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Abstract

achieved better prediction performance than did SYM.

Background: Epigenetic modification has an effect on gene expression under the environmental alteration, but it
does not change corresponding genome sequence. DNA methylation (DNAm) is one of the important epigenetic
mechanisms. DNAm variations could be used as epigenetic markers to predict and account for the change of many
human phenotypic traits, such as cancer, diabetes, and high blood pressure. In this study, we built deep neural
network (DNN) regression models to account for interindividual variation in triglyceride concentrations measured at
different visits of peripheral blood samples using epigenome-wide DNAm profiles.

Results: We used epigenome-wide DNAm profiles of before and after medication interventions (called pretreatment
and posttreatment, respectively) to predict triglyceride concentrations for peripheral blood draws at visit 2 (using
pretreatment data) and at visit 4 (using both pretreatment and posttreatment data). Our experimental results showed
that DNN models can predict triglyceride concentrations for blood draws at visit 4 using pretreatment and posttreatment
DNAm data more accurately than for blood draws at visit 2 using pretreatment DNAm data. Furthermore, we got the
best prediction results when we used pretreatment DNAmM data to predict triglyceride concentrations for blood draws at
visit 4, which suggests a long-term epigenetic effect on phenotypic traits. We compared the prediction performances of
our proposed DNN models with that of support vector machine (SVM). This comparison showed that our DNN models

Conclusions: We demonstrated the superiority of our proposed DNN models over the SYM model for predicting
triglyceride concentrations. This study also suggests that the DNN approach has advantages over other traditional
machine-learning methods to model high-dimensional epigenome-wide DNAm data and other genomic data.

Background

DNA methylation (DNAm) is a major epigenetic modifi-
cation involving the addition of a methyl (CH3) group to
the 5 position of cytosine residues in CpG (5'-cytosine-
phosphate-guanine-3’) dinucleotide sequences by DNA
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methyltransferases to form 5-methylcytosine (5-mC).
In humans, DNAm is very common and 5-mC is found
in approximatelyl.5% of genomic DNA. The mutation
of specific CpG sites is always associated with tissue-
specific genes transcriptional repression, phenotype
transmission and contributes to the development of
different diseases by altering DNA accessibility and
chromatin structure. The quantification of 5-mC content
or global methylation in diseased or environmentally
impacted cells could provide useful information for under-
standing of disease progression and mechanisms. DNAm

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12919-018-0121-1&domain=pdf
mailto:pingzhao.hu@umanitoba.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Islam et al. BMC Proceedings 2018, 12(Suppl 9):21

variation has been proposed as an epigenetic biomarker
for predicting the stage of disease, to determine a patient’s
response to therapy, and to evaluate the prognosis [1].

Experimental and epidemiological evidences have
reported that associate DNAm variations with blood
lipid levels, such as high-density lipoprotein cholesterol,
low-density lipoprotein cholesterol, triglycerides, and
total cholesterol, by regulating the related gene of inter-
individual lipid levels. DNAm variations of CpG sites
within CPTIA and SREBFI [2] gene promoters were
linked with high triglycerides [2]. Triglyceride is a type
of fat in human blood. Having a high concentration of
triglycerides in human blood can increase our risk of
heart, stroke, and other diseases. Many genetic loci have
been identified by genome-wide association studies, but
only a small proportion of interindividual variability of tri-
glycerides has been explained by the genetic determinants.
It is known that the level of triglycerides is heritable. Conse-
quently, the development of new high-throughput genomic
technologies makes it natural to extend these phenotypic
prediction models to complex traits, such as triglyceride.
Using DNAm profiles to predict disease phenotypic courses
has not yet been explored in detail.

CpG sites with high interindividual variability of DNAm
can indicate the possibility of different diseases, which
means these CpG sites hold the patterns that are capable
of discriminating between different phenotypes. As a
heritable epigenetic mark, DNAm can explain the progress
of many disease courses. Epigenome-wide DNAm has
been used to predict different phenotypic traits. For
example, Xu et al. [3] developed a novel support vector
regression model for forensic age prediction by DNAm.
Wilhelm [4] proposed a machine-learning model named
Model-Selection—Supervised Principle Component Analysis
(MS-SPCA) to predict different stages of cervical cancer
using DNAm data. To avoid a potential overfitting problem
in building these models, only a small handful of CpG sites
are used in the models.

Newer machine-learning methods, such as deep neural
network (DNN), can build a model using a large number
of input features. These models show very promising
results for several classification problems [5] in the field of
computer vision. Unlike support vector machine (SVM),
DNN does not require any handcrafted features and can
automatically extract features from the raw input data.
However, a SVM model will be likely overfitted when it
is applied to methylation data with 450,000 CpG sites
and only hundreds of samples because the underlying
distribution is under sampled. In this paper, we propose
DNN regression models for the prediction of triglyceride
concentrations from multiple peripheral blood draws that
are measured at different visits based on the individual’s
epigenome-wide methylation profiles that are generated
before and after medication interventions.
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Methods and materials

Data sets

The data sets provided by GAW?20 include epigenome-wide
DNAm profiles and triglyceride concentrations (mg/dL)
measured at baseline level (pretreatment) of visit 2 and
changes in response to treatment with fenofibrate (posttreat-
ment) at visit 4. The differential DNAm profiles were gener-
ated using the Illumina Infinium HumanMethylation450
BeadChip array. The beta value measuring the methylation
level is expressed as a value between 0 and 1 in 993 partici-
pants of the Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) study. It should be noted that there are
only 499 participants with the posttreatment DNAm data.
The GOLDN study recruited families with at least 2 siblings.
For pretreatment data, we randomly selected 900 samples as
the training set and another 93 samples as the test set; for
posttreatment data, we randomly selected 400 samples as
the training set and another 99 samples as the test set. We
built the deep-learning models to predict triglyceride con-
centrations at visits 2 (pretreatment) and 4 (posttreatment)
using the pretreatment DNAm data and at visit 4 using the
posttreatment DNAm data. When we developed the model
to predict posttreatment of triglyceride concentrations at
visit 4 using pretreatment of DNAm data measured at visit
2, we only had 714 participants, from which 620 samples
were randomly selected as the training set and the other 94
samples as the test set. The procedure to split the training
and test sets was repeated three times. It should be noted
that we did not use the “Answers” provided by GAW20
organizers during the analysis.

Regression-based prediction models

Deep-learning regression model

We proposed a DNN model (Fig. 1) to predict individuals’
triglyceride concentrations based on their epigenome-
wide DNAm profiles provided by GAW20. DNN is an
artificial neural network—based method, which is made up
of a series of hidden layers between the input and output
layers. DNN builds a hierarchy of features by producing
high-level features from the low-level features. The bottom-
most layer (ie, input layer) of a DNN takes the raw input
data and each next hidden layer learns an abstract form of
the data from the previous layer.

The input of our proposed DNN network is a vector
of the epigenome-wide DNAm profile of a given sample.
Because the feature vector is quite high dimensional
(>450,000), we passed this input vector to two fully
connected layers with different output sizes to reduce its
dimension. These outputs can be thought as a matrix
multiplication for getting high-level abstraction of the
information in the input vector.

Because of the complex nonlinear relationship between
triglyceride concentrations and genome-wide DNAm, we
used a ReLU (rectified linear unit) layer followed by the
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Fig. 1 Proposed architecture of DNN. The numbers shown in the

figure represent the size of the output of each layer
A

second fully connected layer. The ReLU layer performs
a ReLU thesholding function over the output of the
second fully connected layer. The output of the ReLU
layer is the nonlinear representation of the input to the
network (see Fig. 1). The ReLU formularizes the rela-
tionship as:

7 ={ 572, 1)

Here,x represents the input to a neuron.

To provide generalization ability over the test data to
the network we used a regularization technique called
Dropout [6]. Dropout layers randomly drop out hidden
neurons from the network. This technique allows the
network to overcome the curse of overfitting because the
network has to learn fewer parameters. Consequently, the
output from the ReLU layer in our network was subjected
to the dropout regularization technique by applying a
dropout layer.

To get the final predictions of triglyceride concentrations
we passed the output of the dropout layer to the last layer
of the network, which is also a fully connected layer. We
considered the score of this layer as the prediction of the
network. Instead of using a greedy layer-wise (layer-by-
layer) approach to train our network, we used a Euclidean
loss layer to train our network in a backpropagation style.
In this case, each layer of our DNN took an input and
performed a transformation of the input to produce an
output. This output was then used as an input to the next
layer and so on until the loss layer was reached. This loss
layer computed an error over its input data with respect to
the ground truth value. Finally, a remedial gradient with
respect to the error value was passed down to the DNN
network to update its parameter values.
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SVM model

SVM is a supervised learning algorithm that was initially
developed to solve classification problems, but later was
extended to solve regression problems [7]. SVM regres-
sion maintains all the key features that characterize the
maximal margin theory and avoids difficulties of using
linear functions in the high-dimensional feature space by
transforming the optimization problem into dual convex
quadratic programs. The loss function in SVM regres-
sion, which is used to penalize errors, usually leads to
the sparse representation of the decision rule. This gives
significant algorithmic and representational advantages
over other regression methods.

Feature selection for DNN and SVM

For each sample, we have 463,995 CpG sites. As we
know that CpG sites with high interindividual variability
hold the most discriminative information [8], we defined
the interindividual variability (Z,) as the difference between
90th percentile and 10th percentile of the DNAm of a
given CpG.

We built DNN models based on the selected CpG sites
with I, greater than or equal to different cutoffs of
DNAm values (minimum [no filtering], first quartile,
second quartile, mean, and third quartile). For each of
these cutoff points we had 463,995, 348,223, 232,131,
165,817 and 116,057 CpG sites in the pretreatment data
set and 463,995, 348,252, 231,901, 157,073 and 116,054
CpG sites in the posttreatment data set. The distribu-
tions of the interindividual variability 7, of DNAm in all
CpG sites are shown in Fig. 2. Figure 2 clearly shows
that the DNAm of a majority of the CpG sites has very
small variation across samples. SVM will likely overfit
the regression models if we use all 463,995 CpG sites to
train the models. Consequently, we selected hundreds of
the top CpG sites with larger interindividual variability
of DNAm to build the SVM regression models.

Building the DNN

We used CAFFE, which is a C++ - based deep-learning
library, to implement the DNN models (see Fig. 1) for
different cutoffs of interindividual variability of DNAm
(see Fig. 2). We trained all our DNN models using a
learning rate (defined in the context of optimization,
and minimizing the loss function of a neural network) of
0.000001, batch size (the number of training samples used
in a single iteration/forward pass) of 10 and dropout ratio
of 0.5.

Performance evaluation

We used root mean square error (RMSE) and Pearson
correlation (Cor) methods to compare the performance
of our DNN and standard SVM regression models. Gal
and Ghahramani [6] also used RMSE to measure the
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Fig. 2 Distribution of inter-individual variability of DNAm for pretreatment and posttreatment

performance of their deep-learning-based regression
models. RMSEcan be calculated as follows:

RMSE = mean((y—j/)z) (2)
Here, y represents the observed triglyceride concentrations

at different blood draws and ¥ represents the predicted

triglyceride concentrations at different blood draws.

Cor was calculated between y andy. We performed
three random splits between training and test data. The
results of RMSE and Cor were averaged and their SDs
were estimated. We used R package e1071 to build the
SVM regression models (default parameters were used).
Models with smaller RMSE or higher Cor are preferable
and have better prediction performance.

Results and discussion

The p values of the Shapiro test of the log (base 2) of
observed triglyceride concentrations in test sets from
Case A (pretreatment DNAm data to predict the trigly-
ceride levels measured at visit 2), Case B (pretreatment
DNAm data to predict the triglyceride levels measured
at visit 4), and Case C (posttreatment DNAm data to
predict the triglyceride levels measured at visit 4), were
0.17, 0.25, and 0.25, respectively, suggesting that the
observed triglyceride levels followed log-normal distribu-
tion. We performed the same procedure on their averaged

Table 1 Performance of SYM models

predicted values from the three splits of training and test
sets using the SVM models with largest Cor values (bold
in Table 1) and the DNN model with largest Cor values
(bold in Table 2) and the p values for Case A, Case B, and
Case C were 0.09, 0.05, and 0.78, respectively, for SVM
models, and 0.08, 0.14, and 0.59, respectively, for DNN
models, which suggest that the predicted triglyceride
levels using either DNN models or SVM models also
follow log-normal distribution. The scatter plots of the
observed and predicted triglyceride levels for Case A,
Case B, and Case C are shown in Fig. 3.

The prediction results (RMSE and Cor) of the SVM
and our DNN models using different number of CpG
sites with larger interindividual variability of DNAm are
shown in Tables 1 and 2, respectively. In general, the
number of CpG sites used in each model (DNN or
SVM) has little effect on the prediction performance as
measured by RMSE of the triglyceride concentrations
measured at a specific visit. However, the number of
CpG sites used in each model (DNN or SVM) does
impact the prediction performance measured by Cor.
For example, the SVM models with a larger number of
CpG sites (eg, 500) have poorer performance than those
with a smaller number of CpG sites (eg, 100; see Table 1),
but the DNN models with a larger number of CpG sites
(eg, 165,817) have much better performance than those
with a smaller number of CpG sites (eg,1000; see Table 2).

Data® EvaluationMetric® Cutoffs
100 200 300 400 500
1 RMSE 90.3(275)d 90.9(28.8) 90.9 (29.2) 90.8 (28.8) 95.8 (23.8)
Cor 0.13(0.06) 0.11(0.12) 0.11 (0.14) 0.11 (0.14) 0.10 (0.13)
2 RMSE 48.7(13.7) 494(12.9) 490 (12.9) 48.7 (12.8) 50.1 (14.3)
Cor 0.19(0.08) 0.12(0.10) 0.15 (0.06) 0.17 (0.05) 0.04 (0.20)
3 RMSE 48.0(7.2) 47.6(7.0) 475 (6.9) 46.9 (7.0) 47.0 (6.9)
Cor 0.04(0.08) 0.07(0.09) 0.07 (0.10) 0.13 (0.10) 2012

?Data 1: Pretreatment DNAm data to predict the triglyceride levels measured at visit 2; Data 2: Pretreatment DNAm data to predict the triglyceride levels
measured at visit 4; Data 3: Posttreatment DNAm data to predict the triglyceride levels measured at visit 4
PRMSE root mean square error, Cor Pearson correlation between observed and predicted values

“The top number of CpG sites selected based on interindividual variability

%The averaged RMSE or Cor value and their SD from the three splits of training and test sets. The bold value indicates the model has the best performance across
a several number of selected CpG sites at the given DNAm data set and performance metric
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Table 2 Performance of DNN models
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Data Evaluation Cutoffs®
Metric Min Tst quartile Mean Median 3rd quartile 10kCpGs 1kCpGs
1 RMSE 88.5 (26.3) 88.8 (25.6) 89.3 (25.7) 89.0 (27.3) 88.8 (26.1) 89.2 (25.9) 89.8 (26.4)
Cor 0.19 (0.05) 0.27 (0.08) 0.19 (0.09) 0.11) 1(0.10) 0.24 (0.02) 0.14 (0.11)
2 RMSE 485 (144) 484 (14.7) 47.4 (13.7) 485 (14.3) 475 (13.8) 486 (129) 4838 (13.0)
Cor 0.23 (0.13) 0.10 (0.29) 0.29 (0.07) 4(0.19) 0.29 (0.07) 020 (0.11) 0.10 (0.14)
3 RMSE 485 (4.7) 48.7 (4.8) 485 (4.5 48.1 (3.5) 486 (4.6) 482 (5.0) 485 (5.3)
Cor 0.17 (0.07) 0.18 (0.08) 0.22 (0.13) 0.20 (0.12) 9 (0.08) 7 (0.06) 0.16 (0.04)

*The selected CpG sites with interindividual variability greater than or equal to different cutoffs of DNAm values (minimum [no filtering], first quartile, second
quartile, mean, and third quartile) as well as the top 10,000 CpG sites (10kCpGs) and top 1000 CpG sites (1kCpGs)

Comparison of the performances of our DNN models (see
Table 2) with those of SVM models (see Table 1) shows
that our proposed models have a lower RMSE and a
higher correlation between predicted and observed tri-
glyceride concentrations, which suggests that our DNN
models have better prediction performance than do the
SVM models.

Overall, using DNN and SVM models to predict trigly-
ceride concentrations with DNAm profiles has worse
performance at visit 2 than at visit 4. Remarkably, our
DNN results (the averaged RMSE and Cor) show that
the performances of using pre- and posttreatment
DNAm to predict triglyceride levels at visit 4 are similar.
For example, the best performance of using pretreatment
DNAm to predict triglyceride levels at visit 4 is 47.4 for
RMSE and 0.29 for Cor while the best performance of
using posttreatment DNAm to predict triglyceride levels
at visit 4 is 48.1 for RMSE and 0.22 for Cor. Furthermore,
this finding also shows that pretreatment DNAm has
slightly better capability to predict triglyceride levels than
posttreatment DNAm at visit 4. These results have two
potential implications: (a) the variation of DNAm may not
be altered greatly as a result of treatment, and (b) early
DNAm variation could predict the internal response of
the individuals to lipid-lowering drugs. Consequently,
DNAm may have a long-term effect on genome sequence

under exposure to early environmental experiences that
were associated with stable changes in the gene expression
that emerged in the initial stage of disease and were
sustained into later stages. Much research [9] supports
the long-term epigenetic effect on genomes, making the
DNAm profile usable as the epigenetic marker to predict
development and prognoses of diseases.

Conclusions

This study proposed a DNN architecture for predicting
triglyceride concentrations, a complex phenotypic trait,
using epigenome-wide DNAm profiles measured at different
patient visits for blood draw. The new model framework has
advantages over some traditional learning algorithms (such
as SVM), which are prone to overfitting when the input data
are quite high dimensional. We showed that DNAm profiles
measured at pretreatment and posttreatment have a better
capability to predict triglyceride concentrations measured
from blood drawn at visit 4 than do DNAm profiles mea-
sured at pretreatment to predict triglyceride concentrations
measured from blood drawn at visit 2. We also found that
DNAm profiles measured at pretreatment can predict trigly-
ceride concentrations measured from blood drawn at visit 4
more accurately than DNAm profiles measured at posttreat-
ment, which suggests a long-term epigenetic effect on
phenotypic traits. The limitations in the study are that the

-
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Fig. 3 a: Pretreatment DNAmM data to predict the triglyceride levels measured at visit 2; b: Pretreatment DNAm data to predict the triglyceride
levels measured at visit 4; ¢: Posttreatment DNAmM data to predict the triglyceride levels measured at visit 4
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proposed model neither considered the familial relationships
of the participants in the study nor explored the usefulness
of the available genetic data to predict the triglyceride
levels. We will investigate whether the DNN model is
sensitive to the familial structure and integrate both
genetic and methylation data to predict triglyceride
levels in the future.
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