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Abstract 
 

Rare diseases affect a small number of populations all around the world. Often, rare disease 

patients are misdiagnosed and deprived of proper treatment due to the lack of knowledge about 

the diseases. The unavailability of standard data and methodologies to identify the rare diseases 

has made the situation more complex. Rare diseases are caused by malfunction of genes, and often 

leave noticeable traits on the face. In this thesis, a dataset of facial photographs of rare diseases is 

curated. The correlation between risk genes and facial features of rare diseases is calculated. 

Finally, rare diseases are classified from healthy facial photographs of children by employing 

transfer learning-guided pre-trained deep learning models. The performance of different 

convolutional neural network models (AlexNet, ResNet-18, ResNet-34, ResNet-50, VGG-16, 

VGG-19, DenseNet121, MobileNetV2) are analyzed over two different transfer learning 

approaches. All the models, except VGG-16, achieved superior results when trained with fine-

tuned transfer learning approach than the other transfer learning approach where the convolution 

base was considered as a fixed feature extractor.  The fine-tuned MobileNetV2 model showed the 

best classification result with 94.92% accuracy, and precision, recall, F1-score and AUC of 0.9498, 

0.9492, 0.9475, 0.99, respectively.  Then, augmentation is performed on ResNet-50 and DenseNet-

121 and the overall performance improved in both transfer learning-based approaches. Two 

traditional machine learning based models (Support vector machine, eXtreme Gradient Boosting) 

are also applied for classification. The machine learning models achieved moderate results but 

underperformed comparing to the deep learning models.   
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Chapter 1: Background and Introduction 

 

1.1 Rare Diseases 
 

 

A disease is considered as being rare when it affects only a limited fraction of individuals from 

the general population comparing to other prevalent diseases. To date, nearly 7,000 rare diseases 

(RD) are found with < 5 cases per 10,000 population [1]. Even though the diseases are individually 

rare, almost 350 million people are affected by rare diseases worldwide [2]. Triple A syndrome, 

3C syndrome, Alpha-mannosidase etc. are few examples of such diseases. The exact number of 

rare disease patients is difficult to estimate, as epidemiological data for many of these diseases are 

not available. Rare diseases are chronic, disabling and often life threatening. The heterogeneity in 

disease symptoms, wide range of disorders, limited data, geographic dispersion and unavailability 

in epidemiological data make rare diseases a challenging domain in research [3]. It creates crucial 

public-health issue and formidable challenges towards medical community. As a result, rare 

disease patients are often deprived of proper treatment and disregarded by the medical community 

and policy makers. But timely diagnosis can largely improve the patient recovery and life 

expectancy. 

Rare diseases pose significant restrictions on the development of patient’s physical, mental 

and social aspects. These degrade individual’s quality of life, education and earning potentiality. 

An investigative assessment was performed on 2500 patients with chronic diseases to report their 

experiences in getting treatment [4]. Among them, 8.2% were rare disease patients. It was reported 

that they had worst experience in terms of treatment accessibility, social and economic loss. Their 

experiences were much more difficult than those patients not affected with rare diseases. Eurodis 

et al. addressed the diagnostic delay by doing a survey on patients from 17 European countries 
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suffering from different rare diseases (Cystic fibrosis, Duchenne muscular dystrophy, Ehlers-

Danlos syndrome, Marfan’s syndrome, Prader-Willi syndrome, tuberous sclerosis and fragile X 

syndrome) [5]. The authors found that, 25% of the patients were correctly diagnosed more than 

after 5-30 years when the symptoms first appeared. Moreover, before final diagnosis, 40% of them 

were diagnosed incorrectly. Incorrect diagnosis resulted into complicated consequences: 16% of 

the patients had to undergo surgery, 33% did not get proper treatment and 10% were assumed to 

have psychosomatic symptoms and were provided psychological aid. 25% of the patients had to 

travel in a different state/country to get a confirmed diagnosis.    

 

1.2 Disease Identification from Facial Photographs 

 

 

The relationship between human face and diseases has been investigated over a long time. In 

ancient times, the experienced doctors used to observe the facial features of patients to know about 

any lesions. The intuition was that the pathological changes of internal organs might be reflected 

in the face as changes in structure, form or morphology [6]. Modern medical researchers also 

indicate that many diseases leave noticeable features on human faces which can be greatly 

informative to clinical geneticists [7]. Such observation has led to disease screening, classification 

among multiple diseases, classification between disease and healthy faces etc. At present, the 

widespread usage of mobile phone, camera has made photo capturing quite easy. So facial 

appearance has become an important indicator in identifying various diseases and gradually paved 

the path for facial feature guided disease diagnosis. 

 

The application of computer vision and image processing-based approaches in disease 

detection from facial photographs has been studied over 30 years. In these applications, various 
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facial features extracted from facial photographs are given as input on which different analysis are 

performed. The existing studies [8][9] in the broader literature indicates that the facial feature 

extraction methods are divided into local feature based methods, holistic methods, statistical model 

based methods and deep learning based methods. 

 

1.2.1 Traditional Methods  

    

Previous research in local features-based methods showed that manual annotation of 

landmark features was used to extract disease specific facial patterns. Loos et al. [10] developed a 

computer based genetic syndrome recognition system which classified five diseases. They 

extracted 32 landmark features from face and used gabor wavelet transformation for preprocessing. 

Next, the facial feature vectors are calculated from face specific bunch graphs and diseases are 

categorized by recognizing facial resemblance. Vollmer et al. [11] extracted 48 landmarks, applied 

gabor wavelets along with the standardized coordinates of those landmarks and generated feature 

vectors with geometric and textural features. These feature vectors are later analyzed to classify 

diseases by detecting certain facial patterns. The authors here examined the classification accuracy 

of the proposed method by increasing the number of syndromes from 10 to 14. Cornejo et al. [12] 

evaluated the appearance based local features in distinguishing genetic disorders from facial 

photos. They used Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF 

(Binary Robust Independent Elementary Features) - ORB and fused it with geometric features 

(coordinates and distance of landmark points).  

 

Statistical model-based methods depend on the principles of statistical analysis of shapes. Ferry et 

al. [13] applied a statistical model, Active Appearance Model (AAM) to learn how the shape and 
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texture vary across the facial images. The authors also used the AAM model to visualize the 

canonical phenotypes from faces.  

Holistic feature-based methods extract global information from the entire face. The global 

information is represented by small number of features which capture the variance among 

individual faces. Eigenface [14], based on Principal Component Analysis (PCA) is a commonly 

used holistic method in facial analysis. Another holistic method is Fisherface [15], which is based 

on Linear Discriminant Analysis.    

 

1.2.2 Artificial Intelligence based Methods         

 

         With the advent of artificial intelligence (AI), machine learning and deep learning-based 

methods are shining brilliantly in image analysis. The aim of machine learning is to learn specific 

patterns and relationships from examples and observations for solving complex problems. There 

are various kinds of machine learning models, including artificial neural networks, decision trees, 

support vector machines, regression analysis, Bayesian networks, and genetic algorithms [16]. 

Deep learning is a model of machine learning based on artificial neural network. It consists of 

multiple hidden layers and therefore, these neural networks are referred as deep neural network 

and the framework is called “deep learning”. Deep learning models learn conceptual abstraction 

from data in both hierarchical and composite way, uncovering many underlying characteristics 

ignored by human beings. The higher levels of abstraction are built on top of the low levels and 

the lower levels are the input data (e.g. facial image). Deep learning makes use of many nonlinear 

functions to model the dependency between the features and labels. The success of deep learning 

depends on the usage of graphical processing unit (GPU) and the availability of large datasets 

containing millions of training data. Besides, the development of open source software platforms 
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like Pytorch [17], Caffe [18], Theano [19], and Tensorflow [20] has made it easy to train deep 

networks and reuse the latest models.  

Several high impact factor journals and top-tier conference publications have established that the 

AI based models are playing an increasing role in medical research and clinical practice in assisting 

disease screening, diagnosis, prediction of response to therapy and many more [21] [22][23].    

Zhao et al. detected down syndrome from facial photographs by employing Support Vector 

Machine (SVM) with radial basis function and performed classification by analyzing the geometric 

and textural features [24]. Kruszka et al. [25] also applied SVM to detect 22q11.2 DS syndrome 

from facial photographs by extracted 126 facial features from geometric and texture biomarkers.  

 

Acromegaly is a rare hormonal disorder caused by excessive amount growth hormone (GH) 

produced in the body. This disease changes face by enlarging nose, jaw, forehead, and cheekbone, 

thickening the skin and increasing the space in tooth [26]. Schneider et al. [27] developed a face 

classification software which acquired superior results than medical experts and general internists 

in detecting acromegaly from facial photographs (both frontal and side view). Kong et al. [28] 

classified the acromegaly patients and healthy controls from facial photographs by employing 

several machine learning based models (Linear Model, k-Nearest Neighbor, Support Vector 

Machine, Random Tree). The authors applied each of the models separately on the dataset and 

later used the ensemble method, bagging to combine outputs from the different models. The 

ensemble method achieved better result that the machine learning models and outperformed the 

specialists and primary care doctors.  

 

The advancement of transfer learning has guided the researchers to use pre-trained model in 

disease diagnosis and classification. Jin et al. [29] performed facial diagnosis of four diseases: 
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Beta-thalassemia, Hyperthyroidism, Down syndrome and Leprosy. The characteristics of these 

diseases on facial surface are bone deformities, small eye opening, short nose, thin upper lip, 

underdeveloped jaws, staring eyes, thinning eyes, less blinking, nervousness, upward slanting 

eyes, small/flattened nose, small mouth, pale skin, eye damage and facial disfigurement. The 

authors utilized these distinguishing facial features in both single and multi disease classification. 

The pre-defined deep learning architectures with transfer learning approaches are used here.  

 

Gurovich et al. [30] developed a facial image analysis framework, DeepGestalt by employing Deep 

Convolutional Neural Network (DCNN) to classify genetic syndromes. DeepGestalt learnt facial 

representation from Casia-WebFace dataset and applied knowledge transfer in genetic syndrome 

domain through fine-tuning. Shukla et al. [31] used the AlexNet model trained on ImageNet 

dataset and added SVM on the last layer of the architecture to classify six genetic syndromes from 

facial photographs. Singh et al. [32] applied a ResNet50 architecture, pre-trained on VGGFace to 

classify rare genetic diseases. They added three fully connected layers on top of the ResNet50 

architecture and only retrained the last fully connected layers treating the remaining architecture 

as a fixed feature extractor.    

 

The literature review shows that although there has been research on facial feature guided face 

recognition or disease identification, there is no well explored study to classify rare diseases from 

facial photographs of children. There is no publicly available facial photograph dataset of children 

with rare diseases. We want to fil this gap and establish such a dataset from publicly available 

resources. Next, we aim to perform classification analysis on the dataset employing convolutional 

neural network-based models. The performance of such models on rare disease facial photograph 

analysis will be extensively evaluated and analyzed.       
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1.3 Genetic Analysis 
 

Rare diseases have genetic etiology which influences the treatment responses of different 

genetic mutation carriers. Over the past few decades, researchers have made advancement in the 

study of complex and rare human genetic disorders. It has become possible because of the 

collective knowledge of human genome sequence and the ability of advanced technologies to 

correctly associate the disease phenotype. Each cell in the human body consists of 23 pairs of 

chromosomes and each chromosome is made up of about 2,000 genes. Sometimes, any of the gene 

or protein can be absent, mutated or an extra chromosome can be present.  

 

Alpha-mannosidosis [33], an inherited lysosomal storage disorder is caused by mutations in the 

MAN2B1 gene located on chromosome 19. This disorder affects around 1 in 500,000 live births. 

The characteristics of this rare disease include immune deficiency, skeletal abnormalities, hearing 

impairment, mental function and speech impairment. Van et al. investigated that Triple A 

syndrome is caused by mutations in the AAAS located at chromosome 12q13 [34]. Another rare 

disease, Sialidosis type 2 is caused by the biallelic mutation in NEU1 gene [35]. These are only 

few diseases and corresponding risk genes among the 8,000 rare diseases scattered around the 

world.  

 

The biological vocabulary, Gene Ontology (GO) describes the functions of genes and acts as a 

foundation of genetic computational analysis. The degree of relatedness between the genes can be 

measured by the similarity based on their annotation. The idea behind the semantic similarity 

measurement is that genes with similar function are supposed to have similar annotation 

vocabulary and a close relationship in ontology structure. Semantic similarity validates the 

outcomes from biomedical studies such as gene clustering, gene expression data analysis and 
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disease gene prioritization. Several studies on semantic similarity analysis have been published in 

the literature evaluating diverse approaches [36] [37] [38] [39]. Information content (IC) based 

methods [36] - [39] and graph based method [40] are two major categories of semantic similarity 

analysis approaches. 

   

1.3.1 Genotype-Phenotype Relationship 

 

Facial phenotypes of rare disease patients and the responsible risk genes both have 

potentiality in analyzing rare diseases. Both possess high informative features to facilitate the 

understanding of rare disease characteristics. Spiga et al. [41] collected facial images of 200 

Alkaptonuria patients and developed an integrated platform to store their genetic, biochemical, 

histopathologic, clinical data and images. The authors applied k-mean algorithm and hierarchical 

clustering based on the collected genotypic and phenotypic data to perform stratification on the 

patients in order to create subgroups with similar features.  

 

Little research has been conducted to investigate whether both the features extracted from the same 

set of data have any underlying relationship. So, it is worth investigating if the genotypic and 

phenotypic features are correlated or not. The examination and interpretation of the relationships 

between these two types of features may accelerate the disease detection approaches. The earlier 

a rare disease is identified, the more likely it is to get rapidly diagnosed and covered by effective 

medical treatment. It may also contribute notably to drug repurposing.  

 

Facial feature guided disease diagnosis and genotypic-phenotypic analysis have been investigated 

over a long period of time. But very little research has been conducted on the rare disease patients, 

especially children. Moreover, that research only considered a few rare diseases leaving behind 
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the vast number of rare diseases from worldwide. In this study, we address this gap and aim to 

curate facial photographs of rare diseases and keep the photographs in a database which will act 

as a data source for future research. Our next objective is to perform correlation analysis between 

the risk gene and facial phenotypes of the curated photographs and final objective is to classify 

rare disease facial photographs from healthy faces.   
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Chapter 2: Motivation and Research Objectives 

 

2.1 Motivation 
        

The rare diseases are heterogeneous in nature and the symptoms are often hidden. Rare 

disease data demands efficient analysis to get fruitful insights for disease identification and 

diagnosis. There is a lack of standardized rare disease data to identify such diseases. So, a 

standardized collection of data is required for research purpose.  

 

The unavailability of rare disease dataset is crucial challenge in research community. We find it 

very important and aim to collect facial photographs of children affected with rare diseases. We 

focus on only children because the earlier a rare disease is identified, sooner treatment can be 

started. But these diseases are rare, and it is difficult to collect a large amount of data. Besides, 

rare disease-specific patients are geographically scattered, and correct information is not well-

documented. In addition, there might be personal and ethical issue from the patient and family to 

disclose and use the information. These direct us to search for facial photographs of rare disease 

patients in publicly available sources and use the photos in our study. The development of a 

database is also necessary to store the photographs so that in future more data can be added in 

there. 

  

The correlation between genetic and facial feature of rare disease children is significant in clinical 

and medical research. Based on the correlation between rare disease specific genes and 

corresponding facial features, the photographs can be considered as a key indicative of that rare 

disease.  It can be considered as a characteristic face for unknown or ultra rare disease 

identification research.  
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Facial photographs of rare diseases need to be correctly classified from normal facial photographs. 

We assume that the curated facial photographs will be relatively small, so we limit our task in 

classifying rare diseases and healthy children based on their facial photographs. So, it will be a 

binary classification problem. Correct classification of diseases is a pre-requisite of fast disease 

diagnosis. Such a system with an acceptable error rate can significantly help people to take medical 

examinations in underdeveloped areas where expert doctors are not available or unable to identify 

rare diseases.       

 

2.2 Research Objectives 
 

In this study, 480 facial photographs of 104 rare diseases are collected from publicly 

available resources. This number is indeed very small. It is not possible to classify all the rare 

diseases from such small number of facial photos. So, all the 104 rare diseases are considered one 

class and facial photographs of healthy children (collected from two publicly available datasets) 

are considered as another class. Binary classification is performed to classify rare disease facial 

photos from healthy facial photos. Additionally, the correlation score is computed between the 

facial phenotype and gene similarity features from the curated facial photographs and the 

responsible risk genes. The research objective of this thesis are as follows: 

  

1. Collect a list of rare diseases, facial photographs and implement a database to store the collected 

information.  

2. Analyze the genotype-phenotype association between the genes and corresponding facial 

features employing Canonical Correlation Analysis.  

3. Develop deep learning-based models for classification of rare diseases from the collected facial 

photographs. 
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Chapter 3: Data Collection and Database Construction 

 

3.1 Introduction 
 

 

       In every discipline of research, accurate and honest collection of data is the key and primary 

step. Proper pre-processing, analysis, and measurement of data leads towards meaningful 

information essential for further processing or to make an informed decision. The success of 

evaluating novel methodologies or the performance analysis of existing approaches greatly relies 

on data. Moreover, in complicated cases like rare disease research, proper data collection is of 

utmost importance. Since the rare disease-affected children are geometrically scattered and disease 

symptoms cover a wide range of variations, it is difficult to collect many facial photographs. There 

exists some ethical and privacy issue also. The patient or their family may not feel comfortable 

disclosing their photographs or information. As a result, the facial photographs used in this thesis 

are collected from publicly available sources.   

 

In addition to data collection, data storage and management is equally important. There are several 

advantages of storing data in a database, such as large amount of data can be stored, data can be 

quickly found by searching or sorting, and more data can be added to the database in future. 

Besides, storing the data in a database ensures security, maintains and views the relationship 

among different entities, and makes it easy to conduct future research on the data. A database 

system is implemented to store the collected rare disease photographs.  

 

This chapter discusses the data collection steps and database construction.     
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3.2 Rare Disease Data Collection 
 

3.2.1 Baseline Rare Disease List 
 

 

The rare diseases used in this thesis were curated based on the data table from Dr. Patrick 

Frosk. He is a Clinician Geneticist and Associate Professor at the University of Manitoba. His 

collection has a focus on rare diseases localized or more prominent in Manitoba. The rationale 

behind considering Manitoba as location is that the patient population is ethnically quite diverse 

here and contains several founder populations. These populations, due to their unique structure, 

often have specific deleterious alleles at much higher frequency than seen in the general population 

and therefore have overrepresentation of specific monogenic disorders. Since many of these 

conditions are ultrarare anywhere else in the world, investigating and diagnosing patients from 

such populations requires detailed knowledge of these conditions and how they might present in 

clinical practice. To facilitate clinical care as well as aid the work of local genetic researchers, a 

listing of conditions and their causative genetic variants in these populations was created. Creation 

of the list included a thorough review of the literature as well as review of the local clinical 

databases, both at the level of the clinic itself as well as the only clinical genetic testing laboratory 

in the province. This list is a living document and is regularly updated as new diseases and/or 

genetic variants are identified. In this thesis, this list is considered as a baseline for rare disease 

data collection.  

 

3.2.2 Modified Rare Disease List 
 

 

The baseline RD list is modified to fit the objective of this research. Dr. Patrick Frosk’s list 

focused on population type (Indigenous groups) and genetic inheritance (Table 3.1). But data 
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collection will be limited if the indigenous population is considered as a searching parameter. 

Besides, the inheritance type in Dr. Frosk’s data is classified in three categories: autosomal 

recessive (AR), autosomal dominant (AD) and X-linked (XL). This information is too broad to use 

as a criterion in this thesis’s data collection.  

 

Table 3.1: Portion of Dr. Patrick Frosk’s data table 

 

Disease Gene Mutations Disease Type Population 

Alstrom ALSM1 p.Q3494X AR Mennonite 

Aicardi - Goutieres TREX1 p.R164X AR First Nations 

… … … … … 

Ankyloglossia cleft palate AR p.L676P XL Hutterite 

Bowen Conradi EMG1 p.D86G AR Hutterite 

 

 

So, the columns “Disease Type” and “Population” are not considered and any overlapping diseases 

from different populations are removed as well. The modified data table of Dr. Frosk used in this 

thesis is shown in Table 3.2.  

 

Table 3.2: Portion of modified data table for thesis  

 

Disease Verification 
Disease 

Abbreviation 
Gene Mutations 

# of 

photos 
Photo 1 Photo 2 Photo 3 Photo 4 Photo 5 

Alstrom yes ALS CYP17A1 p.Q3494X 5           Link Link Link Link Link 

Aicardi-

Goutieres yes AIC TREX1 p.R164X 5 Link Link Link Link Link 

… … … … … … … … … … … 

Ankyloglossia 

cleft palate yes ANK AR p.L676P 2 Link Link - - - 

Bowen Conradi yes BOW EMG1 p.D86G 0 - - - - - 

https://link.springer.com/article/10.1007%2Fs12098-018-2740-y
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.61412
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.61412
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.61412
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.61412
http://www.aicardi-goutieres.com/index.php?option=com_content&view=article&id=100%3Aiagsa1&catid=41%3Ainfo-iagsa&Itemid=48&lang=en
http://www.aicardi-goutieres.com/index.php?option=com_content&view=article&id=100%3Aiagsa1&catid=41%3Ainfo-iagsa&Itemid=48&lang=en
http://www.aicardi-goutieres.com/index.php?option=com_content&view=article&id=100%3Aiagsa1&catid=41%3Ainfo-iagsa&Itemid=48&lang=en
http://www.aicardi-goutieres.com/index.php?option=com_content&view=article&id=100%3Aiagsa1&catid=41%3Ainfo-iagsa&Itemid=48&lang=en
http://www.aicardi-goutieres.com/index.php?option=com_content&view=article&id=100%3Aiagsa1&catid=41%3Ainfo-iagsa&Itemid=48&lang=en
https://www.sciencedirect.com/science/article/pii/S2214541919300173
https://www.sciencedirect.com/science/article/pii/S2214541919300173


 24 

3.2.3 Verification of the Selected Rare Diseases in Orphanet  

The names of the rare diseases were checked with Orphanet database [42] to verify whether 

Dr. Frosk’s list are officially rare diseases. Orphanet is a widely used portal for rare diseases and 

orphan drugs. It provides high-quality information of rare diseases with causing genes, directory 

of patient organization, expert centers, medical laboratories and ongoing research. The diseases of 

the modified RD list are manually verified whether they are present in the Orphanet. This 

information added in the modified table (Second column of Table 3.2). Only the verified diseases 

are considered as reference to curate the facial photos. For each disease, disease abbreviation is 

generated considering the first three or four characters of the disease name and documented in the 

table (Third column of Table 3.2). The disease abbreviations are treated as unique information for 

each disease. 

  

3.2.4 Rare Disease Photo Curation 
 

The goal is to curate the facial photographs for each rare disease listed in Table 3.2. Since 

the diseases are rare and publishing facial photographs publicly has potential ethical issues, it is 

presumable that it is not possible to get many photographs. A goal is set to curate at least 1 – 5 

photos for each disease (preferably 5). Some rules are set during photo curation such as: frontal-

facing, portrait-style, single patient, open eyes and decent quality. The photos that do not satisfy 

the rules are either disregarded or manually altered to fit in these criterions. Only the facial photos 

of children are considered because the majority of the affected are children. Besides, in case of 

adults, multiple diseases may exist which can possibly make the rare disease symptoms less 

revealing.  
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The facial photos were curated by searching the disease name and some keywords like “face”, 

“child”, “patient” on Google Images. Among the search results, facial photos were collected from 

published journals and hospital foundations. In some cases, news articles, rare disease blogs and 

awareness campaigns were also considered as sources. The photos were considered after reviewing 

whether the sources are valid and other criterions are satisfied. The number of collected photos for 

each rare disease is listed in sixth column of Table 3.2. The sources of the photos are included 

from columns 7 – 11.  

 

Only 60% of the collected diseases have five photos. Therefore, another database called Human 

Phenotype Ontology (HPO) was explored to determine the alternatives for the remaining diseases. 

HPO database provides hierarchical classification to find a disease subcategory [43]. The target 

was to find a replacement closest to the original rare disease. The disease for which photos are not 

found, it is searched in HPO. The closest disease was selected from there and verified whether five 

photos were available for it. If not, search was continued through another branch. The replacement 

diseases were verified on Orphanet. Once all the diseases and photos were collected, the final 

dataset consists of 104 diseases, 480 photos, and 88 diseases with a complete set of 5 photos. The 

summary of the dataset is presented in Table 3.3. 
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Table 3.3: Summary of the dataset 

 

Type Number 

Total Rare Diseases 104 

Total Facial Photographs 480 

Rare Disease Subcategories 71 

RDs with 5 photographs 88 

RDs with 4 photographs 3 

RDs with 3 photographs 3 

RDs with 2 photographs 7 

RDs with 1 photograph 5 

 

 

3.3 Database Construction 

 

3.3.1 Database Design and Interface 
 

A browser-based database system is developed, and the rare disease images are stored in 

there. The database is available here: http://10.246.3.157/. This database can be accessed after 

activating UofM VPN.  

 

The major goal of this database construction is as follows:  

(i) Organize data in a flexible way for easy and fast access.  

(ii) Store, handle and manipulate data by means of add, browse or search functionalities.  

 

The functionalities of the developed database include adding rare disease records, browsing the 

database and searching for diseases. Each disease record consists of disease name, unique ID, 

disease abbreviation, disease subcategory, one or multiple risk genes, reference of the risk gene(s) 

http://10.246.3.157/
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and some facial images. The unique ID of rare disease is ORPHA code, which is a unique 

numerical identifier generated by the Orphanet website. The interface of the database is designed 

considering the input data. The interface is kept simple, and the functionalities (Search, Browse, 

Add Disease) are added on top for visibility (Figure 3.1).  

 

 
 

 Figure 3.1 : The interface of the RD database 

 

 

In order to store data, the disease records need to be added in the database. This is done by clicking 

on “Add Disease” functionality. The disease record will be inserted by providing inputs to the 

textboxes and images will be added by clicking on “Browse”. Finally, the task will be completed 

by clicking on “Submit” in the top right corner of the page. Figure 3.2 presents how a disease 

record is added in the database.  
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                                  Figure 3.2 : Disease record is inserted in the database  

 

The disease names and ID are the mandatory fields. Any other fields except these two can be left 

blank (if information is unavailable) and the disease record will be added to the database.  

 

The “Browse” functionality enables the user to view the stored data records in terms of 

subcategory. Figure 3.3 shows that the disease Mowat-wilson Syndrome is displayed after 

selecting the Abdominal Distention subcategory.   
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Figure 3.3 : Browse by disease subcategory 

 

The disease records can be edited by accessing the “View” option in the “Browse” page. The edit 

option is necessary because any wrong information might be inserted or more images of a rare 

disease may be found later which need to be stored.   

 

The search function operates in multiple ways: search by disease name, by gene or by disease 

subcategory. If the searched record exists in the database, it will be displayed in the page including 

associated information. Otherwise, “No record found” will be displayed. Even though each rare 

disease has different name, multiple diseases may belong to the same disease subcategory. In such 

case, if a user searches by disease subcategory, all the diseases from that subcategory will be 

displayed. The search by disease subcategory option is depicted in Figure 3.4. Search is performed 

here by disease subcategory, Muscular dystrophy. This subcategory has three diseases, and all three 

are displayed.  
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Figure 3.4: Search by disease subcategory 

 

 

3.3.2 Implementation of the Database 

 

The database was implemented using MySQL database system in the back-end. In the 

front-end, the pages were created using HTML and Javascript. The python language was used with 

flask framework to build a REST API. When the user interacts with the system (search / browse / 

Add disease information), mysql queries are operated on the dataset. Based on the functionalities, 

the used queries are: SELECT, DELETE, INSERT and UPDATE. Finally, the front end fetches the 

resultant records from the MySQL database through REST API.  
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3.4 Conclusion and Discussion 
 

The database is a much more efficient mechanism than spreadsheets to store and organize 

data. A web-based database provides a centralized facility to access, modify or use data from 

anywhere in the world. In this study, a total of 480 facial photographs of rare disease children are 

stored in the implemented database. The number of photographs is relatively small. In future, more 

facial photographs will be collected and stored to get insightful directions from data analysis.  

 

At present, the database provides the features for data storage and manipulation. It is only 

accessible through the UofM network. Further enhancements can be done on the database for 

greater control of rare disease information. One important enhancement is to make the database 

publicly available and add features to handle user privacy and authentication. Under the “Browse” 

functionality, all the 71 disease subcategories are shown in a single page. If more disease 

subcategories are added in future, placing all these in a single page will be unfeasible. So, 

pagination should be added so that the subcategories are placed in different pages. The user 

interface design of the database can be improved.     
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Chapter 4: Genotype-Phenotype Correlation Analysis 

 

4.1 Gene Similarity Estimation 
 

  Rare diseases are caused by altered functions of genes. Different kinds of genes can be 

responsible for one rare disease. For simplicity, only the risk genes are considered as responsible 

in this thesis. As depicted in Table 3.3, a total of 104 rare diseases are found during data collection. 

Among these 104 diseases, 78 diseases are monogenic and 8 of the diseases have multiple risk 

genes. Risk gene information is not found for remaining 18 rare diseases, from where the data was 

collected. So, these 18 rare diseases are excluded from consideration.  

 

The pair-wise semantic similarity of the 86 risk genes was computed by applying a graph based 

method [40]. Based on this method, the semantic similarity is computed considering the locations 

of the genes in the graph and their relationship with the ancestor terms.  

 

An ontology is a formal representation of a body of knowledge within a given domain. The gene 

ontology (GO) is a framework designed to describe the function of genes [44]. It represents the 

domain knowledge in such a way that the computational representation of biological systems can 

be supported. It is a structured and controlled vocabulary of terms. The terms are subdivided in 

three ontologies: Molecular Function (MF), Biological Process (BP) and Cellular Component 

(CC), each describing a specific aspect of gene functionality. GO annotations describe the 

association of gene with GO terms. Hence, GO annotations capture statements about the molecular 

actions of gene products, the biological processes it executes and the cells where it functions.  

 

Semantic similarity computes the closeness/similarity between two GO terms and returns a 

numeric value representing the closeness. The GO terms are presented as nodes in directed acyclic 
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graph (DAG) and two kinds of semantic relations (‘is-a’: class-subclass relation and ‘part-of’: 

partial ownership relation) form edges among the nodes. Each edge is assigned a weight based on 

the type of relationship. This DAG structure lays the foundation for quantitative semantic 

comparison among the terms. This type of hierarchical structure provides flexibility in semantic 

similarity computation because, if a gene is associated with a term, it is also associated with all the 

parents of that term [45]. And in GO context, one gene is usually annotated by multiple GO terms. 

  

In the graph-based method, the similarity between the biological processes of two genes is 

determined by comparing the semantic similarities of GO terms. The semantic similarity of a GO 

term is determined using the topology of GO graph structure. For example, 0.8 and 0.6 can be the 

weights for ‘is-a’ and ‘part-of’ relations, respectively. For a term A1 and its ancestor A2, the 

semantic contribution of A2 to A1 is defined as the product of all edge weights in the best path from 

A2 to A1. The GO term is presented as Equation 4.1,  

 

 

 

where A is the GO term, 𝑇𝐴 and 𝐸𝐴 are the set of GO terms and the set of edges connecting the 

GO terms in 𝐷𝐴𝐺𝐴, respectively.  

 

The contribution of a GO term t to the semantics of GO term A is interpreted as the S-value of 

GO term t related to term A. For any term t in 𝐷𝐴𝐺𝐴 = (𝐴, 𝑇𝐴, 𝐸𝐴), the S-value related to term A, 

is defined as Equation 4.2:  

 

𝑆𝐴(𝑡) = max{𝑤𝑒  ∗ 𝑆𝐴(𝑡′) | 𝑡′  ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑜𝑓 (𝑡)}, 𝑡 ≠ 𝐴 (4.2) 

  

 

The semantic value of GO term 𝐴, 𝑆𝑉(𝐴) is computed as Equation 4.3: 

     𝐷𝐴𝐺𝐴 = (𝐴, 𝑇𝐴, 𝐸𝐴) (4.1) 
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The semantic similarity between two terms is calculated following two steps:  

1. The sum of semantic contributions of all common ancestors to each of the terms is 

computed.  

2. The total semantic contribution of each term's ancestors is divided by that term.  

 

So, the semantic similarity value of two GO terms 𝐴 and 𝐵 is defined as Equation 4.4: 

 

    

If the semantic similarity value between two genes lies in the high end of the range from 0 to 1, 

the genes are considered analogous in terms of their biological processes. The GOSemSim-

package of R is used to calculate the semantic similarity [46]. This package identified the semantic 

similarity relationship of 77 genes among the 86 genes. As a result, a 77 ×  77 matrix is generated. 

 

 Table 4.1: A portion of the 𝟕𝟕 × 𝟕𝟕 gene semantic similarity analysis matrix  

 

 AAAS MAN2B1 BBS2 … LONP1 SLC39A8 DPH1 

AAAS 1 0.268 0.216 … 0.307 0.129 0.495 

MAN2B1 0.268 1 0.135 … 0.288 0.11 0.629 

BBS2 0.216 0.135 1 … 0.144 0.143 0.25 

… … … … … … … … 

LONP1 0.307 0.288 0.144 … 1 0.068 0.38 

SLC39A8 0.129 0.11 0.143 … 0.068 1 0.162 

DPH1 0.495 0.629 0.25 … 0.38 0.162 1 

𝑆𝑉(𝐴) =  ∑ 𝑆𝐴(𝑡)

𝑡 ∈ 𝑇𝐴

 
(4.3) 

𝑆𝐺𝑂(𝐴, 𝐵) =  
∑ (𝑆𝐴(𝑡) + 𝑆𝐵(𝑡))𝑡∈𝑇𝐴∩𝑇𝐵

𝑆𝑉(𝐴) + 𝑆𝑉(𝐵)
 

(4.4) 
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4.2 Facial Phenotype Extraction 
 

In this step, facial landmarks from the rare disease patient photographs are detected and the 

geometric distances are calculated. The dlib library in python is used for facial landmark detection 

[47]. It is an advanced machine learning library frequently used to solve computer vision problems. 

It is written in C++ and it works with C/C++, python and Java. The steps of facial phenotype 

extraction is briefly described below and summarized in Figure 4. 1.  

 

4.2.1 Face Localization 

 

The facial photographs are resized to 224 × 224 by facial frontalization is performed 

using the dlib library. The faces from the photographs are first localized using the 

get_frontal_face_detector() function in dlib library. It returns a function containing the points 

where the face is specifically located and renders a rectangle over the face. Among the 480 curated 

facial photographs, faces regions are successfully located from 427 images.   

 

4.2.2 Facial Landmarks Detection 

 

Total 68 facial features like eyes, mouth, jaw points, nose points etc. are detected from the 

localized face region derived in the previous step. The Dlib library applies shape_predictor() 

function and generates a map of 68 points surrounding the features [48]. The shape_predictor() 

uses a manually labelled pre-trained model for landmarks detection. It applies an ensemble of 

regression trees to estimate facial landmarks from the input image.   



 36 

 

Figure 4. 1: The workflow of facial phenotype extraction. (a) The input facial image (b) The 

face region is located from the input (c) Facial landmarks are identified from the located 

region (d) A portion of the calculated 𝟔𝟖 ×  𝟔𝟖 distance matrix for the given image 

 

4.2.3 Distance Matrix Generation 

 

Euclidean distance is calculated from each of the detected landmark points to all other 

points. Thereby, total 427 distance matrices are generated with shape of 68 × 68. Total 427 

distance matrices are generated because among the 480 images, face is localized in 427 images. 

For the remaining images, face is not localized and therefore, those images are not considered for 

the next steps.  
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4.2.4 Distance Matrix to Disease Similarity Matrix Generation  
 

The 68 × 68 matrices are converted into a 68 × 1 vector taking the average for each row. 

It is repeated for all the 427 matrices and finally a 68 × 427 matrix is formed. Among the 427 

vectors, average is computed from the ones belonging to the same diseases. As a result, the facial 

image similarity matrix is converted into a disease type matrix. The resulting matrix is of shape 68 

× 104.  

Finally, those diseases are discarded from the 68 ×  104 matrix for which risk gene information 

is not found. So, it resulted into a 68 ×  77 disease similarity matrix. After transpose, it will 

become 77 ×  68 matrix.   

 

The steps are illustrated in PSEUDOCODE 1. 

   

 

     PSEUDOCODE 1  

  

Facial image similarity matrix to disease matrix 

Input: facial image dataset 𝐹 =  {𝐷𝑖𝑛𝑝𝑢𝑡}𝑘=1
480  

      𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑎𝑚𝑒𝑠 𝑛 

Output: disease matrix 𝐷68×104 

   repeat  

      for all 𝐷𝑖𝑛𝑝𝑢𝑡  ∈ 𝐹 do 

         𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑓𝑎𝑐𝑒𝑠  ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 (𝐷𝑖𝑛𝑝𝑢𝑡) 

         𝐷𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟(𝐷𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑓𝑎𝑐𝑒𝑠) 

             repeat 

              for all  𝑖 ∈ (0, 68) 𝑑𝑜 

                 for all  𝑗 ∈ (0, 68) 𝑑𝑜 

                    𝐷68 × 68 =  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝐷𝑖𝑠𝑡(𝐷𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠[𝑖,𝑗]) 

              𝐷68×1 = 𝑚𝑒𝑎𝑛(𝐷68 × 68) 
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              𝐷68×427 = 𝑎𝑝𝑝𝑒𝑛𝑑(𝐷68×1) 

      

        𝐷68 × 104 =  𝑚𝑒𝑎𝑛(𝐷68×427, 𝑛) 

          

  

 

4.3 Canonical Correlation Analysis 

 

Canonical correlation analysis (CCA) measures the associations between two sets of 

feature matrices. In this study, the two feature matrices are generated in Subsection 4.1 and 

Subsection 4.2. It finds the linear combinations of features from two datasets (X1 and X2) which 

are maximally correlated [49]. Here, 𝑋1 and 𝑋2  represent the gene semantic similarity matrix and 

disease similarity matrix, respectively.  

 

In this section, the performance of two popular canonical correlation analysis methods is analyzed 

such as: regularized canonical correlation (RCC) analysis and sparse canonical correlation analysis 

(SCCA). The methods are evaluated in terms of correlation score. In the next sections, the methods 

are discussed.  

 

 4.3.1 Canonical Correlation Analysis (CCA)  
 

 

CCA determines the linear combinations of the features from two feature matrices, 𝑋1 and 

𝑋2 with (𝑛 × 𝑝1) and (𝑛 × 𝑝2) dimensions on the same subject 𝑖 = 1,2,3, … . , 𝑛. The goal of CCA 

is to maximum the Equation 4.5:  
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𝑐𝑜𝑟𝑟(𝑤1
𝑇𝑋1, 𝑤2

𝑇𝑋2) 

 

or 

 

 

 

(4.5) 

(
𝑤1

𝑇 ∑ 𝑤212

√𝑤1
𝑇 ∑ 𝑤1𝑤2

𝑇 ∑ 𝑤22211

) 

 

 

  

CCA finds the linear projections 𝑤1
𝑇𝑋1 and 𝑤2

𝑇𝑋2 which have maximum correlation between them. 

Here, 𝑤1  and  𝑤2 are the canonical coefficients, ∑ ∑  are2211  the covariances of 𝑋1 and 𝑋2, and 

∑ is11  the cross-covariance between the feature matrices.  

  

 4.3.2 Regularized Canonical Correlation Analysis (RCCA) 
 

 

The basic version of the CCA does not work when the number of features ( 𝑝1, 𝑝2 ) become 

larger than total number of samples (𝑛). To handle this, regularization parameters (𝜆1 and  𝜆2) are 

added with the covariance matrices [50]. It is represented as Equation 4.6 and Equation 4.7. 

 
∑ =′

11  ∑ +11  𝜆1𝐼𝑝1
 

 

 (4.6) 

∑ =′
22  ∑ +22  𝜆2𝐼𝑝2

  (4.7) 

 

 

Here, 𝜆1 and  𝜆2 are the regularization parameters, 𝐼𝑝1
and 𝐼𝑝2

 are identity matrices. The covariance 

matrices from equation (4.5) can be substituted with ∑11
′  and ∑22

′  for the regularized version.  

 

 4.3.3 Sparse Canonical Correlation Analysis (SCCA) 
 

 

The interpretation of linear combinations often become impossible when datasets have 

large number of features. So, considering a sparse subset of the features is a feasible approach to 
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handle it. In this case, the objective function needs to be maximized and it takes the following form 

of Equation 4.8. 

  

𝑐𝑜𝑟𝑟(𝑤1
𝑇𝑋1 , 𝑤2

𝑇𝑋2) 

 

  

  (4.8) 

 where ||𝑤1||2 ≤ 1, ‖𝑤2‖2 ≤ 1, 𝑃1(𝑤1) ≤  𝑐1, and 𝑃2(𝑤2) ≤  𝑐2 

 

 

Here, 𝑃1 and 𝑃2 are penalty function or sparse CCA criterion. The penalty functions provide sparse 

feature combinations and make the CCA deal with situations where the feature sets are large comparing 

to the number of samples. 𝑃1 and 𝑃2 can be lasso or fused lasso penalty functions. The parameters 

𝑐1 and 𝑐2 are used to control the level of penalization. 

 

4.4 Experiments and Results 
 

 

4.4.1 Dataset Preparation 
 

 

Gene similarity matrix and facial landmarks distance matrix are the two datasets. The 

number of rows/samples are the same in both the matrices. All the zero and constant valued 

features are removed from the matrices. The shape of gene similarity matrix and facial disease 

similarity matrix becomes 76 ×  77 and 76 ×  68 , respectively.   

 

4.4.2 Hyperparameter Tuning  
 

 

Some hyperparameters are tuned for each method. For the RCC analysis, the values of 𝜆_l 

and 𝜆_2 are needed to be found. In order to find the values, search is performed in a 5 ×  5 matrix 

where 𝜆_1 in one axis and 𝜆_2 in another axis. The value of 𝜆_1 and 𝜆_2 are varied from 0.1 to 

0.9. The value for the pair 𝜆_1 and 𝜆_2 is found to provide the best total correlation is 0.1 and 0.1. 
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So, this pair is selected to find the final canonical projections for both the train and test data. The 

R package: CCA is used for the RCC analysis.  

 

For SCCA, the PMA package of R is used. The CCA method in the PMA package uses lasso 

penalty as parameter. The levels of parameterization are set using penaltyX and penalty_Y whose 

value should be in the range (0,1). To find the best values of penaltyX and penaltyY, search is 

performed in a 10 × 10 grid. The best correlation score is found when penaltyX = 0.8 and 

penaltyY = 0.8.  

 

4.4.3 Total Correlation Scores    
 

 

After tuning hyperparameters to the best values, the canonical correlation analyses (RCCA, 

SCCA) are performed, and total correlation scores are computed. The experiments are conducted 

under different number of output dimension (1 to 50) and the canonical coefficients (𝑤1 and 𝑤2) 

are learnt for each of the output dimensions. This procedure is repeated for both the methods. After 

learning the coefficients, they are multiplied with the original dataset (train and test) to generate 

the projections. The total correlation scores are calculated from the projections of the test data to 

evaluate different methods using the linear_cca() method [51]. The results are illustrated in Figure 

4.3.  
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Figure 4. 2: Total correlation scores for RCCA and SCCA approaches. The x-axis represents 

the number of output dimensions, and the y-axis represents the corresponding total 

correlation scores. 

 

 

From the above figure, it is visible that SCCA provides better correlation scores than RCCA. In 

both approaches, the correlation scores start from extremely small value, almost close to zero. But 

in case of SCCA, the value starts to rise sooner than RCCA. When the number of output dimension 

reaches to 25, the total correlation scores for SCCA starts to become constant. For RCCA, total 

correlation score starts to increase when the number of output dimension becomes 26. After some 

steps, the correlation scores become constant in RCCA. For SCCA method, the sparsity nature 

may correspond to the total correlation score.  
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4.5 Conclusion  
 

 

The experiment in this chapter explores the association between the risk genes and facial 

feature of rare diseases. Total correlation score is calculated to compare the correlation among 

different CCA approaches. In future, some downstream analyses (classification, hierarchical 

clustering) can be performed on the datasets. Adding more data and increasing the size of the 

feature matrices might play a key role in such analyses. Since our data is limited, deep canonical 

correlation analysis is not performed assuming that enough data is not available. If more data are 

added later, deep canonical correlation analysis might be performed, and the intrinsic deep features 

may uncover more distinguishing feature leading to insightful correlation between genes and facial 

features. 

 

 

 

 

 

 

 

 

 
 

 



 44 

Chapter 5: Deep Learning in Rare Disease Classification 

 

5.1 Introduction 
 

Many deep learning models such as Convolutional Neural Network (CNN), Deep Residual 

Network (DRN), Deep Autoencoder (DAE), Deep Belief Network (DBN) and Recurrent Neural 

Network (RNN) have been proposed over time and employed in visual recognition tasks. A typical 

CNN architecture consists of different combination of convolutional and pooling layers followed 

by one or more fully connected layers, presented in Figure 5.1.  

 

 
 

Figure 5.1: Architecture of a CNN. It consists of two parts. (a) Feature extraction: A 

𝟐𝟖 × 𝟐𝟖 image is passed through convolution and pooling operations. Feature maps are 

generated after each operation. 64 feature maps are generated of size 𝟕 × 𝟕, at the end of 

feature extraction. (b) Classification: The 𝟔𝟒 × 𝟕 × 𝟕 feature map is flattened and a 

𝟑𝟏𝟑𝟔 × 𝟏 vector is generated. It is passed to a fully connected layer of 128 neurons. The 128 

neurons are passed to fully connected layer of 2 neurons and probabilities are calculated for 

two classes. This way a 2-way classification takes place via CNN.     

 

 

CNNs have shown exemplary performance in image classification, segmentation and 

retrieval related tasks [52]. The success behind CNN depends on its ability to identify the visual 
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imaging patterns from the input pixels. Besides, the accessibility of large scale labeled training 

datasets has also accelerated the success. 

The convolutional layer consists of a collection of convolutional kernels. The convolutional 

kernels divide the image into small blocks, also known as receptive fields. The kernels perform 

the convolution operation by multiplying the receptive fields with a particular set of weights [53].  

          𝑓𝑙
𝑘(𝑝, 𝑞) =  ∑ ∑ 𝑖𝑐(𝑥, 𝑦). 𝑒𝑙

𝑘(𝑢, 𝑣)𝑥,𝑦𝑐                             (5.1) 

Equation 5.1 shows a convolutional operation where, 𝑖𝑐(𝑥, 𝑦) is an element of the input image 

tensor 𝐼𝑐 and  𝑒𝑘
𝑙 (𝑢, 𝑣) is the index of the 𝑘𝑡ℎ convolution kernel 𝑘𝑙 of the 𝑙𝑡ℎ layer [54].  

Pooling layers summarises the features present in the regions of feature maps generated by a 

convolutional layer and outputs the dominant response in this region. Pooling operation lessens 

the number of parameters to learn and reduces the feature map dimensions. The pooling operation 

is expressed as Equation 5.2: 

  𝑍𝑙
𝑘 =  𝑔𝑝(𝐹𝑙

𝑘)        (5.2) 

where, 𝐹𝑙
𝑘 is the input feature map, 𝑔𝑝 (. ) denotes the pooling operation type and 𝑍𝑙

𝑘 is the pooled 

feature map. Max pooling is the most common operation among the others. Min pooling, average 

pooling, global average pooling etc. are some of the other pooling operations.  

The activation function acts as a decision function in deep neural networks. It decides whether a 

neuron will be activated or not. Some commonly used activation functions are Sigmoid, Tanh, and 

ReLU.  
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The sigmoid activation function takes real numbers as input and its output is limited between 0 

and 1. It is mathematically expressed as Equation 5.3: 

 

 𝑓(𝑥)𝑠𝑖𝑔𝑚 =  
1

1+ 𝑒−𝑥 (5.3) 

The Tanh function is same as sigmoid, except the output range. The output is restricted to between 

-1 and 1(Equation 5.4).  

𝑓(𝑥)𝑡𝑎𝑛ℎ =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥  +  𝑒−𝑥 
 

(5.4) 

The ReLU converts the input value into positive number. It is mathematically represented in 

Equation 5.5.  

         𝑓(𝑥)𝑅𝑒𝐿𝑈 = max (0, 𝑥)                 (5.5) 

Batch normalization standardizes the inputs to the layers for each mini-batch. The batch 

normalization layer standardizes the input layer distribution to address the internal covariance 

shift. Batch normalization for a transformed feature map 𝐹𝑙
𝑘 is presented in Equation (5.6). 

             𝑁𝑙
𝑘 =  

𝐹𝑙
𝑘 − 𝜇𝐵 

√𝜎𝐵
2  + ∈ 

                                (5.6) 

Where, 𝑁𝑙
𝑘 is the normalized feature map, 𝜇𝐵 and 𝜎2 represent the mean and variance of the feature 

map, respectively.  

Even though there are several studies in the literature comparing different deep learning model 

performance [55], [56], [57], there is no well-explored comparative study on rare disease 
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classification. In this chapter, this gap is addressed by providing a detail comparative study of deep 

learning models on rare disease classification. Several CNN models are applied to classify the 

facial photographs of children with rare disease with normal facial photographs of healthy 

children. As a contrast, the CNNs are employed to classify the facial photographs of children with 

rare disease with facial photographs of adults.  

 

5.2 Materials and Methods 

 

5.2.1 Datasets 
 

We have developed a dataset to evaluate the models. This dataset consists only of facial 

photographs. The dataset is named as Dataset-A.  

 

5.2.1.1 Dataset-A 
 

 

The Dataset-A consists of 626 facial photographs of children. Among them, 480 facial 

photographs are the collected rare disease photos. The remaining 146 facial photographs belong 

to children who do not have rare diseases or any other diseases. In this thesis, such photographs 

will be mentioned as normal facial photographs. The 146 normal facial photographs in Dataset-A 

are collected from two resources: Dartmouth Database of Children’s Faces (DDCF) [58] and FG-

NET aging database [59]. The DDCF consists of facial photographs of 40 male and 40 female 

Caucasian children between the ages of 6 and 16 year. The models (children) are photographed 

from 5 different camera angles, posed with eight different facial expression: neutral, content (smile 

without teeth), happy (smile with teeth), sad, angry, surprised, and disgusted. The facial 

photographs of “neutral” male and female children aged between 6 and 12 years are considered as 
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normal facial photographs for Dataset-A. Total 69 facial photographs (32 female and 37 male) are 

sampled from DDCF that satisfy the criterions of being neutral, age range of 6 to 12 years and 

frontal facing.  

The FG-Net is an aging dataset consisting of 1002 images from 82 different subjects whose ages 

range between newborns to 69 years. The ages between 0 to 40 years are most populated in the 

database. Age 0 refers to newborn. The photographs of FG-Net are collected from personal 

collection, so the quality of the images depend on the photographer’s skill, camera quality, 

photographic paper quality and condition of the photographs. For Dataset-A, only those 

photographs of the 82 subjects are chosen whose age fall within the range of 0 to 12 years. Total 

77 images are sampled from FG-Net for Dataset-A that satisfy this criterion. Among the 77 facial 

photographs, 43 photos are newborns’ (age 0). The rest of the photographs belong to several ages 

below the cut-off of twelve year: 7 photos of one-year-old, 12 photos of two-year-old, 6 photos of 

three-year-old, 5 photos of four-year-old, 2 photos of five-year-old and 2 photos of six- year-old.   

 
The summary of the dataset is mentioned in Figure 5.1. 

 

Table 5.1: Summary of Facial Photograph Dataset 

 

   Dataset Total facial photographs RD facial photographs Healthy facial photographs 

Dataset-A 626 480 146 
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5.2.3 Convolutional Neural Network Models  
 

 

The widespread application of convolutional neural networks in image classification can 

be traced back to ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual 

computer vision competition took place from 2010 to 2017, with the aim of developing improved 

computer vision methods. The challenge tasks (image classification, single object localization and 

object detection) were evaluated on a subset of publicly available dataset, ImageNet. This 

ImageNet subset consists of approximately 1 million images of 1,000 classes.  

 

In the first five years of ILSVRC, massive success was achieved consistently by deep 

convolutional neural networks. Some of the milestone CNN architectures are, AlexNet (winner of 

2012 ILSVRC with 15.4% error rate) [61], ZfNet (winner of 2013 ILSVRC, error rate: 11.2%) 

[62], VGGNet (winner of “classification+localization” category of ILSVRC 2014, error rate: 

7.3%) [63], GoogleNet (winner of ILSVRC 2014, error rate: 6.7%) [64], ResNet (winner of 

ILSVRC 2015, error rate: 3.6%) [65]. Most of the models developed after 2015 were either 

improvement or ensemble over the previous ground-breaking models.      

 

These CNN architectures provide general design principles which are adapted by machine learning 

practitioners to solve image recognition related tasks. These architectures act as rich feature 

extractor for image classification. In this chapter, the performance of some CNN architectures is 

compared in classifying rare disease and healthy facial photographs. Those architectures are 

chosen which has shown good performance in facial recognition tasks [29] [66].  

 

The CNN architectures used in this study are AlexNet, VGG16, VGG19, ResNet-18, ResNet-34, 

ResNet-50, DenseNet-121 and MobileNet-V2.  
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5.2.3.1 AlexNet 
 

 

AlexNet, proposed by Krizhevsky et al., consists of total eight layers: five convolutional 

layers, followed by three fully connected layers (Figure 5.2). AlexNet uses ReLU activation 

function to handle vanishing gradient problem. AlexNet has 60 million parameters, so overfitting 

is one major issue. It uses dropout in the fully connected layers to ignore some neurons randomly 

during training. AlexNet uses overlapping maxpooling in the convolutional layers and local 

response normalization (LRN) to improve generalization by reducing overfitting [61]. Besides, it 

performed data augmentation (translation, horizontal reflection) to scale-up the training data. In 

contrast to the previously proposed networks, AlexNet used large sized filters (11 × 11 and 5 ×

5) in the initial layers. AlexNet has notable significance in the new era of innovative research in 

CNN applications.  

 

Figure 5.2: Architecture of the AlexNet 

 

 

5.2.3.2 VGGNet  
 

 

The success of AlexNet in the field of image recognition accelerated the research focusing 

on architectural design. Simonyan et al. developed an effective and simple design principle for 
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CNN, called VGGNet (Figure 5.3): VGG-11, VGG-13, VGG-16 and VGG-19. The numerical 

value here denotes the number of convolutional layers which are followed by three fully connected 

layers and softmax classification layer. The authors proved that the increasing number of layers 

can improve the final performance of networks to some degree. VGGNet did not employ the LRN 

layer used in AlexNet finding that its effect on CNN was not evident. It used small sized filters of 

3 × 3 with stride 1, and maxpool layer of 2 × 2 with stride 2. It showed similar efficiency 

comparing to large sized filters (11 × 11, 7 × 7 or 5 × 5), used in earlier networks. This set a new 

research direction in working with small-size filters in CNN. One limitation of VGG is that it is 

computationally expensive due to ~138 million parameters.       

 

 

Figure 5.3: Architecture of VGG16 

 

 

5.2.3.3 ResNet 
 

 

It is expected that deeper networks show improvement over shallow ones since the deeper 

ones can extract more rich and complicated features than the shallow networks. However, the 

increase in depth makes the training task difficult and causes gradient vanishing, gradient 
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exploding etc. The ResNet models, developed by He et al. alleviates the effect of vanishing 

gradient problem by utilizing identity connections or shortcuts around residual blocks to skip over 

some layers as illustrated in Figure 5.4.  

 

 

 Figure 5.4: The illustration of ResNet identity connection. The input 𝒙 is forwarded by the  

 identity connection which is later added to the output of residual block 𝑭(𝒙). The final  

 output is 𝑭(𝒙) + 𝒙 

 

 

The goal of identity connection is to allow gradient to flow through alternate shortcut way. 

Moreover, if any layer hampers the performance, it is skipped by regularization. ResNet uses two 

building blocks (identity block, convolutional block) to build the entire network.  

 

Different version of ResNet exists such as ResNet-18, ResNet-34, ResNet-50, ResNet-101 etc. 

The ResNet-50 is the most common, consisting of 49 convolutional layers and one fully connected 

layer.  

 

5.2.3.4 DenseNet-121  
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The Densely Connected Convolutional Network [67] (Figure 5.5), DenseNet is another 

step towards the increasing network depth. With the increasing number of layers, the path from 

input layer to output layer becomes very big which may cause the information to get vanished 

before reaching the last layer. DenseNet solves this problem by simplifying the connectivity 

pattern. In DenseNet, every layer is directly connected to every other layers. For 𝑁 layers, 

DenseNet has 
𝐿(𝐿+1)

2
 direct connections. So, the input of every layer in DenseNet is the 

concatenation of feature maps from previous layers. The layers of DenseNet are narrow, so lesser 

number of parameters (comparing to ResNet) are added. However, the feature map dimensions 

need to be same for concatenation. Inside each dense block, there is a transition layer consisting 

of a batch normalization layer, 1 × 1 convolution layer followed by 2 × 2 average pooling layer. 

The transition layer performs downsampling by applying the batch normalization.  

        

 

 

Figure 5.5: Architecture of the DenseNet121 
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5.2.3.5 MobileNet-V2  

 

MobileNetV2 is a CNN architecture, developed by Google with the aim of performing well 

on mobile devices [68]. The architecture consists of two types of blocks: (1) Bottleneck residual 

block with stride of 1, and (2) Block with stride of 2 for downsizing. The residual block is presented 

in Figure 5.6. In each block, there are three layers. The first layer is a 1 × 1 convolution with a 

rectified linear unit (ReLU6), second layer is depthwise convolution and the third layer is also 

1 × 1 convolution but without nonlinearity.  

 

 

Figure 5.6: Bottleneck residual block 

 

In bottleneck residual block, the first layer is a 1 × 1 convolution, it is called expansion layer. It 

expands the number of channel before it moves to the depthwise convolution layer. The expansion 

layer expands the input by the expansion factor. The default expansion factor is 6. The depthwise 

convolution layer filters the input, followed by a projection layer which projects the data in lower 

number of dimensions. The MobileNetV2 architecture consist of 19 bottleneck residual blocks, as  
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depicted in Figure 5.6.  

The summary of the CNN models is shown in Table 5.2. 

 

Table 5. 2: Architectures of the CNN models used in this thesis 

 

 

Model Publication Main contribution Parameters Depth Input Size 

 

 

AlexNet 

 

Krizhevsky 

et al. 2012 

a. Utilizes Dropout, ReLU and 

overlap pooling 

 

b.  GPUs NVIDIA GTX 580 

 

 

60 M 

 

 

8 

 

 

 

224 × 224 × 3 

  

 VGG16 

 

 

 

 

Simonyan 

et al. 2014 

a. Homogeneous topology 

 

b. Uses small size kernels 

 

c.ReLU activation function is 

introduced after every convolutional 

layer 

 

138 M 

 

16 

 

 

 

 

224 × 224 × 3 

 

 

 

VGG19 

 

 

 

 

143 M 

 

 

 

19 

 

ResNet-18 

 

 

 

 

 

He et al. 2016 

 

 

 

a. Skip connection is introduced 

 

b. Residual learning is increased from 

hundreds to thousands of layers 

 

 

11M 

 

18 

 

 

 

 

 

 

224 × 224 × 3 

 

ResNet-34 

 

 

21M 

 

34 

 

 

ResNet-50 

 

 

 

 

25M 

 

 

 

50 

 

 

DenseNet-121 

 

 

Huang et al. 

2017 

a. Blocks of layers are connected to 

each other 

b. Cross-layer information flow 

c.Reduces vanishing gradient 

problem 

 

 

8M 

 

 

121 

 

 

224 × 224 × 3 

 

 

MobileNet-V2 

 

 

Sandler et al. 

2018 

a. Inverted residual structure 

b. Usual convolution layer is replaced 

with depth wise separable 

convolution. 

    

 

    

   4.25M 
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224 × 224 × 3 
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5.2.4 Deep Transfer Learning (DTL) 
 

 

Training a CNN from scratch for classification task requires a huge amount of data, which 

is not available. Therefore, the CNN architectures pre-trained on a large-scale dataset act as 

initializer for rare disease classifier training. When a neural network model is trained, the objective 

is to determine the correct weights of the network by multiple forward and backward iterations. 

By making use of the pre-trained models which are already trained on large datasets, the weights 

can be directly used, and the learning can be applied on another research problem of small dataset 

[69]. This approach is called transfer learning (TL). It is a powerful deep learning method in 

computer vision and the intuition is to transfer the knowledge/learning achieved from the source 

domain to a different but relevant problem domain, called the target domain. To sum up, transfer 

learning is based on the idea that the convolution base of CNNs extract reusable features and those 

features are transferrable to other tasks. 

There are several ways transfer learning is applied. In this thesis, two commonly used transfer 

learning approaches are explored and employed. 

  

1) Fine tuning: The weights of the CNN models are initialized with the weights from ImageNet, 

instead of random initialization. The final fully connected layers of the CNN models are removed 

and replaced with new classification layer according to the number of classes in the problem that 

is being tackled. At last, the CNN model is re-trained via backpropagation with the new training 

set.  

    

2) CNN as a fixed feature extractor: The weights are initialized from the ImageNet and the final 

layers are replaced, like previous fine-tuning approach. But the convolutional base is kept frozen 

and only the final fully connected layers are re-trained. However, some convolutional blocks from 
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the rear can be unfrozen and re-trained with the fully connected layers. We froze the entire 

convolutional base in the experiments.  

 

In this thesis, we have adopted the CNN architectures (discussed in Subsubsection 5.2.3) pre-

trained on ImageNet dataset. We expect that using the pre-trained CNN models through transfer 

learning approaches may improve the training speed and show better performance because the 

important image features are already learnt and transferred to the new task. Both transfer learning 

approaches are used in this experiment and the performance is analyzed. Figure 5. 7 shows the 

schematic diagram of rare disease classification using transfer learning.  



 58 

 

Figure 5. 7: Schematic diagram of rare disease classification using transfer learning. CB and 

FC represent convolutional block and fully connected layer, respectively. (a) Transfer 

learning approach by Fine tuning (b) Transfer learning approach treating CNN as a fixed 

feature extractor  
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5.2.5 Image Augmentation 
 

This section presents the augmentation methods that are applied on the facial photographs 

while training the CNN. Image augmentation techniques expand the existing dataset by generating 

more images from the training samples. The objective is to handle the limitations of insufficient 

training data or the unbalanced data distribution in the dataset. Image data augmentation can be 

represented as Equation 5.7: 

 

∅ ∶ 𝑆 →  𝜏 (5.7) 

 

In this mapping, 𝑆 is the original dataset and 𝜏 is the augmented set of 𝑆. The dataset is enlarged 

as the union of the original dataset and the augmented set as shown in Equation 5.8. 

 

𝑆′ = 𝑆 ∪  𝜏 (5.8) 

 

Common image augmentation techniques can be broadly categorized into geometric 

transformation and photometric transformation [70]. Geometric transformations transfer the pixel 

values of input image to new positions and thus modifies the geometry of an image. Such 

augmentation techniques include translation, rotation, reflection, zooming, mirroring, flipping, 

scaling etc. Photometric transformations alter the RGB channels of images to new values and such 

techniques include noise addition, filtering, color jittering, contrast adjustment etc.  

In this study, rotation and noise addition are chosen as augmentation techniques to apply on the 

dataset. Along with increasing the size of the dataset, rotation makes the training images invariant 

to the changes in orientation and noise insertion helps the model to learn separating signal from 

noise in images. Both techniques are chosen considering the practical test case setting of this study. 

Because the facial images of test set might not always be perfectly frontal faced, sometimes the 
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faces can be slightly leaned to any side and quality of the images may also vary. Gaussian, Speckle, 

Poisson, Localvar, Salt & Pepper etc. are some commonly used noises.   

In this study, rotation is applied between 0° and 360° to the images during training. It changes the 

angles by which images appear in the training dataset. It increases variation in the training images 

and prevent the model from memorizing from training data. In this way, it helps to prevent possible 

overfitting.  

The salt & pepper noise is added to the training images every time it is exposed to the model. So, 

the models become less capable of memorizing the training images which leads to increased 

robustness and lesser generalization error.  

 

5.2.6 Traditional Machine Learning-based Methods 
  

5.2.6.1 Support Vector Machine 
 

 

Support Vector Machine (SVM) is a powerful method for classification. The goal of SVM 

is to construct a hyperplane in multidimensional space to separate the data points to their potential 

classes (Figure 5.8). The hyperplane needs to be positioned with the maximum distance to the 

data points. SVM generates optimal hyperplane in an iterative manner, which minimizes the error. 

The core idea behind SVM is to find a maximum marginal hyperplane that segregates the given 

dataset into classes in best possible way [20]. SVM uses kernel trick to transform an input data 

space into the required form.  
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Figure 5.8: SVM classification algorithm. It separates the members of two classes using 

support vectors and separating hyperplane 

 

The facial landmark feature data are applied in the SVM classifier. The landmark feature extraction 

and distance matrix generation process are elaborately explained from Subsubsection 4.2.1 to 

Subsubsection 4.2.3. The landmark features extraction and slight modification to it for applying in 

SVM are precisely presented below: 

 1. From each facial image, 68 landmark points are calculated. One point is selected as a 

starting point and from that point, Euclidean distance is calculated to all the other points. As a 

result, 68 × 68 matrix is generated for each image. The distance matrix generation process is 

illustrated in Figure 4. 1.  For each image, the  68 × 68  matrix is concatenated into a numpy 

array using the numpy package of python. The elements of the array are considered as features and 

given a label. For example, the arrays generated from rare disease facial photograph are given label 

0 and others as 1.  

 2. The above step is repeated for all the images of the dataset. A SVM model with linear 

kernel is fit and classification is performed.  
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5.2.6.2 XGBoost Classifier 
 

 

Extreme gradient boosting (XGBoost) is an advanced implementation of gradient boosting 

algorithm [71]. XGBoost is an ensemble learning algorithm which repeatedly generates new 

models and aggregates them into an ensemble model. The process begins by first computing 

residuals from the first base learner, building new models and adding residuals from the previous 

model to the ensemble of models.  

 

XGBoost uses decision trees as base learners. The nodes of the trees can be referred to as some 

decisive questions with binary answers based on which the route is selected to reach the decisive 

point (leaf). XGBoost uses CART (Classification and Regression trees) which differs from the 

conventional decision trees. CARTs hold real-value score in their leaf nodes which indicates 

whether a particular sample belongs to a group. When a tree reaches the maximum depth (defined 

as a parameter, max_depth), the scores are converted into categories and decision is made.     

 

The data applied on XGBoost for the experiment is same applied on the SVM. It is discussed in 

detail in the previous section. XGBoost is implemented using the scikit-learn Python libraries. This 

library provides fifteen parameters for XGBoost algorithm for tuning. Only four parameters 

(learning_rate, n_estimators, max_depth, subsample) is used considering that these might 

significantly affect the performance.   

 

The learning_rate indicates how fast the model fits the residual errors. Its value is set to 0.01. The 

n_estimators specify the number of boosted trees, and it is fixed to 1000. Usually, the value is 

between few hundreds to thousands. The subsample refers to the portion of training set used for 

training each tree. Lower or higher value of subsample parameter may lead to overfitting or 
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underfitting. Taking this into account, the value is set to 0.7. The maximum depth of the tree 

(max_depth) is fixed to 5.   

 

 

5.2.7 Model Training and Evaluation 

 

5.2.7.1 Hyperparameter tuning  
 

 

The performance of eight CNN models (AlexNet, VGG-16, VGG-19, ResNet-18, ResNet-

34, ResNet-50, DenseNet121 and MobileNetV2) and two machine learning models (SVM, 

XGBoost) are analyzed in this thesis. The transfer learning-based approaches are evaluated on all 

the CNN models. Next, data augmentation is performed on two models, DenseNet121 and 

ResNet50. All the models take 224 × 224 × 3 sized input image. Several batch sizes (16, 25 and 

32) are tested and the smallest batch size 16 is found as providing best result. The learning rate is 

set 0.0001 considering that a small learning rate will be able to capture the knowledge during fine 

tuning. During model training, the dataset is randomly split into training set (80%) and test set 

(20%). Next, the training set is again randomly split into 80% and 20%, where the 20%  is 

considered as validation dataset. The images from the validation set are used to check the training 

performance after each epoch. So, the validation set is part of training. Cross entropy loss is used 

during training the model and Stochastic gradient descent (SGD) optimizer is used.     

 

5.2.7.2 Cross-Validation strategy 
 

 

The simplest model evaluation procedure is to divide a dataset into two parts and use one 

of them to train the model and use the remaining part to test the model. This is also called hold-

out validation. But this procedure is effective when the dataset is large and representative of the 
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problem formulation. The ideal choices for smaller datasets are k-fold cross validation or leave-

one-out cross validation [72]. In this thesis, k-fold cross validation is applied.    

 

In cross-validation, the training dataset is partitioned into 𝑘 segments or folds of roughly equal 

size. The number of 𝑘 is chosen as 5 in this thesis. The first fold is considered as the test dataset 

and the remaining 𝑘 − 1 folds are used to train the model. Once the model is trained and evaluated 

on the test dataset, this process is repeated using the second fold and the other set of 𝑘 − 1 folds. 

This process is repeated until each of the folds is used as test dataset. A total of 𝑘 models are fit, 

evaluated and the performance of each fold is computed as the mean of the performance measures 

in each run. The dataset is shuffled every time before a fold is made, so that randomized folds are 

generated. Stratification is performed on the dataset so that the 𝑘 folds are generated in stratified 

manner. The class distribution of the target variables from the dataset is determined and it is 

ensured that this distribution is preserved in the training and test dataset in each fold. This is one 

way to handle the imbalance that exists in our dataset. 

 

Once the models are fit and evaluated 𝑘 times, the average values are calculated from the 

performance measures generated in each fold.     

 

5.2.7.3 Performance Measures 
 

The most common and used evaluation metrics for image classification are accuracy, 

precision, recall, F1 score and ROC AUC score. These measures depend on the concepts of true 

positive, true negative, false positive, and false negative. Positive and negative indicate the classes 

(in this thesis, rare disease or healthy). True and false state whether the predicted class is same as 

the true class.  
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True Positive (TP): It refers to correct positive prediction. The case is positive, and it is also 

classified correctly.   

 

False Positive (FP): It refers to incorrect positive prediction. This case is negative but falsely 

classified as positive.  

 

True Negative (TN): It refers to correct negative prediction. The case is negative, and it is 

classified correctly.  

 

False Negative (FN): It refers to incorrect negative prediction. The case is positive but falsely 

classified as negative.  

 

Confusion matrix: A confusion matrix for a binary classification is a two-by-two matrix 

generated by counting the number of four outcomes of the classifier. It is shown in Error! 

Reference source not found..  

  

Table 5. 3: Representation of a confusion matrix 

  Actual class 

  Positive Negative 

Predicted 

class 

Positive TP (# of TPs) FP (# of FPs) 

Negative FN (# of FNs) TN (# of TNs) 

  

 

The rest of the evaluation metrics are computed from the confusion matrix.  

 

Accuracy: It indicates the number of correct classifications divided by the total number of the 

dataset.  

         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  

 

It refers to out of all the children, how many of them are correctly diagnosed as positive and how 

many as negative.  
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Precision (Positive Predictive Value): Precision refers to the total number of correct positive 

predictions divided by the total number of positive predictions. It is the ability of a classifier not 

to classify a class as positive which is negative.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

 

Recall (Sensitivity or True Positive Rate): It is calculated as the number of correct positive 

predictions divided by the total number of positives. It is a performance measure of the whole 

positive part of the dataset.  

     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

 

Specificity (True Negative Rate): It indicates the number of correct negative predictions 

divided by the total number of negative cases. It is the performance measure of the whole 

negative part of the dataset. 

     𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

 

F1-Score: F1 score is the weighted average of precision and recall. F1-score is lower than 

accuracy because it embeds precision and recall into their computation.  

 

             𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   

 

AUC and ROC curve:  

 

AUC-ROC curve is the performance measure for classification problems that represents how much 

the model is capable of distinguishing between classes. Receiver operating characteristic (ROC) 

is the probability curve and Area under the curve (AUC) represents the degree or measure of 
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separability. The higher the AUC, the better the model is distinguishing between patients with 

diseases and no diseases.  

 

5.3 Results and Discussion 
 

 

This section presents the results of the CNN models and the traditional machine learning 

models in rare disease classification.  

 

5.3.1 Performance on Transfer Learning as Fine Tuning  
 

The eight pre-trained CNN models are evaluated on Dataset-A based on the fine tuning-

based transfer learning approach, discussed in Subsubsection 5.2.4, and the results are presented 

in Table 5.4. Since the models are pre-trained with ImageNet and fine-tuned, they already know 

how to detect some image features. Five-fold cross validation is performed during training with 

100 epochs in each fold.   

 

Table 5.4: Result of the pre-trained CNN models (Fine tuned) on Dataset-A with batch size   

25  

 

 Performance Measures Parameters 

Model 

name 

Accuracy 

 

Precision Recall F1-

score 

AUC Learning 

rate 

Batch 

size 

AlexNet 0.9397 0.94 0.94 0.94 0.57 0.0001 25 

VGG-16 0.9031 0.91 0.90 0.89 0.95 0.0001 25 

VGG-19 0.8714 0.89 0.87 0.85 0.91 0.0001 25 

ResNet18 0.9095 0.92 0.91 0.90 0.93 0.0001 25 

ResNet50 0.8857 0.90 0.88 0.87 0.95 0.0001 25 

Densenet121 0.9159 0.92 0.91 0.91 0.96 0.0001 25 

Mobilenetv2 0.9175 0.92 0.92 0.91 0.96 0.0001 25 
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Figure 5. 9: ROC curves of the pre-trained CNN models on Dataset-A with batch size 25.   

 

 

The receiver operating characteristic curve of the pre-trained CNN models is shown in Figure 5. 

9. As finetuning is performed here, the weights of the models are initialized from ImageNet instead 

of random weight initialization. Except AlexNet, all the other models showed good classification 

performance as per AUC score.   

 

The eight CNN models are analyzed in same experiment settings, with different batch size, 16 and 

32. The performance of the models are presented in Table 5.5 and the corresponding ROC curves 

are shown in Figure 5.10 and Figure 5.11.   
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Table 5.5: Result of the pre-trained CNN models (Fine tuned) on Dataset A with additional  

                  batch sizes 

 

 Performance Measures Parameters 

Model 

name 

Accuracy Precision Recall F1-score AUC Learning 

rate 

Batch 

size 

AlexNet 0.9365 0.9401 0.9365 0.9353 0.97 0.0001 16 

VGG16 0.8888 0.8929 0.8889 0.8781 0.93 0.0001 16 

VGG19 0.9460 0.9465 0.9460 0.9444 0.99 0.0001 16 

ResNet18 0.9238 0.9297 0.9238 0.9182 0.96 0.0001 16 

ResNet34 0.9381 0.9418 0.9381 0.9344 0.94 0.0001 16 

ResNet50 0.8841 0.8995 0.8841 0.8682 0.96 0.0001 16 

DenseNet121 0.9159 0.9228 0.9159 0.9082 0.96 0.0001 16 

MobileNetV2 0.9492 0.9498 0.9492 0.9475 0.99 0.0001 16 

AlexNet 0.9222 0.9226 0.9222 0.9188 0.95 0.0001 32 

VGG16 0.9048 0.9158 0.9048 0.8938 0.90 0.0001 32 

VGG19 0.8762 0.8883 0.8762 0.8604 0.95 0.0001 32 

ResNet18 0.8905 0.9011 0.8905 0.8763 0.91 0.0001 32 

ResNet34 0.9095 0.9195 0.9095 0.8999 0.90 0.0001 32 

ResNet50 0.9079 0.9183 0.9079 0.8981 0.94 0.0001 32 

DenseNet121 0.8968 0.9075 0.8968 0.8853 0.94 0.0001 32 

MobileNetV2 0.9016 0.9131 0.9016 0.8903 0.93 0.0001 32 

 

 

The Table 5.5 presents the results of the same set of experiments shown in Table 5.4, with 

different batch sizes. The models showed better performance with batch size 16 in almost all 

performance measures. Moreover, based on the AUC score, the performance of AlexNet 

significantly improved with both batch size 16 and 32, instead of batch size 25. Figure 5.10 and 

Figure 5.11 represent the ROC curves of the models with two different batch sizes.   
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Figure 5.10: ROC curves of pre-trained CNN models on Dataset A with batch size 16. The  

 models are pretrained on ImageNet and finetuned.  

 

 

 

 

Figure 5.11: ROC curves of pre-trained CNN models on Dataset A with batch size 32. The  

 models are pretrained on ImageNet and finetuned.  
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5.3.2 Performance on Transfer Learning as CNN as a fixed feature extractor 
 

 

The performance of the eight CNN models is evaluated on Dataset-A using another transfer 

learning approach, where the convolution base of the CNN serves as a fixed feature extractor. The 

performance is evaluated on only batch size of 16, since it has shown better performance than other 

batch sizes as shown above. The results are presented in  

Table 5.6.  

  

Table 5.6: Results of the pre-trained CNN (as a fixed feature extractor) on Dataset-A 

 Performance Measures Parameters 

Model name Accuracy Precision Recall F1-score AUC Learning 

rate 

Batch 

size 

AlexNet 0.9063 0.9062 0.9063 0.9008 0.95 0.0001 16 

VGG-16 0.9190 0.9261 0.9190 0.9123 0.90 0.0001 16 

VGG-19 0.9063 0.9100 0.9063 0.8994 0.95 0.0001 16 

ResNet18 0.8921 0.9059 0.8921 0.8778 0.91 0.0001 16 

ResNet34 0.8921 0.9027 0.8921 0.8795 0.90 0.0001 16 

ResNet50 0.9016 0.9132 0.9016 0.8901 0.94 0.0001 16 

DenseNet121 0.8778 0.8953 0.8778 0.8578 0.94 0.0001 16 

MobileNetV2 0.8809 0.8939 0.8809 0.8652 0.93 0.0001 16 

 

 

Table 5.6 depicts the performance of CNN models when the convolution base is the fixed feature 

extractor. The convolutional blocks of the CNN models are kept frozen and only the classification 

layers are trained. Like previous section, five-fold cross validation is performed during training 

with 100 epochs in each fold.   
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Figure 5.12: ROC curve of pre-trained CNN models (as a fixed feature extractor) on  

      Dataset-A as a fixed feature extractor 

 

It is visible from Table 5.5  and Table 5.6 that among the eight CNN models employing the fine-

tuned transfer learning approach, six models achieved superior result in all performance measures 

than when the convolution base of the models were treated as fixed feature extractor. The VGG-

16 achieved better result as a fixed feature extractor in four measures (Accuracy: 0.9190 vs. 

0.8888, Precision: 0.9261 vs. 0.8929, Recall: 0.9190 vs. 0.8889, F1-score: 0.9123 vs. 0.8781) but 

not in terms of AUC (0.90 vs. 0.93). The ResNet50 also achieved better result as a fixed feature 

extractor in four measures (Accuracy: 0.9016 vs. 0.8841, Precision: 0.9132 vs. 0.8995, Recall: 

0.9016 vs. 0.8841, F1-score: 0.8901 vs. 0.8682) except AUC (0.94 vs. 0.96) 
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The other seven models achieved better result in finetuning approach according to all performance 

measures. The MobileNetV2 model (fine tuned) showed best performance comparing to other 

models (Accuracy: 0.9492, Precision: 0.9498, Recall: 0.9492, F1-score: 0.9475, AUC: 0.99).       

The superior performance of fine-tuning guided transfer learning-based models might lie to the 

fact that during fine tuning, the weights are initialized from ImageNet and the entire model is 

trained. On the other hand, in CNN as fixed feature extraction approach, the convolution blocks 

are frozen and only the classification layers are trained. Since the whole model was trained in fine-

tuning approach, it learnt all the features and hence showed better performance.     

 

5.3.4 Performance under Image Augmentation  

 

Image augmentation is performed on the Dataset-A and its effect is observed over the 

performance of the two deep learning models, ResNet-50 and Densenet121. Two types of image 

augmentation (rotation and noise addition) are performed on the models, as discussed in the 

Subsubsection 5.2.5. Images on the training set are augmented in two scales. In first case, rare 

disease photographs are augmented to 5 whereas normal photos are augmented to 15. So, after 

augmentation the total number of images become 5,216. In another case, rare disease photographs 

are augmented to 10 and normal photographs are augmented to 30. After augmentation, the total 

number of images increases to 9,806. We have smaller number of normal facial photographs in 

Dataset-A comparing to rare disease photographs. For this reason, normal photos are scaled to 

double than rare disease photographs.  

The augmentations are performed on the images of the training set, after the Dataset-A is split into 

training and test sets. This is how it is ensured that the test set does not get augmented. The 
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performance of the is evaluated employing 5-fold cross validation. During each of the five folds, 

the dataset is split first, and augmentations are performed on the training set.  

 

Table 5.7 and Table 5.8 present the effects of augmentation on the models based on fine tuning 

and fixed feature extractor-based transfer learning approaches, respectively.  

     

Table 5.7: Results of Image augmentation on pre-trained CNN (Fine-tuned) models on  

 Dataset-A 

 

 Performance Measures Parameters 

Model name 
Augmentation 

scale 
Accuracy  Precision   Recall   F1-score 

   AUC Learning   

rate 

Batch 

size 

 

ResNet-50 

 

RD: 5 times, 

Healthy: 15 

times 

0.9571 0.9577 0.9571 0.9562  0.99 0.0001 16 

ResNet-50 

RD: 10 times, 

Healthy: 30 

times 

 

0.9556 0.9557 0.9555 0.9544  0.99 0.0001 16 

DesneNet-121 

 

RD: 5 times, 

Healthy: 15 

times 

 

0.9444 0.9491 0.9444 0.9446  0.95 0.0001 16 

DenseNet-121 

RD:10 times, 

Healthy: 30 

times 

 

0.9571 0.9581 0.9571 0.9565 0.97 0.0001 16 
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Figure 5.13: ROC curves of image augmentation on pre-trained CNN (Fine-tuned) models 

  on Dataset-A 

 

 

 

Table 5.8: Results of Image augmentation on pre-trained CNN (as a fixed feature  

extractor) models on Dataset-A 

 

 

 Performance Measures Parameters 

Model name 
Augmentation 

scale 
Accuracy  Precision   Recall 

  F1-

score 
AUC 

Learning   

rate 

Batch 

size 

 

ResNet-50 

 

RD: 5 times, 

Healthy: 15 times 
0.9349 0.9355 0.9349 0.9348  0.98 0.0001 16 

ResNet-50 

RD: 10 times, 

Healthy: 30 times 

 

0.9303 0.9313 0.9304 0.9304  0.98 0.0001 16 

DesneNet-121 

 

RD: 5 times, 

Healthy: 15 times 

 

0.9387 0.9395 0.9387 0.9385  0.99 0.0001 16 

DenseNet-121 

RD:10 times, 

Healthy: 30 times 

 

0.9332 0.9358 0.9332 0.9329 0.99 0.0001 16 



 76 

 

 

Figure 5.14: ROC curves of image augmentation on pre-trained CNN (as fixed feature  

    extractor) models on Dataset-A 

 

After comparing the results of CNN models without applying augmentation and after applying 

augmentation, it is visible that the CNN models achieved superior results on the augmented 

dataset. The performance of augmentation is evaluated on both the transfer learning approaches. 

In both cases, better result is observed on the augmented dataset in terms of all the measures. 

 

The results from Table 5.7 and  Table 5.8 indicate that, even though the results are close, the fine-

tuned CNN models showed overall better performance than the CNN models as fixed feature 

extractor. The fine-tuned ResNet-50 models (in both augmentation scales) outperformed the 

ResNet-50 models as fixed feature extractor. On the other hand, the fine-tuned DenseNet121 

models (in both augmentation scales) achieved superior result than DenseNet-121(as fixed feature 
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extractor) in terms of Accuracy (0.9571 vs. 0.9332), Precision (0.9581 vs. 0.9358), Recall (0.9571 

vs. 0.9332) and F1-score (0.9565 vs. 0.9329), but achieved worse result in AUC (0.97 vs. 0.99)     

 

5.3.5 Performance on Machine Learning Models 
 

 

The machine learning based classification model results on Dataset-A are shown in Table 5.9.  

Like the previous deep learning-based models, five-fold cross validation is performed here as 

well.  

 

Table 5.9: Result of Dataset A on SVM classifier and XGBoost classifier 

Model Accuracy Precision Recall F1-score AUC 

XGBoost 0.834 0.822 0.842 0.822 0.88 ± 0.12 

SVM 0.754 0.758 0.754 0.754 0.81 ± 0.07 

 

 

 

              Figure 5.15: ROC curve of SVM and XGBoost on Dataset-A 
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It is visible from Table 5.9 and Figure 5.15 is that the performance of machine learning based 

classifiers is lower than deep learning based models. It is self-explanatory because the deep 

learning models extract high level features from images prior to classification. On the other hand, 

in machine learning methods, the features are hand-engineered. Only the distance matrices are 

given as input features in both SVM and XGBoost method. The results from Table 5.9 indicates 

that XGBoost outperformed SVM in terms of all measures. XGBoost being a powerful model than 

SVM, the result is understandable. However, the hyperparameters of the XGBoost are considered 

by trial and error process. In future, if grid search is employed to set the optimal parameter, 

XGBoost might show more accurate result. On the other hand, the performance of the SVM model 

might improve if more features (statistical, holistic etc.) are extracted and fused with the geometric 

features.  
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5.4 Conclusion and Future Work 
 

In this section, the performance of different CNN models is investigated in classifying rare 

disease affected children and healthy control. This work can be considered as a rare disease 

detection framework. Even though the fine tune transfer learning-based models outperformed 

other transfer learning approach, overall, the results from both the approaches were satisfactory. It 

indicates that transfer learning approaches are good selection in case of limited amount of data in 

facial disease identification. To some extent, it can handle the challenges of working with small 

datasets.   

 

It is interesting to note that all the employed CNN models performed well in this classification 

task. The possible reasons might include choosing the suitable CNN models for recognition, using 

transfer learning approaches, performing augmentation and the problem being a binary 

classification. If it were a multiclass classification problem, the result might not be good.  

 

In future, we will work on more data augmentation methods and gather more rare disease 

photographs. The system could be made more robust by engaging doctors or rare disease 

specialists in this research. The facial photographs from the datasets could be shown to them and 

their decision (whether the face has rare disease or not) will be considered as another performance 

measure. The proposed methods can be investigated further, and a mobile application can be 

developed. It could be easily used in any handheld devices and act as an effective tool for 

preliminary rare disease screening. The MobileNetV2 model is developed specifically focusing on 

portability. Besides, the fine-tuned MobileNetV2 model has shown best performance comparing 

to other models. So, this model can be extended further for this purpose.  
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Chapter 6: Conclusion, Limitations and Future Work 

 

This study develops a new dataset of rare disease facial photographs and performs analysis 

on it through two aspects: (i) Correlation score calculation of the facial features and risk gene 

similarity estimation, and (ii) Classification of the rare disease from normal facial photographs.  

 

In the first part of the thesis, 485 facial photographs of children with rare diseases are curated and 

stored in a database. In the next two parts of the thesis, the rare disease facial photographs are used 

to perform further analysis. The correlation between the facial features and risk gene semantic 

similarity is analyzed. In third part of the thesis, a systematic examination is performed on eight 

convolutional neural network architectures (transfer-learning based). The summary of this part is 

fundamentally a binary classification task which proves that a well-trained transfer learning guided 

model can detect rare disease given an input image of facial photographs. The results facilitate the 

body of knowledge in deep learning domain that transfer-learning based models, like many other 

applications can correctly classify rare disease when the input facial photograph dataset is quite 

small. Substantial experimental analysis is provided to support this decision.  

 

The major challenge of this thesis is limited amount of data. There is no publicly available rare 

disease facial photograph database. In order to do the experiments and evaluation, we developed 

two datasets by ourselves combining the curated rare disease facial photographs and normal facial 

photographs from three different publicly available databases. The rare disease photographs are 

from publicly available sources whereas the normal facial photographs of children are collected 

from DDCF database where the images are taken as part of a research project and the FGNet 

database has images from personal collection. The quality of some images from the FGNet 



 81 

database is not so promising. It is hard to interpret how the differences between the facial images 

affected the model training and overall performance.  

 

Another limitation is that multiclass classification is not performed here. The developed methods 

can only detect whether a facial photograph falls in the category of rare disease or healthy photos, 

but it is unable to report in which of the 104 rare disease categories the photograph belongs to. The 

reason behind the limitation is also the small number of curated facial photographs.  

   

In future, we intend to collect more facial photographs of rare disease and normal facial 

photographs to conduct experiments in more realistic and neutral settings. The curated rare disease 

facial photographs can be considered as a benchmark dataset. Classifying the 104 rare diseases 

categories from limited amount of available data can be a promising research question for future.      
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