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Abstract

Global climate models predict changes in precipitation patterns in many areas of

the world. Extreme precipitation in particular is poorly represented in climate

models and there are significant difficulties involved in assessing the frequency and

severity of future extreme precipitation events. In this study, several methods

have been reviewed and compared for estimating projected changes in Intensity-

Duration-Frequency (IDF) curves, commonly used in urban hydrology. A theoreti-

cal approach based on geostatistical considerations is employed to derive reasonable

areal-reduction factors that make it possible to compare gridded model data with

observations.

The mean value method and QQ-mapping have been used to remove biases from

modeled data. A simple scaling model has been developed to construct IDF curves

using the bias-corrected modeled data for the control and future climate. To in-

vestigate uncertainties in predicted changes, different simulations from the North

American Regional Climate Change Assessment Program (NARCCAP) have been

analyzed.
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Chapter 1

Introduction

1.1 Background

The 21st century will face many challenges and one of them is a changing climate.

Climate change affects the economy, infrastructure, health, and wildlife. Hence cli-

mate change has become one of the most important issues in the world as natural

calamities, global warming, and extreme events appear to increase in frequency day

by day. Climate change is measured by the change of temperature, wind, precipita-

tion, sea level and snow cover. According to the IPCC report 2007, increased levels of

Carbon-di-oxide, Methane, Ozone, Halocarbon, and Nitrous oxide contribute to the

global warming. The report concludes that human activities are responsible for much

of the warming. In Canada the mean temperature has increased about 1.30C over

the past century (www.nrcan.gc.ca). In the future, the snow cover will be reduced,

sea ice will continue to shrink, and heat waves and extreme precipitation events will

1



1.1. BACKGROUND

occur with increasing frequency.

The climatic system is complex and the factors contributing to climate change

are not working individually. Climate change can involve both changes in aver-

age conditions and changes in extreme conditions. Greenhouse gas is the primary

cause of climate change. In Canada, 80 percent of total greenhouse gas emis-

sions are associated with the production or consumption of fossil fuels. Globally,

Canada accounts for about two percent of total annual greenhouse gas emissions

(www.climatechange.gc.ca). Measures to reduce greenhouse gas are being introduced

in Canada but additional climate change is unavoidable and will have significant neg-

ative economic, social and environmental impacts on Canadian communities.

Over the last several decades many studies have been conducted to assess cli-

mate change. Most of the studies have focused on average conditions of climate, not

extreme events. The Canadian Centre for Climate Modelling and Analysis has de-

veloped a number of climate models to assess future climate change and variability,

resulting from projected scenarios of greenhouse gas emissions and aerosol forcing.

Future weather and climate extremes are predicted by comparing the control climate

model simulations to simulations of the future. The earlier climate models focused

only on the mean climate change (Houghton et al., 1990), but now climate modelers

have started to look at the weather and climate extremes. In recent years, climate

models have been improved enough to simulate more complex features. There is

increasing confidence that climate models can provide projections of changes more

2



1.1. BACKGROUND

Table 1.1: Observed and simulated mean annual maximum precipitation (mm) at Brandon, MB.

1hr 2hr 6hr 12hr 24hr
Observed 19 24 36 42 48
CRCM 5 8 16 22 29

accurately, but there is still problems with the prediction of extreme precipitation.

Global climate models predict changes in precipitation patterns in many areas of

the world. GCM’s have coarse resolution and for most practical applications must

be combined with downscaling techniques designed to resolve sub-grid variability

and remove biases. Extreme precipitation in particular is poorly represented in cli-

mate models and even when combined with traditional downscaling methods, there

are significant difficulties involved in assessing the frequency and severity of future

extreme precipitation events.

Table 1.1 shows the mean annual maxima for durations of 1-hr, 2-hr, 6-hr, 12-hr

and 24-hr for the raingauge at Brandon, along with corresponding values simulated

by the Canadian Regional Climate Model (CRCM). There is a considerable differ-

ence between observed and simulated extreme precipitation statistics. Evidently,

climate models do not represent maximum precipitations very well. At the same

time, this type of information is important for the design of urban drainage systems

that typically have long design lives and performance that will be affected by future

climate change.

Climate models attempt to represent the real climate but in practice, biases and

coarse spatial resolution of global models limit their direct use. Hence, it is necessary

to apply two additional steps to regional and local impact studies : downscaling and

3
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bias removal. According to the IPCC fourth assessment report, the uncertainty

in regional climate model projections is still large in spite of increasing horizontal

resolution. An ensemble RCM projections over North America from North American

Regional Climate Change Assessment Program (NARCCAP) are available which

makes it possible to compare the results from different climate models and investigate

the uncertainties involved in future predictions.

Downscaling is required to overcome the limitations of coarse spatial resolution

in the global models. In mountainous terrain, a single grid box will consider only

mean elevation. In reality, the conditions at the mountaintop and valley locations

will be much different. Such processes as local snow pack accumulation and melting

cannot be studied accurately with direct model output. The typical resolution cannot

represent the conditions of small scale processes clearly, especially for precipitation.

The occurrence of heavy rainfall is an important climate feature but an area the size

of a grid box may experience heavy rains at some points while others receive no rain

at all. For this reason, the largest grid box values typically are smaller than those

observed at the local scale.

Bias removal is often done by the ∆-method. Change amounts are determined

by comparing the climate model output for current and future climates, typically

a difference for temperature and a percentage change for precipitation. Then these

changes are applied to observed climate data to construct input to impact models.

The ∆-method assumes that future model biases for both mean and variability will
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be the same as those in present-day simulations, and that the future frequency and

magnitude of extreme weather events are the same relative to the mean climate of

the future as they are in present-day climate.

Extreme rainfall characteristics are often required for the design of hydraulic

structures. Information about extreme rainfall can be expressed by Intensity-Duration-

Frequency (IDF) curves. The establishment of IDF curves for extreme rainfall is a

common task in risk analysis of natural hazards. In design problems, it is necessary

to know the storm duration and intensity for different return periods and IDF curves

provide this information.

IDF curves are widely used as hydrological tools in engineering applications.

IDF curves are most often used for design of infrastructure that includes minimum

capacity in terms of rainfall return periods. For example, in Canada storm sewers are

typically designed to carry a 5-year storm. There are a number of ways to establish

IDF curves. For example, the relationship between intensity, duration and return

period may be expressed by (Subramanya, 1984)

i =
KT x

(D + a)n
(1.1)

where K, a, x and n are constants for a given catchment and i is the average of

intensity of a storm event with duration D and return period T . The steps involved

in the typical establishment of IDF curves are the following:

• For each duration, fit a probability distribution function to the series of maxi-
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Figure 1.1: Intensity-Duration-Frequency curves

mum annual values.

• Calculate rainfall intensities for specific durations and specific return periods,

using the probability distribution functions derived in the first step.

• Fit an empirical formula such as (1.1) to the quantiles from the previous step.

The least squares method can be used to determine parameters of the empirical

IDF equation that is used to represent the Intensity-Duration relationships.

An example of IDF curves is shown in Figure 1.1. Here the IDF curves have been

established using the generalized extreme value (GEV) distribution. The curves

were estimated by fitting probability distributions for several pre-determined rainfall

durations.

In urban hydrology, knowledge of short-duration rainfall events is needed. Short
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temporal rainfall data are often not available or the period of record may be too

short for analysis (Aronica and Freni , 2005). One way to overcome this problem

is to make use of scale invariance theory. The advantage of using scaling laws is

that quantiles for any duration rainfall can be determined by this theory. The ba-

sic theoretical framework of scaling theory has been investigated by many authors.

Scaling models can be used to transfer results between different temporal or spatial

scales and thereby overcome the difficulty of inadequate data (Nhat et al., 2007). If

H(d) and H(λd) are random variables at two distinct time or spatial scales d and

λd, respectively, then the definition of scaling is given by

H(d)
dist
= λ−βH(λd) (1.2)

where the equality sign represents the identity of probability distributions, λ is the

scale factor, and β is the scaling exponent. In simple scaling laws, the scaling ex-

ponent is proportional to the order of moments. When analyzing extreme rainfall

events, it is possible that the scaling exponent is not proportional to the order of

moment and in such cases, multiple scaling theory may be used.

Aronica and Freni (2005) estimated sub-hourly depth-duration-frequency (DDF)

curves using the scaling properties of hourly and sub-hourly data at partially gauged

sites. Menabde et al. (1999) identified simple scaling properties for annual maxima

series by examining moment and parameter scaling of an extreme value distribution

fitted to the data. Burlando and Rosso (1996) employed scaling and multiscal-
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ing models to develop depth-duration-frequency curve for storm precipitation and

showed that most of the observed data follow simple scaling laws. However, the

model performance in some cases can be improved by using a multiple scaling ap-

proach.

One of the major problems in climate studies is the temporal and spatial scale

mismatch between the outputs of climate models and station data, as station obser-

vations are point data and model values are areal data. Areal IDF curves are flatter

in appearance than point IDF curves because of the smoothing associated with the

spatial averaging of rainfall over the area. In order to transform the point rainfall

intensity to areal average rainfall intensity, hydrologists use so-called areal reduction

factors (ARF). An areal reduction factor is simply a ratio of catchment rainfall in-

tensity for a specific duration and return period and point rainfall intensity for the

same duration and return period. Areal IDF curves can be obtained by multiplying

the rainfall intensity obtained from point IDF curves by the ARF. For very small

catchments, the ARF tends to unity. There are two kinds of ARF presently in use

(Sivapalan and Bloschl , 1998):

• Fixed-area ARFs describe rainfall at an arbitrary point. Point rainfall quantiles

are estimated and then averaged over a catchment which is fixed in space.

• Storm-centered ARFs which refer to a given storm. Storm-centered ARFs are

determined as the ratio of the average rainfall depth over an area and maximum

rainfall depth for the storm.
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Storm-centered ARFs are usually smaller than fixed area ARFs. Storm-centered

ARFs are used in the probable maximum flood estimation and Fixed-area ARFs are

used in the design of hydraulic structures like bridges, culverts and drainage pipes.

In this study, fixed area ARFs have been estimated to develop areal IDF curves.

In the past 15-20 years, research on rainfall processes has been dominated by

stochastic modeling of rainfall fields in time and space (e.gWaymire et al. (1984);Siva-

palan and Wood (1987)). Several empirical models have been proposed to transform

point rainfall depths to average areal rainfall. For example, the U.S Weather Bureau

developed the following equation (Leclerc and Schaake (1972))

ARF = 1− exp(−1.1d1/4) + exp(−1.1d1/4 − 0.01A) (1.3)

where d is the duration in hours and A is the area in square miles. The shortcomings

of this formula is that storm magnitude is not considered. Roche (1963) presented

a theoretical basis to transform point rainfall to areal rainfall. This method was

technically correct but cumbersome and difficult to apply in a practical manner.

Rodriguez-Iturbe and Mejia (1974) used the spatial correlation structure of rainfall

fields to approximate rainfall fields as a zero mean Gaussian process. The areal

averaging resulted in variance reduction factors which were a function of the assumed

spatial correlation structure and the size and shape of the catchment area. They

argued that the variance reduction factors can be interpreted as ARFs but these

ARFs only refer to the parent rainfall intensities, not extreme rainfalls. Yoo and
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Ha (2007) discussed the definition of spatial correlation, specifically whether dry

days should be included in the determination of spatial correlation of precipitation.

Their results show that the effect of including dry days is significant during the

wet season where the inter-station correlations are significantly lower than those

estimated during the dry season. The consideration of zeros always yields high

inter-station correlation coefficients than when only wet days are considered. Areal

reduction factors are necessary tools in climate change studies as they provide the link

between observed point precipitation and simulated grid precipitation that represents

areally averaged values.

There are many ways to estimate the future change of climate and among them

two methods are described in this section. Theses methods are explained in Mailhot

et al. (2007).

• Intensity-dependent ARF approach

According to the hypothesis, ARFs for rainfall of a given intensity and duration

in the future climate will be the same as for rainfall with same intensity and

duration in the control climate. Only the probability of occurrence of these

events will change. This hypothesis can be expressed in mathematical form as

ARFf (x
(g)
f ) =

x
(g)
f

x
(s)
p

[
F

(g)
p (x

(g)
f )

] (1.4)

where x
(g)
f is the future annual maximum estimates at the grid box scale, x

(s)
p is
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the control annual maximum rainfall estimates at the station scale, F
(g)
p (x

(g)
f )

is the corresponding probability of non exceedance at the grid box scale, and

brackets indicate that x
(s)
p is a function of F

(g)
p (x

(g)
f ).

• Constant ARF approach

In this method, to generate IDF curves at the station scale, the rainfall depths

for a given duration and for a given return period at the grid box scale are used

to estimate the rainfall depths at the station scale for the future climate. The

assumption is

ARFf = ARFp (1.5)

The rainfall depths can be written mathematically

x
(s)
f = x(s)

p

x
(g)
f

x
(g)
p

(1.6)

where x
(s)
p is the rainfall depths at the station scale for the control climate, x

(g)
f

is the rainfall depths at the grid box scale for the future climate, and x
(g)
p is

the rainfall depths at the grid box scale for the control climate.

Another way to compare observed and model data is statistical downscaling.

Statistical downscaling can be done at the monthly or daily timescales. The most

common downscaled variables are precipitation and temperature. There are several

approaches to statistical downscaling, described in the following (Walsh, 2011);

• Delta method: In this method, differences between the GCM future and his-
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torical periods are superimposed on historical monthly or daily observations.

• Bias correction method: In this method, the differences between observed cli-

matological mean values and corresponding simulated GCM mean values for

the reference period are used to correct future GCM simulations.

• Statistical downscaling: In this method, a statistical relationship is established

between large scale predictors and local predictands based on multiple linear

regression.

Willems and Vrac (2011) used a quantile perturbation-based downscaling method.

The quantile perturbation basically involves the estimation of the change factor in

daily precipitation for a specific month and a specific empirical probability. Mavro-

matis and Jones (1999) used daily outputs from HadCM2 GCM as input to CERES-

Wheat for studying the potential impact of climate change on wheat in France and

their conclusion was that the daily GCM cannot represent the year-to-year variability

adequately.

Challinor et al. (2005) found that to get good predictions with GCMs, it is nec-

essary to calibrate the model to observed district yield because of GCM biases. Ines

and Hansen (2006) proposed a two-step bias correction to correct GCM rainfall.

The procedure involves truncating the GCM rainfall at a point so that it can repro-

duce the observed wet-dry day probabilities and then mapping the truncated GCM

precipitation distribution onto a gamma distribution fitted to observed intensity dis-

tribution. Corrected GCM output is calculated by (Ines and Hansen, 2006)
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x′

i = F−1
I,obs(FI,GCM(xi)) (1.7)

where FI,GCM(xi) is the cumulative distribution function (CDF) of daily rainfall

amounts above the threshold and F−1
I,obs is the inverse of the observed intensity dis-

tribution.

1.2 Objectives

The overall objective of this thesis is to apply and evaluate methods for estimating

changes in IDF-curves resulting from climate change. Specific objectives are

1. To identify and compare methodologies for predicting changes in IDF curves

and derivation of areal reduction factors allowing for comparison of observed

point precipitation and modeled grid precipitation at short temporal scales.

2. To find a relationship between CRCM data and station data by using scale

invariance theory. Two methods for future prediction will be examined - 1)

bias correction for each duration (either δ-factor correction or QQ mapping)

and 2) bias correction for the reference duration and the use of scaling laws

estimated from observed data to obtain results for all other durations.

3. To assess changes in IDF curves for Manitoba for a selected future climate

scenario (A2).

13
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4. To investigate the uncertainties in regional projections of the future climate by

using different simulations from the North American Regional Climate Change

Assessment Program (NARCCAP).

14



Chapter 2

Study area and Data

The province of Manitoba was selected as the study area for this research. Rainfall

data from 19 raingauge stations in Manitoba (Figure 2.1) were used in the study.

2.1 Station data

From December to April, most precipitation in Manitoba falls as snow. Due to the

cold weather, tipping bucket raingauge stations are inoperative during these months,

but the exact period of operation varies from year to year and from station to station.

Maximum annual precipitation values from April to November were considered in

this study. This is also the period of the year where the annual maxima usually

occur. The data are provided by Environment Canada from the Canadian Daily

Climate Data (CDCD). Manitoba has a total of 31 weather stations. Most stations

are located in the southern part of the province, whereas there are a few weather

15
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Figure 2.1: Location of stations

stations in the north. Very few weather stations have long-term records, and therefore

large temporal gaps exist across the province. Stations in the southern portion of the

province generally has the longest records with some extending back to the 1870’s,

while in the north, records do not extend further back than 1950’s. This temporal

gap make climate change analysis more difficult. In this study, a total of 19 stations

were considered, selected on the basis of data availability and record length. Rainfall

stations with less than 20 years of record were discarded from the study.

An analysis was performed on the annual maximum rainfall series from the 19

rainfall stations for durations of 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr. The record lengths

range from 25 to 38 years. The raingauge stations have data for nine durations: 5-
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Table 2.1: Stations used in the analysis.

name latitude longitude elevation Records Mean AM rainfall
(m) (24-hr,mm)

BRANDON A 49.92 -99.95 409 1970-2006 48
DEERWOOD 49.40 -98.32 338 1951-1995 49
GLENLEA 49.65 -97.12 234 1967-2000 55
LYNN LAKE A 56.86 -101.08 356 1969-2005 40
GILLAM 56.36 -94.71 145 1970-2006 37
PORTAGE SOUTHPORT A 49.90 -98.27 269 1964-1991 53
FLIN FLON A 54.68 -101.68 303 1968-2006 41
BISSETT 51.03 -95.70 259 1968-1997 53
BRANDON CDA 49.92 -99.95 363 1941-2006 52
CHURCHILL A 58.74 -94.06 28 1943-2006 31
DAUPHIN A 51.10 -100.05 304 1942-2006 52
INDIAN BAY 49.62 -95.20 326 1915-2006 53
ISLAND LAKE A 53.85 -94.65 236 1970-2006 43
MORDEN CDA 49.18 -98.08 297 1918-1998 56
NEEPAWA WATER 50.22 -99.47 358 1969-2006 52
NORWAY HOUSE FORESTRY 54.00 -97.80 217 1970-2000 41
PILOT MOUND 49.20 -98.90 270 1943-2006 45
THOMPSON A 55.80 -97.87 222 1967-2006 41

min, 10-min, 15-min, 30-min, 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr. In this study the

durations ranging from 1-hr to 24-hr were considered as these durations are also

available from the Canadian Regional Climate Model (CRCM). Table 2.1 lists the

raingauge stations. The last column shows the mean of annual maximum 24-hr

rainfall.

2.2 Canadian Regional Climate Model data

Regional climate models (RCMs) increase the resolution of the GCM in a local

area of interest. They allow for better representation of the underlying topography

within the model domain and are also able to resolve atmospheric processes based

on the model resolution. The results of LaPrise et al. (1998) demonstrate the great
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potential of continuous multi-year nested regional climate model simulations using

the Canadian RCM (CRCM) at 45km resolution. RCMs are able to evaluate the

effect of a variety of forcings upon the regional climate that cannot be obtained from

GCMs.

The Canadian Regional Climate Model simulations were used in this study. The

CRCM’s grid size resolution is 45km-by-45km. The CRCM data were provided by

the Ouranos Climate Simulation Team as a part of the Canadian Regional Climate

Projections program. The following three experiments were used in this study:

• Experiment version aev: Based on CRCMmodel version MRCC 4.2.3, ensemble

5, covering the period from 1961-2100.

• Experiment version aey: Based on CRCMmodel version MRCC 4.2.3, ensemble

1, covering the period from 1961-2000.

• Experiment version aew: Based on CRCM model version MRCC 4.2.3, ensem-

ble 5, covering the period from 2041-2070.

The CRCM simulations are driven by data from the CGCM3.1. In this study, the

T47 version was used which has a spatial resolution of roughly 3.75 degrees lat/lon

and 31 levels in the vertical (Flato and Boer (2001), Kim et al. (2002), Kim et al.

(2003)). A single emission scenario is used: the SRES A2 which is characterized by

economical development, technological development, energy use, population change,

and land use change. The A2 scenario is at the higher end of the SRES emission
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Table 2.2: NARCCAP simulations used in the present study

RCM GCM
HRM3 GFDL (Geophysical Fluid Dynamics Laboratory GCM)
CRCM CCSM (Community climate system model)
CRCM CGCM3 (The third generation coupled global climate model)
HRM3 HADCM3 (Hadley centre coupled model, version3)
MM5I CCSM (Community climate system model)

scenarios. This was preferred for the development of the methodology but ideally

other scenarios should be considered as well.

2.3 The North American Regional Climate Change

Assessment Program (NARCCAP)

The North American Regional Climate Change Assessment Program (NARCCAP)

is an international initiative that provides high resolution climate scenarios for the

United States, Canada and Northern Mexico using regional climate models coupled

with global climate models. NARCCAP provides high resolution climate change

simulations that are useful for investigating uncertainties in regional scale projections

of future climate.

Different GCMs have been forced with the SRES A2 emission scenario for the

21st century (Mearns , 2007, updated 2011). Simulations with the models were also

produced for the current (historical) period. The RCMs are nested within the GCMs

for the current period 1968-2000 and for the future period 2041-2070. NARCCAP

data are stored in NetCDF format and distributed via the Earth System Grid website.
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NARCCAP data are provided at a 50km horizontal resolution. The data are at a 3-hr

resolution, and 3-hr, 6-hr, 12-hr, 18-hr, and 24-hr precipitation depths were extracted

from NARCCAP. Table 2.2 shows the different simulations from NARCCAP that are

used in this study.
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Chapter 3

Areal Reduction Factor

In this chapter, a methodology is employed to derive areal reduction factors (ARFs)

analytically to construct Intensity-Duration-Frequency (IDF) curves for large areas.

This is a necessary step in order to compare model data that represent grid averages

with observations at a point in space. Two experiments from the CRCM were used

to make comparison between estimated areal rainfall from observations and CRCM

rainfall intensities.The methodology here is based on Sivapalan and Bloschl (1998).

ARFs were derived based on the spatial correlation structure of rainfall. To determine

the spatial correlation structure, daily precipitation values were used in this study.

These data were obtained from Environment Canada’s web site for the period of

1970-1979. The following steps were involved:

• First, the parent distribution of areal daily rainfall depth was derived from

point rainfall depth.
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• The parent distribution was then transformed to an extreme value distribution.

• The parameters of the extreme value distribution for areal rainfalls were deter-

mined.

• The new areal IDF curves were then produced using these parameters and

ARFs were estimated by the ratio of grid box rainfall intensity at a specific

duration and a specific return period and the point rainfall intensity at the

same duration and the same return period.

Analytically computed ARFs depend on the catchment area, the spatial correlation

structure, and the return period. The methodology is described in details in the

following sections.

3.1 Analytical derivation of Areal Reduction Fac-

tors

3.1.1 Parent distribution of point rainfall

Daily precipitation P has a mixed distribution and it is assumed that the parent dis-

tribution of daily precipitation at a point in space is exponential for P > 0 as several

studies indicate that the exponential distribution represents a good approximation

of the rainfall process [Eagleson (1972); Warrilow et al. (1986)]. The exponential
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Figure 3.1: Plot of the cumulative probability distribution function of daily precipitation greater
than zero for the Brandon raingauge station.

probability density function can be written as

fIp(ip) =
1

βp

exp (−ip/βp), ip ≥ 0 (3.1)

where ip is the daily rainfall intensity on wet days and βp is the exponential param-

eter. The index p is used to indicate that this parameter is for point precipitation.

Figure 3.1 shows an example of an exponential distribution fitted to daily precipita-

tion data at the Brandon station. The mean and the variance are

µp = βp (3.2a)

σ2
p = β2

p (3.2b)
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An assumption is made that the spatial correlogram for daily point precipitation is

isotropic and of the exponential type [Rodriguez-Iturbe and Mejia (1974);Wood and

Hebson (1986)], i.e.

ρp(r) = exp (−r/λ) (3.3)

where r is the distance between two stations and λ is the spatial correlation length

defined by

λ =

∫
∞

0

ρp(r)dr (3.4)

Spatial correlograms were developed for three different cases. In the first case, corre-

lations were based on cases where both stations record rain (Figure 3.2). The second

case considered all cases, including zeros (Figure 3.3). And the third case considered

days where at least one station in a pair record rain (Figure 3.4). The inter-stations

correlations are significantly lower when only jointly wet days are considered. To

develop IDF curves for catchments, only the first case is of practical interest. The

correlogram in Figure 3.2 has a spatial correlation length of 116 km.

3.1.2 Areal averaging of point rainfall

The assumption made in this study is that the spatial random field of point rainfall

intensities is stationary. The areally averaged rainfall intensity over the area A is

defined by

iA =
1

A

∫

A

ip(x)dx (3.5)
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Figure 3.2: Spatial correlation versus inter-station distance based on daily data where both stations
in a pair record precipitation.
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Figure 3.3: Spatial correlation versus inter-station distance based on all daily data including zeros.
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Figure 3.4: Spatial correlation versus inter-station distance based on daily data where at least one
station record precipitation.
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where x is a vector of coordinates inside the area. As it is assumed that the spatial

random field is stationary, the mean of iA will be the same as the mean of iP :

µA = µP (3.6)

Due to smoothing involved in the spatial integration, the variance of the areally

averaged process, σ2
A, is less than the variance of the point rainfall process, σ2

P . The

ratio of σ2
A/σ

2
P is called the variance reduction factor, denoted ν2. The variance of

daily areal precipitation can be written as

σ2
A = σ2

Pν
2 (3.7)

3.1.3 Estimation of variance reduction factor

The variance reduction factor depends on the correlation structure of the rainfall

field and the size and the shape of the area. Rodriguez-Iturbe and Mejia (1974)

expressed ν2 for a stationary isotropic spatial random field by

ν2 = E[ρp(|x2 − x1|)] (3.8)

which is the expected value of the spatial correlation coefficient between any two

points x1 and x2 randomly chosen within the catchment domain of size A and |.|

represents the Euclidean distance between them. In other words, the above equation
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can be written as

ν2 =

∫ Rmax

0

ρp(r)fR(r)dr (3.9)

where R is the Euclidean distance between randomly selected two points within the

area, Rmax is the maximum distance between two points within the area, and fR is

the pdf of the random variable R. This PDF can be estimated numerically for any

shape of catchment area. In the present application, it is appropriate to assume that

the area is square and the pdf of R for this case has been derived by Ghosh (1951).

The probability density function of R, the random distance between two independent

points in a square of side length a, was given by Ghosh (1951):

fR(r) =
4r

a4
φ(r) (3.10)

where for the range of r = 0 to r = a,

φ(r) =
1

2
πa2 − 2ar +

1

2
r2 (3.11)

and for the range of r = a to r =
√
2a,

φ(r) = a2(sin−1 a

r
− cos−1 a

r
) + 2a

√
r2 − a2 − 1

2
(r2 + 2a2) (3.12)

Equation (3.9) can be integrated analytically and the result of (3.9) is presented

in Figure 3.5. The figure is identical to the variance reduction factor obtained by
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Figure 3.5: Variance reduction factor versus non dimensional catchment area A
λ2 . The catchment

area is approximated by a square and the correlogram is exponential.

Rodriguez-Iturbe and Mejia (1974) in their figure 5. From Figure 3.5, it is found

that when the area tends to zero, the variance reduction factor goes to 1 as one

should expect. The variance reduction factor decreases with the increase of area.

More specifically, ν2 → 0 when A → ∞. An accurate approximation of the curve in

Figure 3.5 can be written as

ν2 = 0.75 exp(
−0.63

√
A

λ
) + 0.25 exp(

−0.16
√
A

λ
) (3.13)

Equation (3.13) is a function of a square catchment area and the spatial correla-

tion length, λ.
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3.1.4 Parent distribution of areal average rainfall

When the point rainfall is exponentially distributed, the areal averaged rainfall will

be approximately Gamma distributed [Wood and Hebson (1986);Hebson and Wood

(1986);Sivapalan et al. (1990)]. The Gamma probability density function with pa-

rameters kA and βA is

fIA(iA) =
( iA
βA

)kA−1 exp (− iA
βA

)

βAΓ(kA)
(3.14)

where index A indicate that the parameters pertain to the areal distribution. The

mean and variance of the Gamma distribution are

µA = kAβA (3.15a)

σ2
A = kAβ

2
A (3.15b)

and from (3.2a), (3.2b), (3.6), and (3.7) it is found that

kAβA = βp (3.16)

kAβ
2
A = β2

pν
2 (3.17)

where ν2 is the variance reduction factor estimated from (3.9) or (3.13) for a square

area. From (3.16) and (3.17), the areal distribution parameters kA and βA can be
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expressed in terms of the point distribution parameters as:

kA = ν−2 (3.18a)

βA = βpν
2 (3.18b)

Equations (3.18a) and (3.18b) describe the change of parameters of the parent dis-

tribution of the areally-averaged rainfall with catchment area A.

3.1.5 Distribution of maximum annual point and areal pre-

cipitation

The discussion so far has focused on the distribution of daily precipitation on wet

days. In the context of IDF curves, the main interest is in extreme values, i.e. the

largest value in a calendar year. From extreme value theory it is known that the

largest value of n exponentially distributed variables has an extreme value type I, also

called Gumbel distribution. The same is true for the largest of n Gamma distributed

variables. The Gumbel distribution has the form

F (i) = exp [− exp {−αn(i− un)}] (3.19)
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Assuming there are n wet days in a year, one can establish the following relationship

between parent and extreme value distribution: For point rainfall

αnp =
1

βp

(3.20a)

unp = βp log(n) (3.20b)

For areal rainfall

αnA =
f1(kA)

βA

(3.21a)

unp = f2(kA)βA log(n) (3.21b)

where f1 and f2 are functional approximations derived by Sivapalan and Bloschl

(1998). These approximations are given by:

f1(kA) = 1− 0.17l log(kA) (3.22a)

f2(kA) = 0.39 + 0.61(kA)
0.8 (3.22b)

In the case of point precipitation, the relationship between the Gumbel parameters

and the exponential parameters is exact. For areal precipitation, the relationship

between Gumbel parameters and Gamma parameters is an approximation. It should

be noted that the approximations for f1 and f2 do not depend on data. Noting that

kAβA = βp and kA = ν−2, the relationship between the parameters of extreme point
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and areal rainfall can be written:

αnA

αnp

=
f1(kA)/βA

1/βp

=
f1(ν

−2)

ν2
(3.23a)

unA

unp

=
f2(kA)βA log kA

βp log kA
= ν2f2(ν

−2) (3.23b)

The usefulness of (3.23a) and (3.23b) is that these formulas provide a simple means

of obtaining the parameters for the distribution of annual maximum areal rainfall

from point (station) information.

3.1.6 An example application

To illustrate the methodology, IDF curves were developed for the Flin Flon station.

It is assumed that the Gumbel distribution is appropriate for all durations, i.e.

F (i) = exp [− exp {−αnp(d)(i− unp(d))}] (3.24)

where the notation αnp(d) and unp(d) highlights the dependence of the Gumbel pa-

rameters on durations. Precipitation quantiles can be found by inverting the CDF:

i = − log(− log(F ))

αnp(d)
+ unp(d) (3.25)

The Gumbel parameters were estimated using point rainfall intensity for durations

of 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr. Estimated parameters were then plotted against
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Figure 3.6: Fitted Gumbel parameters along with approximations for αnp(d) and unp(d) given in
Equations (3.26a) and (3.26b).

durations to establish empirical relationships between the parameters and duration.

The following empirical relationships were obtained for the Flin Flon station:

αnp(d) = −0.2366 + 7.9986d−0.7618 (3.26a)

unp(d) = 0.3130 + 13.6862d−0.7183 (3.26b)

Equations (3.26a) and (3.26b) are site-specific and must be obtained for each

station. The fitted curves are presented in Figure 3.6. To get the Gumbel parameters

for the areal averaged rainfall αnp and unp were replaced in (3.23a) and (3.23b) by

αnp(d) and unp(d) respectively resulting in

αnA = αnp(d)
f1(ν

−2)

ν2
(3.27a)

unA = unp(d)ν
2f2(ν

−2) (3.27b)
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Equations (3.27a) and (3.27b) give the general Gumbel parameters for the areally

averaged extreme rainfall intensity, taking into account the effects of the catchment

area and the correlation structure of rainfall. For point rainfall, IDF curves are shown

in Figure 3.7. For a catchment area of 45 km by 45 km, corresponding to a CRCM

grid cell IDF curves are presented in Figure 3.8. To illustrate the importane of

catchment area, areal IDF curves were constructed for A/λ2 = 1 and A/λ2 = 25 and

presented in Figures 3.9 and 3.10. The figures show that both the mean and standard

deviation for extreme rainfall intensities decrease with the increase of catchment area

but at different rates which implies that the coefficient of variation will change with

catchment area.

With the increase of the area, IDF curves become flatter in appearance. When

the area tends to zero, the curves approach the point IDF curves.

3.1.7 Estimation of the coefficient of variation of maximum

annual areal rainfall

The mean and the standard deviation of maximum areal precipitation are related to

the Gumbel parameters as follows:

µA = unA + 0.5772/αnA (3.28a)

σA =
π√
6αnA

(3.28b)
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Figure 3.7: Point IDF curves for the Flin Flon station.
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Figure 3.8: Areal IDF curves for the Flin Flon station for A
λ2 = 0.32.

35



3.1. ANALYTICAL DERIVATION OF AREAL REDUCTION FACTORS

10
0

10
1

10
2

10
0

10
1

10
2

Return period, yr

A
re

a
l 
a

v
e

ra
g

e
d

 r
a

in
fa

ll 
in

te
n

s
it
y
, 

m
m

/h
r

IDF for A / λ2 =1

 

 

1hr
2hr
6hr
12hr
24hr

Figure 3.9: Areal IDF curves for the Flin Flon station for A
λ2 = 1.
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Figure 3.10: Areal IDF curves for the Flin Flon station for A
λ2 = 25.
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Using (3.27a) and (3.27b), (3.28a) and (3.28b) can be expanded as

µA = ν2

(
unp(d)f2(ν

−2) +
0.5772

αnp(d)f1(ν−2)

)
(3.29a)

σA = ν2 π√
6αnp(d)f1(ν−2)

(3.29b)

Combining (3.29a) and (3.29b), we have

CVA =
σA

µA

=
π/

√
6

0.5772 + αnp(d)unp(d)f1(ν−2)f2(ν−2)
(3.30)

For the point rainfall ν2 = 1 and substituting this value into (3.30) yields the coeffi-

cient of variation for the point extreme rainfall.

CVp =
π/

√
6

0.5772 + αnp(d)unp(d)
(3.31)

Figure 3.11 represents the coefficient of variation estimated using (3.30) and (3.31)

for 24-hr duration rainfall. The coefficient of variation decreases with increase in

catchment area.

3.1.8 Estimation of Areal Reduction Factor

The areal reduction factor is simply the ratio of iA,d(T )/ip,d(T ) and generally depends

on duration and return period. ARFs can be obtained by the proposed method

using the distributions of point and areal IDF curves. Quantiles ip,d(T ) of point
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Figure 3.11: Coefficient of variation of areal maximum extreme rainfall intensities for 24-hr duration
as a function of scaled catchment area A/λ2 for the Flin Flon station.

precipitation can be found using (3.25) with F = 1 − 1/T where T is the return

period. Areal precipitation quantiles iA,d(T ) can be derived using the expressions of

αnA and unA in (3.27a) and (3.27b). The ARF can then be expressed as:

ARF [ν2(A/λ2), d, T ] =
αnp(d)unp(d)ν

2f2(ν
−2)− ν2

f1(ν−2)
log(log( T

T−1
))

αnp(d)unp(d)− log(log( T
T−1

))
(3.32)

Equation (3.32) shows that the ARF depends on the catchment size, the return

period, the duration, and the spatial correlation length. Figure 3.12 and 3.13 show

that the ARF decreases with the increase of catchment area and return period. In

Figure 3.12, ARFs were estimated for three return periods [T = 2, 10, 100] for the

24-hr duration.
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Chapter 4

IDF curves at the grid box scale

In this chapter, CRCM-simulated annual maximum rainfall depth series for 1-hr,

2-hr, 6-hr, 12-hr and 24-hr over Manitoba are analyzed and compared with the

available observed data. The CRCM simulation were driven by the CGCM3 with

the SRES-A2 scenario. Two periods were considered: 1961-2000 and 2041-2070.

Areal reduction factors are used in combination with observations to produce areal

IDF-curves that can be compared with IDF curves from CRCM simulations.

Gridded annual maxima precipitation from the CRCM are used to develop areal

IDF curves in control and future climates using the Gumbel distribution. Figure 4.1

shows the expected changes in the future climate. One finding from the figure is

that rainfall intensities increase significantly more for shorter durations because the

rainfall depth is more localized at smaller durations.

The ratio of future and control rainfall intensities for a specific duration and a

specific return period of simulated data is shown in Figure 4.2. The figure provides
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Figure 4.1: IDF curves for control and future climate at the Flin Flon station. Solid lines: control
climate; dashed lines: future climate. Similar colors correspond to the same duration.

a quick view of the anticipated increase of rainfall intensities due to climate change.

If the ratio is greater than 1, the rainfall intensity will increase and if the ratio is

less than 1, the rainfall intensity will decrease in future.

Observation-based areal averaged IDF curves derived analytically can be com-

pared with IDF curves at the grid box scale for the control climate. There is a

significant difference between these IDF curves, particularly for shorter durations.

Figure 4.3 shows IDF curves for 24-hr duration for which the difference between

curves is minimum. This suggests that the CRCM cannot simulate maximum val-

ues very well, especially for shorter durations. The figures for other durations are

given in Appendix A.1. Cumulative probability curves for the control and the fu-

ture climate are presented in Figure 4.4 from which for a given rainfall intensity, the

corresponding probability in the control and the future climate can be estimated.
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at the grid box scale.
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4.1 Estimation of maximum annual rainfalls at

the station scale

IDF curves are usually developed for point locations. Therefore some hypotheses

must be put forward in order to transpose the gridded climate model data to the

station scale. In this study, two methods are used:

• Constant ARF approach

• ∆-method

These two methods are briefly described in the following sections.

4.1.1 Constant ARF approach

In the previous sections, ARFs were derived analytically from observed daily data.

Generally, ARF tends to one for 24-hr duration and then decrease for shorter dura-

tions. ARF may alternatively be derived using a combination of observed data and

CRCM simulated data. One can define ARFs as the ratio of rainfall quantiles for a

specific duration and a specific return period from CRCM simulations and quantiles

from observations for the same duration and return period. The relationship at the

grid box and the station scale can be expressed by

ARF (d, T ) =
iA,d(T )

ip,d(T )
(4.1)
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ARFs defined in this way integrate model bias with the traditional correction needed

to convert areal (gridded) data to point data. There are generally high discrepancies

between analytically derived ARFs and ARFs derived from the CRCM. For the Flin

Flon location, ARFs based on the CRCM are quite small, indicating biases in the

CRCM. The results for Flin Flon are shown in Figure 4.5. These figures can be used

to correct biases involved in the CRCM data. ARFs estimated analytically from

observations were based on 24-hr duration rainfall intensities. ARFs for shorter du-

rations are higher. If duration-dependent ARFs had been used, the results presented

in Figure 4.5 would be different.

The approach was used to generate future IDF curves at the station scale. In-

creases in rainfall depths for a specific duration and a specific return period at the

grid box scale were used to estimate the rainfall depths at the station scale for the

future climate according to the following formula:

ipf,d(T ) = ip,d(T )[1 + δgcontrol−future(d, T )] (4.2)

where

δgcontrol−future(d, T ) =
iAf,d(T )− iA,d(T )

iA,d(T )
(4.3)

By substituting (4.3) in (4.2), one obtains

ipf,d(T ) = ip,d(T )
iAf,d(T )

iA,d(T )
(4.4)

45



4.1. ESTIMATION OF MAXIMUM ANNUAL RAINFALLS AT THE STATION SCALE

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23
0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905
Comparison between derived ARF from observed data and estimated ARF using CRCM data

ARF using CRCM data

D
e

ri
v
e

d
 A

R
F

d=1 hr

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905
Comparison between derived ARF from observed data and estimated ARF using CRCM data

ARF using CRCM data

D
e

ri
v
e

d
 A

R
F

d=2 hr

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905
Comparison between derived ARF from observed data and estimated ARF using CRCM data

ARF using CRCM data

D
e

ri
v
e

d
 A

R
F

d=6 hr

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905
Comparison between derived ARF from observed data and estimated ARF using CRCM data

ARF using CRCM data

D
e

ri
v
e

d
 A

R
F

d=12 hr

0.585 0.59 0.595 0.6 0.605 0.61 0.615
0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91
Comparison between derived ARF from observed data and estimated ARF using CRCM data

ARF using CRCM data

D
e

ri
v
e

d
 A

R
F

d=24 hr

Figure 4.5: ARF’s derived analytically from observations versus ARF’s defined as the ratio of
CRCM quantiles and observed quantiles. Data are from the Flin Flon station.
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where

• ip,d(T )=Rainfall quantiles at the station scale for present climate,

• ipf,d(T )=Rainfall quantiles at the station scale for future climate,

• iA,d(T )= Areal averaged rainfall quantiles for present climate,

• iAf (T )=Areal averaged rainfall quantiles for future climate.

The assumption inherent in (4.4) is that ARFs do not change between current

and future climate, i.e. that

ARFf = ARFp (4.5)

Areal IDF curves were determined using the Gumbel distribution and the procedure

described in Chapter 3, in particular Equations (3.27a) and (3.27b). Areal IDF curves

and IDF curves at the station scale are shown in Figures 4.6 and 4.7. The figures

suggest that rainfall quantiles will increase. The predicted changes are relatively

larger for shorter durations.

Cumulative probability curves using the Gumbel distribution were developed for

point, areal, and simulated data for the present climate at the Flin Flon station.

The CRCM simulation underestimates extreme values for shorter durations. The

1-hr and 24-hr duration cumulative probability curves are shown in Figure 4.8. The

difference between estimated areal and simulated rainfall depth is significant. For

the 1-hr duration, there is a big difference between point and simulated data. For the

24-hr duration, the difference is still big but not as high as for the 1-hr duration. Bias
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Figure 4.6: Comparison of IDF curves of the control and future climate at the station scale for
the Flin Flon station. Solid lines: control climate and dashed lines: future climate. Similar colors
correspond to the same duration.
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Figure 4.7: Comparison of IDF curves estimated from areal data for the control and future climate
at the Flin Flon station. Solid lines: control climate and dashed lines: future climate. Similar
colors correspond to the same duration
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Figure 4.8: Cumulative probability curves for 1-hr and 24-hr duration for the present climate.

correction is not applied to adjust any distortion and for shorter durations, CRCM

simulated data underestimate the true quantiles. The results for other durations can

be found in Appendix A.2.

Cumulative probability curves were developed for other stations and showed dis-

crepancies fairly similar to those for the Flin Flon station. For a few selected stations

the results for the 24-hr duration are shown in Figures 4.9, 4.10, and 4.11.

4.1.2 ∆-approach for future prediction

In this method, a ∆-factor is determined as the ratio of the mean of the future

simulation and the mean of the control simulation for each duration:

∆d =
mean(iAf,d)

mean(iA,d)
(4.6)

The inherent assumption is that the mean change of simulated data will be the same

at the station scale and that the change only depends on durations, not on return
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Figure 4.9: Cumulative probability curves at the Glenlea station for 24-hr duration.
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Figure 4.10: Cumulative probability curves at the Gillam station for 24-hr duration.
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Figure 4.11: Cumulative probability curves at the Lynnlake station for 24-hr duration.
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4.2. COMPARISON BETWEEN CONSTANT ARF AND ∆-METHOD

periods. The station data is multiplied by the ∆-factor to determine station data in

the future climate. Therefore, according to this method the rainfall intensity at the

station scale for the future climate is

ipf,d = ip,d∆d (4.7)

A similar procedure is done for areal data estimated from the observed data. Figures

4.12, 4.13 and 4.14 show that the rainfall intensity is projected to increase in future.

4.2 Comparison between constant ARF and ∆-

method

Areal IDF curves estimated from point IDF curves and from climate model infor-

mation are shown in Figure 4.15. The figure shows that the CRCM based rainfall

quantiles are significantly smaller than the estimated areal rainfall intensities.

As there is a big difference between the estimated areal rainfall intensity and the

CRCM rainfall intensity, it is necessary to correct biases in the CRCM. The two

methods described above, the constant ARF approach and the ∆-method, were used

to estimate future changes. For 100-year events, the relative changes are shown in

Table 4.1. The relative changes are determined by

RD =
ifuture,d(T )− icontrol,d(T )

icontrol,d(T )
× 100 (4.8)
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Figure 4.12: IDF curves at the Flin Flon station using ∆-method. Solid lines: control climate;
dashed lines: future climate. Similar colors correspond to the same duration.
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Figure 4.13: IDF curves for areally averaged rainfall intensity at the Flin Flon station using ∆-
method. Solid lines: control climate; dashed lines: future climate. Similar colors correspond to the
same duration.
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Figure 4.14: IDF curves at the grid box scale for the Flin Flon station. Solid lines: control climate;
dashed lines: future climate. Similar colors correspond to the same duration.
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Figure 4.15: Comparison between observed, CRCM, and estimated areal rainfall intensity at the
Flin Flon station.

Table 4.1: Relative changes (percentage) in the future climate from the constant ARF method and
the ∆-method.

Method 1 hr 2 hr 6 hr 12 hr 24 hr
Constant ARF approach (CRCM and estimated areal) 28 27 9 8 6
∆ approach (Estimated areal) 23 31 30 33 29
∆ approach (CRCM) 28 27 9 8 6

It is noticeable that in the constant ARF approach, future changes decrease with the

increase of duration. It is also found that future changes increase with the increase

of return period. The constant ARF approach depends on both duration and return

period. The relative changes for point, areal and CRCM are similar as the changes

only depend on the ratio of rainfall quantiles for the future climate and rainfall

quantiles for the control climate from simulations. The ∆-method depends only on

duration. The percent change between the future and the control climate is the same

at each point. There is no variation with return periods. The relative change only

varies with durations.
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Chapter 5

Scaling models for IDF curves

5.1 Regionalization

In this section, regional IDF curves are developed. Regionalization is useful to reduce

the impact of local variability, providing more stable information about extreme

precipitation statistics for a region. For the purpose of this study, stations were

grouped according to their geographical location. Four groups were selected and

shown in Table 5.1.

The cumulative probability distributions were plotted for the four regions (Figure

5.1). The curves are close to each other for each region. The figures were plotted

using the generalized extreme value distribution (GEV). The Churchill station is

located at the northern edge of the province of Manitoba and gives results that

are different from other stations. For this reason, this station was grouped alone

where other stations were grouped according to their proximity. Within each region,
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5.1. REGIONALIZATION

Table 5.1: Grouping according to geographical location.

Region 1 Region 2 Region 3 Region 4
Churchill Lynn lake Flin Flon Dauphin

Thompson Norway house forestry Bissett
Gilam Island lake Brandon

The Pas Brandon CDA
Neepawawater
Portage Southport
Glenlea
Indian Bay
Pilot Mound
Morden
Deerwood
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Figure 5.1: Cumulative probability distribution for each region for 24-hr duration annual extreme
rainfall.
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5.2. GENERALIZED EXTREME VALUE DISTRIBUTION

stations give fairly similar results. Some stations were later discarded as they did

not follow the simple scaling law. From Region 3, Flin Flon was discarded and from

Region 4, Dauphin, Pilot Mound, and Brandon CDA were discarded.

5.2 Generalized extreme value distribution

Hydrologic variables such as maximum rainfall and floods are often described by

extreme value distributions. The generalized extreme value (GEV) distribution was

used to construct IDF curves in this study. The GEV cumulative distribution func-

tion of x can be written in the form (given by Aronica and Freni (2005))

F (x) = exp(1− κ
x− α

ε
)

1

κ (5.1)

where ε is the location parameter, α is the scale parameter, and κ is the shape

parameter. The range of the variable x depends on the sign of κ. When κ is negative,

the GEV distribution is a Type II extreme value distribution (EV2). In this case

Cs > 1.14 and the variable x is restricted to the interval ε+ α
κ
< x < ∞. When κ is

positive, the GEV distribution is a Type III (EV3) extreme value distribution with

Cs < 1.14, and is restrcited to the interval ∞ < x < ε + α
κ
. When κ = 0, the GEV

distribution becomes a Type I extreme value distribution (EV1) which is the same

as the Gumbel distribution used previously in the thesis.

Parameters can be estimated by the method of moments, probability weighted
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5.3. MEAN VALUES BIAS CORRECTION

moments (PWM), and maximum likelihood (ML). Here, the parameters were esti-

mated by the method of moments. The moment equations can be expressed as

Cs =
κ[−Γ(1 + 3κ) + 3Γ(1 + κ)Γ(1 + 2κ)− 2Γ(1 + κ)3]

|κ|(Γ(1 + 2κ)− Γ(1 + κ)2)1.5
, κ > −1

3
(5.2a)

α =

√
κ2S2

Γ(1 + 2κ)− Γ(1 + κ)2
(5.2b)

ε = E − α

κ
(1− Γ(1 + κ)) (5.2c)

where Γ denotes the gamma function, and E, S, and Cs are the sample mean,

standard deviation, and coefficient of skewness respectively. In practice, the shape

parameter κ can be determined by tabulating the Cs-κ relationship and using table

interpolation to find the value of κ that corresponds to an observed value of Cs. The

relationship between Cs and κ is shown in Figure 5.2. The distribution function of

x can be written in inverse form as

xT = ε+
α

κ

[
1− exp

{
−κ(− log(log(

T

T − 1
)))

}]
(5.3)

5.3 Mean values bias correction

In Chapter 3, it was shown that the CRCM cannot simulate extreme precipitation

very well. Some types of bias corrections are therefore required before using model

output for decision making. In this study, two types of bias corrections were used:
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Figure 5.2: Relationship between the skewness coefficient and κ for the GEV distribution.

• Mean values bias correction

• QQ bias correction

CRCM simulation runs were used to construct future IDF curves using the GEV

distribution. For each duration, δ was determined as the ratio of the mean of obser-

vations (xobs) and the mean of control simulation run (xsim).

δ =
xobs

xsim

(5.4)

With the mean value bias correction method, future simulation values were multiplied

by δ values to correct model biases. In a similar way, the control run was also

corrected and used to construct IDF curves.
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5.4. QQ BIAS CORRECTION

5.4 QQ bias correction

The CRCM extreme annual precipitation was also corrected using the method of

QQ mapping in which the CDF of CRCM rainfall amounts from the control run

is mapped into the observed rainfall depth distribution. Both the observed rainfall

and the CRCM rainfall are well fitted by the GEV distribution. Let Fobs be the

cumulative distribution function of observed annual extreme rainfalls and Fsim be

the cumulative distribution function of the corresponding simulated precipitation

from the control simulation. Corrected CRCM precipitation can be calculated by

x′ = F−1
obs(Fsim(x)) (5.5)

5.5 Scaling method

Let P (t) be the instantaneous rainfall rate at time t at a point in space (rain gauge

station). The rainfall depth over a duration d is then

Pd(t) =

∫ t+d/2

t−d/2

P (τ)dτ (5.6)

According to Burlando and Rosso (1996), the annual maximum value Hd for a

duration d is defined by the property of scale invariance

Hλd
dist
= λβHd (5.7)
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where λ is a scale factor and β is a scale exponent. This property is called strict

sense simple scaling (Gupta and Waymire, 1990). Quantiles and raw moments of

any order are scale invariant, i.e.

hλd,T = λβrhd,T (5.8)

E[Hr
λd] = λβrE[Hr

d ] (5.9)

where r is the order of moments and βr = nr is the scaling exponent of the mean.

The strict sense simple scaling implies that H(d) and (λ−βH(λd)) have the same

probability distribution whereas in wide sense simple scaling, they are only required

to have the same moments. In practice, it is much easier to test the variability of

scaling laws on the basis of moments and this will be the approach used here. While

strictly one cannot infer that the scaling of moments imply strict sense simple scaling,

this will be the pragmatic assumption in what follows.

The derivation of depth-duration-frequency curves depend on the estimation of

β. The scaling method is useful when data for some time intervals of interest do not

exist but longer duration data are available.

5.5.1 Simple scaling GEV model

Maximum annual rainfall intensities for all available durations are modelled by the

GEV distribution which is well fitted to observations. Quantiles Hd,T can be found
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5.5. SCALING METHOD

by

hd,T = E[H1
24]xTλ

β (5.10)

where xT is the T th quantile of annual maximum storm depth normalized by its

mean for any duration in the range of existence of a scaling behavior and E[H1
24] is

the mean annual maximum rainfall depth of the reference duration, assumed here

to be 24-hr and λ is the ratio of duration and the reference duration. For example,

for a 12-hr storm, λ would be 0.5. For the GEV distribution, xT can be computed

by (5.3). An implication of the simple scaling hypothesis is that the scale and the

shape parameters are independent of the duration (Burlando and Rosso, 1996).

5.5.2 Log-normal multiscaling model

Sometimes temporal rainfall and extreme events in particular are far from the simple

scaling behavior and precipitation fields may show so-called multiscaling behavior.

According to the multiscaling definition, nr 6= βr which means the scaling exponent,

nr is not proportional to the order r of the moment. One can assume that

E[Hr
λd] = λβφrrE[Hr

d ] (5.11)

where φr is a dissipation function describing the departure of the growth of curve

from the linear behavior with respect to the order r of the raw moment (φr = 1).

In multiscaling, the coefficient of variation, the skewness and the kurtosis increase

with duration while these are constant in simple scaling. In this study, a log-normal
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5.5. SCALING METHOD

multiscaling hypothesis was used to derive a parsimonious model of IDF curves.

Let d∗ denote the reference duration. Then λ = d/d∗ and (5.11) becomes

E[Hd] = (
E[Hd∗ ]

dβ∗
)dβ (5.12)

Equation (5.12) can be written as

E[Hd] = a1d
β (5.13)

where a1 is the rescaled mean annual maximum rainfall for the reference duration.

For the second order moment, (5.11) becomes

E[H2
d ] = (

E[H2
d ∗]

d2φ2β
)d2φ2β (5.14)

Equation (5.14) can be written in the form of

E[H2
d ] = a2d

2φ2β (5.15)

where a2 is the rescaled second order raw moment of annual maximum rainfall for

the reference duration and H[d∗] is the maximum rainfall depth for the reference

duration d∗. The two-parameter log normal distribution is widely used to describe
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5.5. SCALING METHOD

extreme rainfalls. Its the probability density function can be written as

fd(h) =
1

h
√
2πσ

exp

[
−1

2
(
log h− µ

σ
)2
]
, h > 0 (5.16)

The parameters µ and σ are related to the mean and the standard deviation through

the following equations

µ = logE[Hd]−
1

2
log(1 +

V [Hd]

E2[Hd]
) (5.17a)

σ =

√
log

(
1 +

V [Hd]

E2[Hd]

)
(5.17b)

The T -year quantile can be written as

log hd,T = µ+KTσ (5.18)

where KT is the frequency factor of the standard normal distribution.

The log-normal multiscaling model for IDF curves can be derived by substituting

(5.12) and (5.14) into (5.17a) and (5.17b). The resulting equations can be written

as

µ = log
(
a1d

β
)
− 1

2
log

(
a2
a21

d2β(φ2−1)

)
(5.19a)
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σ =

√
log

[
a2
a21

d2β(φ2−1)

]
(5.19b)

Substituting these expressions for µ and σ into (5.18) yeilds:

hd,T =
a21
a2

exp

[
KT

√
log

(
a2
a21

d2β(φ2−1)

)]
d(2−φ2)β (5.20)

Equation 5.20 has four parameters: the exponent β of the scaling relationship be-

tween the mean annual maximum rainfall and the temporal duration, the deviation

φ2 of the exponent of the second order raw moment from the simple scaling, a1, and

a2. The parameters β and a1 can be estimated by regression of the log-transformed

sample means of rainfall depth against the corresponding log-transformed dura-

tions. Similarly, the values of n2 and a2 can be determined by regression of the

log-transformed sampling second order raw moments against the corresponding log-

transformed durations and φ2 =
n2

2β
.

5.6 Development of regional IDF curves

Regional IDF curves were developed using the GEV distribution. When examining

the observed and simulated data (Figures 5.3 and 5.4), it was found that some points

appear inconsistent with the rest of the data. These data points are considered

outliers. The box plots shown in Figure 5.3 and 5.4 are for the raingauge station at

The Pas.
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Figure 5.3: Box plot of precipitation depth for observations at The Pas station.
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Figure 5.4: Box plot of precipitation depth for simulations at The Pas station.
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5.7. DEVELOPMENT OF REGIONAL IDF SCALING MODEL

To determine regional precipitation distributions, E, S, and Cs from individual

sites in a region were averaged.

Ĉs =

∑m
i=1 Csini∑n

i=1 ni

(5.21a)

Ê =

∑m
i=1 Eini∑n
i=1 ni

(5.21b)

Ŝ =

∑m
i=1 Sini∑n
i=1 ni

(5.21c)

where m is the number of stations in a group and ni is the number of data for

station i. The regionalized values of E, S, and Cs were then used to determine

the parameters of the regional GEV distribution using (5.2a) to (5.2c). The above

calculation was done both for station data and for model data.

5.7 Development of regional IDF scaling model

To determine a regional simple scaling model, average regional values were estimated

as

Ê[H1
24] =

∑m
i=1 Ei[H

1
24]ni∑n

i=1 ni

(5.22a)

β̂r =

∑m
i=1 βi,rni∑n

i=1 ni

(5.22b)

where m is the number of stations in a group and ni is the sample size for station i.

These regional values were used in (5.10) to determine precipitation quantiles.
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Chapter 6

Results and Evaluation

In this chapter, the results from the methodologies described in Chapter 5 are pre-

sented and evaluated. Two methods are used for the prediction:

1. Bias correction for each duration (either δ-factor correction or QQ mapping)

2. Bias correction for the reference duration and use of the scaling laws estimated

from observed data to obtain results for all other durations

6.1 Mean value bias correction

CRCM simulation runs were corrected by the mean value correction method. For

each duration, δ was determined as the ratio of the mean of observations and the

mean of the control simulation run (Equation 5.4). Figure 6.1 shows that δ is a de-

creasing function of duration. The nature of this relationship suggests that biases are

particularly high for shorter durations which makes it difficult to compare observed
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Figure 6.1: δ versus duration at the Brandon station. δ was determined as the ratio of the mean
of observations and the mean of the control run for annual maximum rainfall.

Table 6.1: Scaling exponents from observed, control simulated, and future simulated data

Station β from observations β from control simulations β from future simulations
Brandon 0.24 0.54 0.53
Glenlea 0.18 0.51 0.51
Lynn Lake 0.29 0.63 0.63
Churchill 0.32 0.59 0.59

and simulated precipitation quantiles. The shape of Figure 6.1 is not unexpected

since the difference between point and areal precipitation quantiles will be higher

for shorter durations. However, it is clear that model biases dominate, especially for

shorter duration precipitation. Figure 6.1 suggests that scaling laws for observed and

simulated precipitation will be different. More specifically, though both observations

and control simulations follow simple scaling, the scaling exponents are different

(Table 6.1). The difference can be established theoretically. From the simple scaling

assumption in (5.7) applied to observations, one has
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6.1. MEAN VALUE BIAS CORRECTION

Hobs
λd

dist
= λβobsHobs

d (6.1)

where Hd is the annual maximum value for a duration d, βobs is the scaling exponent,

and λ is the scale factor. The following relationship between mean values applies

Hobs
λd = λβobsHobs

d (6.2)

From the definition of δ, we have

H
obs

d = δdH
control

d (6.3)

and

H
obs

λd = δλdH
control

λd (6.4)

Substitution of (6.3) and (6.4) into (6.2) yeilds:

δλdH
control

λd = λβobsδdH
control

d (6.5)

or

H
control

λd = λβobs
δd
δλd

H
control

d (6.6)
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If the control simulation follows a simple scaling law, a relationship similar to (6.2)

must apply:

H
control

λd = λβcontrolH
control

d (6.7)

From (6.6) and (6.7) one can deduce that

λβcontrol = λβobs
δd
δλd

(6.8)

From (6.8), we must have

δd
δλd

= λc (6.9)

and the scaling exponent for the control simulation run will be

βcontrol = βobs + c (6.10)

A value of c different from zero implies that there are biases in the CRCM simu-

lation at least for some durations. Because of biases, the control simulation run has

a scaling exponent that is around two times higher than for observed data. Figure

6.2 shows that a scaling model has some biases and that biases are larger for shorter

durations. These δ-values determined from the mean value correction method were

used to correct CRCM simulated data which do not represent extreme values very

well. In this work, the Brandon raingauge station is used as an example.
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Figure 6.2: δ versus duration at the Brandon station. δλd is determined from (6.9).

6.2 ∆- method

For each duration, ∆ is defined as the mean of the future run (xfsim) divided by the

mean of the control run.

∆ =
xfsim

xsim

(6.11)

Observations are multiplied by ∆, resulting in bias corrected IDF curves for the

future climate. The purpose of the ∆-values is to estimate IDF curves for the future

climate at the station scale. Figure 6.3 shows ∆ as a function of duration. It appears

that there is no systematic relationship between ∆ and duration.

6.3 Scaling method

The GEV distribution was used to construct IDF curves. The result is shown in

Figure 6.4 where the lines are the direct output from the future simulation, stars are
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Figure 6.3: ∆ versus duration at the Brandon station. ∆ is determined as the ratio of the mean of
the future run and the mean of the control run.

from bias-corrected future simulation, and circles are from the ∆-method. Projec-

tions by the two methods are fairly comparable with the bias-corrected simulation a

bit lower than the ∆-method, especially for shorter durations.

The bias-corrected 24-hr precipitation was used in conjunction with scaling laws

to produce corrected future precipitation at shorter durations. The assumptions are

• As durations become shorter, the model data become increasingly inaccurate

and unlikely to be useful, even after bias correction

• The scaling properties are intrinsic to the climate system and will apply in the

future as they do now.

For the corrected future simulation, IDF curves were developed using the simple

scaling GEV distribution and are shown in Figure 6.5. It shows good agreement

with the intensities found from the GEV distribution. For observations in the future
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Figure 6.4: IDF curves for future prediction using the GEV distribution at the Brandon station.
Corrected future run is determined by multiplying the future run by δ. Observed future data are
determined by multiplying observed data by ∆. Solid lines: future simulations; circles: observed
data for future climate using ∆-method; stars: corrected future simulations.

climate, IDF curves were also developed using the GEV distribution and the simple

scaling GEV model and are shown in Figure 6.6. The simple scaling GEV model

shows good agreement with the GEV distribution and hence, scaling laws can be

used to develop IDF curves. The scaling-based curves were developed using the 24-

hr duration as reference duration. This duration was preferred as 24-hr duration

precipitation data are generally available. The advantage of this method is that

extreme precipitation can be reproduced for each return period and each duration

using only one scaling exponent.

For observations for the future climate and the corrected future simulation, IDF

curves were developed using scaling laws. Figure 6.7 compares curves from these two

approaches. Observations for the future climate are a little bit lower than the cor-

rected future simulation because mean values cannot completely remove bias which
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can be seen by examining the quantile-quantile plot (Figure 6.8). The 24-hr dura-

tion quantile-quantile plot is shown in this figure which is based on the corrected

simulation run and observations. For other durations, quantile-quantile plots are

shown in Appendix A.3. The quantile-quantile plots show that for higher durations,

the points fall roughly on the 45◦ line. These quantile plots were developed using

Matlab’s function qqplot.

IDF curves were developed for observations and control simulations using scaling

laws. For observations and corrected control simulations, raw moments were plotted

against durations and used to demonstrate that simple scaling applies. The detailed

results are shown in Appendix A.4-A.7. Here, control simulated data were also

determined by multiplying the control simulation run by the ratio of the mean of

observations and the mean of the control run.

The observation-based IDF curves were developed using the simple scaling GEV

model described in Section 5.5.1. The scaling model and the conventional GEV

distribution agree well as shown in Figure 6.9 and so does the corrected control sim-

ulation run (Figure 6.10). A reference duration of 24-hr is considered because daily

precipitation is generally available, so the scaling model can be used to reproduce

precipitation quantiles for other durations. IDF curves for observed and corrected

simulated extreme precipitation are compared in Figure 6.11. Observed curves are a

bit higher than the control simulation after correction because the mean correction

cannot completely remove biases.
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Figure 6.5: IDF curves for future prediction using future simulation along with scaling laws. Solid
lines: GEV distribution; stars: simple scaling GEV model. The same color is used for each duration.
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Figure 6.6: IDF curves for future prediction for ∆-method quantiles along with scaling laws. Solid
lines: GEV distribution; stars: simple scaling GEV model. The same color is used for each duration.
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Figure 6.7: IDF curves from corrected CRCM data and future observed data for future prediction
using scaling laws. Solid lines: observations; stars: CRCM simulations. The same color is used for
each duration.
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Figure 6.8: Quantile-Quantile plot for 24-hr duration after correcting the control run by the δ-
method.
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Figure 6.9: IDF curves for observations. Solid lines: GEV distribution; stars: simple scaling GEV
model. The same color is used for each duration.
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Figure 6.10: IDF curves for the corrected control simulation run. Solid lines: GEV distribution;
stars: simple scaling GEV model. The same color is used for each duration.
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Figure 6.11: Comparison between observations and control simulation run using the GEV scaling
model. Solid lines: observations; stars: CRCM simulations. The same color is used for each
duration.

The difference in precipitation quantiles between the corrected control simulation

and the observed rainfall is as much as 30 percent for certain durations whereas in

the case of the future climate the difference is negligible. The difference depends on

the choice of ensemble member. There is a noticeable difference between the control

simulation from ensemble member 1 and ensemble member 5, resulting in different

change factors δ (Figure 6.12). The control simulation from ensemble 5 shows better

agreement with observations than the control simulation from ensemble 1. When the

ensemble member 5 (experiment aew) is used, the difference in precipitation quan-

tiles between corrected control simulations and observations reduces to 25 percent.

The results are shown in Figure 6.13 and 6.14. In this study, δ values from ensemble

member (5) have been used for bias correction for the future climate. Simulated data

from ensemble 5 and the ∆-method quantiles show good agreement with each other.

Ensemble forecasting is accomplished by using slightly different initial conditions.
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Figure 6.12: Comparison between ensemble member 1 and member 5.

Table 6.2: t-test results; p-value, statistics.

t-test
p-value 0.3551
tstat 0.9302
df 78
sd 9.9665

The results obtained in this study show that IDF curves for annual extreme precip-

itations are sensitive to the use of ensemble members. A t-test has been performed

to test the null hypothesis that data from ensemble member 1 and from ensemble

member 5 are independent samples from normal distributions with equal mean and

equal but unknown variances. The test does not reject the null hypothesis at the 5

percent significance level. The p-value and statistics are given in Table 6.2.
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Figure 6.13: Comparison between observations and control simulation run (ensemble member 5)
using GEV scaling model. Solid lines: observations; stars: CRCM simulations. The same color is
used for each duration.
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Figure 6.14: IDF curves for future prediction (using ensemble 5) using scaling laws. Solid lines:
observations; stars: CRCM simulations. The same color is used for each duration.
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Figure 6.15: Quantile-Quantile plot for 1-hr duration for the control climate after applying QQ
mapping.

6.4 Quantile-Quantile mapping

The control simulation run and the future simulation run were corrected by QQ

mapping as described in Section 5.5. Figure 6.15 shows plots for 1-hr duration and

plots for other durations are shown in Appendix A.8. Quantiles from observations

and quantiles from corrected control data fall on 45◦ line.

The QQ mapping is defined by first multiplying observations by ∆ and then

mapping quantiles of future simulations into the ∆-method quantiles. Quantiles

points fall on 45◦ line. Results for other durations are shown in Appendix A.9.

Future IDF curves based on QQ-mapping are shown in Figure 6.16. From the figure,

one sees that QQ mapping gives a slightly different result than the mean value

method. The corrected future simulations are a bit higher than observations for the

future climate. When the control simulation run from ensemble member 5 was used,
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Figure 6.16: Future IDF curves by applying QQ mapping to the future simulation run. Solid lines:
observations; stars: CRCM simulations. The same color is used for each duration.
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Figure 6.17: Future IDF curves by correcting future simulation run (ensemble member 5) by QQ
mapping. Solid lines: observations; stars: CRCM simulations. The same color is used for each
duration.
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this method gave good agreement with observed data for the future climate. The

results are shown in Figure 6.17. For longer durations, the corrected simulation run

is in good agreement with observed rainfall while there are discrepancies for shorter

durations.

The δ-factor correction gives more reliable results than QQ-mapping because one

expects higher discrepancies with shorter durations and for both ensembles, with the

mean value method, the discrepancies are higher at shorter durations. However, QQ

mapping gives different results for different ensemble members. As the ensemble 5

shows good agreement with observations, the ensemble 5 will be used in the rest of

the work to develop regional IDF curves.

6.5 Summary

Three methods were presented to remove biases from the CRCM and make it more

suitable for use in predicting extreme precipitation. δ values are a decreasing function

of duration. On the other hand, ∆ is independent of duration. Two methods were

compared to develop future IDF curves: 1) bias correction for each duration (either

∆ factor correction or QQ mapping) and 2) bias correction for the reference duration

and use of scaling laws estimated from observed data to obtain results for all other

durations. The argument in favor of (2) is 1) as durations become shorter, the

model data become increasingly inaccurate and unlikely to be useful- even after bias

correction and 2) the scaling properties of precipitation is intrinsic to the climate
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system. For future prediction using the QQ-mapping method different results were

observed for ensemble member 5 and ensemble member 1. From ensemble 1, for

shorter durations the precipitation quantiles from the corrected simulation data and

observed data are close to each other but for longer durations quantiles do not agree

which was not expected. In the case of ensemble member 5, the discrepancies between

observed and simulated precipitation quantiles are not high and for longer durations

the quantiles for observed and simulated data show good agreement. However, by

applying a mean value correction to the 24-hr duration extreme precipitation in the

simulation run and using the GEV simple scaling laws, it was found that precipitation

intensities are close to each other for each durations for both ensemble members. For

shorter durations, intensities from observed data are a little bit off from corrected

simulated data but this behavior was expected.

The major advantage of using the scaling model over the traditional quantile esti-

mation technique is the parsimonious parameterization. In the traditional technique,

15 parameters have to be estimated but in the scaling model only nine parameters

need to be estimated. Therefore, the scaling model reduces the amount of param-

eters required to compute the quantiles. The results of the study are of significant

practical importance. The scaling model shows satisfactory performance in repro-

ducing the observed data. Therefore, mean value correction and use of scaling laws

will be used to develop regional IDF curves in the following sections.
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6.6 Comparison of IDF curves from observations

and CRCM data

In the regionalization analysis in Chapter 5, four regions were identified based on

geographical location. Annual maximum precipitations of 1-hr, 2-hr, 6-hr, 12-hr,

and 24-hr durations were used to develop IDF curves. CRCM data were corrected

by the mean value method. The methodology was described in Chapter 5 and the

results for a single station was presented in the previous section. The results are here

extended to the regional groups.

6.6.1 Region 1

In Region 1, there is only one station, Churchill, located on the northern edge of the

Province of Manitoba. This station is different from the other stations. It does not

follow the simple scaling law. A multiscaling model was therefore developed for this

station. Data were well fitted by the LN distribution. As seen in Figure 6.18, the

CDFs of the fitted LN and GEV distribution are very similar and in good agreement

with the data. It is easier to develop a log normal multiscaling model as the LN

distribution has only two parameters compared to the GEV distribution which has

three parameters.

For observations, IDF curves were developed using the LN multiscaling model

described in Section 5.5.2. The scaling model and the conventional LN distribution
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Figure 6.18: Cumulative probability distribution at the Churchill station.

are in good agreement with each other as seen in Figure 6.19. IDF curves for bias-

corrected simulated extreme precipitations were developed and Figure 6.20 shows

that the LN multiscaling model and conventional LN distribution are in good agree-

ment. The future simulation was corrected by the δ factor and IDF curves from the

multiscaling LN model and the conventional LN distribution are shown in Figure

6.21. The scaling model of the ∆-method for the future climate involves multiplying

observed data by the ∆-factor. The results for this method are shown in Figure 6.22.

Both the ∆-method quantiles and the bias corrected future CRCM simulation

show that with the increase of return periods, the relative changes increase and

higher changes are observed for shorter durations and higher return periods. Figure

6.23 shows that there is an increasing trend of extreme precipitation in the future,

with up to 23 percent increase for certain durations.
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Figure 6.19: IDF curves for the control climate for observed data at the Churchill station. Solid
lines: GEV distribution; stars: LN multiscaling model.
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Figure 6.20: IDF curves for the control climate for the CRCM simulation at the Churchill station.
Solid lines: GEV distribution; stars: LN multiscaling model.
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Figure 6.21: IDF curves for the future climate for the CRCM simulation at the Churchill station.
Solid lines: GEV distribution; stars: LN multiscaling model.
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Figure 6.22: IDF curves for the future climate for observations at the Churchill station. Solid lines:
GEV distribution; stars: LN multiscaling model.
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Figure 6.23: Comparison of IDF curves for future climate and control climate at the Churchill
station. Solid lines: control climate; stars: future climate. The same color is used for each duration.

6.6.2 Region 2

In Region 2, there are three stations - Lynnlake, Thompson, and Gillam and these

stations follow the simple scaling law. The GEV simple scaling model was developed

for this region. For observations, the GEV distribution and the simple scaling model

are in good agreement with each other (Figure 6.24) but in case of the CRCM

simulation, there are discrepancies between the GEV distribution and the simple

scaling model. These discrepancies are higher for shorter durations. For example, for

the 1-hr duration there is about 19 percent difference between the GEV distribution

and the simple scaling GEV model for larger return periods as seen in Figure 6.25.

The model and the distribution are in good agreement with each other in case of

shorter return periods.

A comparison of the observed and bias-corrected CRCM simulations for the con-
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Figure 6.24: IDF curves from observed data for the control climate for Region 2. Solid lines: GEV
distribution; dashed lines: simple scaling GEV model. The same color is used for each duration.
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Figure 6.25: IDF curves from corrected CRCM data for the control climate for Region 2. Solid
lines: GEV distribution; dashed lines: simple scaling GEV model. The same color is used for each
duration.
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Figure 6.26: Comparison of IDF curves for control climate for Region 2. Solid lines: observations;
dashed lines: CRCM simulations. The same color is used for each duration.

trol climate using the GEV simple scaling model show discrepancies that increase

with the increase of return period (Figure 6.26). However, for the future climate, the

∆-method quantiles and the bias-corrected CRCM quantiles are very close (Figure

6.27) and the simple scaling model and the distribution are in good agreement with

both types of data. The detailed results are shown in Appendix B.1 and B.2.

In Region 2, extreme precipitation is projected to increase in the future climate.

The relative changes were estimated for bias-corrected CRCM rainfall intensities and

are shown in Figure 6.28. The relative changes were estimated as

RD =
Ifuture − Icontrol

Icontrol
× 100 (6.12)

The figure shows that relative changes depend on duration and return period. The

changes are maximum for shorter durations. The change is maximum 32 percent for

the 24-hr duration and a 100-year return period.
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Figure 6.27: Comparison of IDF curves from observed and corrected CRCM data for the future
climate for Region 2. Solid lines: observations; dashed lines: CRCM simulations. The same color
is used for each duration.
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Figure 6.28: Relative changes between control and future climate for Region 2.
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6.6. COMPARISON OF IDF CURVES FROM OBSERVATIONS AND CRCM DATA

6.6.3 Region 3

In Region 3, three stations were selected - The pas, Norway House, and Island Lake.

The stations in Flin Flon, Grand Rapids and Berens River were discarded as they

do not follow simple scaling laws. In addition, the last two stations do not have

much data. The simple scaling GEV model was applied in this region and shows

good agreement with the GEV distribution fitted to observations and bias corrected

simulations. The detailed results are found in Appendix B.3 and B.4.

The comparison between the observed and the bias corrected CRCM data was

made for the present climate using the simple scaling GEV model, see Figure 6.29.

For the present climate, the two types of data give similar results for this region

whereas in Region 2, there were some discrepancies between observed and bias cor-

rected simulated rainfall quantiles. In Region 2, the Gillam station has a limited

number of annual extreme rainfall records and gave results slightly different from

the other two stations in terms of CDF-plots.

For the future climate, the CRCM future simulation was corrected by the δ-factor

and the simple scaling GEV model was applied, with results shown in Figure 6.30.

When comparing the control and future climate, there is a clear indication of an

increasing trend of extreme precipitation for this region, see Figure 6.31.

From Figure 6.32, it can be seen that changes are maximum for short durations

and generally increase with increasing return periods. For the 1-hr duration, the

relative change is around 48 percent, and for the 24-hr duration, 100-year return
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Figure 6.29: Comparison of simple scaling GEV model from observed data and corrected CRCM
data for the control climate for Region 3. Solid lines: observations; dashed lines: CRCM simulations.
The same color is used for each duration.

period the change is around 34 percent for Region 3. These changes are greater than

those for Region 2.

6.6.4 Region 4

In Region 4, there are eight stations. Of these, three stations, Dauphin, Bissett,

and Gimli, were discarded as they do not follow simple scaling laws. For Region 4,

the simple scaling GEV model shows a good agreement with the GEV distribution

(Appendix B.5-B.6). For the future climate, the comparison between the ∆-method

quantiles and the bias corrected CRCM quantiles also shows that they give similar

results although there are some small discrepancies at shorter durations. The detailed

results are shown in Appendix B.7-B.9.

Figure 6.33 shows that there is an increasing trend of extreme precipitation, but
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Figure 6.30: IDF curves from simple scaling GEV model for corrected CRCM data for the future
climate for Region 3. Solid lines: GEV distribution; dashed lines: simple scaling GEV model. The
same color is used for each duration.
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Figure 6.31: IDF curves for the corrected CRCM data for Region 3. Solid lines: future climate;
dashed lines: control climate. The same color is used for each duration.
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Figure 6.32: Relative changes between control and future climate for Region 3.

the increase is not as high as for Region 2 and Region 3. In this region, the increase

is highest for the 24-hr duration. It is around 19 percent whereas in case of Region

2 and Region 3 the change is maximum for the 1-hr duration. The result is shown

in Figure 6.34.
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Figure 6.33: IDF curves for the bias corrected CRCM data for Region 4. Solid lines: future climate;
dashed lines: control climate. The same color is used for each duration.
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Figure 6.34: Relative changes between control and future climate for Region 4.
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Chapter 7

Uncertainty analysis

Climate change projections are subject to considerable uncertainties due to factors

such as emission scenarios and model choice. Uncertainty analysis is useful in the

design of infrastructure and decision making. The North American Regional Climate

Change Assessment Program (NARCCAP) is a collection of high-resolution climate

change scenarios, useful for investigating uncertainties. In this study, five different

simulations were used, described in Section 2.3. For each set of model data, IDF

curves using the simple scaling GEV model were developed. Durations of 3-hr, 6-hr,

12-hr, 18-hr, and 24-hr were used. It is easier to extract those durations as NARC-

CAP simulations are provided at a 3-hr time resolution. Before developing the simple

scaling GEV model, the climate model data were fitted by the GEV distribution.

Figure 7.1 shows that model data are well fitted with the GEV distribution. There

are some data points which are inconsistent with the rest of the data (Figure 7.2).

At first, for Region 2, Depth-Duration-Frequency curves were developed for the
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Figure 7.1: Cumulative probability plots for five regional climate models from NARCCAP simula-
tions at the Thompson station for the 24-hr duration.
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Figure 7.2: Boxplot of precipitation depth for NARCCAP simulations at the Thompson station.
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control climate and the future climate using the simple scaling GEV distribution

and the conventional GEV distribution. The results for CRCM-CGCM3 are shown

in Figures 7.3 and 7.4 and the results for other models are shown in Appendix

B.10-B.17. Figures 7.3 and 7.4 show that rainfall quantiles from the simple scaling

GEV model and the conventional GEV model using the CRCM-CGCM3 simulation

data are in good agreement although in the future climate, for the 6-hr duration,

there are discrepancies that increase with the increase of return periods. IDF curves

from the simple scaling GEV model using the CRCM-CCSM simulation also fit

well with the GEV distribution for the future climate but for the control climate,

there are discrepancies for certain durations, especially for shorter durations. For

the MM5I-CCSM simulation, the simple scaling GEV model fits well with the GEV

distribution for the future climate but for the control climate, the model is departing

from the GEV distribution though it is not much higher. Rainfall quantiles from

the HRM3-GFDL and the HRM3-HADCM3 do not show good agreement with the

model and the GEV distribution, particularly for shorter durations. For the control

climate of the HRM3-HADCM3 model, the differences between the scaling model and

the conventional distribution is maximum 14 percent and the difference is highest

for shorter durations and longer return periods but for the future climate for 6-hr

duration the difference is around 30 percent which is very high. In the case of the

HRM3-GFDL, there is a maximum difference of 19 percent for the control climate but

for the future climate for 12-hr duration the difference is 23 percent. In a summary,
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Table 7.1: ARF from NARCCAP simulations for Region 2.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 0.63 0.84 1.07
2 CRCM-CCSM 0.99 1.26 1.77
3 MM5I-CCSM 0.80 0.79 0.99
4 HRM3-GFDL 1.31 1.89 2.31
5 HRM3-HADCM3 1.87 2.57 2.96

the difference between the scaling model and the GEV distribution gets higher for

shorter durations and longer return periods and this is true for all models.

Areal reduction factors for 6-hr, 12-hr, and 24-hr durations were estimated and

for the CRCM-CGCM3 simulations, ARFs are shown in Figure 7.5. Areal reduction

factors for 6-hr, 12-hr, and 24-hr durations for the 100-year event are shown in Table

7.1. The table shows that those model data which show good agreement with the sim-

ple scaling GEV model and the GEV distribution give lower areal reduction factors

whereas the HRM3-GFDL and the HRM3-HADCM3 give higher areal reductions

factors. There are some published curves which show that for the 24-hr duration the

ARF will be around 1, for 12-hr duration around 0.8 and for 6-hr duration around

0.65. The CRCM-CGCM3 gives very close result with the established curves except

for 24-hr duration as for that duration the ARF is slightly higher than 1. Every

model has bias and in this study no correction factor was applied when developing

the simple scaling GEV model. It should also be noted that in the observed data no

adjustment is made due to winds, wetting losses, evaporation, etc.

Important differences in the projected climate are observed between models due

to different spatial and temporal discretization of simulation domains, parameteri-
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Figure 7.3: DDF curves from the simple scaling GEV model and the GEV distribution for the
CRCM-CGCM3 for the control climate for Region 2. Solid lines: GEV distribution; dashed lines:
simple scaling GEV model.
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Figure 7.4: DDF curves from simple scaling GEV model and the GEV distribution for the CRCM-
CGCM3 for the future climate for Region 2. Solid lines: GEV distribution; dashed lines: simple
scaling GEV model.
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Figure 7.5: ARFs versus return period for Region 2 using CRCM-CGCM3 simulations. ARFs are
estimated by the ratio of the precipitation intensity for a specific duration and a specific return
period at the grid box scale and at the station scale. These ARFs are determined using the CRCM-
CGCM3 simulations for durations of 6-hr, 12-hr, and 24-hr for Region 2.

Table 7.2: Relative changes in percent in future from NARCCAP simulations for Region 2.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 2 0.5 -2
2 CRCM-CCSM 23 20 16
3 MM5I-CCSM 15 14 13
4 HRM3-GFDL 11 12 13
5 HRM3-HADCM3 -6 -0.5 5

zations and boundary conditions. In Table 7.2, the relative changes for 6-hr, 12-hr,

and 24-hr durations for the 100-year event are shown. Different models give differ-

ent changes in the future and there is no consistency. It is worth noting that the

Canadian Regional Climate model predicts higher increases of extreme precipitation

in the future compared to NARCCAP simulations.

For Region 3, the simple scaling GEV model was developed and for the HRM3-

GFDL and the HRM3-HADCM3, the difference of rainfall quantiles between the

GEV distribution and the simple scaling GEV model is above 20 percent which is
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Figure 7.6: ARFs versus return period for Region 3 using CRCM-CGCM3 simulations. ARFs are
estimated by the ratio of the precipitation intensity for a specific duration and a specific return
period at the grid box scale and at the station scale scale. These ARF s are determined using the
CRCM-CGCM3 simulations for durations of 6-hr, 12-hr, and 24-hr for Region 3.

Table 7.3: ARF from NARCCAP different simulations for Region 3.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 0.53 0.60 0.70
2 CRCM-CCSM 0.82 1.03 1.24
3 MM5I-CCSM 0.60 0.65 0.74
4 HRM3-GFDL 1.31 1.89 2.31
5 HRM3-HADCM3 1.35 1.94 2.30

also found in Region 2. However, the other three models agree with each other. The

maximum difference between the distribution and the simple scaling GEV model is

17 percent. By analyzing areal reduction factors for 6-hr, 12-hr, and 24-hr durations,

it is found that for Region 3, similar results as in Region 2 are obtained. ARFs are

shown in Figure 7.6 for the CRCM-CGCM3 simulation. In Region 3, ARFs are

smaller than for Region 2. In Table 7.3, 100-year events are shown for the five

NARCCAP simulations. CRCM-CCSM, HRM3-GFDL, and HRM3-HADCM3 give

areal reduction factors greater than 1 due in part to model bias.
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Table 7.4: Relative changes (percent) in future from NARCCAP simulations for Region 3.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 28 31 34
2 CRCM-CCSM -3 -4 -4
3 MM5I-CCSM 25 24 22
4 HRM3-GFDL 19 23 27
5 HRM3-HADCM3 13 9 5

In Table 7.4, the relative changes for 6-hr, 12-hr and 24-hr durations for the

100-year event are shown. Different models give different changes in the future and

there is no consistency. In this region, the CRCM-CGCM3 predict higher extreme

precipitation than in Region 2. The CRCM-CCSM predicts decrease of extreme

precipitation where in Region 2, this model predicts increase in precipitation. The

Canadian Regional Climate model predicts higher increase of extreme precipitation

in the future than NARCCAP simulations.

In Region 4, there are eight stations and for this region, the simple scaling GEV

model was also developed and like Region 2 and Region 3, CRCM-CGCM3, CRCM-

CCSM and MM5I-CCSM give good agreement with the simple scaling GEV model

and the GEV distribution. The results for the CRCM-CGCM3 are shown in Figure

7.7 and 7.8. As this region has more stations, better fit was found than in Region 2

and 3. In the case of the CRCM-CCSM for 6-hr duration there is a difference of 22

percent for the future climate but for other durations the model and the distribution

are in good agreement.

Comparing observations and CRCM-CGCM3 simulations, one finds that ARFs

are less than 1 except for 24-hr duration. This result is very close to Region 2 but
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Figure 7.7: IDF curves from the simple scaling GEV model and the GEV distribution for the
CRCM-CGCM3 simulation for the control climate for Region 4. Solid lines: GEV distribution;
dashed lines: simple scaling GEV model.
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Figure 7.8: IDF curves from the simple scaling GEV model and the GEV distribution for the
CRCM-CGCM3 simulation for the future climate for Region 4. Solid lines: GEV distribution;
dashed lines: simple scaling GEV model.
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Table 7.5: ARF from NARCCAP simulations for Region 4.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 0.72 0.81 1.08
2 CRCM-CCSM 0.91 1.1 1.52
3 MM5I-CCSM 1.05 1.1 1.30
4 HRM3-GFDL 1.73 2.14 2.61
5 HRM3-HADCM3 2.00 2.45 2.89

Table 7.6: Relative changes (percent) in future from NARCCAP simulations for Region 4.

No Model 6 hr 12 hr 24 hr
1 CRCM-CGCM3 13 11 9
2 CRCM-CCSM -9 -7 -6
3 MM5I-CCSM 2 5 8
4 HRM3-GFDL 9 7 5
5 HRM3-HADCM3 15 16 18

Region 3 gives slightly different results from the other two regions. In Table 7.5

ARFs for 6-hr, 12-hr, and 24-hr durations for 100-year events are shown and in the

three regions, the HRM3-GFDL and the HRM3-HADCM3 give ARFs that are higher

than 1.

Relative difference between grid points were estimated and the result for the

CRCM-CGCM3 is shown in Figure 7.9. The CRCM-CGCM3 simulation predicts

that extreme precipitation quantiles will decrease with the increase of return period

whereas the Canadian Regional Climate Model predicts that extreme precipitation

will increase with the increase of return period. Table 7.6 shows the relative changes

for 100-year events for 6-hr, 12-hr, and 24-hr durations.

The CRCM-CCSM in both Region 3 and Region 4 predicts decrease of extreme

precipitation whereas in Region 2 it predicts increase of extreme precipitation. Un-

certainties in future projections can be assessed by combining the simulation results.

By combining the results, it is possible to get a general regional overview of the study
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Figure 7.9: Relative changes for the model NARCCAP CRCM-CGCM3 at Region 4.

area. By considering each model separately, it is very difficult to have confidence in

projected changes. However, in this study, it is obvious that there is an increasing

trend in extreme precipitation but it varies from region to region. The variations be-

tween models investigated here are due to both the choice of regional climate model

and global climate model used to produce the boundary conditions.
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Chapter 8

Summary and Conclusion

The present study has focused on the impact of climate change on IDF curves. One

of the difficulties involved in this type of study is the comparison of point data and

gridded data. Areal reduction factors derived analytically were used to resolve the

problem. ARFs decrease with the increase of the catchment area and the return

period and the coefficient of variation of areal averages rainfall decreases with the

increase of catchment area. According to the proposed methodology, the catchment

IDF depends on the spatial correlation length which characterizes the storm type.

Areal reduction factors were used to compare IDF curves based on observations

and CRCM data. ARFs account for part of the difference between observations

and model data, but there are still considerable model biases. ARFs derived from

observed data for the 24-hr duration are reasonable and consistent with the literature.

As ARFs for other durations were based on the 24-hr duration which may have

introduced some biases since it is known that ARFs are smaller for shorter durations.
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Estimation of smaller ARFs as ratio of model data to station data compared to the

published ARF values indicate that there are biases in the CRCM data. CRCM

simulations cannot simulate the extreme values very well, particularly for shorter

durations.

According to the results of this study, the CRCM data require correction before

being used in a simple scaling model with the GEV distribution. Two methods were

used to correct simulations: 1) mean-value correction and 2) QQ mapping. When

applying the QQ method, the future IDF curves from the corrected simulation data

and observed data for shorter duration are close to each other but for longer duration

rainfall quantiles agree less well. The mean-value correction method was applied to

the 24-hr duration extreme precipitation from the simulation run and then simple

scaling laws with the GEV distribution was applied to develop IDF curves. Rainfall

quantiles from corrected simulations and observations are close to each other, though

for shorter durations, intensities are departing from each other as one would expect.

Manitoba was divided into four geographical regions to get a regional view. The

simple scaling GEV model was applied to each region. The Canadian Regional

Climate Model has been used for two periods: 1961-2000 for the control climate

and 2041-2100 for the future climate, and the A2 emission scenario was selected

for this study. The CRCM predicts that there will be an increasing trend of ex-

treme precipitation with the increase of return period. To investigate uncertainties,

five different simulations from NARCCAP: CRCM-CGCM3, CRCM-CCSM, MM5I-
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CCSM, HRM3-GFDL and HRM3- HADCM3 were considered. CRCM-CGCM3,

CRCM-CCSM and MM5I-CCSM give good agreement between the simple scaling

GEV model and the GEV distribution but the other two models do not show good

agreement. In each region, the HRM3-GFDL and the HRM3-HADCM3 give areal

reduction factors greater than 1. Only the CRCM-CGCM3 gives areal reduction fac-

tors close to the published ARF curves though there are still some biases involved.

ARFs greater than 1 indicate model biases. Each model predicts change in extreme

precipitations at different rates varying from region to region. It is very difficult to

reach a general conclusion about the amount of increase.

Finally, the outcomes of this study can be summarized as follows:

• Derivation of areal reduction factors allows for comparison between observed

point data and modeled grid data. Comparison of areal IDF curves estimated

from point data and CRCM data provides evidence that CRCM data cannot

simulate extreme precipitation very well. The CRCM simulations need correc-

tions.

• The relationship between the ratio of observed and simulated data and duration

in Figure 6.1 implies that there are biases in the CRCM, at least for some

durations. Two correction methods were employed in this study. The mean

value correction method is better than QQ mapping. The QQ mapping is

sensitive to the choice of ensemble member and this method gave quite different

results for the two ensemble members used in the study.
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• The simple scaling GEV model gives satisfactory performance for all simula-

tions and using this model, it is possible to determine rainfall intensity quantiles

for any duration and return period.

• The constant ARF approach is recommended to estimate future changes at

the station scale because this method depends on duration and return period.

The mean change method is not reliable as the ∆-method only depends on

duration, not on return period.

• Assessing uncertainties is very important to develop adaptation strategies and

it helps decision makers in their ranking of adaptation strategies. The CRCM

predicts higher precipitation quantiles than the other five simulations from

the NARCCAP. The CRCM predicts that in Region 2 for the 24-hr duration,

100-year precipitation events will increase about 30 percent, in Region 3 also

around 30 percent and in Region 4 around 18 percent.

8.0.5 Recommendation

Precipitation intensity is used for the design of hydraulic structures. Potential shifts

in the distribution of extreme precipitation cause changes in the performance of

existing infrastructure and would require changes in the design values for future

designs. This study has assessed the change of intensity-duration-frequency (IDF)

curves due to climate warming. These changes can be used in the design of sewer

systems, hydraulic structures, etc. Areal IDF curves are often required in hydrologic
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design and in this study areal reduction factors have been estimated. These factors

are also useful when simulations are compared to observations.

Regional IDF curves have been developed for Manitoba using the simple scaling

GEV model. Information about short duration rainfall is important in the design of

hydraulic structures, but data for short durations like 1-hr or 2-hr, etc are not often

available. For planning and design of hydraulic structures, the information about

extreme rainfall events for a specific return period and for a specific duration is

needed. Using one scaling exponent and only 24-hr duration annual extreme rainfall

data, rainfall intensity can be determined for a given return period and a given

duration. It is also possible to estimate sub-hourly rainfall intensities at partially

gauged site.

8.0.6 Future work

• The simple scaling GEV model can be developed for other regions in Canada

as an alternative to the traditional quantile estimation technique.

• In this study, ARFs were determined theoretically for the province of Mani-

toba. It would be useful if ARFs were determined for each region to investigate

whether there is variations among regions. This information would be impor-

tant for estimating design floods and for comparing gridded data with point

data.

• Future work should focus on combining more simulations of future climate and
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on determining extending the result to the rest of Canada.
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Figure A.1: Comparison of IDF curves of areal and CRCM precipitation for each duration.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF from point,areal and simulated data 

Data

C
um

ul
at

iv
e 

de
ns

ity
 fu

nc
tio

n

 

 

d=2 hr

Areal
CRCM
Point

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF from point,areal and simulated data 

Data

C
um

ul
at

iv
e 

de
ns

ity
 fu

nc
tio

n

 

 

d=6 hr

Areal
CRCM
Point

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF from point,areal and simulated data 

Data

C
um

ul
at

iv
e 

de
ns

ity
 fu

nc
tio

n

 

 

d=12 hr

Areal
CRCM
Point

Figure A.2: Cumulative probability curves for each duration.
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Figure A.3: Quantile-Quantile plot for each duration after correcting the control simulation by the
δ-method.
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Figure A.4: Moments versus durations for observations.
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Figure A.5: Scaling exponent versus NCM order for observations.
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Figure A.6: Moments versus durations for control simulation run.
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Figure A.7: Scaling exponent versus NCM order for control simulation run.
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Figure A.8: Quantile-Quantile plot for each duration control climate after mapping the control
simulation run by QQ mapping.
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Figure A.9: Quantile-Quantile plot for each duration future climate after mapping the future sim-
ulation run based on future observations by QQ mapping. Future observations are determined by
multiplying observations by the ∆-factor.
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Figure B.1: IDF curves from observed data for the future climate at Region 2.
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Figure B.2: IDF curves from corrected CRCM data for the future climate at Region 2.
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Figure B.3: IDF curves from simple scaling GEV model for observed data for the control climate
for Region 3.
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Figure B.4: IDF curves from simple scaling GEV model for corrected CRCM data for the control
climate for Region 3.
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Figure B.5: IDF curves for the corrected CRCM data for Region 4 for the control climate.
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Figure B.6: IDF curves for the observed data for Region 4 for the control climate.
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Figure B.7: IDF curves for the corrected CRCM data for Region 4 for the future climate.
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Figure B.8: IDF curves for the observed data for Region 4 for the future climate.
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Figure B.9: Comparison of IDF curves for Region 4 for the future climate between observed data
and corrected CRCM data.
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Figure B.10: DDF curves from simple scaling GEV for the CRCM-CCSM for the control climate
at Region 2.
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Figure B.11: DDF curves from simple scaling GEV for the CRCM-CCSM for the future climate at
Region 2.
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Figure B.12: DDF curves from simple scaling GEV for the MM5I-CCSM for the control climate at
Region 2.
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Figure B.13: DDF curves from simple scaling GEV for the MM5I-CCSM for the future climate at
Region 2.
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Figure B.14: DDF curves from simple scaling GEV for the HRM3-GFDL for the control climate at
Region 2.
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Figure B.15: DDF curves from simple scaling GEV for the HRM3-GFDL for the future climate at
Region 2.
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Figure B.16: DDF curves from simple scaling GEV for the HRM3-HADCM3 for the control climate
at Region 2.
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Figure B.17: DDF curves from simple scaling GEV for the HRM3-HADCM3 for the future climate
at Region 2.
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