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Abstract

Durability tests are important to ensure the safety and reliability of a ground vehi-

cle and involve frequently driving a vehicle through a series of events that simulate

different road conditions or obstacles encountered during actual driving. Since dura-

bility tests are costly in-terms of time and money, accelerated durability lab tests

can be used to spot failures before actual road tests. Signals of different events of

the actual durability road tests generate three continuous time series data, that can

be used to conduct accelerated durability lab tests. The actual analysis of these

time series is very challenging because they are (i) of high frequency (ii) very noisy

and (iii) inconsistent.

The purpose of this study was to identify the patterns of signals from the noisy

and inconsistent time series data collected from the field tests. The Box-Jenkins

methodology was used to identify models corresponding to different events. Due to

complex structures of the real data, ARMA modelling was considered after testing

stationarity of the given time series. While the time series data in vertical direction

was used to identify the first three events, the time series in vertical, longitudinal

and lateral directions were used to identify other four events.
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Chapter 1

Introduction to the real data
problem

1.1 Introduction

It is very important for a ground vehicle to ensure the safety and reliability. In ad-

dition to reliability, comfort and performance, growing environmental and economic

concerns are elevating demand for durable vehicles. The durability test of a ground

vehicle is one way to ensure the demand for durable vehicles. It enables a com-

pany to determine the stresses under which their products can continue to perform

- in other words, to make sure components are not going to fail under anticipated

operating conditions.

Testing the long-term durability could mean driving the vehicle over a test track

24 hours a day, seven days a week, for more than a month. Durability test of

a ground vehicle can be particularly challenging because of the way the vehicle is

used and the roads on which the vehicle is driven and the product design can change

significantly during both the design phase and the product lifecycle. Testing the
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vehicle is the most common way to verify durability, but the testing is also expensive

and time-consuming. Hence, field tests are designed to represent the average road

condition of the real world.

The durability field test tracks are precious to determine the safety and dura-

bility of a vehicle components over its lifetime. For automotive vehicles, the map

of a typical field test track of Pennsylvania Transportation Institute [5] is shown in

Figure 1.1 (on page 2).

Figure 1.1: Typical testing facility for automotive vehicles [5]

To evaluate the vehicle there are different departments in the testing facility

and the durability test track is used for the vehicle’s durability assessment. The

durability test track shown in Figure 1.1 would contain various events that would

simulate typical real world driving conditions.
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While doing the field test, occurrence of any failure will increase the time re-

quired to perform the test. The test is required to be repeated from the beginning

once the problem is found and resolved. Since, the testing process is costly and

time consuming, a sub-scaled accelerated durability test is essential to ensure that

the testing is completed in a timely manner [15].

The accelerated durability tests are required to be used before the field tests

to find the possible failure components and to evaluate the vehicle’s performance

within a much shorter time. At same time, the results of accelerated test should

reveal the same potential damage content as the product would encountered over its

service life. Other important information such as the determination of the warranty

timeframe and minimization of product recalls and complaints after market can be

obtained once the accelerated durability test is conducted [3].

The accelerated durability test is carried out by the use of Multi-axis Simulation

Table (MAST) [33]. MAST system is often used to test the performance of various

components in a realistic operating environment. Other important applications of

MAST include the measurement of noise and vibration test. MAST is a mechanical

system that works in a controlled laboratory environment by repeatedly replicate

and analyze in service vibrations and motions of a testing component [2]. The

MAST has a six degree of freedom control system [1]; it provides the mounting

surfaces for the testing component analysis. This MAST operated through the uses

of the hydraulic actuator and advanced flex test controller. In addition, different

forms of data such as sinusoidal, random Power Spectrum Density (PSD), swept

sine wave can be taken as the input of the MAST. Many advantages of the lab

test comparable to the field test includes: individual test component can be tested

3



instead of the whole system, the testing time and cost commitment are significantly

low, the modification of the road profiles for the field test can be conducted [1]. The

prototype of the MAST that is used for the sub-scaled accelerated durability test

is shown in Figure 1.2 (on page 4).

Figure 1.2: WESTEST’s MAST table [4]

The MAST system that implements the accelerated durability test can be di-

rectly driven using the acceleration time series format data [16]. As a result, the

driven profile of acceleration data with shorter duration needs to be created to im-

plement the actual test on MAST, which is a crucial part of developing accelerated

durability tests [33].

To ensure that the accelerated durability test is comparable to the field test,
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initial data must be recorded from various road surfaces on the proving ground. It

is remarkable that the field test data are: (i) of high frequency1 (ii) very noisy2 and

(iii) inconsistent3. Accuracy of the accelerated durability test is mostly affected by

the identified events’ information.

1.2 Literature review

Accelerated test is mainly accomplished to assess the characteristics of a ground

vehicle component under regular use conditions by testing the component at higher

stress levels to accelerate the occurrence of failures. The challenge is to create the

driven profile for MAST [33]. To create such driven profile for MAST, GlyphWorks

software has been developed and used for many years. To create the mission profile

and to develop the accelerated loading profile are the two important tasks to gener-

ate the accelerated loading profile using the commercial GlyphWorks software. The

generated driven profile can be used repetitively for the durability assessment of the

test component.

1.2.1 Accelerated durability test

Accelerated durability test is to test ground vehicles or their components included

dynamic loads is often accomplished in the laboratory using road roughness simu-

lation facilities [10]. Such tests can be carried out by a carefully designed field test,

1The accelerations were measured at 200 Hz (200 times per second) and collected for 695
seconds.

2Along with accelerations, the time series also contain vehicle vibration due to the road surface
and vehicle speed.

3The acceleration patterns for any of the events obtained from different laps of any driving
directions are not exactly similar.
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where both the roughness of the proving ground and the speed of the vehicle vary

and control the degree of the test acceleration. To predict the service life of the

vehicle, a representative loading profile is essential whose determination is a chal-

lenging task. Generally, two different types of loads are used to simulate the service

loading environment, which are the sinusoidal loading and the random loading. The

input random loading profiles are generally the accelerations, displacements, forces

or strains [33]. Gopalakrishnan and Agrawal [20] provide an example of input load

measurement. The measurement of tri-axial wheel forces, including the vertical,

longitudinal and lateral is made using load-cell that is attached to the wheel hub.

When the measurement approach is not realistic, Multi-body dynamic simulation

technique can be used as an alternative to establish the dynamic input load [20].

In the automotive industry, two different approaches are used for assessing the

accelerated durability once the loading profile is generated. The two approaches are:

the numerical technique and the experimental testing [33]. Both the approaches

have the same objectives of design cycle times and reduced development cost. Over

the decade, many methods have been developed in literature regarding each ap-

proach, especially in the numerical approach.

In literature, the availability of the experimental durability assessment methods

is very limited. Dressler, Spekert and Bitsch [22] has described three essential ways

to systematize and speed up the experimental accelerated durability assessment.

The first method is to use special test tracks which are designed to permit the

ground vehicle to travel under the same load as the public roads in a much shorter

time. However, it is a difficult task to derive a relation between the loads from the

public roads and the loads from the test tracks. The second method is to bring
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the test into the laboratory using servo-hydraulic test rigs [22]. The benefits of

this approach are, the tests can be better reproducible and much better observable

and can be performed within reduced time, as the individual testing component or

subsystem is tested under the controlled environment other than the full vehicle

prototype. However, the difficulty exists as the loads to be used for the rig testing

have to be derived from measurements performed either on the tests tracks, public

roads or a mix of both. The third method is to simulate the transfer of system loads

(like the road profile) into component loads using multi-body models and termed as

full numerical simulation. A major challenge here is to confirm that the subsystem

and component loads in rig test and numerical simulation are exactly same and

correspond to the loads created by the full vehicle driving on the test track [22].

A technique for developing a high accuracy laboratory durability test is demon-

strated in [34]. The test was performed for a light-duty pickup truck on a six-degree-

of-freedom road test simulator (RTS). Various transducers were instrumented on the

vehicle under studied. The road data from the proving ground was used to drive

file development on a RTS [34], for the subsequent accelerated durability testing.

Vehicle response control channels configurations were used to compare the correla-

tion of the transducer responses between those achieved on the RTS and the road

data. The configuration that produced the best correlation with proving ground

responses was adopted to develop the driven files used for subsequent accelerated

testing [34].

Wannenburg and Heyns [31] have demonstrated a framework for mapping nu-

merical methods and methodologies for the durability assessment of the ground

vehicles. They have described the three steps for the numerical durability assess-
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ment process, which are the determination of the appropriate input loading, stress

analysis and fatigue analysis. The input loading is obtained either from different

measurements (force input measurement, acceleration measurements, strain mea-

surements) or dynamic simulations. The stress analysis can be preceded based on

the input loading. Lastly, the fatigue analyses can be carried out based on the

stress analysis or the strain analysis to predict the fatigue life of critical areas of the

structure [31].

Each of the three steps for the numerical durability assessment process involves

different methods. The methods of stress analysis are developed either in the time

domain or in the frequency domain. Stress analysis methods available in literature

are quasi-static finite element analysis, co-variance method, eigenvalue finite element

analysis, transient dynamic direct integration method, etc. [31]. In these stress

analysis methods different algorithm are employed for the determination of the stress

level, and the choice of the algorithm depends on the type of input loading. For the

fatigue analysis different methods are developed and the popular methods are Cycle

Counting [18], Stress-life approach, strain-life approach [12] and fracture mechanics

approach [31]. Wannenburg and Heyns state that in the automotive industry the

strain-life approach is preferred due to its advanced theoretical background. But in

the case of heavy vehicles the stress-life approach is preferred [31].

1.2.2 GlyphWorks software and events identification

The GlyphWorks is a software developed by HBM nCode, which is the leading

data processing system for engineering test data analysis. It is designed to han-

dle huge amounts of data with multi-file, multi-channel, multi-format environment
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[33]. It uses for power processing and engineering test data analysis, with specific

application to durability assessment and fatigue analysis [3]. Using this commer-

cial GlyphWorks software, the accelerated durability test profiles can be achieved

by using a so called Mission Profiling and Test Synthesis processes [33]. Generat-

ing the mission profiles using the Glyphworks software is a challenging job. The

mission profiles can be efficiently created by using the acceleration data of the corre-

sponding events (real life road obstacles) experienced by the vehicle. Hence, events

identification is an important step to effectively conduct the accelerated durability

test. Initial developments of events identification include the visual identification

method [15] and the curve fitting method [35]. But these methods were not com-

pletely successful to identify the events. Based on wavelet analysis, clustering, and

Fourier analysis, another event identification approach proposed in [33] to generate

the mission profiles for the accelerated durability test. Accuracy of the mission

profiles depends on the exactly identified events of the field test track. In this study

Box-Jenkins time series methodology has applied to identify the events signals from

the acceleration time series data.

Box-Jenkins time series methodology

The Box-Jenkins approach was described and employed to determine models for ac-

tual time series in a highly influential book by statisticians George Box and Gwilym

Jenkins in 1970 [9]. The statistical nature and wide applicability of the Box-Jenkins

models are well known. Box-Jenkins approach covers a large class of models and

it is the standard and systematic approach to model identification, in which the

validity of the model can be verified and the forecast accuracy can be measured
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[21].

There are many published examples of Box-Jenkins approach in the areas of

modelling and forecasting. A successful use of this approach to forecasting and

control problems based on the modelling of time series is described in [29]. An-

other application of this approach is to estimate and to simulate earthquake ground

motion and structural response [27], [6]. It is found that the time-varying au-

toregressive moving average (ARMA) model is an efficient method for estimating

the observed ground motion as well as for simulating earthquake ground motion.

Aghda, Gandomi and Beitollahi [7] have applied Box-Jenkins model to develop

the artificial accelerograms for assessing the dynamic response of structures. They

argued the simplicity and applicability of the AR model in signal processing. Box-

Jenkins ARMA modelling can also be applied to predict the wind power output for

producing electricity [24].

Box-Jenkins modelling involves identifying an appropriate ARMA model, fitting

it to the data, and then using the fitted model for forecasting. One of the attractive

features of the Box-Jenkins approach is that ARMA processes are a very rich class

of possible models and it is usually possible to find a process which provides an

adequate description of the data [17]. The Box-Jenkins modelling involved an iter-

ative three-stage process of model identification, parameter estimation and model

checking. Recent explanations of the process (e.g., Makridakis, Wheelwright and

Hyndman [25]) often add a preliminary stage of data preparation and a final stage

of model application (or forecasting).

Data preparation involves transformations of the data (such as square roots or

logarithms) or differencing the data that can help stabilize the variance in a series
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where the variation changes with the level.

Model identification in the Box-Jenkins framework is the most important and

also the most difficult task. This stage consists of using various graphs based on the

given time series to identify potential ARMA models which might provide a good

fit to the data [17].

Parameter estimation means finding the values of the model coefficients which

provide the best fit to the data. There are sophisticated computational algorithms

designed to do this [25]. The common approaches to fitting Box-Jenkins models are

non-linear least square estimation and maximum likelihood estimation [17].

Model checking involves testing the assumptions of the model to identify any

areas where the estimated model is inadequate. This diagnostic checking involves

a residual analysis to ensure that the residuals from the estimated model mimic a

white noise process [19]. If the model is found to be inadequate, it is necessary to

go back to identification step and try to identify a better model.

1.3 Events description and time series informa-

tion

The field test time series used in this study to identify the events experienced by

a ground vehicle are actually a 695 second time series of accelerations recorded

by MCI from Altoona durability test track [16]. A typical proving ground field

test track is shown in Figure 1.3 (on page 12). This test track contained seven

different events that are separated into two sections: the three-event section (lower

section as shown in Figure 1.3) and the four-event section (upper section as shown
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in Figure 1.3). The seven events are : 4” Single Chuck Hole, (3/4)” Chatter Bumps,

1” Deep Random Chuck Holes, Railroad Crossing, Staggered Bumps, Frame Twist

and High Crown Intersection.

 

High Crown 

Intersection 

Frame 

Twist 

Staggered 

Bumps 

Rail Road 

Crossing 

4” Deep 

Single 

Chuck Hole 

 
  ”    

Chatter 

Bumps 

1” Deep 

Random 

Chuck Holes 

Proposed area 

for arrow 

direction sign 

Figure 1.3: A typical field test track for ground vehicle [5]
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As shown in Figure 1.3, there are two transitions which can be observed between

the three-event section and the four-event section. Including both of the transitions

and events sections the actual field test duration is 650 hours in total [33]. For the

event sections the field test duration is 330 hours. Corresponding to each event the

measured travelling speed of the vehicle on the test track is shown in Table 1.1 (on

page 13).

Table 1.1: Travelling speed for each of the seven events of the test track [33]

Events Order Events Vehicle speed

Event-1 4” Deep Chuck Hole 5 mph

Event-2 (3/4)” Chatter Bumps 20 mph

Event-3 1” Random Chuck Holes 20 mph

Event-4 Rail Road Crossing 8 mph

Event-5 Staggered Bumps 10 mph

Event-6 Frame Twist 10 mph

Event-7 High Crown Intersection 10 mph

13



The estimated durations of each seven events was calculated in [33] based on

the measured driving speed given in Table 1.1, and on the information about the

events geometries. The events geometries are shown in Figure 1.4(on page 14) and

in Figure 1.5(on page 15).

4’- 0” 

0’- 4” 

3’ – 6” 0’ – 0.75” 

15 deg. skew 

 

 

 

 

 

         

 

Note: This hole has a bridge to block 

one side on a daily rotational basis 

(a) 

(b) 

0’- 1” 
(Typical) 

(c) 

Figure 1.4: Event Geometry of (a) 4” Single Chuck Hole, (b) (3/4)” Chatter Bumps,
(c) 1” Deep Random Chuck Holes [33]
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0’- 6” 

22’- 0” 

0’- 6” 

16’- 0” 

8’- 0” 24’- 0” 

0’- 6” 

60’- 0” 

0’- 1.0” 0’- 1.5” 0’- 3.5” 

 

(d) 

(e) 

(f) 

(g) 

Figure 1.5: Event Geometry of (d) Railroad Crossing (e) Staggered Bumps (f)
Frame Twist (g) High Crown Intersection [33]

The set of recorded field test time series data used for the events identification

are shown in Figure 1.6(on page 17). The horizontal axis is the time in the unit

of second and the vertical axis is the acceleration in the unit of g. As mentioned

earlier of this section, these time series are collected accelerations of the vehicle

which includes six laps: three counter-clockwise laps followed by three clockwise
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laps. Each of the six laps contains seven transient events [33]. In total, there were

forty-two events among which 28 events from the first two laps of each driving

directions were separated by visual inspection of the data and by the use of GPS

data [15]. Last two laps, one from the counter clockwise and the other from the

clockwise driving directions were kept to test the identification procedures. As

shown in Figure 1.6, the X, Y and Z direction used to represent various components

of the acceleration measured at a point near to the left front axle of the vehicle.

The X direction represents longitudinal accelerations, the Y direction represents

lateral accelerations and the Z direction represents the vertical accelerations [16].

The acceleration time series in all three directions4 will be used in this study for

the events identification.

4The three directions include X, Y and Z where, X represents the longitudinal acceleration time
series, Y represents the lateral acceleration time series and Z represents the vertical acceleration
time series.
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Figure 1.6: Time series of the acceleration data measured from the field test [33]
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1.4 Objectives

The objective of this study was to identify the seven events (Table 1.1) of the actual

road test data from statistical platform. The Box-Jenkins’ methodology was used

for modelling the given time series of each event. Thus, the purpose of this project

was to identify the patterns of signals from these noisy and inconsistent time series.

ARMA modelling was considered for the data analysis as the real data has a

noisy and complex structures. Based on the fitted models of the road test events,

model identification procedures were proposed to identify these events.

1.5 Organization of the study

ARMA modelling, the Box-Jenkins methodology and the relevant tools used for

data analyses have described in chapter-2. Modelling of the acceleration time series

have discussed in chapter-3. Chapter-4 displayed the results obtained through the

data analyses and chapter-5 described the concluding remarks, relevant limitations

and future studies on this study.
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Chapter 2

Time series models and
Box-Jenkins methodology

2.1 Introduction

A time series is a collection of observations of a particular variable in an ordered

sequence. The ordering is usually through time intervals of equal length but may

also be taken through other dimensions, like space [30]. Time series occur in a

variety of fields like in business and economics, in engineering, in natural and social

sciences.

Time series analysis specially involves choice of an appropriate family of models,

estimation of unknown parameters and diagnostic check for goodness of fit. One

of the objectives of time series analysis is to use the fitted model to enhance our

understanding and description of the mechanism generating the data [30], [13]. The

model may be used simply to provide a compact description of the data.

In this study time series data for the test track acceleration measurements are

analyzed separately. As an analysis of single time series is called a univariate time
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series and this is the topic of this chapter. In this chapter the univariate ARMA

models will be discussed and the focus will be given on how to identify these models

followed by their estimation and diagnostic checking for adequacy.

2.2 Some basic concepts

This section will discuss some concepts that are necessary for proper understanding

of time series models, model selection and model checking techniques.

2.2.1 ARIMA models

Box and Jenkins (1976) first introduced the Autoregressive Integrated Moving-

Average (ARIMA) models [11]. In theory, ARIMA is a general class of models

for describing and forecasting a time series. Lags of differenced series appearing

in the forecasting equation are called Autoregressive, lags of the forecast errors are

called Moving Average, and the time series which needs to be differenced to be

made stationary is said to be an Integrated version of a stationary series [26], [23].

A general ARIMA model is described below,

(1− φ1B − φ2B
2 − . . .− φpB

p)(1−B)d(Zt − µ) = (1− θ1B − θ2B2 − . . .− θqBq)ut

or

(1− φ1B − φ2B
2 − . . .− φpB

p)(1−B)d(Zt − µ) = (1 + θ1B + θ2B
2 + . . .+ θqB

q)ut

or

φ(B)(1−B)d(Zt − µ) = θ(B)ut
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where,

Zt, is the observed series,

µ, is the mean of the series,

φ(B), is the autoregressive polynomial of order p,

θ(B), is the moving-average polynomial of order q,

d, is the number of non-seasonal differences,

B, is the backshift operator (BkZt = Zt−k),

ut, is a white noise process WN(0, σ2
u).

Practically, many time series are so-called stationary and can be described by

an ARMA model, that is d=0. In this case the model has the form,

Zt − φ1Zt−1 − . . .− φpZt−p = µ+ ut − θ1ut−1 − . . .− θqut−q

or

Zt − φ1Zt−1 − . . .− φpZt−p = µ+ ut + θ1ut−1 + . . .+ θqut−q

2.2.2 Stationarity

A key concept underlying time series processes is stationarity. Stationarity is impor-

tant because if the series is non-stationary then most typical results of the standard

regression analysis are not valid. Regression with non-stationary time series may

have no meaning and are therefore called spurious.

Generally speaking, a covariance stationary time series has the following three

characteristics [19]:

(a) exhibits mean reversion in that it fluctuates around a constant long-run mean;
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(b) has a finite variance that is time invariant; and

(c) the correlation between any two observations depends only on the time lag and

diminishes as the lag length increases.

Mathematically, a time series Zt is said to be stationary (or covariance station-

ary) if:

(a) the mean E(Zt) = µ is constant for all t;

(b) the variance V ar(Zt) = E[(Zt − µ)2] = σ2 is constant for all t;

(c) the covariance Cov(Zt, Zt−k) = E[(Zt − µ)(Zt−k − µ)] = γk depends on k only.

In the literature, a covariance stationary process is also referred to as a weakly

stationary, second-order stationary, or wide-sense-stationary process. A stationary

ARIMA model is called an autoregressive moving average (ARMA) model [11].

2.2.3 The augmented Dickey-Fuller unit root test

The augmented Dickey-Fuller (DF) unit root test is the regular t-test on the co-

efficient of the lagged dependent variable and does not have a conventional t-

distribution. So, special critical values (which were originally calculated by Dickey

and Fuller) are to be used in decision rule. This test actually performed to test

the null hypothesis that the time series contains a unit root against the alternative

hypothesis which states that the series is stationary. If the augmented DF test

statistic value is smaller than the critical value then the null hypothesis of a unit

root will be rejected and it can be concluded that the time series is stationary [11].
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2.2.4 The autocovariance and autocorrelation functions

For a stationary process Zt, we have the mean E(Zt) = µ and variance V ar(Zt) =

E[(Zt−µ)2] = σ2, which are constant, and the covariances Cov(Zt, Zt−k), which are

functions only of the time difference k. Hence, we can write the covariance between

Zt and Zt+k as,

γk = Cov(Zt, Zt+k) = E[(Zt − µ)(Zt+k − µ)],

where γk is called the autocovariance function of lag k.

Autocorrelations are statistical measures of how a time series is related to itself

over time. The general concept of measuring the correlation between two sets of data

is the basis for measuring the autocorrelation of a time series. While calculating

the autocorrelation for a given time series at some lag k, we actually calculating

the correlation between two distinct data sets, namely, the original series (Zt) and

the same series (Zt+k) moved forward in time a specified number of periods (lag).

Hence, the correlation between Zt and Zt+k is defined as,

ρk =
Cov(Zt, Zt+k)√

V ar(Zt)
√
V ar(Zt+k)

=
γk
γ0

where V ar(Zt) = V ar(Zt+k) = γ0 and ρk is called the autocorrelation function

(ACF).

The autocorrelation function of a stationary process is an important tool for

assessing its properties. The graph obtained by plotting the autocorrelation function

ρk against the (non negative)lag k is known as correlogram. Figure 2.1 (on page24)
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shows an example of autocorrelation function for AR(1) model with a negative

autoregressive parameter. Horizontal axis shows the lag values and vertical axis

shows the corresponding correlation against the lag values.

0 5 10 15

−0
.5

0.0
0.5

1.0

Lag

AC
F

AR(1) :     φ1 < 0

Figure 2.1: An example of autocorrelation function (ACF)

The partial correlations are another set of statistical measures, similar to auto-

correlations, that are used to evaluate relationships among the series values. While

the autocorrelation between Zt and Zt+k accounts for their total correlation, the

partial correlation accounts for their net correlation after their mutual linear de-

pendency on the intervening variables Zt+1, Zt+2, . . ., and Zt+k−1 has been removed

[32]. Thus the partial autocorrelation function (PACF) between Zt and Zt+k is

defined as,

ϕk = Corr(Zt, Zt+k|Zt+1, . . . , Zt+k−1) =
Cov(Zt, Zt+k|Zt+1, . . . , Zt+k−1)√

V ar(Zt)
√
V ar(Zt+k)

,
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where the term Corr stands for correlation.

Partial correlations are complementary to autocorrelations with respect to pat-

terns they produce for autoregressive and moving-average relationships. Time series

generated by ARMA models have easily identifiable autocorrelation and partial au-

tocorrelation patterns. Theoretical ACF and PACF patterns of the ARMA models

can be used as standard for comparing with the sample ACF and the sample PACF

to identify the required number of moving average (MA) and autoregressive (AR)

parameters in the initial models.

2.2.5 Parsimony

A fundamental idea in the Box-Jenkins procedure is the principle of parsimony

[19]. The principle refers to representing the time series with as few parameters

as possible, this means simpler representations of a time series process are more

desirable than more complex one if both are adequate. Box and Jenkins argued

that parsimonious models produce better forecasts than overparameterized mod-

els. A parsimonious model fits the data well without incorporating any redundant

coefficients.

2.2.6 Model selection criteria

In time series analysis there may be several adequate models that can be used for

representing a given data set. Sometimes it is difficult to choose a unique model.

Thus various criteria have been introduced for model selection and can be viewed

as measures of goodness-of-fit [19]. These criteria are different from the model

identification methods. Theoretically, it is assumed that the residuals from all
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adequate models should be white noise for a given series. For multiple adequate

models, the selection criterion is normally based on summary statistics from the

residuals computed from a fitted model or on forecast errors calculated from out-

of-sample forecast. Some of the model selection criteria are described below.

Akaike’s information criterion (AIC)

A general criterion for model selection is to minimize a quantity called Akaike’s

Information Criterion,

−2 log(likelihood) + 2p

where, likelihood stands for maximized likelihood and p is the number of estimated

parameters.

The AIC can be used to compare ARMA models. It is known that AIC criterion

tends to overestimate the order of the model. Then Akaike has also developed a

Bayesian modification of AIC, denoted by BIC, which penalizes models with large

numbers of parameters in a more severe way than the AIC. If N denotes the number

of observations to which the model is fitted, then BIC replaces the term 2p in the

AIC criterion by (p+ p log(N)) [14].

Schwartz’s SBC criterion

Similar to Akaike’s BIC, Schwartz (1978) [28] suggested another Bayesian criterion

of model selection, which has been called Schwartz’s Bayesian Criterion (SBC). Ide-

ally, the AIC and SBC will be as small as possible (both can be negative). The

SBC will always select a parsimonious model than will the AIC. Again, the SBC is
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asymptotically consistent while the AIC is biased toward select an overparameter-

ized model. However, in small samples, the AIC can work better than the SBC. We

can be quite confident in our results if both the AIC and the SBC select the same

model.

Adjusted-R2

The R-squared (R2) statistic measures the success of the regression in predicting the

values of the dependent variable within the sample. In standard settings, R2 may be

interpreted as the fraction of the variation of the dependent variable explained by

the independent variables. The statistic will equal to 1 if the regression fits perfectly,

and zero if it fits no better than the simple mean of the dependent variable. One

problem with using R2 as a measure of goodness of fit is that the R2 will never

decrease as we add more regressors.

The adjusted-R2, penalizes the R2 for the addition of regressors which do not

contribute to the explanatory power of the model. The adjusted-R2 is never larger

than the R2, can decrease as we add regressors, and for poorly fitted models, may

be negative.

2.2.7 Model checking tools

When a model has been fitted to a time series, it is advisable to check that the

model really does provide an adequate description of the data. After estimation of

parameters we have to assess the model adequacy by detecting whether the model

assumptions are violated. The basic assumption is that the residuals are white noise,
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that is, the residuals are uncorrelated random shocks with zero mean and constant

variance. Hence, model diagnostic checking is accomplished through careful analysis

of residual series. Two obvious steps are to plot the residuals in a time plot, and

to calculate the correlogram of the residuals. If the residual analysis indicates that

the fitted model is inadequate in some way then alternative models may need to be

tried.

2.3 Stationary time series models

It is necessary to have basic ideas about the stationary time series models for appro-

priate use of the time series analysis and Box-Jenkins methodology. Stationary time

series models are briefly discussed here along with their patterns of autocorrelation

function and partial autocorrelation function.

2.3.1 Autoregressive (AR) models

A simple time series model is the autoregressive of order one, or AR(1) model. This

model is written in the following form:

Zt = µ+ φ1Zt−1 + ut

where µ is the constant term and |φ1| < 1 and ut is a white noise error term at

period t, and Zt is the stationary series.

The implication behind the AR(1) model is that the time series behaviour of Zt

is largely determined by its own value in the preceding period (Zt−1). That is, what
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happens this period (t) is largely dependent on what happened in the last period

(t− 1), plus some current random error. Or, alternatively what will happen in next

period (t+ 1) will be determined by the value of the series in the current period (t)

plus some random error from next period.

It is possible of course, that Zt could be directly related to more than just one

past value For example, the AR(2) model will be an autoregressive model of order

two, and which has the form:

Zt = µ+ φ1Zt−1 + φ2Zt−2 + ut

This model indicates that Zt is related to a combination of the two immediately

preceding values Zt−1 and Zt−2, plus some current random error ut. Extending this

idea further, we may write a general autoregressive model of order p as follows:

Zt = µ+ φ1Zt−1 + φ2Zt−2 + φ3Zt−3 + . . .+ φpZt−p + ut,

where µ is the constant term and φ1, φ2, . . . , φp are the AR parameters.

The subscripts on the φ′s are called the orders of the AR parameters. The

highest order p is referred to as the order of the model.

ACF and PACF of AR models:

The autocorrelation function of an AR(p) process tails off as a mixture of exponen-

tial decays and/or damped sine waves depending on the nature of the parameters.

The partial autocorrelation function of the general AR(p) process cuts off after lag

p. This important property enables us to identify whether a given time series is

generated by an autoregressive process
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Figure 2.2 (on page 30) shows the theoretical ACF and partial-acf (PACF) pat-

terns of an AR(1) model. As shown in Figure 2.2, top-left plot shows the ACF and

the top-right plot shows the partial-acf (PACF) of the AR(1) model with positive

autoregressive parameter (φ1 > 0). The ACF decreases as the lag number increases

and the partial-acf has a positive value (single spike) at lag one. The lower two

plots in Figure 2.2 show the ACF and the PACF of the AR(1) model with negative

autoregressive parameter (φ1 < 0). The bottom-left plot shows that the ACF has

an alternating decreasing pattern as lag number increases and bottom-right plot

shows that the PACF has a negative value at lag one.

Figure 2.2: Theoretical ACF and PACF patterns for AR(1) model
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Figure 2.3 (on page 31) shows the the theoretical ACF and PACF patterns of

an AR(2) model. Top two plots show the ACF and PACF pattern of an AR(2)

model with two positive autoregressive parameters (φ1 > 0, φ2 > 0). The ACF has

a decreasing pattern and the PACF has two spikes on the positive side of the axis.

Similarly, bottom two plots show the ACF and PACF pattern of an AR(2) model

with one negative (φ1 < 0) and one positive (φ2 > 0) autoregressive parameters.

Figure 2.3: Theoretical ACF and PACF patterns for AR(2) model

The ACF has an alternating decreasing pattern and the PACF has two alter-

nating spikes depending on the nature of the autoregressive parameters. Figure 2.4

(on page 32) also shows the the theoretical ACF and PACF patterns of an AR(2)
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model. Top two plots showing the ACF and PACF patterns for one positive and

one negative autoregressive parameters and the bottom two plots showing the ACF

and PACF patterns for two negative autoregressive parameters.

Figure 2.4: Theoretical ACF and PACF patterns for AR(2) model (continued)
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2.3.2 Moving-average (MA) models

Moving average models closely resemble AR models in appearance but the concept

behind the use of MA parameters is quite different [21]. Moving average param-

eters relate what happens in period t only to the random errors that occurred in

past periods, i.e., to ut−1, ut−2, . . . (as opposed to being related to the actual series

values Zt−1, Zt−2, . . .). Because any MA(q) process is by definition, an average of

q stationary white noise processes, it follows that every moving average process is

stationary, as long as q is finite.

A simple moving average model is that of order one, or MA(1) model, which has

the following form:

Zt = µ+ θut−1 + ut,

where µ is the constant term and θ is the MA parameter of order one. The above

model simply says that any given value Zt in the series is directly proportional only

to the random error ut−1 from the previous period plus some current random error

ut.

The general form of the MA model is an MA(q) model of the following form:

Zt = µ+ ut + θ1ut−1 + θ2ut−2 + . . .+ θqut−q

where θ1, θ2, . . . , θq are the MA parameters. The highest order q is referred to as

the order of the MA model.

ACF and PACF of MA models:

The autocorrelation function of an MA(q) process cuts off after lag q. This impor-

tant property enables us to identify whether a given time series is generated by a
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moving average process [32].

The partial autocorrelation function of the general MA(q) process tails off as a

mixture of exponential decays and/or damped sine waves depending on the nature

of the parameters.

Figure 2.5: Theoretical ACF and PACF patterns for MA(1) models

Figure 2.5 (on page 34) shows the theoretical ACF and PACF patterns of a

MA(1) model where, the ACF and the partial-acf (PACF) plots showing different

patterns depending on the nature of the parameter θ. Figure 2.6 (on page 35) and

Figure 2.7 (on page 35) show the theoretical ACF and PACF patterns for a MA(2)

model.
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Figure 2.6: Theoretical ACF and PACF patterns for MA(2) models

Figure 2.7: Theoretical ACF and PACF patterns for MA(2) models (continued)
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2.3.3 Autoregressive moving average (ARMA) models

A useful class of models for time series is formed by combining MA and AR pro-

cesses. A mixed autoregressive moving-average model containing p AR terms and

q MA terms is said to be an ARMA model of order (p, q) and is written in the

following form:

Zt − (µ+ φ1Zt−1 + φ2Zt−2 + . . .+ φpZt−p) = ut + θ1ut−1 + θ2ut−2 + . . .+ θqut−q

The order of an ARMA model is expressed in terms of both p and q. The

importance of ARMA process lies in the fact that a stationary time series may

often be described by an ARMA model involving fewer parameters than a pure MA

or AR process by itself.

Figure 2.8 (on page 37) and Figure 2.9 (on page 37) show the theoretical ACF

and PACF patterns of an ARMA(1,1) model. The ACF and the partial-acf(PACF)

plots show different patterns depending on the nature of the model parameters.

Table 2.1 (on page 38) summarizes some possible combinations of ACF and

PACF forms [19],[30]. These combinations will be used to detect the order of ARMA

models as well as for model identification.
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Figure 2.8: Theoretical ACF and PACF patterns for ARMA models
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Figure 2.9: Theoretical ACF and PACF patterns for ARMA models(continued)
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Table 2.1: Summary of ACF and PACF patterns for stationary models [21]

Process ACF(ρ) PACF (ψ)

Pure white noise All autocorrelations are zero. All partial autocorrelations are zero.

AR(1) Tails off as exponentially decay Single spike at lag 1, then cuts off
on positive side if φ1 > 0. to zero: spike positive if φ1 > 0
An alternating sign on negative and negative if φ1 < 0.
side or oscillating decay if φ1 < 0.

MA(1) Single spike at lag 1, then cuts Tails off as exponentially decay on
off to zero: spike positive if negative side if θ1 > 0.
θ1 < 0 and negative An alternating sign on positive
if θ1 > 0. side or oscillating decay if θ1 < 0.

AR(p) Exponential decays towards zero, Spikes through lag p, then
may contain damped oscillations cuts off to zero.
depends on the sign and sizes of
φ1, φ2, . . . , φp.

MA(q) Spikes through lag q, then Exponential decays towards zero,
cuts off to zero. may contain damped oscillations

depends on the sign and sizes of
θ1, θ2, . . . , θq.

ARMA(1,1) Exponential decay after lag 1 Oscillating decay after lag 1.
if φ1 > 0. Exponential decay after lag 1.
Oscillating decay after lag 1
if φ1 < 0.

ARMA(p,q) Decay (either direct or Decay (either direct or
oscillatory) after lag q. oscillatory) after lag p.
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2.4 Box-Jenkins methodology

Box and Jenkins introduced time series models for autoregressive (AR), moving

averages (MA), or autoregressive moving average (ARMA) processes [30]. A fun-

damental idea in the Box-Jenkins approach is the principle of parsimony. Box

and Jenkins argued that parsimonious models produce better forecasts than over-

parameterized models. In general Box and Jenkins modelling procedure involves

an iterative three-stage method aimed at selecting an appropriate (parsimonious)

ARMA model for the purpose of estimating and forecasting a univariate time series.

The three stages are :(a) identification; (b) estimation and (c) diagnostic checking.

2.4.1 Identification

The essence of identification problem is that any model may be given more than one

(and in most cases many) different representations, which are essentially equivalent

[11]. Defining the best representation is fairly easy and here we use the principle

of parsimony, this means that we pick the model with the minimum number of

parameters to be estimated.

In identification stage we visually examine the time plot of the series autocorre-

lation function, and partial autocorrelation function. Plotting each observation of

the sequence against time t provides useful information concerning outliers, missing

values, and structural breaks in the data. A comparison of the computed sam-

ple ACF and sample PACF patterns to those of various known theoretical ARMA

models may suggest several plausible models [21]. For non-stationary data common

stationarity-inducing transformations are applied to make them stationary.
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After achieving stationarity, the next step is to identify the orders (p and q)

of the model. For a pure MA(q) process, the ACF will tend to show estimated

autocorrelations which are significantly different from zero up to lag q and then it

will die down immediately after the qth lag. The PACF of a MA(q) process will tend

to die down quickly either by an exponential decay or by a damped sine wave [30].

Contrary to the moving average (MA) process, the pure AR(p) process will have

an ACF which will tend to die quickly either by exponential decay or by a damped

sine wave, while the PACF will tend to show spikes (significant autocorrelations)

for lags up to p and then it will die down immediately.

If neither the ACF nor the PACF show a definite cut off, then a mixed process

is suggested [11]. In this case it is difficult to identify the AR and MA orders, but

not impossible. The idea is that we should think of the ACF and PACF of pure

AR and MA processes as being superimposed onto one another. For example, if

both ACF and PACF show signs of slow exponential decay, then an ARMA(1,1)

process may be identified. Similarly, if the ACF shows three significant spikes at

first three lags and then an exponential decay, and the PACF spikes at the first

lag and then shows an exponential decay, then an ARMA(3,1) process should be

considered. Some possible combinations of ACF and PACF forms are shown in

Table 2.1 (on page 38) which will be used to detect the order of ARMA processes

[19],[30]. In general, it is difficult to identify mixed processes, so sometimes more

than one ARMA(p,q) model might be estimated. This is why the estimation and

the diagnostic checking stages are important and necessary.
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2.4.2 Estimation

After identification of the tentative models, the next step is to estimate the param-

eters in the models [32]. In this stage each of the tentative models is estimated

and the various coefficients are examined by a t-test. The common methods of

estimations used in time series analysis are non-linear least squares estimation and

maximum likelihood estimation [19], [32]. At this stage we have to be aware of the

common factor problem. The Box-Jenkins approach necessitates that the series is

stationary and the model is invertible.

2.4.3 Diagnostic checking

In the diagnostic stage we examine the goodness of fit of the model. The main

objective is to check the adequacy of the model(s) selected in the estimation stage

by checking whether the model assumptions are satisfied. The basic assumption

is that the residuals ut are white noise. If the fitted model is a good model for

the data, the residuals should satisfy this assumption. Hence, model diagnostic

checking is accomplished through a careful analysis of the residual series ut [32]. To

check whether the residuals are white noise, the sample ACF and sample PACF of

the residuals are computed to see whether they do not form any pattern and are all

statistically insignificant [32]. If the residual analysis indicates that the fitted model

is inadequate in some way then we need to fit a more appropriate model. That is,

we go back to the model identification step and try to develop a better model.
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2.4.4 Model selection

After performing the three stages, there may be several adequate estimated models

to represent the given time series. Sometimes the best choice is easy, other cases the

correct choice can be very difficult. The estimated adequate models are compared

using the Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion

(SBC). A model with smallest AIC and SBC values will be chosen as a parsimonious

model. Of the two criteria, the SBC is preferable. Sometimes the adjusted-R2 (Adj-

R2) is also compared to select the model.

2.4.5 Summary of the analysis procedure

Box-Jenkins methodology is an iterative procedure [32]. A typical procedure may

be the following [30]:

• Step-1: Calculate the sample ACF and sample PACF of the given time series

data and check the stationarity. For stationary series go to step-3 otherwise

go to step-2.

• Step-2: For a non-stationary time series take the logarithm and the first differ-

ences. Calculate the sample ACF and sample PACF for the first logarithmic

differenced series.

• Step-3: Examine the graphs(correlogram) of the sample ACF and sample

PACF and determine which models would be good starting points.

• Step-4: Estimate all plausible models.
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• Step-5: For each of the estimated models check the following to detect the

adequate models.

(a) estimated parameters and their orders;

(b) sample ACF and sample PACF of the residuals.

If the estimated model found inadequate or if changes are needed, go back to

step-4.

• Step-6: Compare all estimated adequate models by checking their AIC and

SBC together with the Adj-R2 to detect which model is the parsimonious one.
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Chapter 3

Modelling the events time series

3.1 Introduction

A mathematical or statistical model, of course, is only an idealization of some

process or activity in real life. The model tells us how we can expect the activity or

process to most likely behave. But if we are examine any sample occurrence of this

activity in real life, it would seldom turnout to be precisely what the model said it

would be - probably close, but not the same. For example, flipping a fair coin 100

times will seldom produce exactly 50 tails and 50 heads, although that is expected

to happen.

In a similar manner, a real life time series is only one sample of the process

or activity that is represented by a given Box-Jenkins model. It follows that the

autocorrelations computed from such a time series will never precisely match the

theoretical autocorrelations associated with the correct model for the series. They

will, however, be close to, or approximate, the theoretical autocorrelations. Au-

tocorrelations computed from real life series called sample autocorrelations to dis-
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tinguish them from the theoretical autocorrelations associated with a given model

[21].

In this chapter Box-Jenkins modelling approach has described to identify the

patterns of the acceleration time series corresponding to the field test events. The

modelling has been described only for the first event using the acceleration time

series obtained from the first counter clockwise lap. Following the similar modelling

approach the rest events were identified and summarized in tables. The data analysis

performed in this study by using computer software package Eviews-7.

3.2 Data preparation

As described in earlier, the acceleration time series used in this study to identify pat-

terns for different events of interest. As shown in Figure 1.6(on page 17), X, Y and

Z stands for representing the longitudinal accelerations time series, lateral acceler-

ations time series and vertical accelerations time series respectively. Figure 3.1(on

page 46) shows the acceleration time series for the 1st lap, where the horizontal

axis is the time in the unit of second, and the vertical axis is the acceleration in the

unit of g. Using visual inspection of the data along with the GPS information1, the

acceleration time series were initially separated for model identification. A similar

visual identification method is described in [15].

1GPS information used to detect the geographical position of the vehicle while travelling.
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Figure 3.1: Time series of the acceleration data measured from the field test for the
1st lap [33]

As shown in Figure 1.3 (on page 12) and in Figure 3.1 (on page 46), the three
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events are easily distinguishable (in Figure 3.1: in between 28th second to 56th

second on Z-directional time series ), where as the four events are not easily distin-

guishable (in Figure 3.1: in between 75th second to 120th second on Z-directional

time series ). Hence, the vertical accelerations time series (Z) was used to identify

the patterns for the first three events and the complete time series set (X, Y and

Z) was used to identify the rest four events.

3.3 Model identification of event-1: 4” Deep Chuck

Hole

The steps of the Box-Jenkins approach on event-1: 4” Deep Chuck Hole are de-

scribed in this section. To identify the model of event-1 from counter-clockwise first

lap the vertical acceleration time series of the event was used. The steps are as

described below.

3.3.1 Step-1

The time series plot of the vertical acceleration data for event-1 is shown in Fig-

ure 3.2 (on page 48), where, the horizontal axis is the time in the unit of second,

and the vertical axis is the acceleration in the unit of g. Figure 3.2 shows that

there is no indication of trend (specific upward or downward direction) in the data

and we can assume that the given time series is approximately a stationary series.

However, the augmented Dickey-Fuller (DF) unit root test [11] was carried out to

test the stationarity of the time series data.
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Figure 3.2: Vertical accelerations of event-1: 4”Deep Chuck Hole from counter
clockwise first lap

Table 3.1 (on page 49) shows the summarized augmented Dickey-Fuller (DF)

unit root test results. The test statistic values are smaller than the test critical

values for different level of significance. From this test results it can be concluded

that the given time series is stationary. Hence, ARMA modelling was considered

for the given time series and Box-Jenkins approach was applied to identify model

of the corresponding event.
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Table 3.1: Summary of the augmented Dickey-Fuller (DF) unit root test for sta-
tionarity

Null Hypothesis: Exogenous: Exogenous: Exogenous:
the series has a unit root None Constant Constant,
Lag Length:1 Linear Trend
(Automatic: based on SIC, maxlag=24)

Augmented Dickey-Fuller
test statistic -4.914548 -4.912234 -4.908741

*MacKinnon (1996)
one-sided p-values 0.0000 0.0000 0.0003

Test critical values:
1% level -2.566714 -3.45089 -3.965007
5% level -1.941063 -2.863520 -3.413216
10% level -1.616538 -2.567874 -3.128628

Durbin-Watson statistic 1.986960 1.986957 1.986957

3.3.2 Step-2

As the given time series found stationary, this step can be skipped.

3.3.3 Step-3

The sample ACF and sample PACF of the time series for event-1 were calculated.

Figure 3.3 (on page 50) shows the correlogram and three statistics : (i) the AC

(autocorrelation coefficient), (ii) the PAC (partial autocorrelation coefficient) and

(iii) a Box-Pierce Q-statistic with its probability. The two dot lines in the graphs
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of autocorrelation and partial correlation represents the approximate confidence

bounds. That is, any value which is beyond these lines will be regarded as non-

zero.

Figure 3.3: Correlogram of the vertical acceleration time series data of event-1

The correlogram in Figure 3.3 shows that the sample ACF has a pattern of

moderately slow decay and the sample PACF has a few significant spikes at lags

one, two and seven. The sample ACF and sample PACF patterns guided us initially
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to choose possible candidate models of the time series data of event-1.

The decreasing pattern of the sample ACF (as shown in Figure 3.3) indicates

that the series may follow an autoregressive model. The significant spikes of the

sample PACF at lag-2 and lag-7 guide to choose the order of the autoregressive

model. Hence, the possible models for event-1 are AR(7) and AR(2). Based on the

slowly dying pattern of the sample ACF after lag-2, an ARMA(2,2) model was also

chosen as a possible model for event-1.

3.3.4 Step-4 and Step-5

For each possible model of the event: 4” Deep Single Chuck Hole, model parameters

were estimated and diagnostic checking were performed to verify their adequacy as

a candidate model. The estimation and checking procedure are described below.

AR(7) model

The estimation steps began with estimating the AR(7) model. The estimation re-

sults in Table 3.2 (on page 52), shows that the t-statistic scores of the coefficients

for autoregressive orders 3, 4 and 5 are -0.742207, 0.413892 and 0.158448 respec-

tively, are less 2, implies that the coefficients for autoregressive orders 3, 4 and 5 are

insignificant to be included in the model. That is, this AR(7) model is inadequate

and need to be modified by reducing the three coefficients.
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Table 3.2: Estimation results of an AR(7) model

E1 CCW L1 Z
Method: Least Squares
Sample: 30 1350
Included observations: 1321
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C -0.000586 0.013819 -0.042403 0.9662
AR(1) 1.287067 0.027353 47.05408 0.0000
AR(2) -0.313600 0.044666 -7.021050 0.0000
AR(3) -0.033766 0.045494 -0.742207 0.4581
AR(4) 0.018833 0.045503 0.413892 0.6790
AR(5) 0.007209 0.045496 0.158448 0.8741
AR(6) 0.139730 0.044671 3.127946 0.0018
AR(7) -0.132995 0.027367 -4.859629 0.0000

R-squared 0.965969 Mean dependent var 0.000489
Adjusted R-squared 0.965788 S.D. dependent var 0.074719
S.E. of regression 0.013820 Akaike info criterion -5.719300
Sum squared resid 0.250789 Schwarz criterion -5.687892
Log likelihood 3785.597 Hannan-Quinn

criter.
-5.707525

F-statistic 5324.230 Durbin-Watson stat 1.997689
Prob(F-statistic) 0.000000

Inverted AR Roots .95 .78 .43-.62i .43+.62i
-.31-.61i -.31+.61i -.68

Since the AR(7) model found inadequate, a reduced AR(7) model that excluded

the three insignificant autoregressive orders was considered for modelling. The

model parameters were estimated in the similar manner and the estimation results

are shown in Table 3.3 (on page 53). As shown in Table 3.3, the t-statistic scores
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indicate that all the coefficients are adequate to be in the model.

Table 3.3: Estimation results of a reduced AR(7) model

E1 CCW L1 Z
Method: Least Squares
Sample: 30 1350
Included observations: 1321
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C -0.000583 0.013802 -0.042213 0.9663
AR(1) 1.290262 0.026145 49.34986 0.0000
AR(2) -0.332351 0.029089 -11.42533 0.0000
AR(6) 0.150001 0.029093 5.155909 0.0000
AR(7) -0.135441 0.026162 -5.177048 0.0000

R-squared 0.965953 Mean dependent var 0.000489
Adjusted R-squared 0.965849 S.D. dependent var 0.074719
S.E. of regression 0.013808 Akaike info criterion -5.723363
Sum squared resid 0.250909 Schwarz criterion -5.703733
Log likelihood 3785.281 Hannan-Quinn

criter.
-5.716003

F-statistic 9334.063 Durbin-Watson stat 2.004505
Prob(F-statistic) 0.000000

Inverted AR Roots .95 .78 .43-.61i .43+.61i
-.31-.62i -.31+.62i -.68
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The diagnostic check of a time series model is based on the analysis of residuals.

As shown in Figure 3.4 (on page 55), the residual time plot of the reduced-AR(7)

model shows no specific pattern. The residual plot also shows that, it has a mean

close to zero and a constant variance, which approximately satisfy the model as-

sumptions. To check the model adequacy, the ACF and PACF of the residuals were

also calculated and verified. For the reduced-AR(7) model, Figure 3.5 (on page 55)

shows the residual correlogram and three statistics:(i) the AC (autocorrelation co-

efficient), (ii) the PAC (partial autocorrelation coefficient) and (iii) a Ljung-Box

Q-statistic with its probability. The two dot lines in the graphs of autocorrelation

and partial correlation represents the approximate two standard error bounds com-

puted as ±2/
√
T , where, T is the number of observations [8]. The residual ACF and

PACF strengthen the model assumptions, that the residuals mimic a white noise

process. Hence, the fitted reduced-AR(7) model can be considered as an adequate

model which is given below.

Zt = −0.000583 + 1.29Zt−1 − 0.33Zt−2 + 0.15Zt−6 − 0.135Zt−7

AR(2) model

The next possible model AR(2) was estimated in a similar manner. The estimation

results in Table 3.4 (on page 56), shows the t-statistic scores of the the coefficients

for autoregressive orders 1 and 2 are 49.13830 and -11.89967 respectively. The t-

statistic scores for both the coefficients are greater than 2, which implies that the

coefficients are adequate to be in the model.
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Figure 3.4: Residuals plot of the reduced AR(7) model

Figure 3.5: Residuals correlogram of the reduced AR(7) model

To check the adequacy of the fitted AR(2) model, the residuals time plot was
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Table 3.4: Estimation results of an AR(2) model

E1 CCW L1 Z
Method: Least Squares
Sample: 30 1350
Included observations: 1321
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C -0.000632 0.015128 -0.041777 0.9667
AR(1) 1.286189 0.026175 49.13830 0.0000
AR(2) -0.311550 0.026181 -11.89967 0.0000

R-squared 0.965235 Mean dependent var 0.000489
Adjusted R-squared 0.965183 S.D. dependent var 0.074719
S.E. of regression 0.013942 Akaike info criterion -5.705538
Sum squared resid 0.256196 Schwarz criterion -5.693760
Log likelihood 3771.508 Hannan-Quinn

criter.
-5.701122

F-statistic 18297.06 Durbin-Watson stat 1.986957
Prob(F-statistic) 0.000000

Inverted AR Roots .96 .32

checked (as shown in Figure 3.6 on page 57) and the ACF and PACF of the resid-

uals were calculated and verified. The residual plot shows no patterns and has a

mean close to zero and a constant variance, which approximately satisfy the model

assumptions. Again, for the AR(2) model, Figure 3.7 (on page 57) shows the resid-

ual correlogram and three statistics:(i) the AC (autocorrelation coefficient), (ii) the

PAC (partial autocorrelation coefficient) and (iii) a Ljung-Box Q-statistic with its

probability. The residual ACF and PACF (in Figure 3.7) indicates that the residu-

als mimic a white noise process. Hence, the fitted AR(2) model can be considered
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Figure 3.6: Residuals plot of AR(2) model

Figure 3.7: Residuals correlogram of model AR(2)

as another adequate model which is given below.

Zt = −0.000632 + 1.286Zt−1 − 0.311Zt−2
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Table 3.5: Estimation results of an ARMA(2,2) model

E1 CCW L1 Z
Method: Least Squares
Sample: 30 1350
Included observations: 1321
Convergence achieved after 11 iterations
MA Backcast: 28 29

Variable Coefficient Std. Error t-Statistic Prob.
C -0.000664 0.015612 -0.042505 0.9661
AR(1) 0.962580 0.276866 3.476707 0.0005
AR(2) 0.002304 0.269023 0.008564 0.9932
MA(1) 0.328577 0.275528 1.192537 0.2333
MA(2) 0.100811 0.084786 1.189012 0.2346
R-squared 0.965296 Mean dependent var 0.000489
Adjusted R-squared 0.965190 S.D. dependent var 0.074719
S.E. of regression 0.013941 Akaike info criterion -5.704253
Sum squared resid 0.255750 Schwarz criterion -5.684623
Log likelihood 3772.659 Hannan-Quinn

criter.
-5.696894

F-statistic 9151.159 Durbin-Watson stat 1.999181
Prob(F-statistic) 0.000000
Inverted AR Roots .96 -.00
Inverted MA Roots -.16-.27i -.16+.27i

ARMA(2,2) model

Lastly, the parameters of the third possible model ARMA(2,2) was estimated. The

estimation results in Table 3.5 (on page 58), shows that the t-statistic scores of the

coefficient for autoregressive orders 2 and the coefficients for moving-average orders

1 and 2 are 0.008564, 1.192537 and 1.189012 respectively. The t-statistic scores

for the three coefficients are less 2, which is an indication that the coefficients

are insignificant to be included in the model. That is, the ARMA(2,2) model is

inadequate to be a candidate model for the event-1.
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3.3.5 Step-6

After estimation and diagnostic checking, there was two adequate candidate models

corresponding to the vertical acceleration time series of the event-1. The final model

was selected based on the model selection tools mentioned in chapter-2. Model

selection criteria was compared for both two adequate models reduced-AR(7) and

AR(2). The summarized Table 3.6 (on page 59) shows the estimated values of the

coefficients along with their t-statistic scores, AIC, SBC and Adjusted-R2 of the

two models.

Table 3.6: Summery results of the reduced AR(7) and AR(2)

AR(1,2,6,7)* AR(1,2)

φ1 1.290 (49.35)** 1.286 (49.14)

φ2 -0.332(-11.43) -0.312 (-11.899)

φ6 0.150 (5.155)

φ7 -0.135 (-5.177)

AIC -5.723 -5.705

SBC -5.704 -5.693

Adjusted-R2 0.9658 0.9651

*reduced AR(7) model
**t-statistic

As shown in Table 3.6, the reduced-AR(7) model has smaller AIC and SBC
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compared to those of AR(2) model. From this comparison it can be concluded

that, to identify the patterns of the vertical acceleration time series of event-1 the

reduced-AR(7) model is more convincing model than AR(2) model.

3.4 Fitted models and event identification proce-

dure

The model fitting steps just described in earlier subsection were followed to fit

models for the rest of the events using acceleration time series of different directions

from different driving directions of the vehicle.

Vertical acceleration time series of the first two counter clockwise laps have used

to fit models for each of the seven events. From the analyses it is found that event-4,

event-5 and event-6 have the same fitted models. Then the longitudinal acceleration

time series of these three events were fitted and found that event-4 and event-5 have

the same fitted models. Finally, using the lateral acceleration time series of event-4

and event-5 two different fitted models were found for them. Table 3.7(on page 61)

shows the fitted models corresponding to the events and acceleration time series.

Based on the fitted models in Table 3.7, an event identification procedure was

proposed to identify models for the seven events of the acceleration time series

collected from the counter clockwise driving direction. The proposed identification

procedure was developed using the first two laps acceleration time series of counter

clockwise driving direction and its accuracy was tested on acceleration time series

collected from the third lap of the same driving direction. The proposed event

identification procedure is shown in Figure 3.8 (on page 62).
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Table 3.7: Fitted models for all seven events from counter clockwise laps

Event Z-directional
Time Series

Y-directional
Time Series

X-directional
Time Series

Event-1 AR(7)

Event-2 AR(1)

Event-3 AR(5)

Event-4 AR(14) AR(15) AR(10)

Event-5 AR(14) AR(15) AR(6)

Event-6 AR(14) AR(14)

Event-7 AR(12)

As shown in Figure 3.8, the proposed identification procedure for counter clock-

wise time series has three stages, the first stage will begin with the modelling an

AR(14) model using Z-directional time series. The second stage need to be pro-

ceeded depending on the significance of the coefficient corresponding to order 14 of

the fitted AR(14) model. Otherwise, start fitting an AR(12) model and event-7 will

be reported as identified based on significantly fitted AR(12) model. The first stage

will be continued until a significantly fitted model for event-2 is identified.

The second stage will begin with the modelling of an AR(15) model using Y-

directional time series. Again, the third stage need to be proceeded depending on

the significance of the coefficient corresponding to order 15 of the fitted AR(15)
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Figure 3.8: Event identification procedure for counter-clockwise time series

model. Otherwise, start modelling an AR(14) model and event-6 will be reported

as identified based on significantly fitted AR(14) model.

Similarly, the third stage involves start modelling of an AR(10) model using

X-directional time series. For significantly fitted AR(10) model, event-4 will be

reported as identified by the fitted model. Otherwise, an AR(6) model need to be

significantly fitted to identify event-5.

Based on the fitted models of the clockwise directional time series in Table 3.8(on
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page 63), another event identification procedure was also proposed. As shown in

Figure 3.9, this procedure also has three stages to identify models for events of the

clockwise directional time series. Again, the accuracy of the identification procedure

was tested on acceleration time series collected from the third lap of clockwise

driving direction.

Table 3.8: Fitted models for all seven events from clockwise laps

Event Z-directional
Time Series

Y-directional
Time Series

X-directional
Time Series

Event-1 AR(7)

Event-2 AR(1)

Event-3 AR(5)

Event-4 AR(14) AR(15)

Event-5 AR(14) AR(11) AR(14)

Event-6 AR(14) AR(11) AR(11)

Event-7 AR(12)
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Figure 3.9: Event identification procedure for clockwise time series
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Chapter 4

Results

Results of the event identification has presented in this chapter. The start and end

time points of each event was found while fitting models for corresponding time

series. Time series of the first two laps from each driving direction was used for

modelling and the time series of the third laps was used to test the accuracy of the

event identification procedure.

Initial start and end times of the seven events are the start and the end points of

the segmented time series of the corresponding events. While doing the modelling

the actual length of the time series of an event was used to identify the start and

the end time points for that event. The seven events used in this study are already

shown in Table 1.1. It is to be noted that the Z-directional (vertical acceleration)

time series was used to identify the first three events and all the three directional

(Z, Y and X) time series were used to identify the rest four events. The identified

start and end points of all seven events of counter-clockwise and clockwise laps are

shown from Table 4.1 to Table 4.4.
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Table 4.1: Identified start and end time for the three events of counter-clockwise
laps using the acceleration data in the Z direction

Events Transition Lap-1 (s) Lap-2 (s) Lap-3 (s)

Event-1
Start 28.20 148.00 264.20
End 34.80 154.00 270.49

Event-2
Start 41.50 158.20 274.20
End 47.50 164.20 280.40

Event-3
Start 50.12 166.97 282.40
End 54.07 170.69 286.92

As mentioned earlier, the first three events were easy to distinguish and the

rest four events were hard to distinguish. Table 4.1 shows the identified start and

end time points of the three events of counter-clockwise laps based on vertical

acceleration time series. Table 4.2 shows the successfully identified start and end

points of the four events of counter-clockwise laps based on the three acceleration

time series.

Table 4.2: Identified start and end time for the four events of counter-clockwise laps
using the acceleration data in the Z, Y and X directions

Lap-1(s) Lap-2(s) Lap-3(s)
Events Transition Z Y X Z Y X Z Y X

Event-4
Start 79.22 79.23 78.99 196.4 196.5 196.00 311.6 311.7 311.0
End 83.97 84.01 83.89 201.2 201.6 202.00 316.4 316.5 316.0

Event-5
Start 84.50 84.60 85.10 202.3 205.7 202.80 317.1 317.5 317.9
End 98.80 99.50 99.20 216.2 216.9 216.70 331.1 332.4 331.6

Event-6
Start 100.80 102.60 101.50 219.1 220.7 219.50 334.5 333.7 334.9
End 110.90 111.60 111.20 228.7 229.1 228.30 343.5 344.8 343.5

Event-7
Start 113.10 112.60 112.90 230.8 231.2 231.60 345.9 345.5 346.8
End 118.00 118.40 118.35 234.4 235.4 234.70 349.6 350.5 350.6
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Table 4.3 shows the identified start and end time points of the three events of

clockwise laps based on vertical acceleration time series and Table 4.4 shows the

identified start and end time points of the four events of clockwise laps based on

the three acceleration time series.

Table 4.3: Identified start and end time for the three events of clockwise laps using
the acceleration data in the Z direction

Events Transition Lap-1 (s) Lap-2 (s) Lap-3 (s)

Event-1
Start 467.70 575.80 679.90
End 472.50 581.80 685.50

Event-2
Start 456.70 566.20 671.20
End 462.70 572.30 676.90

Event-3
Start 450.60 560.00 664.80
End 455.20 564.30 669.10

Table 4.4: Identified start and end time for the four events of clockwise laps using
the acceleration data in the Z, Y and X directions

Lap-1(s) Lap-2(s) Lap-3(s)
Events Transition Z Y X Z Y X Z Y X

Event-4
Start 423.2 422.7 423.4 534.55 534.83 533.99 639.8 639.00 638.7
End 426.6 426.9 426.5 537.24 537.97 537.57 643.1 643.30 642.6

Event-5
Start 406.5 405.8 408.1 517.60 517.40 519.70 623.3 622.80 624.3
End 420.3 419.6 420.5 531.40 531.80 531.80 636.9 636.60 637.3

Event-6
Start 392.9 394.0 396.7 504.20 504.70 508.10 610.1 613.00 612.7
End 402.6 402.8 404.3 514.00 513.90 514.60 620.0 621.60 621.4

Event-7
Start 388.5 388.6 388.5 499.80 500.00 499.40 606.1 606.60 606.3
End 391.6 392.2 391.9 502.30 503.30 503.20 609.5 609.20 609.7
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Identified event’s durations for counter clockwise and clockwise laps are shown in

Table 4.5 to Table 4.8. These tables show that the durations of the seven identified

events for three different laps are approximately close, which has strengthen the

accuracy of the proposed identification procedure.

Table 4.5: Identified duration for the three events of counter-clockwise laps using
the acceleration data in the Z direction

Z Direction

Lap-1 (s) Lap-2 (s) Lap-3 (s)

Event-1 6 6 6.29
Event-2 6 6 6.2
Event-3 3.95 3.72 4.52

Table 4.6: Identified duration for the four events of counter-clockwise laps using the
acceleration data in the Z, Y and X directions

Lap-1(s) Lap-2(s) Lap-3(s)
Events Z Y X Z Y X Z Y X

Event-4 4.75 4.78 4.9 4.8 5.1 6 4.8 4.8 5
Event-5 14.3 14.90 14.1 13.9 11.2 13.9 14 14.9 13.7
Event-6 10.1 9.00 9.7 9.6 8.4 8.8 9 11.1 8.6
Event-7 4.9 5.80 5.45 3.6 4.2 3.1 3.7 5.1 3.8
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Table 4.7: Identified duration for the three events of clockwise laps using the accel-
eration data in the Z direction

Z Direction

Lap-1 (s) Lap-2 (s) Lap-3 (s)

Event-1 4.8 6 5.6
Event-2 6 6.1 5.7
Event-3 4.6 4.3 4.3

Table 4.8: Identified duration for the four events of clockwise laps using the accel-
eration data in the Z, Y and X directions

Lap-1(s) Lap-2(s) Lap-3(s)
Events Z Y X Z Y X Z Y X

Event-4 3.4 4.2 3.1 2.69 3.14 3.58 3.3 4.3 3.9
Event-5 13.8 13.8 12.4 13.8 14.4 12.1 13.6 13.8 13
Event-6 9.7 8.8 7.6 9.8 9.2 6.5 9.9 8.6 8.7
Event-7 3.1 3.6 3.4 2.5 3.3 3.8 3.4 2.6 3.4

Identified start and end points of the seven events obtained from the first laps

of each driving directions were plotted to describe the results visually. Figure 4.1

and in Figure 4.2 show the identified three events and four events respectively from

counter clockwise first lap. Similarly, Figure 4.3 and Figure 4.4 show the identified

three events and four events respectively from clockwise first lap. In these figures,

the horizontal axis is the time in the unit of second and the vertical axis is the

accelerations in the unit of g.

As shown in Figure 4.1, the identified three events from the 1st counter-clockwise

lap in Z direction are: 4” Deep Chuck Hole, (3/4)” Chatter Bumps and 1” Random

Chuck Holes respectively. The first event 4” Deep Chuck Hole started at 28.20

69



 

 

Event-1 Event-2 Event-3 

Figure 4.1: Identified three events from the 1st counter-clockwise lap in Z direction

second and ended at 34.80 second, the second event (3/4)” Chatter Bumps started

at 41.50 second and ended at 47.50 second and the third event 1” Random Chuck

Holes started at 50.12 second and ended at 54.07 second.
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Figure 4.2: Identified four events from the 1st counter-clockwise lap in Z direction

Figure 4.2 shows the identified four events from the 1st counter-clockwise lap in

Z direction. The forth event Rail Road Crossing started at 79.22 second and ended

at 83.97 second, the fifth event Staggered Bumps started at 84.50 second and ended

at 98.80 second, the sixth event Frame twist started at 100.80 second and ended

at 110.90 second and the seventh event High Crown Intersection started at 113.10

second and ended at 118.00 second.
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Figure 4.3: Identified three events from the 1st clockwise lap in Z direction

Identified three events and four events from the 1st clockwise lap in Z direction

are shown in Figure 4.3 and in Figure 4.4 respectively. Contrary to counter-clockwise

lap, the vehicle was encountered the event-7 at the beginning of clockwise lap and

encountered the event-1 at the end of the clockwise lap.

72



 

-.4

-.3

-.2

-.1

.0

.1

.2

.3

.4

385 390 395 400 405 410 415 420 425 430

Time (second)

Z
 a

c
c
e

le
ra

ti
o

n
s
 (

g
)

Event-7 Event-6 Event-5 
Event-4 

Figure 4.4: Identified four events from the 1st clockwise lap in Z direction
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Chapter 5

Conclusion

Durability tests are important for measuring the characteristics and longevity of a

ground vehicle. In laboratory, the MAST is used for carrying out the sub-scaled

accelerated durability test. The accuracy of the accelerated durability tests heav-

ily depends on the accurately generated mission profiles using the acceleration time

series of the events experienced by the vehicle during the field test. Therefore, accu-

rately separated acceleration data can efficiently generate accurate mission profiles

for the accelerated test analysis.

Box-Jenkins methodology based event identification procedures have been pro-

posed to identify the events for both the counter-clockwise and clockwise laps. Both

the procedures identified the events efficiently and accurately.

It is already mentioned that the field test time series are noisy and of high fre-

quency. Wavelet based dnoised data was used to fit models for event’s time series

using Box-Jenkins approach but results were not satisfactory. Hence, the original

data (not dnoised) was used to identify events. Therefore, a chance of misclassifica-

tion of the events is always exist, though the proposed identification procedure has
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been tested on each of the driving directional time series. However, accuracy of the

proposed procedures depend on the quality of the collected acceleration time series

from the field tests, that is, the procedure will give the best result for completely

noise free field test acceleration time series. In reality, complete noise free accelera-

tions may not be obtainable but the noise can be reduced by controlling the driving

speed of the vehicle.

As a limitation of this study, it can be said that the fitted models are sensitive

to the data, that is the fitted models may changes with different acceleration time

series recorded from different types of vehicle. The probability of misclassification

of events using the proposed procedures may be obtainable but time consuming and

costly as new set of data are needed from the test track.

Use of multivariate time series analysis and suitable noise filtering method, a

simpler event identification procedure can be developed. Then the accuracy of that

procedure can also be verified by using the upcoming acceleration data obtained

from the field tests.

75



Bibliography

[1] Appling technology for industry, Slides from MITACS. (Cited on pages 3 and 4.)

[2] An introduction to muti-axis simulation tables (mast), Slides from MITACS.

(Cited on page 3.)

[3] Glyphworks worked examples 5.1, Electronic, 2007. (Cited on pages 3 and 9.)

[4] Westest’s mast table, http://www.westest.ca/mast.htm, Feb, 2008, Online;

accessed 12-January-2012. (Cited on pages viii and 4.)

[5] Bus research and testing facility (test track), http://www.vss.psu.edu/BTRC/

btrc_test_track.htm, Nov, 2007, Online; accessed 12-January-2012. (Cited

on pages viii, 2 and 12.)

[6] Mobarakeh A.A., Rofooei F.R., and Ahmadi G., Simulation of earthquake

records using time-varying arma(2,1) model, Probabilistic Engineering Mechan-

ics 17 (2002), no. n/a, 15–34. (Cited on page 10.)

[7] S.M.F. Aghda, A.J. Gandomi, and A. Beitollahi, Arma modelling of artificial

accelerograms for western iran, Iranian Journal of Science and Technology 29

(2005), no. A1, 107–116. (Cited on page 10.)

76

http://www.westest.ca/mast.htm
http://www.vss.psu.edu/BTRC/btrc_test_track.htm
http://www.vss.psu.edu/BTRC/btrc_test_track.htm


[8] I. Gusti Ngurah Agung, Time series data analysis using eviews, John Wiley

and Sons, 2011. (Cited on page 54.)

[9] McLeod A.I., Hipel K.W., and Lennox W.C., Advances in box-jenkins modeling

2.application, Water Resources Research 13 (1977), no. 3, 577–586. (Cited on

page 9.)

[10] S.C. Ashmore, A.G. Piersol, and J.J. Whitte, Accelerated service life testing

of automotive vehicles on a test course, Vehicle System Dynamics 21 (1992),

no. 2, 89–108. (Cited on page 5.)

[11] Dimitrios Ateriou and Stephen G. Hall, Applied econometrics a modern ap-

proach using eviews and microfit, Palgrave McMillan, 2007. (Cited on pages 20,

22, 39, 40 and 47.)

[12] J.A. Bannantine, J.J. Comer, and J.L. Handrock, Fundamentals of metal fa-

tigue analysis, Prentice Hall, 1990. (Cited on page 8.)

[13] Peter J. Brockwell and Richard A. Davis, Introduction to time series and fore-

casting, 2nd ed. ed., Springer, 2003. (Cited on page 19.)

[14] Chris Chatfield, The analysis of time series an introduction, Chapman and

Hall/CRC., 1999. (Cited on page 26.)

[15] Stephen Cull, Ke Xu, and C. Wu, Generating accelerated loading profiles from

measured time series data, Internal Report, 2009. (Cited on pages 3, 9, 16

and 45.)

77



[16] Stephen Cull and Caisia Yang, Generation and verification of accelerated dura-

bility tests, Internal Report, 2010. (Cited on pages 4, 11 and 16.)

[17] I. Dobre and A.A. Alexandru, Modelling unemployment rate using box-jenkins

procedure, Journal of Applied Quantitative Methods 3 (2008), no. 2, 156–166.

(Cited on pages 10 and 11.)

[18] K. Dressler, V.B. Kottgen, and H. Kotzle, Synthesis of realistic loading spec-

ifications, European journal of mechanical and environmental engineering 41

(1996), no. 3, 153–168. (Cited on page 8.)

[19] Walter Enders, Applied econometric time series, Wiley, 2010. (Cited on

pages 11, 21, 25, 36, 40 and 41.)

[20] R. Gopalakrishnan and H.N. Agrawal, Durability analysis of full automotive

body structures, International Congress and Exposition n/a (1993), no. n/a,

n/a. (Cited on page 6.)

[21] John C. Hoff, A practical guide to box-jenkins forecasting, Lifetime Learning

Publications, 1983. (Cited on pages vi, 10, 33, 38, 39 and 45.)

[22] Dressler K., Speckert M., and Bitsch G., Virtual test rigs for automotive engi-

neering, Vehicle System Dynamics 47 (April 2009), no. 4, 387–401. (Cited on

pages 6 and 7.)

[23] Scott Klippenstein, Multivariate time series modeling and forecasting win-

nipeg’s electrical load-temperature relationship, Master’s thesis, University of

Manitoba, Department of Statistics, 2005. (Cited on page 20.)

78



[24] Milligan M., Schwartz M., and Wan Y-H., Statistical wind power forecasting

for u.s. wind farms, National Renewable Energy Laboratory, U.S. n/a (2003),

no. n/a, NREL/cp–500–33956. (Cited on page 10.)

[25] S. Makridakis, S.C. Wheelwright, and R.J. Hyndman, Forecasting: Methods

and applications, 3rd edition ed., John Wiley and Sons, 1998. (Cited on

pages 10 and 11.)

[26] A. Pankratz, Forecasting with univariate box-jenkins models, John Wiley and

Sons, 1983. (Cited on page 20.)

[27] Olafsson S. and Sigbjornsson R., Application of arma models to estimate earth-

quake ground motion and structural response, Earthquake Engineering and

Structural Dynamics 24 (1995), no. 7, 951–966. (Cited on page 10.)

[28] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6

(1978), no. 2, 461–464. (Cited on page 26.)

[29] Fearn T. and Maris P.I., An application of box-jenkins methodology to the con-

trol of gluten addition in a flour mill, Center for Quality and Productivity

Improvement n/a (1990), no. n/a, Report No.50. (Cited on page 10.)

[30] T.M.J.A.Cooray, Applied time series analysis and forecasting, Alpha Science

International Ltd., 2008. (Cited on pages 19, 36, 39, 40 and 42.)

[31] J. Wannenburg and P.S. Heyns, An overview of numerical methodologies for

durability assessment of vehicle and transport structures, Int. J. Vehicle System

Modelling and Testing 5 (2010), no. 1, 72–101. (Cited on pages 7 and 8.)

79



[32] William W.S. Wei, Time series analysis univariate and mutivariate methods,

Addison-Wesley Publishing Company, Inc., 1994. (Cited on pages 24, 34, 41

and 42.)

[33] Ke Xu, Develpoment of vibration loading profiles for accelerated durability tests

of ground vehicle, Master’s thesis, University of Manitoba, Department of Me-

chanical and Manufacturing Engineering, 2010. (Cited on pages vi, viii, ix, 3,

4, 5, 6, 9, 13, 14, 15, 16, 17 and 46.)

[34] Peijun Xu, G. Peticca, and D. Wong, A technique for developing a high accuracy

durability test for a light truck on a six degree-of-freedom road test simulator,

International Journal of Vehicle Design 47 (2008), no. 1-4, 290–304. (Cited on

page 7.)

[35] P. Zhang and C. Wu, Events identification of curve fitting method, Internal

Report, 2010. (Cited on page 9.)

80


	Contents
	List of Tables
	List of Figures
	Introduction to the real data problem
	Introduction
	Literature review
	Accelerated durability test
	GlyphWorks software and events identification

	Events description and time series information
	Objectives
	Organization of the study

	Time series models and Box-Jenkins methodology
	Introduction
	Some basic concepts
	ARIMA models
	Stationarity
	The augmented Dickey-Fuller unit root test
	The autocovariance and autocorrelation functions
	Parsimony
	Model selection criteria
	Model checking tools

	Stationary time series models
	Autoregressive (AR) models
	Moving-average (MA) models
	Autoregressive moving average (ARMA) models

	Box-Jenkins methodology
	Identification
	Estimation
	Diagnostic checking
	Model selection
	Summary of the analysis procedure


	Modelling the events time series
	Introduction
	Data preparation
	Model identification of event-1: 4" Deep Chuck Hole
	Step-1
	Step-2
	Step-3
	Step-4 and Step-5
	Step-6

	Fitted models and event identification procedure

	Results
	Conclusion
	Bibliography

