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Abstract 

In a proper circuit design procedure, it is important to consider the performance of a cir-

cuit when its elements are expected to vary from their nominal values due to various in-

ternal and external factors. Performing a sensitivity analysis on circuit provides deep in-

sight to such a requirement.  

 The conventional sensitivity analysis methods catering power electronic circuits need 

lengthy and computationally demanding simulation effort when the circuit is complex 

and the number of circuit elements involved is large. 

 This thesis presents a computationally efficient sensitivity analysis method which 

utilizes the salient feature of network-based sensitivity analysis methods, i.e. less simula-

tion effort. To overcome the applicability limitations of network-based methods on com-

plex power electronic circuits, the proposed method performs sensitivity analysis on lin-

earized average model of the circuit instead of its original circuit.  

 The resulting sensitivities derived from proposed method were validated against those 

derived from a conventional method. 
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Chapter 1 

Introduction 

Electrical circuit elements, such as resistors, inductors and capacitors, are fabricated to 

their nominal values within a given range of tolerances, i.e. their values can only be 

nominally specified and actual values may slightly, within a certain tolerance band, dif-

fer.  Additionally with external factors such as temperature, aging and electromagnetic 

fields, those values can be further deviated over time. Therefore, analysis of the perform-

ance of a circuit with the nominal values of elements does not reflect the exact behaviour 

of the circuit particularly when the circuit ages or operates under varying environmental 

conditions. So in a proper design procedure, it is important to consider the performance 

of a circuit when its elements are expected to vary from their nominal values.  

The change in the performance of a circuit due to the changes in circuit element val-

ues can be evaluated and the process involved in doing so is called sensitivity analysis of 

circuits. The IEEE Standard Dictionary of Electrical and Electronics Terms [1] defines 

the sensitivity analysis as, “an analysis that determines the variation of a given function 

caused by the changes in one or more [of its] parameters about a selected reference 

value”. The given function in the context of this work is a circuit performance index and 

parameters are the circuit element values. A circuit performance index is a mathematical 



   2 

 

 

representation of the expected performance condition of a circuit in terms of measurable 

quantity and as a function of its elements. Such sensitivity analysis ultimately involves in 

evaluation of first order partial derivatives of the performance index with respect to cir-

cuit parameters and hence the resulting sensitivities are called first order sensitivities. 

 The initial stage of the sensitivity analysis involves capturing the essential aspects of 

the performance of the circuit in the form of mathematical functions referred to perform-

ance indices. Once such functions are formed, their deviations from nominal figures are 

assessed when circuit element values are allowed to vary within their tolerances. Such 

undertakings are particularly difficult when power electronic circuits are concerned. 

Since many of the power electronic circuits are nonlinear complex systems; their com-

plexity leads to it being prohibitively difficult to find an explicit form for their perform-

ance indices.  In such a case, a computer simulation-based sensitivity analysis method is 

to be used. Conventional simulation-based analysis methods rely on numerical calcula-

tion of the derivatives of performance index and require a large number of simulations 

when number of parameters involved is high.  This leads to lengthy and computationally 

demanding simulation effort. Furthermore numerical inaccuracies may tend to impact the 

outcomes. 

Some of the existing sensitivity analysis methods for linear circuits, namely incre-

mental network approach (INA) and adjoint network approach (ANA), have salient fea-

tures in sensitivity analysis. Both of them require only two simulations for the original 

circuit and the derived companion circuit to define the sensitivities of a performance in-

dex against all the parameters of the circuit (i.e. elements with tolerance levels). Hence, 

for circuits with large number of parameters, such network-based approaches for sensitiv-
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ity analysis drastically reduce the required simulation effort. A limitation in applying 

network based methods is that they can be used when the underlying circuits are linear. 

This luxurious condition is not available in the analysis of power electronic systems. 

Therefore to deduce the equivalent linearized average model of complex nonlinear power 

electronic system, available circuit averaging techniques are to be used. Sensitivity analy-

sis can then be done on the equivalent average circuit.     

1.1 Sensitivity Analysis of Power Electronic Cir-

cuits 

In the path of investigating a possible efficient method to perform sensitivity analysis of 

power electronic circuits, existing sensitivity analysis methods are to be studied firstly 

and their merits and drawbacks are to be identified. The computational effort required by 

those methods and their applicability to a variety of circuits are considered here as key 

factors for the evaluation.  

 For a simple circuit where the performance index is available in an explicit mathe-

matical form, the calculation of sensitivities of performance index is straight-forward by 

performing direct differentiation. The required condition is that the mathematical func-

tion describing the performance index is differentiable at the considered operating point. 

Then the resulting partial derivatives are exactly the sensitivities of performance index. 

As mentioned in the previous section, most of the power electronic circuits are complex 

and non-linear in nature. One of the reasons for their non-linearity is the presence of cir-

cuit-embedded switching elements such as thyristors and diodes. Additionally the chang-
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ing of operational states of those elements adds complexity to the circuit when the num-

ber of switching elements involved is high. Hence it is difficult to form an explicit 

mathematical expression for the desired performance index of those circuits. In such a 

case, one of the simulation based sensitivity analysis methods mentioned below is to be 

considered: 

1. Simulation-based numerical method 

2. Incremental network approach 

3. Adjoint network approach 

The simulation-based numerical method is a conventional method in sensitivity 

analysis where the change in performance index is measured through circuit simulation as 

one of the parameters is changed by a small quantity. Then the ratio of change in per-

formance index to change in parameter is assumed to be the sensitivity of performance 

index against the particular parameter. The same procedure is to be repeated for every in-

terested parameter in the circuit and hence the number of circuit simulations required by 

such a method is high as the number of parameters involved is high. To overcome this 

inherent computational burden and numerical inaccuracies involved in the simulation-

based numerical method, incremental network approach and adjoint network approach 

can be used as alternative methods in sensitivity analysis. 

These two network-based sensitivity analysis methods first involve in deriving a 

companion circuit called incremental circuit or adjoint circuit (depending on the method) 

based on the underlying circuit. For an example, the adjoint circuit is synthesized using 

pre-defined adjoint branch elements corresponding to each branch element of the under-

lying circuit. A separate excitation is to be introduced to the adjoint circuit depending on 
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the desired performance index of the underlying circuit. Then the sensitivity of perform-

ance index is calculated using the results of two simulations done for the underlying and 

adjoint circuits. For each desired performance index, the excitation of adjoint circuit is to 

be set separately and hence the total number of required simulations depends on the num-

ber of performance indices considered. In practise, the number of desired performance 

indices is much lower than the number of circuit parameters and hence the network-based 

methods significantly reduce the computational effort required for sensitivity analysis 

compared with numerical method. 

In case of network-based methods, to overcome the constraint of applicability in lin-

ear circuits only, the sensitivity analysis can be performed on linearized models devel-

oped based on the piecewise-linear approximation of power electronic switching circuits 

[18], [19]. Then the number of linear circuits defined in-between switching instances be-

comes large as the number of switches in the circuit is high. This results in analyses of 

large number circuits and hence it becomes a burden to simulation effort again.   

To utilise the salient feature of network-based methods, i.e. two circuit simulations 

per performance index in sensitivity analysis, this research investigates the possibility of 

combining the network-based methods with linearized average models of the power elec-

tronic circuits, instead of its original circuit, in sensitivity analysis. Two widely used 

techniques in circuit averaging, namely  

1. State space circuit averaging  

2. Generalized circuit averaging, are considered. 

The comparative advantage of using generalized circuit averaging technique over state 

space circuit averaging technique is also discussed. 
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1.2 Thesis Organization 

The content of thesis is organized in following manner. Chapter 2 provides a deep insight 

to the theoretical background of simulation-based sensitivity analysis methods.  More-

over the relative merits and drawbacks of those methods in application to power elec-

tronic circuits are highlighted. 

An in-depth analysis of the two averaging techniques mentioned in previous section is 

presented in Chapter 3. The important features of both techniques applicable to power 

electronic circuits are also discussed.  

The case studies in Chapter 4 provide an investigation into the main objectives of this 

research. i.e. the process of combining a sensitivity analysis method as discussed with 

linearized average model of a power electronic circuit derived by a circuit averaging 

technique to obtain sensitivities. The sensitivities of a given performance index against 

circuit parameters resulting from such analysis are then validated against those calculated 

in a brute-force manner. Additionally, the practical limitations of above process are iden-

tified and the means to overcome those are also investigated.  

Chapter 5 presents the conclusions and contributions of this research work. Further-

more the possible future works based on the outcomes of research are also discussed.    

 

 

 



 

 

Chapter 2 

Sensitivity Analysis Methods for Cir-

cuits 

Sensitivity analysis of a circuit considered here is a process of determining first order ap-

proximations of the variation of a performance index against circuit parameter deviations 

around their nominal values. For a proper circuit design procedure, such information is 

vital in performance and reliability analyses of the circuit. Additionally the derived sensi-

tivities can be used in optimization process of circuit parameters as will be described later 

in Chapter 4.  

Sensitivity analysis methods are well developed in literature. In the following sec-

tion, the theory behind the sensitivity analysis and simulation-based methods developed 

for sensitivity analysis of circuits are discussed in detail.  The main features of those 

methods are compared in terms of the required computational effort and applicability to 

various circuits. 
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2.1  Sensitivity Analysis Theory 

To quantitatively define the change in the performance of a network with respect to the 

changes in network parameters, a mathematical representation for the performance can be 

developed.  Let f(x) be such a performance index and x = ( 1 2 nx , x , ..., x ) be the vector of 

parameters associated with network elements. For example f(x) can be output to input 

voltage or current gain of a network while x can be the impedances of network elements. 

The un-normalized and normalized sensitivities of the f(x) with respect to a network pa-

rameter xi are defined as follows [2]: 

 

Un-normalized sensitivity =     ∂
∂ i

f
x

            (2.1) 

Normalized sensitivity = 
ln( )
ln( )

.
∂ ∂

=
∂ ∂i

f i
x

i i

xf fS =
x f x

      (2.2)  

Once the normalized sensitivities 
i

f
xS  are calculated with respect to the parameters 

x = ( 1 2 nx , x , ..., x ), change in the performance index ∆f due to changes in all circuit pa-

rameters is defined as follows (this is derived from Taylor series expansion of f(x) when 

second and higher-order terms are neglected): 

n

nf
x

f
x

f
x x

xS
x
xS

x
xS

f
f

n

∆
++

∆
+

∆
≈

∆ ......
2

2

1

1
21

         (2.3)  

The sensitivity analysis of a circuit is based on the above formulation; sensitivity 

analysis methods differ based on the technique that is used to calculate the partial deriva-

tives associated with f
xi

S  in (2.3).  
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When the performance index f(x) is readily available, the partial derivatives can 

be directly evaluated by differentiating the performance index with respect to desired pa-

rameters provided that f(x) is differentiable at the operating point considered. A brute-

force method can also be used to approximate the partial derivatives by calculating the 

change in network function against the change in desired parameter. Here it is assumed 

that the change in parameter is small enough to consider the ratio of change in network 

function to change in parameter as the partial derivative. For further clarification, con-

sider the following example where the performance index is readily available for calcula-

tion of sensitivity. 

 

Example 2.1: Sensitivity analysis by direct differentiation 

Consider the circuit shown in Fig. 2-1, where the circuit parameters are β = 2, RS = 

1Ω, RB = 2Ω, RE = 1Ω and RL = 4Ω. The input voltage Vin is 10V. Suppose that the volt-

age gain (Vo/Vin) is the desired performance index and its sensitivities with respect to cir-

cuit parameters RS, RB, RE, RL and β are to be calculated. By solving the above circuit, the 

performance index f can be expressed as follows: 

( ) (1 )
o L

in S B E

V βR
f = =

V R + R + + β R
          (2.4) 

By differentiating f with respect to its parameters and substituting the values, explicit 

representation for partial derivatives can be obtained as shown below. 

2 -0.2222
( ) (1 )

L

S S B E

-βRf =
R R + R + + β R
∂

=
∂ ⎡ ⎤⎣ ⎦
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Fig. 2-1.  Circuit to be analyzed for sensitivity 

 

Similarly,  -0.2222∂
=

∂ B

f
R

 -0.6667∂
=

∂ E

f
R

 0.3333∂
=

∂ L

f
R

 0.4444∂
=

∂
f
β

 

Hence the normalized sensitivity can be calculated as follows: 

ln( ) 1(-0.2222) = -0.1667
ln( ) 1.3333S

f S
R

S S

Rf fS =
R R f

∂ ∂
= =

∂ ∂
. .  

Similarly, other normalised sensitivities; 

-0.3333=
B

f
RS  -0.5000=

E

f
RS  1.0000=

L

f
RS   0.6667=f

βS  

Then the change in performance index is derived as follows: 

   0.1667 0.3333 0.5 1.0 0.6667S B E L

S B E L

R R R Rf
f R R R R

β
β

∆ ∆ ∆ ∆∆ ∆
≈ − − − + +  

For complex networks, the performance index f(x) may not be explicitly available and 

hence the use of partial derivatives as sensitivities is not readily possible. In that case a 

simulation-based method can be used to determine the partial derivatives. The simulation 

results for network function against the change in desired parameter can be used in a 

brute-force manner to approximate the partial derivatives. 
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The numerical method considered below for sensitivity analysis is a simulation-based 

brute-force approach. The incremental network and adjoint network approaches [2] for 

sensitivity analysis are also discussed next and these methods are applied for sensitivity 

analysis of linear circuits in frequency domain. Furthermore, adjoint network approach 

can be extended for transient sensitivity analysis of linear circuits. 

2.1.1 A Simulation-Based Numerical Method for Sensitivity 

Analysis 

Let f(x) be a network function where x = ( 1 2 nx , x , ..., x ) is the vector of network pa-

rameters xi. Using the Taylor series expansion for the network function, it is seen that 

 
1 1 1 1

1

2 2 2 2
2 2
1 1 2 12 2

1 2 11

( ∆ ∆ ) = ( ) ∆ ∆ +

1 1 1 1∆ + ... + ∆ + ∆ ∆ + ... + ∆ ∆ + ...
2 2 2 2

n n n n
n

n n- n
n- nn

f ff x + x , ..., x + x f x , ..., x + x + ...+ x
x x

f f f fx x x x x x
x x x xx x

∂ ∂
∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂ ∂

(2.5) 

 

With the assumption that the changes in parameters (∆ ix ) are sufficiently small, the 

second and higher-order terms can be neglected and the above expansion can be ap-

proximated as follows. 

1 1 1 1
1

( ∆ ∆ ) ( ) ∆ ∆n n n n
n

f ff x + x , ..., x + x f x , ..., x + x + ... + x
x x

∂ ∂
≈

∂ ∂
  (2.6) 

The first-order partial derivative of the network function with respect to i-th parameter of 

the network can be easily approximated as shown below. 

1 1( ∆ ) ( ) ∆i i n i n i
i

ff x , ..., x + x , ..., x f x , ..., x , ..., x + x
x

∂
≈

∂
     (2.7) 



   12 

 

 

1 1( ∆ ) ( )
∆

i i n i n

i i

f x , ..., x + x , ..., x - f x , ..., x , ..., xf
x x

∂
≈

∂
      (2.8)  

 

From (2.8) the derivatives of network function with respect to each parameter can be 

calculated by carrying out (n+1) simulations by incrementing one parameter at a time 

where n is the number of network parameters involved.  

Since the above method relies on a numerical approximation to estimate the deriva-

tives, the network function need not be explicitly available. Once the derivatives are 

evaluated by simulations, the normalized sensitivities can be derived. The main drawback 

of this method is the increase in the number of simulations as the number of parameters 

increases. Since (2.8) has been derived through approximations, the accuracy of the sen-

sitivity indices calculated thereby is also compromised. Even though the accuracy of es-

timation can be improved by performing both a positive and a negative increment for 

each parameter as shown in (2.9), then number of simulations involved is even higher.  

1( ∆ ) ( ∆ )
2∆

i i n 1 i i n

i i

f x , ..., x + x , ..., x - f x , ..., x - x , ..., xf
x x

∂
≈

∂
     (2.9)  

 

Example 2.2: Sensitivity analysis by numerical method 

Consider the circuit in Example 2.1 again, and suppose that the sensitivity of its volt-

age gain is to be calculated against current gain β. Using a simulation method as de-

scribed, the change in voltage gain is evaluated against the change in β from 2.0 to 2.1. 

i.e. 5% change in β from it’s original value.  

0

0
2.0

0

1.3333
( ) (1 )

L

S B E

Rf
R R Rβ

β
β=

= =
+ + +
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0

0
2.1

0

( ) 1.3770
( ) (1 ( ))

L

S B E

Rf
R R Rβ β

β β
β β+∆ =

+ ∆
= =

+ + + + ∆
 

If ∆β is considered to be sufficiently small, 

0 0

0 0

0.4372
( )

f ff β β β

β β β β
+∆

−∂
≈ =

∂ + ∆ −
  Hence,   = 0.6557∂

⋅
∂

f
β

f βS =
β f

 

Similarly, the sensitivity of voltage gain against all the parameters can be calculated 

by changing one parameter at a time and then simulating the circuit. The results are as 

follows for the 5% change in each parameter from their respective original values. 

-0.1650
S

f
RS =   -0.3270

B

f
RS =  -0.4875

E

f
RS =  1.0000=

L

f
RS    

Note that the numerically evaluated sensitivities above are close to the analytically calcu-

lated ones in Example 2.1. 

To overcome the problem of higher number of evaluations in the above method, two 

alternative methods with less number of evaluations, namely the incremental network ap-

proach and the adjoint network approach are available. The following descriptions of two 

methods are based on the presentation in [2].  

2.1.2 The Incremental Network Approach 

The application of incremental network approach in sensitivity analysis is discussed 

in [5]. To explain this network-based approach theoretically, consider a portion of a lin-

ear network N as shown in Fig. 2-2(a) and take V and I as the vectors of branch voltages 

and currents respectively.  
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(a) Original linear network (N) 

 
(b) Perturbed network (Np) 

 

 
(c) Incremental network (Ni) 

Fig. 2-2.  Derivation of incremental network 
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The branch impedance matrix of the network, Z is incrementally changed by ∆Z to 

obtain the perturbed network Np as shown in Fig. 2-2(b). The changes in impedances re-

sults in changes in branch voltages and currents and let those voltage and current changes 

to be ∆V and ∆I respectively. The aim of the incremental network approach is to deter-

mine the voltage and current changes for deriving the sensitivities. 

For the original network N, 

Kirchhoff’s Current Law (KCL):    AI=0       (2.10)  

Kirchhoff’s Voltage Law (KVL):   BV=0       (2.11) 

 

The (2.10) and (2.11) are the matrix representation of Kirchhoff’s current and voltage 

laws for the topology of network where, the matrices A and B are the incident matrix and 

the fundamental loop matrix, respectively. Since the perturbed network Np has the same 

topology as the original network N, KCL and KVL with the same incident and fundamen-

tal loop matrices apply to Np as well. 

KCL:      A (I+∆I) =0          (2.12) 

KVL:     B(V+∆V)=0          (2.13) 

 

By simplifying equations (2.10) – (2.13), 

A∆I=0                  (2.14)  

B∆V=0                 (2.15)  

The equation (2.14) reveals that both the branch currents I and branch incremental 

currents ∆I have the same constraints imposed by the KCL. The branch voltages V and 

branch incremental voltages ∆V are also subjected to the same constraints imposed by the 
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KVL. It can therefore be concluded that ∆I and ∆V are branch currents and voltages of an 

incremental network Ni having the same topology as the original network N. By synthe-

sising and then analysing the incremental network Ni, ∆I and ∆V can be evaluated. 

Consider a branch element in the original network N with impedance Z, then 

V=ZI                  (2.16) 

For the same element in perturbed network Np, 

V+∆V = (Z+∆Z) (I+∆I) = ZI + Z∆I + I∆Z + ∆Z ∆I      (2.17) 

Substituting (2.16) in (2.17), 

∆V= Z∆I + I∆Z + ∆Z ∆I             (2.18) 

When the perturbation is infinitely small, the higher-order terms can be neglected and the 

above equation simplifies to, 

∆V ≈   Z∆I + I∆Z               (2.19)  

The above equation shows that the branch in incremental network Ni has the same 

impedance Z as the corresponding branch in original network N in series with a voltage 

source I∆Z as shown in Fig. 2-3. This results in having same admittance matrix for both 

the networks and hence great savings in computational effort is achieved in solving the 

networks in computer-based simulation program. 

 
(a) Branch in the original network N      (b) Branch in the incremental network Ni 

Fig. 2-3.  Deriving the incremental network Ni from the original network N 

 V1  

Z1 

I1 -+ 

Z1 

∆ I1 

I1 ∆ Z1 

∆V1 
+ -
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By investigating all the branch elements in the original network N, the whole incre-

mental network Ni can be derived as shown in Fig. 2-2(c). The incremental network Ni is 

then analysed to determine the incremental voltages and currents and thereby the sensi-

tivities. 

 In summary sensitivity analysis using the incremental network approach involves the 

following steps.  

1) Analyzing of the original network N; 

2) Deriving the incremental network Ni by observing the original network N; 

3) Analysing the incremental network Ni and thereby determining the sensitivities. 

 

Example 2.3: Sensitivity analysis by incremental network approach 

Consider the same circuit in Example 2.1 for sensitivity analysis using the incre-

mental network approach. The original circuit and its incremental circuit are as shown in 

Fig. 2-4.  

The input voltage here is assumed to be constant and the sensitivities to element val-

ues are considered. By solving the original circuit branch voltages and currents can be 

obtained as follows.  

1.6667 ASI =  1.6667 ABI =  5.0000 AEI =  3.3333 ALI =  

1.6667 VSV =  3.3333 VBV =  5.0000 VEV =  13.3333 VLV =  

By replacing the corresponding branch voltages and currents for the operating point 

in incremental circuit, the solution for the incremental circuit is obtained as follows. 

∆ = -2.2222∆ - 2.2222∆ - 6.6667∆ + 3.3333∆ + 4.4444∆o S B E LV R R R R β  
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(a) Original network 

RS

RB

RE RL

β∆IB

∆Vo

+

-
∆IB

+
-

+ -

+
-

+
-

+
-

∆βIB

IE∆RE

IB∆RB

IS∆RS

IL∆RL

 
(b) Incremental network 

Fig. 2-4.  Sensitivity analysis using incremental network approach 

 

Assuming that the change in RS , i.e. ∆ SR , is sufficiently small, 

∆
∂ ∆

≈
∂

o o

S S

V V
R R

 

1 1= (-2.2222) = -0.2222
10

o

in o

S S in S

V
V Vf =

R R V R

⎛ ⎞∂ ⎜ ⎟ ∂∂ ⎝ ⎠ = ⋅ ⋅
∂ ∂ ∂
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ln( ) 1(-0.2222) = -0.1667
ln( ) 1.3333S

f S
R

S S

Rf fS =
R R f

∂ ∂
= =

∂ ∂
. .  

Similarly the sensitivity of voltage gain against other parameters can be calculated as 

follows. 

-0.3333=
B

f
RS  -0.5000=

E

f
RS  1.0000=

L

f
RS   0.6667=f

βS  

The above results are exactly equal to those obtained using direct differentiation 

method in section 2.1. Additionally, the following advantages of incremental network ap-

proach are achieved: 

1) Since the admittance matrices for the original and incremental networks are 

the same, there is great savings in computational effort in solving the net-

works in computer-based simulation program; 

2) Since the change in a given parameter is represented as a part of an independ-

ent source, the effect of parameter change can be visualized. For example, a 

parameter change ∆R is represented as a voltage source of I·∆R and can be 

measured in the circuit; 

3) Once the incremental circuit is analyzed, all the incremental branch currents 

and voltages are available as additional information.  

2.1.3 The Adjoint Network Approach 

The adjoint network approach in sensitivity analysis is widely discussed in literature 

for its theoretical background [3], [4] and practical applications [7], [8]. To have a theo-

retical insight to this approach first  consider a network N whose voltage and current vec-
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tors in time domain are denoted by v and i respectively. Equation (2.20) can be easily 

proven since the sum of the power to all branches in network N is equal to zero. This is 

the essentially a statement of the law of conservation of power.  

v i = i v = 0t t                 (2.20)  

The Tellegen’s theorem states that for branch voltages and currents of two networks N 

and 
∧

N  with the same network topology, the above equation is still valid as follows. 

∧ ∧∧ ∧

v i = i v = v i = i v = 0t t t t             (2.21)  

where, 
∧

v  and 
∧

i  are the time-domain voltage and current vectors of network 
∧

N respec-

tively.  

When the impedance matrix of network N is disturbed, it results a perturbed network 

Np which has the same topology as network N. Then applying the Tellegen’s theorem for 

Np and 
∧

N , it can be shown that: 

∧ ∧ ∧ ∧

i v = i (v + ∆v) = i v + i ∆v = 0t p t t t  

∧ ∧ ∧ ∧

v i = v (i + ∆i) = v i + v ∆i = 0t p t t t  

where, vp and ip are the voltage and current vectors of perturbed network Np respectively 

in time domain.  

Simplifying above equations with (2.21):    

∧

i ∆v = 0t   and  
∧

v ∆i = 0t            (2.22)  

Combining the two equations in (2.22): 

∧ ∧

i ∆v - v ∆i = 0t t                (2.23) 
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By repeating the same procedure, it can be shown that the relationship (2.23) is still valid 

when i and v are replaced by their phasor domain transforms I and V respectively [2]. 

∧ ∧

I ∆V - V ∆I = 0t t               (2.24)  

The above expression is important in calculating sensitivities using the adjoint net-

work approach as will be discussed later. In the adjoint network formulation, the inde-

pendent sources are extracted from the network to form a multiport network as shown in 

Fig. 2-5 where the voltages and currents of those branches are denoted by Vp and Ip (port 

quantities). The voltages and currents of remaining branches which do not have inde-

pendent sources themselves are denoted by Vb and Ib (branch quantities). This type of 

network division is required to derive a mathematical formulation for the sensitivity 

analysis of the network. 

 

  

 

 

 

 

 

 

 

Fig. 2-5.  Extraction of independent sources to a multiport 

The two networks N and 
∧

N are considered to be adjoint networks when the following 

three conditions are satisfied: 

1. Both networks should have the same network topology; 

Ip1 

Vpn 

Ipn 

Vp1 

.. 

. 

. 

. 

Branches without  

independent sources 

Vb , Ib 

Vp 

Ip 

Port quantities Branch quantities 
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2. a) If the branches of N and 
∧

N  which do not have independent sources hold the 

branch impedance matrices Zb and 
∧

Zb  respectively, those matrices should be re-

lated as,  

∧

Z = Zt
b b                 (2.25)  

where,  V = Z Ib b b  and  
∧ ∧ ∧

V = Z Ib b b         

b) If the branches of N and 
∧

N  which do not have independent sources are de-

scribed by admittance matrices Yb and 
∧

Yb  respectively, those matrices should be 

related as, 

∧

Y = Yt
b b                (2.26) 

Where,  I = Y Vb b b  and  
∧ ∧ ∧

I = Y Vb b b  

c) If the networks N and 
∧

N  are described by hybrid parameters, those pa-

rameters of two networks should be related as (2.29). 

1 11 12 1

2 21 22 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I H H V
=

V H H I
b b b b

b b b b

          (2.27)  

1 11 12 1

21 22 22

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I H H V
=

V H H I

b b b b

b b bb

         (2.28)  

11 12 11 21

12 2221 22

∧ ∧

∧ ∧

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

H H H -H
=

-H HH H

t t
b b b b

t t
b bb b

         (2.29)  
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3. Corresponding independent sources in both networks should be the same in na-

ture. i.e. a voltage (current) source in one network corresponds to a voltage (cur-

rent) source in the other. 

When the networks N and 
∧

N satisfy the above conditions, the port quantities of both 

networks can be represented as follows. The impedance matrix Zoc is the open circuit im-

pedance as seen by each port. Then the port voltages and currents in both networks can 

be expressed as follows: 

V = -Z Ip oc p                 (2.30)  

∧ ∧ ∧

V = - Z Ip oc p                 (2.31)  

Since 
∧

Z = Zt
b b  and then as derived in [2] the open circuit impedance matrices of both 

networks are related by, 

∧

Z = Zt
oc oc                  (2.32)  

Equation (2.24) can then be expanded to its port quantities and branch quantities as 

shown below: 

∧ ∧ ∧ ∧ ∧ ∧

I ∆V - V ∆I = (I ∆V + I ∆V ) - (V ∆I + V ∆I ) = 0t t t t t t
p p b b p p b b    

∧ ∧ ∧ ∧

-(I ∆V - V ∆I ) = (I ∆V - V ∆I )t t t t
p p p p b b b b         (2.33)  

Due to the small changes in elements of Zb, the voltage change is approximated as,  

∆V = ∆Z I + Z ∆Ib b b b b              (2.34)  

As a result, (2.30) is modified as follows: 
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∆V = -∆Z I - Z ∆Ip oc p oc p              (2.35)  

By substituting (2.34) and (2.35)  in (2.33), the following equation (2.36) can be derived.  

Right hand side of (2.33): 

t t t t t t t
b b b b b b b b b b b b b b b b

∧ ∧ ∧ ∧ ∧ ∧

I ∆V - V ∆I = (I ∆Z I + I Z ∆I ) - I Z ∆I = I ∆Z I  

Left hand side of (2.33): 

∧ ∧ ∧ ∧ ∧ ∧ ∧

-(I ∆V - V ∆I ) = (I ∆Z I + I Z ∆I ) - I Z ∆I = I ∆Z It t t t t t t
p p p p p oc p p oc p p oc p p oc p  

Then,  
∧ ∧

I ∆Z I = I ∆Z It t
p oc p b b b              (2.36) 

In case of single port network, Zoc becomes the input impedance Zin of the network. 

Then,  t t
p in p b b b

∧ ∧

I ∆Z I = I ∆Z I               (2.37) 

Similarly, the following equations can be derived when the impedance matrices are 

replaced by corresponding admittance matrices. Ysc is the short circuit admittance matrix 

for the multiport and Yb is the admittance matrix of branches without independent 

sources. 

∧ ∧

V ∆Y V = V ∆Y Vt t
p sc p b b b              (2.38)  

For single port network, 

    t t
p in p b b b

∧ ∧

V ∆Y V = V ∆Y V              (2.39)  

By selecting the suitable excitation for the networks N and 
∧

N , i.e. I p and p

∧

I values, 

the left-hand side of (2.36) can produce the term to be analysed for sensitivity and the 

right hand side produces the sensitivities of corresponding parameters. The equations 
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(2.36) and (2.38) correspond to impedance matrix representation and admittance matrix 

representation of the network respectively. In case of hybrid parameter representation of 

the network, the corresponding can be derived as follows. 

The port quantities of networks N and 
∧

N can be extracted and written as, 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I H H V
=

V H H I
E EE EJ E

J JE JJ J

            (2.40)  

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I H H V
=

V H H I

E EE EJ E

JE JJ JJ

            (2.41)  

Where, the subscripts E and J are to represent the independent voltage sources and 

independent current sources respectively. By following the same procedure for deriving 

equation (2.36), equation (2.42) can be obtained for the case of hybrid parameter repre-

sentation as shown below. 

Left hand side of (2.33) is solved for hybrid parameters as follows: 

EE EJ Et t t t
p p p p E J

JE JJ J

-
∧ ∧ ∧ ∧ ∆ ∆⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H V
-(I ∆V - V ∆I ) V I

H H I
 

Right hand side of (2.33) is solved for hybrid parameters as follows: 

11 12 1
1 2

21 22 2

b b bt t t t
b b b b b b

b b b

∧ ∧ ∧ ∧ ∆ ∆⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H V
(I ∆V - V ∆I ) -V I

H H I
 

By combining above two equations: 

11 12 1
1 2

21 22 2

∧ ∧ ∧ ∧∆ ∆ ∆ ∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ∆ ∆ ∆⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H V H H V
V I -V I

H H I H H I
EE EJ E b b bt t t t

E J b b
JE JJ J b b b

-   (2.42) 
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The sensitivity analysis using the adjoint network approach involves the following 

steps. 

1) Analyzing the original networks N; 

2) Deriving corresponding adjoint network
∧

N ; 

3) Selecting the suitable excitations for both networks depending on the desired 

performance index; 

4) Solving both the networks for branch currents and voltages; 

5) Using (2.36), (2.38) or (2.42) calculation of sensitivities of desired perform-

ance index. 

Example 2.4: Sensitivity analysis by adjoint network approach 

Consider the same circuit in Example 2.1, for sensitivity analysis using the adjoint 

network approach. The original circuit is reconfigured as shown in Fig. 2-6(a) to generate 

the corresponding adjoint network shown in Fig. 2-6 (b). The independent source branch 

is taken as a separate branch and all the other branches in circuit are numbered. An inde-

pendent source branch is introduced to the desired performance index (here Vo). Vb and Ib 

represent the branch voltages and branch currents respectively where b denotes the 

branch number. 
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(a) Original network, N 

01 =
∧

pV

∧

5V ∧

oV

∧
− 5Vβ

 

(b) Adjoint network, N
∧

  
Fig. 2-6.  Sensitivity analysis using adjoint network approach  

 

The hybrid parameter representation of the circuit according to (2.27) is as follows: 

5 5

1 1

2 2

3 3

4 4

6 6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=

S

B

E

L

I Vβ
V IR
V I
V IR
V IR
V IR
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Then,  1 5⎡ ⎤⎣ ⎦b VV = , 

1

2

2 3

4

6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V =b

V
V
V
V
V

, 1 5⎡ ⎤⎣ ⎦I =b I , 

1

2

2 3

4

6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I =b

I
I
I
I
I

 

From (2.40), the interested parameter corresponding to voltage gain is HJE. So, the 

independent sources are to be selected in such a way that the left hand side of (2.42) con-

tains only ∆HJE component. 

 

The selected independent sources are as follows: 

 1 = 0t
pE V

∧ ∧⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
V , 2 = 1t

pJ -I
∧ ∧⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

I , 1 = 1E pV⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦V , 2 = 0J p-I⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦I  

For the above selected excitations, two networks can be solved for branch quantities. 

1 5 -1.8333=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦V =b V ,  1 5 0.3333=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦I =b I  

1

2

2 3

4

6

0.1667
0.1667
0.1667
0.5000
0.3333

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

I =b

I
I
I
I
I

,   

1

2

2 3

4

6

0.1667
0.0000
0.3333
0.5000
1.3333

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

V =b

V
V
V
V
V

 

1 5 -2.6667
∧ ∧⎡ ⎤ = ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
V =b V ,  1 5 0.0000

∧ ∧⎡ ⎤ = ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
I =b I  
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1

2

2
3

4

6

-1.3333
-1.3333
-1.3333
-1.3333
1.0000

∧

∧

∧ ∧

∧

∧

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

b

I

I

I

I

I

I = ,   

1

2

2 3

4

6

-1.3333
5.3333
-2.6667
-1.3333
4.0000

∧

∧

∧ ∧

∧

∧

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

V =b

V

V

V

V

V

 

By substituting above values in (2.42): 

t 0 0 0 0 02.6667 -1.8333
0 0 0 0 0-1.3333 0.1667
0 0 0 0 0 0-1.3333 0.1667
0 0 0 0 0-1.3333 0.1667
0 0 0 0 0-1.3333 0.5000
0 0 0 0 01.0000 0.3333

∆⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

∆ ⎢ ⎥⎢ ⎥ ⎢ ⎥∆⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥∆
⎢ ⎥⎢ ⎥ ⎢ ⎥

∆⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

H =

S

JE
B

E

L

β
R

R
R

R

 

By simplifying above matrix multiplication, the change in performance index, i.e. voltage 

gain, is resulted as follows: 

= ∆ = -0.2222∆ - 0.2222∆ - 0.6667∆ + 0.3333∆ + 0.4444∆JE S B E Lf R R R R β∆ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦H  

∆ = -0.2222∆ - 0.2222∆ - 0.6667∆ + 0.3333∆ + 0.4444∆S B E Lf R R R R β  (2.43)  

With the assumption of 
∆S S

f f
R R
∂ ∆

≈
∂

, the normalized sensitivity of the voltage gain 

against RS can be calculated as follows: 

ln( ) 1(-0.2222) * = -0.1667
ln( ) 1.3333

.
∂ ∂

= =
∂ ∂S

f S
R

S S

Rf fS =
R R f

 

Similarly, the sensitivities of voltage gain against other parameters can be calculated and 

the results are shown below. 

-0.3333=
B

f
RS  -0.5000=

E

f
RS  1.0000=

L

f
RS   0.6667=f

βS  
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The above results are the same as the sensitivities derived from direct differentiation 

method and incremental network approach.  

When (2.43) is written in symbolic form: 

1 1 3 3 4 4 6 6 5 5∆ = ∆ + ∆ + ∆ + ∆ + (- ∆S B E Lf I I R I I R I I R I I R V I β
∧ ∧ ∧ ∧ ∧

)    (2.44) 

 

The above equation reveals that the sensitivity of performance index against a par-

ticular branch parameter is always involved in product of branch quantities (either volt-

age or current) of corresponding branches in original and adjoint networks.  Depending 

on selection of the performance index, only the values of the branch quantities are varied. 

The advantages of the adjoint network approach over conventional simulation-based 

method are as follows. 

1) The sensitivity analysis using this method is an entirely simulation- based ap-

proach and only two network simulations for the original and adjoint networks are 

required to derive all partial derivatives of the performance index. This offers 

great saving in simulation time. 

2) Similar to the incremental network approach, this method also has the same ad-

mittance matrix for original and adjoint networks, which further reduces the com-

putational effort significantly. 
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2.1.4 Time-Domain Sensitivity Analysis Using the Adjoint 

Network Method 

Time-domain sensitivity is important when the transient behaviour of a network is to 

be analyzed. The sensitivities of objective function during the transient period can be de-

termined by extending the adjoint network method described earlier for time domain sen-

sitivity analysis of linear dynamic networks. The partial derivatives of the performance 

index with respect to network parameters are determined for a specified time interval.  

Recalling the Tellegen’s theorem for time domain quantities of branch voltages and 

currents of two networks N and 
∧

N  with same network topology, it is observed that 

t t t tt τ t τ τ t τ t
∧ ∧∧ ∧

v ( ) i( ) = i ( ) v( ) = v ( ) i( ) = i ( ) v( ) = 0       (2.45)  

where, t and τ are arbitrary time instants for networks N and 
∧

N , respectively. 

When the perturbed network Np is derived from the original network N, the following 

equation can be easily deduced from (2.45). 

∧
t τ ti ( ) ∆v( ) = 0   

∧
t τ tv ( ) ∆i( ) = 0  

∧ ∧
t tτ t τ ti ( ) ∆v( ) - v ( ) ∆i( ) = 0             (2.46)  

When the independent source branches are extracted from (2.46), the resultant equa-

tion with remaining branches is as follows.  Subscript p denotes the independent source 

branches (port quantities) while b denotes remaining branches (branch quantities).  

∧ ∧ ∧ ∧
t t t t
p p p p b b b bτ t τ t τ t τ t-i ( ) ∆v ( ) + v ( ) ∆i ( ) = i ( ) ∆v ( ) - v ( ) ∆i ( )     (2.47)  
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The above equation is valid when the time instants t and τ are related by τ = tf –t, 

where tf > 0 is the time instance at which the analysis is interested. The original circuit re-

sponse is obtained for time interval 0 ≤ t ≤ tf  while adjoint network response is obtained 

for time interval 0 ≤ τ ≤ tf. By integrating both sides of (2.47) from t = 0 to t = tf, the fol-

lowing equation resulted. 

∧ ∧ ∧ ∧

∫ ∫
f f

f f

t t
t t t t
p p p p τ=t - t b b b b τ=t - t

0 0

τ t τ t dt τ t τ t dt[-i ( ) ∆v ( ) + v ( ) ∆i ( )] = [i ( ) ∆v ( ) - v ( ) ∆i ( )]  (2.48) 

It is worth noting that the response of adjoint network is analyzed in backward time in 

above integration resulted from the relationship, τ = tf –t. Assuming that there are n 

branches which do not possess independent sources, the right hand side of (2.48) can be 

written in scalar notation as follows. 

[ ( )∆ ( ) ( )∆ ( )]
f

f

tn

=t -t
k=1 0

i τ v t v τ i t dtτ

∧ ∧

∑ ∫ bk bk bk bk -          (2.49)  

The individual branches in (2.49) can be integrated separately and added up together to 

give the right side of (2.48). 

For a resistive branch, the integral in (2.49) can be evaluated as follows. 

[ ( )∆ ( ) ( )∆ ( )]

{ ( )[ ∆ ( ) ( ) ] ( )∆ ( )}

{ ( ) ( ) ] }

f

f

f

f

f

f

t

R R R R =t -t
0

t

R R R R R =t -t
0

t

R R =t -t
0

i τ v t v τ i t dt

i τ R i t + i t  R R i τ i t dt

i τ  i t  dt R

τ

τ

τ

∧ ∧

∧ ∧

∧

= ∆

= ∆

∫

∫

∫ [

 -  

 -        (2.50) 
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For a capacitive branch, the integral in (2.49) can be evaluated to following approxima-

tion as detailed in [2]. 

[ ( )∆ ( ) ( )∆ ( )] { ( ) ( ) ] }
f f

f f

t t

CC C C C =t -t C =t -t
0 0

i τ v t v τ i t dt v τ  v t  dt Cτ τ

∧ ∧ ∧ •

= − ∆∫ ∫ [ -      (2.51) 

Similarly, for an inductance branch, the integral in (2.49) can be evaluated to following 

approximation. 

[ ( )∆ ( ) ( )∆ ( )] { ( ) ( ) ] }
f f

f f

t t

LL L L L =t -t L =t -t
0 0

i τ v t v τ i t dt i τ  i t  dt Lτ τ

∧ ∧ ∧ •

= − ∆∫ ∫ [ -     (2.52) 

Equations (2.50), (2.51) and (2.52) consist of changes in corresponding branch ele-

ments and hence the right hand side of (2.49) can be written as an expression of those in-

cremental values. By a proper selection of the port quantities (or excitations) for the 

original and adjoint networks, the term interested for sensitivity analysis can be produced 

at left hand side of (2.49). It is always necessary to keep the interested term as a port 

quantity for sensitivity analysis. 

The time domain sensitivity analysis using adjoint network approach also preserves 

all the advantages those mentioned in frequency domain sensitivity analysis using the 

same approach.  A detailed application of this method is presented in case studies in 

Chapter 4. 

Although the network-based methods described in sections 2.1.2, 2.1.3 and 2.1.4 offer 

significant savings in the computational intensity of sensitivity analysis, they are only ap-

plicable to linear circuits. Many of the power electronic circuits are non-linear in nature 

and hence intermediate steps are to be taken to prepare them for sensitivity analysis using 
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the adjoint network and incremental network approaches. The circuit averaging tech-

niques described in Chapter 3 present such a provision in linearizing the power electronic 

circuits which facilitate the applicability of network-based sensitivity analysis methods 

on linearized average models. 
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Chapter 3 

Circuit Averaging Methods for Power 

Electronic Converters 

3.1 Introduction to Circuit Averaging Tech-

niques 

The inherent switching operation of power electronic converters leads to periodic 

changes in the circuit configuration and results in a non-linear dynamical system. For 

each combination of the states of switching devices, a separate set of equations is to be 

defined to describe the circuit. The Fig. 3-1 illustrates such a configuration change in a 

circuit due to switching operation. Given that each switching state typically lasts for a 

short while and is followed by another state, the number of sets of equations describing 

the dynamics of the circuit becomes large and their successive solution requires massive 

and time-consuming calculations. Hence the application of the sensitivity analysis meth-

ods such as adjoint network approach in these types of circuits becomes complicated and 



   36 

 

 

time consuming. If an averaging technique can be used to define the average behaviour of 

those circuits, the complication and computational effort in sensitivity analysis can be 

drastically reduced with little less of accuracy.   

 
Fig. 3-1.  Two typical circuit configurations due to operation of switch ‘S’ and diode ‘D’ 

 

In circuit averaging techniques, a single set of linear equations is defined by tak-

ing a linearly weighted average of the separate equations for each switching configuration 

of the circuit. Solution of power electronic circuit equations often reveals two compo-

nents of response, namely  

(a) A slowly varying component that results from the natural frequencies of 

the circuit and emerges due to the response of the circuit to the average 

impact of the switching function; 

(b) A fast varying component that is due to the high-frequency switching ac-

tion. 

For a well-designed circuit the latter is typically much smaller in magnitude than 

the former. Unless the designer has specific interest in studying the small high-frequency 

component of the response, it is often the underlying low-frequency component that is of 
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interest. Circuit averaging techniques provide a computationally efficient approach to ob-

taining the low-frequency components of the response of a switching circuit. In these 

techniques, a single equation is defined by taking weighted average of the separate equa-

tions for each switching configuration. It is worth noting that one of the averaging 

method explained in this chapter can be extended to include above mentioned high-

frequency components in the average circuit model. 

In the following two sections, two widely used circuit averaging techniques, 

namely state space averaging method and generalized averaging method, are discussed. 

 

3.2 State Space Circuit Averaging Method 

The state space averaging method is a well-developed theory and its applications in 

power electronic converter modeling are thoroughly discussed in [9] and [10]. In this 

method, a set of state equations are defined for each switching configuration of the cir-

cuit. Then the equations are combined by giving a weighing factor for each switching 

configuration, which represents the time based operational fraction of that configuration.  

For simplicity, consider a circuit with a single controlled switch. In continuous conduc-

tion mode, the switching circuit is divided into two operational configurations depending 

on the state of the switching element being ON or OFF. The switching function, q(t) de-

fines the state of the switching element as: 

⎩
⎨
⎧

=
0
1

)(tq   If switching element is ON 
If switching element is OFF 
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The average value of the switching function d over one switching cycle period T and its 

complement d’ are defined as follows.  

( ) ( )
t

t T

d q t q dτ τ
−

= = ∫   and  dd −=′ 1   

The averaging time interval T is assumed to be sufficiently smaller than the smallest 

time constant of the circuit. Even though d is constant during one cycle, it may be a time 

function over a large time period. A graphical view of switching function, q(t) and its av-

erage value, d(t) is as shown in Fig. 3-2. 

 
Fig. 3-2.  Switching function and its average value 

 

The two sets of state equations for ON and OFF status of the switching element are de-

fined as follows. 

1)( =tq , (ON state) 

uBxAx 11 +=&                (3.1)  

uDxCy 11 +=                (3.2)  

0)( =tq , (OFF state) 

uBxAx 22 +=&                (3.3)  

uDxCy 22 +=                (3.4)  
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The two sets of state equations are combined by means of the switching function as fol-

lows: 

uBBxAAx ))()(())()(( 2121 tqtqtqtq ′++′+=&        (3.5) 

   uDDxCCy ))()(())()(( 2121 tqtqtqtq ′++′+=        (3.6) 

where,   x - state variables, u - input parameters, y - output parameters  

   A1- state matrix, B1- input matrix , C1- output matrix, D1- feed-through matrix  

q’(t) – complement of q(t) 

By averaging the above equation over one switching cycle period T, the following set of 

equations is resulted. 

1 2 1 2( ) ( )d d d d
•

′ ′≈ + + +x A A x B B u           (3.7)  

   1 2 1 2( ) ( )d d d d′ ′≈ + + +y C C x D D u           (3.8) 

The above equations were derived with the following assumption. i.e. the average value 

of multiplication of q and x is equal to multiplication of average values of those. Since 

x(t) varies slowly relative to q(t) such an assumption is valid. 

   q q⋅ = ⋅x x  

 If the duty cycle can be kept constant, equations (3.7) and (3.8) become a set of linear 

equations. Consider the following example for further clarification of the method.  

 

 

 

 



   40 

 

 

Example 3.1: State space model for buck-boost converter 

Consider the buck-boost DC-DC converter shown in Fig. 3-3. The operation of the 

switching element, S is defined by the above mentioned switching function q(t). Then the 

circuit equations can be developed for different switching states as follows.  

1)( =tq , (ON status) 

inL
L v

L
v

Ldt
di 11

==               (3.9)  

CC
C v

RC
i

Cdt
dv

⋅
−

==
11               (3.10)  

0)( =tq , (OFF status) 

CL
L v

L
v

Ldt
di

⋅==
11

              (3.11) 

 ( )CLC
C vRi

RC
i

Cdt
dv

+⋅
−

==
11

           (3.12)  

 
Fig. 3-3.  Buck boost DC-DC converter 
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The equations (3.9) and (3.10) are combined with (3.11) and (3.12) respectively by 

means of q(t) and its complement q’(t) as follows. 

   ))((1))((1 tqv
L

tqv
Ldt

di
inC

L ⋅+′⋅=            (3.13) 

   ( )CL
C vtqRi

RCdt
dv

+′⋅
−

= )(1
            (3.14)  

With the assumption of a sufficiently small switching period, the average model of the 

buck-boost converter is approximated to following equations. 

   ))((1))((1 tdv
L

tdv
Ldt

id
inC

L ⋅+′⋅≈            (3.15) 

   ( )CL
C vtdiR

RCdt
vd

+′⋅
−

≈ )(1
            (3.16)   

The above set of equations, (3.15) and (3.16) can be linearized by either keeping the 

duty cycle a constant or using the perturbation technique as explained in [9]. The result-

ing linearized low frequency model from perturbation technique is not applicable to sen-

sitivity analysis methods such as adjoint network approach. Hence for the linearization of 

above set of equations to apply in sensitivity analysis methods, d is to be kept constant or 

to be defined using a different set of equations as d changes. 

The application of state space averaging is limited within the satisfaction of condi-

tions of small ripple approximation and linear ripple approximation [12]. The small ripple 

approximation requires that the Fourier series expansion for a finite length segment of a 

circuit waveform to be dominated by its dc component. In case of linear ripple approxi-

mation, the circuit waveform is to be a linear function of time when examined over a time 

interval in between switching instants. In the following section, a more general averaging 
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procedure is discussed, which is potentially applicable to a much broader class of power 

electronic circuits. 

3.3 Generalized Circuit Averaging Method 

The development of generalized average model for a periodically switched circuit is dis-

cussed with great detail in [11]. The method consists of two steps, firstly taking one-cycle 

averaging for each branch variable of the circuit and secondly synthesizing the ‘average 

circuit element’ corresponding to each branch variable. 

The one-cycle average of branch variable, x(t) is as follows: 

∫
−

=〉〈
t

Tt

dssx
T

tx )(1)(               (3.17)  

where,  T is the switching period. 

The underlying circuit element and average circuit element can be graphically illus-

trated as shown in Fig. 3-4. Note that functions f and F correspond to underlying and av-

erage elements respectively are two different functions. The detailed derivation of such 

average circuit follows.  
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Fig. 3-4.  a) Underlying circuit element and b) Averaged circuit element 

The one-cycle average mentioned above is extended through Fourier series averaging 

method to achieve greater degree of accuracy. Any circuit waveform (of a branch vari-

able), ( )x t  can be approximated over time interval (t-T, t] with arbitrary accuracy using 

the Fourier series representation. 

( )( ) ( ) Sjk t T s
k

k

x t T s x t e ω
+∞

− +

=−∞

− + = 〈 〉∑           (3.18)  

where,  )(tx k〉〈  are the complex Fourier coefficients 

k – integer,   
TS
πω 2

= , ],0( Ts ∈ ,   

   The Fourier coefficients are time-dependent since the waveform representa-

tion may vary depending on the selected time interval. The kth Fourier coefficient or in-

dex-k average is determined by the following equation.  

  ∫ +−−+−=〉〈
T

sTtjk
k dsesTtx

T
tx S

0

)()(1)( ω           (3.19)  
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The average model of the waveform consists of several Fourier coefficients depend-

ing on dominant harmonics of the given waveform. The time derivative of the kth coeffi-

cient of the Fourier series is given by the following equation [13].   

  )()()( txjktx
dt
dtx

dt
d

kSkk 〉〈−〉〈=〉〈 ω           (3.20)  

This equation derives the averaged branch variables for the basic circuit elements and 

consequently synthesizes the physical models as shown below. 

For a linear resistive element; 

 
   Riv =             kk iRv 〉〈=〉〈   

For an inductive element; 

 

   )()( ti
dt
dLtv =         kSkk iLjkvi

dt
dL 〉〈−〉〈=〉〈 ω   

  

For a capacitive element; 

 

)()( tv
dt
dCti =         kSkk vCjkiv

dt
dC 〉〈−〉〈=〉〈 ω   
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The averaged model for switching element is also derived using the same technique as 

explained in [11].  Considering the underlying switching element in Fig. 3-5 (a), the fol-

lowing equations can be developed. 

  ca qii =  apcp qvv =   cp iqi )1( −=  

where, 
⎩
⎨
⎧

=
0
1

q       depending on the switching configuration 

Fig. 3-5 (b) shows its equivalent of the switching element developed using the de-

pendent sources. By taking the controlling port variables as vap and ic and the non-

controlling port variables as vac and ia, the switch can be represented as a two port net-

work. Then the switch is embedded in to the interested main circuit and the above men-

tioned port variables are determined in terms of main circuit parameters. 

 
Fig. 3-5.  Developing averaged model of switching element 

 

To determine the averaged model of switching element, kapqv 〉〈  and kcqi 〉〈  are to be 

evaluated for each index – k along with the other circuit parameters. The convolution 

formula (3.21) is used to determine the quantities, kapqv 〉〈  and kcqi 〉〈 . 

The convolution formula for variables, x and y; 
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  ∑ 〉〈〉〈=〉〈 −
i

kikk yxxy                (3.21) 

The following example provides a further clarification about the generalized averaging 

technique. 

 

Example 3.2: Generalized average model of buck-boost converter 

Consider the same buck boost converter circuit in Example 3.1. As shown in Fig. 3-6, the 

index – k averaged model or index - k sub-circuit of the converter can be synthesized by 

replacing all branch components with the corresponding averaged models defined before. 

The behaviour of the original circuit can be restored to an arbitrary accuracy level by tak-

ing summation of sufficient number of sub-circuits for different k values.  

 
Fig. 3-6.  Index-k averaged model of buck boost converter 

 

The index-0 average circuit gives the simplified averaged DC model of the converter 

and it is same as the model resulted from state space averaging approach. Note that the dc 

average model is a suitable representation of the low-frequency behaviour of the circuit. 
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It contains the dynamics of the circuit response except for its ripple contents. Since a 

well-designed power electronic circuit will have small ripple it is often adequate to con-

sider its low-frequency behaviour.  Fig. 3-7 shows the index-0 model and it is worth not-

ing that the frequency dependent component of the branch element is omitted here.  

 

To determine the averaged quantities,  0Lqi〈 〉  and 0( )in oq V v〈 − 〉  the convolution theorem 

is used. 

From (3.21),  0 1 1 0 0 1 1L L L Lqi q i q i q i− −〈 〉 = 〈 〉 〈 〉 + 〈 〉 〈 〉 + 〈 〉 〈 〉  

Since 0 0Lq i〈 〉 〈 〉  is the dominating part, by neglecting the other terms: 

0 0 0L Lqi q i〈 〉 ≈ 〈 〉 〈 〉  

Similarly,   0 0 0( ) ( )in o in oq V v q V v〈 − 〉 ≈ 〈 〉 〈 − 〉  

 

 
Fig. 3-7.  Index-0 average model of the converter 

 

Let 0q〈 〉 =D0 and other average values as shown in Fig. 3-8. 
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Fig. 3-8.  Index-0 average model with revised notation 

 

To validate the above model, the circuit was simulated for out-put voltage vo0 in the 

PSCAD-EMTDC circuit simulation software with its original converter circuit and the 

results are as shown in Fig. 3-9. The transient behaviour of the averaged circuit is almost 

following that of the original converter circuit. 
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Fig. 3-9.  Output voltage waveforms of original and index-0 averaged circuits 
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To achieve a greater degree of accuracy for the converter model, the index-0 sub-

circuit can be augmented with index-1 and index-2 average models as shown in Fig. 3-10.  

The resulting steady state wave forms are as shown in Fig. 3-11.  

It can be concluded that the combination of higher order index models with index-0 

model gives acceptable approximation to the steady state voltage ripple of the original 

circuit.  Depending on the portion of the waveform that is of interest, i.e. either the tran-

sient behaviour or the steady state ripple behaviour, selection of required sub-circuits 

should be done.  
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(a) 

 
(b) 

Fig. 3-10.   Index-1, 2 sub-circuits of the converter 
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Fig. 3-11.  Output voltage waveforms of original and averaged circuits 
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The advantages of generalized averaging method are as follows: 

1) The generalized averaging method achieves a greater degree of accuracy by al-

lowing  higher order average models;  

2) This method also allows direct analysis of the given circuit rather than in state 

space method, since all the branch variables are to be dealt with in synthesizing of 

the whole circuit. The consequential advantage is the possibility of using a circuit 

simulation software such as PSCAD-EMTDC in analyzing the circuit. Addition-

ally, the generalized averaging method facilitates to automate the synthesis of av-

eraged circuit model from the original circuit in simulation software. This is 

achievable through pre-defining of ‘averaged’ circuit elements itself in the soft-

ware;  

3) The less simulation time taken by averaged model when compared with that of 

underlying circuit is another consequential advantage of the generalized circuit 

averaging method [11]. 
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Chapter 4 

Case Studies 

In sensitivity analysis, adjoint network approach has salient features over the other meth-

ods as explained in Chapter 2. The first case study discussed here, i.e. maximum power 

transfer circuit, is to demonstrate the practical usage of sensitivities derived using such a 

method.  The second case study demonstrates the main objectives of this research. It 

combines the adjoint network sensitivity analysis method with circuit averaging tech-

nique to derive sensitivities of a non-linear switching circuit. Additionally, to achieve 

higher degree of accuracy in sensitivities, including of a high indexed averaged model 

analysed by incremental network sensitivity method is also discussed. 

4.1 Maximum Power Transfer Circuit 

Assume that the main objective of the circuit shown in Fig. 4-1 is to deliver maximum 

power to the load by optimizing the load side parameters. The circuit is then analyzed for 

sensitivities of transferred power to the load against the load side parameters and subse-

quently uses them for the optimization of power transfer to the load.   
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Fig. 4-1.  Circuit for maximum power transfer 

 

The maximum power transfer theorem asserts that the load impedance, ZL should be 

equal to conjugate of source impedance, Zs for delivering maximum power to the load.  

where,  LLL jXRZ +=  and  S S SZ R jX= +          (4.1) 

Hence the optimization of power transfer to load would result load impedance to satisfy 

the following conditions. 

SL RR =  and  SL XX −=            (4.2) 

The following section describes the use of adjoint network approach to derive the sensi-

tivities of power transfer in above circuit and subsequently use them in optimization of 

power transfer to demonstrate above results.            

4.1.1 Adjoint Network Sensitivity Analysis 

The sensitivity of load power against the parameters RL and XL can be calculated using 

adjoint network approach as follows.  The branches of the circuit without independent 
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sources are numbered as shown in Fig. 4-2 and the branch voltages and branch currents 

are represented by Vb and Ib respectively where b denotes the branch number. 

 

Fig. 4-2.  Circuit for maximum power transfer 

Recalling (2.27), 
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⎥
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where,  01 =bI   
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The derivation of sensitivities of transferred power to load against network parame-

ters is not straight-forward here.  First it is necessary to derive the sensitivities of input 
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admittance and then those of input current. Finally, the sensitivities of transferred power 

are derived. The steps involved in calculation are as follows. 

Let,  1 2 3 4I I I I I= = = =    

The power transferred to the load is given as:  2
load LP I R=       (4.4)  

Then, the sensitivity of power against any network parameter x is in the following form:   

     2 2load L
L

P R II I R
x x x

∂ ∂ ∂
= +

∂ ∂ ∂
            (4.5) 

The value of LR
x

∂
∂

is either 1 or 0, while the value of I
x

∂
∂

is calculated in following 

manner. The circuit was modified to include input admittance, Yin as shown in Fig. 4-3.  

( )in S in in
S

I V Y YI V
x x x x

∂ ∂ ∂∂
= − = =

∂ ∂ ∂ ∂
           (4.6)  

 
Fig. 4-3.  Original network  

From (2.40) the parameter interested corresponding to input admittance is HEE.  

inEE Y
x x

∂−∆ ⎡ ⎤≈ ⎢ ⎥∆ ∂⎣ ⎦

H
               (4.7) 

For clarity of the explanation, (2.42) is recalled as follows: 
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11 12 1
1 2

21 22 2

∧ ∧ ∧ ∧∆ ∆ ∆ ∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∆ ∆ ∆ ∆⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

H H V H H V
V I -V I

H H I H H I
EE EJ E b b bt t t t

E J b b
JE JJ J b b b

-  

So the independent sources are to be selected in such a way that the left hand side of 

above equation contains only ∆HEE component.  

Therefore;  = 1t
SE V

∧ ∧⎡ ⎤= ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
V   0t

J

∧

= ⎡ ⎤⎣ ⎦I   = 1E SV= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦V   0J = ⎡ ⎤⎣ ⎦I  

 

For the above selected excitations, both the original and adjoint networks have the 

exactly same configuration as the circuit shown in Fig. 4-3 and hence only one simulation 

is sufficient. This is another advantage of adjoint network approach. The circuit can be 

solved for branch quantities and results are as follows. 

   1 1 0t
b b

∧

= = ⎡ ⎤⎣ ⎦V V   2 2
t
b b

I
I
I
I

∧

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

I I   

Substituting above values; 

[ ]

0 0 0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0

S

EE S

L

L

j X I
I I I I R I

j X I
R I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∆ = ∆
⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∆ ⎣ ⎦⎣ ⎦

H      (4.8) 

2 2 2 2
EE S S L LI j X I R I j X I R⎡ ⎤∆ = ∆ + ∆ + ∆ + ∆⎣ ⎦H        (4.9) 

From (4.6) and (4.7), 

  2
S

S

I jV I
X
∂

= −
∂

 2
S

S

I V I
R
∂

= −
∂

 2
S

L

I jV I
X
∂

= −
∂

 2
S

L

I V I
R
∂

= −
∂

     (4.10)  
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The above derived sensitivities can be replaced in (4.5) to define the partial derivatives of 

load power.  

22 ( )load
L S

S

P I R jV I
X

∂
= −

∂
  22 ( )load

L S
S

P I R V I
R

∂
= −

∂
 

22 ( )load
L S

L

P I R jV I
X

∂
= −

∂
  

2 22 ( )load
L S

L

P I I R V I
R

∂
= + −

∂
    (4.11) 

Then the load impedance parameters, RL and XL can be optimized to have maximum 

power transfer to load side. For the optimization process, let the objective function, f0 to 

be (- Pload) which is to be minimized. Then the sensitivities of objective function against 

the network parameters are as follows.   

   0 load

L L

f P
X X

∂ ∂
= −

∂ ∂
  and  0 load

L L

f P
R R

∂ ∂
= −

∂ ∂
       (4.12) 

The optimized RL and XL values are determined through following equations.  

   0
, ,L new L old X

L old

fX X
X

α
⎛ ⎞∂

= − ⎜ ⎟∂⎝ ⎠
 

   0
, ,L new L old R

L old

fR R
R

α
⎛ ⎞∂

= − ⎜ ⎟∂⎝ ⎠
            (4.13) 

where, αX and αL – step sizes in search direction 

The optimization was done with a fixed α value and a limited number of iterations for 

the circuit parameters of source impedance, ZS = 0.5 +j0.04 and the source voltage VS = 

10 V. The code developed in Mathcad software for the optimization process is attached in 

Appendix 1. The resulting optimized values for load side parameters are close to the ex-

pected values from maximum power transfer theorem as shown below. 
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Table 4-1.  Optimized load impedance for maximum power transfer 

Circuit parameter values (Ω) 

RS RL XS XL 

0.5000 0.5009 0.0400 -0.0399 

 

Once the power delivered to the load is optimized considering the conventional 

maximum power transfer theorem, only 50% power transmission efficiency is possible 

with above resultant parameter values. This is due to fact that the same amount of power 

delivered to load is dissipated at source side impedance. Hence maximum power transfer 

and maximum transmission efficiency are two contradictory requirements in power cir-

cuits. A compromised solution for both the power transfer and transmission efficiency 

can be achieved through a multiple objectives optimization problem as explained in [17]. 

This is done by introducing weighing factors to the individual objective functions, 

namely power transfer or transmission efficiency, according to their relative importance. 

In this case, Let f  be the multiple objective function: 

(1 )load lossf P Pγ γ= − −              (4.14) 

where,  Pload – power delivered to load  

Ploss – power loss in source side ( 2
loss SP I R= ) 

γ – weighing factor 

The above multiple objectives function was optimized with a fixed step size in the 

search direction using the sensitivities derived from adjoint network approach. The 

code developed in Mathcad software for optimization process is attached to Appendix 

2. The results were tabulated as shown below for different values of γ. 
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Table 4-2.  Results comparison for different γ values 

γ Pload Ploss RL XL 
Power to 

load (%) 

Transmission 

Efficiency (%) 

1.0 50.0 50.0 0.50 -0.040 100.0 50.0 

0.8 48.3 33.3 0.72 -0.041 96.6 59.2 

0.6 44.8 22.8 0.98 -0.044 86.6 66.9 

0.5 42.9 19.5 1.10 -0.044 85.8 68.8 

0.4 41.2 16.9 1.22 -0.045 82.4 70.9 
 

The above result reveals that the compromise between power transfer to load and 

transmission efficiency can be achieved through optimization process which uses the sen-

sitivities derived from adjoint network approach.   

4.2 Buck-boost DC-DC Converter 

The buck boost converter is a controllable DC-DC converter in which the output voltage 

is either larger or less than the input voltage depending on the duty cycle of the switching 

element. Hence it is inherently a switching circuit and therefore it periodically changes its 

configuration with the switching operation. The result is a non-linear dynamical system. 

Hence the application of adjoint network approach or incremental network approach in 

sensitivity analysis becomes complicated and time consuming. Such an application of ad-

joint network approach is explained in [19] with piecewise linear approximation of the 

DC-DC converter.   

In this case study, it is investigated the applicability of those sensitivity analysis 

methods in average model of the converter instead of the original circuit to cut off the 
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computational effort significantly. For the simplicity, the index-0 average model of DC-

DC converter developed under generalized averaging method in section 3.3 is considered. 

 

Fig. 4-4.  Index-0 average circuit of buck-boost converter 

4.2.1 Adjoint Network Sensitivity Analysis of Buck-boost Con-

verter 

  The adjoint network sensitivity analysis in time domain is used here to analyse the 

transient behaviour of the circuit. Suppose that the transient sensitivity of out-put voltage, 

vo(t) of the converter is the measure of interest. Since the voltage across the capacitor, 

vC(t) equals to the output voltage, vo(t) the analysis of capacitor voltage is adequate. The 

index-0 averaged circuit was reconfigured as shown in Fig. 4-5(a) for the sensitivity 

analysis and the corresponding adjoint network developed is as shown in Fig. 4-5(b).  



   61 

 

 

+ -

+
-

vo

v7

C R

L

i1

Di3

vin

Dv7

i2

i3

i7

i5

i4

i61 23 6

5
4

7

vC

 
(a) Index-0 average network 

C R

L

1

2

3 6

5
4

7

∧

1i

∧

7i

∧

6i∧

5i
∧

4i

∧

3i

∧

2i

∧
− 2iD

∧

1v

∧

ov

)()( τδτ −=pi

∧
− 1vD

+

-
Cv
∧

 
(b) Adjoint network of index-0 average network 

Fig. 4-5.  Sensitivity analysis using adjoint network approach 
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By solving the index-0 average circuit, the transient solution for vC(t) is obtained as 

follows: 

2 1( ) 1 (cos( ) sin( ))
(1 ) 2

t-in RC
C

-Dv
v t = - e ωt + ωt

- D RCω
⎡ ⎤
⎢ ⎥⎣ ⎦

     (4.15)  

where,  

1
2 2

2 2

-1 - 
4

(1 - D)ω
LCR C

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 

Then, the time derivative of vC(t), 

2
2 2

1( ) ( )sin( )
(1 ) 4

t-in RCC
-Dv

v t = e ω+ ωt
- D R C ω

• ⎡ ⎤
⎢ ⎥⎣ ⎦

       (4.16) 

By solving the adjoint circuit, the transient solution for ( )Cv τ
∧

, 

2 1( ) cos( ) sin( )
2

- RC
C

1v τ = e ω - ω
C RCω

τ
τ τ

∧ ⎡ ⎤
⎢ ⎥⎣ ⎦

       (4.17)  

The time domain sensitivity of output voltage against capacitor value is equal to that of 

capacitor voltage against the capacitor value.  Hence from (2.51), 

    ( ) ( ) ( ) ( ) ]
f

f

t

Co f C f C =t -t
0

v t = v t = v τ  v t  dt Cτ

∧ •⎧ ⎫
⎪ ⎪∆ ∆ − ∆⎨ ⎬
⎪ ⎪⎩ ⎭
∫ [        (4.18)  

Substituting values, 

2
2 2

2

1( ) ( )
(1 ) 4

1 1 1                      sin( ) cos( ) sin( )
2 4

f-t
in RC

o f

f f f

Dv
v t = ω + e

- D C R C ω

ωt + ωt t ωt C
RCω 4RCω

⎛ ⎞
∆ ⋅ ⋅⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞× − ∆⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
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Suppose that the change in capacitor value is sufficiently small to take ( )o
f

v
t

C
∆
∆

 as the 

time domain partial derivative ( )o
f

v
t

C
∂
∂

which leads to next formula:  

2
2 2

2

1( ) ( )
(1 ) 4

1 1 1                      sin( ) cos( ) sin( )
2 4

f-t
o in RC

f

f f f

v Dv
t = ω + e

C - D C R C ω

ωt + ωt t ωt
RCω 4RCω

⎛ ⎞∂
⋅ ⋅⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞× −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

   (4.19) 

The partial derivative ( )o
f

v
t

C
∂
∂

is the time domain sensitivity of output voltage against ca-

pacitor value.  

Similarly, the time domain sensitivity of output voltage against inductor value can be de-

rived and the derivative is as follows. 

2

2

( )
(1 )

A Asin( ) - cos( ) sin( )
2 2 2

f-t
o in RC

f

f f f

v Dv
t = e

L - D RLC

(1 - D) R ωt ωt t ωt
L ω

ω
⎛ ⎞∂

⋅⎜ ⎟∂ ⎝ ⎠
⎡ ⎤⎛ ⎞

× +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                           
    (4.20) 

where,  
2

2 2

1A - 
24

(1 - D) Rω+
LCωR C ω

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

For the demonstration purpose, the average model of converter and its adjoint net-

work are solved analytically here. But in real case the power electronic circuits are com-

plex and hence getting analytical solution is a time consuming process. In such cases, the 

average model and its adjoint network are solved using simulation software and the re-

sulting branch information for both networks as in (4.15) and (4.17) are stored. Then the 

sensitivity analysis can be carried out applying those data as shown in (4.18).    
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4.2.2 Results Comparison 

To verify the accuracy of above sensitivities derived using adjoint network approach, 

those are compared with the same sensitivities calculated in brute-force manner. The 

simulation-based numerical method explained in section 2.1.1 is used as the brute-force 

method to calculate the sensitivities of index-0 average circuit as well as the original 

buck-boost converter. To calculate the sensitivity of output voltage vo against capacitor 

value C in brute-force manner, two simulations were carried out for capacitor value C 

and incremented capacitor value C1. Let vo1 and vo2 are the corresponding output voltages 

for the capacitor values C and C1 respectively. 

Recalling equation (2.8), 

   2 1 2 1

1 -
o o o o ov v - v v - v

C C C C
∂

≈ =
∂ ∆

            (4.21)  

Similarly, sensitivity against inductor value, L 

   2 1 2 1

1 -
o o o o ov v - v v - v

L L L L
∂

≈ =
∂ ∆

            (4.22) 

    

According to (4.21), for calculation of sensitivities in brute-force manner, an incre-

mental value for the parameters (∆C or ∆L) is to be introduced. The sensitivities of index-

0 average circuit derived from adjoint network approach and those of index-0 average 

circuit and original buck-boost converter calculated in brute-force manner were graphed 

and compared as follows. 

For the calculations in brute-force manner, the change in capacitor value, ∆C is taken as 

5% of the capacitor value first. i.e. C = 100 µF and C1 = 105 µF 
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Change in capacitance, ∆C = 5% of capacitor value 

The waveforms of the time domain sensitivities mentioned above are as follows. For 

index-0 average circuit, the sensitivity of output voltage against capacitor value derived 

using adjoint network approach is denoted by SVoC1. For the same circuit, the same sen-

sitivity calculated in brute-force manner is denoted by SVoC2. For the original circuit, 

SVoC3 denotes the sensitivity of output voltage against capacitor value derived in brute-

force manner. 
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Fig. 4-6. Comparison of time domain sensitivities (∆C = 5%) 
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The results shows that the time domain sensitivities derived by the adjoint network 

approach combined with the circuit averaging technique are similar to those of original 

network calculated brute-force manner. Several ∆C values, i.e. 10%, 20% and -10%, 

were tried out for the brute-force method to calculate sensitivities and the comparison of 

those with adjoint sensitivities is as follows. 

Change in capacitance, ∆C = 10% of capacitor value  
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Fig. 4-7.  Comparison of time domain sensitivities (∆C = 10%) 
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Change in capacitance, ∆C = 20% of capacitor value 
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Fig. 4-8.  Comparison of time domain sensitivities (∆C = 20%) 

 

 

 

 

 



   68 

 

 

Change in capacitance, ∆C = -10% of capacitor value  
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Fig. 4-9.  Comparison of time domain sensitivities (∆C = -10%) 

 

It was noticed that as the ∆C value is increased there is a phase shift in sensitivities 

calculated by brute-force manner with respect to those of adjoint network approach. This 

is happened due to the introduction of ∆C value which differs the natural frequency of the 

circuit in brute-force method. But in case of adjoint network approach, it takes originally 

introduced parameter values for the sensitivity calculation.  A negative ∆C value causes a 

phase shift in reverse direction as shown in Fig. 4-9.  

The same comparison explained above was carried out for the sensitivity of output 

voltage, vo against inductor value, L. The comparison is as presented in the following 

graphs. 
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Change in inductance, ∆L = 5% of inductor value  
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Fig. 4-10.  Comparison of time domain sensitivities (∆L = 5%) 
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Change in inductance, ∆L = 10% of inductor value  
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Fig. 4-11.  Comparison of time domain sensitivities (∆L = 10%) 

 

The above results confirm that the time domain sensitivities derived by the adjoint 

network approach combined with the circuit averaging technique are similar to those of 

original network calculated in brute-force manner.  Hence, in sensitivity analysis of 

switching circuits, the salient features of adjoint network approach can be achieved by 
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analyzing the average model instead of its original network with preserving reasonable 

accuracy.    

One of the applications of above derived time domain sensitivities using adjoint net-

work approach combined with circuit averaging techniques may be the optimization of 

circuit parameters to reduce the transient overshoot of a measured circuit variable. For 

example, the transient overshoot of the output voltage of buck-boost converter can be re-

duced by optimising capacitor value, C and inductor value, L with the sensitivities de-

rived in the above manner. 

4.2.3 Sensitivity in Optimization 

With given parameter values of the buck-boost converter, the output voltage of index-0 

average circuit and its reference value are as shown in Fig. 4-12. 
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Fig. 4-12.  Overshoot of output voltage of index-0 average circuit  

An objective function fo, is defined to reduce overshoot of output voltage in index-0 aver-

age circuit as given by (4.23). 

1

0

2
,( ( ) )

t

o o o ref
t

f v t v dt= −∫              (4.23) 
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where, t0 and t1 are to be decided upon output voltage pattern  

The sensitivity of objective function against the circuit parameters can be defined using 

Leibniz Integral Rule as follows. 

1

0

,
( )2( ( ) )

t
o o

o o ref
t

f v tv t v dt
C C

∂ ∂
= −

∂ ∂∫            (4.24) 

1

0

,
( )2( ( ) )

t
o o

o o ref
t

f v tv t v dt
L L

∂ ∂
= −

∂ ∂∫              (4.25) 

The quantities ( )ov t
C

∂
∂

 and ( )ov t
L

∂
∂

 are the time domain sensitivities and can be replaced 

with those derived in previous section. 

Once the sensitivities of objective function are calculated from (4.24) and (4.25), the pa-

rameters C and L can be optimized as follows.  

o
new old C

old

fC C
C

α ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
               (4.26) 

o
new old L

old

fL L
L

α ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
               (4.27) 

where, αC and αL are the step lengths in the search direction. 

A code developed in Mathcad software for the optimization of circuit parameters to 

reduce overshoot of the output voltage of the index-0 average circuit is shown in Appen-

dix 3. It was revealed that the optimization process continues to reduce overshoot drasti-

cally as shown in Fig. 4-13. The objective function does not have a local minimum as in-

creasingly larger inductors and increasingly smaller capacitors will continue to lower this 

objective function. Moderate values for parameters were selected through the optimiza-

tion as given below. 
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Table 4-3.  Optimized circuit parameters  

Parameter Before optimization After optimization 

Inductance, L 180 µH 194 µH 

Capacitance, C 100 µF 27 µF 
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Fig. 4-13.  Output voltage of index-0 average circuit after and before optimization 

 

Once the optimized parameters are substituted in original buck boost converter, it re-

vealed a practical limitation of using only the index-0 average circuit to represent original 

circuit. The index-0 average circuit does not take in to account the ripple in the output 

voltage. Hence the optimization of transient overshoot results in amplified ripple at 

steady state as shown in Fig. 4-14. This problem can be overcome simply by including 

the index-1 average circuit which provides an approximation to the ripple waveform. 

Then the optimization problem can be taken as a multiple objective functions problem to 

reduce both the transient overshoot and ripple waveform. 
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(b) Zoomed view of ripple voltage 

Fig. 4-14.  Output voltage of original circuit before and after optimization 

4.2.4 Sensitivity with Higher Index Average Circuit 

Since the objective of including the index-1 average circuit is to minimize steady state 

voltage ripple, a frequency domain sensitivity analysis method would be sufficient to 

study the sensitivities of the circuit. Either the adjoint network approach or incremental 

network approach in frequency domain can be used to derive the sensitivities. The incre-
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mental network approach is used here to demonstrate the use of combination of sensitivi-

ties derived from different analysis methods in optimization. 

The index-1 average circuit derived in section 3.2 was simplified using convolution theo-

rem as shown in the following figure. 

L RC

jωsL

1/jωsC

iL1

D0iL1 -D0vO1

vL1

vo1vC1

D1(vin-vo)0

D1iL0

 

Fig. 4-15.  Index-1 average model of buck-boost converter 

The steady state output voltage of the combination of the index-0 and index-1 average 

circuits is as shown in following Fig. 4-16. 

0.0183 0.0184 0.0185 0.0186 0.0187 0.0188 0.0189 0.019 0.0191 0.0192
-47

-46

-45

-44

-43

-42

-41

 

 

Vo - Original cct ripple

Vo_01 - Index-0,1 averages ripple

 

Fig. 4-16.  Steady state output voltage  

The corresponding incremental network of index-1 average circuit is developed as shown 

in Fig. 4-17. 
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L
RC

jωsL 1/jωsC

∆iL1

D0∆iL1 -D0∆vo1

∆vC1
∆vo1

io∆R

jiL1ωs∆L

jiL1ωs∆L jvC1ωs∆C

jvC1ωs∆C

 

Fig. 4-17.  Incremental network of index-1 average circuit 

By solving the incremental circuit, the change in output voltage, ∆vo1 or ∆vC1 (both are 

same) can be expressed as follows. 

( )

( )( ) ( )
1 1 1

1 1 2 22

4 2(1 ) (2 )

(1 ) 4 2

C s L o
o C

s s

v C j D i L L j i R R
v v

D L C R

ω

ω ω

∆ + − ∆ + ∆
∆ = ∆ =

− − +
    (4.28) 

Hence, the sensitivities of output voltage can be approximated as follows. 

( )( ) ( )
1 1 1

2 22

4

(1 ) 4 2

o o C s

s s

v v v
C C D L C R

ω

ω ω

∂ ∆
≈ =

∂ ∆ − − +
        (4.29) 

( )( ) ( )
1 1 1

2 22

2(1 )

(1 ) 4 2

o o L

s s

v v D i L
L L D L C Rω ω

∂ ∆ −
≈ =

∂ ∆ − − +
        (4.30) 

To reduce the voltage ripple, let the objective function, f1 is to be the output voltage of 

the index-1 circuit. 

1 1of v=  then, 11 ovf
C C

∂∂
=

∂ ∂
  11 ovf

L L
∂∂

=
∂ ∂

        (4.31) 
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With the combination of objective functions to reduce the transient overshoot and voltage 

ripple, the multiple objectives function, f can be defined as; 

0 0 1 1f f fγ γ= +                  (4.32) 

Where, γ0 and γ1 are weighing factors 

Then,  0 1
0 1

f ff
C C C

γ γ∂ ∂∂
= +

∂ ∂ ∂
  and  0 1

0 1
f ff

L L L
γ γ∂ ∂∂

= +
∂ ∂ ∂

       (4.33) 

From (4.24), (4.25) and (4.33), 

1

0

1( )2( ( ) )
t

o o
o ref

t

v t vf v t v dt
C C C

γ∂ ∂∂
= − +

∂ ∂ ∂∫  

1

0

1( )2( ( ) )
t

o o
o ref

t

v t vf v t v dt
L L L

γ∂ ∂∂
= − +

∂ ∂ ∂∫          (4.34) 

The optimized parameter values given by the following equations where α is the step 

length in the search direction. 

0 1
new old

old

f fC C
C C

α γ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂⎝ ⎠
 

0 1
new old

old

f fL L
L L

α γ∂ ∂⎛ ⎞= − +⎜ ⎟∂ ∂⎝ ⎠
           (4.35) 

An optimization code was written in Mathcad as shown in Appendix 4 and the resulting 

parameter values after optimization were as follows. 

Table 4-4.  Optimized circuit parameters (multiple objectives) 

Parameter Before optimization After optimization 

Inductance, L 180 µH 187 µH 

Capacitance, C 100 µF 56 µF 
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The output voltage waveforms of the original buck-boost converter circuit before and 

after optimization were graphed as shown below. Note that the optimization of this multi-

objective function yields a controlled compromise between the importance of the two 

competing objective functions. The designer can select a suitable compromise level de-

pending on design specifications. 
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Vo - Original cct un-optimized
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(a) Output voltages 
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(b) Zoomed view of  steady state ripple 

Fig. 4-18.  Output voltage waveform before and after optimization 

Hence, it can be summarized the steps involved in sensitivity analysis of power electronic 

circuits as follows. 
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1) Developing the index-0 average model of the given circuit 

2) Augmenting higher order average circuits depending on requirement 

3) Synthesizing the adjoint network of developed average model 

4) Selecting suitable excitation of the circuits depending on the desired performance 

index  

5) Performing circuit simulation on average model and its adjoint network 

6) Deriving  sensitivities of interested performance index  
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Chapter 5 

Conclusions, Contributions and Rec-

ommendations 

5.1 Conclusions and Contributions 

The main objective of this research was to investigate the applicability of computation-

ally efficient sensitivity analysis method to complex power electronic circuits by deriving 

linearized average model.  The following highlights are the concluding remarks of the re-

search work carried out.  

 

1. The existing simulations based sensitivity analysis methods were thoroughly stud-

ied to identify their capabilities and limitations in application to power electronic 

circuits. The studies revealed that the adjoint network approach has salient fea-

tures over the others but is limited in application to linear circuits only. 
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2. The circuit averaging techniques available in literature were investigated for their 

applicability to a variety of circuits. The average model developed using general-

ized circuit averaging techniques provided better representation of the original 

circuit compared to those developed by other method. The average model was 

validated by comparing its response to that of original circuit. 

 

3. A computationally efficient sensitivity analysis method was introduced for power 

electronic switching circuits by combining adjoint network approach and equiva-

lent average model of underlying circuit. The resulting sensitivities were verified 

with those derived in brute-force manner and it was demonstrated that the results 

are acceptable.   

 

4. The practical limitation of above proposed method with only index-0 average cir-

cuit was identified since it does not represent the ripple behaviour of performance 

index such as in power electronic converters. This problem was eliminated by 

embedding index-1 average model to the analysis. 

 

5. The practical usage of above derived sensitivities was demonstrated by applying 

them successfully in an optimization process.   

6. In the context of this thesis, sensitivity analysis is the process by which sensitivity 

of a given performance index is assessed when certain circuit parameters vary. 

This is a valid and important aspect of a design, which is done after design (pa-

rameter selection) is completed. However a by-product of the sensitivity analysis 
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is generation of partial derivatives, which can be useful in the optimization and 

parameter selection phase as well.  

5.2 Recommendations 

Based on the sensitivity analysis method introduced in this research, the following are 

proposed. 

1. Developing a method for sensitivity analysis of power electronic circuits embed-

ded with a control system. The control system introduces non-linearity (such as 

control limits) to circuit in many cases and may not be linearized through circuit 

averaging process itself.  

 

2. Developing an automated sensitivity analysis scheme for power electronic cir-

cuits in circuit simulation software such as PSCAD/EMTDC. Such a scheme may 

involve following steps. 

i. Modeling the given circuit in software tool 

ii. Deriving average model of the given circuit 

- Using generalized averaging technique, the average model of the 

given circuit can be developed by replacing all the branch elements 

with their average models  

iii. Constructing adjoint network corresponding to average model 

- By replacing the branch elements of average circuit with correspond-

ing adjoint elements, the adjoint network can be developed.   
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iv. Performing circuit simulations and storing data 

- Both the average model and its adjoint circuit can be solved by simu-

lating the circuits and all the branch voltages and currents can be 

stored.  

v. Deriving sensitivities based on stored data     

- The adjoint network approach theory can be used to derive the 

sensitivities using stored branch data. 
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Appendix 1: Mathcad code for the optimization of load impedance for 

maximum power transfer 
 

 

 

 

 

 

 

 

 

 

 

 

 

Data: Rs 0.5:=  Ls 0 .000106:=  Vs 10:=  
w 2 π⋅ 60⋅:=  

Assuming initial values for load impedance, where, Xs w Ls⋅:=  
Rl 0.3:=  Ll 0 .000120−:= Xl w Ll⋅:=  

Optimization of power transfer  

Opti1 n alpha, ( )

I
Vs

Rs Rl+( ) iw Ls Ll+( )⋅+
←

I1
1

Rs Rl+( ) iw Ls Ll+( )⋅+
←

OF 1− I( )2 Rl⋅←

I1_Rl Vs− I1( )2⋅←

I1_Ll Vs− I1( )2 w⋅←

I2 I−( ) Ll Ls>if

I otherwise

←

OF_Rl I( )2 2Rl I⋅ I1_Rl⋅+⎡⎣ ⎤⎦−←

OF_Ll 2Rl I2⋅ I1_Ll⋅( )−←

Rl Rl 10alpha OF_Rl⋅−←

Ll Ll 0.0000001alpha OF_Ll⋅−←

k 1 n..∈fo r

OF

OF_Rl
OF_Ll

Rl
w Ll⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟

⎠

return

:=

Optimized values: Opti1 50 0 0.0001, ( )

50−

3.02454− 10 7−×

3.7 6991− 104
×

0.5

0.03993−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

=
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Appendix 2: Mathcad code for the optimization of load impedance for 

power transfer and transmission efficiency 
 

Data: Rs 0.5:=  Ls 0 .00 010 6:=  Vs 10:=  
w 2 π⋅ 6 0⋅:=  gamma 1 .0:=

Assuming initial values for load impedance, where, Xs w Ls⋅:=  
Rl 0.3:=  Ll 0 .00 012 0−:= Xl w Ll⋅:=  

Optimization of power transfer and transmission efficiency 

Opti1 n alp ha, ( )

I
Vs

Rs Rl+( ) iw Ls Ll+( )⋅+
←

I1
1

Rs Rl+( ) iw Ls Ll+( )⋅+
←

OF1 1− I( )2 Rl⋅←

OF2 1− I( )2 Rs⋅←

OF gamma OF1⋅ 1 gamma−( ) OF2⋅−←

I1_Rl Vs− I1( )2←

I1_Ll Vs− I1( )2 w⋅←

I2 I−( ) Ll Ls>if

I otherwise

←

OF_Rl gamma− I( )2 2Rl I⋅ I1_Rl⋅+⎡⎣ ⎤⎦⋅ 1 gamma−( )2Rs I⋅ I1_Rl⋅+←

OF_Ll gamma 2⋅ Rl I2⋅ I1_Ll⋅ 1 gamma−( ) 2⋅ Rs I2⋅ I1_Ll⋅−[ ]−←

Rl Rl 1 0alph a OF_Rl⋅−←

Ll Ll 0.0000001alpha OF_Ll⋅−←

k 1 n..∈fo r

OF1

OF2
OF

Rl
w Ll⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

return

:=  

Optimized values: Op ti1 500 0.00001, ( )

4 9.9 999 7−

5 0.0 769 1−

4 9.9 999 7−

0.4992 4

0.0399 5−

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=  
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Appendix 3: Mathcad code for the optimization of transient voltage over-

shoot by inductor and capacitor values  

Opti n alpha, ( )

w
1−

4 R12⋅ C12
1 D−( )2

L1C1⋅
+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

0.5

←

Vo t( )
D1− Vin⋅

1 D1−
1 exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

cos wt( )
1

2 R1⋅ C1⋅ w⋅
sin wt( )+⎛⎜

⎝
⎞
⎠

−⎡⎢
⎣

⎤⎥
⎦

←

SVo_Ct( )
D Vin⋅

1 D−( ) C1⋅
w

1

4 R12⋅ C12⋅ w⋅
+⎛

⎜
⎝

⎞

⎠
⋅ exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

⋅ 0.5sin w t⋅( )⋅
cos w t⋅( )

4 R1⋅ C1⋅ w⋅
+⎛⎜

⎝
⎞
⎠

t⋅
sin w t⋅( )

4 R1⋅ C1⋅ w2
⋅

−⎡
⎢
⎣

⎤
⎥
⎦

⋅←

SVo_Lt( )
D− Vin⋅

1 D−( ) R1⋅ L1⋅ C1⋅ w⋅
exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

⋅
1 D−( )2 R1⋅

2 L1⋅
sin w t⋅( )⋅ w

1

4 R12⋅ C12⋅ w⋅
+

1 D−( )2

2 L1⋅ C1⋅ w⋅
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

cos w t⋅( )
2

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

t⋅ w
1

4 R12⋅ C12⋅ w⋅
+

1 D−( )2

2 L1⋅ C1⋅ w⋅
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

sin w t⋅( )
2 w⋅

+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅←

OF
0.001

0.015

tVo t( ) Vref−( )2⌠
⎮
⌡

d←

OF_C
0

0.015
t2 Vo t( ) Vref−( ) SVo_Ct( )⋅[ ]

⌠
⎮
⌡

d←

OF_L
0

0.015
t2 Vo t( ) Vref−( ) SVo_Lt( )⋅[ ]

⌠
⎮
⌡

d←

C1 C1 alpha OF_C⋅−←

L1 L1 alpha OF_L⋅−←

k 1 n..∈for

OF

OF_C

OF_L

C1

L1

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟

⎠

return

:=

 

Optimized values: 

Opti 800 0.00000000001, ( )

8.206 10 3−
×

9.113 103
×

1.8− 103
×

2.71 10 5−
×

1.944 10 4−
×

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

 

 

Data: Vin 15:=  D 0.75:= D1 0.75:= R1 9:= C1 0.0001:=  L1 0.000180:=

Vref
D1− Vin⋅

1 D1−
:=  

w
1−

4 R12
⋅ C12

1 D−( )2

L1 C1⋅
+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

0.5

:=  

Optimization of inductor and capacitor values 
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Appendix 4: Mathcad code for the optimization of transient voltage over-

shoot and voltage ripple by inductor and capacitor values   
Data: Vin 15:= D 0.75:= D1 0.75:= R1 9:= C1 0.0001:= L1 0.000180:=

Vref
D1− Vin⋅

1 D1−
:= w1 2 π⋅ 10000⋅:= w

1−

4 R12
⋅ C12

1 D−( )2

L1 C1⋅
+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

0.5

:=

Opti n alpha, ( )

w
1−

4 R12
⋅ C12

1 D−( )2

L1 C1⋅
+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

0.5

←

Vo t( )
D1− Vin⋅

1 D1−
1 exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

cos w t( )
1

2 R1⋅ C1⋅ w⋅
sin w t( )+⎛⎜

⎝
⎞
⎠

−⎡⎢
⎣

⎤⎥
⎦

←

SVo_C t( )
D Vin⋅

1 D−( ) C1⋅
w

1

4 R12
⋅ C12

⋅ w⋅
+⎛

⎜
⎝

⎞

⎠
⋅ exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

⋅ 0.5 sin w t⋅( )⋅
cos w t⋅( )

4 R1⋅ C1⋅ w⋅
+⎛⎜

⎝
⎞
⎠

t⋅
sin w t⋅( )

4 R1⋅ C1⋅ w2
⋅

−⎡
⎢
⎣

⎤
⎥
⎦

⋅←

SVo_L t( )
D− Vin⋅

1 D−( ) R1⋅ L1⋅ C1⋅ w⋅
exp

t−

2 R1⋅ C1⋅
⎛⎜
⎝

⎞
⎠

⋅
1 D−( )2 R1⋅

2 L1⋅
sin w t⋅( )⋅ w

1

4 R12
⋅ C12

⋅ w⋅
+

1 D−( )2

2 L1⋅ C1⋅ w⋅
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

cos w t⋅( )
2

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

t⋅ w
1

4 R12
⋅ C12

⋅ w⋅
+

1 D−( )2

2 L1⋅ C1⋅ w⋅
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

sin w t⋅( )
2 w⋅

+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅←

X
1 D−( )2

w1 L1⋅
4 w1⋅ C1⋅−

⎡
⎢
⎣

⎤
⎥
⎦

2
2

R1
⎛⎜
⎝

⎞
⎠

2
+←

Vo1 9
1

3 1 D−( )⋅

w1 L1⋅
−⎡⎢

⎣
⎤⎥
⎦

2
1+

X
⋅←

Il1
9 1 D−( ) 27 w1⋅ C1⋅+

1
R1

+⎡⎢
⎣

⎤⎥
⎦

2
27 w1⋅ C1⋅( )2

+

w1 L1⋅ X⋅
←

SVo1_C
4 Vo1⋅ w1⋅

X
←

SVo1_L
2 1 D−( )⋅ Il1⋅

L1 X⋅
←

OF1
0.001

0.015

tVo t( ) Vref−( )2⌠
⎮
⌡

d←

OF1_C
0

0.015
t2 Vo t( ) Vref−( ) SVo_C t( )⋅[ ]

⌠
⎮
⌡

d←

OF1_L
0

0.015
t2 Vo t( ) Vref−( ) SVo_L t( )⋅[ ]

⌠
⎮
⌡

d←

OF2
0.001

0.015

tVo12⌠
⎮
⌡

d←

OF2_C
0.001

0.015
t2 Vo1⋅ SVo1_C⋅

⌠
⎮
⌡

d←

OF2_L
0.001

0.015
t2 Vo1⋅ SVo1_L⋅

⌠
⎮
⌡

d←

OF OF1 10OF2+←

C1 C1 alpha OF1_C 10OF2_C+( )⋅−←

L1 L1 alpha OF1_L 10OF2_L+( )⋅−←

k 1 n..∈for

OF

OF1

OF1_C

OF1_L

OF2

OF2_C

OF2_L

C1

L1

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

return

:=
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Optimized values: 

Opti 405 0.00000000001, ( )

0.19363482

0.08926257

9.1125 10 3
×

1.8− 10 3
×

0.01043722

367.42037054

3.71690835

5.66999304 10 5−
×

1.8720404 10 4−
×

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

 


