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Abstract

A shaped, interdigitated comb drive is introduced as a viable actuator for

microtweezers. The device offers prescribed ouþut force for known actuation voltage

steps. As a result, controllable displacement is achieved. Partial device closure and

engagement force control are possible through the achieved step-movement. The

displacement is linked to the change in capacitance due to the varying engaging geometry

of the device.

Finite element analysis is used to simulate the electrostatic actuated, shaped comb

drives operating under DC conditions (zero actuating frequency). A parametric

multiphysics model is developed using the Arbitrary Lagrangian-Eulerian (ALE)

formulation. Results show the coupled interaction between the electrostatic and

mechanical domains of the transducer. The analysis is based on the evolution of

electrostatic force versus comb finger engagement. The relationship between incremental

lateral displaeement a¡d actr;ation voltage illustrates the potential for stepped movement

for a shaped comb drive. Additionally, through numerical simulations, this project

determines an ideal design for a DC-actuated comb drive, which has controllable force

output and stable engaging movement.
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i\omenclature

This section introduces the nomenclature used in all mathematical expressions

and schematics presented in this thesis. Extensive descriptions are given through this

paper but, whenever necessary, the reader is encouraged to use this list as a resource.

Attention must be given to differences in italicized, bolded and Greek letters.

Noñrnrcl.lrune
- Mo¡rtex Lerrsns -

UNITSAND

Corusr¡,nr
VALUES

DESCRIPTIoN

C tFl Caoacitance

d tml Gap distance between comb fìngers

D ÍC/mzl Electric flux densiw.

E [V/ml Electrostatic field intensity

E ¡eal Young's Modulus

F." n{l Electrostatic force

H tA/ml Magnetic fi eld intensity

J f^r*1 Current density.

k lNimì Spring constant.

t lml Comb fineer thickness or srractural laver thickness.

t'o ryl Actuation potential bias

,r" UI Electrostatic energv

X Ca¡tesian axis or a¡bitrary distance in the X-axis

Y Cartesian axis or arbitrary distance in the Y-a,xis

z Cartesian axis or arbitrary distance in the Z-axis

Noiuercl,ttuRe
- Mnse r LETTERS -

DESCRIPTION

Eg 8.854x l0'''
fF/ml

Constant perminivity of free space

dimensionless Strain normal to the X-arís.

Evv dimensionless Strain normal to the Y-¿ris

€y dimensionless Shear straín.

!t! 4rxl0-? [N/42] lVlagnetic permeability of free space

v dimensionless Poisson's ratio.

p tcl Volume charge

o [N/m'] Mechanical stress normal to-tåe X-aris.

oYY [N/m'] Mechanical stress normal to the Y-axis.

O1 [N/mt] Shear stress

lm'l Comb finger overlapping sidewall area. This corresponds to the engaged
dista¡ce.



Chapter I Introduction

Capacitance-based sensors and actuators have been extensively used in

microelectromechanical systems (MEMS) U],[2]. Among different devices, the most

commonly used and analysed is the comb drive [l],[4], seen in Figure 1.1. The MEMS

comb drive is a laterally driven mechanical actuator activated by electrostatic interaction.

The basic design of a comb drive relies on the theory of parallel-plate capacitors, which

in turn is a function of the plates' area and shape. In the case of a comb drive, the parallel

plates are an anay of interdigitated fingers, which are generally rectangular. Different

finger shapes and their electrostatic characteristics are discussed in this report.

Figure l.l. Basic design of a comb drive.

A typical rectangular-shaped comb drive design requires simple fabrication steps

(usually only one structural layer) and is characterized by low power consumption [5].

Disadvantages associated with the usual rectangular design are briefly summarized as

I



Chapter I Introduction

nonlinear force-to-voltage relationship and lower output power and efficiency than that

which is predicted by models [6]. Comb drives have been used as actuators for several

different applications, including but not restricted to micro-motors, conveyors, sensing

devices and microgrippers devices.

1.1 Research Goals

The present work introduces a novel step-and-lock mechanism based on the comb

drive design. The main use for such device would be as a microtweezers actuator for

application in areas such as biological sample handling, MEMS assembly processes and

other activities where precision micromanipulation and displacement-controlled

interaction are required.

Throughout this text the original rectangular comb drive is presented and its

operational characteristics are discussed. This device was originally designed for high

frequency operation as resonators. Later, shaped comb drives were introduced [6] as a

means to stiffen and weaken resonator springs and hence offer more controllability over

the device operation. Using sawtooth- and polynomial-shaped comb teeth, tunable

resonators were proposed as a means to achieve linear force-deflection profiles
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Design Concept

This project intoduces an adaptation to the shaped comb drives analyzed in [6],

in that the force-displacement is not linear, but it is also not constant, as in the case of

rectangular comb drives. Instead, a stepped force response versus displacement is made

possible by using jagged-edge comb teeth, as illustrated in Figure 1.2. The same figure

offers a conceptual idea of a possible final design for a displacement controllable

microtweezers. This report pertains to the actuator design. The gripping pads and flrnal

microtweezers testing are left for future work. The proposed move-and-lock mechanism

is based on the change in the lateral distance between the fixed and movable comb

fingers with respect to engagement, which in turn is a function of the actuation voltage.

The geometry simulated in this thesis corresponded to a set of ten fixed and nine movable

fingers.

t.2

¡vI '*
Figure 1.2. Ideal design of the integrated microtweezers with a shaped comb drive actuator.
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1.3 Report Organization

This report describes comb drives from the perspective of electrostatic interaction

model, shape design, fabrication, and applications. Chapter 2 offers an overview of comb

drive design and research so far. The device is introduced as an actuator for the purpose

of applications where fine displacement control is needed. Next, micro-gripping devices

a¡e introduced and shaped comb drives are discussed in the context of a microtweezers

actuation system.

Chapter 3 engages in a thorough description of the numerical methods used for

the device simulation. A description of the problem, both from the electrostatic and

mechanical points of views is given. The initial device fabrication and testing procedures

are discussed in Chapter 4. In that section, a brief description of the device fabrication

through the multi-users MEMS Process (MUMPs) [7] is given. Since the device was

fabricated by a third-party, the focus of the chapter is to offer enough supporting

information for the structure simulation discussion. Limitations in the fabrication

requirements led to non-ideal testing conditions.

In Chapter 4, the reader will find the numerical simulations performed with the

finite element method. These are used to discuss suggested improvements in the

conceptual design. Tãis discussion leads into the conclusions achieved in this project and

furure work ideas are suggested.
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Microtweezers

PartI-CombDrives

Comb drives are laterally driven, electrostatic actuators widely used in the MEMS

industry. The device was first introduced in 1989 [3], [4] and since then it has been

applied in a variety of applications that require electrostatic sensing [1], tg] and

electromechanical driving [2].

The most basic comb drive design can be seen in Figure 2.1, where the grey

colour represents free-standing, movable parts, whereas black depicts the anchored parts.

The comb drive is a polysilicon microstrucrure parallel to the substrate plane. It has two

pairs of double folded cantilever springs attached to a shuttle, which in turn caries the

movable electrostatic fingers. In general, parallel plate electrodes display low hysteresis

and no.magnetic fluxes, producing large output forces [5].
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-.
shuttle

Figure 2.1. Detailed schematic description of a comb drive. The grey structures represent free-
standing, movable parts; black represents anchored parts. White 

".osi-bo*", 
represånt the anchor

attached to the substrate.

Several authors have modelled and simulated comb drives under different

conditions. Comb drives can be simulated from the perspective of one single set of

engaging fingers, henceforth referred to as unit comb drive. Simulation results from a

unit comb drive render information regarding differential capacitance with respect to

displacement and electrostatic forces t4], [6]. Conversely, models can demonstrate the

total capacitance of a set of-fingers in free space or take into account the grounded plane

below the structure, which yields a more accurare understanding of fringing fields [9.þ
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The following section will present and discuss some of the previous w'ork done in

the fields of design and simulation of comb drives. Double-folded cantilever springs will

be described to some extent, since the mechanical restoring force is an integral part of the

comb drive simulation. Ultimately this review will lead into a discussion of the use of

comb drives as an acfuator mechanism for microtweezers.

2.1 Electrophysics of Comb Actuators

In what follows, a few basic electrostatic principles relevant to the comb drive

operation are presented. A detailed description of the electrostatic principles of comb

drives can be found elsewhere [5].

The forces interacting in a comb drive can be described by two components; local

and globaL Local forces are associated with potential sheets limited to the cross-sections

of any given comb finger. Global forces are corrections related to the electric fields

resulting from equipotential sheets, which represent both the engaged and unengaged

comb fÏnger regions. Figure 2.2 represents a schematic description of local forces, which

are defined by electric field lines in the X-Z plane,whereas global forces are defined in

the Y-Z plane; both cases are described in a confïned in a symmetric and homogeneous

surrounding area filled with air.
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Figure 2.2. Schematics of field lines distribution: description of local forces, where d is the fixed
distance between comb fingers and ç is the side-walt surface.

Let large engagemenr be defined as any engagement distance Y0 >> d, where d is

the constant gap distance between fingers. In a three-dimensional structure where the

fingers are initially largely engaged, fringing fields exist according to the principle of

parallel plate capacitors. If the distance d is considerably smaller than the length and

thickness of the plates, fringing flields can be neglected, since most field lines are

restricted to the finger cross-sections region (Figure 2.2). Additionally, the fringing

fields at the end of the fingers do not change significantly with further engagement. It

follows that the capacitance between any two plates is a function of the total engaged

overlapping surface area ofthe plates g and the gap distance d, asper equation (2-l).

z

L

,:to* (2-t)

Equation (2-1) only accounts for the field lines confined between the capacitor

plates' This is a reasonable approximation in the cases where fringing f,relds are

negligible and the surrounding dielectric is symmetric about the structure. However, if
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the gap distance d is larger than one of the dimensions of the plate, the previous

assumption is not correct and fringing fields will interfere in the total capacitance

calculation. In this case, the capacitance is retrieved from equation (2-2):

(2-2)

The electrostatic field energy lV', relative to the same volume of integration as in (2-2) is:

*"= -:,,ïl|lnl'axavn (2-3)

It follows that the attractive electrostatic force F* in the Y-direction is a function of

capacitance and inversely proportional to the gap between fingers, as equation (2-4).

, _ðw" _l dc rrz'u=T=rñn; (2'4)

The force F"" is generated by the fringing fields connecting the sidewalls of the

movable finger to those in the fixed finger. Thus, the effective attractive force is caused

by the Y-component of the potential lines connecting the movable finger and the fixed

finger (Figure 2.3). Due to symmetry, all other X-component force vectors are cancelled

with its respective opposite.

cror = 
,:Z $!*"^trYdz

9
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l- engagement length -.-...-.--_l

Figure 2.3. Schematics describing the field lines in a semi-engaged rectangular comb-drive.
Displacement occurs in the Y-direction. Rcd re:ffi:ï the fixÀd fing".s 

"nã 
btu" stands for rhe

Since the d gap between fingers is constant, ACf ðY is largely the same for any

displacement Y0 less than the total finger engagement length [5]. Therefore, under the

assumption of initial large engagement, the electrostatic engaging force F", is constant at

any displacement point. Yeh et al. llll stated a closed form analytical solution, which

defines the minimum initial engagement that assures constant output force. This

description is valid for the field lines confined in the overlapping region and it agrees

with the analytical model given by the author in [a]. However, a more realistic model

rvould account for a ground plane below the comb drive device. In this case, the sole use

of equations (2-3) nd Q-Q to describe the effective sheet potentials would be prone to

elrors' The authors in [10] *u.n.¿that calculations of both the electrostatic force E, and

the potential energy ll/" must account for the non-engaged area between the fixed finger

t0
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as well. Therefore, the proper description of F", should follow equation (2-5a-c). The

superscripts (l) and (f+*) represent the fixed and the fixed and movable overlapping

sidewall surfaces respectivelv. Despite the more accurate analytical description of the

problem, the authors in I l] agreed that due to the complexity in describing transition

regions, a numerical solution would offer more insight.

( F,, - p(r+m¡ + F:!, (a)
I

I

) F:{'^'-t ðw::-.^t ft) (2-s)1'" zaY
I
I

I e¡ : !aw:t' (c)
2ðY

It is important to consider that the total comb finger displacement can vary on a

number of extra coexisting factors; namely, the number of fingers, dimensions of each

finger, voltage applied, dimensions of spring structures and materials used. Table 2-l

describes the role of each variable in a comb drive design and analyses how they

influence on the device operation. Detailed explanations regarding each of the variables

are found throughout this report.

ll
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Table 2-1. Variables of interest in a comb drive design and operation. The reader should refer to

So far the analytical description of comb drives has been based on the generic

rectangular-shaped finger. It has been established that the leading variable in defining the

electrostatic properties of the comb drive is capacitance. Equation (2-t) relates

capacitance with the geometry of the plates. Thrs,.it is a trivial assumption that change

in geometry will cause a response change in capacitance, which in turn will affect the

distribution of equipotential lines and electrostatic force vectors. Such variations in

geometry may be represented by an u.tuut change in the capacitive plate shape, which

would affect both variables g and d in equation (2-l). The following sections will discuss

previouslv published research work dealing with varying the shapes of comb drives.

Figure 2.1 for better understanding ofeach one of these variables.

Longer springs reduce the equivalent spring constant.

Spring Width
Lower width reduces the equívalent spring constant. A change flrom t- to 2-prm in the spring

width will increase the total possible dísplacement by a factor of g.

Number of Fingers
Total number of fingers present in the device, i.e.. both grounded and charged fingers. More

fingers will íncrease total electrostatic force.

Gap distance between a charged and grounded finger. Smaller spacing increases the total
electrostatic force.

Comb Thickness
Thickness of the comb fingers (Z-axis) as well as the srn¡cture attached to the comb fingers.

Greater thickness (change in area) increases the total electrostatic force.

Typically the same as comb thickness. Thinner spring thickness decreases the equivalent spring
const¿rnt.

Initial finger overlap before any voltage is applied. It has a large impact on the stability and
useful range of the device (implications in preventing short betwèen movable and fìxed ñngers).

Voltage Bias DC voltage applied to one comb structure (either movable or fixed set ol fingers). The
opposing comb structure is set to I,=0 (ground potential).

It defines the modulus of elasticity and consequently the calculations of moment of inertia. The
comb drives presented in this report are all made of si (poly- or single crystal)

l2
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2.2 Asymmetric Comb Drives

Yeh et al. [ll] explored the effects of an asymmetic comb drive (Figure 2.4) and

developed an analytical solution for this problem. Asymmetric comb drives deliver large

out-of-plane motion. This device has thin movable fingers which, when in rest, are

placed higher than the thicker, substrate-attached, fixed fingers. The actuation process

occurs when the thin fingers are pulled down towards the substrate due to a difference in

potential among the fingers. Fringing fields are the essential component of the

electrostatic force.

Figure 2.4. Asymmetric unit comb drive.

2.3 Arbitrarily-Shaped Comb Drives

Different output force profiles as a function of finger displacement are achieved

by customizing the comb drive finger shape. The authors in [12] used numerical analysis

to optimize the comb finger shape according to the desired force response. The analysis

encompassed both the comb drive and the suspension spring. The restoring spring force

l3

direction of
displacement
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was found to be non-linear for large displacements, hence the need to increase the force

output with engagement. The driving force acting on the moving fingers along the

direction of displacement Y is:

F", = Ï,F^,dç (2-6)

where å it the component of the electrostatic force in the Y direction computed

on the surface 5. Figure 2.5 shows that ç corresponds to the engaged distance ys of each

comb finger (conductor plate).

Figure 2.5. Schematics of two arbitrarily-shaped comb fTngers. The out-of-plane thickness is defined
as / and 5 is the finger side-wall surface corresponding to the engaged distance ys.

It follows that F",,, is defined by equation (2_7):

F,,.,(ç) ='"# (2-7)

where t is the out-of-plane finger thickness and, d is the gap between movable and fixed

t4
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finger at any point in the engagement. Therefore, with a non-rectangular shape , the gap d

will undoubtedly vary with the movable displacement. Previous reports [12J, [13]

depicted several force-versus-displacement profiles for a variety of shaped of fixed

fingers. Driving forces were tailored to linear, quadratic and cubic responses.

Jensen et al. 16l discussed the concept of customized force-displacemenr response

as well as developed a generic model for any shape of frnger. The final goal of the

research was to achieve tunable resonators, which allow both up and down shifts of the

resonant frequency. The model was tested for seven different finger shapes, each

representing a single set of capacitors. Neither the analytical model nor the boundary

element method simulations described by these authors accounted for the restoring

mechanical spring force. The analytical model assumed a unit comb drive with one

rectangular movable finger and one arbitrarily-shaped fixed finger (Figure 2.6). The

shape of the side wall of the movable rectangular finger is a constant k, whereas the fixed

finger is described by a function g(Y). It follows that the gap between the fingers is

h(Y: gm - fr and the total capacitance is (ignoring fringing) computed as:

c =zeo_f"'# (2-8)
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chapter 2 Background on comb Drives and Microtweezers

Figure 2'6' Schematics describing the engagement of one rectangular-shaped finger with respect to a
fixed a rbitra rily-shaped finger.

The authors in [6] came to the same conclusion as in [12] when

any given displacement point; only the former defined the gap distance

in terms of the finger profiles, as seen in equation (2-g).

G(Y,)= *+' h(Y,)

2.4 Saw-Tooth Comb Drive

describing F^ at

between fingers

(2-e)

Jensen et al. 16l introduced numerical simulations for the sawtooth shaped unit

comb drive. Although considered as simply a means to test their analytical model, the

results from this simulation were used as the starting point in the development of the

design presented in this report. Results from Uotfr the boundary element method and the

original analytical model are shown in Figure 2.7.

l6
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This shape proved to be not-useful for resonant applications. However, the results

shown by these authors were used as the first step in defining the shape introduced in the

present research. Notice the arrows in Figure 2.7;the peaks occur when two outmost

point-edges in both the movable and fixed sawtooth are exactly opposite to each other. If
such one-dimensional points could be extended to two-dimensional areas, the force

versus displacement response would show local maximum and minimum ,,plateaus".

Whenever tJrese constant force values, i.e. plateaus, matched the restoring force of the

micro-spring, the comb drive device would have lock positions before engaging further.

This concept will be described in detail in the foilowing chapters.

Figure 2.7. Sawtooth comb design and its characteristic force versus engagement plot from l6l.
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chapter 2 Background on comb Drives and Microtweezers

Part II - Microfweezers Actuation System

Mechanical microgrippers and microtweezers are useful in many current research

areas. Such devices were developed as biological micromanipulators [14], [15], robotic

grippers [16]' [17] and general out-of-plane manipulators [lS], [19]. Additionally, non-

contact micromanipulation based on exposure to electric fields [20] and lasers l2ll, [22]

have been developed as well.

This report focuses on describing an actuation device suitable for a microtweezers

system. A successful microtweezers actuator must generate enough displacement to

clasp the object of interest and keep a stable level of tension to hold on to the object. The

sole open-close movement is not enough to guarantee the object will not slip from the

gripping pads. Conversely, excessive closing force might damage the object of interest.

Therefore, one might safely argue that the issue of controllability is imperative.

The following sections will briefly introduced some previously proposed

acfuation systems for use in microtweezers devices.

2.5 Thermal Actuation

The authors in [23] described microtweezers actuated by

(Figure 2.8). This design takes advanta,se of thermal properties

and thermal expansion is used for controlled mechanical work.

l8

linear thermal expansion

of single-crystal silicon,

Additionally, in order to
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prevent normal displacement. the authors inQal su-egested the design should incorporate

different-sized beams; these have an in-plane motion proportional to the amount of

thermal energy applied to the device.

Figure 2.8. Thermally actuated microtweezers as described by Keller and Howe 1231. This picture
has been downroaded from the author's website (www.memspi.com).

Thermal actuation is based on current flou'and operational temperature is close to

200"C at I 10mA [23]. Literature stresses the fact that special attention must be given to

the design of thermal actuators in order to maximize the generated strain and the thermal

isolation between the actuator and the gripping pads [5].

l9
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2.6 ElectrostaticActuation

The design presented by Kim et al. [14] makes use of flexible cantilever comb-

drive arms with a bidirectional actuation. It must be noted that this adaptation of the

original comb-drive design by [3] is prone to short circuit due to the differential

displacement (Figwe 2.9). Points a and å move in a semi-arc direction due to the

cantilever bending moment. However, å covers a larger displacement distance and tends

to snap shut against the fixed set of comb fingers. As a solution, the authors introduced

an over-range protector kept at the same potential as the cantilever ¿um. The cantilever

arm is kept at ground potential whereas the fixed set of frngers is at a given potential Z.

Figure 2.9. Drive mechanism for one of the two microtweezers arms for the device developed in Ilal.
Point ¿r is closer to the cantilever pivot point and the total displacement at this point is less than that

at b.
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The authors reported smooth displacement of the gripper tip and low operational

voltages (maximum 35V) for 40-flrnger comb drives. The relationship between applied

voltage and movement of the gripper tip is quasi-linear from 0- to 7pm tip displacement.

The remaining 3-¡rm have a steep response to input voltage change. The controlling

factor to prevent the cantilever arm from short-circuiting is the abovementioned over-

range protector.

2l



chapter 3 Background on the Numerical Analysis of
Comb Drives

This chapter will focus on introducing the background for the numerical analysis

in the context of the comb drive simulation. The finite element method (FElvf) was the

method of choice for all the numerical simulations performed in this project. The

information contained in this section supports the results described in the next chapter.

The reader who is well versed in finite element analysis (FEA) in electrical and

mechanical problems may choose to proceed to the next chapter. However, the reader

who is unfamiliar with FEM is encouraged to read the concepts discussed in Appendix II.

3.1 General Description of the Problem

3.1.1 Electrosratic Analysis

The MEMS comb drive simulation is described as an electrostatic problem. Such

a description is possible because electric charge can propagate through any dimension of

the system under investigation in a time scale much shorter than the times of interest.

The previous statement implies that the system response time is much slower than the

time constants of the material. The Maxwell's equations relevant to the present

simulations are simplified according to equations (3-la_d).
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VxE =-fiUoH=O (a)

VxH =*ror+J:0 (b)

V'eoE = pu

V',t¿oH =0

(c)

(d)

The electrostatic problem discussed in this chapter can be physically described

starting from Gauss' law:

(3-l)

(3-2)

(3-3)

the region

Thus, the

V.D=y.eE:pu

where,

E=-VV

It is assumed that the dielectric constant e is continuous th¡oughout

surrounding the comb drive where the scalar potential field v is defined.

dielectric medium is homogeneous and the foilowing substitution applies:

V.(-eVV) = puèr', =-+

It follows that, since the comb drive is a capacitive device with air as the

dielectric material, the region where the problem is detined is charge free (pr:g). The

electrostatic problem is then described by the Laplace equation (in rectangular

coordinates):

yzv =4-4.1Y =sdx" aY' lz'

(3-4)

(3-s)

z)
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The goal of this chapter is to present and discuss the methods which will

ultimately solve the Lapalce equation. The objective is to find the potential distribution

which satisfu equation (3-5) for a given electrode geometry at a predefined actuation

potential Z¡. The potential distribution in the dielectric region is not known a priori.

Since there is no current flow inside the comb drive device itself, the surface of the

device is assumed equipotential.

Basic FEM theory states that a function can be approximated by a discrete model

if and only if this function is continuous in the domain of interest [26]. Given that

potential energy is a continuous quantity in the domain of interest, the fundamental

requirement of the finite element method is met. The voltage-dependant continuous

potential distribution can be approximated by a discrete model composed of a set of

piecewise continuous functions defined over a finite number of subdomains. The

discretization process approximates the partial deferential equarion (pDE) problem

(Laplace equation) with a finite number of unknowx parameters. This numerical solution

will serve as input data into analytical equations. rvhich will in turn produce results for

þrces and displacements in the system. The solution of the electrostatic problem serves

as the load þrce to the mechanical problem. Both solutions combined give the desired

comb drive characterization.

a,t
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3.I.2 Mechanical Analysis

The mechanical analysis in this research aims at describing the double-folded

cantilever beam spring deflection problem. As previously stated, the comb drive device

is composed of ¡¡¡o sets of capacitive fingers (movable and fixed) and the movable set is

attached to a shuttle. This is the link befween the electrostatic force-generating device

and the two double-folded cantilever beam springs. Hence, the comb displacement is a

combination of electrostatic pulling force, as seen in equation (2-4), and the mechanical

spring restoring force (Fr.r¡).

F*,0 = kLY (3-6)

Incidentally, equation (3-6) is defined for an incremental displacement in the Y-direction.

In this section the second part of the comb drive problem, the spring restoring force, is

described.

The following def,rnitions apply to the cantilever springs: (a) the material used in

the fabrication (polysilicon) is assumed homogeneous and isotropic; (b) the thickness

dimension is small compared to the length; and (c) the stress in the normal Z-direction is

ideally zero. It is nevertheless worth noting that in the actual environment the silicon

substrate below the device causes a levitation phenomena that contributes to a finite Z-

component of stress. In any case, levitation analysis is beyond the scope of this report

and it is further described elsewhere [9]. The stresses and loads are defined in the X-Y

plane and any other parallel plane has the same stress distribution. Thus, the springs fall
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into the characteristic plane stress problem definition [25]. The variables of interest are

the global spring displacements (u,v) in the X- and Y- directions. Normal stresses per

unit element are:

oxx: : 
F* (a)

Areex\

F,
--"YY - Area", þ)

F
oxY = A*"* (c)

(b)

(c)

from the constitùfi-ve

Poisson's ratio:

(3-7)

(3-8)

relation of Hooke's

where (a) and (b) stand for stresses in the X- and Y-directions, respectively. Equation

(3'7c) states the shear stress given an applied total force with both X- and Y-components.

The deformation per unit length in the X- and Y-directions are defined by the normal

strains €xx and tyy respectively (3-8a-b). The shear strain per unit element of the spring

material is shown in (3-8c).

(a)

tvv

txv

Finally, the stress-strain relations are defined

Law, where.E is the Young's modulus and vis

=d,
dX

Av

AY

ôu Av=-+-AY ôX

txx
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and G is shear modulus defined as:
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E
1'--

2(l+v\

(a)

(b) (3-9)

(c)

For a given beam with length {., the boundary conditions for each beam are clamped-

clamped, as seen in Figure 3.1. Equations (3-l la-b) are the mathematical description for

both boundaries. Detailed formulation for a beam spring can be found elsewhere [27].

(3-r0)

(3-r r)

f Y(o)=o Y(/)=o
I
| ^(o) = o ñG) 

=otdx dx

no deflection

no slope

(a)

(b)

The solution for the spring problem is derived from Navier's equations for the X-

and Y- components (3-12), where the vector K represents the force applied to the shuttle,

which in turn is connected to the springs and therefore acts as the load in this system.

The stress tensor is represented by o, whereas u : (z¿, u) is the displacement vector. In

the electrostatic case, the f,rst term of the LHS equals to zero.

,#- v'o = K

27
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Figure 3.1. Schematic description of the spring beam boundary conditions.
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3.2 The Arbitrary Lagrangian-Eulerian Formulation

3.2.1 Introduction

Comb drives are by definition transducers, which transform electrostatic energy

into mechanical displacement. It implies that, in order to properly simulate the device,

two domains must be coupled: the electrostatic domain and the mechanical domain. This

is therefore characterized as a multiphysics problem. Simulation of such a problem

through FEM is not trivial and difficulties a¡ise in developing a mesh capable of

approximating large deformations. Additionally, a dynamic parametric simulation

generates increasingly deformed meshes, which in turn become unstable and solutions do

not converge. The Arbitrary Lagrangian-Eulerian (ALE) technique is an advanced

method of solving moving boundaries and nonJinear problems in FEA [33], [34], [35].

The ALE method was chosen as a means to avoid such lack of convergence.

This technique makes use of the two FEM descriptions of motion: the Lagrangian

element and the Eulerian element. Initial discussions on ALE were introduced by Hirt et

al. 1361. Further developments were presented in [37], [38]. Basic ALE formulations are

available from different sources [33], [39], [40], which can be used as an initial template

and adapted to each specific problem. So far, ALE has not been widely used in the field

of MEMS simulation; in fact, upon extensive research. only one paper was found which

clearly applied ALE for solving a multi-domain MEMS problem [4i].
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The ALE analysis technique uses an FE mesh that is neither attached to the

material nor fixed in space. An arbitrary motion independent of the material deformation

is assigned to each degree of freedom of the system. Special cases in the ALE numerical

procedure may represent an Eulerian- or Lagrangian-only formulation. The main

advantage of this technique lays in the fact that at any point of the analysis a solution may

be computed, both in cases where large and highly localized deformation of the structure

occur, and where unconstrained flow of material on free boundaries happens. When free

boundaries exist, the ALE may be reduced to aLagrangian form; if large deformations

occur at any point of the analysed geometry, than the solution algorithm takes the

Eulerian form.

One characteristic of the ALE formulation is that the solution variables

representing structural deformation are only determined at elements within the structure

boundaries. The coupling with other simulation variables happens through the mesh

displacement characteristics. Thus the structure deformation properties must be

transferred to mesh points through an updating algorithm. Additionally, prescribed mesh

displacements must be assigned for all degrees of freedom of the mesh, at each iteration

of the numerical solution [30].

For the purpose of this report, the reader should familiarize himself with the

following concepts:

' The ALE method is applied to the electrostatic problem as a way to deal
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with the constant rearrangement of field lines as a function of comb

movement.

Recall that the electrostatic problem is defined in the dielectric

surrounding the comb drive. The ALE discussions refer to the dielectric

domain as the dielectric material structure, or simply díelectric material.

This corresponds to the entire ¿ìrea surrounding the comb drive minus the

comb drive itself.

' The solutions of the ALE simulation are used as loads in the plane stress

simulation mode.

In what follows a description of ALE in the context of the comb drive simulation

will be introduced. The algorithm is discussed with the aim of demonstrating the

robushess for solving large deformation problems without losing convergence.

3.2.2 The ALE and the Comb Drive Simulation

The ALE formulations are based on two sets of coordinate systems [42]. The first

coordinate system is attached to the dielectric material and it tails the deformation of the

field lines defined in the material. This system is identified by the variables X, Y, Z. A

second coordinate system defines a computational mesh, which moves according to pre-

defined mesh displacements. The computational mesh is identified by ,, y, z in

rectanqular coordinates. The reader should be careful not to confuse the FE mesh and the

ALE computational mesh. For the sake of ólurirl', the ALE computational mesh will

hencetbrth be refened to as computational grid or simply the gríd.
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A one-to-one mapping between the dielectric material displacements and the grid

movement must exist. That requires that both domains coincide and all displacements

happen inside the domain borders, which implies in the identity shown in (3-21);

(S-o).D=o (3-r3)

where ô and ô corresponds to the grid displacement and the dielectric material

displacement, respectively. Figure 3.2 offers a graphical interpretation of the previous

statement.

Finite eleruenl, approximation at time I

Approximation at timc / + A/

Figure 3.2. This is an illustrative demonstration of the interaction between the electrostatic problem
- and the ALE grid displacement.

The logical outcome of the implementation of (3-21) is as follows: the aþorithm

performs an automatic grid re-design procedure, which maps the original domain into the

deformed domain at each displacement instance. Hence the ALE formulation specifies

v----€

Electrostatic mesh and grid att + A,t

Electrosurtic rnesh antJ -ericl at timc f
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which boundaries will move during the simulation and how they should move. Previous

sections described the characteristics of independent electrostatic and plane stress

simulation. V/ith ALE, both simulations are performed together and the solution of one

part serves as a boundary condition to the second part. Thus, the ALE formulations can

be described as an algorithm that performs automatic reasoning [43], according to the

following steps:

t. When the grid is distorted enough and convergence is

calculations are stopped.

Grid is smoothed.

Last solution achieved from the distorted grid is remapped

grid.

Calculations are resumed.

no longer possible,

into the new, smooth

)

J.

4.

Step I is related to the issue of element quality described in section Error!

Reference source not found.. The software package automatically def,rnes a threshold

where a significant number of low quality elements prevent the successful determination

of a solution. The four steps described above suggest an implicit incremental approach

[39]. In the case of this thesis, all solutions are derived from a parametric analysis, where

the parameter is the input actuation potential Vo. as described in detail in Chapter 5. At

all iterations, it is assumed that the governing equations of the problem under scrutiny are

in equilibrium. Hence the solution for the equilibrium equations in the ALE formulation

are already known for all parameter steps from Vo : 0 until Vo : V. Each subsequent

aa
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iteration i solves for the next parameter step V0 + 
^V. 

The vector equation (3-22)

represents the previous statement, where ô is any arbitrary 2D field line displacement.

vo +aYQ,,=Y. 
Qi_rl+^Yq-,

3.2.3 Problem Definition

/:Ql-'Q

(3-r 4)

The device analysed in this research is qualified by its strong monotonicity

properfy, dielectric material linearity and geometrically nonlinear behaviour. The

nonlinearity stems from the large deformation that the field lines undergo whilst the

device engages. This consequently produces a problem with moving boundaries. The

ALE algorithm is carried out as a means to manage the continuous changes in the field

lines without losing convergence. The successful solution of each ALE iteration serves

as input load to the coupled mechanical displacement problem.

Proper implementation of the ALE algorithm depends on two conditions: (a) the

topology of the geometry must be the same throughout the simulation, and (b) there

exists an appropriate PDE which characterizes the computational grid prescribed

displacement [39]. The implementation of ALE starts from characterizing a mapping

function from the original domain Q into a deformed domain Q:

(3-rs)

where (xy) represents the deformed coordinates defined in terms of the fìxed X- and Y-
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axes and in time f, as per the definitions in (3-24).

x = ¡(x,y,t) (a)

y = ¡(x,Y,t) 1u)

(x,v)e o (c)

(x,y)e o (d)

r e Re* (e)

(3-r 6)

Since the comb drive problem requires information on gnd displacements, rather than

solely grid coordinates, the deformed domain variables are redefined according to (3-25).

Figure 3.3 offers a general understanding of the intended steps in the ALE

implementation.

I *=X+ôr

l r=Y+ù
(3-r7)

The ALE formulation guarantees the independency of the computational grid

movement from the electrostatic field movement and it still recovers a homogeneous

mesh at each iteration. The development of local stiffrress matrices requires a

transformation matrix T that relate the displacements ð in the deformed coordinate

system to the fixed coordinate system as described below:

f[or",rl]t = [o1x,v¡]

l[ot', rl] = [01x, v¡]r-'
(3-r8)

The derivatives of the electric field nodes coordinates are computed in the

35



Chapter 3 Background on the Numerical Analysís of Comb Drives

(X,Y) € ç¿ domain, but the element displacements, or distorted grid, have been

previously defined in the (x,y)eQ domain. Thus, in order to recover the shape

functions in the undeformed domain, the chain rule of derívatives must be used, which

relates the (x,y) coordinates back to the (X,Y) and the appropriate inòremental

displacement can be calculated. It turns out that the transformation matrix T at each node

with respect to the fixed coordinate system is the Jacobían matrix J, and the inverse

Jacobian Jr must be computed, according to the identity (3-27).

(3-20)

As previously stated in section 3.2.2, the one-to-one mapping depends on a non-

zero Jacobian [30] and the boundaries of the two domains (structural and mesh) must

coincide. The detailed description of the ALE method implementation in the comb drive

analysis can be found in Part II of Chaprer 5.

,=l# #l-[*,*.*, *,"-*,J =l'.** ftd.

L# #l l*,".", *,,.ô,)J L** t.*ôy

h * aa, -!-a*1J-,=Il u, ' aY 
I

detJl -ð d, r+a¿"|L ax' ax l

(3-re)
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3.3 Conclusion

Chapter 3 has described numerical principles used to simulate the comb drive

problem. Two types of analysis were investigated; initially the comb drive simulation

was presented as two independent problems, namely the electrostatic and the mechanical

components. This analysis is described in three dimensions and its governing equations

were introduced. The basis of the finite element method was established and discussed in

the context of the comb drive simulation.

This initial discussion led to the presentation of the Arbitrary Lagrangian-Eulerian

formulation as a practical numerical tool to integrate both electrostatic and mechanical

problems. The ALE method was considered as an innovative way to deal with

multiphysics analysis in MEMS simulation problems. This technique was discussed in a

tlvo-dimensional viewpoint.

Chapter 5 will present the application of the techniques discussed here. The

reader will also find an examination of the results achieved with the abovementioned

numerical methods.
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Figure 3.3. Flowchart describing the ALE procedure.

Compute mechanical
displacement (ø,v), given F*

Create new ALE compuøtional
grid based on (u,v) displacements

kevious solution is
mapped into nerv grid
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4.1 Preamble

The design of the comb drives was based on standard geometries available

through the Multi-User MEMS Processes (MUMPs). The whole of the device was

defined in one single polysilicon layer and the 2-¡rm structural thickness followed the

fabrication design standard. This chapter will discuss steps in the fabrication process

relevant to the target design. Additional detailed descriptions of design rules in MUMPs

are available in [7].

The rectangular resonant comb-drive design (Figure 2.1) is available in the

MUMPs library of masks. [t was used as an initial template for the other two designs

tested: jagged-edge and sawtooth shapes. The dimensions of each comb finger set are

described in Figure 4.1. Due to issues related to chip real state availability, the fabricated

springs followed the standard 140-¡rm-long MUMPs design (Figure 4.2).

^Y,L.*-

Ê
c.)

Figure 4.I. View of the X-Y plane of the three simulated comb shaped. From top to bottom:
rectangula r, sawtooth, a nd jagged-edge.
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èO
:J

\ anchors/ HApm-t

,Å-_ "
Figure 4'2' schematic descriPtionno:jfijf"iïl,iJlilä;"Ï"ïhuttle is the mounting structure

4.2 Design Considerations

The design features were adapted to best suit the requirements of the MUMPs

process. The minimum distance between features accepted by the MUMPs design rule

check was 2-¡rm. Nevertheless, due to the irregular nature of both the jagged-edge and

the sawtooth designs, an extra l-¡-rm was introduced in the gap between fingers, for a

final 3-¡rm gap. This was used as an artifice to prevent the risk of having fused features,

mainly due to imprecision in the photoresist layer.

On the other hand, in order to guarantee the convex corners at each jagged or

sawtooth notch, compensating extended features should have been added to each notch

edge [44]. Such features should prevent loss of resolution in the lithography step, but the

mask requirements are such that the introduction of compensating corners would not fit

the MUMPs design flow. It was decided that compensating corners would not be added

to the mask design. Hence, it was known in advance that the convex corners would be

attenuated in the final device. This attenuation would eventually add to the gap distance

between fingers.
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4.3 FabricationProcedures

The mechanical properties of the polysilicon layer used in the MUMPs run

depend on the fabrication run and foundry specifications. For the purpose of this thesis,

the values adopted for numerical simulations were according to [45] and are displayed

below:

Young's Modulus [.õ] 158 * l0 GPa

Poisson's Ration [v] 0.22 t 0.01

The MUMPs fabrication process has three layers of polysilicon, where the two

top ones are used as structural layers. The comb drives are all designed in one single

structural layer, POLYI. The fabrication method used for layer deposition is the /ow

pressure chemical depositìon (LPCVD) and etching is done through reactive ion etching

(RIE). The sacrificial layer used ispåosphosílicate giass (PSG), which is removed in the

final step of the process, at which point the mechanical structures are released.

The first step, phosphorus doping, prevents charge feedthrough to the wafer

substrate, whereas the nitride is deposited as an electrical isolation layer. Table 4-1

introduces the steps leading to the fabrication of the comb drives. The metal layer is

second last step and final deposition layer. A 0.5-¡rm gold and adhesion layer is

deposited via lift-off. This method does not require etching. The remaining steps in the

design flow can be found in [7]. All masks were designed in Cadence 5.0 [46] and

subjected to the MUMPs design rule check available in the software package library.
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Table 4-1. MUMPs process flow. The steps described here are those relevant to the comb drive
fabrication. All schematics are from [71.

Pnocnss DescRlp'no¡¡ ScHe rr.ctrcs
l. Doping

2. LPCVD

3. LPCVD

POCI3 Serves as a source
for P:

600-nm Si3N4 layer lor
electrical isolation.

500-nm polysil icon Iayer
(POLYO)

Ptratøa¡trt

4. Lithography Pattems the resist.
Prltmcd

Fùotonr¡st

5. RIE Etches POLY0

6. LPCVD 2-¡rm sacrificial layer of
PSG

7. Lithography

8. RIE

Resist is patemed.

The pattem is tra¡sferred

into PSG

9. Lithography

IO. RIE

Anchors for first structural

layer are etched.

II. LPCVD 2-pm layerof POLYI

(structural layer).

Followed by 200-nm layer

ofPSG

r-¿¿PsG 
*t*=--.

12. Lithography

r3. RtE

The PSG layer is

patterned rvith líthograph¡'

and structural design is

transfened to POLY l.
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4.4 Design Results

The final fabricated devices (Figure 4.3-5) proved extremely sensitive to the

variations in geometr,v introduced to the design. The expected square notches at the

jagged-edge comb d¡ive were considerably smoothed down at the edges, giving it a final

rounded shape. Similar results happened with the sawtooth comb drive, where the tip of

each notch was also smoothed down. It was expected that such discrepancies from the

original design would play a significant role in the final test results, departing the

experimental results from the FEM numerical solutions.
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Figure 4.3. Jegged-edge shape comb drive viewed through a 50X enlargement objective. The detail
shows the l00X enlargement of a unit comb finger.
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Figure 4.4. Sawtooth shape comb drive viewed through a 50X enlargement objective. The detait
shows the l00X enlargement of a unit comb finger.

Ë þlÑ.w,x:tm+æ:mnl*swx5i{

Figure .f .5. Rectangular shape comb drive viewed through a 50X enlargement objective. The detail
shows the l00X enlargement of a unit comb finger.
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4.5 Testing

Based on the theory discussed so far, it is known that the performance of the

comb drive design is based mainly on the following factors: total number of capacitive

fingers; sidewall dimensions in each f,rnger, finger gap distance, spring dimensions and

actuation voltage bias (please refer to Table 2-l for more details). Additionally, in a

testing environment, issues such as input signal noise, and ground plane interference do

play a role.

The devices were tested with the use of manual, linear motion surface probes by

Wentworth Laboratories. Three probes were used at each test run. They were connected

to the metallized actuation pads of the comb drive under test. Two grounded probes were

connected to the shuttle and one set of f,rxed-finger. The remaining set of fìxed fingers

was probed at a given potential 26. The actuation voltage was supplied by two Agilent

83647A voltage sources of 0- to 60V in series, according to the schematic in Figure 4.6.
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Figure 4.6. Schematic descriptio" 
"r 

rn"ïî'"1ïf;."iï1,îîîJi,:;. rhe shu*te shared rhe same ground as

The rectangular comb drive had total lateral displacement of 9pm in each

direction' This constituted the best displacement results of all tested devices, since the

sawtooth comb drive had only a 3-pm lateral displacement and the jagged-edge device

engaged only one 5-pm notch. However, given the difficulties in implementing the

design, this l-notch engagement was enough to show the viabirity of the design.

An optical microscope olympus BX5l with 50X and l00X objectives was used to

follow the behaviour of the device during testing. It was noted that the entire device was

not in complete focus at ilty one time. This led to the conclusion that, given the amount

of adjustment necessary to refocus the object, the movable and fixed sets of fingers were

out of plane' It is speculated that after the release step in the fabrication process, thin

film stresses caused the device to be out of plane.
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4.6 Conclusion

Improvements in the design are clearly necessary. Given the minimum

dimensions required, the MUMPs fabrication was not very effective in achieving the

proposed designs. However, a simple increase in spring length could improve

significantly the comb drive response to the DC actuation voltages applied, as it will be

discussed in section 5.5 of the following chapter. The fact that the comb fingers were

out-of-plane was not expected and it did add an extra difficulty to the test procedures. A

bias voltage could be introduced to the movable fingers and an optimum overlap could be

achieved to overcome the out-of-plane issue. However, at this point it was clear the

design would need improvements and thorough simulation was required.

The following chapter will discuss the mathematical simulation of the devices.

That should render a more complete understanding on why the device with the present

dimensions is not effective and how that can be improved.
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5.1 Preamble

All f,rnite element simulations were performed in the FEtul-ne 3.0a [47] software

package. Both two- and three-dimensional problems were analyzed. The numerical

analysis was divided into two parts. Part I describes two independent th¡ee-dimensional

simulations performed for the electrostatic comb fingers and the mechanical spring

problems. The numerical solutions obtained through FEM simulations were input into

analytical models and a final solution was generated. This combined method

reconstituted the comb drive problem, but the independent characterization of each part

did not return a complete description of the device.

Part II was based on a thorough numerical solution of the comb drive as a whole:

comb fingers and springs together. In this case, syrnmetry was used to retrieve solutions

from two kinds of t'wo-dimensional problems: the rectangular and jagged-edge comb

drives. The standard numerical tools available in FervLee 3.0a were not suffîcient to

analyse the combined problem, thus the Arbitrary Lagrangian Eulerian technique was

applied. A detailed description of the procedures of each simulation is described in this

chapter.
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5.2 Mesh Generation

The nature of this work is comparative in the sense that each simulation run must

be analysed with respect to each other. Thus, the objective of the meshing stage is to

achieve a mesh which can be reasonably matched among all simulations.

The automatic mesh generator in FeMI-ee 3.0a was used to create optimized

meshes. However, in order to evaluate the quality of results achieved, an initial mesh

quality analysis was performed for a 2D rectangular comb drive. Electrostatic

simulations were performed for several different mesh densities for linear and quadratic

elements. The densities chosen followed the standard values available in FaMLee 3.0a

varying from extremely coarse to extremely fine densities. The goal of this analysis was

to calculate the total capacitance under the same conditions, using different mesh

densities. Figure 5.1 shows that quadratic elements returned similar results irrespective

of mesh density. As for the linear elements, results varied close to l4%o when compared

to quadratic elements. Additionally the correlation between mesh density and solution

accuracy did not prove to be conclusive in the case of linear elements. Based on these

results, all simulations presented in this chapter were derived from Fgtr¿LRg's

automatically generated "coarser" mesh using quadratic elements.

49



Chapter 5 Design Simulations and Numerical Solutions
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Figure 5.1. Mesh density analysis. The arrow points to the rcoarser" mesh solution.

Detailed and systematic eruor analysis in FEM was considered beyond the scope

of this text. The reader is suggested to pursue further readings on the subject [48] [49],

particularly related to electrostatic FEA [50] [51]. Nevertheless, all simulation runs were

preceded by an element qualíty analysis (details on quality analysis can be found in

Appendix II). Figure 5.2 shows a quality histogram for one case study of mesh element

quality. In the case of 3D analysis, the tetrahedral element is considered reliable for all

those elements with quality above 0.3. As for the 2D models, the triangular element

should have quality above 0.6152).
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Figure 5.2. Example of a quality histogram for the FEMLAB automatic coarser mesh analysis with
quadratic element. This case study is based on a 2D rectangular comb drive.

The solver algorithm used in the mesh quality analysis was the default Direct

Linear, which is the standard solver in the FeMLee electrostatic application mode. For

the purpose of this report. independent benchmark tests performed elsewhere [53] were

considered as enough proof of reliability in FErr¿Las results. Hence, all solver algorithms

used were based on the default options in the package for each multiphysics application

mode.
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Part I - Independent 3D Simulation

Figure 5.3 defines the procedure followed in each independent simulation as well

as it explains the connections between the electrostatic input variable, the electrostatic

solution variable and its link with the mechanical analysis. The FEM solution from the

electrostatic problem was used to calculate the total capacitance created by the comb

fingers in parallel. The capacitance value served as input for the electrostatic force

anal¡ical model. The result was used as the load force to which the springs were

submitted in the FEM analysis. Next, the maximum displacement of the springs due to

the given load was computed and used to determine the linearity of the spring, combining

equations (2-4) and (3-6). With these results, the mechanical force necessary for a given

extension of the springs was calculated.

JD Conrb l)rivc
l4 cagucitors

Calcul¡rc Toral Capacirancc
Eascd o¡¡ F'Ëlvf Sinlul¡tion

Calcu late,Sprin-u Constanr
B¿rserl on ..\nll,vtical N{otlel

C¡r lut¡hrte Electrostulic
Forcc B¿ued on Analytical

l'fotlel

Figure 5.3. Independent electrostatic (left column) and mechanical analysis (right column).
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Sections 5.3 - 5.5 will discuss electrostatic and mechanical analysis separately and

the results of simulations will be combined. A preliminary characterization of the comb

drive device is discussed.

5.3 Electrostatic Simulation

The set of lO-fixed and 9-movable fingers form a group of 18 capacitors in

parallel. The design was imported into FeMLes as a standard dxf file and extruded to

2-pm thickness (refer to previous Figure 4.1). The surrounding dielectric subdomain was

simulated by an "air-filled" solid with 27-¡tm in thickness, 135-pm in width and 235-pm

in length. These dimensions were chosen such that the distance between the surrounding

dielectric boundaries and the device boundaries would remain at a constant 25-pm length.

Since geometry cannot be treated as a variable parameter, individual runs were

made for each comb engagement, that is, the movable set of fingers was displaced from

the initial rest positionr at 20-pm to the final 39.5-pm displacement. Each run

represented an increment in 2-¡rm in the Y-direction. Additional runs were performed for

the negative engagement case, when fingers were retracted to a position preceding the

rest position. For computational simplicity the short-circuit situation, where the movable

fingers touch the fixed fingers, was avoided. An intentional 0.5-prm gap was left in the

I The reader should note that, henceforth, for the purpose of plots describing finger displacement,

the initial rest position is always at 20-¡rm engagement. Displacement values below 20-pm correspond to

negative engdgement or simply retraction of the springs.
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maximum engagemenr situation; therefore, new boundary conditions were not needed.

Three-dimensional simulations were performed in three independent sets of comb finger,

henceforth referred to as jagged-edge shape, rectangular shape and. sawtooth shape.

Figure 5.4 represents three examples, aIl at 26-¡tm engagement for each of the tested

shapes.

At this point, the main goal was to understand the differential capacitance with

respect to engagement. As previously shown in equation (2-l), capacitance is

independent from actuation voltage, hence an initial input test voltage Vs=lY was used.

Upon achieving a solution for all displacements, total capacitance was computed via

subdomain integration according to equation (2-2).

(a)

235 ¡tm 

-t

ffiffiffi
(c) 

-¡¡ k-
25 ¡nn

Figure 5.4. Potential field distribution results for a 26-pm engagement of three different comb finger
shapes. Thedimensionsofthetotal integrationareaareshownin(c). Ercerpts(d)depictthedetails

of field distribution around each finger.

(d)
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The numerical solution for differential capacitance was computed following

equation (5-1), where Croris the total capacitance at each engagement increment n. This

works as the Principle of Virtual llrork (PY\t). extensively reported in literature. A

concise description of PVW can be found in Appendix I.

f lu'^lr,^-,r¡ =lcror. - cror,^-,,],,"-,ou

1Fr L#l
(a)

(b)
(s-l)

We can see that this capacitance equation increases linearly with finger

displacement (Figure 5.5). The total capacitance of the rectangular shape comb was, in

average, 28% higher than that computed from the sawtooth shape and I3%o higher than

the jagged-edge shape. As expected, the capacitance recovered from the 3D models were

higher than those computed from the 2D model due to fringing. Figure 5.6 confirms the

suggestion that fringing fields are indeed prevailing in this design, most likely because

the distance between the capacitor plates is lpm larger than the thickness of the structure.

The streamlines were randomly displaced through the comb drive device in order to

emphasize the fringing fields at both lateral edges. That invalidates the theoretical

assumption of parallel plates capacitors, where fringing fields can be neglected in the

calculation of total fields.
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8 l0 12 t4 16 l8 20 22 24 26 28 30 32 34 36 38 40 42

Displacement [pml

Figure 5.5. The bold shapes represent total capacitance vatues recovered from the 3D simulations.
The hollow shapes represent total capacitance values from the 2D simulations.
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Figure 5.6. Streamlines illustrating the electric field distribution (E). The surrounding volume and
device edges follow the electric potential scale 0-100V.
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The discrepancies between the 2D- and 3D capacitance analysis were further

investigated by a simple model of two parallel, rectangular plates with the same

dimensions as the comb f,rngers. The plates were kept at a constant 3-¡rm distance from

each other. The distance to the edge of the sunounding dielectric volume, i.e. the volume

of the 3D integration, was varied as shown in Figure 5.7. Note that the volume of

integration directly affects the accuracy of the calculated capacitance due to fringing

fields. Since the direct relationship between input voltage and capacitance is expressed

âs C= ZW"fVl, a quick dimensional examination tells us that, if the 3D capacitance is

roughly four times the 2D one, then the required input voltage for 2D simulations should

be twice as large as the 3D case.
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Figure 5.7. Comparison between 2- and 3-dimensional integrations of capacitances. The¡-
coordinates give the distance between the device boundaries and the surrounding volume boundaries

(as described in Figure 5.4)
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Furthermore, Figure 5.8 shows that, the presence of a silicon substrate 2 þrm

underneath the structure affects significantly the value of total capacitance of the

structure at any engagement distance. Capacitance is approximately four times larger

with the presence of a silicon substrate if compared with the ideal simulation without the

substrate. That was in accord with modelling performed in [0], however, the increase in

absolute capacitance values alone does not characterize an improvement in the device

operation. Figure 5.9 shows the evolution of AC|ôY with respect to finger displacement.

Note that in this plot the "no substrate" case has a more evident rate of change of

capacitance than the case in the presence of a substrate. As for the 2D case, since no

fünging fields are in plane, the variations in capacitance are less pronounced. Therefore,

considering that the concept of step-movement is dependent on ACIôY, the fact that the

total capacitance is larger serves no specific purpose in the move-and-lock mechanism.
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5.4 Plane Stress Simulation

Figure 5.10 depicts the spring and its main features. The simulation was carried

out with a th¡ee-dimensional geometry and tests were mn for three different beam

lengths. They were 140 ¡rm, 280 ¡rm, and 360 ¡rm long.

F*e.h

280pm
Figure 5.10. Spring design. The spring beam length was simulated for three different lengths:

' t40-,280-, and 360-pm.

Non-linear static analyses were performed for several different loads. The loads

were applied to tbe front wall of the shuttle (Fr."r,). The loads corresponded to the total

electrostatic force (Frr) computed in the electrostatic problem at each engagement. The

force was then divided by the area of the shuttle front wall and a þrce/area value was

computed. The FEM simulatíon refurned continuous values for displacement throughout

the spring structure. As expected, the maximum displacement occurred at the shuttle,

since both sides ofthe spring were in equilibrium (Figure 5.11).

u1 um
J*l

ll=5
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Figure 5.I l. Spring displacement due to applied force. F.*¡ is equal in magnitude and direction to
Fo for a given step movement.

The mæcimum displacement value for €âch F¡¡ss¡: Fr" input was computed as a

scalar solution matrix. The spring constant fr was computed from .F",/AY, where ÀY

corresponds to each 2-Vm step displacement. Results showed that kwas linear for all

three simulated springs (Figure 5.12). This plot summaries what is the necessary force

that must be loaded into the system in order to achieve the wanted displacement. Note

the significant difference in stiffness betrveen the 140- and 280-pm long springs. Finally,

with a known value of ,t for each of the springs, the spring restoring force was computed

for any desired displacement, as further detailed in section 4.5.
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Figure 5.12. Stiffness plot for all three modelled springs with different nominal lengths. The arrows
point to each spring constant vatue.

5.5 Stepped Movement

Figure 5.13 shows the results for combining both the electrostatic and mechanical

3D solutions of the jagged shape comb drive. The operational voltages were arbitrarily

chosen not to exceed 100V. The straight lines across the plot show the restoring

mechanical force of the 280-pm and 360-pm springs at each engagement step. Hence,

the comb drive displacement may be analysed along the spring force line, such that the

¿urows show locking points, where F^rr¡ ?euds .F", and the device locks in placg. In

order to move ahead, higher actuation voltage must be provided to the device. Given that

in this experiment the actuation voltage V6 wâs chosen to match the 280-¡rm spring, it is

trivial to notice that the 360-pm long spring constant É was characterized as too soft.

z

fr
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Consequently, the use of such spring under the desired Vs input would not prevent the

continuous forward motion of the comb fingers, thus locking would not occur.

Conversely, the 140-¡rm spring was too stiff and produced restoring forces which would

require higher electrostatic engaging forces to overcome the spring action (Figure 5.14).

It is important to emphasize that these are arbitrary computations based on a static

problem, therefore it is only an approximation and a proof of concept. The simulations

described so far do not take into account the interaction between the mechanical and

electrostatic domains. The parametric analysis described in Part II delivers a more

accurate description of the device performance under conditions similar to the expected

operational environment.
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Displacement f¡¡ml

Figure 5.13. Required force for prescribed engagement.
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Figure 5.14. Higher actuation voltages are required for implementing the 140-pm spring.
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Part II - Electromechanical Multiphysics Solution

So far, the comb drive has been characterized based on independent simulations

of the electrostatic and mechanical behaviours of the device. Part II will focus on the

coupling of the two problems defined as a multiphysics simulation. It is expected that

issues regarding the possible non-linear aspects of the design will be properly addressed

through multiphysics.

The main challenge in this simulation is the constant change of the electrostatic

field as a function of increasing actuation voltage. The parametric character of the

simulation comprises an interactive system between the electrostatic pullingforce and the

spring mechanical restoringforce. The electrostatic equation is solved in the surrounding

dielectric (air) domain and resultant forces are the loads of the spring displacement. The

present section will deal with the parametric solution of the comb drive operation using

the Arbitrary Lagrangian Eulerian method. This model has the spring attached to the

comb fingers section of the device at all times, which renders a more realistic simulation.

The ALE simulations presented here were all performed in two dimensions.

Although the existence of a substrate below the structure proved to be a relevant

parameter, a three-dimensional ALE solution including the ground plane was considered

too costly in terms of computational time and complexity of the algorithm. A full AtE

th¡ee-dimensional solution would be beyond the scope of this project. In any case the
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reader can have a good estimation of the differences between 2D and 3D results based on

the discussion in section 5.3 and the plot in Figure 5.7. The substrate issue and its effect

on the total force in this design are further addressed in more detail in the Future

Consíderations section (Chapter 6).

Lastly, it is important to notice that both the electrostatic and the ALE grid

displacement computations were based on weak þrz solutions (refer to Appendix II).

The mechanical displacement problem was solved by the usual strong form, as in Part I.

The implementations of the multiphysics problem as well as analysis of the achieved

results are discussed below.

5.6 The Comb Drive Analysis with ALE

The simulation of the comb drive problem is characterized by large displacement

and small strain with respect to the spring. The electrostatic part of the problem has a

time-dependent characteristic, since the voltage load parameter changes in time.

However, for the pu{pose of this thesis all analyses were static for each increment of the

independent parameter V6 (refer to section 3.2.2). The parametric simulation used an

array of equally spaced values of Ve as the independent variable. The expected

information from this analysis was twofold: (a) results should reveal the total

displacement as a function of input voltage Vo; (b) results should emphasize the concept

of step movement. Inertial components, such as damping, were not taken into account in

this simulation.

66



Chapter 5 Design Simulations and Numerical Solutions

It follows that the equilibrium of the system at any iteration point is described by

(5-2), where F and R are the electrostatic pulling force and mechanical restoring force

réspectivel y at a given iteration i. This relation must express the equilibrium of the

system for any deformation, considering non-linearities.

'F-'R = 0

5.7 Formulations and Simulation Set-Up

(s-2)

The ALE simulation developed in this thesis made use of three multiphysics

application modes in FetøLee. Both the electrostatic problem and ALE computational

grid displacements were solved with the weak form mode, since no specific ALE module

was available in the package. From an operational point of view, the weak mode offered

the possibility of building the simulation from scratch, dealing only with PDEs and their

respective integral equations. Hence, the user was capable of describing the ALE

formulations with a general syntax, which is not as restrictive as other preset physics

modes in Fevlae. The benefrts of using the weak form were: (a) for its robustness in

dealing with abrupt changes in the scalar field V, defined in the electrostatic problem; and

(b) it could adapt to the computational grid domain irregularities easier. Further

mathematical descriptions of weak functions and variational form are beyond the scope

of this text. Detailed information-on this mathematical procedure cornmonly applied to

FEM can be found elsewhere [25].
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The ALE grid displacements were defined by Poisson's equation and solved in

integral form of the deformed domain.

Ja"t{(0" xtx, *ár"r",)ar. + (ér*r*, + 6x"1"")ôx.,]ao = o

1 a., 
{(ar* /*, * ù"r", )Ð, * (ar* r*, * ôy"r", 

)ar., ]ao = o

(a)

(s-3)

(b)

Where (a) and (b) represent the x- and /-components in the computational grid domain

and 6r^" defines a test function. The electrostatic equation starts with Gauss' Law, as

shown in (3-2) and transformed into integral form:

'14., {(n 4 + û"4.)v, + (î¡*, * v¿,,)v,fde : 0 (s-4)

where /¡ coresponds to the entries in the inverse Jacobian matrix.

The spring displacement part of the problem used the standard non-linear plane

stress application mode, available under the Structural Mechanics module þal. The

mechanical problem was then solved through the strong form. In this case FevLne has

the default option of using the PDE that defines Navier's equations (section 3.1.2).

Each application mode had user-deflrned constraints for boundary conditions,

which can_be better explained through Figure 5.15a-c. The electrostatic problem is

described in 5.15a, where the only constraints are defined in the_capacitive structures

(fixed and movable set of f,rngers). The ALE computational grid conshaints are

described in 5.15b. Note that the grid is free to move in any direction inside the yellow
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subdomain, which coincides with the dielectric material, i.e., inside the boxed area. The

plane stress application mode, depicted in 5.15c has only two constraints. Both of them

are anchored boundaries, where no displacement occurs. The constraints defined for the

jagged-edge shape comb drive are identical to those defined in the rectangular shape

device.
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Table 5-l concisely describes the user interaction with the software tool when setting up

the ALE simulation.

õy

(a)

(b)

(c)

Figure 5.15. Constraints defined in all three multiphysics modes.

õ*,/

Ex+t

"/uy*

Red: fixed fingers
Blue: Movable fingers

Orange: Boundary of symmery
Yellow: Dielectric bounda¡ies
Green: Structure boundaries

Brown: Anchored boundaries.
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Table 5-1. Qualitative description of the user-software interaction.

Settings Description
User

Defined

Ferr{L¡e Automatic Set-up
(based on userdefined

oarameters)

FeivtLes
Default

General Porperties

Geometry Shaped Comb Drive

Constants
Electrostatic and material

constants

Mesh

Type of Element

Density

Scalar
ExDressions

Jacobians, gradients,
derivatives

Equation
Systems

Based on Weak Terms and
Constraints

Il/eak Mode (El ec t ro stat ic)

Subdomain
Settines

Weak Term

Boundary
Settings

Weak Term

Constraints

IVeak Mode (ALE Grid)

Subdomain
Settinss

Weak Term

Boundary
Settings

Weak Term

Constraints

Plane Stress lvlode

Subdomain
Settings

Constraints

Loads

Boundary
Settings

Constraints

Loads

Solver Seftings

General Settings

Type ofSolver

Parameter

Parameter's Values

Advanced
Settings

Number of Iterations
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According to
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Table 5-1 most decisions regarding the simulation set-up procedure are taken by the user.

The advantage of choosing a FEA package lies in its ability to automatically set matrix

equations based on the parameters entered by the user, as well as offer several options for

solver engines.

The implementation of the model, definition of boundary conditions, subdomain

settings and material properties can be found in Appendix III. The Fevllns code is a

stardard text format, *.m file, which can be reproduced in any computer station where

Fevlles 3.0a or higher is installed. The syntax used to enter equations and ¿uïays is the

same used in Matlab, a common engineering and science softwa¡e widely available.

5.8 Results from the Parametric Analysis

Parametric computations returned the field distribution in the dielectric for input

potentials from 0- to 250V. Figure 5.16 depicts consecutive solutions for the parametric

simulation of the jagged-edge shape for different input voltages. The comb teeth

dimensions are, as previously described in Chapter 4, 40pm long with minimum gap

distance of 3¡rm and ma"ximum gap of 7pm.
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100v l80v 220V 250V

Figure 5.16. Artificial montage depicting the evolution of field lines with increasing voltage.

Next, Figure 5.17a shows electrostatic force results from the same parameters.

Forces acting upon the set of movable fingers were computed at each increment of

voltage and behaved as a quadratic function of diqplacement. This response is similar to

the one expected from a rectangular shape comb drive with the same dimensions of finger

length, thickness and spring length. Figure 5.lTbcorroborates the information retrieved

from the plot in (a), showing the electrostatic force behaviour for a rectangular comb

drive with the same dimensions and minimum gap as the jagged-edge structure. The

latter is illustrated in Figure 5. 18 under the actuation voltage of 200V.
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Figure 5.18. FEM solution for the rectangular comb drive. This plot depicts the 200V input
parameter.

The comparison between the jagged-edge and rectangular solutions shows a

noticeable difference at the force gradient, shown in the secondary axes of Figure 5.17.

The jagged-edge shaped produces an evident variable rate of change in force with respect

to engagement. The absolute values of the force gradient are however too small, which

do not translate into a stepped displacement. This led to the following conclusion: the

concept of jagged-edge shape can potentially oft-er the desired stepped motion, however

the dimensions investigated did not yield conclusive results.

As a result of the abovementioned conclusion, new dimensions were investigated,

keeping the original concept of jagged-edge comb fingers. The additional shapes

"*;i;l'*'

M

ffi

[1

H

r
Min: l.¡4¿r't

76



Chapter 5 Design Símulatíons and Numerical Solutions

simulated are described in Figure 5.19, which henceforth should be used as a reference to

future discussions on jagged-edge shape results.

Figure 5.19. Schematic description of: (A) MUMPs design; (&E) newty proposed jagged-edge finger
shapes; (F) rectangular comb finger.

5.8.1 Discussion on Proposed Shapes

The two designs shown in Figure 5.198 and C have 4:1 relationships between

maximum and minimum gaps, but with different dimensions. The FEM simulation

results (Figure 5.20a) show that the 8:2 Fm gap design has two points of inflection, which

are more noticeable than the result for
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displacement values are not enough to justifu the design. The 4:1 pm gap design renders

an evident step in the total displacement (Figure 5.20b), but the expected "locking

positions" shows some minute slippage. This can be seen as the plateaus in the curve for

differential displacement with respect to input voltage. The ideal locking position would

have zero displacement gradient with respect to the actuation voltage. In Figure 5.21,it

can be seen that the force gradient for the 4: I design shows a change of inflection at 4-

¡rm-displacement from rest position and break points at 6-pm- and 11-prm-displacement.

These results show that, at the maximum displacement point of l2prm from rest position,

the 4:l¡rm-gap design has the total electrostatic force acting upon the movable fingers

about four times larger than those observed in the 8:2 pm gap design.
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Figure 5.20. Comb displacement with respect to the actuation voltage Vo. @) Results from the
8:2pm-gap; (b) results from the 4:l¡rm-gap. The reader should note the difference in scales in the

differential displacement axes.
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Figure 5.2I. Force and force gradient results for both the 4:l¡rm-gap and 8:2pm-gap designs.

From the above results it is evident that the key factor in the jagged-edge shape

design is the ratio between maximum and minimum gaps in conjunction with the actual

minimum gap distance value. From these results, the 4:1 ratio with l-prm minimum gap

is more effective than the 4:1 with 2-Vm minimum gap. Thus, it is deducible that. for

increased gap distances, the dimension of each notch must be increased as well. That is

so the gain in notch area balances the increase in gap distance, preserving the total

electric energy, as it is described in section 2.1 and synthesized by equation (5-5).
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and maximum distances with respective values of 1- and 7-pm gaps. Design E, however,

is constn¡cted in such a way that the gaps are asymmetric with respect to the imaginary

line between the two fingers. The resultant differential displacement with respect to

actuation voltage for both these designs is show in Figure 5.22.
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Figure 5.22. Simulated differential displacement with respect to actuation voltage for both
symmetric and asymmetric J:l designs.

Results for this last analysis rire sho,wrt in the context of all previous simulations.

Figure 5.23 shows combined plots of {isplacement gradient with respect to actuation

voltage. Note that the asymmetric 7:l design shows tw'o clear points of inflection. The

first step in displacement occurs at about 40V. By observing the slope of the curve, it is

possible to infer an increase in velocity, which implies that the movable comb finger
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accelerates. Given that this is not a dynamic analysis, the lack of inertial components in

the system prevents any assumptions with regards to velocities and acceleration under

real conditions. In any case, these results show that, under ideal lossless environment. the

combined electrostatic-mechanical solution shows a rate of change of displacement with

respect to the input parameter Ve. After 40V the displacement rate as a function of

voltage decreases significantly. Ideally, the structure should almost lock in place

preventing any Y-direction movement. When the input potential reaches l50V another

surge in displacement happens. At this point, the total amount of displacement is larger

than in the previous engagement. The general behaviour of the 7:1 symmetric design was

similar, but the points of inflection are not as accentuated and the trough not as low,

implying more slippage. The following plots illustrate each of the two 7:1 designs in

detail. The symmetric design (Figure 5.24) has two engagement steps, but the slippage in

the asymmetric design (Figure 5.25) is smaller. It follows that the point of inflection in

the force versus displacement plot is more evident in the asymmetric case.
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5.9 Conclusion

The 3D simulations served as an initial proof of the design concept. The use of

3D geometries was justified by the need for proper characterization of the fringing fields

effect on total electrostatic force. Independent runs were performed for both the

electrostatic and mechanical problems. The solution from the electrostatic simulation

served as load to the mechanical model. However, the multidomain nafure of the comb

drive device required a coupled analysis using a multiphysics model. Due to the

complexity of the design, the implementation of a multiphysics simulation in 3D was

found to be computationally costly.

The second patt of this chapter described a high performance model scheme

through ALE formulation. Results illustrated the concept of step movement and showed

that, for a given gap ratio and structural thickness, there exists an ideal design

conespondent to an asymmetric geometry. Regarding the numerical tools itself, the ALE

formulation proved beffer suited for a multiphysics analysis than the independent static

investigations. The use of ALE allows an investigation of the comb drive as a system

instead of a composition of individual components. Also, for the purpose of comparison

between 2D and 3D results, a fringing analysis was performed.
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6.1 Preamble

This thesis has introduced a novel application to MEMS comb drives operating

under DC conditions. The initially proposed designs followed the dimensional

requirements of the MUMPs fabrication process. Upon realization, the devices were

tested. However, the expected results were not achieved, which promoted a revision of

the design principles. Although the general idea remained the s¿une, new dimensions,

both in the springs and the comb drive structures were simulated with the finite element

method. Satisfactory results were achieved, which proved the viability of the jagged-

edge comb drive as an actuator for prescribed force and controlled displacement

applications.

6.2 Summary of Investigations

This thesis has introduced a novel application to MEMS comb drives based on an

innovative design: the jagged-edge shape comb drive. The intended application of such

device is as an aetuator to microtweezers, where prescribed forces resulting in controlled

displacement are required. Contrary to other MEMS comb drives, this ploject suggested

a device to be operated under DC conditions, removing all lateral oscillation. This design

was an improvement to the concept of the sawtooth comb drive, previously introduced in
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t6]. The sawtooth comb drive shows sinusoidal behaviour of force versus displacement

with a general positive slope as a result of the electrostatic interaction between fixed and

movable fingers. Combined with the restoring spring forces, the sawtooth comb drive

could potentially show "locking points" where the mechanical spring force balances the

electrostatic force. However, the probable locking position corresponds to a single point

in the geometry, namely the outer edge of each tooth. This led to the suggestion that, if
this locking point was to be extended into a locking area, the device could produce step-

movement dependent on the actuation voltage. That is, the jagged-edge shape has a finite

plate area for each engaged notch, which produces a stable locking point.

The fnst part of the investigation dealt with 3D independent electrostatic and

mechanical models, describing the comb fingers and cantilever springs respectively.

These analyses rendered useful results, as they were enough to validate the concept of

stepped-movement. However, the complex interactions between the electrostatic domain

as a load to the mechanical domain demanded a more thorough investigation, which

could potentially describe the feedback interactions between both domains.

The A¡bitrary Lagrangian-Eulerian formulation was chosen as a rigorous tool to

combine both domains of interest and produce a multiphysics analysis. Significant effort

was put into the implementation of the ALE algorithm as a comb drive modelling

procedure. Due to computational cost, this analysis was performed in two dimensions,

which, when compared to 3D results, had a scalin-s factor in the capacitance. Apart from
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the lower numerical values for capacitance, the ALE solution was found to be more

accurate, since at all instances of the parametric analysis both the electrostatic and

mechanical domains of the device are investigated together.

Upon simulating different jagged-edge designs, it was found thar the key to

achieving the proposed move-and-lock mechanism is optimization of the maximum to

minimum gap relationship. Based on the designs investigated, the best result came from

an asyrnmetnc 7:l gap ratio, for a device with 2-¡rm-thick structural layer.

6.3 Proposed Design Rule

The move-and-lock mechanism is dependent upon two parameters: (a) the rate of

change of capacitance with respect to engagement (ôCIAY and (b) the characteristic

spring stiffness. By balancing these fwo parameters. an optimum solution is possible,

which causes the device to move at given voltage intervals and lock with no further

displacement. Moreover AC|AY can be "adjusted" by scaling the area of each notch in

thejagged-edge shape.

This thesis has introduced an initial design rule for jagged-edge comb drives. The

designer should start from considering the minimum dimensions possible in the de_sign,

given the choice fabrication method. Once the minimum gaps are determined, the

relationship between minimum and maximum gaps is established, keepin_e in mind that
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an asymmetric design returns more step-movement instances for a given gap-ratio.

The issue of structural thickness is a balancing factor in this design. If minimum

distances are to be increased due to lack of mask resolution or other fabrication

limitations, the device thickness can be augmented to match an optimum jagged-edge

surface area, which in turn will produce the desi¡ed force.

Lastly, the dimension of the springs are also a factor to be considered, albeit not

necessarily as a key factor in the design as much as it is a consequence of the desired

electrostatic force. Once the maximum electrostatic force for each step is determined, the

springs should be designed in such a \¡/ay that the restoring mechanical force will match

the electrostatic force at each desired locking position. Most importantly, this research

has shown that the jagged-edge design is greatly adaptable to the designer,s

requirements, as long as an optimum gap-ratio and thickness relationship is met.

6.4 Future Considerations

Notable points of improvement in the designs presented in this thesis are: (a)

optimization of the jagged notch length with respect to structural thickness, which

balances the influence of gap distance, and (b) consideration of the slippage problem,

which prevents total locking of the device. The present research project can be

augmented in two ways:

' Improve numerical models and define an analytical model for the jagged-edge

comb drive.
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' Develop a fabrication process, which will yield the desired jagged-edge shape

with minimum convex edge flattening.

The first point can be achieved by implementing periodic boundary conditions for

infinite repetition of the geometry. This would facilitate the development of a generíc

simulation, irrespective of the total number of fixed or movable fingers. Additionally, the

simplified implementation would facilitate the use of 3D geometries, which in turn would

account for the effects of fringing fields. Moreover, systematic design optimization

should be introduced, since the success of this device is dependent upon ideal matching

of its dimensions.

As per the increasing the quality of the fabricated device, one option to be

considered is the integration of compensating features to sharp edges in the comb fingers.

These should prevent smoothing of convex corners. On the other hand, in order to

properly fit these compensating features in the lithography mask layout, the total device

dimensions should be scaled up. This in turn could raise issues such as sticktion, comb

fÏnger bending due to weight and spring buckling. The successful fabrication of the

device at ideal dimensions is perceived as the greatest challenge in this project.

Finally, this design could be potentially marketed as long as packaging issues

were addressed. The controllable displacement microtweezers could find applications in

many different areas of research. Hence, the device must adapt to different packaging

requirements, tailÀred to different applications.
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Appendix I The Principle of Virtual Work

The Principle of Virtual Work (PVSD is a common numerical technique applied

in structural mechanics and electrostatics. Let virtual displacement be an infinitesimal

change in the geometry of a system as the result of the forces and constraints imposed on

the system at a given time. The PVW states that a system of real forces is in equilibrium

if and only if the virtual work performed by these forces is zero for all virtual

displacements that are compatible with geometical boundary conditions.

Recall that a capacitor is characterized by two parallel plates separated by a

dielectric layer, where one plate has positive and the other negative charges. Hence, an

attractive electrostatic force exists between the plates. This force is calculated based on

the charge distribution on the capacitor plates. Figure A-L l demonstrates the virtual

displacement of a comb finger. In the context of this thesis, FEM simulations are used to

calculate the electrostatic field energy present in the system; which in turn is integrated

over the structure's surrounding volume, returning the total capacitance in the system at a

given finger engagement.
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Figure A-I'l' schematic description of the virtuat dispracement. The X-components of theelectrostatic force Fes are cancetled by the opposite vector. The y-components are added together.

The electrostatic force acting upon the movable finger is obtained by assuming a

differential displacement of the body in the Y-direction (ôy) and computing the resulting

change in the erectrostatic energy of the system. The pvw is dependent upon the

assumption the comb fingers maintain a constant voltage. The energy lI/" changesas the
geometry (and hence e chan_ees. The stored erecticar energy of such a system is:

I

w,(Y)=)cfvV, =lCVrô,
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In order to move the capacitors plates, work is necessary. This work is caused by

the force F", that the plates of the capacitor exert on each other, as seen in below:

(A-r.2)

As described in Figure A-I.1, if c depends on a single dimension y, the

magnitude of the force between the hngers is dependent on the rate atwhich work is done

per unit Y-displacement. Note that, for the purpose of the PVW analysis, the X-

components of the electrostatic force F, are cancelled by the opposite vector. The y-

components are added together.

Additional Readings

1.

F",=YW"=y#=#U,

, D. DaDeppo, Introduction to Structural Mechanics and Analysli, Prentice
Hall,480pp., 1998.

B. F. Romanowicz, Methodologt for the Modellii{ and simulatton of
Miuosystens, Kluwer Academic publishers. l36pp., 199g.

2.
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Appendix II Theoretical Principles of FEM

A-II.1 Introduction

The finite element method is based on the fundamental concept that a given

continuous function defining a structured geometry can be approximated by a discrete

model. The approximation is done by subdividing the geometry into a finite number of

elements, hence the name finíte element method. Figure A-II.I shows a hierarchical

description of a th¡ee dimensional element and its characterizing features. The

terminology is the same for both tr¡ro- and three-dimensional models and Figure A-II.I

should serve as reference throughout this text.

Figure A-lI.l. Description of a three-dimensional element and its respective features.

Edge
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(a) Nooes: Points where unknown functions (variables of interest) are calculated. To

each node, correspond a number of unknown functions, which are the degrees of

freedom (DOF) at that node.

(b) Eoces: The edges are defined by interpolatíonfunctions or polynomials, which

describe the behaviour of the variable of interest between the nodes. The edges can be

subdivided by mídpoinfs, which define higher order polynomials. Higher order

elements offer a better approximation of the original geometry.

(c) BouNoARIES: Mathematically classified according to the behaviour of the

unknown variable inside the boundary domain. The Dirichlet condition specifies the

numerical value of the unknown at the boundary, whereas the Neumann condition

defines the first derivative of the unknown normal to the surface.

(d) Sunre FunqcrloNs: The coeffîcient that qualifies the interpolation polynomial.

Each node has a corresponding shape function defined in terms of independent

variables, such as the coordinate system X, Y, Z. The function returns the magnitude

value of 1 at its defining node and 0 at all other nodes

The concepts introduced above can be further explained for the case of a single

arbitrary, one-dimensional variable w, dehned in equation (3-13). The variable w can be

approximated with a function described by a finite number of parameters or DOFs at each

node w¡, where g are the shape functions.
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w(x) = W,g,Q) + W rErQ) + W rEr(x)+ .' . + W ^8,(x) (A-rr-l)

The FE analysis delivers an approximate solution, which is only as accurate as

the quality of the mesh approximation, the material properties used and their

assumptions, and the definition of the loads and boundary conditions. The solution

algorithm is also a source of potential inaccuracies and must be chosen based on proper

assessment of the physical problem.

A-II.l.1 Mesh Generation

The basis of the FEA is the development of a good quality approximation of the

geometry under scrutiny. For that reason the mesh generation is a fundamental step in

achieving meaningful results. The discretiz-ation of the model is achieved through the

creation of a mesh of elements, which approximate the geometry. The mesh density is

defined as the number or elements per unit area for a two-dimensional model and

elements per unit volume for the three-dimensional case. The quality of the

approximation depends upon the quality g of each element according to (A-II-2a-b) for 2-

and 3-D cases. The side lengfh of the triangular element is represented by å¡, whereas

area and volume are a and V respectively [28].

+a.ß
hl+h|+h!

2t6 Vñ---' 43 (hi + hi+ h!+ hl+ hi* hÐx

(A-rr-2)

q- (a)

(b)
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The element quality is directly related to its geometry. Elements with similar

edge sizes will return higher quality values than those with uneven shapes, which in turn

will inftuence the final convergence of the model solution. Figwe A-I1.2 illustrates the

idea of element quality related to the element dimensions in2D; the same concept applies

to 3-dimensional elements.

Figure 
^-11.2. 

Schematic description of a higher quality element (red), and a tower quality etement
The sides are å¡ and the element area is a.

Types of ElementA-il.l.2

Each element in an FE mesh is characterized by predefined numerical

formulations. Common problems involving large structure deformation and fluid

mechanics use mainly two types of formulation: the Lagrangian element and the Eulerían

element 1291.

In the case,ojthe Lagrangian formulation, the FE mesh is attached to the structure

under analysis and it follows the motion of the body from the original to the final

configuration of the body geometry. This approach is popular in solid mechanics,
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especially in cases where unconstrained flow occurs over free boundaries [30]. That is

because the mesh closely approximates the structure boundaries. The disadvantage of

this formulation is its poor solution convergence in problems such as: large deformation,

nonlinear boundary conditions, boundary conditions which vary as different loads are

applied, or when meshes element distortion is excessive.

The Eulerian formulation utilizes a mesh fixed in space while the analysed

structure flows through the mesh. The fixed mesh represents a control volume [31] that is

static, if seen from the point of view of the moving structure. It follows that, since the

mesh is spatially fixed, no mesh distortion occurs. On the other hand, the Eulerian

formulation is not a suitable approach for structural problems where large displacement

occurs. For the reason that at each instance where the structure moves beyond the

boundaries of the control volume, a new volume would have to be created. Additionally,

in the cases where the analysed structure flows without constraints through free

boundaries, this approach is unable to retum a solution, unless the boundaries of the

deformed structure are known in advance. Nonetheless, this is a robust approach for fluid

mechanics problems enclosed in a fixed volume, i.e. large material flow, but minimal

change in boundary shape.

When the comb drive problem is considered, three issues must be taken into

account before determining the appropriate .t.rn.n, * be used in the analysis. They are:

(a) spring displacements are large with respect to the spring dimensions; (b) as long as
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arching does not occur between the movable and fixed fingers, the comb drive lateral

displacement is unconstrained; (c) due to (b), the boundary conditions of this problem do

not remain constant during the change of loads as a function of voltage increments.

These statements imply that neither Lagrangian nor Eulerian formulations alone would

return successful solutions for the comb drive simulation. One could argue that, the

advantages of each method are the weakness of the other, and the two methods

complement each other in this respect [30]. The next section will discuss an alternative

approach to deal with large deformation problems, which couples both mesh elements

discussed in this section.

A-II.1.3 Formulations

As previously described, FEM models a¡e discrete; hence, all functions must be

approximated by a finite number of elements. Given an unknown, multidimensional and

continuous function w(x,ya) defined in the domain Q, the objective of the analysis is to

describe w such that it satisfies a set of partial differential equations B(w), where g is an

operator, as in equation (A-II-3). The PDE description of a problem is also referred to as

the s tr o ng fo rmul at i o n.

a(w,={;,ï} 
' (A-ll!)

Each element in the FEM mesh has a set of appropriate boundary conditions B(w)
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defined in the domain Çà.

(A-rr-4)

Equations (A-II-3) and (A-II-4) are solved by the introduction of a set of funcrions v,

which are equal in number to the components of w.

Then the equations in (A-II-4) can be superimposed to reconstitute the domain Ç),

as shown in (A-II-5):

The statements so far have shown that the FEM problem, when integrated, returns

a solution to the continuous problem. It must be noted that the boundary conditions

imposed by (A-II-4) are to be simultaneously satisflred in order to obtain a convergent

solution, where u is a set of arbitrary functions:

Ju'n¡w¡o a = [ fu,Q(w) + u rBr(w)+ 
...lde : 0

FF
(A-rr-6)

In summary, the integral statement seen in equation (A-II-7) recovers the.same solutions

sought with the PDEs described by equarions (A-II-3) and (A-II-4) combined.

/vtelw¡ao = /lu,@, (w) + vr@2(w) + ...lde 
= 0ç¿a

/ v'e1w¡oo + /î'n1w)de : o -

QT

(A-rr-s)

(A-rI-7)

If the operator I has a higher order of differentiation than that "acceptable" by o,

then the derivative function is discontinuous and the expression in (A-II-7) is non-square
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integrable. Recall that a function of a real variable is considered square-integrable on a

given domain if the integral over that domain of the square of its absolute value is finite,

suchthat i¡¡ç*¡'a..

A general way to solve this issue, is by introducing the weakþrm of theproblem.

The idea of the weak form is to provide a more "lenient" statement of the problem, which

can "adapt" to the discontinuities of the function w. That is achieved by performing

integration by parts on (A-II-7) and replacing it by (A-II-B).

/c1v¡'nqw)de+ Julu¡'r(w)de = o
ar

(A-rr-8)

In this case, the operator C, D, E, and F have lower order derivatives than the

corresponding ones in equation (A-II-7).

The derivation of the weak form is widely described in FEM literature; the reader

is encourage to look for more information in [25], 1291,1321. Additionally, the software

package used in this thesis (Fevlne) offers a weak form mode, where the user has to

enter the appropriate integrands, but the weak transformations and test functions are

automatically generated by the package.
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Appendix III Fnivn an Code

This appendix shows an example of an analysis file generated in Ferv¡-ae 3.0a.

The code uses cortmon Matlab syntax and can be reproduced either as *.m file or saved

as a native FsMr.ae file *.fl.

% FEMLAB Model M-file
%oGenerated by FEMLAB 3.1 (FEMLAB 3.1.0.157, $Date: 2004/lt/t207:3g:54$)
o/o Some geometry objects are stored in a separate file.
%óThe name of this file is given by the variable'flbinaryfile'.

flclear fem

% Femlab version
clear vrsn
vrsn.name ='FEMLAB 3.1';
vrsn.gxt = tt;

vrsn.major = 0;
vrsn.build = 157:
vrsn.rcs ='$Name: $';
vrsn.date = '$Date: 2004lll/lZ 07'39.'54 S';
fem.version : vrsn;

fl b inaryfi le:'j agg_sym_ I g7.fl m,;

o/o Constants
fem.consF{'epsilon','8.854e- I 2,,'V0',,1 600'} ;

% Geomeûy
clear draw
g22 =f'lb in ary (' g22',' dr aw',f1b i n aryfi le) ;

964 I =fl binary('g64 l','draw,,fl binaryfi le);
g I O=fl binary('g I 0','draw',fl binaryfi le);
g9=fl b inary('g9','draw',fl b inaryfi le) ;
g I 3=flbinary('g I 3','draw',flbinaryfile);-- draw.s.objs = {922,964l,gt 0,g9,gl 3};
d raw.s.n am e = {'CO l','CO5','CO6','CO3,,, CO2, \ ;
draw.s. tags = {' g22',' 964 l','g I 0','g9','g I 3'} ;
fem.draw = draw;
fem.geom : geomcsg(fem);
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o/o Initialize mesh
fem.mesh=meshin it(fem, ...

'hmaxfact',O.55, ...

'hgrad',1.25, ...
. rhcurve',0.25, ...

'hcutoff,O.0005, ...

'hnarrow',0.5);

% (Default values are not included)

% Application mode I
clear appl
appl.mode.class ='FlPDErü';
appl.dim = {'V','V_t'} ;

appl.sd im = {'\','Y','Z'} i
appl.name ='es';
appl.assignsufTix = ' es';
clear bnd
bnd.constr - {'-V','0','V','V-V0'} ;

bnd.ind

f2.2,2,4,2,4,2,3,2,3,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,1 ,2,2,2,4,1,2,4,
2.4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3.3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3,3,3,3,3,3,2,2,2,2,2,2,2];

appl.bnd = bnd;
clear equ
equ.usage = {0,1 };
equ.weak {LVX*VX_test-

VY*VY-test+V_test','epsilon*dJ*((test(VX)* iJXx+tes(VY)*iJYx)*Vx+(test(VX)* iJXy+test(VY)*iJYy)*
vv)');

equ.dweak = {'V_time*V_test',0 } ;
equ.ind: [2,1,1,1,1];
appl.equ = equ;
fem.appl{l} = appl;

% Application mode 2
clear appl
app l. mode.class ='SmeP laneStress';
aPPl.sdim = |\','Y','Z'|,
appl.gporder = 4;
appl.cporder = 2;
appl.assignsuffix :' ps';
clear prop
prop.analysis='non I in';
prop.largedef='on';
prop.weakconstr:struct('value', {'off },'dim', { {'lm3'.'lm4',,1m5,,'lm6'} });
appl.prop = prop;
clear bnd
bnd.Fx = {0,'n_out* F_es*(F22 *nX-F2 I *ny)',0.0 

} :
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bnd.Fy = {O,'n_out* F_es*(F I I *nY-F I 2*nX)',0,0} ;
bnd.Hx = {0,0,I,I };
bnd.Hy = {0,0,1,0};
bnd.ind

u,1,4,1.1,2,4,2,1,3,1,2,2,2,2,2,2,2,2,2,2,22,22,22,22,2,2,2,2,222,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3.32,2,2,2,2,2,2,2,2,2,2.22,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,222,2,2,2,2,2,2,2,2,2,2,2,3,1,1,3,1,1,1,1,1,
l,l ,2,2.22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,222,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,222,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,222,2,2,2,2,2,2,2,2,1 ,2.2),2,2,l,l,l,l,l,l,l,l,l l;

appl.bnd = bnd;
clear equ
equ.usage = {0,1 };
equ.E = {2.0e1 l,'matl_E'};
equ.rho = {7850,'matl _rho'} ;

equ.alpha = { l.2e-5,'matl alpha };
equ.nu : {0.33,'matl_nu'} ;

equ.thickness = {0.0 l,l };
equ.ind =U,2,2,221;
appl.equ = equ;
fem.appl{2} = appl;

% Application mode 3

clear appl
appl.mode.class ='FIPDEW';
appl.dim = {'dx','dy','dx_t','dy_t'} ;

appl.sd im = {')(','Y','Z'} i
appl.name = 'mesh';
appl.shape = {'shlag(2,"1m7")','shlag(2,"1m8")','shlag(2,"dx,')','shlag(2,"dy")'};
appl.gporder = 4;
appl.cporder = 2;
appl.assignsuffix =' mesh';
clear prop
prop.weakconstr=shuct('value',{'non-ideal'},'dim',{ {'lm7','lm8','lm9','lm l0'} });
appl.prop = propi
clear pnt
pnt.wcshape =U;211'
pnt.ind

l,l,l,l.l.l.lJ,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l.l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,
I,l,l,l.l.l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l,l.l,l,l,l,l,l,l,l];

appl.pnt = pnt;
clear bnd
bnd.consh = {{'-dx';'-dy'},{'dx-u';'dy-v'},{'dx';'dy'},'dx'} :

bnd.wcshape = [ l;2];
bnd.ind

2,2,2.2.2.2.2,?,2,2,2,2,2,2,2,2,2,2,2,2,2,2.2.2.?.2.2.2,2,2,2,2,2,2.2.2.2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2.2,
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2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2'2,2,2,2,2'2'2'2'1,2,2,2'2,1,2,2'
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22.2,2,2,2,2,2,2,2,2,2,2,2,2,2,2'2,2'2,2,2'2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,22.,2,22,2,2,2,2,2,2,2,2,2,2,2-2.2,2'2,2,2,2'2,2'2,2,2'2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,222,2,2,2,2,2,2,2,2,2,2,2,22,2,2,2,2,2,2,2,2,2,2,2,2,2'2'31;

appl.bnd - bnd;
clear equ
equ.shape = [3;a];
equ.usage = {0,1 };
.qu.'¡¡"ut = { {LdxX*dxX_test-dxY*dxY_test+dx_test';'-dyX*dyX-test-

dyy*dyY_test+dy_test'),{'dJ*((test(dxX)*iJXx+test(dxY)* iJYx)*dxx+(test(dxX)* iJXy+test(dxY)*iJYy)*

dxy)';'dJ*(test(dyX)*iJXx+test(dyY)*iJYx)*dyx+(test(dyX)* iJXy+test(dyY)+ iJYy)*dyy)') );
equ.wcshape = [;2];
equ.ind = [2,1,1,1,1];
appl.equ = equ;
fem.appl{3} = appl;
fem.sdim: {,X,,,y,};
fem.border = l;
fem.outform :'weak';

% Boundary expressions
clear bnd
bnd.ind

n,1,1,2,1,3,1 ,2,1 ,3,1 ,2,3,2,2,3,2,2,3,2,2,3,2,3,2,2,2,32,3,32,3,3,2,3,3,2,2,3,2,3,3,3,2,2,2,3,2,2,3,2,2,3,2,2,2,
2,2,2,2,3,3,3,2,3,3,2,3,3,2,3,3,3,3,3,3,1,1,1 ,2,3,2,2,3,2,2,322,3,2,3,2,2,2,3,2,3,3,2,3,3,2,3,3,2,2,3,2,3,3,3,2,
2,2,3,2,2,3,2,2,3,2,2,2,2,2,2,2,3,3,3,2,3,3,2,3,3,2,3,3,3,3,3,32,3,2,2,3,2,2,3,2,2,32,3,2,2,2,1,1,1,1,1,2,4,1 ,2,

1,2,3,2,3,3,2,3,32,3,3,2,2,3,2,3,3,3,2,2,2,3,2,2,32,2,32,222,2,2,2,3,3,3,2,3,3,2,3,3,2,3,3,3,3,3,3,2,3,2,2,3,
2,2,3,2,2,3,2,3,2,2,2,3,2,3,3,2,3,3,2,3,3,2,2,3,2,3,3,3,2,2,2,32,2,3,2,2,3,2,2,2,2,22,2,3,3,3,2,3,3,2,3,3,2,3,3,
3,3,3,3,2,3,2,2,3,2,2,3,2,2,3,2,3,2,2,2,3,2,3,3,2,3,3,2,3,3,22,2,3,2,3,3,3,2,2,1,1,1,1,1,1,1];

bnd.dim = {'V','u','v','dx','dy','1m7,,'tm8'};
bnd.expr : {'n_out',{",-l,1,0} };
fem.bnd = bnd;

% Global expressions
fem.expr = {'dJ','( I +dxX)*(l +dyY)-dxY*dyX','iJXx','( I +dyY)/dJ','iJXy','-dxY/dJ','iJYx','-

dylVdJ','iJYy','(l+dxX)/dJ','Vx','VX*iJXx*VY*iJYx','Vy','VX*iJXy+VY*iJYy','Fl l','l*uX','Fl2','uY','F2
l','vX','F22','l +vY','F-es','0.5*epsilon*(Vx^2*Vy^2)','drr','dxX* iJXx+dxY* iJYx','dxy','dxX*iJXy+dxY* iJ

Yy','dyx','dyX* iJ Xx+dyY* iJYx','dyy','dyX* iJXy+dyf * iJYy' ) ;

% Library materials
clear lib
clear matl
matl.sigma = 'l e-12';
matl.mur ='l';
matl .k:'163';
matl .type ='material';
matl .epsilonr ='12.1';
matl .C ='703':
matl.rho :'2330':
matl .nu :'0.22';
matl .n ='3.48';
matl .name ='Cronos_PolySi';
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matl .alpha = '4.15e-6';
matl.E :'158e9';
lib.matl = matl;
fem.lib = lib;

% Multiphysics
fem=m u ltiphys ics(fem) ;

o/o Extend mesh
. fem.xmesh=meshextend(fem);

% Solve problem
fem.sol=femntin(fem, ...

'nul lfun','fl nu llorth', ...
tso lcomp',{'lm7','dx','u',tdy',ilm8','V','v'¡, ...
toutcomp', 

{'lm7','dx','u','dy','1m8,,,V'rtvt}, ...
tpname',tV0t, ...
'plist',[0: l0:220]);

o/oSave current fem structure for restart purposes
femO=fem;

%o Plot solution
posþlot(fem,...

'tridata', {'absVx_es','cont','internal'}, ...

'trimap','jet( I 024)', ...

'd eformsub', {'dx','dy'}, ...
.'deformscale',1, ...

'solnum',3,...
'title','V0(3):lQ Surface: lgrad(V)l Displacement: dx,dy', ...
trefine',1 

, ,..
'geom','off,...
'axis',[- I .8750000 I 6298 I 5E-5,3.937 500034226t84,-5.65357 1367 604728-

5,t .8453 57 1 6990857E-4,- l, l l);
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