AN INVESTIGATION OF DESCRIBING

FUNCTION ERROR ESTIMATES

A Thesis
Presented to
the Faculty of Graduate Studies and Research

The University of Manitoba

In Partial Fulfillment N
of the Requirements for the Degree

Master of Science

YHYS

‘\\\E— U’ }?\\ .

Vi

Glenn William Duncan

February 1967



ABSTRACT

by
Glenn William Duncan

AN INVESTIGATION OF DESCRIBING

FUNCTION ERROR ESTIMATES

The accuracy of the deseribing function method for the analysis
of nonlinear feedback systems was investigated., Attention was restric-
ted in general to autonomous systems and in particular to an article
published in July 1965 by Garber and Rozenvasser. Several observations
were made about the Garber - Rozenvasser technique and about an example
given in the article. A "shift of gain" procedure was unsuccessful as
a method of improving the Garber - Rozenvasser estimates. The useful-
ness of the estimates in cases for which the desceribing function method
might fail was discussed. By analog simulation experimental results
were obtained for several systems as a check on the estimates. The
liberality of the estimated bounds on the maximum magnitude of the
response prompted an experimental check of the Garber - Rozenvasser
example system, with interesting results, The plotting of "A - w dia~
grams" was studied. A possible method of tightening Garber and
Rozenvasser's bound on the effect of the higher harmonics in the res-
ponse was outlined, but an example revealed that at best the method

would yield a small improvement for a large amount of work.
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CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

I. THE DESCRIBING FUNCTION METHOD

Background information

The describing function method for the analysis of nonlinear
feedback control systems was developed independently by workers in
five different countries -- by Kochenburger in the United States,
Goldfarb in the U.S.S.R., Oppelt in Germany, Tustin in England, and
Dutilh in France,

For linear systems the principle of superposition holds, a
sinusoidal excitation produces a sinusoidal response of different
amplitude and phase, but of the same frequency, and stability is well
defined in that the system is either stable or unstable regardless of
the excitation and the initial conditions. As a result of these charac~
teristics linear system theory has been thoroughly developed, In non=
linear systems, on the other hand, the superposition principle is not
valid, the response may contain frequencies not present in the input,
and system stability may depend on the excitation and the initial con-
ditions. Therefore, techniques for the analysis of nonlinear systems
are still in the early stages of development.

The describing function method grew out of attempts to extend
the powerful transfer function concept of linear system analysis to

cover nonlinear systems. It is a frequency-response technique rather




than a time-domain technique, the describing function being a type of
equivalent frequency response function for a nonlinear element. The
method is applied to systems in which the components of the loop can be
separated into two parts, a nonlinear block followed by purely linear

elements. Figure 1 illustrates such a system.

Assumptions of the method

The describing function method involves three basic assumptions.
First, the system contains only one nonlinear element; second, the non-
linear characteristic does not change with time; and third, if the input
to the nonlinearity is a sinusoid, only the fundamental compoment of its
output is significant in returning via the feedback loop to the‘input.
The third assumption demands that no significant subharmonic be generated
by the nonlinear element., If this is granted, one justifies the third
assumption, first by the fact that the harmonies in the output of the
nonlinear element generally have smaller amplitude than the fundamental,
and second by the fact that most linear components used in control systems
(excluding compensators) have low-pass filter characteristics, so that the
higher harmonics will be attenuated more than the fundamental in passing
through the linear block.

Gille, Pélegrin, and Decaulne note that the vagueness with which
the approximation to the first harmonic is justified is ", . . one of the

weaknesses of the [describing functio@]method."l

1J=C Gille, M. J. Pélegrin, and P. Decaulne, Feedback Control
Systems (New York: McGraw~H111 Book Company, Inc,, 1959), p. 405.
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Definition of the deseribing function

Consider the nonlinear element shown in Figure 2. The conven-
tional describing function is derived assuming a sinusoidal input
e(t) = E sin wt.2 The response m(t) will be periodic but not sinu-
gsoidal, and expanded in a Fourier geries will have the form
m(t) = M, sin (wt + ¢l) + M, sin (2ut + ¢2) +
My sin (Gwb + 4s) + . . (I-1)
If the fundamental term M; sin (wt + ¢1) is taken to be the
"equivalent" of m(t), then an "equivalent transfer function" having
magnitude Ml/E and phase ¢l may be defined for the nonlinearity. Both

the magnitude and phase will in general be functions of E and w,

;—l— = B(E,w) and ¢l = ¢1(E,w) (1-~2)
The "generalized transfer function" for the nonlinearity will then be
of the form

N(E,w) = B(E,w) /8, (E,w) (I -3)
It can be represented graphically as a family of transfer loci
graduated in w, one locus for each value of E. If N is independent

of the frequency w,3

and depends only on the input amplitude E, it is
called the "deseribing function" of the nonlinear element ,[’

Describing function = N(E) = B(E) ¢i(E) (I-4)

2The letter w will be used throughout this text in place of
the Greek letter "omega", w.

3This will be true if the nonlinear system does not contain
any energy-storage slements.

4Some authors consider the describing function to be frequency
dependent as well as amplitude dependent. The definition adopted here,
however, follows that of Gille, Pélegrin, and Decaulne, gp. cit.,
pp . 405'406 °



The family of transfer loci may then be replaced by a single locus
graduated in input amplituds.

The describing function thus arises from the concept of "quasi-
linearization", in which the response of a nonlinear element to a given
input is divided into two parts, the response of a linear element driven
by that input, and an additional distortion component or "remnant".

If the input is sinusoidal, the first part of the response, the funda-
mental, is characterized by the describing function of the element,
which is simply the frequency response-function of the linearized non-
linear element, The output is then the sum of the deseribing function
times the input and the remnant. Under the assumption of good low-pass
- filtering by the linear element of a system the distortion component is
neglected in the analysis, The describing function is, then, only an
approximation to the actual response characteristics of a nonlinear
element.

Although in this investigation attention will be focused on the
conventional sinusoidal input describing function, which represents the
output of a nonlinearity by the fundamental component of its Fourier
series, other sinusoidal input describing functions have been defined.5
In addition to the sinusoidal input describing functions, two other types
have been formulated, transient (or step) input and stationary random

input describing functions.

5Robert R. Rankine, Jr., "An Evaluation of Selected Describing
Functions of Control System Nonlinearities,"(report GGC/EE/64-16,
Air Force Institute of Technology, Air University, United States Air
Force, Wright-Patterson Air Force Base, Ohio, 1964), pp. 3=4.
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The amplitude dependence of the describing function6 reflects
the nonlinear behaviour of an element., The describing function may
be purely real, or it may contain a phase shift. It will be real in
the case of a single-valued nonlinearity and complex for a double-

valued nonlinearity, or a nonlinearity with memory .

Use of the method in analysis of aubonomous and non-autonomous systems

The describing function approximation for a nonlinearity can
be used to determine whether a self-sustained oseillation can exist in
an autonomous (unforced) system (r(t) = o in Figure 1). The basic
equation for this analysis, which is a sufficient condition for the
existence of sustained oscillation, is

G(ju) = - E%TET (1 - 5)

The G(jw) and -1/N(E) curves may be plotted in the complex plan% with
w and E the running parameters respectively, and checked for an inter-
section. If such an intersection is found, the amplitude and frequency
of the corresponding self-oscillation are determined from the =1/N(E)
and G(jw) loci respectively at the intérsection point. From the re-
lative location of the two loci conclusions can be drawn about the
stability of the autonomous system for wvarious amplitudes at the input
of the nonlinear element.

The describing function representation of a nonlinearity is

also useful in finding the closed-loop frequency response of a non-

6From now on the term "deseribing function® will be taken
to mean "conventional sinusoidal input describing function."




linear system to a sinusoidal forcing function., Consider the system
diagram, Figure 1. For sinusoidal inputs,

e(jw) = E sin (wt + @)

r(jw) = R sin wt

G(s) = G(jw)
a closed-loop transfer function relating the error signal e(t) to the

input may be written as

e(iw) _ 1
i(jz) T 1+ N(E)G(jw) (I -6)

From this a magnitude relationship

E. 1
R 7|1 + N(E)G(jw)

(1-7)

is written. For a given G(jw) the relationship may be solved for N(E).
The right hand side of the equation obtained will be a function of R,
w, and E. If a fixed value of R is chosen, the right hand side can be
plotted against E for various values of w., The left hand side, plotted
against E, is just the describing function of the nonlinearity. Possible
operating points are given by the intersections of the curves, and the
values of E and w at these operating points are found from the diagram.
With E known the magnitude of the system response c(t) can be found and
plotted against w, the frequency of the forcing function, for the value
of forcing function amplitude (R) chosen. More detailed discussions of
the use of the describing function in analyzing closed-loop frequency

response are given by Truxal7 and Gibsons.

7John G. Truxal, Automatic Feedback Control System Synthesis
(New York: McGraw=-Hill Book Company, Inc., 1955), pp. 581-585.

8 John E. Gibson, Nonlinear Automatic Control (New York:
McGraw=-Hill Book Company, Inc., 1963), pp. 389-395.



Error involved in the method

The describing function method, being an approximation, in-
volves a certain amount of error and uncertainty. According to
Truxal,9 an analysis based on describing functions involves three
notable difficulties. Two of them are computational difficulties
which can be remedied considerably with machine aids, while

The third and most basic difficulty is related to the

inaccuracy of the method and, in particular, to the un-
certainty throughout the analysis about the accuracy. There

is no simple method for evaluating the accuracy of the de-
scribing-function analysis of a nonlinear system and no
definite assurance that the results deriYBd with the describing
function are even approximately correct.

Johnson11 has obtained correction terms for the amplitude and
frequency of oscillation predicted by the describing function method.
An important result of his analysis is that the first frequency
correction term is zero. Therefore, the describing function frequency
prediction is usually quite accurate. The first amplitude correction
is non-zero, however, so the amplitude prediction is somewhat less
accurate. Although Johnson's analysis gives an idea of the error in
the describing function predictions and provides a means by which the

accuracy of the predictions may be improved, it is of limited use to

the engineer because of its computational complexity.

Irruxal, op. cit., pp. 599-601.

10;92- cit.
11

E. C. Johnson, "Sinusoidal Analysis of Feedback-Control Systems
Containing Nonlinear Elements," Trans. AIEE, Vol.71, Part II. Applica=-
tions and Industry, July, 1952, pp. 169-181,




For the describing function technique to be completely accur-

ate, the linear element of the system must act as a perfect low-pass
filter. In practical systems this will not be achieved, and some
higher harmonics, although attenuated, will be fed back along with the
fundamental to the input of the nonlinearity. Because of this, the
describing function technique will tend to underestimate the amplitude
of self-sustained oscillations. Rankin912 observed that the accuracy
of the describing function amplitude prediction decreased as the amp-
litude of the steady oscillation, or limit cycle, increased; that it
decreased as the system order13 decreased, giving poorer filtering; and
that it seemed to vary with system type,14 decreasing as the system
type was increased. Graham and Hofmannl5 have commented on the lack of
knowledge in many cases about the effect of neglecting the higher har-
monics in the analysis. They have shown that the presence of a third

harmon1016 at the input to a nonlinearity can produce a substantial

lzRankine, _O_Eo _C_Lt.c’ ppo 82"830

13The "order" of a system is the number of poles minus the
number of zeros in the linear transfer function.

14The "type" of a system refers to the multiplicity of the pole
of the linear transfer funection at s = o.

15Dunstan Graham and Lee Gregor Hofmann, "Investigations of
Describing Function Technique," (Technical Report AFFDL-TR-65-137, Air
Force Flight Dynamics Laboratory, Research and Technology Division,
Air Force Systems Command, Wright-Patterson Air Force Base, Ohio,
February, 1966), Chapters I and III.

16If the output of a nonlinearity is assumed to be odd symmetric,
or half-wave symmetric, its Fourisr geries will contain no even harmonics.
The third harmonic will then be the first harmonic above the fundamental,
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phase lag in the fundamental component of the response. The prediction
of limit cyele existence and limit cycle parameters (amplitude and
frequency) can be notably affected by this phase shift. In fact, in
systems for which the -1/N(E) and G(jw) curves intersect at a small
angle, are tangent, or approach closely without intersecting, even
small phase shifts in the fundamental due to the presence of higher
harmonies can be of "crucial importance" in limit cycle prediction.

In these cases results obtained from a deseribing function analysis
must be viewed with suspicion.

It should not be assumed from the above remarks that the accur-
acy of the deseribing function analysis is necessarily poor. Graham and
McRuer feel that the describing function approximation ", . . provides
answers which are accurate to within 5 to 10% for a wide variety of
systems. Results which are this close are ordinarily well within the
probable accuracy of the mathematical description of the components."17
Nevertheless, an element of doubt still remains about the accuracy of
the method. According to Gille, Pélegrin, and Decaulne:

« o o« Cases may arise in which the first<harmonic [describing
function] approximation leads to incorrect results., . . . For-
tunately most of these cases are examples that have been thought
up on purpose. In any event, there is no sure criterion [italies
in the original] that specifies under what conditions and within
what limits the first-harmonic approximation can be applied safely.
As a result, the method should be applied with great circumspec-

tion when studying systems with several degrees of freedom or when
investigating the low-frequency behavior,l

l7Dunstan Grgham and Duane McRuer, Analysgis of Nonlinear Control
Systems (New York: John Wiley and Sons, Inc., 1961), p. 193,

18Gille, Pélegrin, and Decaulne, op. cit., p. 431.
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Importance of the method

The describing function method is a valuable tool for the
analysis of nonlinear feedback systems. Once the describing function
has been found for a nonlinear element, that element can be treated as
having a gain and phase shift varying with input amplitude. Keeping
in mind that system stebility must be analyzed as a function of input
amplitude as well as frequency, one can employ the Nyquist diasgram, the
gain and phase plots, and all the usual frequency-response methods in
the analysis and design of the nonlinear system. According to Graham
and McRuer:

Sinusoidal input describing functions . . . have a surpassing
importance in the analysis of nonlinear control systems because
they are particularly amenable to the determination of gtability
[italics in the originall. It has been repeatedly shown that
their use produces good results with a modicum of effort. Further-
more, the use of sinusoidal input describing functions permits the
extension to nonlinear control systems of the well-known harmoniec
or frequency response method of designing equalizing or compensa-
ting networks. This is a tremendous and almost unique advantage.
Furthermore, the describing function technique may be applied to systems
of any order. It is generally more accurate the higher the order of the

system.

For a more complete discussion of the various aspects of the
describing function method, the reader is referred to references (4),

(5), (8), and (17) of the bibliography.

19Graham and McRuer, op. cit., p. 80.




II. THE PROBLEM

Statement of the problem

During the past few years considerable work has been done in an
attempt to estimate the accuracy of predictions made using the describ-
ing function. The original purpose of this investigation was (1) to
study several recent papers concerning describing function accuracy and
perhaps deriving bounds on the amplitude and frequency of system response,
both for autonomous and non-autonomous systems; (2) to apply the various
bound expressions given in these papers to a selected set of systems and
compare the results with the describing function amplitude and frequency
predictions; and (3) if possible, from this comparison to state that for
a certain type of system a certain author's bounds would be the best
(i.e. tightest), while for another type of system another author's bounds

would perhaps be better.

Importance of the study

As previously noted, the describing fumetion technique is ex-
tremely useful to engineers engaged in the analysis and synthesis of non-
linear feedback systems. As also noted, however, the accuracy of the
method is uncertain. It is therefore important from an engineering stand-
point to try to improve the accuracy of the describing function method, to
derive rigorous criteria which tell how accurate deseribing function
predictions are, and to establish definite bounds on the parameters of
system response. In this investigation an attempt was made to further

some of the recent research done on these problems.

Chapter II gives a review of literature pertinent to this

investigation.



CHAPTER II

REVIEW OF THE LITERATURE

Literature applying to autonomous systems

Quazzal considers the restricted class of autonomous systems
whose nonlinear element is a relay with hysteresis. An example
system is givén for which the deseribing function method fails. No
intersection of the G(jw) and -1/N(E) curves is found, yet the system
oscillates. Corrections are proposed to (1) ensure the validity of
the describing function method in cases where the number of zeros in
the linear transfer function is equal, or lower by only one, to the
number of poles; and (2) to improve the accuracy of the describing
function amplitude and frequency predictions for those cases in (1)
for which the attenuation of the linear element near the fundamental
frequency of the response may be poor.

Rozenvasser2

deals with the problem of determining periodic
oscillations in control systems containing a single piecewise linear
nonlinearity and reduces it to the determination of forced oscillations

of a linear system with periodically changing parameters., From

lG. Quazza, "On the Validity of the Describing Function -,
Tsypkin - and Hamel - Methods for the Study of Self Oscillations in
On - Off Systems," Alta Frequenza, Vol. XXXII, No. 2, February, 1963,
pp . 142-156 °

2E. N. Rozenvasser, "On the Accurate Determination of Periodic
Regimes in Sectionally Linear Automatic Control Systems," Automation
and Remote Control, Vol.2l, 1960, pp. 902-910.
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the solution of an auxiliary Fredholm integral equation of the second
kind, these forced oscillations may be found exactly. Both self -
and forced oscillations of a steady-state nonlinear system are in-
vestigated. For the former case Rozenvasser derives estimates of the
error incurred by approximating the exact solution in practical cal-
culations.

Glatenok3 congiders the problem of the existence of periodic
solutions of the differential equation ; = f(y,&) by means of the
harmonic balance (describing function) method. He seeks to establish
a range about the amplitude value predicted by the describing function,
within which the amplitude of the exact periodic solution must lie.
Three theorems are presented which, for different conditions on the
function f(y,é), give the existence of a stable periodic solution and
the particular range within which itgs amplitude must lie. These theor-
ems are not proved in Glatenok's articla, although the basic idea behind
the proofs is given. A system containing a backlash nonlinearity is
discussed as an example. From the example it appears that Glatenok!'s
technique produces a rather liberal range for the exact solution am-

plitude,

’I. V. Glatenok, "On the Foundation of the Harmonic Balance
Hethod," Symposium on Nonlinear Vibrations, Kiev, U.S.S.R.,
September, 1961.
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4

Garber and Rozenvasser, combining forces in a joint publication,

present a graphical procedure for estimating in the case of a self-
oscillating system:
(1) the amplitude, A, of the first harmonic component of
the actual system response in the form

A, £ A%

2 h
and the oscillation frequency, w, in the form

L A
W 'Wh

(2) an upper bound on the peak magnitude of the response.

W

Literature applying to non-autonomous systems

5

Sandberg” studies the functional equation for a nonlinear feed-

back system x = FW[x + y], where F is a linear operator,Y¥is the
nonlinear function, y is the forcing function,.and x is the response.
He uses the contraction - mapping fixed - point theorem and éther tech-
niques of functional analysis to obtain, among other things, an upper
bound on the mean-squared error that results when the describing function
method is applied to the system.

The determination of steady-state forced periodic oscillations

in nonlinear systems is considered by Garber.6 The input to the non-

4E. D, Garber and E. N. Rozenvasser, "The Investigation of
Periodic Regimes of Nonlinear Systems on the Basis of the Filter Hypoth-
esis," Automation and Remote Control, Vol., 26, 1965, pp. 274-285.

51, W, Sandberg, "On the Response of Nonlinear Control Systems
to Periodic Input Signals," The Bell System Technical Journal,
Vol. XLIII, No. 3, May, 1964, pp. 911-926,

6E. D. Garber, "Error Estimation in the Describing Punction
Method," Automation and Remote Control, Vol. 24, 1963, pp. 449-458.
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linear element is obtained in integral equation form for the cases

D(o) # o and D(o) = o, where D(p) is the denominator polynomial of the
linear transfer function. Estimates of the error in the describing
function solution are then derived for certain restrictions on the non-
linear characteristic, Garber gives an example system for which the
error estimate is found. The derivation is extended to the case of an
automatic optimizing system whose dynamics are described by equations
with periodiec coefficients,

As noted previously, Rozenvasser does some work invelving the
exact determination of forced periodic oscillations in systems having a
single piecewise linear nonlinearity. Although in this case no error
estimates are obtained for the describing function method, his work
provides a basis for some of the ideas brought out in the joint Garber
and Rozenvasser article referred to in the previous section.

For forced systems the joint Garber and Rozenvasser article
gives estimates of the error in the describing function solution, of
the type given by Garber. The estimates are again derived from the
integral equation representation of the input to the nonlinear element.
They are, however, supposed to be better than Garber's original esti-
mates,

Three other references are mentioned at this point. Although
they do not give any error estimates for describing function solutions,
they nevertheless relate to the use of the method and contribute ad-

ditional information about it.




Beass'7 gives a rigorous discussion of the mathematical valid-
ity of the describing function technique.

Hale8 comments briefly on equivalent linearization and the
degcribing funetion method.

In an article by Kislyakov, which is itself of little import-
ance as far as this investigation is concerned, reference is made to
the work of Khalanai.9 According to Kislyakov, Khalanai proves the
theorem, in providing ". . ., the foundations of the averaging method
[harmonic linearization method] as applied to systems of quasilinear
differential equations with a lagging argument," that ", , , the
error in determining the periodic solution of the averaged system is

small compared to error in the periodic solution of the original sys-

tem of differential equations with a lagging argument."10 This prob-

ably means that the error in determining the periodic solution of the

original system by using the averaged system is small; in other

7

R. W, Bass, "Mathematical Legitimacy of Equivalent Linesriza-
tion by Describing Functions," Proceedings of the First International

17

Congress of the International Federation of Automatic Control (I1.F.A.C.),

TS . ——ITE L e ——— | ) o — e — S ————— SN ——

Moscow, 1960 (London: Butterworths, 1961), pp. 895-905.

8Jack K. Hale, Oscillations in Nonlinear Systemg (New York:
McGraw-Hill Book Company, Ine., 1963), pp. 99-102.

9A. Khalanal, "Averaging method for systems of differential
equations with a lagging argument,” Revue de mathematigueg pures et

appliquees, Vol. 4, No. 3, 1959, cited by V. S. Kislyakov, "Foundations
for the Application of the Harmonic Linearization Method to an Investi-

gation of Periodic Oscillations in Systems with Lag," Automation and
Remote Control, Vol. 21, 1960, pp. 1051-1056.

1OKislyakov, op. cit., p. 1053,
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words, the averaged system is a good approximation. Khalanai's work

was not pursued in this investigation.

Comments on the investigation

Several points were noted with regard to the articles apply-
ing to autonomous systems. Quazza's article applies only to a re-
stricted class of nonlinear systems. Rozenvasser's article has been
succeeded by the combined Garber - Rozenvasser article. Finally, the
combined Garber - Rozenvasser article was published more recently than
Glatenok's work. On the basis of these considerations it was decided
to restrict the study of error estimates for autonomous systems to the
combined Garber - Rozenvasser article.

For the study of non-autonomous systems, it was originally
thought that the Sandberg, Garber, and combined Garber -~ Rozenvasser
articles would provide a suitable selection of estimates. Study of the
latter two articles, it was felt, would show how much the combined
Garber -~ Rozenvasser estimates really improved upon Garber's original
estimates,

The next step was to choose some suitable systems to which the
various estimates could be applied. For the autonomous case the set
of systems studied by Rankinell was selected. Rankine had obtained the
experimental results for all his systems by simulating them on an analog

12

computer, and the describing function™ amplitude and frequency predic=-

tions were also given for each. It was felt that this was a typical

llRankine, op. cit., 130 pp.

12The term "describing function" as used in this text is syn=

onomous with Rankine's "conventional describing function.™
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set of systems and one for which, fortunately, the experimental results
had already been determined, thus affording a substantial saving in work.
The autonomous Garber - Rozenvasser estimates could, then, be applied to
Rankine's systems in the first part of the investigation. For the non-
autonomous study, it was thought that perhaps a few of the systems from
the autonomous study, those for which the estimates had been best (i.e.
most accurate) and worst (i.e. least accurate), could be investigated
with their loop gains reduced. If necessary some other suitably-chosen
forced systems could be studied.

The investigation began with the application of the Garber -
Rozenvasser estimates for the autonomous case to Rankine's systems. Al-
though, as indicated, the problem originally included both the autonomous
and non-autonomous cases, sufficient work was subsequently found in the
autonomous’case, with the result that the non-autonomous estimates were
not investigated any further. Therefore, since the work that follows
involves the autonomous Garber - Rozenvasser estimates, a brief resumé

of their derivation and application is given in the next section.,

The Garber - Rozenvasger estimates

In Section 1 of their article, Garber and Rozenvasser comment
briefly on previous investigations and problems associated with the
estimation of the error in the describing function method. They con-

sider the system

»
1}

K
W(p)y+¢=D-((§%y+¢ L1yl
f£(x)

g
1]

13All equations, inequalities, or conditions numbered in this
way, with two Arabic numerals separated by a decimal point, are thoss
given in the Garber - Rozenvasser article.
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which is represented in Figure 3. W(p) = K(p)/D(p) is the linear element
transfer function, with K(p) of lower degree than D(p), #(t) is a perio-
dic forcing function at frequency w, x(t) is the input to the nonlinear
element, and y is its output. The nonlinearity f(x) is assumed piece-
wise continuous and ". . . such that regimes x(t), symmetric and periodic
in the frequency w, are possible in the system. . . ."l4 For x(t) the

integral equation form

T/2
x(t) = j Re-2) e[x()] ax + BE)  (L.3)
(o]
is written, the kernel ((t-t) being the Fourier series
oo
ﬂt -0 = 7% Z W[(Zsﬁl)iw] e(2s+l)iW(t-?:) (1.4)
S==.0

Closed forms for the kernel are given for the case in which the equation

D() = o has simple roots.

Q + % y = f(x) K .
'9 D(pg

FIGURE 3

GARBER-ROZENVASSER FEEDBACK SYSTEM

Section 2 deals with the estimates for non-zutonomous systems and

14Garber and Rozenvasser, op. cit., p. 275.
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hence does not apply directly to this discussion. However, that portion
of the section dealing with the estimation of the parameter I(w) defined

by the equation

T/2
I=] |#(w)| au (2.6)
(o]

ig important to the autonomous case. A bound on I(w), expressed by the

relation

_ |
I(w) £ T(w) = \ [2 Z |w[(.2s+1)iw]|2 (2.11)
80

is derived using the Bunyakovskii inequalityl5

and Parseval's formula.
The following expression for the bound, which contains a finite sum

over the roots of the equation D()\) = o, is then obtained:

_ < K(N) K(=))
T(w) = %FZI D'(;F) D(-;,J tanh ( -—-—-—";;)‘P (2.13)

Section 3 begins the derivation of error estimates for auton-
omous systems (# = o in equations (1.1) ). 1In this case w, the fre- .
quency of the oscillation, is not known a priori as it is for a forced
system, so that estimates of the type derived for forced systems cannot
be used., Garber and Rozenvasser write x(t) as a sum, x(t) = xl(t) +

xh(t), xl(t) being the fundamental component and x, (t) the sum of the

*h
higher harmonics. The two integral equation forms

155 ceording to Nicholas D. Kazarinoff, Analytic Inequalities
(New York: Holt, Rinehart and Winston, 1961), pp. 71-72, this is what
Western writers commonly know as Schwarz's Inequality, although
Bunyakovskii obtained the result earlier than Schwarsz.
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T/?
x, (%) = B (6=2) £x(v)] av (3.3)
and °
T/2
G = [ e e @ (3.4)

replace equation (l.3),_ﬂi(t~t) and_@h(t-t) being respectively the
fundamental component and the sum of the higher harmonics of the
kernel_gﬂt-tj. Without loss of generality xl(t) is assumed to have
the sinusoidal form xl(t) = A sin wt. By substitution and algebraic

manipulation of equation (3.3) they obtain the result

W(iw) R(A,x ) =1 (3.6)
where R(A,xh) is given by the relation
T/2
R(A,x_ ) = 24 £[A sin wt + x ()] (sin wt + i cos wt) dt (3.7)
*“h A o h °

Equation (3.6) is similar to the fundamental equation of the deseribing
function method (noting that system (1.1) is a positive feedback system),
viz., equation (I = 5) on page 6, and does in fact become the fundamental
equation when xh(t) = 0o, R(A,0) being just the describing function of the
nonlinear element. If xh(t) is known, the process of equating real and
imaginary parts of both sides of (3.6) yields two equations for the two
unknowns A and w, If xh(t) = 0, (3.6) has the solution A, w, which is
that obtained by the deseribing function method. To estimate the dif-
ferences between A and Ab and w and Wy, s One must estimate Ixh(t)l.

In Section 4 Garber and Rozenvasser deal with the estimation of
A = max 'xh(t)l using equation (3.4) and making extra assumptions on
£(x). First, for f£(x) satisfying (4.1), viz., |£(x)| £ N = const., they
derive the bound on A in the form

A £ Ng(w) (4.3)
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The parameter £(w) is defined by the equation
T/2
Ew) = ] | £, (w)] au (4-4)
o

where the w-dependence enters through the T/2 upper limit on the integral.
Second, for f(x) satisfying (4.5), viz., lf(x)| £ Molxl (Mo = const.),

they obtain under the condition

1 =M €w) yo (4.7)
the inequality
aM g(w)
1 - 'M"’o""é“""(w) (4.8)

Finally, f(x) is assumed piecewise differentiable and of finite slope
bounded in magnitude by the constant M;. Equation (3.4) is integrated
by parts to introduce the slope of the nonlinsar function. Straight-

forward manipulation yields the inequality

, My Aw £%(w)
- l- Ml E(WS (4018)
with its required extra condition
1=-M E(w) >o (4617)
The parameter £Xw) is given by the equation
T/2
£%(w) = / | 4, % ()] au (4.13)
)
where the functionuﬁ;*'is defined by the relation
2 . (28+1)iw(t=7)
% - 1 Wi{2s+l)iw] e
g -3 3 g
(?-’ O)_
#=l

Bounds on g(w) and £¥w) given by the inequalities
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E(w) £ \/2 i W [(25+1) 11 | 2 (4+19)
s=1
and
EX(w) £1 |2 i |uf(2s+1) 3] |2 (4.20)

s=1 (23+1)2w2

are derived in exactly the same way as the bound I(w) was derived for
I(w) in Section 2, using the Bunyakovskii inequality and Parsevalls
formula. The authors note that small values of ¢(w) and €¥(w) imply a
small bound on A and hence good accuracy for the describing funetion
predictions. Also, £(w) and €%(w) depend on the filtration properties
of the linear element of the system and decrease rapidly as w increases.

Garber and Rozenvasser obtain, in Section 5, their graphical
procedure for finding bounds on the parameters of the responss. They
write equation (3.6) in the form

m'?m - R(4,0) = R(A,x,) - R(4,0) (5.1)

and from the definition of R(A,xh), equation (3.7), write an expression
for the right hand side, which is thought of as a vector AR. An ex-
pression is found for the projection of AR along a direction defined
by an angle ¥ from the vertical. Assumptions must now be made about
the form of f(x), and the function is assumed to satisfy the third con-
dition of Seection 4, that 1s to be piecewise differentiable with
lf'(x)l £ M,=const. Using the corresponding inequality (4.18) for the
bound on4, they derive the inequality

2
4M,% w gX(w)
|AR,| £ m = d(w) (5.5)
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giving a bound é?w) on the length of the projection of vector AR along
the direction ¥. The fact that this bound is independent of ¥ enables
the authors to deduce that the lengths of both the real (horizontal) and
imaginary (vertical) components of A R are bounded by d(w). This idea

is expressed by the following two inequalities:

|Re AR| = |Re [W(—%?)' - R(A,o)] ) (5.6)
{Im AR| = |Im [’ﬁ(';{ﬁ - R(A,o)] £ flw) (5.7)

These may be solved to give estimates of A and w, and form, in effect,
a generalization of the deseribing function method, The estimates, how-
ever, are only valid for frequencies satisfying condition (4.17).

The right hand sides of inequalities (5.6) and (5.7) are indepen-
dent of A. This makes possible a graphical procedure for finding the
estimates of A and w which generalizes that followed in the describing
function approach. The 1/W(iw) and R(A,o0) loci, or respectively the
inverse Nyquist and describing function loci, are drawn in the complex
plane. Their intersections give the describing function solutions Ab,
We Now the vector difference between the two loci must lie in a circle
of radius &(w). That is, 1/W(iw) is a function of w only, while R(4,0)
is a function of A only. For any possible A, w combination, the loci
cannot differ by more than d(w). Other combinations are impossible.

At each value of w along 1/W(iw) a circle of radius d(w), computed from
(5.5), (4019), and (4.20), is drawn, and the envelopes of these circles

are constructed. The portion of R(4,0) between the two envelopes pro-

vides the estimate of A in the form 4, £ 4 £ A, . The frequency range
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lies between the centres of circles tangent to R(A,o) and has the form
Wy & W Figure 1 of the article illustrates the procedurs.

Garber and Rozenvasser finally obtain the bound on |xh(t)l

%
2 w E%(w
l"h(t” = M4, max 1 - M e(w)

W =W,

(5.10)

by taking the maximum value of the right hand side of inequality

(4.18) over the allowable ranges of A and w. This involves the use of
Ah’ the maximum allowable value of A, and the maximization of that part
of the bound that depends only on w, I~:Eﬁ§§§%%7 , over the allowable
range of w,

At the end of the section the comment is made that the method
can be extended to non-autonomous systems.

Section 6 of the article contains two illustrative examples, a
non=autonomous and an autonomous system. The autonomous example, which
is of interest here, involves the system (p2 + 0.8p + 8) x = p £(x),
where £(x) is a saturation of unit slope. One noteworthy point regard-
ing this example is that in the final step the authors obtain a bound on
the maximum possible magnitude of x(%), the input to the nonlinsarity,
which in the autonomous case is just the system response. This bound is
derived from the equation x(t) = A sin wt + xh(t) and involves the sum

of A, and the previously calculated bound on'xh(tﬂ,

Chapter III outlines the procedure followed in applying the
autonomous Garber - Rozenvasser estimates to Rankine's systems. A pre-

view of the organization of the investigation is also given.



CHAPTER III
PROCEDURE FOLLOWED IN THE INVESTIGATION

The Garber - Rozenvasser autonomous system is described by the
equation x = W(p)y, while Rankine's autonomous systems have the equa=
tion x = --G(p)y.l It is evident, therefore, that the W(p) used in the
Garber - Rozenvasser procedure will be the negative of Rankine's
linear transfer function. In transform notation, W(s) = -G(s).

The first step in applying the Garber - Rozenvasser estimates
is to draw the 1/W(jw) 2 and R(4,0) loci. For the given Rankine
system with linear element G(s), - 1/G(jw) was calculated in complex
form. The real and imaginary parts of the expression were then eval=
uated by means of a digital computer for w-values in increments of
0.1 rad./sec. from zero up to some value determined by the size of
the graph being drawn. The corresponding points were plotted in the
complex plane on a suitable scale and joined to give the 1/W(jw)
locus. Next, the R(A,0) locus was drawn on the diagram. Since, as it
turned out, only systems involving saturation and dead zone nonlinsari-
ties were investigated, this locus was easily drawn in each case.

Since Rankine's saturation nonlinearity had a slope of 0.5, 3 its

Rankine, op. eit., p. 11, Figure 1(b).

2Although Garber and Rozenvasser use "i" in the complex number
notation, "j" will be used throughout this text.

3Rankin.e, op. cit. In the diagram on page 29 the slope of the
saturation nonlinearity is denoted by K, while on page 36 it is noted
that K was chosen to be 0.5.
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describing function locus extended from O out to 0.5 along the positive
real axis., The dead zone nonlinearity had a slope of 0.5 also,4 50
that its describing function locus was the same. Note that each point
along the describing function locus for a nonlinearity corresponds to

a certain input amplitude or range of input amplitudes.

The next stép is to compute §(w) at points along the 1/W(jw)
locus. This involves first a computation of £(w) and £X{w) using in-
equalities (4.19) and (4.20). These inequalities were put into their
particular form for the given example by letting (2s + 1) = k, finding
W(jkw) = = G(jkw), and from it deriving the expression for 2 IW(jkw)|2°
A sum of this expression over k¥ = 3, 5, 7, « - . replaced the sum over
s in inequality (4.19). The expression was then divided by k2w2 and
the result summed over k = 3, 5, 7, « . » to obtain the inequality for
EX¥(w). In this form the right hand sides of the two inequalities could
easily be computed digitally.

For a particular value of w, £(w) was found by computing the
successive terms in the series (k =3, k=5, k=7, . . .) and suming
them until the terms became less than 10‘7 of the sum to that point.
There the series was cut off and £(w) computed by taking the square root
of the calculated sum. For the systems studied the procedure generally

reguired the computation of approximately twenty to thirty terms in the

series.

4Ibid° In the diagram on page 28 the dead zone nonlinearity has
slope K, while on page 74 K is taken to be 0.5.
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Once £(w) had been evaluated, condition (4.17) was checked. If
it did not hold, the calculation proceeded to the next higher value
of w. If the condition held, £¢*(w) was computed by dividing each of

the terms in the series for £(w) by kzwz, summing, and taking the square

root, it being recognized that for w % the Eﬁ(w) gerises will converge
faster than the £(w) series. In accordance, the calculation of £(w)
was only carried out for the w-values from 0.4 on. In every case stud-
ied, however, condition (4.17) did not hold at w = 0.4, and some larger
w=value was found at which and beyond which the condition held. Hence
in all the cases for which £¥w) was computed, w was in fact larger
than one third.

Tt will be noted that €(w) and &Yw) have been found by evaluat-
ing the right hand sides of inequalities (4.19) and (4.20), so that
these values are in fact the maximum ones that £(w) and &*(w) can have,
From (5.5) it is evident that they will in turn give the maximum J(w)
value, which is required for making proper estimates.

For the w~values satisfying condition (4.17), d(w) was computed
from relation (5.5). Cireles of radius d(w) were then drawn at the
corresponding points on the 1/W(jw) locus, and the two envelopes of the
circles were drawn. The estimates of A and w were found from the diagram
in the forms Ay £ A £ A and w, £ £ w . The value of A correspond-
ing to a given point on the describing function locus was determined
graphically from the appropriate curve given in Rankine's thesis. For
example, for the saturation nonlinearity, X, which is equivalent to A

used here, can be found for a given point N on the describing function
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plot using curve 4 on page 38, K and S being known parsmeters for the
nonlinearity.

The bound on lxh(t)l was found next. It was observed that in

(5.10), using the definition of §(w) in (5.5),

WwE(W _ TTJ!W!
i o B (- 1)
1 AMl
Therefore, (5.10) may be written as
lxh(t)l £ M, A, max 7T2 o d(w)
uhéméwh 4,
or
i
|xh(t)‘ £ I max 8(w) (111 - 2)
1 wﬁéw’i‘-wh

Tt would be suspected that, since £(w) and €%(w) ", . . decrease rapidly
5

with increasing frequency,"” as w increases their decrease should off-
set the increase due to the factor w in the numerator of 4(w), with the
net result that &(w) should decrease with increasing frequency. This

behaviour was indeed observed in every example studied. Therefore, the

maximum of &(w) over the range of w occurred at Wp . Accordingly, the

bound on xh(t)l was computed from

A
|x,(8)| ¢ Lh ) (111 - 3)

4ty

Finally, to complete the procedure the bound on the maximum
magnitude of x(t) was determined by adding A, and the calculated bound
on Ixh(t)'. This bound and the frequency estimate could then bs com-

pared to the describing function amplitude and frequency predictions

5Garber and Rozenvasser, op. cit., p. 282,
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found from the intersection of the 1/M(jw) and describing function

loci,

Chapter IV describes the difficulties encountered when the
Garber - Rozenvasser estimates were first applied to Rankine's systems,
a check of Garber and Rozenvasser's autonomous example, and some at-
tempts made to overcome the difficulties. Chapter V involves an at-
tempt to improve the estimates by a "ghift of gain" procedure, while
in Chapter VI the estimates are applied to some hypothetical cases.
Experimental results are compared to calculated resultg in Chapter VII.
Chapter VIII deals with the plotting of an "A = w diagram" for differ=
ent types of systems, while the conclugions of the investigation and

recommendations for future work are given in Chapter IX.



CHAPTER IV

INITIAL DIFFICULTIES WITH THE AUTONOMOUS

GARBER - ROZENVASSER ESTIMATES
I. APPLICATION OF ESTIMATES TO RANKINE'S SYSTEMS

The Garber - Rozenvasser estimates for the autonomous case were
applied to selected systems from Rankine's set. The systems chosen
were Rankine's seven saturation systems, involving linear elements
Gl(s) to Gé(s) and GBA(S), the saturation nonlinearity being a conven=-
ient one which is piecewige differentiable and for which condition
(4.9) holds. However, the technique failed in each case. The first
three systems, containing linear elements Gl(s) to GB(S)’ gave only
right hand (low amplitude) intersections of the envelope with the de-
scribing function plot, as shown in Figure 4. The circles increased
too rapidly in size and the 1/M(jw) locus did not "dip® low enough
below the describing function, with the result that a left hand inter-
section could not be obtained. For the other four systems no inter-
sections of the envelope and the describing function were found, again
because of too rapid an increase in the size of the circles. Figure 5
illustrates the situation.

The method was then applied to Rankine's first dead zone system
(linearity G7(s) ), but no intersections were found for this case either.

The situation was similar to that illustrated by Figure 4, except that
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the right hand envelope crossed beyond the end of the describing
funection.

It was observed that since &(w) and €*(w) depend only upon the
linear part of the system, they will be fixed for a given linear elem-
ent., Hence if the linear element is not changed, but Ml is increased,
then &(w) will increase correspondingly, while the 1/M(jw) locus will
remain the same. It is evident, then, that if the technique'fails in
the first case it will also fail in the case where ¥, is increased.
From this reasoning it was noted that the failure of the technique for
Rankine's seven saturation systems also implied that it would fail for
his seven systems involving saturation combined with dead zone, Ml
being 0.5 for his saturation nonlinearity and 1.0 for the saturation
with dead zone nonlinearity.

Furthermore, increasing the gain of the linear element causes

€(w) and €¥(w) to increase. For fixed M, this will result in an ine

1
crease in d(w). Since the larger gain appears in the denominator of
1/d(jw), points on the 1/M(jw) locus will lie closer to the origin,
resulting in a general "moving in" of the locus toward the origin, as
illustrated in Figure 6. It is again evident that the failure of the
technique for Rankine's first dead zone system indicates that it will
also fail when applied to his second dead zone system (linearity
G7A(s) )o

In each of the cases to which the technique was applied it was

observed that, as circles were drawn for decreasing values of w along

the l/N(jw) locus, an w-valus was reached for which the cirele would
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completely enclose the previous circle. For subsequent values of w
the circles would continue to increase rapidly in size, giving what
appeared to be a doubling back of the envelope, as shown in Figure 7.
This behaviour suggested the possibility of a second pair of inter-
sections of the envelope and the describing function (in cases where
the technique could be made to work -- that is, to give a first pair
of intersections).

At this point it was decided to check the authors! second
(autonomous) example in Section 6 for the possibility of a doubling
back of the envelope and also to select one of the systems studied abovs
and attempt to modify it so that the Garber - Rozenvasser technique

could‘be made to work for that system.

II. CHECK OF SECOND GARBER -

ROZENVASSER EXAMPLE

The method was applied to the authors! second example. The
values of £(w) and £%(w) were calculated using the series method of in-
equalities (4.19) and (4.20) as oublined in Chapter III. It was found,
however, that the series for &£(w) converged slowly for this low order
W(s). Approximately 2100 to 3200 terms in the series were required

before the terms reached 10~/

of the sum, the accuracy specified, for
the w-values to be plotted. It was thought that perhaps, due to the
slow convergence, a large number of terms after cutoff might produce an

appreciable change in J(w). Therefore, a check, it was thought, to
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ensure that4§(w) values were being calculated accurately would be a

good ides,

By means of results derived from equation (2.13), £(w) and £%w)

ware found in closed form rather than as an infinite series. From them

the exact values of S(w) were computed for the w-values to be plotted.

Agreement between the exact d{w)'s and the approximate d(w)'s was so

close that the plotting was totally unaffected.

foregoing procedure are given in Appendix A.

The details of the

Table I compares the results obtained in the check of this ex-

ample to those obtained by Garber and Rozenvasser.

TABLE I

COMPARISON OF RESULTS FOR GARBER - ROZENVASSER EXAMPLE

Results Results obtained
Item obtained by Garber and
in check Rozenvasser
Amplitude range 1.19 £ A £ 1,76 1.23 £ 4 £1.85
Frequency range 2,77 4w 42,8 2.75 £ w £ 2,90
Deseribing function A, = 1.45 A, =1.55
predictions b b
i Wb = 2.83 w-b = 2082
L L
Bound on ‘Xh' |%a| < 0.165 ‘xhl £ 0.29
(use 0.17)

Bound on max |x|

max |{x| £ 1.93

mex |x|% 2.14

pc——— ———
rm—— re—

1]
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The authors' diagram (Figure 4 of their article) shows inter-
sections of the 1/W(jw) locus and the deseribing function at 0.65 and
0.95. Using Rankine's describing function plot for the saturation
nonlinearityl Ah = 1,87 is obtained from the 0.65 intersection and
Ap = 1.11 from the 0.95 intersection. Their value of 4y = 1.23 seems
to be in error, since it requires a right hand intersection at 0.90,
which is impossible from the diagram. Their value of Wy = 2,75 seems
plausible enough, but from Figure 4 W, = 2.90 is impossible, since the
v = 2,90 circle extends below the describing function. According to
the diagram Wy should be about 2.92. TFurthermore, in the describing
function solution Ab should be 1.45 instead of 1.55. The authors' bound
on |%,| seems larger than necessary, since a 8wy) = 4(2.75) value of
0.20 is required to obtain a bound of 0.29, while from Figure 3 of their
article d(2.75) appears to be about 0.16, which would give a bound of

0.23 on ixh . Hence their bound on max x| 1is probably larger than

necesgsary. It would appear that the bound should be 2.08 rather than
2014, In summary, both the amplitude range and the frequency range ap-
pear to have been made narrower than they should be according to their
diagrams, while the bounds on lxh! and max lkl appear to be too liberal.
The authors' value of Ab ig in error.

Garber and Rozenvasser state that condition (4.17) is satisfied

for w»>1.15. In the check a result of w>1.21 was obtained.

1Rankine,_gp. cit., curve 4 on page 38.
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Table II compares several 4(w) values obbtained by the authors

to those calculated in the check of the example.

TABLE II

COMPARISON OF SOME 4{w) VALUES FROM GARBER -
ROZENVASSER EXAMPLE AND CORRESPONDING

VALUES OBTAINED IN CHECK

w(rad./sec.) Authors! Value of J(w)
value of obtained in
&w) check
1.5 0.57 0,570
2.0 0.295 0.223
265 0.19 Q.142
3.0 0.13 0.105
3.5 0.10 0.083
40 0.075 0,069
b5 0.06 0.060
5.0 0.05 0,052

The J(w)'s found in the check are smaller than those of the
authors in the range from w = 1.5 to w = 4.5. This results in a nar-
rover envelope, giving tighter bounds on A and w, and in turn produc-

ing smaller bounds on |x | and max jx{.
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With regard to the possibility of a double envelope in this
exampls, it was found that the circle drawn at w = 1.23 was so large
that it completely enclosed the describing function, while that drawn
at w = 1,24 lay entirely below the describing function. It was rea-
soned that, because of the continuity of the J(w) graph, there must
be some w between 1.23 and 1.2/ for which condition (4.17) is satis-
fied and for which the circle cuts the describing function in two
places. Hence the authors' example does exhibit a doubling back of
the envelope as w decreases. However, the authors have used only the
first part of the envelope in making their estimates for this system.
This, it was felt, is sufficient justification for doing the same if

and when a system is found for which the technique works.

ITI. ATTEMPTS TO MAKE GARBER - ROZENVASSER

TECHNIQUE WORK

It was decided to work with the system involving the saturation
nonlinearity and linear element Gl(s) and attempt to modify it so that
the Garber ~ Rozenvasser technique would work. To accomplish this A(w)
would have to be reduced so that two intersections could be obtained.
It was decided for simplicity to try to modify the linear element and
the nonlinear element separately, rather than modifying both together.
The two possibilities chosen were:

(1) ZLeave the nonlinearity the same and lower the gain of the
linear element. Thus Ml will remain the same, while
£Xw) and £(w) will decrease, producing a decrease in
d(w). Also, condition (4.17) will hold for lower values

of w.
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(2) Leave the linear element the same and lower M., the

linear range slope of the nonlinearity. Thus €¥(w) and
€(w) will remain the same, while the reduction in My
will produce a decrease in d{(w). Condition (4.17) will
again hold for lower w=values.

If the first possibility is followed, however, it is evident
that as the linear element gain is reduced, the real and imaginary parts
of points on the 1/W(jw) locus also increase, resulting in a "moving
out" of the locus (the opposite situation to that depicted in Figure 6).
If the gain is reduced too much, the 1/MW(jw) locus will no longer inter-
sect the describing function, Thus a compromise is necessary to make
ékw) as small as possible, while still ensuring that the two loei inter-
sect,

The gain of Gl(s) was reduced from its original value of 180
to 130, Ml being left at 0.5, and the method was applied to this new
system. The method worked, two intersections were found, and estimates
of the parameters were calculated. The results are given in one column
of Table III. As an example, the calculation procedure for this system
is outlined in detail in Appendix B.

Following possibility (2) above, one finds that the 1/W(jw)
locus will not change, but a lower Ml means that the right hand end of
the describing function plot will move toward the origin. Hence if
Ml is reduced too much the loci will not intersect., Evidently a com=
. promise is again necessary to make é&w) as small as possible, still

ensuring an intersection of 1/W(jw) and the describing function. The
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question here is whether, as Ml is decreased, the end of the describing

function moves in past the intersection point with the 1/W(jw) locus

faster than the J(w)'s become small enough to enable the technique to

work. If it does, a situation where the technique has failed cannot

be corrected by dsecreasing Ml alone,

The gain of Gl(s) wag left at 180, while M, was reduced from
0.5 to 0.4, and the method was applied.

the modified system.

TABLE IIX

Again the method worked for

The results are also given in Table III.

GARBER = ROZENVASSER ESTIMATES FOR THE TWO MODIFIED

SYSTEMS
Possibility Possibility
Item (1) (2)
system system
Gain of Gl(s) 130 180
Ml 0.5 0.4
Amplitude range 1.51%4A%2,09 1.785A%52,48
Frequency range 3.16%w53 .42 3. 1153 .44
Describing function A =1.77 Ab=2.06
predictions - -
Wy =332 W, =332
Bound on |xh' 0.079 0.112
(use 0.08) (use 0.11)
Bound on max x| 2.17 2.59
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Whereas in the original system condition (4.1l7) was satisfied
down to and including w = 1.6, in the possibility (1) system it was
satisfied down to and including w = l.4, and in the possibility (2)
system down to and ineluding w = 1.5 (the £(w)'s were calculated at
increments of 0.1 rad./sec. in w). Also, in both cases a doubling
back of the envelope was again noted as the circles increased in size.

Thus it is evident that in at least some cases where the
Garber - Rozenvasser technique fails because one or both envelope inter=-
sections cannot be found, the method may be made to work by modifying
either the linear or the nonlinear element appropriately. Due congsidera-
tion must be given, however, to the maximum amount that these elements
can be modified before the describing function and 1/W(jw) loeci no

longer intersect.




CHAPTER V
SHIFT OF GAIN INVESTIGATION

Now that the Garber - Rozenvasser technique had been made to
work, a new item for investigation arose -- the possibility that,
since d(w) is proportional to the square of Ml’ in a given system gain
should be shifted from the nonlinearity to the linear element as much
as possible to improve the estimates, It was thought that perhaps low-
ering M; and consequently raising the gain of the linear element to
preserve the original loop gain would produce a net decrease in 5zw).

If it did, then a "trade off" of gain would be possible as a method
of improving the estimates.

The possibility was investigated for a modification of Rankine's
original Gl(s) - plus - saturation system, having M; = 0.5 and a linear
element gain of 160, This system was chosen because in the light of
earlier work it was fairly certain that the Garber - Rozenvasger tech-
nique would work for it. Two variations of this gsystem were used in
the investigation. In each case the loop gain was kept the same, and
Rankine's value of § = 3 for the saturation nonlinearity was retained.
Therefore, in each case the describing function predicts the same ampli-
tude of oscillation. The cases chosen were:

Case (1) M) = 0.5, Gain = 160
Case (2) Mi = 0o, Gain = 200

Case (3) M

b = 0.3, Gain

800/3 = 266,67
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The Garber - Rozenvasser method worked in each case, and esti-

mates were calculsted.

ESTIMATES FOR THREE CASES IN SHIFT OF

TABLE IV

GAIN INVESTIGATION

The results are presented in Table IV,

Ttem Case (1) Case (2) Case (3)
Amplitude range 2.01%443.11 2.02£4%3 .14, 2.0244%3,11
Frequency range 3.025W53.47  3.025W53.47 3,025w43 .47
Degcribing function Ab=2.34 Ab=2.34 Ab=2.34
predictions - = =
Bound on ’Xhl 0.171 0.173 0,171

(use 0.17) (use 0.17) (use 0.17)
Bound on max |x| 3.28 3.31 3.28

For the system studied there appears to be no significant im-

provement in any of the egtimates as a result of a shift of gain from

the nonlinearity to the linear element.

The procedure gives a net re-

duction in d(w) (at w = 3.0 case (1) gives J(w) = 0.036, case (2) gives

Slw) = 0,029, and case (3) gives d4(w) = 0.022). However, raising the

gain of the linear element causes the 1/W(jw) locus to move inward to-

ward the origin (at w = 3.0, 1/W(jw) for cases (1), (2), and (3) is

respectively 0,3000 - j 0.0375, 0.2400 - j 0.0300, and 0.1800 - j 0.0225),

which tends to offset the effect of the reduction in the §(w)'s.
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In each case the numerical distance between the left and right

hand envelope intersections decreases (in case (1) the distance is
0.423 = 0,296 = 0,127, while in case (2) it is 0.336 -~ 0.235 = 0,101
and in case (3) it is 0.252 = 0.178 = 0,074). But in each successive
case the describing function locus is more compressed (in case (1) it
extends from O to 0.5, in case (2) from O to 0.4, and in case (3) from
0 to 0.3). The net result is that the first harmonic amplitude ranges
are essentially all the sama.

One disadvantage of the system chosen for this investigation
became apparent after the work had been donse. The system chosen is
rather close to Rankine's original Gl(s) - plug = saturation system
(Ml = 0,5, Gain = 180), for which the technique failed because no laft
hand intersection could be found. The result is that in each case the
left hand portion of the envelope crosses the describing function at a
fairly small angle, and it is difficult to decide the exact numerical
value of the intersection. Incidentally, this also gives rise to the
fairly high value of A in each case. If a system for which the 1/M(jw)
locus intersects the describing function almost vertically had been
chosen, the numerical values of the left hand intersections could have
been established with more certainty. This seems to be a rather minor
criticism, and probably no significant improvement in the estimates
would have been obtained had such a system been used in the investigation.
Nevertheless it is worthy of mention.

Judging by the behaviour of the system investigated, a gain shift
from the nonlinearity to the linear element in a given system does not

seem a worthwhile method of improving the Garber - Rozenvasser estimates.




CHAPTER VI

APPLICATION OF THE GARBER - ROZENVASSER

TECHNIQUE TO SOME HYPOTHETICAL CASES

At this point some consideration was given to several "border
line" or "out-of-the-ordinary" cases. In the following discussion it
is assumed that the nonlinearity involved is one, such as saturation,
for which higher numerical values of the describing function corres-
pond to smaller input amplitudes.

First, consider a low-gain oscillating system, that is one
which has sufficient gain to exhibit a 1limit cycle but for which the
1/M(jw) locus crosses very close to the end of the describing function.
For such a system there exists the possibility that when the Garber -
Rozenvagser estimates are applied the right hand portion of the envel-
ope will not intersect the describing function because the circles extend
out too far., Rather it will lie beyond thé end of the describing func-
tion. Even though such a system oscillates, an estimate of 4, is not
possible in the usual manner.

However, a little reflection reveals that an amplitude and a
frequency range can still be obtained by recalling that the vector dif-
ference between the 1/W(jw) locus and the deseribing function must lie
in a circle of radius d(w). Hence the smallest possible first harmonic
amplitude will be given by the end point of the describing function, and
¥y will be that frequency for which the circle just touches the end point
of the describing function., All the usual estimates can therefore be

made for such a system.
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As an illustration, the technique was applied to a modification
of Rankine's original Gl(s) = plus = saturation system, having a linear
element gain of 123 and an M; of 0.5, The 1/W(jw) locus will pass
through the end point of the describing function when the linear elem-
ent gain is reduced to 120, At a gain of 123 the crossing occurs at
0.488 on the describing function, and the system should oscillate. The
results obtained for the system are summarized in Table V. The right
hand envelope crossing occurred at 0,525, but the deseribing funection
only extended to 0.5.

TABLE V

ESTIMATES FOR LOW-GAIN OSCILLATING SYSTEM

P e

Amplitude range 04441.89 (end point of deseribing
function corresponds to
amplitudes from O to 1.5)

Frequency range 3.,1854%3,39

Describing function A, =1.59

predictions wb=3°32

Bound on |x, | 0.065 (use 0.07)
Bound on max |x| 1.96

Second, consider the complement of the first case, a system whose

gain is not quite large enough to sustain an oscilla‘oion.l For this

1as determined by describing function estimates.
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system the 1/MW(jw) locus passes just beyond the end point of the des-
cribing function. Even though the system might not oscillate, if the
gain is large enough the left hand portion of the envelope will still
intersect the deseribing function, and just as in the first case an
amplitude and a frequency range can still be found. In turn the other
estimates can be mads.

Although a bound can be put on the maximum magnitude of the res-
ponse, it will in this case be a rather liberal ons since the response
will have zero amplitude., Nevertheless the bound is still meaningful.
Also, the fact that the estimates give a frequency range, and not a zero
frequency, is quite consistent, since the fact that the response has
zero amplitude does not imply that it must also have zero frequency.

An example was not worked out to illustrate this case, since
it seemed rather pointless to go to a lot of work simply to put a bound
on a zero amplitude response. This "border line" case is mentioned
here merely to show that the Garber = Rozenvasser estimates give valid
results in a system where there is a "near miss" of the l/W(jw) locus
and the describing function.

The third and fourth cases are more ambiguous than the first
two. Suppose that experimentally Rankine's original Gl(s) - plus -
saturation system does not oscillate when the linear element gain is
set at, say, 117, while at a gain of 123 it does oscillate. Experimen-
tally the gain may be increased starting at 117 until that critical
gain for which the system just starts to oscillate is found. One of

three cases can arise, Either (1) the osecillation can start at some
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gain between 117 and 120, in which case there will be no intersection
of the 1/W(jw) locus and the describing function; (2) it can start at

a gain of 120; or (3) it can start between 120 and 123, including the
valve 123, in which cases there will be an intersection of the two
loeci. 1In the first instance the system would oscillate when the de-
scribing function predicts that it would not. In the second instance
the system would start to oscillate at exactly that gain predicted by
the describing function. In the third instance there would be some gain
between 120 and that value which starts the oscillation where the sy s~
tem would not oscillate when the describing function predicts that it
would, The first and third possibilities above, being cases where the
describing functibn gives incorrect predictions, are considered further
here as the third and fourth "border line" cases.

In the third "border line" case, then, the describing function
predicts no oscillation. However, the Garber - Rozenvasser method will
give all the usual estimates, this being a case of a "near miss" of the
1/M(ju) locus and the describing function. Then when the system is set
up, it turns out that it oscillates. Evidently the Garber - Rozenvasser
estimates have given useful information in a case where the describing
function fails.

In the fourth "border line" case the describing function predicts
an oscillation. The Garber - Rozenvasser technique again gives all the
usual estimates. When set up, the system does not oscillate. The
estimates have again given valid information (in the sense that zero

amplitude will certainly be less than the bound placed on the amplitude
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by the estimates) in a case whare the describing function failg,

It was decided to simulate Rankine's original Gl(s) - plus -
saturation system on an analog computer and find the critical gain.

One of possibilities (1), (2), and (3) would occur. If possibility (2)
occurred, the system would not be investigated further, since the cases
of interest were those where the describing function failed. If possib-
ilities (1) or (3) (third or fourth "border line" cases) occurred, a
typical system with a gain midway between the critical gain and 120
could be chosen. Then this system could be studied by applying the
Garber - Rozenvasser method to it and by checking the estimates againgt
the experimental amplitude and frequency of oscillation. Evidently,
hwwever, if the fourth "border line" case occurred, it would be rather
futile to go through all the work involved in applying the egtimates,
simply to put a bound on a zerc-amplitude response. Suffice it to say
that in this case the estimates are meaningful but very liberal indeed.
It was hoped that the third "border line" case would occur so that
there would be a non-zero experimental amplitude with which to compare
the estimated bound on the maximum magnitude of the resSponse.

The experimental procedure followed and the results obtained
are outlined in Chapter VII,

Thus it is seen that the Garber - Rozenvasser technique gives
meaningful estimates in cases of a "near miss" or a "near hit!" of the
1/M(ju) locus and the describing function. These are the cases whers
the describing function method, because of its approximate nature, is

apt to yield erroneous predictions of system behaviour. The Garber -
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Rozenvasser technique establishes definite bounds on the frequency and
the maximum magnitude of the response. It would therefore seem that,
because the behaviour of the system is not known a priori, in cases
of a "near hit" or a "near miss" the Garber - Rozenvasser technique,
even though.it does not say whether or not the system will oscillate,2
is superior to the describing function method in that it does not

leave room for error.

2Graham and Hofmann, op. c¢it., Chapter III, consider the case
of a "near miss" of the two loci, As noted before, they suggest as an
explanation for the possible failure of the describing function method
in this case that the higher harmonics of the response are critically
important. They outline a "generalized periodic input describing
function" technique for discovering whether or not a limit cyele will
exist and if so determining its approximate amplitude and frequency.
A disadvantage of the method, however, is that it requires a consider-
able amount of computation.




CHAPTER VII

EXPERIMENTAL RESULTS

Experimental results for comparison to estimated results

It was decided to obtain some experimental results for one or
two of the systems for which the estimates had been calculated. The
experimental results could be compared to the estimates to see how
good the estimates actually are.

Rankine's original Gl(s) - plus - saturation gystem was simu-
lated on a PACE TR - 48 analog compuber (Electronic Associates, Inc,),
with provision being left for varying the gain of the linear element
and Ml’ the slope of the saturation characteristic. The details of the
simulation are given in Appendix C.

Although reducing the gain on the linear element or on the non-
linear element is essentially the same procedure, it was decided to
check both the possibility (1) and possibility (2) systems of Chapter
IV, Section III since they are different and would therefore furnish
two checks of the estimates. The system used in the shift of gain in-
vestigation was also studied experimentally since it would provide a
third check of the estimates. All three cases (page #%) were tried
experimentally, even though they all should have the same amplitude
and frequency (being the same system), since the estimates had been

worked out separately for each one., Finally, the first "border line"

case of Chapter VI, for which the estimates appear on page 47, was tested.
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These systems, it was felt, would give an indication of how accurate
the Garber - Rozenvasser estimates are.

For each system in turn, the appropriate values of Ml and
linear element gain were set on the computer. An initial condition was
applied to the response. The response was recorded on a Houston Instru-
ment Corp. Model HR - 96 X<Y Recorder. The amplitude of the limit cycle
was measured using a circuit explained in Appendix C, and the frequency
was calculated from the recording.

The estimated results as well as the experimental results for

each system are presented in Table VI on the next page.
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Table VII gives the percentages by which the various predicted

quantities differ from the values obtained experimentally.,

TABLE VII

PERCENTAGE DIFFERENCES BETWEEN PREDICTED

AND EXPERIMENTAL VALUES

System
in
Table VI

DF G-R bound
amplitude on max |[x|
prediction from ex-
from experi~ perimental
mental amplitude
‘amplitude

DF

frequency
prediction
from experi-
mental
frequency

G=R frequency
predictiong from

W

(a)

(b)

(e) (1)
(2)
(3)

(a)

1.12% low 21.2% high
1.44% low  23.9% high
1.68% low 37.8% high
1.68% low 39.0% high
1.68% low  37.8% high
1.24% low  21.7% high

1.22% high
1.22% high
2.16% high
1.84% high
1.84% high
0.91% high

experimental
frequency
low high
bound bound
3.66% low  4.27% high
5.19% low  4.89% high
7.08% low 6.77% high
7.36% low 6.45% high
7.36% low  6.45% high
3.34% low 3.04% high

M

2

Rozenvagger."

DF denotes "describing function" and G-R denotes "Garber -

In these cases; where the linear transfer function is of order

three, the describing function is very accurate in predicting the ampli-

tude of the response.

On the other hand, the Garber - Rozenvasser bounds
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on the maximum magnitude of the response are roughly 20% to 40% high.
However, one important consideration is that the describing functien
underestimates the amplitude here, while the Garber - Rozenvasser bound
overestimates it, In designing a system it might be harmful to under-
estimate the response. In such a case the Garber - Rozenvasser tech-
nique would be particularly useful in that the designer can be sure that
the response will not exceed a certain value,

In the cases investigated the describing function predicts the
frequency of oscillation accurately. Its prediction is high in all of
them. In each case the experimental frequency falls within the range
predicted by the Garber - Rozenvasser technique. The Garber -
Rozenvasser frequency estimates are quite good in that the worst dif-

ference between a bound and an experimental frequency is 7.36%.

Critical gain determination

For the attempt to find the critical gain for the Gl(s) - plus -
saturation system, the linear element gain was initially set at 117. It
was noted that no limit cycle is possible in the system if the amplitude
falls below 1.5, at which the "knee" of the saturation characteristic
occurs, since the system would then be linear and the oscillation would
be damped. The response was recorded for several different initial con-
ditions ranging from 1.0 to 6.0 until it became obvious whether or not
the system exhibited a limit cyele, Since it did not, the gain was in-
creased to 118 and the procedure repeated. The gain was increased by

one each time until the critical valus wag found,
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The system did not oscillate at a gain of 120, but did oscil-
late when the gain was increased to 121. However, the potentiomsters
on the TR = 48 could not be set to any more than three decimal places,
so the exact value of the critical gain could not be found. It was
known to be somewhere between 120 and 121 (or possibly at 121), but
that was all. Nevertheless, it was evident that there would be some
gain for which the system would not oscillate, even though the describ-
ing function predicted that it would. This corresponds to the fourth
"border line" case in Chapter VI,

It had been hoped that the third "border line" case would occur,
but it did not., As noted in Chapter VI there was no point in applying
the Garber - Rozenvasser estimates in this case when it was known that
the steady state response would have zero amplitude. Therefore, the

invegtigation was not continued.

Experimental check of second Garber - Rozenvasser exampls
It was thought that in the light of the results of the first

gsection of this chapter an analog computer check of Garber and Rozen-
vagser's second example would be worthwhile., Although Garber and
Rozenvasser calculated all the estimates for the system, they gave no
experimental results by way of comparison. Since in the previous ex-
perimental checks the Garber - Rozehvasser bounds on the maximum magni-
tude of the response were found to be 20% to 40% too high, it was
thought that the authors' example should be studied to see if in their

case the bound was any more accurate.
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The system was simulated on the analog computer. The details
of the simulation are given in Appendix C. When an initial condition
was applied to the response, the system oscillated. The amplitude and
frequency of the oscillation were measured as before, and results of
1.46 and 2.83 rad./sec, were obtained respectively.

Table VIII on the next page compares the authors'! results for
this example and the results obtained by.the independent check carried
out hers and in Section II of Chapter IV. 1In each case the percentages
by which the various predicted quantities differ from the appropriate
experimental values, either the amplitude of 1.46 or the frequency of
2.83 rad./sec., are given.

The authors' bound on the maximum magnitude of the response is
46.5% too high. The check of the example gives a somewhat improved
bound, but it is still 32.2% high. Therefore, it would seem that the
20% to 40% high bounds found for the systems investigated in the first
section of this chapter are not unusually high. Rather, they are quite
good compared to the results which Garber and Rozenvasser saw fit to

publish.



TABLE VIII

COMPARISON OF ESTIMATES FROM ARTICLE AND

FROM CHECK TO EXPERIMENTAL RESULTS3

Ttem

Value quoted
in article

DF amplitude
prediction

G-R bound on
max |x|

DF frequency
prediction
(rad./sec.)

G-R frequency
range
(rad./sec.)

1.55

2.14

2,82

2.75 £ w £ 2,90

Percentage
difference
from experi-
mental value
of quantity

6.16% high

46.5% high
Oo35l&% low

low bound 2.83% low
high bound 2.48% high

Value obtained Percentage
in check difference
from experi-
mental value
of quantity
1.45 0.685% low
1093 3202% high
2.83 no error

2.77 £ w £ 2.89

low bound 2,12% low
high bound 2.12% high

3DF denotes "deseribing function® and G-=R denotes "Garber - Rozenvasser."
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CHAPTER VIII

FURTHER COMMENTS ON THE GARBER -

ROZENVASSER ESTIMATES

Investigation of "4 - w diagrams"

The Garber - Rozenvasser estimates give a certain allowable
range for A in the form 52 £45< Ah and an allowable range for w in
the form Wy £y £ w,. However, not all A, w pairs falling in these
ranges are possible, since each w has a certain set of A values that
can occur with it., It was decided to study the plotting of an "A - w
diagram," which would show the various allowable values of A for each
w in the range wy £ w £ v,

First, consider the application of the Garber - Rozenvasser
technique to the case where the 1/W(jw) locus and the describing func-
tion intersect at right angles as, say, in the authors' second example.,
Figure 8 shows the circles drawn at different w-values from Wy to vy
to produce the envelope that defines the allowable range of A, Tt is
seen from the diagram that at the frequency wp only the amplitude
Ay (point A) is allowed, while at w; amplitudes in the range B - C
of the describing function are possible. Finally, when the frequency
reaches Wy s Ab is again the only value of A that can exist simultan-
eously (point H).

Figure 9 shows these results graphically in the form of an 4 =

w diagram. The shaded region gives those 4,w combinations that can
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occur together, The point marked "DF" denotes the combination Ab’ Wy
predicted by the describing function method. Points on the diagram are
lettered correspondingly to those in Figure 8. The diagram has been
drawn assuming a saturation nonlinearity in the system. It is not drawn
to scale, but rather is intended only to give a qualitative picture of
the situation.

Several observations can be made regarding Figure 9. A satur-
ation nonlinearity has been assumed., Bscause of the form of its describ-
ing funetion, Ab will not lie midway between A, and Ah but will be closer
to Ay . However, one cannot tell where Wy, will fall with respect to wy
and w

h
points on the 1/W(jw) locus may become farther apart or closer together

, since the d(w)'s become smaller as w increases, but successive

ags w increases., If the successive points become closer together, as in
the authors' second example, then the effect of the decrease in é(w) will
be somewhat neutralized and Wy will lie approximately half way between w;
and w,. If, however, the successive points on 1/W(juw) become farther
apart, as was the case in those modifications of Rankine's original Gl(s)
- plus ~ saturation system studied previously, the effects will comple-
ment each other, with the result that Wy will lie closer to Y than to w,.
This effect will be small because the d(w)'s will not decrease very much
over the small range of w considered, and successive points on 1/W(jw)
will not become very much farther apart. The shapes of segments of the
diagrem can be obtained qualitatively by considering the form of the sat-

uration describing function.l For instance, the shape of segment A = B -

1Gibson, op. cit., Figure 9.15 on page 367.
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D arises from the fact that as one moves from point A toward lower
numerical values of the describing function, the amplitude increases
moderately at first, then more rapidly. Similarly, for A - C - E as
one moves from point A toward higher numerical values of the describ-
ing function, the amplitude decreases moderately at first, then more
slowly. The shapes of segments D - F - H and E - G = H can be justi-
fied by a similar argument.

The foregoing procedure was repeated for the case where the
1/W(jw) locus intersects the describing function at an angle, assuming
that both the right hand and left hand envelope intersections are avail-
able, This was the case, for example, for the possibility (1) and pos=
sibility (2) systems investigated in Section III of Chapter IV. Figure

10 shows the circles for different w-values from w, to w Figure 11

he
ig the A -~ w diagram for this case, again assuming a sasturation non-
linearity.

The right and left hand envelope intersections will be ap-
proximately the same numerical distance from the intersection of the

1/W(jw) locus and the describing function., Hence A, will again lie

b
closer to Ay than to 4, . As before, if successive points on the 1/W( jw)
locus become closer together as w increases, then Wy, will lie about
half way between wy and Wy s but if successive points become farther
apart, Wy will lie closger to Wy than to W e In those examples studied
previously which apply to this case, successive points on 1/W(jw) be-
came farther apart as w increased, so that Wy
closer to Wy than to w. Segments A = Band I = K = L of Figure 11

should lie slightly
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(f) FIGURE 10 (g )

CIRCLES PRODUCING ESTIMATES FOR SECOND
TYPE OF INTERSECTION
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are approximately linsar because they correspond to a very small range
of the describing function. The shapes of segméents B=D = F e H=J =
Land A« C~-E-G<-1I are given by the same reasoning as used in the
previous case.

Finally, the case where the 1/W(jw) locus intersects the describ-
ing function at an angle, but only the left hand envelope intersection
is available, was investigated. An example of this situation is the
first "border line" case of Chapter VI. Figure 12 shows the circles for
different w-valuss from wp to W while Figure 13 is the A - w diagram
for this case, assuming a saturation nonlinearity.

The end point of the describing function corresponds to a range
of input amplitudes from zero to the value at which the "knee" of the
saturation characteristic occurs. Thus points E and H in Figure 13
appear on the A = w diagram, not as a single amplitude, but as a range

of amplitudes. "A’ represents the amplitude at the "knee"

end of DF
of the saturation. In this case Ab will lie close to A

end of DF

because the l/W(jw) intersection will be close to the end of the de-
seribing function. By the same argument as used in the previous case,
Wy, should lie closer to W than to wy. The effect could even be more
pronounced here because in the previous case the W circle only had to
touch the describing function at its lowest point, while here the

circle will probably have to touch the end point of the describing func-
tion before hitting its lowest point (see Figure 14, page 70). Segment

A = B of Figure 13 is approximately linear because it corresponds to a

very small range of the describing function. The shapes of
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segments A = C -Eand B=D<=F - G - H are given by the same reasoning
as used in the first case, but the curvature is less since a smaller
range of the describing function is covered by the envelope here.

The observations made above are verified by the various systems
for which the Garber - Rozenvasser estimates have been found. For the
first case, in the authors' second example (using the results obtained
in the check, Section II of Chapter IV, rather than those quoted by the
authors) Ay (1.45) is closer to Ap (1.19) than to A (1.76), and
Wy (2.83) lies half way between w, (2.77) and W, (2.89), For the second
case, in the possibility (1) system of Chapter IV, Section III Ay (1.77)
is closer to 4, (1.51) than to A (2.09), while Wy (3.32) is closer to
Wy (3.42) than to wy (3.15), Similarly, in the possibility (2) system
of Chapter IV, Section III Ay (2.06) is closer to Ay (1.78) than to

A (2.48), and (3.32) is closer to W, (3.44) than to wy (3.11), For

b
the third case, in the first "border line" system of Chapter VI

A, (1.59) is close to A ¢ DF (1.50), A, being 1.89, and w, (3.32) is

end o
closer to w, (3.39) than to w, (3.18).

Attempts to improve the estimates

Inequality (5.10) of Garber and Rozenvasser's article gives the
bound on ‘xh(t)‘ as
£ ¥
]xh(t)‘ £ MlAh max wE (W

w £ wiwh 1- Mlﬁ(w

It was ghown in Chapter III that an equivalent statement of
the bound is

()] ¢ T4  S,) (III - 3)
3] € T
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The bound involves Ah and wy. However, from the previous dis-
cussion on A - w diagramg it is evident that an amplitude of Ah and a
frequency of wy cannot occur together. The point (Ah, wi) does not
fall in the allowable shaded regions of Figures 9, 11, and 13. It
appears that the authors, in going from the basic relation, inequality
(4.18), to inequality (5.10) have computed the right hand side of in-
equality (4.18) at the point (Ah’ Wy ) simply because its value at that
point is larger than its value at any point inside the shaded region.

Consider inequality (4.18). For a given value of w the bound
on A ig linear in A, or in other words

A %4 (constant). A (Vi - 1)

where the constant is given by

T
4y

congtant = &(w) (VIII = 2)

The constant, being proportional to §(w), will increase as w
decreases. Now for each w, A has a maximum allowable valus. There-
fore, it would seem logical to take each allowable value of w,
wy £ w <, compute ﬁ7ZMl.5(w) for it, J(w) being already known, use
for 4 the maximum allowable A for that w, and calculate the bound on
A. This would give a bound on A for each value of w. Then the max~-
imum of all these bounds would be selected as the bound on A over the
whole allowable range of w. By this method a tighter bound on A than
that given by Garber and Rozenvasser could be found, which would in turn
give a tighter bound on the maximum magnitude of the response.

Some observations can be made about the above procedure. For

each w the bound on A will occur along the right hand (maximum ampli-
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tude) boundary of the A - w diagram, and hence the bound on A over
the whole shaded region will occur on this boundary as well. For
example, in Figure 11 on page 66 the bound on A over the whole shaded
region occurs somewhere along the boundary L = J « H= F « D = B = A,
Furthermore, still with reference to Figure 11, the highest value of
the bound on A for all Wy £y & Wy will occur at 2 (point B) because
J(w) and the maximum allowable value of A are largest there for this
range of w. Hence the bound on A need only be calculated for w-
values in the range vy €yt Wy to find the bound over the whole shaded
regionf

Since the bound on A is a function of A and w, it can be
plotted in three-dimensional form over the shaded region of the A - w
diagram. Another way to plot the bound, which is easier to visualize,
is to plot it against A for fixed values of w. Figure 15 is a quali-
tative sketch of the bound on A against A for various w-values from
W, down to wy, for the A - w diagram Figure 11. A-values in Figure 15
are lettered correspondingly to those in Figure 11,

The procedure for finding a tighter bound on lxh[ than that
given by Garber and Rozenvasser is recapitulated below. First, the
bound on A is calculated at Wy where A attains its maximum value, Ah.
It is given by

= J .
Bound at Wy = J(wl) A

My

This bound is larger than that for any w from W to Wy e Next, the

" (VIII = 3)

bound is calculated at w-values between vy and W, and at w,. Then the
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largest of these bounds is taken as the bound on ixhland is used in
the calculation of the bound on the maximum magnitude of the response.
Therefore, the information that is required for an attempt to
improve the authors! bound on lxhl includes the frequency vy at which

A achieves its maximum value A _, frequencies and their meximum ampli-

h?
tudes between Wy and W, , and the one value of A possible at w, Ah and
w, being already known. In cases where the 1/W(jw) locus intersects
the describing function at an angle, Wy will be close to L7 (Figures

11 and 13), so the attempt to improve the estimate should not involve
too much calculation.

It was decided to apply the foregoing procedure to one of the
example systems studied. Although the three cases of the shift of gain
investigation produced the worst estimates, one was not selected for
this study. It was evident that the liberality of these estimates was
due mainly to the largeness of Ah’ resulting from the fact that the
cagses chosen were close to the critical case having no left hand envel-
ope intersection, and not to a large bound on 'xh|. Rather, the pos-
sibility (2) system of Chapter IV, Section III, having M; = 0.4 and a
linear element gain of 180, was selected.

The values Ah = 2,48 and W, = 3.11 have already been obtained
for this system (see Table III, page 41). The frequency at which A
occurred was found to be Wy = 3.14. Table IX presents the maximum

allowable amplitude A &(w), and the bound on |xh‘, calculated to

max’

three decimal placesg, for Wy £yt Wy The bound on ,xhl is found in
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each case from T
Bound on |x, | = A
l h! AMI max

= =& dw) (VIIT - 4)

TABLE IX

DATA FOR ATTEMPTED IMPROVEMENT OF BOUND ON ‘xhl

W (rad./s;c.) Ao Slw) Bound on |x,|
e s R N N
W = 3.11 2.46 0.023 0.111
3.12 247 0,022 0.107
3.13 247 0.022 0.107
= 3,14 2.48 = Ab 0,022 0.107

1]

v mcmpretrene atseirsas 2
— e ke

I

The bound obtained using Ah and w, was 0.112,

The procedure for improving the bound on 'xh| involves a fair
amount of work after all. For each w=value of interest, the point on
the 1/W(jw) locus must be located, d(w) must be found, the circle of
radius ka) must be drawn and its appropriate intersection with the
describing function found so that Amax can be calculated, and finally
the bound on Ixhl-must be found., The "improved" bound on 'xhl for the
example is 0,111, which occurs at W, » The calculation of the bound on
the maximum magnitude of the response, however, can only be carried out
to an accuracy of two decimal places, this being all the accuraecy with
which A-values can be obtained from Rankine's describing function plot.

Therefors, in either case a value of 0,11 would be used as the bound
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on lxhl in the final calculation, so that as far as the bound on the
maximum magnitude of the response is concerned nothing has been ac-
complished.

In cases where the 1/W(jw) locus intersects the describing
function at an angle, the value of A at wy will be very close to Ah
(2.46 and 2.48 respectively in the example above). Also, because Wy
is close to wy; and the frequency range W, £y £ W, is usually high
enough that &(w) does not vary too rapidly over it, wal) will be close
to AKWQ) (0,022 and 0.023 in the example above), Therefore, the bound
on |xh| calculated anywhere between wy and W, , which gives the bound
over the whole allowable A& -~ w region, will be almost the same as that
caleulated using A, and Wy« When Ah and w, are used, then, one calcu-
lation gives a bound which is for all practical purposes as good as any
"improved" bound obtainable by the method outlined, which involves a
lot more work. Note that in this example an attempt was made to re-
duce a quantity which comprises 4.25% of the total bound on the maxi-
mum magnitude of the response. Even if an improvement of almost 50% in
the bound on |¥al» say from 0,11 to 0.06, resulted, the bound on the
maximum magnitude of the response would only be reduced from 2.59
(23.9% high) to 2.54 (21.5% high), an improvement which certainly does

not seem to justify the work put into it.

The bound on !th proposed by Garber and Rozenvasser is suf-
ficiently accurate in cases where the 1/W(jw) locus intersects the

describing function at an angle and the filtering of the linear element
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ig fairly good, that is where the sffect of higher harmonics is rela-
tively small to begin with. TFor example, in none of the six cases in
Tabls VI does the bound on Ixh| make up more than 5.2% of the bound on
the maximum magnitude of the response. In such cases an attempt to
improve the bound on |xh| is not practical from an engineering stand-
point, in that it yields a small return for a large amount of tedious
work,

Possibly it might be more fruitful to try to improve the bound
on |xh‘ in cases where the 1/W(jw) locus intersects the deseribing
funetion at right angles and the filtering is poor. Then the w=value
(wb in this case) at which A achieves the value A, would be substan-
tially larger than w,, the value of A at w, and ﬂwb) would be sub-
stantially smaller than Ah and ékql) respectively, and the bound on
!Xhl would make up a larger portion of the bound on the maximum magni-
tude of the response,

From the foregoing example it is evident that, at least in
cases where the 1/W(jw) locus intersects the describing function at an
angle and the filtering is reasonably good, the amount by which the
bounds on the maximum magnitude of the response are too liberal is an
inherent fault of the Garber - Rozenvasser method, not the result of
putting too liberal a bound on lxh‘ for the sake of computational

convenience,



CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The scope of the investigation is considerably narrowser than
originally intended (Chapter I, Section II)., Although the problem
originally included both the aubonomous and non-autonomous cases, the
study was of necesgity restricted to the autonomous case and for rea-

sons outlined on page |8 to the combined Garber - Rozenvasser article,

It has been seen that for some systems the Garber - Rozenvasser
technique may fail in that it does not give one or both of the re-
quired intersections of the envelope and thae describing funection plot.
However, in some of these cases the technique can be made to work by
modifying either the linear or the nonlinear element appropriately,
with certain reservations. Also, the possibility of a doubling back
of the envelope to give a second pair of intersections was noted and
discussed. Garber and Rozenvasser's second example system was checked
and several discrepancies were noted. Their amplitude and frequency
ranges seemed to be tighter than they should be, while their bounds on
]Xhi and max |x| seemed too liberal. A doubling back of the envelope
was also noted in their example.

The possibility of improving the estimates for a given system
by means of a shift of gain from the nonlinearity to the linear element
was investigated. However, the shift of gain produced no significant

improvement in any of the estimates for the system studied.,
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The application of the Garber - Rozenvasser technique to some
hypothetical "border line" cases was considered. The technique, it
was seen, will give meaningful estimates in cases of a "near miss" or
a "near hit" of the 1/W(jw) locus and the describing function, the
cases where the describing function method may fail altogether.

Experimental results were obtained for several systems as a
check on the estimates. It was found that the describing function
method predicted the amplituds of the response accurately, but under-
estimated it. The Garber - Rozenvasser bounds on the maximum magnitude
of the response were, on the other hand, 20% to 40% too high. Also,
the deseribing function method predicted the frequency accurately, but
overestimated it. In every case the Garber - Rozenvasser frequency range
enclosed the experimental frequency. An attempt was made to investigate
a system for which the Garber - Rozenvasser technique gave valid results
when the describing function method failed. The case of interest, how-
ever, did not arise, so the work was not pursued.

An experimental check of Garber and Rozenvasser's second example
was carried out because no experimental results were given in their
article. Their quoted bound on the maximum magnitude of the response was
found to be 46.5% high. In the light of this result, previously obtained
bounds 20% to 40% high did not seem quite so bad.

Finally, the plotting of "A - w diagrams" showing the allowable
values of A for each w in the range qt'é w & w, was studied for three

different types of intersection of the 1/M(jw) locus and the describing

function. The obgervations made during the drawing of the diagrams were
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verified by systems for which the estimates had been found. Garber and
Rozenvasser's bound on 'xh(t)l , it was noted, is computed at a point
not allowed by the A - w diagrams. An attempt was made to improve the
bound on Ixh(t)l , but after an example had been worked out it was seen
that at best the technique would yield a small improvement for a large
amount of work, At least in cases where the 1/W(jw) locus intersects
the describing function at an angle and the filtering is fairly good, it
was concluded that the Garber = Rozenvasser bound on lxh(t)| is suf-
ficiently accurate for engineering purposes. It became apparent that
the liberality of the bounds on the maximum magnitude of the response
was not due to too liberal a bound on ixh(t)| , but ratﬁer was an inher=

ent fault of the method.

Some comments can be made sabout the two methods used for calcu-
lating the parameters &(w) and £Nw) -- the approximate, or series,
method of inequalities (4.19) and (4.20) as outlined in Chapter III, and
the exact method of inequalities (A = 1) and (A = 4) as outlined in Ap-
pendix A, For a system involving a high-order linear transfer function
W(p), the exact calculation of &(w) and €¥w) is difficult if the de-
nominator polynomial has complex roots because the sum over the roots
involves the calculation of several terms. On the other hand, in this
case the series for g£(w) and €¥w) converge rapidly, so that the approxi-
mate method gives an accurate estimation of the two parameters. For a
system involving a low-order W(p), the series for &(w) and £%w) do not

convserge as rapidly, but the exact calculation is considerably easier
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since fewer terms are involved in the sum over the roots. Therefore,
the two methods of calculation complement each other, and one or the

other can be used depending on the particular form of W(p).

Truxal1 states that from an engineering viewpoint a "complete
evaluation of the describing-function analysis" should answer, for in-
stance, the question, "Under what conditions might the describing-
function analysis indicate stability, while the actual system is un-
stable?" The Garber - Rozenvasser technique provides a partial answer
to this question, With reference to the systems investigated, if the
1/W(jw) locus misses the describing function but a left hand envelope
intersection is still available (i.e. a "near miss" of the two loci),
then the describing function method indicates stability, while the
Garber - Rozenvasser method indicates the possibility of instability.
The Garber - Rozenvasser method does not say that a limit cyele will
exist; it says that one might exist. Under these conditions; then, the
describing function method could indicate stability when in fact the
system is unstable. The enginser, says Truxal, would prefer a
fquantitative criterion" that would answer the question above. The

Garber - Rozenvasser technique provides such a criterion.

Several recommendations for future work can be made on the basis
of this study. With regard to the attempts made in Chapter IV, Section

ITI to modify a system so that the Garber - Rozenvasser technique would

1Truxal, op. git., p. 611,
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work for it, perhaps other modifications to the linear transfer function
than simply changing its gain could be tried. For instance, possibly
the poles and/or zeros of the transfer function could be altered to
produce a more desirable 1/W(jw) locus, that is, one with a lower "giph
and a steeper intersection with the describing function. Also, it
would be worthwhile to apply the shift of gain procedure outlined in
Chapter V to a system for which the l/W(jw) locusg intersects the de-
scribing function vertically or almost vertiecally. In this case the
left hand envelope intersections could be found more accurately, and
perhaps more conclusive statements could be made about the procedure.
Finally, further attention should be given to the possgibility of im-
proving Garber and Rozenvasser's bound on ‘xh| by the method detailed
under the second heading of Chapter VIII. This attention should be
concentrated on systems for which the 1/W(jw) locus intersects the de=-
scribing function at right angles and the filtering of the linear

element is poor.
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APPENDIX A
EXACT CALCULATION OF €(w) AND &*(w)

For the quantity

I(w) =\/2 ilw[(zsﬂ)iwjlz

8=0

in inequality (2.11), Garber and Rozenvasser derive the closed

form (2.13)
2 KON K(=))
T(w) = 7-[2 i < N
w) =\/ 3 = D'()F) D(-)?) tanh  (—57%)

)Vif=l,2, . « o Nn) being the roots of the equation D()N) = O.l Hence,

when j is used in place of i1 in the complex notation,

o = K(\) K(=))
e -

from which

3 B k() K(-N) _

Therefore, the following inequality can be written in place of
inequality (4.19):

TS KO K(=)p) -Tr
E(w) £\/= ;:1 BT(%) Doy temd (-———132w ) = 2|W(jw)| (A -1)

1
Garber and Rozenvasser, op. cit., pp. 277-278.
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A similar closed form can be derived for the bound on E*(w)

given by inequality (4.20). Let

wl(p) = -ém pD(p (A = 2)
Then
2
’w1[(2s+l)jw],2 _ lultasr1)1u]| % RetLiiv
(28+1)
If W.(p) is defined a
1(p) is in 8 Kl(p)
W, (p) = 51?;7 (4 - 3)

the procedure used above yields, when applied to this new transfer

function

n
S 2 s B Kl(")‘i’) )\ 5

where the sum is now taken over the roots of the equation Dl(A) =0,

Hence
Z lw[(2s+1) 3]l 3 Z %) K (=) canh )\ ) 2'” (Jw)'
s=1 (23+1)2 2 "'l 1 ()\) Dl( };5 1

from which the following inequality can be written in place of in-

equality (4.20):

K () Ky (=) T
i} 1NN N p 2
EX(w) & PZD T D,(=py) bem (50 = 2y (3w) (8 - 4)

Inequalities (A - 1) and (A = 4) can now be used to obtain
exact rather than approximate bounds on €(w) and E¥(w), and in turn

exact values of &(w) can be found.



For the second Garber - Rozenvasser example,

W(p) = 2 2

p + 0.8p + 8
from which
K(p) = p
D(p) = p2 + 0.8p + 8
D'(p) = 2p + 0.8
The roots of D(A) = O are
)\1 = = 0.4 + j 2,80
>~2 = = 0,4 = j 2.80

89

(A = 5)

In inequality (A -« 1) the coefficient of the first term in the sum is

D*(A) D(=}) (23 + 0.8) (W° - 0.8), +8)

When the numerical value of Al is used, the first coefficient becomes

. — _ _7.6800 + § 2,2400
Coefficient of first term in (4 - 1) sum 25.0820 + § 35840

Similarly, the second coefficient in the sum is

7.6800 = i 2.2400
25,0880 - j 3.5840

Coefficient of second term in (A = 1)sum =

The second coefficient is the complex conjugate of the first.

(4 - 6)

(A -7)

It can be shown from the exponential definition of tanh z that

for a complex number z = a + j b,

tanh (2%) = (tanh z)*

(4 - 8)

where the star denotes the complex conjugate. Also, the following

equation may be derived for tanh z:

- (GZa_e-Za) + j 4 sin b cog b
tanh z = —=———"—73 2, 8 -a2
cosb(e +e ) + sin“b(e"=e )

(A =9)
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Hence for z¥ =a - j b,
2a «2a
tanh (z%) = (6 7-e ") ~§ 4 sinbcosb (4 - 10)
cos*b(e%+e™8)° 4 sinzb(ea-e'a)2

Rationalization of the first coefficient in the (4 - 1) sum,
given by equation (A - 6), yields
Coefficient of first term in (A - 1) sum

_ 200.70400 , . 28.67200

= 642.25280 * J 642.25280 (4 - 11)
Hence
Coefficient of second term in (A -« 1) sum

- 20070400 _ . 28.67200 * - 12)

~ 642,25280 " I 642.25280
In the (A - 1) sum, if the first term involves the factor
tanh (z) the second term will involve the factor tanh (z*), since the
roots Al and Az are complex conjugates. The first term in the sum

will have the form

(e +3d) (e+jf)= 1 (ce-4df) + j (cf + de)
irs first
coefficient tanh

factor
The second term in the sum will have the form

(c-jd) (e=-j£)= - df) - £+4d
:ec i :econ (e )« 3 (et v de)

coefficient tanh
factor

Therefore, the sum in inequality (A - 1) will heve the form
Sum in (A - 1) = 2(ce - 4f) (A = 13)
where the factors, identified from equations (A - 11) and (4 - 9),

are:
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_ 200,70400

¢ T 842.25280 (A = 14)
_ _28.67200
d = 842.25280 (4 - 15)
2a =2a
(e“%=e™<7)
e = (A - 16)
coszb(eai-e.a)2 + sin.zb(ea-e-a)2

£ = 4 8in b cos b (4 - 17)

coszb(ea+e-a)2 + sinzb(ea-e.a)2

The writing of tanh z as e + j £ from (A - 9) assumes the
form 2 = a + j b, The parameters a and b must now be identified.
The guantity z has been ldentified as the argument of the tanh factor

in the first term of the sum, so that

-T =1.400
Z=__7‘;=:-1(-o;4+52.so)=g'-§l+j( =LOT)

2w 2w
Thus
a = 221 (& - 18)
b = ——-—4“——-1°w01r (4 - 19)

These two parameters are used in the evaluation of e and f.
Now, for the transfer function W(p) given,
W(ju) = ———E
(8-w") + j 0.8v

so that

2w2

+ 0.64w2

2u(jw))? = (4 - 20)

(8-w2)?
Finally, the use of (A = 13) and (A - 20) in inequality

(A = 1) yields the result
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(4 - 21)

where ¢, d, e, and f are given by (A = 14) to (A - 17) respectively.
In inequality (4 - 4) for €¥(w) the following transfer function

is used ( equation (A - 2) ):

W, (p) = -Lgl = o (4 - 22)

p2 + 0.,8p + 8

Hence from equation (A - 3),

K, (p) =1

_ .2
Dl(P) =p * 0°8p + 8
Dl'(p) =2p + 0.8

The roots of the equation Dl()) = 0 are
7\1 = «-0.4 + j 2.80
(4 = 23)
)2 = «0,4 = j 2.80
In inequality (A - 4) the coefficient of the first term in the sum is
KM_) K (=M)
By TOh) Dy TN QM+08)Q2-08A+8)

When the numerical value of Ai ig used, the first coefficient becomes

1
25.0880 + j 3.5840

Coefficient of first term in (4 = 4) sum =

_ 25,08800 3,58400
(when rationalized) 812 25280 -3 Z12.25280 (A = 24)

Similarly, the second coefficient in the sum is
Coefficient of second term in (A = 4) sum

25,08800 3,58400
642.25280 T J %32.25280 (4 - 25)
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Since the roots of Dl()) = Q are exactly the same as those of
D(\) = 0, the tanh factors in each of the two terms in the (A = 4) sum
will have the same form as in the previous development for £(w). The
first term in the sum will have the form

m=-3n) (e+jf)=(me+nf)+j (mf - ne)
S First
cogfficient tanh
factor

The second term will have the form

+ de=jf)= + nf) - { -
(%scd%aE) :ec n L= (me v nf) - § (n ne)

coefficient tanh
factor

Therefore, the sum in inequality (A - 4) will have the form
Sum in (A = 4) = 2(me + nf) (A = 26)

where m and n, identified from equation (A = 24), are:

_ _25,08800
m = Z42.25280 (4 - 27)

n = 3.58400
T 642,25280

(A - 28)
and e and f are given as before by equations (A - 16) and (A < 17) res-
pectively, in which a and b are given by (A - 18) and (4 - 19).

For the transfer function Wi(p),

1
(8-w2) + j 0.8v

Wi(Jw) =

so that
2_
(8=w2)? + 0.64w°

Finally, the substitution of (A = 26) and (A = 29) into in-

zlwl(jw)lz = (A - 29)

equality (A = 4) gives
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£%(w) é\/g-g- (me + nf) - (8-w2)2 i 0,64w2 (A - 30)

where e, £, m, and n are given respectively by equations (4 - 16),
(A =17), (& = 27), and (& = 28).

The exact bounds on g(w) and €¥w) may be calculated from in-
equalities (A - 21) and (A = 30). For a given value of w, a and b are
calculated, then e and f are determined. Next, €(w) can be found, con-
dition (4.17) checked, and, if it holds, £*(w) calculated. Finally,
the exact value of &(w) can be found.

As noted in Section II of Chapter IV, the exact values of d(w)
were computed for the w=values to be plotted in the check of Garber and
Rozenvasser's second example, and were compared to the values obtained
from the series calculation of £(w) and gX(w). Table X on the next page
compares the two sets of c{(w) values for those frequencies used in the
plotting. The J(w) values are given to three decimal places although
in this particular case, because of the nature and orientation of the
1/M(jw) and describing funetion loci, they were only plotted to two
decimal places. For the J(w)’s obtained by series estimation of &(w)
and 6*(w), the number of terms required in the series to obtain the
specified accuracy is also given.

As seen from Table X the two J(w) values differ at only three
frequencies, l.4, 3.1, and 4.0. In each instance they differ only in

the third decimal place, so that the plotting is not affected.
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TABLE X

COMPARISON OF APPROXIMATE AND EXACT 4(w) VALUES

mmcpuns

d(w) from series Number of
w(rad./sec.) estimation of £(w) terms re- Exact d(w)
and £%(w) quired in
gseries

1.3 1.70 2102 1.70

1.4 0.840 2290 0.850
1.5 0.570 2437 0.570
1.6 0.431 2553 0.431
1.7 0.348 2646 0.348
1.8 0.202 2722 0,292
1.9 0.253 21785 0.253
2.0 0.223 2837 0.223
2.1 0,200 2881 0,200
262 0,181 2919 0.181
Re3 0.165 2951 0.165
2ol 0.153 2979 0.153
2.5 0,142 3004 0.142
2.6 0,132 3025 0.132
2.7 0,124 3044, 0.124
2.8 0.117 3061 0,117
2.9 0.110 3076 0,110
3.0 0.105 3088 0,105
3.1 0,100 3100 0.099
3.2 0.095 3111 0.095
3.3 0.091 3121 0.091
364 0.087 3130 0.087
3.5 0.083 3139 0.083
3.6 0.080 3146 0.080
3.7 0,077 3153 0.077
3.8 0.074 3159 0.074
3.9 0,072 3165 0,072
4.0 0.070 3171 0,069




APPENDIX B

EXAMPLE CALCULATION OF GARBER~-ROZENVASSER ESTIMATES

The calculation of the estimates is given in detail for the
possibility (1) system of Chapter IV, Section III. This is Rankine's
original Gl(s)—plus~saturation system with the linear element gain re-
duced from 180 to 130.

Following the procedure outlined in Chapter III, one writes

] ] - 130 _ = 130
W(s) = - G(&8) = (s+1)(s+2)(s+3) ~ 33+632+lls+6
Hence
W(jw) = =20
0= o) + 3 wiiio)
60 =1) , _i__zlll
wuw 2o wiuo (B -1)

The second and third columns of Table XI on page 100 give the real and
imaginary parts of equation (B = 1) evaluated at the w-values of in-
terest.,

Now for the calculation of &(w) and £¥(w),

W(jlor) = 20
6(k W —l) +j kw( —ll)
so that

T 36(3w-1)2 + KRR(11K3R )2
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The use of (B - 2) in inequalities (4.19) and (4.20) respectively yields

o

338 104
E33557, « « o | 36(657-1)% + 3R (1150

i

€(w) (B = 3)

) £\ [ D 230 x OA - 4)
) EE, L .. AR {36032 + AR (11-k3R) P

The results of the J(w) calculations from inequalities
(B = 3) and (B = 4) and the calculation procedure outlined in
Chapter III are given in the extreme right hand column of Table XI.

The number of terms required in the &(w) series to attain the specified
accuracy is also given.

The calculations are all given to three decimal places since
that is the maximum accuracy with which the values can be plotted.
Figure 16 is a graph of J(w) against w.

Figure 17 is the plot for this system from the data of Table XI.
The 1/W(jw) and R(A,0) loci are marked. The R(A,0) locus extends out
to 0.5 since that is the slope of the saturation characteristic.

The circles from w = 4.0 down to w = 2.3 give two intersections
of the envelope and the degcribing function, as desired. As w goes
lower, the circles rapidly increase in size, and the envelope doubles
back. The circles for w = 1.5 and w = 1.4 are too large to plot.

The intersections occur at 0.412 and 0.498 on the describing
function. From curve 4 on page 38 of Rankine's thesis, with K = 0.5

and S = 3 for the saturation nonlinearity, the amplitude values corres-
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TABLE XI

100

DATA FOR EXAMPLE CALCUIATION OF ESTIMATES

————

Real part of Imaginary part No. of terms &)
(rad./sec.) 1/ 5w) of 1/(jw) in &(w) series

0.0 ~0,046 0,000

0.1 -0.046 -0,008

0.2 -0.044 -0, 017

0.3 -0.042 -0,025

0.4 -0.039 -0,033 39 cond.(4.17)violated
0.5 -0.035 ~0.041 35 cond.(4.17)violated
0.6 -0.030 ~0.049 32 cond. (4.17)violated
0.7 ~0,024 -0,057 30 cond.(4.17)violated
0.8 ~0,017 ~0.064 28 cond.(4.17)violated
0.9 -0,009 -0.071 27 cond.(4.17)violated
1.0 0.000 -0,077 26 cond.(4.17)violated
1.1 0.010 -0,083 26 conde(4.17)violated
1.2 0.020 -0.088 25 cond.(4.17)violated
1.3 0.032 -0.093 25 cond.(4.17)violated
104 Oo 044 —O- 097 24 2 0—489

1.5 0,058 -0.101 24 0.726

1.6 0.072 =0,10/4 24 0.404

1.7 0.087 ~0.106 R4 0,270

1.8 0.103 -0,107 23 0,197

1.9 0.120 -0,108 23 0.152

2.0 0.138 ~0,108 23 0.121

2.1 0,157 -0.106 23 0.099

22 0,177 =0,104 23 0,083

.3 0,198 -0,.101 23 0.070

24 0,220 =0,097 23 0.060

2.5 0.242 ~0,091 23 0.052

2.6 0,266 -0.085 23 0.045

2.7 0.290 -0.077 23 0.040

2.8 0.316 -0,068 22 0.035

2.9 0.342 -0.058 22 0.032

3.0 0.369 =0,046 22 0,028

3 el 00397 -00033 22 00025

3.2 0.426 =0,019 22 0.023

3.3 0.456 -0.003 22 0,021

344 0.487 0.015 22 0.019

3.5 0.519 0,034 22 0.017

3.6 0.552 0.054 22 0.016

3.7 0.586 0.077 22 0.015

3.8 0.620 0.101 22 0,013

3.9 0.656 0.126 22 0,012

4.0 0.692 0.154 22 0,011

lAs noted on page 28, £(w) was only calculated for w-values from 0.4 on.
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ponding to these two points are found to be 2.085 and 1,515 respec-
tively. Therefore, the amplitude range is

1.51 £ 4 £ 2,09 | (B - 5)

The frequency range extends between the centres of circles
tangent to the describing function. From Figure 17, w, evidently lies
between 3.1 and 3.2 rad./sec. A linear interpolation procedure is used_
between these two frequencies to estimate wy.

At w = 3.1 and w = 3.2 the imaginary parts of 1/M(jw) are
- 0,033 and - 0,019 respectively, while the &(w) values are 0.025 and
0.023 respectively. The frequency is increased from 3.l rad./sec. in
steps of 0.0l rad./sec., with a linear increase in the imaginary part
of 1/W(jw) over a small range of w and a similar linear decrease in
é(w) assumed, until a frequency is reached at which the imaginary part
of 1/M(jw) and &(w) are numerically equal. This frequency is Wpo A
similar procedure is used to estimate Wy e

Although it is evident from Table XI that the increase in the
imaginary part value between two successive frequencies does not remain
constant as w goes from zero to 3.7 rad./sec., this is nevertheless a
good approximation over a frequency range of the order of 0.l rad./sec.
Also, the assumption of a linear decrease in d(w) over a small range of
w is reasonable, as may be seen from Figure 16, This amounts to ap-
proximation of the curve by a series of straight line segments between
successive ézw) values. The successive w-values have been taken suf-
ficiently close together that this is a good approximation, especially

for the higher w-~values where the &(w) curve has levellad off,
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Thus at w = 3.16 the imaginary part of 1/W(jw) is taken to
be - 0,025, and &(w) is 0.024. At w = 3,17, however, the imaginary
part is - 0,023, vhile 4(w) is still approximately 0.024. Therefore,
wp is estimated to be 3.16 rad./sec. Similarly, w, is found to be
3.42 rad./sec. The frequency range is therefore

3.16 £ w & 3.42 (B - 6)

The describing function amplitude and frequency predictions

are found from the intersection of the two loci, which, from equation

(B - 1), occurs at w* = 11, giving a value of 60/130 = 0.461 on the

describing function. The predictions are:

Ay = 177 5 -
Wy = VII = 3.32 rad./sec.
The bound on Exh(t)I’ from equation (III - 3), is
Bound on Exh(t)‘ = Ei%? cf(wﬁ)
= 3%%%f%%l (0,024)
= 0.079 (B - 8)

Finally, the bound on max |x(t)] is

max |x(t)| € 4, + 0,08 = 2.09 + 0,08 = 2.17 (B ~9)



APPENDIX C

ANAIOG SIMULATION AND EXPERIMENTAL PROCEDURE

Simulation of Rankine's Gl(s) - plus - saturation system

Using Rankine's representation of the nonlinear systeml and
introducing minus signs in the numerator and denominator of the linear

transfer function, one can write

-C(s) K K

3() © A T T T D Zinene

where K has been used to represent the gain of the linear element, since
it will be varied. The differential equation for the linear element
will be

po(=c) + 6p°(=c) + 1lp(=c) + 6(=c) = K(-y)

or, with division by ten throughout,
302y = gri(=S £ £ =X -
P = 6p°(72) + Llp(3R) + 6(7%) + K( T ) (c-1)

The saturation nonlinearity was simulated by using two compara-
tors to produce different portions of the characteristic and summing
their outputs. Figure 18 shows the desired characteristie, with ﬁhe
"knee' at 1.5 2 but with provision being made to vary the slope Ml° Fig=
ure 19 shows the individual outputs of the two comparators, and Figure 20

shows the sum of the two comparator outputs. The sum of the two com-

parator outputs could be multiplied by the appropriate value of Ml to

: lRankine, op. c¢it., Figure 1 (b) on page 11,

2Ibid. In the diagram on page 29 the "knee" of the saturation
nonlinearity occurs at an input of S/2, while on page 36 it is noted
that S = 3 was chosen.
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DESIRED SATURATION CHARACTERISTIC
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FIGURE 19

INDIVIDUAL COMPARATOR OUTPUIS

/15 ——————

—1.5

FIGURE 20

SUM OF COMPARATOR OUTPUTS
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give the desired nonlinear characteristic for an individual trial,
Checks of the different characteristics by sweeping the input from -10
volts to +10 volts revealed that this method provided an excellent
simulation of the saturation nonlinearity.

Figure 21 is the simulation diagram for the entire system. In
each trial potentiometer 15 was set at K/1000, K being the desired gain
of the linear element, and potentiometer 20 was set at My, the desired
slope of the nonlinear characteristic. An initial condition could be
applied to x, the input to the nonlinear element, through integrator

30, and x was available for plotting at the output of amplifier 29.

Amplitude measuring circuit

Figure 22 shows the analog computer circuit used for measuring
1limit cycle amplitudes. It involves a comparator and an integrator.
The inputs to the comparator were x, the oscillation whose amplitude was
to be measured, and the signal fed back from the output of the integra-
tor. The comparator was set to give an output of 10 volts or O volts,
depending on the polarity of the sum of the two inputs. If the compara-
tor output were O volts, the output of the integrator would, of course,
hold at the value it had reached. If, on the other hand, the comparator
output were 10 volts, the output of the integrator would be a negative-
going ramp.

The comparator was set up to give the 10 volt output when the
sum of the inputs was positive. This meant that if x started at a

positive initial condition the integrator would begin to give & negative
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ramp. The integrator output would hold its value when the sum of the
inputs became negative, then would continue the negative ramp when the
sum of the inputs became positive again., Thus the integrator output
would build up until it eventually reached the negative of the amplitude
of x, at which point it would stop. In all the trials the integrator
output reached its final value after about five cycles of the x(t) wave-
form.

This method for 1limit cycle amplitude measurement was chosen
because it eliminated the plotter entirely. The amplitude could be
read directly on the computer's digital voltmeter at the output of
integrator 11. The maximum error that an amplitude reading could pos-
8ibly have was -0.01, since the digital voltmeter truncated the third
decimal place., This, it was felt, was better than the accuracy that
could be obtained with a measurement technique involving the plotter.

Two precautions were necessary when this amplitude measuring
circuit was used. First, to initiate a limit cyecle an initial condition
lower than the expected amplitude of oscillation had to be used so that
the oscillation would build up to its final amplitude. Otherwise the
integrator output could possibly hold at a higher walue than the true
amplitude. Second, it was necegsary to ensure that when the O volt re-
ference of the comparator was selected the comparator output was exactly
0 volts. Otherwise the integrator output would never hold a steady
value. It was found that the comparator gave a positive output of be-
tween 1 and 2 millivolts when the O volt reference was selected. There-

fore, this reference was made slightly positive, so that the comparator



108
output read 0.00 volts after two stages of multiplication by 10. With
this modification the output of integrator 11 behaved exactly as planned.
As the various trials were run, several checks were made to ensure that

the 0 volt comparator output was maintained.

Simulation of second Garber - Rozenvasser example system

The differential equation for the autonomous example system is

(p2 +08p+8)x=pf(x)=py

Hence

+

p2(x) + 0.8p(x) + 8(x) = p(y)

or

p(x) = - 0.8(x) = &( § ) +y (C - 2)

The saturation nonlinearity was simulated with two comparators as
before, the "knee" coming this time at 1.0 and the slope being fixed
at 1:1, Figure 23 is the simulation diagram for the entire system.

A positive initial condition could be applied to the response x through
integrator 14, and x was available for plotting at the output of ampli-
fier 29.
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FIGURE 23

SIMULATION DIAGRAM FOR SECOND GARBER-
ROZENVASSER EXAMPLE SYSTEM





