of the Reynolds stress anisotropy tensor components (b11, b22, b33 and b12) are

plotted in figure 3.16 for all three rib cases along the central vertical line positioned

at (x′/δ, z/δ) = (0.4, 0.0). To facilitate our study of the rib height effect on the flows,

the position of the rib crest is demarcated using a vertical dashed line in figure 3.16

for each rib case. By comparing figures 3.16(a)-3.16(c), it is observed that the value

of b11 is larger than those of b22 and b33 in the region between the rib crest and the

smooth top wall (y/δ = 1.0), which is a clear indication of turbulence anisotropy.

From figure 3.16(a), it is evident that the value of b11 peaks immediately above the

rib crest whose magnitude decreases monotonically as the blockage ratio increases

from Br = 0.05 to 0.2. Because the value of b11 is larger than those of b22 and b33

in the region immediately above the rib crest, a reduction in the peak value of b11

with Br reduces the degree of turbulence anisotropy. This can be further understood

from figures 3.10 and 3.11, which show that as the rib height increases, the strength of
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(a) Profiles of b11 (b) Profiles of b22

(c) Profiles of b33 (d) Profiles of −b12

Figure 3.16: Vertical profiles of Reynolds stress anisotropy tensor components (b11,
b22, b33 and b12) along the central vertical line positioned at (x′/δ, z/δ) = (0.4, 0.0) for
different blockage ratios. The vertical dashed lines demarcate the rib crests for test
cases of Br = 0.05, 0.1 and 0.2. The red arrow shows the trend how the value of bii
varies monotonically with an increasing Br value.

induced disturbances by the rib elements increases, making turbulence more isotropic.

From figure 3.16(a), it is seen that the magnitude of b11 reaches its maximum near

the smooth top wall (y/δ = 1.0) in all the three rib cases. This is consistent with the

observation of the near-wall peak value of 〈u′u′〉 on the smooth top wall side shown

previously in figure 3.11(a). The wall-anisotropy as represented by the peak values of

b11 and 〈u′u′〉 near the smooth top wall is similar to those of a smooth plane-channel

flow observed by Kim et al. (1987) and Lamballais et al. (1997).

From figures 3.16(a)-3.16(c), it is clear that on the smooth top wall side, the value
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of b11 decreases monotonically with an increasing value of Br; however, those of b22

and b33 increase monotonically. These trends reflect the fact that as the rib height

increases, the flow becomes more disturbed by the rib elements. The highly disturbed

turbulence generated around the rib crest spreads to the smooth top wall side of the

duct through mechanisms such as vortex shedding and secondary flows. As such,

TKE is more evenly distributed among the three normal components, which leads to

a decrease in the degree of turbulence anisotropy. From figure 3.16(d), it is observed

that similar to the trends of b22 and b33, the value of −b12 increases monotonically as

the rib height increases from Br = 0.05 to 0.2 in the region immediately above the

rib crest. This phenomenon is strongly associated with the enhanced strength of the

shear layer developed over the rib crest.

In order to study the effect of rib height on small-scale turbulence anisotropy, the

following anisotropy tensor of the dissipation rate can be calculated (Speziale and

Gatski, 1997)

dij =
εij
2εk
− 1

3
δij , (3.6)

where εij represents the dissipation tensor, defined as

εij = 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
. (3.7)

Figure 3.17 displays the vertical profiles of the dissipation anisotropy tensor com-

ponents (d11, d22, d33 and d12) along the central vertical line positioned at (x′/δ, z/δ) =

(0.4, 0.0). From figure 3.17(a), it is clear that for all three rib cases, the magnitude

of d11 peaks around the rib crest, which decreases monotonically as the rib height

increases. By comparing figures 3.17 and 3.16, it is observed that the profiles of dij

feature a similar shape to that of bij, especially in terms of their peak positions around

the rib crest and trends on the smooth top wall side. This is not surprising from the

point of view of energy conservation, as the strength of the local TKE dissipation rate

is often consistent with that of local TKE and TKE production rate. In fact, from the
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(a) Profiles of d11 (b) Profiles of d22

(c) Profiles of d33 (d) Profiles of −d12

Figure 3.17: Vertical profiles of the anisotropy of the Reynolds stress dissipation rate
(d11, d22, d33 and d12) tensors along the central vertical line positioned at (x′/δ, z/δ) =
(0.4, 0.0) for different blockage ratios. The vertical dashed lines demarcate the rib
crests for test cases of Br = 0.05, 0.1 and 0.2. The red arrow shows the trend how
the value of dii varies monotonically with an increasing Br value.

point view of spectral analysis, the TKE dissipation rate is dominated by small scales

of turbulence, and by contrast, the magnitude of Reynolds stresses is dominated by

relatively large scales characteristic of the most energetic eddies. Therefore, a similar

pattern between bij and dij indicates that the rib elements in the square duct have

a profound influence on both the small- and large-scale structures in terms of their

reflections of the degree of local turbulence anisotropy. From figures 3.17(a)-3.17(c),

it is seen that the magnitude of d11 is larger than those of d22 and d33 around the

rib crest. Furthermore, from figures 3.17(a) and 3.17(b), it is evident that as the

Br value increases, the peak value around the rib crest decreases monotonically for
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d11 but increases monotonically for d22. This helps to reduce the differences between

the magnitudes of d11, d22 and d33, and therefore, reducing the degree of turbulence

anisotropy. From figures 3.17(a)-3.17(c), it is interesting to observe that the magni-

tudes of the normal components of the dissipation anisotropy tensor, d11, d22 and d33,

are close to zero in the duct center for −0.5 < y/δ < 0.5. By contrast, as shown in

figures 3.16(a)-3.16(c), the values of the normal components of the Reynolds stress

anisotropy tensor, b11, b22 and b33 deviate apparently from zero in the same region.

This indicates that small-scale structures exhibit a stronger “return to isotropy” ten-

dency compared to the large-scales in the duct center. As is clear from figure 3.17(d),

similar to the trend of −b12 shown in figure 3.16(d), the anisotropy of the dissipa-

tion rate tensor component −d12 peaks around the rib crest for all three Br numbers

tested. Furthermore, the peak value increases monotonically as the rib aspect ratio

increases from Br = 0.05 to 0.2, suggesting an increase of TKE dissipation at small

scales due to the shear layer generated by the rib elements.

3.3.7 Third-order moments of velocity fluctuations and quad-

rant analysis

It is well-established (Andreopoulos and Bradshaw, 1981; Krogstad and Antonia,

1999; Hurther et al., 2007) that turbulent transport of TKE can be better elucidated

by examining velocity triple correlations as compared to the second-order statistical

moments. For instance, Hurther et al. (2007) measured TKE fluxes in a rough wall

open channel flow using an acoustic Doppler velocity profiler (ADVP). They reported

that high-order statistical moments of the flow are highly sensitive to the wall rough-

ness in both the inner and outer regions of the boundary layer, and the difference

between the production and dissipation rates in the rough-wall region is responsible

for the intensification of TKE fluxes. In this part of the study, our attention is paid to

the influence of rib height on the third-order statistics and the crossing point between
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(a) Profiles of 〈u′u′u′〉 (b) Profiles of 〈v′v′v′〉

(c) Profiles of 〈u′u′v′〉 (d) Profiles of 〈u′v′v′〉

Figure 3.18: Vertical profiles of 〈u′u′u′〉, 〈v′v′v′〉, 〈u′u′v′〉, and 〈u′v′v′〉 along the cen-
tral vertical line positioned at (x′/δ, z/δ) = (0.4, 0.0) for different blockage ratios.
The crossing points are marked using red cross symbol ‘×’, where 〈u′u′u′〉 = 0 and
〈v′v′v′〉 = 0 (in particular, when the sign of 〈u′u′u′〉 changes from positive to negative
and the sign of 〈v′v′v′〉 changes from negative to positive). The crossing point occurs
at elevation y/δ = −0.88, −0.78 and −0.58 for Br = 0.05, 0.1 and 0.2, respectively.

ejections and sweeps, where the signs of 〈u′u′u′〉 and 〈v′v′v′〉 change in the vertical

direction.

In figure 3.18, the non-dimensional vertical profiles of fluctuating velocity triple

product components 〈u′u′u′〉/U3
b , 〈v′v′v′〉/U3

b , 〈u′u′v′〉/U3
b , and 〈u′v′v′〉/U3

b are plotted

along the central vertical line located at (x′/δ, z/δ) = (0.4, 0.0) for three rib cases.

Figures 3.18(a) and 3.18(b) show the progressive enhancement of both 〈u′u′u′〉 and
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〈v′v′v′〉 in the vicinity of the rib crest as the rib height increases. This enhancement

of triple correlations results in a delayed appearance of the crossing point in the sense

that it occurs at a higher elevation as the rib height increases. In figures 3.18(a) and

3.18(b), the crossing points are marked using red cross symbol ‘×’, where 〈u′u′u′〉 = 0

and 〈v′v′v′〉 = 0 (in particular, where the sign of 〈u′u′u′〉 changes from positive to

negative and the sign of 〈v′v′v′〉 changes from negative to positive). The crossing point

occurs at elevations of y/δ = −0.88, −0.78 and −0.58 for Br = 0.05, 0.1 and 0.2,

respectively. In the region near the rib crest below the crossing point, positive-valued

peaks of 〈u′u′u′〉 clearly demonstrate the occurrence of high-speed streaks, which are

reinforced as the rib height increases. Furthermore, as seen in figures 3.18(a) and

3.18(b), the values of 〈u′u′u′〉 and 〈v′v′v′〉 are positive and negative near the rib crest,

respectively, which clearly indicate that the turbulent flow is strongly influenced by

the flapping motions of the shear layer, leading to enhanced sweeping activities. In

consequence, a considerable amount of high momentum fluid is swept into the inter-

rib region (below the rib height). By contrast, in the region above the crossing point,

the trends of 〈u′u′u′〉 and 〈v′v′v′〉 are entirely opposite, and an enhancement of the

ejection mechanism is observed. This results in enhanced transport of low-momentum

fluids towards the upper half of the duct due to the existence of local spanwise swirling

motions. This observation is consistent with the results of Keirsbulck et al. (2002)

who studied the 2-D turbulent boundary layer over a k-type rough wall using PIV

measurements. Because 〈u′u′v′〉 and 〈u′v′v′〉 dominate the other turbulent diffusion

terms, only the vertical turbulent transports of 〈u′u′〉 and 〈u′v′〉 (embodied by the

profiles of 〈u′u′v′〉 and 〈u′v′v′〉) are shown in figures 3.18(c) and 3.18(d), respectively.

As shown in figure 3.18(c), 〈u′u′v′〉 is negatively valued below the crossing point.

Therefore, there exists a strong turbulent diffusion of energy (or, vertical flux of

〈u′u′〉) towards the bottom wall near the rib crest with a streamwise acceleration

(owing to the positive sign of 〈u′u′u′〉). By contrast, above the crossing point, the

sign of 〈u′u′v′〉 switches from negative to positive, indicating the turbulent diffusion
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Figure 3.19: Contours of JPDF of σu and σv of the smooth square duct flow at three
elevated points along the central vertical line located at z/δ = 0.0. Corresponding to
panels (a), (b) and (c), the elevation is y/δ = −0.95, −0.9 and −0.8, respectively.

is outwards with a streamwise deceleration due to the negative values of 〈u′u′u′〉.

On the opposite trend of 〈u′u′v′〉, figure 3.18(d) shows that the magnitude of 〈u′v′v′〉

increases and a positively-valued peak occurs near the rib crest due to enhanced sweep

motions. However, the value of 〈u′v′v′〉 switches its sign from positive to negative in

the region above the rib crest, associated with a strong outward flux of 〈u′v′〉 due to

enhanced ejection motions.

To further understand the effects of rib height on Reynolds stresses, the JPDF

of σu = u′/urms and σv = v′/vrms is calculated in the central vertical line located at

(x′/δ, z/δ) = (0.4, 0.0). The JPDF of σu and σv for the smooth duct flow is used as a

baseline comparison case, which is shown in figure 3.19, and those of the three ribbed

duct flows are displayed in figure 3.20. Three different elevations (of y/δ = −0.95,

−0.9 and −0.8) are compared for each case of the smooth and ribbed duct flows. The

choice of these three elevations of the smooth duct is not arbitrary, as they correspond

to the mid height of the rib in three ribbed ducts of Br = 0.05, 0.1 and 0.2. From

figure 3.19, it is seen that the streamwise velocity fluctuations synchronize well with

the vertical velocity fluctuations in all three elevations, as the plotted JPDF patterns

exhibit a tendency to be aligned approximately at 135◦ throughout quadrants II and
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Figure 3.20: Contours of JPDF of σu and σv at three elevated points along the central
vertical line located at (x′/δ, z/δ) = (0.4, 0.0) for three different blockage ratios. The
elevated points are located at the mid height of the rib, immediately above the rib
crest, and above the crossing point for each test case of a specific blockage ratio. In
panels (a), (b) and (c), the elevation is y/δ = −0.95, −0.86, −0.4 for Br = 0.05; in
panels (d), (e) and (f), the elevation is y/δ = −0.9, −0.76, −0.4 for Br = 0.1; and in
panels (g), (h) and (i), the elevation is y/δ = −0.8, −0.56, −0.4 for Br = 0.2.

IV (i.e., “Q2” and “Q4”, respectively). This indicates a preference for the ejection

events (featuring u′ < 0 and v′ > 0 associated with Q2) and sweeping events (featuring

u′ > 0 and v′ < 0 associated with Q4) at all three elevations near the bottom wall. The
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explanation for this preference is a well-known conclusion of the classical boundary-

layer theory. According to Adrian (2007), Reynolds stress −〈u′v′〉 is positively valued

in the near-wall region due to the dominance of the ejection and sweep events.

By comparing figure 3.20 with figure 3.19, it is clear that there are differences

between the JPDF patterns of three rib cases and those of the smooth duct flow. In

order to facilitate a fair comparison between the smooth and ribbed duct flows, the

JPDFs in figures 3.20(a), 3.20(d) and 3.20(g) are calculated at the mid rib height in

each ribbed duct case (at y/δ = −0.95, −0.9 and −0.8, respectively). These three

elevations are exactly the same as those for figures 3.19(a), 3.19(b) and 3.19(c) for the

smooth duct flow. By comparing figures 3.20(a) and 3.20(d) with figures 3.19(a) and

3.19(b), respectively, it is clear that both ejection and sweeping motions are signifi-

cantly reduced at the mid height of ribs in ribbed duct flow cases of Br = 0.05 and

0.1. This indicates that the distribution and intensity of the JPDF is approximately

identical for each quadrant at the mid rib height, where u′ and v′ are essentially

uncorrelated, causing arbitrary occurrence of either ejection or sweeping events with

no obvious directional tendency. However, for the Br = 0.2 case as shown in fig-

ure 3.20(g), the tendency toward ejection motion is observed at the mid rib height.

As shown in figures 3.20(b), 3.20(e) and 3.20(h), near the rib crest, it is observed

that the sweep and ejection events are dominant, which are mainly attributed to the

large-scale flapping motions in this region. Consistent with the quadrant analysis of

Reynolds shear stresses reviewed by Adrian (2007), these turbulent motions associ-

ated with the Q2 and Q4 events result in a negatively-valued Reynolds shear stress

〈u′v′〉 close to the rib crest (see, figure 3.11(d)). The thick black dashed line at the

135◦ angle indicates a high correlation between components at the reference point.

Figures 3.20(c), 3.20(f), and 3.20(i) show that in the region above the crossing point

(y/δ = −0.4), the JPDF distribution prefers the Q2 events. This turbulent flow is

strongly influenced by the presence of unsteady large-scale swirling flow structures,

which lead to an augmentation of ejection activities.
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.21: Iso-surfaces of the swirling strength λci around ribs, colored with non-
dimensional elevation y/δ, with background contours of the instantaneous vertical
velocity v/Ub in the central vertical plane (located at z/δ = 0) of the domain for
three blockage ratios.

3.4 Flow structures near the rib-roughened wall

The presence of ribs and four walls has a significant impact on the turbulent flow

statistics and structures. In this section, we focus on the study of turbulent struc-

tures through a qualitative approach based on visualizations using the instantaneous

fluctuating flow field and the λci-criterion, and through a quantitative approach based

on analysis of temporal auto-corrections, temporal spectra, and the spatial two-point

auto-correlations of the turbulence field.

3.4.1 Turbulence structures in the x-y plane

In order to demonstrate the effect of ribs on near-wall turbulence structures, fig-

ure 3.21 shows the iso-surfaces of the swirling strength, λci, superimposed onto instan-

taneous vertical velocity contours in the central (x-y) plane (located at z/δ = 0.0) for

different blockage ratios. From figure 3.21, it is clear that both the strength and size
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of turbulent structures induced by rib elements increase as the rib height increases,

an observation that is consistent with the pattern of turbulence fluctuations shown in

figure 3.10 and the trend of TKE production rate Pk demonstrated in figure 3.13(a).

As the rib height increases, the sweeping or ejection activities (“splashing effects”)

near the leading corner of the rib element enhance, which drastically deflect the vor-

tical structures away from the ribs, shedding into the central region of the duct. This

further results in an enhancement in the local Reynolds normal and shear stress levels

and TKE production rate. This physical feature is also consistent with the previous

analysis of figures 3.16 and 3.17 in the sense that the local isotropy for both large-

and small-scales of turbulence near the rib crest becomes increasingly apparent as the

blockage ratio increases from Br = 0.05 to 0.2.

To develop a deeper understanding of the effect of rib height on the size and

inclination angle α of turbulence structures near the rib crest, the 2-D spatial two-

point auto-correlation function of velocity fluctuations can be studied. For a ribbed

flow, it is defined as (Volino et al., 2009)

Rs
ij(x

′
ref , yref , x

′, y) =
〈u′i(x′, y)u′j(x

′
ref , yref )〉√

〈u′2i (x′, y)〉〈u′2j (x′ref , yref )〉
, (3.8)

where (x′ref , yref ) are the coordinates of the reference point and superscript “s”

denotes a spatial correlation. The relative streamwise coordinate of the reference

point is fixed at x′ref/δ = 0.4, while its vertical coordinate yref/δ is determined

based on the peak locations of the two Reynolds stress components 〈u′u′〉 and −〈u′v′〉

observed in figure 3.11, both of which occur at elevations y/δ = −0.86, −0.76 and

−0.56 for Br = 0.05, 0.1 and 0.2, respectively. Figure 3.22 plots the isopleths of the

spatial two-point auto-correlation coefficients of the three velocity components (Rs
uu,

Rs
vv and Rs

ww) for the three rib cases. As clearly shown in the figure, there is an

inclination angle between the tilted major axis of the isopleths and the streamwise

direction. This observation is consistent with the study of 2-D turbulent boundary-

layer flows over ribbed flat plates of Volino et al. (2009) and Leonardi et al. (2004),
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(a) Br = 0.05

(b) Br = 0.1

(c) Br = 0.2

Figure 3.22: Isopleths of two-point auto-correlation Rs
ii(x

′/δ, y/δ) of three velocity
components displayed in the central vertical plane located at z/δ = 0 for different
blockage ratios. The relative streamwise coordinate of the reference point is fixed at
x′ref/δ = 0.4, while the vertical coordinate of the reference point is yref/δ = −0.86,
−0.76 and −0.56 for Br = 0.05, 0.1 and 0.2, respectively. The isopleth value ranges
from 0.5 to 1.0, with the outermost and innermost isopleths corresponding to Rs

ii = 0.5
and 1.0, respectively. The increment between two adjacent isopleths is 0.1 for all three
rib cases. The dashed box contains exactly the outermost isopleth, with side-lengths
of Lux and Luy for Ru

ii, L
v
x and Lvy for Rv

ii, and Lwx and Lwy for Rw
ii .
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who indicated that this inclination angle is characteristic of hairpin vortices developed

over the rib crest. From figure 3.22, it is evident that the inclination angle of the

isopleths of Rs
uu decreases monotonically from α = 12.5◦ to 8.0◦ as the rib height

increases. This physical feature can be explained on the basis that the hairpin vortices

are rotated towards the streamwise and vertical directions by the asymmetric part of

the shear stress tensor and the self-induction of quasi-streamwise vortices (or, hairpin

legs) associated with the ejection events (Adrian et al., 2000). Indeed, from previous

analysis of figures 3.20(b), 3.20(e) and 3.20(h), it is understood that as the rib height

increases, the flow becomes increasingly dominated by the sweep events around the

rib height. As such, along with the relative reduction in the strength of ejection

events, the inclination angle decreases. To demonstrate the rib height effects on the

size of hairpin structures, we compare the streamwise and vertical length scales of

the outermost isopleth of the spatial two-point correlation coefficients (Rs
uu, R

s
vv and

Rs
ww), indicated using the side-lengths of dashed boxes in figure 3.22. By comparing

figures 3.22(a)-3.22(c), it is evident that as the rib height increases, both Lux and

Luy (associated with Rs
uu) increase in value. This indicates that both the hairpin

structures and streamwise streaks appearing near the rib crest increase in size with

an increasing rib height. Similar to the isopleth pattern of Rs
uu, the major axis of

the isopleth of Rs
ww also exhibits an inclined angle near the rib crest. Also similar

to Rs
uu, the streamwise and vertical length scales (Lwx and Lwy , respectively) of the

outermost isopleth of Rs
ww increase as the rib height increases. Although the three

spatial two-point auto-correlation coefficients Rs
uu, R

s
vv and Rs

ww are closely related,

all influenced by the turbulence structures at the rib crest, they are different in values.

From figure 3.22, it is apparent that in all three rib cases, the extent of the isopleth

of Rs
uu is greater than those of Rs

vv and Rs
ww, suggesting that the high- and low-speed

streamwise streaks associated with the hairpin legs are the dominant flow structural

features around the rib crest. Furthermore, in comparison with Rs
uu and Rs

ww, the

isopleths of Rs
vv show a more isotropic distribution. Clearly, the streamwise and

69



(a) Br = 0.05 at yref/δ = −0.4 (b) Br = 0.05 at yref/δ = 0.0 (c) Br = 0.05 at yref/δ = 0.5

(d) Br = 0.2 at yref/δ = −0.4 (e) Br = 0.2 at yref/δ = 0.0 (f) Br = 0.2 at yref/δ = 0.5

Figure 3.23: Isopleths of streamwise two-point auto-correlation Rs
uu(x

′/δ, y/δ) cal-
culated at three reference points of different elevations in the central vertical plane
located at z/δ = 0. The comparison of the two ribbed flow cases (of Br = 0.05
and 0.2) is conducted at three identical reference points, with the relative streamwise
coordinate fixed at x′ref/δ = 0.4, while the vertical coordinate being yref/δ = −0.4, 0
and 0.5. The isopleth value ranges from 0.5 to 1.0, with the outermost and innermost
isopleths corresponding to Rs

uu = 0.5 and 1.0, respectively. The increment between
two adjacent isopleths is 0.1 for the two rib cases. The dashed box contains exactly
the outermost isopleth, with side-lengths of Lux and Luy .

vertical length scales of the turbulent flow structures as indicated by the outermost

isopleth of Rs
vv, L

v
x and Lvy, are comparable in value and both increase as the rib

height increases.

The above analysis of the isopleths of two-point auto-correlations based on fig-

ure 3.22 was conducted at the reference points of different elevations. Indeed, more
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degrees of freedom are involved in the analysis of a 3-D ribbed duct (in compari-

son with a 2-D boundary-layer flow), the turbulence structures in the three ribbed

ducts of different blockage ratios can be compared from a different angle. Figure 3.23

compares the 2-D spatial two-point auto-correlation function of streamwise velocity

fluctuations at three identical elevations in the central (x-y) plane (z/δ = 0) for two

rib cases of Br = 0.05 and 0.2. The comparison of these two ribbed duct cases

is made at three identical reference points, with the relative streamwise coordinate

fixed at x′ref/δ = 0.4, while the vertical coordinate being yref/δ = −0.4, 0 and 0.5.

A non-trivial value of the inclination angle α (as shown in figure 3.23) is a reflec-

tion of the near-wall ejection events. From figure 3.23, it is seen that the inclination

angle α is negatively-valued on the smooth top wall side (at yref/δ = 0.5). This is

simply because the normal direction of the smooth top wall is pointing downwards,

and therefore, ejection events near the smooth top wall are associated with down-

wash flows towards the ribbed bottom wall. By comparing figures 3.23(a)-3.23(c)

with figures 3.23(d)-3.23(f), respectively, it is clear that the inclination angle α of the

isopleths of RS
uu increases monotonically as the Br value increases from 0.05 to 0.2,

resulting in an enhanced flow interaction between the ribbed bottom wall and smooth

top wall. Furthermore, from figures 3.23(a) and 3.23(d), it appears that the length

scales of turbulence structures are comparable in both the streamwise and vertical

directions, indicating that the rib effect on the size of turbulence structures is reduced

considerably at an elevation well above the ribs.

Besides the spatial scales of turbulence structures analyzed above, the temporal

scales of turbulent motions can also be investigated by using the temporal auto-

correlation function of velocity fluctuations, defined as

Rt
ij(t) =

〈u′i(t)u′j(tref )〉√
〈u′2i 〉〈u′2j 〉

, (3.9)

where tref represents the reference time origin, and superscript “t” denotes a tem-

poral correlation. In figure 3.24, the temporal auto-correlations of all three velocity
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Figure 3.24: Temporal auto-correlations of velocity fluctuations for different blockage
ratios at the elevation that is slightly above the rib crest (the spatial reference point
is identical to that used in figure 3.22).

components for different rib cases are compared at the elevation that is slightly above

the rib crest. The spatial reference points used here are the same as in figure 3.22

for the calculation of the spatial two-point auto-correlations. From figure 3.24, it is

evident that in all three cases, the temporal integral scale (as indicated by the in-

tercept of time axis) of the streamwise velocity is longer than those of the other two

components. This characteristic of the temporal scale of turbulent flow structures is

consistent with the previous analysis of figure 3.22 in the sense that the largest scale

of turbulence structures is associated with the streamwise velocity fluctuations. Both
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 3.25: Comparison of the premultiplied energy spectra, fEii/〈u′u′〉, of the three
components of velocity fluctuations for different blockage ratios at the elevation that
is slightly above the rib crest (the spatial reference point is identical to that used in
figure 3.22).

spatial and temporal auto-correlations shown in figures 3.22 and 3.24 clearly indicate

that turbulence length scales become larger in the region immediately above the rib

crest as the rib height increases.

The effects of rib height on the temporal scales of turbulent flow structures can be

further quantified using the premultiplied energy spectra (fEii/〈u′u′〉). Figure 3.25

compares the premultiplied energy spectra of all three components of velocity fluctu-

ations. From figures 3.25(a)-3.25(c), it is observed that the characteristic temporal
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scale of turbulence structures increases as the rib height increases, an observation

that is consistent with the previous analysis of figures 3.22 and 3.24. For example,

the mode of fEii/〈u′u′〉 occurs at the non-dimensional temporal scale of tUb/δ ≈ 2.77

in the case of Br = 0.05, but at tUb/δ ≈ 3.12 and 4.82 in the cases of Br = 0.1

and 0.2, respectively. The properties of these characteristic temporal scales can be

further understood by defining the energy-containing range based on the temporal

scales possessing premultiplied energy spectra that are at least 70% of the peak value

(bounded by the vertical dashed lines “P1” and “P2” in figure 3.25). By compar-

ing figures 3.25(a)-3.25(c), it is evident that owing to the substantial changes in the

temporal scales induced by the rib elements, the difference between the lower (P1)

and upper (P2) temporal thresholds increases monotonically from 4.0δ/Ub to 5.6δ/Ub

as the blockage ratio increases from Br = 0.05 to 0.2. This clearly indicates that

not only the mode but also the range of the temporal scales of energetic turbulent

motions progressively increase as the rib height increases.

3.4.2 Turbulence structures in the x-z plane

As dominant flow structures in near-wall turbulence, streaks play a significant role

in the transport of momentum and TKE, and have been well studied in the context

of 2-D turbulent boundary layers developed over flat plates (see, e.g., Chernyshenko

and Baig, 2005; Adrian, 2007). In the current test case of 3-D turbulent flow in a

ribbed duct, the streamwise streaky structures exhibit interesting features that are

qualitatively different from those in canonical 2-D turbulent boundary layers. In

particular, the streak structures in a ribbed duct are sensitive to not only the rib

height but also the boundary layers developed over the two vertical sidewalls of the

duct. To demonstrate the rib height effects on the development of streaky structures,

contours of the non-dimensionalized instantaneous streamwise velocity fluctuations,

u′/Ub, are plotted in figure 3.26 in the (x-z) plane located at y/δ = −0.86,−0.76 and

−0.56 for Br = 0.05, 0.1 and 0.2, respectively. As shown previously in figures 3.11
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Figure 3.26: Contours of the non-dimensionalized instantaneous streamwise velocity
fluctuations u′/Ub in the (x-z) plane of different elevations immediately above the rib
crest for three rib cases. (a) at y/δ = −0.86 and Br = 0.05, (b) at y/δ = −0.76 and
Br = 0.1, and (c) at y/δ = −0.56 and Br = 0.2.

and 3.13, at these elevations, both the Reynolds stresses and TKE production rate

peak. From figures 3.26(a)-3.26(c), it is seen that both the characteristic length scales

and the strengths of low- and high-speed streaks are influenced apparently by the rib

height. From the previous analysis (figures 3.10, 3.11 and 3.13), it is understood that

as the rib height increases, the magnitudes of both turbulence intensity and TKE

production rate increase near the rib crest. Correspondingly, the induced turbulence

perturbations by rib elements are enhanced, leading to an increased streak strength

immediately above the rib crest. Clearly, as Br increases from 0.05 to 0.2, the size

of the streaky structures increases, and furthermore, the spanwise spacing between

neighboring low- and high-speed streaks also increases. An enhanced strength of
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Figure 3.27: Contours of the spatial two-point auto-correlation of streamwise velocity
fluctuations Rs

uu in the (x-z) plane for different blockage ratios. The reference point
is located in the central vertical plane at x′ref/δ = 0.4 and z/δ = 0 as in figure 3.22.
The isopleth value of Rs

uu ranges within [0.1, 1.0], with an increment of 0.05 between
two adjacent isopleths. The characteristic spanwise size of the streaks is denoted as
l, which is represented by the spanwise separation between two outmost isopleths
across the reference point. (a) at y/δ = −0.86 and Br = 0.05, (b) at y/δ = −0.76
and Br = 0.1, and (c) at y/δ = −0.56 and Br = 0.2.

streaky structures in the region immediately above the ribs is consistent with our

previous observation of reduced turbulent anisotropy detailed in subsection 3.3.6. In

the following, the rib height effect on the spanwise separation between the streaks

will be further investigated using spatial two-point auto-correlation coefficients.

Figure 3.27 shows the isopleths of the 2-D two-point auto-correlation of streamwise

velocity fluctuations in the (x-z) plane of different elevations for three rib cases. The

results are obtained at the same reference points as in figure 3.22. The spanwise

characteristic size of the streaks is denoted as l in the figure, which is represented by

the spanwise separation between two outermost isopleths (for Rs
uu = 0.1) across the

reference point. From figures 3.27(a)-3.27(c), it is clear that the value of l increases

monotonically as the rib height increases. Specifically, at the reference point (which is

slightly above the rib crest), the spanwise characteristic scale of streaks is about one-

eighth and one-sixth of the duct width (i.e., l = D/8 and D/6) for Br = 0.05 and 0.1,

respectively. However, as Br increases to 0.2, the value of l increases significantly to
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(a) Profiles of Rsuu (b) Profiles of Rsvv

(c) Profiles of Rsww

Figure 3.28: Spanwise profiles of the spatial two-point auto-correlations for three
different rib cases. The reference point is located in the central vertical plane at
zref/δ = 0 and x′ref/δ = 0.4, and the value of yref/δ is identical to that in figure 3.22.

about one-fourth of the duct width (i.e., l = D/4). This well explains the qualitative

results shown previously in figure 3.26 that the elongated streaks tend to be stretched

in the spanwise direction and be intensified with an increasing rib height.

To refine the study, figure 3.28 compares the 1-D spanwise profiles of the two-point

auto-correlation coefficients of the three velocity components (Rs
uu, R

s
vv and Rs

ww) for

the three rib cases. Given the finite size of the spanwise domain of the duct (bounded

by two vertical sidewalls), the values of Rs
uu and Rs

ww do not vanish at z/δ = 1.0, a

feature that is drastically different from that of a canonical 2-D plane-channel flow of

an infinite spanwise domain size. The spanwise characteristic length scale of streaks

77



can be defined based on either the 2-D contours of Rs
uu shown in figure 3.27 or the

1-D profile of Rs
uu shown in figure 3.28(a). The spanwise separation between the

low- and high-speed streaks can be determined precisely based on the position of the

negatively-valued peak of Rs
uu in figure 3.28(a), which is commonly used for evaluating

the spanwise characteristic length scale of streaks. From figure 3.28(a), it is evident

that the decaying rate of Rs
uu becomes increasingly slower as the rib height increases.

Consequently, the spanwise characteristic size of the streaky structures (as repre-

sented by the spanwise separation between the low- and high-speed streaks) increases

monotonically from z/δ = 0.2 to 0.6 as the blockage ratio increases from Br = 0.05 to

0.2. As such, the average spanwise streak spacing at Br = 0.2 is approximately three

and two times larger than those at Br = 0.05 and 0.1, respectively. Furthermore, it is

observed that the magnitude of Rs
uu corresponding to the characteristic spanwise scale

of the streaks also increases slightly with an increasing rib height, indicating a mono-

tonic increase in the streaky structure strength above the rib elements, a conclusion

that is consistent with qualitative results shown figure 3.26. The mode corresponding

to the negative peak of Rs
vv indicates the diameter of streamwise vortices (streaks).

Figure 3.28(b) shows that near the rib crest, the mean diameter of the streamwise

streaks increases monotonically; and consequently, the negative peak in the profile

of Rs
vv shifts from z/δ ≈ 0.12 to 0.44 as the rib height increases from Br = 0.05 to

0.2. This leads to an interesting conclusion that the mean diameter of streamwise

streaks is comparable to the height of the rib elements (which is H/δ = 0.1 and 0.4 for

Br = 0.05 and 0.2, respectively). By comparing figure 3.28(c) with 3.28(a), it is clear

that the profiles of Rs
ww are similar to those of Rs

uu, both indicating that the spanwise

characteristic scale of streaks increases monotonically as the rib height increases. In

view of this, it can be concluded that the scales of streamwise streaks, in terms of

their width and diameter, increase with an increasing rib height.
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3.5 Chapter summary

Direct numerical simulations of fully-developed turbulent flow through ribbed

square ducts are performed to investigate the effects of rib height on the statisti-

cal moments of the velocity field, secondary flow motions, and turbulence structures.

The pitch-to-height ratios of the three rib cases under the investigation are P/H = 16,

8 and 4 (for Br = 0.05, 0.1 and 0.2, respectively). In order to identify the rib effects

on the velocity field, an additional DNS of a smooth duct flow is conducted at the

same Reynolds number of Reb = 5600, which is used as a baseline comparison case

in our study. The turbulence field and flow structures of the rib cases are influenced

by not only the aspect ratio of the ribs but also the four sidewalls of the duct. A

ribbed duct flow is intrinsically 3-D and statistically inhomogeneous in all three di-

rections, which is qualitatively different from the classical case of a 2-D rough-wall

boundary-layer flow.

The mean flow patterns of cases of Br = 0.05 and 0.1 are typical of k-type rough-

wall flows, but that of Br = 0.2 exhibits features that are characteristic of a d-type

rough-wall flow. Furthermore, under the 3-D flow conditions, organized secondary

flows appear in the cross-stream directions whose strength decreases monotonically

near the bottom corner of the ducts but increases monotonically near the side and

top walls as the blockage ratio increases. The spatial distributions of the local skin

friction coefficient Cf and pressure coefficient Cp are influenced significantly by the

complex geometry of the domain and the secondary flow pattern in the cross-stream

directions. The values of both Cf and Cp maintain approximately constant in the

spanwise direction in central region of the duct. In the streamwise direction, however,

the highest value of Cf occurs around the leeward and windward faces of the ribs cor-

responding to the cores of the recirculation bubble and upstream vortex, respectively.

The magnitude of Cp is the highest near the windward face of the ribs, and increases

as the rib height increases as a result of an enhanced impinging effect of the flow.
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Characteristic of a smooth duct flow, the profiles of the Reynolds normal and

shear stresses are symmetrical and anti-symmetrical about the duct center (y/δ = 0),

respectively. By contrast, the profiles of all Reynolds stress components are asymmet-

rical in the three rib cases due to the presence of ribs. In general, the magnitudes of

the Reynolds normal and shear stresses of the ribbed duct flows are much larger than

those of the smooth duct flow due to the disturbances from the ribs. The magnitudes

of Reynolds shear stresses and TKE enhance as the rib height increases. For all three

rib cases, the highest Reynolds stress levels occur slightly above the rib crest, where

the shear effect is the greatest. For the three rib cases tested, the magnitude of 〈u′u′〉

is much larger than those of 〈v′v′〉 and 〈w′w′〉, making the largest contribution to

the value of TKE among the three Reynolds normal stress components. Owing to

the cross-stream secondary flow motions, the profile of −〈u′v′〉 peaks in the region

between the sidewall and duct center. In fact, the turbulence level as indicated by

the magnitudes of Reynolds normal and shear stresses all increase monotonically as

the rib height increases in the central region of the duct.

The maximum value of the TKE production rate over the dissipation rate Pk/εk

occurs immediately above the rib crest and in the region between the sidewall and

duct center, creating a zone of strong non-equilibrium turbulence. In the streamwise-

vertical directions, high-intensity vortices are generated at the leading edge of the

ribs, which then shed into the central core region of the duct. Concurrently, in

the spanwise-vertical directions, secondary flow motions carry these highly energetic

vortices from the duct center sideways to the two vertical walls, resulting in an increase

in the value of Pk/εk. The transport equation of TKE is studied to further understand

the rib effects on turbulence energy transfer. The budget balances of the three rib

cases exhibit more complex patterns than that of the smooth duct flow, especially

around the rib crest. In comparison with the smooth duct flow, the dominant source

term is still the production term Pk, which peaks at a position that is slightly above

rib crest in all three rib cases. Although the magnitudes of the three sinks (Dk, Tk
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and ε) around the rib crest are comparable at Br = 0.05, the turbulent diffusion term

Tk becomes increasingly dominant as the blockage ratio increases to Br = 0.1 and

0.2. The convection term Ck does not make a remarkable contribution to the budget

balance of TKE in a smooth duct flow. By contrast, the effect of the convection term

Ck becomes more pronounced due to the complex mean flow pattern and high TKE

level around the rib crest in all three rib cases.

The study of turbulence anisotropy at both large- and small-scales indicates that

the degree of turbulence anisotropy is sensitive to the rib height. In the region be-

tween the rib crest and the smooth top wall, there is a clear indication of turbulence

anisotropy based on the study of the anisotropy tensors of the Reynolds normal

stresses and dissipation rates, bii and dii, respectively. This is because the magnitude

of b11 is larger than those of b22 and b33; and similarly, the magnitude of d11 is greater

than those of d22 and d33 in this region. Furthermore, it is interesting to observe that

as the blockage ratio increases from Br = 0.05 to 0.2, the peak values of the dominant

streamwise components, b11 and d11, decrease monotonically near the rib crest. This

is because the disturbances from the ribs become stronger as the rib height increases,

which facilitates distribution of TKE to all three directions, therefore reducing the

degree of turbulence anisotropy. It is interesting to observe that the magnitudes of

the normal components of the dissipation anisotropy tensor, d11, d22 and d33, are close

to zero in the duct center for −0.5 < y/δ < 0.5. This indicates that small-scale struc-

tures exhibit a stronger “return to isotropy” tendency compared to the large-scale

structures in the duct center.

The turbulent flow structures are further studied using the JPDF of the streamwise

and vertical velocity fluctuations, λci-criterion, temporal auto-corrections, temporal

spectra, and spatial two-point auto-correlations of the turbulence field. The results

show that an increase of the rib height exerts stronger disturbances to the flow field,

which are subsequently deflected to the duct center. This phenomenon leads to the

formation of incoherent structures and the generation of violent ejection and sweep
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motions just above the rib elements, giving rise to an increase of the local TKE

production rate. Based on the analysis of the 2-D spatial two-point auto-correlation

function of velocity fluctuations, it is discovered that in the region slightly above

the rib crest, the inclination angle of the isopleths of Rs
uu decreases monotonically

from α = 12.5◦ to 8.0◦ as the blockage ratio increases from Br = 0.05 to 0.2. This

monotonic trend with respect to Br is also evident from the JPDF analysis, which

shows that the turbulent flow becomes increasingly dominated by the sweep events

near the rib crest; and as a result, a lower magnitude of the inclination angle is

observed around the rib height. However, based on the analysis of Rs
uu of different

rib cases at the same elevation, it is observed that the inclination angle α increases

monotonically as the Br value increases at an elevation well above the ribs, resulting

in an enhanced flow interaction between the ribbed bottom wall and the smooth

top wall. It is interesting to observe that both temporal and spatial characteristic

scales of turbulence increase monotonically as the rib height increases around the

rib crest. Furthermore, based on an analysis of the non-dimensionalized streamwise

premultiplied temporal spectrum fEii/〈u′u′〉 of velocity fluctuations, it is observed

that the range of temporal scales of the most energetic turbulence motions (with the

value of fEii/〈u′u′〉 being at least 70% of its peak value) also expands monotonically

around the rib height as the rib height increases. In addition, both the spanwise

characteristic size of the streaks and the diameter of streamwise vortices increase

monotonically as the rib height increases. More specifically, the non-dimensional

diameter of streamwise vortices increases from z/δ = 0.12 to 0.44 as the blockage

ratio increases from Br = 0.05 to 0.2, comparable in value to the height of the rib

elements (i.e., H/δ = 0.1 and 0.4 for Br = 0.05 and 0.2, respectively).
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Chapter 4

Direct numerical simulation of

turbulent heat transfer in a square

duct with transverse ribs mounted

on one wall

4.1 Introduction

In this chapter, a comparative DNS is performed to study the effects of rib height

on the first- and second-order statistical moments of the temperature field, the spec-

tral characteristics of temperature fluctuations, and coherent structures that facilitate

the turbulent transport of thermal energy. In order to examine the rib effects on the

turbulent heat transfer, the results of the three ribbed duct cases are compared with

those of a heated smooth square duct flow at the same bulk Reynolds number. The

fluid dynamics of rib-roughened square duct flows of different blockage ratios have

been thoroughly analyzed in Mahmoodi-Jezeh and Wang (2020). In view of this, we

concentrate our attention on the analysis of the temperature field related to turbulent
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heat transfer in this chapter. In regards to this topic, the remainder of this paper is

organized as follows. In section 4.2, the governing equations, numerical procedure, as

well as test cases are described. In section 4.3, detailed result analysis is presented.

The impacts of rib aspect ratios on heat transfer and flow structures are investigated

through vortex identifiers, joint probability density function (JPDF) of the velocity

and temperature fluctuations, temporal auto-correlation functions, two-point cross-

correlations functions, and pre-multiplied energy spectra. Finally, in section 4.4,

major findings of this chapter are summarized.

4.2 Test case and numerical algorithm

The length of the square duct is 6.4D long and consists of eight rib periods, where

D is the duct width. In the current study, three blockage ratios (Br = 0.05, 0.1 and

0.2) are compared, while the width and streamwise period of the bars are kept con-

stant with W = 0.1D and P = 0.8D, respectively. The flow field is fully-developed,

and periodic boundary conditions are applied to the streamwise direction. A no-slip

boundary condition is imposed on all solid walls for the velocity field. The Reynolds

number is fixed at Reb = UbD/υ = 5600, where Ub represents the average bulk mean

velocity over the streamwise direction of the ribbed duct. The flow is inhomoge-

neous in all three directions in a ribbed duct. The Reynolds number of the flow

can be assessed based on the mean streamwise wall friction velocities of the smooth

top and ribbed bottom walls (i.e., uτS and uτR, respectively) in the central vertical

(x-y) plane located at z/δ = 0. Under the testing condition, the Reynolds numbers

(defined as ReτS = δuτS/ν and ReτR = δuτR/ν) based on the friction velocities are

ReτS = 183, 208 and 236, and ReτR = 280, 346 and 406 for the three ribbed duct cases

of Br = 0.05, 0.1 and 0.2, respectively. Here, δ = D/2 is one-half the duct width.

For details of the calculation of the values of ReτS and ReτR, the reader is referred to

Mahmoodi-Jezeh and Wang (2020). The three ribbed duct flow cases are compared
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Figure 4.1: Schematic of a square duct with transverse ribs mounted on one wall,
computational domain and coordinate system. Contours of instantaneous non-
dimensional temperature are displayed in the central plane (located at z/δ = 0.0)
of the computational domain.

with a heated smooth duct flow of the same Reynolds number of Reb = 5600 in this

study. Given that the flow is homogeneous in the streamwise direction in a smooth

duct flow, its mean friction velocity can be calculated based on peripheral averaging

over four identical sidewalls of the smooth duct following the approach of Huser and

Biringen (1993), Pinelli et al. (2010b), and Pirozzoli et al. (2018). The Reynolds

number based on the peripherally-averaged mean friction velocity uτP and half duct

width δ is ReτP = 180 for the smooth duct flow. For the temperature field, it is

assumed that the flow enters the duct at an inlet temperature, Tin = 300K. The

Prandtl number is Pr = 0.71, which is typical for passive heat transfer in air and

many gases. The temperature of the heated wall and ribs is maintained constant

at Tw = 350K, while the top and side walls are assumed to be adiabatic. Also, a

zero-Neumann boundary condition is prescribed over the outlet plane. The tempera-

ture field is treated as a passive scalar and is non-dimensionalized using the inlet and

bottom temperature difference, i.e., θ = (T −Tin)/(Tw−Tin). For the smooth square

duct, the domain size is given as Lx × Ly × Lz = 6πδ × 2δ × 2δ in the streamwise,

85



vertical and spanwise directions, respectively. The streamwise computational domain

Lx is identical to that used in Pirozzoli et al. (2018). In comparison with the smooth

duct case, the heated surface area increases 12.5%, 25% and 50% (over a rib period of

P = 0.8D) in the three ribbed duct cases of Br = 0.05, 0.1 and 0.2, respectively. The

application background of this study is internal turbine blade cooling, which often

feature high rib blockage ratios. By comparing these idealized benchmark test cases

of ribbed square ducts with a smooth square duct, it is clear that the effective heat

transfer area increases significantly due to the presence of the rib elements. It should

be indicated here that the numerical treatment of the thermal energy equation based

on a body-fitted mesh and the temperature boundary condition implemented in this

DNS study represent a conventional approach, which is different from that used in

Pirozzoli et al. (2016), MacDonald et al. (2019a) and MacDonald et al. (2019b), who

introduced a “body forcing” source term in the thermal energy equation, such that

the time-averaged bulk mean temperature does not vary with time, and the heat

added to the fluid through the body forcing instantly equals to the heat loss from the

walls at any time step.

An in-house computer code is used for conducting DNS. In this computer code,

the continuity, momentum and thermal energy equations are discretized based on a

general curvilinear coordinate system (ξ1, ξ2, ξ3), which take the following form for an

incompressible flow:
1
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where ui, p, T , ν, ρ, α and δij represent the velocity, pressure, temperature, kinematic
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viscosity, density, thermal diffusivity, and Kronecker delta, respectively. Also, Π is the

required streamwise pressure gradient that keeps a constant flow rate. Here, βji and J

denote the cofactor and Jacobian of tensor ∂xi/∂ξj, respectively. The above governing

equations are represented using tensor notations, and the streamwise (x), vertical (y),

and spanwise (z) coordinates shown in figure 4.1 are denoted using xi for i = 1, 2,

and 3, respectively. It should be indicated that this computer code is developed for a

general purpose of dealing with complex computational domains of curved boundaries

using body-fitted mesh. Specific to the present numerical simulation of the flow

through a square duct with straight rectangular ribs mounted on the bottom wall,

the cofactor and Jacobian degenerate to Kronecker Delta and unity, respectively.

The computer code was developed using the FORTRAN 90/95 programming lan-

guage and parallelized following the message passing interface (MPI) standard. The

numerical algorithm is based on a finite-volume method in which a second-order ac-

curacy is achieved with respect to both spatial and temporal discretizations. For

both the momentum and thermal energy equations, a collocated second-order cen-

tral differencing scheme was used to discretize the spatial derivatives. As such, all

the physical variables (velocity components, temperature and pressure) were stored

at the centroids of control volumes. An explicit two-step Runge-Kutta scheme was

utilized to discretize the temporal derivative. The advection-diffusion equation that

governs the temperature field was implemented after the solution of the momentum

equations at each time step. A thorough description of the numerical method and

validations of the DNS approach can be found in Mahmoodi-Jezeh and Wang (2020).

The convergence of the solver is considered once the averaged residue of a discretized

algebraic equation drops below 10−6. The time step is fixed at ∆tUb/δ = 2 × 10−4,

and correspondingly, the CFL number is approximately 0.2. The precursor simulation

was run for an extended duration of 73 flow-through times (i.e., 930δ/Ub) until the

turbulent flow field becomes fully-developed and statistically stationary. Then, turbu-

lence statistics were collected for a time period over approximately 110 flow-through
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times (i.e., 1400δ/Ub). All the simulations were conducted using the WestGrid (West-

ern Canada Research Grid) supercomputers. For each simulated case, approximately

548,000 CPU hours were spent on solving the velocity and temperature fields and for

collecting the flow statistics.

The simulations were conducted based on 1280×148×152 body-fitted grid points

in the x-, y-, and z-directions, respectively. The mesh is non-uniform in all three di-

rections, and is refined near all solid surfaces. To ensure the quality of DNS, the mesh

must be fine enough to resolve the smallest scales of turbulence. More specifically, in

their DNS study of turbulent plane-channel flows, Moser and Moin (1987) indicated

that the grid size needs to be of the same order of the Kolmogorov length scale (i.e.,

O(∆/η) ∼ 1) in order to accurately simulate the turbulence dynamics and capture

the turbulence kinetic energy (TKE) level in DNS. Figure 4.2 shows the ratio of the

maximum grid size to the Kolmogorov length scale (∆max/η) in both the central (lo-

cated at z/δ = 0.0) and cross-stream (located at x/δ = 9.1) planes for the rib case of

Br = 0.1. Here, the maximum grid size is calculated as ∆max = max(∆x,∆y,∆z) and

the Kolmogorov length scale is defined as η = (ν3/εk)
0.25, where εk is the local dis-

sipation rate of TKE, i.e., εk = ν〈∂u′i/∂xj∂u′i/∂xj〉. In our analysis of the turbulent

flow field, the instantaneous velocity ui is decomposed as ui = 〈ui〉 + u′i, where 〈ui〉

denotes the mean velocity averaged over time and eight rib periods, and u′i represents

the velocity fluctuations. From figure 4.2(a), it is seen that the maximum of ∆max/η

occurs at two different positions, one near the leading edge of rib elements and the

other between two adjacent ribs (below the rib crest), which is approximately 6.2 and

4.7, respectively. However, as shown in figure 4.2(b), the maximum of ∆max/η occurs

close to the two vertical sidewalls, which is found to be around 5.8. Other than these

special locations, the value of ∆max/η never exceeds 4.5 over the entire computational

domain. Besides the case of Br = 0.1 investigated through figure 4.2, the value of

∆max/η is also examined for the other two test cases of Br = 0.05 and 0.2. In fact, for

all three test cases, the value of ∆max/η is limited to 4.5. The non-dimensional spatial
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(a) Central (x-y) plane (b) Cross-stream (y-z) plane

Figure 4.2: Contours of the ratio of the grid size to the Kolmogorov length scale
(∆max/η) for the rib case with Br = 0.1. (a) In the central (x-y) plane (located at
z/δ = 0.0) and (b) in the cross-stream (y-z) plane (located at x/δ = 9.1). In order to
show the stretched structured grid, the non-uniform mesh is also shown in panel (a).
In this panel, only 20% of grid points are displayed to make the figure readable.

resolution in the streamwise direction (∆x+) is within the ranges [0.65, 6.5], [0.69, 7.7]

and [0.73, 8.9] for Br = 0.05, 0.1 and 0.2, respectively. Here, ∆x+ is defined based on

the mean streamwise wall friction velocity of the smooth top wall (uτS) in the central

vertical (x-y) plane located at z/δ = 0.0.

4.3 Results and discussions

4.3.1 Mean flow and temperature fields

Figure 4.3 compares the contours of the mean temperature field superimposed with

in-plane streamlines in the central plane located at z/δ = 0.0 for the three blockage

ratios studied. By comparing figures 4.3(a)-4.3(c), it is observed that the size of the

corner vortex (marked with “I”) immediately behind a rib increases monotonically as

the rib height increases. The reason that the corner vortex I is the smallest for the

case of Br = 0.05 (shown in figure 4.3(a)) is that the rib height is too small to cause
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 4.3: Contours of the mean temperature, 〈θ〉, superimposed with in-plane
streamlines in the central x-y plane (located at z/δ = 0.0) for different blockage
ratios.

significant sudden expansion of the flow in the lee of the rib. From figures 4.3(a)-

4.3(c), it is also clear that a large recirculation bubble (marked with “II”) is present

between two adjacent ribs whose size is also sensitive to the Br value. As the Br

value increase from 0.05 to 0.1, the reattachment point (marked with “III”) shifts

from x/δ = 0.7 to 1.1. However, as the Br value further increases from 0.1 to 0.2,

the reattachment of the mean flow occurs on the windward face of the rib elements

(instead of the bottom wall). Downstream of the reattachment point, a new boundary

layer starts to build up and impinges onto the next rib which leads to the generation

of an upstream vortex (at point “IV”). Vertical motion of this type of vortex forces
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cold flow towards the ribbed wall thereby affecting the heat transfer performance.

The variation of the mean flow structures with the blockage ratio is further reflected

in the spatial distribution of both the local drag and heat transfer coefficients on the

ribbed bottom wall, which will be discussed separately later in this section.

To assess the effects of blockage ratio on the temperature field, the non-dimensional

temperature profiles at four streamwise locations are plotted in figure 4.4. The results

of three ribbed duct cases at four streamwise locations (for x/δ = 2.7, 5.9, 9.1 and

12.3) are compared with those of the smooth duct case at x/δ = 15 in the central ver-

tical line located at z/δ = 0.0. For the smooth duct case, this particular streamwise

location is chosen because the temperature field reaches a fully-developed condition at

x/δ = 15. As is evident in figure 4.4, in the near-wall region below the rib height, the

strength of the vertical gradient of the mean temperature (d〈θ〉/dy) for the smooth

duct flow is greater than those of the ribbed duct flows, resulting in a larger mag-

nitude of production term (i.e., −〈u′jθ′〉∂〈θ〉/∂xj) in the transport equation of the

temperature variance. Furthermore, it is apparent that as the rib height increases,

the fluid temperature in the region below the rib height becomes closer to that of the

isothermal wall (θ = 1), which further leads to a reduction in the heat transfer rate.

From this figure, it is observed that in all three ribbed duct cases, the magnitude of

the mean temperature 〈θ〉 increases monotonically as the distance downstream of the

inlet (x/δ = 0) increases, reflecting the fact that the flow is continuously heated by

the ribbed wall. Furthermore, as is evident from figure 4.4, more than six rib periods

are required for the temperature field to reach the fully-developed condition in all

three ribbed duct cases. This is because a small discrepancy between the vertical

profiles of the mean temperature at x/δ = 9.1 and at x/δ = 12.3 is still visible for

all three ribbed duct cases. As shown in figures 4.4(a)−4.4(c), the mean temperature

gradient becomes zero as the smooth top wall is approached due to the prescribed

adiabatic condition.

In order to investigate the effects of the secondary flow motions on heat transfer,
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 4.4: Comparison of the non-dimensionalized mean temperature profiles at four
streamwise locations (for x/δ = 2.7, 5.9, 9.1 and 12.3) in the central plane (located at
z/δ = 0) of the ribbed square duct flows with that of the smooth square duct flow
at (x/δ, z/δ) = (15, 0.0). For the smooth duct case, the temperature field reaches a
fully-developed condition at x/δ = 15. The vertical blue dashed line demarcates the
rib crest.

figure 4.5 shows the contour patterns of the secondary flow strength S and the mean

spanwise-vertical velocity streamlines together with the magnitude of the mean tem-

perature in the cross-stream (y-z) plane located at x/δ = 15 for the smooth duct flow

and at x/δ = 9.1 for the three ribbed duct flows of different blockage ratios. Given the

central symmetry of the flow field, only one half of the cross-stream domain is shown.
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(a) smooth duct (b) Br = 0.05

(c) Br = 0.1 (d) Br = 0.2

Figure 4.5: Contours of the secondary flow strength S (left), and the mean spanwise-
vertical velocity streamlines superimposed with the magnitude of the mean temper-
ature (right) in the y-z plane at positions x/δ = 15 and 9.1 for the smooth duct flow
and three ribbed duct flows, respectively. White dots denote the center of the mean
secondary flow vortex. The horizontal red dashed line demarcates the rib crest.

Here, the secondary flow strength is defined as S =
√
〈v〉2 + 〈w〉2, following the ap-

proach of Macfarlane et al. (1998) and Noorani et al. (2016), who investigated the

effects of aspect ratio on the strength of secondary flow in a smooth square duct. As is

evident in figure 4.5, both the pattern and strength of the cross-stream secondary flow
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of the ribbed duct flow cases are considerably different from those of the smooth duct

flow. From figure 4.5(a), it is seen that for the smooth duct case, the secondary flow

appears as four pairs of counter-rotating vortices in the cross-stream plane. These

characteristics of the secondary flow patterns in a smooth square duct are consistent

with the observations of Gavrilakis (1992), Pinelli et al. (2010b), Vinuesa et al. (2014),

and Pirozzoli et al. (2018). However, as shown in figures 4.5(b)-4.5(d), for the ribbed

duct cases, only one pair of large dominant counter-rotating vortices can be observed

in the cross-stream plane whose size is apparently influenced by the rib height. Fur-

thermore, it is clear that in the region near the sidewalls, the secondary flow strength

of three ribbed duct cases is approximately four times larger than that of the smooth

duct case. From figures 4.5(b)-4.5(d), it is evident that for the ribbed duct cases,

the vortex center (demarcated using a white dot) of the mean flow shifts upwards

monotonically as the rib height increases, which has a significant influence on the

distribution of the mean temperature 〈θ〉. This secondary flow is mainly responsible

for transporting the relatively cooler fluid from the center of the duct to the heated

bottom wall, giving rise to a region with high Nu values. Figures 4.5(b)-4.5(d) also

show that the strength of the secondary flow, S, decreases near the bottom corner

of the duct as the blockage ratio increases; however, the magnitude of S in regions

adjacent to the side and top walls as well as the rib crest increases monotonically

with an increasing rib height.

To gain more insights into the influence of the secondary flow structures on the

heat transfer rate, figure 4.6 shows the distribution of the non-dimensionalized lo-

cal Nusselt number in the (x-z) plane located at y/δ = −1.0. The Nusselt number

is defined as Nu = qwD/λ(Tw − Tb), where the bulk temperature is calculated as

Tb =
∫ D

0

∫ D
0

∫ Lx

0
T |〈u〉|dxdydz/

∫ D
0

∫ D
0

∫ Lx

0
|〈u〉|dxdydz. In this comparative study,

Nu is further divided by the value calculated using the semi-empirical Dittus-Boelter

equation (i.e. Nu0 = 0.023Re0.8Pr0.4) originally developed for a smooth wall. From

figure 4.6, it is clear that the value of Nu on the windward side of the rib is larger
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Figure 4.6: Distribution of the local non-dimensionalized Nusselt number, Nu/Nu0,
on the bottom wall located at y/δ = −1.0 for three different rib cases. (a) Br = 0.05,
(b) Br = 0.1, and (c) Br = 0.2.

in the case of Br = 0.2 than in the cases of Br = 0.05 and 0.1. This is because

the recirculation vortex II (see, figure 4.3) induces a strong streamwise impingement

(associated with an enhanced dynamic pressure) onto the windward face of the rib,

thereby enhancing the mixing and heat transfer rate in that region. By comparing

Figs. 4.6(a)-4.6(c), it is also apparent that as the Br value increases from 0.05 to 0.2,

the value of Nu decreases near the two vertical sidewalls. This spanwise trend of Nu

can be well explained from figure 4.5, which shows that the upward-moving impinge-

ment region near both sidewalls elevates with an increasing rib height, resulting in

a lower magnitude of Nu near the two sidewalls of the square duct. Furthermore,

as a result of the developing temperature field (in conjunction with a fully-developed

turbulent flow field), the Nusselt number decays streamwise until the temperature
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(a) Profiles of Cf + Cp (b) Profiles of Nu/Nu0

Figure 4.7: Streamwise profiles of non-dimensionalized total drag coefficient, Cf +Cp,
and Nusselt number, Nu/Nu0, of different blockage ratios along a central line of the
bottom wall located at (z/δ, y/δ) = (0.0, −1.0).

field reaches a fully-developed state. It is also observed that the contour pattern

of the local Nusselt number becomes increasingly similar after the sixth rib, which

indicates a quasi self-similar state. Although the velocity field is statistically steady

and fully developed in the streamwise direction, the temperature field is developing

in the streamwise direction.

To understand the effects of the mean flow field on heat transfer, figure 4.7 com-

pares the streamwise profiles of the total drag coefficient, Cf +Cp, and Nusselt num-

ber, Nu/Nu0, at (z/δ, y/δ) = (0.0, −1.0) in the central (x-y) plane for the three

different ribbed duct cases. The skin friction and pressure coefficients are defined

as Cf = τw/(ρU
2
b /2) and Cp = 〈p〉/(ρU2

b / 2), respectively, where τw represents the

local total wall friction stress calculated as τw = µ
[
(∂ 〈u〉/∂y)2 + (∂ 〈w〉/∂y)2]1/2

wall
.

As seen in figure 4.7(a), for all three ribbed duct cases, the level of total drag coeffi-

cient (Cf + Cp) near the windward face of the rib increases monotonically as the rib

height increases. This can be explained from figure 4.3, which shows that the size and

strength of the recirculation bubble II increase when the rib height is augmented; and

as a result, a higher magnitude of drag is observed in that region. Figure 4.7(b) high-
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lights the fact that the temperature field and heat transfer rate respond differently to

the mean flow structure patterns. For example, in the region downstream of the rib,

the peak of Nu lies at the reattachment point III and immediately upstream of the

rib (labeled as point IV in figure 4.3) for the cases of Br = 0.05 and 0.1; however,

in the case of Br = 0.2, a sole peak is situated at the latter position (point IV, see

figure 4.3). This leads to the conclusion that at a sufficiently high Br value, the

streamwise impingement onto the windward face of the downstream rib, gives rise to

not only an augmentation of the stagnation pressure but also an amplified magnitude

of Nusselt number Nu. To refine the study, the average Nusselt number (defined as

Nuav = 1/Lx,av
∫ Lx,av

0
Nudx) is calculated in the central vertical (x-y) plane located

at z/δ = 0.0 for all three ribbed duct cases. Here, Lx,av is the horizontal distance

between sixth and eighth ribs (i.e., 8.7 ≤ Lx,av ≤ 12.1), where the local Nu exhibits

a consistent self-similar pattern (see, figure 4.6). From the equation, it is understood

that the magnitude of Nuav/Nu0 increases from 2.3 to 2.7 as the blockage ratio in-

creases from Br = 0.05 to 0.1. However, as the Br value further increases from 0.1

to 0.2, the magnitude of Nuav/Nu0 decreases and reaches at 2.08.

4.3.2 Temperature variance and turbulent heat fluxes

Figures 4.8(a) and 4.8(b) show the vertical profiles of TKE, k = 〈u′iu′i〉/2, and

temperature variance, 〈θ′θ′〉, for different blockage ratios along a central vertical line

located at (x/δ, z/δ) = (9.1, 0.0), respectively. The results of the three ribbed duct

cases are compared against those of the smooth duct case in the central vertical

line located at (x/δ, z/δ) = (15, 0.0). Figure 4.8(a) clearly shows that due to the

disturbances from the ribs, the magnitude of the TKE k of the ribbed duct flows is

much larger than that of the smooth duct flow. From figure 4.8(a), it is also clear that

owing to the presence of a strong shear layer, the value of TKE progressively increases

with an increasing rib height in the region immediately above the rib crest. However,

in contrast to this trend of TKE, the value of temperature variance decreases as
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(a) Profile of k/U2
b (b) Profile of 〈θ′θ′〉

Figure 4.8: Vertical profiles of non-dimensionalized TKE k and temperature variance
〈θ′θ′〉 along the central vertical lines located at (x/δ, y/δ) = (15, 0.0) and (9.1, 0.0)
for the smooth duct case and ribbed duct cases, respectively. Symbol ‘+’ demarcates
the peak position of k or 〈θ′θ〉 for the three ribbed duct cases. The vertical locations
of these peaks correspond to y/δ = −0.86,−0.76 and −0.56 for test cases of Br =
0.05, 0.1 and 0.2, respectively.

the rib height increases in that region. Although an increase of rib height causes a

decrease in the magnitude of 〈θ′θ′〉 close to the ribbed bottom wall, it should not be

regarded as the main reason for the reduction in the peak value of 〈θ′θ′〉 because the

pitch-to-height ratio also has a significant impact on the turbulence statistics, which

decreases monotonically with an increasing rib height. This observation is consistent

with the DNS result of Nagano et al. (2004), who studied the effects of rib height on

both the velocity and temperature fields in a 2-D plane-channel flow. They observed

a low level of temperature variance under the condition of large blockage ratios. From

figures 4.8(a) and 4.8(b), the values of both k and 〈θ′θ′〉 peak at y/δ = −0.86, −0.76

and −0.56 in the three ribbed duct cases of Br = 0.05, 0.1 and 0.2, respectively. In

fact, these three special vertical positions correspond to the same relative elevation

that is 0.04δ immediately above the rib crest in each ribbed duct case. In term of

wall units, this relative elevation corresponds to 0.04δuτR/ν = 11.2, 13.7 and 16.2 for

Br = 0.05, 0.1 and 0.2, respectively. The wall shear effect generated by the rib crest is
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(a) Profiles of 〈u′θ′〉 (b) Profiles of 〈v′θ′〉

Figure 4.9: Vertical profiles of non-dimensionalized streamwise and vertical turbulent
heat fluxes (〈u′θ′〉 and 〈v′θ′〉, respectively) along the central vertical lines located
at (x/δ, y/δ) = (15, 0.0) and (9.1, 0.0) for the smooth duct case and ribbed duct
cases, respectively. Symbol ‘+’ demarcates the peak position of 〈u′θ′〉 and 〈v′θ′〉 for
the three ribbed duct cases. The vertical locations of these peaks correspond to
y/δ = −0.86,−0.76 and −0.56 for test cases of Br = 0.05, 0.1 and 0.2, respectively.
Because temperature θ is non-dimensional by definition, turbulent heat fluxes are
non-dimensionalized using the bulk mean velocity Ub only.

very strong at this relative elevation either immediately above the ribs or downstream

of the ribs due to streamwise convection. In the following analysis, we will pay careful

attention to the velocity and temperature statistics at these three special elevations.

Figure 4.9 compares the vertical profiles of streamwise and vertical turbulent heat

fluxes (i.e., 〈u′θ′〉 and 〈v′θ′〉, respectively) of three ribbed duct cases along the same

central vertical line as in figure 4.8. The results of the three ribbed duct cases are

compared against those of the smooth duct flow in the central vertical plane located

at (x/δ, z/δ) = (15, 0.0). By comparing figures 4.9(a) and 4.9(b) with figure 4.8(a),

it is seen that the trends in the magnitudes of these two turbulent heat fluxes are

similar to that of TKE, highlighting the fact that the wall-mounted rib elements

impose a strong disturbance near the ribbed bottom wall, leading to an increase in

the magnitudes of not only the TKE but also the streamwise and vertical turbulent

heat fluxes in the region immediately above the rib crest.
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(a) Profiles of 〈u′θ′〉 (b) Profiles of 〈v′θ′〉

Figure 4.10: Spanwise profiles of non-dimensionalized streamwise and vertical turbu-
lent heat fluxes (〈u′θ′〉 and 〈v′θ′〉, respectively) each along an elevated line positioned
at (x/δ, y/δ) = (9.1,−0.6), (9.1,−0.5), and (9.1,−0.3) for three blockage ratios of
Br = 0.05, 0.1 and 0.2, respectively. Given the difference in rib heights, these three
positions correspond to the same relative elevation that is 0.3δ above the rib crest
in each case. Owing to spanwise symmetry, only one half of the duct is plotted.
Because temperature θ is non-dimensional by definition, turbulent heat fluxes are
non-dimensionalized using the bulk mean velocity Ub only.

To demonstrate the 3-D effects of the ribbed duct flow, figure 4.10 compares the

spanwise profiles of the streamwise and vertical turbulent heat fluxes each along an

elevated line positioned at (x/δ, y/δ) = (9.1,−0.6), (9.1, −0.5), and (9.1, −0.3) for

three blockage ratios of Br = 0.05, 0.1 and 0.2, respectively. Given the different

heights of ribs in the three test cases, these three vertical are all at the same relative

elevation that is 0.3δ (or, 0.15D) above the rib crest in each case in order to facilitate a

fair comparison. As is shown in figures 4.10(a) and 4.10(b), both 〈u′θ′〉 and 〈v′θ′〉 peak

in a region between the sidewall and the center of the duct (e.g., for the Br = 0.2 case,

the profiles of these two turbulent heat fluxes peak at z/δ ≈ ±0.4). Furthermore, it is

observed that as the rib height increases, the peak positions of 〈u′θ′〉 and 〈v′θ′〉 shift

towards the duct center. This is because of the cross-stream secondary flow motions,

which facilitate turbulent transport of TKE and thermal energy by carrying highly

energetic vortices from the duct center towards the vertical sidewalls.
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(a) Profiles of 〈u′θ′〉 (b) Profiles of 〈v′θ′〉

Figure 4.11: Spanwise profiles of non-dimensionalized streamwise and vertical turbu-
lent heat fluxes (〈u′θ′〉 and 〈v′θ′〉, respectively) along an elevated line positioned at
(x/δ, y/δ) = (15,−0.4) and (9.1,−0.4) for smooth and ribbed duct cases, respectively.
The comparison of the profiles of turbulent heat fluxes are made at the elevation of
y/δ = −0.4. Owing to spanwise symmetry, only one half of the duct is plotted.
Because temperature θ is non-dimensional by definition, turbulent heat fluxes are
non-dimensionalized using the bulk mean velocity Ub only.

The above analysis of the turbulent heat fluxes based on figure 4.10 was conducted

at the same relative elevation above the rib crest (while the absolute elevations are

different) for the three ribbed duct cases. To refine the comparative study of the

rib effects on turbulent heat transfer, figure 4.11 compares the spanwise profiles of

the streamwise and vertical turbulent heat fluxes along an elevated line positioned

at (x/δ, y/δ) = (15,−0.4) and (9.1,−0.4) for the smooth duct flow and three ribbed

duct flows, respectively. The comparison of these square duct cases (either smooth

or ribbed) is conducted at an identical elevation of y/δ = −0.4. From figure 4.11,

it is clear that both the streamwise and vertical turbulent heat fluxes peak around

the sidewalls and duct center. The magnitudes of these increase monotonically as the

Br value increases. The appearance of a local maximum in the profile of turbulent

heat fluxes near the duct center results from the fact that in the (x-y) plane, high-

intensity vortices are generated near the ribs and spread to higher elevations through
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Figure 4.12: Coherent flow structures demonstrated using instantaneous streamwise
vorticity fluctuations ω′x for the case of Br = 0.1. The value of ω′x has been non-
dimensionalized by Ub/δ. (a) contours of the instantaneous ω′x in the x-z plane located
at y/δ = −0.76. (b) and (c) contours of instantaneous temperature fluctuations θ′

superimposed with instantaneous velocity fluctuations (v′, w′) in two arbitrary cross-
stream planes extracted from the 3D domain at streamwise location x/δ = 9.1.

the shedding of shear layer structures triggered by the rib crest. Simultaneously,

strong secondary flows in the (y-z) plane carry these vortices from the duct center

and run into the sidewalls of the duct, resulting in large magnitudes of turbulent heat

fluxes (near the sidewalls).

4.3.3 Turbulence structures and heat transfer near the ribbed

wall

To refine our understanding of the turbulent transport processes of momentum

and thermal energy in a ribbed duct, it is useful to analyze the effects of rib height

on both the instantaneous streamwise vorticity ω′x and temperature fluctuations θ′

near the rib-roughened bottom wall. Figure 4.12(a) shows the contours of ω′x in

the (x-z) plane (at y/δ = −0.76) above the rib height for the ribbed duct case of
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Br = 0.1. This particular vertical location is chosen because the magnitudes of 〈θ′θ′〉,

〈u′θ′〉 and 〈v′θ′〉 peak around y/δ = −0.76 for this blockage ratio (see figures 4.8(b),

4.9(a) and 4.9(b)). As shown in figure 4.12(a), it is clear that instantaneous elon-

gated eddy motions are indicated by positively- and negatively-valued contours of

ω′x/(Ub/δ), which alternate in the spanwise direction and meander in the streamwise

direction. Due to the presence of the ribs, streaky structures are broken up, which

cause amplified streamwise vorticity fluctuations, leading to a high peak value of TKE

shown previously in figure 4.8(a). In general, the streaky structure patterns of this

3-D ribbed duct flow as exhibited in figure 4.12(a) are qualitatively different from

those in a canonical 2-D turbulent boundary layer (Chernyshenko and Baig, 2005;

Adrian, 2007). Figures 4.12(b) and 4.12(c) show the two snapshots of the captured

streamwise-elongated vortices, using the vectors of instantaneous fluctuating veloci-

ties (v′, w′) in two cross-stream (y-z) planes at x/δ = 9.1. To demonstrate the role of

these vortices in turbulent transport of thermal energy, the contours of temperature

fluctuations θ′ are also displayed in figures 4.12(b) and 4.12(c). From these two fig-

ures, it is evident that violent ejection and sweep motions (represented by blue and

red colored contours of θ′, respectively) occur near the rib crest (around y/δ = −0.8).

It is further observed that ejection events are associated with positively-valued θ′,

whereas sweep events are coupled with negatively-valued θ′. As such, both ejection

and sweep events contribute to the positively- and negatively-valued 〈v′θ′〉 and 〈u′θ′〉,

respectively (see, figures 4.9(b) and 4.9(a)) in the vicinity of the rib crest.

To develop a deeper understanding of the effects of sweep and ejection events

on turbulent heat transfer in the region slightly above the rib crest, JPDF of σu =

u′/urms, σv = v′/vrms and σθ = θ′/θrms is calculated for the ribbed duct case of Br =

0.1 at the location (x/δ, y/δ) = (9.1,−0.76) in the central vertical plane (at z/δ =

0.0), where the peaks of 〈θ′θ′〉, 〈u′θ′〉, and 〈v′θ′〉 occur. Figures 4.13(a) and 4.13(b)

show that there exists a strong negative correlation between u′ and θ′, and a positive

correlation between v′ and θ′, respectively. The black dash line at 135◦ indicates a high
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(a) JPDF of σθ and σu (b) JPDF of σθ and σv

(c) JPDF of σu and σv (θ′ > 0) (d) JPDF of σu and σv (θ′ < 0)

Figure 4.13: JPDF of σθ, σu and σv at the location (x/δ, y/δ) = (9.1,−0.76) in the
central vertical plane located at z/δ = 0 for the case of Br = 0.1. Contours vary with
incremental JPDF value of 0.0035.

correlation between two components at the reference point. For the JPDF between σθ

and σu, there is an apparent preference for the second (Q2) and fourth (Q4) quadrant

events, which lead to a negatively valued streamwise turbulent heat flux 〈u′θ′〉 near

the rib crest as shown previously in figure 4.9(a). In contrast, the JPDF of σθ and

σv shows a tendency towards the first (Q1) and third (Q3) events leading to positive-

valued vertical turbulent heat flux 〈v′θ′〉 in figure 4.9(b). The obtained results of

the JPDF analysis at the reference point indicate that the ejection (featuring u′ < 0

and v′ > 0 associated with Q2) and sweep (featuring u′ > 0 and v′ < 0 associated
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(a) JPDF of σθ and σu (b) JPDF of σθ and σv

(c) JPDF of σu and σv (θ′ > 0) (d) JPDF of σu and σv (θ′ < 0)

Figure 4.14: JPDF of σθ, σu and σv at the location (x/δ, y/δ) = (15,−0.76) in the
central vertical plane located at z/δ = 0.0 for the smooth square duct case. Contours
vary with incremental JPDF value of 0.0017.

with Q4) events are dominant near the rib crest, which are mainly attributed to the

unsteady large-scale motions in this region, an observation that is consistent with

the previous analysis of figures 4.12(b) and 4.12(c). Figures 4.13(c) and 4.13(d) show

the occurrence of hot ejection-like and cold sweep-like motions in the region slightly

above the rib crest. From this discussion, it can be concluded that in the region

near the rib crest, lower momentum fluid packets (u′ < 0) with higher temperatures

(θ′ > 0) are ejected into the duct center, meanwhile higher momentum fluid packets

(u′ > 0) with lower temperatures (θ′ < 0) sweep towards the ribbed bottom wall.
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When these fluid packets interact with the recirculation zone, both 〈u′θ′〉 and 〈v′θ′〉

increase significantly in their magnitudes near the rib crest.

The physical mechanisms underlying the JPDF patterns of the ribbed duct flow

shown in figure 4.13 can be better understood by comparing them with those of a

smooth duct flow. Figure 4.14 shows the JPDF of σu, σv and σθ for the smooth

duct flow case at the location (x/δ, y/δ) = (15,−0.76) in the central vertical plane

(z/δ = 0.0). The reference point is positioned at the same elevation (y/δ = −0.76)

as in figure 4.13 for the ribbed flow case. By comparing figures 4.14 and 4.13, it is

observed that despite the differences in the JPDF patterns of the ribbed and smooth

duct flow cases, they exhibit a general tendency towards ejection and sweep motions in

the near-wall region for both smooth and ribbed duct cases. These turbulent motions

cause the values of 〈u′θ′〉 and 〈v′θ′〉 to become negative and positive at the reference

point, respectively (see figure 4.9).

Figure 4.15 shows the iso-surfaces of the swirling strength, λci, superimposed onto

instantaneous temperature contours in the central vertical plane (z/δ = 0.0) of the

domain for three different rib cases. From figure 4.15, it is observed that as the

blockage ratio increases from Br = 0.05 to 0.2, the dynamics of turbulence structures

near the ribbed bottom wall become more intensified, characterized by enhanced

spread and shedding of vortices in the region immediately above the rib crest. This

further leads to an enhanced strength of turbulence motions in that region, as well

indicated by the magnitude of TKE in figure 4.8(a). From figure 4.13, it is known that

the temperature fluctuations are highly correlated with the streamwise and vertical

velocity fluctuations near the rib crest, and therefore, the magnitudes of turbulent

heat fluxes 〈u′θ′〉 and 〈v′θ′〉 are greatly enhanced with an increasing Br value, a

pattern that is evident in figures 4.9(a) and 4.9(b).

Figure 4.16 shows the iso-surfaces of the instantaneous streamwise vorticity ωx

superimposed onto instantaneous temperature θ contours in the cross-stream y-z

plane (located at x/δ = 9.1) for three different rib cases. From figure 4.16, it is
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 4.15: Iso-surfaces of the swirling strength λci around ribs, colored with (1 −
y/δ), superimposed on the background instantaneous temperature field θ (shown
using grey-scaled contours) in the central plane (located at z/δ = 0) for three different
rib cases.

evident that owing to the disturbances from the ribs, the energetic vortical structures

in all three rib cases are densely populated on the ribbed bottom wall side than on the

smooth top wall side. Clearly, as the blockage ratio increases from Br = 0.05 to 0.2,

the strength of these disturbances becomes more apparent (see figure 4.8(a)); and as

a result, more streamwise vortices are generated near the rib crest. This phenomenon

results in an enhanced local turbulent transport of momentum and energy between

the ribbed bottom wall and duct center. By comparing figures 4.16(a)-4.16(c), it is

seen that below the rib height, vortical structures become less populated as the rib

height increases, which results in lower heat transfer rate near the leeward face of

the ribs as shown previously in figure 4.6. This is a reflection of the fact that as

the rib height increases, the recirculation bubble behind a rib increases in size (see

figures 4.3 and 4.15), preventing the cold fluid from effectively contacting the heated

bottom wall.

Since the streaky structures in a 3-D ribbed duct are sensitive to not only the rib
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 4.16: Iso-surface instantaneous streamwise vorticity ωx at the level of 4.5Ub
in the cross-stream (y-z) plane at x/δ = 9.1 superimposed on to the background
instantaneous temperature field θ (shown using grey-scaled contours) for different rib
cases. The value of ωx has been non-dimensionalized by Ub/δ. The iso-surfaces of
instantaneous streamwise vorticity are colored using non-dimensionalized elevation
(1− y/δ).

height but also the boundary layers developed over the two vertical sidewalls of the

duct, it would be interesting to investigate the riblet effect on the turbulence struc-

tures associated with temperature fluctuations in this peripherally confined space. To
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(a) Br = 0.05

(b) Br = 0.1

(c) Br = 0.2

Figure 4.17: Contours of non-dimensionalized instantaneous temperature fluctuations
θ′ in the x-z plane immediately above the rib crest for three rib cases. (a) at y/δ =
−0.86 for Br = 0.05, (b) at y/δ = −0.76 for Br = 0.1, and (c) at y/δ = −0.56
for Br = 0.2. Given the difference in rib heights, these three vertical positions (i.e.,
y/δ = −0.86, −0.76 and −0.56 for the three rib cases) correspond to the same relative
elevation that is 0.04δ immediately above the rib crest in each rib case, where the
value of 〈θ′θ′〉 peaks. In each figure panel, the streamwise coordinate is given both
as x/δ (bottom) and as x+ (top). Similarly, the spanwise coordinate is given both as
z/δ (left) and as z+ (right). The wall units x+ and z+ are calculated based on uτR.
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this purpose, contours of the non-dimensionalized instantaneous temperature fluctu-

ations θ′ are plotted in figure 4.17 in the x-z plane located at y/δ = −0.86,−0.76 and

−0.56 for Br = 0.05, 0.1 and 0.2, respectively. As explained above, these three special

vertical positions correspond to the same relative elevation that is 0.04δ immediately

above the rib crest in each rib case, where the value of 〈θ′θ′〉 peaks. As shown previ-

ously in figures 4.9(a) and 4.9(b), at these elevations, both the streamwise and vertical

turbulent heat fluxes reach their maxima. From figures 4.17(a)-4.17(c), it is observed

that the characteristic length scales and strengths of temperature streaks are sensitive

to the rib height. For the rib case of Br = 0.05, the streaky structures associated

with temperature fluctuations are more elongated in the streamwise direction and are

more similar to those of a classical turbulent plane-channel flow (e.g., Kim and Moin,

1989). However, as the rib height increases, the strength of induced disturbances by

the rib elements increases (see figure 4.8(a)). Consequently, the streaky structures

associated with temperature fluctuations violently break up and the flow becomes

increasingly “patchy” in the exhibited x-z plane.

To refine our study of the effects of rib height on turbulence structures and associ-

ated temporal scales, the spatial two-point cross-correlation coefficients between the

streamwise velocity and temperature fluctuations can be analyzed, which is defined

as

Rs
uθ(xref , yref , x, y) =

〈θ′(x, y)u′(xref , yref )〉√
〈θ′2(x, y)〉〈u′2(xref , yref )〉

, (4.4)

where (xref , yref ) are the coordinates of the reference point and superscript “s” de-

notes spatial correlation. The streamwise coordinate of the reference point is fixed at

xref/δ = 9.1, while the vertical coordinate being yref/δ = −0.86 and −0.4 (for the rib

case of Br = 0.05) and yref/δ = −0.56 and −0.4 (for the rib case of Br = 0.2). From

figure 4.18, it is seen that the cross-correlation coefficient Rs
uθ is larger at the refer-

ence point near the rib crest and smaller at the reference point far above the rib crest.

More specifically, the value of Rs
uθ decreases by 27% and 15% as yref/δ increases from

−0.86 and −0.56 to −0.4 for cases of Br = 0.05 and 0.2, respectively. This feature is
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consistent with the observation in figure 4.13(a) that the streamwise velocity fluctu-

ations synchronize well with the temperature fluctuations in the region immediately

above the rib element, such that the value of 〈u′θ′〉 reaches its maximum near the rib

crest as shown in figure 4.9(a). From this figure, it is also observed that similar to the

trend of Rs
uθ, the value of the inclination angle α of turbulence structures decreases

as y/δ increases. This implies that the hot ejection motions become less violent as

the vertical distance from the rib crest increases. By comparing figures 4.18(a) and

4.18(b) with figures 4.18(c) and 4.18(d), respectively, it is clear that the value of Rs
uθ

decreases as a result of an increasing rib height; however, the inclination angle α of

the isopleths of Rs
uθ increases considerably. From this discussion, it can be concluded

that owing to the intensification by the disturbances from the ribs with an increasing

rib height, the Reynolds analogy between turbulent transport of momentum and that

of thermal energy (indicated by u′ and θ′) becomes less applicable as the Br value

increases.

The above analysis of spatial scales of the turbulent velocity and temperature

fields were conducted in the physical space based on the two-point cross-correlation

coefficients. Alternatively, the analysis can be performed in a spectral space based

on the energy spectrum, which are the counterparts of two-point auto-correlation

coefficients in Fourier transform. Although the results of two-point auto-correlation

coefficients have the advantage of being very intuitive, more precise information on

turbulence energy level, and temporal frequencies and scales can be obtained through

a spectral analysis. The temporal energy spectra and pre-multiplied energy spectra of

the streamwise and temperature fluctuations are shown in figure 4.19. The compari-

son of the two ribbed flow cases (of Br = 0.05 and 0.2) is conducted at the elevation

that is slightly above the rib crest (with the spatial reference point being identical

to that used in figures 4.18(a) and 4.18(c)). From figures 4.19(a) and 4.19(b), it is

clear that for a wide range of temporal frequencies (measured using Strouhal number

fδ/Ub), the spectral difference between the non-dimensionalized streamwise velocity
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(a) Br = 0.05 at yref/δ = −0.86 (b) Br = 0.05 at yref/δ = −0.4

(c) Br = 0.2 at yref/δ = −0.56 (d) Br = 0.2 at yref/δ = −0.4

Figure 4.18: Isopleths of two-point cross-correlations of the fluctuating streamwise
velocity and temperature calculated at two reference points of different elevations
at the streamwise location of xref/δ = 9.1 in the central vertical plane located at
z/δ = 0.0. Note that the reference points at yref/δ = −0.86 and −0.56 coincide
with the peaks positions of 〈θ′θ′〉, 〈u′θ′〉, and 〈v′θ′〉 for Br = 0.05 and 0.2 cases,
respectively. The isopleth value ranges from −0.2 to −1.0, with the outermost and
innermost isopleths corresponding to Rs

uθ = −0.2 and −1.0, respectively.

and temperature fluctuations (i.e., EuuUb/(δ〈u′u′〉) and EθθUb/(δ〈θ′θ′〉), respectively)

is minimal. However, as the Br value increases from 0.05 to 0.2, difference between

these two energy spectrum terms can be observed in figure 4.19(b), especially at low

frequencies (corresponding to large temporal scales). Furthermore, it is apparent the
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(a) Temporal energy spectra (Br = 0.05) (b) Temporal energy spectra (Br = 0.2)

(c) Pre-multiplied energy spectra (Br =

0.05)

(d) Pre-multiplied energy spectra (Br =

0.2)

Figure 4.19: Non-dimensionalized temporal energy spectra and pre-multiplied energy
spectra of the streamwise and vertical velocity fluctuations and temperature fluctu-
ations for two different rib cases of Br = 0.05 and 0.2. The comparison of the two
ribbed flow cases is conducted at the elevation that is slightly above the rib crest
(with the spatial reference point being identical to that used in figures 4.18(a) and
4.18(b)).

energy spectrum level of temperature fluctuations as indicated by the magnitude of

EθθUb/(δ〈θ′θ′〉) decreases slightly with an increasing rib height. This is also consis-

tent with the observation in figure 4.8(b) that the level of temperature variance 〈θ′θ′〉
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monotonically decreases as the rib height increases in the region immediately above

the rib crest. As is evident in figures 4.19(c) and 4.19(d), similar to the temporal

energy spectra, the discrepancies between the non-dimensionalized pre-multiplied en-

ergy spectra of streamwise velocity and temperature fluctuations (i.e., fEuu/〈u′u′〉

fEθθ/〈θ′θ′〉, respectively) increase near the rib crest as the blockage ratio increases.

Furthermore, by comparing figures 4.19(c) with 4.19(d), it is observed that as the

rib height increases, the characteristic temporal scales of turbulence structures (as

indicated by the modes of fEuu/〈u′u′〉 and fEvv/〈u′u′〉) increase, whereas the tem-

poral scale of thermal structures (as indicated by the mode of fEθθ/〈θ′θ′〉) decreases

monotonically. For example, the mode of fEθθ/〈θ′θ′〉 occurs at the non-dimensional

temporal scale of t/(δ/Ub) ≈ 3.1 in the case of Br = 0.05, but at t/(δ/Ub) ≈ 1.8

in the case of Br = 0.2. The energetic turbulence scales associated with the tem-

perature fluctuations near the rib crest can be further quantified by defining the

energy-containing range which possesses premultiplied energy spectra that are at

least 70% of the peak value (bounded by the vertical dashed lines “a1” and “a2” in

figures 4.19(c) and 4.19(d)). By comparing 4.19(c) and 4.19(d), it is observed that

owing to the significant changes in the temporal scales generated by the rib elements,

the energy-containing range narrows monotonically from 4.9δ/Ub to 4.2δ/Ub as the

blockage ratio increases from Br = 0.05 to 0.2.

To further investigate the temporal scales of turbulent motions in the three ribbed

duct flow cases, the temporal auto-correlation the function of velocity and tempera-

ture fluctuations should be examined, which is defined as

Rt
φφ(t) =

〈φ(t)φ(tref )〉
σφσφ

, (4.5)

where, tref denotes the reference time origin, superscript “t” represents temporal cor-

relation, and “σφ” denotes the root mean square (r.m.s.) value of φ. In figure 4.20,

the temporal auto-correlations of the streamwise and vertical velocity fluctuations

and temperature fluctuations for three different ribbed duct cases are compared at
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(a) Br = 0.05 (b) Br = 0.1

(c) Br = 0.2

Figure 4.20: Temporal auto-correlations Rt
φφ(t) of the streamwise and vertical veloc-

ities fluctuations and temperature fluctuations displayed in the central vertical plane
located at (x/δ, z/δ) = (9.1, 0.0) for different blockage ratios. The vertical coordinate
of the reference point is yref/δ = −0.86, −0.76 and −0.56 for Br = 0.05, 0.1 and
0.2, respectively. For all three rib cases, in order to show clearly the profiles of the
temporal auto-correlation function Rt

φφ(t) around the reference time origin, they are

partially enlarged and replotted in inset graphs.

the elevation that is slightly above the rib crest. By comparing figures 4.20(a)–4.20(c),

it is evident that the trends of temporal auto-correlation coefficient become increas-

ingly different between the streamwise velocity and temperature fluctuations as the

rib height increases. From figure 4.20, it is observed that the decaying rate of the
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(a) Profiles of Rθθ (b) Profiles of Ruu

Figure 4.21: Temporal auto-correlations of the streamwise velocity fluctuations and
temperature fluctuations (Rt

uu and Rt
θθ, respectively) displayed in the central vertical

plane located at (x/δ, z/δ) = (15, 0.0) and (9.1, 0.0) for the smooth duct case and
ribbed duct cases, respectively. The comparison of these square duct cases (either
smooth or ribbed) is conducted at the same elevation of y/δ = −0.4.

auto-correlation function Rt
θθ becomes faster with an increasing rib height, indicat-

ing a trend of increasingly shortened temporal scales associated with instanteneous

temperature fluctuations. However, in contrast to the trend of Rt
θθ, the decaying rate

of Rt
uu becomes slower as the rib height increases. This implies that the temporal

scales of the turbulent motions near the rib crest increase as a result of an increasing

rib height. This conclusion is consistent with our previous analysis of pre-multiplied

energy spectra of u′ and θ′ on figures 4.19(c) and 4.19(d).

The above discussion of the temporal auto-correlations Rt
φφ is based on the same

relative elevation that is 0.04δ immediately above the rib crest in each ribbed duct

flow case. To refine our analysis, the temporal auto-correlation of the streamwise

velocity and temperature fluctuations (i.e., Rt
uu and Rt

θθ, respectively) are plotted in

figure 4.21 in the central vertical plane at the same elevation of y/δ = −0.4 for all

three ribbed duct cases. Furthermore, the results of three ribbed duct flow cases are

compared against that of a heated smooth duct flow case. As shown in figure 4.21,
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the decaying rates of Rt
θθ and Rt

uu of the two ribbed duct flow cases of lower blockage

ratios (of Br = 0.05 and 0.5) are close to those of the smooth duct flow case. From

figure 4.21, it is also evident that the characteristic temporal scales of both turbulence

structures and thermal structures (as indicated by the magnitudes of Rt
uu and Rt

θθ,

respectively) increase as the Br value increases at an elevation well above the bottom

wall. This result is consistent with our previous observation (Mahmoodi-Jezeh and

Wang, 2020), in the sense that the spatial length scales of turbulent motions also

become larger at the same elevation (of y/δ = −0.4) as the Br value increases.

4.4 Chapter summary

Direct numerical simulation is performed to study turbulent heat transfer in ribbed

square duct flows of three different blockage ratios. In order to examine the effects

of ribs on the turbulent heat transfer, the results of the three ribbed duct cases are

compared with those of a smooth square duct flow case at the same bulk Reynolds

number of Reb = 5600. The effect of sidewalls and ribs on the statistical moments of

the temperature field and coherent structures is investigated. In contrast to the 2-D

rib-roughened boundary-layer flow over a flat plate, turbulent transport of momentum

and thermal energy is influenced by not only rib-induced disturbances but also strong

secondary flows in the cross-stream directions of the duct. As a result, both the flow

and temperature fields are intrinsically 3-D and statistically inhomogeneous in all

three directions.

It is observed that the mean flow patterns in the inter-rib region under the rib

height are qualitatively different for different Br values. For the ribbed duct cases of

Br = 0.05 and 0.1, the reattachment point III occurs in between the two adjacent

ribs. However, for the ribbed duct case with Br = 0.2, the recirculation vortex II

occupies almost the entire cavity between the two ribs (under the rib height), such

that the reattachment point is non-present and the mean flow “skims” over the two
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ribs and the cavity between them. Furthermore, owing to the confinement of the four

sidewalls of the duct, strong organized secondary flows appear in the cross-stream

directions, which drastically influence the mean temperature field and distribution of

Nusselt number near the two sidewalls of the square duct. The magnitude of the total

drag coefficient (Cf +Cp) is also observed to be strongly influenced by the rib height.

The level of (Cf +Cp) increases monotonically near the windward face of the rib with

an increasing rib height. This phenomenon leads to an enhanced impinging effect

of the flow onto the windward face of the rib, which further leads to an amplified

magnitude of Nusselt number Nu.

Owing to the strong shear layer generated by the rib crest, the value of TKE

k progressively increases with an increase of rib height in the region immediately

above the rib crest. However, in contrast to this trend of TKE, the value of temper-

ature variance 〈θ′θ′〉 decreases as the rib height increases in the same region. The

magnitudes of streamwise and vertical turbulent heat fluxes (i.e., 〈u′θ′〉 and 〈v′θ′〉,

respectively) enhance as the rib height increases. For all three ribbed duct cases, the

highest turbulent heat fluxes levels occur slightly above the rib crest, where the levels

of both TKE k and temperature variance 〈θ′θ′〉 are the greatest. Owing to the cross-

stream secondary flow motions, both profiles of 〈u′θ′〉 and 〈v′θ′〉 peak in the region

between the sidewall and duct center. The magnitudes of turbulent heat fluxes 〈u′θ′〉

and 〈v′θ′〉 increase monotonically as the rib height increases in the central region of

the duct.

The influence of turbulence structures on the temperature field near the rib crest is

analyzed using the JPDF of the streamwise velocity and temperature fluctuations, λci-

criterion, temporal auto-corrections, temporal spectra, and spatial two-point cross-

correlations of the turbulence field. The results show that owing to the disturbances

from the ribs, energetic vortical structures in all three ribbed duct cases are more

densely populated on the ribbed bottom wall side than on the smooth top wall side.

Furthermore, the strengths of both rib-generated disturbances and structures enhance
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as the rib height increases. This leads to the formation of incoherent structures

and the occurrences of violent ejection and sweep events. The ejection and sweep

events are coupled with positively- and negatively-valued temperature fluctuations

θ′, respectively, in the region immediately above the rib elements. In fact, based on

an analysis of the instantaneous streamwise vorticity fluctuations and JPDF, it is

observed that in the region near the rib crest, lower momentum fluid packets (u′ < 0)

with higher temperatures (θ′ > 0) are ejected into the duct center, meanwhile higher

momentum fluid packets (u′ > 0) with lower temperatures (θ′ < 0) sweep towards the

ribbed bottom wall. When these fluid packets interact with the recirculation zone,

both 〈u′θ′〉 and 〈v′θ′〉 increase significantly in their magnitudes near the rib crest.

The existence of hot ejection and cold sweep motions make significant contributions

to the sustained levels of negatively- and positively-valued of streamwise and vertical

turbulent heat fluxes near the rib crest, respectively.

The study of spatial two-point cross-correlations of the streamwise velocity and

temperature fluctuations indicates that as the rib height increases, the Reynolds anal-

ogy between turbulent transport of momentum and that of thermal energy (indicated

by u′ and θ′) becomes less applicable. Specifically, close to the rib crest, the value

of Rs
uθ decreases by 16% as the Br value increases from 0.05 to 0.2. Based on the

analysis of the pre-multiplied energy spectra of streamwise velocity and temperature

fluctuations (i.e., fEuu/〈u′u′〉 and fEθθ/〈θ′θ′〉, respectively), it is discovered that the

spectral difference between the non-dimensionalized streamwise velocity and temper-

ature fluctuations increases near the rib crest as the blockage ratio increases. It is also

observed that the range of temporal scales of the most energetic turbulent motions

associated with the temperature fluctuations (with the value of fEθθ/〈θ′θ′〉 being at

least 70% of its peak value) narrows around the rib height as the blockage ratio in-

creases. Based on an analysis the temporal auto-correlations, it is observed that the

temporal scales associated with temperature fluctuations decrease with an increasing

rib height in a region slightly above the rib crest. However, the trend reverses at an
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elevation well above the rib crest.

Finally, it should be indicated that compared to the classical 2-D ribbed boundary-

layer flows developing over flat plates, DNS study of turbulent heat and fluid flows in

a 3-D ribbed duct is still relatively new. In this DNS study, we have investigated the

effects of the blockage ratio (Br = H/D) and pitch-to-height ratio P/H on turbulent

heat transfer, and compared three ribbed duct flow cases with a smooth duct case.

However, there are other important parameters that also influence the velocity and

temperature fields in a ribbed duct, including the duct aspect ratio Ly/Lz, width-

to-pitch ratio of the rib W/P , Reynolds number, and streamwise domain length Lx

(which affects the predictive accuracy of DNS in terms of the captured characteristic

streamwise length scales of the most energetic turbulence structures). The physics of

this type of turbulent heat and fluid flow in a ribbed duct will be better understood

as more DNS studies appear in literature.
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Chapter 5

Direct numerical simulation of

turbulent duct flow with inclined

or V-shaped ribs mounted on one

wall

5.1 Introduction

In this chapter, highly-disturbed turbulent flow with distinct three-dimensional

characteristics in a square duct with inclined or V-shaped ribs mounted on one wall

is investigated using direct numerical simulation. The Reynolds number based on

the bulk mean velocity is fixed at Reb = 7000 for both ribbed duct cases, while the

Reynolds number based on the mean streamwise wall friction velocity of the ribbed

bottom wall is ReτR = 642 and 1294 for the inclined and V-shaped rib cases, respec-

tively. The turbulent flow in either an inclined or a V-shaped rib-roughened duct is

strongly inhomogeneous in all three directions, influenced by not only the rib elements

but also the four duct sidewalls. As a result, although both inclined and V-shaped rib
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elements exert significant disturbances to the flow field, the effects of these two types

of rib elements are different in terms of the distribution of the mean streamwise and

vertical velocities, mean and turbulent secondary flows, the pressure and viscous drag

coefficients, Reynolds stresses, the budget balance of TKE, coherent flow structures,

as well as the spatial and temporal scales of turbulence. In regards to this topic, the

remainder of this paper is organized as follows. In section 5.2, the governing equations,

numerical algorithms, and test cases are described. Also in this section, a detailed

study of the minimal computational domain required for accurately capturing turbu-

lent flow structures in a square duct with either inclined or V-shaped ribs mounted

on one wall is conducted. In section 5.3, the influence of both sidewalls and ribs

on the statistically averaged quantities are analyzed, including the mean flows, the

pressure and viscous drag coefficients, Reynolds stresses, as well as budget balance of

TKE. Furthermore, the TKE production term is decomposed into an “active” and an

“inactive” components, following the proposal of Hinze (1972). This decomposition

further allows us to determine whether the difference in the magnitude of the TKE

production term is caused by large- or small-scale eddies. In section 5.4, the effects of

rib geometry on turbulent flow structures are investigated using multiple tools such

as vortex identifiers, joint probability density functions (JPDF) of streamwise and

vertical velocity fluctuations, two-point auto-correlation functions, and premultiplied

energy spectra. In section 5.5, major conclusions of this research are summarized.

5.2 Test case and numerical procedure

Figure 5.1 shows the geometry of the computational domain and body-fitted mesh

used in our DNS. The streamwise, vertical and spanwise domain sizes for the current

study are set to Lx×Ly×Lz = 64H×10H×10H, respectively. Both cross-sections of

the duct and ribs are square-shaped, with the side lengths H and D (Ly = Lz = D),

respectively. The distance between the ribs (P ) in the streamwise direction is 8.0H,
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(a) Br = 0.05 (b) Br = 0.2

Figure 5.1: Schematic of the 3-D duct with the different rib geometries, coordinates
and grid system. The side length of the square-shaped rib and duct is H and D,
respectively. The origin of the absolute coordinate system [x, y, z] is located at the
centre of the inlet (y-z) plane. Eight rib periods are simulated in this DNS study.
To facilitate the analysis of each rib period, the relative streamwise coordinate x′ is
defined, with its origin located at the windward face of each rib.

and both height and width of the rib are 10% of the duct height (i.e., H = 0.1D).

This same rib height has been also used for the rib-roughened duct flows in the PIV

studies of Wang et al. (2010), Coletti et al. (2013) and Fang et al. (2015), and in

the LES studies of Sewall et al. (2006) and Fang et al. (2017). Periodic boundary

conditions are prescribed for velocity components in the streamwise direction and a

no-slip boundary condition is applied to all solid walls. The mass flow rate is kept

constant, which offers a fixed-valued bulk Reynolds number (Reb) for both rib cases.

This is similar to the study of Fang et al. (2015) and Coletti et al. (2012), who

conducted an experimental study of rib-roughened duct flows based on a constant

bulk Reynolds number Reb. The Reynolds number is Reb = UbD/ν = 7000, where

Ub denotes the average bulk mean velocity over the streamwise direction.

Table 5.1 shows the key parameters involved in our comparative study of inclined

and V-shaped ribbed duct flow test cases. The Reynolds number based on the rib

height is defined as H+ = HuτR/ν. Alternatively, the Reynolds number can be

defined based on the mean streamwise wall friction velocities of the smooth top and
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Table 5.1: Key flow parameters of the inclined and V-shaped test cases.

Case Dv/Dp Dt (m2s−2) H+ ReτR ReτS Reb

inclined 14.6 3.35× 10−2 128 641 288 7000

V-shaped 4.72 1.37× 10−1 259 1294 300 7000

ribbed bottom walls (i.e., ReτS = δuτS/ν and ReτR = δuτR/ν, respectively) in the

central vertical (x-y) plane located at z/δ = 0.0. Here, δ = D/2 is the half side

length of the square duct, which is defined in an analogy to the usual convention

used in the study of a 2-D smooth or ribbed plane-channel flow. For a smooth

wall, the friction velocity (uτS) is directly defined as the mean streamwise velocity

gradient (i.e., uτS = (ν∂〈u〉/∂y)1/2). However, calculation of the friction velocity on

a ribbed wall is complex as it is determined by both viscous and pressure drags as

uτR = (Dp+Dv)
1/2. This method for calculating uτR follows the approach of Leonardi

and Castro (2010) and Ismail et al. (2018) in their DNS study of 2-D ribbed turbulent

channel flows and Mahmoodi-Jezeh and Wang (2020) in their DNS study of turbulent

flow in a 3-D square duct with transverse ribs mounted on one wall. Here, Dp and

Dv represent the pressure and viscous drag forces in the central (x-y) plane, defined

as Dp = 1/(ρLx)
∑N

n=1

∫ H
0

(〈Pwind〉 − 〈Plee〉)dy and Dv = µ/(ρLx)
∫ Lx

0
(∂〈u〉/∂y)w dx,

respectively. In these equations, subscript ‘w’ denotes either the bottom wall or top

of the rib elements, N is the total number of rib elements, 〈·〉 denotes averaging over

time and over the eight rib periods, and Pwind and Plee represent the pressure on

the windward and leeward faces of a rib, respectively. The total drag forcing term

is Dt = Dp + Dv in the central (x-y) plane. Given the 3-D nature of the flow, the

evaluation of the characteristic values of the mean wall friction velocities (uτR and

uτS) and drag forces (Dp and Dv) are done in the central (x-y) plane here, simply

because these values vary in the spanwise direction. Different from a conventional

2-D ribbed flow over a flat plate, the 3-D ribbed duct flows studied here is statistically

inhomogeneous in all three directions.
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From table 5.1, it is clear that a significant fraction of the friction velocity on the

ribbed bottom wall uτR is contributed by pressure drag Dp, as the ratio of the friction

drag Dv to the pressure drag Dp is 14.6% and 4.72% for the inclined and V-shaped

rib cases, respectively. This implies that there exists a significant pressure difference

between the windward and leeward faces of the inclined and V-shaped ribs (as will

be further discussed in section 3.2). Furthermore, it is observed that the value of Dt

in the inclined rib case is one order of magnitude smaller than that in the V-shaped

rib case, resulting in a smaller magnitude of the mean friction velocity uτR on the

ribbed bottom wall.

An in-house computer code was developed using FORTRAN 90/95 to solve the

governing equations, and Message passing interface (MPI) libraries were used to par-

allelize the code. In order to simulate the turbulent fluid flow over non-orthogonal

ribs within a square duct, the continuity and momentum equations in this computer

code are discretized based on a general curvilinear coordinate system (ξ1, ξ2, ξ3), which

take the following form in the context of an incompressible fluid:

1

J

∂
(
βki ui

)
∂ξk

= 0 , (5.1)

∂ui
∂t

+
1

J

∂

∂ξk

(
βkj uiuj

)
= − 1

Jρ

∂
(
βki p
)

∂ξk
− 1

ρ
Πδ1i +

ν

J

∂

∂ξp

(
1

J
βpj β

q
j

∂ui
∂ξq

)
. (5.2)

Here, governing equations are expressed using tensor notations, and the stream-

wise (x), vertical (y), and spanwise (z) coordinates shown in figure 5.1 are denoted

using xi for i = 1, 2, and 3, respectively. In the above equations, p, ν, ρ and δij

represent the pressure, kinematic viscosity, density of the fluid, and Kronecker delta,

respectively. In equation (2.2), Π is a constant pressure gradient that drives the flow,

and βji and J are the cofactor and Jocobian of tensor ∂xi/∂ξj, respectively.

The numerical algorithm is based on a finite-volume method in which a second-

order accuracy is achieved with respect to both spatial and temporal discretizations.

Within each sub-step of the second-order Runge-Kutta scheme, a fractional-step
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method is applied and a pressure correction equation is solved using the parallel

algebraic multigrid solver (AMG). For time advancement, the Courant-Friedrichs-

Lewy (CFL) number is kept approximately at 0.2. A momentum interpolation ap-

proach is used to obtain the cell-face velocity components and based on the velocity

and pressure values in two adjacent control volumes in order to avoid a potential

checkerboard problem of the pressure field. The simulation started with an initial

laminar flow solution superimposed with artificial perturbations to trigger turbu-

lence. The precursor simulation was run for an extended duration of 61 flow-through

times (i.e., 780δ/Ub) until the turbulent flow field becomes fully-developed and sta-

tistically stationary. Then, turbulence statistics were collected for a time period over

approximately 55 flow-through times (i.e., 704δ/Ub). All the simulations were con-

ducted using the WestGrid (Western Canada Research Grid) supercomputers. For

each simulated case, 254 cores were used for performing DNS, and approximately

520,000 CPU hours were spent for solving the velocity field and for collecting the flow

statistics after the flow becomes fully developed and statistically stationary.

5.2.1 Streamwise domain-size study

In order to accurately predict statistical moments of the velocity field, the stream-

wise computational domain size Lx must be held sufficiently large such that all dom-

inant coherent flow structures may fully evolve in the streamwise direction and their

wavelengths can be captured in a numerical simulation. To this purpose, the spatial

two-point correlation function of streamwise velocity fluctuation (Ruu) is calculated

for both ribbed duct cases at two streamwise locations. For a ribbed duct flow,

the streamwise two-point auto-correlation coefficient is defined as (Townsend, 1980;

Volino et al., 2009)

Ruu(xref ,∆x) =
〈u′(xref )u′(xref + ∆x)〉√
〈u′2(xref )〉〈u′2(xref + ∆x)〉

, (5.3)
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(a) xref/h = 29.0 (b) xref/h = 34.0

Figure 5.2: Streamwise profiles of two-point auto-correlations for ribbed duct flows
of two rib cases at different streamwise locations (x/H). The streamwise coordinate
of the reference points are xref/H = 29.0 and 34.0, while the vertical coordinate of
the reference points is fixed at yref/H = −3.8. In terms of the relative streamwise
coordinate, the reference points are located near the leeward and windward of a rib at
x′ref/H = 2.0 and 7.0, respectively. The characteristic streamwise length scale (Lxx)

determined based on the streamwise two-point auto-correlation coefficient.

where u′ represents the streamwise velocity fluctuations, and ∆x denotes the relative

displacement from the reference point located at xref , such that x = xref + ∆x. The

streamwise coordinate of the reference points are xref/H = 29.0 and 34.0, while the

vertical coordinate of the reference points is fixed at yref/H = −3.8. In terms of the

relative streamwise coordinate, the reference points are located near the leeward and

windward sides of a rib at x′ref/H = 2.0 and 7.0, respectively.

Figure 5.2 shows that for both rib cases, the profile of Ruu drops drastically to

almost zero at the two ends. This indicates that the velocity statistics are not affected

by the streamwise domain size, such that a domain size of Lx = 64H is sufficiently

large for capturing the characteristic length scales of dominant turbulence structures

in the streamwise direction. From figure 5.2, it is also evident that the decaying rates

of Ruu in the inclined rib case are slower than those of V-shaped rib case at both

reference points (xref/H = 29.0 and 34.0), indicating that the streamwise length
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(a) xref/h = 29.0 (b) xref/h = 35.0

Figure 5.3: Non-dimensionalized temporal energy spectra of streamwise velocity fluc-
tuations for both inclined and V-shaped rib cases. The comparison of the two ribbed
flow cases is conducted at the elevation that is slightly above the rib crest (with the
spatial reference point being identical to that used in figures 5.2(a) and 5.2(b)).

scales of turbulent eddies of the inclined rib case are larger than those of the V-

shaped rib case. By comparing figure 5.2(a) with 5.2(b), it is apparent that the

decaying rate of Ruu is slightly slower at the reference point near the leeward face of

the rib (xref/H = 29.0) than at the reference point near the windward face of the rib

(xref/H = 34.0). More specifically, the value of the streamwise integral length scale

(i.e., Lxx =
∫∞

0
Ruu(x)dx) decreases by 16.5% and 4.7% as xref/H increases from

29.0 to 34.0 in the inclined and V-shaped rib cases, respectively.

Figure 5.3 shows the temporal energy spectra of the streamwise velocity fluctua-

tions. The spatial reference points considered here are the same as in figure 5.2 for

the calculation of the streamwise two-point auto-correlation coefficient. Figure 5.3

shows that for both inclined and V-shaped rib cases, the difference between the high-

est and lowest frequencies is of the order of four. This implies that the statistical

sampling range is deemed to be sufficient to resolve all significant temporal scales

of the studied turbulent flows. From figure 5.3, it is also observed that the energy

spectrum is strongly influenced by the rib geometry, as the −5/3 slope (which is a
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(a) inclined rib case (b) V-shaped rib case

Figure 5.4: Contours of the ratio between the grid resolution and Kolmogorov length
scale (∆/η) in the central plane at z/H = 0.0 for two rib cases

characteristic of equilibrium turbulence regime, Pope, 2000) is apparently absent near

the leeward and windward faces of the rib (at xref/H = 29.0 and 34.0, respectively).

This indicates the presence of small-scale structures with a high degree of anisotropy

due to the disturbances from the ribs.

5.2.2 Grid resolution

The number of body-fitted grid points used in the current simulations areNx×Nz×

Ny = 1424×168×162 in the streamwise, vertical and spanwise directions, respectively.

The mesh is non-uniform in all three directions, and is refined near all solid surfaces.

To ensure that the local resolution of this grid is sufficient for conducting DNS of

turbulent flow over different rib geometries, the contours of the ratio between the

maximal dimension of a grid cell in all three directions (i.e., ∆ =max(∆x,∆y,∆z))

and Kolmogorov length scale, η = (ν3/ε)0.25, in the central (x-y) plane located at

z/H = 0.0 are plotted in figure 5.4. Here, ε = ν〈a′ija′ij〉 is the TKE dissipation rate,
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with a′ij = ∂u′i/∂xj being the fluctuating velocity gradient tensor. In their DNS

study of turbulent channel flows, Moser and Moin (1987) indicated that the grid size

requires to be of the same order as the Kolmogorov length scale (i.e., O(∆/η) ∼ O(1))

in order to accurately capture the TKE dissipation pertaining to the smallest scales

of turbulence.

Figure 5.4 shows that the maximum magnitude of ∆max/η occurs in the inter-

rib region under the rib height, which is approximately 5.3 and 6.3 for inclined and

V-shaped rib cases, respectively. It is therefore expected that the mesh resolutions

employed suffice to capture small turbulence motions at the Kolmogorov scale level

in the two rib cases. From figure 5.4, it is evident that the appearance of a local

maximum in the contours of ∆max/η is associated with a destruction mechanism of

the upstream flow structures near the rib elements. A detailed explanation of the rib

geometry effects on turbulence structures will be provided in section 5.4. The spatial

resolutions used in this research are comparable to those used by Ismail et al. (2018),

who conducted a DNS study of turbulent flows in a channel with rough-to-smooth

step changes based on a second-order accurate finite-difference computer code.

5.3 Statistics of the velocity field

5.3.1 Mean velocity field

Figure 5.5 shows the time-averaged streamlines superimposed onto the mean

streamwise velocity field in the central vertical (x-y) plane located at z/H = 0.0

for two rib cases. From figure 5.5, it is observed that both the contours of 〈u〉/Ub
and the mean streamlines are influenced significantly by the rib geometries. This

inevitably leads to changes in the spatial distribution of skin friction and pressure

coefficients, which will be discussed separately in this section. From figure 5.5(a), it

is seen that for the inclined rib case, no apparent separation bubbles are present in
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(a) inclined rib case (b) V-shaped rib case

Figure 5.5: Contours of the mean streamwise velocity 〈u〉/Ub superimposed with in-
plane mean streamlines in the central (x-y) plane (located at z/H = 0.0) for two rib
cases.

the near-wall region below the rib height. This phenomenon is mainly attributed to

the occurrence of large vortices unique for the inclined rib flow case, which reduce

the tendency of generating separation bubbles in the leeward side of the rib. These

large vortices will be investigated thoroughly later in section 3.2. These physical fea-

tures are consistent with the observations of Bonhoff et al. (1999) who studied the

effects of inclined ribs on the turbulence statistics in a rectangular duct flow using a

planar PIV. By contrast, for the V-shaped rib case as shown in figure 5.5(b), a large

single separation bubble (marked with “A”) exists in the inter-rib region below the

rib height. From figure 5.5(b), it is observed that due to the downdraft of the mean

flow, the separation bubble behind the rib is squeezed towards the leeward face of the

V-shaped rib, which further leads to the formation of a region of high pressure values.

This well explains the pressure drag difference between the inclined and V-shaped rib

cases shown previously in table 5.1. By comparing figures 5.5(a) with 5.5(b), it is seen

that for the inclined rib case, the highest streamwise momentum level as indicated by

the magnitude of 〈u〉/Ub appears in regions well above the rib crest (for y/H > −3.7),

whereas for the V-shaped rib cases, the maximum value of 〈u〉/Ub occurs near the rib

crest due to an enhanced pressure difference.

Figure 5.6 compares the vertical profiles of the non-dimensionalized mean stream-
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(a) inclined rib case (b) V-shaped rib case

Figure 5.6: Comparison of the non-dimensionalized mean streamwise and vertical
velocity profiles (indicated by the black and blue colors, respectively) at three relative
downstream locations from the rib (for x′/H = 2.0 (dash-dot-dot), 4.5 (dashed) and
7.0 (solid)) in the central plane (located at z/H = 0) for two ribbed duct flows. The
horizontal red dashed line demarcates the rib crest.

wise and vertical velocity profiles (i.e., 〈u〉/Ub and 〈v〉/Ub, respectively) of the two

rib cases along the central vertical lines located at (x′/H, z/H) = (2.0, 0.0), (4.5, 0.0)

and (7.0, 0.0). From figure 5.6, it is evident that the maximum value of 〈u〉/Ub in

both rib cases occurs above the rib height and then decreases monotonically as the

relative downstream distance from the rib (x′/H) increases from 2.0 to 7.0, a pattern

that is remarkably different from those in a canonical 2-D turbulent boundary layer

over a flat plate (Miyake et al., 2001; Leonardi et al., 2004; Ikeda and Durbin, 2007;

Burattini et al., 2008; Volino et al., 2009) or in a transverse rib-roughened duct flow

(Coletti et al., 2012; Labbé, 2013; Mahmoodi-Jezeh and Wang, 2020). As an example,

for the 2-D riblet flow over a flat plate, the magnitude of 〈u〉/Ub reaches its maxi-

mum near the central region of the channel (Miyake et al., 2001; Volino et al., 2009).

The existence of this mean streamwise velocity peak further causes the appearance of

the strong shear layers (as indicated by the magnitude of mean streamwise velocity
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gradient d〈u〉/dy near the rib crest), which is often accompanied by an increase in

the value of the TKE production rate (i.e., −〈u′iu′j〉∂〈ui〉/∂xj). From figure 5.6, it is

also clear that for both ribbed duct cases, the vertical gradient of 〈u〉 is positive in

the region near the ribbed bottom wall (for −5.0 < y/H < −4.0), which indicates

an acceleration of the mean flow in the downstream direction. However, as the duct

centre is approached, the vertical gradient of 〈u〉 becomes negligible and negative in

the inclined and V-shaped rib cases, respectively. In contrast to the monotonic vari-

ation of the mean streamwise velocity 〈u〉/Ub with an increasing relative streamwise

distance x′/H, the mean vertical velocity 〈v〉/Ub exhibits a complex behavior near the

ribbed bottom wall. As demonstrated in figure 5.6, in the region near the rib crest at

x′/H = 2.0, the value of 〈v〉/Ub is positive and negative in the inclined and V-shaped

rib cases, respectively. This further confirms that the mean flow field is sensitive to

the rib geometry. As seen in figure 5.6(a), the magnitude of 〈v〉/Ub in the inclined rib

case remains unchanged as the vertical distance from the rib crest increases. However,

as is clear in figure 5.6(b), the magnitude of 〈v〉/Ub in the V-shaped rib case decreases

as the duct center approaches, a feature that is consistent with the qualitative results

shown previously in figure 5.5(b). From figures 5.5 and 5.6, it is understood that the

magnitude of the mean streamwise velocity gradient |d〈u〉/dy| reaches its maximum

near the rib crest (in the vertical direction) and at the relative streamwise location

x′/H = 2.0 in the two ribbed cases. In view of this, in the remainder of our analysis,

we need to pay a close attention to the flow physics occurring at this special relative

streamwise location x′/H = 2.0.

Figure 5.7 shows the contours of non-dimensionalized mean streamwise vorticity

(defined as 〈ωx〉 = ∂〈w〉/∂y−∂〈v〉/∂z) superimposed with the mean spanwise-vertical

velocity streamlines in the (y-z) plane at the relative streamwise location x′/H = 2.0

for two ribbed duct cases. From figure 5.7, it is seen that the pattern of the sec-

ondary flow is strongly influenced by the rib geometry, causing substantial variations

in momentum transfer in the cross-stream plane. As is evident in figure 5.7(a), for
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(a) inclined rib case (b) V-shaped rib case

Figure 5.7: Contours of non-dimensionalized mean streamwise vorticity (〈ωx〉/(Ub/δ))
superimposed with the mean spanwise-vertical velocity streamlines in the (y-z) plane
at the relative streamwise location x′/H = 2.0 for two ribbed cases.

the inclined rib case, the secondary flow appears as a large streamwise-elongated vor-

tex, which occupies almost the entire cross-section of the square duct. Owing to the

interaction between this large-scale circulation of the fluid with the four boundary

layers developed over the duct walls, high-level positively-valued mean streamwise

vorticity 〈ωx〉 appears near all four sidewalls. From figure 5.7(b), it is clear that the

vortex pattern of the mean flow in the V-shaped rib case is drastically different from

that in the inclined rib case since the secondary flow develops into a pair of large

symmetrical counter-rotating vortices in the cross-stream directions. This figure also

shows that due to the angled ribs in the V-shaped rib case, the mean streamwise

vorticity generated in the near-rib region is convected sideways and upwards by the

secondary flow, interacting with the boundary layers over the two vertical sidewalls,

and creating a region with high values of 〈ωx〉 near the sidewalls above the rib height

(y/H = −2.5).

Figure 5.8 compares the spanwise profiles of non-dimensionalized mean stream-
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(a) inclined rib case (b) V-shaped rib case

Figure 5.8: Spanwise profiles of the non-dimensionalized mean streamwise and vertical
velocity profiles (indicated by the black and blue colors, respectively) along three
elevated lines positioned at y/H = −3.8 (dash-dot-dot), −2.5 (dashed) and 0.0 (solid)
for two ribbed cases. The relative streamwise coordinate of the point is fixed at
x′/H = 2.0.

wise and vertical velocity profiles (i.e., 〈u〉/Ub and 〈v〉/Ub, respectively) along three

elevated lines positioned at (x′/H, y/H) = (2.0,−3.8), (2.0,−2.5), and (2.0, 0.0) of

the two ribbed duct cases. From figure 5.8, it is clear that the profiles of 〈u〉/Ub
and 〈v〉/Ub for the inclined rib case are asymmetrical in the cross-stream directions,

but symmetrical for V-shaped rib case at all three vertical locations. Figure 5.8 also

shows that the presence of the cross-stream secondary flow motion influences signifi-

cantly the spanwise distributions of both 〈u〉/Ub and 〈v〉/Ub. From figure 5.8(a), it is

seen that for the inclined rib case, the spanwise profile of 〈u〉/Ub at all three vertical

locations is skewed to one side of the duct, with its magnitude peaks approximately

at z/H = −1.7. However, for the V-shaped rib case as shown in figure 5.8(b), the

profile of 〈u〉/Ub peaks not only at the duct center but also near the two vertical

sidewalls (located at z/H = ±5.0). By comparing figure 5.8(a) with 5.8(b), it is

apparent that the highest value of 〈u〉/Ub occurs at y/H = −2.5 in the inclined rib
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case, and at y/H = −3.8 in the V-shaped rib case, indicating that the highest level

of streamwise momentum occurs in the lower half duct (for y/H < 0.0) in both rib

cases. This observation is consistent with the previous analysis of figure 5.5 and with

the observations of Gao and Sundén (2004b) and Fang et al. (2015), who conducted

PIV experiments of ribbed duct flows with a similar geometrical setup.

For the mean vertical flow motion, figure 5.8(a) shows that the profile of 〈v〉/Ub in

the inclined rib case manifests two distinct peaks, one positively- and one negatively-

valued, located at z/H = −5.0 and 5.0, respectively. This clearly indicates upward-

and downward-moving of the flow near the sidewalls of the duct, which is a direct

consequence of the appearance of the mean secondary flows in the cross-stream plane

(see, figure 5.7(a)). However, as shown in figure 5.8(b), the magnitude of 〈v〉/Ub in the

V-shaped rib case peaks close to the two vertical sidewalls of the duct. Furthermore,

the peak magnitude 〈v〉/Ub decreases as the distance from the sidewalls increases.

This trend reflects the fact that the mean flow near the sidewalls is pushed upwards

(corresponding to the positive sign of 〈v〉/Ub) and then convected downwards near

the central region (corresponding to the negative sign of 〈v〉/Ub). From figure 5.8, it

is observed that for both rib cases, the secondary flow effect on the mean flow field

is the largest at y/H = −2.5, hence, our study needs to be refined to investigate

the influence of secondary flow on the major characteristics of the flow field at this

specific vertical position later in subsection 5.3.3.

5.3.2 Viscous and pressure drags

The effects of rib geometry on the mean flow field can be further investigated

through an analysis of the skin friction and pressure coefficients, defined as Cf =

τw/(ρU
2
b /2) and Cp = 〈p〉/(ρU2

b / 2), respectively, where τw represents the local total

wall friction stress calculated as τw = µ[(∂〈u〉/∂y)2+(∂〈w〉/∂y)2]
1/2
w . Figure 5.9 shows

the distributions of the skin friction Cf on the bottom wall located at y/H = −0.5

for two ribbed duct cases. To explain the influence of the mean flow structures
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(a) inclined rib case (b) V-shaped rib case

Figure 5.9: Contours of the skin friction coefficient Cf displayed in the (x-z) plane
on the bottom wall located at y/H = −5.0 for two ribbed cases. The presentation of
the contour plots of Cf is superimposed with the mean velocity streamlines.

on the local Cf value, the mean velocity streamlines are also superimposed. From

figure 5.9, it is evident that owing to the presence of ribs and strong secondary flows,

the magnitude of Cf varies considerably along the cross-stream directions, indicating

that this 3-D rib-roughened duct flow is remarkably inhomogeneous in the spanwise

direction. As seen in figure 5.9(a), the highest value of Cf in the inclined rib case

appears at the corner on the leeward side of the upstream ribs near the vertical

sidewall of the duct (at z/H = 5.0). This is due to the fact that the secondary

flow induces a strong downwash of mean flows towards the ribbed bottom wall (see

figures 5.7(a) and 5.8(a)), further resulting in a large magnitude of the streamwise

velocity gradient in the vertical direction. By contrast, in the V-shaped rib case as

shown in figure 5.9(b), the highest friction coefficient values appear near the leeward

face of the rib elements in the central region (for −2.5 < z/H < 2.5). This peak of Cf

coincides exactly with the core of the vortex A exhibited previously in figure 5.5(b).

Furthermore, it is apparent that both streamlines and vortex A (featuring high values

of Cf ) evolve along the V-shaped ribs and then become aligned with the main stream

in regions near the sidewalls.

Figure 5.10 compares the spatial distributions of pressure coefficient Cp of the
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(a) inclined rib case (b) V-shaped rib case

Figure 5.10: Contours of the pressure coefficient Cp displayed in the (x-z) plane on
the bottom wall located at y/H = −5.0 for two ribbed cases. The presentation of the
contour plots of Cp is superimposed with the mean velocity streamlines.

two ribbed duct cases over the ribbed bottom wall located at y/H = −5.0. From

figures 5.10(a) and 5.10(b), it is evident that similar to the skin friction coefficient,

both the pressure coefficient level and its spatial distribution are sensitive to the rib

geometry. Figure 5.10(a) clearly demonstrates the spatial evolution of the streamlines

of the mean flow and shows how the flow turns as it passes over the inclined ribs. First,

flow intensively interacts with the windward face of the upstream rib near the vertical

sidewall of the duct (at z/H = 5.0), causing the flow to become stagnant and create a

high pressure region (marked with “I”), then the flow in the inter-rib region is driven

toward the other sidewall (at z/H = −5.0) and impinges onto the windward side of

the downstream rib, which results in the generation of the second and third high-

pressure regions (marked with “II” and “III”, respectively). From figure 5.10(b), it is

observed that the mean streamline topology in the V-shaped rib case is substantially

different from that of the inclined rib case. Figure 5.10(b) shows that the magnitude

of Cp reaches its maximum near the windward face of the V-shaped ribs (marked

with “I”) and near the reattachment point (marked with “II”). Furthermore, owing

to the angled ribs in the V-shaped rib case, the mean streamlines diverge from the

duct midspan towards the sidewalls below the rib height and impinge on the two
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vertical sidewalls of the duct, leading to the formation of a region with high values

of Cp (marked with “III”). By comparing figures 5.9 with 5.10, it is concluded that

the pressure difference between the windward and leeward faces of the ribs greatly

contribute to increasing the total drag (see table 5.1). Furthermore, if we compare

the mean flow features of the full inclined ribbed duct shown in figure 5.10(a) with

that of one-half the V-shaped duct (for z/H = −5.0) shown in figure 5.10(b), certain

similarity can be observed in terms of the streamline and Cp contour patterns. More

specifically, the mean flow pattern exhibited in the V-shaped ribbed duct is almost a

pair of mirror reflections of that of the inclined rib case. The same can be concluded

by comparing figures 5.9(a) and 5.9(b) with respect to the spatial distribution of the

Cf values.

5.3.3 Reynolds stress distributions

Figure 5.11 compares the contours of the non-dimensionalized mean Reynolds

normal stress components (〈u′u′〉/U2
b , 〈v′v′〉/U2

b and 〈w′w′〉/U2
b ) in the central (x-

y) plane (located at z/H = 0.0) for two rib cases. From figure 5.11(a), it is seen

that for the inclined rib case, the magnitude of the streamwise Reynolds normal

stress 〈u′u′〉 peaks in the neighborhood of the rib crest and then decreases as the

downstream distance from the leading edge of the rib (x′/H = 0.0) increases. This

enhancement in the magnitude of 〈u′u′〉 immediately downstream of the rib crest is

a result of the occurrence of the boundary-layer separation near the leading edge of

the rib, which also produces strong spanwise vortex shedding. However, as shown in

figure 5.11(b), the primary peak of 〈u′u′〉 in the V-shaped case occurs in the inter-

rib region (below the rib height) in the lee of the ribs. This is due to the negative

values of 〈v〉/Ub induced by the secondary flows, which results in a downwash of high

momentum flow from duct center to the ribbed wall (see figures 5.5(b), 5.6(b) and

5.7(b)). By comparing figure 5.11(c) with 5.11(d), it is observed that the highest

levels of the vertical Reynolds normal stress 〈v′v′〉 in the inclined rib case are mainly
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Figure 5.11: Contours of non-dimensionalized Reynolds normal stress components
(〈u′u′〉/U2

b , 〈v′v′〉/U2
b and 〈w′w′〉/U2

b ) in the central (x-y) plane for the inclined rib
case (a, c and e) and V-shaped rib case (b, d and f). To facilitate a clear visual
comparison, contour values less than 20% of the peak value of Reynolds normal
stresses are clipped off. Cross symbol × marks the local peak positions of Reynolds
normal stresses.

concentrated around the rib height; however, in the V-shaped rib case, large values

of 〈v′v′〉 are primarily confined within a small region below the rib height. As is

seen clearly in figure 5.11(e), in the inclined rib case, the contours of the spanwise

Reynolds normal stress 〈w′w′〉 exhibit two distinct peaks, one in the near-wall region

below the rib height and one near the rib height. The occurrence of these two peaks

is a unique feature of the inclined rib-roughened duct flow. By contrast, in the V-

shaped rib case, the maximum value of 〈w′w′〉 is only observed within the cavity (for

2.0 < x′/H < 4.0), which nearly coincides with those of 〈u′u′〉 and 〈v′v′〉 shown in

figures 5.11(b) and 5.11(d), respectively.
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(a) inclined rib case (b) V-shaped rib case

(c) inclined rib case (d) V-shaped rib case

(e) inclined rib case (f) V-shaped rib case

Figure 5.12: Comparison of the non-dimensionalized Reynolds normal stress compo-
nents (〈u′u′〉/U2

b , 〈v′v′〉/U2
b and 〈w′w′〉/U2

b ) at three relative streamwise locations (for
x′/H = 2.0, 4.5 and 7.0) in the central vertical plane (located at z/H = 0) for the
inclined rib case (a, c and e) and V-shaped rib case (b, d and f). The horizontal
red dashed line demarcates the rib crest. In order to show clearly the profiles of the
Reynolds stresses below the rib crest, they are partially enlarged and replotted in
inset graphs in panels (b), (d) and (e).
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To further investigate the effects of rib geometry on the velocity field, fig-

ure 5.12 compares the vertical profiles of non-dimensionalized Reynolds normal

stresses (〈u′u′〉/U2
b , 〈v′v′〉/U2

b and 〈w′w′〉/U2
b ) of two rib cases along the central vertical

lines located at (x′/H, z/H) = (2.0, 0.0), (4.5, 0.0) and (7.0, 0.0). From figure 5.12, it

is observed that for both ribbed duct cases, the highest turbulent levels (as indicated

by the magnitudes of Reynolds normal stresses) occur around the rib height at the

relative streamwise location x′/H = 2.0, where the shear strength is the largest (see

figure 5.6). The shear layer generated over the rib crest separates immediately after

of the rib, shedding downstream energetically and causing an enhancement in the

variance of velocity fluctuations. Furthermore, it is observed that for both rib cases,

the peak value of all the three Reynolds stress components reduces monotonically

near the rib crest as x′/H increases from 2.0 to 7.0. From figure 5.12, it is clear that

owing to the disturbances from the ribs, the magnitudes of Reynolds normal stresses

in both inclined and V-shaped rib cases are significantly amplified on the ribbed bot-

tom wall side than on the smooth top wall side. Also, it is apparent that although

there exists a drastic difference in the patterns of the Reynolds normal stresses pro-

files below the rib height (y/H < −4.0) between these two ribbed duct cases, they all

collapse to a single profile above the rib height (y/H > −4.0). From figures 5.12(a),

5.12(c) and 5.12(e), it is evident that for the inclined rib case, the magnitudes of

normal components reduce considerably as the duct center is approached, especially

on the ribbed side. By contrast, for the V-shaped rib case as shown in figures 5.12(b),

5.12(d) and 5.12(f), the magnitudes of normal components increase and peak near

the duct center, contributing to a local enhancement of TKE.

Figure 5.13 compares the vertical profiles of Reynolds shear stress (〈u′v′〉/U2
b )

along the central vertical lines located at (x′/H, z/H) = (2.0, 0.0), (4.5, 0.0) and (7.0,

0.0) for the two ribbed duct flow cases. From figure 5.13, it is seen that similar to

the trend of 〈u′u′〉 shown previously in figures 5.12(a) and 5.12(b) (for inclined and

V-shaped rib cases, respectively), the Reynolds shear stress component 〈u′v′〉 peaks
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(a) inclined rib case (b) V-shaped rib case

Figure 5.13: Profiles of the non-dimensionalized Reynolds shear stress (〈u′v′〉/U2
b )

at three relative streamwise locations (for x′/H = 2.0, 4.5 and 7.0) in the central
vertical plane (located at z/H = 0) for two ribbed cases. The horizontal red dashed
line demarcates the rib crest.

around the rib height for both rib cases, with the magnitude decreasing progressively

as the relative streamwise distance x′/H increases. Since the Reynolds shear stress

is a reflection of the sweeping or ejection events, it implies that the strength of both

events is significant near the rib crest but becomes trivial as x′/H increases from 2.0

to 7.0. Later in section 5.4, we will refine our study by examining the rib geometry

effects on turbulent motions through a quadrant analysis of the ejection and sweep

events. From figure 5.13(a), it is clear that as the duct centre is approached, the

magnitude of 〈u′v′〉 gradually increases and a positive peak occurs in its profile at

y/H = 2.3 in the inclined rib case. By contrast, for the V-shaped rib case as seen

from figure 5.13(b), the magnitude of 〈u′v′〉 in all three streamwise locations becomes

trivial in the central region of the duct. In fact, the profile of 〈u′v′〉 in the V-shaped

rib case becomes almost a vertical straight line with a small magnitude in the region

−4.0 < y/H < 4.0.

Figure 5.14 compares the spanwise profiles of the Reynolds normal (〈u′u′〉,

〈v′v′〉 and 〈w′w′〉) and shear (〈u′v′〉) stresses along an elevated line positioned at
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(a) inclined rib case (b) V-shaped rib case

Figure 5.14: Spanwise profiles of Reynolds normal (〈u′u′〉, 〈v′v′〉, and 〈w′w′〉) and
shear (〈u′v′〉) stresses along an elevated line positioned at (x′/H, y/H) = (2.0,−2.5)
for two ribbed cases. In panel (b), for the V-shaped rib-roughened duct, only one-half
the duct is plotted given the vertical symmetry of the profiles (the horizontal dashed
line on the top of the domain demarcates the symmetric center).

(x′/H, y/H) = (2.0,−2.5) for the two rib cases. From figure 5.14, it is evident that

for both inclined and V-shaped rib cases, the highest Reynolds stress levels appear

near the vertical sidewalls and decay in magnitude as the duct center is approached.

This physical feature is mainly attributed to the difference of the rib geometries

and associated secondary flow patterns in the cross-stream plane shown previously

in figure 5.7. Figure 5.14(a) shows that for the inclined rib case, the magnitudes of

the three normal components are comparable in value near the sidewall (located at

z/H = −5.0), indicating that turbulence tends to be locally isotropic in this region.

However, the three Reynolds normal stress magnitudes are significantly different near

the other sidewall (located atat z/H = 5.0), with the magnitude of 〈u′u′〉 being ap-

proximately 1.9 and 8.7 times larger than those of 〈v′v′〉 and 〈w′w′〉, respectively.

This implies that 〈u′u′〉 makes the primary contribution to the TKE among the three

Reynolds normal stress components and also indicates the anisotropic states of tur-

bulence in this region (near the side wall located at z/H = 5.0). Given spanwise

symmetry of the mean flow field in the V-shaped ribbed duct case, only one-half of
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the Reynolds stress profiles are displayed in figure 5.14(b). From figure 5.14(b), it is

seen that near the two vertical sidewalls, the magnitude of 〈w′w′〉 is larger than those

of 〈u′u′〉 and 〈v′v′〉 in the V-shaped rib case. This phenomenon reflects the fact that

TKE is mostly contributed by 〈w′w′〉 (instead of 〈u′u′〉 and 〈v′v′〉), a physical feature

that is drastically different from that of an inclined ribbed duct flow.

5.3.4 TKE budget analysis near the rib-roughened wall

To further elucidate the effects of the rib geometry on the turbulence stresses

discussed in subsection 5.3.3, the turbulent transport of TKE (defined as k = 〈u′iu′i〉/2)

can be studied, which reads as follows:

0 = Πk + Tk +Dk + Pk + εk + Ck . (5.4)

Here, Πk, Tk, Dk, Pk, εk and Ck denote the pressure diffusion term, turbulence diffusion

term, viscous diffusion term, turbulent production term, dissipation term, and mean

convection term, defined as

Πk = −1

ρ

∂〈p′u′j〉
∂xj

, Tk = −1

2

∂〈u′iu′iu′j〉
∂xj

, Dk = ν
∂2k

∂x2
j

,

Pk = −〈u′iu′j〉
∂〈ui〉
∂xj

, εk = −ν〈∂u
′
i

∂xj

∂u′i
∂xj
〉, Ck = −〈uj〉

∂k

∂xj
,

respectively. Figure 5.15 shows the profiles of TKE budget terms along the central

vertical line positioned at (x′/H, z/H) = (2.0, 0.0) for the two rib cases. In order

to clearly demonstrate the profiles of the budget terms around the rib crest, they

are plotted partially in figure 5.15. From the figure, it is clear that the turbulence

energy transfer in the vertical direction is sensitive to the rib geometry, as the TKE

budgets of these two rib cases are not only different in values but also dissimilar in

patterns. As shown in figure 5.15(a), for the inclined rib case, the budget balance

of TKE in the inter-rib region (for −5.0 < y/H < −4.5) is dominated by viscous

diffusion Dk and turbulence diffusion Tk as the source terms; and by convection Ck,
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(a) inclined rib case (b) V-shaped rib case

Figure 5.15: Vertical profiles of the budget terms of the TKE transport equation
along the central vertical line positioned at (x′/H, z/H) = (2.0, 0.0) for both ribbed
cases. The budget terms are non-dimensionalized using the duct half-height, δ, and
bulk velocity, Ub. In order to show clearly the profiles of the budget terms around the
rib crest, they are plotted partially in panels (a) and (b). The vertical dash-dotted
line demarcates the position of the rib crest.

production Pk and dissipation εk as the sink terms. Furthermore, it is observed from

figure 5.15(a) that the turbulence diffusion term Tk changes its sign four times near

the ribbed bottom wall (for −5.0 < y/H < −3.0), indicating that this term can be

either a source or a sink in the inclined ribbed duct flow case. The appearance of

large positively-valued turbulent diffusion term Tk below and above the rib height

(at y/H = −4.6 and −3.5, respectively) clearly indicates that highly-turbulent fluid

is transported away from these regions. From figure 5.15(a), it is also apparent that

owing to the disturbances from the ribs, a dominant TKE source (as indicated by

a distinct peak of turbulent production term Pk) appears above the rib crest, which

is primarily balanced by the four sink terms (i.e., by turbulence diffusion, dissipa-

tion, convection, and viscous diffusion). This peak of Pk coincides with that in the

streamwise normal stress 〈u′u′〉 shown previously in figure 5.12(a). By contrast, as

shown in figure 5.15(b), in the V-shaped rib case, all dominant TKE budget terms

peak in a region below the rib height. This feature is fully consistent with the quan-
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titative results shown in figures 5.12(b), 5.12(d), and 5.12(f), in the sense that high

levels of Reynolds normal stress components are also mainly concentrated in the re-

gion slightly below the rib crest. In the region very close to the ribbed bottom wall

(for −5.0 < y/H < −4.7), the TKE budget in the V-shaped rib case is primarily

balanced between the viscous diffusion and dissipation terms (i.e., Dk and εk), as

the source and sink terms, respectively. However, as the distance from the bottom

wall increases in the vertical direction (for −4.4 < y/H < −4.0), the magnitudes

of Dk and Pk become increasingly dominant TKE sources and reach their maxima

just below the rib height, balanced by the dissipation term εk, convection term Ck

and turbulent diffusion term Tk. From figure 5.15, it is apparent that among all the

six TKE budget terms, Πk makes the smallest contribution to the TKE balance in

both ribbed cases. It can be therefore concluded that near the rib elements, the five

calculated terms in equation 5.4 contribute significantly to the TKE balance and the

production and dissipation are not the only dominant terms.

It is well established (Wang et al., 2007; Coletti et al., 2012; Mahmoodi-Jezeh and

Wang, 2020) that the presence of ribs in a 3-D square duct imposes remarkable changes

to turbulence length scales compared to those of a conventional 2-D ribbed boundary-

layer flow over a flat plate. This inevitably impacts the mechanism underlying the

TKE production rate. In order to determine whether the difference in the magnitude

of TKE production term is caused by large- or the small-scale eddies, the method of

Hinze (1972) are followed through an analysis of active, −εijk〈u′jω′k〉, and inactive,

(∂〈u′ju′j〉/∂xi)/2, modes of Reynolds shear stresses ∂〈u′iu′j〉/∂xi. The active motion is

rotational and causes shear stresses, with positive values representing energy attained

from small-scale eddies and negative values representing energy being lost to small-

scale eddies (Hinze, 1972). However, inactive motion is irrotational and acts through

the pressure field, which mainly pertains to large-scale structures from a spectral

analysis point of view (Townsend, 1961; Hinze, 1972). Furthermore, inactive motion

does not directly create shear stresses for a flow that is homogeneously turbulent in the
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(a) inclined rib case (b) V-shaped rib case

Figure 5.16: Vertical profiles of the TKE production Pk, and its active (Pka) and
inactive (Pki) components along the central vertical line positioned at (x′/H, z/H) =
(2.0, 0.0) for both ribbed cases. These budget terms are non-dimensionalized using
the duct half-height, δ, and bulk velocity, Ub. In order to show clearly the profiles of
the budget terms around the rib crest, they are plotted partially in panels (a) and
(b). The vertical dash-dotted line demarcates the position of the rib crest.

streamwise direction (Bradshaw, 1967; Orlandi et al., 2006). However, in the present

study, the flow is strongly inhomogeneous in all three directions due to the presence of

ribs and peripheral confinement of the duct. The physics of the turbulent flow in both

ribbed duct cases can be better understood by examining the effects of the active and

inactive turbulent motions on the TKE production rate. On the other side, it would

be interesting to investigate the impact of rib geometry on both the rotational and

irrotational turbulent motions. The TKE production rate Pk = −〈u′iu′j〉∂〈ui〉/∂xj)

can be decomposed into an active production part (defined as Pka = εijk〈ui〉〈u′jω′k〉)

and an inactive production part (defined as Pki = −〈u′ju′j〉/2 · ∂〈ui〉/∂xi), viz. Pk =

Pka + Pki, or,

Pk = εijk〈ui〉〈u′jω′k〉 −
∂〈ui〉
∂xi

〈u′ju′j〉
2

. (5.5)

Figure 5.16 compares the vertical profile of the TKE production rate Pk with

those of the active and inactive production components (Pka and Pki, respectively)

in the central (x-y) plane located at (x′/H, z/H) = (2.0, 0.0). From figure 5.16(a),
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it is seen that in the region below the inclined rib height (for y/H < −4.0), the

magnitude of the active term Pka becomes insignificant, while the magnitude of the

inactive term Pki reaches its minimum. In fact, the negatively-valued peak of Pki

occurs at y/H = −4.7, directly resulting in a local minimum in the profile of Pk in

the same region. From figure 5.16(a), it is also observed that the active term Pki

peaks in the region slightly above the rib crest at y/H = −3.9, which signifies the

transfer of TKE from small- to large-scales, leading to an enhanced magnitude of

Pk. However, as the vertical distance from the rib crest increases, TKE starts to be

drained from large- to small-scales of turbulence. Inevitably, the magnitude of the

active term Pka switches its sign from being positive to being negative, and reaches

its minimum (or, negatively-valued peak) at y/H = −3.6. Thus, at this elevation

of y/H = −3.6, the main source of TKE production term is the inactive term Pki.

The inactive term Pki is associated with swirling motions caused by the attached

eddies of large sizes (Townsend, 1961). Specifically, for the V-shaped rib case, it is

evident from figure 5.16(b) that in the region just below the rib height, both the TKE

production term Pk and its inactive component Pki are maximized, whereas its active

component Pka reaches a minimum (or, a negatively-valued peak). This phenomenon

can be explained by the fact that highly energetic shedding vortices generated from

the top surface of the sharp-angled V-shaped ribs induce a strong shear layer (see

figure 5.6(b) and figures 5.12(b), 5.12(d) and 5.12(f)), leading to an augmentation

in both magnitudes of the inactive and TKE production rates. Concurrently, the

interaction of turbulent structures with the V-shaped ribs cause turbulent structures

to break up, leading to a loss of energy and formation of small-scale structures, as

portrayed by a negatively-valued peak of the active component Pki in figure 5.16(b).
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(a) inclined rib case (b) V-shaped rib case

Figure 5.17: Isosurfaces of the swirling strength λci around ribs superimposed with
background contours of the instantaneous turbulent kinetic energy (i.e., kt = (u′2 +
v′2 + w′2)/2) in the (x-z) plane located at y/H = −5.0 for two ribbed cases. The
iso-surfaces of swirling strength are colored using non-dimensionalized elevation y/H.

5.4 Effects of rib geometry on turbulence struc-

tures

To better understand the effects of rib geometry on near-wall turbulence struc-

tures, figure 5.17 demonstrates the iso-surfaces of the swirling strength, λci (Zhou

et al., 1999), superimposed onto the contours of the ‘instantaneous TKE’ (defined as

kt = (u′2 + v′2 + w′2)/2) in the (x-z) plane located at y/H = −5.0 for the two rib

cases. This figure vividly shows the effects of the rib geometry on the vortical struc-

tures in the inclined and V-shaped ribbed duct flow cases. From figure 5.17(a), it is

apparent that due to the inclination angle of the ribs, the energetic vortical structures

are deflected towards only one side of the duct (located at z/H = −5.0), where the

secondary flow motion pushes the fluid to move upward as previously shown in fig-

ure 5.7(a). The interactions between these turbulent eddies with the boundary layer

developed over the sidewall are the underlying physical causes of the appearance of a

local maximum in the profiles of Reynolds stresses and TKE production rate. How-

ever, as shown in figure 5.17(b), the turbulence structures in the V-shaped rib case
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(a) inclined rib case (b) V-shaped rib case

Figure 5.18: Iso-surface of the swirling strength λci in the cross-stream (y-z) plane
at the relative streamwise location x′/H = 2.0 superimposed onto the background
instantaneous turbulent kinetic energy kt (shown using grey-scaled contours) for
two ribbed cases. The iso-surfaces of swirling strength are colored using non-
dimensionalized elevation y/H.

divert from the duct center sideways towards both sidewalls (located at z/H = ±5.0);

and as a result, a significant fraction of these vortical structures are concentrated near

the two vertical sidewalls. From figures 5.17(a) and 5.17(b), it is seen that in com-

parison with the inclined rib case, V-shaped rib case induces stronger disturbances

to the velocity field as turbulence structures apparently become more broken down,

and as a result, more vortical structures are generated near the ribbed bottom wall in

the V-shaped ribbed duct flow. This physical feature is consistent with the previous

analysis of figure 5.2, in the sense that the length scales of turbulent eddies of the

V-shaped rib case are smaller than those of the inclined rib case.

Figure 5.18 shows the contours of the non-dimensionalized instantaneous TKE

kt/U
2
b superimposed with the iso-surfaces of the swirling strength λci in the cross-

stream (y-z) plane located at x′/H = 2.0 downstream of the rib. As is clear in

figure 5.18, turbulent eddies induced by rib elements are influenced significantly by the
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secondary flow in the cross-stream directions. From figure 5.18(a), it is seen that in the

inclined rib case, the energetic vortical structures around the rib elements recirculate

within the closed square cross-section of the duct due to the presence of secondary

flow, which further facilitates the distribution of turbulence energy in the cross-stream

directions. As is evident in figure 5.18(b), for the V-shaped rib case, turbulent eddies

are mostly confined near the ribbed bottom wall and the two vertical sidewalls of

the duct, a pattern that is consistent with the spatial distributions of the swirling

strength iso-surfaces shown in figure 5.17(b). Clearly, energetic turbulent eddies in

the duct center are carried by the cross-stream secondary flow motion towards each

vertical sidewall (for the mean secondary flow pattern, see figure 5.7(b)), giving rise

to a high local Reynolds stress value (see figure 5.14).

To further understand the effects of rib geometry on the length scale and in-

clination angle (α) of turbulence structures near the ribbed bottom wall, the 2-D

spatial two-point auto-correlation function of streamwise velocity fluctuations can be

investigated, which is defined as

Rij(x
′
ref , yref , x

′, y) =
〈u′i(x′, y)u′j(x

′
ref , yref )〉√

〈u′2i (x′, y)〉〈u′2j (x′ref , yref )〉
, (5.6)

where (x′ref , yref ) are the coordinates of the reference point. The comparison of

these two ribbed duct cases is conducted at three reference points with different

relative streamwise coordinates (for x′ref/H = 2.0, 4.5 and 7.0) and a common vertical

coordinate fixed at yref/H = −3.8. This particular vertical position is chosen to

sensitize the vortex shedding events over the rib crest and is due to the fact that the

shear effect is the largest in this region (see, figure 5.6). As is evident in figure 5.19,

for both rib cases, there exists a small angle α between the direction of stretched

isopleths and the streamwise direction at all three reference points. This angle α

is mainly a reflection of the inclination angle of hairpin packets near the rib crest

(Christensen and Adrian, 2001; Adrian, 2007; Volino et al., 2009). Furthermore, it

is observed that near the leeward face of the rib (at x′ref/H = 2.0), the value of α
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Figure 5.19: Isopleths of two-point auto-correlation Ruu with respect to the reference
points at (x′ref/H, yref/H) = (2.0,−3.8), (4.5,−3.8) and (7.0,−3.8) in the central
vertical plane located at z/H = 0.0. The isopleth value ranges from 0.5 to 1.0,
with the outermost and innermost isopleths corresponding to Ruu = 0.5 and 1.0,
respectively. The increment between two adjacent isopleths is 0.1 for the two rib
cases. (a) inclined rib case and (b) V-shaped rib case.

is smaller than that near the windward face of the rib (at x′ref/H = 7.0) in both

ribbed duct cases. By comparing figure 5.19(a) with 5.19(b), it is clear that near the

leeward and windward faces of the ribs (at x′ref/H = 2.0 and 7.0. respectively), the

inclination angle α of the V-shaped rib case is greater than that of the inclined rib

case, leading to an increase in the communication between the flow near the ribbed

bottom wall and that near the smooth top wall. Furthermore, in comparison with the

inclined rib case, the characteristic length of the streamwise correlation (as indicated

by the length of the outermost isopleth of Ruu) in the V-shaped rib cases is larger

than that in the inclined rib case at all the three reference points. This physical

feature is inconsistent with the observation of figure 5.2 in the sense that the value

of the integral length scale Lxx in the inclined rib case is larger than that in the

V-shaped rib case. As is evident in figure 5.19(b), with a reference point between two

adjacent ribs (x′ref/H, yref/H) = (4.5,−3.8), the value of the inclination angle in the

V-shaped rib case becomes negative (i.e., α = −8.1◦), indicating a downwash of the
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Figure 5.20: Contours of JPDF of u′/urms and v′/vrms at three different relative
streamwise locations (x′ref/H = 2.0, 4.0 and 7.0) in the central vertical plane located
at z/H = 0.0. The comparison of the two ribbed flow cases is conducted at the
elevation that is slightly above the rib crest (with the reference points being identical
to those used in figures 5.19). Contours vary with incremental JPDF value of 0.0035.
Panels (a), (b) and (c) correspond to the inclined rib case, and panels (d), (e) and (f)
correspond to the V-shaped rib case. In panels (a) and (d), the relative streamwise
coordinate of the reference point is x′ref/H = 2.0, in panels (b) and (e), the relative
streamwise coordinate of the reference point is x′ref/H = 4.5, and in panels (c) and

(f), the relative streamwise coordinate of the reference point is x′ref/H = 7.0.

mean flow into the inter-rib region (below the rib height) by the secondary flow (see,

figures 5.5(b) and 5.6(b)).

Figure 5.20 compares the distributions of the JPDF of u′/u and v′/v downstream

of the rib crest (at the same reference points as in figure 5.19) for both rib cases.

From figures 5.20(a)-5.20(c), it is clear that in the inclined rib case, the isopleths

of JPDF indicate a tendency towards the second and fourth quadrant (Q2 and Q4)

events (Adrian, 2007). This phenomenon implies that the ejection (featuring u′ < 0

and v′ > 0, associated with Q2) and sweep (featuring u′ > 0 and v′ < 0, associ-
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ated with Q4) motions make the most contribution to the Reynolds shear stress,

resulting in a negatively valued 〈u′v′〉 in the region immediately above the rib height

(see, figure 5.13(a)). The preference for the diagonal direction (indicated using a red

dashed-dotted line) at the 1350 angle in the inclined rib case (in figures 5.20(a)-(c)) in-

dicates that there exists a strong correlation between streamwise and vertical velocity

fluctuations at all three reference points. By contrast, as shown in figures 5.20(d)-(f),

the isopleths of JPDF in the V-shaped rib case show an isotropic distribution, which

signifies that there is no apparent correlation between the streamwise and vertical

velocity fluctuations in the region around the rib height. This observation also sug-

gests an absence of vortices near the rib crest as they are commonly associated with

the occurrence of multiple Q2 and Q4 events (Christensen and Adrian, 2001; Adrian,

2007). This physical feature is consistent with the previous analysis of figure 5.13(b)

in the sense that the Reynolds shear stress in the V-shaped rib case is suppressed in

the region above the rib crest. This observation is also consistent with the findings of

Fang et al. (2015) who conducted a PIV experiment to investigate the effects of the

V-shaped ribs on turbulent flow and structures in a square duct.

To refine our study of the effects of rib geometry on the temporal scales of turbu-

lent flow structures, premultiplied energy spectra of streamwise velocity fluctuations

(i.e., fEuu/〈u′u′〉) are plotted in the figure 5.21 at two different relative streamwise

locations for both rib cases. The relative streamwise coordinates of the two reference

points are x′ref/H = 2.0 and 7.0, while the vertical coordinate of the reference point

is fixed at yref/H = −3.8. From figure 5.21, it is seen that in the lee of the rib (at

x′ref/H = 2.0), the temporal scale of turbulence structures is larger than that in the

windward of the rib (at x′ref/H = 7.0) in both ribbed duct cases. More specifically,

the mode of fEuu/〈u′u′〉 (as indicated by the vertical dashed lines “a1” and “a2” in

figure 5.21) decreases by 15% and 9% as x′/H increases from 2.0 to 7.0 in the inclined

and V-shaped ribbed duct cases, respectively. By comparing figures 5.2 and 5.21, it

is understood that both spatial and temporal scales of turbulence at x′ref/H = 2.0
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(a) inclined rib case (b) V-shaped rib case

Figure 5.21: Comparison of the premultiplied temporal energy spectra, fEuu/〈u′u′〉,
of streamwise velocity fluctuations for the two ribbed cases. The relative streamwise
coordinate of the reference points are x′ref/H = 2.0 and 7.0, while the vertical co-
ordinate of the reference point is fixed at yref/H = −3.8. The red vertical dashed
lines “a1” and “a2” demarcate the modes of the premultiplied energy spectra at
x′ref/H = 2.0 and 7.0, respectively.

are larger than those at x′ref/H = 7.0 for both ribbed duct cases. By comparing

figure 5.21(a) with 5.21(b), it is apparent that the temporal scale of turbulent eddies

in the inclined rib case is slightly larger than that in the V-shaped rib case. For ex-

ample, at a reference point near the leeward face of a rib (at x′ref/H = 2.0), the mode

of fEii/〈u′u′〉 corresponds to a non-dimensional temporal scale of tc = 1/St ≈ 1.37 in

the inclined rib case, whereas tc ≈ 1.14 in the V-shaped rib case. Here, St = fδ/Ub

is the Strouhal number.

In view of that turbulence structures in a 3-D ribbed duct undergo significant

changes in both patterns and sizes due to the presence of the ribs and appearance

of the cross-stream secondary flows, it is worthwhile to investigate the rib geometry

effects on the streamwise streaky structures in this peripherally-confined duct space.

To this purpose, contours of non-dimensionalized instantaneous streamwise velocity

fluctuations u′/Ub are plotted in figure 5.22 in the (x-z) plane located at y/H = −3.8

for both rib cases. From figure 5.22(a), it is evident that owing to the inclination
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Figure 5.22: Contours of non-dimensionalized instantaneous streamwise velocity fluc-
tuations u′/Ub in the (x-z) plane for two ribbed cases at the elevation that is slightly
above the rib crest for y/H = −3.8 (the vertical coordinate of the reference point is
identical to that used in figure 5.19). (a) inclined rib case, and (b) V-shaped rib case.

angle of the ribs and the circular movement of the secondary flow in the cross-stream

directions (see, figures 5.7(a) and 5.18(a)), the streaky structures in regions slightly

above the rib crest are advected from one side of the duct (at z/H = 5.0) to the

other side of the duct (at z/H = −5.0). As a result, the streaky structures in

the inclined rib case tend to concentrate near the vertical sidewall at z/H = −5.0

and no apparent streaky structures are observed at z/H = 5.0, a conclusion that is

consistent with qualitative results shown previously in figure 5.17(a). By contrast, as

shown in figure 5.22(b), the streaky structures in the V-shaped rib case are mainly

populated in regions near two vertical sidewalls due to sharp-angled ribs and the

presence of symmetrical streamwise-elongated vortices in the cross-stream plane (see,

figures 5.7(b) and 5.18(b)). From figure 5.22(b), it is also observed that the magnitude

of u′/Ub in the V-shaped rib case is greatly suppressed in the inter-rib region in the

duct center (for −2.5 < z/H < 2.5), which further leads to a reduction in the

magnitudes of Reynolds shear stresses and TKE production rate (see, figures 5.14(b)

and 5.15(b)).
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(a) inclined rib case (b) inclined rib case (c) inclined rib case

(d) V-shaped rib case (e) V-shaped rib case (f) V-shaped rib case

Figure 5.23: Contours of the two-point auto-correlation of streamwise velocity fluctu-
ations Ruu calculated at three reference points of different streamwise positions and a
common elevation of yref/H = −3.8 in the central vertical plane located at z/H = 0.0.
The superimposed dashed-dotted line corresponds to Ruu = 0.4. In panels (a) and (d),
the relative streamwise coordinate of the reference point is x′ref/H = 2.0; in panels (b)
and (e), the relative streamwise coordinate of the reference point is x′ref/H = 4.5;
and in panels (c) and (f), the relative streamwise coordinate of the reference point is
x′ref/H = 7.0.

Figure 5.23 shows the contours of the 2-D two-point auto-correlation of streamwise

velocity fluctuations (Ruu) in the (x-z) plane of three different relative streamwise

positions (x′ref/H = 2.0, 4.5 and 7.0) for the two rib cases. The results are obtained

at the same reference points as in figure 5.19. From figure 5.23, it is evident that the

characteristic correlation widths and structure angles based on streamwise velocity

fluctuations are influenced significantly by the complex geometry of the domain and
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(a) inclined rib case (b) V-shaped rib case

Figure 5.24: Spanwise profiles of the two-point auto-correlation of vertical velocity
fluctuations (Rvv) at three different relative streamwise locations (x′ref/H = 2.0, 4.5
and 7.0) for the two ribbed cases. The vertical coordinate of the reference point is
fixed at yref/H = −3.8, as in figure 5.19.

secondary flows. Figures 5.23(a)-5.23(c) clearly indicate that in the inclined rib case,

the characteristic inclination angle of the contours Ruu decreases from β = 13.70 to

4.50 as x′ref/H increases from 2.0 to 7.0, reflecting the fact that turbulence structures

are inclined towards not only the streamwise direction (see figure 5.19(a)) but also the

spanwise direction. By contrast, as is shown in figures 5.23(d)-5.23(f), the contours

pattern of Ruu in the V-shaped tib case are well elongated in the streamwise direction

without any deflection towards the spanwise direction (such that β ≡ 0.0) for all three

reference points. By comparing figures 5.23(a)-5.23(c) with figures 5.23(d)-5.23(f), it

is evident that the spanwise characteristic size of streaks of the V-shaped rib case is

larger than that of the inclined rib case.

In order to refine our study of turbulent flow structures, the spanwise 1-D two-

point auto-correlation of the vertical velocity fluctuation (Rvv) is plotted in figure 5.24

at three different relative streamwise locations (for x′ref/H = 2.0, 4.5 and 7.0) for the

two rib cases. The vertical coordinate of the reference point is fixed at yref/H = −3.8.

From figure 5.24, it is evident that the profile of Rvv is asymmetrical in the spanwise
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direction in the inclined rib case, but symmetrical in the V-shaped rib case at all three

relative streamwise locations of x′/H = 2.0, 4.5 and 7.0. As shown in figure 5.24(a),

the half characteristic spanwise scale (or, “diameter”) of the streaky structures (as

inferred from the position of the negatively-valued peak of Rvv) in the inclined rib

case is |∆z/H| = 1.4 in one half of the duct (from z/H = −5.0 to 0.0) at all three

streamwise locations. However, in the other half of the duct (from z/H = 0.0 to 5.0),

the diameter of the streaky structure increases monotonically from |∆z/H| = 1.05

to 2.5 as x′/H increases from 2.0 to 7.0. As is clear from figure 5.24(b), the profile

of Rvv in the V-shaped rib case also exhibits a monotonic trend and the diameter of

streamwise streaks increases monotonically from |∆z/H| = 1.35 to 2.6 as the x′/H

increases from 2.0 to 7.0. From figure 5.24, it is concluded that both the inclined

and V-shaped rib elements have a deep impact not only on the size of turbulence

structures (see figures 5.19 and 5.23) but also on the diameter of streamwise vortices

in a square duct.

5.5 Chapter summary

Direct numerical simulations are conducted to study the effects of rib geometry

on the turbulent flow field confined within a square duct. This research is carried

out with the background that although there are many numerical and experimental

studies focusing on turbulent flows in either smooth or transverse rib-roughened ducts,

much less is documented on turbulent flows in a duct with inclined and V-shaped ribs

in the current literature. Furthermore, a DNS study of inclined and V-shaped ribbed

duct flows is still lacking. In contrast to the conventional 2-D rough-wall boundary-

layer flow with transverse ribs mounted on a flat plate, the turbulent flow in either

an inclined or a V-shaped ribbed duct studied here is statistically inhomogeneous in

all three directions, influenced by not only the rib elements but also the four duct

sidewalls.
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Although both inclined and V-shaped rib elements exert strong disturbances to

the flow field, their effects are considerably different in terms of the mean streamwise

and vertical velocities, mean and turbulent secondary flows, the pressure and viscous

drag coefficients, Reynolds stresses, budget balance of TKE, coherent flow structures,

as well as the spatial and temporal characteristic scales of turbulence. The Reynolds

number based on the bulk mean velocity is fixed at Reb = 7000 for both ribbed duct

cases, while the Reynolds number based on the mean streamwise wall friction velocity

of the ribbed bottom wall is ReτR = 642 and 1294 for the inclined and V-shaped rib

cases, respectively. In the inclined ribbed duct case, no apparent separation bubbles

are present in the near-wall region below the rib height and the highest streamwise

momentum level as indicated by the magnitude of 〈u〉/Ub appears in regions well

above the rib crest (for y/H > −3.7). However, in the V-shaped ribbed duct case, a

large single separation bubble exists in the inter-rib region below the rib height and

the maximum value of 〈u〉/Ub occurs near the rib crest. Owing to the confinement of

the four sidewalls of the duct, secondary flows appear as large longitudinal vortices

in the cross-stream plane in both inclined and V-shaped rib cases. It is observed that

secondary flow in the inclined rib case appears as only one large streamwise-elongated

vortex in the entire cross-stream plane, however, in the V-shaped rib case, it develops

into a pair of large symmetrical counter-rotating vortices. Furthermore, given the

same bulk Reynolds number tested, the pressure drag in the V-shaped rib case is

approximately twice that in the inclined rib case, resulting in a drastic increase in

the value of the friction velocity uτR on the ribbed bottom wall.

Investigations into the Reynolds normal and shear stress components indicate

that the highest turbulence levels in the inclined rib case appear in the region slightly

above the rib crest. This enhancement in the magnitude of the Reynolds stresses

immediately downstream of the rib crest is a result of the occurrence of the boundary-

layer separation near the leading edge of the rib, which also produces strong spanwise

vortex shedding. However, in the V-shaped case, the strongest turbulent levels occur

161



in the inter-rib region (below the rib height) in the lee of the ribs. This is due

to the negative values of 〈v〉/Ub induced by the secondary flows, which result in a

downwash of high momentum flow from the duct center to the ribbed wall. Owing

to the difference of the rib geometries and associated secondary flow patterns, the

cross-stream distribution of Reynolds stresses in the inclined rib case is significantly

different from that in the V-shaped rib case. It is observed that the magnitudes of

the three normal components in the inclined rib case are comparable in value near

the sidewall located at z/H = −5.0, while they are significantly different near the

other sidewall located at z/H = 5.0. As such, in the inclined rib case, turbulence

tends to be locally isotropic and anisotropic near the two vertical sidewalls (located

at z/H = −5.0 and 5.0), respectively. By contrast, in the V-shaped ribbed duct case,

it is seen that near the two vertical sidewalls, the magnitude of 〈w′w′〉 is larger than

those of 〈u′u′〉 and 〈v′v′〉.

Through an analysis of the TKE budget terms, it is found that the turbulence

energy transfer in the vertical direction is sensitive to the rib geometry, as the TKE

budget terms of these two rib cases are not only different in values but also dissimilar

in their profile patterns. It is seen that for the inclined rib case, the budget balance

of TKE in the inter-rib region (for −5.0 < y/H < −4.5) is dominated by viscous

diffusion Dk and turbulence diffusion Tk as the source terms; and by convection Ck,

production Pk and dissipation εk as the sink terms. However, the TKE budget in the

V-shaped rib case is primarily balanced between the viscous diffusion and dissipation

terms (i.e., Dk and εk) as the source and sink terms, respectively, in the region very

close to the ribbed bottom wall (for −5.0 < y/H < −4.7). To further understand

the impact of rib geometry on induced turbulence perturbations by rib elements, the

rotational and irrotational components of the TKE production term are investigated.

It is discovered that in the region below the inclined rib height (for y/H < −4.0),

the magnitude of the active term Pka becomes insignificant, while the magnitude of

the inactive term Pki reaches its a negatively-valued peak at y/H = −4.7, directly
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resulting in a local minimum in the profile of the production term Pk in the same

region. However, in the V-shaped rib case, both the TKE production term Pk and

its inactive component Pki are maximized, whereas its active component Pka reaches

a minimum (or, a negatively-valued peak) in the region below the rib height.

The effects of rib geometry on the scales and dynamics of coherent structures

are investigated through an analysis of the λci-criterion, spatial two-point auto-

correlations of the turbulence field, JPDF of the streamwise and vertical velocity

fluctuations, and premultiplied energy spectra. It is observed that in the inclined rib

case the energetic vortical structures are deflected towards only one side of the duct

(located at z/H = −5.0), where the secondary flow motion pushes the fluid to move

upward. However, in the V-shaped rib case, turbulence structures divert from the

duct center sideways towards both vertical sidewalls (located at z/H = ±5.0), and as

a result, a significant fraction of the vortical structures are concentrated near the two

sidewalls. Based on an analysis of the 2-D spatial two-point auto-correlation function

of velocity fluctuations, it is seen that near the leeward and windward faces of a rib

(at x′ref/H = 2.0 and 7.0. respectively), the inclination angle α of the V-shaped rib

case is greater than that of the inclined rib case, leading to an increase in the com-

munication between the flow near the ribbed bottom wall and that near the smooth

top wall. Furthermore, based on an analysis of the non-dimensionalized streamwise

premultiplied temporal spectrum fEii/〈u′u′〉 of velocity fluctuations, it is observed

that the mode of fEuu/〈u′u′〉 decreases by 15% and 9% as x′/H increases from 2.0

to 7.0 for the inclined and V-shaped ribbed duct cases, respectively.

The study of spatial two-point auto-correlations in the streamwise-spanwise plane

indicates that turbulence structures in the inclined rib case are considerably different

from those in the V-shaped rib case in terms of their characteristic width and diam-

eter. Specifically, in the inclined rib case, the characteristic inclination angle of the

contours Ruu decreases from β = 13.70 to 4.50 as the x′ref/H increases from 2.0 to

7.0, reflecting the fact that turbulence structures are inclined towards not only the
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streamwise direction but also the spanwise direction. By contrast, in the V-shaped

rib case, the contours pattern of Ruu are well elongated in the streamwise direction

without any deflection towards the spanwise direction (such that β ≡ 0.0) for all three

reference points.

Finally, it should be indicated that in this research, we are motivated to conduct

a detailed DNS study of inclined and V-shaped ribbed duct flows to fill the gap of

literature. As the first step, our focus is on developing a fundamental understanding

of the flow physics and coherent structures of these two ribbed square duct flows.

Admittedly, this work has limitations, mainly because the DNS was carried out based

on fixed values of Reynolds number Reb, rib alignment angle, blockage ratio (H/D),

pitch-to-height ratio (P/H), rib width-to-pitch ratio, and aspect ratio of the duct

(Ly/Lz). Indeed, these are all important parameters and need to explored in future

studies. Furthermore, owing to the absence of spanwise homogeneity, both inclined

and V-shaped ribbed duct flows are intrinsically 3-D, and are computationally more

intensive in DNS compared to the conventional 2-D rib-roughened boundary-layer

flows over a flat plate. Therefore, as a moderate or long term objective, collective

efforts with also possible contributions from other research groups will be needed in

order to develop a systematic knowledge of the subject.
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Chapter 6

Conclusions and future works

This chapter summarizes the individual contributions of the preceding chapters

to illustrate how they cumulatively achieve the overall objectives of the thesis. The

overall contributions of the thesis and recommendations for future work are also

presented.

6.1 Conclusions

6.1.1 Summary of the influences of rib height on turbulent

flow and structures in a square duct

In this research, turbulent flow in a ribbed square duct of different blockage ratios

(Br = 0.05, 0.1 and 0.2) at a fixed Reynolds number of Reb = 5600 is studied using

DNS. The results are compared with those of a smooth duct flow. In contrast to

the classical 2-D rib-roughened boundary-layer flow over a flat plate, the turbulence

field is influenced by not only the rib elements but also the four duct sidewalls.

The dynamics of coherent structures are studied by examining characteristics of the

instantaneous velocity field, swirling strength, temporal auto-corrections, spatial two-

point auto-correlations, and velocity spectra.
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The mean flow patterns of cases of Br = 0.05 and 0.1 are typical of k-type rough-

wall flows, but that of Br = 0.2 exhibits features that are characteristic of a d-type

rough-wall flow. Furthermore, under the 3-D flow conditions, organized secondary

flows appear in the cross-stream directions whose strength decreases monotonically

near the bottom corner of the ducts but increases monotonically near the side and

top walls as the blockage ratio increases. The spatial distributions of the local skin

friction coefficient Cf and pressure coefficient Cp are influenced significantly by the

complex geometry of the domain and the secondary flow pattern in the cross-stream

directions. The values of both Cf and Cp maintain approximately constant in the

spanwise direction in central region of the duct. In the streamwise direction, however,

the highest value of Cf occurs around the leeward and windward faces of the ribs cor-

responding to the cores of the recirculation bubble and upstream vortex, respectively.

The magnitude of Cp is the highest near the windward face of the ribs, and increases

as the rib height increases as a result of an enhanced impinging effect of the flow.

Characteristic of a smooth duct flow, the profiles of the Reynolds normal and

shear stresses are symmetrical and anti-symmetrical about the duct center (y/δ = 0),

respectively. By contrast, the profiles of all Reynolds stress components are asymmet-

rical in the three rib cases due to the presence of ribs. In general, the magnitudes of

the Reynolds normal and shear stresses of the ribbed duct flows are much larger than

those of the smooth duct flow due to the disturbances from the ribs. The magnitudes

of Reynolds shear stresses and TKE enhance as the rib height increases. For all three

rib cases, the highest Reynolds stress levels occur slightly above the rib crest, where

the shear effect is the greatest. For the three rib cases tested, the magnitude of 〈u′u′〉

is much larger than those of 〈v′v′〉 and 〈w′w′〉, making the largest contribution to

the value of TKE among the three Reynolds normal stress components. Owing to

the cross-stream secondary flow motions, the profile of −〈u′v′〉 peaks in the region

between the sidewall and duct center. In fact, the turbulence level as indicated by

the magnitudes of Reynolds normal and shear stresses all increase monotonically as
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the rib height increases in the central region of the duct.

The maximum value of the TKE production rate over the dissipation rate Pk/εk

occurs immediately above the rib crest and in the region between the sidewall and

duct center, creating a zone of strong non-equilibrium turbulence. In the streamwise-

vertical directions, high-intensity vortices are generated at the leading edge of the

ribs, which then shed into the central core region of the duct. Concurrently, in

the spanwise-vertical directions, secondary flow motions carry these highly energetic

vortices from the duct center sideways to the two vertical walls, resulting in an increase

in the value of Pk/εk. The transport equation of TKE is studied to further understand

the rib effects on turbulence energy transfer. The budget balances of the three rib

cases exhibit more complex patterns than that of the smooth duct flow, especially

around the rib crest. In comparison with the smooth duct flow, the dominant source

term is still the production term Pk, which peaks at a position that is slightly above

rib crest in all three rib cases. Although the magnitudes of the three sinks (Dk, Tk

and ε) around the rib crest are comparable at Br = 0.05, the turbulent diffusion term

Tk becomes increasingly dominant as the blockage ratio increases to Br = 0.1 and

0.2. The convection term Ck does not make a remarkable contribution to the budget

balance of TKE in a smooth duct flow. By contrast, the effect of the convection term

Ck becomes more pronounced due to the complex mean flow pattern and high TKE

level around the rib crest in all three rib cases.

The turbulent flow structures are further studied using the JPDF of the streamwise

and vertical velocity fluctuations, λci-criterion, temporal auto-corrections, temporal

spectra, and spatial two-point auto-correlations of the turbulence field. The results

show that an increase of the rib height exerts stronger disturbances to the flow field,

which are subsequently deflected to the duct center. This phenomenon leads to the

formation of incoherent structures and the generation of violent ejection and sweep

motions just above the rib elements, giving rise to an increase of the local TKE

production rate. Based on the analysis of the 2-D spatial two-point auto-correlation
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function of velocity fluctuations, it is discovered that in the region slightly above

the rib crest, the inclination angle of the isopleths of Rs
uu decreases monotonically

from α = 12.5◦ to 8.0◦ as the blockage ratio increases from Br = 0.05 to 0.2. This

monotonic trend with respect to Br is also evident from the JPDF analysis, which

shows that the turbulent flow becomes increasingly dominated by the sweep events

near the rib crest; and as a result, a lower magnitude of the inclination angle is

observed around the rib height. However, based on the analysis of Rs
uu of different

rib cases at the same elevation, it is observed that the inclination angle α increases

monotonically as the Br value increases at an elevation well above the ribs, resulting

in an enhanced flow interaction between the ribbed bottom wall and the smooth

top wall. It is interesting to observe that both temporal and spatial characteristic

scales of turbulence increase monotonically as the rib height increases around the

rib crest. Furthermore, based on an analysis of the non-dimensionalized streamwise

premultiplied temporal spectrum fEii/〈u′u′〉 of velocity fluctuations, it is observed

that the range of temporal scales of the most energetic turbulence motions (with the

value of fEii/〈u′u′〉 being at least 70% of its peak value) also expands monotonically

around the rib height as the rib height increases. In addition, both the spanwise

characteristic size of the streaks and the diameter of streamwise vortices increase

monotonically as the rib height increases. More specifically, the non-dimensional

diameter of streamwise vortices increases from z/δ = 0.12 to 0.44 as the blockage

ratio increases from Br = 0.05 to 0.2, comparable in value to the height of the rib

elements (i.e., H/δ = 0.1 and 0.4 for Br = 0.05 and 0.2, respectively).

6.1.2 Summary of the effects of rib height on turbulent heat

transfer in a square duct

Turbulent flow structures and heat transfer in a ribbed square duct of different

blockage ratios (Br = 0.05, 0.1 and 0.2) are investigated using DNS. The influence
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of sidewalls and rib height on the turbulence structures associated with temperature

fluctuations are analyzed based on multiple tools such as vortex swirling strengths,

temporal auto-corrections, spatial two-point cross-correlations, JPDF between the

temperature and velocity fluctuations, statistical moments of different orders, and

temperature spectra.

It is observed that the mean flow patterns in the inter-rib region under the rib

height are qualitatively different for different Br values. For the rib cases of Br = 0.05

and 0.1, the reattachment point III occurs in between the two adjacent ribs, a feature

that is typical of the so-called k-type rough-wall boundary-layer flow. However, for

the rib case with Br = 0.2, the recirculation vortex II occupies almost the entire

cavity between the two ribs (under the rib height), such that the reattachment point

is non-present and the mean flow “skim” over the two ribs and the cavity between

them. This physical feature is a characteristic of the so-called d-type rough-wall

flow. Furthermore, owing to the confinement of the four sidewalls of the duct, strong

organized secondary flows appear in the cross-stream directions, which drastically

influence the mean temperature field and distribution of Nusselt number near the two

sidewalls of the square duct. The magnitude of the total drag coefficient (Cf + Cp)

is also observed to be strongly influenced by the rib height, as the level of (Cf + Cp)

increases monotonically near the windward face of the rib with an increasing rib

height. This phenomenon leads to an enhanced impinging effect of the flow onto the

windward face of the rib, which further leads to an amplified magnitude of Nusselt

number Nu.

Owing to the strong shear layer generated by the rib crest, the value of TKE k pro-

gressively increases with an increase of rib height in the region immediately above the

rib crest. However, in contrast to this trend of TKE, the value of temperature vari-

ance 〈θ′θ′〉 decreases as the rib height increases in the same region. The magnitudes

of streamwise and vertical turbulent heat fluxes (i.e., 〈u′θ′〉 and 〈v′θ′〉, respectively)

enhance as the rib height increases. For all three rib cases, the highest turbulent heat
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fluxes levels occur slightly above the rib crest, where the levels of both TKE k and

temperature variance 〈θ′θ′〉 are the greatest. Owing to the cross-stream secondary

flow motions, both the profiles of 〈u′θ′〉 and 〈v′θ′〉 peak in the region between the

sidewall and duct center. Indeed, levels of turbulent heat fluxes as indicated by the

magnitudes of 〈u′θ′〉 and 〈v′θ′〉 all increase monotonically as the rib height increases

in the central region of the duct.

The influence of turbulence structures on the temperature field near the rib crest is

analyzed using the JPDF of the streamwise velocity and temperature fluctuations, λci-

criterion, temporal auto-corrections, temporal spectra, and spatial two-point cross-

correlations of the turbulence field. The results show that owing to the disturbances

from the ribs, energetic vortical structures in all three rib cases are densely popu-

lated on the ribbed bottom wall side than on the smooth top wall side. Furthermore,

the strengths of both rib-generated disturbances and structures enhance as the rib

height increases. This leads to the formation of incoherent structures and the oc-

currences of violent ejection and sweep events. The ejection and sweep events are

coupled positively- and negatively-valued temperature fluctuations θ′, respectively, in

the region immediately above the rib elements. In fact, based on an analysis of the

instantaneous streamwise vorticity fluctuations and JPDF, it is observed that in the

region near the rib crest, low momentum fluid (u′ < 0) packets with high tempera-

ture (θ′ > 0) are ejected into the duct center region, meanwhile high momentum fluid

packets (u′ > 0) with low temperature (θ′ < 0) sweep towards the ribbed bottom

wall. When these fluid packets interact with the recirculation zone, both 〈u′θ′〉 and

〈v′θ′〉 increase significantly in their magnitudes near the rib crest. The existence of

hot ejection and cold sweep motions make significant contributions to sustain the

level of negatively- and positively-valued of streamwise and vertical turbulent heat

fluxes near the rib crest, respectively.

The study of spatial two-point cross-correlations of the streamwise velocity and

temperature fluctuations indicates that as the disturbances from the ribs become
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intensified as the rib height increases, the Reynolds analogy between turbulent trans-

port of momentum and that of thermal energy (indicated by u′ and θ′) becomes less

applicable. Specifically, close to the rib crest, the value of Rs
uθ decreases by 16% as

the Br value increases from 0.05 to 0.2. Based on the analysis of the pre-multiplied

energy spectra of streamwise velocity and temperature fluctuations (i.e., fEuu/〈u′u′〉

fEθθ/〈θ′θ′〉, respectively), it is discovered that the spectral difference between the

non-dimensionalized streamwise velocity and temperature fluctuations increases near

the rib crest as the blockage ratio increases. It is also observed that the range of

temporal scales of the most energetic turbulent motions associated with the temper-

ature fluctuations (with the value of fEθθ/〈θ′θ′〉 being at least 70% of its peak value)

narrows monotonically around the rib height as the blockage ratio increases.

6.1.3 Summary of the effects of rib geometry on turbulent

flow and structures in a square duct

Direct numerical simulations are conducted to study the effects of rib geometry

on the turbulent flow field confined within a square duct. This research is carried

out with the background that although there are many numerical and experimental

studies focusing on turbulent flows in either smooth or transverse rib-roughened ducts,

much less is documented on turbulent flows in a duct with inclined and V-shaped ribs

in the current literature. Furthermore, a DNS study of inclined and V-shaped ribbed

duct flows is still lacking. In contrast to the conventional 2-D rough-wall boundary-

layer flow with transverse ribs mounted on a flat plate, the turbulent flow in either

an inclined or a V-shaped ribbed duct studied here is statistically inhomogeneous in

all three directions, influenced by not only the rib elements but also the four duct

sidewalls.

Although both inclined and V-shaped rib elements exert strong disturbances to

the flow field, their effects are considerably different in terms of the mean streamwise
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and vertical velocities, mean and turbulent secondary flows, the pressure and viscous

drag coefficients, Reynolds stresses, budget balance of TKE, coherent flow structures,

as well as the spatial and temporal characteristic scales of turbulence. The Reynolds

number based on the bulk mean velocity is fixed at Reb = 7000 for both ribbed duct

cases, while the Reynolds number based on the mean streamwise wall friction velocity

of the ribbed bottom wall is ReτR = 642 and 1294 for the inclined and V-shaped rib

cases, respectively. In the inclined ribbed duct case, no apparent separation bubbles

are present in the near-wall region below the rib height and the highest streamwise

momentum level as indicated by the magnitude of 〈u〉/Ub appears in regions well

above the rib crest (for y/H > −3.7). However, in the V-shaped ribbed duct case, a

large single separation bubble exists in the inter-rib region below the rib height and

the maximum value of 〈u〉/Ub occurs near the rib crest. Owing to the confinement of

the four sidewalls of the duct, secondary flows appear as large longitudinal vortices

in the cross-stream plane in both inclined and V-shaped rib cases. It is observed that

secondary flow in the inclined rib case appears as only one large streamwise-elongated

vortex in the entire cross-stream plane, however, in the V-shaped rib case, it develops

into a pair of large symmetrical counter-rotating vortices. Furthermore, given the

same bulk Reynolds number tested, the pressure drag in the V-shaped rib case is

approximately twice that in the inclined rib case, resulting in a drastic increase in

the value of the friction velocity uτR on the ribbed bottom wall.

Investigations into the Reynolds normal and shear stress components indicate

that the highest turbulence levels in the inclined rib case appear in the region slightly

above the rib crest. This enhancement in the magnitude of the Reynolds stresses

immediately downstream of the rib crest is a result of the occurrence of the boundary-

layer separation near the leading edge of the rib, which also produces strong spanwise

vortex shedding. However, in the V-shaped case, the strongest turbulent levels occur

in the inter-rib region (below the rib height) in the lee of the ribs. This is due

to the negative values of 〈v〉/Ub induced by the secondary flows, which result in a
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downwash of high momentum flow from the duct center to the ribbed wall. Owing

to the difference of the rib geometries and associated secondary flow patterns, the

cross-stream distribution of Reynolds stresses in the inclined rib case is significantly

different from that in the V-shaped rib case. It is observed that the magnitudes of

the three normal components in the inclined rib case are comparable in value near

the sidewall located at z/H = −5.0, while they are significantly different near the

other sidewall located at z/H = 5.0. As such, in the inclined rib case, turbulence

tends to be locally isotropic and anisotropic near the two vertical sidewalls (located

at z/H = −5.0 and 5.0), respectively. By contrast, in the V-shaped ribbed duct case,

it is seen that near the two vertical sidewalls, the magnitude of 〈w′w′〉 is larger than

those of 〈u′u′〉 and 〈v′v′〉.

Through an analysis of the TKE budget terms, it is found that the turbulence

energy transfer in the vertical direction is sensitive to the rib geometry, as the TKE

budget terms of these two rib cases are not only different in values but also dissimilar

in their profile patterns. It is seen that for the inclined rib case, the budget balance

of TKE in the inter-rib region (for −5.0 < y/H < −4.5) is dominated by viscous

diffusion Dk and turbulence diffusion Tk as the source terms; and by convection Ck,

production Pk and dissipation εk as the sink terms. However, the TKE budget in the

V-shaped rib case is primarily balanced between the viscous diffusion and dissipation

terms (i.e., Dk and εk) as the source and sink terms, respectively, in the region very

close to the ribbed bottom wall (for −5.0 < y/H < −4.7). To further understand

the impact of rib geometry on induced turbulence perturbations by rib elements, the

rotational and irrotational components of the TKE production term are investigated.

It is discovered that in the region below the inclined rib height (for y/H < −4.0),

the magnitude of the active term Pka becomes insignificant, while the magnitude of

the inactive term Pki reaches its a negatively-valued peak at y/H = −4.7, directly

resulting in a local minimum in the profile of the production term Pk in the same

region. However, in the V-shaped rib case, both the TKE production term Pk and

173



its inactive component Pki are maximized, whereas its active component Pka reaches

a minimum (or, a negatively-valued peak) in the region below the rib height.

The effects of rib geometry on the scales and dynamics of coherent structures

are investigated through an analysis of the λci-criterion, spatial two-point auto-

correlations of the turbulence field, JPDF of the streamwise and vertical velocity

fluctuations, and premultiplied energy spectra. It is observed that in the inclined rib

case the energetic vortical structures are deflected towards only one side of the duct

(located at z/H = −5.0), where the secondary flow motion pushes the fluid to move

upward. However, in the V-shaped rib case, turbulence structures divert from the

duct center sidways towards both vertical sidewalls (located at z/H = ±5.0), and as

a result, a significant fraction of the vortical structures are concentrated near the two

sidewalls. Based on an analysis of the 2-D spatial two-point auto-correlation function

of velocity fluctuations, it is seen that near the leeward and windward faces of a rib

(at x′ref/H = 2.0 and 7.0. respectively), the inclination angle α of the V-shaped rib

case is greater than that of the inclined rib case, leading to an increase in the com-

munication between the flow near the ribbed bottom wall and that near the smooth

top wall. Furthermore, based on an analysis of the non-dimensionalized streamwise

premultiplied temporal spectrum fEii/〈u′u′〉 of velocity fluctuations, it is observed

that the mode of fEuu/〈u′u′〉 decreases by 15% and 9% as x′/H increases from 2.0

to 7.0 for the inclined and V-shaped ribbed duct cases, respectively.

The study of spatial two-point auto-correlations in the streamwise-spanwise plane

indicates that turbulence structures in the inclined rib case are considerably different

from those in the V-shaped rib case in terms of their characteristic width and diam-

eter. Specifically, in the inclined rib case, the characteristic inclination angle of the

contours Ruu decreases from β = 13.70 to 4.50 as the x′ref/H increases from 2.0 to

7.0, reflecting the fact that turbulence structures are inclined towards not only the

streamwise direction but also the spanwise direction. By contrast, in the V-shaped

rib case, the contours pattern of Ruu are well elongated in the streamwise direction
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without any deflection towards the spanwise direction (such that β ≡ 0.0) for all three

reference points.

Finally, it should be indicated that in this research, we are motivated to conduct

a detailed DNS study of inclined and V-shaped ribbed duct flows to fill the gap of

literature. As the first step, our focus is on developing a fundamental understanding

of the flow physics and coherent structures of these two ribbed square duct flows.

Admittedly, this work has limitations, mainly because the DNS was carried out based

on fixed values of Reynolds number Reb, rib alignment angle, blockage ratio (H/D),

pitch-to-height ratio (P/H), rib width-to-pitch ratio, and aspect ratio of the duct

(Ly/Lz). Indeed, these are all important parameters and need to explored in future

studies. Furthermore, owing to the absence of spanwise homogeneity, both inclined

and V-shaped ribbed duct flows are intrinsically 3-D, and are computationally more

intensive in DNS compared to the conventional 2-D rib-roughened boundary-layer

flows over a flat plate. Therefore, as a moderate or long term objective, collective

efforts with also possible contributions from other research groups will be needed in

order to develop a systematic knowledge of the subject.

6.2 Future work

To continue this current study, the following research topics are suggested.

(1) Stationary Smooth and Ribbed Straight Square Ducts

Objectives: In this proposed research, there are several subtopics, including (i) DNS

and LES studies of non-equilibrium 3-D ribbed duct flows, (ii) an investigation of the

effects of high Reynolds number on the dynamics of both cross-stream secondary flow

motions and incoherent turbulence structures (as shown in figure 3.22) near the rib-

roughened wall, as well as (iii) an investigation of the effects of both sidewalls and

rib elements on the mechanism underlying the organized secondary flows and their

influences on turbulent heat transfer and coherent structures.
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(2) Stationary Ribbed Curved Ducts

Objectives: DNS and LES studies of turbulent flow and heat transfer in curved

square ribbed ducts are of direct relevance to the internal cooling of gas turbine

blades. The goal of this research is to (i) study the non-equilibrium turbulent flow

development, (ii) evaluate the effects of both Reynolds numbers and curvature ratio

numbers on the statistical moments of the temperature field, premultiplied energy

spectra of the turbulent temperature field (as depicted in figure 4.19), and turbu-

lence structures that facilitate the turbulent transport of thermal energy, as well as

(iii) provide detailed benchmark data of turbulent flow in curved square ducts with

transverse ribs mounted on one wall.

(3) Rotating Ribbed Straight and Curved Ducts

Objectives: This study aims at conducing an LES study to test a wide range of

rotation numbers based on a variety of SGS models. The characteristics of the flow

field under system rotation will be compared against those of non-rotating flows.

Furthermore, the combined effects of the Coriolis force and curvature ratio number

on the mean secondary flow structures, and on large- and small-scale turbulence

structures will be examined in both physical and spectral spaces.
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Appendix A

Discretization of the momentum

equation

In this appendix, finite volume discretization of the momentum equation and the

momentum interpolation method on curvilinear collocated grids are presented.

A.1 Details of discretization in space and time

Following the method of analysis in chapter 2, the nonlinear convection term can be

straightforwardly discretized as∫ e

w

∫ n

s

∫ t

b

1

J

∂

∂ξk

(
ρβkj uiuj

)
dξ1dξ2dξ3

=

∫ n

s

∫ t

b

(
ρβ1

juiuj
)
dξ2dξ3

∣∣e
w

+

∫ e

w

∫ t

b

(
ρβ2

juiuj
)
dξ1dξ3

∣∣n
s

+

∫ e

w

∫ n

s

(
ρβ3

juiuj
)
dξ1dξ2

∣∣t
b

=
1

J

(
ρβ1

juiuj|ew + ρβ2
juiuj|ns + ρβ3

juiuj|tb
)

=
1

J
(meui|e −mwui|w +mnui|n −msui|s +mtui|t −mbui|b) .

(A.1)
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The pressure gradient term in equation 2.2 can be discretized as∫ e

w

∫ n

s

∫ t

b

∂p

∂xi
dx1dx2dx3 =

∫ e

w

∫ n

s

∫ t

b

1

J

∂(βji p)

∂ξj
dξ1dξ2dξ3

=
1

J

(
β1
i p|ew + β2

i p|ns + β3
i p|tb
)

,

(A.2)

The viscous term in equation 2.2 can be discretized as∫ ∫ ∫
V

ν
1

J

∂

∂ξp

(
1

J
βpj β

q
j

∂ui
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(A.3)

It should be indicated that the cross-derivative diffusion flux in the last two brackets

are zero in orthogonal grid (for chapters 3 and 4).

Eventually, the integral equation for momentum conservation on a curvilinear grid

system can be expressed as:

Jρ
∂ui
∂t

+meui|e −mwui|w +mnui|n −msui|s +mtui|t −mbui|b

= −β1
i pe + β1

i pw − β2
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i pb
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(A.4)
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where fi = −Πδ1i denotes a constant streamwise pressure gradient that drives the

flow and Jρ∂ūi/∂t represents the temporal derivative of momentum in the xi direction

within a control volume.

In this computer code, a fully explicit second-order Runge-Kutta method is used

for the temporal discretization. The temporal discretized for equation A.4 can be

written in the form:

Jρ
u∗i − ui

∆t
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(A.5)

Here, u∗i denotes an updated preliminary velocity fields. Equation A.5 can be ex-

pressed in a more compact manner as follows

u∗i = Hi −
∆t

Jρ

(
β1
i p|ew + β2

i p|ns + β3
i p|tb
)

, (A.6)

where Hi denotes all the explicit terms except for the pressure terms in equation A.5.

A.2 Momentum interpolation

In this thesis, in order to prevent the checkerboard effect in the pressure field,

the momentum interpolation method of Rhie and Chow (1983) is used to establish

the relation between the cell-face mass flux and the pressure in two adjacent control

volumes. Specifically, each term of equation A.6 is interpolated and shifted by half a
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control volume to relate the pressure stored at centroids of adjacent control volumes,

so that the check-board pressure solution is avoided.

The velocity components based on a general curvilinear coordinate system can be

obtained from

un1P =
1

2
∆tH∗1 (u) + u0

1p −
1
2
∆t

Jρ
β1

1p|ew ,
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1
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Jρ
β3

3p|bt .

(A.7)

It should be noted that for the transverse rib-roughened duct cases (chapters 3 and

4), the components of β1
2 in the equation A.7 shall be deemed to equal zero. Indeed,

the transverse rib case can be treated as a special case of either inclined or V-shaped

rib cases.

The velocity components on the interface between adjacent control volumes can

be calculated by interpolation of the momentum conservation equations:
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(A.8)
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In general, the velocity components, which are based on the estimated pressure

field, do not satisfy the continuity equation. As such, an artificial net mass source is

produced. To remove this artificial mass source, the mass fluxes on the east and west

faces are corrected through

me = ρβ1
1H1|e + ρβ1

2H2|e −
∆t

J

(
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1β
1
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,
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1
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2
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)
.

(A.9)

Except for the east and west faces, mass fluxes on other faces only involve the pressure

at two adjacent control volumes, which are expressed as

mn = ρβ2
2H2|n −

∆t

J

(
β2
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2
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)
,
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,
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)
,

mb = ρβ3
3H3|b −
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(
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3
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)
.

(A.10)

From equations A.9 and A.10, it is understood that the coefficient matrix of the

pressure correction equation in transverse and V-shaped rib cases possess 7 and 11

nonzero diagonal bands, repectively. The pressure equation can now be solved using

a variety of matrix equation solvers. In this thesis, the parallel algebraic multigrid

solver BoomerAMG (Henson and Yang., 2002) provided by the Portable, Extensible

Toolkit for Scientific Computation (PETSc) library (Balay et al., 2014) is used to

solve this irregular matrix for the pressure correction.
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Appendix B

Derivation of the Reynolds stress

transport equation in a ribbed

square duct

The velocity field can be decomposed into its mean and fluctuating components as

ui = 〈u〉+u′. By applying this decomposition to the transport equation of momentum,

the transport equation of the Reynolds stresses can be obtained. The continuity and

Naiver-Stokes equations equations that govern the turbulent flow fields for DNS can

be written in the following general form in the context of an incompressible fluid:〈
∂ui
∂xi

〉
=

〈
∂(〈ui〉+ u′i)

∂xi

〉
=

〈
∂〈ui〉
∂xi

〉
+

〈
∂u′i
∂xi

〉
=
∂〈ui〉
∂xi

= 0.0 , (B.1)

N(ui) =
∂ui
∂t

+ uk
∂ui
∂xk

+
1

ρ

∂p

∂xi
− ν

(
∂2ui

∂xk∂xk

)
= 0.0 , (B.2)

where N(ui) is referred to as a Navier-Stokes operator. Note that the average of a

fluctuation quantity is zero identically. As a result, u′jN(ui) can be determined as

182



follows:

u′jN(ui) = u′j
∂ui
∂t

+ u′juk
∂ui
∂xk

+ u′j
1

ρ
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.

(B.3)

Similart to u′jN(ui), multiplication of the Naiver-Stokes equation equation with

the fluctuating velocity u′iN(uj) leads to

u′iN(uj) = u′i
∂〈uj〉
∂t

+ u′i
∂u′j
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(B.4)

Then take an summation average of equations B.3 and B.4. As the summation of

these two equations will be lengthy, and in the following, the derivations are done

term by term. Starting from the unsteady term, we have〈
u′j
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∂t

+ u′i
∂uj
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(B.5)

Followed by the summation of convective terms, we obtain〈
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(B.6)
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The summation of the pressure strain terms result in〈
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(B.7)

Finally, the summation of the viscous terms leads to
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(B.8)

From equations B.5 - B.8, we obtain

〈u′jN(ui) + u′iN(uj)〉 =
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(B.9)

Rearranging the terms and taking an average of the obtained equation results in the

following Reynolds stress transportation equation

〈uk〉
∂u′iu
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Cij
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(B.10)
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Here, Cij, Pij,Πij, εij and Dij represent the convection, production, pressure-strain,

viscous dissipation, diffusion (consisting of turbulent, pressure and viscous diffusion

effects).
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