Simulation of Shaped Comb Actuator for
Controlled Displacement Applications

by

Isabelle Pacheco Fernandes Harouche

A thesis
submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

© Isabelle P. F. Harouche, November 2004.



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
FRRFX
COPYRIGHT PERMISSION

Simulation of Shaped Comb Actuator for

Controlled Displacement Applications
BY

Isabelle Pacheco Fernandes Harouche

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

Master Of Science

Isabelle P.F. Harouche © 2005

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.



Abstract

A shaped, interdigitated comb drive is introduced as a viable actuator for
microtweezers. The device offers prescribed output force for known actuation voltage
steps. As a result, controllable displacement is achieved. Partial device closure and
engagement force control are possible through the achieved step-movement. The
displacement is linked to the change in capacitance due to the varying engaging geometry

of the device.

Finite element analysis is used to simulate the electrostatic actuated, shaped comb
drives operating under DC conditions (zero actuating frequency). A parametric
multiphysics model is developed using the Arbitrary Lagrangian-Eulerian (ALE)
formulation.  Results show the coupled interaction between the electrostatic and
mechanical domains of the transducer. The analysis is baséd on the evolution of
electrostatic force versus comb finger engagement. The relationship between incremental
lateral displacement and actuation voltage illustrates the potential for stepped movement
for a shaped comb drive. Additionally, through numerical simulations, this project
determines an ideal design for a DC-actuated comb drive, which has controllable force

output and stable engaging movement.
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Nomenclature

This section introduces the nomenclature used in all mathematical expressions
and schematics presented in this thesis. Extensive descriptions are given through this
paper but, whenever necessary, the reader is encouraged to use this list as a resource.

Attention must be given to differences in italicized, bolded and Greek letters.

NOMENCLATURE UNITS AND
- MOMAN LETTERS - : Cg:i’:'}::'l‘ DESCRIPTION

C [F] : Capacitance

d [m] Gap distance between comb fingers

D [C/m?] Electric flux density.

E [V/m] Electrostatic field intensity

E [Pa] Young’s Modulus

Fes [N] Electrostatic force

H [A/m] Magnetic field intensity

J [“*/m?] Current density.

k [N/m} Spring constant.

t [m] Comb finger thickness or structural layer thickness.
Fo vi Actuation potential bias

W, [BA] Electrostatic energy

X Cartesian axis or arbitrary distance in the X-axis
Y Cartesian axis or arbitrary distance in the Y-axis
Z Cartesian axis or arbitrary distance in the Z-axis

NOMENCLATURE
- MREEK LETTERS - DESCRIPTION
& 8.854%107"? Constant permittivity of free space
[F/m]}

£ dimensionless Strain normal to the X-axis.

gyy dimensionless Strain normal to the Y -axis

€y dimensionless Shear strain.

U 47x107 [N/AY] Magnetic permeability of free space
v dimensionless Poisson’s ratio.

p [C] Volume charge

g [N/mz] Mechanical stress normal to-the X-axis.

Oyy [N/m?] Mechanical stress normal to the Y-axis.

oy [N/m?] Shear stress
S [m?] Comb finger overlapping sidewall area. This corresponds to the engaged

distance.




Chapter 1 Introduction

Capacitance-based sensors and actuators have been extensively used in
microelectromechanical systems (MEMS) [1],[2]. Among different devices, the most
commonly used and analysed is the comb drive [1],[4], seen in Figure 1.1. The MEMS
comb drive is a laterally driven mechanical actuator activated by electrostatic interaction.
The basic design of a comb drive relies on the theory of parallel-plate capacitors, which
in turn is a function of the plates’ area and shape. In the case of a comb drive, the parallel
plates are an array of interdigitated fingers, which are generally rectangular. Different

finger shapes and their electrostatic characteristics are discussed in this report.

[TTTTTT

Y

4 (LT

Figure 1.1. Basic desigﬁ—ofa comb drive,
A typical rectangular-shaped comb drive design requires simple fabrication steps
(usually only one structural layer) and is characterized by low power consumption [5].
Disadvantages associated with the usual rectangular design are briefly summarized as

1



Chapter 1  Introduction

nonlinear force-to-voltage relationship and lower output power and efficiency than that
which is predicted by models [6]. Comb drives have been used as actuators for several
different applications, including but not restricted to micro-motors, conveyors, sensing

devices and microgrippers devices.

1.1 Research Goals

The present work introduces a novel step-and-lock mechanism based on the comb
drive design. The main use for such device Would be as a microtweezers actuator for
application in areas such as biological sample handling, MEMS assembly processes and
other activities where precision micromanipulation and displacement-controlled

interaction are required.

Throughout this text the original rectangular comb drive is presented and its
operational characteristics are discussed. This device was originally designed for high
frequency operation as resonators. Later, shaped comb drives were introduced [6] as a
means to stiffen and weaken resonator springs and hence offer more controllability over
the device operation. Using sawtooth- and polynomial-shaped comb teeth, funable

resonators were proposed as a means to achieve linear force-deflection profiles
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1.2 Design Concept

This project introduces an adaptation to the shaped comb drives analyzed in [6],
in that the force-displacement is not linear, but it is also not constant, as in the case of
rectangular comb drives. Instead, a stepped force response versus displacement is made
possible by using jagged-edge comb teeth, as illustrated in Figure 1.2. The same figure
offers a conceptual idea of a possible final design for a displacement controllable
microtweezers. This report pertains to the actuator design. The gripping pads and final
microtweezers testing are left for future work. The proposed move-and-lock mechanism
is based on the change in the lateral distance between the fixed and movable comb
fingers with respect to engagement, which in turn is a function of the actuation voltage.

The geometry simulated in this thesis corresponded to a set of ten fixed and nine movable

fingers.

Figure 1.2. Ideal design of the integrated microtweezers with a shaped comb drive actuator.

(9%}



Chapter 1  Introduction

1.3 Report Organization

This report describes comb drives fromr fhe perspective of electrostatic interaction
model, shape design, fabrication, and applications. Chapter 2 offers an overview of comb
drive design and research so far. The device is introduced as an actuator for the purpose
of applications where fine displacement control is needed. Next, micro-gripping devices
are introduced and shaped comb drives are discussed in the context of a microtweezers

actuation system.

Chapter 3 engages in a thorough description of the numerical methods used for
the device simulation. A description of the problem, both from the electrostatic and
mechanical points of views is given. The initial device fabrication and testing procedures
are discussed in Chapter 4. In that section, a brief description of the device fabrication
through the multi-users MEMS Process (MUMPs) [7] is given. Since the device was
fabricated by a third-party, the focus of the chapter is to offer enough supporting
information for the structure simulation discussion. Limitations in the fabrication

requirements led to non-ideal testing conditions.

In Chapter 4, the reader will find the numerical simulations performed with the
finite element method. These are used to discuss suggested improvements in the
conceptual design. This discussion leads into the conclusions achieved in this project and

future work ideas are suggested.



Chapter 2 Background on Comb Drives and

Microtweezers

Part I — Comb Drives

Comb drives are laterally driven, electrostatic actuators widely used in the MEMS
industry. The device was first introduced in 1989 [3], [4] and since then it has been
applied in a variety of applications that require electrostatic sensing [1], [8] and

electromechanical driving [2].

The most basic comb drive design can be seen in Figure 2.1, where the grey
colour represents free-standing, movable parts, whereas black depicts the anchored parts.
The comb drive is a polysilicon microstructure parallel to the substrate plane. It has two
pairs of double folded cantilever springs attached to a shuttle, which in turn carries the
movable electrostatic fingers. In general, parallel plate electrodes display low hysteresis

and no magnetic fluxes, producing large output forces [5]
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springs

shuttle

Figure 2.1. Detailed schematic description of a comb drive. The grey structures represent free-
standing, movable parts; black represents anchored parts. White cross-boxes represent the anchor
attached to the substrate.

Several authors have modelled and simulated comb drives under different
conditions. Comb drives can be simulated from the perspective of one single set of
engaging fingers, henceforth referred to as unit comb drive. Simulation results from a
unit comb drive render information regarding differential capacitance with respect to
displacement and electrostatic forces [4], [6]. Conversely, models can demonstrate the
total capacitance of a set of fingers in free space or take into account the grounded plane

below the structure, which yields a more accurate understanding of fringing fields [9]-
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The following section will present and discuss some of the previous work done in
the fields of design and simulation of comb drives. ‘Double-folded cantilever springs will
be described to some extent, since the mechanical restoﬁ'ng force is an integral part of the
comb drive simulation. Ultimately this review will lead into a discussion of the use of

comb drives as an actuator mechanism for microtweezers.

2.1 Electrophysics of Comb Actuators

In what follows, a few basic electrostatic principles relevant to the comb drive
operation are presented. A detailed description of the electrostatic principles of comb

drives can be found elsewhere [5].

The forces interacting in a comb drive can be described by two components: local
and global. Local forces are associated with potential sheets limited to the cross-sections
of any given comb finger. Global forces are corrections related to the electric fields
resulting from equipotential sheets, which represent both the engaged and unengaged
comb finger regions. Figure 2.2 represents a schematic description of local forces, which
are defined by electric field lines in the X-Z plane, whereas global force-s are defined in
the Y-Z plane; both cases are described in a confined in a symmetric and homogeneous

surrounding area filled with air.
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X direction of engagement @

Figure 2.2. Schematics of field lines distribution: description of local forces, where 4 is the fixed
distance between comb fingers and ¢ is the side-wall surface.

Let large engagement be defined as any engagement distance Yy >> d, where d is
the constant gap distance between fingers. In a three-dimensional structure where the
fingers are initially largely engaged, fringing fields exist according to the principle of
parallel plate capacitors. If the distance d is considerably smaller than the length and
thickness of the plates, fringing fields can be neglected, since most field lines are
restricted to the finger cross-sections region (Figure 2.2). Additionally, the fringing
fields at the end of the fingers do not change significantly with further engagement. [t
follows that the capacitance between any two plates is a function of the total engaged

overlapping surface area of the plates g and the gap distance d, as per equation (2-1).

C=¢, @2-1)

Equation (2-1) only accounts for the field lines confined between the capacitor
plates. This is a reasonable approximation in the cases where fringing fields are

negligible and the surrounding dielectric is symmetric about the structure. However, if
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the gap distance d is larger than one of the dimensions of the plate, the previous
assumption is not correct and fringing fields will interfere in the total capacitance
calculation. In this case, the capacitance is retrieved from equation (2-2):

Cro -—% [[fw.axdydz 2-2)

0 Xvz

The electrostatic field energy W, relative to the same volume of integration as in (2-2) is:

w =—%s0 [IJ B[ dxdYdz (2-3)

e
XYZ

It follows that the attractive electrostatic force F,; in the Y-direction is a function of

capacitance and inversely proportional to the gap between fingers, as equation (2-4).

2-4)

The force Fl is generated by the fringing fields connecting the sidewalls of the
movable finger to those in the fixed finger. Thus, the effective attractive force is caused
by the Y-component of the potential lines connecting the movable finger and the fixed
finger (Figure 2.3). Due to symmetry, all other X-component force vectors are cancelled

with its respective opposite.



Chapter 2 Background on Comb Drives and Microtweezers

I [¢—————— engagement length
. Y

Figure 2.3. Schematics describing the field lines in 2 semi-engaged rectangular comb-drive.
Displacement occurs in the Y-direction. Red represents the fixed fingers and blue stands for the
movable finger,

Since the d gap between fingers is constant, dC/dY is largely the same for any
displacement Yy less than the total finger engagement length [5]. Therefore, under the
assumption of initial large engagement, the electrostatic engaging fbrce Fs is constant at
any displacement point. Yeh et al. [11] stated a closed form analytical solution, which
defines the minimum initial engagement that assures constant output force. This
description is valid for the field lines confined in the overlapping region and it agrees
with the analytical model given by the author in [4]. However, a more realistic model
would account for a ground plane below the comb drive device. In this case, the sole use
of equations (2-3) and (2-4) to describe the effective sheet potentials would be prone to

errors. The authors in [10] warned that calculations of both the electrostatic force Fesand

the potential energy W, must account for the non-engaged area between the fixed finger

10
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as well. Therefore, the proper description of F,; should follow equation (2-5a-c). The
superscripts (f) and (f+m) represent the fixed and the fixed and movable overlapping
- sidewall surfaces respectively. Despite the more accurate analytical description of the
problem, the authors in [11] agreed that due to the complexity in describing transition

regions, a numerical solution would offer more insight.

( FeS = F:sf+m) + Ft(sf) (a)
(f+m) .
;_Ltow?” ()
L “ 2 9Y

It is important to consider that the total comb finger displacement can vary on a
number of extra coexisting factors; namely, the number of fingers, dimensions of each
finger, voltage applied, dimensions of spring structures and materials used. Table 2-1
describes the role of each variable in a comb drive design and analyses how they
influence on the device operation. Detailed explanations regarding each of the variables

are found throughout this report.

11
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Table 2-1. Variables of interest in a comb drive design and operation. The reader should refer to
Figure 2.1 for better understanding of each one of these variables.

Variable Description

Spring Length Longer springs reduce the equivalent spring constant.

Lower width reduces the equivalent spring constant. A change from 1- to 2-pm in the spring

Spring Width width will increase the total possible displacement by a factor of 8.

Total number of fingers present in the device, i.c.. both grounded and charged fingers. More

f Fi e .
Number of Fingers fingers will increase total electrostatic force.

Comb Gap Gap distance between a charged and grounded finger. Smaller spacing increases the total
Distance electrostatic force.

Thickness of the comb fingers (Z-axis) as well as the structure attached to the comb fingers.

Comb Thickness Greater thickness (change in area) increases the total electrostatic force.

Spring Thickness Typically the same as comb thickness. Thinner spring thickness decreases the equivalent spring

constant.
Comb Finger Initial finger overlap before any voltage is applied. It hasa large impact on the stability and
Overlap useful range of the device (implications in preventing short between movable and fixed fingers).

DC Voltage applied to one comb structure (either movable or fixed set of fingers). The

Voltage Bias opposing comb structure is set to ¥=0 (ground potential).

It defines the modulus of elasticity and consequently the calculations of moment of inertia. The

Structure Material comb drives presented in this report are all made of Si (poly- or single crystal)

So far the analytical description of comb drives has been based on the generic
rectangular-shaped finger. It has been established that the leading variable in defining the
electrostatic properties of the comb drive is capacitance. Equation (2-1) relates
capacitance with the geometry of the plates. Thus, ,it is a trivial assumption that change
in geometry will cause a response change in capacitance, which in turn will affect the
distribution of equipotential lines and electrostatic force vectors. Such variations in
geometry may be represented by an act[1a1 change in the capacitive plate shape, which

would affect both variables ¢ and d in equation (2-1). The following sections will discuss

previously published research work dealing with varying the shapes of comb drives.




Chapter 2 Background on Comb Drives and Microtweezers

2.2 Asymmetric Comb Drives

Yeh et al. [11] explored the effects of an asymmetric comb drive (Figure 2.4) and
developed an analytical solution for this problem. Asymmetric comb drives deliver large
out-of-plane motion. This device has thin movable fingers which, when in rest, are
placed higher than the thicker, substrate-attached, fixed fingers. The actuation process
occurs when the thin fingers are pulled down towards the substrate due to a difference in
potential among the fingers. Fringing fields are the essential component of the

electrostatic force.

direction of
displacement

Figure 2.4. Asymmetric unit comb drive.

2.3 Arbitrarily-Shaped Comb Drives

Different output force profiles as a function of finger displacement are achieved
by customizing the comb drive finger shape. The authors in [12] used numerical analysis
to optimize the comb finger shape according to the desired force response. The analysis

encompassed both the comb drive and the suspension spring. The restoring spring force

13
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was found to be non-linear for large displacements, hence the need to increase the force
output with engagement. The driving force acting on the moving fingers along the
direction of displacement Y is:

F.=[F,ds @-6)

where F,_ is the component of the electrostatic force in the Y direction computed

on the surface ¢. Figure 2.5 shows that ¢ corresponds to the engaged distance Y, of each

comb finger (conductor plate).

Movable —»
- YO R

Figure 2.5. Schematics of two arbitrarily-shaped comb fingers. The out-of-plane thickness is defined
as tand g is the finger side-wall surface corresponding to the engaged distance Y,.

It follows that F,, is defined by equation (2-7):

2

F, (5)=ct— @-7)

d(s)

where t is the out-of-plane finger thickness and 4 is the gap between movable and fixed

14
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finger at any point in the engagement. Therefore, with a non-rectangular shape, the gap d
will undoubtedly vary with the movable displacement. Previous reports [12], [13]
depicted several force-versus-displacement profiles for a variety of shaped of fixed

fingers. Driving forces were tailored to linear, quadratic and cubic responses.

Jensen et al. [6] discussed the concept of customized Jorce-displacement response
as well as developed a generic model for any shape of finger. The final goal of the
research was to achieve tunable resonators, which allow both up and down shifts of the
resonant frequency. The model was tested for seven different finger shapes, each
representing a single set of capacitors. Neither the analytical model nor the boundary
element method simulations described by these authors accounted for the restoring
mechanical spring force. The analytical model assumed a unit comb drive with one
rectangular movable finger and one arbitrarily-shaped fixed finger (Figure 2.6). The
shape of the side wall of the movable rectangular finger is a constant k, whereas the fixed
finger is described by a function g(Y). It follows that the gap between the fingers is
h(Y) = g(Y) - k and the total capacitance is (ignoring fringing) computed as:

Y, dY
C= 28°tfo W (2'8)

15
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Figure 2.6. Schematics describing the engagement of one rectangular-shaped finger with respect to a
fixed arbitrarily-shaped finger.

The authors in [6] came to the same conclusion as in [12] when describing F; at
any given displacement point; only the former defined the gap distance between fingers

in terms of the finger profiles, as seen in equation (2-9).

VZ
F, (Y,)=¢t- 2-9

2.4 Saw-Tooth Comb Drive

Jensen et al. [6] introduced numerical simulations for the sawtooth shaped unit
comb drive. Although considered as simply a means to test their analytical model, the
results from this simulation were used as the starting point in the development of the
design presented in this report. Results frorrrb-ofh the boundary element method and the

original analytical model are shown in Figure 2.7.

16
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This shape proved to be not-useful for resonant applications. However, the results
shown by these authors were used as the first step in defining the shape introduced in the
present research. Notice the arrows in Figure 2.7; the peaks occur when two outmost
point-edges in both the movable and fixed sawtooth are exactly opposite to each other. If
such one-dimensional points could be extended to two-dimensional areas, the force
versus displacement response would show local maximum and minimum “plateaus”.
Whenever these constant force values, i.e. plateaus, matched the restoring force of the
micro-spring, the comb drive device would have lock positions before engaging further.

This concept will be described in detail in the following chapters.

. Electrostatic Force for Finger Shape 7 -

- \[=s= Simutation
35| — Simpte Modet | -

ey -

5

o

B

~ - -
2 \aiy
S
u-v
- SO R
15 20 25 —
Finger Engagement (microns)

Figure 2.7. Sawtooth comb design and its characteristic force versus engagement plot from |6].
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Part IT — Microtweezers Actuation System

Mechanical microgrippers and microtweezers are useful in many current research
areas. Such devices were developed as biological micromanipulators [14], [15], robotic
grippers [16], [17] and general out-of-plane manipulators [18], [19]. Additionally, non-
contact micromanipulation based on exposure to electric fields [20] and lasers [21], [22]

have been developed as well.

This report focuses on describing an actuation device suitable for a microtweezers
system. A successful microtweezers actuator must generate enough displacement to
clasp the object of interest and keep a stable level of tension to hold on to the object. The
sole open-close movement is not enough to guarantee the object will not slip from the
gripping pads. Conversely, excessive closing force might damage the object of interest.

Therefore, one might safely argue that the issue of controllability is imperative.

The following sections will briefly introduced some previously proposed

actuation systems for use in microtweezers devices.

2.5 Thermal Actuation

The authors in [23] described microtweezers actuated by linear thermal expansion
(Figure 2.8). This design takes advantage of thermal_ properties of single-crystal silicon,

and thermal expansion is used for controlled mechanical work. Additionally, in order to

18
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prevent normal displacement, the authors in [24] suggested the design should incorporate
different-sized beams; these have an in-plane motion proportional to the amount of

thermal energy applied to the device.

Figure 2.8. Thermally actuated microtweezers as described by Keller and Howe |23]. This picture
has been downloaded from the author’s website (www.memspi.com).

Thermal actuation is based on current flow and operational temperature is close to
200°C at 110mA [23]. Literature stresses the fact that special attention must be given to -
the design of thermal actuators in order to maximize the generated strain and the thermal

isolation between the actuator and the gripping pads [3]. N
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- 2.6 Electrostatic Actuation

The design presented by Kim er al. [14] makes use of flexible cantilever comb-
drive arms with a bidirectional actuation. It must be noted that this adaptation of the
original comb-drive design by [3] is prone to short circuit due to the differential
displacement (Figure 2.9). Points a and » move in a semi-arc direction due to the
cantilever bending moment. However, b covers a larger displacement distance and tends
to snap shut against the fixed set of comb fingers. As a solution, the authors introduced
an over-range protector kept at the same potential as the cantilever arm. The cantilever

arm is kept at ground potential whereas the fixed set of fingers is at a given potential V.

—— over-range protector

5 Illlllllllllllllllll

Figure 2.9. Drive mechanism for one of the two microtweezers arms for the device developed in [14].
Point 4 is closer to the cantilever pivot point and the total displacement at this point is less than that
at b.
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The authors reported smooth displacement of the gripper tip and low operational
voltages (maximum 35V) for 40-finger comb drives. The relationship between applied
voltage and movement of the gripper tip is quasi-linear from 0- to 7um tip displacement.
The remaining 3-pm have a steep response to input voltage change. The controlling

factor to prevent the cantilever arm from short-circuiting is the abovementioned over-

range protector.
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Chapter 3 Background on the Numerical Analysis of

Comb Drives

This chapter will focus on introducing the background for the numerical analysis
in the context of the comb drive simulation. The finite element method (FEM) was the
method of choice for all the numerical simulations performed in this project. The
information contained in this section supports the results described in the next chapter.
The reader who is well versed in finite element analysis (FEA) in electrical and
mechanical problems may choose to proceed to the next chapter. However, the reader

who is unfamiliar with FEM is encouraged to read the concepts discussed in Appendix II.

3.1 General Description of the Problem

3.1.1 Electrostatic Analysis
The MEMS comb drive simulation is described as an electrostatic problem. Such
a description is possible because electric charge can propagate through any dimension of
the system under investigation in a time scale much shorter than the times of interest.
The previous statement implies that the system response time is much slower than the
time constants of the material. The Maxwell's equations relevant to the present

simulations are simplified according to equations (3-1a-d).
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J
VxE=-—uH=0 (@)
x ﬁt‘uo
) VxH=2cE+J=0 @)
> 50 G-1)

V-gE=p, (©)

' d

. V-uH=0 @

The electrostatic problem discussed in this chapter can be physically described

starting from Gauss’ law:

V-D=V-cE=p, 3-2)

where,

E=-VV 3-3)
It is assumed that the dielectric constant ¢ is continuous throughout the region
surrounding the comb drive where the scalar potential field ¥ is defined. Thus, the
dielectric medium is homogeneous and the following substitution applies:

V- (~eVV)=p, = V¥V =L (3-4)
£

It follows that, since the comb drive is a capacitive device with air as the
dielectric material, the region where the problem is defined is charge free (0,=0). The
electrostatic problem is then described by the Laplace equation (in rectangular
coordinates): -

V. PV v
=St t+t—5=
axX* gY? gz?

Vv 0 (3-5)
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The goal of this chapter is to present and discuss the methods which will
ultimately solve the Lapalce equation. The objective is to find the potential distribution
which satisfy equation (3-5) for a given electrode geometry at a predefined actuation
potential V5. The potential distributioﬁ in the dielectric region is not known a priori.
Since there is no current flow inside the comb drive device itself, the surface of the

device is assumed equipotential.

Basic FEM theory states that a function can be approximated by a discrete model
if and only if this function is continuous in the domain of interest [26]. Given that
potential energy is a- continuous quantity in the domain of interest, the fundamental
requirement of the finite element method is met. The voltage-dependant continuous
potential distribution can be approximated by a discrete model composed of a set of
piecewise continuous functions defined over a finite number of subdomains. The
discretization process approximates the partial deferential equation (PDE) problem
(Laplace equation) with a finite number of unknown parameters. This numerical solution
will serve as input data into analytical equations, which will in turn produce results for
Jorces and displacements in the system. The solution of the electrostatic problem serves
as the load force to the mechanical problem. Both solutions combined give the desired

comb drive characterization.
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3.1.2 Mechanical Analysis
The mechanical analysis in this research aims at describing the double-folded
cantilever beam spring deflection problem. As préviously stated, the comb drive device
is composed of two sets of capacitive fingers (movable and fixed) and the movable set is
attached to a shuttle. This is the link between the electrostatic force-generating device
and the two double-folded cantilever beam springs. Hence, the comb displacement is a
combination of electrostatic pulling force, as seen in equation (2-4), and the mechanical

spring restoring force (Fiech).

F,., =kAY (3-6)
Incidentally, equation (3-6) is defined for an incremental displacement in the Y-direction.
In this section the second part of the comb drive problem, the spring restoring force, is

described.

The following definitions apply to the cantilever springs: (a) the material used in
the fabrication (polysilicon) is assumed homogeneous and isotropic; (b) the thickness
dimension is small compared to thei length; and (c) the stress in the normal Z-direction is
ideally zero. It is nevertheless worth noting that in the actual environment the silicon
substrate below the device causes a levitation phenomena that contributes to a finite Z-
component of stress. In any case, levitation analysis is beyond the scope of this report

and it is further described elsewhere [9]. The stresses and loads are defined in the X-Y

plane and any other paraliel plane has the same stress distribution. Thus, the springs fall
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into the characteristic plane stress problem definition [25]. The variables of interest are
the global spring displacements (%,v) in the X- and Y- directions. Normal stresses per

unit element are;

( Oxx = 2 @)
Areayy
{ On= Fy (3-7)
Area,, (D)
Oxy = X
Areay,  (©)

where (2) and (b) stand for stresses in the X- and Y-directions, respectively. Equation
(3-7c) states the shear stress given an applied total force with both X- and Y-components.
The deformation per unit length in the X- and Y-directions are defined by the normal

strains £xx and evy respectively (3-8a-b). The shear strain per unit element of the spring

material is shown in (3-8c¢).

4 du
= — a
Exx = (@
_ 3-8
1Ty b) -8
_ou v
ey X ©

Finally, the stress-strain relations are defined from the constitufive relation of Hooke’s

Law, where F is the Young’s modulus and v is Poisson’s ratio:

26



Chapter 3 Background on the Numerical Analysis of Comb Drives

E
f Oxx = '1_7(£xx +VEyy) . (a)

E
{ Oyy = _"‘1 ¥ (Eyy + VEgy) (b) 3-9)
FE
Oxy =Gty =
XY ¥ 21+ v)

&y (©)

\

and G is shear modulus defined as:

E

G = 3-10
2(1+v) -1

For a given beam with length ¢, the boundary conditions for each beam are clamped-
clamped, as seen in Figure 3.1. Equations (3-11a-b) are the mathematical description for

both boundaries. Detailed formulation for a beam spring can be found elsewhere [27].

Y(0)=0 Y(¥)=0 nodeflection ()

YO _, 4O _ @-1D)

—~ -~ 0 no slope (b)

The solution for the spring problem is derived from Navier’s equations for the X-
and Y- components (3-12), where the vector K represents the force applied to the shuttle,
which in turn is connected to the springs and therefore acts as the load in this system.
The stress tensor is represented by o, whereas u = (u, v) is the displacement vector. In

the electrostatic case, the first term of the LHS equals to zero.

pZ;]—V-c.—-K (3-12)
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AN AN

-

Figure 3.1. Schematic description of the spring beam boundary conditions.
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3.2 The Arbitrary Lagrangian-Eulerian Formulation

3.2.1 Introduction

Comb drives are by definition transducers, which transform electrostatic energy
into mechanical displacement. It implies that, in order to properly simulate the device,
two domains must be coupled: the electrostatic domain and the mechanical domain. This
is therefore characterized as a multiphysics problem. Simulation of such a problem
through FEM 1is not trivial and difficulties arise in developing a mesh capable of
approximating large deformations. Additionally, a dynamic parametric simulation
generates increasingly deformed meshes, which in turn become unstable and solutions do
not converge. The Arbitrary Lagrangian-Eulerian (ALE) technique is an advanced
method of solving moving boundaries and non-linear problems in FEA [33], [34], [35].

The ALE method was chosen as a means to avoid such lack of convergence.

This technique makes use of the two FEM descriptions of motion: the Lagrangian
element and the Eulerian element. Initial discussions on ALE were introduced by Hirt et
al. [36]. Further developments were presented in [37], [38]. Basic ALE formulations are
available from different sources [33], [39], [40], which can be used as an initial template
and adapted to each specific problem. So far, ALE has not been widely used in the field
of MEMS simulation; in fact, upon extensive research, only one paper was found which

clearly applied ALE for solving a multi-domain MEMS problem [41].
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The ALE analysis technique uses an FE mesh that is neither attached to the
material nor fixed in space. An arbitrary motion independent of the material deformation
is assigned to each degree of freedom of the system. Special cases in the ALE numerical
procedure may represent an Eulerian- or Lagrangian-only formulation. The main
advantage of this technique lays in the fact that at any point of the analysis a solution may
be computed, both in cases where large and highly localiéed deformation of the structure
occur, and where unconstrained flow of material on free boundaries happens. When free
boundaries exist, the ALE may be reduced to a Lagrangian form; if large deformations
occur at any point of the analysed geometry, than the solution algorithm takes the

Eulerian form.

One characteristic of the ALE formulation is that the solution variables
representing structural deformation are only determined at elements within the structure
boundaries. The coupling with other simulation variables happens through the mesh
displacement characteristics. ~Thus the structure deformation properties must be
transferred to mesh points through an updating algorithm. Additionally, prescribed mesh
displacements must be assigned for all degrees of freedom of the mesh, at each iteration

of the numerical solution [30].

For the purpose of this report, the reader should familiarize himself with the

following concepts:

* The ALE method is applied to the electrostatic problem as a way to deal
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with the constant rearrangement of field lines as a function of comb

movement.

* Recall that the electrostatic problem is defined in the dielectric
surrounding the comb drive. The ALE discussions refer to the dielectric
domain as the dielectric material structure, or simply dielectric material.
This corresponds to the entire area surrounding the comb drive minus the

comb drive itself,

* The solutions of the ALE simulation are used as loads in the plane stress

simulation mode.

In what follows a description of ALE in the context of the comb drive simulation
will be introduced. The algorithm is discussed with the aim of demonstrating the

robustness for solving large deformation problems without losing convergence.

3.2.2 The ALE and the Comb Drive Simulation

The ALE formulations are based on two sets of coordinate systems [42]. The first
coordinate system is attached to the dielectric material and it trails the deformation of the
field lines defined in the material. This system is identified by the variables X, Y, Z. A
seéond coordinate system defines a computational mesh, which moves according to pre-
defined mesh displacements. The computational mesh is identified by x, y, z in
rectangular coordinates. The reader should be careful not to confuse the FE mesh and the
ALE computational mesh. For the sake of clarity, the ALE computational mesh will

henceforth be referred to as compurational grid or simply the grid.
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A one-to-one mapping between the dielectric material displacements and the grid
movement must exist. That requires that both domains coincide and all displacements

happen inside the domain borders, which implies in the identity shown in (3-21);
(8-8)-n=0 (3-13)
where 8 and & corresponds to the grid displacement and the dielectric material

displacement, respectively. Figure 3.2 offers a graphical interpretation of the previous

statement.

Finite element approximation at time 7

Approximation at time ¢ + At

Figure 3.2. This is an illustrative demonstration of the interaction between the electrostatic problem
- and the ALE grid displacement.

The logical outcome of the implementation of (3-21) is as follows: the algorithm
performs an automatic grid re-design procedure, which maps the original domain into the

deformed domain at each displacement instance. Hence the ALE formulation specifies
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which boundaries will move during the simulation and how they should move. Previous
sections described the characteristics of independent electrostatic and plane stress
simulation. With ALE, both simulations are performed together and the solution of one
part serves as a boundary condition to the second part. Thus, the ALE formulations can

be described as an algorithm that performs automatic reasoning [43], according to the

following steps:

1.  When the grid is distorted enough and convergence is no longer possible,

calculations are stopped.

2. Grid is smoothed.

3. Last solution achieved from the distorted grid is remapped into the new, smooth
grid.

4.  Calculations are resumed.

Step 1 is related to the issue of element quality described in section Error!
Reference source not found.. The software package automatically defines a threshold
where a significant number of low quality elements prevent the successful determination
of a solution. The four steps described above suggest an implicit incremental approach
[39]. In the case of this thesis, all solutions are derived from a pérametric analysis, where
the parameter is the input actuation potential Vy, as described in detail in Chapter 5. At
all iterations, it is assumed that the governing equations of the problem under scrutiny are
in equilibrium. Hence the solution for the équilibrium equations in the ALE formulation

are already known for all parameter steps from V, = 0 until Vo = V. Each subsequent
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iteration i solves for the next parameter step Vo + AV. The vector equation (3-22)

represents the previous statement, where § is any arbitrary 2D field line displacement.

V0+AV6 _V(,a

AV
=" Ot !

i) 3-14)

3.2.3 Problem Definition
The device analysed in this research is qualified by its strong monotonicity
property, dielectric material linearity and geometrically nonlinear behaviour. The
nonlinearity stems from the large deformation that the field lines undergo whilst the
device engages. This consequently produces a problem with moving boundaries. The
ALE algorithm is carried out as a means to manage the continuous changes in the field
lines without losing convergence. The successful solution of each ALE iteration serves

as input load to the coupled mechanical displacement problem.

Proper implementation of the ALE algorithm depends on two conditions: (a) the
topology of the geometry must be the same throughout the simulation, and (b) there
exists an appropriatt PDE which characterizes the computational grid prescribed
displacement [39]. The implementation of ALE starts from characterizing a mapping

function from the original domain Q into a deformed domain Q:

f:Q-Q (3-15)

where (x,y) represents the deformed coordinates defined in terms of the fixed X- and Y-
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axes and in time ¢, as per the definitions in (3-24).

[ x=f(X.Y,r) (a)
y=fXY.1)  (b)

{ (XY)eQ (©) (3-16)
(xy)eQ (@
€ Re* (e)

Since the comb drive problem requires information on grid displacements, rather than
solely grid coordinates, the deformed domain variables are redefined according to (3-25).
Figure 3.3 offers a general understanding of the intended steps in the ALE

implementation.

(3-17)

The ALE formulation guarantees the independency of the computational grid
movement from the electrostatic field movement and it still recovers a homogenepus
mesh at each iteration. The development of local stiffness matrices requires a
transformation matrix T that relate the displacements & in the deformed coordinate

system to the fixed coordinate system as described below:

[6Cx, T =[8(X,Y)]
[6(x, )] =[6(X,)]T"

(3-18)

The derivatives of the electric field nodes coordinates are computed in the
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(X,Y)€Q domain, but the element displacements, or distorted grid, have been
previously defined in the (x,y)&€ Q domain. Thus, in order to recover the shape
functions in the undeformed ddmain, the chain rule of derivatives must be used, which
relates the (x,y) coordinates back to the (X,Y) and the appropriate incremental
displacement can be calculated. It turns out that the transformation matrix T at each node
with respect to the fixed coordinate system is the Jacobian métrix J, and the inverse

Jacobian J*' must be computed, according to the identity (3-27).

E E L Xedy Lxean 1+Za Lo
X Y| |aX Y X Y
J-= - - (3-19)
oyl | o 9 9 J
— | | =y —(Y + —_ [+—
K ol XY JYE| | x¥ x
9 9
+Zsy -2
RN Ao

3-20)

" det]
_i(sy 1+—&—ch
X X

As previously stated in section 3.2.2, the one-to-one mapping depends on a non-
zero Jacobian [30] and the boundaries of the two domains (structural and mesh) must

coincide. The detailed description of the ALE method implementation in the comb drive

analysis can be found in Part II of Chapter 5.
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3.3 Conclusion

Chapter 3 has described numerical principles used to simulate the comb drive
problem. Two types of analysis were investigated; initially the comb drive simulation
was presented as two independent problems, namely the electrostatic and the mechanical
components. This analysis is described in three dimensions and its governing equations
were introduced. The basis of the finite element method was established and discussed in

the context of the comb drive simulation.

This initial discussion led to the presentation of the Arbitrary Lagrangian-Eulerian
formulation as a practical numerical tool to integrate both electrostatic and mechanical
problems. The ALE method was considered as an innovative way to deal with
multiphysics analysis in MEMS simulation problems. This technique was discussed in a

two-dimensional viewpoint.

Chapter 5 will present the application of the techniques discussed here. The
reader will also find an examination of the results achieved with the abovementioned

numerical methods.
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Figure 3.3. Flowchart describing the ALE procedure.
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4.1 Preamble

The design of the comb drives was based on standard geometries available
through the Multi-User MEMS Processes (MUMPs). The whole of the device was
defined in one single polysilicon layer and the 2-pum structural thickness followed the
fabrication design standard. This chapter will discuss steps in the fabrication process
relevant to the target design. Additional detailed descriptions of design rules in MUMPs

are available in [7].

The rectangular resonant comb-drive design (Figure 2.1) is available in the
MUMPs library of masks. It was used as an initial template for the other two designs
tested: jagged-edge and sawtooth shapes. The dimensions of each comb finger set are
described in Figure 4.1. Due to issues related to chip real state availability, the fabricated

springs followed the standard 140-pm-long MUMPs design (Figure 4.2).

144pum

137um

Figure 4.1. View of the X-Y plane of the three simulated comb shaped. From top to bottom:
rectangular, sawtooth, and jagged-edge.
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Figure 4.2. Schematic description of the fabricated spring. The shuttle is the mounting structure
where the comb drive is attached.

4.2 Design Considerations

The design features were adapted to best suit the requirements of the MUMPs
process. The minimum distance between features accepted by the MUMPs design rule
check was 2-pm. Nevertheless, due to the irregular nature of both the jagged-edge and
the sawtooth designs, an extra 1-um was introduced in the gap between fingers, for a
final 3-pm gap. This was used as an artifice to prevent the risk of having fused features,
mainly due to imprecision in the photoresist layer.

On the other hand, in order to guarantee the convex corners at each jagged or
sawtooth notch, compensating extended features should have been added to each notch
edge [44]. Such features should prevent loss of resolution in the lithography step, but the
mask requirements are such that the introduction of compensating corners would not fit
the MUMPs design flow. It was decided that compensating corners would not be added
to the mask design. Hence, it was known in advance that the convex corners would be
attenuated in the final device. This attenuation would eventually add to the gap distance

between fingers.
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4.3 Fabrication Procedures

The mechanical properties of the polysilicon layer used in the MUMPs run
depend on the fabrication run and foundry specifications. For the purpose of this thesis,
the values adopted for numerical simulations were according to [45] and are displayed

below:

Young’s Modulus [E] 158 = 10 GPa
Poisson’s Ration [v]  0.22 £ 0.01

The MUMPs fabrication process has three layers of polysilicon, where the two
top ones are used as structural layers. The comb drives are all designed in one single
structural layer, POLY1. The fabrication method used for layer depositiori is the low
pressure chemical deposition (LPCVD) and etching is done through reactive ion etching
(RIE). The sacrificial layer used is phosphosilicate glass (PSG), which is removed in the

final step of the process, at which point the mechanical structures are released.

The first step, phosphorus doping, prevents charge feedthrough to the wafer
substrate, whereas the nitride is deposited as an electrical isolation layer. Table 4-1
introduces the steps leading to the fabrication of the comb drives. The metal layer is
second last step and final deposition layer. A 0.5-um gold and adhesion layer is
deposited via lift-off. This method does not require etching. The remaining steps in the

design flow can be found in [7]. All masks were designed in Cadence 5.0 [46] and

subjected to the MUMPs design rule check available in the software package library.
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Table 4-1. MUMPs process flow. The steps described here are those relevant to the comb drive
fabrication. All schematics are from |7].

PROCESS DESCRIPTION SCHEMATICS
1. Doping POCI; serves as a source
2.LPCVD for P; Photoresist
600-nm Si3N4 layer for :
3.LPCVD

electrical isolation.

500-nm polysilicon layer
(POLY0)

Patterns the resist.

4. Lithography

Parterned
Photoresist

5.RIE Etches POLY0

6.LPCVD

2-um sacrificial layer of
PSG

7. Lithography
8. RIE

Resist is paterned.
The pattern is transferred

into PSG

9. Lithography | Anchors for first structural

10. RIE layer are etched.

11.LPCVD

2-um layer of POLY

(structural layer).

Followed by 200-nm layer

of PSG :
12. Lithography The PSG layer is
13.RIE patterned with lithography

and structural design is

transferred to POLY 1.
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4.4 Design Results

The final fabricated devices (Figure 4.3-5) proved extremely sensitive to the
variations in geometry introduced to the design. The expected square notches at the
jagged-edge comb drive were considerably smoothed down at the edges, giving it a final
rounded shape. Similar results happened with the sawtooth comb drive, where the tip of
each notch was also smoothed down. It was expected that such discrepancies from the
original design would play a signiﬁcant role in the final test results, departing the

experimental results from the FEM numerical solutions.

Figure 4.3. Jegged-edge shape comb drive viewed through a 50X enlargement objective. The detail
shows the 100X enlargement of a unit comb finger.
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bjective. The detail

d through a 50X enlargement o

4.4. Sawtooth shape comb drive viewe

igure

F

shows the 100X enlargement of a unit comb finger.

bjective. The detail

d through a 50X enlargement o

ive viewe

Rectangular shape comb dri

5.

igure 4

F

shows the 100X enlargement of a unit comb finger.
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4.5 Testing

Based on the theory discussed so far, it is known that the performance of the
comb drive design is based mainly on the following factors: total number of capacitive
fingers; sidewall dimensions in each finger, finger gap distance, spring dimensions and
actuation voltage bias (please refer to Table 2-1 for more details). Additionally, in a
testing environment, issues such as input signal noise, and ground plane interference do

play a role.

The devices were tested with the use of manual, linear motion surface probes by
Wentworth Laboratories. Three probes were used at each test run. They were connected
to the metallized actuation pads of the comb drive under test. Two grounded probes were
connected to the shuttle and one set of fixed-finger. The remaining set of fixed fingers
was probed at a given potential ¥p. The actuation voltage was supplied by two Agilent

E3647A voltage sources of 0- to 60V in series, according to the schematic in Figure 4.6.
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o0V IMQ

10MQ

60V

L

——
—

Figure 4.6. Schematic description of the testing environment. The shuttle shared the same ground as
one of the fixed fingers.

The rectangular comb drive had tota] lateral displacement of 9um in each
.direction. This constituted the best displacement results of all tested devices, since the
sawtooth comb drive had only a 3-um lateral displacement and the Jagged-edge device
engaged only one 5-pm notch. However, given the difficulties in implementing the
design, this 1-notch engagement was enough to show the viability of the design.

An optical microscope Olympus BX51 with 50X and 100X objectives was used to
follow the behaviour of the device during testing. It was noted that the entire device was
not in complete focus at any one time. This led to the conclusion that, given the amount
of adjustment necessary to refocus the object, the movable and fixed sets of fingers were
out of plane. It is speculated that after the release step in the fabrication process, thin

film stresses caused the device to be out of plane.
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4.6 Conclusion

Improvements in the design are clearly necessary. Given the minimum
dimensions required, the MUMPs fabrication was not very effective in achieving the
proposed designs. However, a simple increase in spring length could improve
significantly the comb drive response to the DC actuation voltages applied, as it will be
discussed in section 5.5 of the following chapter. The fact that the comb fingers were
out-of-plane was not expected and it did add an extra difficulty to the test procedures. A
bias voltage could be introduced to the movable fingers and an optimum overlap could be
achieved to overcome the out-of-plane issue. However, at this point it was clear the

design would need improvements and thorough simulation was required.

The following chapter will discuss the mathematical simulation of the devices.
That should render a more complete understanding on why the device with the present

dimensions is not effective and how that can be improved.
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5.1 Preamble

All finite element simulations were performed in the FEMLAB 3.0a [47] software
package. Both two- and three-dimensional problems were analyzed. The numerical
analysis was divided into two parts. Part I describes two independent three-dimensional
simulations performed for the electrostatic comb fingers and the mechanical spring
problems. The numerical solutions obtained through FEM simulations were input into
analytical models and a final solution was generated. This combined method
reconstituted the comb drive broblem, but the independent characterization of each part

did not return a complete description of the device.

Part II was based on a thorough numerical solution of the comb drive as a whole:
comb fingers and springs together. In this case, symmetry was used to retrieve solutions
from two kinds of two-dimensionai problems: the rectangular and jagged-edge comb
drives. The standard numerical tools available in FEMLAB 3.0a were not sufficient to
analyse the combined problem, thus the Arbitrary Lagrangian Eulerian technique was
applied. A detailed description of the procedures of each simulation is described in this

chapter.
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5.2 Mesh Generation

The nature of this work is comparative in the sense that each simulation run must
be analysed with respect to each other. Thus, the objective of the meshing stage is to

achieve a mesh which can be reasonably matched among all simulations.

The automatic mesh generator in FEMLAB 3.0a was used to create optimized
meshes. However, in order to evaluate the quality of results achieved, an’initial mesh
quality analysis was performed for a 2D rectangular comb drive. Electrostatic
simulations were performed for several different mesh densities for linear and quadratic
elements. The densities chosen followed the standard values available in FEMLAB 3.0a
varying from extremely coarse to extremely fine densities. The goal of this analysis was
to calculate the total capacitance under the same conditions, using different mesh
densities. Figure 5.1 shows that quadratic elements returned similar results irrespective
of mesh density. As for the linear elements, results varied close to 14% when compared
to quadratic elements. Additionally the correlation between mesh density and solution
accuracy did not prove to be conclusive in the case of linear elements. Based on these
results, all simﬁlations presented in this chapter were derived from FEMLAB’S

automatically generated “coarser” mesh using quadratic elements.
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Figure 5.1. Mesh density analysis. The arrow points to the “coarser” mesh solution.

Detailed and systematic error analysis in FEM was considered beyond the scope
of this text. The reader is suggested to pursue further readings on the subject [48] [49],
particularly related to electrostatic FEA [50] [51]. Nevertheless, all simulation runs were
preceded by an element quality analysis (details on quality analysis can be found in
Appendix II). Figure 5.2 shows a quality histogram for one case study of mesh element
quality. In the case of 3D analysis, the tetrahedral element is considered reliable for all

those elements with quality above 0.3. As for the 2D models, the triangular element

should have quality above 0.6 [52].
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Figure 5.2. Example of a quality histogram for the FEMLAB automatic coarser mesh analysis with
quadratic element. This case study is based on a 2D rectangular comb drive.

The solver algorithm used in the mesh quality analysis was the default Direct
Linear, which is the standard solver in the FEMLAB electrostatic application mode. For
the purpose of this report, independent benchmark tests performed elsewhere [53] were
considered as enough proof of reliability in FEMLAB results. Hence, all solver algorithms
used were based on the default options in the package for each multiphysics application

mode.
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Part I — Independent 3D Simulation

Figure 5.3 defines the procedure followed in each independent simulation as well
as it explains the connections between the electrostatic input variable, the electrostatic
solution variable and its link with the mechanical analysis. The FEM solution from the
electrostatic problem was used to calculate the total capacitance created by the comb
fingers in parallel. The capacitance value served as input for the electrostatic force
analytical model. The result was used as the load force to which the springs were
submitted in the FEM analysis. Next, the maximum displacement of the spfings due to
the given load was computed and used to determine the linearity of the spring, combining .
equations (2-4) and (3-6). With these results, the mechanical force necessary for a given

extension of the springs was calculated.

14 capacitors

Spring

v

Calculate Maximum
Displacement Based
on FEM Simuliution

3D Comb Drive [

3D Double Folded }

Calculate Toral Capacitance
Based on FEM Simulation

Bused on Analylical Model

‘ Caleulate Spring Constant

Calculate Electrostalic
Force Based on Analytical
Madel

Figure 5.3. Independent electrostatic (left column) and mechanical analysis (right column).
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Sections 5.3 - 5.5 will discuss electrostatic and mechanical analysis separately and
the results of simulations will be combined. A preliminary characterization of the comb

drive device is discussed.

5.3 Electrostatic Simulation

The set of 10-fixed and 9-movable fingers form a group of 18 capacitors in
parallel. The design was imported into FEMLAB as a standard dxf file and extruded to
2-pm thickness (refer to previous Figure 4.1). The surrounding dielectric subdomain was
simulated by an “air-filled” solid with 27-um in thickness, 135-um in width and 235-pm
in length. These dimensions were chosen such that the distance between the surrounding
dielectric boundaries and the device boundaries would remain at a constant 25-um length.

Since geometry cannot be treated as a variable parameter, individual runs were
made for each comb engagement, that is, the movable set of fingers was displaced from
the initial rest position' at 20-pm to the final 39.5-pm displacement. Each run
represented an increment in 2-pm in the Y-direction. Additional runs were performed for
the negative engagement case, when fingers were retracted to a position preceding the
rest position. For computational simplicity the short-circuit situation, where the movable

fingers touch the fixed fingers, was avoided. An intentional 0.5-um gap was left in the

' The reader should note that, henceforth, for the purpose of plots describing finger displacement,
the initial rest position is always at 20-pm engagement. Displacement values below 20-um correspond to

negative engagement or simply retraction of the springs.
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maximum engagement situation; therefore, new boundary conditions were not needed.
Three-dimensional simulations were performed in three independent sets of comb finger,
henceforth referred to as jagged-edge shapé, rectangular shape and sawtooth shape.
Figure 5.4 represents three examples, all at 26-um engagement for each of the tested
shapes.

At this point, the main goal was to understand the differential capacitance with
respect to engagement. As previously shown in equation (2-1), capacitance is
independent from actuation voltage, hence an initial input test voltage V=1V was used.
Upon échieving a solution for all displacements, total capacitance was computed via

subdomain integration according to equation (2-2).

¢« 135 um —

0 [V]

6.4 035 06 07

Figure 5.4. Potential field distribution results for a 26-um engagement of three different comb finger
shapes. The dimensions of the total integration area are shown in (c). Excerpts (d) depict the details
of field distribution around each finger.
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The numerical solution for differential capacitance was computed following
equation (5-1), where Cror is the total capacitance at each engagement increment #. This
works as the Principle of Virtual Work (PVW), extensively reported in literature. A

concise description of PVW can be found in Appendix I.

[0C,, ]((n—l)xl) = [Cror, - CTOT("-') ]((n-l)xl) (@)
S
Y

b
2x10° ®)
We can see that this capacitance equation increases linearly with finger

displacement (Figure 5.5). The total capacitance of the rectangular shape comb was, in
average, 28% higher than that computed from the sawtooth shape and 13% higher than
the jagged-edge shape. As expected, the capacitance recovered from the 3D models were
higher than those computed from the 2D model due to fringing. Figure 5.6 confirms the
suggestion that fringing fields are indeed prevailing in this design, most likely because
the distance between the capacitor plates is 1 um larger than the thickness of the structure.
The streamlines were randomly displaced through the comb drive device in order to
emphasize the fringing fields at both lateral edges. That invalidates the theoretical
assumption of parallel plates capacitors, where fringing fields can be neglected in the

calculation of total fields.

i
i



Chapter 5 Design Simulations and Numerical Solutions

r—
o]

b
| —&—3D_Rect -&—2D Rect |

=)

f ——3D Jagg —©—2D Jagg |
; :
g ~#-3D_Sawt  —&-2D_Sawt |

P b pd
O O N

Capacitance [fF]

S N A O

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Displacement [pm]

Figure 5.5. The bold shapes represent total capacitance values recovered from the 3D simulations.
The hollow shapes represent total capacitance values from the 2D simulations.
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Figure 5.6. Streamlines illustrating the electric field distribution (E). The surrounding volume and
device edges follow the electric potential scale 0-100V.
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The discrepancies between the 2D- and 3D capacitance analysis were further
investigated by a simple model of two parallel, rectangular plates with the same
dimensions as the comb fingers. The plates were kept at a constant 3-pm distance from
each other. The distance to the edge of the surrounding dielectric volume, i.e. the volume
of the 3D integration, was varied as shown in Figure 5.7. Note that the volume of
integration directly affects the accuracy of the calculated capacitance due to fringing
fields. Since the direct relationship between input voltage and capacitance is expressed
as C=2W,/V}, a quick dimensional examination tells us that, if the 3D capacitance is
roughly four times the 2D one, then the required input voltage for 2D simulations should

be twice as large as the 3D case.

14
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Figure 5.7. Comparison between 2- and 3-dimensional integrations of capacitances. The x-
coordinates give the distance between the device boundaries and the surrounding volume boundaries
(as described in Figure 5.4)
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Furthermore, Figure 5.8 shows that, the presence of a silicon substrate 2 pm
underneath the structure affects significantly the value of total capacitance of the
structure at any engagement distance. Capacitance is approximately four times larger
with the presence of a silicon substrate if compared with the ideal simulation without the
substrate. That was in accord with modelling performed in [10], however, the increase in
absolute capacitance values alone does not characterize an improvement in the device
operation. Figure 5.9 shows the evolution of dC/dY with respect to finger displacement.
Note that in this plot the “no substrate” case has a more evident rate of change of
capacitance than the case in the presence of a substrate. As for the 2D case, since no
fringing fields are in plane, the variations in capacitance are less pronounced. Therefore,
considering that the concept of step-movement is dependent on §C/3Y, the fact that the

total capacitance is larger serves no specific purpose in the move-and-lock mechanism.
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Figure 5.8. These curves represent total capacitance in the jagged-edge model for three different
simulation conditions: 3D with Si substrate, 3D without substrate, and 2D.
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Figure 5.9. Differential capacitance with respect to finger displacement.
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5.4 Plane Stress Simulation

Figure 5.10 depicts the spring and its main features. The simulation was carried
out with a three-dimensional geometry and tests were run for three different beam

lengths. They were 140 um, 280 um, and 360 um long.

Fmech
L2opm,
l B - I*;O

280pum

Figure 5.10. Spring design. The spring beam length was simulated for three different lengths:
) 140-, 280-, and 360-pm.

Non-linear static analyses were performed for several different loads. The loads
were applied to the front wall of the shuttle (Frecn). The loads corresponded to the total
 electrostatic force (Fes) computed in the electrostatic problem at each engagement. The
force was then divided by the area of the shuttle front wall and a force/area value was
computed. The FEM simulation returned continuous values for displacement throughout
the spring structure. As expected, the maximum displacement occurred at the shuttle,

since both sides of the spring were in equilibrium (Figure 5.11).
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Figure 5.11. Spring displacement due to applied force. Fye., is equal in magnitude and direction to
F, for a given step movement.

The maximum displacement value for each Fiech = Fis input was computed as a
scalar solution matrix. The spring constant k¥ was computed from F,/AY, where AY
corresponds to each 2-um step displacement. Results showed that & was linear for all
three simulated springs (Figure 5.12). This plot summaries what is the necessary force
that must be loaded into the system in order to achieve the wanted displacement. Note
the signiﬁcant difference in stiffness between the 140- and 280-um long springs. Finally,
with a known value of k for each of the springs, the spring restoring force was computed

for any desired displacement, as further detailed in section 4.5.

61




Chapter 5 Design Simulations and Numerical Solutions

¢ 140-um

141 0 280-um

12+ @ 360-um

0.74 N/m

Force [uN]

[ 2Nt
¢

0.092 N/m
2 i /.o.oza N/m /
— o

Displacement {umj

Figure 5.12. Stiffness plot for all three modelled springs with different nominal lengths. The arrows
point te each spring constant value.

5.5 Stepped Movement

Figure 5.13 shows the results for combining both the electrostatic and mechanical
3D solutions of the jagged shape comb drive. The operational voltages were arbitrarily
chosen not to exceed 100V. The straight lines across the plot show the restoring
mechanical force of the 280-um and 360-um springs at each engagement step. Hence,
the comb drive displacement may be analysed along the spring force line, such that the
arrows show locking points, where Foeh equals F,s and the device locks in place. In
order to move ahead, higher actuation voltage must be provided to the device. Given that
in this experiment the actuation voltage Vo was chosen to match the 280-um spring, it is

trivial to notice that the 360-um long spring constant k was characterized as too soft.
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Consequently, the use of such spring under the desired V, input would not prevent the
continuous forward motion of the comb fingers, thus locking would not occur.
Conversely, the 140-pum spring was too stiff and produced restoring forces which would

require higher electrostatic engaging forces to overcome the spring action (Figure 5.14).

It is important to emphasize that these are arbitrary computations based on a static
problem, therefore it is only an approximation and a proof of concept. The simulations
described so far do not take into account the interaction between the mechanical and
electrostatic domains. The parametric analysis described in Part II delivers a more
accurate description of the device performance under conditions similar to the expected

operational environment.
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Figure 5.13. Required force for prescribed engagement.
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Figure 5.14. Higher actuation veltages are required for implementing the 140-pm spring.
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Part II - Electromechanical Multiphysics Solution

So far, the comb drive has been characterized based on independent simulations
of the electrostatic and mechanical behaviours of the device. Part II will focus on the
coupling of the two problems defined as a multiphysics simulation. It is expected that
issues regarding the possible non-linear aspects of the design will be properly addressed

through multiphysics.

The main challenge in this simulation is the constant change of the electrostatic
field as a function of increasing actuation voltage. The parametric character of the
simulation comprises an interactive system between the electrostatic pulling force and the
spring mechanical restoring force. The electrostatic equation is solved in the surrounding
dielectric (air) domain and resultant forces are the loads of the spring displacement. The
present section will deal with the parametric solution of the comb drive operation using
the Arbitrary Lagrangian Eulerian method. This model has the spring attached to the

comb fingers section of the device at all times, which renders a more realistic simulation.

The ALE simulations presented here were all performed in two dimensions.
Although the existence of a substrate below the structure proved to be a relevant
parameter, a three-dimensional ALE solution including the ground plane was considered
too costly in terms of computational time and complexity of the algorithm. A full ALE

three-dimensional solution would be beyond the scope of this project. In any case the
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reader can have a good estimation of the differences between 2D and 3D results based on
the discussion in section 5.3 and the plot in Figure 5.7. The substrate issue and its effect
on the total force in this design are further addressed in more detail in the Future

Considerations section (Chapter 6).

Lastly, it is important to notice that both the electrostatic and the ALE grid
displacement computations were based on weak form solutions (refer to Appendix II).
" The mechanical displacement problem was solved by the usual strong form, as in Part I.
The implementations of the multiphysics problem as well as analysis of the achieved

results are discussed below.

5.6 The Comb Drive Analysis with ALE

The simulation of the comb drive problem is characterized by large displacement
and small strain with respect to the spring. The electrostatic part of the problem has a
time-dependent characteristic, since the voltage load parameter changes in time.
However, for the purpose of this thesis all analyses were static for each increment of the
independent parameter Vy (refer to section 3.2.2). The parametric simulation used an
array of equally spaced values of Vo as the independent variable. The expected
information from this analysis was twofold: (a) results should reveal the total

displacement as a function of input voltage Vo; (b) results should emphasize the concept

of step movement. Inertial components, such as damping, were not taken into account in

this simulation.
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It follows that the equilibrium of the system at any iteration point is described by
(5-2), where F and R are the electrostatic pulling force and mechanical restoring force
respectively at a given iteration i. This relation must express the equilibrium of the

system for any deformation, considering non-linearities.

‘F-'R=0 (5-2)

5.7 Formulations and Simulation Set-Up

The ALE simulation developed in this thesis made use of three multiphysics
application modes in FEMLAB. Both the electrostatic problem and ALE computational
grid displacements were solved with the weak form mode, since no specific ALE module
was available in the package. From an operational point of view, the weak mode offered
the possibility of building the simulation from scratch, dealing only with PDEs and their
respective integral equations. Hence, the user was capable of describing the ALE
formulations with a general syntax, which is not as restrictive as other preset physics
modes in FEMLAB. The benefits of using the weak form were: (a) for its robustness in
dealing with abrupt changes in the scalar field 7, defined in the electrostatic problem; and
(b) it could adapt to the computational grid domain irregularities easier. Further
mathematical descriptions of weak functions and variational form are beyond the scope
of this text. Detailed information on this mathematical procedure commonly applied to

FEM can be found elsewhere [25].

67



Chapter 5 Design Simulations and Numerical Solutions

The ALE grid displacements were defined by Poisson’s equation and solved in
integral form of the deformed domain.
f det J[(Sxx Iy + 3xYle )dxx + (3,\:,(1)(.v + SxYIYy)éx_y]dQ =0 (a)
Q

(5-3)

fdet J[(Syxlx_x + SyYIYX)(Syx + (Syxlx." + SyY]Yy)éyy]dQ =0 (b)

Where (a) and (b) represent the x- and y-components in the computational grid domain
and “*" defines a test function. The electrostatic equation starts with Gauss’ Law, as

shown in (3-2) and transformed into integral form:

e [ det J[(vxlx,r + VLV, + (Vi + QYIYy)x/y]dsz -0 (5-4)
Q
where Ijj corresponds to the entries in the inverse Jacobian matrix.

The spring displacement part of the problem used the standard non-linear plane
stress application mode, available under the Structural Mechanics module [54]. The
mechanical problem was then solved through the strong form. In this case FEMLAB has

the default option of using the PDE that defines Navier’s equations (section 3.1.2).

Each application mode had user-defined constraints for boundary conditions,
which can be better explained through Figure 5.15a-c. The electrostatic problem is
described in 5.15a, where the only constraints are defined in the capacitive structures
(fixed and movable set of fingers). The ALE computational grid constraints are

described in 5.15b. Note that the grid is free to move in any direction inside the yellow
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subdomain, which coincides with the dielectric material, i.e., inside the boxed area. The
plane stress application mode, depicted in 5.15c has only two constraints. Both of them
are anchored boundaries, where no displacement occurs. The constraints defined for the

jagged-edge shape comb drive are identical to those defined in the rectangular shape

device.
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Table 5-1 concisely describes the user interaction with the software tool when setting up

the ALE simulation.
W R
N VATA
f_—J // / r_‘—J /;/
— //// ](a) = 4 _(gb):

A (a) Red: fixed fingers
Blue: Movable fingers

ﬁ;jggﬁ%ﬁi (b) Orange: Boundary of symmetry

Yellow: Dielectric boundaries
Green: Structure boundaries

// |
— / / 7 (c) Brown: Anchored boundaries.
]____; 7 / _L_!
'\u=0; V=0 (C)

Figure 5.15. Constraints defined in all three multiphysics modes.
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Table 5-1. Qualitative description of the user-software interaction.

User FEMLAB Automatic Set-up FEMLAB
Settings Description Defined (based on user-defined Default
parameters)
General Porperties
Geometry Shaped Comb Drive v
Constants Electrostatic and material v
constants
Type of Element v
Mesh
Density v
Scalar Jacobians, gradients, v
Expressions derivatives
Equation Based on Weak Terms and v
Systems Constraints
Weak Mode (Electrostatic)
Subd(?maln Weak Term v
Settings
Boundary Weak Term v
Settings Constraints v
Weak Mode (ALE Grid)
Subd(.)mam Weak Term v
Settings
Boundary Weak Term v
Settings Constraints v
Plane Stress Mode
Subdomain Constraints v
Settings Loads v
Boundary Constraints v
Settings Loads v
Solver Settings
Type of Solver v
General Settings Parameter v
Parameter’s Values v
Number of Iterations v
Advanced . .
Settings Scaling of Variables v
System Solver v
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According to
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Table 5-1 most decisions regarding the simulation set-up procedure are taken by the user.
The advantage of choosing a FEA package lies in its ability to automatically set matrix
equations based on the parameters entered by the user, as well as offer several options for

solver engines.

The implementation of the model, definition of boundary conditions, subdomain
settings and material properties can be found in Appendix III. The FEMLAB code is a
stardard text format, *.m file, which can be reproduced in any computer station where
FEMLAB 3.0a or higher is installed. The syntax used to enter equations and arrays is the

same used in Matlab, a common engineering and science software widely available.

5.8 Results from the Parametric Analysis

Parametric computations returned the field distribution in the dielectric for input
potentials from 0- to 250V. Figure 5.16 depicts consecutive solutions for the parametric
simulation of the jagged-edge shape for different input voltages. The comb teeth
dimensions are, as previously described in Chapter 4, 40um long with minimum gap

distance of 3um and maximum gap of 7um.
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'

10V 50V 100V 150V 180V 220V 250V

Figure 5.16. Artificial montage depicting the evolution of field lines with increasing voltage.

Next, Figure 5.17a shows electrostatic force results from the same parameters.
Forces acting upon the set of movable fingers were computed at each increment of
voltage and behaved as a quadratic function of displacement. This response is similar to
the one expected from a rectangular shape comb drive with the same dimensions of finger
length, thickness and spring length. Figure 5.17b corroborates the information retrievéd
from the plot in (a), showing the electrostatic force behaviour for é rectangular comb
drive with the same dimensions and minimum gap as the jagged-edge structure. The

latter is illustrated in Figure 5.18 unaer the actuation voltage of 200V.
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Figure 5.17. Force and force gradient with respect to finger engagement from rest position. Both
[ i)lots show the force acting on the set of movable (a) jagged-edge fingers and, (b) rectangular fingers.
m

[m]
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Figure 5.18. FEM solution for the rectangular comb drive. This plot depicts the 200V input
parameter.

The comparison between the jagged-edge and rectangular solutions shows a
noticeable difference at the force gradient, shown in the secondary axes of Figure 5.17.
The jagged-edge shaped produces an evident variable rate of change in force with respect
to engagement. The absolute values of the force gradient are however too small, which
do not translate into a stepped displacement. This led to the following conclusion: the
concept of jagged-edge shape can potentially offer the desired stepped motion, however

the dimensions investigated did not yield conclusive results.

As a result of the abovementioned conclusion, new dimensions were investigated,

keeping the original concept of jagged-edge comb fingers. The additional shapes
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simulated are described in Figure 5.19, which henceforth should be used as a reference to

future discussions on jagged-edge shape results.

40um

Figure 5.19. Schematic description of: (A) MUMPs design; (B-E) newly proposed jégged-edge finger
shapes; (F) rectangular comb finger.

5.8.1 Discussion on Proposed Shapes

The two designs shown in Figure 5.19B and C have 4:1 relationships between
-— maximum and minimum gaps, but with different dimensions. The FEM simulation
results (Figure 5.20a) show that the 8:2 um gap design has two points of inflection, which

are more noticeable than the result for the geometry (A), but still the absolute
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displacement values are not enough to justify the design. The 4:1 um gap design renders
an evident step in the total displacement (Figure 5.20b), but the expected “locking
positions” shows some minute slippage. This can be seen as the plateaus in the curve for
differential displacement with respect to input voltage. The ideal locking position would
have zero displacement gradient with respect to'the actuation voltage. In Figure 5.21, it
can be seen that the force gradient for the 4:1 design shows a change of inflection at 4-
um-displacement from rest position and break points at 6-um- and 11-pum-displacement.
These results show that, at the maximum displacement point of 12um from rest position,
the 4:1pm-gap design has the total electrostatic force acting upon the movable fingers

about four times larger than those observed in the 8:2 um gap design.

fAuni]

tarasseavsadiass sne sen

Total Displacement {pm]

0 40 80 120 160 200 240
i Applied Voltage [V}

Figure 5.20. Comb displacement with respect to the actuation voltage V. (a) Results from the
8:2um-gap; (b) results from the 4:1pm-gap. The reader should note the difference in scales in the
differential displacement axes.
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Figure 5.21. Force and force gradient results for both the 4:1pm-gap and 8:2pm-gap designs.

From the above results it is evident that the key factor in the jagged-edge shape
design is the ratio between maximum and minimum gaps in conjunction with the actual
minimum gap distance value. From these results, the 4:1 ratio with 1-um minimum gap
is more effective than the 4:1 with 2-um minimum gap. Thus, it is deducible that, for
increased gap distances, the dimension of each notch must be increased as well. That is
so the gain in notch area balances the increase in gap distance, preserving the total

electric energy, as it is described in section 2.1 and synthesized by equation (5-5).

l &g =
We = ‘ig-voz (5-5)

The designs of Figure 5.19D and E have exaggerated ratios between minimum
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and maximum distances with respective values of 1- and 7-um gaps. Design E, however,
is constructed in such a way that the gaps are asymmetric with respect to the imaginary
line between the two fingers. The resultant differential displacement with respect to

actuation voltage for both these designs is show in Figure 5.22.

~—[7:1} Symm min lum

—=[7:1] Asym min. lum

Grad. Displacement [m/V] -

Figure 5.22. Simulated differential displacement with respect to actuation voltage for both
symmetric and asymmetric 7:1 designs.

Results for this last analysis are shown in the context of all previous simulations.
Figure 5.23 shows combined plots of displacement gradient with respect to actuation
voltage. Note that the asymmetric 7:1 design shows two clear points of inflection. The L
first step in displacement occurs at about 40V. By observing the slope of the curve, it is

possible to infer an increase in velocity, which implies that the movable comb finger
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accelerates. Given that this is not a dynamic analysis, the lack of inertial components in
the system prevents any assumptions with regards to velocities and acceleration under
real conditiqns. In any case, these results show that, under ideal lossless environment, the
combined electrostatic-mechanical solution shows a rate of change of displacement with
respect to the input parameter V,. After 40V the displacement rate as a ﬁnction of
voltage decreases significantly. Ideally, the structure should almost lock in place
preventing any Y-direction movement. When the input potential reaches 150V another
surge in displacement happens. At this point, the total amount of displacement is larger
than in the previous engagement. The general behaviour of the 7:1 symmetric design was
similar, but the points of inflection are not as accentuated and the trough not as low,
implying more slippage. The following plots illustrate each of the two 7:1 designs in
detail. The symmetric design (Figure 5.24) has two engagement steps, but the slippage in
the asymmetric design (Figure 5.25) is smaller. It follows that the point of inflection in

the force versus displacement plot is more evident in the asymmetric case.

81



Chapter 5 Design Simulations and Numerical Solutions

e [2:1] Symimt min. 3um
e {421} Symim min. 2um
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F igure 5.23. Comparison of differential displacements of all geometries investigated.
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Figure 5.24. Analysis of the 7:1 symmetric design (shape D)
9

To Second Step ——p

Total Farce (uiN}

Fotal Displacement [jm]
PN
in
fouengit ] apeany snog

i

B 40 50 120 160 200
Actuation VYoltage [V}

Figure 5.25. Analysis of the 7:1 asymmetric design (shape E).
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5.9 Conclusion

The 3D simulations served as an initial proof of the design concept. The use of
3D geometries was justified by the need for proper characterization of the fringing fields
effect on total electrostatic force. Independent runs were performed for both the
electrostatic and mechanical problems. The solution from the electrostatic simulation
served as load to the mechanical model. However, the multidomain nature of the comb
drive device required a coupled analysis using a multiphysics model. Due to the
complexity of the design, the implementation of a multiphysics simulation in 3D was

found to be computationally costly.

The second part of this chapter described a high performance model scheme
through ALE formulation. Results illustrated the concept of step movement and showed
that, for a given gap ratio and structural thickness, there exists an ideal design
correspondent to an asymmetric geometry. Regarding the numerical tools itself, the ALE
formulation proved better suited for a multiphysics analysis than the independent static

_investigations. The use of ALE allows an investigation of the comb drive as a system
instead of a composition of individual components. Also, for the purpose of comparison

between 2D and 3D results, a fringing analysis was performed.
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6.1 Preamble

This thesis has introduced a novel application to MEMS comb drives operating
under DC conditions. The initially proposed designs followed the dimensional
requirements of the MUMPs fabrication process. Upon realization, the devices were
tested. However, the expected results were not achieved, which promoted a revision of
the désign principles. Although the general idea remained the same, new dimensions,
both in the springs and the comb drive structures were simulated with the finite element
method. Satisfactory results were achieved, which proved the viability of the jagged-
edge comb drive as an actuator for prescribed force and controlled displacement

applications.

6.2 Summary of Investigations

This thesis has introduced a novel application to MEMS comb drives based on an
innovative design: the jagged-edge shape comb drive. The intended application of such
device is as an actuator to microtweezers, where prescribed forces resulting in controlled
displacement are required. Contrary to other MEMS comb drives, this project suggested
a device to be operated under DC conditions, removing all lateral oscillation. This design
was an improvement to the concept of the sawtooth comb drive, previously introduced in
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[6]. The sawtooth comb drive shows sinusoidal behaviour of force versus displacement
with a general pbsitive slope as a result of the electrostatic interaction between fixed and
movable fingers. Combined with the restoring spring forces, the sawtooth comb drive
could potentially show “locking points” where the mechanical spring force balances the
electrostatic force. However, the probable locking position corresponds to a single point
in the geometry, namely the outer edge of each tooth. This led to the suggestion that, if
this locking point was to be extended into a locking area, the device could produce step-
movement dependent on the actuation voltage. That is, the jagged-edge shape has a finite

plate area for each engaged notch, which produces a stable locking point.

The first part of the investigation dealt with 3D independent electrostatic and
mechanical models, describing the comb fingers and cantilever springs respectively.
These analyses rendered useful results, as they were enough to validate the concept of
stepped-movement. However, the complex interaction; between the electrostatic domain
as a load to the mechanical domain demanded a more thorough investigation, which

could potentially describe the feedback interactions between both domains.

The Arbitrary Lagrangian-Eulerian formulation was chosen as a rigorous tool to
combine both domains of interest and produce a multiphysics analysis. Significant effort
was put into the implementation of the ALE algorithm as a comb drive modelling
procedure. Due to computational cost, this analysis was performed in two dimensions,

which, when compared to 3D results, had a scaling factor in the capacitance. Apart from
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the lower numerical values for capacitance, the ALE solution was found to be more
accurate, since at all instances of the parametric analysis both the electrostatic and

mechanical domains of the device are investigated together.

Upon simulating different jagged-edge designs, it was found that the key to
achieving the proposed move-and-lock mechanism is optimization of the maximum to
minimum gap relationship. Based on the designs investigated, the best result came from

an asymmetric 7:1 gap ratio, for a device with 2-pm-thick structural layer.

6.3 Proposed Design Rule

The move-and-lock mechanism is dependent upon two parameters: (a) the rate of
change of capacitance with respect to engagement (4C/JY) and (b) the characteristic
spring stiffness. By balancing these two parameters, an optimum solution is possible,
which causes the device to move at given voltage intefvals and lock with no further
displacement. Moreover JC/JY can be “adjusted” by scaling the area of each notch in

the jagged-edge shape.

This thesis has introduced an initial design rule for jagged-edge comb drives. The
designer should start from considering the minimum dimensions possible in the design,
given the choice fabrication method. Once the minimum gaps are determined, the

relationship between minimum and maximum gaps is established, keeping in mind that
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an asymmetric design returns more step-movement instances for a given gap-ratio.

The issue of structural thickness is a balancing factor in this design. If minimum
distances are to be increased due to lack of mask resolution or other fabrication
limitations, the device thickness can be augmented to match an optimum Jagged-edge

surface area, which in turn will produce the desired force.

Lastly, the dimension of the springs are also a factor to be considered, albeit not
necessarily as a key factor in the design as much as it is a consequence of the desired
electrostatic force. Once the maximum electrostatic force for each step is determined, the
springs should be designed in such a way that the restoring mechanical force will match
the electrostatic force at each desired locking position. Most importantly, this research
has shown that the jagged-edge design is greatly adaptable to the designer’s

requirements, as long as an optimum gap-ratio and thickness relationship is met.

6.4 Future Considerations

Notable points of improvement in the designs presented in this thesis are: (a)
optimization of the jagged notch length with respect to structural thickness, which
balances the influence of gap distance, and (b) consideration of the slippage problem,
which prevents total locking of the device. The present research project can be
augmented in two ways:

* Improve numerical models and define an analytical model for the jagged-edge

comb drive.
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* Develop a fabrication process, which will yield the desired Jagged-edge shape

with minimum convex edge flattening.

The first point can be achieved by implementing periodic boundary conditions for
infinite repetition of the geometry. This would facilitate the development of a generic
simulation, irrespective of the total number of fixed or movable fingers. Additionally, the
simplified implementation would facilitate the use of 3D geometries, which in turn would
account for the effects of fringing fields. Moreover, systematic design optimization
should be introduced, since the success of this device is dependent upon ideal matching
of its dimensions.

As per the increasing the quality of the fabricated device, one option to be
considered is the integration of compénsating features to sharp edges in the comb fingers.
These should prevent smoothing of convex corners. On the other hand, in order to
properly fit these compensating features in the lithography mask layout, the total device
dimensions should be scaled up. This in turn could raise issues such as sticktion, comb
finger bending due to weight and spring buckling. The successful fabrication of the
device at ideal dimensions is perceived as the greatest challenge in this project.

Finally, this design could be potentially marketed as long as packaging issues
were addressed. The controllable displacement microtweezers could find applications in
many different areas of research. Hence, the device must adapt to different packaging

requirements, tailored to different applications.
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AppendixI The Principle of Virtual Work

The Principle of Virtual Work (PVW) is a common numerical technique applied
in structural mechanics and electrostatics. Let virtual displacement be an infinitesimal
change in the geometry of a system as the result of the forces and constraints imposed on
the system at a given time. The PVW states that a system of real forces is in equilibrium
if and only if the virtual work performed by these forces is zero for all virtual

displacements that are compatible with geometrical boundary conditions.

Recall that a capacitor is characterized by two parallel plates separated by a
dielectric layer, where one plate has positive and the other negative charges. Hence, an
attractive electrostatic force exists between the plates. This force is calculated based on
the charge distribution on the capacitor plates. Figure A-I.1 demonstrates the virtual
displacement of a comb finger. In the context of this thesis, FEM simulations are used to
calculate the electrostatic field energy present in the system; which in turn is integrated
over the structure’s surrounding volume, returning the total capacitance in the system at a

given finger engagement.
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Figure A-L1. Schematic description of the virtual displacement. The X-components of the
electrostatic force Fes are cancelled by the opposite vector. The Y-components are added together.

The electrostatic force acting upon the movable finger is obtained by assuming a
differential displacement of the body in the Y-direction (3v) and computing the resulting
change in the electrostatic energy of the system. The PVW is dependent upon the
assumption the comb fingers maintain a constant voltage. The energy W, changes as the

geometry (and hence C) changes. The stored electrical energy of such a system is:

W,(Y) = Zlco()v2 = %cvzéY (A-L1)



In order to move the capacitors plates, work is necessary. This work is caused by

the force Fes that the plates of the capacitor exert on each other, as seen in below:

2
F-vw, - WD _CV
Y  2d

Oy (A-1.2)

As described in Figure A-1.1, if C depends on a single dimension Y, the
magnitude of the force between the fingers is dependent on the rate at which work is done
per unit Y-displacement. Note that, for the purpose of the PVW analysis, the X-
components of the electrostatic force F. are cancelled by the opposite vector. The Y-

components are added together.

Additional Readings

1. ~  D. DaDeppo, Introduction to Structural Mechanics and Analysis, Prentice
Hall, 480pp., 1998.

2. B. F. Romanowicz, Methodology for the Modelliné_ and Simulation of
Microsystems, Kluwer Academic Publishers, 136pp., 1998.
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Appendix II Theoretical Principles of FEM

A-II.1 Introduction

The finite element method is based on the fundamental concept that a given
continuous function defining a structured geometry can be approximated by a discrete
model. The approximation is done by subdividing the geometry into a finite number of
elements, hence the name finite element method. Figure A-II.1 shows a hierarchical
description of a three dimensional element and its characterizing features. The
terminology is the same for both two- and three-dimensional models and Figure A-I1.1

should serve as reference throughout this text.

Boundary

Nodes

Edge

Figure A-IL.1. Description of a three-dimensional element and its respective features.
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(a) NoDES: Points where unknown functions (variables of interest) are calculated. To
each node, correspond a number of unknown functions, which are the degrees of

A ﬁeedom (DOF) at that node.

(b) EDGES: The edges are defined by interpolation functions or polynomials, which
describe the behaviour of the variable of interest between the nodes. The edges can be
subdivided by midpoints, which define higher order polynomials. Higher order

elements offer a better approximation of the original geometry.

(c) BOUNDARIES: Mathematically classified according to the behaviour of the
unknown variable inside the boundary domain. The Dirichlet condition specifies the
numerical value of the unknown at the boundary, whereas the Neumann condition

defines the first derivative of the unknown normal to the surface.

(d) SHAPE FUNCTIONS: The coefficient that qualifies the interpolation polynomial.
Each node has a corresponding shape function defined in terms of independent
variables, such as the coordinate system X, Y, Z. The function returns the magnitude

value of 1 at its defining node and 0 at all other nodes.

The concepts introduced above can be further explained for the case of a single
arbitrary, one-dimensional variable w, defined in equation (3-13). The variable w can be
approximated with a function described by a finite number of parameters or DOFs at each

node w;, where @ are the shape functions.
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w(x) = W@, (x)+ W,0,(x) + W,@,(x) +--- + W@, (x) (A-1I-1)
The FE analysis delivers an approximate solution, which is only as accu}'ate as
the quality of the mesh approximation, the material properties used and their
assumptions, and the definition of the loads and boundary conditions. The solution

algorithm is also a source of potential inaccuracies and must be chosen based on proper

assessment of the physical problem.
A-II.1.1 Mesh Generation

The basis of the FEA is the development of a good quality approximation of the
geometry under scrutiny. For that reason the mesh generation is a fundamental step in
achieving meaningful results. The discretization of the model is achieved through the
creation of a mesh of elements, which approximate the geometry. The mesh density is
defined as the number or elements per unit area for a two-dimensional model and
elements per unit volume for the three-dimensional case. The quality of the
approxirhation depends upon the quality g of each element according to (A-I1-2a-b) for 2-
and 3-D cases. The side length of the triangular element is represented by 4;, whereas

area and volume are a and V respectively [28].

g 43 (a)
W+ R it
216 v ®)

7= V3 (B +h2+ b2+ k2 + B2+ h2YE
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The element quality is directly related to its geometry. Elements with similar
edge sizes will return higher quality values than those with uneven shapes, which in turn
will influence the final convergence of the model solution. Figure A-I1.2 illustrates the

idea of element quality related to the element dimensions in 2D; the same concept applies

to 3-dimensional elements.

Figure A-11.2. Schematic description of a higher quality element (red), and a lower quality element.
The sides are &; and the element area is a.

A-I1.1.2 Types of Element

Each element in an FE mesh is characterized by predefined numerical
formulations. Common problems involving large structure deformation and fluid
‘mechanics use mainly two types of formulation: the Lagrangian element and the Eulerian

element [29].

In the case of the Lagrangian formulation, the FE mesh is attached to the structure
under analysis and it follows the motion of the body from the original to the final

configuration of the body geometry. This approach is popular in solid mechanics,
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especially in cases where unconstrained flow occurs over free boundaries [30]. That is
because the mesh closely approximates the structure boundaries. The disadvantage of
this formulation is its poor soluﬁon convergence in problems such as: large deformation,
nonlinear boundary conditions, boundary conditions which vary as different loads are

applied, or when meshes element distortion is excessive.

The Eulerian formulation utilizes a mesh fixed in space while the analysed
structure flows through the mesh. The fixed mesh represents a control volume [31] that is
static, if seen from the point of view of the rﬁoving structure. It follows that, since the
mesh is spatially fixed, no mesh distortion occurs. On the other hand, the Eulerian
formulation is not a suitable approach for structural problems where large displacement
occurs. For the reason that at each instance where the structure moves beyond the
boundaries of the control volume, a new volume would have to be created. Additionally,
in the cases where the analysed structure flows without constraints through free
boundaries, this approach is unable to return a solution, unless the boundaries of the
deformed structure are known in advance. Nonetheless, this is a robust approach for fluid
mechanics problems enclosed in a fixed volume, i.e. large material flow, but minimal

change in boundary shape.

When the comb drive problem is considered, three issues must be taken into

account before determining the appropriate element to be used in the analysis. They are:

(a) spring displacements are large with respect to the spring dimensions; (b) as long as
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arching does not occur between the movable and fixed fingers, the comb drive lateral
displacement is unconstrained; (c) due to (b), the boundary conditions of this problem do
not remain constant during the change of loads as a function of voltage increments.
These statements imply that neither Lagrangian nor Eulerian formulations alone would
return successful solutions for the comb drive simulation. One could argue that, the
advantages of each method are the weakness of the other, and the two methods.
complement each other in this respect [30]. The next section will discuss an alternative
approach to deal with large deformation problems, which couples both mesh elements

discussed in this section.
A-II.1.3 Formulations

As previously described, FEM models are discrete; hence, all functions must be
approximated by a finite number of elements. Given an unknown, multidimensional and
continuous function w(x,y,z) defined in the domain Q, the objective of the analysis is to
describe w such that it satisfies a set of partial differential equations ©(w), where @ is an
operator, as in equation (A-II-3). The PDE description of a problem is also referred to as

the strong formulation.

6,(w)
O(W)=10,(w),=0 (A-11-3)

Each element in the FEM mesh has a set of appropriate boundary conditions B(w)
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defined in the domain Q.

B(w)
B(w)=:B,(w);=0 (A-11-4)

Equations (A-II-3) and (A-II-4) are solved by the introduction of a set of functions v,

which are equal in number to the components of w.

Then the equations in (A-II-4) can be superimposed to reconstitute the domain Q,
as shown in (A-II-5):
Jv'owdes= [1v6,(W)+v,0,(w)+---1dQ=0 (A-11-5)
Q Q
The statements so far have shown that the FEM problem, when integrated, returns
a solution to the continuous problem. It must be noted that the boundary conditions

imposed by (A-11-4) are to be simultaneously satisfied in order to obtain a convergent

solution, where u is a set of arbitrary functions:

Ju'Bwd@= [[u B(W)+u_B,(W)+--1dQ=0 (A-11-6)
r r

In summary, the integral statement seen in equation (A-II-7) recovers the same solutions

sought with the PDEs described by equations (A-II-3) and (A-II-4) combined.

Jvewde+ [v'Bwde=-0- (A-11-T)
Q r

If the operator @ has a higher order of differentiation than that “acceptable” by w,

then the derivative function is discontinuous and the expression in (A-II-7) is non-square
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integrable. Recall that a function of a real variable is considered square-integrable on a

given domain if the integral over that domain of the square of its absolute value is finite,
such that f \f (w)]zdw.

A general way to solve this issue, is by introducing the weak form of the problem.
The idea of the weak form is to provide a more “lenient” statement of the problem, which
can “adapt” to the discontinuities of the function w. That is achieved by performing

integration by parts on (A-II-7) and replacing it by (A-11-8).

JC»™D(wWAQ+ [E@) F(w)dQ=0 (A-11-8)
Q r

In this case, the operator C, D, E, and F have lower order derivatives than the

corresponding ones in equation (A-II-7).

The derivation of the weak form is widely described in FEM literature; the reader
is encourage to look for more information in [25], [29], [32]. Additionally, the software
package used in this thesis (FEMLAB) offers a weak form mode, where the user has to
enter the appropriate integrands, but the weak transformations and test functions are

automatically generated by the package.
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Appendix ITI FEMLAB Code

This appendix shows an example of an analysis file generated in FEMLAB 3.0a.
The code uses common Matlab syntax and can be reproduced either as *.m file or saved

as a native FEMLAB file *.fl.

% FEMLAB Model M-file

% Generated by FEMLAB 3.1 (FEMLAB 3.1.0.157, $Date: 2004/11/12 07:39:54 $)
% Some geometry objects are stored in a separate file.

% The name of this file is given by the variable 'flbinaryfile'.

flclear fem

% Femlab version

clear vrsn

vrsn.name = 'FEMLAB 3.1%;

vrsn.ext=";

vrsn.major = 0;

vrsn.build = 157;

vrsn.res = '$Name: $';

vrsn.date = '$Date: 2004/11/12 07:39:54 ',
fem.version = vrsn;

flbinaryfile='jagg_sym_1g7.flm";

% Constants
fem.const={"epsilon’,'8.854e-12','V0','1 600'};

% Geometry

clear draw

g22=flbinary('g22','draw' flbinaryfile);

g641=flbinary('g641','draw’,fibinaryfile);

gl0=flbinary('g10','draw' flbinaryfile);

g9=flbinary('g9','draw' fibinaryfile);

g13=flbinary('g13','draw' flbinaryfile);
" draw.s.objs = {g22,641,810,29,g13};

draw.s.name = {'CO1','CO5','C06','CO3",'CO2'};

draw.s.tags = {'g22','g641','g10",'29','g13"};

fem.draw = draw;

fem.geom = geomcsg(fem);
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% Initialize mesh

fem.mesh=meshinit(fem, ...
‘hmaxfact’,0.55, ...
‘hgrad',1.25, ...
‘hcurve',0.25, ...
'hcutoff',0.0005, ...
'hnarrow’,0.5);

% (Default values are not included)

% Application mode 1

clear appl

appl.mode.class = 'FIPDEW',

appldim = {'V','V_t'};

appl.sdim = {'X",'Y",'’Z'};

appl.name ="es';

appl.assignsuffix =

clear bnd

bnd.constr = {"-V",'0','V",'V- Vo'};

bnd.ind
[22,_,424232324444444444444444333333333333333333333333333333
333344444444444444442224444444444444444333333333333333333
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,344444,44,444 444444444444 44444444442 12224124,
24,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4 444444444 4 4 4 4 4 4,
44,4,444,444,4,43333,.3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3.3,3,3,3,3,3,3,3,3.3,3,3,3,4,4,444 44 4 4 4 4 4,
44444444444444444444333333333333433333332222222]

appl.bnd = bnd;

clear equ

equ.usage = {0,1};

equ.weak = {-VX*VX_test-
VY*VY_test+V_test''epsilon*dJ*((test(VX)*iJXx+est(VY)*IJYX)*Vx-+(test( VX)*iJ Xy+test(VY) *iI Yy)*
V)l

equ.dweak = {'V_time*V_test,0};
equ.ind = [2,1,1,1,1];

appl.equ = equ;

fem.appl{1} = appl;

% Application mode 2

clear appl

appl.mode.class = 'SmePlaneStress’;

appl.sdim = {'X",'Y",'Z'};

appl.gporder = 4;

appl.cporder = 2;

appl.assignsuffix ="' _ps";

clear prop —
prop.analysis="nonlin';

prop.largedef='on';
prop.weakconstr=struct(*value',{'off'},'dim" { {'Im3', Im4",'Im5',Im6'} });
appl.prop = prop;

clear bnd

bnd.Fx = {0,'n_out*F_es*(F22*nX-F21*nY)',0,0}:
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bnd.Fy = {0,'n_out*F_es*(F11*nY-F12*nX)',0,0};

bnd.Hx = {0,0,1,1};

bnd.Hy = {0,0,1,0};

bnd.ind =
[1,1,4,1,1,2,42,1,3,1,2,2,222222222222222222222222222222222222222222272
2,22222222222222222223332222222222222222222222222222222222,
2,222222222222222222222222222222222222222222222223.1,1,3,1,1,1,1,1,
1,1,2,2222222222222222222222222222222222222222222222222222272,
222222222222222222222222222222222222222222222222222222222
222222222222222222222222222222221,22222.1,1,1,1,1,1,1,1,1];

appl.bnd = bnd;

clear equ

equ.usage = {0,1};

equ.E = {2.0el I,'matl_E'};

equ.rho = {7850,'mat1_rho'};

equ.alpha = {1.2e-5,'matl_alpha'};

equ.nu = {0.33,'matl_nu'};

equ.thickness = {0.01,1};

equ.ind =[1,2,2,2,2];

appl.equ = equ;

fem.appl{2} = appl;

% Application mode 3

clear appl

appl.mode.class = 'FIPDEW';

appl.dim = {"dx','dy","dx_t''dy t};

appl.sdim = {'X"'Y",'Z'};

appl.name = 'mesh’;

appl.shape = {'shlag(2,"Im7")','shlag(2,"Im8")",'shlag(2,"dx")",'shlag(2,"dy")'};
appl.gporder = 4;
appl.cporder =
appl.assignsuﬁ' X =
clear prop
prop.weakconstr=struct('value',{'non-ideal'},'dim’,{{'Im7',Im8",'Im9",'im10'} });
appl.prop = prop;

t

'"_mesh’;

clear pnt

pnt.wcshape =[1;2];

pnt.ind ) =
[LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LT L, LT, 1,0, 1L, L,
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLELLLLLLLL LT, T L,
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLELLLL L L L 1,1, 0,1, 11,1, 1,1, 1L, L L
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL L L L1, L L,
LLLLLLULLLLLLLLLLLLLLLLLLLLLLELLLL LD LD L1, L, L LT
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL LG

appl.pnt = pnt; _—

clear bnd

bnd.constr = {{’-dx';'-dy'},{’dx-u";'dy-v'},{'dx";'dy'},"dx"}:

bnd.weshape = [1;2];

bnd.ind =
[43.1242,1,24,2,3,222222222222222222222272, ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2222222222222222222222222222222272, 2 222222222222222222272,
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2222222222222222222222222222222222222222222222222,12222,1,22,
2222222222222222222222222222222222222222222222222227222,222,
22,2,2,2,22222222222222222222222,2,2,2.2,222222222222222,2,2222222,_,2
22222222222222222222222222222222222222222222223];

appl.bnd = bnd;

clear equ

equ.shape = [3;4];

equ.usage = {0,1};

equ.weak {{-dxX*dxX_test-dxY*dxY_test+dx_test';'-dyX*dyX_test-
dyY*dyY_test+dy test'},{'d] *((test(dxX)*lJXx+test(de)*1]Yx)*dxx+(test(dxX)*1JXy+test(de)*1J Yy)*
dxy)' 'dJ*((test(dyX)*iJ Xx-+test(dy Y)*iJ Yx)*dyx+(test(dyX)*iJ Xy+test(dy Y)*iJYy)*dyy)'} };

equ.weshape = [1;2];

equ.ind =[2,1,1,1,1];

appl.equ = equ;

fem.appl{3} = appl;

fem.sdim = {'X",'Y'};

fem.border =1;

fem.outform = 'weak";

% Boundary expressions

clear bnd

bnd.ind
[1,1,1,2,1,3,1,2,1,3,1 23223223223232223,233.2,33233223233322232232232,2,2
2,2,2233,3,2,3,3.2,3,3,2,3,3,3,3,3,3,1,1,1,2,3,2,2,3,2,2,32232,32,2.2.3.2,3,3,2,3,3,2,3,3,2,2,3,2,3.3 3,2,
2232232232222222333273,3,23,3,23,3,3,3,3,3,2,3,2,2,3,2,2,3,2,2,3,2,3,2,2,2,1,1,1,1,1,2,4,1,2,
1,2,3,2,3,3,2,3,3,2,3,3,2,2,3,2,3,3,3,2,2,2,3,2,2,3,2,2,3,2,2.22,2.2.2.3 3,3,2,3,3,2,3,3,2,3,3,3,3,3,3,2,3,2,2.3,
2,232232322.232.3,3,2,3,3,2,3,3,2,2,3,2,3,3,3,2,2,2,3.2,2,3,2,23,2,2,2,2,2.2.2.3 3,3,2,3,3,2,3,3,2,3,3,
3,3,3,3,2,3,2,2,3,2,2,3,2,2,3,2,3,2,2,2,3,2,3,3,2,3,3,2,3,3,2.2.2,3,2,3,3,3,2,2,1,1,1,1,1,1,1};

bnd.dim = {'V',u','v\,'dx",'dy",'Im7','Im8'}; '

bnd.expr = {'n_out',{",-1,1,0}};

fem.bnd = bnd;

% Global expressions

fem.expr = {'dJ,'(1+dx X)*(1+dy Y)-dx Y *dy X', iJXx",' (1 +dy Y )/d)','iIXy',-dx Y/dJ','iJ Y X', -
dyX/dJ),'iJYy', (1 +dxX)/dJ, VX', VX IXx+VY Y X, VY VX Xy+VY *iT Yy, FI 1, T+uX','F12','uY','F2
1,'vX','F22','1+vY",'F_es','0.5*epsilon*(Vx 2+Vy"2),'dxx', dx X * I Xx+dx Y *iJ Y x','dxy",' dx X *iJ Xy+dx Y *iJ
Yy, dyx', dy X * I Xx+dy Y*iJYx\, 'dyy','dy X*IJXy+dy Y *iJYy'};

% Library materials
clear lib

clear matl

matl .sigma = "fe-12";
matl.mur="1";

matl .k ="'163";

matl .type = 'material';
matl .epsilonr ='12.1";
mat!.C="'703";
mat!.rho ="2330";
matl.nu ="0.22";
matl.n =348,
mati.name = 'Cronos_PolySi';
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matl.alpha ='4.15e-6";
matl.E ='158e9";
lib.matl = matl;
fem.lib = lib;

% Multiphysics
fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femnlin(fem, ...
nullfun’,'finullorth, ...
'solcomp’,{'Im7','dx",'u','dy", Im8'",'V',v'}, ...
‘outcomp’, {'Im7','dx",'u','dy",'Im8",'V','v'}, ...
'pname’,'V(, ...
"plist’,[0:10:220]);

% Save current fem structure for restart purposes
femO=fem;

% Plot solution
postplot(fem, ...
‘tridata’, {'absVx_es','cont"internal'}, ...
'trimap','jet(1024), ...
'deformsub’,{'dx",'dy'}, ...
.'deformscale’, 1, ...
'solnum",3, ...
'title','VO(3)=20 Surface: [grad(V)| Displacement: dx,dy, ...
‘refine', 1, ...
'‘geom’,'off’, ... )
) ‘axis',[-1.87500001629815E-5,3.9375000342261E-4,-5.65357136760472E-
5,1.84535716990857E-4,-1,1]);

109



