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ABSTRACT

In this thesis, a new mettrod for modeling power systems with
equivalent two-port networks is presented. This new method-the three-step

approach is based on a multiple-step srategy, a mod^ified partern search

optimization technique and circuits with good move abilities. The pattem

sea¡ch technique has been modified to overcome the local minimum problem.

The move abilities of zeros and poles of transfer functions of RLC circuits

were studied. Some circuits with good move abiliry and pairs of circuits which

are complementary with respect to realizabiliry limitations have been found.

The basic idea of a multiple-step strategy is illustrated. A compiex problem is

broken up into small parts, and each part is soived and finalty the overall
problem is soived by optimization. A very effective technique using t¡e group

delay to find tlle starting point for the optimization was deveioped- computer
programs were developed to implement the three-step-approach method. A

specific modeiing problem of a two-port power system and other examples

were solved by the new mettrod. The resuits are satisfactory and, encouraging.

lv
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Chapter 1

INITRODUCTIONI

Studies of transient phenomena on electrical power systems can be

carried out by real time simulation facilities [15], numericai programs on a

computer [14], and equivalent networks 15,7,8, 9]. Research using equivalent

electric nerworks for the simulation or modeling of power sysrems including

both ac only and ac with dc tie, has been carried out for many years. One-port

equivalent networks have been studied since L970 [8, 9]. The results of one-

port equivalent networks are very good for a number of different examples.

However for certain cases, a two-port model has advantages over a one-

port model. Fig. 1.1 shows an ac system with a dc tie. Although in realiry rhere

are three phases for an ac system, a single phase representarion is adequate

for most cases. For the modeling of such a power system there are two

formulations. One is the one-port formulation displayed in Fig. 1.2. The other is

a rwo-port formulation that is illustrated in Fig. 1.3. The two-porr formuiation

is better than the one-port formulatiorl, since it takes the cross coupling of

port 1 and port 2 through the ac system into account and the one-port model

does not.

A multi-port equivalent network has been studied by Do and Garrilovic

l7l. However, the network functions of their equivalent nerwork are not

guaranteed to be positive real. A positive real wo-port equivalent nerwork

has been studied and the advantages of a two-port equivalent network were

described [5]. There are relatively large errors in the realized frequency

response, therefore, the possibiliry of finding a better solution for a positive

real nruo-port equivalent network is considered.



converter converter

Fig. 1.1 An ac sysrem with dc rie

Fig. 1.2 One'port equivalent circuit



two-port
network

Fig. i.3 Two-port model

Aithough a power system network is compricated, the types of
components are relatively simple, i.e. resistors, capacitors, inductors and

transformers. We believe that:

1- For the modeling of an ac power network, a positive real network is much

better than a non-positive real one, because the ac network and the model

contajn the same rypes of positive real elements.

2' A network containing resistors, capacitors, inductors and transformers

should be able to represent the ac nerwork well.

In order to obtain a good positive real equivaient two-port nerwork, a new

method has to be developed.

The goal of this thesis is to develop a new merhod that can guaranree a

positive real two-port equivalent nerwork. As well, this positive real rwo-port

equivalent network should have frequency responses very close to the

frequency responses of the electrical power system, i.€., the difference

berween the frequency responses of the found equivalent two-port network



and the actual frequency responses measured in terms of a norm should be a

minimum.

The procedure for finding a minimum can be seen as an optimization

procedure. Optimization methods can be applied to a broad scope of problems

in network analysis, network modeling and network synthesis. Many examples

have demonstrated the effectiveness of the optimization technique tlgl.
However, the application of optimizatioî does not automatically guarantee a

good result. If the formulation of the optimization-the way the optimization is

used-is not appropriate, then satisfactory results will not be achieved. For

example, a parameter-optimization technique was applied in [7] that did not
give a positive real network. A Simplex optimization method was used in [5]

that did not yield frequency responses very close to the given (required)

frequency responses.

There are several different optimization techniques that can be used to

solve minimization problems. The Pattern Search Technique is a simple yet

effective direct search merhod [10], [12], Lzol, lzrl,126l, 1271,lzgl. To apply the

Pattern Search optimization Technique to the modeling of a power sysrem, a

computer program that implements the Pattern Search Technique is essential.

This thesis presents a novel method for the modeling of ac power

systems. This method is based on the way that the optimization technique is
used, on a modified pattern search optimization technique and on elemental

circuits with good move ability. (The definition of good move ability is stated in
Chapter 3). The way in which the optimization is appiied, is referred to as a

strategy. The strategy-a multiple-step approach-is developed for solving the

problem of modeling ac power systems. The basic idea of the multiple-step

approach is to divide a complicated and difficult problem into small parts

correctly' and to use the Pattern Search Optimization method throughout every



step, solving each small part, step by step. The Patiern Search Optimization

Technique can also be applied to handle the movement of the zeros and poles

of the elemental circuits by changing the values of the circuit elements, and

thus the poles and zeros of the two-port network functions.

The procedure for modeling an ac power system with an equivalent

two-port network is divided into three parts. In part one, the optimal

impedance functions of the equivalent network are determined by an

optimization process. Part two deals with the structures of the equivalent

network. The structures are sorted into a main structure and a micro sructure

which are determined by optimization. In part three, the Pattern Search

Optimization Technique is used to find the elemental circuits of the two-port

network.

The synthesis problem is to find the (approximate) functional

expression (network function), according to the required frequency response,

and then, according to this network function, to realize the network. The final

network might be realized or not, subject to the network function and to the

characteristics of the network elements. In the new method, every srep uses

optimization. In the last step, that of finding the elemental circuits, the

objective function is still the norm of the difference between the found and

the required frequency response. Therefore, there is only one error. The

objective function of the optimization is always the frequency response, this

gives the synthesis procedure great flexibility and avoids the limitation of

having a fixed network function as the objective function, because a

frequency response can be approximated by many network functions.

The equivalent network consists of only positive resistors, positive

capacitors, positive inductors and transformers. Therefore, the associated



impedance function must satisfy the positive real cond.itions. In rtre

optimization procedure, the deveioped computer program monitors every

movemen't of the optimization process and. makes sure tIat the positive real

conditions are always satisfied.

1,1 Outline of Dissertation

Chapter 2 describes the basic two-port nerwork and the positive real

properties of a two-port. Chapter 3 presents the pattern search optimization

technique and tåe implemented compurer program. ln chapter 4, the basic

idea of the multiple-step-approach strategy is introduced. Also, a modeling

problem of an ac power system is solved along with a detailed introduction of

tbe three-step-approach. In chapter s, more examples and more main

network strucrures are studied. Chapter 6 further srudies ttre basic eiemental

circuits, the convergence and accuracy for ttre three-step-approach method.

Chapter 7 gives conclusions regard.ing the successful new method and suggests

work for further study.

6



Chapter 2

TWO-PORT NETWORK

2-1 Two-Port lrletworks and Network Functions

Regardless how simple or how cornplex a circuit is, as long as it has nruo

ports to connect to outside sources or electrical circuits (input or output), and

the currents of the circuit satisfy tåe following cond^itions:

I, = I,'

Iz =lt (2.1.1)

the circuit is called two-port network, otherwise, it is called four-terminal

network. A two-porr network is shown in Fig. Z.I.I.

Fig. 2.1.1. A rwo-porr nenruork

According to the circuit structure, a two-port network can be classified

ð T, fI, Ladder, T-bridge, bridge and other basic t)¡pes of nenvorks. Fig.

2-I-2 shows the T two-poft network. Fig. 2.1.3 illustrates the II rwo-porr

two-port
network



neËwork. The ladder two-port network is presented in Fig. 2.I.4. The series

connected two-port network is demonstrated in Fig. 2.1.5. Fig. 2.1.6 presents the

parallel connected two-port nerwork. These nerwork stnrctures are simple yet

useful. we will use them for the modeüng of an ac power sysrem.

Fis.2.L.2 T two-port network

Fig. 2.1.3 fI two-port nework

Z,



Fig. ?.I.4 A ladder rwo-porr nerwork

Fig. 2.1.5 Series connection of wo-port neworks

Fig.2.7.6 Parallel connection of two-porr nerworks

9



Two-port network theory stud.ies the relations berween tie curre¡ts and,
voltages at the input port and at t¡e output port. The funcüons relaring the
voltages a¡d currents of the ¡ruo port are called two-port network functions.
There are several forms of the two-port network functions. ln this thesis, we
only use the open-circuit impedance and tie short-circuit ad.mittance
functions' Also, we only study two-port networks that contain resistors,
capacitors, inductors and transformers. This type of two-port nenrrork is also
described as a passive, lumped, lins¿¡., time-invariant, reciprocal nvo_port
nerwork. The open-circuit impedance matrix

z =lrrr, 
í,zl

LZr, ízzj

where ;,, is the driving point function of port 1, 4: is

funcrion of port Z, and, i,, is tle transfer function of the

tÌle two-port network is a reciprocal network, 2,. is
parameters of Z are defined as follows:

(2.1.2)

the driving point

network. Because

equal to i,. The

(2.r.3)

(?.L.4)

(2.1.s)

"'=1',,=o- 
4,

vrl
7n.¡ = él

Izllr=o

v.

4 l. =o
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2.2 Positive Real Properties of Two-ports

The impedance matrix Z has the following form:

t =l:' ' :''l = + [: ' :'] (z.z.L)
Lir, ¡r=J dLr=, t1rl

where 4t, \2, n., and d are polynomials in the complex frequency variable s .

It is known ttrat impedance and ad"mittance mat¡ices of a passive, lumped,

linear, time-invariant, reciprocal two-port network are positive real matrices

[3a]. Consequently, the following cond.irions hold:

a. Conditions for each function:

( 1) ztt, ztz æd 4,2, Tê real for s real.

(2) Poles of ír p 2,, and 4" are all in the ieft- half s -plane and on t¡e

ito axis, Poles of i,, ed iz oû the jø æcis are simple witå real positive

residues, Poles ¡r2 on the jø axis are simpte.

(3) The real parrs of r,, ed az sarisfy the following inequalities:

0sRe(i,¡),Re(irr)<- s=j@ -cos(Ðsco (Z.Z.Z)

where Re denotes the real oart.

b. Collective conditions:

(1) When s = j@, the real parts of impedance functions ¿r ,, z,rand zn

satisfy the following inequaliry:

Re(2,,)Re( Zr")- Re2(e,r) >0 s = j@ -co s(Ð s æ (2.2.3)

11



(2) Poles of z¡1, 212 and î.
residue condition:

k,,r0 krr¿0

krrlÇ, - klrro

on the ja axis satisfy the following

(2.2.4)

where kr, k* a¡.d k,, stand for the residues of í¡¡, ztzandE2, respectivery.

In the optimization process, the positive real cond.itions play an
important role, i.e., the pR (positive real) condiüons must be satisfied. to
guarantee tinding an RLC network (including tra¡sformers) for the modeling
of an ac power system.
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Chapter 3

PATTERN SEARCH OPTIMIZATION
METHOD

3. 1 Introduction

Optimization techniques can be applied to a wide range of problems in

network analysis, nework modeling and nerwork synthesis. The conventional

network synthesis methods for two-port nerworks, except for simple cases,

have disadvantages. For example, passive RLC filters, usually require the

network capacitors and inductors to be ideai. As well, the procedures are

complicated[i0]. Lr this chapter, an optimization method for the rwo-porr

nerwork synthesis is introduced which focuses on the transfer function of a

two-port network. This nerv method is based on the fact that zeros and poles of

the transfer function of an RLC network can be moved over the (left-halÐ

complex plane by changing the values of the network elements-resistors,

capacitors, inductors and transformer ratios. A pattern search optimization

process can be used to move the zeros and poles of a two.port network rransfer

function. As an example, consider a sixth-order nework transfer function. To

deter-mine the passive element values so that required zeros and poles are

achieved is a challenging problem but is solved by the developed parrern

search optimi2¿6on method.

13



3"2 The Formulation of optimization for Two-port
Network Modeling

The basic parts of an optimization are the input variables
x=(x,,xr,...,xn), the objective function F, the target function Glr)(the

performance of a network or a network function as a function of the input
variabies), and the (given) requirements R=(&,Rr,...,R.). wirhout loss

general.iry, we define the objecrive function of the optimization:

r=ËE-c,l
i=l

where Rr is a required (given) vaiue and G, is the corresponding value of rhe

target function G. If the values of the variables need ro satisfy some

conditions, e.g.

x,20 (orx, <0) j =1,2,3,...,n

then the optimization is called a constrained optimization.

pe¡ svample, an optimization process is used to find a driving point

function which has a frequency response very ciose to the required

frequency response. The given frequency responses at some specified

frequencies are the required values, the constant factor, the zeros and the

poies of the impedance function are the input variables, and the relation

between the frequency response and the constant factor, the zeros and poles

of the impedance function is the target function. The values of the consranr

factor must be non negative, and the real part of the zeros and poles must be

negative. Another example is that the optimization process is used to find a

nenruork such that the impedance function of this network has some specified

zeros and poles, these specified zeros and poles are the required values; the

elements of this nerwork-resistors, inductors, capacitors and transformers are

T4



the input variables; the reiation between the required zeros and poles and the

nerwork elements are tÌre target function. the values of the network elements

resistors, inductors and capacitors must be non negative.

3-3 The Pattern Search optimization Technique

There are several different optimization metiods that can be used to

solve minimization problems. These optimizarion methods are classified into

direct search metlods and non-direct sea¡ch methods. The d.irect search

metiods do not require smooth functions or their derivatives. Among tåese

d-irect search optimization methods, the pattern search method is the most

widely used one [10],[12]. The theory is largely geometric. Despite its

mathematical simpiicity, the pattern sea¡ch method works well in a wide

ran g e of applications [ 1 0 ], lLZl, IZ O], IZ t],l2 6l,tT7 l,t2 gj .

The process of pattern search optimization contains two major steps. The

first one is an exploration search which includes a sequence of single variable

searches and the .second one is a pattern search. The starting point of the

explorarion sea¡ch is also called a base point of the exploration search. The

point reached by an exploration search is called the exploration search

expansion point. The starting point of the partern search is called a base point

of the pattelfl search. The point reached by the parrern search is called the

pattem search expansion point. At the begirining of the optimizaüon process,

a staning point, x=()\,x2,\,,..,rn), is chosen. A step size (step increment) Lr,

for each independent variable is also selected.

15



1-) The exploration search

The purpose of an exploration search is to explore rhe viciniry of the

current base point. An exploration search inciudes a sequence of single

variable searches. The procedure for an exploration search is as follows:

(1) The variable x, is given a positive incremenr, i.e. .r,+Âx and anew pointis

reached:

r(I) 
---).trQ) 

+ Axe,

where x(t) is a vector and e, is a unit vector along coordinate axis 1.

Then the objective function F is evaluated. If the move is a successful move,

i.e. F¡¡<tr + Axc) < F(¡(t)), then the new point replaces the originai one. If the

move is a faiiure, then a negative move i.e.4-Â-r is taken and a new point is

reached:

x(1) __+rQ) _ Axe,

Next the objective function F is evaluated. If the move is a successful move,

i.e. the value of the objective function decreases, the new point replaces the

original one. If the move is a failure, then the original point is maintained.

(2). Step (1) is repeated for all other variables, i.e. for (¡,i=2,3,4......n Finally

an exploration search expansion point is reached. This point is denoted as

x(2)and will be used as the pattern search base point.

2) Pattern search and subsequent search

The pattern search is based on a successful move in a single variable

search. A move attempts to speed up the search while follorving the direcrion

of the successful single variable search move i.e. in the direction xQ) -NQ).

Since a move of a single variable search in this direction has aiready led to a

T6



decrease in the value of the objective function F, the pattern search

procedure move starting from point x(r) is as follows:

(1) Move from point Í(2) to Í(3). .r(3) = ¡(2) + qr{?) -r{t)¡.
(2) Check if the value of the objective function F at the pattern search

expansion point x('), is better than that of the starting point r(t). if there is
improvement, then point ¡(3) will be taken as a new base point for the next

sequence of single variable moves of the exploration search. If no

improvement is made, then ¡(3) is abandoned and point x(2) becomes a new

base point for the next exploration search, and a new sequence of single

variable moves a¡e made.

(3) Repeat the sequence of single variable moves and a parrern move in turn.

until a preset limit is reached.

A rwo dimensional example of an exploration search and pattern search

is demonstrated in Fig. 3.3.1. The sta¡ting point is x(t). The first single variable

move is successful in the positive direction. The second single variable move

is successful in the negative direction and point x(2) is reached. x(2) becomes

the base point for the pattern search. The first partern move in the direction

xzt -x(t) is successful and ¡(')becomes the pattern search expansion point and

the base point for a new round of exploration searches and pattern searches.

The first single variabie move starts at point ¡(3). The step size has to be

reduced before the first single variable move is successful, in the negative

direction. The second single variable move is successful in the negative

direction and x(o)becomes the base point for the pattern search. However, the

pattern search move faiis, so that x(o) becomes a base point for the nexr

exploration search. The next round of exploration searches and, pattern

searches is successful and the final optimal poinr x(t) is reached.

L7



successful move

unsuccessful move

Fig. 3.3.1 An example of the single variable search and the Dartern search
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3 "4 Pattern Search Computer program

A computer progr¿tm is developed for the panern search optimization.
In the computer program n¡ro kinds of step increments are used. The first
kind of step increment is a const¿rnr:

L,x =c

The second kind of step increment is a constant scalar factor k times the
vector component, i.e..

Ax. - k. x.

The second step increment is carled percentage step increment. In t¡is ttresis,
it is found that when rie opdmal values of va¡iables differ greatly, the
percentage step increment leads to a faster convergence of the optimization
process than that with a constant step increment. since ttre single variable
search moves in both + a-r and -Â-r directions, there is no loss of generality in
choosing Â'r to be positive. The computer program is writren in pASCAL and
is shown in Appendix A. A flowchart of this computer program is presented
in Fig. 3.4.L.

In the flowchart, )c[.i,r] is the starüng point of tåe e.xploration search,
x[i'2] is the exploration expansion point and ttre starting point of ttre pattern
search, and x{i'31 is the pattern sea¡ch expansion point. A represents ân
initial error limit and B represents rhe final error limit. 4 is a variable
error limit' B, represents the value of the objecdve function, i.e. the eror of
tie e'xploration search, and 4 represents the value of the objective function,
i'e' the error of the pattern search. ln the exploration search, if the error B,

is less than the present error limit A¡, then the value of B, is set to be the
updated error rimit /, for rhe pattem sea¡ch and a starting point of the
patte¡l¡ search-r[i,2] is reached-
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set initial values

di,ll A,x, þ ,4

single variable search

xli,2l: =.x[i,1] -+Ar
Ar: = A

Bt(At?

pattern search

xlí, 3l: - 2 xl,i,zl- xli,Ll

x[i,i]: =xfi,2f

Fig. 3.4.1 Flowchart of a procedure
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In the exploration search, if the error { is not less than the updated

error limit 41, then the exploration move faiis and the step size musr be

reduced. The step size reduction shown in the flowchart is a linear one:

Axz - lLxl

where i is a constant. The step size reduction can also be nonlinear:

Lxz -,f(^xr)

where f(M) is a nonlinear function of Âx,, e. g. the square function. In some

cases noniinear step size reduction leads to a faster convergence of the

optimization process.

In the pattern search, if the error B2 is less than the present error

limit 41, then the value of error .Q is set to be the updated limit ,41, and a

pattern search expansion point x[i,3] is reached and it is set to be the next

starting point of an exploration search; if the error ^& is larger than the

present error limit ,4t, then the pattern search fails and the present starting

point of the pattern search is set to be the next starring point of an e,xploration

sea¡ch.

A probiem which arises in the optimization process is how to prevenr

the program from stopping at a local minimum (premature termination).

Figure 3.4.2 shows a curve where point C is the gtobal minimum of the curve;

both points B and D are local minima. If the prògram of the flowchart 1,

shown in Fig. 3.4.L, is used to minimize the function of this curve, starting at

point A or point E, it could stop at either point B or point D for some srep

increments. Fig. 3.4.3 displays in more detail why the search wiil srop ar rhe

local minimum. From Fig. 3.4.3, it can be seen that as the search atremprs ro

find a lower point, it reduces the step increment Ax. Eventually the search

reaches the local minimum point and the step increment size decreases to a

minimum. Therefore, while the overall error of the oprimization is still

2L



large, the step size has become a minimum, i.e., a local minimum has been

(possibly) reached. It is clear that without overcoming the local minimum

problem, the pattern search is useless.

Fig.3.4.2

Fig. 3.4.3
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In order to leap over the local minima and sea¡ch toward the giobal

mi¡imum' one useful way is to increase the step sÞe. Ftg.3.a.4 gives a birds-

eye view. From Fig. 3.4.4, it is clea¡ that increasing the step size is an

effective way to overcome the local minimum problem. Therefore, to
overcome the local minimum problem, anottrer flowchart shown in Fig. 3.4.6

must be added to the flowchart 1 (flowchart of a procedure). The program of
flowchart 2 makes it possible to leap over the local minima When a local

minimum is detected, the program increases the step size d,ramatically to leap

over tfre neighborhood of the local minimum to sea¡ch for a new directjon to

tJre global minimum. An execution of the program of flowchart I is called a

procedure. During the optimization process, if n local minima are met. then

n+l procedures are needed to reach the global minimum.

There are some other techniques for solving the local minimuÍl
problem. Fig. 3.4.5 shows that moving along one direction to change the

starting point and then searching in the otler d.i¡ection also helps to move

over a local minimtrm. Other techniques such as using d.ifferent step sizes and

using different starting points (different in all directions)can also be applied

to overcome t¡e difficulry of a local minimum.

We will discuss how to deal with the constrain¡5 of the optimization in
chapter 4 along with the pR requirernent of ttre impedance function.
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execute a procedure

reached local minimum?

Fig. 3.4.6 Flowchart 2
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3.5 Example

The following example is used to demonstrate the method discuss in

Section 3.4. The zeros and poles of a transfer function zn are given as follows:

Table 3.5.1 zeros and poles of given e,,

Numerator Degree:

ConJtant factor followed. bv Zeros:
real part

I.8L627 21865 407 29 1 3 70e+2
-3.8237 7 497 7 97 509 489 I0e+2
-3.8237 7 497 7 97 509489 10e+ 2
-2.7 52L457 4L1 148106060e+2
-2.7 521 457 4Lt 1481060 60e+ 2
-4.4622888403 0 1 5 5009 70e+ 1

Denominator Degree:
6

Constant factor foilowed by Poles:
real part

1.0000000000000000000e+0
-2.449 0 47 6 L 6 L 4420848 80e+ 2
-2.449 O 47 6 L 6 L 4420848 8 0e+ 2
-2.67 2 8 6 72608 6 637 660 60 e+ 2
-2.67 2 8 6 1260 I 6637 660 60 e+ 2
-2.7 O 47 4 5 4246?9 LS 3 625 0e+2
-2.7 O 47 4 5 42 4 629 I 5 3 67 60 e+?

imaginary part

0.0000000000000000000e+0
L.12209 L966287 1 3 89 73 0e+3

-L.12209 L9 66287 1 3 8 9 7 3 0e+ 3
1.63 1 8360713505543 120e+3

-1.63 1 83 607 1 3 505 5 43L20e+3
0.0000000000000000000e+0

imaginary part
0.0000000000000000000e+0
-2. 1 630087 4939 6205 69 80e+3
2. 1 63 008 7 493962056980e+3

- 1.303 25 3 0067 LO67 2228Oe+3
1.303 25 30067 L067 22 2 80e+3
5.5 5 860 147 069306905 60e+ 2

-5.5 5 860 1 47 069306905 60e+ 2

In order to determine what kind of network structure can be used to

realize this transfer function, we analyze the given transfer function. The

degree of the numerator is 5 and the degree of the denominator is 6. The

numerator has one reai zeÍo and two complex conjugate pairs. The

denominator has three complex conjugate pairs of zeros. There are many

kinds of network structures that can be used to realize this transfer function.

we choose the following fI structure to carry our the synthesis process.
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Fig. 3.5.1

The next step is to find tie micro stnrcture-the eiemental circuit. The

relation berween i,, and z, = *, 4 = ?, O= å is
qalaj

.t? - (3.s.1)

There ¿rre many combinations of zt, 4 and a which can satisfy the

degree requirements of e,r. One choice is the degree of the numerator of z,

equal 1 and the degree of its denominator equal 2, and. tie degree of the
nnmerators a¡d denominators of both 4 ed 4 equar z. with some basic

knowledge of network theory, some circuits which satisfy ttre degree

requirements can easily be found. (Some elemental circuits are shown in

appendix C.) The uext step is to run the oprimizarion progra¡n for different

combinations of these ci¡cuits-the ele¡nental strucnrres. A good combination

that has poles and zeros very close to the required poles and zeros is found. The

network is shown in Fig. 3.5"2. The zeros and poles are listed in Table 3.5.2.

\drdr+n"drd"+h\d,
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Fig. 3.5.2

Table 3.5.2 zeros and poles of found e,,

Numerator Degree:

Consiant factor followed by Zeros:
real part

I.8L 627 0006 9 9 9 8 5 3 O240e+2
-2.7 5 2 1 457 3 97 329 09 27 I0e+2
-2.7 52 L 457 3 97 3290927 LO e+2
-3.866 1 5 25095 3 96568610e+2
-3.866 1 5 25095 3965 686 10e+2
-4.46228 89 3 8 867 821 0 1 70e+ 1

Denominator Degree:
6

Constant factor foilowed bv Poles:
real part

1 .0000000000000000000e+0
-2.67 L23 647 5 8 5 I 5 3 97 92O e+2
-2.67 I23 6475 8 5 L 5 3 97 92O e+2
-2.67 286 125 43 L3095 0 1 40e+ 2
-2.67 2 86 t25 43 I 3095 0 1 40e+ 2
-2.449 O47 6326 5 4225 3 2 8 0e+ Z
-2.449 O47 6326 5 4225 3 2 80e+2

rmagrnary part

0.0000000000000000000e+ 0
- 1.63 1 83 606085425 3 5030e+3
1.63 1 83606085425 3 5030e+3

- i. 1 3 206 1 S 687 62623 57 80e+3
1. 1 3 206 1 5 687 626235 780e+3

-0.0000000000000000000e+0

imaginary parr

0.0000000000000000000e+0
5.5 41 1 5 1 34656 99 SOZL4Oe+Z

-5.541 1 5 1 3465 6 99 5O2I40e+7
1.30325 300003 348 10330e+3

- 1.30325 300003 348 1 03 3 0e+3
2. 1 630087 6063 43 870050e+3

-2. 1 630087 6063 43 870050e+3

29



3"6 Discussion

In the inrroduction we inrroduced an optimization method. that is based

on the fact that zeros and poles of an impedance function of an RLC netrvork

can be moved over a region in the (teft-halÐ complex piane by changing the

values of the network elements-resistors, capacitors, inductors and

transformers. It is found that the poles and zeros of different network

impedance functions have different capabilities for moving over the (left-

half) complex piane, because of inherent restrictions. For ease of description,

we use the ter:n move abiliry to discuss the movement of the zeros and poles

of a network function. For an impedance function of a network with the

number of zeros and poies greater or equal to 1, the movements of the zeros

and poles in the (left-halÐ s-plane are not independent. That is, the movemenr

of a poie (zero) is restricted by the location of the zero (pote). For certain

locations of zeros (poles), the poles (zeros) of some nerwork functions can

move over a larger region in the (lefçhalf,) complex plane than some other

nerwork functions can. if the poles and zeros of a network function c¿Ln move

over a large region of the (left-haif) complex plane, we simply say rhar rhe

elemental network has good move ability; otherwise we say it has poor move

abiiity.

Now we can use the results of the example to further describe the

movement of the zeros and poles of the nework function. For an RLC network.

we find that:

(1) Zeros and poles of some networks (for example elemental circuit No. Fl,

Appendix C) are always real, regardless of the values of the elements. Zeros

and poles of some networks have fixed relations. We say these have poor move

ability.
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(2) An elemental network's move ability will affect the main nerwork,s move

abiliry. For example, if elemental circuit No. F4, shown in Appendix c, is used

as \ of the network shown in Fig. 3.5.2 then the errors in the zeros and poles

of this network function become very large. Elemental circuit No. F4 is the

kind of nerwork described in (1). Its real zero is always equal ro one half of the

real part of its poles.

In this chapter, we presented the pattern search optimization method

for the realization of a two-port network. The move abiliry of the impedance

functions of elemental circuits was studied. Some eiemental circuits with good

move ability were found and presented in this Chapter. The pattern search

optimization technique and the elemental circuits with good move abiliry are

the basis of the new method for the modeling of an ac sysrem. In Chapter 4,

we will carry out more studies for applying this basis to the modeiing of an

ac power system.
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Chap ter 4

MODELING OF AN AC SYSTEM

4.1 Introduction

br this chapter, we will develop a new method to solve a modeling

problem-the synthesis of an equivalent two-port network for atr ac power

system. Figs. 4.1.1 , 4.L.2 and 4.7.3 demonstrate the frequency responses of Zr2,

4 ' 
æd ¿22, respectively. (Data were obtained from G. Mazur of Manitoba

Hydro and are listed in Appendix B.) We will see that the pattern search

optimization technique can be applied to the development of the new method

for generating a positive real equivalent two-port network. Also, as

described in Chapter 1, the formulation of the optimization (the way we apply

the optimization technique) plays a very important role in the new rwo-port

synthesis method, To ímplement this basic idea, a multi-step strategy is

developed in the following section. üa Chapter 3 we found that a poor move

abiliry of an elemental ci¡cuit will cause a poor move abiiity of the two-port

network. This will lead to a faílure to generate the required frequency

responses with the two-port network. Therefore, we must always try to use

elemental circuits with good move abilities. This finding will also be applied to

the development of the new synthesis method to guarantee the success of the

optimization process. We shall apply the new method in detail through the

example.
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4.2 The straregy of Three-step optimi zation

The goal in modeling ¿m ac system is to find a positive real equivalent

two-port nen¡¡ork that can give frequency responses close to the frequency
responses of the ac system. This is a rypical real modeling and synthesis

problem. Now we will find a strategy for a new modeling and synthesis

method by using the pattern search optimization technique. The new metlrod

must be able to guar¿u1tee a satisfactory solution with a positive real

equivalent two-port nerwork.

Looking back at Chapter 3, we fìnd that the difficulty in satisfying the

requirement for a set of zeros and poles is simila¡ to that of satisfying one

frequency response. In comparison to the probiem we face right now, the

example in chapter 3 is a much simpler case. It can be solved by using

optimization once-we call it the one.step approach. Now the synthesis task is

to find a two-port network that has frequency responses very close to the
given frequency responses of 211, it? and, 42. Although the requirements are

to satisfy only two more frequency responses, ttre difficulty for the latter is
much more than three fold the former. We can see that the pattern search

technique is a good tool. But to use a good tool to do a good job, we still need to

use it in an appropriate way-an optimal way. The appropriare way is the right
strategy.

The frequency response of an electric network depends on the

stn¡cture of the electric network and the values of t¡e network elements such

as resistors, capacitors, inductors and transformers. This dependence is

equivalent to dependence on the zeros and poles of the impedance functions of
thi5 ¡stwerk.. Since atl the good move elemental circuits have only relatively
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good move ability, every elemental circuit has its own limitations. If the one-
step approach is used, the result will most likely not be satisfactory. Then we

will be practically unable to analyze what is wrong because there would be so

many combinations of different elemental circuits and network stnrctures. It
will be very time-consuming to find ttre optimal combination. This raises the
questions: Is the degree of the polynomial of the numeraror of the impedance

function of the two-port nework not righr? Is it the wrong type of elemental

circuit? It is very likety to happen that, until most of ttre possible

combinations have been tried, a good result would not be found. (From now on,

for simplifying the description, we use ,degree m/\, to represent the number

of zeros m and the number of poles n of an impedance function of an electrical

network, and call this eiectrical network a degree m,/n network.) For example,

from degree 4/4 to LO/LO, there are 19 different degree combinarions. There

are at lest 30 different elemental circuits with degrees of I/Z and Z/2,
therefore, the possible circuit combinations for each d,egree combination will
be large and the total number of combination will be very large. To use the

optimization program to calculate the values of all circuit components for all
combinations would be very time consuming. Therefore, using txe one-srep
approach to solve the problem of tinding a circuit to realize z¡1, z12arrd 4., is

not practical.

To solve thi5 çe¡¡plex and difficult problem, we must find a sraregy_a

systematic approach. Like all other kinds of difficult problem solving, we ca¡
not solve tbe whole problem at once. we must tty a step-by-step approach and

in each step solve a piece of the overall problem. With this in mind, we see

that the logical way to solve the complicated and difficult synthesis problem is

to divide the whole problem into several parts and, tåen to solve each part. We

will find *: the paftem serch optimization method has to be used in
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every step in which we attempt to solve a piece of the problem. In comparison

with the previous one-step approach, this is called a multiple-step approach.

With some basic knowledge of modeling and synthesis of electric

networks, we find that by using the modified pattern search optimization

technique the whole procedure of synthesis can be divided into three parts

which can be solved one part at a time. We call this the three-step approach.

The three-step approach procedure is described as follows:

Step 1, determine the degrees of the numerator and denominator

polynomials of the impedance function of the electrical network. For the

whole slmthesis procedure, the first thing we have to do is to find how high

the degree of the electric network is. It includes determinations of the optimal

degree of the numerator and the optimal degree of the denominator with
certain types of zeros and poles of network functions 211, zy2 arrd zr.r.

Step 2, find a network stnrcture which can guarantee that the network

will be able to give frequency responses very close to the required frequency

responses.

Step 3, determine the elemental values of all network elements such as

resistors, capacitors and inductors, As the network elements are determined.

the impedance functions 4t, 2,, ffid Z22are also determined.

Fig. 4.7.I shows a flowchart of the three-step approach. In the three-

step approach, the number of tests is significantly reduced. The total number

of tests is the sum of the numbers in each step. The total number of tests for

the one-step approach is equal to the product of all three steps. For example, if
tÏe possible number of degree combinations is L9, the number of possible

network structures is 2O and the number of elemental circuits is 5, then the

sum of these numbers is 44 and the product of these numbers is 1900. From the

example, we can see that the three-step approach has many fewer tests than
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the one-step approach does. Comparing the three-step approach with the

traditional network synthesis, we find that the three-step approach procedure

is a complete reversal of the traditional nerwork synthesis procedure. We rvill

discuss the details of this new approach in the following sections.

Fig. 4.2.L Three-step approach

step 1

determine the degrees of
the nerwork functions

step 2

determine the nerwork structure

step 5
determine the elemental

values of the nerwork elements
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4.3 Step 1: Degrees of \r, \, and z,

Now we will try to use the pattern search oprimization method developed

in chapter 3 to determine the optimal degrees of an electric nerwork. More

specifically, it includes the degrees of the numerator polynomials and the
denominator polynomiats of the network functions i¡¡, E2 and ?2, with certain

t)apes of poles and zeros. In order to appiy rhe panern search optimization

technique' we must first determine the input variables and output target

functions. Since the goal of modeling is to find a posirive real equivalent rwo-

port network that gives frequency responses close to the frequency responses

of .an ac system, the target functions to be found must be the frequency
responses of the to be found ztt, îtz and i., a¡d ttre input variables of the

optimization are the poles a¡rd zeros of 211 , 2,, and, :"r. The opdmization is to

change the values of the poles and the zeros of i1¡, ?,, and 4zto obtain the

required frequency responses. There are two types of poles and zeros. one

kind is real and the other kind is a complex conjugate pair. At the beginning

of Section 2, we described nrro major reasons why we do not use a one-step

approach. The first one is that every elemental circuit has limita¡ions, i.e., its

zeros and poies can not move over tle end¡e (left-half) s -plane. The second

one is that there are so many combinations of d.ifferent network structures

and elements that it would be very difficult to find the optimal combinarions.
lnrorder to determine: 1) the optimal degrees of :¡¡, q3 and q2, 2) the types of

zeros and poles of z1¡, 3,, and 3r, associated with 1), we must test combinations

of d.ifferent degrees and different types of zeros and poles of e¡¡ , 4, Md 4 .

Since we only want to find the optimal numbers of tlre poles a¡d ze¡os of the
impedance functions ín, Ç, æd 4.2, ãt rhi5 5¡¿g., we carry out separare

optimization processes for \t, 4z æd 42. We will start with q2.
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4.3.L Degrees and Types of Zeros and poles of

4.3.L-a The Algorirhrr

\,

In order to apply the pattern search optimization technique to the

optimization, we first determine the input variables and the target functions.

Since the task is to find a transfer function e,, that has a frequency response

very close to the given frequency response, we consider the following

objective function:

where n'is the number of given frequency responses points, zirUa¡,) is the

given frequency response and znUolr) is the frequency response of transfer

function zrz to be found. znÇa¡) is a function of zeros, poies and a constant

factor, which are to be found i.e.,

m'slF = Llrrr(j ot,) - zizj a,)l

K,, fl{r - eo¡

4z=#rr,
I l(s -pr)

¡-l

(4.3.1-1)

(4,3.L-2)

where zk aÍe the zeros, pt are the poles, K, is the constant factor, ll2 is the

number of the zeros and n is the number of the poles of Ztz.

In the optimization, K* and the zeros and poles of 212 are the variables.

Now we consider some of the details of the computer program. As described

above, we only need to deal with two kinds of zeros and poles: real and complex

conjugate pairs. For a complex zero, rwo variables are needed.
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xo = Re(zn) k =I,2,..',m 14 ? 1-?\
\ ,.vr^ v/

)r = Im(¿r) k =1,2,...,m (4.3.1-4)

where Re(zr) and Im(zo) denote the real and imaginary parrs of a comple.x

variabie zn. Similarly for a compiex pole, two variabies are needed as well.

an = Re(po) l< =1,2,...,n

vo =Im(p) l< =1,2,.-.,n

For a reai pole or a real zero, one variable is sufficient for the

Hence we have:

k =I,2,'..,m

I = 1,2,. ..,n

(4.3.1-s)

(4.3.1-6)

program.

(4.3.1-3)

(4.3.7-4)

(4.3.r-9\

(4.3.1-10)

^k-4k

ut= Pt

Re(zn) < o

Re(po) S 0

where Re(z*) is the real part of a zero and

k =1,2,'..,\

i =1,2,...,nt

where n, is the number of real zeros and n, is the number of real poies.

Fig. 4.3.1-1 gives a flowchart of the optimization procedure for finding

the optimal degrees of the numerator and the denominator for different types

of.zeros and poles sf Ztz. The flowchart is very similar to the one shown in Fig.

3,4.1. Since 2,, is not necessarily positive real, the flowchart shown in Fig.

4.3.1-1 is appropriate for many cases. However, for cerrain cases zn may need

to satisfy the PR conditions. Then the real parts of the zeros and poies of 2,,

must satisfu:
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(1)

(2)

(3)

In Chapter 3, the input variables are the eiement values of the

elemental circuits. By keeping the values of elemental circuit componenrs

positive, the PR (positive real) conditions are satisfied, i.e., the constrainr of

the oprimization is satisfied. However, in the process of the first step of the

three-step optimization, keeping the real parts of all the zeros and the real

parts of all poles negative is not sufficient to satisfu the PR requirements.

For a rational function Z(s) to be positive real, necessaÐ/ and. sufficient

conditions are [3]:

Z(s) = N(s)/D(s) is real for s real

N(s) + D(s) is strictly Hurwitz

The real even polynomial

E(s)=ND*+N*D

is non-negarive along the entire jal-axis, i.e.

{E(s)Ir=jr=E(co")20 -æ!aS*

The above conditions can be used for testing if a rational function is positive

real. Condition (1) is satisfied if the coefficient of Z(s) are real or equivalently

if the zeros are real or occur in complex conjugate pairs. Cond.ition (Z) is
satisfied if the zeros are all in the open left-half s-plane. In order for Ê¡ a2 ¡rc

be non-negative for all ar, the necessary and sufficienr condition is that the

real positive at2 zeros of Ê:(r') musr be of even multiplicity. Therefore, by

determining the multiplicity of the positive @2 zeros of the reai even

polynomial n(rt),.condition (3) is easily checked. A compurer program [30]

for checking the above positive real conditions is used in the oprimi2¿¡isn

program.
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To retain only those e,, which are pR, the flowcharr of Fig. 4.3.1-1 must

be modified by rhe addition of the flowchart shown in Fig. 4.3.1-2. The

computer progr2m of flowchart Fig. 4.3.I-2 implements the above checks for

the positive real conditions and determines if the transfer funcrion found

during the single variable search is PR or not. if the program detects a

movement of a pole or a zero which causes the transfer function to become

non PR, then the move is deciared a failure and the pole or the zero has to

remain in its former PR position. Fig.4.3.1-3 shows rhe flowcharr for
checking if 2,, is PR during the pattern search. If the program detects a

movement of a pole or a zero causing the transfer function to become non PR,

then the move is declared a failure and the pole or the zero has to remain its

former PR position. In order to maintain 2,, always PR, a PR starting point is

required. By moving the zeros or the poles of ztz further to the left of the

compiex plane, a PR starting point can always be obtained. In this way, a

positive real transfer function 2,, is always guaranteed.
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set initial values

di,ll:= Re(2,)

.r[i +1,1]:= kn(q)

Lx,p,A

single variables search

xLi,2l: =¡[i,l] f¿x
At=A

pattern search
x[i, 1]:= 2x[i,2]- ;[i, 1]

di,1l:= xIi,3l
A1:= B,

xli,ll:=xli,zl

Fig. 4.3.1-1 Flowchart for derermining degree of 2,,
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singie variable search

xli,Zl:=xfi,ll t Ar

Is e,, PR?

xli,Zl:=x [i,1]

go to next step

Fig. 4.3.1-2 Flowchart for PR checking in single variable sea¡ch

Dattern searcn

i,3l:= zxI|zl- di,1l

Is e,, PR?

di,3l:= x|i,z)

go to next step

Fig.4.3.1-3 Flowchart for PR checking in pattern search
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4.3.l-b Finding the starting point for the optimization

A starting point for the optimization can be found by using the group

delay [30]. This method is based on the relation between the group delay and

the frequency response of the real and imaginary parts of the impedance

function and the zeros and poles of the impedance function. Two expressions

for the group delay are used. One is in terms of the real and imaginary parts

of the impedance function and their derivatives. The other expression for

group delay is in terms of the zeros and poles of the impedance function. The

group delay curve is determined from the real part and the imaginary part of

the frequency response data. The group delay z is defined by

r(i(,) - -do('iu¡)
dú)

where effo) is the phase of Z(ja) arrd

rm(Z)
I.ana\J@): 

R.(Z)

where Im(Z)is the imaginary part and Re(Qis the real part of the impedance

function z(s).Let x=rm(z) and R=Pre(z) to simplify the notation, rhen we

have

d0

0=ran"(å)

da *(^'(*))

-X'R + RX:-.--m
where the prime denotes differentiation. Thus tJle expression for the group

delay in terms of the real and the imaginary parts and their derivations is
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The values of the derivatives are calculated by using Lagrange's interpolation
formula [401.

We can obtain another expression for the group delay ¡Uro) in terms of
the zeros and poles of the impedance function Z(s) using the following sreps.

Let

rlir, - ç)
.7, ^\ N(s) 'l=t:

D(s) J_ \-/ t J(s _ ri)I*

where E is a zero and p, is a pole. We have

(4.3.1-b1)

AIso

and

The group delay is also given by [39]:

ln(Z(s))= ln N(s) - In {s)

dln Z(s) ( D'(t) N '(s)\
ds \ ¿{s) N(s) /

dtnZ(s) g I å I
ds ¡L=ts - z¡ lr t - p,

r(iø)=*"{#-ffi}r:r,

tnZ(s):tnk* irn{, - ù-jrnqr-p,¡
i-l l-l

Therefore, we have
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r(ia)=*.{-4P}1"=,,

=å *[, 
=, )"=, 

- 
å 

*[*)'=^

=*l o' l-s ( v, \
L,=,\a,' + (at - þ,)t ) ",=r\T,' + (a - Ð' )

(4.3.1b-2)

where p¡=-d¡+ jp, and Z¡=-T¡+ð,. Using equation (4.3.1b-1) we can find the

curve of the group delay {jctt). Using equation (4.3.1b-2) we can estimate the

real parts of the poles which are the negatives of the inverses of the peak

values of the curve and the imaginary parts of the poles, which are the

frequencies corresponding to the peaks of the curve. Also, we can estimate the

real parts of the zeros from the inverses of the negative values at the vaileys

of the group deiay curve and the imaginary parts of the zeros from the

frequencies corresponding to the valleys of the curye. Fig.4.3.1-4 shows a

curve of group delay and the estimates of the zeros and poles. The above

method can be justified as follows: when the poles and zeros are not very close

together, one tenn of (2) dominates in the neighborhood of a pole or a zero.

For example, for a dominant pole, we have

r(ja) =
a,2 +(at-þ,)'

At e = þ,, we have a maximum and

I
r(i þ,) : :ai

Therefore, the above method for estimating

applied. However, if the poles and zeros are close
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longer clearly dominates in the neighborhood of a pole or a zero. The starting

point then can not be estimated precisely.

200
frequency

Fig.4.3.I-4

I
-0.1 T

I

I

t_

I

I

I
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4.3.Ic Tests and Results

Using the method described above for finding the starting point, the

values of the real and imaginary parts of the poles and zeros of the starting
point for zn are found from the given data (see Appendix B). Table 4.3.1-1

displays the estimated values for the starting point sf Ztz. (In all the following

tables the absolute value of the real part is given. Also, in the following

sections, only absolute error is used.)

Table 4.3.L-1 Starting point for 2,,

zeros:

poles:

4T real part imaginary part

1 950 2?50

2 1 550 1 250

3 850 6s0

Since the group may not give all zeros and poles, some additional

combinations of zeros and poles are tested. Table 4.3.1-2 displays the calculated

results for different combinations. The number of iterations is 600 for all

combinations. For combination #L (5/5 ) the erïor is 2.958. The error of

î real part imaginary part

1 1060 870

2 1570 1380
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combinarion #2 (5/6) is 0.4309. The higher degree combination #3 (6/6\ yieids

a higher error (2.723) than that of #2. However, the highest degree

co¡nbination #4 (7/8) has the lowest error 0.4303. From these resulrs it can be

seen that ti'e optimal degree difference berween ttre numerator and the

denominator is one, i'e., the degree of the numerator is one less tba¡ ürat of
ttre denominator. Therefore, the degree difference between numerator and

denominator plays a very important role for finding the optimal degree of the

impedance function.

Table 4-3.r-2 The test results of d.ifferent combinarions

î
degree of
numerator

degree of
denomiator

number and
types of zeros

number and
types of poles error

1 5 5
2 complex
conjugate pairs

1 real

2 complex
conjugate pairs

1 real
2.958

2 5 6
2 complex
conjugate pairs

1 real

3 complex
coniugate pairs 0.4308

3 6 6 3 complex
coniugate pairs

3 complex
conjugate pairs 2.725

4 -7 I 3 complex
conjugate pairs

1 real

4 complex
conjugate pairs 0.4303
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4.3"2 Degrees and Zeros and poles of 4r,

4.3.2-a The Algo¡irhm

In a way similar to (4.3.1), we determine the variables and rarger

function first. We have the following objecrive funcrion:

m'

F = I1.,, (ja,) - zír(ja)l
¡-l

(4.3.2-r)

( ¿ ? )-')\
\ |.vl- 

-/

where n'is the number of given frequency responses points, zítja,) is the

given frequency response and zrrUol¡) is the frequency response of

impedance function e,, which is to be found. 4{jto¡) is rhe rarger function and

a function of the zeros, poles and constant factor, rvhich are to be found:

where eo denotes the zeros ef zrr. pf represents the poles of zrr. m is the

number of the zeros and n is the number of the poles sf zrr, K,, is a constant

factor. K,, md the zeros and poles ef zrr are the variables of the optimization.

The impedance function ¿rr must satisfy the positive real conditions.

Therefore, during the optimization process, the PR conditions must be

checked, after every move of either a single variable search move or a pattern

search move. The technique for PR checking described in Section 4.3.1 is used.

If the program finds the PR conditions are violated by a move, then the move

is a failure and the pole or the zero has to retain its former PR position. In rhis

way, a positive real impedance function 2,, is always guaranteed. Fig. 4.3.2-r

displays a flowchart of the optimization procedure for finding the optimal
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degree of the numerator and the denominator and the

of zrr. The flowchart is simila¡ to that of 2,, shown in

4.3.1-3.

rypes of zeros and poles

Figs. 4.3.1-1, .t.3.1-2 and

set initiai values
xli,i]:= Re(¿i)

x[i + 1,1]:= kn(¿,)

xli,2);=x[i,1] 1Âx

Is 2,, PR ?

x{i,21:- a¡¡,1

Bt(Æ?

xli, 3]: = 2xIi,2)- r[i, 1]

Is e,t PR ?

x[i,3]:= x{i,21

x[i,1]:- x{i,21

Fig. 4.3.2-1 Flowcharr for determining degree of ztt
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4.3.2-b Tests and Results

To find the optimal combination of degrees and types of zeros and poles

of the driving point function 2,,, various examples were tested. Similar to zy2,

to begin tlre test for the optimal degree of z¡¡, a good starting point is needed.

The method of using the group delay to find a starting point is applied here as

weil. Table 4.3.2-L gives the values for the starting point determined by group

delay.

Table 4.3.2-7

zeros

poles

T real part imaginary part

1 900 850

2 TÆ L320

? 680 2242

fr real part imaginary part

1- 600 4æ

2 2lm 11æ

3 6s0 2m0
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Some different combinations of degrees and zeros and poles are tested.

The test results are listed in Table 4.3.2-2.

Table 4.3.2-2

From Table 4.3,2-7, it can be seen that ttre optimal degree difference

between the numerator and the denominator is that the degree of the

numerator is one larger than that of the denominator. With this optimal

degree difference, #4 gave the lowest error.

degree of
numerator

degree of
denomiator

number & types
of zeros

number & types
of poles

error

L 7 6
3 complex

conjugate pairs
1 real

3 complex
conjugate pairs 1..03

2 7 7
3 complex

conjugate. pairs
3 complex

conjugate pairs
L real

1,.85

3 I '7 4 complex
conjugate pairs

3 complex
conjugate pairs

1 real
o.791

4 9 I 4 complex
conjugate pairs

1 real

4 complex
conjugate pairs o.763
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4.3.3 Degrees and Zeros and poles of 2.,

4.3.3-a The Algorithm

In a way similar to (4-3.2), we determine the variables

function for the optimizarion first. The objective function is

F = |þ,"ur) - zi,e to)l
¡-l

and target

(4.3.3-1)

where 4"uto,) is the given frequency response and, q.,(jø,) is the frequency

response of impedance function ;r, which is to be found. znja) is a function

of the zeros, the poles and the constant factor which are to be found:

x",fi1, - zr)

4z=#
fJ(s 

- r,)
(4.s.s-2)

where 4 denotes the zeros of 42, pt represents the poles and. kn. is the

constant factor; and tåese are the variables of the optimization. The real parts

of the zeros and poles must always satisfy the PR conditions. During the

optimization process, the pR conditions are always checked by the pR

checking program to guarantee that the computed impedance function å, is

PR- The flowcha¡t for ttris optimization is the same as the flowchart sbown in
Fig,4.3-2.-1 except for the name of ttre impe.lance function, tåerefore, it is not
given.
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4.3.3-b Tests and Results

The starting point for the optimization is calculated, by the merhod, of
section 4.3.1-b. The real parts and imaginary parrs of the sraning point
determined by the group delay method are listed in Table 4.3.3-1.

Table 4.3.3-1 The sta¡ting point of î.
zeros

poles

4T real part imaginary part
1 780 530

2 3000 1200

3 700 2lm

To find the optimal combination of degrees and types of zeros and, poles

of the transfer function 222, different combinations were tested. Table 4.3.3-2

gives the test results of th¡ee combinations of different degrees and rypes of
zeros and poles of 4r.. For all examples, ttre number of iterarions is 100O. From

î real part imaginary part

1 2500 880

2 600 1400

3 900 2500
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Tabie 4.3.3-2, it is clear that the optimal difference in degree berween

numerator and denominator is one.

Table 4.3.3-2 Test resuit of 2.,

î
degree of
numerator

degree of
denomiator

number & rypes
of zeros

number & qvpes
of poles CITOT

1 I I 4 complex
conjugate pairs

4 complex
conjugate pairs

7?

2 9 I
4 complex

conjugate pairs
1 real

4 complex
conjugate pairs 0.18

a
9 9

4 complex
conjugate pairs

1 rea-l

4 complex
conjugate pairs

1 real
r.9
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4-4 step 2: structures of the Two-port Network

In the preceding study, we have found. some optimal combinations of
degrees and t¡1pes of zeros and poles for ztt, 4z¿rnd iz. Now we wiu cry to find
the nen¡¿ork strucrures. Just as in the arguments we mad.e in secrion 4.2 of this
chapter, 'we 

foresee that a complicated nen¡¿ork structure of a high d,egree (>6)

network is very difficult to achieve at once. Therefore, we divide the whole
network structure into two levels. We call the first one the main stnrcture and
the second one the micro stnrcture. We wilt see that this classification gives us

a rnuch more convenient way to find the opdmal network strucrure by using
the pattern sea¡ch optimization technique.

4.4.I The Main Structure for the Network

In chapter one, five main structures are presented. The T main
structure is used for the example under consideration.

T two-port networkFig.4.4.L
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For the

functions

T

7,,,

two-port network, the relationships

4 ærd 7- artd 211, z¡2 and z, are very

between the impedance

simple, i.e.,

4r:4
Zrr= Zr* Zz= Zr+ z,

hz= 4+ Zr= Zr + z*

(4.4.r-La)

(4.4.L-Lb)

(4.4.L-Ic)

In Step 1, since we only try to find the optimal degrees of impedances

211, 212 and z* with certain types of zeros and poles, w€ can compute either

z¡1,o1 ztzor zr" first. However, in Step 2, we calculate ztz(Z) first and then

2,, æd Zr". From the above equations (4.4.L-La-c), it is clear that z, is a part of

zrr and 2,, for the T structure. Therefore, Zrrand z"zcaÍt have private poles.

In other words, there is less freedom in the choice of poles for z* than for 2,,

and zrr.If necessary, poles and zeros can be added to both z, arrd z, without

affecting Zrr.. h Step 1, we observed that zr2 is not generally required to be

PR, however, for certain cases it must be. Clearly, this is one of those cases.

There are some other general requirements for the realization of z1p zt? afld

22,,b'tJt we will discuss these requirements later.

For the optimization process, not only must the positive real conditions

of the individual impedance functions, but also the two-port positive real

conditions be satisfied. For the T structure, however, as long as each

impedance function is positive real, then the two-port PR conditions are

automatically satisfied. This feature is an advantage, since checking the two-

port PR conditions for each movement of the optimization would be very time

consuming.
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4"4"2 Micro Stnrcture of \z(Zr)

After the main nerwork stnrcture is chosen, the next step is to find the

micro structures of the networks. We must also determine the impedance

functions of the elements of the micro stn¡ctures. From Step 1, a good degree

configuration for z,z is found to be five for the numerator and six for the

denominator for the example under consideration. In order to satisfy the

requirement for the types of zeros and poles o¡ zn, we must choose the

appropriate elemental impedance functions. The chosen elementai impedance

functions must be realizable, that is, they must be realized by a circuir

containing R, L, C and transformer components only. There are several rypes

of elementai impedance functions which can be used for the micro structures,

and of these, we select six. These six elemental impedance functions are:

I. A O/1 circuit, where the degree of the numerator is zero, the degree of

denominator is one, and the pole is a reai number. The impedance functionthe

is

s+b

2. A I/O circuit, where the degree of the numerator is one, the degree of

the denominator is zero, and the zero is real:

z= as+b

3. A L/I elemental circuit, where the degrees of both the numerator and

denominator are 1, and both the pole and zero are real:

as+bz=-s*c
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4. A 7/2 elemental circuit, the degree

degree of the denominator is two, the zero is

complex conjugated pair:
_ qs+ao

s- +brs+ bo

5. A 2/1 elemental circuit, the degree

degree of the denominator is one, the pole is

complex conjugate pair: 
)

_ ozs- +qs+ao
7:-

s+åo

of the numerator is one and the

real, and the poles are real or a

of the numerator is two and the

real, and the zeros are real or a

6. A 2/2 elemental circuit, the degrees of both the numerator and

denominator are two, and both zeros and poies are real or complex conjugate

pairs:
Ja)s- +qs+aoz=*

s'+brs+bo

All six kinds of elemental impedance functions must satisfy the positive real

requirement. Other kinds of impedance functions can be constructed by using

these six kinds of elemental impedance functions.

There are many micro-structures which satisfy the requirements of
degrees and types of the zeros and poles of zr.r. Fig. 4.4.2-1 demonstrates t¡ree

micro-structures.

(a) parallel
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For

nn
Z.: *, 7,'d2

(b) series

(c) series-parallel

Fig. 4.4.2-1 Three Micro structures

n.
parallel micro structure, the relation betweefr ztz artd zr: ;,

is

the

n
5̂

d3

ztz=ztllzrllz,

- 
flrflrfl,

\nrd, + \nr4+ n2n3dl
(4.4.2-r)

For the example being considered, the sum of the degrees of nr , \ and rl' must

be five. Thus if n^ro of them are two, then the third must be 1. and if the degrees

of dt, d, arrd d, are all two, the degree of the denominator of zr2 will be six.
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For the series micro stn¡cture, the relation between Zp and 21, 22, Z3 is

A possibie combination of zt, ?4 aÍrd z, is that all the degrees of the numerarors

are 1, and all the degrees of the denominarors are z to give s/6.

For the series-parallel micro scr-ucture, we have:

ztz = zt* zz* zt

_ \4d, + ry4d, + nr4d,

44d,

ztz=zt+4//2,

_nrryd"+nrn 4+nr\d,
h4d, + nrQd,

(4.1.2-2)

(4.4.2-3)

The requirement that the numerator degree equals 5 and the denominator
degree equals 6 is satisfied if zz or e, has a numerator of degree z and a

denominator of degree 2, and the other two have a numerator of degree 1 and

a denominator of degree 2.

After seiecring the degrees of the zeros and poles for ¿, , Z2 agrrd, 7r, the

next step is to select the types of zeros and poles of the impedance functions

of the network elements. For the optimization process, the input variables are

the constant factor, the zeros and poles of the elemental impedance functions,
and the target function znjcy) is the frequency response of transfer function

e,, which is to be found:

zn(joi) = f (nr,d¡,\,$,nr,4)
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where / denotes the function given in (4.4.2-L, (4.4.2-z) or (4.4.2-3)i r7, n, and,

n3 are the numerators of 21, 22 arLd zo, respectively; dp d, and d, are the

denomínators of 2,, zz and &, respectively. Thus we have the objective

function:

(4.4.?-s)

where F is the objective function of the optimization, and ziret¡,) is the given

frequency response and ztz(ju,) is defined above.

If the series connection is adopted, the poles of three elemental
impedances are already known, since they are the poles çf Ztz. This makes the

starting point easy to determine which is ¿u1 advantage of the series

connection. In order to compare the series connection with the other two

connections being considered, the known poles were not chosen as the

starting point. However, the convergence of the optimization in Step 2 with

ttre series connection is observed to be still faster than with the other two

connections.

A flowcha¡t of this optimization procedure is shown in Fig. 4.4.2-2. The

starting point of the optimization for the network structure is selected as

follows: (1) Select poles and zeros according to the zeros and poles shown in

Table 4.3.L-7 of Step L. (2) For the zeros and poles nor determined f¡om Table

4.3.7-7, select poles and zeros of the same orders, as those listed in Tabte 4.3.1-L.

For example, for the parallel connection, we choose two zeros for two

elemental impedances according to Table 4.3.1-1, and the real zero of the L/Z

elemental impedance is chosen to be 900-the same order of magnitude as those
in Table 4.3-L'1. The poles of e,, z, and h æe also chosen to be the same order

of magnitude as the poles shown in Table 4,3.L-t. Also, zeros and poles of the

series connection and the series-parallel connections are selected in the same
K,

F= É k,rUø,)- zi2ç,¿)l
i-l



way. During the optimization process, the program monitors each elemental

impedance function z, (í:1,2,3). If a move of a pole or azero of zi causes the

impedance function to become non PR, then the move is abandoned. Similar to

section 4.3.1-a, in order to maintain e, PR, a PR starting point is required. By

moving the zeros or the poles of z, further to the left in the complex plane, a

PR starting point can always be obtained. In this way, a posirive real ¿, is

guaranteed.
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set initial values

di,1l:= Re(nt [i])
x[i + 1, ].]:.=.Im (t¿, irl)

Lx,þ,4

x[i,2]:=¡¡¡,11 I A.r

x[i,2):- al¡,1

Bt(Æ?

d,x= l\,x

xlí,3f:= 2 xli,2l- -r[i, 1]

Is 7, pR?

xfí,31:= x[í,2]

&<At?

x[f,1]:- xfi,2l

Fis.4.a.2-2 Flowchart for determining micro stn¡cture
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Table 4-4-2-L displays the results of the three different configurations of
the micro stnrcture. From Table 4.4.2-r, it is easy to see that the results from
both the parallel and the series networks are very close and they are bener
than that from tåe series-parallel connecdon.

Table 4.4.2-1 Results of different micro srructures

(iterarion number = IOOO)

]Jî configuation error

1 parallel 1.048

') senes r.u7

-J series-parallel L.2æ

Because using a series connection makes it easy to determine the

staning point and also gives the best result, we use the series connection for
the micro structure and carry out the computation for the elemental

imped'ance functions. The zeros and the poles of the three elemental
irnperfances zt, i Md a are shown in Tables 4.4.2-2, 4.4.2-3 and 4.4.2-4.

respectively.
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Table 4.4.2-2 Zeros and poles of z,

Rational Funcrion zt

polyRep= prodRep

Numerator Degree:
1

Constant factor followed by Zeros:
real part imaginary parr

1.0605295293 157858580e+2 0.0000000000000000000e+0
-I.t 87 ?9 30 i 02 968 9 S 497 Oe+Z -0.0000000000000000000e+0
Denominator Degree:

2
Constant factor followed by Poles:

real part imaginary part

1.0000000000000000000e+0 0.0000000000000000000e+0
-2.97 O 867 7 43 1 52OS 4O7 90e+2 -2.137 6625 6606 8 5 3 7 3 1 00e+ 3
-2.97 0 867 7 43 I 52OS 4O7 90 e+2 2.137 66256606 85 3 73 1 00e+ 3

Table 4.4.2-3 Zeros and poles of e,

Rational Function z"
polyRep=

prodRep
Numerator Degree:

t
Constant factor followed by Zeros:

real part imaginary part

2.04253369572087 68150e+ 1 0.0000000000000000000e+0
-8.1O8447 IL65217 91 9340e+1 -0.0000000000000000000e+0
Denominator Degree:

2
Constant factor followed by Poles:

real part imaginary part

1.0000000000000000000e+0 0.0000000000000000000e+0
-2.2339044966524438980e+2 -1.1930567158458860050e+3
-?.2339044966524438980e+2 1.1930567158458860050e+3
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Table 4.4.2-4 Zeros and poles sf 2",

Rational Function z7

poiyRep=
prodRep
Numerator Degree:

1

Constant factor followed bv Zeros:
real part imaginary part

8.1208750924862936100e+1 0.0000000000000000000e+0
-2.832799462885 1924380e+1 -0.0000000000000000000e+0
Denominator Degree:

2
Constant factor followed bv Poles:

real part lmagmary part
1.0000000000000000000e+0 0.0000000000000000000e+0

- 3 . 0 3 9 00 8 6 83 26200 1 697 0 e+2 - 5 . 626 I 17 47 9 5 6 5 4029 82O e+2
-3.03 900 8 6 83262001 697 0e+2 5.626 LI7 47 9 5 6 5 4029 820 e+2

Tabie 4.4.2-Z Zeros and poles sf Zn

Rational Function z,n

polyRep:
prodRep
Numerator Degree:

5
Constant factor followed bv Zeros:

real part
2.O7 6 87 040807 6 5 02 9000e+ 2

-3.96 8 5 3 7 24L92907 543 I 0e+ I
-2.590 L67 39 527 45 5 I 4000e+2
-2.5 gOL 67 3 9 527 45 S 1 4000e+ 2
-2.92853 49 1 1 03 1 7893030e+2
-2.92853 49 1 1 03 1 7 893 030e+2
Denominator Degree:

6
Constant factor followed bv Poles:

real part
1.0000000000000000000e+0

-2.97 O 867 7 43 | 52O 5 4O7 90 e+2
-2.97 O 867 743 1 5 205 4O7 9Oe+2
-2.23 3 90 449 66 52443 I 9 80e+ 2
-2.23 3 90 449 6 6 524438 9 80e+2
-3.03 900 8 6 8326200 L 697 0e+2
-3 . 03 9 00 8 6 83 26200 1 697 0e+2

imaginary part
0.0000000000000000000e+0
0.0000000000000000000e+0
1.06785 75 332142838200e+3

- 1.06785 7 53321 4283 8200e+3
1.60605 8 3 17 4 4420O243Oe+3

- 1. 60605 8 3 L7 4 442OO243Oe+3

imaginary part
0.0000000000000000000e+0

-2.137 6625 6606 I 5 3 73 1 00e+3
2.137 6625660685 3 73 100e+3

-1. 1930567 1 5 8458860050e+3
1. 1930567 1 5 8458860050e+3

- 5 . 6261 L7 47 9 5 6 5 4029 820 e+2
5 .626 I L7 47 9 5 6 5 4029 820 e+2
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4.4.3 Micro Structure of Z,

For the chosen T main structure, the impedance

4r-Zr+Zn (4.4.3-L)

Similar to the micro structure of 212, the micro stnrctures considered fot Zt

are the parallel, series, and series-parallel configurations. Since the series

configuration makes it easy to determine the starting point, it gives a better

result for Zrz, and it is simple to express, therefore we use the series

configuration for \, i.e.,

4 =zr+2,1"""2^
n, n" n-: J-r- j.u......+4
d, dz d^

Fig. 4.4.3-1 shows the series connectionfor Zr.

(4.4.3-2)

Fig.4.4.3-l

After selecting the micro stnrcture, the next step is to find the optimal

combination of different degrees of numerator polynomial and denominator

polynomial, and the types of zeros and poles of 4, i.e., the impedance

functions of the network elements. Since the optimal degree of Z,, is 9/8 from

Step 1, it is reasonable to use a degree of 9/8 for the optimization. The zeros

and poles of 2,, from tTre results of Step L are adopted as the starting point.
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Combinations of different rypes of elementai impedance functions are tested

by optimization. Since the optimal degree d.ifference between the numeraror

and denominator has been found to be one, the degree d,ifferences for all the

tests are set to one.

The test resuits are listed in Table 4.4.3-L. Combinarion No. 1 and

combination No. 2 l¡.ave the same rype of impedance functions, but

combination No. t has a fixed denominator that is idenrical to the denominator

of zn.

The resuits of different combinations of elemental impedances are listed

in Tabie 4.4.3-L. From Table 4.4.3-L the foüowing is found:

1. Combination No. 2 gives the best result.

2.. No. 1 gives a poorer result than No. 2, because its poies are fixed.

3. The 2/? combination does not have advantages over rhe L/2 combinaüon.

From these test results, it is ciear that combination No. 2 is the best

configuration.

Table 4.4.3-I Test results of elemental impedance for 2,,

++

frL

eiemental
impedance

L/2

t+',

elemental
impedance

2/2

#3
elemental
impedance

L/O

error

1 + I 1.55

2 À.' 1 0.763

3 4 1 1.06
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4"4"4 Micro Structure of z^

For the T main suucture. we have

4z=Zr*Zrz (4.4.+r)

Similar to the micro stn¡cture o¡ Ztz, the micro srn¡ctures considered for Z,

are the parallel, series, or series-parailel configurations. Since the series

configuration is good for z* and Z, and is also simple to eKpress, we use the

series configuration for Z^, i.e.,

Zs = z, + 4+.. . ... z^

ntLn
=-f,+ i+......+s

dl d2 d^
(4.4.+2)

The series connection of Z, rs shown in Fig. 4.4.+L.

Fig.4.4.*1 Series connection of 23

In a way similar to Section 4.4.3, we ca.rry out optimization for the micro

structure of Zr. Combinations of different types of elementai impedance

-,1t+



functions are tested. Since the results of Step 1 indicate that the optimal degree

difference is that the numerator is one degree larger than the denominator,

all combinations are set according to this result. Once again, combination No. 1

has the same ttpe of zeros and poies as thar of No. 2, but its poles are flxed, i.e.

equal to the poles of zn Test results of 3 of these combinations are presented.

in Tabie 4.4.+1.

From Table 4.4.+I, it is found that:

1. No. 2 combination gives the best resuit.

2. The 2/2 combination gives a poorer result than rhe 1,/2 combination.

4. No. 1 with fixed poles gives a poorer resuit than No. 2, with non- fixed poles.

Table 4.4.+1 Test results of elemental impedance for 4z

î

J+1
îL

elemental
impedance

L/2

elemental
impedance

2/2

#3
elemental
impedance

UO

erTor

1 4 I r.64

7 4 I 0.69

3 4 I 0.86
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4.5 Step 3: Elemental Circuits

The last step of the three-step approach is to find the elemental circuits

of the two-port network. First we select some elemental circuits on which to

run the optimization test, and then we pick the most satisfactory one. To run

the optimization program, we also need to determine the variables and the

target functions. In Step 1 and Step 2, the target functions are always tJle

frequency responses of ztt, zrz and zzz, and we only need to run the

optimization program once for each impedance function. In the optimization

of Step 3, the input variables are the values of the elemental circuit

components and the target functions are the frequency responses of the

elemental impedance functions. The frequency responses of the elemental

impedance functions are the results from Step 2. If the errors of all these

individual impedance functions are very small, then the frequency responses

of ztt, ztz and z* also have relative small error, because of the simple

relationship between the impedances. The elemental circuits a¡e determined

as part of the optimization process. In the optimization of Step 3, a percentage

step increment less than 100% is used, so that if the initial elemental vales are

all set to be positive, then the minimum elemental values will be greater than

zero. Therefore, the PR requirement for the elemental circuits is

automatically satisfied. This is an advantage of a percentage step increment.
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4.5.1 Elemental Circuits for Z, (z,r)

In step 2, the optimal micro sûucture was determined-tlree l/Z circuits
in a series connection-we call them circuits 1, 2, and 3. The corresponding
elemental impedances i,, z, and õ were found as well. For the oprimization

procedure for the elemental circuits, we have the objective function

4 = ) k,(ir,) -z'^(ia)l n: L,2,3 (4.s.1-1)

where Fo is the objective function of the optimization for the elemental

circuit n, +(ja,) is the known frequency response of elemental impedance {
from the optimization of step z, and. z,(jat,) is the frequency response of
elemental impedance ç of the elemenml circuit n which is to be found.

The input variables for the optimization are the values of the resistors,

capacitors a¡d inductors of the elemental circuits L, Z and 3. The target
functions are txe frequency responses of zt, , and z3 which are the

impedances of the elemental ci¡cuits 1, 2, and 3, respectively. The target

functions are functions of the element values in addition to frequency:

z,(jtÐ,) = f,(ø,.xr¡ (4.s.L-2)

ZUto,) = .f 2(ø,xo¡ (4.s.1-3)

zr(ja,).= .fr(to,,xo)

Tl

(4.s.14)



where the .rÈ denote the values of resistors, inductors and capacitors.

The exact functional dependencies fi, frMd h úe determined by the specific

circuits and are listed in Appendix C.

In order to satisfy the PR requirement, the values of the circuit

components must aiways be positive. Fig.4.5.1-1 shows the flowchart of the

optimization procedure for finding the elemental circuit values of circuits 1, 2

and 3. Since the number of variables is much smaller than that in the

optimizations of Step 1 and Step 2, the optimization for the elemental circuits

usually converges very quickly. The choice of starring point does not have a

great effect on the optimization process, so the initial values can always be

one.
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set initial values

.r[i,1]:= x[i]
x[i + 1,1]:= xli + 1]

xli,2j:= xli,ll! br

Is d¡,21positive ?

xfi,2);= xli Jl

pattern
search 

N

úi,3f:= 2xli, 2l- xli,ll

Is x[i,3] positive ?

x|i,3l:=xli,27

x[i,1]:=x[i,3]

di,ll: =lí,21

Fig. 4.5.1-1 Flowchart for finding the circuit
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Some elemental circuits were selected for testing. The test results for ¿,

are displayed Ín Tabie 4.5.1-l-. It can be seen that elemental circuit No. A2 is rhe

best one. The test results of 4 are listed in Table 4.5.L-2. It is clear that, again

the best circuit is elemental circuit No. 42. Table 4.5.1-3 gives the results for

the elemental circuits for er. The best one is again elemental circuit No. A2 .

Table 4.5.1-1 Eiemental circuits for z,

Tabie 4.5.L-7 Eiemental circuits for Z.

t+
eiemental circuit
number EITOT

I A2 1e-10

2 D4 237

3 D8 L254

4 A7 b5¿t

l+
elemental circuit
number

etror

1 A2 1e-10

2 D4 351

3 D8 L29t

4 A7 137
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Table 4.5.1-3 Elemenral circuits for z.

l+Ê
elemental circuit
number

CITOT

1 A2 le-10

2 D4 s36

3 D8 LOz6

4 A7 ?53

Since the errors of the elemental circuits 21, 22, and 4 are all very

small, the frequency response of 2,, is satisfactory. No further optimizaüon

procedure is needed. The eiemental circuit No. A2 is used fot z, z2, oÍtd Zr. Fig.

4.5.I-2 shows the circuit diagram of circuit No. 42. The results for rhe circuit

components of 21, 22, and 4 aÍe given in Tables 4.5.L-4,4.5.1-5 a;;;d 4.5.I-6,

respectively. The complete circuit diagram of 2,, is shown in Fig. 4.5.1-3.

Fig. 4.5.1-2 The elemental circuit No. A2
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Table 4.5.L4 Componenr values of z, (l/2 degree)

Table 4.5.1-5 Component values of 4 (I/2 degree)

Table 4.5.1-6 Component values of z, G/2 degree)

component number value of component

\ 2.30479118810222895e-5 H

x2 2.23060755213179068le.1 o
x3 9.429251825219451879e'3 F

x, 2.736462467827653723e-3 c¿

comDonent number value of component

\ 1.414854339322355025e-5 H

h 5.5853257997854581 58e-2 o

h 4.895880064983800?36e-? F

x^ 1.1472271 58797669458e-3 o

comDonent number value of component

x1 2.069140893283955348e'4 H

h 1.401407936044170506e-1 e

\ 1.231394386209970877e-? F

X, 5.860219726592605622e-3 o
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Fig.4.5.1-3 The circuit diagram for Z, (zrr)

4.5.2 Elemental Circuits for {,

First, we adopt the best combination from Step 2, i.e. combination No. 5
for the optimization of step 3. The elemenal circuits for combination No. 5 are
four I/Z circuits and a circuit consisting of one inductor. In a way simila¡ to
that for 7r, we conduct the opümizations to find. elemental circuits for Zr.

Different elemental circuits were tested for each elemental impedance. The
elemental circuit No. A2 tu:ned out to be the best for 4, 4, &, and zo. The

circuit for u, is an inductor. The final results of the values of the circuit
components are shown in Tables 4.5.2-L to 4.5.24. The value of the inductor¿s

is 6'1912e'5 H. The ci¡cuit diagrarn for I is presented. in Fig. 4.s.z-l.The zeros

and poles of impedance 4 are d.isplayed in Table 4.5.2-5.
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Table 4.5.2-l Component values of ¿,

Table 4.5.2-2 Component values of ¿

Table 4.5.2-3 Component values of ¿"

84

component number value of comoonent

xt 3.63853641991 321 2O44e5 H

h 4.050886005793401554e+0 c¿

\ 2.991 261 563497029355e-3 F

X^ 1.08996569721845?937e-? o

comDonent number value of component

xr 1.23676095?6399?7769e-5 H

4 1.52?737129152054306e-1 o

h 2.14491933275?727387e-2 tr

x" ?.673188700317238956e-3 o

comDonent number value of component

x1 4.491453690298754601e-6 H

h 9.300862490738797453e.2 o

x3 7 .8813591 62694534314*2 F

X, 1.78572423871561 2934e-3 o



Table 4.5.2-4 Component values of ¿o

(a) series connection for Z,

(b) No. A2 eiemental circuit for zy,Z2,z3 and zo

Fig. 4.5.2-1 The circuit for Zl

(c) zs

component number value of component

^l 7.777478478977115902e-6 H

h 3.7?562849506980914Oe-? o

^3
6.28094173061 Q9682?4e-? tr

3.587668789185950443e-3 c¿
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Table 4.5.2-5

Rational Function Zt

polyRep:
prodRep

Numerator Degree:
9

Constant factor followed by Zeros:
real part

6.19 7267 099 47 43 3 65 300e-5
- 1 .5 3 3 9 1 49057 7 2O7 03 470e+2
- 4.3 25 029 437 07 63 40925 0 e+2
- 4.3 25 029 437 07 63 40925 0 e+2
-2.643 59 497 0 5 4L47 06 5 3 0e+ 2
-2.643 59 497 05 4L47 06 5 3 0e+2
-2. 5 5 603 13 6524091 3 2 83 0e+2
-2. 5 5 603 13 6524091 3 2 830e+2
-I .3 43 57 3 5 2627 27 00 629 0 e+2
- | .3 43 57 3 526?7 27 O0 629 0 e+2

Denominator Degree:
I

Constant factor followed by Poles:
real part

1 .0000000000000000000e+ 0
-1.9 10442423 L 59IO9 1 03 0e+2
-1.9 IO42423 1 59109 1 03 0e+2
-2.6IL 57 6823 65 I 83 65 7 I 0e+2
-2.61157 682365 183 65 710e+2
-2.67 0009 697 7 49 L9 41 62O e+2
-2.67 OO09 697 7 49 I 9 4 I 620 e+2
-4.443 | 57 8O7 457 3208 2 5 0e+2
-4.443 L 57 8O7 45 7 3 20 825 0 e+2

imaginary part
0.0000000000000000000e+0
0.0000000000000000000e+0
1.4647 O326L06307 7 3 1 00e+3

-1.46 47 O326L06307 7 3 1 00e+ 3
I.69993 797 47 8555 93 1 60e+3

-I.69993 197 47 8555 93 1 60e+3
2.0 4462245 1207 8 87 6 440 e+3

-2,04462245 1 2078 8 7 6440e+3
3. 895 6876 9 825 6219 L 47 Oe+3

-3. 8 9 5 6 8 7 69 825 6219 I 47 0e+3

imaginary part
0.0000000000000000000e+ 0
-3.029220937 7 21 67 8 5 7 80e+ 3
3 .029 2209 37 7 21 67 85 7 80e+ 3

-1.9 410 417 97 283 I 67 837 0e+3
I.9 4I04I7 97 2831 67 8370e+3

- 1.67 5 6 80801 66970220OOe+3
1.675 6808 016697 O22000e+3

-I.43 0663 9 887 8227 5 00 1 0e+ 3
I.4306639 881 8227 500 1 0e+3
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4.5.3 Elemental Circuits for Z,

ln a way similar to section 4.5.2, we conduct txe opümization to fi¡d.
elemental circuits for Zr. Different elemental circuits were tested for each

elemental impedance. The elemental circuit No. A2 nrrned out to be tbe best
for e' , 4, 4, and zo. The circuit for ã, is an ind.uctor. The value for q is

3'7400e'5 H' The results of the values of the circuit componenrs are shown in
Tables 4.5-3-1 ro 4.s.3-4. The circuit d.iagram of z, is presenred. in Fig. a.5.3-1.
The zeros and poles of impedance z, are d.isplayed in Tabte 4.5.3-s.

Table 4.5.3-1 Component values of¿

Table 4.5.3-2 Component values of ¿

component number value of component

7.447990601S52763502e-6 H

1 .?3?245238 1 32263403e-1

1 .730405086 1 201 6ZZ O9e-Z

2.851501617919038618e-Z a

component number value of component

3.73084?928895938333e-6 H

9. 7505 09 I 546 4TTZ O?Z 1 e-3

3.05297 66266 01 924?84e-1

7.87 4s8186673S820868e-1 4

g7



Table 4.5.3-3 Com.ponent values of ¿.

Table 4.5.3-4 Component values of zo

NO. A2

(a) elemental circuit for Z¡,22,23 and 7o

88

comDonent number value of component

xl 1.652949684957860686e-6 H

\ 8.817033252766961848e-1 o

\ 3.227125187256059007e-1 F

X^ 4.07417456011727O216e-4 C¿

component number value of comDonent

xl 2.198608994795953348e-22 H

h 1.554179451801474000e-9 o

\ 1.206025440000000000e+8 F

v. 1.031826514155010000e-23 o

(b) zs



(b) series connection of Z"

Fig. 4.5.3-1 The circuit of Z^

Table 4.5.3-5

Rational Function Z^

polyRep: prodRep

Numerator Degree: 9

Constant factor followed by Zeros:

real part

3.7 42121 3 880250026430e-5
-7.69 I O I 423 6237 06 67 2O0 e+0
-2.69 | 0 I 423 6237 06 67 200e+ 0
-8.1 15 184403 L9646277 80e+0
- L .6 8 4597 0 4L7 45 5 41 4220 e+2
- I .6 8 45 97 O 4I7 45 5 41 4220 e+2
-L.2LO7 5 40840 1 41 1 1 095 0e+2
-I.2107 5 40840 I 41 I 1 095 0e+2
-2.33 87 87 600 1 5 88049560e+ 2
-2.33 87 87 600 1 5 88049560e+2

Denominator Degree: 8

Constant factor followed bv Poles:

real part

1 .0000000000000000000e+0
-2.3 45 09 5 459 13 47 3 1 3 820e+2
-2.345 09 5 459 13 47 31 3 820e+2
-I.67 9 65 L 5 49 62253 905 20e+ 2
-L.67 9 65 L 5 49 62253 905 20e+2
-L.249967 639 177 L 693 5 3 0e+2
-I.249967 639 L7 7 L 693 5 3 0e+2
-2.69 LOI 423 6237 066 7 200e+0
-2.69 tOL 423 6237 0667 2OOe+0

imaginary part

0.0000000000000000000e+ 0
-6. I 4I 1225 67 5 45 127 IO 40 e+ 6
6. L 4I L225 67 5 45 127 10 40 e+ 6
0.0000000000000000000e+0
9.5730041 7 1 5 1003 90550e+2

-9.57 30041 7 1 5 1 003 905 5 0e+2
1.3 8883 985 96763 83 2070e+3

-1.3 8883 98596763 83 2070e+3
3.046647 7 09 877 45 88 880e+3

-3.046647 7 09 87 7 45 8 8 8 80e+ 3

imaginary part

0.0000000000000000000e+0
-2.77 56358654829 5 3 9070e+3
2.7 7 5 63 5 865 4829 5 39070e+ 3

-9.2I 811 93 63 I 803 3 L47 2Oe+2
9.2L 8L1 93 63 I 803 3 L 47 20e+2

-1.3 6377 647 029 43 I 5 03 40e+3
1.3 6377 647 O29 43 1 5 03 40e+3

-6. L 41, L225 67 5 45 L27 I0 4Oe+ 6
6.1 41 1225 67 5 45 L27 LO4O e+6
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4.6 Results of zrt, ztz and z,

The frequency response of 2,, found in Section

in Fig. 4.6.1. The frequency response of e,, i.e. zrr(jro;)

¿,,U4¡,)is calculated using Equation (4.6.i):

4.5 i.e. zrr(jat¡) is shown

is presented in Fig. 4.6.2.

zrr(ia¡) = zr(ia\)+ zr(ia) (4.6.r)

Fig. 4.6.3 displays zrr(ja)-the frequency response of ¿"r. zrr(ja¡) is calculated

using Equation (4.6.2):

zrr(iro) = zr(iat)+ zr(ia,) (4.6.2)

The frequency response of Zt is the best one of the three frequency

responses. The frequency response of ztz is quite good except at the higher

frequencies, and the frequency response of z, is not as good as zr2. In the next

section, we will analyze the source of the errors and how to improve the

accuracy of the frequency responses.
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+f- given z12.re
+ comouted z12.re

0.

0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.la. Frequency response of the real part of ztz

.+l-
*

given z12.im
comouted z12.im

0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.1b. Frequency response of the imaginary part of zn

U.

-0.
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0.

0.3

0.

given z1 1.re
computed z1 1.re

0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.2a. Frequency response of the real part of ztt

--__+t_ given 21 f .im
* computed 21 f .im

0 100 200 300 400 500

Frequency (Hz)

Fig. 4.6.2b. Frequency response of the imaginary part of zt

0.

0.
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U.

n

0.
400100 200 300

Frequency (Hz)

500

Fig. 4.6.3a. Frequency response of the reai part of Zzz

200 300

Frequency (Hz)

Fig. 4.6.3b. Frequency response of the imaginary part of zzzo

.......F givenz2Z.im
+ comouted z22.im
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4.7 Improving the frequency responses of 2,. and 2.,

tn this section, we will first find the reasons for the poor frequency

responses of impedance functions i," and 42. Then. we will try to find

solutions for these problems to improve the accuracy of the frequency

responses. Initially, we will work on the frequency response of :,r.

4.7.I Error analysis for z*

The error of tlre frequency response of i,tz occurs at the higher

frequencies due to the fact that five zeros and six poles of :,= c¿rn not generate

three valleys in the frequency response curye. ln order to improve the

frequency response at the higher frequencies, the number of zeros of the

numerator and the denominator must be increased. Table 4.3.?, shows tbe

degree combination 7 /8 is a good choice, therefore, this 7 /8 degree

combination is adopted. The starting point is chosen as the follows: the

imaginary part of ttre new zero and pole are chosen equal to the highest

frequency of the frequency response curve and the real part of the new zero

and pole are chosen equal to the nearest existing pole(zero). In this way, the

initial error is equal to the error of the previous oprimization and the

optimization process will move the poles and zeros smoothly starting from the

chosen point, this leads to fast convergence.
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4.7.2 Eror analysis for 2,,

To find the source of the large error in the frequency response of zy,

we analyze the optimization process and find that the error is not due to

the oprimizarion progrâm, but due to the fact that the given real part of z, at

some frequencies is smaller than the real part of 212. An analysis of the T

structure given below shows that it can not realized responses with

Re(¿¿) < Re(z,z). However, if a transfonner is cascade with the T structure, it

may be possible to realize the response. The T main sructure is shown in Fig.

4.7.1.

Fig. 4.7.1

From Fig.4.7.I, we have:

zr, = Zr+ Z,

-7L12-4t1 -u2

zr, = Zr+ Q

and therefore 4, = zr, - Zrz

7 --n-<tz

7=2"-2"
IÍ 4, Z. ætd Z, æe P& then we have:

Re(z,r)>Re(z,r)à0

Re(zz)2Re(e,r)>0

Va¡

Vro

(4.7.I-L)

(4.7.r-2)
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Equadons (4.7.I-t) and (4.7.I-Z) impty :

Re(¿,,)Re(irr) è Re=(¿,.) Vo (4.7.r-3)

If given ztt, z,r and e., satisfy the PR cond.itions of Section 2.2 and
equations (4.7.1-L) and (4.7.I-Z), rien 2,, 4 and 4 are pR. Therefore,

equations (4.7.L-t), (4.7.j.-Z) together with the pR condirion of Secrion Z.Z are
the necessary and sufficient pR conditions for zr, 4, ed z, to be pR

Since the given Re(¡rz) and Re(zrr) of the Hyd.ro Example do not satisfy

equations (4.7.I-L) aad (4.7.L-2), 4z can nor be reatized by a pR4. To solve this

problem, a transformer must be added to the T network.

Fig. 4-7.2 shows a T network with a transformer cascad.ed,.

Fig. 4.7.2

From Fig.4.7.2, we have

zrr- Zr+ Zn

Zlz-

4=nz,
Zt=2,t-f,Ztz

Zt = n' zr, - n4r--n(n 4z - Zrt)

z,
4t=-

n

, *.r,
n-

and



If Zz is PR, then Re(n2,, ) = nRe(zrz ) à 0 V a

if Z, is PR, then Re(zrr) > nRe(z,r) > 0 V o:

if .2, is PR, then n2 Reçzrr) > nRe(e,r) > 0 Vro

From equation (4.7.1-6), we have

(4.7.11)

(4.7.1-s)

(4.7.1-6)

lnlRe(zrr) > lR"(.,r)l Ya

1 -,,_,ool@l
Æ>lnl>'^äi Re(¿rr)

@ Re(¿,,)

1, *olRt(qr)l,or*l 
Rt(t,, )l

. @ Re(¿rr) (t) Re(eæ)

Vice versa, for given 211, 212 artd zrr, if

For equation (4.7.I-4), if rz > 0, then

Re(z,r)>0 Va¡

ú n<0 then

Re(e,r) < 0 Vot

From equation (4.7.L-5), we have

t ,lRe(¿,r)l
lnl 

- Re(2,,)
Va

and therefore

I t'o*lR"(t,r)l
14 @ Re(e,,)

Similarly from equation (4.7.1-6), we have

¡r¡ r ,oolR"(t")la Re(¿z)

Therefore, we have

Which implies
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a) Re(zrr)>O Vø, or

b) Re(zrr) <0 Vø

and c)

Similarly, we have

F"tqrX =lrlne(2,,) V ø

nRe(4)<n'Fte14) yø

þdþt(E,l<Re(4,) Vø

and then nRe(qr) s R{.r) y ø

Therefore, the necessary and sufficient conditions for the realization of a T
network cascaded with an ideal transformer are [3O]:

Re(err)s0 or Re(zrr)>0 Va ft.7.r-Ta,b)

and

%"H#r.ffi=,
(4.7.1-7c)

1 = **lRt(<" ì -u, f 
R{ qr I(,) Re(zrr) (D Re(¿æ)

then, if a) holds, choose ,s0,and if b) holds,choose f,<o,then in both cases

nRe(qr) > 0 Vø

Now choose l{ so that

ø Re(e,,)

and then
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Summarizing: two nerwork süructures for rearizing positive real two-
port functions have been discussed: 1) the simple T strucrure, and Z) a T
structure cascaded wittr a transformer. For practical realizations, usually the
simplest possible network strucntre is adopted. For the Hyd,ro Example, there
are only five frequency points at which Equation (4.7.I-Tc) is not satisfied.
However, it is very close to tie requirement of Equarion (4.7.L-7c). we will use

the structure with a tra¡lsformer to approximate the positive real nruo port
function for the Hydro data.
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4.7 .3 Tests and Results

The T main structure with a transformer used for the optimization is

shown in Fig. 4.7.3. The transformer ratio n:o.82 is found to be a good choice.

Fiç.4.7.3

The series connected micro structure is used for the realization of the two-port

impedance function. The degree combination of 7 /B is used for the

optimization. We apply the group delay method to find a srarting point for the

degree combination of 7/8. Then we obtain a better result for the frequency
response of 4r. Fig. 4.7.4 shows the frequency responses of the real part and

the imaginary part of 42. Following this, we obtain a better result for the

frequency response of 4z as well. Fig,4.7.5 shows the frequency responses of

the real part and the imaginary part of 42. The frequency response of en is

shown in Fig. 4.7.6. The circuit diagram is shown in Appendix D.
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computed z1Z.re
given z1 2.re

o 1oo 2oo ;mo
Frequency (Hz)

Fig. 4.7.4a Frequency response of the real part of 4,

computed z1Z.im
given z12.im

o ioo 200 300 4oo 500

Frequency (Hz)

Fig.4.7.4b Frequency response of the imaginary parr of 4,

o.

o.1

o.1

-o.1

-o.
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+- computed z??re-+- given ZZZ.re

0 100 200 300 400 500

Frequency (Hz)

Fig.4.7.5a Frequenry response of the real part of 4,

o.2

computed z22.im
given ZZ?.im

O 1Oo 2OO 3OO 4OO SOO

Frequency (Hz)

Eg. 4.7.5b Frequenry response of the imaginary part of 42

o.

o.

o.1

o.1
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o.4

0.3

o.?

---4-
+

computed z'l1.re
given zl 1 .re

rro 100 200 300 400 500

o.1

o.o

Frequency (Hz)

Fig.4.7.6a Frequency response of the real part of 4r

--t__+ computed z'l f .im
given z1 1.im

o 100 ?oo 300 400 500

Frequency (Hz)

Frg. 4.7.6b Frequency response of the imaginary part of e'

o.

o.

0.1
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4.8 Discussion

First, we sunmarize the basic procedures of the three-step optimization

approach as follows:

(1) Step 1: determine the optimal degree and types of zeros and poles of

the transfer functions z', Ztz ñLd zu.

For the oprimization process, the input variables are the zeros, the poles

and the constant factor of the impedance function to be found. The target

function is the frequency response of the impedance function to be found. To

begin the optimization process, a starting point is needed. In general, the

group delay method can provide a quite accurate starting point. When the

given frequency response data does not contain enough information for the

group delay method, then an optimization process may be required to

determine some additionai poles or zeros for the starting point. For each

degree combination, a choice as to the type of zero and pole needs to be made.

We can assign as many conjugate pairs as possible, and then a real zero or a

reai pole. For the degree of the numerator to be larger than that of the

denominator, a zero at 0 must be assigned to the numerator. The optimization

procedures are the same for zr., ztz Md 4r.

(2) Step 2: determine the network structure and the elementai

impedance.

For the optimization process, the input variables are the zeros, the poles

and the constant factor of the elemental impedance function which is to be

found. The target function is the frequency response of the impedance

funcrion. First we choose the main srructure, then the micro stnrcnrre. Second,

we determine the types of zeros and poles and the degree of the eiemental

functions according to the chosen network structure and the impedance
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function found in Step 1. In the above Hydro E,xampre, with chosen T main
structure and series micro strucnrre, with one real zero and nruo complex
conjugate pairs of zeros and three complex conjugate patrs of poles of ;r,
found in Step 1, we find the form of the elemental impedance funcdon-three
impedance funcrjons with one real zero and a complex conjugate pair of zeros.
The initial point of the optimization for Çz cæ easily be determinscl ¿qse¡.ring
to ttre found zeros and poles of zrz. ln a similar way, we can determine the
nerwork stnrctures and elemental impedance functions of :¡¡ and Gr.

(3) step 3: find the values of the components of the elemenra-l circuits.
For the optimization process, the input variables are the values of the

components of the elemental circuits. The target functions a¡e the frequency
responses of the eiemental impedance functions. To sta¡t the optimization
process' some initial values of the elemental circuit need to be assigned. The

initial values can all be 1.

From the above example of a two-port equivalent network, we c¿ux

conclude that the deveioped tlree-step approach can yield a good result for
modeling a power system. Also, we find.:

L' The ttrree-step approach divides the whole modeling problem into
small parts making it easier to solve each small parr and, ttren finallv the

whole problem.

2. The modified pattern search is a useful and powerful d,irect search

optimization techrrique. For the Hydro Example, rhis mettrod was able to ñnd
the optimal values at each step of the optimization procedures.

3. In Step 3, to find the values of the network elements, the elemenral

circuits wittr good moving abiliry play an important role in rhe optimization
process.
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4- In step 1, the solutions for the impedance functions are not unique

i.e., there are several impedance functions that have frequency responses

close to the required one.

5. In the optimization process of Step 2, the target functions are always

the frequency responses, therefore there is only one error. This has

advantages over using the zeros and poles of the impedance function as the

target function. Since the problem is to find a nenvork that has a frequency

response very close to the given one, if zero6 and poles of an impedance are

set to be the target function an extra error will be introduced. This is due to the

fact that, for a given frequency response, a perfectly matched impedance

function is not achievable in general.

6. It is noted that it is very important to have a good fit at 60 Hz and if
necessary this can be achieved by introducing a weighting function in the

objective function.
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Chapter 5

More Examples

5.1- The Second Example

In Chapter 4, the T network structure is used for the Hydro Example and

a good result is obtained. In order to prove the effectiveness of the proposed

optimization method, some more examples need to be done. In this Chapter, the

II two-port network will be used for the realization of two-port networks for

two more examples (the data was obtained from A. Gole, X. Hua and S. Elez) and a

ladder two-port network (the data was obtained from G. O. Martens) will be used

for one example. For the two examples using the lI two-port network, the

impedance functions are used in one example and admittance functions are

used in another example.

Frequency responses of an ac system model [41] are shown in Figs. 5.1.1,

5.1.2 and 5.1.3:

given z1 2.re
given z1Z.im

400

300

200

i00

0

-1 00

-200

-300
6000 200 400

frequency (Hz)

Fig.5.1.1

LOl
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1 000

800

600

400

200

0

-200

-400

-600
200 400

frequency (Hz)

Fig.5.i.2

400

frequency (Hz)

Fig. 5.1.3

We will follow the optimization procedures described in Chapter 4 to carry out

the optimization for the degrees of Z1y, 212 and z, in the next section.

given z1 1.re
given z11.im

given z2?.re
given z22.im
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5.2 step 1: The degrees and types of zeros and poles
of zrr, zn and z,

ln order to find the stardng point tle group delay ef ir: is calculated.

The group delay curye sf Zrz is shown in Fig. s.2.1. It is easy to see that 1,, has

tvvo complex conjugate pairs of poles. The esrimated values of these poles of i,r.
are listed in Table 5.2.1. However, no complex conjugate pairs of zeros are

found from ttre group delay. Therefore, the zeros of í,o must all be real.

tlro
1.0 r

0.8

0.

0.

0.2

O.Oh-r----Tr l t l, l, t , t , l,l,l, t , t, Ttr r l, I0 100 200 300 400 5oo 600 700 B0o

frequency (Hz)
Ío=LQ

Fig.5.2.1

Table 5.2.1 poles of ttre starting point

# real part rmagrnary pa.rt

1 1ZO 1 700

2 180 3000
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Since group delay can not be used to find the number and magnirude of

the real zeros and poles, we must apply the optimization program to test

possible real zeros and poles. We test degree combinations of U4, 3/4, 4/4, 3/6,

4/6 and 5/6. The best result comes from the degree combination 3/6. Since the

given e,, is not PR, the optimization procedure for z* does not have PR

constraints.

The starting point for 2,, is also calculated using the group delay

merhod. The group delay curve is shown in Fig. 5.2.2. The zeros and poles for

the starting point are listed in Table 5.2.2. One complex conjugate pair of zeros

is found. The poles of 2,, are very close to those of \2.

300 400

ftequency (Hz)

øo-100

Fiç.5.2.2

et e0
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t+ real part imaginary part

I 450 2650

Table 5.2.2 Zeros and poles for the starting point

zeros

poles

1+ real part imaginary part

1 100 1750

2 500 3200

In order to find the optimal degree combination, we use the optimization

program ro rest degree combinations of 5/6, 6/6 and 7 /6. The best combination

is found to be 5/6. For the optimization of ztl, the PR conditions must be

satisfied.

The starting point for z* is also calcuiated using the group delay

method. The group delay curl/e is shown in Fig. 5.2.3. The zeros and poles for

the starting point are listed in Table 5.2.3.

Using the optimization to test 5/6, 6/6 a¡td 7/6 degree combinations, we

find the optimal degree configuration for zr, ís 5/6. The PR constraint is also

applied to the optimization process for zzz.
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0.8
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o.4

0.2

0.0

-o.2
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frequency (Hz)

zo =1O

Fig.5.2.3

Table 5.2.3

zeros

poles

# real part imaginary part

1 80 1 900

# real part imaginary part

1 14
1700

? 150 3200

LLZ



5.3 Step 2: The network strtrcture

Fig. 5.3.1 shows a fI two-port nework.

tlre relation between z, and Zr, 4. attd Z, is

nrdrn,
L12 - nrdrd,+n drdr+nrdrd,

rh(drnr+ n dr)

nrdrdr+ n drdr+ rydrd,

nr(n,dr+ drry)

\drdr+n drdr+ryd,,d,

We also have

.lt -

and

For the fI two-port network,

(s.3.1)

(s.3.2)

( s.3.3 )zzz =

From (5.3.1) to (5,3,3) it can be seen î}r:at zr2, z1y ead z, have the same poles,

i.ê., Z, and zr2 do not have private poles, and this is necessary for using a fI

two-port network to realize the two-port impedance functions.

Fig. 5.3,1 |I two-port network

From Section 5.2, it is found that the complex conjugate poie pairs of 211,

2,, artd z* are very close, therefore, it is possible to used he fI wo-port

network to solve the two-port network modeling probiem.
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The optimization process for the lI main network structure is different

from that for the T main structure. When the T structure is used. the
optimization for 4z cm be carry out alone, but when rI main network

structure is used, the optimizations for {1, 4z ffid 42 are interdependent. That

is, 4,, 4 æñ \ have to be determined together. AIso, to start the optimization

process, the number of poles and zeros of zr, zq and \ need to be determined

first. Equations 5.3.1, 5.3.2 and 5.3.3 impose some restrictions on the degrees of

1,7" and Q. A combination of degrees of 4,2, &d z, which satisfies the

imposed degree restrictions is: 1./2 for e, r/o îor z" and z/3 for \. For the

optimization of step 2, the objective function includes the frequenry responses

of Zr, Q and 4.Tlne optimization process of step 2 takes a much longer time

than that of step L, to reach the optimal point. The found impedance functions

are listed rn Tables S.3.1, 5.3.2 and 5.3.3.

Table 5.3.1

Rational Function .{,

polyRep: prodRep

Numerator Degree:

1

Constant factor followed bv
real part

2.91 51 i 86053 158O452æe+ 5
-I.5 869 9927 63 43 OL97 6BOe+ 1
Denominator Degree:

2
Constant factor followed by

real part
1@o

-7 .629207 1,OOl. O5 68 L OO6Oe+ L
-7 .629207 LOl O5 681 OO6Oe+ 1

Zeros:

imaginary parto.Wo
O.W+O

Poles:
imaginary parto.@o

-1.365 8223 1.1O397O25 24Oe+3
t.3 65 8223 tLO397 OZ 5240e + 3
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Tabie 5.3.2

Rational Function Z,
polyRep= prodRep
Numerator Degree:

1

Constant factor followed by Zeros:
reai part imaginary part

L.7360363?58562693040e-1 0.0000000000000000000e+0
-2.67 1990677969727793Oe+l 0.0000000000000000000e+0
Denominator Degree:

0
Constant factor followed by Poles:

reai part imaginary part
1.0000000000000000000e+0 0.0000000000000000000e+0

Table 5.3.3.

Rational Function 23

polyRep= prodRep
Numerator Degree:

2
Constant factor followed by

real part lmagmary part
0.0000000000000000000e+ 0
0.0000000000000000000e+0
0.0000000000000000000e+0

Zeros:

Poles:

Z. 920865 I 087 403923 000e+ 5
-2.86077 85 6845 14 1 5445 0e+ 1

-1.7 4899 I25 92O 40089 900e+ 3

Denominator Degree:
3

Constant factor followed by
real part imaginary part

0.0000000000000000000e+0
0.0000000000000000000e+0

-2.6 893 8 5 84437 8I 487090e+3
2.689385 I 4437 81487090e+3

1 . 0000000000000000000e+0
-6.08 1 9 84 49 47 88787 7 44Oe+2
-3.245 IO37 9 59 160 1 6 5 060e+2
-3.245103795 9 1 60 1 65060e+2
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5"4 Step 3: The elemental Circuits

The elemental circuit for \ is easily found. Elemental circuit No. A2

matches the frequency response of Z, perfectly. Z, also has a perfectiy

matching elemental circuit. Since the degree of. Z, is larger than 7 (the largest

degree of an elemental circuit), an optimization is carried out to find the

elemental impedance functions for \. The possible combinations for Z" are: 1)

L/Zin parallel with 1/1, 2) L/2 in series with 0/I,3) 2/L in parallel with 0/1

and 4) 2/Z ín parallel wirh 0/1. After 8OO iterations, the elrors of combination

1 and combination 4 are grearer than 3000, the error of combination 2 is very

close to the erTor of combination 3. However, further test teils that the

combination 3 is the best. The rwo-porr network for the combination 3 is

shown in Fig. 5.4.L. The element values are listed in Table 5'4'L'

Fig. 5.4.1
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Table 5.4.1 Values of elements

t
elemental values unit

xr 1.559619754552841e-1 H

+2
2.L3?272705078125e+3 O

h 3.430392098380253e-6 F

x4 2.475L15299224854e+0 o

xs 1.7360363 90066L47e-I H

x6 4.638672828671316e+0 O

h 2.031643 5 02414227 e-2 H

x8
7.363301277760645e+L O

x^ 3.546867519617087e-2 H

rro 3.8840410709381 10e+0 O

xn 3.499000000000000e-6 F

LL7



5.5 Results and discussion

The frequency responses of the impedance functions are displayed in

Figs. 5.5.1, 5.5.2 and 5.S.3.

200 400

frequency (Hz)

100

o

given z12.im
+computed z7z.im

-1

-?oo

o 200 400

frequency (Hz)

Fig. 5.5.1
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given 21 1.re
computed z11.ra

qivenz'1f.im
õomouted z1 f .im

Fig. 5.5.2
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200
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0
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From the above example, we find that the II network structure can be

used to realize impedance functions with the real part of zr2 not either positive

or negative for all frequencies. For these cases, the T structure is not

reaiizable. The computation time of the optimization for the above example in

this chaprer is much longer than that required for the Hydro Example. This is

due to the fact that the impedance functions have many more real poles and

zeros that can not be found by the group delay method than the impedance

functions of the Hydro Example has and therefore, the optimization starts at a

point far from the optimal point. For the Hydro Example, the optimization oniy

requires increasing the step size to overcome local mimima. However, for the

example of this section, changing the starting point and increasing the step

size-the techniques for overcoming a local minimum-both have to be used

intensiveiy. On the other hand, this also demonstrates the effectiveness of the

optimization method.
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5"6 The third example

The given frequency responses of ttre impedance functions for the

third exampie are shown in Figs. 5.6a, 5.6b and 5.6c. The optimizadon

procedures for this example will be simila¡ to those for the second example.

However, some novel modifications will be developed to make the optimization

procedure more efficient.

-1 000
200

frequency (Hz)

Fig. 5.6 a Frequency response of i,,

Real Part

lmag Part

1??
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Fig. 5.6 b Frequency response of :,,

200

frequency (Hz)

Fig. 5.6 c Frequency response of :."
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s.6. 1 Step I

From the previous examples, it is found that the group delay is useful

for estimating the starting points of the optimization of Step 1. There are some

limitations in using the group delay to estimate the starting point:

1. It is difficult to find the numbers of real zeros and poles and their

magnitudes.

2. In general, when poles or zeros are close together and poles and zeros

are close to each other, then it is very difficult to estimate these poles

and zeros.

I¡r the previous examples, the way to deal with this shortcoming was to test

some combinations of poles and zeros in addition to the poles and zeros found

by the group delay method and then to pick the best one. In this example, a

new way, which applies optimization directly to the group delay-the group

delay is the target function-is adopted. In this new technique, some

combinations of zeros and poles in addition to those estimated from the group

delay are also tested. However, because the target function is the group delay,

no complex-number operations are required, the latter optimization process is

much faster than the former.

Fig. 5.6.1a displays the given group delay of 4r. From this delay curve it

is difficult to estimate the real poles and zeros. To apply the optimization, we set

the group delay as the target function of the optÍmization and the poles and

zeros of the impedance functions as the input variables. Rewriting (4.3.Lb-Z)

we have
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t(iu)=å *(, * )l*,, - å 
*(*)l*,.,

where p¡ = -e¡ + jþ,, and ¡, = -y ¡ *jô,, and
qi di

e,,t +(u - þ,)t 
- a=@;ñ

represents a pair of complex conjugate poles, _-o,a,-Ç Presents a real Pole'

T¡ Y¡-;-'- + -ft represents a pair of complex conjugate zeros,y;+(roo-E)' T,"+(u*ô,),
v.

aÂd 
lÃi represents a real zero. nr aad. mL are the numbers of pairs of

complex conjugate poles a¡rd zeros, respectively, and nZ and mZ a¡e .,,e
numbers of real poles and. zeros, respectively.

we also select several d.ifferent combinations of poles and zeros for
testing' For e,2, with 40 iterations, the d"ifference of objective function values

benueen the best combination of zeros and poles a¡rd the other combinations is
greaL so that we can easily pick out the best combination. Tabte 5.6.1a shows

the errors for two different degree combinations.

Table 5.6.1a

0.0256
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poles. The found group delay is shown in Fig. 5.6.1a. The unknown consrant

factor is found by an optimization-a single variable optimizarion using the

above found poles and zeros. Thus the impedance functiotr Zrz is found. Fig.

5.6.1b displays the given and found frequency responses sf zrz.It can be seen

that the error is quite smail. In a similar way, we find that there are one real

and two complex conjugate pairs of zeros for 222, and there are three real

zeros and one compiex conjugate pair of zeros for z,¡. The poles of both 2,, and

zzz aÍe the same as those of 212. The group delay of e,, is shown in Fig. 5.6.1c

and the frequency response of Zrr is shown in Fig. 5.6.ld. The computed group

deiay of 222 is illusuated in Fig. 5.6.1e and the computed frequency response of

zz2 is displayed in Fig. 5.6.1f. The errors of both 2,, and zzz aÍe very small as

well.

0.002

0.000

-0.002

-0.004

-0.006

-0.008

-0.010
200 400

Frequency (Hz)

Fig. 5.6.1a Group delay of 2,,

given group delay
computed group delay
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Fig. 5.6.1e Group delay of 2,,
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givenzl f .im
given z1 1.re
computed z11.re
computed z'l f .im

100 200

Frequency (Hz)

Fig. 5.6.1f Frequency response of z'

5.6.2 Step 2

From the given frequency responses of e¡1 , z, artd z, shown in Figs.

5.6a, 5.6b and 5.6c, it can be seen that the real parts of 4r, z* aÍrd z, do not

satisfy the condition for the T srnrcture, therefore, the fI stnrcture is adopted.

In Example 2, the computation time is much longer than that required for the

Hydro Example. The reason for the longer computation time is that the

caicuiations for\, Z, td Z, in the Hydro Example are separate, however, the

calculations for Example 2 a¡e not separate and this leads to more variables and

more constrains on the optimization. For the optimization, the computation

time increases exponentiai with the number of the input variables. Also, the

more constrains there are, the slower the convergence is. To accelerate the

L29

400



oprimization process, we need to find a way to enable the oprimizarion for Z,

Z, artd Z, to be carried out separately. The relationship of network elemenr

impedance functions Zr, Z, and 23 and the corresponding short-circuit

admittance functions are as follows.

I
v,â = --JLL 

22

11
V,i = 

-+-
rLL Z, 7.

i/ ---l- ltt+ Jn
1

Zz=''

11
vâ^ =-+-r'¿ 23 4

23-
ln

a
I

rr -L \t./r2 ' J22

It is ciear that by using the admittance functions, the optimizations lor Q, Z,

and 23 can be carried out separately. The admittance functions can be

calculated from the impedance functions Zr' z* and Zrr. T}:re calculation of the

frequency responses of the admittance functions using the given frequency

responses of the impedance functions is as follows:

/:-, \ z'rr(j@r)v,,(f(Ð,)=+7 r¡ 'J '' Az(ia:¡)

/ .-- \ zrr(j@r)
!n\J(ù¡) Az(ja¡)

-. /:--r-et,Uú);)!zzlJ@¡)=ffi

where Az(j a,¡) = zrJi @¡). zzz]o) - (zrr(jro,))z .

In the optimization processes for Zr, t}re input variables are the zeros

and poles "f ? and the objective function value is the difference between the
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frequency response of -! *¿ the frequency response of the calcui ated 2".
!n

The frequency response found for Z, is shown in Fig. 5.6.2a. Nexr an

optimization process is carried out to find the impedance functton Q. Several

different combinations of zeros and poles are chosen to be tesred by

optimization. It is found that the best degree combination for Z, is 1,22. The

zeros and poles of Z, are listed in Table 5.6.2a.

Fig. 5.6.2 a frequency response of Z,

given z2.re
given z2.im
computed z2.re
computed z2.im
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Table 5.6.2a

Rational Function Z
polyRep:
prodRep
Numerator Degree:

l_

Constant factor followed by Zeros:
real part imaginary part
1.650 e+6 0.000 e+0
0.000 e+0 0.000 e+0
Denominator Degree:

2
Constant factor followed by Poles:
real part imaginary part
1.000 e+0 0.000 e+0

-3.820 e+2 -L.L22 e+3
-3.820 e+2 I.L22 e+3

In a similar way, we find the frequency response of Z,

displayed in Fig. 5.6.2b. From the frequency response we find the

function shown in Table 5.6.2b by optimizatiorL (Step 2).

Frequency (Hz)

Fig. 5.6.2 b Frequency response of Z,

which is

impedance

given z1.re
given z1.im
computed z1.re
computed z1.im

132



Tabie 5.6.2b

Rational Function Z
PolYReP=
prodRep
Numerator Degree:

1
constant factor followed by zeros

real part imaginary part
2..526e+O 0.00OerO
4.500e+0 O.0OOe+O
Denominator Degree:

0
constant factor followed by poles
real part imaginary part
1.@O eio 0.000 e+O

The frequency response of Z, is calculated in a m¿ìnner similar to the

above calculation of Z, and is shor,r¿n in Fig. 5.6.2c. The zeros and poles of Z,

a¡e found by m optimization process and the result is listed in Table 5.6.2c.

Fig. 5.6.2c Frequency response of Z,

given z3.re
given z3.im
computed z3.re
computed z3.im
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Table 5.6.2c

Rational Function Z

PolYRep=
prodRep
Numerator Degree:

2
Constant factor followed by Zeros:
real part imaginary part
4.9L9e+2 O.@Oeú
-2.750e+2 -1.632e+3
-2.75Oe+2 1.632e¡3
Denominator Degree:

2
Constant factor followed by poles:
real part imaginary part
1.0@eÐ O.OOOe+O
-9.344e+2 -1.453e+3
-9.344e+2 1.453e+3

5.6.3 Step 3

From tåe impeda¡ce funcdon \, the circuit for Z, is easily found, it

has only two elements, an inductor in series connection with a resistor. Fig.

5.6.3a shows the circuit. The value of the inductor is 2.526439879427O41535H

a¡d the value of the resisror is 113.6897945742L687e.

Fig.5.6.3a
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The circuit for Z is readily to found by using optimization (Step 3). The

circuit is elemental circuit No. A1 which perfectly matches the frequency

response of impedance funcaon Z. The circuit of 4 is illustrated in Fig.

5.6.3b and the values of the ctcuit components are listed in Table 5.6.3b.

Fig. 5.6.3b Circuit for Z

Tabie 5.6.3a

From täe impedance function Z, in Step 2, it is found tbat after a

parallei resistor x, is removed from the reciprocal of {-adrrinance l' then

tlre remaining impedance function is a 2/L impedance function which ca¡ be

realized by the basic elemental ci¡cuit No. 82 (see Chapter 6). The circuit

component number value of component

xl \.L752L369,15724W H

x2 6.05711989O101603e-7 F

)c4 2.1ffi287L0937500e+3 O
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realizing Z, is displayed in Fig. 5.6.3b. The values of the circuit componenrs

are listed in Table 5.6.3b.

Fig. 5.6.3b

Table 5.6.3b

comDonent numþer value of component

x1 1.00373188161 0?92e-6 F

x., 5.3541 14746093750e+3 c¿

h 1.357267 60864?578e+? o

X, 3.7295358528327080e-1 H

x5 4.9188428578299663e+2 ç¿
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5.6.4 Results and discussion

Fig. 5.6,4a shows the complete circuit realizing zr' z, and z"r. The

frequency responses of e11, zrrand zz2 aÍe displayed in Figs. 5.6.4b, 5.6.rtc and

5.6.4d, respectively. It is clear that the ,.r,rit, are very good.
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In Step 1, applying an optimization to the group delay determines not

only the numbers and rypes of zeros and poles, but also the zeros and poles of

the impedance functions quite accurately. Lr addition, it speeds up the

oprimization process of Step 1 more than 10 times, since the optimization only

deals with real numbers instead of complex numbers and polynomial

operarions. Using an optimization process on the group delay to find the zeros

and poles is also applied to Example 2, with similar results.

In Step 2, when the lI two-port structure is required, using admittance

functions to realized the network is much faster than using impedance

functions, because by using admittance functions, the optimizations can be

carried out separately for 2,,, 22 and 23 and the computation time of

oprimizarion is related exponentially to the number of input variables. The

same approach of using admittance functions for the lI two-port structure is

applied to Example 2, the optimization process is aiso much faster than that

using impedance functions.
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5 "7 Example Four

The given frequency responses of the impedance functions for Example

4 are shonnr in Figs. 5.7.L, 5.7.2 and 5.7.3.

-+t- qiven zì i.re* liven zli.im

-t\- \
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Fig.5.7.1
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Fig.5.7.2
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frequency (Hz)

Fig.5.7.3

We follow the three-step approach to carry

found zeros and poles of t¡¡, i,, and 4z ñê shown

). /.5.

Table 5.7.1

Rational Function i,,
PolYReP=
prodRep
Numerator Degree:

6
Constant factor followed bv Zeros:

real part imaginary pan
5.0OOO0O0O0el O.OOOOOOOOe+O
-2234337589 e+2 0.0O0O00O00 e+0
-1.638061.539 erZ 0.000000000 e+O
-8.696307808 e+2 1.735577€É¡5 e+3
-8.696307808 e+2 -1.135577665 e+3
-L549249262 e+3 8.7O32L4287 *2
-1549249262 e¡3 -8.7O32t4287 *2

out t¡e optimization. The

in Tables 5.7.1. 5.7.2 aad
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Denominator Degree:
6

Constant factor followed bv Poles:
real part imaginary part
1.0OO0O0OOO e+O 0.O00OO00OO er0

'1.840367338 erZ 0.0OO0OO0OO e+O
4.237360698 e+2 L.L3WL723 er3
4.237360698 e¡2 -1J36qfi23 er3
-L.496745563 er3 1.068883960 e+3
-L.496745563 e+3 -1.068883960 e+3
-3.00OOOOO0O e+2 0.0OO0OO0O0 e+0

Table 5.7.2

Rational Function 2,.

PolYReP=
prodRep
Numerator Degree:

3
Constant factor followed by Zeros:

real part imaginary part
3.7500000@e+5 0.0000000O0e+O
4.00OO0O0O0e+2 0.0000000O0e+0
-6.000000000e+2 0.0O0000000e+0
0.000000000e+0 0.000000000e+0
Denominator Degree:

Constant factor
real part
1.000000000e+0

followed by Poles:
imagmary part

0.000000000e+0
-1.W367338e+2 0.000000000e+0
4.?373ffi698e+2 l.l3&O17?3e+3
4.?373ffi98e+2 -1.13ffi17?3e+3
-L.496745563e+3 1.068883960e+3
-1.496745563e+3 -1.0688S960e+3

Table 5.7.3

Rational Function ;"
PolYReP=
prodRep
Numerator Degree:

4
Constant factor followed by Zeros:
real part imaginary part
6.00000000Oe+2 0.000000000e+0
-1.00000O000e+0 0.000000000e+0
-1.999O88293e+2 0.00O000000e+0
-5.379+55353e+2 L.l2l&349e+3
-537 Y55353e+2 - l. 1218843 49e+3
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Denominator Degree:
)

Constant factor followed by Poles:
real part imaginary part

1.00OO00O0Oe-+O 0.00000000Oe+0
-L.84367338e¡2 0.0O00O0OO0e+O
423736ù698er2 L.L3ffiL723 e¡3
4.237360698e¡2 -L.L3ffiL723 e¡3
-L.496745563e+3 1-.0688839603e+3
-L.4967 45563er3 -1.0688839603e¡3

From Tables 5 .7 .L, 5 .7 .2 arrd 5.7 .3 , ttre degree of l, , is 6 / 6, t!;e degree of

:,, is 3/5, and ttre degree of 4=is 4/5. Since l,11, 21. and i, have five identical

poles, and ;,, has a private pole, aladderstructure is adopted. Fig.5.7.1 shows

tbe ladder network.

Fig. 5.7.4 A ladder two-port network

This ladder network has a series element added to the fI two-port

stnrcture and the higher degree of õ,, is generated by tJris series element.

Therefore, if we can determine 2,, then we caû easily find 2", Z" nd Z" of ti.e

remaining fI network by using the method developed in Exampte 3. Let :í' be

the driving point function of the remaining fI network, we have:
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zn = 4+ zí1

fl, n,,
=l+.g4d

ryd + ry,d,=-
dtd

(s.7.1)

where d is known from znaÍLd d, is aiso known by comparing the poles of i,,

with the poies of z'z. n a:;rd 4r cm be obtained by an optimization process. To

start the optimization process, the degree of n and n,, must be known, or all

possible degree combinations of both rz and n,, have to be determined. For a

driving function the degree difference between the numerator and the

denominator can not be larger than one, and the degree of d is 5, hence the

degree of \, can only be 4, 5 or 6. The possible degrees of n, are 0, I and 2,

because the degree of d, is 1. From the above possible degrees of n, and nr,

there are 9 degree combinations of ryñLd n,,. However, since the degree of the

numerator of e,, is 6, i.e. the maximum degree of n r d, is 6, hence the degree of

n' must be less than 6. Similarly, the maximum degree of n, d is 6, hence the

degree of ry can not be Z.If the degree of n, equals 0 and the degree of ry,

equais 4, then the degree of the numerator can not equal 6. Therefore, the

possible degree combinations are down to three:

1. degree of n, equal to 0 and degree of \, equal to 5,

2. degree of n, equal to 1 and degree of 4, equal to 5,

3. degree of n, equal to 1 and degree of \, equal to 4.

Optimizations are conducted for these three combinations. When the

iteration number equals 200, the difference of the objective function values

cleariy shows that the right choice is the #3 degree combination. Therefore,

the #3 degree combinarion is adopted. For the # 3 degree combination, there

are three rypes of zeros for nr' one is wvo compiex conjugate zero pairs, the

other is one complex conjugate pair and two real zeros and four real zeros.
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Further tests tell us that the second one is a good choice, hence the

optimization continues for the second one only. The starting points of the

oprimization, the zeros of n, and ni, and the constant factor of \t are chosen

to be the same orderas the zeros of z,¡. Aftermore than 3000 iterations, both q

arrd r?1r are found. Table 5.7.4 and Table 5.7.5 gives the zeros of n, and n1¡,

respectively.

Table 5.7.4

Rarional Function Z
poiyRep=
prodRep
Numerator Degree:

I
Constant factor foilowed by Zeros:
reai part imaginary part
5.0000e-1 0.0000e+0

-2.0000e+2 O.0000e+0
Denominator Degree:

1I

Consiant factor followed by poies:
real part imaginary part
1.0000e+0 0.0000e+0

-3.0000e+2 0.0000e+0

Tabie 5.7.5

Rationai Function 2,,

polyRep=
prodRep
Numerator Degree:

tl

Consiant factor followed by Zeros:
real part imaginary part
5.0000e+2 0.0000e+0

-4.0000e+2 0.0000e+0
-L.3283e+2 0.0000e+0
-1.3835e+3 1.1950e+3
-1.3835e+3 -1.1950e+3
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Denominator Degree:
5

Constant factor followed by Poles:
real part imaginary Part

1.0000 e+0 0.0000 e+0
-1.8403 e+2 0.0000 e+0
-4.2373 e+2 1.1364 e+3
-4.2373 e+7 -1.1364 e+3
-I.4967 e+3 1.0688 e+3
-1.4967 e+3 -1.0688 e+3

After Zr, ærd 2,, are determined, the next step is to determine the

remaining lI network. The remaining procedures are exactly the same as that

developed in the third s¡ample. The frequency responses of the admittance

functions )r' y' ali,Ld y, are caiculated from the frequency responses of

impedance functions z,r, z* and zrr.

)rrUc¡;)=ffi

ylzu,¡)=-H#i

y22uo,t)=ffi

where AzÇco¡)=zirjat,)'zrr(jot¡)-(zrr(jot,))z. yrzÇa¡), y,,(jol¡) and yrr(jco') are

the frequency responses of yp, )r, md )22, respectively. z,,Uol,), 2,2(7'ol,) and

Z,QCù) are the frequency responses of 4t, Ztz and zr2, respectively.

The frequency responses of impedance functions 4, Zt and Zo are

calculated as the follows

I
Zr(ja,) = -rr(r.*)
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l( jø ,\= I

ltr(.ja¡,)+ yt2(juot)

Z'( jct,)= , t
' lzz(j@,) +y,,(jto,)

where 4(iu,), zr(ittt,) and zoQa,) are the frequency responses of 4, z, nd
Zo, respectively.

The impedance function Z, is d.etermined by using optimization. in
the optimizatjon processes for Q, the input va¡iables are the zeros and poles of

Ç and the objectjve function value is the difference berween the frequency
response or -l and the frequency response of the calculated. zr. Theltz

impedance functions Z and Zo ase obtained. by optimization in a similar way

to that for 2". The resulting impedance functions 7=,4 ætd Zo areillustrated

inTables 5.7.6, 5.7 7 and 5.7.8, respectiveiy.

Tabie 5.7.6

Rational Function Z
PolYRep=
prodRep
Numerator Degree:

1
Constanr factor followed by Zeros:
real part imaginary part
5.O0OOe+2 O.OOOOe+O
-4.0O0Oe+2 O.OOOOe+O
Denominator Degree:

2
Constant factor followed by poles:
real part imaginary part
1.00O0eú 0.000OeÐ

-2"50O0e+2 -1.00O0er3
-2.500Oe+2 1.0OOOe¡3
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Tabie 5.7.7
Rational Funcrion Z^

PoiYReP=
prodRep
Numerator Degree:

1
I

Constant factor foilowed by Zeros:
real part imaginary part
8.0000e-1 0.0000e+0

-1.5000e+2 0.0000e+0
Denominator Degree:

I
Constant factor followed by Poles:
real part imaginary part
1.0000e+0 0.0000e+0

-6.0000e+2 0.0000e+0

Table 5.7.8
Rational Function 24

polyRep=
prodRep
Numerator Degree:

a
¡

Consìant factor fotlowed by Zeros:
real part imaginary Part
6.0000 e+2 0.0000 e+0
0.0000 e+0 0.00000 e+0

Denominator Degree:
2

Constant factor followed by Poles:
real part imaginary part

1.0000 e+0 0.0000e+0
-1.0000 e+3 -1.4000e+3
-1.0000 e+3 1.4000e+3

The circuits of 4,, Zr., Z, arrd Zo are determined and shown in Figs.

5.7.5, 5.7.6, 5.7.7 and 5.7.8 and the values of the circuit elements are listed in

Tables 5.7.9, 5.7.10, 5.7.11 and 5.7.12, respectively.

Fig. 5.7.5
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Table 5.7.9

Fig. 5.7.6

Table 5.7.10

Fie.5.7.7

component number value of component

xr 5.0000e+1 H

*2 1.6667e-1 O

x3 3.3333e-1 O

component number value of component

xl 4.8900e4 H

x2 5.0000e+0 o

x,3 2.0000e-3 F

x4 1.9560e-1 O
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component number value of component

xr 3.6000e+2 H

x. 6.0000e-1 O

\ 2.00OOe-1 A

Table 5.7.11

Fig. 5.7.8

Table 5.7.12

component number value of component

ãl 4.7059e-4 H

\ 2.0000e-3 F

\ 1.0000e+0 O

The complete ladder network is shown in Fig. 5.7.13. The resulting

frequency responses of :¡1, zr"and 4. are illustrated in Figs. 5.7.L4,5.7.15 and

)./.rb.
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Fig. 5.7.L3 The ladder network
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In Example 4, art oprimization is conducted to determine the impedance

function \, then the remaining lI network is found by using the method

developed in the third example. In this way, the optimization has only six

input variables and three possible degree combinations. The other way ro

apply the optimization is to find Z, Z, Z, arrd Zo at once. In this case, rhere

are ten unknown variables and many more possible degree combinations

than in the former case, therefore, the optimization will be much more

difficult and time consuming.

5.8 Discussion

In this chapter, three exampies which were realized in a fI and a ladder

two-port network were discussed. The results of these three svamples

demonstrate the effectiveness of the three-step-approach optimization

merhod. To make the optimization method more efficient three

techniques/procedures were used:

1. An optimization process was applied to the group delay to find the

degree, the zeros and poles of the impedance function. This speeds up the

optimization process of Step I by more than ten times. This improvement is due

ro rhe fact that the number of input variables using the group delay is much

smaller than that of an optimization invoiving complex numbers and

polynomial operations.

2. The realization of a fI wo-port network using admittance funcrions,

leads to a much faster convergence than using impedance functions, because

it does not require the optimization to deternine 4, Z, and Z, jointly and this

leads to fewer input variabies in the optimization.
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3. For the ladder two-port nerwork, a series impedance t is first

determined and then the remaining lI wo-port network, leads to a faster

convergence, because of fewer input variables and fewer possible degree

combinations.

The basic idea for using these techniques/procedures is to find a way to

reduce the number of input variables for an optimization, because the

computation time required for an optimization process is related exponentially

ro rhe number of input variables. This is similar to the idea of using a multi-

step optimization approach.
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Chapter 6

FURTHER STUDY OF THE THR.EE-STEP
APPROACH

6. L lntroduction

In Chapters 4 and 5, we developed a new method-the three-step-

approach for finding an equivalent two-port nerwork for modeling an ac

power system. Also, a specific modeling problem of a power system and three

other examples are solved by applying the method. The results of the Hydro

Example gave a better fit for the frequency responses than those reported in

[5] using a different method. The other three examples gave very accurate

results. These examples involve four different network stnrctures: T, T with a

transformer, II and a ladder. These examples demonstrate the effectiveness of

the three-srep approach method and the possibiliry of the three-step-approach

becoming a general approach for the modeling of ac power systems.

In this chapter we will further discuss some of the features of the

three-step-approach method. First we present the basic elementai circuits.

Then we analyze the convergence and the accuracy of the optimization

process of the three-step-approach method in terms of the results of the four

s¡arnples.
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6.2 Basic elemental circuits

The basic elemental circuits play an important role in the optimizations

of Steps 2 ar,.d 3. That is, for any one impedance function required in Step 2, a

circuit which can satisfy this function must be found by optimization in Step

3. The degrees of the basic elemental circuits range from the lowest 0/1 to the

highest 2/2. T}:'e lowest degree circuit is considered first.

T\e 0/l elemental circuit is shown in Fig. 6.2.1.

Fig. 6.2.I A 0/L circuit

The impedance function of this circuit is

It is easy to see that there are only rwo variables for the impedance function.

One is the numerator, i.e. 1 | xr, artd the other is the zero of denominator, i.e.

-I/(xrx). The amplitude of the numerator can be any positive real number

and it is not affected by the denominator, so that full movement is possible.

For the denominator, the zero can also be any negative real number and it is

not affected by the numerator. Thus fuil movement of the denominator is also

llxrs
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achieved. Therefore, this circuit can realize any 0/I
function.

Second, we consider the 1,/0 circuit shown in Fig. 6.2.2.

PR driving point

Fig.6.2.2

The impedance function of the circuit is

Z=X,S1'X"

_s*xrlx,
llx,

There are tlvo variables. One is the zero of the numerator and the other is the

constant factor of the denominator. It is clear that the zero of the numerator

can be any negative real number and the constant factor of the denominator

can be any positive real number. Also, the numerator and the denominator are

independent of each other. Thus full movement is achieved. Therefore, this

circuit can realize any I/0 PR driving point function.

Third, we analyze a L/L circuit shown in Fig. 6.2.3.

Fig. 6.2.3 A 1/l circuit (No. E4)

The impedance function of this circuit is

157



__(xrxz*x,xr)s+x2x34-+

xf + x,z

(x, *xr)s *'="
-xt

'+åxr

a1s + ao=-
.r+åo

. ats+añwhere :!:* is the function that is to be realized by the 1/1 circuit. There
s*b"

are three variables: )c, x2 and xr. We have

qao
.+r =---

x, = or, -b
bo

aî
*t=ã

Therefore, the limitation of this circuit is 4bo- ao) 0.

Another 1/1 circuit (No. C4) is shown in Fig. 6.2.4-

xz

Fi9.6.2.4 A I/I circuit (No. Ca)

The impedance function of this circuit is

xtxrxas+x.+x1
- 

4.r2s + 1

Ilxrs
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\ =at

The iimitation of this 1/1 circuit is ao-4br>0. It is clear that circuit No. C4

and circuit No. E4 complement each other with respect to lirnitations.

Therefore, together these two circuits can satisfy the required full move

abiliry of L/7 circuits, i.e., any 1/1 PR function can be realized by either

circuit No. C4 or by circuit No. E4 .

Fourth, we consider L/2 circuits; L/2 ctrcuits are more complicated, than

the above three cases. However, simila¡ to the above, two complementary

circuits (with respect to restrictions) are obtained. A L/2 circuit-elemental

circuit No. A2 is shown in Fig. 6.2.5.

we also have

The impedance function

.x^ + x^
4J+-

XtX'
=-î-

s+-
xtxz

_af+q
s+åo

Ixr=T
ao - \bo

aõ
h =--q

Do

Fig. 6.2.5 A L/2 circuir

of tbe circuit in Fig. 6.2.5 is
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xtx"s * xrxq

x{2x3s¿ + (4 + xz\x4)s + xz + x4

lx,
-5' + ---r-x3 xtxt

^z , xt+ xzx3x4 ^ , xzl xq
u T-u T-

xzx3xr x1x,2x3

a$+ao
=-

s2 +brs +bo

. a"s+a^where#istheequationthatistoberealizedbythe1,/2circuit_
s- +bf+00

circuit No.42. We have
x4

ao =-
xtxt

I
Iq=-

x3

, )c1 +x4
-o --

\xfc3

, _ xr+ x2x3x4
-r--

x2x3xl

Solving equarions 6.2.2, we have

(6.2.1)

(6.2.2-r)

(6.2.2-2)

(6.2.2-3)

(6.2.2-4)

(6.2.3-1)

(6.7.3-2)

a.3
-t-' 4'bo - aoqq + aõ

arzxz=-
Aot - ao

ú,nc'z
."4:-

4'4-ao44+ao
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Ix3=-
q

(6.2.3-4)

(6.2.+r)

(6.2.+Z)

Since x1t x2, ;r3 and .r4 must be positive, we have the following consrraints:

4br- ao) 0

q'4+ al - aoqbr>0

Constraint (6.2.4-I) is a part of the PR conditions on the impedance function.

(Some other PR conditions are q20, q20, åoà0 and 4>0.) Constraint

(6.2.+2) demonstrates the limitation of the elemental circuit No. 42.

Fig. 6.7.6 presents the other 1/2 circuit-elementai circuit No. D8 .

Fie.6.2.6

The impedance function of this circuit is:

)crx3x4s + x4
(6.2.s)

xrxrxrxos' * (xrxo + xfi4+ xrxr)s + 1

In a way similar to

circuit No. D8:

that of elemental circuit No. 42, we find
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aoatbt-q"br-a:=o (6.2.6)

constrzints (6.2.4-2) and (6.2.6) clearly show that circuits No. AZ and, No. Dg

complement each other with respect to constraints. Hence these two L/z

circuits can be used to realize any L/z pR driving point function.

Fifth, we consider the 2,/1 circuits shown in Fig. 6.2.2.

Fig.6.2.7 No. 82 circuit

The impedance function of rhis circuit is

x,x..x"s= + (xtj trxz4 )s + 4 + Ì¡
x,xrs + I

. 2. X, + X,)CnTa L + X,

- 44 xrx=

"*¿rtxz

a"s- +qs+ao
s+åo

where a"s2 + q's + ao 
is the equation that is to be realized by the 2/1 circuit. wes+åo

have

Qz = x.r
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Solving equations

- _ x++ xrx"x3
l --

4xz

- _x1+x3CIo=-
xtxz

1
fLoo=-

xtxz

6.2.7), we have:

(6.2.7b)

(6.2.7.c)

(6.2.7d)

(6.2.7e)

(6.2.7h)

xr=
ao-4.b0+ar\

a"
xz = ?- h+ azbo

oo

xt=h-aþo

xc=42

Since x¡, x2, .r3 and .r4 must be positive, we have

q- arbo20

ao + a2ü - qbo 20

the following constrajnts:

Constraint (6.2.7Ð is a part of the PR conditions of the impedance function.

(Some other PR conditions are: q 20, a1>-0, q>0, and åo )0.) Condition

(6.2.7h) represents the limitation of the elemental circuit No. 82.

Fig. 6.2.8 shows the other 2/L ctrcuít-elemental circuit No. E6.

Fig. 6.2.8
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The impedance funcrion of the circuit is:

x,xrst +(x.,xr+ x1\3+ x4x1)s+ xrxo

xf+x2

In a way similar to that of circuit No. 82 , we

E6:

hbo-ao+arbl>0

find the limitation of circuit No.

(6.2.71)

From constraints (6.2.7h) and (6.2.7i), it is clear that circuit No. 82 and circuit

No. E6 complement each other with respect to the limitation. Therefore, these

nvo circuits can achieve the realization of any 2/L PR driving point function.

Sixth, we consider the 2,/2 circuits. In many cases the 2/2 circuit can

be reaiized by combinations of O/L, I/A, 1/1,7/l and I/? basic eiemental

circuits and R, L, C elements. For exampie, in Example 3, a 2,/2 circuit is

achieved by a resister in parallel with the No. 82 circuit. However, when the

2/2 impedance function is a minimum function, then the combination of these

basic elementai circuits can no long realîze the required 2/2 minimum

impedance function. In this case the Brune circuit can be used. The derivation

of the Brune circuit is given in many text books [2], [39]. Hence, it is not given

here. A Brune circuir is shown in Fig. 6.2.9 and its equivalent circuit is shown

in Fig. 6.2.L0. For the realization of a 2/2 minimum function, if a

positive(negarive) value is given to ¿1 then a negative(positive) value must be

given to Lr. The relations between 1", 4, \, L, and I, are:

L,= I"+ I.
In = I.+ I-
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Also, an

element

function.

optimization

values of the

process is used to carry/ out the

Brune circuit for the realization

calculation for the

of a ?/2 minimum

&

Fís. 6.2.9

Fig.6.2.10

Now we have the basic elemental circuits of degrees O/I to 2/2 which

can guaranree that all required impedance functions of degrees O/I to 2/7 cart

be: achieved. For degrees higher than 2/2 PR functions, the required networks

can also be achieved by using these basic elemental circuits. For example, in

E"xample 2 the 2/3 impedance function Z, is realized by the No. E6 circuit in

parallel with a capacitor. Therefore, the optimizations in Step 2 and Step 3 are

guaranteed to be successfui by using these basic elemental circuits.

R,

M= Iz
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6"3 The convergence

The convergence of the optimization is the most important problem in

the entire optimization process. The convergence of the optimization depends

on two factors, one is the optimization method and the other is the setting of

the optimization-the formulation at every step of the optimization procedure.

It is apparent that in order to obtain convergence of the three-step-approach,

the optimization method itself must be capable of converging. We will use

s¡amples to describe the importance of the techniques for overcoming the

local minimum problem in the optimization process for the modified pattern

search optimization method.

From previous study, it is known that overcoming local minima is the

key problem which needs to be solved for the convergence of the optimizarion.

Several techniques are developed to modify the pattern search optimization

method to overcome the local minimum probiem. Two of these techniques that

have proven ro be very effective are the following: 1) repeatedly varying the

step size in both the singie variable search phase and the pattern search

phase, 2) changing the starting points. From the examples of our study, it

become very clear that without these modifications for overcoming the locai

minimum problem, the pattern search optimization had little chance to

succeed. For example, in Step I of Lxample 3, finding the degrees and rypes of

poles and zeros without continually increasing the step size, the optimization

process will stop in a very early phase with a large error. This is also true for

all other examples we have studied-without repeatedly increasing the step

size, the pattern search optimization stops prematurely. An example for

illustrating the importance of changing the starting points is the optimization
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process for finding the network stnrctures and the elemental impedance

functions in Step 2 of Example 2. If the technique of changing the starting

points is not applied, then the optimization process stops very early with a

very large error (>1000) and far away from the ñnal optimal point.

To demonstrate the effectiveness of the modified pattern search

optimization method, we apply the optimization to a non-optimal combination

of the zeros and poies in Step 1 of Example 3-the degrees of both the

numeraror and denominator equal 6. (The optimal degree combination is the

degree of both the numerator and the denominator equal to 5.) After more

than a 1000 iterations, we obtain a result which is shown in Fig. 6.3.1. The

impedance function corresponding to the frequency resPonse is listed in

Table 6.3.1. It is clear that the result is acceptable. For the optimal degree

combination of the numerator and the denominator, the optimization takes 400

iterations to reach a result very ciose to the optimai point (see Fig' 5.6.4b).

Comparing the resuits and number of iterations, we can see that aithough the

optimization for the non-optimai degree combination takes a much longer

rime, the optimization evenruaily approaches a point close to the optimal point.

The imporrance of this example is that it illustrates the abiliry of the developed

optimization method to find a solution close to the optimal point.
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given 21 1.te
gtven z1 1.rm
computed 211.tê
comouted 211 im

frequency(Hz)

Fig.6.3.1

Table 6.3.1

Rational Function 2,,
polyRep:
prodRep
Numerator Degree:

6
Constant factor followed bv Zeros:
real part imaginary part
4.4776808646673164120e+2 0.0000000000000000000e+0
-1.63 323 6 8267 6301 8264Oe+2 -9.7 406 490647 9 89 81 07 3 0e-8
- 1.63 323 6 8267 63OL 8264Oe+2 9.7 406490647 9 89 8L073 0e-8
-8.008832 4O72499939 180e+3 -2.0163 81 45941226691 20e+3
- 8.00 8 83 2 407 249993 9 1 80e+3 2.01 63 8L 459 4122669 1 20e+ 3
- L . 6 6 5 4L I | 9 67 37 897 7 3 40 e+3 -2.22097 44L 1 43 L 42 49 6 6O e-7
- 1 . 6 6 5 4 1 I 19 67 37 897 7 3 40 e+3 2.22097 441 L 43 I 4249 660 e-7
Denominator Degree:

6
Constant factor followed by Poles:
real part imaginary part
1.0000000000000000000e+0 0.0000000000000000000e+0

-3. 1 3 083 6 445306449 42Oe+7 - 1. 3 805 72 5 5 433 377 63 6 1 0e+3
-3.130836't4453O644942Oe+2 1.3805725 543337763610e+3
-8.008832 4072499939 180e+3 -2.01638 1 4594L22669120e+3
- 8.00 8 83 2 4O7 249993 9 1 80e+3 2.Or 63 8L 459 4122669 1 20e+3
-3.480 1 5 2 7 29 8670L 67 77 0e+2 - 1. 3 890 I 3 2848L263 657 2Oe+2
-3.48015272986LOt67770e+2 1.3890832 848I26365720e+2
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From the above four examples, it is found that:

1. In ail four examples, the technique of changing the staning points is

not required for the optimizations in Step 1.

2. For the optimization process of Step 2, when the T structure is used

rvith the impedance functions (Hydro E"xample) and the fI stn¡cture is used

with the admittance functions (Example 3), the technique of changing

starting points is not required. However, when the admittance functions are

not used for the II srn¡cture (Example 2 ), the technique of changing starring

poinrs has to be used extensively. This is mainly due to the fact that the

number of the input variables in this case is much larger. Also, more variables

means more constrains that contribute to a longer computacion time.

3. in the optimization of Step 3, the optimization process always

converges much faster than in Step 1 and Step 2. This is due to the fact that

there are fewer input variabies in Step 3, and fewer constraints-oniy the

input variable values are required to be positive.

r69



6.4 Accuracy

To demonstrate that accurate results can be obtained from the

optimizarion method, we use the results of Example 3. Table 6.4.1 lists the given

frequency response and the computed frequency response of zrz in Step 3.

From Table 6.4.L, we can see that the given frequency response has seven

digits of precision and the computed frequency response also has an accuracy

up ro 7 digits. Accuracy of more than 15 digits is also feasible if the input

precision is 15 digits. The result of step 2 also has an accuracy similar to that

of Step 3.

Table 6.4.7 displays a frequency response of the impedance function e,,

which is obtained by applying an optimization process to the group deiay in

Step 1. The given group delay data are shown in Table 6.4.3. From this table, it

can be seen thar rhe given group delay data have only two to three digits of

precision. Comparing the frequency response computed by using the group

delay rvith the given one, we see that the calculated frequency response of 4z

is accurate up ro 3 digits under the condition of low precision given group

delay data.

Here only the results for zn are presented, however, the resuits for z,

and zu are very similar to that for Z,r. Moreover, the results of the other

examples also have similar accuracy.
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Tabie 6.4.1

Freq(Hz)

1.8e+1

3.6e+1

5.4€+1

/.¿e+L

9e+1

1.08e¡2

L.26e+2

I.44e+2

1.62e+2

1.8e+2

1.98e+2

2.L6e+2

7.34e+2

2.52e+2

¿./e+¿

2.88er2

3.Oæ+?

3.2¿e+2

3.4Ve+2

3.6e+2

3.78e+2

3.96e+2

4.L++2

4.32e+2

4.5e+2

4.68e+2

4.86e+2

5.O4€+2

\ )7o+)

5.4e+2

5.58erZ

5.7æ+2

5.94e+2

given zL2.re

L.7@196e+2

7.46O213e+2

2.729728e+2

2.769O9Ae+2

2.695834e+2

256107Le+Z

2.397572e+?

2.237589e+2

2.L784O9e+2

2.071805e¡2

2.088382e+2

2.O76395e+2

1.935698e+2

L.72366te+.2

1.584107e+2

L.577667e+2

7.6842O7e+2

I.86L72L*2
2.O742L5e+2

2.297L39*2

251563ler2
2.72L6O7e+2

2.9LL3LZe+Z

3.083587e+2

3.238739*2

3377832*2
3.5O2265e+2

3.613536e+2

3.7L3LW2
3.8O2326e+2

3.88243Oer2

3.9545O7e+2

4.019518er2

given z12.im

1.015658er2

8.832054e+1

5.63677lce'+l

3.O41876e+1

1.?48524re.+I

2.42957Oe+L

3.2101.SOe1

6.065860e+O

1.83 1203e+1

3.294295e+L

4.28L742*L

4.365522e+I

4.43929Ie+t

5.926387e¡1

8.852718er1

L.227Ol5e+7

I.54L62æ+Z

L.796242*2

1.985399er2

2.115835er2

2.198152e+2

2.243æ6e+2

2259655*7
2.255588e+2

2.236633e+2

2.2O72L7*2

2.r7cÉ.5CÆ*2

2.L2938Le+2

2.085208er2

2.O3944Oe+2

1.993025et2

I.946642*2
L.9ú777*2

L7L

computed zLZ.re

L.7O9I957æ+?

2.46O273L7e+2

2.72972841*2

2.76908968e+2

2.69583365e¡2

25610708e+2

239757L5+2
2.23758859e+2

2.1184O927eg2

2.07180504€+2

2.0883818e+2

2.O763948Ie+2

L.9356984?e+7

L.72366O88e+2

158410664€+2

1.57766647e+?

L.6842O687e+7

1.86172108e+2

2.O7421523e+2

2.297L3868*2

2.51563078e+2

2.72Iffi77e+2
?.9L13LL5e+7

3.08358703etZ

3.23873905e+2

337783L56e+2

350226535er2

3.61353633e+2

3.713104O5e+2

3.80232595e¡2

3.88242975e+2

3.95450706e+2

a.019518a1e+2

computed zL2.im

1.0156581e+2

8.83205ao2e¡1

).lJ.Jb/ /5/5ef 1

3.04187645e+1

124852393e+1

2.1295693ffi
3.2tOIa97eL
6.06585865erO

L.83!2O777e+L

3.294?945e+I

4.28L74L7&e+L

4.36552238e+1

4.439290É'8É*L

5.92638594e+1

8.85271.758e+1

L.227OL453e+2

154162607e+2

L.79624I72e+2

1.98539848er2

2.11583502e+2

2.198151-65e+2

2.243M,1æ2
2.25965487es?

22555879e+2

2.23663326*2

2.2O7217?¿e+?

2.17065008ei2

2.L2938IIe+2

2.08520786f*2

2.039a40l9e+z

L.99302534e+2

I.94664213*2

L.9ffi77LL7et2



Table 6.4.2

Freq( Hz)

Oe+O
1.8e+1
3.6e+1
5.4e+1
/.¿e+L
9e+1
1.08e+2
L.26e+2
1.44e+2
L.62e+2
1.8e+2
1.98e-+2
2.L6e+2
2.34e+2
2.52e+2
2.7e+2
2.88e+2
3.O6e+2
3-24+2
3A2e+2
3;6er2
3.78e+2
3.96e+2
4.L++2
4.32e+2
4.5e+2
4.68e+2
4.8&+2
5.O4e+2
522e+2
5.4e+2
5.58e+2
5.76e+2
5.94e+2

given zl2.re

9O81813e+1
L.7@I96e+2
2.4@2I3e+2
2.729728r.+2
2.76Wæ+2
2.695831e+2
2.56LO77e+2
2.397512e+2
223758%+2
2.LI84Q%+Z
2.O71805e+2
2.088382e+2
2.O76395e+2
1.935698e+2
7.72366Le+2
15841O7e+2
L"577667e+2
L.684207e+2
7.86L721e+2
2.O742L5e+2
2.297L39e+2
z.)1)o51e+l
2.72L6O7e+2
2.97L3I2e+2
3.083587e+2
323873%+2
3377832e+2
3"542265e+2
3.613536e+2
3.71.310++2
3f,0232€e-+2
388243G+2
3.954507e+2
4O195L8c.+2

given z72.im

0e+O
1.O15658e+2
8.832O54e+1
5.636776e+I
3ß1876e+1
L.248524e+L
2'42957Cr-+O
321O2O1e-1
6.06586Oe+O
1.8312O3e+1
3.294295e+7
4.287742e+I
4.365522e+I
4.43929Le+I
5.926387e+1
8.852718e+1
I227OL5e+2
L54L626e+2
L.796242e+2
1.985399e+2
2.115835e+2
2.798152e+2
2243ffi@+2
2259655e+2
2.255588e+2
2.236633e+2
2.2072I7e+2
2.I7C,65e+2
2.12938Ie+2
2.O852O8e+2
2Ð3944Ðe+2
L.993025*2
L.94642e+2
I.9@77Le+Z

computd z\2.re

9.1188137e+1
I.717234&+2
2.4722774e+2
2.7416894e+2
2.7785875e+2
2.7OL9837e+2
2.564ñ93e+2
2.3997M2e+2
2.23978L%+2
2.L2273O4e+2
2.O7733LIe+2
2Ð92283e+2
2.O79Ð88r'+2
1.91Ð562%+2
L.7288352e+2
1.5881O17e+2
1.58198O1e+2
1.6899O48e+2
1.8684485e+2
2D8LAO7e+2
2.3O31235e+2
2.52O2825e+2
2.724731%+2
2.9L295e+2
3.083912@+2
3.2379845e+2
3.37624I9e+2
3.5OOO715e+2
3.6I@424e+2
3.71O2833e+2
3.7994213e+2
3479556e+2
3.951755e+2
4.O169583e+2

computed z72.im

-1.4169597e.18
1.O196O84e+2
8.84O6669e+1
5.6O29185e+1
2.979752æ+L
I.L77967Ie+I
1.8376311e+O
3.230912Oe-1
5.9866601e+O
1.8315/71e+1
3.279O392e+L
4.2548098e+1
4.3584545e+1
4.44Ð1177e+\
5.9107709e+1
8.8382971e+1
I.2.66932e+2
1.5413545e+2
I.7947855e+2
L.9822807e+2
2.LLL241Le+2
2.L92599e+2
2.237634e+2
2253817e+2
2.25C.2283r.+2
2.232æ29e+2
2203465e+2
2.L67846&+2
2.\27542Le+2
2.0843111.e+2
2.O3944e+2
L.9938621e+2
1.948249&+2
1.9O3O8OBe+2
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Table 6.4.3

Freq(Hz)

0e+0
6e+0
I.2e+I
1.8e+ 1

7.4e+t
3e+ 1
3.6e+ 1

4.2e+l
4.8e+ 1

5.4e+ 1

6e+1
6.6e+ 1

7.7e+I
7.8e+ 1

8.4e+ 1

9e+ I
9.6e+ 1

I.O2e+2
1.08e+2
L.I4e+2
I.2e+2
L.26e+2
L.32e+7
1.3 8e+Z
L.44e+2
1.5e+2
1.56e+2
I.62e+7
1.68e+2
L.74e+2
1.8e+ 2
1.86e+2
I.97e+2
1.98e+2

Delay

-1.559e'2
-6.76e-3
-3.7e-4
1.45e-3
1.8e-3
1.71e-3
1.52e-3
1.33e-3
1.15e-3
1.01e-3
8.8e-4
7.8e-4
6.8e-4
6e-4
5.2e-4
4.4e-4
3.6e-4
2.9e-4
2.1e-4
L.2e-4
3e-5

-L./e-+
-2.8e-4
-3.9e-4
-4.9e-4
-). / e-¿+

-6.3e-4
-6.5e-4
-6.3e-4
-5.7e-4
-4.6e-4
-3.3e-4
-1.9e-4

Freq(Hz)

2.04e+2
2.Ie+2
2.16e+2
1 ??c+?
2.28e+2
2.34e+2
2.4e+2
2.46e+2
) \7c+7
2.58e+2
2.64e+2
¿./e+¿
2.76e+2
2.82e+2
2.88e+2
2.94e+2
3e+2
3.06e+Z
3.LZe+2
3.18e+2
3.24e+2
? ?p¿7
3.36e+2
3.42e+2
3.48e+?
3.54e+2
3.6e+7
3.66e+2
3.72e+Z
3.78e+2
3.84e+2
3.9e+2
3.96e+2
4.02e+2

Delay

-/e-)
1e'5
2e'5

-6e.5
-7.2e-1
-4.7e-1
-7.8e-4
-1.1e-3
-1.3 8e-3
-r.) / e-5
-1.64e-3
-1.6e-3
-1.45e-3
-1.25e-3
-L.O2e-3
-8e'4
-6e4
-4.3e-4
-2.9e-4
-L./e-+
-/e-J
1e'5
/ e-)
L.2e-4
1.6e-,1
1.9e--t
2.Le-4
2.3e-4
7.4e-4
2.5e-4
2.5e-4
2.6e-1
2.6e-1
7.6e-4

Freq(Hz)

4.08e+2
4.I4e+7
4.2e+?
4.26e+2
4.37e+2
4.38e+2
4.44e+2
4.5e+2
4.56e+2
4.67e+Z
4.68e+2
4.74e+2
4.8e+2
4.86e+2
4.92e+2
4.98e+2
5.04e+2
5.1 e+2
5.I6e+2
\ ))c¿)

5.28e+?
5.34e+2
5.4e+2
5.46e+7
5.52e+2
5.58e+2
5.64e+2
>. / e+¿
5.76e+?
5.82e+2
5.88e+2
5.94e+2
6e+2

Delay

2.6e-1
2.6e-1
2.5e--{
7 Se-J
2.5e--l
2.4e-4
2.4e-1
2.3e-4
? ?..J
7.2e-4
2.2e-4
2.1e-4
2.1e-4
2*4
7e-4
2*4
1.9e-4
1.9e-4
1.8e-¿l
1.8e-4
I.7e-4
1.7e-4
r. / e-+
I.6e-4
1.6e-4
1.5e-4
1.5e-4
1.5e-4
1.4e-4
I.4e-4
I.4e-4
1.3e-4
1.3e-4

Given group delay of zn
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Chapter 7

SUMMARY AND CONCLUSIONS

In this thesis a new method for obtaining an equivalent two-port

network for the modeling of an ac power system has been developed. This nerv

method is cailed the three-step-approach optimization method and contains

three parts-three steps. The procedure for this method is as foilows:

Step 1: The delay curve is calculated from the frequency response data

for the real and imaginary parts of an impedance function. Next the locations

of poles and zeros are estimated from this curve. Then these estimated poles

and zeros are used as a starting point for an optimization that determines if

additional poles and zeros wiil improve the fit of the delay curve. In this

oprimization the rarget function is the delay and the resulting zeros and poles

wíll be used as the starting point for the second optimization. Finally, the

second optimization process is carried out to deterrnine the constant factor, and

the final position of the zeros and poles of the impedance function. The

procedures for z¡¡, 212 and zr2 are essentially the same.

Step 2: The characteristics of the impedance functions Zlr, z* and 7,,

found in Step 1 are analyzed and the main network structure is determined

accordingly. Then the micro stn¡ctures and elemental impedance functions

are determined from the main network srructure and the impedance functions

Z¡, 212 attd Zrr.

Step 3: The elemental circuits and the element values are determined

from the micro structure and the elemental impedance functions found in

Step z, by using optimization.
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The multiple-step strategy, the modified pattern search optimization

technique and elemental circuits with good move ability are the basis of the

developed method. The multiple-step strategy divides the whole modeling

problem into small parts which are much easier to solve, thereby simplifying

the solution of the overall problem. The modified pattern search method

proved to be effective for the problems considered in this thesis. It was able to

find the oprimal value in each case. The circuits with good move ability

presented in Chapter 6 also play an important role in making the optimization

process in Step 3 successful.

The group delay is very effective for finding the starting point of the

oprimization. 'When an optimization is applied to the group delay not only a

starting point but also the zeros and poles of the impedance function can be

determined, moreover it speeds up the optimization for the frequency

response in Step I more than 10 times. Different nerwork stn¡ctures such as T,

T with a transformer, lI and ladder two-port networks are studied for Step 2.

Techniques ro make the optimizations more efficient for fI and ladder wo-port

networks are developed. Computer programs that apply the three-step

approach for different network stnrctures are deveioped and implemented in

PASCAL These programs are simple yet effective.

Data for an ac power system and data for three other examples have

been used to demonstrate the versatility and power of the three-step approach

method as a useful tool to obtain equivalent two-port neworks.

Suggestions for further work:

1. In the above studies, the three-step-approach optimization method

used the modified partern search optimization technique and gave very good
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results. However, the three-step-approach optimization method could also use

other direct search and non direct search optimization techniques that may

be even more effective. Since digital computers were deveioped and tedious

computations can be carried out easily, different optimization methods have

been developed. Since the seventies, many computer programs that implement

optimization methods have been available. it would be interesting to see which

oprimizarion method is the most effective one for the modeling of ac porver

systems using the three-steP'approach method.

2. The programs of step 2 could be modified to include additional

nenvork stnrctures.

3. Potenrially the three-step-approach method could be applied to multi-

port equivalent networks for modeling ac power systems.
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APPENDIX A

COMPUTER PROGRAM FOR THE THREE.
STEP APPROACH OPTIMTZATTONI METHOD

The followiûg computer program contains three main parts:

1. The function 'absv' carries out the calcuiation of the values of
objective function. The PR condition is aiso checked in this function. if the pR

condition is violated, then a huge value is given to the objective function. The

function 'absv' has to be changed for different impedance functions in the

different steps. The function 'absv' shown here is for finding the impedance
function i,, h Step 2, Example 3.

2. The procedure 'search' conducts the mod.ified pattern search

optimization. The parameters that need to be altered are the step size, the step

size reduction and the iteration number. The normal step size ranges from 1%

to 10/o and the step size reduction factor ranges from 0.8 to 0.9S. The ireration

numbers are usually from 80 to 150. These three parameters are controlled. in

the main program.

3. The main program controls the subprograms. For overcoming the

local minimum, the techniques of continually varying the step size a¡rd

changing the starting poinrs are implemented in the main program. The

technique of continually varying ttre step size is always executed. However,

the technique of changing the starting points is executed only when the

technique of continually varying the step size alone c¿rn no long provide a
satisfactory result.

t77



Beside these three main parts, there a¡e several procedures for

computing the values of the elemental components from the elemental

impedance functions.

{-computer program-}

progra,m step2;
uses
Types, Complex, Arithmetic, Polynomial, Rational;
var
i, j, k, rr, o, j1, kl, oo2: integer;
xx2, d>o<,,to<, yl, y2,DX, Q; Ð(TENDEDARRAY;
11, dl , d2, ab, ac, aal, 13,12, o2, F, b3, I, D, A, aa, A1, a3, a4, B, 81, p2, p, xl, x2, x3,

d: EXTENDED;
ya, d11, x4, x5, x6, x11: EXTENDED;
X: ENTENDEDTABLEPTN

{s1, s7: complex;}
pl, P11: POLYNOMIAIi
zll, zl2, z\, 22, 23, z4: rational;
PRINT: boolean;
PRINT2: boolean;
en; PR: booiean;

label
1:

function NoOddOrderPosZeros (var p: polynomial): boolean;
var
x extended;
i, k integer;

begin
NoOddOrderPosZeros := TRIIE;
X :: -1;
k:= 0;
for i :: 1 to p.deg do
begin
if (p.coef[i].Re > 0) and (p.coef[i].Im = 0) then
begin
if not REquatityTol(p.coef[i].Re, x, 1e-16) then
begin
k:=1;
NoOddOrderPosZeros := FAISE;
;ç;= p.coefli].Re
end

else
begin
k:=(k+1)mod2;
if k: 0 then
NoOddOrderPosZeros := TRUE
else
NoOddOrderPosZeros := FAISE;
end:

end; Íend ifÌ 
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end; f end forÌ
end;
function Rational-pr (var n rational): boolean;
var
p, q: polynomial;
i: integer;
Rationalispn boolean;

begin
r:: PolysToRational(r.num, r.den); {makes den monic}
Rationalispr:= TRUE;
if (r.num.coef[0].Re < 0) or (abs(r.num.deg - r.den.deg) > 1) then
Rationalispr:: FAISE;
if Rationalispr then
begin
p := AddPoly(r.num, r.den);

{WhtePolynon¡alZ(p, 'r.num + r.den'); Writes polynomiai to Text window }

for i := 1 to p.deg do
if (p.coef[i].Re > 0) then
Rationalispr:= FAISEi

end;
if Rationalispr then
begin
q := HunvitzConjPoly(r.den);
p := lvlulPoly(r.num, q);

{writePolynomialz(p, 'nä*'); writes polynomial to Text window }

p:: EvenPartPoly(p);
¡VfriteeotynomialZ(p, 'EvenPartPoly(p)'); Write-s polynomial to Text window- 

Rationaiispr := NõO¿¿Or¿erPosZeros(p); {pr if there are no odd order
positive zerosI

if (p.coef[O].Re < 0) then
Rationalispr:= FALSE;

end;
Rational-pr :: Rationalispr;

end; {end functÍon}
procedure computinga2 (vas x extendedarray; z: rationai);
var
cc1, cco: complex;
cx12, cx, sx, czII, czLZ: comPlexarraY;
i, j, k, j1, kl, n: integer;
y: reaianay;
a, a0, aL, a2, b0, bl: extended;
zI, zia, z2: rationai;

begin
CC1.RE:: 1;
CC1.iM:= 0;
CCO.fe:= 0;
cco.im::0;
writeratio naJ3 (2,' z' ) ;

a0 := z.num.coeflO].re;
al := z.num.coefl1].re;

b0 := z.den.coeflO].re;
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b1 := z.den.coefl1].re;

âi=â0*al *b1;
writein('a', a);
y[1] := (sqr(a1) * aI) / ((sqr(al) * b0 + sqr(aO) - a0 * al * b1));

y[2]:: sqr(al) / (al * b1 - a0);

y[3]:=1/aI;
y[4] :=a0 * sqr(al) / (sqr(al) * b0 - a0 * al * b1 + sqr(aO));

fori:=1to4do
begin
x[i] := y[i];
writeln('x[', i,']:=', yÏil : 24,' i);

end:
a:= sqr(al) * b0 + sqr(aO) - a0 * al * bl;
writeln('condtionl', a);
ài=ã.1*b1 -a0;
writeln('condtion2', a);

end;

procedure computingzlZ (va¡ zi: rational; x EXTENDEDARRAY);

I******z- (xls+x+) / / (1/ x3s) / /x2 *****Ì

vaf
cc1, C2, cco, zz, cL, z|a, zLb, z2a, z/b, z/c, z3a, z3b, z4a, z4b, z4c: complex;
cx12, cx, sx, czLI, czlZ; compiexarray;
i, j, k, j1, k1, n: integeç
yl, y2: realarray;

{x e.xtendedarray;}
z'3, z!, zia, z2: rational;
czlla, c3, C11, Cl18, CIz, CIZA, CLZB: complex;

begin
CCI.RE:: 1;
CCI.IM:= 0;
CCO.fe := 0:
cco.im:= 0;

fori:=1to4do
begin
sx[i].re := x[i];

{writeln('x', x[i]);]
sx[i].im:= 0.0i

end;

23.NUM.REP := SUMREP;
23.DEN.REP:= SUMREP:
z3.num.deg:= 1;
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23.num.coef[O] := cmul(sx[2], sx[4] );
z3.num.coef[1] := cmul(sxl1], sx[2]);
z3.den.deE;= 2i
z3.den.coef[O] :: cadd(sx[2], sx[4]);

z3.den.coeff1] := cmul(sx[Z], SX[3]);
z3.den.coef[1] := cmul(z3.den.coef[1], SX[a]);
z3.den.coef[1] := cadd(z3.den.coef[1], sxl1]);
z3.den.coef[2] := cmul(sxl1], SX[2] );
z3.den.coef[2] := cmui(z3.den.coef[2], SX[3]);
z3.num != sumr€ptoprodrep(z3.num);
z3.den := su'mreptoprodrep ( 23. den) ;

C1 :: Z3.NUM.COEFIO];
C2 := Z3.DEN.COtrIO];
23.NUM.COEFIO] := CDIV(C1, C?);
23.DEN.COEFIO] := CCli

{ writerario naJ3 (23,' z3' );l

zi:= z3;
end;

function absv (var xx Ð(TENDEDARRAY; zII, zI2: rational): HTENDED;
var

npr, Rational-is-pr: boolean;
ci11bn, czllbd, c22n, clln, cl1d, C2,c3, sqp11, cco,zz,cL,z|a,zlb,z/a,zZb,

zZc, z3a, z3b, z4a, z4b, z4cz comPlex;
czlb, czlbn, cz1bd, cz11an, czllad, cz\La, c22, c4, c12n, cl2d, sqp12, cz\n:

complex;
cz1d, cz|, czln, czAd, cz3n, cz3d, cz4, cz4n, cz4d, cc, cla, c1b, c2a, cZb, c3a, c3b,

ccl: complex;
czLTbn, czZZbd, cz22a, czTZan, czZZad, Cl1, Cl14, Cl18, C12, C124, C12B:

complex;
czllb, czll, czl, pl1, cyl LIZ, cx22, cx1: complexarray;
cxllb, cxl1, cz3, cx, cx2, cx3, cx4: compiexarray;
i, j, k, j1, kl, n: integer;

vl,v2,v3,v4, v5, v6, ya|,ya/, aI, a2, a3, Y11, Yl14, Y118, Yl2' Yl2A,Y\28, a,

yzIL: extended;- 
b, y72a, yzLla, yzIZ, yzLZa, rel, y, aII, aLZ, acl, acZ; extended;

222, zL, z2: raaonal;
n1, nl1: POLYNOMTAI;

label
11;

begin
{---- -----zL1----hYdro }

k := 101;
rpr:= FAISE;
n:= 13:
CC1.RE:= 1;
CCI.IM:= 0i
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CCO.fe := 0;
cco.im := 0;
cz1 1b[1].re := 4.30303030303030303e-1 ;

czl Lb[Z].r e := 4.603 1 63 69227 1228 45 e- I ;

cz1 1b[3].re :: 5. L7 12508266937 9499e-1;
czlIbf4l.re := 5.7 I 67 06462055 696 i4e- 1 ;

cz1 1 b[5].re := 6.23 13 124777 8895 924e- 1 ;

cz1 1b[6].re := 6.785 377 83727 1403 39e- 1 ;

czllb[7].re := 7 .45 I 5476 1 5 5 7867 8L9 e-I;
cz 1 1 b [8].re := 8. 2 8077 27 O47 9268029 e-L;
czl 1b[9].re := 9.249049187783 86051e-1;
cz 1 1 bIi0].f€ i= 1.0 1 50797 587?409643e+0;
czLlblLl l.re := 1.05 80893 7 5 406211 2 1 e+0;
czI 1b[L2].r€ r= I.027 7 7 54I 897 7 0205 6e+0;
cz 1 1b[1 3].r€ r= 9.4630882 97 4377 0l62e-l;
cz1 1b[14].r€ r= 8.5 5 175 362L94503796e-1;
czl 1b[1 5].rê r= 7 .777 681701 3941 645 1e-1;
czl 1b[16].re r= 7.1877 8118566379592e-I;
czllbllT).r€ r= 6.7 53 6654786200449 1 e- 1 ;

cz1 1b[1 8].re := 6.434657 L0357306503e-1;
cz1 1b[1 9].f€ r= 6.L97 70827 954512977 e-I;
czl 1 b[20].f€ r= 6.0 1 6 8 1 347 442958323e-1;
czI Lbl?ll.r€ r= 5.877 lL97 3392648 1 1 8e- 1 ;

czL lblz?l.r€ I = 5.7 6667 6447 7 19 62014e- 7;

czL Lb[23].f€ r= 5.677 7 009 17 4468637 5e- 1 ;

czllb[Za].r€ i: 5.6047 87365 5636037 4e-I;
cz1 1b[25].f€ != 5.5441 20109582 1041 6e-1;
czI lb[26].r€ r= 5.4929 5 877 1 8003 5 9 66e-l;
czI lbl?7l.r€ r= 5.449300407 47 53025 6e- 1 ;

czi 1b[28].f€ r= 5.41 16556688371 5 165e-1;
czI lbl?9}r€ r= 5. 3 7 I 89 86 663639 489 4e-I;
cz1 1b[30].Fê r= 5.350164855 1006881 1e-1;
czi 1b[3 1].re :: 5.3?47 8056853 59801 5e-1;
cz 1 1 b[32].r€ r= 5.30221367265326?27 e-L;
cz 1 1b[33].r€ r= 5.28203 850346569642e-r;
czl Ib[3 4].r€ != 5.2639 1 05 96 1 897 427 6e-I;
cz 1 1 b[ i ].im := !.121 87 647L87 647I88e-2O;
czL lbt?l.im :: 9 . 47 3 29 448 885 9 0 4O 5 6*?;
cz1 1b[3].im := 1.507 396258207 8777 0e-1;
czL lbl4l.im :: 1. 8 1 7 81226417 6267 95 eI;
cz 1 1b[5].im := 2.037 5 1 9 1 3 203 5 56902e' I ;

cz 1 1b[6].im ;= 2.2175 145 3 808 594722+L;
cz 1 1 b [7].im := 2.3329 8214052089 1 77e' 1 ;

cz 1 1 b [8]. im := 2.290903 67 3 87 024Ð7 8e I ;

cz 1 1b[9].im ;-- L.92?54O 1 37 1 IO277 87 eL;
czl 1b[10].im := 1.045 12050549 451474e-l;
czl 1b[l 1].im :: -3.01 38 833047 371 5258e-2;
czI lbll?l.im := -L.67 8O7 803 15 449703 9e- 1 ;

cz1 1b[13].im := -2.617 L6I62296737500e-1;
czl 1b[14].im := -3.03902500706754059e-1;
czl 1b[15].im := -3. I 1 5671 947 5L505277 e-1;
czl 1 b[l 6].im := -3.02127 I8647469L03 1e-1 ;

czl 1b[17].im := -2.86005 I80124O14475e-i;
cz1 1b[1 8].im. :: -2.6827 05657 57 L337 39e-L;
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cz11b[19].im
cz11b[20].im
czl1b[21].im
czL7bl22).im
cz1lb[23].im
cz11b[24].im
cz1lb[25].im
cz11b[26].im
cztIblZTl.im
cz1lb[28].im
czl1b[29].im
czl lb[30].im
czl ib[31].im
czl 1b[32].im := -1.33 77 4322L1 2 160330e-1;
cz i 1b[3 3].im := -1.2865 85 99O2I57 21 57e-1 ;

czl 1 b[34].im :: -1.2445421763 5047 5 1 5e-1 ;

ûpr:: FAISE;
k:= 34;
fori:=ltok
begin
p11[i].im:=

{p11[i].im:= 6
p11[i].re:= 0;

{writeln(p 1 l.coef[i].im) ; ]

end;

{-¡ ------l
zl.num.rep := prodrep;
zl.den.rep ¡= prodrep;

zl.den.coef[0].re := 1;
zl.den.coef[O].im := 0;
zl.num.deg:= 1i
zl.den.deg:= 1;

zl.num.coeflO].re := 0.5i
zl.num.coef[O].im := 0;
z1.num.coefl 1l.re := >oc[1]l
zl.num.coef[1].im := 0;

zl.den.coefl1].re := -3.0e+2;
zl.den.coef[1].im := 0;

{ writeratio naJ3 (zL,' zl' ) ;l
if PRINT then
begin
Rationaljs-pr i= Rational-pr(zl);
if Rational-is-pr then
writeln('21 is pr')
else
begin
writeln('21 is NOT pr');

end;

:= -2.51 1010664343683 83e-1 :

:= -2. 3 5 30 L57 1245223 627 e-l;
:= -2.210682993 5 8505 941 e- 1 ;

:= -7.08345 66 1 865 898877 e-1;
:= -1.969870125 8933 1061e-1 :

:= - 1. 86 82 465 L622647 027 e-L:-
:= -I.77 69 85207 57 97 49 46e-L;
:= -I.69 46637 368423 2983 e- 1 ;

:= -1.6200 5 87 6L24889523e-1 ;

:= - 1.5 5 2 1 3 4L564II78482e-I;
:= -1.4900 1 7785 865 I4544e-L;
:= -L.43297 63 63997425 80e- 1 ;

:: -1.3 803 9227031 541 1 69e-1 ;

do

18 * (i - 1) " 2* 3.1415926;*(i-1)*2"3.IaL5926;l
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end;

z1 1.num.rep := Prodrep;
zl1.den.rep := Prodrep;

z1 l.den.coef[0].re := 1 ;

z1 l.den.coef[O].im := 0;
z1l.num.deg := 4;
z1l.den.deg := 5;

z1 1.num.coeflOl.re := rx[2]i
z1 l.num.coef[O].im := 0;

z1 l.num.coef[1].re := xx[3]i
z1 1.num.coefl 1].im := 0;
z1 1.num.coeft2l.re := xx[4]i
z1 1.num.coefl2].im := 0;
z1 l.num.coef[3].re := xx[S]i
z1 l.num.coef[3].im := >o<[6]i

z1 1.num.coefl4l.re := xx[S]i
z1 l.num.coef[4].im := -xx[6]i

z 1 1 . den. coefl 1 ].re := -4.237 36069 8 5 5 0 3 6677 l}e+Z;
z1 l.den.coefl1].im :: 1. 13640L72337 t33 1 8040e+3;
z 1 1. den. coef [2].re := -4.237 36069 8 5 50 3 6627 L0 e+2;
z1 l.den.coef[2].im := -1.1 3640L723371331 8040e+3;
z 1 l.den.coef[3 ].re := -I.496745 563 23 3 5 248200e+ 3 ;

z 1 l.den.coef[3].im := 1.0688839603 868 1263 90e+3 ;

z1 l.den.coef[4].re := -1.4967 455632335248200e+3;
z 1 l.den.coef[4].im := - 1.0688 83 9603 86 I 1 263 90e+ 3 ;

z1 l.den.coeflS].re := -1.8403 67 33822877 lO53Oe+7;
zl1.den.coef[S].im := 0;

if printZ then

begin
writerational3 ( z1 I, 'zll- 1');
writerational3 (21,'zL');

z2? :: addration aJ(2I1, zI) ;

wri teratio nal3 (222,' zL l-2' ) i
zLL.mtm := mulpoly(z 1 1.num, zL "den) ;

nl :: mulpoly(z1.num, z11.den);
zZZ.num := addpolY(z22.num, n1 );
zZZ.den := mulpoly(2l 1.den, z1.den);
Z2 2. NUM. COEF.[0] i = CDIV( z2 2. num. coe f[O], Zzz.DEN. COEF [0] ) ;

Z22.DEN.COtr[0] := CC1;

wri teratio nal3 (222,' zl L-3' ) |
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end;

if PR then
begin

Rational-is-pr l= Rational-pr(2l 1 );
if Rational-is-pr then

fwriteln('z11is pr')]
else
begin
writeln('211 is NOT pr');
€fÌ l= tfll€i
goto 11;

end;
end;

forl:=ltokdo
begin

{ ----czl -.-_}
czln := ccl;
for j:= 1to 1do
begin
c1 := csub(p1 1 [i], zl.num.coefUl);
czln := cmul(czln, cl);

{writehr('czln', czLn.re: 20, czln.im : 20);}
end;
czln := cmul(z1.num.coeflO], czln);

{writeln('czlrr', czltt re : 20, czln.im : 20);}

czld :: cc1;
for j:= 1to 1do
begin
czld := cmul(cz 1 d, csub(p 1 1 [i], z 1.den'coef[] ) );

{writeln('czld', czld.re: 20, czld.im: 20);}

end;
lczl,d := cmul(z1.den.coef[O], cz1 d);]
iwriteln('czLd', czld.re: 25, czld.im: 25Ì

CX1[] := cdiv(czln, czld);
{writein(i, 'czl-l- ', czI.re: 16, cz1.im : 16);}

{---cz¡l--:-}
cz11bn:= ccli
forj:=1to4do
begin
cf := csub(p1 1 [i], z1 l.num.coefff]);
czl lbn := cmui(czl lbn, cl);

{writeln('czllbn', czllbn.re :70, czllbn.im : 20);}
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end;
cz1 1bn := cmul(21 l.num.coef[0], cz1 1bn);

{writein('cz1lbn', czllbn.re :20, czllbn.im : 20);}

czllbd:= ccll
for j:= 1to 5 do
begin
czt tbd := cmul(czl lbd, csub(p1 1[i], z1 l.den.coefÜl));

{writeln('czllbd', cz1lbd.re : 2O, czLlbd-im : 20);}

end;
{writeln('czllbd', cz1 lbd.re : 20, czllbd.im : 20);}

cx11[i] := cdiv(czllbn, czllbd);
{writeln(iczILb ', cz11b.re : 2O, czllb.im : 20);}
{-cz11b----}

cx1 1b[i] := cadd(cx1 [i], cx1 1[i]);

{writeln('czllb ', czl lb.re : 20, czllb.im : 20);}

cx[i] := csub(cz1 lb[i], cxl lb[i]);
end;

if print then
begin

f 

--21

L -'

fori:=1to34do
begin
writeln('cz1[', i, '].re:-', cx1[i].re : 25, ';');

end;
fori:=1to34do
begin
writeln('cz1[', i, '].im;=', cxlti].im: 25, ';');
end:

l--czll-Ì
fori:=1to34do
begin
writeln('cz1 1[', i,'1.re:=', cx1 1[i].re : 25,';');
end;
fori:=1to34do
begin
wãteln('c211[', i, '].im:=', cxl1[i].im: 25, ';');
end:

I--czLlb--l
fori:=1to34do
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begin
writeln('czILbl',
end;
fori:=1to34do
begin
writeln('cz11b[', i,
end;

end;

YAl ::0;
YAZ := 0;
fori::2to34do
begin

{writein('cx=', i, '= ', cx[i].re, cx[i].im);l
{YAl :: YAl + ABS(CXIII.RE);}

{YA2 := YAZ + ABS(CXlll'lM);}
YAl :: YAl + sqr(CXlll.RE);

YAZ:= YA2 + sqr(CX[[.lM);

end;

YA1 := yal + YAZ;

11:
if npr then
begin
a := 1e5;
absv:= a;

{writeln('a', a : 16);}
end

else
begin
ABSV:= YAli

{writeln('b', yÃL : 16);}
end;
flpr:= FAISE;

end;

procedure search (var kl, n: intege4 a dl1: HTENDED; x EnTENDEDtableptr);
var
i, j, k, o, jL, oo2: integeç
xi2, drcç nq yl, y2,DX, q Ð(TENDEDARRAY;
k2, i3, ti, o2ir,' 63,'bb,'L, m, aa, AL, a3, a4, B, 81, 82, p, xl, x2, x3, d: EXTENDED;
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dd, ya, x4, x5, x6, xl1: ffiTENDED;
{X: EnTENDEDTABLEPTn}
{s1, s2: complex;}

p1, Pl1: POLYNON'flAIi
zlt, zL2, zL,22,23, z4: rational;
PRINT: boolean;
PRINTZ: boolean;
PR: boolean;

label
?4\7

', 
v, ',

ISEARCH i
begin
begin

k:: 0;
l:= 0.85;

{dl1 := 1e-8;}
{WRITEIN('d11" dl1);}

fori:=ltondo
begin
xx[i] :: *n[i, 0];

{WRITELN('X [i,0]', i, 'l= ', XA[i,
dx[i] := d11

{WRiTELN('dx[i]', dx[i] ) ; ]
end;

end;
begin

2:
begin

{writeln('sigle search'); }

K:=K+1;
{writeln(' k1-', kl, 'k = ', k);}

k2;= 1e-11;
dd:= dx[l];
if K>k1 then
begin
X^[0, 0] := 4
goto 10;

end;
if dd < k2 then
begin
X^[0, 0] := a;
goto 10;

end;

A1 := A;

fori:=ltondo
begin
g[i] := *n¡i, OJi

end;
end;
fori:=ltondo

9, 10;

0l : 10: 8);Ì
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begin

¡n[I, 1l ;= f,Âfi, 0] + DX[I] * xn[i, 0]i
{X[, 1] := X[I, 0] + Dxlll;]

QIII := ¡n[I, 1];
;o<[i] := q[i];

{writeln('xx[]', i, ':', ro{[] : 10 : 8);]
{Writehr('xn ¡i, 11')i }
{WRITEiN('X [i,1]', i, '1= ', X^[i, 1] : 25);]

b1 := absv(xx, zI2, zLI);

if i = 1 then
begin
WRITEIN('dx', dx[l], 'k=', k);
end;
if 81 < A1 then
begin
A1 := 81;

{WRITELN(' +dx B1=', i, ' ', 81 : 12, 'dx', dx[l], 'k=', k);]
[computin gzlIzlZ(xx, zII, z|2);l

for j :: 1 to n do
begin
xx2tjl ¡= ¡n[, 1];

{writein('+DX )o(2', j,'-', xxztj] :30);}

end;
end

else
begin
¡çnü, lJ ;= f,Â[, 0] - DX[] * ¡n[i, 01i

{Xll, 1l := X[I, 0] - Dxlll;]

Q[] := Xn[, 1];

xx[i] :: q[i];

{WRITELN('DX[i]', i, '= ', DX[I]:20: 18);]
{WRITELN('X[i,0]" i, '= ', x[], 0] : 10: 8);]

{WRITELN('X [i,1]', i, '1: ', X[], 1] : 10 : 8);]
bl := absv(x¿ zII, zLZ)i

{WRITEIN('SEARCHI -dx B1:', i, '-', 81 :20);}

if 81 < A1 then
begin
A1 := 81;

{WRITELN(' d¡ B1=', i, '-', 81 : 30);}
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{ computin gzLtzlZ(w., zL L, zl2);l
for j := 1 to n do
begin
)o¿Ül := x^Ü, lli

{writetnC:Dx }o(2', i,'-', xx2U] : 30);}

end;

end
else
begin
tln[i, 1] ;: ¡n[i, 0];
;o<[i] := *n[i, 1];
end;

ÍWRITELN('Xx[i]', i, Xx[i] : 15);]

end;
end;
fori:=ltondo
begin
for j := 0 to 1 do
begin

{writelä('x[i,j]', i, j, '= ', x[i, j] : 10 : 6)]

end;
end;

{ WRITELN('A=', A);}
if a1 <athen
begin
a := al:

{if i> 100then}
{begin}

WrurEI.¡('A=', A: 12);

{end;}
goto 5;
end

else
begin

I WRITELN('A=', A);]
end;

end;
{writein('X[1,0]', X[l, 0]);]
fwriteln('step2');]
i nXaO 7****i****************** Ì
4|
{writet¡11'-steP4, reduce dx-') ; }

begin

{DX3 := DX11 + DX22 + dx33 + dx44 + dx55 + dx66;}

{r¡¡N('r-DX4:', DXa);}
{WRITELN('D=', D);}
{ifDX4<Dthen}
{goto 10}
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Ielse]
begin

{WRITELN('I=', l: 18 : 16);}
for j:= l tondo
begin
dx[] := dxÜl * l;
if dxúl < 1.0e-16 then

{writeln('dxlil', dxÜl ) ; }

end:
{DX[l] := DXI1] * L;]
{DX[2] := DX[Z] * L;]

forJ:=ltondo
begin

{writeln('dx[J]', J, '=', dx[J] : 10: 8);]
end;

{l:= I * i;}
end;

{ writeln(t_-.-_.-X[l,0]', X[1, 0]);]
goto 2;

end;
{writeln('step4');}

{ PATTEN SEARC
5:
{writeln(' ---patten search---r)'}

begin
for j := 1 to n do
begin
x^U, 2] := XAU, 1] * 2 - x^Li, 0];

rxfi] := x^Ü, 2];
{writeln('xÛ,21',j, xÜ, 2l : 28);}

end;
b2:: absv(pi, zLI, zI2);

{WRITEIn('PA -82=', 82 : 30);}
{if bZ > a then}
{begin}
{forj:=ltondo}
{begin}
{xU, 0l := xli, lli}
{goto 2}
{end;}
Iend;]

ifb2>athen
begin
p := 0.95;
j:=o;
while82>Ado

9:
begin
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forj::ltondo
begin
xnÚ, 2l := x^U, 1l + p * (x^Ü, 1l - xn[j, 0]);

end;
forj:= l tondo
begin
>o<[] := x^Ü, 2];

iwriteln('>o<=', ¡cxÜ] : 25)Ì
end;
b2.: absv(xx, zlt, zL?);

{WRITEIn(' PA p for bT<a ', ' P= ', P,' BZ:', BZ : 28,'k=" k);J

{writeln('a', a: 40: 36);}
ifb2<athen
goto 7;
ifb2=athen
goto 7;

P:=P*P;
ifP<1e-100then
begin
writeL:('b2>a')l
writeln('a=', a:28);
for j:= l tondo
begin
x^û, 0] := x^Li, l]i

writeln('XX[', J, ']:=', xn¡, 2] : 30, ';');
end;
goto 2;
end;

{writeln('a', a: 40: 36);}
{writebr('b2', b2: 40 : 36);}

Lfb2>athen
goto 9
eise
goto 7;

end;
end

eise

begin
forj:=ltondo
begin
x^ú, 0] ;= ¡n[, 2];
,o¿tjl '= ¡n[, 2];

end;
if k> 100then
begin
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forj:= l tondo
begin

{writeln('XX[', J, ']:=', xn¡, 2] : 30, ';');]
end;

end;
A:= 82;

{if k> 100then}
{begin}
{writeln('PS a: ', a: I2);l
{end;}

IWRITEIn('patten search bZ<a ', ' dx', dx[l], '-1-S/=', 82 : 15, 'k=', k);]
[writeln('dx', dx[1] : 28 : 24, dxl1]);]

goto 2;
end:

end;

10:

for j:= l tondo
begin
writeln('xx[', j, ']:=', xÂ[, 0] : 30, ';');

end;

end;

{_..--_._--main program-}

begin
{ ReadpolyFromDataFile(P,'P' ) ; }

New(X);
OpenTextWindow( 15, 40, 630, 47 0);
DateTime;
PzuNT :: FAISE;

{PzuNT := tnrei}

PRINTz:= FAISE:
{PRINT2 := tñ¡ei}
{pr:= tnre;}
{ ieadrationalfromdatafile ( z 1 1,'choos e zl I' ) ;l
{ readrationalfromda tafld.e(z 12,' choos e zLZ' ) ;l
{writerational3 (21 L, 'zLI');l
{ writeratio nal3 (2L2,' zI2' ) ;l
begin
D:= 1.0E-80;
12 := 1.0;
m:= 0.9i
N:= 6;

)o{11 := 100i .
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rx[2] := -100;

>o{31 := 100;
)o{41 := -100;
xx[s] := -100;
XXt6l := -100i

fori:=ltondo
begin
writeln(' XX[', i,']:=', xx[i] : 27,';');

{x^[i, 0] :- xx[i];]
end;

A:: absv(s, zlt, zI2);
writeln('3 A=', A :40);
aa| := a;
O:= 0;

end;

fori:=ltondo
begin
yl[i] := xx[i];

{write('xx', i, x,x[i] : 20);]
end;

foro:=0to57do

1:
begin

O:=O+1;

k1 := 100;
dl1 := 0.001;
writein('o=', o)i
writeln(' search 1 input aal:', aal :20);

fori:=ltondo
begin
¡n[i, 0J ¡= yl[i];

{WRITELN('S [', i, ']:= ', Y1[i] : 25, ';');]
WRITELN('X [', i, ',0]:= ', X^[i,0] : 25,
end;

k := 100;
d:= 1e'8;
search(k, n, aal, d, x);
a:= x^[0, 0];
writeln(' search 1 ouçut a=' , 7: 25);

t.rì.
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if a<aa1 then
begin
AC:= AÃl;
aal:= ai
writeln('search I

fori::ltondo
begin
yl[i] := xn[i, 0];
rx[i] := yl[i];
WRiTELN('xX [',

end;
ab := (ac - a) / ac;
if ab > 0.01 then

goto 1;
end;

d1 := 1.01;
L1 ::0.98;

a<aa1', aa1 : 20);

[-changing starting point
for j := 1 to 10 do
begin
d1 :: d1 * Ll:
writeln('d1=', j, ' ', d1 : 20);

begin
writeln('- change input aal=', aal : 20);
fori:=ltondo
begin

{x^[i,0] := 0.98. y1[i];]
X^[I, 0] ;= y1[i] * Dl;

xx[i] := *n¡i, 0l;
WRITELN('X [', i, ',0]:= ', X^[i,0] : 25, ';');

{WRITELN('xX [', i, ']:: ', Kx[i] : 25, ';');]

end;
end:

A :: absv(xx, zI7, zI2);
writeln('- change input A=', A: 15);

search(k1, n, 4 dl1, x);
¿;= yn[0, 0];
writeln('- change output à=', à: 15, 'aal=', aal: 15);
if acaal then
begin
aal :: a;

{writein('- change ', 'aal=', aa1 : 15);}

fori:=ltondo
begin
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yl[i] := xn[i, 0];
writeln(' XX[', i, ']:=', yl[i] :27,';');
end;
goto 1;

end;
writeln('+ change');
d2 ::2 - dL:
writeln('d2=', dZ : 15);
fori:=ltondo
begin

{x^[i, 0] := 1.02 " yl[i];]
¡n[f 0l ¡= yl[i] * (2 - D1);

WRITELN('X [" i, 
"0]:= " 

x^[i, 0] : 25, ';');

end:

A :: absv(xx, zLI,212);
writein('+ change inPut A:', A: 15);

search(kl, n, 4 d11, x);
a := x^[0, 0]i
writeln(' + change output a:', ã: 15, 'aa1=', aal: 15);

if a<aa1 then
begin
aaL := ai

{writeln('+ change output', 'aal=', aal : 15);}

fori::ltondo
begin
yl[i] := xn[i, 0];
writeln(' XX[', i, ']:=', y1[i] :27,'i');
end;
goto 1;

end;
end;

end;

end.
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APPDENDIX B

}TYDRO DATA

Freq.(Hz)
50.00000
60.00000
70.00000
80.00000
90.00000
100.00000
110.00000
120.00000
130.00000
140.00000
150.00000
i60.00000
170.00000
180.00000
190.00000
200.00000
210.00000
220.00000
230.00000
240.00000
250.00000
260.00000
270.00000
280.00000
290.00000
300.00000
310.00000
320.00000
330.00000
340.00000
350.00000
360.00000
370.00000
380.00000
390.00000
400.00000

Given z1 1(scaled) Frequency Response

Real Part Imag. Part
0.06822 0.11s69
0.09059 0.12886
0.11571 0.13475
0J4025 0.13114
0.15864 0.11823
o.r6s72 0.10083
0.16133 0.08686
0.1509s 0.08155
0.14093 0.08475
0.13483 0.0931s
0.13328 0.10326
0.13531 0.i1261
0.13921 0.11992
0.14306 0.12499
0.145?7 0.12886
0.14523 0.13334
0.14377 0.14031
0.14274 0.15061
0.14399 0.L6379
0.14864 0.17863
0.15709 0.19387
0.16943 0.20845
0.18570 0.22730
0.20580 0.23108
0.22907 0.2361.7
o.254L1 0.23502
0.27880 0.2263r
0.29993 0.20922
0.31286 0.18433
0.31213 0.15s 80
0.29531 0. L3269
0.26796 0.12523
0.24212 0.13668
0.22774 0.16113
0.22767 0.18958
0.23953 0.21533
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Given 212(scaled) Frequency Response

Freq(Hz)
50.000
60.000
70.000
80.000
90.000
100.000
110.000
120.000
130.000
140.000
150.000
i60.000
170.000
180.000
190.000
200.000
2i0.000
220.000
230.000
240.000
250.000
260.000
270.000
280.000
290.000
300.000
310.000
320.000
330.000
340.000
350.000
360.000
370.000
380.000
390.000
'+00.000

Real Part
0.052
0.071
0.093
0.116
0.135
0.143
0.140
0.130
0.118
0.109
0.103
0.101
0.100
0.101
0.099
0.096
0.089
0.082
0.075
0.071
0.069
0.070
0.07s
0.08s
0.099
0.1 17
0.139
0.162
0.182
0.193
0.188
0.165
0.133
0.101
0.o77
0.064

Imag Part
0.069
0.075
0.076
0.068
0.0s0
0.0?6
0.003

-0.012
-0.019
-0.021
-0.020
-0.018
-0.019
-0.021
-0.02s
-0.030
-0.032
-0.032
-0.028
-0.021
-0.012
-0.002
0.008
0.017
o.024
o.027
0.o24
0.012

-0.010
-0.043
-0.081
-0.112
-0.128
-o.r27
-0.114
-0.096
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Given 2Z2(scaJed) Frequency Response

Freq(Hz) Real Part Imag Part
50.000 0.047 0.080
60.000 0.064 0.091
70.000 0.086 0.097
80.000 0.109 0.09s
90.000 0.130 0.083
100.000 0.143 0.064
110.000 0.744 0.044
120.000 0.137 0.030
130.000 0.L26 0.022
140.000 0.117 0.022
150.000 0.111 0.024
160.000 0.108 0.028
170.000 0.108 0.030
180.000 0.109 0.031
190.000 0.109 0.029
200.000 0.107 0.026
210.000 0.102 0.024
220.000 0.094 0.024
230.000 0.086 0.028
240.000 0.078 0.03s
2s0.000 0.072 0.04s
260.000 0.069 0.0s8
270.000 0.068 0.072
280.000 0.071 0.088
290.000 0.080 0.105
300.000 0.093 0.120
3 10.000 0.113 0.13 2
320.000 0. i39 0.137
330.000 0.168 0.133
340.000 0.195 0.115
350.000 0.212 0.084
360.000 0.212 0.048
370.000 0.L94 0.019
380.000 0.168 0.004
390.000 0.140 0.002
400.000 0.118 0.010
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APPENDIX C

ELEMENTAL CIRCUITS AND THEIR
IMPEDANCE FUNCTIONS

1. No. A1

413s

xrxrnrs'+.qs + n3

2. No. A2

xtx3s + x3x4

xrxrxrst + (xrxrxo + x, )s * x, * x,

3. No. A3

xrx"xrxos' + xrx4s

A3

xrxrxos' + xrxrxrsz + (xrxrxo * x, )s * xo



4. No. A4

5. No. A5

6. No. A6

L_
xr*rxrxos'+ {.r4s + x3x4 _

xr4xrs" * xrxrxos' + .rrs + x3+ x4

a

xtx1x1x4s- + xfi4s + ftx3s

x1x.x1xas! + (xrxo * x,x,)s + x3x4
t-

xrxzx3s'+.xls+.r3

xoxrxrs' + xrxrxos'+ 4.t + .r4
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7. No. A7

8. No. A8

9. No. A9

¡r (x, + x4 )s * xtx+ _
(xrxrx, + xrxrxo)s' + (x.xrxo * x, )s * 13

llx"sh

xrxrx^xost + xr(xr+ xo)s + x3x4

xrxrxos' + (xrxrx o + .rt )s * x,

xlx"x,.sz * (x.xrxo + x, )s + x3
t-T- xrxzst + (xrxr+ xrx)s +l

l/ns
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10. No.410

11. No. All

12. No.412

_ xrx..xrxrs-ltr(a{{,t* 4 )s+ x.,x.Z-
(xëzx+ + 44xr)s' +(x,xrx" + \hxs + x.xsxl + x, )s + x3 + xs

a.
J,J.r..r*s" * r.(¡,r"x, +.r,).ç+ -r..¡r*s + -r--r. + rx- + r. r_

xfi2xjs' +(x.xtxt+,r,)s + \ + x.

"xrx. +.x,x )s2 +;r.(,r.¿Jo + x, ).r +

ll'-s

xë*+ + JråJ3.r- +(\kxa + x,)s+ x"



ll xrs
13. No.413

_ _(xrxrxrxo+ xrxrxr+ xrxrxrxoxr)sz I xfios* xtxss* xtxq* xtxs* xo,xs

'= *o

14. No.414

(xrx"xrxn * xrxrxo

xrxrxo" + xzx3x4s +.rts + ir4

i5. No. 415

(x,x.x.xr+ x,x,,x^xr)s2 +(4x. + xfi4+ xfis+ xnxrxoxr)s+ x4xs+ x3x.

(xrxrx, + xrxrxo)s' + x2x3x4s + xrs + 13

Ilx.s
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16. No.416

17. No. 81

18. No. BZ

19. No. 83

(xr\x, + xrx*r)s2 +(xrx"x, + xr¡-x, + xrxrxr)s + x, + x,
r,f,isz +(xrx. + .r"-q)s + 1

t-frJ

jr,Ås'+.qx,s+lz=æ
ås

ll x-s

ll x.s

Z=
xr4xos? + (x, + xrxr4)s + 4 + x,

I',frS + 1

(-r,xr.r, + x,x"ro )s' + (¡rx"r. + ¡, )s + ¡.
vvc-- + xr42s
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20. No. 84

21. No. 85

22. No.B6

xtxix|s' + x"x1x/s + 4.ç + x3 + x4

xtxzsz +(xrxt+ xrxo)s

F-
1l ns

xrxnxost * (xrx"xo + x, )s + x3 + x4
c-

xrxrs'+(xoxr+ xrxr)s

(xrx, * xrxr)sz * (xo * xfizxs)s * xt

(xrxr+ x,xr)s + I

Ll x.rs
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23. No.813

24. No. Pl

25. No. DB

I/x.s

\4\s +x"+x3

I / .r,s

)ct\z=x$- + (¡i + x, + x,x,)s + I

x^

\x{4s + x4

xfi2¡"x4s' + (rzx, + xtxt + x,x, )s + I
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26. No. C2

27. No. El

28. No. F4

, =_þ_- xrxrs + 1

xtx)sZ=-
xf+x2

r,,f + r.z=-
xt4s' + 4\+ L
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29. No. E4

30. No. E6

31. No. C4

-_(xrxr+4xr)s+xzx3t--
f.ls+x2

xrx,.sz * (xrx" + x1x.4 + xÁxt)s + xrxo

4s+¡a

&xaxas+x1 +x1

,rif2J + I

209



APPENDIX D

CIRCUIT DIAGRAM FOR HYDRO EXAMPLE

The circuit diagram of Hydro example is shown in page 211. The element

Values are presented in page 21.2.
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H

Et? ¿10 R19 ttl nzt

[1

R2

1
T2

a+

t3

B6

[{

B?

0.82"

Circuit diaeraf,. for Hydro Exasple



Resistor: A,

17 :2.Æ7 ?23 I 3 7 5 08 3 54+ 5

Rl: 2. 3 89 1 7 39 547 2 5266e-1

CL :9 .L 2987 I 67 427 7 36 3e -3

R2 : 7.7 922æ49 5 922387e. 3

12: 2.42 S 5 s 61 5 84L 4I1 1 e-5

R3:6.9992 437 9 587 173 5e2
C2 :2.827 Ð2 85 92467 3 i, eZ
R4 : 7 .6 467 07 Cl67 2 66 tO7 e3
L3:2.5 9067 86322 59369e4

R5: 1.80620968347 827 4e-I
C3:1 .01 39 5 659748693Ie-2

R6: 1 .3o7 2 48324t 5 5 æ7 e-2

L+ 6.13r}7795288ffi9M
R7 :6.37 23 841 683387 B*Z
C4: 2.n 5n &4842 5269Ie-3

R8:1.4949585602153C.H

LS :3.629 7O2 5 L 7 97 7 67 53 46O0Oe- 5

R9: 7. 1 34 3 97 9 57 3 52 LO669OO0Oe I
c 5: 3. 1 2 1 6 18437 7 31.703759æ3
RI

L6:I.229 532202 3OL 3 @S 690OOe-5

Rl 1 :1 . 1 54LO 517 49 9[].523 62æ-I
C6- 2.33 10 57 67 L9Lffi73 39OOOe-2

R12: 1.05 55071 98898414074&3
L7 :4.A97 7 624Ð8987 7 9O68Oæe6

Rl 3: 6.1 9 5869+8 183 960396æOOe-2

C7 : 9.æ89 3CÉl5 99 I L61 TSOSOOOe-2

Rl. 4- 8. 5 94OO 927 97 47 51 246W
L&z.7 æ7 7 O2OS 3 529 æ7 95 Oæe6
Rl 5: 1 22ß 877 37 3 s967 7 34W-2
CA L.97 Q742Ol2æ3843 02 æOe.-1

Rl6:3.7898O1 01 6 95666848900Oe5

Table of
Element values

Inducton H, Capacitor: F

2L2



L9: 5.5 42 65 9 78075 I 93 7 26W-6
Rl 7:8.95 1 448 9337 253 637380me2

C 9:3. 1 948 597 I 05Æ290076æ0+2

RI 8: 2.8492920894,933 81 096,G 5

L1 G 3.5 3682æ ffi2 5267 3 41lJæ 5
Rl 9: 326041 6899336399593OOOe-2

CIO-4.1 U, 47 9 L Lg 93 W1 58 200Oe2

R20:2.49 262 6 1. s 1. 3 W3 3 2 93 æ3
Lt 1 :3.47 38037 59L7 5370541 æOe+ 3

R21 : 4.4865 3 56 6502 8 29U7 7 l]/Jr]É-1,I

C77 :2 22889 1 3 3 5 2 36002 73 5Oæe8

R22:3.7 43686 883 I 39 6809 380æe-6

L7 2: 1 Aß7 26 67 837 58 547 90OOe'7

R2 3= 8.6 66 L 7 3L 95282263 6300Oe+ 1 4

c72:8.6 L477 77 03 I 57 422 00@Oe 1

R2 +7 .9 8099 5 57 9 3 5 47 47 23 lJß22
L1 3: 5.93 92926237 672 85908G5
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