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ABSTRACT

In this thesis, a new method for modeling power systems with
equivalent two-port networks is presented. This new method—the three-step
approach is based on a multiple-step strategy, a modified pattern search
optimization technique and circuits with good move abilities. The pattern
search technique has been modified to overcome the local minimum problem.
The move abilities of zeros and poles of transfer functions of RLC circuits
were studied. Some circuits with good move ability and pairs of circuits which
are complementary with respect to realizability limitations have been found.
The basic idea of a multiple-step strategy is illustrated. A complex problem is
broken up into small parts, and each part is solved and finally the overall
problem is solved by optimization. A very effective technique using the group
delay to find the starting point for the optimization was developed. Computer
programs were developed to implement the three-step-approach method. A
specific modeling problem of a two-port power system and other examples

were solved by the new method. The results are satisfactory and encouraging.
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Chapter 1

INTRODUCTION

Studies of transient phenomena on electrical power systems can be
carried out by real time simulation facilities [15], numerical programs on a
computer [14], and equivalent networks [5, 7, 8, 9]. Research using equivalent
electric networks for the simulation or modeling of power systems including
both ac only and ac with dc tie, has been carried out for many years. One-port
equivalent networks have been studied since 1970 [8, 9]. The results of one-
port equivalent networks are very good for a number of different examples.

However for certain cases, a two-port model has advantages over a one-
port model. Fig. 1.1 shows an ac system with a dc tie. Although in reality there
are three phases for an ac system, a single phase representation is adequate
for most cases. For the modeling of such a power system there are two
formulations. One is the one-port formulation displayed in Fig. 1.2. The other is
a two-port formulation that is illustrated in Fig. 1.3. The two-port formulation
is better than the one-port formulation, since it takes the cross coupling of
port 1 and port 2 through the ac system into account and the one-port model
does not.

A multi-port equivalent network has been studied by Do and Garrilovic
[7]. However, the network functions of their equivalent network are not
guaranteed to be positive real. A positive real two-port equivalent network
has been studied and the advantages of a two-port equivalent network were
described [5]. There are relatively large errors in the realized frequency
response, therefore, the possibility of finding a better solution for a positive

real two-port equivalent network is considered.

1



port 1 ac network port 2

v 7

dc tie

converter converter

Fig. 1.1 An ac system with dc tie

Fig. 1.2 One-port equivalent circuit



two-port
network

Fig. 1.3 Two-port model

Although a power system network is complicated, the types of
components are relatively simple, i.e. resistors, capacitors, inductors and
transformers. We believe that:

1. For the modeling of an ac power network, a positive real network is much
better than a non-positive real one, because the ac network and the model
contain the same types of positive real elements.

2. A network containing resistors, capacitors, inductors and transformers
should be able to represent the ac network well.

In order to obtain a good positive real equivalent two-port network, a new
method has to be developed.

The goal of this thesis is to develop a new method that can guarantee a
positive real two-port equivalent network. As well, this positive real two-port
equivalent network should have frequency responses very close to the
frequency responses of the electrical power system, i.e., the difference

between the frequency responses of the found equivalent two-port network

3



and the actual frequency responses measured in terms of a norm should be a
minimum,

The procedure for finding a minimum can be seen as an optimization
procedure. Optimization methods can be applied to a broad scope of problems
in network analysis, network modeling and network synthesis. Many examples
have demonstrated the effectiveness of the optimization technique [10].
However, the application of optimization does not automatically guarantee a
good result. If the formulation of the optimization—the way the optimization is
used—is not appropriate, then satisfactory results will not be achieved. For
example, a parameter-optimization technique was applied in [7] that did not
give a positive real network. A Simplex optimization method was used in [5]
that did not yield frequency responses very close to the given (required)
frequency responses.

There are several different optimization techniques that can be used to
solve minimization problems. The Pattern Search Technique is a simple yet
effective direct search method [10], [12], [20], [21], [26], [27], [28]. To apply the
Pattern Search Optimization Technique to the modeling of a power system, a
computer program that implements the Pattern Search Technique is essential.

This thesis presents a novel method for the modeling of ac power
systems. This method is based on the way that the optimization technique is
used, on a modified pattern search optimization technique and on elemental
circuits with good move ability. (The definition of good move ability is stated in
Chapter 3). The way in which the optimization is applied, is referred to as a
strategy. The strategy—a multiple-step approach—is developed for solving the
problem of modeling ac power systems. The basic idea of the multiple-step
approach is to divide a complicated and difficult problem into small parts

correctly, and to use the Pattern Search Optimization method throughout every

4



step, solving each small part, step by step. The Pattern Search Optimization
Technique can also be applied to handle the movement of the zeros and poles
of the elemental circuits by changing the values of the circuit elements, and
thus the poles and zeros of the two-port network functions.

The procedure for modeling an ac power system with an equivalent
two-port network is divided into three parts. In part one, the optimal
impedance functions of the equivalent network are determined by an
optimization process. Part two deals with the structures of the equivalent
network. The structures are sorted into a main structure and a micro structure
which are determined by optimization. In part three, the Pattern Search
Optimization Technique is used to find the elemental circuits of the two-port
network.

The synthesis problem is to find the (approximate) functional
expression (network function), according to the required frequency response,
and then, according to this network function, to realize the network. The final
network might be realized or not, subject to the network function and to the
characteristics of the network elements. In the new method, every step uses
optimization. In the last step, that of finding the elemental circuits, the
objective function is still the norm of the difference between the found and
the required frequency response. Therefore, there is only one error. The
objective function of the optimization is always the frequency response, this
gives the synthesis procedure great flexibility and avoids the limitation of
having a fixed network function as the objective function, because a
frequency response can be approximated by many network functions.

The equivalent network consists of only positive resistors, positive

capacitors, positive inductors and transformers. Therefore, the associated



impedance function must satisfy the positive real conditions. In the
optimization procedure, the developed computer program monitors every
movement of the optimization process and makes sure that the positive real

conditions are always satisfied.

1.1 Outline of Dissertation

Chapter 2 describes the basic two-port network and the positive real
properties of a two-port. Chapter 3 presents the pattern search optimization
technique and the implemented computer program. In Chapter 4, the basic
idea of the multiple-step-approach strategy is introduced. Also, a modeling
problem of an ac power system is solved along with a detailed introduction of
the three-step-approach. In Chapter 5, more examples and more main
network structures are studied. Chapter 6 further studies the basic elemental
circuits, the convergence and accuracy for the three-step-approach method.
Chapter 7 gives conclusions regarding the successful new method and suggests

work for further study.



Chapter 2
TWO-PORT NETWORK

2.1 Two-Port Networks and Network Functions

Regardless how simple or how complex a circuit is, as long as it has two
pOrts to connect to outside sources or electrical circuits (input or output), and

the currents of the circuit satisfy the following conditions:
I =1

I, =1, (2.1.1)

the circuit is called two-port network, otherwise, it is called four-terminal

network. A two-port network is shown in Fig. 2.1.1.

1 I, I, 2

O - g O

+ +
two-port

v, network Vv,

o — . 0

1 I I'z 2

Fig. 2.1.1 A two-port network

According to-the circuit structure, a two-port network can be classified
as T, II, Ladder, T-bridge, bridge and other basic types of networks. Fig.

2.1.2 shows the T two-port network. Fig.2.1.3 illustrates the II two-port



network. The ladder two-port network is presented in Fig. 2.1.4. The series
connected two-port network is demonstrated in Fig. 2.1.5. Fig. 2.1.6 presents the
parallel connected two-port network. These network structures are simple yet

useful. We will use them for the modeling of an ac power system.

Fig. 2.1.2 T two-port network

Fig. 2.1.3 II two-port network



Fig. 2.1.4 A ladder two-port network

O— O

Fig. 2.1.5 Series connection of two-port networks

Fig. 2.1.6  Parallel connection of two-port networks



Two-port network theory studies the relations between the currents and
voltages at the input port and at the output port. The functions relating the
voltages and currents of the two port are called two-port network functions.
There are several forms of the two-port network functions. In this thesis, we
only use the open-circuit impedance and the short-circuit admittance
functions. Also, we only study two-port networks that contain resistors,
capacitors, inductors and transformers. This type of two-port network is also
described as a passive, lumped, linear, time-invariant, reciprocal two-port

network. The open-circuit impedance matrix

Z- {f” f”} (2.1.2)
~21 “22

where z;| is the driving point function of port 1, z,, is the driving point
function of port 2, and %, is the transfer function of the network. Because

the two-port network is a reciprocal network, z, is equal w0 z,. The

parameters of Z are defined as follows:

Z]1="_' (2.1.3)

Lo = = 2y === (2.1.4)

] (2.1.5)
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2.2 Positive Real Properties of Two-Ports

The impedance matrix Z has the following form:

<21 ~273

Z Z 5
7 { 1 12] =l{nn nl.:i (2.2.1)
d|n, m,

where n,,, n,, n,, and d are polynomials in the complex frequency variable s.

It is known that impedance and admittance matrices of a passive, lumped,
linear, time-invariant, reciprocal two-port network are positive real matrices
[34]. Consequently, the following conditions hold:

a. Conditions for each function:

(1) z,, ,and z,, are real for sreal.

(2) Polesof z;,, z,and z,, are all in the left- half s-plane and on the
Jo axis, Poles of z;, and z,, on the jw axis are simple with real positive
residues, Poles z;, on the jw axis are simple.

(3) Thereal parts of z, and ,, satisfy the following inequalities:
0 s Re(z,)),Re(z,,) < s=jw —OgWs® (2.2.2)
where Re denotes the real part.

b. Collective conditions:

(1) When s = jw, the real parts of impedance functions Zi1» Gpand Z,,

satisfy the following inequality:

Re(z,,)Re(z,,) - Re*(z,,) =0 S=jo -0s@®sw (2.2.3)

11



(2)  Poles of z,, z, and z, on the Jo axis satisfy the following
residue condition:
k,, 20 ky, =2 0
ks =k =0 (2.2.4)

where £, &,, and k,, stand for the residues of Zy» % and z,,, respectively.

In the optimization process, the positive real conditions play an
important role, i.e., the PR (positive real) conditions must be satisfied to
guarantee finding an RLC network (including transformers) for the modeling

of an ac power system.



Chapter 3

PATTERN SEARCH OPTIMIZATION
METHOD

3.1 Introduction

Optimization techniques can be applied to a wide range of problems in
network analysis, network modeling and network synthesis. The conventional
network synthesis methods for two-port networks, except for simple cases,
have disadvantages. For example, passive RLC filters, usually require the
newwork capacitors and inductors to be ideal. As well, the procedures are
complicated[10]. In this chapter, an optimization method for the two-port
network synthesis is introduced which focuses on the transfer function of a
two-port network. This new method is based on the fact that zeros and poles of
the transfer function of an RLC network can be moved over the (left-half)
complex plane by changing the values of the network elements—resistors,
capacitors, inductors and transformer ratios. A pattern search optimization
process can be used to move the zeros and poles of a two-port network transfer
function. As an example, consider a sixth-order network transfer function. To
determine the passive element values so that required zeros and poles are
achieved is a challenging problem but is solved by the developed pattern

search optimization method.
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3.2 The Formulation of Optimization for Two-Port
Network Modeling

The basic parts of an optimization are the input variables

x =(x;, Xy,...,X,), the objective function F, the target function G(x)(the

performance of a network or a network function as a function of the input

variables), and the (given) requirements R=(R,R,,...,R ). Without loss

generality, we define the objective function of the optimization:

F= ilRi - G,.I
i=1

where R is a required (given) value and G, is the corresponding value of the

target function G. If the values of the variables need to satisfy some
conditions, e.g.

ijO (orx}.SO) j=12,3,....n
then the optimization is called a constrained optimization.

For example, an optimization process is used to find a driving point
function which has a frequency response very close to the required
frequency response. The given frequency responses at some specified
frequencies are the required values, the constant factor, the zeros and the
poles of the impedance function are the input variables, and the relation
between the frequency response and the constant factor, the zeros and poles
of the impedance function is the target function. The values of the constant
factor must be non negative, and the real part of the zeros and poles must be
negative. Another example is that the optimization process is used to find a
network such that the impedance function of this network has some specified
zeros and poles, these specified zeros and poles are the required values; the
elements of this network—resistors, inductors, capacitors and transformers are
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the input variables; the relation between the required zeros and poles and the
network elements are the target function. the values of the network elements

resistors, inductors and capacitors must be non negative,

3.3 The Pattern Search Optimization T echnique

There are several different optimization methods that can be used to
solve minimization problems. These optimization methods are classified into
direct search methods and non-direct search methods. The direct search
methods do not require smooth functions or their derivatives. Among these
direct search optimization methods, the pattern search method is the most
widely used ome [10],[12]. The theory is largely geometric. Despite its
mathematical simplicity, the pattern search method works well in a wide
range of applications{10], {12], [20], [2 11,[261,[27],[28].

The process of pattern search optimization contains two major steps. The
first one is an exploration search which includes a sequence of single variable
searches and the ‘second one is a pattern search. The starting point of the
exploration search is also called a base point of the exploration search. The
point reached by an exploration search is called the exploration search
expansion point. The starting point of the pattern search is called a base point
of the pattern search. The point reached by the pattern search is called the
pattern search expansion point. At the beginning of the optimization process,

a starting point, X =(x,,%,,x,...,%,), is chosen. A step size (step increment) Ax,

for each independeﬁt variable is also selected.



1) The exploration search

The purpose of an exploration search is to explore the vicinity of the
current base point. An exploration search includes a sequence of single
variable searches. The procedure for an exploration search is as follows:

(1) The variable x, is given a positive increment, i.e. x, + Ax and a new point is
reached:

x® ——x® + Axe,

where x% is a vector and e, is a unit vector along coordinate axis 1.
Then the objective function F is evaluated. If the move is a successful move,
ie. F(x“ +Axe)<F(x""), then the new point replaces the original one. If the
move is a failure, then a negative move i.e.x, — Ax is taken and a new point is
reached:

xP ——x® — Axe,

Next the objective function F is evaluated. If the move is a successful move,
i.e. the value of the objective function decreases, the new point replaces the
original one. If the move is a failure, then the original point is maintained.

(2). Step (1) is repeated for all other variables, i.e. for ;ci,i =2,3,4...... n. Finally
an exploration search expansion point is reached. This point is denoted as

x®and will be used as the pattern search base point.

2) Pattern search and subsequent search

The pattern search is based on a successful move in a single variable
search. A move attempts to speed up the search while following the direction
of the successful single variable search move i.e. in the direction x® —x®.

Since a move of a single variable search in this direction has already led to a

16



decrease in the value of the objective function F, the pattern search

(2)

procedure move starting from point  x® is as follows:

(1) Move from point x® to x®:  x® = x® 4 (@ _ Oy,

(2) Check if the value of the objective function F at the pattern search
expansion point x, is better than that of the starting point x®. If there is
improvement, then point x* will be taken as a new base point for the next
sequence of single variable moves of the exploration search. If no
improvement is made, then x® is abandoned and point x® becomes a new
base point for the next exploration search, and a new sequence of single
variable moves are made.

(3) Repeat the sequence of single variable moves and a pattern move in turn,
until a preset limit is reached.

A two dimensional example of an exploration search and pattern search
is demonstrated in Fig. 3.3.1. The starting point is x*. The first single variable
move is successful in the positive direction. The second single variable move
is successful in the negative direction and point x® is reached. x® becomes
the base point for the pattern search. The first pattern move in the direction
x® —x® is successful and x®becomes the pattern search expansion point and
the base point for a new round of exploration searches and pattern searches.
The first single variable move starts at point x®. The step size has to be
reduced before the first single variable move is successful, in the negative
direction. The second single variable move is successful in the negative
direction and x“becomes the base point for the pattern search. However, the
pattern search move fails, so that x becomes a base point for the next
exploration search. The next round of exploration searches and pattern

searches is successful and the final optimal point  x® is reached.
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| ——ip successful move

0 | e unsuccessful move

X1

Fig. 3.3.1 An example of the single variable search and the pattern search
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3.4 Pattern Search Computer Program

A computer program is developed for the pattern search optimization.
In the computer program two kinds of step increments are used. The first
kind of step increment is a constant:

Ax =c
The second kind of step increment is a constant scalar factor % times the
vector component, i.e.,
Ax, = k- x,

The second step increment is called percentage step increment. In this thesis,
it is found that when the optimal values of variables differ greatly, the
percentage step increment leads to a faster convergence of the optimization
process than that with a constant Step increment. Since the single variable
search moves in both +Ax and -Ax directions, there is no loss of generality in
choosing Ax to be positive. The computer program is written in PASCAL and
is shown in Appendix A. A flowchart of this computer program is presented
in Fig. 3.4.1.

In the flowchart, x{i,1] is the starting point of the exploration search,
x[i,2] is the exploration expansion point and the starting point of the pattern
search, and x{i,3] is the pattern search expansion point. A represents an
initial error limit and B represents the final error limit. 4 is a variable
error limit. B, represents the value of the objective function, i.e. the error of
the exploration search, and B, represents the value of the objective function,
i.e. the error of the pattern search. In the exploration search, if the error B,
is less than the present error limit A, then the value of B, is set to be the

updated error limit A, for the pattern search and a starting point of the

pattern search—x{i,2] is reached.
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set initial values

i, Ax, B, A
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single variable search

x[i,2]:=x[i,1] *Ax
A=A (

A= B

< Bi1<A1?

Ax< f3?

A\

stop

Ax:=[Ax

pattern search

X[i, 3]:= ZX[i,2]—X[i,1]

~ 0= #10,3]

Y L,1}:= A1,
B, <A? >"‘ A:=B, |
N

x[i,1]: =x[i,2]

Fig. 3.4.1 Flowchart of a procedure
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In the exploration search, if the error B is not less than the updated
error limit A, then the exploration move fails and the step size must be
reduced. The step size reduction shown in the ﬂchhart is a linear one:

Ax, = [Ax;
where [ is a constant. The step size reduction can also be nonlinear:

Axy = f(Ax;)
where f(Ax,) is a nonlinear function of Ax,, e. g. the square function. In some
cases nonlinear step size reduction leads to a faster convergence of the

optimization process.

In the pattern search, if the error B, is less than the present error
limit. A;, then the value of error B, is set to be the updated limit A,, and a
pattern search expansion point x[i,3] is reached and it is set to be the next
starting point of an exploration search; if the error B, is larger than the

present error limit A, then the pattern search fails and the present starting

point of the pattern search is set to be the next starting point of an exploration
search.

A problem which arises in the optimization process is how to prevent
the program from stopping at a local minimum (premature termination).
Figure 3.4.2 shows a curve where point C is the global minimum of the curve;
both points B and D are local minima. If the program of the flowchart 1,
shown in Fig. 3.4.1, is used to minimize the function of this curve, starting at
point A or point E, it could stop at either point B or point D for some step
increments. Fig. 3.4.3 displays in more detail why the search will stop at the
local minimum. From Fig. 3.4.3, it can be seen that as the search attempts to
find a lower point, it reduces the step increment Ax. Eventually the search
reaches the local minimum point and the step increment size decreases to a

minimum. Therefore, while the overall error of the optimization is still
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large, the step size has become a minimum, i.e., a local minimum has been
(possibly) reached. It is clear that without overcoming the local minimum

problem, the pattern search is useless.

X1 x2

Fig. 3.4.2




In order to leap over the local minima and search toward the global
minimum, one useful way is to increase the step size. Fig. 3.4.4 gives a birds-
eye view. From Fig. 3.4.4, it is clear that increasing the step size is an
effective way to overcome the local minimum problem. Therefore, to
overcome the local minimum problem, another flowchart shown in Fig. 3.4.6
must be added to the flowchart 1 (flowchart of a procedure). The program of
flowchart 2 makes it possible to leap over the local minima. When a local
minimum is detected, the program increases the step size dramatically to leap
over the neighborhood of the local minimum to search for a new direction to
the global minimum. An execution of the program of flowchart 1 is called a
procedure. During the optimization process, if n local minima are met, then
n+1 procedures are needed to reach the global minimum.

There are some other techniques for solving the local minimum
problem. Fig. 3.4.5 shows that moving along one direction to change the
starting point and then searching in the other direction also helps to move
over a local minimum. Other techniques such as using different step sizes and
using different starting points (different in all directions)can also be applied
to overcome the difficulty of a local minimum.

We will discuss how to deal with the constraints of the optimization in

Chapter 4 along with the PR requirement of the impedance function.









increase step size IH

L

execute a procedure

Y
reached local minimum?
N
N
stop

Fig. 3.4.6 Flowchart 2
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3.5 Example

The following example is used to demonstrate the method discuss in

Section 3.4. The zeros and poles of a transfer function z,, are given as follows:

Table 3.5.1 zeros and poles of given z,,

Numerator Degree:
5

Constant factor followed by Zeros:

real part

1.8162721865407291370e+2
-3.8237749779750948910e+2
-3.8237749779750948910e+2
-2.7521457411148106060e+2
-2.7521457411148106060e+2
-4.4622888403015500970e+1

Denominator Degree:
6

imaginary part

0.0000000000000000000e+0
1.1220919662871389730e+3
-1.1220919662871389730e+3
1.6318360713505543120e+3
-1.6318360713505543120e+3
0.0000000000000000000e+0

Constant factor followed by Poles:

real part

1.0000000000000000000e+0
-2.4490476161442084880e+2
~2.4490476161442084880e+2
-2.6728612608663766060e+2
-2.6728612608663766060e+2
-2.7047454246291536250e+2
-2.7047454246291536260e+2

imaginary part
0.0000000000000000000e+0
-2.1630087493962056980e+3
2.1630087493962056980e+3
-1.3032530067106722280e+3
1.3032530067106722280e+3
5.5586014706930690560e+2
-5.5586014706930690560e+2

In order to determine what kind of network structure can be used to
realize this transfer function, we analyze the given transfer function. The
degree of the numerator is 5 and the degree of the denominator is 6. The
numerator has one real zero and two complex conjugate pairs. The
denominator has three complex conjugate pairs of zeros. There are many
kinds of network structures that can be used to realize this transfer function.

We choose the following II structure to carry out the synthesis process.
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Fig. 3.5.1

The next step is to find the micro structure—the elemental circuit. The

relation between z,, and z, = “

Z’Za

z nd,n,
N nd,d; +n,dd, + ndd,

(3.5.1)

There are many combinations of z, z, and z, which can satisfy the
degree requirements of z,,. One choice is the degree of the numerator of z,
equal 1 and the degree of its denominator equal 2, and the degree of the
numerators and denominators of both 2, and z, equal 2. With some basic
knowledge of network theory, some circuits which satisfy the degree
requirements can easily be found. (Some elemental circuits are shown in
appendix C.) The next step is to run the optimization program for different
combinatons of these circuits—the elemental structures. A good combination
that has poles and zeros very close to the required poles and zeros is found. The

network is shown in Fig. 3.5.2. The zeros and poles are listed in Table 3.5.2.
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Fig. 3.5.2

Table 3.5.2 zeros and poles of found gz,

Numerator Degree:
5

Constant factor followed by Zeros:

real part

1.8162700069998530240e+2
-2.7521457397329092710e+2
-2.7521457397329092710e+2
-3.8661525095396568610e+2
-3.8661525095396568610e+2
-4.4622889388678210170e+1

Denominator Degree:
6

imaginary part

0.0000000000000000000e+0
-1.6318360608542535030e+3
1.6318360608542535030e+3
-1.1320615687626235780e+3
1.1320615687626235780e+3
-0.0000000000000000000e+0

Constant factor followed by Poles:

real part

1.0000000000000000000e+0
-2.6712364758515397920e+2
-2.6712364758515397920e+2
-2.6728612543130950140e+2
-2.6728612543130950140e+2
-2.4490476326542253280e+2
-2.4490476326542253280e+2

imaginary part

0.0000000000000000000e+0
5.5411513465699502140e+2
-5.5411513465699502140e+2
1.3032530000334810330e+3
-1.3032530000334810330e+3
2.1630087606343870050e+3
-2.1630087606343870050e+3
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3.6 Discussion

In the introduction we introduced an optimization method that is based
on the fact that zeros and poles of an impedance function of an RLC network
can be moved over a region in the (left-half) complex plane by changing the
values of the network elements—resistors, capacitors, inductors and
transformers. It is found that the poles and zeros of different network
impedance functions have different capabilities for moving over the (left-
half) complex plane, because of inherent restrictions. For ease of description,
we use the term move ability to discuss the movement of the zeros and poles
of a network function. For an impedance function of a network with the
number of zeros and poles greater or equal to 1, the movements of the zeros
and poles in the (left-half) s-plane are not independent. That is, the movement
of a pole (zero) is restricted by the location of the zero (pole). For certain
locations of zeros (poles), the poles (zeros) of some network functions can
move over a larger region in the (left-half) complex plane than some other
network functions can. If the poles and zeros of a network function can move
over a large region of the (left-half) complex plane, we simply say that the
elemental network has good move ability; otherwise we say it has poor move
ability.

Now we can use the results of the example to further describe the
movement of the zeros and poles of the network function. For an RLC network,
we find that
(1) Zeros and poles of some networks (for example elemental circuit No. F1,
Appendix C) are alWays real, regardless of the values of the elements. Zeros
and poles of some networks have fixed relations. We say these have poor move
ability.
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(2) An elemental network’s move ability will affect the main network’s move
ability. For example, if elemental circuit No. F4, shown in Appendix C, is used
as Z, of the network shown in Fig. 3.5.2 then the errors in the zeros and poles
of this network function become very large. Elemental circuit No. E4 is the
kind of network described in (1). Its real zero is always equal to one half of the
real part of its poles.

In this chapter, we presented the pattern search optimization method
for the realization of a two-port network. The move ability of the impedance
functions of elemental circuits was studied. Some elemental circuits with good
move ability were found and presented in this Chapter. The pattern search
optimization technique and the elemental circuits with good move ability are
the basis of the new method for the modeling of an ac system. In Chapter 4,
we will carry out more studies for applying this basis to the modeling of an

ac power system.
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Chapter 4
MODELING OF AN AC SYSTEM

4.1 Introduction

In this chapter, we will develop a new method to solve a modeling

problem—the synthesis of an equivalent two-port network for an ac power

system. Figs. 4.1.1, 4.1.2 and 4.1.3 demonstrate the frequency responses of Zas

%, and  Z,, respectively. (Data were obtained from G. Mazur of Manitoba

Hydro and are listed in Appendix B.) We will see that the pattern search
optimization technique can be applied to the development of the new method
for generating a positive real equivalent two-port network. Also, as
described in Chapter 1, the formulation of the optimization (the way we apply
the optimization technique) plays a very important role in the new two-port
synthesis method. To implement this basic idea, a multi-step strategy is
developed in the following section. In Chapter 3 we found that a poor move
ability of an elemental circuit will cause a poor move ability of the two-port
network. This will lead to a failure to generate the required frequency
responses with the two-port network. Therefore, we must always try to use
elemental circuits with good move abilities. This finding will also be applied to
the development of the new synthesis method to guarantee the success of the
optimization process. We shall apply the new method in detail through the

example.
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Fig.4.1.1 Given frequency response of z,,
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4.2 The Strategy of Three-Step Optimization

The goal in modeling an ac system is to find a positive real equivalent
two-port network that can give frequency responses close to the frequency
responses of the ac system. This is a typical real modeling and synthesis
problem. Now we will find a strategy for a new modeling and synthesis
method by using the pattern search optimization technique. The new method
must be able to guarantee a satisfactory solution with a positive real
equivalent two-port network.

Looking back at Chapter 3, we find that the difficulty in satisfying the
requirement for a set of zeros and poles is similar to that of satisfying one
frequency response. In comparison to the problem we face right now, the
example in Chapter 3 is a much simpler case. It can be solved by using
optimization once—we call it the one-step approach. Now the synthesis task is
to find a two-port network that has frequency responses very close to the
given frequency responses of %41 &, and Z,,. Although the requirements are
to satisfy only two more frequency responses, the difficulty for the latter is
much more than three fold the former. We can see that the pattern search
technique is a good tool. But to use a good tool to do a good job, we still need to
use it in an appropriate way—an optimal way. The appropriate way is the right
strategy.

The frequency response of an electric network depends on the
structure of the electric network and the values of the network elements such
as resistors, capacitors, inductors and transformers. This dependence is
equivalent to dependence on the zeros and poles of the impedance functions of
this network. Since all the good move elemental circuits have only relatively
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good move ability, every elemental circuit has its own limitations. If the one-
step approach is used, the result will most likely not be satisfactory. Then we
will be practically unable to analyze what is wrong because there would be so
many combinations of different elemental circuits and network structures. It
will be very time-consuming to find the optimal combination. This raises the
questions: Is the degree of the polynomial of the numerator of the impedance
function of the two-port network not right? Is it the wrong type of elemental
circuit? It is very likely to happen that, until most of the possible
combinations have been tried, a good result would not be found. (From now on,
for simplifying the description, we use ‘degree m/n’ to represent the number
of zeros m and the number of poles n of an impedance function of an electrical
network, and call this electrical network a degree m/n network.) For example,
from degree 4/4 to 10/10, there are 19 different degree combinations. There
are at lest 30 different elemental circuits with degrees of 1/2 and 2/2,
therefore, the possible circuit combinations for each degree combination will
be large and the total number of combination will be very large. To use the
optimization program to calculate the values of all circuit components for all
combinations would be very time consuming. Therefore, using the one-step
approach to solve the problem of finding a circuit to realize 4 gpand g, is
not practical.

To solve this complex and difficult problem, we must find a strategy—a
systematic approach. Like all other kinds of difficult problem solving, we can
not solve the whole problem at once. We must try a step-by-step approach and
in each step solve a piece of the overall problem. With this in mind, we see
that the logical way-to solve the complicated and difficult synthesis problem is
to divide the whole problem into several parts and then to solve each part. We

will find that the pattern search optimization method has to be used in
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every step in which we attempt to solve a piece of the problem. In comparison
with the previous one-step approach, this is called a multiple-step approach.

With some basic knowledge of modeling and synthesis of electric
networks, we find that by using the modified pattern search optimization
technique the whole procedure of synthesis can be divided into three parts
which can be solved one part at a time. We call this the three-step approach.
The three-step approach procedure is described as follows:

Step 1, determine the degrees of the numerator and denominator
polynomials of the impedance function of the electrical network. For the
whole synthesis procedure, the first thing we have to do is to find how high
the degree of the electric network is. It includes determinations of the optimal
degree of the numerator and the optimal degree of the denominator with
certain types of zeros and poles of network functions z,,, z,, and 2y

Step 2, find a network structure which can guarantee that the network
will be able to give frequency responses very close to the required frequency
responses.

Step 3, determine the elemental values of all network elements such as
resistors, capacitors and inductors. As the network elements are determined,
the impedance functions z,,, z,, and z,, are also determined.

Fig. 4.2.1 shows a flowchart of the three-step approach. In the three-
step approach, the number of tests is significantly reduced. The total number
of tests is the sum of the numbers in each step. The total number of tests for
the one-step approach is equal to the product of all three steps. For example, if
the possible number of degree combinations is 19, the number of possible
network structures is 20 and the number of elemental circuits is 5, then the
sum of these numbers is 44 and the product of these numbers is 1900. From the

example, we can see that the three-step approach has many fewer tests than
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the one-step approach does. Comparing the three-step approach with the
traditional network synthesis, we find that the three-step approach procedure
is a complete reversal of the traditional network synthesis procedure. We will

discuss the details of this new approach in the following sections.

T st D

)

step 1

determine the degrees of
the network functions

|

step 2
determine the network structure

step 3
determine the elemental
values of the network elements

Fig. 4.2.1 Three-step approach
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4.3 Step 1: Degrees of z, , z, and z,,

Now we will try to use the pattern search optimization method developed
in Chapter 3 to determine the optimal degrees of an electric network. More
specifically, it includes the degrees of the numerator polynomiais and the
denominator polynomials of the network functions Zis & and Z,, with certain
types of poles and zeros. In order to apply the pattern search optimization
technique, we must first determine the input variables and output target
functions. Since the goal of modeling is to find a positive real equivalent two-
port network that gives frequency responses close to the frequency responses

of an ac system, the target functions to be found must be the frequency

responses of the to be found gz, z, and z,, and the input variables of the
optimization are the poles and zeros of z;;, Z,, and Z.,- The optimization is to

change the values of the poles and the zeros of 211> %, and Z,, to obtain the

required frequency responses. There are two types of poles and zeros. One
kind is real and the other kind is a complex conjugate pair. At the beginning
of Section 2, we described two major reasons why we do not use a one-step
approach. The first one is that every elemental circuit has limitations, i.e., its
zeros and poles can not move over the entire (left-haif) s-plane. The second
one is that there are so many combinations of different network structures
and elements that it would be very difficult to find the optimal combinations.
In-order to determine: 1) the optimal degrees of 1 4. and Z,,, 2) the types of
zeros and poles of zj,, 7, and 2,, associated with 1), we must test combinations
of different degrees and different types of zeros and poles of 211, G, and Z,..
Since we only want .to find the optimal numbers of the poles and zeros of the
impedance functions z;,, I, and Z,, at this stage, we carry out separate

optimization processes for z;;, 2, and z,,, We will start with Za-

40



4.3.1 Degrees and Types of Zeros and Poles of zZ,

4.3.1-a The Algorithm
““““ In order to apply the pattern search optimization technique to the
optimization, we first determine the input variables and the target functions.
Since the task is to find a transfer function z, that has a frequency response
very close to the given frequency response, we consider the following

objective function:

F=3 g, (jo,) -z, (jo,)| (4.3.1-1)
i=1

where m’is the number of given frequency responses points, z/,(jw,) is the
given frequency response and z,(jw;) is the frequency response of transfer

function gz, to be found. z,(jw;) is a function of zeros, poles and a constant

factor, which are to be found i.e.,

KIZH(S_Zk)
gy = —E— (4.3.1-2)

n

H(S“Pz)

I=1

where z, are the zeros, p; are the poles, K|, is the constant factor, m is the
number of the zeros and 7 is the number of the poles of z,.

In the optimization, K}, and the zeros and poles of z,, are the variables.
Now we consider some of the details of the computer program. As described
above, we only need. to deal with two kinds of zeros and poles: real and complex

conjugate pairs. For a complex zero, two variables are needed.
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x, =Re(z,) k=12, m (4.3.1-3)

¥ =Im(z,) k=12,-m (4.3.1-4)

where Re(z,) and Im(z,) denote the real and imaginary parts of a complex

variable z,. Similarly for a complex pole, two variables are needed as well.

u, =Re(p,) k=12,n (4.3.1-5)
v, =Im(p,) k=1,2,n (4.3.1-6)

For a real pole or a real zero, one variable is sufficient for the program.

Hence we have:

X, =2, k=12,-.m (4.3.1-3)

W, = Py i=L2,-nm (4.3.1-4)

where m, is the number of real zeros and n, is the number of real poles.

Fig. 4.3.1-1 gives a flowchart of the optimization procedure for finding

the optimal degrees of the numerator and the denominator for different types

of .zeros and poles of z;,. The flowchart is very similar to the one shown in Fig.
3.4.1. Since gz, is not necessarily positive real, the flowchart shown in Fig.
4.3.1-1 is appropriate for many cases. However, for certain cases 7, may need

to satisfy the PR conditions. Then the real parts of the zeros and poles of z,

must satisfy:

Re(z,)<0 k=12,-.m (4.3.1-9)
Re(p,)<0 [=12,-.n (4.3.1-10)

where Re(z,) is the real part of a zero and Re(p,) is the real part of a pole.
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In Chapter 3, the input variables are the element values of the
elemental circuits. By keeping the values of elemental circuit components
positive, the PR (positive real) conditions are satisfied, i.e., the constraint of
the optimization is satisfied. However, in the process of the first step of the
three-step optimization, keeping the real parts of all the zeros and the real

parts of all poles negative is not sufficient to satisfy the PR requirements.

For a rational function Z(s) to be positive real, necessary and sufficient

conditions are [3]:

(1) Z(s)=N(s)/D(s) is real for s real
(2) N(s)+ D(s) is strictly Hurwitz

(3) The real even polynomial
E(s) = ND. + N.D
is non-negative along the entire = jw-axs, i.e.

(E(s)s=jo = E(@®) 20 —oS < o0

The above conditions can be used for testing if a rational function is positive

real. Condition (1) is satisfied if the coefficient of Z(s) are real or equivalently

if the zeros are real or occur in complex conjugate pairs. Condition (2) is

satisfied if the zeros are all in the open left-half s-plane. In order for E( w? Jto

be non-negative for all @, the necessary and sufficient condition is that the

2

real positive @w* zeros of E( ®?) must be of even multiplicity. Therefore, by

determining the multiplicity of the positive ®? zeros of the real even

polynomial E(w? ), condition (3) is easily checked. A computer program [30]
for checking the above positive real conditions is used in the optimization

program.
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To retain only those z;, which are PR, the flowchart of Fig. 4.3.1-1 must

be modified by the addition of the flowchart shown in Fig. 4.3.1-2. The
computer program of flowchart Fig. 4.3.1-2 implements the above checks for
the positive real conditions and determines if the transfer function found
during the single variable search is PR or not. If the program detects a
movement of a pole or a zero which causes the transfer function to become
non PR, then the move is declared a failure and the pole or the zero has to
remain in its former PR position. Fig. 4.3.1-3 shows the flowchart for
checking if gz, is PR during the pattern search. If the program detects a
movement of a pole or a zero causing the transfer function to become non PR,

then the move is declared a failure and the pole or the zero has to remain its

former PR position. In order to maintain z, always PR, a PR starting point is

required. By moving the zeros or the poles of z,, further to the left of the

complex plane, a PR starting point can always be obtained. In this way, a

positive real transfer function  z,, is always guaranteed.



start

set initial values
x{i,1}:= Re(z;)
x{i+1,1k=Im(z)

single variables search

x(i, 2] =[i,1] *Ax
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A= B,

stop

pattern search
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'
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x[i,1]:=x[i,2]

>fo
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Fig. 4.3.1-1 Flowchart for determining degree of
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single variable search

x[,2):=x[i,] £Ax

Is z, PR?

K

x[i,2}=x[i,1]

L

L

go to next step

Fig. 4.3.1-2  Flowchart for PR checking in single variable search

pattern search

x[1,3]:= 2x{,2] — x{i,1]

Is 7, PR?

IE

x[i,3]:= x{i,2]

L

—

g0 to next step

Fig. 4.3.1-3  Flowchart for PR checking in pattern search
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4.3.1-b Finding the starting point for the optimization

A starting point for the optimization can be found by using the group
delay [30]. This method is based on the relation between the group delay and
the frequency response of the real and imaginary parts of the impedance
function and the zeros and poles of the impedance function. Two expressions
for the group delay are used. One is in terms of the real and imaginary parts
of the impedance function and their derivatives. The other expression for
group delay is in terms of the zeros and poles of the impedance function. The
group delay curve is determined from the real part and the imaginary part of
the frequency response data. The group delay Tt is defined by

do(jw)

o) = —
T(jw) T
where 6(jw) is the phase of Z(jw) and

_ Im(Z)

tan O(jw) Re(Z)

where Im(Z)is the imaginary part and Re(Z)is the real part of the impedance

function Z(s). Let X =Im(Z) and R=Re(Z) to simplify the notation, then we

have
(X
0= tan \R)
a0 _ d ([  .(X\)
o "7\ (R)
_-XR+RX
T O R+X

where the prime denotes differentiation. Thus the expression for the group

delay in terms of the real and the imaginary parts and their derivations is
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_ XR-RX
t(.]w) = 5

el el 4.3.1-bl
R+ X ( )

The values of the derivatives are calculated by using Lagrange’s interpolation

formula [40].

We can obtain another expression for the group delay t(jw) in terms of

the zeros and poles of the impedance function Z(s) using the following steps.

Let

N“)=k£ys—4)

Z(s)= -
IXS) I—][(S_pi)

where z is a zero and p; is a pole. We have

In(Z(s)) = In N(s) - In DX(s)

din Z(s) _ _( D'(s) _ N '(S)\
ds \ IXs) N(s) )

Also
InZ(s)=Ink+ Y In(s-z)- Y In(s - )
Zine=3)- Fintem

and

The group delay is also given by [39]:

T(jw) = Re{D ) - N '(s)}|s= jo

IXs)  N(s)

Therefore, we have



1(jo) = Re{——-————d an(s)}

ds

s=jo

Vs

Srd )

- N P :
z(a +(a) .B)J 21'(71'2"'(0)"51')2) (4.3.10-2)

where p, =-q; + jB; and z, = -y, +§,. Using equation (4.3.1b-1) we can find the

S=jm

curve of the group delay 7(jw). Using equation (4.3.1b-2) we can estimate the

real parts of the poles which are the negatives of the inverses of the peak
values of the curve and the imaginary parts of the poles, which are the
frequencies corresponding to the peaks of the curve. Also, we can estimate the
real parts of the zeros from the inverses of the negative values at the valleys
of the group delay curve and the imaginary parts of the zeros from the
frequencies corresponding to the valleys of the curve. Fig. 4.3.1-4 shows a
curve of group delay and the estimates of the zeros and poles. The above
method can be justified as follows: when the poles and zeros are not very close
together, one term of (2) dominates in the neighborhood of a pole or a zero.

For example, for a dominant pole, we have

&;

(Z,-z + (0) —:Bi)z

(jo) =

At o =3, we have a maximum and
T(jB;) =—
Therefore, the above method for estimating the starting point is readily

applied. However, if the poles and zeros are close together, one term of (2) no
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longer clearly dominates in the neighborhood of a pole or a zero. The starting

point then can not be estimated precisely.

0.2
(jo)
0.1
0.0
-0.1
|
I
-0.2 - T . .
0;
0 100 200 300 400 500
frequency
Fig. 4.3.1-4
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4.3.1c Tests and Results

Using the method described above for finding the starting point, the

values of the real and imaginary parts of the poles and zeros of the starting

point for z,, are found from the given data (see Appendix B). Table 4.3.1-1

displays the estimated values for the starting point of z,,. (In all the following
tables the absolute value of the real part is given. Also, in the following

sections, only absolute error is used.)

Table 4.3.1-1 Starting point for z,,

Zeros:
# real part imaginary part
1 1060 870
2 1570 1380
poles:
# real part imaginary part
1 950 2250
2 1550 1250
3 850 650

Since the group may not give all zeros and poles, some additional
combinations of zeros and poles are tested. Table 4.3.1-2 displays the calculated
results for different combinations. The number of iterations is 600 for all

combinations. For combination #1 (5/5 ) the error is 2.958. The error of
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combination #2 (5/6) is 0.4308. The higher degree combination #3 (6/6) yields
a higher error (2.723) than that of #2. Hdwever, the highest degree
combination #4 (7/8) has the lowest error 0.4303. From these results it can be
seen that the optimal degree difference between the numerator and the
denominator is one, i.e., the degree of the numerator is one less than that of
the denominator. Therefore, the degree difference between numerator and

denominator plays a very important role for finding the optimal degree of the

impedance function.

Table 4.3.1-2 The test results of different combinations

degree of degreg of number and number and error
numerator | denomiator types of zeros types of poles
2 complex 2 complex
5 5 conjugate pairs | conjugate pairs | 2.958
1  real 1  real
5 6 2 complex 3 complex
cox;;uga;:ai)alrs conjugate pairs 04308
6 6 3  complex 3 complex 2.725
conjugate pairs | conjugate pairs
3  complex
7 8 . . 4  complex
con]tigateall pairs conjugate pairs 04303
re
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4.3.2 Degrees and Zeros and Poles of Z,

4.3.2-a The Algorithm

In a way similar to (4.3.1), we determine the variables and target

function first. We have the following objective function:

F =2!Zu(jw,v>—z{1(jw;)l (4.3.2-1)

i=]

where m’is the number of given frequency responses points, z;,(jw,) is the
given frequency response and z,;(jo;) is the frequency response of

impedance function z; which is to be found. z,(j®;) is the target function and

a function of the zeros, poles and constant factor, which are to be found:

KT T6-2)
= k=i
H(S - )
I=1

where z, denotes the zeros of z,. p, represents the poles of z,. m is the

2y (4.3.2-2)

number of the zeros and n is the number of the poles of z,,, K|, is a constant
factor. K|, and the zeros and poles of z, are the variables of the optimization.
The impedance function gz, must satisfy the positive real conditions.
Therefore, during the optimization process, the PR conditions must be
checked, after every move of either a single variable search move or a pattern
search move. The technique for PR checking described in Section 4.3.1 is used.
If the program finds the PR conditions are violated by a move, then the move
is a failure and the pole or the zero has to retain its former PR position. In this

way, a positive real impedance function gz, is always guaranteed. Fig. 4.3.2-1

displays a flowchart of the optimization procedure for finding the optimal
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degree of the numerator and the denominator and the types of zeros and poles

of z,. The flowchart is similar to that of z, shown in Figs. 4.3.1-1, 4.3.1-2 and

4.3.1-3.

start

set initial values
xi,1k=Re(z,)
x[i+L1)=Im(z)

single xi,2k=x[i, 11+ Ax
variable NP

SearCh \T-N_— Is 4y PR?
Y

i, 2)= x[i 1 >

/N

= Ai= B Bi<A1?

stop

g
A
=
-2
\

N
pattern X[, 3= 2x{i,2] - x{i,1]

search N \I(
Is z; PR?

i Y
x{i,3k= x{i,2] ——9‘

J/ . .
B <A? < >Ix[l’}1]:= x{i,3] Ly

\k N 1.= Dy
x{i, 1= i,2]

\/

Fig. 4.3.2-1 Fowchart for determining degree of z,
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4.3.2-b Tests and Results

To find the optimal combination of degrees and types of zeros and poles

of the driving point function gz, various examples were tested. Similar to z,,,
to begin the test for the optimal degree of z;,, a good starting point is needed.
The method of using the group delay to find a starting point is applied here as

well. Table 4.3.2-1 gives the values for the starting point determined by group

delay.

Table 4.3.2-1
Zeros
# real part imaginary part
1 900 850
2 1440 1320
3 680 2242
poles
# real part imaginary part
1 600 480
2 2100 1100
3 650 2000
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Some different combinations of degrees and zeros and poles are tested.

The test results are listed in Table 4.3.2-2.

Table 4.3.2-2

degree of degree of | pumber & types
# | numerator |denomiator | of Zerostyp ngrfnt;eglgzs pes | error
3 Fomplex . 3 complex
1 7 6 conjugate pairs | onjugate pairs | 103
1 real
2 3 complex 3 complex
7 7 conjugate pairs conjugate pairs 1.85
1 real 1 real
3 complex
3 4 complex . : 0.7%4
8 7 conjugate pairs Con’f‘%g;f pairs
4 complex
4 9 8 ) . 4 complex 0.763
conj ulgi.ézlpalrs conjugate pairs

From Table 4.3.2-2, it can be seen that the optimal degree difference

between the numerator and the denominator is that the degree of the

numerator is one larger than that of the denominator. With this optimal

degree difference, #4 gave the lowest error.
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4.3.3 Degrees and Zeros and Poles of Z,,

4.3.3-a The Algorithm

In a way similar to (4.3.2), we determine the variables and target

function for the optimization first. The objective function is

F= i‘zzz( Jjo.) = z5.(jo)| (4.3.3-1)

where z,.(jw,) is the given frequency response and n(jw;) is the frequency

response of impedance function z,, which is to be found. in(jw;) is a function

of the zeros, the poles and the constant factor which are to be found:

P (4.3.3-2)

where z denotes the zeros of z,,, p, represents the poles and k,, is the

constant factor; and these are the variables of the optimization. The real parts
of the zeros and poles must always satisfy the PR conditions. During the
optimization process, the PR conditions are always checked by the PR
checking program to guarantee that the computed impedance function z,, is
PR. The flowchart for this optimization is the same as the flowchart shown in
Fig, 4.3.2.-1 except for the name of the impedance function, therefore, it is not

given.

57



4.3.3-b Tests and Results

The starting point for the optimization is calculated by the method of
Section 4.3.1-b. The real parts and imaginary parts of the starting point

determined by the group delay method are listed in Table 4.3.3-1.

Table 4.3.3-1 The starting point of Zaa

Zeros

# real part imaginary part

1 2500 880

2 600 1400

3 500 2500
poles

# real part imaginary part

1 780 530

2 3000 1200

3 700 2100

To find the optimal combination of degrees and types of zeros and poles

of the transfer function Z,,, different combinations were tested. Table 4.3.3-2

gives the test results of three combinations of different degrees and types of

zeros and poles of z,,. For all examples, the number of iterations is 1000. From
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Table 4.3.3-2, it is clear that the optimal difference in degree between

numerator and denominator is one.

Table 4.3.3-2 Test result of z,,

degree of degree of number & types number & types
# | numerator |denomiator of zeros of poles error
1 8 8 4 complex 4 complex 2.3
conjugate pairs conjugate pairs
4 complex
2 9 8 conjugate pairs 4 complex. 0.18
1 real conjugate pairs
4 complex 4 complex
3 9 9 conjugate pairs conjugate pairs 1.9
1 real 1 real
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4.4 Step 2: Structures of the Two-Port Network

In the preceding study, we have found some optimal combinations of
degrees and types of zeros and poles for 1, 5, and Z,,. Now we will try to find
the network structures. Just as in the arguments we made in Section 4.2 of this
chapter, 'we foresee that a complicated network structure of a high degree (>6)
network is very difficult to achieve at once. Therefore, we divide the whole
network structure into two levels. We call the first one the main structure and
the second one the micro structure. We will see that this classification gives us
a much more convenient way to find the optimal network structure by using

the pattern search optimization technique.

4.4.1 The Main Structure for the Network

In Chapter one, five main structures are presented. The T main

structure is used for the example under consideration.

Fig. 4.4.1 T two-port network



For the T two-port network, the relationships between the impedance

functions Z, Z, and Z, and z,,, z,, and z,, are very simple, i.e.,

Z,=14, (4.4.1-1a)
=2+ Z,=2+2, (4.4.1-1b)
L=l +Z,=27,+7, (4.4.1-1¢)

In Step 1, since we only try to find the optimal degrees of impedances

% %, and Z,, with certain types of zeros and poles, we can compute either
2, Or Z,, Or Z,, first. However, in Step 2, we calculate z,(Z,) first and then
z,; and Zz,,. From the above equations (4.4.1-1a-c), it is clear that Z, is a part of
7z, and z,, for the T structure. Therefore, z,, and z,, can have private poles.
In other words, there is less freedom in the choice of poles for z;, than for z;,
and Z,,. If necessary, poles and zeros can be added to both 7, and z,, without
affecting z,,. In Step 1, we observed that Z,, is not generally required to be
PR, however, for certain cases it must be. Clearly, this is one of those cases.
There are some other general requirements for the realization of z,, Z, and

Z,,, but we will discuss these requirements later.

For the optimization process, not only must the positive real conditions
of the individual impedance functions, but also the two-port positive real
conditions be satisfied. For the T structure, however, as long as each
impedance function is positive real, then the two-port PR conditions are
automatically satisfied. This feature is an advantage, since checking the two-
port PR conditions for each movement of the optimization would be very time

consuming.
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4.4.2 Micro Structure of zu(Zz)

After the main network structure is chosen, the next step is to find the
micro structures of the networks. We must also determine the impedance
functions of the elements of the micro structures. From Step 1, a good degree

configuration for gz, is found to be five for the numerator and six for the

denominator for the example under consideration. In order to satisfy the
requirement for the types of zeros and poles of z,, we must choose the
appropriate elemental impedance functions. The chosen elemental impedance
functions must be realizable, that is, they must be realized by a circuit
containing R, L, C and transformer components only. There are several types
of elemental impedance functions which can be used for the micro structures,
and of these, we select six. These six elemental impedance functions are:

1. A 0/1 circuit, where the degree of the numerator is zero, the degree of
the denominator is one, and the pole is a real number. The impedance function
is

a
s+b

z —3
2. A 1/0 circuit, where the degree of the numerator is one, the degree of
the denominator is zero, and the zero is real:
z=as+b

3. A 1/1 elemental circuit, where the degrees of both the numerator and

denominator are 1, and both the pole and zero are real:

_as+b
s+c
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4. A 1/2 elemental circuit, the degree of the numerator is one and the
degree of the denominator is two, the zero is real, and the poles are real or a

complex conjugated pair:
as +a,

R bs + b,
5. A 2/1 elemental circuit, the degree of the numerator is two and the

degree of the denominator is one, the pole is real, and the zeros are real or a

complex conjugate pair:
a,s’ +as+a,
s+b,

6. A 2/2 elemental circuit, the degrees of both the numerator and
denominator are two, and both zeros and poles are real or complex conjugate

pairs:
a8’ +as+a,
- 2
s+bs+b,

All six kinds of elemental impedance functions must satisfy the positive real
requirement. Other kinds of impedance functions can be constructed by using
these six kinds of elemental impedance functions.

There are many micro-structures which satisfy the requirements of

degrees and types of the zeros and poles of z,,. Fig. 4.4.2-1 demonstrates three

micro-structures.

(a) parallel O—
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4
|
Z;
|
e
(b) series O |
© |
4
|
2, Z
O

(c) series-parallel

Fig. 4.4.2-1 Three Micro structures

n
For the parallel micro structure, the relation between 2, and z = -C-I-‘-,
i
n n
2 3
L= G =718
d2 d3
Zo=5112, 11z
nnn
- (4.4.2-1)

nnd, +nnd, + nnd,

For the example being considered, the sum of the degrees of n, n, and n, must

be five. Thus if two of them are two, then the third must be 1 and if the degrees

of d,, d, and d, are all two, the degree of the denominator of z, will be six.
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For the series micro structure, the relation between 2, and z;, z,, z, is

2, =5t +2

_mdd; +ndd, +ndd,
d,d,d,

(4.4.2-2)

A possible combination of z;, z, and z, is that all the degrees of the numerators

are 1, and all the degrees of the denominators are 2 to give 5/6.

For the series-parallel micro structure, we have:

2,=7+z,//z,

_nmds +nnd, + nynyd,

(4.4.2-3)
ndyd, +nydd,

The requirement that the numerator degree equals 5 and the denominator

degree equals 6 is satisfied if z, or z, has a numerator of degree 2 and a

denominator of degree 2, and the other two have a numerator of degree 1 and

a denominator of degree 2.

After selecting the degrees of the zeros and poles for %, Z, and z;, the

next step is to select the types of zeros and poles of the impedance functions
of the network elements. For the optimization process, the input variables are

the constant factor, the zeros and poles of the elemental impedance functions,

and the target function z,(jw;) is the frequency response of transfer function

2y, which is to be found:

22 (J@;) = f(ny, dy, 1,y dy) (4.4.2-4)
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where f denotes the function given in (4.4.2-1, (4.4.2-2) or (4.4.2-3); n,, n, and
n; are the numerators of z, z, and z, respectively; d,, d, and d, are the

denominators of z, z, and gz, respectively. Thus we have the objective

function:

F= Yk (jw)- Z(jo,) (4.4.2-5)

im]

where F is the objective function of the optimization, and 7,(jw,) is the given
frequency response and Z;,(jw;) is defined above.

If the series connection is adopted, the poles of three elemental
impedances are already known, since they are the poles of z,,. This makes the
starting point easy to determine which is an advantage of the series
connection. In order to compare the series connection with the other two
connections being considered, the known poles were not chosen as the
starting point. However, the convergence of the optimization in Step 2 with
the series connection is observed to be still faster than with the other two
connections.

A flowchart of this optimization procedure is shown in Fig. 4.4.2-2. The
starting point of the optimization for the network structure is selected as
follows: (1) Select poles and zeros according to the zeros and poles shown in
Table 4.3.1-1 of Step 1. (2) For the zeros and poles not determined from Table
4.3.1-1, select poles and zeros of the same orders, as those listed in Table 4.3.1-1.
For example, for the parallel connection, we choose two zeros for two
elemental impedances according to Table 4.3.1-1, and the real zero of the 1/2
elemental impedance is chosen to be 900—the same order of magnitude as those
in Table 4.3.1-1. The poles of z,, z, and z, are also chosen to be the same order
of magnitude as the poles shown in Table 4.3.1-1. Also, zeros and poles of the

series connection and the series-parallel connections are selected in the same
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way. During the optimization process, the program monitors each elemental

impedance function z; (i=1,2,3). If a move of a pole or a zero of z, causes the

impedance function to become non PR, then the move is abandoned. Similar to

Section 4.3.1-a, in order to maintain z; PR, a PR starting point is required. By
moving the zeros or the poles of z; further to the left in the complex plane, a

PR starting point can always be obtained. In this way, a positive real z, is

guaranteed.
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start

set initial values
xi,1:=Re(n[i])
i+ 1L1E:=Im(n[i])

Ax,B,A
NP
Single x[i72]:=X[i,1] j' Ax
variable T
search \I,_N_ s Z PR3 <
x[i, 2= x[i 1] > Y
| A= B Bi<A1?
Y
N
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Ax<p? > stop
N/ N
Ax:=[Ax >
v —
pattern x[i,3)= 2x[1,2] - x[i,1]
search N \1(
N7 Is Z, PR?
Aia= i —— Y
< x(i, 1= x{i, 3]
B, <A? >| 1= N
N, N
N
7

xi,1]:= x{i,2]

Fig. 4.4.2-2
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Table 4.4.2-1 displays the results of the three different configurations of
the micro structure. From Table 4.4.2-1, it is easy to see that the results from
both the parallel and the series networks are very close and they are better

than that from the series-parallel connection.

Table 4.4.2-1  Results of different micro structures

(iteratdon number = 1000)

# configuation error
1 parallel 1.048
2 series 1.047
3 series-parallel 1.260

Because using a series connection makes it easy to determine the
starting point and also gives the best result, we use the series connection for
the micro structure and carry out the computation for the elemental
impedance functions. The zeros and the poles of the three elemental

impedances z,, Z, and z are shown in Tables 4.4.2-2, 4.4.2-3 and 4.4.2-4,

respectively,
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Table 4.4.2-2 Zeros and poles of z,

Rational Function gz

polyRep= prodRep

Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part

1.0605295293157858580e+2  0.0000000000000000000e+0
-1.1872930102968954970e+2 -0.0000000000000000000e+0
Denominator Degree:
2
Constant factor followed by Poles:
real part imaginary part

1.0000000000000000000e+0  0.0000000000000000000e+0
-2.9708677431520540790e+2 -2.1376625660685373100e+3
-2.9708677431520540790e+2 2.1376625660685373100e+3

Table 4.4.2-3 Zeros and poles of z,

Rational Function gz,
polyRep=
prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part

2.0425336951208768150e+1  0.0000000000000000000e+0
-8.1084471165217919340e+1 -0.0000000000000000000e+0
Denominator Degree:
2
Constant factor followed by Poles:
real part imaginary part

1.0000000000000000000e+0  0.0000000000000000000e+0

-2.2339044966524438980e+2 -1.1930567158458860050e+3
-2.2339044966524438980e+2 1.1930567158458860050e+3
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Table 4.4.2-4 Zeros and poles of z,

Rational Function gz,
polyRep=
prodRep
Numerator Degree:
1

Constant factor followed by Zeros:

real part
8.1208750924862936100e+1
-2.8321994628851924380e+1

Denominator Degree:
2

imaginary part
0.0000000000000000000e+0
-0.0000000000000000000e+0

Constant factor followed by Poles:

real part
1.0000000000000000000e+0
-3.0390086832620016970e+2
-3.0390086832620016970e+2

imaginary part
0.0000000000000000000e+0
-5.6261174795654029820e+2
5.6261174795654029820e+2

Table 4.4.2-2 Zeros and poles of z,

Rational Function gz,
polyRep=
prodRep
Numerator Degree:
5

Constant factor followed by Zeros:

real part

2.0768704080765029000e+2
-3.9685372419290754310e+1
-2.5901673952745514000e+2
-2.5901673952745514000e+2
-2.9285349110317893030e+2
-2.9285349110317893030e+2
Denominator Degree:

6

imaginary part
0.0000000000000000000e+0
0.0000000000000000000e+0
1.0678575332142838200e+3
-1.0678575332142838200e+3
1.6060583174442002430e+3
-1.6060583174442002430e+3

Constant factor followed by Poles:

real part

1.0000000000000000000e+0
-2.9708677431520540790e+2
-2.9708677431520540790e+2
-2.2339044966524438980e+2
-2.2339044966524438980e+2
-3.0390086832620016970e+2
-3.0390086832620016970e+2

imaginary part
0.0000000000000000000e+0
-2.1376625660685373100e+3
2.1376625660685373100e+3
-1.1930567158458860050e+3
1.1930567158458860050e+3
-5.6261174795654029820e+2
5.6261174795654029820e+2
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4.4.3 Micro Structure of Z,

For the chosen T main structure, the impedance
4,=2,+7%, (4.4.3-1)

Similar to the micro structure of z,, the micro structures considered for Z

are the parallel, series, and series-parallel configurations. Since the series

configuration makes it easy to determine the starting point, it gives a better

result for z,, and it is simple to express, therefore we use the series

configuration for Z, i.e.,

n n, n
=— 42+ +-= (4.4.3-2)
1 2 dm
Fig. 4.4.3-1 shows the series connection for Z,.
O‘—_ :1 22 2:3 Z4 ZS _—O

Fig. 4.4.3-1

After selecting the micro structure, the next step is to find the optimal

combination of different degrees of numerator polynomial and denominator

polynomial, and the types of zeros and poles of Z,, ie., the impedance

functions of the network elements. Since the optimal degree of z,, is 9/8 from

Step 1, it is reasonable to use a degree of 9/8 for the optimization. The zeros

and poles of 7, from the results of Step 1 are adopted as the starting point.
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Combinations of different types of elemental impedance functions are tested
by optimization. Since the optimal degree difference between the numerator
and denominator has been found to be one, the degree differences for all the
tests are set to one.

The test results are listed in Table 4.4.3-1. Combination No. 1 and
combination No. 2 have the same type of impedance functions, but
combination No. 1 has a fixed denominator that is identical to the denominator
of z,,.

The results of different combinations of elemental impedances are listed
in Table 4.4.3-1. From Table 4.4.3-1 the following is found:

1. Combination No. 2 gives the best result.

2. No. 1 gives a poorer result than No. 2, because its poles are fixed.

3. The 2/2 combination does not have advantages over the 1/2 combination.
From these test results, it is clear that combination No. 2 is the best

configuration.

Table 4.4.3-1 Test results of elemental impedance for z,,

#1 #2 #3
elemental elemental elemental
# impedance impedance impedance error
1/2 2/2 1/0
1 4 1 1.55
2 4 1 0.763
3 ' 4 1 1.06
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4.4.4 Micro Structure of Z,

For the T main structure, we have

Zp=2;+12,

(4.4.4-1)

Similar to the micro structure of z,, the micro structures considered for Z,

are the parallel, series, or series-parallel configurations. Since the series

configuration is good for z,, and Z, and is also simple to express, we use the

series configuration for Z,, i.e,,

......

The series connection of Z,, is shown in Fig. 4.4.4-1.

Fig. 4.4.4-1 Series connection of Z,

(4.4.4-2)

In a way similar to Section 4.4.3, we carry out optimization for the micro

structure of Z,. Combinations of different types of elemental impedance
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functions are tested. Since the results of Step 1 indicate that the optimal degree
difference is that the numerator is one degree larger than the denominator,
all combinations are set according to this result. Once again, combination No. 1
has the same type of zeros and poles as that of No. 2, but its poles are fixed, i.e.
equal to the poles of z,. Test results of 3 of these combinations are presented
in Table 4.4.4-1.

From Table 4.4.4-1, it is found that:
1. No. 2 combination gives the best result.
2. The 2/2 combination gives a poorer result than the 1/2 combination.

4. No. 1 with fixed poles gives a poorer result than No. 2, with non- fixed poles.

Table 4.4.4-1 Test results of elemental impedance for gz,

#1 #2 #3
elemental elemental elemental
# impedance impedance impedance error
1/2 2/2 1/0
1 4 1 1.64
2 4 1 0.69
3 4 1 0.86
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4.5 Step 3: Elemental Circuits

The last step of the three-step approach is to find the elemental circuits
of the two-port network. First we select some elemental circuits on which to
run the optimization test, and then we pick the most satisfactory one. To run
the optimization program, we also need to determine the variables and the
target functions. In Step 1 and Step 2, the target functions are always the
frequency responses of z,, z, and Zz,,, and we only need to run the
optimization program once for each impedance function. In the optimization
of Step 3, the input variables are the values of the elemental circuit
components and the target functions are the frequency responses of the
elemental impedance functions. The frequency responses of the elemental
impedance functions are the results from Step 2. If the errors of all these
individual impedance functions are very small, then the frequency responses
of z,, 7, and Z,, also have relative small error, because of the simple
relationship between the impedances. The elemental circuits are determined
as part of the optimization process. In the optimization of Step 3, a percentage
step increment less than 100% is used, so that if the initial elemental vales are
all set to be positive, then the minimum elemental values will be greater than
Zero. Therefore, the PR requirement for the elemental circuits is

automatically satisfied. This is an advantage of a percentage step increment.

76



4.5.1 Elemental Circuits for Z, (z,,)

In Step 2, the optimal micro structure was determined—three 1/2 circuits
in a series connection—we call them circuits 1, 2, and 3. The corresponding

elemental impedances z,, z, and 5 were found as well. For the optimization

procedure for the elemental circuits, we have the objective function

F,= }m: k(o)) -z (j,)| n=1,273 (4.5.1-1)

i=1

where F, is the objective function of the optimization for the elemental
circuit n, z,(jw,) is the known frequency response of elemental impedance z;
from the optimization of Step 2, and z(jw;) is the frequency response of
elemental impedance z, of the elemental circuit n which is to be found.

The input variables for the optimization are the values of the resistors,
capacitors and inductors of the elemental circuits 1, 2 and 3. The target
functions are the frequency responses of %, L and z; which are the
impedances of the elemental circuits 1, 2, and 3, respectively. The target

functions are functions of the element values in addition to frequency:

(jw;)= f(w,x,) (4.5.1-2)
2(Jjw;)= f,(wx,) (4.5.1-3)
LZ(jw)= fi(w,x,) (4.5.1-4)



where the x, denote the values of resistors, inductors and capacitors.

The exact functional dependencies f,, f, and f, are determined by the specific

circuits and are listed in Appendix C.

In order to satisfy the PR requirement, the values of the circuit
components must always be positive. Fig. 4.5.1-1 shows the flowchart of the
optimization procedure for finding the elemental circuit values of circuits 1, 2
and 3. Since the number of variables is much smaller than that in the
optimizations of Step 1 and Step 2, the optimization for the elemental circuits
usually converges very quickly. The choice of starting point does not have a
great effect on the optimization process, so the initial values can always be

one.
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start
N/
set initial values
x{i, 1= x{i]
xi+L1k=x[i+1]

single x[i,21=x[i,1] * Ax
variable

N A
search Is x{i,2] positive ?

i, 2L=x[i,1] 5 Y

N

— A;:= B,

/\

Ax<p? # stop |

A4

pattern A7, 3= 2x[1, 2] x[i 1]
search N \/

r Is x[i,3] positive ?

xi,3l=x[i,2] __% Y | i.: 5

Y L 1= {1
R (Gl
N
xi 1) =[i,2]

N4

Fig. 4.5.1-1 Flowchart for finding the circuit
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Some elemental circuits were selected for testing. The test results for gz

are displayed in Table 4.5.1-1. It can be seen that elemental circuit No. A2 is the

best one. The test results of z, are listed in Table 4.5.1-2. It is clear that, again

the best circuit is elemental circuit No. A2. Table 4.5.1-3 gives the results for

the elemental circuits for z,. The best one is again elemental circuit No. A2 .

Table 4.5.1-1 Elemental circuits for z

elemental circuit
# number error
1 A2 le-10
2 D4 231
3 D8 1254
4 A7 654

Table 4.5.1-2 Elemental circuits for gz,

4 elemental circuit error
number
1 A2 le-10
D4 351
D8 1291
A7 137
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Table 4.5.1-3 Elemental circuits for z,

# elemental circuit error
number

1 A2 le-10

2 D4 536

3 D8 1026

4 A7 253

Since the errors of the elemental circuits z,, z,, and z, are all very
small, the frequency response of 7, is satisfactory. No further optimization
procedure is needed. The elemental circuit No. A2 is used for %, Z,,and z,. Fig.
4.5.1-2 shows the circuit diagram of circuit No. A2. The results for the circuit
components of z;, z,, and z, are given in Tables 4.5.1-4, 4.5.1-5 and 4.5.1-6,

respectively. The complete circuit diagram of  z;, is shown in Fig. 4.5.1-3.

xS Xy
-
X,
1/
] Ix3
1]

Fig. 4.5.1-2 The elemental circuit No. A2
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Table 4.5.1-4 Component values of z, (1/2 degree)

component number value of component
X 2.30479118810222895e-5 H
x, 2.230607552131790681e-1 Q
X3 9.429251825219451879%e-3 F
X, 2.736462467827653723e-3 Q

Table 4.5.1-5 Component values of z, (1/2 degree)

component number value of component
! 1.414854339322355025e-5 H
X 5.585325799785458158e-2 Q
% 4.895880064983800236e-2 F
X, 1.147227158797669458e-3 Q

Table 4.5.1-6 Component values of z; (1/2 degree)

component number value of component
x, 2.069140893283955348e-4 H
X 1.401407936044170506e-1 Q
X 1.231394386209970877e-2 F
X, 5.860219726592605622e-3 Q
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Fig. 4.5.1-3 The circuit diagram for Z,(z,)

4.5.2 Elemental Circuits for Z

First, we adopt the best combination from Step 2, i.e. combination No. 5
for the optimization of Step 3. The elemental circuits for combination No. 5 are
four 1/2 circuits and a circuit consisting of one inductor. In a way similar to
that for Z,, we conduct the optimizations to find elemental circuits for Z,.
Different elemental circuits were tested for each elemental impedance. The
elemental circuit No. A2 turned out to be the best for 45 % %, and z,. The
circuit for Z; is an inductor. The final results of the values of the circuit
components are shown in Tables 4.5.2-1 to 4.5.2-4. The value of the inductor z,

is 6.1912e-5 H. The circuit diagram for Z is presented in Fig. 4.5.2-1. The zeros

and poles of impedance Z, are displayed in Table 4.5.2-5.



Table 4.5.2-1 Component values of z,

component number

value of component

3.638536419913212044e-5

4.050886005793401554e+0

2.991261563497029355e-3

1.089965697218452937e-2

Table 4.5.2-2 Component values of z,

component number

value of component

X

1.236760952639927769e-5

X

1.522737129152054306e-1

2.144919332752727387e-2

2.673188700317238956e-3

Table 4.5.2-3 Component values of z,

component number

value of component

X

4.491453690298754601e-6

9.300862490738797453e-2

7.881359162694534314e-2

1.785724238715612934e-3
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Table 4.5.2-4 Component values of z,

component number value of component
X 7.777478478977115902e-6 H
% 3.725628495069809140e-2 Q
x, 6.280941730610968224e-2 F
Xq 3.587668789185950443e-3 Q
O_ e Z, Z 4 s —"O
(a) series connection for Z,
xS X,
X2
. 1/ x,
i1
(b) No. A2 elemental circuit for z,,z,,z; and z, () z

Fig. 4.5.2-1 The circuit for Z,
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Table 4.5.2-5

Rational Function Z

polyRep=
prodRep

Numerator Degree:
9

Constant factor followed by Zeros:

real part
6.1912670994743365300e-5
-1.5339149057720703410e+2
-4.3250294370763409250e+2
-4.3250294370763409250e+2
-2.6435949705414706530e+2
-2.6435949705414706530e+2
-2.5560313652409132830e+2
-2.5560313652409132830e+2
-1.3435735262727006290e+2
-1.3435735262727006290e+2

Denominator Degree:
8

imaginary part
0.0000000000000000000e+0
0.0000000000000000000e+0
1.4647032610630773100e+3
-1.4647032610630773100e+3
1.6999319747855593160e+3
-1.6999319747855593160e+3
2.0446224512078876440e+3
-2.0446224512078876440e+3
3.8956876982562191470e+3
-3.8956876982562191470e+3

Constant factor followed by Poles:

real part

1.0000000000000000000e+0
-1.9104424231591091030e+2
-1.9104424231591091030e+2
-2.6115768236518365710e+2
-2.6115768236518365710e+2
-2.6700096977491941620e+2
-2.6700096977491941620e+2
-4.4431578074573208250e+2
-4.4431578074573208250e+2

imaginary part
0.0000000000000000000e+0
-3.0292209377216785780e+3
3.0292209377216785780e+3
-1.9410417972831678370e+3
1.9410417972831678370e+3
-1.6756808016697022000e+3
1.6756808016697022000e+3
-1.4306639881822750010e+3
1.4306639881822750010e+3
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4.5.3 Elemental Circuits for Z,

In a way similar to Section 4.5.2, we conduct the optimization to find

elemental circuits for Z,. Different elemental circuits were tested for each

elemental impedance. The elemental circuit No. A2 turned out to be the best

for z, z,, 3, and z,. The circuit for Zs is an inductor. The value for z, is

3.7400e-5 H. The results of the values of the circuit components are shown in
Tables 4.5.3-1 to 4.5.3-4. The circuit diagram of Z, is presented in Fig. 4.5.3-1.

The zeros and poles of impedance Z, are displayed in Table 4.5.3-5.

Table 4.5.3-1 Component values of z,

component number value of component
X, 7.447990601552763502e-6 H
%2 1.232245238132263403e-1 Q
x 1.730405086120167709e-2 F
X, 2.851501617919038618e-7 Q

Table 4.5.3-2 Component values of 2

component number value of component
Xy 3.730842928895938333e-6 H
x; 9.750509954647770271e-3 Q
x, 3.052976626601924284e-1 F
X, 7.874581866735870868e-14 o
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Table 4.5.3-3 Component values of z,

component number value of component
Xy 1.652949684957860686¢e-6
% 8.817033252766961848e-1
X, 3.227125187256059007e-1
X4 4.074174560117270216¢e-4

Table 4.5.3-4 Component values of z,

component number value of component
X 2.198608994795953348e-22
X 1.554179451801474000e-9
X3 1.206025440000000000e+8
X, 1.031826514155010000e-23
%S x,
x2

NO. A2 1/ x,

(a) elemental circuit for z,,z,,z, and z, (b) z
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(b) series connection of Z,

Fig. 4.5.3-1 The circuit of Z,

Table 4.5.3-5

Rational Function Z,
polyRep= prodRep

Numerator Degree: 9

Constant factor followed by Zeros:

real part

imaginary part

3.7421213880250026430e-5 0.0000000000000000000e+0

-2.6910142362370667200e+0
-2.6910142362370667200e+0
-8.1151844031964627780e+0
-1.6845970417455414220e+2
-1.6845970417455414220e+2
-1.2107540840141110950e+2
-1.2107540840141110950e+2
-2.3387876001588049560e+2
-2.3387876001588049560e+2

Denominator Degree: 8

-6.1411225675451271040e+6
6.1411225675451271040e+6
0.0000000000000000000e+0
9.5730041715100390550e+2

-9.5730041715100390550e+2
1.3888398596763832070e+3

-1.3888398596763832070e+3
3.0466477098774588880e+3

-3.0466477098774588880e+3

Constant factor followed by Poles:

real part

1.0000000000000000000e+0
-2.3450954591347313820e+2
-2.3450954591347313820e+2
-1.6796515496225390520e+2
-1.6796515496225390520e+2
-1.2499676391771693530e+2
-1.2499676391771693530e+2
-2.6910142362370667200e+0
-2.6910142362370667200e+0

imaginary part

0.0000000000000000000e+0
-2.7756358654829539070e+3
2.7756358654829539070e+3
-9.2181193638803314720e+2
9.2181193638803314720e+2
-1.3637764702943150340e+3
1.3637764702943150340e+3
-6.1411225675451271040e+6
6.1411225675451271040e+6
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4.6 Results of z,, z, and z,

The frequency response of z, found in Section 4.5 i.e. z,(jw,) is shown
in Fig. 4.6.1. The frequency response of z, i.e. z,(jw;) is presented in Fig. 4.6.2.

z,,(jo,)is calculated using Equation (4.6.1):
2, (J0,) = 2 (jo,) + Z,(ja,) (4.6.1)

Fig. 4.6.3 displays z,,(jm,)—the frequency response of z,,. z,,(j®;) is calculated

using Equation (4.6.2):
2 (J0,) = Z,(j,) + Z,(j®;) (4.6.2)

The frequency response of gz, is the best one of the three frequency
responses. The frequency response of z, is quite good except at the higher

frequencies, and the frequency response of z,, is not as good as z,. In the next
section, we will analyze the source of the errors and how to improve the

accuracy of the frequency responses.
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—&8— given zi2.re
. —o—— computed z12.re

0.1+
O-G M 1 i ¥ 1 * 1 v
0 100 200 300 400 500
Frequency (Hz)
Fig. 4.6.1a. Frequency response of the real partof gz,
0.1
——8—— given z12.im
| —¢—— computed z12.im
0.01
-0.14
-0.2 Y 1 v T T T T T Y
0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.1b. Frequency response of the imaginary part of gz,
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——8—— givenzll.re
0.39 ——e—— computedzli.re

0.2+
0.14
0.0 : , . T . . . , .
0 100 200 300 400 500
Frequency (Hz)
Fig. 4.6.2a. Frequency response of the real part of gz,
0.3
{ ——8— givenzli.im
—&—— computed z11.im
0.24
0.1+
0.0 Y T Y T T T T
0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.2b. Frequency response of the imaginary part of gz,
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0.3
——8— given z22.re
—<¢—— computed z22.re
0.2+
0.1+
0.0 T T T ] Y 1 T T Y
0 100 200 300 400 500
Frequency (Hz)
Fig. 4.6.3a. Frequency response of the real part of z,,
0.2
—8— given 222.im
g computed z22.im
0.1+
0.0 T T T Y T Y =T v
0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.3b. Frequency response of the imaginary part of 2,0
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4.7 Improving the frequency responses of z,, and z.,

In this section, we will first find the reasons for the poor frequency

responses of impedance functions z, and z.,. Then we will try to find

solutions for these problems to improve the accuracy of the frequency

responses. Initially, we will work on the frequency response of z,..

4.7.1 Error analysis for z,,

The error of the frequency response of z,, occurs at the higher

frequencies due to the fact that five zeros and six poles of z,, can not generate

three valleys in the frequency response curve. In order to improve the
frequency response at the higher frequencies, the number of zeros of the
numerator and the denominator must be increased. Table 4.3.2, shows the
degree combination 7/8 is a good choice, therefore, this 7/8 degree
combination is adopted. The starting point is chosen as the follows: the
imaginary part of the new zero and pole are chosen equal to the highest
frequency of the frequency response curve and the real part of the new zero
and pole are chosen equal to the nearest existing pole(zero). In this way, the
initial error is equal to the error of the previous optimizaton and the
optimization process will move the poles and zeros smoothly starting from the

chosen point, this leads to fast convergence.



4.7.2 Error analysis for  Z,,

To find the source of the large error in the frequency response of z,,,

we analyze the optimization process and find that the error is not due to

the optimization program, but due to the fact that the given real part of z,, at

some frequencies is smaller than the real part of z;,,. An analysis of the T

structure given below shows that it can not realized responses with

Re(z,,) < Re(z,). However, if a transformer is cascade with the T structure, it

may be possible to realize the response. The T main structure is shown in Fig.

4.7.1.

Fig. 4.7.1

From Fig. 4.7.1, we have:

=4, +Z,
2, =2 =2,
Iy =2y + 2,
and therefore Z =2,"2p
Z, =1
Zy=2p~ 2
If Z, Z, and Z, are PR, then we have:
Re(z),) 2 Re(z,;)20 Vo
Re(z,) 2 Re(z,) 20 Vo
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Equations (4.7.1-1) and (4.7.1-2) imply :
Re(z,,)Re(z,,) 2z Re*(z,,) Vo (4.7.1-3)

If given z,, z, and z,, satisfy the PR conditions of Section 2.2 and
equations (4.7.1-1) and (4.7.1-2), then Z,, Z and Z, are PR. Therefore,
equations (4.7.1-1), (4.7.1-2) together with the PR condition of Section 2.2 are
the necessary and sufficient PR conditions for Z,Z and Z to be PR.

Since the given Re(z,,) and Re(z,,) of the Hydro Example do not satisfy
equations (4.7.1-1) and (4.7.1-2), z,, can not be realized by a PRZ,. To solve this
problem, a transformer must be added to the T network.

Fig. 4.7.2 shows a T network with a transformer cascaded.

Fig. 4.7.2

From Fig. 4.7.2, we have
,=2Z,+2,

and Z, =nzg,
Z =2,=-nz,

2 - .
Z, =n"zy, = nz,=n(n 5, = Z,,)
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If Z, is PR, then Re(nz,) =nRe(z,)20 Vo
if Z is PR, then Re(z;,) 2nRe(z,) 20 Vo
if Z, is PR, then n’Re(zy,)2nRe(z,) 20 VYo
From equation (4.7.1-6), we have

In|Re(z,,) 2 [Re(z,,)| Vo
For equation (4.7.1-4), if n> 0, then

Re(z,)20 Yo

if n< 0 then
Re(z,)<0 Yo

From equation (4.7.1-5), we have

1, Re(zy)] Vo
Il Re(z,)

and therefore

i 2 rna.x——lRe(Zu)I
i~ @ Re(z,)

Similarly from equation (4.7.1-6), we have

Re(z
|| 2 rna.x———-| (z)
@ Re(z,,)
Therefore, we have
Iie ( 2|r> rrcloax———lie(zu)l
max 29 6(222 )
@ Re(z,)

Which implies
12 maxIRe(Z”)I maxIRe(zu)I
@ Re(z,) @ Re(zy)

Vice versa, for given gz, z, and z,,, if
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a) Re(z;,)20 Vo, or

b) Re(z;,)s0 Vo

and «¢)

1= ma.lee(z’z)Imax'Re(Z‘z)I
@ Re(z;) © Re(z,,)

then, if a) holds, choose n> 0, and if b) holds, choose n < 0, then in both cases

nRe(z,)=0 Vo

Now choose |1 so that

1 [Re(z,,)]
Re(z,,) =l ot Re(zy,)

max
[47] Re(Zn)

and then
[Re(z,)| sInRe(z,,) Vo
nRe(z,) < °Re(z,,) Vo
Similarly, we have
IRe(z,,)| < Re(z,,) Vo
and then nRe(z,) = Re(z,) Vo

Therefore, the necessary and sufficient conditions for the realization of a T

network cascaded with an ideal transformer are [30]:

Re(z;,)=0 or Re(z;,)20 Vo (4.7.1-7 a,b)

and
R, R
maxl e(Z’zjm.axl e(212151
® Re(z,,) @ Re(zy,) (4.7.1-7¢)
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Summarizing: two network structures for realizing positive real two-
port functons have been discussed: 1) the simple T structure, and 2) a T
structure cascaded with a transformer. For practical realizations, usually the
simplest possible network structure is adopted. For the Hydro Example, there
are only five frequency points at which Equation (4.7.1-7¢) is not satisfied.
However, it is very close to the requirement of Equation (4.7.1-7¢). We will use
the structure with a transformer to approximate the positive real two port

function for the Hydro data.



4.7.3 Tests and Results

The T main structure with a transformer used for the optimization is

shown in Fig. 4.7. 3. The transformer ratio 7#=0.82 is found to be a good choice.

1:0.82

Fig. 4.7.3

The series connected micro structure is used for the realization of the two-port
impedance function. The degree combination of 7/8 is used for the
optimization. We apply the group delay method to find a starting point for the

degree combination of 7/8. Then we obtain a better result for the frequency

response of z,. Fig. 4.7.4 shows the frequency responses of the real part and
the imaginary part of %, Following this, we obtain a better result for the
frequency response of %, as well. Fig. 4.7.5 shows the frequency responses of

the real part and the imaginary part of %,. The frequency response of Z, is

shown in Fig. 4.7.6. The circuit diagram is shown in Appendix D.
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0.20+ ——8— computed z12.re
————— given z12.re
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Fig. 4.7.4a Frequency response of the real part of z,

0.1

0.0+

0.1 computed 212.im
—&—— given 212.im

T T T T T T Y T ¥
0 100 200 300 400 500
Frequency (Hz)

Fig. 4.7.4b Frequency response of the imaginary part of z,
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Frequency (Hz)
Fig. 4.7.5a Frequency response of the real part of z,,
0.2
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Fig. 4.7.5b Frequency response of the imaginary part of 2,
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0.4
———&— computed z11.re
—¢—— given z11l.re
0.3+
0.24
0.1+
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Fig. 4.7.6a Frequency response of the real part of z,

0.3
—8—— computed z11.im
—¢—— given 211.im
0.2+
0.1+
0.0 ¥ T ¥ T ¥ T ’ ¥ v
0 100 200 300 400 500

Frequency (Hz)

Fig. 4.7.6b Frequency response of the imaginary part of z,
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4.8 Discussion

First, we summarize the basic procedures of the three-step optimization
approach as follows:

(1) Step 1: determine the optimal degree and types of zeros and poles of
the transfer functions z,, z, and z,. |

For the optimization process, the input variables are the zeros, the poles
and the constant factor of the impedance function to be found. The target
function is the frequency response of the impedance function to be found. To
begin the optimization process, a starting point is needed. In general, the
group delay method can provide a quite accurate starting point. When the
given frequency response data does not contain enough information for the
group delay method, then an optimization process may be required to
determine some additional poles or zeros for the starting point. For each
degree combination, a choice as to the type of zero and pole needs to be made.
We can assign as many conjugate pairs as possible, and then a real zero or a
real pole. For the degree of the numerator to be larger than that of the
denominator, a zero at 0 must be assigned to the numerator. The optimization
procedures are the same for z;,, z, and z,,.

(2) Step 2: determine the network structure and the elemental
impedance.

For the optimization process, the input variables are the zeros, the poles
and the constant factor of the elemental impedance function which is to be
found. The target function is the frequency response of the impedance
function. First we choose the main structure, then the micro structure. Second,
we determine the types of zeros and poles and the degree of the elemental

functions according to the chosen network structure and the impedance
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function found in Step 1. In the above Hydro Example, with chosen T main
structure and series micro structure, with one real zero and two complex
conjugate pairs of zeros and three complex conjugate pairs of poles of Jas

found in Step 1, we find the form of the elemental impedance function—three

impedance functions with one real zero and a complex conjugate pair of zeros.

The initial point of the optimization for g, can easily be determined according
to the found zeros and poles of z,. In a similar way, we can determine the

network structures and elemental impedance functions of Zp and Z,,.

(3) Step 3: find the values of the components of the elemental circuits.

For the optimization process, the input variables are the values of the
components of the elemental circuits. The target functions are the frequency
responses of the elemental impedance functions. To start the optimization
process, some initial values of the elemental circuit need to be assigned. The
injtial values can all be 1.

From the above example of a two-port equivalent network, we can
conclude that the developed three-step approach can yield a good result for
modeling a power system. Also, we find:

1. The three-step approach divides the whole modeling problem into
small parts making it easier to solve each small part and then finally the
whole problem.

2. The modified pattern search is a useful and powerful direct search
optimization technique. For the Hydro Example, this method was able to find
the optimal values at each step of the optimization procedures.

3. In Step 3, to find the values of the network elements, the elemental
circuits with good moving ability play an important role in the optimization

process.
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4. In step 1, the solutions for the impedance functions are not unique
i.e., there are several impedance functions that have frequency responses
close to the required one.

5. In the optimization process of Step 2, the target functions are always
the frequency responses, therefore there is only one error. This has
advantages over using the zeros and poles of the impedance function as the
target function. Since the problem is to find a network that has a frequency
response very close to the given one, if zeros and poles of an impedance are
set to be the target function an extra error will be introduced. This is due to the
fact that, for a given frequency response, a perfectly matched impedance
function is not achievable in general.

6. It is noted that it is very important to have a good fit at 60 Hz and if
necessary this can be achieved by introducing a weighting function in the

objective function.
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Chapter 5
More Examples
5.1 The Second Example

In Chapter 4, the T network structure is used for the Hydro Example and
a good result is obtained. In order to prove the effectiveness of the proposed
optimization method, some more examples need to be done. In this Chapter, the
IT two-port network will be used for the realization of two-port networks for
two more examples (the data was obtained from A. Gole, X. Hua and S. Elez) and a
ladder two-port network (the data was obtained from G. O. Martens) will be used
for one example. For the two examples using the IT two-port network, the
impedance functions are used in one example and admittance functions are
used in another example.

Frequency responses of an ac system model [41] are shown in Figs. 5.1.1,

5.1.2 and 5.1.3:
400

given z12.re

300 A
| given z12.im

200 -
100 -
0 -

-100

-200

-300 Y T T T v r
0 200 400 600 800
frequency (Hz)

Fig. 5.1.1
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——f——  given z11.re
. ——y——  given z11.im

-200
-400 )
-600 v T v T T T
0 200 400 600 800
frequency (Hz)
Fig. 5.1.2
600
——  given z22.re
400 4 -—e— given z22.im
200 A
0 -
-200 A
~400 . , : . . : .
0 200 400 600 800

frequency (Hz)

Fig. 5.1.3

We will follow the optimization procedures described in Chapter 4 to carry out

the optimization for the degrees of z,,, z, and z,, in the next section.
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5.2 Step 1: The degrees and types of zeros and poles
of z,,, z,, and z,,

In order to find the starting point the group delay of z, is calculated.
The group delay curve of z,, is shown in Fig. 5.2.1. It is eésy to see that z,, has
two complex conjugate pairs of poles. The estimated values of these poles of z,

are listed in Table 5.2.1. However, no complex conjugate pairs of zeros are

found from the group delay. Therefore, the zeros of Z, must all be real.

T/ 1,
1.0
0.8+
0.6+
0.44
0.24
O-C'I'l'l'l‘)'l‘l‘l'l‘l'l'l'l'r'l
0 100 200 300 400 500 600 700 800
frequency (Hz)
T, =140
Fig. 5.2.1
Table 5.2.1 poles of the starting point
# ' real part imaginary part
120 1700

2 180 3000
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Since group delay can not be used to find the number and magnitude of
the real zeros and poles, we must apply the optimization program to test
possible real zeros and poles. We test degree combinations of 2/4, 3/4, 4/4, 3/6,
4/6 and 5/6. The best result comes from the degree combination 3/6. Since the

given gz, is not PR, the optimization procedure for z, does not have PR

constraints.

The starting point for gz, is also calculated using the group delay

method. The group delay curve is shown in Fig. 5.2.2. The zeros and poles for

the starting point are listed in Table 5.2.2. One complex conjugate pair of zeros

is found. The poles of z, are very close to those of z,.

T/ 7T,
1.0

0.8+

0.64

0.4+

0.2

0.04

<0.2 T T T T T T T T T T T T T T T T T T T T

o] 100 200 300 400 500 600 700 800
frequency (Hz)
To=100

Fig. 5.2.2

110



Table 5.2.2 Zeros and poles for the starting point

Zeros
# real part imaginary part
1 450 2650
poles
# real part imaginary part
1 100 1750
2 500 3200

In order to find the optimal degree combination, we use the optimization
program to test degree combinations of 5/6, 6/6 and 7/6. The best combination

is found to be 5/6. For the optimization of z;;, the PR conditions must be

satisfied.

The starting point for z,, is also calculated using the group delay

method. The group delay curve is shown in Fig. 5.2.3. The zeros and poles for
the starting point are listed in Table 5.2.3.

Using the optimization to test 5/6, 6/6 and 7/6 degree combinations, we

find the optimal degree configuration for z,, is 5/6. The PR constraint is also

applied to the optimization process for z,,.
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T/ T,

0.8+
0.6+
0.4+
0.2
0.0
-0.2 1
-0.4
-0.6 4
-0.8
-1.0 4
’1 —'2 H 1 v i M t M 1 o 1 M i
0 100 200 300 400 500 600 700
frequency (Hz)
T, =100
Fig. 5.2.3
Table 5.2.3
Zeros
real part imaginary part
80 1900
poles
real part imaginary part
140 1700
150 3200
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5.3 Step 2: The network structure

Fig. 5.3.1 shows a Il two-port network. For the Il two-port network,

the relation between 7z, and Z, Z, and Z, is

md,n,

= 5.3.1
=T d tndd, +mdd, (5.3.1)
We also have
7. = m(dyns +nyd,) (5.3.2)
" nd,d, +ndd, +ndd,
and
n3(n1d2+d1n2) (5.33)

Z =
“ md,dy +n,dds +nyd,d,
From (5.3.1) to (5,3,3) it can be seen that z,,, 7, and z,, have the same poles,

ie., z, and z,, do not have private poles, and this is necessary for using a II

two-port network to realize the two-port impedance functions.

O | } I—I—-O

Z,

Fig. 5.3,1 II two-port network

From Section 5.2, it is found that the complex conjugate pole pairs of z,,

z, and z,, are very close, therefore, it is possible to used he Il two-port

network to solye the two-port network modeling problem.
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The optimization process for the IT main network structure is different

from that for the T main structure. When the T structure is used, the

optimization for z, can be carry out alone, but when Il main network
structure is used, the optimizations for z,, z, and gz, are interdependent. That
is, Z,, Z, and Z; have to be determined together. Also, to start the optimization

process, the number of poles and zeros of Z, Z, and Z need to be determined

first. Equations 5.3.1, 5.3.2 and 5.3.3 impose some restrictions on the degrees of
%, Z, and Z. A combination of degrees of Z, Z, and Z, which satisfies the

imposed degree restrictions is: 1/2 for Z, 1/0 for Z, and 2/3 for Zy. For the

optimization of step 2, the objective function includes the frequency responses

of 4, Z, and Z,. The optimization process of step 2 takes a much longer time

than that of step 1, to reach the optimal point. The found impedance functions

are listed in Tables 5.3.1, 5.3.2 and 5.3.3.

Table 5.3.1
Rational Function Z
polyRep= prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part

2.9151186053158045200e+5  0.0000000000000000000e+0
-1.5869992763430197680e+1  0.0000000000000000000e-+0

Denominator Degree:
2
Constant factor followed by Poles:
real part imaginary part
1.0000000000000000000e+0  0.0000000000000000000e+0
-7.6292071001056810060e+1 -1.3658223110397025240e+3
-7.6292071001056810060e+1  1.3658223110397025240e+3
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Table 5.3.2

Rational Function Z,
polyRep= prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part
1.7360363258562693040e-1  0.0000000000000000000e+0
-2.6719906779697277930e+1  0.0000000000000000000e+0
Denominator Degree:
0
Constant factor followed by Poles:
real part imaginary part
1.0000000000000000000e+0  0.0000000000000000000e+0

Table 5.3.3.

Rational Function Z,

polyRep= prodRep
Numerator Degree:
2
Constant factor followed by Zeros:
real part imaginary part
2.9208658087403923000e+5 0.0000000000000000000e+0
-2.8607785684514154450e+1  0.0000000000000000000e+0
-1.1489912592040089900e+3  0.0000000000000000000e+0
Denominator Degree:
3
Constant factor followed by Poles:
real part imaginary part
1.0000000000000000000e+0  0.0000000000000000000e+0
-6.0819844947882877440e+2  0.0000000000000000000e+0
-3.2451037959160165060e+2 -2.6893858443781487090e+3
-3.2451037959160165060e+2 2.6893858443781487090e+3
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5.4 Step 3: The elemental Circuits

The elemental circuit for Z is easily found. Elemental circuit No. A2
matches the frequency response of Z perfectly. Z, also has a perfectly
matching elemental circuit. Since the degree of Z, is larger than 2 (the largest
degree of an elemental circuit), an optimization is carried out to find the
elemental impedance functions for Z,. The possible combinations for Z, are: 1)
1/2 in parallel with 1/1, 2) 1/2 in series with 0/1, 3) 2/1 in parallel with 0/1
and 4) 2/2 in parallel with 0/1. After 800 iterations, the errors of combination
1 and combination 4 are greater than 3000, the error of combination 2 is very
close to the error of combination 3. However, further test tells that the
combination 3 is the best. The two-port network for the combination 3 is

shown in Fig. 5.4.1. The element values are listed in Table 5.4.1.

i

it

¥
1l

Fig. 5.4.1
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Table 5.4.1 Values of elements

# elemental values unit
x, 1.559619754552841e-1

x, 2.132272705078125e+3 Q
X 3.430392098380253e-6 F

X, 2.475115299224854e+0 Q
Xs 1.736036390066147e-1 H
Xs 4.638672828674316e+0 Q
X 2.031643502414227e-2 H

%, 2.363301277160645e+1 Q
X 3.546867519617081e-2 H

Xy 3.884041070938110e+0 Q
Xy 3.499000000000000e-6 F
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5.5 Results and discussion

The frequency responses of the impedance functions are displayed in

Figs. 5.5.1, 5.5.2and 5.5.3.

400
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—¢——computed z12.im
‘300 v T v Y v Y Y
0 200 400 600 800

frequency (Hz)

Fig. 5.5.1
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frequency (Hz)
600
N —— given z11.im
400- -—¢—— computed z11.im
200
O—
-200+
-4001
'GOC r 1 M ) Y T T
0 200 400 600 800

frequency (Hz)

Fig. 5.5.2
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Fig. 5.5.3
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From the above example, we find that the IT network structure can be
used to realize impedance functions with the real part of z, not either positive
or negative for all frequencies. For these cases, the T structure is not
realizable. The computation time of the optimization for the above example in
this chapter is much longer than that required for the Hydro Example. This is
due to the fact that the impedance functions have many more real poles and
zeros that can not be found by the group delay method than the impedance
functions of the Hydro Example has and therefore, the optimization starts at a
point far from the optimal point. For the Hydro Example, the optimization only
requires increasing the step size to overcome local mimima. However, for the
example of this section, changing the starting point and increasing the step
size—the techniques for overcoming a local minimum—both have to be used
intensively. On the other hand, this also demonstrates the effectiveness of the

optimization method.
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5.6 The third example

The given frequency responses of the impedance functions for the
third example are shown in Figs. 5.6a, 5.6b and 5.6c. The optimization
procedures for this example will be similar to those for the second example.
However, some novel modifications will be developed to make the optimization

procedure more efficient.

3000
Real Part
imag Part
2000 4
1000 A
O -4
-1000 T T ' r v
0 200 400 600

frequency (Hz)

~ Fig. 5.6 a Frequency response of Z,
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5.6.1 Step 1

From the previous examples, it is found that the group delay is useful
for estimating the starting points of the optimization of Step 1. There are some
limitations in using the group delay to estimate the starting point:

1. It is difficult to find the numbers of real zeros and poles and their

magnitudes.

2. In general, when poles or zeros are close together and poles and zeros

are close to each other, then it is very difficult to estimate these poles

and zeros.

In the previous examples, the way to deal with this shortcoming was to test
some combinations of poles and zeros in addition to the poles and zeros found
by the group delay method and then to pick the best one. In this example, a
new way, which applies optimization directly to the group delay—the group
delay is the target function—is adopted. In this new technique, some
combinations of zeros and poles in addition to those estimated from the group
delay are also tested. However, because the target function is the group delay,
no complex-number operations are required, the latter optimization process is
much faster than the former.

Fig. 5.6.1a displays the given group delay of Z,. From this delay curve it
is difficult to estimate the real poles and zeros. To apply the optimization, we set
the group delay as the target function of the optimization and the poles and
zeros of the impedance functions as the input variables. Rewriting (4.3.1b-2)

we have
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where p, =-q, + jB;, and % ==y, + jo,, and

. . Q,
represents a pair of complex conjugate poles, ——— presents a real pole,
a,” +w

i

- 16 T+ —3 Z; > Tepresents a pair of complex conjugate zeros,
Yo+ w=-8) v +(w+4,)
and —-_-I‘—-i- Teépresents a real zero. nland m1 are the numbers of pairs of
Y+

complex conjugate poles and zeros, respectively, and 72 and m2 are the
numbers of real poles and zeros, respectively.

We also select several different combinations of poles and zeros for
testing. For z,,, with 40 iterations, the difference of objective function values
between the best combination of zeros and poles and the other combinations is
great, so that we can easily pick out the best combination. Table 5.6.1a shows

the errors for two different degree combinations.

Table 5.6.1a

degree combination 5/5 4/5
error 0.0018 0.0256
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poles. The found group delay is shown in Fig. 5.6.1a. The unknown constant
factor is found by an optimization—a single variable optimization using the
above found poles and zeros. Thus the impedance function z, is found. Fig.
5.6.1b displays the given and found frequency responses of z,,. It can be seen
that the error is quite small. In a similar way, we find that there are one real
and two complex conjugate pairs of zeros for z,,, and there are three real
zeros and one complex conjugate pair of zeros for z;,. The poles of both z,, and
Z,, are the same as those of z,,. The group delay of z; is shown in Fig. 5.6.1c
and the frequency response of z;, is shown in Fig. 5.6.1d. The computed group
delay of z,, is illustrated in Fig. 5.6.1e and the computed frequency response of

Z,, is displayed in Fig. 5.6.1f. The errors of both z, and z,, are very small as

well.
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0.0004
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-0.004 -
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] ——— computed group delay
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-0.010- - : - 1 -
0 200 400 600
Frequency (Hz)
Fig. 5.6.1a Group delay of z,,
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Fig. 5.6.1f Frequency response of z,

5.6.2 Step 2

From the given frequency responses of z,, z, and z,, shown in Figs.
5.6a, 5.6b and 5.6c, it can be seen that the real parts of z,, z, and z, do not
satisfy the condition for the T structure, therefore, the IT structure is adopted.
In Example 2, the computation time is much longer than that required for the
Hydro Example. The reason for the longer computation time is that the
calculations forZ, Z, and Z, in the Hydro Example are separate, however, the
calculations for Example 2 are not separate and this leads to more variables and
more constrains onv the optimization. For the optimization, the computation
time increases exponential with the number of the input variables. Also, the
more constrains there are, the slower the convergence is. To accelerate the
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optimization process, we need to find a way to enable the optimization for Z,
Z, and Z, to be carried out separately. The relationship of network element

impedance functions Z;, Z, and Z; and the corresponding short-circuit

admittance functions are as follows.

N
12 Z,
1 1
}’11“2'*'2'
22 Z, Z,
1
le..-
Yut+ Y2
7ol
Y2
Yia T Y2

It is clear that by using the admittance functions, the optimizations for Z;, Z,

and Z, can be carried out separately. The admittance functions can be
calculated from the impedance functions z, 2z, and z,,. The calculation of the

frequency responses of the admittance functions using the given frequency

responses of the impedance functions is as follows:

. - 2y, (j@;)
M) = 1 ay
. (o)
N2 (J@,) = Az(j®,)
. we)
yzz(]wi)_-Az-.(ja)i)

where Az(jo,) = z,(j@,) - 25, (J@;) — (2, (J&@; ))2
In the optimization processes for Z,, the input variables are the zeros

and poles of Z, and the objective function value is the difference between the
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1
frequency response of —-— and the frequency response of the calculated Z,.
N2 )

The frequency response found for Z, is shown in Fig. 5.6.2a. Next an
optimization process is carried out to find the impedance function Z,. Several
different combinations of zeros and poles are chosen to be tested by
optimization. It is found that the best degree combination for Z, is 1/2. The

zeros and poles of Z, are listed in Table 5.6.2a.

3000
given z2.re
——  given z2.im
2000- ——fi—— computed z2.re

——— computed z2.im

1000+

-1000+

-2000 T T T T v T ' T \ T y
0 100 200 300 400 500 600

Frequency (Hz)

Fig. 5.6.2 a frequency response of Z,

131



Table 5.6.2a

Rational Function Z,
polyRep=
prodRep
Numerator Degree:
1

Constant factor followed by Zeros:

real part imaginary part
1.650 e+6 0.000 e+0
0.000 e+0 0.000 e+0
Denominator Degree:
2

Constant factor followed by Poles:

real part imaginary part
1.000 e+0 0.000 e+0

-3.820 e+2 -1.122 e+3

-3.820 e+2 1.122 e+3

In a similar way, we find the frequency response of Z which is

displayed in Fig. 5.6.2b. From the frequency response we find the impedance

function shown in Table 5.6.2b by optimization (Step 2).

10000

given z1.re
given z1.im

6000+

4000+

2000+

0 100 200

800091 ——=— computedzi.re
———  computed z1.im

300 400 500 600

Frequency (Hz)

Fig. 5.6.2 b Frequency response of Z
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Table 5.6.2b

Rational Function Z,

polyRep=
prodRep
Numerator Degree:

1
constant factor followed by zeros
real part imaginary part
2.526e+0  0.000e+0
4.500e+0  0.000e+0
Denominator Degree:

0
constant factor followed by poles
real part imaginary part
1.000e+0  0.000 e+0

The frequency response of Z, is calculated in a manner similar to the

above calculation of Z, and is shown in Fig. 5.6.2c. The zeros and poles of YA

are found by an optimization process and the result is listed in Table 5.6.2c.

500
400-
3001
zoo-
1001
04

-1004

given z3.re
given z3.im

——&— computed z3.re
—=¢-——  computed z3.im

-200

¥ T v T
0 100 200

T v T ' T
300 400 500

freq(Hz)

Fig. 5.6.2c Frequency response of Z
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Table 5.6.2¢

Rational Function Z,

polyRep=
prodRep
Numerator Degree:

2
Constant factor followed by Zeros:
real part imaginary part
4.919e+2 0.000e+0
-2.750e+2 -1.632e+3
-2.750e+2 1.632e+3
Denominator Degree:

2
Constant factor followed by poles:
real part imaginary part
1.000e+0 0.000e+0
-9.344e+2 -1.453e+3
-9.344e+2 1.453e+3

5.6.3 Step 3

From the impedance function Z, the circuit for Z, is easily found, it

has only two elements, an inductor in series connection with a resistor. Fig.
5.6.3a shows the circuit. The value of the inductor is 2.526439879427041535H
and the value of the resistor is 113.68979457421687%.

__N\___W\,___

Fig. 5.6.3a
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The circuit for Z, is readily to found by using optimization (Step 3). The

circuit is elemental circuit No. Al which perfectly matches the frequency

response of impedance function Z,. The circuit of Z is illustrated in Fig.

5.6.3b and the values of the circuit components are listed in Table 5.6.3b.

MWA

1
X8

Fig. 5.6.3b Circuit for Z,

Table 5.6.3a
component number value of component
X, 1.175213694572449e+0 H
X 6.057119890101603e-7
X, 2.160928710937500e+3 Q

From the impedance function Z, in Step 2, it is found that after a

parallel resistor x, is removed from the reciprocal of Z,—admittance Y,, then

the remaining impedance function is a 2/1 impedance function which can be

realized by the basic elemental circuit No. B2 (see Chapter 6). The circuit
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realizing Z, is displayed in Fig. 5.6.3b. The values of the circuit components

are listed in Table 5.6.3b.

1/ xs

X
!
1

Ry

o & &
Fig. 5.6.3b
Table 5.6.3b
component number value of component
X, 1.003731881610292e-6 F
x, 5.354114746093750e+3 Q
X3 1.357267608642578e+2 Q
x, 3.7295358528327080e-1 H
Xs 4.9188428578299663e+2 Q
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5.6.4 Results and discussion

Fig. 5.6.4a shows the complete circuit realizing z,, z, and z,. The

frequency responses of gz, g, and z,, are displayed in Figs. 5.6.4b, 5.6.4c and

5.6.4d, respectively. Itis clear that the results are very good.

e, A . O

+—\\W %

N
Il
i1

Fig. 5.6.4a

3000

givenz1i1.im
. e given z11.re
~—g—— computed z11.re
g computed z11.im

2000+

-1000 Y T T T Y T T T T
0 100 200 300 400 500 600
Frequency (Hz)
Fig. 5.6.4b
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. ————  given z12.re
given z12.im
400+ —@—— computed z12.re
computed z12.im

-100- ¥ T d T Y T T Y T
0 100 200 300 400 500 600
Frequency (Hz)
Fig. 53.6.4c¢
500
400+
300+
200+
100
0
given z22.re
—— given 222.im
-100 —&— computed z22.re
——¢-——  computed z22.im
"200 i M i v i ' 1 ¥ i M ] ¥
0 100 200 300 400 500 600

Frequency (Hz)
Fig. 5.6.4d
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In Step 1, applying an optimization to the group delay determines not
only the numbers and types of zeros and poles, but also the zeros and poles of
the impedance functions quite accurately. In addition, it speeds up the
optimization process of Step 1 more than 10 times, since the optimization only
deals with real numbers instead of complex numbers and polynomial
operations. Using an optimization process on the group delay to find the zeros
and poles is also applied to Example 2, with similar results.

In Step 2, when the II two-port structure is required, using admittance
functions to realized the network is much faster than using impedance
functions, because by using admittance functions, the optimizations can be
carried out separately for Z, Z, and Z, and the computation time of
optimization is related exponentially to the number of input variables. The
same approach of using admittance functions for the IT two-port structure is
applied to Example 2, the optimization process is also much faster than that

using impedance functions.
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5.7 Example Four

The given frequency responses of the impedance functions for Example

4 are shown in Figs. 5.7.1, 5.7.2 and 5.7.3.

—8-—- given zl1l.re
—o—— given z11.im

Y T T T T T T T T T Y
0 100 200 300 400 500 600
frequency (Hz)
Fig.5.7.1

——a8—— given z12.re
—e— given z12 im

v 1 4 T M T Y T T T Y
0 100 200 300 400 500 600
frequency (Hz)
Fig.5.7.2
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-0.14

~—8——— given z22.re
——¢— given z22.im

: Y T M T T T Y T d T v
0 100 200 300 400 500 600
frequency (Hz)

Fig. 5.7.3

We follow the three-step approach to carry out the optimization. The

found zeros and poles of z,, z,, and z,, are shown in Tables 5.7.1, 5.7.2 and

5.7.3.

Table 5.7.1

Rational Function z,,
polyRep=
prodRep
Numerator Degree:
6

Constant factor followed by Zeros:

real part imaginary part
5.000000000 e-1  0.000000000e+0
-2.234337589 e+2  0.000000000 e+0
-1.638061539 e+2  0.000000000 e+0
-8.696307808 e+2 1.135577665 e+3
-8.696307808 e+2 -1.135577665 e+3
-1.549249262 e+3 8.703214287 e+2
-1.549249262 e+3 -8.703214287 e+2
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Denominator Degree:

6

Constant factor followed by Poles:

real part

1.000000000 e+0
-1.840367338 e+2
—4.237360698 e+2
-4.237360698 e+2
-1.496745563 e+3
-1.496745563 e+3
-3.000000000 e+2

Table 5.7.2

imaginary part
0.000000000 e+0
0.000000000 e+0
1.136401723 e+3
-1.136401723 e+3
1.068883960 e+3
-1.068883960 e+3
0.000000000 e+0

Rational Function g,

polyRep=
prodRep

Numerator Degree:

3

Constant factor followed by Zeros:

real part
3.750000000e+5
-4.000000000e+2
-6.000000000e+2
0.000000000e+0

imaginary part
0.000000000e+0
0.000000000e+0
0.000000000e+0
0.000000000e+0

Denominator Degree:

5

Constant factor followed by Poles:

real part

1.000000000e+0
-1.840367338e+2
-4.237360698e+2
-4.237360698¢+2
-1.496745563e+3
-1.496745563¢e+3

Table 5.7.3

imaginary part
0.000000000e+0
0.000000000e+0
1.136401723e+3
-1.136401723e+3
1.068883960e+3
-1.068883960e+3

Rational Function g,,

polyRep=
prodRep

Numerator Degree:

4

Constant factor followed by Zeros:

real part
6.000000000e+2
-1.000000000e+0
-1.999089293e+2
-5.375455353e+2
-5.375455353¢e+2

imaginary part
0. e+0
0.000000000e+0
0.000000000e+0
1.121884349¢+3
-1.121884349¢+3
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Denominator Degree:

5
Constant factor followed by Poles:
real part imaginary part

1.000000000e+0  0.000000000e+0
-1.840367338e+2  0.000000000e+0
4.237360698e+2  1.136401723 e+3
-4.237360698e+2 -1.136401723 e+3
-1.496745563e+3  1.0688839603e+3
-1.496745563e+3 -1.0688839603e+3

From Tables 5.7.1, 5.7.2 and 5.7.3, the degree of z,, is 6/6, the degree of
z,, is 3/5, and the degree of z,, is 4/5. Since 7, 2, and Z,, have five identical

poles, and z,, has a private pole, a ladder structure is adopted. Fig. 5.7.1 shows

the ladder network.

O O

Fig.5.7.4 A ladder two-port network

This ladder network has a series element added to the II two-port
structure and the higher degree of Z;, is generated by this series element.

Therefore, if we can determine Z, then we can easily find Z,, Z, and Z, of the
remaining I1 network by using the method developed in Example 3. Let Z, be

the driving point function of the remaining Il network, we have:
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(5.7.1)

where d is known from z,, and 4, is also known by comparing the poles of z,
with the poles of z,. n and n, can be obtained by an optimization process. To
start the optimization process, the degree of n and n,, must be known, or all

possible degree combinations of both n and n, have to be determined. For a

driving function the degree difference between the numerator and the

denominator can not be larger than one, and the degree of 4 is 5, hence the

degree of n,, can only be 4, 5 or 6. The possible degrees of n, are 0, 1 and 2,
because the degree of 4, is 1. From the above possible degrees of n, and oy
there are 9 degree combinations of n, and n,,. However, since the degree of the
numerator of gz, is 6, i.e. the maximum degree of ny, d, is 6, hence the degree of
n'11 must be less than 6. Similarly, the maximum degree of n,d is 6, hence the

degree of n, can not be 2. If the degree of n equals 0 and the degree of m,

equals 4, then the degree of the numerator can not equal 6. Therefore, the

possible degree combinations are down to three:

1. degree of n, equal to 0 and degree of n;, equal to 5,

2. degree of n, equal to 1 and degree of n, equal to 5,

3. degree of n, equal to 1 and degree of m, equal to 4.

Optimizations are conducted for these three combinations. When the
iteration number equals 200, the difference of the objective function values
clearly shows that the right choice is the #3 degree combination. Therefore,
the #3 degree combination is adopted. For the # 3 degree combination, there

are three types of zeros for nil, one is two complex conjugate zero pairs, the

other is one complex conjugate pair and two real zeros and four real zeros.
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Further tests tell us that the second one is a good choice, hence the

optimization continues for the second one only. The starting points of the

optimization, the zeros of n, and n;, and the constant factor of n,, are chosen
to be the same order as the zeros of z,. After more than 3000 iterations, both n,

and n, are found. Table 5.7.4 and Table 5.7.5 gives the zeros of n, and n,,,

respectively.

Table 5.7.4

Rational Function Z,

polyRep=
prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part
5.0000e-1 0.0000e+0
-2.0000e+2 0.0000e+0
Denominator Degree:
1
Constant factor followed by poles:
real part imaginary part
1.0000e+0 0.0000e+0
-3.0000e+2 0.0000e+0
Table 5.7.5
Rational Function z,
polyRep=
prodRep

Numerator Degree:
4

Constant factor followed by Zeros:
real part imaginary part

5.0000e+2 0.0000e+0
-4.0000e+2 0.0000e+0
-1.3283e+2 0.0000e+0
-1.3835e+3 1.1950e+3
-1.3835e+3 -1.1950e+3

145



Denominator Degree:

S
Constant factor followed by poles:
real part imaginary part

1.0000 e+0 0.0000 e+0
-1.8403 e+2 0.0000 e+0
-4.2373 e+2 1.1364 e+3
-4.2373 e+2  -1.1364 e+3
-1.4967 e+3 1.0688 e+3
-1.4967 e+3 -1.0688 e+3

After Z and gz, are determined, the next step is to determine the

remaining IT network. The remaining procedures are exactly the same as that

developed in the third example. The frequency responses of the admittance

functions y,, y, and y, are calculated from the frequency responses of

impedance functions z,,, z,, and 2.

oy = 222 (jo,)
y(Jo;) ———Az(j(,t),-)

0N = _5 (o)
Y (J0;) Az(jo,)

SN z‘ll(jo‘)i)
Y (JO;) = Az(j:.(.o,.)

where Az(ja)i)=z'u(ja),~)-z22(jw,-)—(le(ja);))z- 2 (JO;), ¥ (Jo;) and yn (jO;) are
the frequency responses of y,, y, and y,, respectively. 7,(j®,), z,(jo,) and
7, (j®,;) are the frequency responses of 7, %4 and z,,, respectively.

The frequency responses of impedance functions Z,, Z, and Z, are

calculated as the follows

Z,(jo;) = ———
U Y12 (JO;)
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1
nljow)+y, J(Jjw,)

Z(jo,) =

1

Z (_](U‘) = A R
¢ Yo Gw,) +y, LJj;)

where Z (jw,), Z,(jw,) and Z,(jw,) are the frequency responses of Z,, Z and
Z,, respectively.

The impedance function Z, is determined by using optimization. In
the optimization processes for Z,, the input variables are the zeros and poles of
Z, and the objective function value is the difference between the frequency

1
response of —— and the frequency response of the calculated Z,. The
ylZ

impedance functions Z, and Z, are obtained by optimization in a similar way

to that for Z,. The resulting impedance functions Z,, Z, and Z, are illustrated

in Tables 5.7.6, 5.7 7 and 5.7.8, respectively.

Table 5.7.6

Rational Function Z,
polyRep=
prodRep
Numerator Degree:
1

Constant factor followed by Zeros:
real part imaginary part
5.0000e+2 0.0000e+0
-4.0000e+2 0.0000e+0
Denominator Degree:
2

Constant factor followed by poles:
real part imaginary part
1.0000e+0 .0000e+0
-2.5000e+2 -1.0000e+3
-2.5000e+2 1.0000e+3
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Table 5.7.7
Rational Function Z,

polyRep=
prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part

8.0000e-1 0.0000e+0
-1.5000e+2  0.0000e+0
Denominator Degree:

1
Constant factor followed by Poles:
real part imaginary part

1.0000e+0 0.0000e+0
-6.0000e+2  0.0000e+0

Table 5.7.8
Rational Function Z,
polyRep=
prodRep
Numerator Degree:
1
Constant factor followed by Zeros:
real part imaginary part

6.0000 e+2 0.0000 e+0
0.0000 e+0  0.00000 e+0
Denominator Degree:

2
Constant factor followed by Poles:
real part imaginary part

1.0000 e+0 0.0000e+0
-1.0000 e+3 -1.4000e+3
-1.0000 e+3 1.4000e+3

The circuits of Z, Z,, Z, and Z, are determined and shown in Figs.

5.7.5, 5.7.6, 5.7.7 and 5.7.8 and the values of the circuit elements are listed in

Tables 5.7.9, 5.7.10, 5.7.11 and 5.7.12, respectively.

xS

Fig. 5.7.5
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Table 5.7.9

component number value of component
x, 5.0000e+1 o
X, 1.6667¢-1 Q
X3 3.3333e-1 Q
xS X4
M-
X,
. 1/ x,
]
Fig. 5.7.6
Table 5.7.10
component number value of component
X, 4.8900e-4 H
X 5.0000e+0 Q
X, 2.0000e-3 F
X, 1.9560e-1 Q
X3
Mo
Fig. 5.7.7
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Table 5.7.11

component number value of component
X, 3.6000e+2 H
X, 6.0000e-1 Q
x 2.0000e-1
X, S
—N\——‘
X3
1/x.
11
1
Fig.5.7.8

Table 5.7.12

component number value of component
x, 4.7059%e-4 H
X, 2.0000e-3
X 1.0000e+0 Q

The complete ladder network is shown in Fig. 5.7.13. The resulting

frequency responses of z,,, z,, and I,, are illustrated in Figs. 5.7.14, 5.7.15 and

5.7.16.

150
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L] Z4 1
Fig. 5.7.13 The ladder network
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given z11.re
given z11.im
——8— computed z11.re
~——e—— computed z11.im
‘] -
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frequency (Hz)

Fig. 5.7.14
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—&— computed z12.re
computed z12.im
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Fig. 5.7.15
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Fig. 5.7.16
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In Example 4, an optimization is conducted to determine the impedance
function Z, then the remaining II network is found by using the method
developed in the third example. In this way, the optimization has only six
input variables and three possible degree combinations. The other way to
apply the optimization is to find Z, Z,, Z, and Z, at once. In this case, there
are ten unknown variables and many more possible degree combinations
than in the former case, therefore, the optimization will be much more

difficult and time consuming.

5.8 Discussion

In this chapter, three examples which were realized in a I and a ladder
two-port network were discussed. The results of these three examples
demonstrate the effectiveness of the three-step-approach optimization
method. To make the optimization method more efficient three
techniques/procedures were used:

1. An optimization process was applied to the group delay to find the
degree, the zeros and poles of the impedance function. This speeds up the
optimization process of Step 1 by more than ten times. This improvement is due
to the fact that the number of input variables using the group delay is much
smaller than that of an optimization involving complex numbers and
polynomial operations.

2. The realization of a I1 two-port network using admittance functions,
leads to a much faster convergence than using impedance functions, because

it does not require the optimization to determine Z,, Z, and Z, jointly and this

leads to fewer input variables in the optimization.
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3. For the ladder two-port network, a series impedance Z is first

determined and then the remaining II two-port network, leads to a faster
convergence, because of fewer input variables and fewer possible degree
combinations.

The basic idea for using these techniques/procedures is to find a way to
reduce the number of input variables for an optimization, because the
computation time required for an optimization process is related exponentially
to the number of input variables. This is similar to the idea of using a multi-

step optimization approach.
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Chapter 6

FURTHER STUDY OF THE THREE-STEP
APPROACH

6.1 Introduction

In Chapters 4 and 5, we developed a new method—the three-step-
approach for finding an equivalent two-port network for modeling an ac
power system. Also, a specific modeling problem of a power system and three
other examples are solved by applying the method. The results of the Hydro
Example gave a better fit for the frequency responses than those reported in
[5] using a different method. The other three examples gave very accurate
results. These examples involve four different network structures: T, T with a
transformer, I1 and a ladder. These examples demonstrate the effectiveness of
the three-step approach method and the possibility of the three-step-approach
becoming a general approach for the modeling of ac power systems.

In this chapter we will further discuss some of the features of the
three-step-approach method. First we present the basic elemental circuits.
Then we analyze the convergence and the accuracy of the optimization
process of the three-step-approach method in terms of the results of the four

examples.
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6.2 Basic elemental circuits

The basic elemental circuits play an important role in the optimizations
of Steps 2 and 3. That is, for any one impedance function required in Step 2, a
circuit which can satisfy this function must be found by optimization in Step
3. The degrees of the basic elemental circuits range from the lowest 0/1 to the
highest 2/2. The lowest degree circuit is considered first.

The 0/1 elemental circuit is shown in Fig. 6.2.1.

Fig. 6.2.1 A 0/1 circuit

The impedance function of this circuit is

= 1/ x,
s+1/(xx,)

It is easy to see that there are only two variables for the impedance function.

One is the numerator, i.e. 1/x;, and the other is the zero of denominator, i.e.
-1/(x,x,). The amplitude of the numerator can be any positive real number
and it is not affected by the denominator, so that full movement is possible.
For the denominator, the zero can also be any negative real number and it is

not affected by the numerator. Thus full movement of the denominator is also
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achieved. Therefore, this circuit can realize any 0/1 PR driving point
function.

Second, we consider the 1/0 circuit shown in Fig. 6.2.2.

Fig. 6.2.2

The impedance function of the circuit is

2= x5+ X,

_Ss+x,/x
1/ x,

There are two variables. One is the zero of the numerator and the other is the
constant factor of the denominator. It is clear that the zero of the numerator
can be any negative real number and the constant factor of the denominator
can be any positive real number. Also, the numerator and the denominator are
independent of each other. Thus full movement is achieved. Therefore, this
circuit can realize any 1/0 PR driving point function.

Third, we analyze a 1/1 circuit shown in Fig. 6.2.3.

YL %
% NN~

Fig. 6.2.3 A 1/1 circuit (No. E4)

The impedance function of this circuit is
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= (X%, + X,%3)8 + Xy X4
xS+ x,

X, X
(x, +x;)s + 22

= X
X.
s+
X
_asta,
s+b,

as+a, . . . . .
where 257 % s the function that is to be realized by the 1/1 circuit. There
s+b,

are three variables: x,, x, and x,. We have

-4 _ %4
Th
) =a1—%9-

0
x3=—29-
0

Therefore, the limitation of this circuitis  ab, —a, 2 0.

Another 1/1 circuit (No. C4) is shown in Fig. 6.2.4.

1/ xs
B AAA
il

X3

*)

Fig. 6.2.4 A 1/1 circuit (No. C4)

The impedance function of this circuit is

z= Xy Xy X3S + Xy + X,

xx,5+1
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we also have X, =

X5 =q

The limitation of this 1/1 circuit is a, - ab, 2= 0. It is clear that circuit No. C4
and circuit No. E4 complement each other with respect to limitations.
Therefore, together these two circuits can satisfy the required full move
ability of 1/1 circuits, i.e., any 1/1 PR function can be realized by either
circuit No. C4 or by circuit No. E4 .

Fourth, we consider 1/2 circuits; 1/2 circuits are more complicated than
the above three cases. However, similar to the above, two complementary
circuits (with respect to restrictions) are obtained. A 1/2 circuit—elemental

circuit No. A2 is shown in Fig. 6.2.5.

xS x,
r Y —AMN-
x’l
WA
1/ x,

81
i1

Fig. 6.2.5 A 1/2 circuit
The impedance function of the circuit in Fig. 6.2.5 is
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X, X3S + Xy X,

=
X%, %587 + (X + X,2,%,)S + X, + X,

1 X
s+
X3 X X5

X+ X,x,X X, + X
1.0 27374 o 4 22 4

S
Xy X3 Xy X X X3

as +a,

= 6.2.1
s*+bs+b, ( )

as +a,

where
s> +bs+b,

is the equation that is to be realized by the 1/2 circuit—

circuit No. A2. We have

ay = xx; (6.2.2-1)
143
1
a = .;_ (6.2.2-2)
3
b =2tX (6.2.2-3)
Xy Xy X5
bl = M‘L (6.2.2-4)
Xy X3 X,
Solving equations 6.2.2, we have
a’
X, = ~ (6.2.3-1)
L a’by - auab +a
a}
X, = (6.2.3-2)
ab —a,
x, = %’ (6.2.3-3)
Y a’h -aab +a
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X, =— (6.2.3-4)
a

Since x, x,, x, and x, must be positive, we have the following constraints:

ab —a,20 (6.2.4-1)
a’b +a} —ayab 20 (6.2.4-2)

Constraint (6.2.4-1) is a part of the PR conditions on the impedance function.

(Some other PR conditions are a,20, g, 20, b,20 and b 20.) Constraint

(6.2.4-2) demonstrates the limitation of the elemental circuit No. A2.

Fig. 6.2.6 presents the other 1/2 circuit—elemental circuit No. D8 .

1/ xs

Fig. 6.2.6

The impedance function of this circuit is:

X X3X,S + X,
z= - (6.2.5)
XXy X3 Xy S + (XX, + XX, + X 3)5 +1

In a way similar to that of elemental circuit No. A2, we find the limitation of

circuit No. D8:
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a,ab, -a’b -a’ =0 (6.2.6)

constraints (6.2.4-2) and (6.2.6) clearly show that circuits No. A2 and No. D8
complement each other with respect to constraints. Hence these two 1/2
circuits can be used to realize any 1/2 PR driving point function.

Fifth, we consider the 2/1 circuits shown in Fig. 6.2.7.

1/ xs 1 % y
11 4

X
Fig. 6.2.7 No. B2 circuit

The impedance function of this circuit is

XX Xy8® + (X, + XX, %) + X, + X,
7=—= . —
X, x,8 +1

X, + X,X.X X, + X
X80+ S o 2
%1% X Xs
=
1
S A —
XX,

a.s’ +a;5+a,
s+b,

a.s* +a;s+a,

where is the equation that is to be realized by the 2/1 circuit. We

s+ b,
have

A =X, (6.2.7a)
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= Xa T XXX,

(6.2.7b)
1%,
X, + X,
= (6.2.7.0)
XXy
1
by = — (6.2.7d)
X1 Xy
Solving equations 6.2.7), we have:
1

X =

a, - ab, + a’zbg

a
X, =75 —a +ab,

by
Xy = a4y~ ayb,
X, =4y

Since x,, x,, x; and x, must be positive, we have the following constraints:

a—aby 20 (6.2.7g)
a, +a,bt —aby 20 (6.2.7h)

Constraint (6.2.7g) is a part of the PR conditions of the impedance function.

(Some other PR conditions are: g, 20, 4,20, 4,20, and b, 20.) Condition

(6.2.7h) represents the limitation of the elemental circuit No. B2.

Fig. 6.2.8 shows the other 2/1 circuit—elemental circuit No. E6.

xS

Y\ s 4
AW

Fig. 6.2.8
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The impedance function of the circuit is:

‘= x,%,8% + (X%, + Xo Xy + X, 2)S + X, X,

X8+ X,
In a way similar to that of circuit No. B2 , we find the limitation of circuit No.

E6:
ab, —a,+a,b; 20 (6.2.71)

From constraints (6.2.7h) and (6.2.7i), it is clear that circuit No. B2 and circuit
No. E6 complement each other with respect to the limitation. Therefore, these
two circuits can achieve the realization of any 2/1 PR driving point function.
Sixth, we consider the 2/2 circuits. In many cases the 2/2 circuit can
be realized by combinations of 0/1, 1/0, 1/1, 2/1 and 1/2 basic elemental
circuits and R, L, C elements. For example, in Example 3, a 2/2 circuit is
achieved by a resister in parallel with the No. B2 circuit. However, when the
2/2 impedance function is a minimum function, then the combination of these
basic elemental circuits can no long realize the required 2/2 minimum
impedance function. In this case the Brune circuit can be used. The derivation
of the Brune circuit is given in many text books [2], [39]. Hence, it is not given
here. A Brune circuit is shown in Fig. 6.2.9 and its equivalent circuit is shown

in Fig. 6.2.10. For the realization of a 2/2 minimum function, if a

positive(negative) value is given to L then a negative(positive) value must be

given to L,. The relations between L, L,, L;, L, and L, are:

L=L+L
L=L+L
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Also, an optimization process is used to carry out the calculation for the
element values of the Brune circuit for the realization of a 2/2 minimum

function.

L, L,
o.——fY\ [ ¢ Y \\
L
R,
G ==
O
Fig. 6.2.9
M=1L,
O
® @
L, L
R,
C,
o,
Fig. 6.2.10

Now we have the basic elemental circuits of degrees 0/1 to 2/2 which
can guarantee that all required impedance functions of degrees 0/1 to 2/2 can
be achieved. For degrees higher than 2/2 PR functions, the required networks
can also be achieved by using these basic elemental circuits. For example, in
Example 2 the 2/3 impedance function Z, is realized by the No. E6 circuit in
parallel with a capacitor. Therefore, the optimizations in Step 2 and Step 3 are

guaranteed to be successful by using these basic elemental circuits.
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6.3 The convergence

The convergence of the optimization is the most important problem in
~ the entire optimization process. The convergence of the optimization depends
on two factors, one is the optimization method and the other is the setting of
the optimization—the formﬁlation at every step of the optimization procedure.
It is apparent that in order to obtain convergence of the three-step-approach,
the optimization method itself must be capable of converging. We will use
examples to describe the importance of the techniques for overcoming the
local minimum problem in the optimization process for the modified pattern
search optimization method.

From previous study, it is known that overcoming local minima is the
key problem which needs to be solved for the convergence of the optimization.
Several techniques are developed to modify the pattern search optimization
method to overcome the local minimum problem. Two of these techniques that
have proven to be very effective are the following: 1) repeatedly varying the
step size in both the single variable search phase and the pattern search
phase, 2) changing the starting points. From the examples of our study, it
become very clear that without these modifications for overcoming the local
minimum problem, the pattern search optimization had little chance to
succeed. For example, in Step 1 of Example 3, finding the degrees and types of
poles and zeros without continually increasing the step size, the optimization
process will stop in a very early phase with a large error. This is also true for
all other examples we have studied—without repeatedly increasing the step
size, the pattern search optimization stops prematurely. An example for

illustrating the importance of changing the starting points is the optimization
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process for finding the network structures and the elemental impedance
functions in Step 2 of Example 2. If the technique of changing the starting
points is not applied, then the optimization process stops very early with a
very large error (>1000) and far away from the final optimal point.

To demonstrate the effectiveness of the modified pattern search
optimization method, we apply the optimization to a non-optimal combination
of the zeros and poles in Step 1 of Example 3—the degrees of both the
numerator and denominator equal 6. (The optimal degree combination is the
degree of both the numerator and the denominator equal to 5.) After more
than a 1000 iterations, we obtain a result which is shown in Fig. 6.3.1. The
impedance function corresponding to the frequency response is listed in
Table 6.3.1. It is clear that the result is acceptable. For the optimal degree
combination of the numerator and the denominator, the optimization takes 400
iterations to reach a result very close to the optimal point (see Fig. 5.6.4b).
Comparing the results and number of iterations, we can see that although the
optimization for the non-optimal degree combination takes a much longer
time, the optimization eventually approaches a point close to the optimal point.
The importance of this example is that it illustrates the ability of the developed

optimization method to find a solution close to the optimal point.
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Table 6.3.1

Rational Function gz,
polyRep=
prodRep
Numerator Degree:
)

200 300 400 500 600
frequency(Hz)
Fig. 6.3.1

Constant factor followed by Zeros:

real part
4.4776808646673164120e+2
-1.6332368267630182640e+2
-1.6332368267630182640e+2
-8.0088324072499939180e+3
-8.0088324072499939180e+3
-1.6654111967378977340e+3
-1.6654111967378977340e+3
Denominator Degree:
6

imaginary part
0.0000000000000000000e+0
-9.7406490647989810730e-8
9.7406490647989810730e-8
-2.0163814594122669120e+3
2.0163814594122669120e+3
-2.2209744114314249660e-7
2.2209744114314249660e-7

Constant factor followed by Poles:

real part
1.0000000000000000000e+0
-3.1308364445306449420e+2
-3.1308364445306449420e+2
-8.0088324072499939180e+3
-8.0088324072499939180e+3
-3.4801527298610167770e+2
-3.4801527298610167770e+2

imaginary part
0.0000000000000000000e+0
-1.3805725543337763610e+3
1.3805725543337763610e+3
-2.0163814594122669120e+3
2.0163814594122669120e+3
-1.3890832848126365720e+2
1.3890832848126365720e+2
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From the above four examples, it is found that:

1. In all four examples, the technique of changing the starting points is
not required for the optimizations in Step 1. |

2. For the optimization process of Step 2, when the T structure is used
with the impedance functions (Hydro Example) and the IT structure is used
with the admittance functions (Example 3), the technique of changing
starting points is not required. However, when the admittance functions are
not used for the IT structure (Example 2 ), the technique of changing starting
points has to be used extensively. This is mainly due to the fact that the
number of the input variables in this case is much larger. Also, more variables
means more constrains that contribute to a longer computation time.

3. In the optimization of Step 3, the optimization process always
converges much faster than in Step 1 and Step 2. This is due to the fact that
there are fewer input variables in Step 3, and fewer constraints—only the

input variable values are required to be positive.
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6.4 Accuracy

To demonstrate that accurate results can be obtained from the
optimization method, we use the results of Example 3. Table 6.4.1 lists the given
frequency response and the computed frequency response of z, in Step 3.
From Table 6.4.1, we can see that the given frequency response has seven
digits of precision and the computed frequency response also has an accuracy
up to 7 digits. Accuracy of more than 15 digits is also feasible if the input
precision is 15 digits. The result of step 2 also has an accuracy similar to that
of Step 3.

Table 6.4.2 displays a frequency response of the impedance function z,
which is obtained by applying an optimization process to the group delay in
Step 1. The given group delay data are shown in Table 6.4.3. From this table, it
can be seen that the given group delay data have only two to three digi‘ts of
precision. Comparing the frequency response computed by using the group
delay with the given one, we see that the calculated frequency response of z,
is accurate up to 3 digits under the condition of low precision given group

delay data.

Here only the results for z,, are presented, however, the results for z,

and z,, are very similar to that for z,. Moreover, the results of the other

examples also have similar accuracy.
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Table 6.4.1

Freq(Hz)

1.8e+1
3.6e+1
S.4e+l
7.2e+1
9e+1
1.08e+2
1.26e+2
1.44e+2
1.62e+2
1.8e+2
1.98e+2
2.16e+2
2.34e+2
2.52e+2
2.7e+2
2.88e+2
3.06e+2
3.24e+2
3.42e+2
3.6e+2
3.78e+2
3.96e+2
4.14e+2
4.32e+2
4.5e+2
4.68e+2
4.86e+2
5.04e+2
5.22e+2
S5.4e+2
5.58e+2
5.76e+2
5.94e+2

given z12.re

1.709196e+2
2.460213e+2
2.729728e+2
2.76909%0e+2
2.695834e+2
2.561071e+2
2.397512e+2
2.237589%+2
2.11840%e+2
2.071805e+2
2.088382e+2
2.076395e+2
1.935698e+2
1.723661e+2
1.584107e+2
1.577667e+2
1.684207e+2
1.861721e+2
2.074215e+2
2.29713%e+2
2.515631e+2
2.721607e+2
2911312e+2
3.083587e+2
3.238739%e+2
3.377832e+2
3.502265e+2
3.613536e+2
3.713104e+2
3.802326e+2
3.882430e+2
3.954507e+2
4.019518e+2

given z12.im computed z12.re

1.015658e+2
8.832054e+1
5.636776e+1
3.041876e+1
1.248524e+1
2.429570e+1
3.210150e-1
6.065860e+0
1.831203e+1
3.294295e+1
4.281742e+1
4.365522e+1
4.439291e+1
5.926387e+1
8.852718e+1
1.227015e+2
1.541626e+2
1.796242e+2
1.985399e+2
2.115835e+2
2.198152e+2
2.243006e+2
2.259655e+2
2.255588e+2
2.236633e+2
2.207217e+2
2.170650e+2
2.129381e+2
2.085208e+2
2.039440e+2
1.993025e+2
1.946642e+2
1.900771e+2
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1.70919576e+2
2.46021317e+2
2.72972841e+2
2.76908968e+2
2.69583365e+2
2.5610708e+2
2.39751154e+2
2.2375885%+2
2.11840927e+2
2.07180504e+2
2.0883818e+2
2.07639481e+2
1.93569842¢+2
1.72366088e+2
1.58410664e+2
1.57766647e+2
1.68420687e+2
1.86172108e+2
2.07421523e+2
2.29713868e+2
2.51563078e+2
2.72160677e+2
29113115e+2
3.08358703e+2
3.23873905e+2
3.37783156e+2
3.50226535¢e+2
3.61353633e+2
3.71310405e+2
3.80232595e+2
3.88242975e+2
3.95450706e+2
4.,01951841e+2

computed z12.im

1.0156581e+2
8.83205402e+1
5.63677573e+1
3.04187645e+1
1.24852393e+1
2.42956936e+0
3.2101497e-1
6.06585865e+0
1.83120277e+1
3.2942945e+1
4.28174178e+1
4.36552238e+1
4.43929048e+1
5.92638594e+1
8.85271758e+1
1.22701453e+2
1.54162607e+2
1.79624172e+2
1.98539848e+2
2.11583502e+2
2.19815165e+2
2.2430064e+2
2.25965487e+2
2.2555879%+2
2.23663326e+2
20721724e+2
2.17065008e+2
2.1293811e+2
2.08520786e+2
2.03944019%+2
1.99302534e+2
1.94664213e+2
1.90077117e+2



Table 6.4.2

Freq(Hz)

Oe+0
1.8e+1
3.6e+1
5.4e+1
7.2e+1
9e+1
1.08e+2
1.26e+2
1.44e+2
1.62e+2
1.8e+2
1.98e+2
2.16e+2
2.34e+2
2.52e+2
2.7e+2
2.88e+2
3.06e+2
3.24e+2
342e+2
3.6e+2
3.78e+2
3.96e+2
4.14e+2
4.32e+2
4.5e+2
4.68e+2
4.86e+2
5.04e+2
5.22e+2
S5.4e+2
5.58e+2
5.76e+2
5.94e+2

given z12.re

9.081813e+1
1.709196e+2
2460213e+2
2.729728e+2
2.769090e+2
2.695834e+2
2.561071e+2
2.397512e+2
223758%+2
2.11840%+2
2.071805e+2
2088382e+2
2.076395e+2
1.935698e+2
1.723661e+2
1.584107e+2
1.577667e+2
1.684207e+2
1.861721e+2
2.07421 5e+2
2.29713%+2
2.515631e+2
2.721607e+2
2.911312e+2
3.083587e+2
323873%+2
3377832e+2
3.502265e+2
3.613536e+2
3.713104e+2
3.802326e+2
3.882430e+2
3.954507e+2
4019518e+2

given z12.im

Oe+0
1.015658e+2
8.832054e+1
5.636776e+1
3.041876e+1
1.248524e+1
2429570e+0
3.210201e-1
©.065860e+0
1.831203e+1
3.294295e+1
4.281742e+1
4.365522e+1
4439291e+1
5926387e+1
8.852718e+1
1.227015e+2
1.541626e+2
1.796242e+2
1.98539%+2
2.115835e+2
2.198152e+2
2.243006e+2
2259655e+2
2.255588e+2
2.236633e+2
2.207217e+2
2.170635e+2
2.129381e+2
2.085208¢e+2
2039440e+2
1.993025e+2
1.946642¢e+2
1.900771e+2
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9.1188137e+1
1.7172346e+2
2.4722774e+2
2.741689%4e+2
2.7785875e+2
2.7019837e+2
2.5642093e+2
2.3991042e+2
2.239781%+2
2.1227304e+2
20773311e+2
20092283e+2
2.0792088e+2
1.940562%+2
1.7288352e+2
1.5881017e+2
1.5819801e+2
1.6899048e+2
1.8684485e+2
2081007e+2
2.3031235e+2
2.5202825e+2
2.724731%+2
2.91295e+2
3.0839126e+2
3.2379845e+2
3.376241%e+2
3.5000715e+2
3.6109424e+2
3.7102833e+2
3.7994213e+2
3.879556e+2
3.951755%+2
4.0169583e+2

computed z12.re computed z12.im

-1.4169597e-18

1.0196084e+2
8.840666%+1
5.6029485e+1
2.9797526e+1
1.1779%71le+1
1.8376311e+0
3.2309120e-1
5.9866601e+0
1.8315771e+1
3.2790392e+1
4.2548098e+1
4.3584545%e+1
4.4401177e+1
5.910770%+1
8.8382971e+1
1.2266932e+2
1.5413545e+2
1.7947855e+2
1.9822807e+2
2.1112441e+2
2.19259%+2
2.2370634e+2
225381 7e+2
2.2502283e+2
2.232002%e+2
2.203465e+2
2.1678468e+2
2.1275421e+2
2.0843111e+2
2.039%44e+2
1.9938621e+2
1.9482496e+2
1.2030808e+2



Table 6.4.3

Freq(Hz)

Qe+0
6e+0
1.2e+1
1.8e+1
2.4e+1
3e+1
3.6e+1
4.2e+1
4.8e+1
S.de+1
e+l
6.6e+1
7.2e+1
7.8e+1
8.de+1
9e+1
9.6e+1
1.02e+2
1.08e+2
1.1de+2
1.2e+2
1.26e+2
1.32e+2
1.38e+2
1.44e+2
1.5e+2
1.56e+2
1.62e+2
1.68e+2
1.74e+2
1.8e+2
1.86e+2
1.92e+2
1.98e+2

Given group delay of z;,

Delay

-1.559e-2
-6.76e-3
-3.7e-4
1.45e-3
1.8e-3
1.71e-3
1.52e-3
1.33e-3
1.15e-3
1.01e-3
8.8e-4
7.8e-4
6.8e-4
6e-4
5.2e-4
4.4e-4
3.6e-4
2.9e-4
2.1e-4
1.2e-4
3e-5
-7e-5
-1.7e-4
-2.8e-4
-3.9e-4
-4.9e-4
-5.7e-4
-6.3e-4
-6.5e-4
-6.3e-4
-5.7e-4
-4.6e-4
-3.3e-4
-1.9e-4

Freq(Hz)

2.04e+2
2.1e+2
2.16e+2
2.22e+2
2.28e+2
2.34de+2
2.4e+2
2.46e+2
2.52e+2
2.58e+2
2.64e+2
2.7e+2
2.76e+2
2.82e+2
2.88e+2
2.9de+2
3e+2
3.00e+2
3.12e+2
3.18e+2
3.24de+2
3.3e+2
3.36e+2
3.42e+2
3.48e+2
3.5de+2
3.6e+2
3.66e+2
3.72e+2
3.78e+2
3.84e+2
3.9e+2
3.96e+2
4,02e+2
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Delay

-7e-5
le-5
2e-5

-6e-5

-2.2e-4

-4,7e-4

-7.8e-4

-1.1e-3

-1.38e-3

-1.57e-3

-1.64e-3

-1.6e-3

-1.45e-3

-1.25e-3

-1.02e-3

-8e-4

-6e-4

-4.3e-4

-2.9e-4

-1.7e-4

-7e-5
le-5

Freq(Hz)

4.08e+2
4.14e+2
4.2e+2
4.26e+2
4.32e+2
4.38e+2
4.44e+2
4.5e+2
4.56e+2
4.62e+2
4.68e+2
4.74e+2
4.8e+2
4.86e+2
4.92e+2
4,98e+2
5.0d4e+2
5.1e+2
S5.16e+2
5.22e+2
5.28e+2
5.34e+2
5.4e+2
5.46e+2
5.52e+2
5.58e+2
S.64e+2
5.7e+2
5.76e+2
5.82e+2
5.88e+2
5.94e+2
be+2



Chapter 7
SUMMARY AND CONCLUSIONS

In this thesis a new method for obtaining an equivalent two-port
network for the modeling of an ac power system has been developed. This new
method is called the three-step-approach optimization method and contains
three parts—three steps. The procedure for this method is as follows:

Step 1: The delay curve is calculated from the frequency response data
for the real and imaginary parts of an impedance function. Next the locations
of poles and zeros are estimated from this curve. Then these estimated poles
and zeros are used as a starting point for an optimization that determines if
additional poles and zeros will improve the fit of the delay curve. In this
optimization the target function is the delay and the resulting zeros and poles
will be used as the starting point for the second optimization. Finally, the
second optimization process is carried out to determine the constant factor, and
the final position of the zeros and poles of the impedance function. The
procedures for gz, z;, and z,, are essentially the same.

Step 2: The characteristics of the impedance functions gz, z, and z,
found in Step 1 are analyzed and the main network structure is determined
accordingly. Then the micro structures and elemental impedance functions
are determined from the main network structure and the impedance functions
Zyys Zpp and z.

Step 3: The elemental circuits and the element values are determined
from the micro strﬁcture and the elemental impedance functions found in

Step 2, by using optimization.

174



The multiple-step strategy, the modified pattern search optimization
technique and elemental circuits with good move ability are the basis of the
developed method. The multiple-step strategy divides the whole modeling
problem into small parts which are much easier to solve, thereby simplifying
the solution of the overall problem. The modified pattern search method
proved to be effective for the problems considered in this thesis. It was able to
find the optimal value in each case. The circuits with good move ability
presented in Chapter 6 also play an important role in making the optimization
process in Step 3 successful.

The group delay is very effective for finding the starting point of the
optimization. When an optimization is applied to the group delay not only a
starting point but also the zeros and poles of the impedance function can be
determined, moreover it speeds up the optimization for the frequency
response in Step 1 more than 10 times. Different network structures such as T,
T with a transformer, II and ladder two-port networks are studied for Step 2.
Techniques to make the optimizations more efficient for IT and ladder two-port
networks are developed. Computer programs that apply the three-step
approach for different network structures are developed and implemented in
PASCAL. These programs are simple yet effective.

Data for an ac power system and data for three other examples have
been used to demonstrate the versatility and power of the three-step approach

method as a useful tool to obtain equivalent two-port networks.
Suggestions for further work:

1. In the above studies, the three-step-approach optimization method

used the modified pattern search optimization technique and gave very good
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results. However, the three-step-approach optimization method could also use
other direct search and non direct search optimization techniques that may
be even more effective. Since digital computers were developed and tedious
computations can be carried out easily, different optimization methods have
been developed. Since the seventies, many computer programs that implement
optimization methods have been available. It would be interesting to see which
optimization method is the most effective one for the modeling of ac power
systems using the three-step-approach method.

2. The programs of step 2 could be modified to include additional
network structures.

3. Potentially the three-step-approach method could be applied to multi-

port equivalent networks for modeling ac power systems.
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APPENDIX A

COMPUTER PROGRAM FOR THE THREE-
STEP APPROACH OPTIMIZATION METHOD

The following computer program contains three main parts:

1. The function ‘absv’ carries out the calculation of the values of
objective function. The PR condition is also checked in this function. If the PR
condition is violated, then a huge value is given to the objective function. The
functon ‘absv’ has to be changed for different impedance functions in the
different steps. The function ‘absv’ shown here is for finding the impedance
function z, in Step 2, Example 3.

2. The procedure ‘search’ conducts the modified pattern search
optimization. The parameters that need to be altered are the step size, the step
size reduction and the iteration number. The normal step size ranges from 1%
to 10% and the step size reduction factor ranges from 0.8 to 0.95. The iteration
numbers are usually from 80 to 150. These three parameters are controlled in
the main program.

3. The main program controls the subprograms. For overcoming the
local minimum, the techniques of continually varying the step size and
changing the starting points are implemented in the main program. The
technique of continually varying the step size is always executed. However,
the technique of changing the starting points is executed only when the
technique of contixiually varying the step size alone can no long provide a

satisfactory result.
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Beside these three main parts, there are several procedures for
computing the values of the elemental components from the elemental

impedance functions.

{ computer program-——}
program stepZ;
uses
Types, Complex, Arithmetic, Polynomial, Rational;
var

i, j, k, n, o, j1, k1, oo2: integer;
xx2, dxx, xx, v1, y2, DX, Q; EXTENDEDARRAY;
11, d1, d2, ab, ac, aal, 13,12, 02, F, b3, L, m, A, aa, Al, a3, a4, B, Bl, B2, p, x1, x2, X3,
d: EXTENDED;
va, d11, x4, x5, x6, x11: EXTENDED;
X: ENTENDEDTABLEPtr;
{s1, s2: complex;}
pl, P11: POLYNOMIAL,
z11, z12, z1, 22, z3, z4: rational;
PRINT: boolean;
PRINT2: boolean;
en, PR: boolean;
label
1;
function NoOddOrderPosZeros (var p: polynomial): boolean;
var
x: extended;
i, k: integer;
begin
NoOddOrderPosZeros := TRUE;
X :=-1;
k:=0;
fori:=1 to p.degdo
begin
if (p.coef[i].Re > 0) and (p.coef[i].Im = O) then
begin
if not REqualityTol(p.coef[i].Re, x, 1e-16) then
begin
k:=1;
NoOddOrderPosZeros := FALSE;
X := p.coef[i].Re
end
else
begin
k:=(k+ 1)mod 2;
if k = O then
NoOddOrderPosZeros := TRUE
else
NoQddOrderPosZeros := FALSE;
end;
end; {end if}
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end; {end for}
end;
function Rational_pr (var r: rational): boolean;
var
p, q: polynomial;
i: integer;
Rationalispr: boolean;
begin
r := PolysToRational(r.num, r.den); {makes den monic}
Rationalispr := TRUE;
if (r.num.coef[0].Re < 0) or (abs(r.num.deg - r.den.deg) > 1) then
Rationalispr := FALSE;
if Rationalispr then
begin
p := AddPoly(r.num, r.den);
{WritePolynomial2(p, 'r.num + r.den'); Writes polynomial to Text window }
fori:= 1 to p.deg do
if (p.coefli].Re > 0) then
Rationalispr := FALSE;
end; -
if Rationalispr then
begin
q := HurwitzConjPoly(r.den);
p := MulPoly(r.num, q);
{WritePolynomial2(p, 'nd*');  Writes polynomial to Text window }
p := EvenPartPoly(p);
{WritePolynomial2(p, 'EvenPartPoly(p)'); =~ Writes polynomial to Text window }
Rationalispr := NoOddOrderPosZeros(p); {pr if there are no odd order
positive zerost
if (p.coef[0].Re < 0) then
Rationalispr := FALSE;
end;
Rational_pr := Rationalispr;
end; {end functiont
procedure computinga?2 (var x: extendedarray; z: rational);
var
ccl, cco: complex;
cx12, cx, sx, czl1, cz12: complexarray;
i, ], k, j1, k1, n: integer;
y: realarray;
a, a0, al, a2, b0, bl: extended;
z1, zia, z2: rational;

begin
CCl.RE:=1;
CCl.IM =0
cco.re := 0;
cco.im := O

writerational3(z, 'z');
a0 := z.num.coef[0].re;
al := z.num.coef[1}.re;

b0 := z.den.coef[0].re;
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bl := z.den.coef[1].re;

a:=a0*al *bl;
writeln('a', a);
y[1] := (sqr(al) * al) / ((sqr(al) * b0 + sqr(a0) - a0 * al * bl));

y[2] :=sqgr(al) / (al * bl - a0);
v[3]:=1/al;
y[4] := a0 * sqr(al) / (sqr(al) * bO - a0 * al * bl + sqr(a0));

fori:=1to4do
begin
x[i] = ylil;
writeln("x[", i, "J:=", y[il : 24, }");
end;
a:=sqr(al) * b0 + sqr(a0) - a0 * al * bl;
writeln('condtionl’, a);
a:=al *bl-a0;
writeln('condtion2', a);
end;

procedure computingzi2 (var zi: rational; x: EXTENDEDARRAY);
{Frrrrtg— (x15+x4)//(1/x38)//x2 F¥*¥*}

var
ccl, C2, cco, zz, cl, zla, z1b, z2a, z2b, z2c¢, z3a, z3b, z4a, z4b, z4c: complex;
cx12, cx, sx, czl1, cz12: complexarray;
i, 3, k, j1, k1, n: integer;
y1,y2: realarray;

{x: extendedarray;}
z3, z1, zia, z2: rational;
czlla, c3,C11, C11B, C12, C12A, C12B: complex;

begin
CCl.RE:=1;
CC1.IM := O;
cco.re := 0
cco.im := 0;

fori:==1to4do
begin
sx[i].re := x[il;
fwriteln(' x ', x[i]);}
sx{i}.im := 0.0;
end;

Z3.NUM.REP := SUMREP;
Z3.DEN.REP := SUMREP;
z3.num.deg := 1;
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z3.num.coef[0] := cmul(sx[2], sx[4]);
z3.num.coef[1] := cmul(sx[1], sx[2]);
z3.den.deg := 2;

z3.den.coef[0] := cadd(sx[2], sx[4]);

z3.den.coef[1] := cmul(sx[2], SX[3]);
z3.den.coef[1] := cmul(z3.den.coef[1], SX[4]);
z3.den.coef[1] := cadd(z3.den.coef[1], sx[1]);
z3.den.coef[2] = cmul(sx[1], SX[2]);
z3.den.coef[2] := cmul(z3.den.coef[2], SX[3]);
z3.num := sumreptoprodrep(z3.num);
z3.den := sumreptoprodrep(z3.den);
C1 := Z3.NUM.COEF[O};
C2 := Z3.DEN.COEF[O0];
Z3.NUM.COEF[0] := CDIV(C1, C2);
Z3.DEN.COEF[0] := CC1;

{writerational3(z3, 'z3");}

Zi = z3;
end;

function absv (var xx: EXTENDEDARRAY; z11, z12: rational): EXTENDED;
var

npr, Rational_is_pr: boolean;

cz11bn, cz11bd, c22n, clln, cl1d, C2, ¢3, sqpll, cco, zz, cl, zla, z1b, 223, z2b,
z2c, z3a, z3b, z4a, z4b, z4c: complex;

czlb, czlbn, czlbd, czllan, czllad, czlla, c22, c4, c12n, cl12d, sqpl2, czln:
complex;

czld, cz2, cz2n, cz2d, cz3n, cz3d, cz4, cz4n, cz4d, cc, cla, clb, c2a, c2b, c3a, c3b,
ccl: complex;

cz22bn, cz22bd, cz22a, cz22an, cz22ad, C11, C11A, C11B, C12, C12A, C12B:
complex;

czl1b, cz11, czl, pl1, cy1112, cx22, cx1: complexarray;

cx11b, cx11, cz3, cx, cx2, cx3, cx4: complexarray;

i, i, k, j1, k1, n: integer,

vi, v2,v3, v4, v3, v6, yal, ya2, al, a2, a3, Y11, Y11A, Y11B, Y12, Y12A, Y12B, a,
yz11: extended;
b, y22a, yzlla, yz12, yz12a, rel, y, all, al2, acl, ac2: extended,;

222,21, z2: rational;
nl, n11: POLYNOMIAL;

label
11;

foe--ee-= =-====-==--z11----hydro}
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cco.re := Q;
cco.im := 0;
czl lb[l].re
cz11b[2].re:
cz11b[3].re:
czl1lb[4]l.re:
cz11b[5].re:
cz11b[6].re:
cz1l1b[7].re:
cz11b[8].re:
cz11b[9].re:
cz11b[10].re:
cz11b{l1l].re:
cz11b{12].re:
czl1b[13].re:
czl1b[14].re:
cz11b[15].re:
czl1lb[l6].re:
cz11b{17].re:
cz11b[18].re:
cz11b[19].re:
cz11b[20].re:
czl1b[21].re:

cz11b[22].re:
cz11b{23].re:
cz1l1b{24}.re:

cz11b[25].re:
cz11b[26].re:
cz11b[27].re:
cz11b[28].re:
cz11b[29].re:
cz11b[30].re:
cz11b[31].re:
cz11b{32].re:

WU OWW W W W

4,
4.
5.
5.
6.
6.
7.
8.
9.

30303030303030303e-1;
60316369227122845e-1;
17125082669379499%-1;
71670646205569614e-1;
23131247778895924e-1;
7853778372714033%-1;
45154761552867819%e-1;
28077270479268029%e-1;
24904918718386051e-1;

1.01507975872409643e+0;
1.05808937540621121e+0;
1.02777541897702056e+0;
9.46308829743770162e-1;
8.5517536219450379%6e-1;
7.77768170139416451e-1;
7.18778118566379592e-1,
6.75366542862004491e-1;
6.43465710357306503e-1,;
6.19710827954512977e-1;
6.01681347442958323e-1;
5.87711973392648118e-1;

5.76667644771962014e-1,;

5.6777009174468637 5e-1,
5.60478736556360374e-1;

5.54412010958210416e-1;

5. 492958771800359666—1;
5.44930040747530256e-1;
5.41165566883715165e-1;
5.3788986663639489%4e-1;
5.35016485510068811e-1,;
5.32478056853598015e-1;
5.30221367265326227e-1,

cz11b[33].re := 5.28203850346569042e-1;
cz11b[34].re := 5.26391059618974276e-1;

cz11b[l].im:
cz11b[2].im :
cz11b[3lim:
cz11b[4].im:
cz11b[5].im :
cz11b(6].im :
cz11b[7].im:
cz11b{8l.im:
cz11b[9).im :
cz11b[10}.im :

cz11b{11}.im:
cz11bf[12].im :
cz11bf13].im:
cz11b{14].im :
cz11b[15].im:
cz11b[16].im:
cz11b[17}].im :
cz11b[18].im :

WUWWWWWw W

LI O T T TR T

42187642187642188e-20;
47329448885904056e-2;

81781226417626795e-1;
03751913203556902e-1;

1.
9.
1.50739625820787770e-1,
1.
2.

21751453808594722¢-1,

29090367387024078e-1;
92254013718027787e-1,
1.04512050549451424e-1;
-3.01388330473715258e-2;
-1.6780780315449703%e-1,
-2.61716162296737500e-1;
-3.0390250070675405%e-1;
-3.11567194751505277e-1;
-3.02127186424691031e-1;
-2.86005180124014475e-1;
-2.6827056575713373%e-1;
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cz11b[19).im :
¢cz11b[20).im :
cz11b[21].im :
cz11b[22].im :
cz11b{23].im:
cz11b[24].im :
cz11b[25].im:
cz11b[26].im :
cz11b[27).im :
cz11b{28].im :
cz11b{29].im :
cz11b{30].im :
cz11b[31].im:
cz11b{32].im :
cz11b[33].im :
cz11b[34].im :

npr := FALSE;
k= 34;

fori:=1tokdo

begin

| | ([ T (O I | 1 A | IO T A |

-2.51101066434368383e-1;
-2.35301571245223627e-1;
-2.21068299358505941e-1;
-2.08345661865898877e-1;
-1.96987012589331061e-1;
-1.86824651622647027e-1;
-1.77698520757974946e-1;
-1.69466373684232983e-1;
-1.62005876124889523e-1;
-1.55213415641128482e-1;
-1.49001778586514544e-1;
-1.43297636399742580e-1;
-1.38039222031541169%¢-1;
-1.33174322112160330e-1;
-1.28658599021572157e-1;
-1.24454212635047515e-1;

pll[ilim:=18* (i-1)* 2 * 3.1415926;
{pl1(ilim:=6* (i-1)* 2* 3.1415926;}

plllilre:=0

4

{writeln(p11.coef[i].im);}

end;

{ z1

}

zl.num.rep := prodrep;
zl.den.rep := prodrep;

zl.den.coef[O]l.re := 1;
zl.den.coef[0}.im := O;
zl.num.deg := 1;
zl.den.deg := 1;

zl.num.coef[0].re := 0.5;
z1.num.coef[0].im := O;
zl.num.coef[1].re := xx[1];
zl.num.coef[1].im := O;

zl.den.coef[1].re :=

-3.0e+2;

zl.den.coef[1].im := O;

{writerational3(z1, 'z1');}

if PRINT then

begin
Rational_is_pr := Rational_pr(z1);
if Rational_is_pr then
writeln('zl is pr')
else
begin

writeln('z1 is NOT pr');

end;
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end;

z11.num.rep := prodrep;
z11.den.rep := prodrep;

z11.den.coef[O].re := 1;
z11.den.coef[0].im := O;
z11l.num.deg := 4;
z11l.den.deg = 5;

z11.num.coef[O].re := xx[2];
z11.num.coef[0].im := O;

z11l.num.coef[1].re := xx[3];
z11.num.coef{1}.im := O;
z11.num.coef[2].re := xx[4];
z11.num.coef[2].im := O;
z11.num.coef[3].re := xx{5];
z11.num.coef[3].im = xx[6];
z11.num.coef[4].re := xx[S];
z11.num.coef[4].im = -xx[6];

z11.den.coef[1].re := -4.2373606985503662710e+2;
z11.den.coef[1].im := 1.1364017233713318040e+3;
z11.den.coef[2].re := -4.23736069855036627 10e+2;
z11.den.coef[2].im := -1.1364017233713318040e+3;
z11.den.coef[3].re := -1.4967455632335248200e+3;
z11.den.coef[3].im := 1.0688839603868126390e+3;
z11.den.coef[4].re := -1.4967455632335248200e+3;
z11.den.coef[4].im := -1.0688839603868126390e+3;
z11.den.coef[5].re := -1.8403673382287710530e+2;
z11.den.coef[5].im := O;

if print2 then

begin
writerational3(z11, 'z11-1");
writerational3(z1, 'z1');

-z22 = addrational(z11, z1);

writerational3(z22, 'z11-2");

z22.num := mulpoly(zl1l.num, z1.den);

nl := mulpoly(zl.num, z11.den);

z22.num := addpoly(z22.num, nl);

z22.den := mulpoly(zl1.den, z1.den);

722.NUM.COEF|[0] := CDIV(z22.num.coef[0], Z22.DEN.COEF[0]);
Z22.DEN.COEF[0] := CC1;

writerational3(z22, 'z11-3");
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end;

if PR then
begin

Rational_is_pr := Rational_pr(z11);
if Rational_is_pr then
{writeln('z11 is pr')}
else
begin
writeln('z11 is NOT pr');
en := true;
goto 11;
end;
end;

forl:=1tokdo

begin
{ czl }
czln = ccl;
forj:=1toldo
begin

cl := csub(p11[i], z1.num.coef[j]);
czln := cmul(czln, cl);
fwriteln('czln', czln.re : 20, czln.im : 20);}
end;
czln = cmul(z1l.num.coef[0], czln);

{writeln('czln’, czln.re: 20, czln.im: 20);}

czld :=ccl;
forj:=1toldo
begin

czld := cmul(czld, csub(p11[i], z1.den.coeffj]));
fwriteln('cz1d', czld.re : 20, czld.im : 20);}

end;
fcz1d := cmul(zl.den.coef[0], cz1d);}
fwriteln('cz1d', czld.re : 25, czld.im : 25}

CX1[]] := cdiv(czln, cz1d);
{writeln(i, 'cz1--1 ', czl.re: 16, czl.im: 16);}

czl1l— }
¢zl1lbn = ccl;
forj:=1to4do
begin
cl := csub(p11[il, z11.num.coef[j]);
cz11bn := cmul(czl1bn, cl);
fwriteln('czl 11_3n', czllbn.re: 20, cz11bn.im : 20);}
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end;
cz11bn := cmul(z11.num.coef[0}, cz11bn);

fwriteln('czl1bn', czllbn.re : 20, cz11lbn.im : 20);}

cz11bd := ccl;
forj:=1to35do
begin

cz11bd := cmul(cz11bd, csub(p11[i], z11.den.coeffj]));
fwriteln('cz11bd’, czl1bd.re: 20, cz11bd.im : 20);}

NJ

end;
fwriteln('cz11bd’, czl11bd.re: 20, cz11bd.im : 20);}

cx11[i] == cdiv(cz11bn, cz11bd);
fwriteln('cz11b ', czllb.re : 20, cz11b.im : 20);}
czl1lb }

cx11b[i] = cadd(cx1[il, ex11[i]);
{writeln('cz11b ', czl1lb.re : 20, cz11b.im : 20);}

cx[i] := csub(cz11bli], cx11b{i]);
end;

if print then

begin
z1 }

fori:=1to 34do

begin

writeln('cz1[', i, ].re:=', cx1[i].re: 25,

end;

fori:=1to 34 do

begin

writeln('cz1[', i, '].im:=', cx1[i].im : 25, ;");
end;

{ czll }
fori:=1to 34do
begin
writeln('cz11[', i, 'l.re:=", cx11[il.re : 25, }");
end;
fori:=1to34do
begin
writeln('cz11[, i, "].im:=", cx11[i}.im : 25,
end;
{ czl1lb 1
fori:=1to 34do
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begin

writeln('cz11b[', i, '].re:=", cx11blil.re : 25, ;");
end;
fori:=1to 34do

begin

writeln('cz11b[', i, 'J.im:=', cx11b[il.im : 25, ';}");
end;

end;

YAL :=0;

YA2 := 0;

fori:=2to34do

begin
fwriteln('cx=", i, "= ', cx[i].re, cx[il.im);}
{YA1 := YAl + ABS(CX[I].RE);}

{YA2 := YA2 + ABS(CX[I].IM);}
YAL := YAl + sqr(CX[I].RE);

YA2 := YA2 + sqr(CX[I].IM);
end;

YAL := yal + YAZ;

11:
if npr then
begin
a:=les;
absv := a;
{writeln('a', a: 16);}
end
else
begin
ABSV := YAL;

fwriteln('b’, yal : 16);}
end,
npr := FALSE;

end;

procedure search (var K1, n: integer; a, d11: EXTENDED; x: EnTENDEDtableptr);
var

i, j, k, 0, j1, 0oo2: integer;

xx2, dxx, xx, y1, y2, DX, Q; EXTENDEDARRAY;

k2,13, 12, 02, F, b3, bb, L, m, aa, Al, a3, a4, B, B1, B2, p, x1, X2, x3, d: EXTENDED;
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dd, ya, x4, x5, x6, x11: EXTENDED;
{X: EnTENDEDTABLEPtr;}
{s1, s2: complex;}

pl, P11: POLYNOMIAL;

z11,z12, z1, z2, z3, z4: rational;

PRINT: boolean;

PRINT?Z: boolean;

PR: boolean;

label

2,4,5 7,9, 10;
{SEARCH 1 }
begin

begin

k:=0;
1:=0.85;

{d1l1 := 1e-8;}
{WRITELN('d11’, d11);}
fori:=1tondo
begin
xx[i] := x/\([i, OJ;
fWRITELN(' X [1,0], 1, '1= ", X7[4, 0] : 10 : 8);}
dx[i] :=d11
{WRITELN('dx[i]", dx[il);}
end;
end;
begin
2:
begin
{writeln('sigle search ');}
K:=K+1;
{writeln(" k1= k1, "k =", k);}
k2 := le-11;
dd := dx{1];
if K> k1 then
begin
XA[0, 0] := g
goto 10;
end;
if dd < k2 then
begin
XAN[0, 0] := a;
goto 10;
end;

Al = A;

fori:=1tondo
begin
qfi] := x7[i, 0
end;

end;

fori:=1tondo

188



begin

XA[L, 1] := XA[L, 0] + DX[I] * xA[i, O];
{X[1, 1] := X[1, 0] + DX[I};}

Q[I] := XA[I, 1];

xx[i] := q[i];

{writeln('xx[j1', j, '=', xx[j] : 10 : 8);}
{Writeln("x/\[i,1]');}

SWRITELN(' X [1,1]%, 4, '1= ', XA[i, 1] : 25);}
bl := absv(xx, z12, z11);

ifi=1 then
begin

WRITELN('dx', dx[1], k=", k);
end;

if B1 < Al then
begin
Al := Bl;

fWRITELN(* +dx Bi1="1i,'’', Bl :12,'dx, dx[1], k=", k);}
fcomputingz11z12(xx, z11, z12);}
forj:=1tondo
begin
XXZD] = XA[j, 1]:
fwriteln("+DX xx2', j, "', xx2[j] : 30);}
end;
end
else

begin

XA[L 1] = XA[L 0] - DX[I] * x7[, O;
{X[1, 1] := X[1, O] - DX[1};}

Q1] := XA[I, 1}
xx[i] := q[i];

{WRITELN('DXIi]', i,
{WRITELN('X[i,0]', i, '

' DX[I]: 20 : 18);}
" X[I,0]:10: 8);}

i

§WRITELN(' X [4,1]%, 1, '1= ', X[I, 1]: 10 : 8);}
bl := absv(xx, z11, z12);

{WRITELN('SEARCHli -dx Bl='1i, "', B1:20);}
if B1 < Al then
begin
Al := Bl;
{WRITELN(" -dx

Bl=', i, -, B1: 30);}
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{computingz11z12(xx, z11, z12);}
forj:=1tondo
begin
xx2[j] := x/[, 11;

fwriteln(-DX xx2', j, '=', xx2[j] : 30);}

end;

end
else
begin
xMMi, 1] := xMM[4, O];
xx[i] := x4, 1],
end;
{WRITELN("Xx[i]', i, Xx[i] : 15);}

end;
end;
fori:=1tondo
begin
forj:=0to1do
begin
{Writeln('.‘([i,j]', i, j’ '= ! X[i) J] :10: 6)}

end;
end;
{  WRITELN('A=", A);}
if al <a then
begin
a:=al;
{if i > 100 then}
{begin}
WRITELN('A=", A : 12);
{end;}
goto 5;
end
else
begin
§ WRITELN('A=", A);}
end;
end;
fwriteln("X[1,0]', X[1, 01);}
fwriteln('step2');}
{DX<D ?*********'k*************}
4:
fwriteln("
begin

step4, reduce dx—");}

{DX3 := DX11 + DX22 + dx33 + dx44 + dx55 + dx66;}
§TELN('1-—DX4=', DX4);}

{WRITELN('D=', D);}

{if DX4 < D then}

{goto 10}
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{else}
begin
{WRITELN('l=",1: 18 : 16);}
forj:=1tondo
begin
dx[j] :=dxl1 * L
if dx[j] < 1.0e-16 then
fwriteln("dx[j]", dx[j1);}
end;
{DX[1] := DX[1] * L;}
{DX[2] := DX[2] * L}
forJ:=1tondo
begin
fwriteIn('dx{J]", J, '=", dx[J] : 10: 8);}
end;
fl:=1*1;}
end;
{ Writeln('—"‘—"""x[lyO]') X[]" O]);}
goto 2;
end;
{writeln('step4');}

{ PATTEN SEARC }
5 .
");3

fwriteln("  ---patten search

begin
forj:=1tondo
begin
XA[, 2] = x7[j, 11* 2 - xA[j, O

xxlj] == xAfj, 21
fwriteln('x[j,2]", j, X0, 2] : 28);}

end;
b2 := absv(xx, z11, z12);

{WRITHn(' PA -B2=', B2: 30);}
{if b2 > a then}
{begin}
{forj:=1 to n do}
{begin}
{x, 0] := x{j, 11;3
{goto 2}
{end;}
{end;}
if b2 > athen
begin
p :=0.95;
i=0
while B2> A do
9:
begin
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forj:=1tondo
begin
XA[G, 21 := xAf, 1] + p * (D, 11 - xAf, O);

end;

forj:=1tondo

begin

xx[j] == x7[j, 2);
fwriteln('xx=", xx[j] : 25)}

end;

b2 := absv(xx, z11, z12);

{WRITHn(' PA pforb2<a ', 'p=",p,’ B2=', B2 : 28, 'k=', k);}
fwriteln('a’, a: 40 : 36);}

if b2 <a then

goto 7;

if b2 = a then

goto 7;

*

Pp:=pP"Db;

if P < 1e-100 then
begin
writeln('b2>a");
writeln('a=",a: 28);
forj:=1tondo
begin

XA, 0] = xAf, 11

writeln(' XX[', J, 1:=", x7[, 2] : 30, 5');
end;
goto 2;
end;
fwriteln('a’, a: 40 : 36);}
fwriteln('b2', b2 : 40 : 36);}
if b2 > a then
goto 9
else
goto 7;

end;
end
else

7:

begin

forj:=1tondo .
begin
xA[j, 01 == x7[j, 21;
xx2[j] = xAl, 25
end;

if k> 100 then
begin
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forj:=1tondo
begin
fwriteln(* XX[', J, 'T:=", xA[j, 2] : 30, ");}
end;
end;
A = B2;
{if k > 100 then}
{begin}
{writeln('PS a="',a:12);}
fend;}

{WRITEIn(" patten search b2<a ', 'dx', dx[1], '-1—B2=', B2 : 15, 'k=", k);}
fwriteln('dx’, dx[1] : 28 : 24, dx[1]);}
goto 2;
end;
end;

10:

forj:=1tondo

begin

writeln("xx[ ', j, ' I:=', xA[j, 0] : 30, }");
end;

end;

{~=-mmm——————main program }
begin

{ReadpolyFromDataFile(p, 'p');}
New(X);

OpenTextWindow(15, 40, 630, 470);
DateTime;

PRINT := FALSE;

{PRINT := true;}

PRINT?2 := FALSE;
{PRINT?2 := true;}
{pr := true;}
{readrationalfromdatafile(z11, 'choose z11 ');}
freadrationalfromdatafile(z12, 'choose z12 ');}
fwriterational3(z11, 'z11");}
{writerational3(z12, 'z12");}

begin

D := 1.0E-80;

" —
=
.

1
= 0.

= 6;

.0;
9.

1

z8 0

xx[1] := 100;
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xx[2] := -100;

xx[3] := 100;

xx[4] :=-100;
xx[5] := -100;
XX[6] := -100;

fori:=1tondo
begin
writeln(* XX[', i, '|:=", xx[i] : 27, }');
{xn[i, 0] = xx[il;}
end;

A = absv(xx, z11, z12);
writeln('3  A=', A:40);
aal = q;

0:=0;

end;

fori:=1tondo
begin
y1[i] := xx{il;
fwrite("xx', i, xx[i] : 20);}
end;

foro:=0to 57 do

1:
begin

o:=0+1;

k1 :=100;

d11 :=0.001;

writeln('o=', 0);

writeln(' search 1 input aal=", aal : 20);

fori:=1tondo
begin
xA[i, 0] := y1{i];

{WRITELN(" xX [, 1, I:= ', y1[i] : 25, 5");}
WRITELN(' X [, 1, ,0l:== ', XA[1,0]: 25, %)
end; _

k := 100;

d:= le-8;

search(k, n, aal, d, x);

a = x70, 0];

writeln(' search 1 output a=', a : 25);
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if a < aal then

begin
ac :=aal;
aal := a;

writeln(' search 1 a<aal', aal : 20);

fori:=1tondo
begin
y1[i] := x7[4, O};
xx[i] := y1[i];
WRITELN(' xX [, 1, ':= ', Xx[i] : 27, ;');

end;
ab :=(ac-a) / ac;
if ab > 0.01 then

goto 1;
end;
dl := 1.01;
L1 :=0.98;
{=--————changing starting point }
forj:=1to0 10do
begin
dl :=d1 * L1;

writeln('d1=",j, ' ", dl1: 20);

begin
writeln('- change input aal=', aal : 20);
fori:=1tondo
begin
{x/[i, 0] := 0.98 * y1[i];}
XA, 0] .= y1[i] * D1;

xx[i] := x4, 0];
WRITELN(' X [, 1, ",0]:= ', XA[i, 0] : 25, ");
fWRITELN(' xX [, 1, ':= ', Xx[i] : 25, }");}

end;
end;

A :=absv(xx, z11, z12);
writeln('_ change input A=', A:15);

search(kl, n, a, d11, x);
a := x70, 0];

writeln(' - change output a=', a: 15, 'aal=', aal :

if a <aal then
begin
aal ;= a;
{writeln(' - change ', 'aal=', aal : 15);}

fori:=1tondo
begin
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y1[i] := x7[i, O;
writeln(' XX[', i, '1:=", y1[i] : 27, "}");
end;
goto 1;
end;
writeln('+ change');
d2:=2-d1l;
writeln('d2=', d2 : 15);
fori:=1tondo
begin
{xA[i, 0] := 1.02 * y1[i};}
XA[L, 0] := y1[i] * (2 - D1);

WRITELN("X [, 1, ",0}:= ', XA[4, O] : 25, %');
end;

A = absv(xx, z11, z12);
writeln('+ change input  A=', A:15);

search(kl, n, a, d11, x);
a := xM0, O},
writeln(' + change output a=', a: 15, 'aal=', aal :

if a <aal then
begin
aal :=a;
fwriteln(' + change output', 'aal=', aal : 15);}

fori:=1tondo
begin
y1{i] := x7[i, Of;
writeln(' XX[, i, ']:=", y1[i] : 27, "'");
end;
goto 1;
end;
end;
end;

end.
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APPDENDIX B

HYDRO DATA

Given z11(scaled) Frequency Response

Freq.(Hz) Real Part Imag. Part
50.00000 0.06822 0.11569
60.00000 0.09059 0.12886
70.00000 0.11571 0.13475
80.00000 0.14025 0.13114
90.00000 0.15804 0.11823
100.00000 0.16572 0.10083
110.00000 0.16133 0.08686
120.00000 0.15095 0.08155
130.00000 0.14093 0.08475
140.00000 0.13483 0.09315
150.00000 0.13328 0.10326
160.00000 0.13531 0.11261
170.00000 0.13921 0.11992
180.00000 0.14306 0.12499
190.00000 0.14527 0.12886

.200.00000 0.14523 0.13334

210.00000 0.14377 0.14031

220.00000 0.14274 0.15061

230.00000 0.14399 0.16379

240.00000 0.14864 0.17863

250.00000 0.15709 0.19387

260.00000 0.16943 0.20845

270.00000 0.18570 0.22130

280.00000 0.20580 0.23108

290.00000 0.22907 0.23617

300.00000 0.25411 0.23502

310.00000 0.27880 0.22631

320.00000 0.29993 0.20922

330.00000 0.31280 0.18433

340.00000 0.31213 0.15580

350.00000 0.29531 0.13269

360.00000 : 0.26796 0.12523

.370.00000 0.24212 0.13668

380.00000 0.22774 0.16113

390.00000 0.22762 0.18958

400.00000 0.23953 0.21533
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Given zl2(scaled) Frequency Response

Freq(Hz) Real Part Imag Part
50.000 0.052 0.069
60.000 0.071 0.075
70.000 0.093 0.076
80.000 0.116 0.068
90.000 0.135 0.050
100.000 0.143 0.026
110.000 0.140 0.003
120.000 0.130 -0.012
130.000 0.118 -0.019
140.000 0.109 -0.021
150.000 0.103 -0.020
160.000 0.101 -0.018
170.000 0.100 -0.019
180.000 0.101 -0.021
190.000 0.099 -0.025

200.000 0.096 -0.030
210.000 0.089 -0.032
220.000 0.082 -0.032
230.000 0.075 -0.028
240.000 0.071 -0.021
250.000 0.069 -0.012
260.000 0.070 -0.002
270.000 0.075 0.008
280.000 0.085 0.017
290.000 0.099 0.024
300.000 0.117 0.027
310.000 0.139 0.024
320.000 0.162 0.012
330.000 0.182 -0.010
340.000 0.193 -0.043
350.000 0.188 -0.081
360.000 0.165 -0.112
370.000 0.133 -0.128
380.000 0.101 -0.127
390.000 0.077 -0.114
400.000 0.064 -0.096
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Given z22(scaled) Frequency Response

Freq(Hz) Real Part Imag Part
50.000 0.047 0.080
60.000 0.064 0.091
70.000 0.086 0.097
80.000 0.109 0.095
90.000 0.130 0.083
100.000 0.143 0.064
110.000 0.144 0.044
120.000 0.137 0.030
130.000 0.126 0.022
140.000 0.117 0.022
150.000 0.111 0.024
160.000 0.108 0.028
170.000 0.108 0.030
180.000 0.109 0.031
190.000 0.109 0.029

200.000 0.107 0.026
210.000 0.102 0.024
220.000 0.094 0.024
230.000 0.086 0.028
240.000 0.078 0.035
250.000 0.072 0.045
260.000 0.069 0.058
270.000 0.068 0.072
280.000 0.071 0.088
290.000 0.080 0.105
300.000 0.093 0.120
310.000 0.113 0.132
320.000 0.139 0.137
330.000 0.168 0.133
340.000 0.195 0.115
350.000 0.212 0.084
360.000 0.212 0.048
370.000 0.194 0.019
380.000 0.168 0.004
390.000 0.140 0.002
400.000 0.118 0.010
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APPENDIX C

ELEMENTAL CIRCUITS AND THEIR
IMPEDANCE FUNCTIONS

1. No. Al

Ik
L}

X, X3S

=
2
XXy X38" + X8 + X,

2. No. A2

Il1/x3
11

X, %38 + Xy X,

z -
X,5,%,5° + (X, 20,%, + %)8 + Xy + X,

3. No. A3
AS AN

M

1/ xs X
o { AW

2
XXy X3 X, S~ + X, X,

z= 5 3
XXy Xy 8"+ X Xy XgS” F (Xy XXy +X,)S + X,
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4. No. A4

w

XXXy Xy 8" F Xy X5+ X3,

X, XpS” F XXy XSt XS+ Xy F X,

5. No. AS

11
lll/Jc_,s

XXX, ST (XX, Xy X3)S + XX,

2
XXy X3S  + XS+ X,

6. No. A6

2
Xy XoXaX (S~ + X X,y + Xy XaS

- 2
XX, %587 + XX, X80+ X8+ X,
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7. No. A7

xS

Bl
i1
1/xs

= x,(xy +x,)8 + X3,
2
(X2, X5 + 2,2, )8 + (X, X34 + X,)S + X,

8. No. A8
xS X,
AMA—|
|
X3 1/ x,s
_ XXy Xy Xy S” + X, (X + X,)S + XX,
X2, %87+ (Xy Xy, + X,)S + X,
9. No. A9

x,$ X,

" AN—
MA—|

X4

1/ xs

_ X%y %,8” + (XXX, + X% )S + X
X,%y5" + (X2, + X%, )5 + 1
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10. No. A10

Xs
M
xS X
X4

2
X1 XX XsS™ + X(XaX3 X, + X, )8 + X, X

= 3
(00X, + XX,05)87 +(X,20, + X005 + XaXoX, + X,)S + X3 + X

11.No. Al1
X, 5 X
—AM~ AV
- 1/ xs X5
i1
z XX Xy XsS” + Xs(XaXaXy + X))S + X, XS + XX, + XX, + X, X
X,%,08° +(Xa 2,2, + X5+ Xy + X,
12.No. A12
xls m
AM— AN~
1/x2s X3 Xs
J 1 « A A
11

,
- (XX Xy Xy + X XXX s + X1 X0 X, X5 )57 + Xo( XXX, + X,)S + X X5 + X, Xs

z z
XXX, + X 6X87 + (XXX, + X,)S + X,
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13. No. Al13

1/ xs
11
[ ]
xS % Xs
AL AWTIW—
X4

(XX X3 Xy Xy Xa Xy + X5 Xy X Xy Xs )% A XX, 8 + X, X8 + XgX + Xy Xg + X, Xs
(X%, %, + %2, %,8)) + X8 + Xy + X,

14. No. Al4
1/ x,s
x, *s
x5 X4
1]
ii
(X X0 XXy Xy Xg Xy Xs )87+ (3,25 F XX, F X Xg + Xy Xy X, X5 )S + X, X
XX X"+ XXXy + X, 8 + X,
15. No. A15
x,$
% % &
1/ x,s

(X Xy X3 X5 + Xy Xy X4 Xs )87+ (25 + Xy Xy + Xy Xg + Xo Xy Xy X )S + Xy X5 + Xa X
(X5 + %X, %,)8” + X)Xy XS + X8 + Xy
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16.No. Al6

x, 1/ xs

2
7= (XX X5 + X, 250, )8 +{XXaXs + X, X X5 + XX X, )S + Xs + X,

X, X587 +(x3%, + X,0,)5 + 1

17.No. Bl
o i
x 1/ x,s
‘.z X580 + Xx,5+ 1
X,
18. No. B2
1/ xs I
X3
i %2
. XXX ,S7 + (X, + XX X)) + Xy + X
X X,5+1
19. No. B3

xS
X3 x, ,

LAAAA

. (X, + X, XX,)S% + (XXX, + X)) + X,
=
2
X, X,S" +X,%,8
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20. No. B4
% X 1/ %8

AM— |

AN——

2
_ XX XS F XXX, S XS X+ X,

X,%,87 + Xy + X, %,)S

21. No. BS
s il
X, 1
x, 1/ xs
= XX %87 F (X3 X0 Xy + X,)S + X3 + X,
X,%,8” F (X4%, + X3%,)S
22. No.B6

Y

1/ xs xS

I
VVYV I |
X
X4
(0% X,%,)87 + (X + XX X, )8 + X
(nx, +x,x3)s +1
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23.No. B13
X

AW

x,s
X4
z (00X, + X XX5)8% (XXX, + T Xy X + XX XS + X, + X
x,%8° + (X0 + 6x,)s+1

24.No.D4
1/ xs 5
' l R R
b
X
| ]
V 1/ x,s
L X, X0 X8 + Xo + Xy
o X,X,%,5° + (% +x3+xx,)5+1
25.No.D8

1/ xs

K XS + Xy
z= 3
XX X Xy 8 ™ + (XX, + XX, + X)) + 1
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26. No. C2

27. No. E1

28. No. F4

%%
x5+ X,

— Y\ A

S
4 x

1/ x,

fi
Bl

g= S +x,
x,%,5° + X, %5 +1
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29. No. E4

= (xyx, + X,%,)8 + X, X4
xS+ x,

30. No. E6
xS
.= X,%,87 + (X, + X, Xy + X, %))S + X, X,
x5 + X,
31. No. C4
1/ xs
i1 AAA
i
X3
x

= %%sS + X, + X,

xx,5+1
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APPENDIX D
CIRCUIT DIAGRAM FOR HYDRO EXAMPLE

The circuit diagram of Hydro example is shown in page 211. The element

Values are presented in page 212.
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Table of
Element values

Resistor: £, Inductor: H, Capacitor: F

[1=2.407223837508354¢-5
R1=2.389173954725266e-1
C1=9.129871614277363¢-3
R2=1.192208495922387e-3
12=2425556158414111e-5
R3=6.999243795871735e-2
C2=2.827802859246731e-2
R4=1.646707067266107¢-3
13=2.59067863225936%<4
R5=1.806209683418274¢-1
C3=1.013956591486931e-2
R6=1.307248324155807e-2
[4=6.13107795288669%-6
R7=6.372318416833878e-2
C4=2.305218484252691e-3
R8=1.4949585602153094
L5=3.629102511977675346000e-5
R9=7.134397957352106690000e-1
C5=3.121618437731108759000e-3
R10= 6.568243254519025206000e-8
16=1.229532202301 360569000e-5
R11=1.154105174990523624000e-1
Cé= 2.331057611916097339000e-2
R12=1.055507198898414074000e-3
L7=4.097762480898772068000e-6
R13= 6.195869481839603960000e-2
C7=9.60893045921161 7805000e-2
R14= 8.594009219747512460000e-4
18=2.700770205352986795000e-6
R15=1.22088773735%77343000e-2
C8=1.974014201208384302000e-1
R16=3.78980101695666848%000e-5
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19=35.540265978075893726000e-6
R17=8.951448933725363738000e-2
C9=3.194859710540290076000e-2
R18= 2.849292089493381096000e-5
L10=3.536820940625267341000e-5
R19=3.260416899336399593000e-2
C10-4.167479119939041 582000e-2
R20=2.492626151390433293000e-3
L11=3.473803759175370541000e+3
R21=4486535665028298477000e-11
C11=2.228891335236002735000e-8
R22=3.743686883839680938000e-6
L12=1.819720667837585479000e-7
R23=8.666173195282263630000e+14
C12=8.614177703857422000000e-1
R24=1.980995579354740723000e-22
L13=5.939292623767285908000e-5
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