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ABSTRACT

The high voltage winding of a transformer is a
system of distributed resistances, inductances and
capacitances that can be represented by lumped parameters.
These paramaters can be identified by measurement techniques
and some of them can be calculated from dimensions. The
lumped elements are used to make up an equivalent circuit
for the entire winding. The general analysis of back-turn
and drop—down strip and drop-down disc windings for any
transient input is presented and the equations are solved
using the Runge-Kutta method. The detailed analysis of a
five section strip winding is performed and compared with
experimental results.
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PREFACE

Upon close examination a transformer is a system of distri-
buted resistances, inductances, and capacitances, but there is
something that is periodic in the construction. There are portions
referred to as disc coils, strip coils or sections that can be
represented as lumped units, These elements have equivalent para-
meters which may be used to form a lumped equivalent circuit for
the entire winding, The impulse voltage response of the total
equivalent circuit can then be calculated,

It was first necessary to study the single disc or strip
coil and to obtain a method of finding the significant parameters.,
This was done in two ways, by direct measurement and by an indirect
method utilizing the frequency response of a single coil, The
direct current inductance of a coil can be calculated very accurately
and the inter-turn capacitance of a two-turn coil can be obtained
from the dimensions,

There are two basic types of windings that can be made using
either disc or strip coils; the drop-down and the back-turn. Each
has slightly different parameters and is discussed separately. The
parameters of the single disc or strip coil are obtained and used as
part of the equivalent circuit of the total winding, The additional

parameters that arise in the complete equivalent circuit of a winding
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are capacitance between adjacent discs and mutual inductance between

each and every other coil. The general analysis of the complete wind-
ing using the Runge-Kutta method of solving the differential eqguations
is demonstrated and the detailed analysis of a five section strip wind-

ing is performed and comwpared with experimental results.
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CHAPTER I

INTRODUCTION TO .THE PROBLEM

The purpose of this thesis is to study the high voltage
winding of power transformers and to obtain a method of calculat-

ing the impulse voltage distribution of the winding.
I. The Reason For Studying Transformer Windings

The calculation of the impulse response of a transformer
winding is of primary importance because the voltage stresses on
impulse test are usually much higher, although of shorter dura-
tion, than the stresses due to the normal operating voltage. It
is, therefore, the voltage stresses under impulse conditions that
the insulation must withstand, A method of calculating the impulse
stresses would be extremely useful because the minimum necessary
amount of insulation could be determined. A more economical trans—
former can be constructed if this insulation is confined to a minimum,

There have been a great many papersl written on the subject of
impulse phenomena in power transformers. The earliest papers assumed

uniform windings and neglected many details in order to arrive at a

livetti, P, A. "Bibliography on the Surge Performance of Trans.
formers and Rotating Machinery," Transactions, American Institute of
Electrical Engineers. Paper 58, December, 1958, pp. 1150-6L.




tractable solution. Some of the apprecaches have been to consider:

the winding in terms of distributed parameters, the total winding as

a finite number of lumped elements, a geometrical scale model with
external capacitive networks and scaling problems, a pure cepacitive
network and the initial distribution, and finally an electromagnetic
model with analysis using Maxwell's BEquations. All the earlier papers
examined the response to a step input of voltage. Recently the actual
impulse wave shape has been mentioned, but all of the papers referenced
by the author use a rectangular input wave for calculation purposes.,
The most complete solutions to the problem have been obtained with

2
either an analog or a digita13 computer,

II. Previous Methodsof Analysis

Rudenbergh

analyzed a uniform single-layer helical transformer
winding by defining distributed parameters as linear functions of
length. He then proceeded to set up differential equations for voltages
and currents between turns neglecting only the resistance and a small

portion of the mutual-inductance. His equations predict an infinite

number of netural frequencies in the windings, whereas in actual experi-

2Waldvogel, P, and Rouxel, R, "A New Method of Calculating the
Electrical Stresses in a Winding Subjected to a Surge Voltage", Brown
Boveri Review. Vol, 43, 1956, pp. 206-13.

3Dent, B, M., Hartill, E. B. and Miles, J, G, "A Method of
Analysis of Transformer Impulse Voltage Distribution Using a Digital
Computer," The Proceedings of the Institute of Electrical Engineers.
Vol. 105, Part A, No. 23, October, 1958, pp. L445-59,

. Z*falu.clenber*g, R. "Performance of Travelling Waves in Coils and
Windings," Transactions, American Institute of Electrical Engineers,
Vol. 59, 1940, pp. 1031-40, pp. 1257-62,




mentation the natural frequencies are finite in number. His method of
defining capacitance and inductance make them difficult to calculate
and to visuslize,

5

Norris” does an extension of Rudenberg's method by explaining
non-uniform windings. His experimental ﬁork is good and provides more
information on impulse stresses in non-uniform windings.

Lewis6 presented a paper in which he defined the winding to be
a system'of lumped parameters in which the mutual-inductance was in-
cluded in an equivalent self-inductance, He solved for the response to
a step input for a uniform winding, but more accurate results can be obtained
by meking fewer assumptions.,

Abetti7 used a scale model to predict the design requirements
of much larger transformers. By scaling the model appropriately and
using an external capacitance network the voltage distribution can be
measured and scaled to obtain the correct insulation level in the actual
transformer. This method is rather limited and expensive because a
scale model must be constructed for each type of transformer.

4 method that utilized lumped parameters and included mutual-in-

8
ductances was set up by Waldvogel and Rouxel, Their method uses an

5Norris, B, T, "The Lightning Strength of ?ower Transformers, "
Journal, Institute of Electrical Engineers, Vol. 95, Part II, 1948,
PP. 389-406,

®Lewis, T. J. '"The Trensient Behavior of Ladder Networks of the
Type Representing Transformer and Machine Windings,™® Proceedings Institu-
Lion of Electrical Engineers, Vol. 101, Part II, 1954, pp. 541-53.

7Abetti, P, A, "Transformer Models for the Determination of Trans-
ient Voltages," Iransactions Smericen Institute of Electrical Engineers
Vol. 72, Part III, June 1953, pp. 468-80,

84aldvogel, P. and Rouxel, R., loc. cib.



analog computer to solve for the unit step voltage response. Although
their analysis seems to provide satisfactory answers the use of an
analog computer drastically limits the number of sections that can be
analyzed.

The method presented by Dent, Hartill and Miles9 is the most
complete and accurate procedure that has been referenced by the author.
They set up the matrix equations for a general non-uniform winding
with a general input voltage. Their lumped equivalent circuit included
all the significant parameters and neglected only the damping. They
solved for the step voltage response of a uniform winding using the
Runge-Kutta method of solving differential equations. Their solutions
seem very realistic and they can easily vary the parameters and recalcu-
late the response to determine the change in voltage distribution.

With so many different methods it seems there is no absolutely
correct method of analyzing the Mnding. Some are more accurate, some
are easier to use and others are not suitable. An understanding of
the complete winding is necessary. After a satisfactory concept and
analysis of the transformer windinga;be evolved, modifications may then

be attempted and tested to see whebther or not they are valid.

PDent, B, M., Hartill, E. R., and Miles, J. G., loc. cit.



CHAPTER IT

METHOD OF ANALYSIS

In order to facilitate the study of high voltage windings cer-
tain simplifications are made. The standard impulse test of a trans-
former is performed by applying the impulse to the high voltage ter-
minal with all other terminals of transformer either directly grounded
~ or grounded through resistors. In this manner the low voltage winding
behaves very nearly as a ground plane and in theoretical and experimen-
tal work it is assumed that it igs permissible to replace the low volt-
age winding with a eylindrical ground shield consisting of a sheet of
core steel. The time variations of the impulse wave are very rapid and
almost no flux will penetrate the laminated iron core. The principal
flux will therefore be the air flux, and it will not be necessary to con-
sider the iron core when theoretical caleulations and corroborating ex-
periments are performed. After the method of analysis is proven, the
changes, if any, due to an iron core can be analyzed. These simplifica-
tions will enable the consideration of the winding as an isolated coil,
with an inner ground shield,

If the winding is examined closely all the capacitances and in-
ductances are distributed, yet there is something that is periodic about

the four types of windings as can be noted in Figures 1, 2, 3 and 4.
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FIGURE 1

BACK~-TURN DISC COIL WINDING
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FIGURE 3

BACK~TURN STRIP COIL WINDING

FIGURE 2

DROP-DOWN DISC COIL WIMNDING
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FIGURE L

DROF=DOWN STRIP COIL WINDING



Bach coil can be represented by a lumped circuit and a set of these
circuits with the addition of the mutual parameters can be used to
represent the transformer winding, The interaturﬁ, inter-dise and -ground
capacitances, self-and mubual-inductances and resistances are all
included in the circuit. The first step is to find an equivalent cir-
cuit for the coil and then a method of determining the parameters.

An individual coil may be considered to have an equivalent
circuit consisting of an inductance in series with a resistance all
in parallel with a capacitance. These parameters can be obtained by
direct measurement. The disc coils are subject to the skin effect
and consequently the inductance and resistance change with frequency.
As the frequency increases the inductance decreases while the resist-
ance increases. The inductance of strip coils is fairly independent
of frequency and the resistance is dependent on frequency. The low
frequency inductance can be measured with the Anderson Bridge and the
distributed capacitance, referred to as the inter-~turn capacitance, can
if it is not too large, be measured with the Q-meter. The measured
frequency response of the single coil provided an alternative method
of obtaining the parameters and a comparison for the calculated fre-
quency response, The direct curreat inductance can be calculated very
accurately. As a final check on the equivalent circuit the impulse

response of a single coil was measured and compared to the theoretical




impulse response.

The next step is to consider what happens when two coils are
placed near to each other and the additional parameters that may come
into effect. Both types of disc winding have an inter-disc capacitance
that can be measured or calculated using an empirical constant. The strip
coil windings have a very small capacitance between coils and it is assumed
to be negligible. The direct current mutual-inductance can be accurately
calculated, The frequency response of a pair of adjacent discs was mea-
sured and calculated to show the validity of lumped circuit elements for
a more complicated system. It now remains to be shown that the technique
of using lumped circuit elements is a good method of representing the
entire transformer winding.

The back-turn and drop-down strip windings and the drop-down disc
winding have the same equivalent circuit but with different parameters.
The circuit equations are written in general matrix form and the mat-
rices manipulated to produce a result that can be solved using the Runge-
Kutta method. The equivalent circuit of the back-turn disc winding has
an equivalent circuit that is more complex and as yet the circuit has
not been analyzed. The complete analysis of a five section strip wind-
ing was undertaken in order to obtain a comparison between the measured
and the theoretical impulse response.

A knowledge of the frequency response of an isolated transformer

winding can provide information on the impulse voltage distribution.



The winding is considered as a filter and the frequency
components of the impulse wave are observed to see whether
the transformer will pass or attenuate the frequency com-
ponents of the test wave.

The intent of this thesis is to develop an
understanding, to demonstrate the significant parameters
and to calculate the impulse response of the high voltage
winding of power transformers. The analysis presented
provides a more accurate and complete solution of the
impulse distribution than any of the other solutions that

the author has referenced.




CHAPTER III

THE EQUIVALENT CIRCUIT AND PARAMETERS OF A

SINGLE COIL

In order to analyze the individual coil an equivalent cir-
cult was assumed as shown in Figure 5. It was discovered that the
inductance, resiétance and capacitance could be obtained by direct
measurement. To show that the circuit model described the physical
behavior, the frequency response of several isolated coils was cal-
culated and measured to provide a comparison between the theoreti-
cal and experimental results., A method was formulated to obtain
the high frequency inductance and capacitance from measurements of
critical points on the freguency response curves., The direct cur-
rent inductance can be accurately calculated, but as yet a satis-
factory method of calculating the inter-turn capacitance has not
been developed. ‘The impulse response of a single coil as compared
to the calculated response lends further support to the concept of
using lumped elements to represent a distributed system. The basic
unit of a transformer winding is the single coil, and it has in the
freguency range important té impulse fesponse behavior, a simple

equivalent lumped circuit.
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FIGURE 5

THE EQUIVALENT CIRCUIT OF AN INDIVIDUAL COIL

The coils are constructed from relatively large cross-
sectional area wire that is very susceptible to skin effect., Con-
sequently the inductance and resistance of a coil change with fre-
quency because of the different current distribution, The resistance
of the disc and strip coils changes by several orders of magnitude
while the self-inductance of a disc coil decreases by as much as
forty per cent. The strip ccil is constructed of a wide strip of
copper that is much less susceptible to the skin effect, with the

result that the inductance changes very little.
I, Direct Measurement of Parameters

The Anderson Bridge provided a very reliable method of measur-
ing the inductance of the coils at low frequencies. Table I presents

the measured low freguency inductance, high frequency inductance
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as obtained from the freguency response curves, and the calculated

direct current inductance,
TABLE I

LOW FREQUENCY, HIGH FREQUENCY AND CALCULATED SELF-
INDUGTANCES OF COILS

INSIDE RADIAL CALCU-

WIRE SIZE NO. OF TURNS RADIUS BUILD 1IOW HIGH LATED
(uh)  (uh)  (uh)

L072% x 182" 19 9.87"  1,75" 1402 352 407
102" x 289" 15 9.87"  1,75" 253 200 248
3.0" x ,020" 50 5.50"  1.50" 1069 952 951

The Q-meter is a very satisfactory instrument for measuring the dis-
tributed capacitance of coils, provided that the unknown capacitance

is not too large. A precaution that must be taken is to ensure that one
end of the coil is connected directly to a terminal of the Q-meter and
as short a lead as possible is used for the other comnection, Table II
bresents the measured value of inter-turn capacitance and the value

obtained from the frequency response curves,
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TABLE II

INTER-TURN CAPACITANCE OF COILS OBTAINED BY
DIRECT MEASUREMENT AND BY AN INDIRECT METHOD USING

FREQUENCY RESPONSE GURVES

INSIDE RADIAL CAPACITANCE (pf.)

WIRE SIZE NO. OF TURNS RADIUS BUILD DIRECT INDIRECT

072" x 182" 19 9.87"  1.75" 33 33

102" x ,289" 15 9.87"  1.75" 39 38

3,0'x 020" 50 5.5"  1.50" Too 177
Large

II. The Equivalent Circuit

The justification of the configuration of the equivalent cir-
cuit is completed by a comparison between a calculated and a measured
frequency response. The frequency response of a coil was measured
using the test circuit of Figure 6, The circuit requires a high
frequency oscillator and an oscilloscope with either a dual beam or
a dual channel chopped beam. The ratio of the magnitude of the out-

. put voltage to the input voltage is measured over the frequency range
from 10 KHZ to 5 MHZ, This is the frequency range that provides infor-

mation about the coils measured,
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FIGURE 6

TEST CIRCUIT FCR A SINGLE COIL

The load resistor (RL) and capacitor (C;) were used to
stabilize the impedance of the oscilloscope leads and the stray
ground capacitance. Two tests were performed on each coil; the
first with a load resistance of 1 KLl- and the second with a
load resistance of 1 M {l . The 1 K L resistor daemped out
the series re .sénance of the inductance with the inter-turn and
ground capacitance. This test indicated the lower half-power
frequency Fl and the parallel resonant freguency (FB) of the induce
tance with the inter-turn capacitance. Figure 7 indicates the general

shape of the curve, |
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The second test with load resistance of 1 M (L
shows the freguency ?2 at which the inductance resonsbes
with the inter-turn, lsad and sbray ground capacibances,
‘he genersl shape of the respouse frow bhis best is shown

in Figure 8,

A%
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FIGURE 8

GENERAL SHAPE OF FREQUENCY RESPONSE OF A

SINGLE COIL wWiTH Ry = 1 M S

The measured and Qaléulatéd frequency responses are plotted
in Figures A-1, A-2 and A-3 inbﬂppendix kL, The high frequency
parameters for the calculated response were obtained from the res-
pective measured response by a method described in the following
section. Figure A~} compares the computed responses using high
frequency cind direcl curyeilinductance. The calculated graphs
are essentially the same as the measured graphs and the equivalent
circuit chosen may be considered to be an accurate model of a single
coil. The only significant difference is the amplitude of the peak
which is determined by the damping of the coil, The resistance

changes through several orders of magnitude over the frequency range
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and is rather difficult to calculate due to its dependance on fre-

quency, but fortunately it is a second order effect in impulse res-
ponse study and does not need to be specified accurately, Appendix
B contains the analysis and the program that executes and plots the

frequency response.
III. Frequency Response Method of Cbtaining Parameters

A method to obtain the parameters of the coil from the fre-
quency response curve can be formulated. There are three principal
parameters that are unknown: the inductance, the inter-turn capaci-
tance and the ground capacitance. These parameters can be determined
using the equations (1), (2) and (3).. The derivation of these equa-
tions is given in Appendix C. The freq&éncy response curve provides
the most accurate and reliable method of obtaining the inductance and
inter-turn capécitance of a coil and in addition it produces the value
of inductance at the frequency that is most significant to the behavior

of the impulsed winding,

L
4 4|2
L= R |3 -sr] 2B —[R] + oE 0
a7F, Fy F. F, | F5

/
CT = (E’.‘n' FB)Z.L (a)
Cﬁ = (271-;:2)21_ CT (3)
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IV, The Direct Current Inductance

The direct current inductance can be calculabed quite accurately
1
with formula ?A). The dimensions are in inches and N is the number of

turns, Rb is the radial build, b is the axial length, Rm is the mean

radius and

R = c2z235[ R+ b]

L = 4n Rm NZE..SQ-)(IO qr;os XR (| + 3 R )

6m

._(a __B_’;)

L.

The significant parameters in the formula are the number of turns and
the mean radius. Winding techniques will have very little effect on
the dimensions and consequently the inductance of different coils

- manufactured of the same number of turns, wire size, and mean radius
will be very nearly the same. The calculated values of direct cur-
rent inductance that appear in Table I were obtained with this for-

mila,
V. The Inter-Turn Capacitance

The inter-turn capacitance of a single coil is a distributed

capacitance created by the proximity of the turns. The capacitance of

1QRosa, E. B, and Grover, F, W. "Formulas and Tables For The
Calculation of Mutual and Self Inductance,"Bureau of Standards. Bull. 8,
January, 1912, p. 136.
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a coil consists of two portions: the capacitance between turns and
the capacitance of the inner turn with itself. For two reasons only
the capacitance between turns need be considered, When the winding
is tested the imner shield used to simulate the low voltage winding
converts the distributed capacitance of the inner turn with itself
to a ground capacitance, The capacitance created by the inner
turn with itself is very small,

It is first necessary to point out some of the differences
between parallel plate capacitance and distributed capacitance.

Reference »12

has been made of this, but no experimental data has
been submitted. Consider the capacitance between two unconnected
pieces of capper much longer in one direction than the other, as in

Figure 9. This is a parallel plate capacitor and can be measured

with the Schering Bridge.

C 4
| | =

FIGIRE 9

PARALLEL PLATE CAPACITOR

llCrowhurst, N, H. "Winding Capacitance," Electronic Engineerine.

November, 1914-9’ PP. 14:!-7"310

12Waldvogel, P, and Rouxel, R., loc. gi&.;'p. 208,



If the two extreme ends of the parallel wire capacitor are joined

to form a single folded wire as in Figure 10, the capacitance be-
comes a distributed capacitance that is one-third of the parallel
wire capacitance. To verify this an experiment was set up utiliz-
ing rectangular wire to form the parallel wire capacitor which could
then be joined at one end to represent the folded wire., The parallel
unconnected wires provided a very satisfactory method of obtaining a
constant that took both the dielectric constant and the fringing ef-
fect into account. The constant used in all the distributed capaci-
tance formulae represents the combined dielectric and fringing con-
stant,

The capacitance of the parallel unconnected wires was measured
using the Schering Bridge and then the combined dielectric and fring-
ing constant was calculated, The wires were then joined at one end
to create a folded wire and the distributed capacitance was measured
with the Q-meter. The data in Table 3 show that the distributed capaci-
tance ot a trolded wire is in effect one-third ot the parallel wire

capacitance,

FIGURE 10

DISTRIBUTED CAPACITANCE Or A FOLDED WIRE
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TABLE III

COMPARISON OF FOLDED WIRE CAPACITANCE WITH
PARALLEL WIRE CAPACITANCE

INSULATION CCMBINED

THICKNESS .  DIELECTRIC & CAPACITANCE (pf.)
WIRE SIZE COPPER FRINGING PARALLEL FOLDED

IO COPPER = CONSTANT LENGTH WIRE WIRE
091" x 204" 080" 2,70 25,5" 39.4 14.0
001" x 229" ,080" 1.89 292" 68,0 21.2
072" x 182" 020" 1.76 33,2" 120.0 39.8
102" x 289" 080" 2,96 34.7 83.8 7.1

The parallel wire and folded wire capacitance is considered
to be an effect measured and calculated at the terminals of the wire,
The voltage at the terminals is considered to be fixed and an equiva-
lent capacitance occurs between the terminals, The energy stored in
this equivalent capacitance is simply one-half of the product of the
terminal capacitance and the square of the voltage occurring across the
terminals, The terminal capacitance can be calculated by considering
the voltage distribution along the wire, the voltage across each elemen-~
tal section and the sum of each infinitesimal of stored energy over the
length of the wire. The derivation of this from energy concepts is
given in Appendix D,

The concept of inter~turn capacitance is studied in the same menner,
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Figure 11 shows the distributed capacitance that occurs between the

turns of a two-turn coil,

FIGURE 11
DISTRIBUTED CAPACITANCE OF A

TWO~TURN COIL

The voltage distribution of a two-turn coil is linear along the wire,
For a coil of three or more turns there is one or more turns with
turns on either side and this makes the voltage distribution non-
linear. Because the voltage distribution on a two-turn coil is linear
the distributed inter-turn capacitance can be calculated by assuming
that the voltage’occurring across any elemental section is one-=half

the applied voltage and the energy storage in an elemental section is
= L llﬁ' d x
-
dE > C 3

where C is the capacitance per unit length,
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The length of the capacitance is taken to be:
L::ETTRm
The total energy is given by:
=J_C2.’NR,,ja__ 2
E= L[S5F82v2 = LceqV

The inter-turn capacitance of a two-turn coil is therefore

Cra= Ceg = £ K&2TR, w (5)

where W is the width of the wire, d is the separation copper to cop-
per and K is the combined dielectric and fringing constant, Table
IVshows the measured and calculated capacitance of various two-turn
coils, The combined dielectric and fringing constant for each wire,
spacing and insulation must be obtained by measuring the capacitance

of two parallel unconnected wires and calculating the constant,

TABLE IV

DISTRIBUTED CAPACITANCE (F TWO-TURN COILS

INSULATION COMBINED DISTRIBUTED CAPACITANCE
* THICKNESS DIELECTRIC (pf.)

COPPER T¢O  AND FRINGING MEAN
WIRE SIZE COPPER CONSTANT DIAMETER MEASURED CALCULATED
091" x 229" 040" 1.89 3.81" 7.0 7.1
0091" X a229" ’OZ{‘O" 1'89 9906" 1990 1703
.102" x 289" .08o" 2.96 10,821 21.3 20,2
102" x 289" .ogon 2.96 23,02 45.0 43.5
072" x 182" ,020" 1.76 11,42 32,2 32.4
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The extension of this theory to a multiturn coil must take into ac—
count the non-linear voltage distribution of the coil. If the volt-
age distribution were known the inter-turn capacitance could be found
simply by considering the capacitance of the N-turn coil to be N=1
capacitors each with its own voltage gradient and summing the energy

as was done for a two-turn coil.
VI The Ground Capacitance

When the coil is part of a winding there is a capacitance
between the inner turn and the inner ground shield, This capacitance
can be calculated by assﬁming the shield and inner turn of the coil
to be concentric cylinders between which insulation of different
dielectric constants may be placed. The ground capacitance can then

be calculated with formulat3(6),

-2
_ 2 we,L 2 54xi0 (6)

R )

The dimensions are in inches and L is the length of the copper cylin-
der, a is the inner radius, bl is the radius to the first dielectric
change, bi is the radius to the i'th dielectric change, b is the -

outer radius and Ki is the i'th dielectric constant,
VII The Impulse Response of a Single Coil

The impulse response of a single coil was measured using the

lBKnowlton, A, E. "Standard Handbook for Electrical Engineers",
McGraw-Hill Book Company, 1941, p. 67.
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same circult as was used for the frequency response test with a load
: 1
resistance of 1 M., The impulse wave is represented b by equa-

tion (7). :
elf) = E (7% = e®7) (7)

Table V shows the constants for three impulse waves, Figure A-5 shows

a measured impulse wave and mathematical calculation of two different

waves.
TABLE V
PARAMETERS FOR THE REPRESENTATION OF
STANDARD IMPULSE WAVES
WAVE E 2 B
+6 +6
0.9 X 55 pusec 1,015 0.01296 x 10 7,04 x 10
4
1.5 X 40 pmsec 1,036 0,01833 x 10 6 3.558 x 10+6
+6
2.0 X 40 msec 1,038 0.01825 x 10°° 2,425 x 10

The voltage transfer function with an input impulse wave was anélyzed
using the Runge-Kutta Method and the program used in computing the res-
ponses is presented in Appendix E,

Figures A-6, A-7, A-8 and A-9 compare the measured and computed
response of single coils, The computed response of a disc coil using
the high freguency inductance value is compared to the measured response
in Figure A-6 and A-7. Figure A-8 indicates the measured and computerd

response of a strip coil., These curves agree very well both in amplitude

Lirpe British Electrical and Allied Industries Research Association,
"Surge Phenomena," Seven Years' Research for the Central Electricity Board
1933‘19h0 s PPe ls&—é, l9hl. i
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and freguency of respdnse, Figure A-9 compares the measured res-
pouse with the computed response using the D,C, inductance and al-
though the amplitude is basically the same the frequency of response
does not agree as well as when the high frequency inductance was used
in Figure A-7, The inductance of the disc coil therefore depends upon
the frequency components by which it is excited, The lumped circuit
model has now been shown to be valid for impulse waves,

Two methods of obtaining coil parameters have been indicated,
The most satisfactory method is to obtain the parameters by measur-
ing the critical frequencies of the frequency response curves., The
direct measurement of the parameters is reliable and produces the
low frequency inductance and the value of distributed capacitance
provided it is not too large., The calculation procedure is not com-
plete and produces a value of direct current inductance and an accurate
valve of inter-turn capacitance for only a two-turn coil, The model of
a single coil has been confirmed and proven to give a reliable descrip-
tion of the physical behavior of the coil in the frequency range impor-

tant to impulse response behavior,



CHAPTER IV

MUTUAL INDUCTANCE AND THE ADDITIONAL

PARAMETERS OF DISC WINDINGS

In a transformer winding the coils are wound closely toge-
ther and are separated by either a duct or a collar. Because they
are near to each other a large mutual-inductance is created. The
effect of separation on low frequency mutual-inductance was measured
with the Anderson Bridgé. Figure A-10 indicates that it is a signi-
ficant parameter and that the measured values compare very well with
the calculated direct current mutual-inductance, For such coils each
turn is considered to be a circular current filament having a mutual-
inductance with every turn of the opposite coil as in Figure 12,

The sum of these mutual-inductances produces the total mutual-~induct-

ance between the coils,

e I

D |
0 e-—i- e 6 @© o o
I

i< R —>

FIGURE 12

e 6 O

curren T
Filamenls

REPRESENTATION OF TURNS BY CURRENT FILAMENIS
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Two formulae, which have overlapping ranges, are used for the
1
calculations, Formula > (8) is to be used for coils that are separated

by less than the mean radius,

-2 R [14¢€ . c%3p* ¢ -racn)—‘
M= 4w25exio R ,°3‘"D"cl( Tart 6pE 2 R

(8)

c C*+3D* >+ 3cp?
(a T 2R 16 R*% 32 R- ]

The dimensions are in inches, M is the mutual inductance in henries

R is the radius to a current filament, C is the perpendicular distance
from the radius R to the desired current filament and D is the separa-
tion between coils, For coils at a greater separation than half the
mean radius Formulalé (9) is valid and for distances greater than twice
the mean radius Formula (9) can be simplified to Formula (10), The dimen-
sions are in inches, M is the mutual-inductance in henries, R is the

mean radius, and Nl and N2 the number of turns of coil 1 and 2 respectively,

M= (6 2N, N, R,, Jo3(14e) 2. 54 x10°° (1)
M= 167NN R, @R 2 54x1077 (o)
where:

K'= D//4RE+ D% .
. [l+\/~—1] * a[-?- bt VR J+|5{J‘ ""P

€= 30— 40° + 9q8 — 12 &

"

15Rosa, E, B, and Grover, F, W., loc, cit., p. 13,

léRosa, Z, B, and Grover, F, W'.', loc. cit., p, 11,
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A compuber program, presented in Appendix F, was written to calculate
the mutual-inductance between two identical coils at any separation,
For sepafations up to 0,9 Rm it can be assumed that each turn is a
circular current filament and at greater distances all the filaments
can be assumed to occur at the mean radius of the coil,

The distributed capacitance oceurring between adjacent coils of
a back-turn or a drop-down disc winding is referred to as the inter-
disc capaciﬁance. In strip windings this capacitance is very small
in comparison to the inter-turn capacitance and is neglected. The physical
construction and the distributed capacitance of a pair of discs is indi-
cated in Figure 13. For a back-turn winding the capécitance can be rep-
resented as a lumped capacitance CD occurring between the two terminals
as in Figure 14. The pair of discs have the same voltage distribution
as the folded wire discussed in Chapter iI. The distributed capacitance

is, therefore, one third the capacitance measured between two unconnected

discs,
&
V'\..
~V |
c
O v

FIGURE 13
CONSTRUCTION AND VOLTAGE DISTRIBUTION OF A PAIR

OF BACK-TURN CONNECTED DISCS
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FIGURE 1/,

THE EQUIVALENT CIRCUIT OF A PAIR OF BACK-TURN

CONNECTED DISCS

The voltage distribution of a pair of coils drop-down con-
nected, as in Figure 15, is the same as a coil of two turns and the
distributed inter—turn capacitance is one-quarter of the capacitance
measured between the two unconnected discs. In the equivalent circuit,
as in Figure 16, the distributed inter-disc capacitance is included
by adding one-half the distributed inter-disc capacitance to the inter-
turn capacitance of each coil.

’ T
hY)
L. ’\_M
2

it
i

FIGURE 15

CONSTRUCTION AND VOLTAGE DISTRIBULLON OF A PAIR

OF DROP-DOWN CONNECTED DISCS
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FIGURE 16

THE EQUIVALENT CIRCUIT OF A PAIR OF DROP-DOWN

CONNECTED DLsSCS

The separation between discs is usually such that there is
consdl derable fringing of the electric field and the capacitance bet-
ween diagonally opposite turns becomes significant. The dielectric
is made up of solid insulation and air and may be considered as an
effective dielectric., Because of these irregularities in the elec-
tric field and variations in the dielectric it is very difficult to
calculate the capacitance between discs and an empirical constant to
account for the fringing and the effective dielectric must be used
for the specific configuration under consideration, The approximate
formulae are presented in Appendix G, Figures A-11 and A-12 show the
variation of capacitance between unconnected discs with solid insula-
tion and air dielectrics,

In order to demonstrate that the equivalent circuit in Figure
14 is a proper representation, the frequency response of a pair of

back~turn connected discs was calculated and measured in the same man-
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ner as for a single coil, The frequency response was calculated
from the voltage transfer function of the circuit in Figure 17,
The capacitance Cg was included to represent any stray capacitance
between the two inner turns and ground., Appendix H contains the

calculation and the computer program used to compute and plot the

respomnse, o
{l To
jl § “o 11 Oscc‘“oscope
AOTETON— AL L5505 — AN >
M b 1l
T R, {C Vour
\/L.l\ C3 L L 7}
=
FIGURE 17

TEST CIRCUIT ®R A PAIR OF BACK-TURN CONNECTED DISCS

The self-inductance and resistance of disc coils changes a great
deal over the frequency range., When the frequency response is calculated
it is extremely difficult to take this change into account énd it is
necessary to assume a constant inductance and resistance, For coils close
together the mutual-inductance will change with frequency and this change
must be allewed for in frequency response calculations, The ratio of
low frequency to high frequency inductance is used to adjust the measured
low frequency mutual-inductance to a value suitable at high frequencies,

The frequency response was calculated using the high frequency inductance
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values. The measured frequency response is very characteristic

and compares favorably with the calculated response as Figure

A-13 indicated. The peak and null frequencies do not agree exactly,
but this is due to the variation of inductance with frequency. The
lower peak and null, which most effect the impulse response behavior,
are quite accurate.

The performance of a pair of back-turn comnected discs may
then be described by this equivalent circuit which may be used to
represent a pair of discs in a complete winding, The significant
parameters of the four types of windings have been identified and

now the equivalent circuit of a complete winding may be examined,



CHAPTER V

ANALYSIS OF THE EQUIVALENT CIRCUIT OF DROP-DOWN

DISC, BACK~TURN AND DROP-DOWN STRIP WINDINGS

Three types of windings are analyzed and each has the same
equivalent circuit., They differ in the parameter values and how each
element is specified, The circuit equations are written in matrix
form and any non-uniform winding may be solved, provided only that
the parameters may be specified., The current equations, which are
obtained from the matrix equations, are solved using the Runge-Kutta
Method. The voltage at each crossover is obtained by using the
ground capacitance and the difference of two loop currents. The
voltage between coils may be calculated by differencing the respective
voltages to ground,

The equivalent circuit of a drop-down disc winding has been
previously identified by Dent, Hartill and Miles,17 but they neglected
the coil resistance and solved the equations for a simplified input of a
rectangular wave. The schematic of the winding is indicated in Figure

18 in the same configuration as its physical construction.

1Dent, B, M,, Hartill, E, R. and Miles, J. G., loc. cit., P. 44T.
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FIGURE 18

SCHEMATIC OF A DROP-DOWN DISC WINDING

The equivalent circuit in Figure 21 can be used to represent

the drop~-down disc winding and the parameters are:

Cg (1)

Gy (K)

6, (K)

capacitance to tank of first coil

capacitance to tank of (K4 1)! th ecoil

plus capacitance to inner shield of the K'th

coil{ K# 1),

inter-turn capacitance of K'th coil plus one~

half of distributed capacitance between the

K'th and (K-1)'th coil plus one-half of

the distributed capacitance between the K'th

and the (X 4 1)'th coil,

The drop-down strip winding schematic is shown in Figure 19,
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FIGURE 19

SCHEMATIC OF DROP-DOWN STRIP WINDING

The parameters of the equivalent circuit in Figure 21 are:

CT (K) = inter-turn capacitance of the K'th coil
Cg (1) = capacitance to tank of first coil
Cg (K) = capacitance to tank of (K 4 1)'th coil plus

capacitance to the inner shield of K'th coil

The back-turn strip winding has the same equivalent circui
as the back-turn disc and drop-down strip winding, but the ground
capacitance is slightly different. Figure 20 shows the schematic

of a back-turn strip winding,

36
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FIGURE 20

SCHEMATIC OF A BACK-TURN STRIP WINDING

The equivalent circuit is drawn in Figure 21 and the para-

meters are as follows:

CT (K) = inter-turn capacitance of K'th coil

Cg (1) capacitance to tank wall of first coil

¢ (X)
g

(for K even) capacitance to.the inner shield

of the K'th and the (K 4 1)'th coil, (for K
odd) the capacitance to the tank wall of the

(K=1)'th and the K'th coil,
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FIGURE 21

THE EQUIVALENT CIRCUIT COF THE THREE TYPES OF WINDINGS

The equivalent circuit in Figure 21 is used to repre-
sent the three types of windings, Appendix I contains the cir-
cuit analysis and the matrix manipulation necessary to obtain
a form that can be readily solved with the Runge-Kutta method.,
Two programs, vhich are given in Appendix J, were written to
perform the computation. The first program reads the parameters,
inverts and multiplies the matrices and punches the coefficients
of the differential equations in a form that can be solved by the
Runge~Kutta method. The second program, which was written for the
IBM 360;‘pérforms the computation of the voltage to ground at each

Crogsover,
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A series of tests were performed on a strip winding consist-
ing of five coils. The frequency response of one of the coils is
given in Figure A-3. The winding was drop-down connected and the
impulse response at each crossover was measured with and then with-
out an inner ground shield. The coil was changed to a back-turn con~
nected winding and the tests re-run,

The measured and calculated impulse voltage response (Figure
A-1)) of a drop-down connected winding with an inner ground shield
compares very well in amplitude, but the frequencies of response do
not coincide. In order for the computed wave to compare more favor-
ably a ground capacitance of about 20 pf, should be used. The measured
response (Figure A=15) of the drop-down connected winding with no in-
ner ground shield has oscillations of larger amplitude than the cal-
culated response. The reason they do not compare more favorably is
that the oscilloscope leads add a stray capacitance that is not taken
into account by the calculations. In Chapter III on the subject of
frequency response of a single coil, the oscilloscope probe and stray
ground capacitance had to be tzken into account. A better comparison
could be obtained if the parameters were to account for the ground
capacitance added by the oscilloscope probe,

The measured and calculated impulse response (Figure A-16) of
the back-turn strip winding with an inner ground shield compares favor-
ably in amplitude, but again the frequencies do not coincide. A bet-

ter comparison could be obtained by using a smaller ground capacitance,
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The measured and calgulated impulse response (Figure A-17) of the
back-turn winding with no inner ground shield does not comnare very
well for the same reasons as the drop-down winding with no inner
shield,

A short comparison of the effects of parameter change can be
noted by examining the calculated impulse voltages in Figures A-18,
A-19, and A-20, The resistance has an effect on the damping at all
times, Figure 4-18 indicates that the voltages are insensitive to a
change of resistance. An increase in the ground capacitance increases
the magnitude of the voltage to ground and decreases the frequencies
of response. Figure 4-19 shows the effect of varying to ground capaci-
tance,

For strip windings a simplifying approximation can be made by
lﬁmping the self-and mutual-inductances into an equivalent self-
inductance, This decreases the freguencies of oscillation, increases
the magnitude of the voltages and increase the time to the first maxi-
rmum, Figure A-20 shows the calculated responses with the same total
inductance, but with mutuals considered on one computation and the
mutuals lumped into an equivalent self-inductance in the other computa-
tion,

The concept of using lumped elements to represent the distributed
parameters of a coil is very useful for describing the behavior of the
winding. This method provides a very accurate model with which to study

the windings.



CHAPTER VI

THE EQUIVALENT CIRCUIT OF A BACK-TURN

DISC WINDING

The back~turn disc winding has an equivalent circuit
that is different and more complicated than the three types
previously discussed., The schematic, Figure 22, of the wind-

ing is obtained in the same manner as for the other three

windings.
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FIGURE 22

SCHEMATIC OF A BACK-TURN DISC WINDING
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The equivalent circuit is given in Figure 23,
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FIGURE 23
THE EQUIVALENT CIRCUIT OF A BACK-TURN

DISC WINDING

The parameters are:

Cg (1) = capacitance to tank of first coil

Cg (X) = (X even) capacitance to inner shield or low
voltage winding of K'th and (K + 1)'th coil

Cg (K) = (K edd), capacitance to tank wall of K'th and
(K ¢ 1)'th coil

C4; (K) = inter-turn capacitance of Kfth coil

R (K) = resistance of K'th coil

CD(K,K-PZ) = Ca.pa.c,c‘?'q.vxcz belTween o"‘scs(a-cwaS a
collay for K odd) K =] te L=y,

CD(K, Kt2) = C.q'oa.cifu_nce between deses( acrors o
duct) for Keven, K=2 to L-2.

LK) = velf-indudtanceg of «'th coil.

MK, m)= melual- indwctan ce between HK'th and
' th C«o;’ ‘For =1 to L 4““- w= | Tobl o




CHAPTER VII
THE FILTHER CONCEPT OF A TRANSFORMER WINDING

A further understanding of the transformer winding can be ob-
tained by examining it from the point—of—view of filter theory. The
input wave is fixed and composed of many different frequencies. The
frequency components of a 1 x 50 . microsecond impulse wave have been
calculated and it has few significant fregquencies above 0.1 MHE'.18
If the winding has a comparatively low cut-off frequency then most of
the freguency components of the input will be stopped by the line end
of the winding. The voltage distribution will be non-uniform, with com-
paratively high voltages between sections and high voltages to ground
at the line end. On the other hand, if the winding has a high cut-off
frequency most of the input frequencies will be passed by the winding
and the voltage distribution will be very nearly linear with turns,

The frequency response, Figure A-21, of an isolated strip wind-
ing with no ground shield was measured using the same circuit as for a
single coil, The impulse response of the winding with an inner shield
was then measured and the maximum inter-section voltages plotted in
Figure A-22, Since the cut-off frequency of the winding was comparatively
high the voltage distribution is very nearly linear as the theory would

predict,

18Miles, J. G, "Frequency Spectra of Standard Impulse Waveshapes",
The Metropolitan-Vickers Gazette, Vol. 25, September, 1954, pp. 367-69,
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The same tests were performed on a disc winding[ Figures A-23
and A-ZL}), The cut-off frequency of the winding is rather low and a
poor impulse voltage distribution would be expected., The theory is
supported by the experimental evidence, because the voltage distribu-
tion of Figure A-2/ is very non-uniform,

The concept of filter theory provides another method of pre-
dicting and urderstanding the impulse response behavior of a trans-

former winding.




CHAPTER VIII
CONCLUSICNS AND FURTHER RESEARCH

The parameters of high voltage transformer windings have
been identified and a:model that accurately describes the wind-
ing under impulse coﬁditicns has been developed, The accuracy
with which the impulse voltages may be predicted is probably limiTed principally
by the accuracy to which the parameters are known. The idea of
using lumped elements to generate an equivalent circuit to re-
place a system of distributed parameters has been shown to be a
very satisfactory method of analyzing the problem., The mechanisms
of distributed capacitance have been indicated and illustrated by
measurements., Frequency response methods have been used to iden-
tify parameters that are used in impulse response study. Finally
filter theory has contributed a greater underétanding of the wind-
ing behavior,

Further study using the model and equivalent circuit presented
in this thesis can be pursued. The circuit equations of a back-turn
disc winding can be analyzed with the help of the large storage, high
speed computer now available, The sensitivity of the impulse response

due to parameter change can be studied with - gensitivity functions,
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The determination of inter-turn capacitance of a multi-turn coil
could be investigated and the inter-disc capacitance could be
specified more accurately.l9 The effect of an iron core and low
voltage winding which the ground shield represented could be investi-
gated., Approximations to the exact model can be studied to find a
simpler method of determining the impulse voltage distribution. A4
further investigation is needed to clarify the term "initial voltage

distribution",

Y%everka, A, and Hon, A, "Disc-Coil Winding on Extra-High
Voltage Transformers", Electrotech, Obzor. (Czechoslovakia), Vol, 5L,
No. 7, pp. 304-9 (1965)., In Czech,
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APPENDIX B

CALCULATION OF THE FREQUENCY RESPONSE OF A

SINGLE DISC

The ratio of the magnitude of the output voltage to
the input voltage is the voltage transfer function of the test

circuit,

Vourl)_ (R + SRR.C, + sRLCq] 7
Vi (5) [ﬁdR + s{L+ RLa(cT+c3)+s=gLL(c,+cgq

If the input voltage is sinusoidal, of radial frequency W, the

magnitude of the voltage transfer function is written:

our| - Re[[(1= witer)® 4+ (wrerl]
Vin [(HL-I-R - w*LR.(C, ’*Cg))z-l- (w(L + RRL(CT+C3)))1:}

This function evaluated over the frequency range produces the

frequency response of the single disc,
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APPENDIX C

DERIVATION OF COIL PARAMETERS FROM

FREQUENCY RESPONSE CURVES

The inter-turn capacitance, the ground capacitance and the

inductanceé of a coil can be calculated by measuring the frequencies

Fl, F_ and F3 and using equations C~2, C=3 and C-~7. The voltage

2

transfer function for the lossless case is eguation C-l.

Vi R. ~ WwiLR (Cr+S)]%+ ™

143

Your < "%RL ((— wiLCe)[® e -1)

From equation C-l1 it will be noted that the frequency at which the

zero occurs is:

= ‘ C-—E
By Z AT (¢ -2)

and the frequency at which themaximumoccurs is - a« pproxi mately

F = ' - o (C - 3)7‘/—
z z WL (C+GT

There are now two equations, but three unknowns. The third equation is

obtained by deriving the lowest frequency at which the magnitude of
the voltage transfer function is one-half, when a load resistor of 1

KA is used.

*onuided L << aRf}(C"*cg)
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]
CL /RE(( - wELEn)? - (wRCr)?)
¢ (RL+ R - w'z RLL(CT+C5”Z+(‘”|(L" RR..(CT +¢j »)z

Vour
Vin -

€ -4)

Equation C-4 can be altered to C-5,
w4 RELA(C red?-4c}) + w2 LRE(8C -2 ) + L2
+ R*RE(Cr ) - 4CF)] + R*+2RR.~ 3R (C-5)

The following approximations are used: .
R%+ 2 RR, < 3RS

RZRL((CT-sz)Z—- 4 C‘!?-J < L% or LR ( BC+*2@7+CS))
Then C-5 is reduced to C-5:

wHRIL((C+Cg) ~ 4 cF)e wR(RELC,*LY) =~ 3R%=0 (C-¢)

Substituting equation C-2 and C-3 in C-6, one geTs

(t,
2= _10° |3 — 5ﬁ2+352-354+4f_‘
GwF )2 F F, F, F,

(C~-7)
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APPENDIX D

DERIVATION OF THE DISTRIBULED CAPACITANCE

OF A FOLDED WIRE

The capacitance between two parallel conpected or unconnected
wires can be calculated from the stored energy., The stored energy
available at the terminals of the two parallel unconnected wires
is determined by V, the applied terminal voltage, which is constant
across the wires at all points, C the capacitance per unit length,
and L the length of a single wire., The total stored energy is

Ceo V*

L
= L[ cv? - =
E aof cuz_.z_m.v %

1
2
The equivalent capacitance is:

Ce%'-'-'- CL = Keo_\_ﬁ_/_‘.

d
Tn which,

K is the dielectric constant and W is the width of copper and d is the
separation from copper to copper.
Yhen the wires are joined at one end to form a folded wire
‘the voltage (V,), across any elemental capacitance, is a function of
position (){) along the wire,
\4:_== V - )ﬁ&g;
the totel stored energy is

L 2 2
E é{C(V*\{L.a.) dx = LCeqV

"

]

4 cLv® . o
2. 3 -
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The equivalent capacitance is one-third of a parallel wire

capacitance, 20

20. Harris, F.K. "Electrical Measurements,' John Wiley
and Sons, Inc., 1962, p. 219.
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IMPULSE RESPONSE OF A SINGLE COIL

The voltage transfer function is:

Vour (9 _ R.+ sRR.Cy + S°LR_C, . € -1)
Vin ) RL+¥R + s(L+ R R(Cy+Cq) + S2R L(Cy+Cy)

The differential ecuations that are solved by Funge-Kutta method

are.

' -bt —c'f}
dvity. DW ) . D@ W® , a (Boe -coe
it o® D(3) D(3)

dv _ v, H)
41

where the coefficients are obtained from (E-1),
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APPENDIX G
INTER-DISC CAPACITANCE

I Back=Turn Disc Winding

For solid insulation between discs:

-2
Cn= L KE 2T R T 2.5¢x10
D 3 )

The dimensions are in inches and

K -~ combined dielectric and fringing constent
Tc = thickness of copper

D = separation, copper to copper

Rm = mean radius of cecil

For a duct between the discs:

-2
Co= L (P2 . ___L_) K'€ 2%R, T, 2.54x0
3> \2Tp Ouet

where: the dimensions are in inches

o
11

dielectric of paper around wire

p
Tp = thickness of paper around wire
Duet = duct width
gt = a fringing constant

II Drop-Bown Disc Winding:

For a duct:?

t -2
Cp= L|Pe 4+ _! K €q2 K, 2.5% X0
@ 2'TP Dyet




Where the dimensions are in inches and:

dielectric of paper

D =
Tp =  thickness of paper around wire
Duct =  duct width
Rm =  mean radius

kKl =  fringing constant

95
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FREQUENCY RESPONSE OF A PAIR OF DISCS

The voltage transfer function of the test circuit is:

1+ 28(C,+Co\ResL) — STMCy + 2 s*Mcy

+ st celertC) + Co(CrtCo)l{Re s1)* = s*mY]

Vou'r(S) =

Vin (5] Rolt + s(€g + Cr v 2 C)(R+5L) + 2s5°Mey
+ s"[csccpucn) + Colep+2Cy ][R+ sL)*~ 6 m)F

L+ [+ R CJ[e (R + stovm)) 4 s(c +2C{)][(R+5L)’~.@mﬂ
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APPENDIX I

ANALYSIS OF THE EQUIVALENT CIRCUIT

MG,

/m .
me L2 R

 ATE O AAATLIOTO— e« oot e s o

W) , Ct

L RGW)

I»’.[uﬁual—lnductances between each coil

and every other coil,

The first loop equation :

dv)) (o - <
d7t Caw Cg(l)
» - .t -
C, = Cgto) :{l%r() + <

The first lower loop equation:

— cmr—

o::-‘—*-‘--l--‘-)é—-# ¢
(c’a) Cel i), ! C‘,(?_) 2 ng)

(et~ -
—’F,w C—\*L_ ?w( o T,(:’_“”.

(o

(T ~-2)

-+ ¢ (1-3)

€yt

Substitute I-2 into I-3 and write the remaining lower loop

equations,



1.

art
o)

. O

4_1_/_(1’)
4T

o
O

o

(._L. + AL )C, - ..&?.‘. - _‘;.L
<, Cs(Z) Cst) C;r(t)
ot
T (_._ e Lo L ) ip~ f3 — Lz
Cyf2) G Gyl Cy(3) Cyl») C {2
- L2 (4, 4L Vil Lo _ _éi'
cg(s) (C.r(z) 03(3) CS(“') ) 3 Cs (“) CT(S)
. . 7
— o A + L ) € - I ¢y
Cg(l_) C.,.(l.) CSU.-) Cele)
‘These produce the matrix equation:
; 1 A OT i c ]
. . L - .
(c,m‘* C,(z\) Cotas '
- 4 A e ) - .. c
c';'(z) (C.,,Lti" Cyes’ cg('s) ) ° 2
O - : ' o {3
CS(B) . T
o) o : ) -
e
oL -
Cq(L) L
] i ;
o - .- - . '] -1 ——— e (4
I Cﬁ“" (c.,o.) CS"f_))J ] ‘-‘

)

-—

I

10L

’
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| 1.7
) j’_ © °l|&
. ¥ L g
° © Cr(3) ('.3 :
(T - 4)
S
o m||

Equation (I-4) in matrix form is:
el = el - BT (-5)

The equations for the upper loops are:

, by o X se
O = RWE + LW + £ 4 MO, 4 MUy3) G

C
e e.s »
+ ML CL +- - - +ME, LY €~ Ll
Y ® Y CT(" ee
0 = MW e, 4+ ARy + L@ ¢ + &+ M, 3) &
ve C (2
4+ M(2,8) 6w ol + ME L) £l - L
Ca(W
o = . . - - - - -
oe oo (A e,
o = M(1,L) & + M@0 €z ..o gm0 L+ RW) €
+ Ly €.+ L - <

——r

Gy Co )



These produce a matrix equation:

LY ™y, 2) M, 3)
Mo,y L(=z) M(z,3)
mQ,3) Mm(23) L .
1
M ( '1 L) b -~ - -
o . (: -....’_.—
R o© o ol ¢ o
o) R(z) o ¢l 0
\ .
‘ K(?J & o
L o o o <,
c;w .
O @ © o L'z
o o L o (s
) Cy3) :
g : o | &

R s
M(‘ ? L) [}
2|
\ 2;
3
!
L("'.‘s M.‘L-':');
0_0
me-y L) L || ¢ L
° 0 ‘.,: A
[] 4
G ° i?,
° &m s
L M
&yl |
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[LM][:Q"] + RI[®T + 5';.][&'] - [5'?] [9] (T-7)

If the currents in the lower loops are solved; the
voltages af each node can be found by differencing the loop
charge and dividing by the ground capacitance. Equations
(1-5) and (I-7) are first solved for the loop currents.

Equation (I-8) is derived from equation (I-5).

O] - & e - LR @ e

When equation (I-8) is substituted into equation (I-7),

equation (I-9) is develdped.

T TEE -0 ] 0]

!
T

- [R] E;]“' [v] + [RI[Z] - = [9]

- [v&] +[‘CJ&_T] o] — [E"-F]Egj (I - 9)
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An integration of equation (I-9) is performed and the cur-

rent is replaced with its differential, the charge.

(o] =[]
r)] + [R]['—L]" fre] + [L™] [;'T]-’ [+
= [LM][;T]( ][& + [RIZ ] =] (2]

+ [ - B]le
solving for[§]where féa = ] {_— ]

8] = - [ I IR e BT
_.L_]Tc'_r] v ™' [ ]
- [l [T ] (E]
+ [CGT]_'EV(T)] |
v ] LT BRI el (x-09

This equation is now in the form of a second order N-dimensional dif-

ferential equation that can be solved using the Runge-Kutta Technique,
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