THE UNIVERSITY OF MANITOBA

LIBRARY

AUTHOR

BHATIA, Kanwal.jit. Singh

TWO-DIMENSIONAL FLOW AROUND AN ELLIPTIC AEROFOIL WITH LAMINAR
TITLE

BOUND.DARY. LAYER

THESIS ...MASc:. 1983

I, the undersigned, agree to refrain from producing, or reproducing, the above-named work, or any part thereof, in any material form, without the written consent of the author:

\because Atrakions
-
$.5 . .22 .20 .2 \pi$
\qquad

A Thesis
Submitted to the Faculty
of
Graduate Studies
The University of Manitoba

by

KANWALJIT SINGH BHATIA

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science
Department of Mechanical Engineering

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a Master's thesis entitled: ...Two-Dimensional. Flow. Around an. Elliptic Aerofoil.... with Laminar Boundary Layer
submitted by Kanwaljit Singh BHATIA
in partial fulfilment of the requirements for the degree of Master of Science (Mechanical Engineering)

External Examiner
Date . March 8, 1983 :

Oral Examination is:
Satisfactory \bar{x}. Not Required II
[Unless otherwise specified by the major Department, thesis students must pass an oral examination on the subject of the thesis and matters relating thereto.]

KANWALJIT SINGH BHATIA

Abstract

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE
(C) 1983

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

The aim of this study was to develop a computational technique to predict the incompressible, two-dimensional flow around an elliptic aerofoil at low Reynolds number at angles of attack up to and beyond the stall. The potential flow was to be calculated by a uniform flow and a distribution of vortices on the elliptic aerofoil. The displacement effects of the boundary layer and the separated wake were to be represented by a distribution of sources on the surface of aerofoil.

An elliptic cylinder with a fineness ratio of $6: 1$ at a Reynolds number of 800 was used as a representative aerofoil. Its shape was approximated by an inscribed polygon of flat elements. The vortices with linearly increasing strength were distributed on these elements. The potential flow around the aerofoil was computed by satisfying the zeronormal velocity condition at the mid-point of each element and the downstream end of the elliptic aerofoil as a stagnation point. The boundary layer calculations and the separation points were predicted using Thwaites' method. Another potential flow solution with a different stagnation point was developed. These two potential flows were combined to adjust the circulation to the value needed to equalize the upper and lower surface separation velocities. This modified the surface pressure gradient; the boundary layer was recalculated and the process iterated until the separation points stabilized. The sources were distributed on the same flat elements as were used in developing the potential solutions. The strengths of the sources were adjusted iteratively so that the surface streamline was
displaced by an amount equal to the displacement thickness of the attached boundary layer and the separated wake was a constant pressure region.

For angles of attack between 0 and 7 degrees, the flow was represented successfully. The coefficients of lift, drag and pitching monent were caculated. The coefficients of lift were compared with those calculated by Howarth. A slight difference in these results was due to different methods of boundary layer calculations. For angles of attack from 8 to 11 degrees, the iterative process for circulation adjustment failed to converge. The solution predicted oscillatory leading edge and trailing edge separation points. This may be indicative of an unsteady flow and requires further study. For angles of attack greater than 12 degrees, the separated flow model predicted source strengths which gave velocities incompatible with the constant pressure criterion. Further work is required to model the separated wake at higher angles of attack.

ACKNOWLEDGEMENTS

I would like to thank Professor J. Tinkler for the invaluable guidance he has rendered to me both as a teacher and research supervisor. His encouragement has inspired me to achieve the goals sought for. I also wish to express thanks to Mrs. Ingrid Trestrail for typing this thesis promptly.

My thanks are also due to the fellow graduate students for the fruitful discussions during the research work.

TABLE OF CONTENTS

Page

ABSTRACT (i)
ACKNOWLEDGEMENT(iii)
TABLE OF CONTENTS (iv)
LIST OF TABLES (vi)
LIST OF FLGURES (vii)
NOMENCLATURE (ix)
Chapter
1 Introduction 1
2 Inviscid Fluid Flow 4
2.1 Classical Method 4
2.2 Approximate Solutions 5
2.3 Exact Numerical Methods 7
2.3.1 Network Method 7
2.3.2 Integral Equation Method 8
2.3.3.1 Present Theoretical Method 8
2.3.3.2 Numerical Formulation 10
3 Laminar Boundary Layer Considerations 13
3.1 Theory 13
3.2 Numerical Method 16
4 Inviscid Flow and Boundary Layer Representation 18
4.1 General 18
4.2 Attached Part 18
4.3 Separated Part 19
4.4 Circulation Adjustment With Separated Wake 21
4.5 Estimation of the Lift, Drag and Pitching Noment Coefficients 23
5 Results and Discussion 24
5.1 Potential Flow 24
5.2 Potential Flow Results for Circulation Determined by Boundary Layer Separation 26
5.3 The Iterative Solution for Displacement and Wake Effects 29
5.4 Results of Force and Moment Coefficients 31
5.4.1 The Coefficient of Lift 31
5.4.2 The Coefficient of Drag 33
5.4.3 The Coefficient of Pitching Moment 34

APPENDIX (A) \quad| Computation of Velocity and Velocity |
| :--- |
| Gradient-Analytical Method............................ 36 |

APPENDIX (B) Computation of Velocity and Velocity Gradient-- Surface Singularity Method 41
B. 1 Uniformly Distributed Vortex Strength 41
B. 2 Linearly Increasing Strength of Vortex 42
B. 3 Uniformly Distributed and Linearly Increasing Vortex Strength 43
B. 4 Uniformly Distributed Sources 44
B. 5 Linearly Increasing Strength of Sources 45
B. 6 Uniformly Distributed and Linearly Increasing Source Strength 45
B. 7 Computation of Velocity Gradient on the Surface 46
APPENDIX (C) Estimation of the Lift, Drag and Pitching Moment Coefficients 49
C. 1 The Lift Coefficient by Integration of Pressure Distribution Around the Elliptic Aerofoil 49
C. 2 The Lift Coefficient by Calculating the Circulation Around the Elliptic Aerofoil 50
C. 3 The Form Drag by Integration of the Pressure Distribution Around the Elliptic Aerofoil 50C. 4 The Coefficient of Pitching Moment byIntegration of the Pressure DistributionAround the Elliptic Aerofoil51
APPENDIX (D) Computer Program for Laminar BL Around an 53Elliptic Aerofoil
REFERENCES85
1 Prescribed Functions for Modified Thwaites' Method 87
2 The Surface Velocity Distribution on a 6:1 Elliptic Aerofoil: Inviscid Flow $\alpha=0^{\circ}$ 88
3 Surface Velocity Gradient Around a 6:1 Elliptic Aerofoil: Inviscid Flow, $\alpha=5^{\circ}$ 89
4 Computed Separation Characteristics for 6:1 E11iptic Aerofoil at Reynolds Number $=800$ 90
5 Coefficient of Drag Values 91
Figure Page
1 Control points for Network method 92
2 The uniform flow around an elliptic aerofoil 93
3 Distribution of elements around the aerofoil by
Cosine rule 94
4 Induced velocity components at a point due to
distributed vortices on an element 95
Flow chart 96
6 Inviscid pressure distribution at $\alpha=8^{\circ}$ by surface-
vortex method 97
7 Boundary layer results for $\alpha=7^{\circ}, N=60, \operatorname{Re}=800$ 98
7a Momentum thickness distribution 98
7 b Parameter m - distribution 98
7c Displacement thickness distribution 98
8 Pressure distribution including boundary layer effects
$\left(\mathrm{N}=60, \alpha=1^{\circ}\right)$ 99
9 The coefficient of lift curve 10010
12 103
The coefficient of Pitching moment curve13
The coefficient of Skin Friction Distribution $\left(\alpha=3^{\circ}\right)$ 101
11 The coefficient of Profile drag curve 102
The Uniform flow around a Circular Cylinder 104
Induced velocities at a point due to distributedvortices105

Induced velocities at a point due to distributed sources 106

Normal pressure force on element of aerofoil surface .107

Pitching moment about the leading edge of the aerofoil .. 108

NOMENCLATURE

a
$\mathrm{An}_{i j}$
b
c
f
H shape factor
ℓ

At ${ }_{i j} \quad$ tangential velocity at i due to uniform source of strength of 1 at element j.

C distance defined by $c^{2}-b^{2}$
$C_{D} \quad$ coefficient of form drag
C coefficient of lift
$\mathrm{C}_{\mathrm{m}} \quad$ coefficient of pitching moment
$C_{p} \quad$ coefficient of pressure $\left(=\frac{p-p_{\infty}}{1 / 2 \mathrm{\rho U}_{\infty}^{2}}\right)$
d major axis of the elliptic cylinder (chord)
$\mathrm{F}_{\mathrm{x}} \quad$ force in x -direction
$F_{y} \quad$ force in y-direction
$k \quad$ strength of circulation in classical method and a counter in the surface vortex method
radius of circular cylinder
normal velocity at i due to uniform source of strength of 1 at element j 。 elent j.
semi-minor axis of the elliptic cylinder
semi-major axis of the elliptic cylinder
a fraction
a parameter used. in Thwaites' method, $\ell=\frac{\Theta}{U}\left(\frac{d u}{d}\right)$
dy surface

$L(m)$	function of m
m	a parameter used in Thwaites' method, $m=\frac{\theta^{2}}{U}\left(\frac{d^{2} u}{d \bar{y}^{2}}\right)$ surface
n_{i}	unit vector at point i
N	number of surface elements
p	pressure of the fluid
p_{∞}	pressure of the uniform stream at infinity
r	distance of a point from the origin
r_{1}	distance of a point as shown in Figure 14
r_{2}	distance of a point as shown in Figure 14
R	distance in the Z -plane
Re	Reynolds number based on the major axis and the uniform stream
	$\left(\operatorname{Re}=U_{\infty} d / \nu\right)$
5	distance along the surface as measured from the downstream end of
	the elliptic cylinder
u	velocity component parallel to x-axis
U	tangential velocity at the surface of the aerofoil due to
	distributed vortices and onset flow
U_{∞}	velocity of the uniform stream at infinity
$U_{i j}$	velocity induced at point i parallel to and due to vorticity
	distributed at element j
$\overline{\mathrm{u}}$	velocity in the real axis direction in conformal transformation
	method
V_{2}	Vector velocity induced at a point i
Vn_{i}	normal velocity at a point i in the attached part
$v_{i j}$	velocity induced at a point i perpendicular to and due to

vorticity distributed at element j
velocity in the direction perpendicular to real axis direction in conformal transformation method velocity component parallel to y velocity at the point of separation
complex potential of flow around a cylinder axis and distance parallel to major axis of the elliptic cylinder distance parallel to the surface of the elliptic cylinder axis and distance parallel to minor axis of the elliptic cylinder axis and distance perpendicular to the surface of the elliptic cylinder
plane containing the circular cylinder section
angle of attack
angular position of a point on circular cylinder in polar coordinates
uniform vorticity strength on element j
gradient of linearly increasing vorticity strength on element j
circulation around the elliptic cylinder
inclination of surface element with x-axis
displacement thickness
angular position of a point on elliptic cylinder in polar coordinates
angle as shown in Figure 14
angle as shown in Figure 14
fluid density
uniform source strengtr.

σ^{\prime}	gradient of linearly increasing source strength
θ	momentum thickness
ξ	axes parallel to surface elements
η	axes perpendicular to surface elements
$\xi_{i j}$	distance of point i in direction of ξ from point j
$\eta_{i j}$	distance of point i in direction of η from point j
τ_{W}	shear stress on the surface
	plane containing the elliptic cylinder
ϕ	angle on circle with diameter as the major axis of the elliptic
	cylinder as shown in Figure 3
Δ_{j}	half the length of the j-th surface element
v	kinematic viscosity of the fluid
$\bar{\theta}$	angle as shown in Fig. 14 and Fig. 15
L	lift force
D	drag force
M	pitching moment

1. INTRODUCTION

It has always been one of the interests of aerodynamists to be able to predict the performance of an aerofoil in flight, or conversely, to design an aerofoil for a given flight performance. Experiments are carried out to measure the characteristics (coefficients of lift, drag, pitching moment, etc.) of an aerofoil, involving wind tunnels of various sizes. These experiments are time consuming and expensive. It is also difficult to achieve exact flight conditions in the wind tunnel tests. Despite these shortcomings, the wind tunnel tests are carried out as the present computational techniques are unable to include the complete boundary layer effects.

It has been observed that for two-dimensional aerofoils at low angles of attack, the boundary layer around the aerofoil is thin and a separated region, if it exists, is small. The inviscid flow theory gives fairly close results to those obtained experimentally. The inviscid fluid flow pressure gradients can be used with the boundary layer theory to predict the skin friction for the attached region. As the angle of attack increases the theoretical results for the inviscid flow show marked differences from the experimental results (for example - the predicted coefficient of lift is too high). This probably can be attributed mainly to the separated flow which modifies the circulation around the aerofoil. The pressure in the separated region is nearly constant. This real pressure distribution around the aerofoil can determine the form drag.

At high Reynolds number encountered in actual flights the boundary layer is usually turbulent leading to turbulent separation at
higher angles of attack. It is difficult, theoretically, to model the separated region. In a recent attempt Zumwalt and Elangovan (Ref. 1) have tried to represent the separated region using some empirical relations from jet mixing theory. They have achieved good agreement with the experimental results for their chosen aerofoils. Their results are dependent on the empirical relations used. It has been observed that the laminar boundary layer is more predictable with good methods available to compute the displacement thickness and the separation points. The separated region still remains to be analysed.

The aim of the present study is to develop a technique to compute the characteristics of an aerofoil accounting for the effects of both the boundary layer thickness and the separation. The computational technique to be developed is intended to be a general one and thus applicable to any aerofoil. Here, this technique will be applied to a two-dimensional elliptic aerofoil in an incompressible flow at low Reynolds numbers so that the boundary layer is laminar. If this technique is successful then it can be extended to aerofoils with sharp trailing edges, multi-element aerofoils, and to a boundary layer which is initially laminar and undergoes transition to turbulent flow. The elliptic aerofoil is chosen to work with as an exact analytical solution for the potential flow can be obtained easily. Howarth (Ref. 2) has made a first approximation of the effects of laminar boundary layer separation on the coefficient of lift of an elliptic aerofoil and his results are available for comparison.

In the present study the potential flow will be represented by a uniform flow and distributed vortices on the aerofoil surface. It is Autended to represent the boundary layer displacement thickness and the separated wake by a distribution of sources on the surface of the elliptic
aerofoil. With suitable boundary conditions, this will shift the dividing streamline away from the elliptic aerofoil by a distance equal to the displacement thickness in the attached part of the flow and cause a constant pressure wake region after separation. The assumption of a constant pressure in the wake region has been observed experimentally and reference to these experimental evidences will be made in the later chapters.

2. INVISCID FLUID FLOW

2.1 Classical Method:

This section deals with the classical method of obtaining the pressure and velocity distribution around the two-dimensional body of any shape. The fundamental assumptions made here are that the fluid, through which the body moves, is incompressible, inviscid and irrotational.

The various early approaches for obtaining the surface pressure distributions around aerofoils have been compiled in Ref. 3. For the sake of completeness, the principle used for such computations can be restated here. The aerofoil is first mapped into a pseudo-circle by an inverse Joukowski transformation and then into an exact circle by a second transformation. The procedure can be generalized and improved by replacing the single Joukowski transformation by one or more inverse Karman-Trefftz transformations. If the Karman-Trefftz transformation is used, an aerofoil with any number of surface slope discontinuities can be mapped into a smooth pseudo-circle. The inverse Joukowski transformation can only be used for an aerofoil that has no surface slope discontinuities except at the trailing edge, where the change in slope is 180°. When the inverse Joukowski transformation is used on any other type of aerofoil, the results are incorrect in the region near the surface-slope discontinuities. Although it appears to be a powerful technique, it is limited to a single element aerofoil since it is a mapping technique. The Riemann mapping theorem guarantees that any single body can be mapped into a single circle but says nothing about multiple bodies. However; the potential flow about two
lifting circles can be calculated and the circles are then transformed conformally onto two aerofoils (Ref. 4).

An elliptic aerofoil can easily be transformed conformally onto a circle using Joukowski transformation (Ref. 5). The circulation around the ellipse can be obtained by specifying, arbitrarily, the downstream end of the major axis of the elliptic aerofoil to be a stagnation point. This is equivalent to specifying the Kutta-condition for the aerofoil with sharp trailing edge. The theorem of Kutta-Joukowski can be used to evaluate the coefficient of lift. Appendix A gives the derivation of the formulae used * to calculate the surface velocity distribution on the elliptic aerofoil.

Appendix A also gives the surface velocity derivatives with respect to the surface distance of the elliptic aerofoil starting at the trailing edge. These values will be used to check the velocity gradients obtained by other approximate methods.

2.2 Approximate Solutions:

In the last section, it was mentioned that the classical method of solving fluid dynamic problems could not be used for flow around more than one body except in a few special cases. In the last five decades researchers have tried two techniques to solve these problems - approximate analytical methods and exact numerical methods. The approximate solutions introduce analytical approximations into the formulation itself and thus place a limit on the accuracy that can be obtained in a given case regardless of the numerical procedures used. In contrast, in exact numerical methods the analytical formulation, including all equations, is exact and numerical approximations are introduced for purposes of calculation. Exact numerical methods have the property that the errors in
the calculated solution can be made as small as desired, by sufficiently refining the numerical calculations.

Because exact analytic solutions (classical approach) are scarce for practical aerofoils and exact numerical methods were beyond the capability of hand computation, approximate solutions received the attention of the investigators in the field of inviscid flow. Many approaches have been formulated. Some are analytic in that the general solution can be written in simple closed form and others are numerical in that considerable computation is required to obtain the solution for each specific case. The common property of all approximate solutions is that restrictions are placed on the type of body or body surface about which the flow can be computed. Moreover, it is not always clear whether or not a particular approximate method is valid for a given body.

One type of approximate solution can be obtained by considering one or both of the following assumptions:
(a) the body is slender, with small local surface slope;
(b) the perturbation-velocity components due to the body are small with respect to the uniform stream that is the onset flow.

Thin aerofoil theory based on these assumptions has been developed by Glauert. These approximations are valid for thin aerofoils having small camber and small surface curvatures at small angles of attack. The accuracy of the computed solution is unknown.

Another large and well known approximate solution utilizes a distribution of singularities (sources and vortices) interior to the body surface. For example, the singularities are normally placed along the chord or camber line for two-dimensional aerofoils. The singularities may be
discrete or distributed. The location and general properties of the singularities are assumed and their strengths are determined so that the body surface coincides with a streamline of the flow. This method is limited to the bodies with small surface curvatures.

Approximate solutions are therefore unsatisfactory for two reasons. First, they are obviously inapplicable in many cases such as bodies with sharp edges, two bodies in close proximity and many non-uniform flows. Second, their validity in many cases is not predictable, and the accuracy of the computed solutions is unknown. These facts lead to consideration of exact numerical methods of solution.

2.3 Exact Numerical Methods:

Exact numerical methods for the solution of the problem of potential flow are characterized by the fact that, at least in principle, any degree of accuracy may be obtained by sufficiently refining the calculational procedure without changing the analytical formulation. There appear to be two classes of exact numerical solutions that have been applied to the general fluid-dynamics problem: network methods based on finitedifference approximations of the derivatives of the potential and integral equation methods such as the surface singularity method.

2.3.1 Network Method:

Network method is based on distributing a network of points (termed control points) many body lengths in each direction around the body throughout the flow field. The finite-difference of the values of the potential at various control points around the aerofoil can be calculated by satisfying the boundary conditions at the surface in some form. Thus the
solution must be obtained for the whole field even if it is required only on the boundary. Moreover, the most common application is that of the exterior flow about a closed body, where the flow field is infinite but the body is finite. The situation is illustrated in Figure 1. This results in the distribution of control points around the body in each direction. A large number of equations need to be solved to obtain the results on the surface of the body.

The results can be refined by decreasing the spacing between the points being considered.

2.3.2 Integral Equation Method:

Exact integral-equation representation of the problem of potential flow may be formulated in a variety of ways, all leading to a Fredholm integral equation of either the first or the second kind. Most of the methods that have been formulated are equivalent to determining a distribution of singularities over the body surface. Both sources and vortex distributions have been used. The boundary conditions are satisfied so that the body surface is a streamline of the flow. There are no restrictions on the shape of the body or the type of flow. Thus it is quite a versatile method and has been used widely. A good survey of the surfacesingularity methods is presented in Ref. 6.

2.3.3.1 Present Theoretical Model:

The present method uses the vortex distribution on the surface of the elliptic aerofoil. The basic idea of the surface-vortex method is as follows. The flow, which must satisfy JJplace's equation, is produced by superimposing a uniform stream U_{∞} at angle α to the x-axis, (Figure 2), and a continuous distribution of vortices round the perimeter of the
aerofoil. The boundary condition must be such as to ensure that the aerofoil surface is a streamline of the flow. It is convenient to stipulate the condition of zero velocity normal to the aerofoil surface. The present formulation generates a Fredholm integral equation of the first kind. This integral equation may be changed to a summation equation by dividing the aerofoil surface into a finite number of elemental arcs and satisfying the boundary condition at a similar number of points.

Mathematically, if the elliptic aerofoil surface is divided into N vortex elements then the boundary condition of zero normal velocity applied to the mid-point of each element (termed control point henceforth) leads to a linear equation of the type

$$
\begin{equation*}
\sum_{j=1}^{N} \bar{v}_{i j} \cdot \bar{n}_{i}+\bar{U}_{\infty} \cdot \bar{n}_{i}=0 \tag{2.1}
\end{equation*}
$$

where \bar{n}_{i} is the unit vector normal at the control point; \bar{U}_{∞} is the uniform vector onflow and $\bar{V}_{i j}$ is the vector velocity induced at the control point i by the j-th vortex element around the body surface. The mathematical expression for $\overline{\mathrm{V}}_{i j}$ depends on the order of approximation demanded by equation (2.1). The zeroth order model developed by Hess and Smith (Ref. 7) utilizes flat surface elements of constant singularity strength. In the surface vortex model considered here, it is convenient to adopt a modest improvement over the zeroth order approximation; namely use of flat elements with linear variation in singularity strength. This improvement, as noted by Gibson and Wilcox (Ref. 8) ensures continuity in vortex strength between adjacent elements and avoids the increase in computation time associated with parabolic approximations.

2.3.3.2 Numerical Formulation:

In this section it is intended to throw some light on the actual numerical formulation of the potential flow problem. The vortex type of singularity distribution is chosen for the present work. It has the distinct advantage that the vortex density, which is determined directly, is equal to the surface velocity.

The two-dimensional elliptic aerofoil is approximated by a large number of surface elements, whose characteristic dimensions are small as compared to those of the elliptic aerofoil itself. The total number of surface elements and their distribution influence the accuracy of the resulting calculations. As noted by Hess and Smith (Ref. 7) elements should be concentrated in regions where the body geometry-slope changes rapidly. The size of the elements should change gradually between the regions of concentrations and regions where the distribution is sparse. In the elliptic aerofoil here, the distribution of elements is achieved by applying the 'cosine rule',

$$
\begin{equation*}
\mathrm{x}_{\ell}=0.5\left(1+\cos \phi_{\ell}\right) \tag{2.2}
\end{equation*}
$$

which is illustrated in Figure 3, and where ℓ is an integer between 1 and N. The elliptic aerofoil surface is thus approximated by an inscribed polygon of N sides. Solutions with $\mathrm{N}=10,20,40$ and 60 have been tried. With 60 elements it is possible to obtain the pressure distribution up to 0.13% of the chord. It may be noted that the element end-points are on the aerofoil surface. The control points are then located at the mid-point of each element.

After specifying the control points, it is required to determine the velocity at all control points induced by all vortex elements. In Appendix (B) the induced velocity at any point due to a line vortex with
linearly increasing vortex strength has been derived. These expressions are used repeatedly for each element and each control point.

If j represents an element over which the distributed vortex strength increases linearly from γ_{j} to γ_{j+1} with a gradient of $\gamma_{j}^{\prime}=$ $\left(\gamma_{j+1}-\gamma_{j}\right) / 2 \Delta_{j}$, then the induced velocities at i-th control point in the directions parallel to and perpendicular to the j-th element, denoted by $U_{i j}$ and $V_{i j}$ respectively are

$$
\begin{equation*}
\left.-\tan ^{-1}\left(\frac{\xi_{i j}+\Delta_{j}}{\eta_{i j}}\right)\right\}-\eta_{i j} \ln \left\{\frac{\left(\xi_{i j}-\Delta_{j}\right)^{2}+\eta_{i j}{ }^{2}}{\left(\xi_{i j}+\Delta_{j}\right)^{2}+\eta_{i j}^{2}}\right\}^{1 / 2} . \tag{2.3}
\end{equation*}
$$

and

$$
\begin{aligned}
& \left.v_{i j}=\frac{\gamma_{j}}{2 \pi}\left[\ell n \frac{\left\{\left(\xi_{i j}+\Delta_{j}\right)^{2}+\eta_{i j}^{2}\right.}{\left(\xi_{i j}-\Delta_{j}\right)^{2}+\eta_{i j}{ }^{2}}\right\}^{1 / 2}\right]+\frac{\gamma_{j}^{\prime}}{2 \pi}\left[\left(\xi_{i j}+\Delta_{j}\right) \ell n\right. \\
& \left\{\left(\frac{\left.\xi_{i j}+\Delta_{j}\right)^{2}+\eta_{i j}^{2}}{\left(\xi_{i j}-\Delta_{j}\right)^{2}+\eta_{i j}^{2}}\right\}^{1 / 2}-2 \Delta_{j}^{-} \eta_{i j}\left\{\tan ^{-1}\left(\frac{\xi_{i j}-\Delta_{j}}{\eta_{i j}}\right)-\tan ^{-1}\left(\frac{\xi_{i j}+\Delta_{j}}{\eta_{i j}}\right)\right\}\right](2.4)
\end{aligned}
$$ where these notations have been explained in Figure (4).

These components are further resolved into a direction normal to the i-th element at the i-th control point. Keeping i-th element to be the same and varying the position j, the total normal component at is

$$
\bar{v}_{i} \bullet \bar{n}_{i}=\sum_{j=1}^{N}\left[\left\{u_{i j} \sin \delta_{j}+v_{i j} \cos \delta_{j}\right\} \cdot \cos \delta_{i}-\left\{u_{i j} \cos \delta_{j}-\right.\right.
$$

$$
\left.\left.-v_{i j} \sin \delta_{j}\right\}_{\sin \delta_{i}}\right] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2.5)
$$

where δ is the inclination of the element with the positive x -axis as shown in Figure (4). Equation (2.5) simply means that the total normal velocity induced at the i-th control point is the sum of the N velocities due to the distributed vortex at each of the j-th elements.

The onset flow (U_{∞} at angle of attack α) has a component of
velocity normal to the i-th element given by

The boundary condition of zero normal velocity at the body surface at the i-th control point, as given by Equation (2.1) now leads to N equations

N
$\sum_{j=1}^{N}\left[\left(U_{i j} \sin \delta_{j}+V_{i j} \cos \delta_{j}\right) \cos \delta_{i}-\left(U_{i j} \cos \delta_{j}-V_{i j} \sin \delta_{j}\right) \sin \delta_{i}\right]+U_{\infty} \sin \left(\alpha-\delta_{i}\right)=0 \ldots(2.7)$ where $i=1,2, \ldots \ldots N$

The number of equations is N while the number of unknown $\gamma^{\prime} s$ is $(N+1)$. The stagnation point is specified at the downstream end of the major axis of the elliptic aerofoil. This gives

Incorporating Equation (2.8) in the Equation (2.7) reduces the number of unknown γ 's to the number of equations. The N linear equations with N unknowns can be solved on a computer using any well-known algorithm to find the unknown γ 's. Here, the Gaussian elimination technique is used to evaluate the unknown γ 's. The surface tangential velocities are the same as the values of the local vortex strength since the internal velocity is zero.

3. LAMINAR BOUNDARY LAYER CONSIDERATIONS

3.1 Theory:

The general problem of the flow in the laminar boundary layer with the prescribed pressure distributions is one of formidable complexity, involving as it does, partial differential equations with two independent variables. The most effective analytic attack on it has been by the socalled series solution method to which Blasius, Howarth and Frossling have made the most important contributions. The essential features of these methods are given in Ref. 9. However, many external velocity distributions of practical interest can not be handled by these methods. The numerical difficulties involved in obtaining exact solutions of the boundary layer equations for the general case has led to much attention being paid to the development of approximate methods. Usually such methods have been developed with the limited objective of predicting the overall characteristics of the boundary layer, e.g. momentum thickness, displacement thickness and the points of separation, if any, rather than the velocity distribution of the boundary layer flow. The momentum integral equation generally provides the basis for such methods and the approximations are manifest in the assumptions adopted to solve that equation.

The momentum integral equation of the boundary layer is obtained by integrating the equation of motion of the boundary layer. Pohlhausen's, Thwaites' and Young's methods are the important ones in which attempts have been made to solve the integral equations using different approximating assumptior=. Thwaites' method (Ref. 10) as modified by Curle and Skan (Ref. 11) has been found to give good predictions of the separation point and
therefore it is adopted for use in the present work. The pertinent details of the method are repeated below.

Two non-dimensional parameters ℓ and m are defined by the equations:

$$
\begin{equation*}
\ell=\frac{\theta}{U}\left(\frac{d u}{d \bar{y}}\right)_{\text {wall }} . \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{m}=\frac{\theta^{2}}{\mathrm{u}}\left(\frac{\mathrm{~d}^{2} \mathrm{u}}{\mathrm{~d} \overline{\mathrm{y}}^{2}}\right)_{\text {wall }} \tag{3.2}
\end{equation*}
$$

where u is the boundary layer velocity parallel to the solid boundary, U is the value of u at the outer edge of the boundary layer, \bar{y} is the distance perpendicular to the boundary and θ is the momentum thickness.

The parameter ℓ is directly related to the skin friction while m is related to the pressure (or velocity, U) through the only boundary condition in which the external pressure appears, viz. :-

$$
v\left(\frac{d^{2} u}{d \bar{y}^{2}}\right)_{w a 11}=\frac{1}{\rho} \frac{d p}{d \bar{x}}=-\frac{U d U}{d \bar{x}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(3.3)
$$

The first part of this equation is obtained from the equation of motion evaluated at the wall; the second part is obtained from Bernoulli's equation. Here \bar{x} is the distance parallel to the boundary and v is the coefficient of kinematic viscosity.

Combining (3.2) and (3.3),
$m=-\frac{\theta^{2}}{v} \frac{d U}{d \bar{x}}$
where m is a very important parameter of velocity profile and if we assume that the laminar boundary layer velocity profiles form a uniparametric family, then we can regard m as the form parameter. In that case ℓ must be a unique function of m for all velocity profiles, as must be $H=\delta^{*} / \theta$ where δ^{*} is the displacement thickness and H is the shape factor. The momentum
integral equation can then be written successively as

where

$$
L(m)=2[m(H+2)+\ell]
$$

Thwaites evaluated the expression represented by the right hand side of the Equation (3.6) for velocity profiles given by known exact solutions covering a wide range of pressure gradients and found that the resulting curves lay close to a straight line for which the equation was $L(m)=0.45+6 \mathrm{~m}$. Equation (3.6) therefore can be written as

$$
\mathrm{U} \frac{\mathrm{~d}}{\mathrm{~d} \overline{\mathrm{x}}}\left(\theta^{2}\right)-0.45 v+\frac{6 \mathrm{dU}}{\mathrm{~d}} \theta^{2}=0
$$

or, $\quad \theta^{2}=\theta_{0}^{2}+\frac{0.45 v}{\left(U^{6}\right)} \int_{0}^{\bar{x}} U^{5} d \bar{x}$ \qquad
where θ_{0} is the momentum thickness at the stagnation point. Thus the value
 of θ^{2} can be determined at any point by a simple quadrature. Once θ is determined the parameter m can be obtained from Equation (3.4). Thwaites selected certain of the exact solutions most relevant to the flow past aerofoils as a guide, particularly the case of a constant adverse velocity gradient, and on the basis of these solutions, he devised a table of ℓ and H as unique functions of m.

Thwaites (Ref. 10) suggests the value of m at the stagnation point as -0.075 , which, with Equation (3.4) gives the initial values of momentum thickness. The separation point occurs when m reaches the value of 0.082 . Later, Curle and Skan (Ref. 11) applied Thwaites' method to more examples of
separation and noted that Thwaites' method systematically underestimates the distances to separation from the stagnation point for different types of velocity distributions. Curle and Skan recommended modified values of ℓ and H for values for m greater than 0.06 . According to this modification the parameter m is equal to 0.09 at the point of separation. Values of ℓ and H, including Curle and Skan's modifications, are presented in Table 1.

3.2 Numerical Method:

It is intended here to outline, briefly, the numerical technique used to evaluate the laminar boundary layer characteristics, along the surface of the aerofoil, up to the separation points. The momentum thickness, the parameter m and the displacement thickness are given by Equations (3.7), (3.4), Table 1 and the relation $\delta^{*}=$ H θ respectively.

Equation (3.7) can be written in non-dimensional form as

$$
\begin{equation*}
\left(\frac{\theta}{d}\right)^{2}=\left(\frac{\theta}{d}\right)_{0}^{2}+\frac{0.45}{\left(\mathrm{U} / \mathrm{U}_{\infty}\right)^{6}(\operatorname{Re})} \int^{\overline{\mathrm{x}} / \mathrm{d}}\left(\frac{\mathrm{U}}{\mathrm{U}_{\infty}}\right)^{5} \mathrm{~d}\left(\frac{\overline{\mathrm{x}}}{\mathrm{~d}}\right) \tag{3.8}
\end{equation*}
$$

where d is a characteristic length, here chosen as the major axis of the Ud
elliptic aerofoil, U_{∞} is the free stream velocity and $\operatorname{Re}(=-\quad \nu)$ is the Reynolds number based on the main stream velocity and the major axis of the aerofoil. The main task then is to evaluate the integral in Equation (3.8) while $\left(\frac{U}{U_{\infty}}\right)$ can be determined from the potential flow solution, as obtained in the previous chapter. The integral can be evaluated by the 10 -point Simpson's $1 / 3$ rule. Thus

$$
\int_{0}^{\bar{x} / d}\left(\frac{U}{U}\right)^{5} d\left(\frac{\bar{x}}{d}\right)=\sum_{j=1}^{i-1}\left(\frac{\Delta \bar{x} / d}{3}\right)\left[f\left(\frac{\bar{x} j}{d}\right)+4 f\left(\frac{\bar{x} j}{d}+\frac{\Delta \bar{x}}{d}\right)+2 f\left(\frac{\bar{x} j}{d}+2 \frac{\Delta \bar{x}}{d}\right)+\right.
$$

$\left.+4 f\left\{\frac{\bar{x}_{j}}{d}+(M-1) \frac{\Delta \bar{x}}{d}\right\}+f\left(\frac{\bar{x}_{j}}{d}+1\right)\right]$
where $\Delta \bar{x}=\frac{\bar{x}_{j+1}-\overline{x_{j}}}{M}$ where $M=10, f(x)=\left(\frac{U}{U}\right)^{5}$ and $i=$ number of control points after the stagnation point, on each surface, up to the downstream end of the major axis. It can be observed from the Equation (3.9) that in order to find the momentum thickness at a control point the velocities must be interpolated between that point and the previous control point. This interpolation of velocities at intermediate points is carried out using Lagrangian interpolation. Near the stagnation point, these velocities are interpolated linearly.

Once the distribution of momentum thickness is known, the values of the parameter m can be determined from Equation (3.4) as

$$
\begin{aligned}
m & =-\frac{\theta^{2}}{v}\left(\frac{d U}{d \bar{x}}\right) \\
& =-\left(\frac{\theta}{d}\right)^{2} \cdot \frac{d\left(\frac{U / U}{\infty}\right)}{d \overline{(\bar{x} / d})} \cdot \operatorname{Re}
\end{aligned}
$$

where the velocity gradient $\left(o f \frac{U}{U_{\infty}}\right)$ is calculated by differentiating a cubic spline relating the known values of velocities at control points to the distances of the control points from the trailing edge. The calculation of the parameter m is stopped as soon as m has a value equal to or greater than 0.09. The separation point is located wherever the parameter m has a value 0.09 .

The shape factor H is calculated by linear interpolation of the values of the parameter m in Table 1 and the displacement thickness is given by $\delta^{*}=H \theta$.

The surface-vortex method, described earlier, determines the tangential velocity distribution around the elliptic aerofoil for the given flow conditions. Then Thwaites' method is used to calculate the distribution of displacement thickness on the upper and lower surfaces in the regions of attached flow and the points of separation on both the surfaces of the elliptic aerofoil. The existence of the boundary layer and separated wake modifies the circulation around the elliptic aerofoil. These effects can be represented by a distribution of sources on the elliptic aerofoil surface. In terms of the surface-vortex method this is accomplished by treating the flow induced by the sources as an additional onset flow. This concept of the boundary layer source flow is termed as the displacement onset flow.

The same surface elements are used for the source distributions as were used for the surface-vortex method. Sources with uniform strength are distributed on each of these elements. In order to calculate the strength of these sources, boundary conditions are applied at the mid points of each of these elements. The boundary conditions differ in the attached and the separated parts of the flow. These are discussed in the following paragraphs.
4.2 Attached Part:

The main flow in the presence of the boundary layer behaves as if it is flowing without friction past a surface displaced outwards by a
distance δ^{*}. The displacing effect is produced here by discharging sources at the surface with velocity normal to the surface given by $V_{n}=U$. $\left(\frac{d \delta^{*}}{d \bar{x}}\right)$. The derivation of this formula is given in Ref. 12. The displacement thickness slope along the surface of the elliptic aerofoil is determined by numerical differentiation of $\delta *$ with respect to the distance from the stagnation point. The boundary condition in the attached region is set by defining the normal velocities at the control points in that region. This effectively means that at a given control point, i, in the attached region, the normal velocity induced by all the sources is ${V n_{i}}=U_{i}\left(\frac{d \delta *}{d \bar{x}}\right)_{i}$. In terms of the strength of sources the equation can be written as

$$
\begin{equation*}
\sum_{j=1}^{N} A n_{i j} \cdot \sigma_{j}=V n_{i} \tag{4.1}
\end{equation*}
$$

where i refers to the control points in the attached region, $A n_{i j}$ is the normal velocity induced at i due to a unit source at j, σ_{j} refers to the uniform strength of the source at the element j and N is the total number of elements around the elliptic aerofoil.

4.3 Separated Part:

Due to the presence of the boundary layer and the separated wake the determination of circulation around the aerofoil is not possible by simply specifying the stagnation point at the downstream end of the major axis of the elliptic aerofoil. For this it is argued that if the flow conditions are steady then the rate at which vorticity is discharged into the wake from the upper and lower surfaces must be equal and opposite (Ref. 13 \& 14). It further follows then that the free stream velocity at the edge of the separated wake must be the =ame for both upper and lower surfaces in
the region of the separated wake. This then is the condition that must be applied to determine the circulation. Since the present model is all potential flow, the constant velocity condition in the separated wake leads to a constant pressure wake region. The technique to determine the circulation with a constant pressure wake region is described in Section 4.4.

It must be noted here that main stream velocity at the upper and lower separation points is the resultant of the total tangential component (due to onset, vortex distribution and source distribution) and the normal component (due to the source distribution). Thus the separation velocity can be written as

$$
V_{\text {sep }}^{2}=\left(U_{i}+\sum_{j=1}^{N} A t_{i j} \sigma_{j}\right)^{2}+\left(\sum_{j=1}^{N} A n_{i j} \sigma_{j}\right)^{2} \ldots \ldots \ldots \ldots \ldots(4.2)
$$

where i refers to the control points in the separated region, U_{i} is the tangential velocity at i-th control point due to the vortex distribution and the onset flow, At ${ }_{i j}$ is the tangential velocity induced at i due to a unit source at j, σ_{j} refers to the uniform strength of source at the element j and $V_{\text {sep }}$ represents the total velocity at the separation point.

Equations (4.1) and (4.2) have N unknowns ($\sigma^{\prime} s$) and there are N equations. Since Equation (4.2) is not a linear equation, an iterative procedure is followed to solve the Equations (4.1) and (4.2). The first iteration begins by assuming the tangential component of the velocities induced by the distributed sources is zero. This gives us the first approximation of the strength of the sources from the following equations:

$$
\sum_{j=1}^{N} A n_{i j} \cdot \sigma_{j}=\sqrt{V^{2}}{ }_{\text {sep }}-U_{i}^{2} \quad \text { for } i \text { in the separated region }
$$

and

In the subsequent iterations denoted by k, equations (4.1) and (4.2) can be re-written as follows:

for i in the separated region, and
$\sum_{j=1}^{N} A n_{i j} \sigma_{j}^{k}=V n_{i}$
for i in the attached region.
Equation (4.3) simply means that for the kth iteration for evaluating the strength of the sources, the tangential velocity induced is due to the sources from the previous iteration. This process of iteration is stopped when the strengths of sources do not vary significantly in the subsequent iterations. The criterion chosen to achieve this is to test the strength of the sources near the upper and lower separation points in the subsequent iterations. If the corresponding strengths of the sources do not vary by more than 1%, the iteration process is stopped.

4.4 Circulation Adjustment With Separated Wake:

As was pointed out earlier, the circulation around the elliptic aerofoil was calculated by specifying the stagnation point at the downstream end of the major axis. This specification is no longer applicable in the presence of the separated wake. The modified condition requires the separation velocities at the upper and lower surfaces to be equal. To satisfy this condition the tangential velocities at the control points nearest to the separation points are equated. If γ_{i} and γ_{j} are the vortex strengths at the upper and lower separation points, then

$$
\gamma_{i}=-\gamma_{j}
$$

This reduces the number of unknown γ 's from $(N+1)$ to N but by doing so the right hand side of the matrix system is disturbed. Thus the modified Kutta condition can not be applied in the same manner as the conventional Kutta condition in the surface-vortex method.

A different and new approach is followed to satisfy the modified Kutta-condition. Firstly, we have a potential flow solution satisfying the conventional Kutta condition. Using Thwaites' method the separation points on the upper and lower surfaces are determined. Secondly, a new potential flow solution is calculated with an arbitrary stagnation point for the same onset flow conditions. Now, these two potential flow solutions are combined so as to give equal velocities at the upper and lower separation points. However, the new resultant potential flow solution gives a new pressure field for the boundary layer. The boundary layer is recalculated giving new separation points. This leads to an iterative process to follow. These iterations are carried on till the upper and lower separation velocities are not different by more than 1%. The flow is now a potential flow satisfying the conditions that:
(i) far away the flow has a velocity of U_{∞} inclined at α to the ellipse major axis,
(ii) in the region where the laminar boundary layer would be attached, the mainstream is displaced from the elliptic aerofoil surface by the same distance as the laminar boundary layer would displace it;
(iii) in the region downstream of separation, the pressure is constant, which is observed to be nearly true in Ref. 13 and 14.
4.5 Estimation of the Lift, Drag and Pitching Moment Coefficients:

Appendix C gives the derivation of the formulae used to estimate the coefficients of lift, drag and pitching moment. Once the potential flow representation of the flow has been made, the coefficients of lift, drag and pitching moment can be estimated.

A flow-chart, Figure 5, lists all the operations carried out to predict these coefficients.

5. RESULTS \& DISCUSSION

The problem of the steady, incompressible, low Reynolds number laminar flow around an elliptic aerofoil was formulated in the earlier chapters. A computer program was developed and a copy of the listing is attached in Appendix D. Figure 5 shows a flow-chart of the sequence of computations carried out. The program was tested on an elliptic aerofoil with a fineness ratio of $6: 1$ at a Reynolds number of 800 . The program was used on an Amdahl 470/V8 computer of the University of Manitoba. The program was tested for angles of attack from zero to 20 degrees. This program was intended to be a general one and hence will accept coordinates of any aerofoil and any Reynolds number appropriate for laminar boundary layers.

5.1 Potential Flow:

The adequacy of the surface-vortex method for the potential flow was tested by predicting the flow about the elliptic aerofoil at several angles of attack using from 20 to 60 elements. When the number of elements chosen was 20 , the control point nearest to the upstream end of the elliptic aerofoil was 1.2% aft of the front point. This was not good enough to represent the true contour because the shape of the aerofoil changed rapidly in the vicinity of either end. Therefore, to obtain the rapid velocity changes near both ends, it was decided to use 60 elements which made it possible to calculate the tangential velocity at 0.138% chord.

Table 2 represents the velocities obtained at chord positions from 57.8% to 99.8% using 60 -element surface-vortex method at an angle of attack of 0 degree. Table 2 also includes the corresponding velocities obtained by
the exact Conformal Transformation method and the error in the surfacevortex method which was defined as

$$
\text { Percentage error }=\frac{(\text { Approximate velocity }- \text { Exact velocity) } \times 100 \%}{\text { Exact velocity }}
$$

It was found that the error was much less than 1% over most of the aerofoil surface for all angles of attack, but near the stagnation point it was 8 to 10%. This high percentage of error is due to the small value of the denominator.

Figure 6 represents the pressure distribution calculated from the velocities obtained by the surface-vortex method at an angle of attack of 8 degrees. The differences in pressures obtained by surface-vortex method and the exact method are difficult to distinguish on the graph.

In general, the $60-e l e m e n t$ surface-vortex method predicted the potential flow around the elliptic aerofoil with high accuracy and was used for the subseauent work. Ref. 7 mentions that numerical difficulties may arise while solving the Fredholm equation of the first kind. But no such difficulties were encountered here and one reason for the present success is that the non-uniform distribution of vorticity on the elements leads to a better conditioned matrix than when uniform vorticity is used: the latter gives a zero diagonal in the coefficient matrix.

The surface velocity gradients, required for the boundary layer calculations, were calculated from the velocity distribution using cubic splines; the details of the method are given in Appendix B. An example of the accuracy of this method is given in Table 3 where the gradients calculated by the Conformal Transformation method are used as the basis of comparison.

5.2 Potential Flow Results for Circulation Determined by Boundary Layer Separation:

The boundary layer calculations began by calculating the momentum thickness using Thwaites' method. Then the parameter m was calculated up to a position where m reached the value 0.09 ; the displacement thickness was also calculated for each of the control points on both upper and lower surfaces. The exact positions of the points of separation (determined by $m=0.09$) were calculated. The normal components of velocity due to the boundary layer growth at the separation points on both the surfaces were calculated. If the upper and lower separation velocities were not equal, a potential flow with an arbitrarily chosen stagnation point was calculated (loop 1, Figure 5). A fraction f of this new potential flow was combined with a fraction (1-f) of the original (rear stagnation point) flow in proportions required to equalize the upper and lower separation velocities, and at the same time keep the onset flow unchanged. This resulted in a modified surface pressure distribution; the boundary layer was recalculated and the process iterated until the separation points were stabilized with equal separation velocities.

The growth of momentum thickness when the angle of attack was 7 degrees is shown in Figure $7 a$ for the final iteration. The momentum thickness on both the surfaces increases rapidly from the stagnation point and then grows more slowly. The predicted values appear to be quite smooth. The distribution of parameter m was studied for each angle of attack on both the upper and lower surfaces of the aerofoil. Figure 7b shows the distribution of m, in the final iteration at an angle of attack of 7 degrees. It is observed that for both the surface;, near the stagnation point, the m-values were irregular. But these smooth out away from the
stagnation point. The lower surface m - values rise steeply near the separation point. Since separation occurs when $m=0.09$, the values of m downstream of separation were not calculated.

This displacement thickness up to the separation point was then estimated. Figure 7 c shows the final iteration result for an angle of attack of 7 degrees. The growth is rapid near the stagnation point because of the high shear stress at the surface. The growth is again very rapid as the separation points are approached. These large slopes of the displacenent thickness would imply unrealistically high normal velocities. It was observed that, after the initial rapid growth, the displacement thickness rate of growth decreased as \bar{x} increased except near the separation points. In the absence of a better technique, the displacement thickness growth was arbitrarily restricted near the separation points*. The modified values of δ^{*} are shown dotted on Figure 7 c . The normal velocities at the separation points were thus small as compared to the tangential velocities.

Table 4 shows the locations of the nearest control points where the separation occurred on each surface at various angles of attack. The Table also shows the number of iterations required to adjust the circulation so that the upper and lower separation velocities were equal. The magnitudes of these velocities are also given. It is observed that from angles of attack of 0 to 7 degrees, only 2 to 4 iterations were required to adjust the circulation so that the upper and lower separation velocities were equal.

From 8 degrees up to 11 degrees the iteration process failed to converge. It was observed that at 8 degrees, the value of parameter in on the upper surface reached 0.09 very close to the upstream end of the elliptic aerofoil. When the circulation was adjusted, as a next step, the * The values of $\frac{d \delta^{*}}{d \bar{x}}$ were checked for a few control points upstream the separation point. Whenever $\frac{d \delta^{*}}{d \bar{x}}$ began to rise rapidly the displacement thickness was not allowed to grow more than the average growth of the previous interval in proportion to its length.
separation point moved way back on the upper surface. On readjusting the circulation, the separation point moved again close to the upstream end of the aerofoil. This oscillatory behaviour continued between upstream and downstream separations and a unique solution could not be obtained. The same was true for angles of attack from 9 to 11 degrees. Some further discussion of this problem is given later.

For angles of attack of 12 degrees, a unique stable solution was obtained after about 14 iterations. As a matter of investigation, angles of attack well beyond the stall up to 20 degrees, in steps of 2 degrees, were tried. The circulation was able to be adjusted in 4 to 6 iterations. These separation results are also included in Table 4.

There are two possible explanations for the behaviour of the solution between 8 and 11 degrees. First, the iterative computational procedure itself might have been the cause of failure to converge. Second, the real flow may be oscillatory, like Karman vortex shedding, for these angles of attack.

Therefore, whenever a unique solution was not obtained, further investigation was carried out. For example, at an angle of attack of 8 degrees, the parameter m was calculated for the full range of control points even after m had first acquired the value of 0.09 . It was observed that m was greater than 0.09 for only four or five control points. Beyond these, the values of m became and stayed less than 0.09 for quite a distance downstream. Eventually, m exceeded 0.09 again where "trailing edge" separation would normally be expected. It was postulated that this trailing edge separation was close to the real separation position and the circulation was adjusted to make the upper and lower separation velocities equal. The process was iterated and after the solution stabilized, the
values of m were checked. It was found that m still had upper surface values greater than 0.09 near the upstream end of the aerofoil. This meant that the solution obtained was invalid and a leading edge separation would occur. Similar results were obtained for angles of attack of 9 and 10 degrees.

Since this method failed to produce a unique valid solution, it is possible that the flow may be naturally unstable for angles of attack between 8 and 11 degrees. As mentioned in Chapter IV of Reference 12, it is possible that a vortex street may occur under these conditions. This unsteady flow cannot be predicted by the computer program developed here because steady flow was postulated.

A few values of the parameter m greater than 0.09 near the upstream end of the aerofoil may lead to another conclusion that a separation bubble may have been formed. The treatment required to handle the separation bubble near the leading edge of an aerofoil is dependent on empirical relations (Reference 1) and is beyond the scope of the present study.

Further work is necessary to investigate whether the iteration process can be modified to give a steady solution for angles of attack between 8 and 11 degrees.
5.3 The Iterative Solution for Displacement and Wake Effects:

To represent the boundary layer displacement effects and the separated wake, uniform sources were distributed over the surface elements. The strengths of these sources were calculated to satisfy the normal velocity and constant pressure boundary conditions in the attached and separated regions respectively as discussed in Chapter 4. As illustrated by
the flow chart (Figure 5), the strengths of these sources were calculated as a first approximation by neglecting the contribution of the tangential velocities induced by the sources. In the subsequent iteration (loop 2, Figure 5), the tangential velocities induced by the sources of the previous iteration were considered. This iterative process was continued till the strengths of these sources did not vary. An average of two iterations was required.

As shown in Figure 5, during the last pass through loop 2, the normal and tangential velocities due to sources were combined with the tangential velocities obtained by the onset flow and the distributed vortices. This resulted in modified surface velocities. The boundary layer calculations were performed again to predict the separation points. If the velocities at the separation points were not equal, loop 3, Figure 5 was followed in which the modified velocity distribution was combined with a potential flow to adjust the circulation till equal velocities resulted. The source-calculation was performed again and the process iterated till equal velocities resulted at the upper and lower separation points. The number of iterations required were 1 to 3 for various cases.

The cases of angles of attack from 0 to 7 degrees were obtained with the boundary layer displacement thickness and the wake represented by source distributions. Figure 8 shows the pressure distribution at an angle of attack of 1 degree satisfying the above conditions. The full solution could not be applied to the cases with angles of attack between 8 and 11 degrees because the separation points were not stationary. When the full solution was sought for angles of attack between 12 and 20 degrees, it was found that the sources generated such high tangential and normal velocities that a constant pressure separated wake could not be obtained. A possible
cause for this is that in the first iteration to obtain the strengths of the sources, the boundary conditions changed too abruptly from the attached region to the separated region. In the attached region the normal velocity was related to the displacement thickness while the normal velocity in the separated region was related to the separation velocity and the tangential velocity due to the onset flow and the distributed vortices. This first approximation produced very high source strengths which were poorly conditioned for input to the subsequent iteration and convergence was not achieved. Proper representation of the separated wake at higher angles of attack will require further study. A recomendation to this effect is to re-specify for the first iteration the normal velocities in the separated region of the upper and lower surfaces. It is suggested that the normal velocities should be specified equal to their values at the separation points. Since these normal velocities are small, the first approximation of the strengths of sources should not induce high tangential and normal velocities.

5.4 Results of Force and Moment Coefficients

5.4.1 The Coefficient of Lift:

The coefficient of lift was calculated at several stages of the calculations. It was first calculated where the inviscid velocity distribution was determined by the rear stagnation point being at the downstream end of the aerofoil. These results show a linear variation with angle of attack right up to 20 degrees. The lower end of the range is plotted on Figure 9.

The coefficient of lift was calculated after the circulation was adjusted to equalize the upper and lower separation velocities. Figure 9 shows these values of the coefficient of lift. These results will be discussed in three parts for three ranges of angle of attack.

For angles of attack up to 7 degrees, the results were well behaved and are very close to those of Howarth who used the same criterion for determining the circulation from the boundary layer separation. The small differences in the lift-coefficients can be attributed to the different methods of calculating the boundary layer. Howarth used a Pohlhausen-type solution which is known to have limited accuracy in predicting separation. The present analysis used 'Thwaites' method as modified by Curle and Skan specifically for improving the prediction of separation. It is therefore assumed that the slightly higher lift predicted by this method is valid. These results up to an angle of 7 degrees show a marked reduction of lift compared to the potential flow solution. Unfortunately, there are no suitable experimental results for comparison but the computed results are consistent with typical aerofoil data. It is interesting to note that Howarth was able to establish that the lift reached a maximum round about 7 degrees and that the stalling occurred by 8 degrees. The present method seems to indicate that the stalling angle was about 7 degrees but the solutions in the post-stall region require special discussion.

The oscillatory solutions obtained for angles between 8 and 11 degrees are also represented by two possible values of the coefficients of lift at each angle. The higher values of the coefficients of lift are for the cazes when the separation occurs near the downstream end of the aerofoil. The lower values correspond to leading edge separation. If the
real flow is indeed oscillatory in this range of angles of attack, it is unlikely that the dynamic solution would have such a large amplitude.

The coefficients of lift obtained for angles of attack of 12 degrees and greater are truly in the stalled region and the flow is characterized by the upper surface boundary layer separating near the leading edge.

When the displacing effects of the boundary layer and the wake were taken into consideration, solutions were obtained for angles of attack up to 7 degrees and the coefficients of lift are plotted on Figure 9. These values are a little less than when only the points of separation were allowed for. This can be interpreted as meaning that the displacing effect does not greatly modify the boundary layer growth and its separation. For single element aerofoils, it could be concluded that the lift could be adequately predicted by calculating the boundary layer separation and its effect on circulation. For aerofoils with slotted flops, it is probably more important that the wake of the main aerofoil be represented when calculating the boundary layer behaviour on the flap.

5.4.2 The Coefficient of Drag:

The profile drag force experienced by an aerofoil is due to the frictional stresses called the skin-friction drag and due to a distribution of surface pressures contributing a force component in the direction of the flow, called the form drag.

Figure 10 represents the distribution of the coefficient of skinfriction on the upper surface of aerofoil at an angle of attack of 3 degrees as calculated by Thwaites' method. It is observed that near the stagnation point the skin friction draj is high and reduces downstream of the velocity maximum. The skin friction distribution was calculated up to
the separation points. High value of the skin friction near the stagnation point is due to high velocity gradients existing near the stagnation point. Table 5 presents the values of the coefficient of skin friction drag at various angles of attack. It is observed as the angle of attack increases the coefficient of skin-friction drag increases very slowly.

The coefficients of form drag were calculated by integrating the drag forces due to the normal pressure distribution on the surface of the aerofoil. The values of the coefficients of form drag at various angles of attack are presented in Table 5 where it is observed that as the angle of attack increases the coefficient of form drag decreases slightly.

Table 5 and Figure 11 give the values of the coefficients of profile drag at angles of attack up to 7 degrees. The calculations depended on a successful representation of the boundary layer displacement and wake effects by sources.

5.4.3 The Coefficient of Pitching Moment:

The moments of the lift and drag forces about the upstream end of the aerofoil were calculated and normalized to give the pitching moments for angles of attack up to 7 degrees. These coefficients are presented in Figure 12. The sign convention is such that a positive pitching moment tends to increase the angle of attack.

It is observed from Figure 12 that as the angle of attack increases, the pitching moment decreases. This is due to the increasing contribution to the moment by the lift force, which increases as the angle of attack increases.

The compilation and execution times were 0.75 seconds and approximately 40 seconds respectively for the angles of attack between 0 and 7 degrees.

6. CONCLUSIONS

The surface-singularity method to represent two-dimensional, incompressible flow around an elliptic aerofoil of fineness ratio 6:1 with a laminar boundary layer at a Reynolds number of 800 gave the following results:

1. The potential flow is represented accurately by 60 flat elements and a linearly increasing strength of distributed vortices.
2. The boundary layer calculations using Thwaites' method were successful except for the rapid growth of the displacement thickness near the separation point which had to be modified.
3. The displacing effects of the attached boundary layer and a constant pressure wake region were modelled successfully by adding source distribution for angles of attack between 0 and 7 degrees.
4. The oscillatory flow obtained for angles of attack between 8 and 11 degrees may be real or it may be due to the iterative process which failed to converge. Further investigation is needed to establish the genuineness of the oscillatory flow.
5. For angles of attack greater than 12 degrees, the present work predicted excessively high velocity contributions from the source distribution as a result of which the iterative process breaks down. It is recommended that the first approximation of strengths of sources be changed such that the normal components of velocities calculated at the separation points be specified at points aft the separation points on both upper and lower surfaces.
6. The force and moment coefficients were calculated successfully up to 7 degrees of angle of attack.
```
COMPUTATION OF VELOCITY AND VELOCITY GRADIENI'
    - ANALYTICAL METHOD
```

The potential flow around an elliptic aerofoil can be obtained by conformally transforming it from the flow around a circular cylinder. The velocity distribution and the velocity gradient along the aerofoil surface are calculated as a check for the results obtained by the panel method.

The flow past a circular cylinder of a uniform stream U_{∞} inclined at an angle of α to the real axis is shown in Figure (13) and its complex potential, W, in the Z-plane is (Ref. 5)

$$
\begin{equation*}
W=U_{\infty}\left[e^{-i \alpha} z+a^{2} \frac{e^{i \alpha}}{Z}\right] \tag{A.1}
\end{equation*}
$$

where a is the radius of the circular cylinder.
The complex potential (in the Z-plane) of a pure circulation of strength k about the origin is given by

$$
\begin{equation*}
W=i k \ln Z \tag{A.2}
\end{equation*}
$$

Thus the complex potential of the uniform flow combined with the circulatory flow can be obtained by adding the equations (A.1) and (A.2) as follows:

$$
\begin{equation*}
W=U_{\infty}\left[e^{-i \alpha} Z+\frac{a^{2} e^{i \alpha}}{Z}\right]+i k \ln Z \tag{A.3}
\end{equation*}
$$

The position of the rear stagnation point can be used as a condition to calculate the circulation. If \bar{u} and \bar{v} are the velocity components in the x and y directions respectively, then

$$
\begin{equation*}
\bar{u}-i \bar{v}=\frac{d W}{d Z} \tag{A.4}
\end{equation*}
$$

At a stagnation point, such as B in Figure (13), $\frac{d W}{d Z}=0$.
For the circular cylinder,

$$
\frac{d W}{d Z}=U_{\infty}\left(e^{-i \alpha}-\frac{a^{2}}{Z^{2}} e^{i \alpha}\right)+\frac{i k}{Z}
$$

and at the point $B(R=a, \beta=0)$,

$$
z=\operatorname{Re}^{i \beta}=a
$$

so that

$$
\frac{d W}{d Z}=0=U_{\infty}\left(e^{-i \alpha}-e^{i \alpha}\right)+\frac{i k}{a}
$$

Therefore

$$
\begin{equation*}
k=\frac{a U_{\infty}}{i}\left(e^{i \alpha}-e^{-i \alpha}\right)=2 a U_{\infty} \sin \alpha \tag{A.5}
\end{equation*}
$$

Thus the complex potential of a uniform stream at an angle of attack α, with circulation, around the circular cylinder such that the point B is a stagnation point, is given by

$$
\begin{equation*}
W=U_{\infty}\left(e^{-i \alpha} Z+\frac{2}{2} \frac{e^{i \alpha}}{Z}\right)+i 2 a U_{\infty} \sin \alpha \cdot \ln Z \tag{A.6}
\end{equation*}
$$

The region outside the circular cylinder is mapped on the region outside the elliptic aerofoil in the ζ-plane by using the transformation

$$
\begin{equation*}
\zeta=z+\frac{C^{2}}{4 z} \tag{A.7}
\end{equation*}
$$

where $C^{2}=c^{2}-b^{2}, c$ is the semi major axis and b is the semi minor axis of the elliptic aerofoil. The velocities in the ζ-plane are given by

$$
\begin{equation*}
\frac{d W}{d \zeta}=\frac{d W}{d Z} \cdot \frac{d Z}{d \zeta} . \tag{A.8}
\end{equation*}
$$

From the equation (A.6),

$$
\frac{d W}{d Z}=U_{\infty}\left[e^{-i \alpha}-\frac{a^{2} e^{i \alpha}}{Z^{2}}\right]+i \frac{2 a U_{\infty} \sin \alpha}{Z}
$$

which can be rearranged to give (on the surface of the circular cylinder) $\frac{d W}{d Z}=U_{\infty}[\{\cos \alpha-\cos (\alpha-2 \beta)+2 \sin \alpha \quad \sin \beta\}+i\{-\sin \alpha-\sin (\alpha-2 \beta)+2 \sin \alpha \cos \beta\}]$ (A.9)

Also, from (A.7),

$$
\frac{\mathrm{d} \zeta}{\mathrm{dZ}}=1-\frac{\mathrm{C}^{2}}{4 Z^{2}}
$$

but on the surface of the circular cylinder,

$$
z=a e^{i \beta}
$$

so that

$$
\frac{d \zeta}{d Z}=1-\frac{c^{2}}{4 a^{2}} e^{-2 i \beta}
$$

or

$$
\begin{equation*}
\frac{d \zeta}{d z}=\left(1-\frac{c^{2}}{4 a^{2}} \cos 2 \beta\right)+i\left(\frac{c^{2}}{4 a^{2}} \sin 2 \beta\right) \tag{A.10}
\end{equation*}
$$

Therefore the velocities on the surface of the elliptic aerofoil are given by
$\frac{d W}{d \zeta}=U_{\infty}[\{\cos \alpha-\cos (\alpha-2 \beta)+2 \sin \alpha \sin \beta\}+i\{-\sin \alpha-\sin (\alpha-2 \beta)+2 \sin \alpha \cos \beta\}] /$ $\left[\left(1-\frac{C^{2}}{4 a^{2}} \cos 2 \beta\right)+i\left(\frac{C^{2}}{4 a^{2}} \sin 2 \beta\right)\right]$

It should also be noted that as $Z \rightarrow \infty, \frac{d Z}{d \zeta} \rightarrow 1$, so that $\frac{d W}{d Z} \rightarrow \frac{d W}{d \zeta}$. This means that the ellipse is in a stream of strength U_{∞} at an angle α to the real axis.

The relationship between the position of a point on the elliptic aerofoil and the corresponding point on the circular cylinder can be found out as follows:

In polar coordinates,
$\zeta=r e^{i \Phi}$
$Z=R e^{i \beta}$,
therefore the transformation function, Equation (A.7) becomes

$$
r e^{i \Phi}=\operatorname{Re}^{i \beta}+\frac{C^{2}}{4 \operatorname{Re}} \frac{i \beta}{}
$$

or
$\cos \Phi+i \sin \Phi=\frac{R}{r} \cos \beta+\frac{C^{2}}{4 R r} \cos \beta+i\left(\frac{R}{r} \sin \beta-\frac{C^{2}}{4 R r} \sin \beta\right)$
Equating the real and imaginary parts gives

$$
\begin{align*}
& \cos \Phi=\left(\frac{R}{r}+\frac{C^{2}}{4 R r}\right) \cos \beta \\
& \sin \Phi=\left(\frac{R}{r}-\frac{C^{2}}{4 R r}\right) \sin \beta
\end{align*}
$$

and elimination of r gives
$\tan \beta=\frac{R+\frac{C^{2}}{4 R}}{R-\frac{C^{2}}{4 R}} \tan \Phi$
Knowing the position of a point on the ellipse, ie, angle Φ, R (= $\frac{c+b}{2}$) and $c\left(=\left(c^{2}-b^{2}\right)^{1 / 2}\right)$, we get the corresponding position (β) on the circular cylinder. This value of β can be used in the equation (A.11) to compute the velocity at the point Φ on the elliptic aerofoil.

Once the velocity distribution has been obtained on the elliptic aerofoil, the velocity gradients with respect to the distance along the surface of the aerofoil can be computed as follows:

$$
\begin{align*}
& \frac{d \bar{u}}{d s}=\frac{d \bar{u}}{d \beta} \cdot \frac{d \beta}{d \Phi} \cdot \frac{d \Phi}{d s} . \tag{A.15}\\
& \frac{d \bar{v}}{d s}=\frac{d \bar{v}}{d \beta} \cdot \frac{d \beta}{d \Phi} \cdot \frac{d \Phi}{d s} . \tag{A.16}
\end{align*}
$$

$$
\begin{equation*}
\frac{d v}{d s}=\frac{\bar{u} \frac{d \bar{u}}{d s}+\bar{v} \frac{d v}{d s}}{\left(\bar{u}^{2}+\bar{v}^{2}\right)^{1} / 2} \tag{A.17}
\end{equation*}
$$

where \bar{u} and \bar{v} are the x and y components of the velocity on the elliptic aerofoil, s is the distance along the elliptic aerofoil surface, measured as shown in Figure (2) and V represents the resultant of \bar{u} and \bar{v} at a given point on the elliptic aerofoil.

In the Equations (A.15) and (A.16), $\frac{d \bar{u}}{d \beta}$ and $\frac{d \bar{v}}{d \beta}$ are calculated from
(A.11), $\frac{d \beta}{d \Phi}$ is calculated by (A.14) and $\frac{d \Phi}{d s}$ is calculated from the properties of the ellipse as follows. In polar coordinates the equation of the ellipse is

$$
\begin{equation*}
\left(\frac{r \cos \Phi}{c}\right)^{2}+\left(\frac{r \sin \Phi}{b}\right)^{2}=1 \tag{A.18}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{d r}{}=\frac{-r \sin 2 \Phi\left(\frac{c^{2}}{b^{2}}-1\right)}{c^{2}} \tag{A.19}
\end{equation*}
$$

and this can be used in the expression for the required derivative

$$
\begin{equation*}
\frac{\mathrm{d} \Phi}{\mathrm{ds}}=\left\{\mathrm{r}^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \Phi}\right)^{2}\right\}^{-1 / 2} \cdots \tag{A.20}
\end{equation*}
$$

COMPUTATION OF VELOCITY \& VELOCITY GRADIENT - SURFACE SINGULARITY METHOD

In this section the formulae are developed for the induced velocity at a point due to an element with a distributed vortex of uniform strength, a linearly varying strength and a combination of these two types of distributions.

Similarly, the corresponding formulae are derived for the induced velocities at a point due to distributed sources of uniform strength, linear strength and a combination of these two types.

B. 1 Uniformly Distributed Vortex Strength:

Let γ be the strength of uniformly distributed vorticity over a straight element $A B$ with O as the centre such that $O A=O B=\triangle$, as shown in Figure 14. Consider a small portion $d s$ of the element at a distance s from the centre 0 . Let $P(x, y)$ be the point where the induced velocity is to be found. The velocity induced at P, due to the small length $d s$, is $d V$.

Therefore
$\mathrm{d} V=\frac{\gamma \mathrm{d} s}{2 \pi r}$
where $r=\left\{(x-s)^{2}+y^{2}\right\}^{1 / 2}$
Assuming positive vorticity gives counter-clockwise flow, the x component of the induced velocity at P is given by du

$$
\begin{equation*}
d u=\frac{\gamma d s \sin \bar{\theta}}{2 \pi r} \tag{B.I}
\end{equation*}
$$

where $\bar{\theta}$ is the angle between the x-axis and the line joining the point P to a point on the x-axis distant s from the origin.

Similarly, the y-component of the induced velocity at P is given by dv such that

$$
\begin{equation*}
\mathrm{dv}=\frac{y \mathrm{ds} \cos \bar{\theta}}{2 \pi r} \tag{B.2}
\end{equation*}
$$

Therefore, u, the total x-component of the induced velocity at P, due to the element $A B$ is given by integrating ($B .1$) over the length of the element (i.e., from $-\triangle$ to Δ). Then

$$
u=\int_{-\Delta}^{\Delta}-\frac{\gamma \sin \bar{\theta} \mathrm{ds}}{2 \pi r}
$$

or,

$$
\begin{equation*}
u=\frac{\gamma}{2 \pi}\left(\phi_{1}-\phi_{2}\right) \tag{B.3}
\end{equation*}
$$

Similarly, v, the total y-component of velocity is given by
. $v=\int_{\Delta}^{\Delta} \frac{\gamma \cos \bar{\theta} \mathrm{ds}}{2 \pi r}$
or,

$$
\begin{equation*}
\mathrm{v}=\frac{\gamma}{2 \pi} \ln \left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right) \tag{B.4}
\end{equation*}
$$

B. 2 Linearly Increasing Strength of Vortex:

Consider a short element $A B$ along the x-axis with its centre at 0 such that $A O=O B=\Delta$, as shown in Figure 14. Let the vortex strength be zero at A and increase linearly towards B at the rate of γ^{\prime}. A small length ds at a distance s from the centre induces the velocity $d V$ at $P(x, y)$

$$
d V=\frac{\gamma^{\prime} d s(s+\Delta)}{2 \pi r}
$$

thus, the x and y components are

$$
\begin{align*}
& d u=\frac{-\gamma^{\prime}(s+\Delta) \sin \bar{\theta} d s}{2 \pi r} \tag{B.5}\\
& d v=\frac{\gamma^{\prime}(s+\Delta) \cos \bar{\theta} d s}{2 \pi r} \tag{B.6}
\end{align*}
$$

To find the total x-component of the induced velocity at 0 due to $A B$, ($B .5$)
is integrated over the length $A B$ (i.e., from $-\Delta$ to Δ)

$$
\begin{align*}
& u=\int_{-\Delta}^{\Delta_{-\gamma^{\prime}}(s+\Delta) \sin \bar{\theta} d s} \\
& 2 \pi r \\
& \text { or, } \quad u=-\frac{\gamma^{\prime}}{2 \pi}\left[(x+\Delta)\left(\phi_{2}-\phi_{1}\right)+y \ln \frac{r_{2}}{r_{1}}\right] \tag{B.7}
\end{align*}
$$

Similarly, for the y-component,

$$
\begin{align*}
v & =\int_{-\Delta}^{\Delta} \frac{\gamma^{\prime}(s+\Delta) \cos \bar{\theta} d s}{2 \pi r} \\
\text { or, } \quad v & =\frac{\gamma^{\prime}}{2 \pi}\left[x \ln \left(\frac{r_{1}}{r_{2}}\right)-2 \Delta+y\left(\phi_{2}-\phi_{1}\right)+\Delta \ln \left(\frac{r_{1}}{r_{2}}\right)\right] . \tag{B.8}
\end{align*}
$$

B. 3 Unifornly Distributed and Linearly Increasing Vortex Strength: Combining Equations (B.3) and (B.7), the x-component of the induced velocity at P due to uniformly distributed vorticity of strength γ_{j} and linearly varying vortex strength which increases at the rate of γ_{j}^{\prime} given by

$$
\begin{equation*}
u=\frac{\gamma_{j}}{2 \pi}\left(\phi_{1}-\phi_{2}\right)+\left[-\frac{\gamma_{j}^{\prime}}{2 \pi}\left\{\left(x+\Delta_{j}\right)\left(\phi_{2}-\phi_{1}\right)+y \ln \frac{r_{2}}{r_{1}}\right\}\right] . \tag{B.9}
\end{equation*}
$$

where $\quad \gamma_{j}^{\prime}=\frac{\gamma_{j+1}-\gamma_{j}}{2 \Delta_{j}}, \quad r_{1}=\left\{\left(x+\Delta_{j}\right)^{2}+y^{2}\right\}, \quad r_{2}=\left\{\left(x-\Delta_{j}\right)^{2}+y^{2}\right\}^{1 / 2}$ $\phi_{1}=\tan ^{-1}\left(\frac{y}{x+\Delta_{j}}\right), \phi_{2}=\tan ^{-1}\left(\frac{y}{x-\Delta_{j}}\right)$ and ϕ_{1} and ϕ_{2} vary between 0 and 2π. Similarly, the y-component of the induced velocity at P is given by combining the equations (B.4) and (B.8)
$v=\frac{\gamma_{j}}{2 \pi} \ln \frac{r_{1}}{r_{2}}+\left[\frac{\gamma_{j}^{\prime}}{2 \pi}\left\{x \ln \frac{r_{1}}{r_{2}}-2 \Delta_{j}+y\left(\phi_{2}-\phi_{1}\right)+\Delta_{j} \ln \frac{r_{1}}{r_{2}}\right\}\right]$.
In the above equations (B.9) and (B.10), the distances x and y have been referred to as the parallel and perpendicular distances from the element whose effect is being considered. In the computer program, x and y have been referred to as XI and ETA. In the equations (B.9) and (B.10),
special cases arose when trying to find the induced velocities at the centre of the element due to the element itself.

From (B.9), as $x \rightarrow 0$ and $y \rightarrow+0$
$u=-\frac{\gamma_{j}}{2}-\frac{\gamma_{j}^{\prime}}{2}\left(\Delta_{j}\right)$
From (B.10), as $x \rightarrow 0$, and $y \rightarrow+0$,
$v=\frac{\gamma_{j}^{\prime}}{2 \pi}\left(-2 \Delta_{j}\right)$

B. 4 Uniformly Distributed Sources:

Let σ be the strength of a uniformly distributed source over an element $A B$ with O as the centre such that $A O=O B=\triangle$, as shown in Figure 15. Consider a small portion $d s$ of the element at a distance s from the centre 0 . Let $P(x, y)$ be the point where the induced velocity due to the element $A B$ is to be found. The velocity induced at P, due to the small length ds, is $d V$

Therefore,

$$
\mathrm{dV}=\frac{\sigma \mathrm{ds}}{2 \pi r}
$$

where $r=\left\{(x-s)^{2}+y^{2}\right\}^{1 / 2}$
The x-component, du, of the induced velocity is given as follows:

$$
\begin{equation*}
d u=d V \cos \bar{\theta} \tag{B.11}
\end{equation*}
$$

where $\bar{\theta}$ is the angle between the x-axis and the line joining the point P to a point on the x-axis, distant s from the origin.

Similarly, the y-component, $d v$, of the induced velocity is given as

$$
\begin{equation*}
d v=d V \sin \bar{\theta} \tag{B.12}
\end{equation*}
$$

On integrating (B.11) and (B.12) over the element length, the total components of the induced velocities u and v in x and y directions
respectively are
and

$$
\begin{equation*}
\mathrm{u}=\frac{\sigma}{2 \pi} \ln \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \tag{B.13}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\frac{\sigma}{2 \pi}\left(\phi_{2}-\phi_{1}\right) . \tag{B.14}
\end{equation*}
$$

$r_{1}=\left\{(x+\Delta)^{2}+y^{2}\right\}^{1 / 2}, r_{2}=\left\{(x-\Delta)^{2}+y^{2}\right\}^{1 / 2}$,
$\phi_{1}=\tan ^{-1}\left(\frac{y}{x+\Delta}\right)$ and $\phi_{2}=\tan ^{-1}\left(\frac{y}{x-\Delta}\right)$

B. 5 Linearly Incereasing Strength of Sources:

Consider a short element $A B$ along the x-axis with its centre at 0 such that $A O=O B=\triangle$, as shown in Figure 5. Let the source strength be zero at A and increase linearly towards B at the rate of σ^{\prime}. A small length ds at a distance s from the centre induces the velocity $d V$ at $P(x, y)$

$$
\begin{equation*}
d V=\frac{\sigma^{\prime} d s(s+\Delta)}{2 \pi r} \tag{B.15}
\end{equation*}
$$

The total x-component of the induced velocity at the point P due to a linearly increasing strength of source is found as

$$
\begin{equation*}
\mathrm{u}=\frac{\sigma^{\prime}}{2 \pi}\left\lfloor(\mathrm{x}+\Delta) \ln \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}-2 \Delta-\mathrm{y}\left(\phi_{1}-\phi_{2}\right)\right] \tag{B.16}
\end{equation*}
$$

Similarly, the total y-component of the induced velocity at the point P due to a linearly increasing strength of source is found as

$$
v=\frac{\sigma^{\prime}}{2 \pi}\left\lfloor(x+\Delta)\left(\phi_{2}-\phi_{1}\right)+y \ln \frac{r_{2}}{r_{1}}\right\rfloor \ldots \ldots \ldots \ldots \ldots \ldots \ldots(B .17)
$$

Equation (B.16) is of the same form as Equation (B.8) whereas Equation (B.17) is - of the Equation (B.7).
B. 6 Uniformly Distributed \& Linearly Increasing Source Strength:

The sources of uniform strength and linearly increasing strength can be combined to evaluate the total x and y components of the induced
velocities at a given point in a similar manner to what was done in Section (B.3) for vortices. Thus, combining (B.13) and (B.16) gives the total induced x-component while on adding (B.14) and (B.17), the total y-component of the induced velocities is obtained. These components are:

$$
\begin{equation*}
\left.u=\frac{\sigma}{2 \pi} \ln \left(\frac{r_{1}}{r_{2}}\right)+\frac{\sigma^{\prime}}{2 \pi}\{x+\Delta) \ln \frac{r_{1}}{r_{2}}-2 \Delta-y\left(\phi_{1}-\phi_{2}\right)\right\} . \tag{B.18}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{v}=\frac{\sigma}{2 \pi}\left(\phi_{2}-\phi_{1}\right)+\frac{\sigma^{\prime}}{2 \pi}\left\{(\mathrm{x}+\Delta)\left(\phi_{2}-\phi_{1}\right)+\mathrm{y} \ln \left(\frac{r_{2}}{\mathrm{r}_{1}}\right)\right\} \ldots \ldots(\mathrm{B} .19) \tag{B.19}\\
& \text { It is, again, possible to find the induced velocities at the }
\end{align*}
$$ centre of the element itself due to partly uniformly distributed strength and partly linearly increasing strength of the source.

$$
\begin{align*}
& \text { From the equation (B.18), on putting } x=0 \text { and } y=+0 \text {, } \\
& u=\frac{\sigma^{\prime}}{2 \pi}(-2 \Delta) \tag{B.20}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{v}=+\frac{\sigma}{2}+\frac{\sigma^{\prime} \Delta}{2} \tag{B.21}
\end{equation*}
$$

B. 7 Computation of Velocity Gradient on the Surface:

The velocity gradients on the aerofoil surface are determined by differentiating cubic splines fitted to the known velocity distribution along the surface. It was convenient to measure the surface distance counterclockwise from the downstream end of the elliptic aerofoil.

The theory of fitting cubic splines between two variables is given in Reference 15. The principle involved is re-written here. Let the aerofoil surface be divided into N parts. Let S represent the distance and U represent the velocity. Consider the k -th interval which is between
$\left(U_{k}, S_{k}\right)$ and $\left(U_{k+1}, S_{k+1}\right)$. The cubic for the k-th interval is written as $f_{k}(S)=U=A_{k}\left(S-S_{k}\right)^{3}+B_{k}\left(S-S_{k}\right)^{2}+C_{k}\left(S-S_{k}\right)+D_{k} \ldots(B \cdot(1) \cdot(2)$
where A_{k}, B_{k}, C_{k} and D_{k} are determined so that the slope and curvature of the spline is the same for the splines in $(k-1)$ th interval and $(k+1)$ the interval. If $\Delta S=S_{k+1}-S_{k}$, then the spline function values from Equation (B.22) at S_{k} and S_{k+1} are given by

$$
\begin{equation*}
U_{k}=D_{k} \tag{B.23}
\end{equation*}
$$

$$
\begin{equation*}
U_{k+1}=A_{k} \Delta S_{k}^{3}+B_{k} \Delta S_{k}^{2}+C_{k} \Delta S_{k}+D_{k} \tag{B.24}
\end{equation*}
$$

The first derivatives of the spline function from Equation (B.22) at S_{k} and S_{K+1} are given by

$$
\begin{equation*}
U_{k}^{\prime}=C_{k} \tag{B.25}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{k+1}^{\prime}=3 A_{k} \Delta S_{k}^{2}+2 B_{k} \Delta S_{k}+C_{k} \tag{B.26}
\end{equation*}
$$

where $U^{\prime}=\frac{d U}{d S}$.
Then the coefficients $A_{k}, B_{k}, C_{k}, D_{k}$ for the k-th interval are written as follows:

$$
\begin{align*}
\hat{A}_{k} & =\frac{1}{\Delta S_{k}^{2}}\left(\frac{-2 \Delta U_{k}}{\Delta S_{k}}+U_{k}^{\prime}+U_{k+1}^{\prime}\right) \\
B_{k} & =\frac{1}{\Delta S_{k}}\left(3 \frac{\Delta U_{k}}{\Delta S_{k}}-2 U_{k}^{\prime}-U_{k+1}^{\prime}\right) \tag{B.27}\\
C_{k} & =U_{k}^{\prime} \\
D_{k} & =U_{k}
\end{align*}
$$

where $\quad \Delta U_{k}=U_{k+1}-U_{k}$
The continuity condition $\left(f_{k-1}^{\prime \prime}\left(S_{k}\right)=f_{k}^{\prime \prime}\left(S_{k}\right)\right)$ gives

$$
\begin{equation*}
6 A_{k-1} \Delta S_{k-1}+2 B_{k-1}=2 B_{k}(k=2, \ldots N-1) \tag{B.28}
\end{equation*}
$$

which leads to $N-2$ equations in the N unknowns $U_{1}^{\prime},--U_{N}^{\prime} v i z .:$
$\frac{1}{\Delta S_{k-1}} U_{k-1}^{\prime}+2\left(\frac{1}{\Delta S_{k-1}}+\frac{1}{\Delta S_{k}}\right) U_{k+1}^{\prime}=\frac{3 \Delta U_{k-1}}{\left(\Delta S_{k-1}\right)^{2}}+\frac{3 \Delta U_{k}}{\left(\Delta S_{k}\right)^{2}}(k=2,-\cdots-N-1) \ldots(B .29)$

If the quantitites U_{1}^{\prime} and $U^{\prime}{ }_{N}$ are given, the Equation (B.29) can be solved for $U_{k}^{\prime}(K=2, \cdots-N-1)$.

The values of U^{\prime} and U_{n}^{\prime} are approximated using the finite difference form and the rest of the velocity derivatives are evaluated.

APPENDIX - C

ESTIMATION OF THE LIFT, DRAG AND PITCHING MOMENT COEFFICIENTS
C. 1 The Lift Coefficient by Integration of the Pressure Distribution Around the Elliptic Aerofoil:

Let Figure (16) represent a section of the elliptic aerofoil at an incidence α to the fluid stream, which is assumed to be from left to right at a speed of U_{∞}. Consider the pressure, p, acting on a small element $A B$, of length ds, of the surface. Let P_{∞} be the static pressure of the undisturbed stream. The normal force on the element is $\mathrm{p} \delta \mathrm{s}$ inwards. This force per unit span may be resolved into components $\delta \mathrm{D}$ and $\delta \mathrm{L}$ acting parallel and perpendicular to the direction of the undisturbed stream respectively.

Then
$\mathrm{dL}=-\{-\mathrm{pds} \sin \delta\} \sin \alpha+\{\mathrm{pds} \cdot \cos \delta\} \cos \alpha$
where δ is the counterclockwise inclination of the element $A B$ from the positive x -axis (Figure 16).

Replacing ds.sin δ by $d y$ and $d s \cdot \cos \delta$ by $d x$, the Equation (C.1) is re-written as

If this is integrated round the contour of the elliptic aerofoil, the total lift force, acting normal to the direction of the undisturbed stream, can be obtained. The coefficient of lift, $C_{\text {L }}$, is obtained by dividing the total lift force by $1 / 2 \rho U_{\infty}^{2} \mathrm{~d}$ where d is the chord of the elliptic aerofoil.

Then

$$
\begin{align*}
& C_{L}=\frac{\oint d L}{1 / 2 \rho U}{ }_{\infty}^{2} d \\
& C_{L}=\oint\left(\frac{p-p_{\infty}}{1 / 2 \rho U_{\infty}^{2}}\right) d\left(\frac{y}{d}\right) \cdot \sin \alpha+\oint\left(\frac{p-p_{\infty}}{1 / 2 \rho U_{\infty}^{2}}\right) d\left(\frac{x}{d}\right) \cdot \cos \alpha
\end{align*}
$$

since $\oint \mathrm{p}_{\infty} \mathrm{d}\left(\frac{\mathrm{y}}{\mathrm{d}}\right)=0$. Then introducing $\mathrm{C}_{\mathrm{p}}=\frac{\mathrm{p}-\mathrm{P}_{\infty}}{1 / 2 \rho \mathrm{U}_{\infty}^{2}}$

$$
c_{L}=\oint C_{p} d\left(\frac{y}{d}\right) \sin \alpha+\oint C_{p} d\left(\frac{x}{d}\right) \cos \alpha \ldots \ldots \ldots \ldots \ldots \ldots \ldots(c \cdot 4)
$$

C. 2 The Lift Coefficient by Calculating the Circulation Around the Elliptic Aerofoil:

The lift force of an aerofoil is given by the Kutta-Joukowski
Theorem as

$$
\begin{equation*}
L=\rho U_{\infty} \Gamma \tag{C.5}
\end{equation*}
$$

where Γ is the total circulation given by

$$
\begin{equation*}
\Gamma=\oint U(s) d s \tag{c.6}
\end{equation*}
$$

where s is the arc length of the contour, measured counterclockwise from the down stream end of the elliptic aerofoil. If the fluid is considered inviscid $U(s)$ is the tangential velocity along the surface of the elliptic aerofoil. Combining Equations (C.5) and (C.6) and normalizing by $1 / 2 \mathrm{\rho U}_{\infty}^{2} \mathrm{~d}$, gives the lift coefficient

$$
\begin{align*}
& C_{L}=\frac{L}{1 / 2 \rho U_{\infty}^{2} \mathrm{~d}}=\frac{\rho U_{\infty} \oint U(s) d s}{1 / 2 \rho U_{\infty}^{2} \mathrm{~d}} \\
& =2 \oint\left(\frac{U(s)}{U_{\infty}}\right) d\left(\frac{s}{d}\right) \ldots \ldots \ldots . \tag{C.7}
\end{align*}
$$

C. 3 The Form Drag Coefficient by Integration of the Pressure Distribution Around the Elliptic Aerofoil:

The form drag is due to the pressure distribution on the aerofoil in a direction parallel to the stream.

For a small surface element $A B$, (as in Fig. 16)

$$
\begin{align*}
d D & =(-p \mathrm{ds} \cdot \sin \delta) \cos \alpha+(p \mathrm{ds} \cos \delta) \sin \alpha \tag{c.8}\\
& =-\mathrm{pdy} \cdot \cos \alpha+\operatorname{pdx} \cdot \sin \alpha \ldots \ldots \ldots \ldots \tag{C.9}
\end{align*}
$$

Integration round the aerofoil contour gives the form drag. The coefficient of drag, C_{D}, is obtained by dividing the drag force by $1 / 2 \rho U_{\infty}^{2} d$.

Then
$C_{D}=\frac{\oint_{d D}}{1 / 2 \rho_{\infty}^{2} d^{2}}=\frac{\oint-\left(p-p_{\infty}\right)}{1 / 2 \rho U_{\infty}^{2}} d\left(\frac{y}{d}\right) \cos \alpha+\frac{\oint\left(p-p_{\infty}\right)}{1 / 2 \rho U_{\infty}^{2} d\left(\frac{x}{d}\right) \sin \alpha}$
or $C_{D}=\oint-C_{p} d\left(\frac{y}{d}\right) \cos \alpha+\oint C_{p} d\left(\frac{x}{d}\right) \sin \alpha$
C. 4 The Coefficient of Pitching Moment by Integration of the Pressure Distribution Around the Elliptic Aerofoil:

The pitching moment can be calculated about any point by taking the moments of the lift force and the drag force about that point. Here, the pitching moment about the upstream end of the major axis is calculated by first finding the moments of the lift and the drag forces on the element shown in Fig. 17. Then on integrating this round the contour, the total pitching moment about the leading edge is calculated.

Let $d F x$ and $d F y$ be the forces in the element $A B$ as calculated in Section (C.1) and (C.2). x and y are the coordinates of the mid-point of element $A B$. Then moment of dF_{x} and dF_{y} about O^{\prime} is equal to the moment of the lift and drag force on $A B$ about 0^{\prime}. Thus the pitching moment on the element $A B$ about O^{\prime} is

$$
\begin{equation*}
d M=d F_{x} \cdot\left(y-y_{0}\right)+d F_{y} \cdot x \tag{C.11}
\end{equation*}
$$

The sign convention for the pitching moment is chosen so that a moment which tends to increase the angle of attack is positive. Eviessing
$d F_{x}$ and $d F y$ in terms of pressure, Equation (C.11) is rewritten as

$$
d M=(-p d s \cdot \sin \delta)\left(y-y_{o}\right)+(p d s \cdot \cos \delta) \cdot x
$$

$$
\begin{equation*}
=p d y\left(y-y_{0}\right)+p d x \cdot x \tag{C.12}
\end{equation*}
$$

The coefficient of moment, C_{m} is obtained by dividing the total moment by $1 / 2 \rho U_{\infty}^{2} d^{2}$.

Then

$$
\begin{align*}
C_{M} & =\frac{\oint_{d M}}{1 / 2 \rho U_{\infty}^{2} d^{2}}=\frac{\oint-\left(p-p_{\infty}\right) \frac{d\left(y-y_{0}\right)}{d} \cdot \frac{\left(y-y_{0}\right)}{d}}{1 / 2 \rho U_{\infty}^{2}}+\frac{\oint\left(p-p_{\infty}\right) \frac{(x)}{d} \cdot d \frac{(x)}{d}}{1 / 2 \rho U_{\infty}^{2}} \\
& =\oint-c_{p} d\left(\frac{y-y_{0}}{d}\right)\left(\frac{y-y_{0}}{d}\right)+\oint C_{p} \cdot\left(\frac{x}{d}\right) \cdot d\left(\frac{x}{d}\right) \ldots \ldots \ldots \ldots \tag{C.13}
\end{align*}
$$

APPENDIX - D

COMPUTER PROGRAM FOR LAMINAR BOUNDARY LAYER AROUND AN ELLIPTIC AEROFOIL

The computer program for the laminar boundary layer around an elliptic aerofoil is presented here.

```
//AUXLAR JOB '1390,KANBHAT,T=1是, BHATIA'
// EXEこ 目ATPIV,SIZE=1024K
GO.SYSIA DD *
SJOB WATPIV BHATIA,NOEXT
            DIMENSION X(61),Y(61),PHI (61), XCON(61),YCON(61),DEL (60),
    *ELEN (60), XI (60,60), ETA (60,60), UU (60,60),VO (60,60),UL (60,60),
    #VL(60,60),CONSA (60,60), CONSB (60,60), COEPA (60,60), COEFB(60
    *,60), COEF(60,61), RH (60),GAM (60),GAM若A(61),GAMCON (61).
    #UCIR(60),VCIR(60),RCIR(60),VELL(60),VELL(60), RELL(60),
    #MEETA(60).YCIR(60), ERROR(60), Y10S1(61),DAPPP(10)
        DIMENSION THICAU(50),THICML(50), PARAMO(50), PARAML(50)
    *,GAA(4), XR(61), Y1L(61),Y1F(61),GRADC(61),SPAGU(50),DSTAGL
    *(50),DODS (61),DPLAC (50),DPLAL (50),STE (61),GAM4 (61),YT(69)
        COMMON/SPEED/STC,GAHCON,GAM4CO,ROOT
        \approxOBHON/AREA/EH (26).EM(26).EL (26)
        DIMENSION DDDSU(40).DDDSL(40).STC (61),GRADD(61),DSTOP(50),DSTLG
    *(50), CONSLU(50), CONSLL(50),CP(60), CD(60), CHU1(60),CMO2(60).
    * SAM4CO(61), COEP& (60,61),GAM4F (61), RHH (60),CLIFT (60)
        DIMENSION XCONM(60),YCONE(60).ELENY(60),DELK(60)
        DIHENSION SIGCON(60,5),SIG(60),SIGMA(60,5),UT(60),CHK(40),CL(61)
        DIMENSTON TUM(50),TLM(50),UN(60),PIRST(61),DP(60)
        INTEGER G,H,B,S,T,U,V,G,IA,IJOB,IZ,IER。CODE
        COMMON/PRESRE/XCON, YCON %CP
    C
        BEAL COMAT (60,60),GK(3720)
        \triangleOMPLEX HA(60),ZA(60,60),ZN
```



```
            * DISTBIBUTION OF ELEAENTS AROUND AEROFJIL *&**
```



```
        \=NO. OF ELEMENTS
        N+1=NO. OF PANEL ENDS
        PI=4.0*ATAN(1.0)
        N=60
        NN=N+1
        CODE=1
        IP(CODE.EQ.1)GO TO 12
        \approxALL CORDNT (A,B,C,N)
        GO TO 21
    12 PRINT 5300
    5300 PORMAT ('0. . 45X.'THE COOBDINATES ARE GENERATED')
        DO 10 I=1.NN
        PHI(I)=2.O*PI*FLOAT(I*1)/PLOAT(N)
        Z(I)=0.5*(1.0+COS (PHI (I)))
        A=0.5
        BB=AB/6.0
        IP(I.LE.N/2)THEN DO
        I(I)=BB*SQRT (1.0- ((X (I) -0.5)** 2/AA**2))+2.0
        ELSE DO
        Y(I)=\proptoBB*SQRT (1.0- ((X (I) - 0. 5) ** 2/AA**2))* 2.0
        END IF
    10 CONTINUE
        PBINT 1,AA/BB
    1 PORAAT(##, 20X,'THE FINENESS RATIO OF ELLIPSE',F7.2)
        PRINT 40
```



```
        *12X, 'DELTA',14X, 'ELEN',12X, 'THETA')
    21 DO 20 J=1,N
        R(NN)=X(1)
        Y(NN)=Y(1)
        XCON (J)=(X(J)&&(J+1))/2.0
```

```
650.
660.
6 7 0 .
680.
690.
7 0 0 .
7 1 0 .
7 2 0 .
7 3 0 .
740.
7 5 0 .
760.
770.
780.
790. }3
800. 20
810: C
820.
830.
840.
850.
860.
870.
880.
890.
900.
910.
920.
930.
940.
950.
960.
970.
980.
990.
1000.
1010.
1020.
1030.
1040.
1050.
1060.
1070.
1080.
1090.
1100.
1110.
1120.
1130.
1140.
1150.
1160.
1170.
1180.
1190.
1200.
1210.
1220.
1230.
1240.
1250.
1260.
1270.
1280.
```

```
    YCON (J) =(Y(J) + Y(J+1))/2.0
```

 YCON (J) =(Y(J) + Y(J+1))/2.0
 DEL (J)=ATAN2((Y (J+1)-Y(J)),(X (J+1)-X(J)))
 DEL (J)=ATAN2((Y (J+1)-Y(J)),(X (J+1)-X(J)))
 DEL (J)=DEL (J)*180.0/PI
 DEL (J)=DEL (J)*180.0/PI
 IF(DEL (J).LT.0.0j THEN DO
 IF(DEL (J).LT.0.0j THEN DO
 DEL (J) = 360.04DEL (J)
 DEL (J) = 360.04DEL (J)
 END IF
 END IF
 DEL (J)=PI*DEL(J)/180.0
 DEL (J)=PI*DEL(J)/180.0
 ELEN(J)=SQRT((X(J) - X (J+1))** 2 +(Y(J)-Y(J+1))** 2)
 ELEN(J)=SQRT((X(J) - X (J+1))** 2 +(Y(J)-Y(J+1))** 2)
 IHETA(J)=ATAN2((YCON (J)-2.0),(XCON(J)-0.5))
 IHETA(J)=ATAN2((YCON (J)-2.0),(XCON(J)-0.5))
 THETA(J)=ATAN(TAN(THETA (J))*AA/BB)
 THETA(J)=ATAN(TAN(THETA (J))*AA/BB)
 IP(THETA(J).LE.0.0 &AND. J.LE.N/2)IHETA(J)=PI+THETA(J)
 IP(THETA(J).LE.0.0 &AND. J.LE.N/2)IHETA(J)=PI+THETA(J)
 IF(THETA(J).GT.0.0 .AND.J.GT. W/2)THETA(J)=PI&THETA(J)
 IF(THETA(J).GT.0.0 .AND.J.GT. W/2)THETA(J)=PI&THETA(J)
 PRINT 30,J,X(J),Y(J),XCON(J),YCON(J),DEL(J),ELEN(J).
 PRINT 30,J,X(J),Y(J),XCON(J),YCON(J),DEL(J),ELEN(J).
 *THETA(J)
 *THETA(J)
 PORMAT(', 1X, I3,1X,6(E14, 7,2X),F11,7)
 PORMAT(', 1X, I3,1X,6(E14, 7,2X),F11,7)
 CONTINUE
 CONTINUE
 CALCOLATION OF ANALYTICAL VELOCITIES
 CALCOLATION OF ANALYTICAL VELOCITIES
 ALPHA=2.00*PI/180.0
 ALPHA=2.00*PI/180.0
 PRINT 1777.ALPHA*180./PI
 PRINT 1777.ALPHA*180./PI
 1777 FORMAT('-0,20X,'THE ANGLE OF ATTACK IS=`,F5.1)
 1777 FORMAT('-0,20X,'THE ANGLE OF ATTACK IS=`,F5.1)
 DO 160 H=1,N
 DO 160 H=1,N
 UCIR(H)=COS (ALPHA) - COS (ALPHA-2.0*THETA(H))*2.0*SIN (ALPHA)*
 UCIR(H)=COS (ALPHA) - COS (ALPHA-2.0*THETA(H))*2.0*SIN (ALPHA)*
 *SIN (THETA(H))
 *SIN (THETA(H))
 VCIR(H)=SIN(ALPHA)+SI#(ALPHA-2.0*THEIA(H))-2.0*STN(ALPHA)*
 VCIR(H)=SIN(ALPHA)+SI#(ALPHA-2.0*THEIA(H))-2.0*STN(ALPHA)*
 *COS (THETA(H))
 *COS (THETA(H))
 RCIR(H)=SQRT(UCIR(H)**2+VCIR(H)**2)
 RCIR(H)=SQRT(UCIR(H)**2+VCIR(H)**2)
 C1=AA**2*BB**2
 C1=AA**2*BB**2
 RR=(AA+BB)**2
 RR=(AA+BB)**2
 FACT1=1.0-COS(2.0*THETA (H))*C1/RR
 FACT1=1.0-COS(2.0*THETA (H))*C1/RR
 FACT2=SIN(2.0*THETA (H))*C1/RR
 FACT2=SIN(2.0*THETA (H))*C1/RR
 P1=FACT1/((FACT1)**2*(FACT2)**2)
 P1=FACT1/((FACT1)**2*(FACT2)**2)
 P2=-FACT2/((FACT1)**2*(FACT 2)**2)
 P2=-FACT2/((FACT1)**2*(FACT 2)**2)
 UELL (H)=UCIR (H)*F1+VCIR (H)*F2
 UELL (H)=UCIR (H)*F1+VCIR (H)*F2
 VELL (H)=-(UCIR (H)*F2-VCIR (H)*F1)
 VELL (H)=-(UCIR (H)*F2-VCIR (H)*F1)
 RELL(H)=SQRT{UELL(H)**24VELL(H)**2)
 RELL(H)=SQRT{UELL(H)**24VELL(H)**2)
 IF(H.LE.N/2)THEN DO
 IF(H.LE.N/2)THEN DO
 IP(UELL (H).GE.0.0.AND.VELL (H).LE.O.O) RELL (H)=RELL (H)* (-1)
 IP(UELL (H).GE.0.0.AND.VELL (H).LE.O.O) RELL (H)=RELL (H)* (-1)
 IP(UELL(H).GE.0.O.AND.VELL(H).GT.O.0) RELL (H)=RELL(H)* (-1)
 IP(UELL(H).GE.0.O.AND.VELL(H).GT.O.0) RELL (H)=RELL(H)* (-1)
 ELSE DO
 ELSE DO
 IF(UELL (H).LT.0.0.AND.VELL(B).GT.O.0) RELL (H)=-RELL (H)
 IF(UELL (H).LT.0.0.AND.VELL(B).GT.O.0) RELL (H)=-RELL (H)
 END IF
 END IF
 160 こONTINUE
 160 こONTINUE
 こALL RHS (ALPGA,DEL,N,RH)
 こALL RHS (ALPGA,DEL,N,RH)
 DO 200 IA=1,N
 DO 200 IA=1,N
 COEP(IA,NN)=RH(IA)
 COEP(IA,NN)=RH(IA)
 CONTINUE
 CONTINUE
 CALL VELOC (XCON,YCON,DEL,ELEN,N,COEF)
 CALL VELOC (XCON,YCON,DEL,ELEN,N,COEF)
 CALL EQN (COEF,GAMMA,N,NN)
 CALL EQN (COEF,GAMMA,N,NN)
 DO 155 IB=9,N
 DO 155 IB=9,N
 GAMMA (NN)=-GAMMA(NN-N)
 GAMMA (NN)=-GAMMA(NN-N)
 GAMCON(IB)=(GAMMA(IB) +GAMMA(IB+1))/2.00
 GAMCON(IB)=(GAMMA(IB) +GAMMA(IB+1))/2.00
 ERROR (IB)=(GARCON(IB)-RELL(IB))/RELL (IB)*900.0
 ERROR (IB)=(GARCON(IB)-RELL(IB))/RELL (IB)*900.0
 155 こONTINOE
 155 こONTINOE
 PRINT }15
 PRINT }15
 156 PORMAT(*- , 2OX, THE VELOCITY DISTRIBOTION-PANEL METEI
 156 PORMAT(*- , 2OX, THE VELOCITY DISTRIBOTION-PANEL METEI
 *D')
 *D')
 PRIET 159,(GA暞ON(I),I=9,N)
 PRIET 159,(GA暞ON(I),I=9,N)
 PRINT 157
 PRINT 157
 157 FORHAT(**', 20X, THE VELOCITY DISTRIBUTION-ANALYTICAIIY
 157 FORHAT(**', 20X, THE VELOCITY DISTRIBUTION-ANALYTICAIIY
 *)
 *)
 PRINT 159,(RELL(I),I=1,N)
 PRINT 159,(RELL(I),I=1,N)
 PRIET }15
 PRIET }15
 158 FORMAT('0'.20%."THE E ERROR IN VELOCTTY DISTRIBUTION')
 158 FORMAT('0'.20%."THE E ERROR IN VELOCTTY DISTRIBUTION')
 PRINT 159.(ERROR(I),I=1,N)
    ```
        PRINT 159.(ERROR(I),I=1,N)
```

1300. PRINT 3502
1301.
1302.
1303.
1304.
1305. C
1306. C
1307.
1308.
1309.
1310.
1311. C
1312. C
1313.
1314.
1315.
1316.
1317.
1318.
1319.
1320.
1321.
1322.
1323.
1324.
1325.
1326.
1327.
1328.
1329.
1330.
1331.
1332.
1333.
1334.
1335.
1336.
1337.
1338.
1339.
1340.
1341.
1342.
1343.
1344.
1345.
1346.
1347.
1348.
1349.
1350.
1351.
1352.
1353.
1354.
1355.
1356.
1357.
1358.
1359.
1360.
1361.
1362.
```
```

```
1290. 159 FORMAT(6(5X,P12.7))
```

```
1290. 159 FORMAT(6(5X,P12.7))
```

3502 PORMAT('-.45X, 'THE PRESSURE DIST. -INVISCID')

```
3502 PORMAT('-.45X, 'THE PRESSURE DIST. -INVISCID')
        DO 3503 I=1,N
        DO 3503 I=1,N
3503 こP(I)=9.0-GAMCON(I)**2
3503 こP(I)=9.0-GAMCON(I)**2
    PRTNT 159.(CP(I),I=1,N)
    PRTNT 159.(CP(I),I=1,N)
C CALCOLATION OF SURFACE SLOPES
C CALCOLATION OF SURFACE SLOPES
C <<*******************************
C <<*******************************
    CALL SLOPE(X,Y,N,NN,XR,Y1L,I1F,DER1,DER2)
    CALL SLOPE(X,Y,N,NN,XR,Y1L,I1F,DER1,DER2)
    PRINT 161
    PRINT 161
    161 PORMAT('m'20X,'THE SURPACE SLOPES AT CONTROL POINTS')
    161 PORMAT('m'20X,'THE SURPACE SLOPES AT CONTROL POINTS')
        PRINT 159,(Y1F(I),I=1,N)
        PRINT 159,(Y1F(I),I=1,N)
        こALCULATION OP PANEL END DISTANCES PROM TRAILING EDGE')
```

 こALCULATION OP PANEL END DISTANCES PROM TRAILING EDGE')
    ```


```

 CALL SURLEN(X,Y1P,N,XB,Y1L,Y1,STE,DER9,DER2)
    ```
        CALL SURLEN(X,Y1P,N,XB,Y1L,Y1,STE,DER9,DER2)
        PRINT }16
        PRINT }16
    162 PORMAT(*-', 20X, PHE PANEL END DISTANCES FROM TE')
    162 PORMAT(*-', 20X, PHE PANEL END DISTANCES FROM TE')
        PRINT 1599.(STE(I),I=1,NN)
        PRINT 1599.(STE(I),I=1,NN)
    1599 FORMAT (6 (5X,F12.7))
    1599 FORMAT (6 (5X,F12.7))
        DO 140 J=1,N
        DO 140 J=1,N
        STC(J)=(STE (J+1)+STE(J))/2.0
        STC(J)=(STE (J+1)+STE(J))/2.0
140 CONTINOE
140 CONTINOE
        PRINT 141
        PRINT 141
    141 FOREAT(" ",20X, 'THE DISTANCE OF CONTROL POINTS')
    141 FOREAT(" ",20X, 'THE DISTANCE OF CONTROL POINTS')
        PRINT 1599.(STC(I),I=1.N)
        PRINT 1599.(STC(I),I=1.N)
        CALI ANVEGR(ALPHA,NN,DUDS)
        CALI ANVEGR(ALPHA,NN,DUDS)
        PRINT 163
        PRINT 163
463 RORYAT("-*.20X. THE ANALYTICAL VELJCITY GRADIENTS')
463 RORYAT("-*.20X. THE ANALYTICAL VELJCITY GRADIENTS')
    PRINT 159, (DUDS(I).I=1.N)
    PRINT 159, (DUDS(I).I=1.N)
    Y1US1(1)=(GAMCON(1) =GAMMA(1))/(STC(1)=STE(1))
    Y1US1(1)=(GAMCON(1) =GAMMA(1))/(STC(1)=STE(1))
    Y1US1(60)=(GAMCON (60)-GAMAA (60))/(STC (60)-STE (60))
    Y1US1(60)=(GAMCON (60)-GAMAA (60))/(STC (60)-STE (60))
    ~ALL CUBICI(60,STC,GAMCON,Y1US1)
    ~ALL CUBICI(60,STC,GAMCON,Y1US1)
    PRINT 1220
    PRINT 1220
1220 FORMAT('-',20X, THE VELOCITY GRADIENTS BY CUBIC SPLINE')
1220 FORMAT('-',20X, THE VELOCITY GRADIENTS BY CUBIC SPLINE')
    PRINT 1210, (Y|US1(I),I=1,N)
    PRINT 1210, (Y|US1(I),I=1,N)
    1210 FORMAT(6(5X,F12.7))
    1210 FORMAT(6(5X,F12.7))
        READ 1440.(EM(I),I=1,26)
        READ 1440.(EM(I),I=1,26)
        READ 1440,(EH(I),I=1,26)
        READ 1440,(EH(I),I=1,26)
        GEAD 1440,(EL(I),I=1,26)
        GEAD 1440,(EL(I),I=1,26)
    1440 FORMAT(9(F8.4))
    1440 FORMAT(9(F8.4))
        PRINT 1447
```

 PRINT 1447
    ```


```

 DO 1445 LQ =1.26
    ```
        DO 1445 LQ =1.26
        PRINT 1446,EM(LQ),EH(LQ),EL(LQ)
        PRINT 1446,EM(LQ),EH(LQ),EL(LQ)
    1446 FORMAT(" %,10X,F8.4,10X,F8.4,10X,F8.4)
    1446 FORMAT(" %,10X,F8.4,10X,F8.4,10X,F8.4)
    1445 CONTINUE
    1445 CONTINUE
C ITERATIONS BEGIN HERE FOR BOUNDARY LAYER CAICULATIONS')
C ITERATIONS BEGIN HERE FOR BOUNDARY LAYER CAICULATIONS')
C
C
C
C
C
C
C CALCULATION OF VELOCITY DERIVATIVES BY LAGARANGIAN
C CALCULATION OF VELOCITY DERIVATIVES BY LAGARANGIAN
    IPLAG=1
    IPLAG=1
        ITER=1
        ITER=1
    1510 CALL DERIV(STC,GAMCON,GRADD)
    1510 CALL DERIV(STC,GAMCON,GRADD)
        PRINT 1502
        PRINT 1502
    1502 FORMAT("-0, 20X, "THE VELOCITY GRADIENTS BY LAGRANGIAN')
    1502 FORMAT("-0, 20X, "THE VELOCITY GRADIENTS BY LAGRANGIAN')
    PRINT 1503,(GRADD(I),I=1,60)
    PRINT 1503,(GRADD(I),I=1,60)
    1503 PORMAT(6(5X,F12.7))
    1503 PORMAT(6(5X,F12.7))
        Y10S1(1)=(GAMCON(1)-GAM&A(1))/(STC(1)-STE(1))
        Y10S1(1)=(GAMCON(1)-GAM&A(1))/(STC(1)-STE(1))
        Y10S1(60)=(GAMCON(60) =GAMMA (60))/(STC(60) - STE (60))
        Y10S1(60)=(GAMCON(60) =GAMMA (60))/(STC(60) - STE (60))
        IF(IFLAG.EQ. 1) THEN DO
        IF(IFLAG.EQ. 1) THEN DO
        CALL CUBICI(60,STC,GAMCON,YTUS1)
        CALL CUBICI(60,STC,GAMCON,YTUS1)
        RRINT }122
        RRINT }122
        PRINT 1210,(Y10S1(I),I=1,N)
```

 PRINT 1210,(Y10S1(I),I=1,N)
    ```
1930. 1940. 1950. 1960. 1970． 1980. 1990. 2000． 2010． 2020. 2030. 2040 ． 2050． 2060． 2070. 2080． 2090． 2100. 2110. 2120. 2130. 2140. 2150. 2160. 2170. 2180. 2190. 2200. 2210.

2220．
2230 。
2240.
2250.
2260.
2270.
2280.

2290．
2300.
2310.

2320．
2330.

2340 。
2350.

2360 。
2370.
2380.
2390.

2400．
2410.

2420 。
2430．
2440.

2450．
2460．
2470．
2480.
2490.

2500．
2510．
2520．
2530.

2540 。
2550 ．
2560 。
```

 CALL ZERO(GAMMA,STE,IND,XL1,XLL1,XL,XLI)
    ```
    CALL ZERO(GAMMA,STE,IND,XL1,XLL1,XL,XLI)
    こALL STAGPT(IND,XL,XLI,STE,GABMA,ROOT)
    こALL STAGPT(IND,XL,XLI,STE,GABMA,ROOT)
    PRINT 3509.IND
    PRINT 3509.IND
3509 FORMAT('-45X, THE STAGNATION POINT IS ON PANEL #', I4)
3509 FORMAT('-45X, THE STAGNATION POINT IS ON PANEL #', I4)
    PRINT 1507.ROOT
    PRINT 1507.ROOT
1507 RORMAT(" .20X,'THE STAGNATION POINT IS AT'.P10.7)
1507 RORMAT(" .20X,'THE STAGNATION POINT IS AT'.P10.7)
    CALL COLIFT (GAMMA,GABCON,STC,N,CL,STE)
    CALL COLIFT (GAMMA,GABCON,STC,N,CL,STE)
    PRINT 2600
    PRINT 2600
2600 PORHAT('-'.45X,'THE LIFT COEP. FOR INVISCID FLOM')
2600 PORHAT('-'.45X,'THE LIFT COEP. FOR INVISCID FLOM')
    PRINT 1980,CL(NN)
    PRINT 1980,CL(NN)
1980 PORMAT('-'.20X,'TRE COEPFICIENT OF LIET=`.F12.7)
1980 PORMAT('-'.20X,'TRE COEPFICIENT OF LIET=`.F12.7)
    END IF
    END IF
    IP(IFLAG.NE. 1)THEN DO
    IP(IFLAG.NE. 1)THEN DO
    CALL VNOT (GAMCON,STE,IND, ROOT,STC)
    CALL VNOT (GAMCON,STE,IND, ROOT,STC)
    PRINT 3509.TND
    PRINT 3509.TND
    PRINT 1507.ROOT
    PRINT 1507.ROOT
    END IF
    END IF
    CALL DISTAG(STE,IND,ROOI,STAGU,DSTAGL,INE)
    CALL DISTAG(STE,IND,ROOI,STAGU,DSTAGL,INE)
    PRINT 1381
    PRINT 1381
1381 FORMAT('-',20X,'THE DTSTANCES FROM STAGNATION POINT
1381 FORMAT('-',20X,'THE DTSTANCES FROM STAGNATION POINT
    *ON DPPER SURFACE')
    *ON DPPER SURFACE')
    PRINT 1382,(STAGU(I),I=1,IND)
    PRINT 1382,(STAGU(I),I=1,IND)
1382 PORMAT(6(5X,F12.7))
1382 PORMAT(6(5X,F12.7))
    PRINT 1383
    PRINT 1383
1383 PORMAT('-9,20X,'THE DISTAMCES FROM STAGNATION POINT
1383 PORMAT('-9,20X,'THE DISTAMCES FROM STAGNATION POINT
    *OF NODES')
    *OF NODES')
    PRINT 1382,(DSTAGL(I),I=1.INE)
    PRINT 1382,(DSTAGL(I),I=1.INE)
    CALL DSTNCE(STC,IND,ROOT,DSTUP,DSTLG,LASTUP, LASTDN)
    CALL DSTNCE(STC,IND,ROOT,DSTUP,DSTLG,LASTUP, LASTDN)
    PRINT 3501. LASTUP.LASTDN
    PRINT 3501. LASTUP.LASTDN
3501 FORHAT('-', 2OX,'THE LAST CONTROL PT.UPPER *', I3, 2X, IHE LAST
3501 FORHAT('-', 2OX,'THE LAST CONTROL PT.UPPER *', I3, 2X, IHE LAST
    *CONTROL PT. LOGER #',I3)
    *CONTROL PT. LOGER #',I3)
    PRINT 1754
    PRINT 1754
1751 FORMAT('-', 20X, 'TRE CONTBOL POINT DISTANCES-OPPER')
1751 FORMAT('-', 20X, 'TRE CONTBOL POINT DISTANCES-OPPER')
    PRINT 1750, (DSTUP(I),I=1,LASTUP)
    PRINT 1750, (DSTUP(I),I=1,LASTUP)
    PRINT 1752
    PRINT 1752
1752 PORMAT('-* 20X, TEE CONTROL POINT DISTANCES-LOMER')
1752 PORMAT('-* 20X, TEE CONTROL POINT DISTANCES-LOMER')
    PRINT 1750, (DSTLW(I), I=1,LASTDN)
    PRINT 1750, (DSTLW(I), I=1,LASTDN)
1750 FORMAT(6(5X,F12.7))
1750 FORMAT(6(5X,F12.7))
    BE=800.0
    BE=800.0
    CALL THCKNS(ROOT,GAMCON,RE,DSTUP,DSTL星,LASTOP,LASTDN,LUP,LDN
    CALL THCKNS(ROOT,GAMCON,RE,DSTUP,DSTL星,LASTOP,LASTDN,LUP,LDN
    *,IND,THICMU,THICML,STC,NSTATU,NSTATL)
    *,IND,THICMU,THICML,STC,NSTATU,NSTATL)
    PRINT 1384
    PRINT 1384
1384 FORMAT('-* 20X, TTHE MOMENTUH THICKNESS DISTRI.
1384 FORMAT('-* 20X, TTHE MOMENTUH THICKNESS DISTRI.
    *-m-UPPER SURFACE')
    *-m-UPPER SURFACE')
        PRINT 1385.(THICHU(I),I=9.LASTUP)
        PRINT 1385.(THICHU(I),I=9.LASTUP)
        PRINT }138
        PRINT }138
1386 FORHAT ('0. 20X, THE MOMENTUM THICKNESS DISRRI.
1386 FORHAT ('0. 20X, THE MOMENTUM THICKNESS DISRRI.
    *-0*LOWER SURFACE')
    *-0*LOWER SURFACE')
    PRINT 1385, (THICML(I),I=4,LASTDN)
    PRINT 1385, (THICML(I),I=4,LASTDN)
1385 FORMAT(6(5X,F12.7))
1385 FORMAT(6(5X,F12.7))
    こALL GAOS(ROOT,GAMCON,RE,DSTUP,DSTLH,LASTUP,LASTDN,LUP,IDN
    こALL GAOS(ROOT,GAMCON,RE,DSTUP,DSTLH,LASTUP,LASTDN,LUP,IDN
    *,IND,TU&,TLM,STC,NSTATU,NSTATL)
    *,IND,TU&,TLM,STC,NSTATU,NSTATL)
    RRINT 1981
    RRINT 1981
1981 FORMAT('-',20X,'GAUSSIAN THICKNESS-OPRER')
1981 FORMAT('-',20X,'GAUSSIAN THICKNESS-OPRER')
    PRINT 1385.(TUM(I),I=1.LASTUP)
    PRINT 1385.(TUM(I),I=1.LASTUP)
    PRINT }198
    PRINT }198
1982 FORMAT(*-', 20X, 'GAOSSIAN THICKNESS-LOHER')
1982 FORMAT(*-', 20X, 'GAOSSIAN THICKNESS-LOHER')
    PRINT 1385,(TL目(I),I=1.LASTDN)
    PRINT 1385,(TL目(I),I=1.LASTDN)
    DO 1989 I=1. LUP
    DO 1989 I=1. LUP
    IHICMO(I)=TUM(I)
    IHICMO(I)=TUM(I)
1989 CONTINUE
1989 CONTINUE
        DO 1988 I=1,LDN
        DO 1988 I=1,LDN
        THICML(I)=TL阼(I)
        THICML(I)=TL阼(I)
1988 CONTINOE
```

1988 CONTINOE

```

CALL SEPRET（RE，GRADD，THICMO，THICML，LASTUP，LASTDN，PABAMU。 ＊PARAML，SEPOP，SEPLOG，VSEPU，VSEPL，DSTOR，DSRLM，ROOT，IND，LSEPU
＊LSEPL，NSTATU，NSTATL） PRINT 1400
1400 pobmat（＇－＇，20X，the parameter m on upper sur．＇） PRINT 1401．（PABAMU（I），I＝1．LSEPU） PRINT 1402
 PRIAT 1401．（PARAML（I），I＝1，LSEPL）
1401 FORGAT（6（5X，F12，7）） PRINT \(1403_{g}\) SEPUP，SERLOH，VSEPU，VSEPL
1403 PORAAT（0．0．20X．P10．7．10X．F10．7／／＇．20X．P10．7．10X． ＊F10．7） CALL DISPLT（SEPDP，SEPLOG，DSTOP，DSTLA．THICMO．THICML，
    *PARAMU, PARAML, IND, DPLAC, DPLAL, LSEPU, LSEPL, DISPU, DISPL,
    * NOP, NLOW)
        PRINT 1404

1404 FORMAT（＇－＇ \(20 \mathrm{X}, \mathrm{T}\) THE DISPLACEEENT THICKNES DIST。
＊ON UPPER SURPACE＇） PRINT 1405，（DPLAC（I），I＝1。NUP）
1405 PORMAT（6（5X，F12．7）） PRINT 1406
1406 FORMAT（ \({ }^{\circ}-20 \mathrm{C}, \mathrm{CTHE}\) DISPLACEMENT THICKNESS DIST．
＊ON LOUER SURPACE＇）
PRINT 1405，（DPLAL（I），\(I=1\) ，NLOW）
CALL DISLOP（DSTUP，DSTLH，LSEPU，LSEPL，DPLAC，DPLAL，DISPO，
＊DISPL，DDDSU，DDDSL，DDUP，DDLOW，SEPUP，SEPLOH，NUP，NLOW，CHK） PRINT 1979
1979 PORMAT（＇＇，20X，＇the DISPLACEMENT SLOPE BY LaGRANGIAN＇） PRINT 1570，（CHK（I）， \(\mathrm{I}=2, \mathrm{NOP}\) ）
PRINT 1570．（DDDSO（I）．\(I=1\), NOP）
PRINT 1570，（DDDSL（I），\(I=1\), NLOW）
1570 FORMAT（ \(6(5 \mathrm{X}, \mathrm{Fi} 2.7\) ））
PRINT 1575，DDUP，DDLCW
PRINT 1576，DISPU，DISPL

＊TH．AT LO日ER ，F10．5）
1575 FORHAT（＇－1．20X，TTHE DIS．SLOPE AT OPPER SEP．＇，F10．5．
＊20X，＇THE DIS．SLOPE AT LO日ER SEP．＇，F10．5） UNRUP＝VINT（ROOT－SEPOP）＊DDUP UNRLOW＝VINT（ROOT＋SEFLOG）＊DDLOG PRINT 1560，ONRUP，ONRLOW
 ＊\({ }^{\text {g ORMAL VEL．AT LOHEE SEP PT．＂P1O．5）}}\) VELUP＝SQRT（（VINT（BOOT～SEPUP））＊＊2＋UNRUP＊＊2） VELLOM \(=\) SQRT（（VINT（ROOT + SEPLOH））＊ 2 \＆ONRLOW＊＊2） PBINT 1550，VELUP，VELLOA

＊SEPARATION VELOCITY＇／／＇＇ \(22 \mathrm{X}, \mathrm{F} 12.5 .25 \mathrm{X}, \mathrm{P} 12.5\) ）
CALL CDRAG（CP，ALPHA，CIIPT，\(N, X C O N)\)
CALI CDRAG2（CP，ALPHA，CD，YCON，N）
PLIFT＝CLIFT（N）＊COS（ALPHA）\(+C D(N) * S I N(A L P H A)\)
\(\operatorname{CODGAG}=\operatorname{CLIFT}(N) * S I N(A L P B A)-C D(N) * C O S(A L P H A)\)
PRINT 2365，PLIPT，CODRAG
CALL SKIN GAMCON，RE，THICMD，TAICML，CONSLO，CONSLI，NUP，NLOW，
＊PARAMO，Paramlonstatonentatl） PRINT 2360
PRINT 2361，（CONSLU（I），I＝1，NUP）
PRINT 2362
PRINT 2361。（CONSLL（I），I＝1。NLO日）

＊））．LE．0．01）GO TO 1601
\(\mathrm{N} S=4\)

```

3210.
3211.
3212.
3213.
3214.
3215.
3216.
3217.
3218.
3219.
3220.
3221.
3222.
3223.
3224.
3225.
3226.
3227.
3228.
3229.
3230.
3231.
3232.
3233.
3234.
3235.
3236.
3237.
3238.
3239.
3240.
3241.
3242.
3243.
3244.
3245.
3246.
3247.
3248.

3600%
3610.
3620.
3630.
3640.
3650.
3660.
3670.
3680.
3690.
3700.
3710.
3720.
3730.
3740.
3750.
3760.
3770.
3780.
3790.
3800.
3810.
3820.
3830.
3840.

```
```

 #YCONM,DELM,ELENB,RHE)
    ```
    #YCONM,DELM,ELENB,RHE)
    ITER=ITER+1
    ITER=ITER+1
    CALL VELOC(XCONM,YCONM,DELH,ELENH,N,COEFM)
    CALL VELOC(XCONM,YCONM,DELH,ELENH,N,COEFM)
    DO 1905 IA=1,N
    DO 1905 IA=1,N
    COEPM(IA,NN)=&HH(IA)
    COEPM(IA,NN)=&HH(IA)
1905 CONTINUE
1905 CONTINUE
    CALL EQN(COEFA,GAB4F,N,NN)
    CALL EQN(COEFA,GAB4F,N,NN)
    GAM4F(NN)=-GAM4F(NN-N
    GAM4F(NN)=-GAM4F(NN-N
    DO 1910 I=1.NN
    DO 1910 I=1.NN
    IP(I.GT.(NN-(NS@1)))THEN DO
    IP(I.GT.(NN-(NS@1)))THEN DO
    GAM4(I+NS-1-N)=GAM4E(I)
    GAM4(I+NS-1-N)=GAM4E(I)
    ELSE DO
    ELSE DO
    GAM4(I+NS=1)=GAM4P(I)
    GAM4(I+NS=1)=GAM4P(I)
    END IF
    END IF
1910 CONTINUE
1910 CONTINUE
    PRINT }160
    PRINT }160
1605 FORMAT('*', 20X,'THE VEL, DIST. GITH SHIFTED STAGNATICN
1605 FORMAT('*', 20X,'THE VEL, DIST. GITH SHIFTED STAGNATICN
    * POINT')
    * POINT')
    GAM4(NN-N)=GAM4 (NN)
    GAM4(NN-N)=GAM4 (NN)
    PRINT 1606,(GAM4(I), I=1,NN)
    PRINT 1606,(GAM4(I), I=1,NN)
1606 PORMAT(6(5X,F12.7))
1606 PORMAT(6(5X,F12.7))
    DO 1660 I=1,N
    DO 1660 I=1,N
    GAH4CO(I) = (GAM4(I) +GAM4(I + I) )/2.0
    GAH4CO(I) = (GAM4(I) +GAM4(I + I) )/2.0
1660 CONTINUE
1660 CONTINUE
    PRINT 1664
    PRINT 1664
1661 PORMAT('-',20X, THE VELOCITY AT SHIPTED CONTEOL POTNTS')
1661 PORMAT('-',20X, THE VELOCITY AT SHIPTED CONTEOL POTNTS')
    PRINT 1606, (GAM4CO(I),I=1,N)
    PRINT 1606, (GAM4CO(I),I=1,N)
    VELBOP=VEL (ROOT-SEPUP)
    VELBOP=VEL (ROOT-SEPUP)
    VELBLG= VEL (ROOT & SEPLCW)
    VELBLG= VEL (ROOT & SEPLCW)
    PRINT 1610,SEPUP,SEPLOG,VELBUP,VELBLW
    PRINT 1610,SEPUP,SEPLOG,VELBUP,VELBLW
1690 FORMATT('0., 20X,F10.7,10X,F10.7//% %, 20X,F10.7,10X,F10.7)
1690 FORMATT('0., 20X,F10.7,10X,F10.7//% %, 20X,F10.7,10X,F10.7)
    AAA=1.0+((VELUP-VELLOG)/(VELBLLOABS (VELBUP)))
    AAA=1.0+((VELUP-VELLOG)/(VELBLLOABS (VELBUP)))
    AA=1.0/AAA
    AA=1.0/AAA
    PRINT 1915,AAA
    PRINT 1915,AAA
1915 FORMAT('*',20X, 'TGE ORIGINAL SOLN.**.F12.7)
1915 FORMAT('*',20X, 'TGE ORIGINAL SOLN.**.F12.7)
    DO 1500 KY=1,N
    DO 1500 KY=1,N
    GAMCON(KY)=GAMCON(KY) *AAA +GAM4CO(KY)*(1.0-AAA)
    GAMCON(KY)=GAMCON(KY) *AAA +GAM4CO(KY)*(1.0-AAA)
1500 CONTINOE
1500 CONTINOE
    IF(IFLAG.EQ.1) THEN DO
    IF(IFLAG.EQ.1) THEN DO
    DO 2000 KP=1,NN
    DO 2000 KP=1,NN
    GAGMA (KP) =GAMMA (KP) *AAA+GAM4 (KP)* (1,0-AAA)
    GAGMA (KP) =GAMMA (KP) *AAA+GAM4 (KP)* (1,0-AAA)
2000 CONTINUE
2000 CONTINUE
    END IF
    END IF
    DO 5200 T=9,N
    DO 5200 T=9,N
    CP(I)=1.0-GAMCON(I)**2
    CP(I)=1.0-GAMCON(I)**2
5200 CONTINUE
5200 CONTINUE
    IP(IFLAG.EQ.1)THEN DO
    IP(IFLAG.EQ.1)THEN DO
    PBINT 1990
    PBINT 1990
1990 PORMAT('O., 20X, THE MODIFIED PANEL SOLOTION')
1990 PORMAT('O., 20X, THE MODIFIED PANEL SOLOTION')
    PRINT 1606,(GAMMA(I),I=9,NN)
    PRINT 1606,(GAMMA(I),I=9,NN)
    END IF
    END IF
    PRINT 1501
    PRINT 1501
1501 FORHAT("-0, 20X."THE MODIFIED POTENIIAL FLOK')
1501 FORHAT("-0, 20X."THE MODIFIED POTENIIAL FLOK')
    PRINT 1509, (GAMCON(I)&I=1,N)
    PRINT 1509, (GAMCON(I)&I=1,N)
1509 PORMAT(10(2X,F10.7))
1509 PORMAT(10(2X,F10.7))
    IF(IFLAG.EQ.1)THEN DO
    IF(IFLAG.EQ.1)THEN DO
    CALL COLIFT (GAMMA,GAMCON STC,N*CL*STE)
    CALL COLIFT (GAMMA,GAMCON STC,N*CL*STE)
    PRINT 2601
    PRINT 2601
2601 POR#AT('0',45X,'THE LIFT COEPP. AFTER CIRCULATION CHANGE')
2601 POR#AT('0',45X,'THE LIFT COEPP. AFTER CIRCULATION CHANGE')
    PRINT 1980.CL(NN)
    PRINT 1980.CL(NN)
    END IF
    END IF
    GO TO 1590
    GO TO 1590
C SURFACE SOURCE DISTRIBUTION
C SURFACE SOURCE DISTRIBUTION
1609 PRINT 1602.ITER
```

1609 PRINT 1602.ITER

```
3850.
3860.
3870.
3880.
3890.
3900. 3910. 3920. 3930. 3940. 3950. 3960. 3970. 3980. 3990. 4000. 4010. 4020 . 4030. 4040. 4050. 4060. 4070. 4080. 4090. 4100. 4110. 4120. 4130. 4140. 4150. 4160. 4170. 4180.
\[
4190
\] 4200 .
\[
4210
\]
\[
4220
\]
\[
4230
\]
\[
4240 .
\]
\[
4250 .
\]
\[
4260
\]
\[
4270 .
\]
\[
4280
\]
\[
4290 .
\]
4300. 4310. 4320. 4330. 4340. 4350. 4360. 4370. 4380. 4390. 4400. 4410. 4420. 4430. 4440. 4450. 4460. 4470. 4480.
```

1602 FORMAT(*-' 20X, NO. OF ITERAMIONS TO EQUALISE
* VELOCITTES AT SEPARATION POINT='.I3)
IF(IPLAG.EQ. 1) THEN DO
CALL COLIFT (GABMA,GAMCON,STC,N,CL,STE)
PRINT 4440.CL(NN)
4440 PORMAT(*-0.20X,"THE CL APTER EQUAL VELOCITIES*"F12.7)
END IF
IF(VELIOH.GT.VELUP)THEN DO
QSEP=VELIOW
ELSE DO
QSEP=VELUP
END IF
KOD=1
CALL SOUACE(XCON,ICOR,DEL,ELEN,QSEP, LSEPU,LSEPL,NSTATO,NSTATL,
\#SIG,SIGMA,N,NN,GABCON,DDDSU,DDDSL,OT,UN,IT,KOD)
PRINT 1950
1950 FORAAT(" ', 20X, 'THE TANGENTIAL VELOCITIES BY SOURCES')
PGINT 1951,(0T(I),I=1,N)
1951 FORAAT(10(2X.F10.7))
PRINT 1952
1952 PORMAT(" "20X, THE FIRST APRROX, OF SOURCE STRENGTGS AT PANEL')
PRINT 1951,(SIG(I),I=1,N)
PRINT 1953.IT
IP(KOD.EQ.1)GO TO 1600
DO 2100 K=1.IT
PBINT 1951,(SIGMA(I,IT),I=1,N)
2100 こONTINOE
PRINT 1983
1983 RORMAT('0.'20X, 'TGE NOBMAL VELOCITIES DUE TO SOORCES')
PRINT 1951, (UN (I),I=9,N)
DO 2300I=1.N
GAMCON(I)=GAMCON(I) \&UT(I)
2300 CONTINUE
IF(IFLAG.EQ. 1)THEN DO
PRINT 2603
2603 FORMAT(*-1.45X,'THE LIFT COEFF.APTER SOUREE DISTRIBUTION')
CALL COLIFT (GAMMA,GAMCON,STC,N,CL,STE)
PRINT 1980,CL(NN)
END IF
C
CALI TEST (ROOT,FI, PRESNT)
PRINT 1900,FI,PRESNT
1900 FORMAT('- '20X, THE INTEGRAL=',F10.7,2X,'AND',F10.7)
C

```

```

 CALL SKIN(GAMCON,BE,THICMU,THICML,CONSLU,CONSLL,NUP,NLOM, PABAMU,
 *PARAML,NSTATU,NSTATL)
 PRINT 2360
 2360 FORMAT(0-0.45X* THE SKIN FRICTIONOUPPER SURFACE')
 PRINT 2361, (CO&SLU(I),I=1,NTP)
 2361 PORMAT(40(2X,F10.7))
PRINT 2362
2362 FORMAT(%*.45X, THE SKIN FRICTION-LOGER SURFACE`)
PRINT 2361, (CONSILL(I),I=1,NLOW)
DO 2700 I=1.N
SP(I)=1,0-(G\&MCON(I)**2+UN(I)**2)
2700 CONTINUE
PRINT 2363
2363 PORMAT(*-0.45X, THE PBESSURE COEPF. DIST.AT CONTGOL POINTS')
PRINT 2361, (CP(I),I=1,N)
CALL CDRAG (CP,ALPHA,CLIFT,N,XCOR)
CALI CDRAG2(CP, BLPGA,CD,YCON,N)
PLIFT=CLIFT (N)*COS (ALPHA)\&CD (N)*SIN (ALPHA)
CODRAG=CLIPT(N)*SIN (ALPHA) - CD (N)*COS (ALPHA)

```
4490. 4500. 4510. 4520. 4530. 4540. 4550. 4560 。 4570. 4580. 4590. 4600.
4610.
4620.
4630.

4640
4650.

4660
4670.

4580
4690.

4700
4710.
4720.
4730.
4740.
4750.
4760.
4770.
4780.
4790.
4800.
4810.
4820.
4830.
4840.
4850.
4860.
4870.
4880.
4890.
4900.
4910.
4920.
4930.
4940.
4950.
4960.
4970.
4980.
4990.
5000.
5010.

5020．
5030.
5040.
5050.
5060.
5070.
5080.
5090.

5100．C
5110．C
5120．C


PRINT 2365，PLIFT，CODRAG

＊＇the dRag COEFP．＝＇，P12．7）
CALL CM1（XCON， \(\mathrm{N}, \mathrm{CP}, \mathrm{CHO} 1)\)
IA＝2
IB \(=30\)
CALL CM2（IA，IB，CP，YCON，CHU2）
\(I A=31\)
I \(B=59\)
CALL CH2（IA，IB，CP，YCON，CMO2）
CAOMAT \(=-\) CHU1（N）\(-\mathrm{CMO} 2(30)+\mathrm{CMO} 2\)（59） PRINT 2370，CMOMNT
 CALL DERIV（STC，GAMCON；GRADD） PRINT 1502 PRINT 1503，（GRADD（I），I＝1，60）
CALL VNOT（GAMCON，STE，IND，ROOT，STC）
PRINT 3509．IND
PRINT 1507，ROOT
こALL DSTNCE（STC，IND，ROOT，DSTUP，DSTLY，LASTOP，LASTDN）
PRINT 3501．LASTUP，LASTDN
PRINT 1751
PRINT 1750，（DSTUP（I），I＝1，LASTUP）
PRINT 1752
PRINT 1750，（DSTLA（I），I＝1。LASTDN）
CALL THCKNS（ROOT，GAMCON，RE，DSTUP，DSTLG，LASTUP，LASTDN，IUP，LDN，IND
＊THICHU，THICML，STC，NSTATU，NSTATL）
PRINT 1384
PRINT 1385，（THICMO（I）．I＝1．LASTUP）
PRINT 1386
PRINT 1385，（TAICML（I）I \(\mathrm{I}=1\), LASTDN）
CALL SEPRETGE，GRADD，THICBU，THICML，LASTUP，LASTDN，PARAMO，PABAML，
＊SEPUP，SEPLOG，VSEPU，VSEPL，DSTUP，DSTLG，ROJT，IND，LSEPU，ISERL，
＊NSTATO，NSTATL）
PRINT 1400
PRINT 1401．（PARAMO（I），I＝1。LSEPD）
PEINT 1402
PRINT 1401．（PARAML（I），I＝1，LSEPL） PRINT 1403，SEPVP，SERLO甘，VSEPO，VSEPL
CALL DISPLT（SEPOP，SEPLO甘，DSTOP，DSTLY，THICAO，THICML，PARAMO，
＊PARAML，IND。DPLAC，DPLAL，LSEPU，LSEPL，DISPU，DISPL，NUP，NLOM）
PRINT 1404
PBINT 1405（DPLAC（I）， \(\mathrm{I}=1\) ，NUP）
PRINT 1406
PRINT 1405，（DPLAL（I），I＝1，NLOW）
CALL DISLOP（DSTUP，DSTLW，LSEPU，LSEPL，DPLAこ，DPLAL，DISPU，DISPL，
＊DDDSU。DDDSL，DDUP，DDLOM，SEPUP，SEPLOG，NOP \({ }^{(N L O H, ~ C H K) ~}\)
PRINT 1570．（DDDSU（I），I＝1，NOP）
PEINT 1570，（DDDSL（I），I＝1，NLOW）
PRIAT 1575，DDOP，DDLOW
PRINT 1576．DISPU，DISPL
ONRUP＝VINT（ROOT－SEPOP）＊DDUP
GNRLOH＝VINT（ROOT＋SEPUR）＊DDLOM
PRINT 1560，ONROP，ONELOH
VELOP＝SQRT（（VINT（ROOT－SEPOP））＊＊2＊UERUP＊＊2）
VELLOH＝SQRT（（VINT（ROOT \(\uparrow\) SERLOW））＊＊2\＆UNRLOH＊＊2）
PRINT 1550，VELUP，VELLOK
IF（（ABS（VELUP）－ABS（VELLOH））．LE．0．01．AND．（ABS（VELLCA）－ABS（VELUP
＊）I．LE．O．01）GO TO 1600
\(I F L A G=I F L A G+1\)
GO TO 1510

```

5130. C
5131. C
5132. C
5133. C
5134. C
5135. C
5136. C
5137.
5138.
5139.
5140. C
5141. C
5142. C
5143. C
5144. 1600 STOP
5145. END
5146.
5147.
5148.
5149.
5150.
5151.
5152.
5153.
5154.
5155.
5156.
5157.
5158.
5159.
5160.
5161.
5162.
5163.
5164.
5165.
5166.
5167.
5168.
5169.
5170.
5171.
5172.
5173.
5174.
5175.
5176.
5177.
5178.
5179.
5180.
5181.
5182.
5183.
5184.
5185.
5186.
5187.
5188.

5 7 2 0 .
5730.
5740.
5750.
5760.
1
SUBROOTINE CORDNT(A,B,C,N
PRINT }
1 PORMAT('-0.20X.'TGE CORDINATES MISSING')
RETURN
END
SUBROUTINE BHS (ALPHA,DEL,N,RH)
DIMENSICN DEL(N).RH(N)
DO 1 I=1,N
RH(I)=-(COS (DEL (I))*SIN (ALPHA) -SIN(DEL (I))*COS (ALPHA))
1 CONTINOE
RETORN
END
SUBROUTINE TEST(ROOT,FI,PRESNT)
N=10
PN=N
A=0.0050573
B=0.0162640
DX=(B-A)/FN
PI1=FS(ROOT-A) +PS (ROOT-B)
PI2 =0.0
PI3=0.0
TDX=2.0*DX
X=A +DX
NN=N/2
DO 3 J=1,NN
PI2=FI2+FS(ROOT-X)
3 X=X+TDX
X=A
NM=NN-1
DO 4 J=1.NM
X=X+TDX
4 FI3=FI3+FS (ROOT-X)
FI=DX*(FI 1+4.*FI2+2.*FI3)/3.
A=0.0
B=,0050573
DX=(B-A)/PN
TDX=2.*DX
FII=PS(ROOT-A) +PS(ROOT-B)
PI2=0.0
FI3=0.0
NN=N/2
X=A +DX
DO 8 J=1,NN
PI2= PI2+FS (ROOT-X)
8 X=X+TDX
K=A
NM=NN-1
DO 9 J = 1,NM

```
```

5770.
5771. 9 FI3=FI3+FS(ROOT-X)
FI=DX*(FI1*4.*FI2*2.*FI3)/3.0
PRESNT=FI
RETURN
END
SOBRODTINE EQN(A,X,N,NN)
DIMENSION A (N,NN),X(N)
M=N+1
L=N-1
DO 12 K=1.L
JJ=K
BIG=ABS (A (K,K))
KPI=K+1
SEARCH FOR LARGEST PIVOT ELEMEAT
DO }7\textrm{I}=\textrm{KPI},\textrm{N
AB=ABS (A (I,K))
IF(BIG-AB)6,7,7
BIG=AB
JJ=1
contInue
DECISION OF NECESSITY OF ROM INTRRCHANGE
IF(JJ-K)8.10,8
ROW INTERCHANGE
DO 9 J=K.盉
TEMP=A(JJ,J)
A (JJ,J) =A (K,J)
A (K,J)=TEMP
DO 11 I=KPI,N
QOOT=A (I,K)/A(K,K)
DO 11 J=KPI,M
A(I,J)=A(I,J)-QUOT*A(K,J)
DO 12 I=KPI,N
A (I,K) =0.0
PIRST STEP IN BACK SUBSTITOTION PROCESS
X (N)=A (N,M)/A (N,N)
REBAINDER OF BACK SUBSTITUTION PROCESS
DO 14 MR=1,L
SUM=0.0
I=N-MM
IPI=I*q
DO 13 J=IPI,N
SUM=SUM+A (I,J)*\&(J)
```

```

 RETORN
 END
 SUBROUTINE COBICI(N,X,Y,Y11)
 DIMENSION X(61),Y(61),F(61)gG(61),Y11(61),Y1(61)
 NM=N-1
 G(1)=0.0
 F(1)=0.0
 DO 2 K=1,N1
 J2=K+1
 H2=1.0/(X(J2)-X(K))
 R2=3.*H2*H2*(Y(J2)-Y(K))
 IF(K.EQ.1)GO TO 1
 Z=1.0/(2.0*(H1*H2)-H1*G(J1))
 G(K)=Z*H2
 R=R1+R2
 IF(K.EQ. 2) H=H-H1*Y11 (1)
 IF(K.EQ.N1) H=H-H2*Y11 (N)
 F(K)=Z*(H-H1*P(J1))
    ```
```

6410. 1
6411.

6 4 3 0 .
6440.
6450.
6460.
6470.
6480.
6490.
6500.
6510.
6520.
6530.
6540. C
6550. C
6560.
6570.
6580.
6590.
6600.
6610.
6620.
6630.
6640.
6650.
6660.
6670.
6680.
6 6 9 0 .
6700.
6740.
6720.
6730.
6740.
6750.
6760.
6 7 7 0 .
6 7 8 0 .
6 7 9 0 .
6800.
6810.
6820.
6830.
6840.
6850.
6860.
6870.
6880.
6890.
6900.
6 9 1 0 .
6920.
6 9 3 0 .
6940.
6 9 5 0 .
6 9 6 0 .
6 9 7 0 .
6 9 8 0 .
6 9 9 0 .
7000.
7010.
7 0 2 0 .
7 0 3 0 .
7040.

```
```

 J1=R
    ```
    J1=R
    H1= H2
    H1= H2
    R1=R2
    R1=R2
CONTINOE
CONTINOE
    I11(N1)=F(N1)
    I11(N1)=F(N1)
    IF(N1.LE.2) RETURN
    IF(N1.LE.2) RETURN
    N2=N1-1
    N2=N1-1
    DO 3 J1=2.N2
    DO 3 J1=2.N2
    K=N-J1
    K=N-J1
    Y11(K)=F(K) -G (K)*Y11(K+1)
    Y11(K)=F(K) -G (K)*Y11(K+1)
    CONTINUE
    CONTINUE
    RETURN
    RETURN
    END
    END
C
C
    PUNCTION VINT(SBEQD)
    PUNCTION VINT(SBEQD)
    COMMON /SPEED/STC,GAMCON,GAM4CO,BOOT
    COMMON /SPEED/STC,GAMCON,GAM4CO,BOOT
    DIMENSICN STC(61),GAMCON(61),GAB4CO (61)
    DIMENSICN STC(61),GAMCON(61),GAB4CO (61)
    DO 1 I=1.60
    DO 1 I=1.60
    IP(STC(I).LT:SREQD)GO TO 1
    IP(STC(I).LT:SREQD)GO TO 1
    IF(I_EQ.1)GO TO 9
    IF(I_EQ.1)GO TO 9
    IF(GAMCON (I-1).LT.0.0.AND.GAMCON(I).GT.0.0)GO TO 11
    IF(GAMCON (I-1).LT.0.0.AND.GAMCON(I).GT.0.0)GO TO 11
    VINT=((GAMCON(I)-GAMCON (I-1))/(STC(I)-SIC(I-1)))*(SREQD-
    VINT=((GAMCON(I)-GAMCON (I-1))/(STC(I)-SIC(I-1)))*(SREQD-
    *STC (I-1))+GAMCON(I-1)
    *STC (I-1))+GAMCON(I-1)
        GO TO 7
        GO TO 7
    1 CONTINUE
    1 CONTINUE
    9 VINT=((GAMCON(1) =0.0)/(STC (1) -0.0))*SEEQD
    9 VINT=((GAMCON(1) =0.0)/(STC (1) -0.0))*SEEQD
        GO TO 7
        GO TO 7
        L=I
        L=I
        IF(SREQD.GT.ROOT)THEN DO
        IF(SREQD.GT.ROOT)THEN DO
        VINT=((GA#CON (L)=0.0)/(STC (L)-ROOT))*(SREQD*ROOT)
        VINT=((GA#CON (L)=0.0)/(STC (L)-ROOT))*(SREQD*ROOT)
        ELSE DO
        ELSE DO
        VINT=((0.0-GABCON(I-1))/(ROOT-STC (L-1)))*(SREQD-STC(L-1))*
        VINT=((0.0-GABCON(I-1))/(ROOT-STC (L-1)))*(SREQD-STC(L-1))*
        *GAMCON(L-1)
        *GAMCON(L-1)
        END IF
        END IF
    7 RETURN
    7 RETURN
        END
        END
C
C
C
        FUNCTION PS(CLEN)
        FUNCTION PS(CLEN)
        COAMON/SPEED/STC,GAMCON,GAM4CO,ROOI
        COAMON/SPEED/STC,GAMCON,GAM4CO,ROOI
        REAL PS,CLEN
        REAL PS,CLEN
        DIMENSION STC(61),GAMCON(61),VEL5(61),GAM4CO(61)
        DIMENSION STC(61),GAMCON(61),VEL5(61),GAM4CO(61)
        DO 2 J=1,60
        DO 2 J=1,60
        YEL5(J)=GA&CON(J)
        YEL5(J)=GA&CON(J)
2 CONTINOE
2 CONTINOE
        DO 1 I=1,60
        DO 1 I=1,60
        IF(STC(I).LT,CLENIGO TO 1
        IF(STC(I).LT,CLENIGO TO 1
        IF(I.EQ. 1)GO TO 9
        IF(I.EQ. 1)GO TO 9
        IF(VEL5(I-1).IT.0.0.AND.VEL5(I).GT.0.0)GO TO 11
        IF(VEL5(I-1).IT.0.0.AND.VEL5(I).GT.0.0)GO TO 11
        FS=((VELS (I) ~VELS (I-1))/(STC (I) -STC (I=1)))* (CLEN*STC (I~1))
        FS=((VELS (I) ~VELS (I-1))/(STC (I) -STC (I=1)))* (CLEN*STC (I~1))
    *+VEL5 (I-1)
    *+VEL5 (I-1)
        FS=PS**5
        FS=PS**5
        GO TO 7
        GO TO 7
        CONTINUE
        CONTINUE
        PS=((VEL5 (1)*0.0) /(STC (1)-0.0))*CLEN
        PS=((VEL5 (1)*0.0) /(STC (1)-0.0))*CLEN
        PS=PS**5
        PS=PS**5
        GO TO 7
        GO TO 7
        11 L=T
        11 L=T
        IF(CLEN .EQ.ROOT)PS=0.0
        IF(CLEN .EQ.ROOT)PS=0.0
        IF(CLEN.GT. ROOT)TAEN DO
        IF(CLEN.GT. ROOT)TAEN DO
        PS=((GAMCON (L) - 0,0)/(STC (I) -ROOT))* (CLEN-ROOT)
        PS=((GAMCON (L) - 0,0)/(STC (I) -ROOT))* (CLEN-ROOT)
        PS=FS**5
        PS=FS**5
        ELSE DO
```

 ELSE DO
    ```
```

7 0 5 0 .
7 0 6 0 .
7 0 7 0 .
7080.
7 0 9 0 .
7 1 0 0 .
7 1 1 0 .
7120.
7130.
7140.
7150.
7 1 6 0 .
7 1 7 0 .
7180.
7190.
7 2 0 0 .
7210.
7220.
7230.
7240.
7 2 5 0 .
7260.
7270. 5
7280. 6
7290. 7
7 3 0 0 .
7310.
7320.
7 3 3 0 .
7340.
7350.
7360. C
7370.
7380.
7390.
7400.
7410.
7420.
7430.
7440.
7450.
7460.
7470.
7480.
7490.
7500.
7510.
7520. C
7530. C
7540.
7550.
7560.
7570.
7580.
7590. 1
7600. 2
7610.
7620. 6
7630. 8
7540. 7
7650.
7660. C
7670. c
7680. C

```
7690.
7700.
7710.
7720.
7730.
7740.
7750.
7760.
7770.
7780.
7790.
7800.
7810.
7820.
7830.
7840.
7850.
7860.
7870.
7880.
7890.
7900.
7910. 7920.
7930.
7940.
7950.
7960.
7970.
7980.
7990. 8000. 8010. 8020. 8030. 8040. 8050. 8060. 8070. 8080. 8090. 8100. 8110. 8120. 8130. 8140. 8150. 8160. 8170. 8180. 8190. 8200. 8210. 8220. 8230. 8240. 8250. 8260. 8270 . 8280. 8290. 8300 . 8310. 8320.

C
c

C

SUBROUTINE VELOC(XCON, YCOA,DEL,ELEN,N,COEF)
INTEGER B,S,0,V
DIMENSION XI \((60,60)\), ETA \((60,60), \operatorname{COEPA}(60,60), \operatorname{COEFB}(60,60)\).
*CORF \((60,61), \operatorname{XCON}(60), Y C O N(60), \operatorname{DEL}(60), \operatorname{ELEN}(60)\).
\(* O(60,60), V O(60,60), O L(60,60), \nabla L(60,60), \operatorname{CONSA}(60,60)\).
* Cons B \((60,60)\)

PI=4.0*ATAN (1.0)
DO \(50 \mathrm{~K}=1\), N
DO \(60 \mathrm{~L}=1\). N
IP(K.EQ.L)GO TO 70
\(X I(K, L)=(X C O N(K)-X C O N(L)) * \operatorname{COS}(D E L(L))+(Y C O N(K)-Y C O N(\)
*L) ) *SIN(DEL (L))
\(\operatorname{ETA}(R, L)=(Y \operatorname{CON}(K)-Y \operatorname{CON}(L)) * \operatorname{COS}(\operatorname{DEL}(L))-(X \operatorname{CON}(K)-X C O N(\)
*L) ) *SIN (DEL (L) )
\(A=X I(K, L)+0.5 * \operatorname{ELEN}(L)\)
\(\mathrm{B}=\mathrm{XI}(\mathrm{K}, \mathrm{L})-0.5 * \operatorname{ELEN}(\mathrm{~L})\)
C=ETA (K,L)
PHIT=ATAN (ETA (K,L) / (XI (K, L) \(+0.5 * \operatorname{ELEN}(L)))\)
IF(PHI1.LE. 0.00 ) PHI1=PHI1+PI
PHI2=ATAN (ETA (K, L) / (XI (K, L) - 0. 5*ELEN (L) ) )
IP(PHI2.LE. 0.0) PHI2 \(=\) PI + PHI2
\(0 \|(K, L)=(P H I q-P H I 2) /(2.0 * P I)\)
\(\mathrm{VO}(\mathrm{K}, \mathrm{I})=\mathrm{ALOG}(\operatorname{SQRT}((\mathrm{A} * * 2+\mathrm{C} * * 2) /(B * * 2+C * * 2))) /(2, * P I\)
*)
\(0 \mathrm{~L}(\mathrm{~K}, \mathrm{~L})=\left(\mathrm{A} *(\mathrm{PHI} 1-\mathrm{PHI} 2)-\mathrm{C} * \mathrm{ALOG}\left(S Q R T\left((\mathrm{~B} * * 2+\mathrm{C} * * 2) /\left(\mathrm{A}^{*} * 2\right.\right.\right.\right.\)
*+C**2)) ) / (2.0*PI*ELEN(L))
\(\nabla L(\mathrm{~K}, \mathrm{~L})=(-\mathrm{A} * \mathrm{LLOG}(\operatorname{SQRT}((\mathrm{B} * * 2+\mathrm{C} * * 2) /(\mathrm{A} * * 2+\mathrm{C} * * 2)))-E L E N\)
*(L) - ETA (K, L) * (PHI1-PHI2) )/(2.0*PI*ELEN (L) )
ZONSA \((\mathbb{K}, \mathrm{L})=\mathrm{UU}(\mathrm{K}, \mathrm{L})=\mathrm{OL}(\mathrm{K}, \mathrm{L})\)
\(\operatorname{CONSB}(K, L)=V U(K, L)-\operatorname{LI}(K, L)\)
COEFA (K,L) = CONSA (K,L) *SIN (DEL (L) ) *COS (DEL (K)) +CONSB (K
* L ) \(\# \operatorname{COS}(\mathrm{DEL}(\mathrm{L})) * \operatorname{COS}(\operatorname{DEL}(\mathrm{~K}))-\operatorname{CONSA}(\mathrm{K}, \mathrm{L}) * \operatorname{COS}(\mathrm{DEL}(\mathrm{L})) * S I\)
*N(DEL (K)) \(+\operatorname{CONSB}(K, L) * S I N(D E L(L)) * S I N(D E L(K))\)
\(\operatorname{COEFB}(\mathrm{K}, \mathrm{L})=\mathrm{OL}(\mathrm{K}, \mathrm{L}) * \operatorname{SIN}(\mathrm{DEL}(\mathrm{L})) * \operatorname{COS}(\mathrm{DEL}(\mathrm{K}))+\mathrm{VL}(\mathrm{K}, \mathrm{L}) * \operatorname{CO}\)
*S (DEL(L)) *COS (DEL(K))- DL(K,L)*COS (DEL(L)) *SIN(DEL (K)) +
* \(\mathrm{VL}(\mathrm{K}, \mathrm{L})\) *SIN(DEL (L)) *SIN(DEL (K))

GO TO 60
COEFA \((K, L)=1.0 /(2.0 * P I)\)
\(\operatorname{COEFB}\left(\mathrm{K}_{\mathrm{E}} \mathrm{L}\right)=-1.0 /(2.0 * \mathrm{PI})\)
contiaue
CONTINUE
DO \(80 \quad \mathrm{O}=1, \mathrm{~N}\)
DO \(90 \quad \mathrm{~V}=2, \mathrm{~N}\)
\(\operatorname{COEP}(\mathrm{O}, \mathrm{V})=\operatorname{COEFA}(\mathrm{U}, \mathrm{V})+\operatorname{COEFB}(\mathrm{O}, \mathrm{V}-1)\)
CONTINOE
CONTINUE
\(\mathrm{S}=1\)
DO \(100 \mathrm{R}=1 \mathrm{~N}\)
\(\operatorname{COEF}(\mathrm{R}, \mathrm{S})=\operatorname{COEFA}\left(\mathrm{R}_{\theta} \mathrm{S}\right)-\operatorname{COEPB}(\mathrm{R}, \mathrm{N})\)
CONTINUE RETORN
ERD

SUBROUTINE SURLEN(X,Y1P, \(\mathrm{A}, \mathrm{XR}, \mathrm{YIL}, \mathrm{Y} 1, S T E, D E R 1, D E R 2)\) DIMENSION X(61),Y1P(61),STE(61),S1(61),XR(61),Y1L(61)
*. Y1 (61)
DO 900 IN=1.29
\(X \operatorname{INT}=(X(I N+1)-X(I N)) / 9.0\)
\(\operatorname{DINT}=(\mathbb{Z} 1 \mathrm{~F}(\mathrm{IN}+1)-\mathrm{Y} 1 \mathrm{~F}(\mathrm{IN})) / 8.0\)
SUM \(=0.0\)
```

8330.
8331.
8332.

8360
8370.
8380.
8390.
8400.
8410.
8420.
8430.
8440.
8450.
8 4 6 0 .
8470.
8480.
8490.
8500.
8510.
8520.
8530.
8540.
8550.
8560.
8570.
8580.
8590.
8600.
8610.
8620.
8630.
8640.
8650.
8660.
8670.
8680.
8 6 9 0 .
8700.
8710.
8720.
8 7 3 0 .
8740.
8750.
8760.
8770.
8780.
8790.
8800.
8810.
8820.
8830.
8840.
8850.
8860.
8870.
8880.
8890.
8900.
8910.
8920.
8930.
8940.
8950.
8960.

```
```

 D0 910 IP=1.9
    ```
    D0 910 IP=1.9
    TERM=Y1F(IN)+(IP-1)*DINT
    TERM=Y1F(IN)+(IP-1)*DINT
    TERH=SQRT(1.0+TERH**2)
    TERH=SQRT(1.0+TERH**2)
    IF(XINT.LT.0.0) XINT=-XINT
    IF(XINT.LT.0.0) XINT=-XINT
    FACTOR=TERM*XINT
    FACTOR=TERM*XINT
    SOM=SUA+FACTOR
    SOM=SUA+FACTOR
    S1(IN)=SUM
    S1(IN)=SUM
940 CONTINOE
940 CONTINOE
900 CONTINOE
900 CONTINOE
    XINT1=(XR(2)-XR(1))/9.0
    XINT1=(XR(2)-XR(1))/9.0
        DINTT=(DER2-DER1)/8.0
        DINTT=(DER2-DER1)/8.0
    IF(XINT1.LT.0.0) XINT1=-XINT1
    IF(XINT1.LT.0.0) XINT1=-XINT1
    SOMA =0.0
    SOMA =0.0
    DO 920 JK=1.9
    DO 920 JK=1.9
    TERM=DER1+(JK-1)*DINT1
    TERM=DER1+(JK-1)*DINT1
    TERM=SQRT (1.0+TERA**2)
    TERM=SQRT (1.0+TERA**2)
    FACTOR=TER&*XINT1
    FACTOR=TER&*XINT1
    SUMA=SOMA+FACTOR
    SUMA=SOMA+FACTOR
920 CONTINUE
920 CONTINUE
    S1(1)=SUMA
    S1(1)=SUMA
    S1(30)=SUMA
    S1(30)=SUMA
    S1(31)=SUMA
    S1(31)=SUMA
    S1(60)=SOMA
    S1(60)=SOMA
    STE (1)=0.0
    STE (1)=0.0
    DO 700 H=1,28
    DO 700 H=1,28
    S1(31+H)=S1(30-N)
    S1(31+H)=S1(30-N)
700 CONTINOE
700 CONTINOE
    DO 1145 JB=2,61
    DO 1145 JB=2,61
    STE (JB)=STE (JB-1)+S1(JB-1)
    STE (JB)=STE (JB-1)+S1(JB-1)
1145 CONTINOF
1145 CONTINOF
    RETURN
    RETURN
    END
    END
C
C
C
C
    SUBROUTINE SLOPE(X,Y,N,NN,XR,Y1L,M1P,DERY,DER2)
    SUBROUTINE SLOPE(X,Y,N,NN,XR,Y1L,M1P,DERY,DER2)
    DIEENSICN X(61),Y(61),Y1F(61),Y1(61),XR(61),YR(61),
    DIEENSICN X(61),Y(61),Y1F(61),Y1(61),XR(61),YR(61),
    ##1M(61).
    ##1M(61).
    *XC(61),YC(61),XP(61),YP(61),XF(61),YP(61),Y1L(61),Y1F1(61)
    *XC(61),YC(61),XP(61),YP(61),XF(61),YP(61),Y1L(61),Y1F1(61)
    PI=4.0*ATAN(1.0)
    PI=4.0*ATAN(1.0)
    IA N N/2-1
    IA N N/2-1
    DO 640 JJ=1,IA
    DO 640 JJ=1,IA
    XC(JJ) = X(JJ+1)
    XC(JJ) = X(JJ+1)
    YC(JJ)= Y(JJ+1)
    YC(JJ)= Y(JJ+1)
6 4 0 ~ C O N T I N O E ~
6 4 0 ~ C O N T I N O E ~
    Y (1) =-2.38
    Y (1) =-2.38
    Y1(IA)=2.38
    Y1(IA)=2.38
    CALL CUBICI(IA,XC,YC,Y1)
    CALL CUBICI(IA,XC,YC,Y1)
    BETA=-30.*PI/180.0
    BETA=-30.*PI/180.0
    TO=1.0
    TO=1.0
    IO=2.0
    IO=2.0
    DO 710 L= 1,16
    DO 710 L= 1,16
    XR(L)=(X(L)-XO)*COS (BETA) +(Y(L) - YO)*SIN(BETA) * XO
    XR(L)=(X(L)-XO)*COS (BETA) +(Y(L) - YO)*SIN(BETA) * XO
    YR(L)=(Y(L)-YO)*COS (BETA )-(K(L)-RO)*SIN (BETA) +YO
    YR(L)=(Y(L)-YO)*COS (BETA )-(K(L)-RO)*SIN (BETA) +YO
    CONTINUE
    CONTINUE
        Y1L (1) =-1.7320508
        Y1L (1) =-1.7320508
        Y1L(16)=-TAN(ATAN(Y1(15))+BETA)
        Y1L(16)=-TAN(ATAN(Y1(15))+BETA)
        CALL CUBICI(16,XR,YR,Y1L)
        CALL CUBICI(16,XR,YR,Y1L)
        DER=ABS(Y1L(1)-Y1L(2))
        DER=ABS(Y1L(1)-Y1L(2))
        DO 740 M=1,16
        DO 740 M=1,16
        T1L (M) =TAN(ATAN(YIL (M)) +BETA)
        T1L (M) =TAN(ATAN(YIL (M)) +BETA)
        740 CONTINUE
        740 CONTINUE
        BETA=30.0*PI/180.0
        BETA=30.0*PI/180.0
        1O=0.0
```

 1O=0.0
    ```
```

8970.
8971.
8972.
8973.
8974.
8975.
8976.
8977.
8978.
8979.
8980.
8981.
8982.
8983.

9 1 1 0 .
9120.
9130.
9140.
9150.
9160.
9470.
9180.
9190.
9200.
9210.
9220.
9230.
9240.
9250.
9260.
9270.
9280.
9290.
9300.
9310.
9320.
9330.
9340.
9350.
9360.
9370.
9380.
9390.
9400.
9410.
9420.
9430.
9440.
9460.
9470.
9480.
9490.
9500.
9510.
9520.
9530.
9540.
9550.
9560.
9570.
9580.
9600.

```
```

9450. 1369 CC1=GAMMA (NUM-1)/((STE (NUM-1)-STE (NUM))* (STE (NOM-1)
```
9450. 1369 CC1=GAMMA (NUM-1)/((STE (NUM-1)-STE (NUM))* (STE (NOM-1)
9590. IF(ABS(DOQROT-ROOT).GT. 0.01)GO TO 1375
9590. IF(ABS(DOQROT-ROOT).GT. 0.01)GO TO 1375
```

 YO=2.0
    ```
    YO=2.0
    DO 700 J=16,31
    DO 700 J=16,31
    XR(J)=(X(J)-XO)*COS (BETA) +(Y(J)-YO)*SIN (BETA) +XO
    XR(J)=(X(J)-XO)*COS (BETA) +(Y(J)-YO)*SIN (BETA) +XO
    YR(J)=(Y(J)-YO)*COS (BETA)-(X(J)-XO)*SIN(BETA) +YO
    YR(J)=(Y(J)-YO)*COS (BETA)-(X(J)-XO)*SIN(BETA) +YO
700 CONTINUE
700 CONTINUE
    DO 750 &M=1,16
    DO 750 &M=1,16
    XP(MM)= XR(32-MM)
    XP(MM)= XR(32-MM)
    YP(MM)= YR(32-MM)
    YP(MM)= YR(32-MM)
750 Continoe
750 Continoe
    ITM(1)=1.7320508
    ITM(1)=1.7320508
    T1M(16)=TAN(ATAN(Y1(15))-BETA)
    T1M(16)=TAN(ATAN(Y1(15))-BETA)
    CALL CUBICI(16,XP,YP,Y1M)
    CALL CUBICI(16,XP,YP,Y1M)
    DER1=Y1M(1)
    DER1=Y1M(1)
    DER2=Y1M(2)
    DER2=Y1M(2)
    DO 70 KJ=1,16
    DO 70 KJ=1,16
    YM(KJ)=TAN(ATAN(T1A(RJ))*BETA)
    YM(KJ)=TAN(ATAN(T1A(RJ))*BETA)
    70 CONTINOE
    70 CONTINOE
        Y1P1(1)=Y1L(2)
        Y1P1(1)=Y1L(2)
        T1F1(29)= F1M(2)
        T1F1(29)= F1M(2)
        DO 760 MN=1,29
        DO 760 MN=1,29
        XF(HN)=X(MN+1)
        XF(HN)=X(MN+1)
        PF(MN)=Y(MN+1)
        PF(MN)=Y(MN+1)
760 CONTINOE
760 CONTINOE
        CALL COBICI(29,XF,YP,Y1F1)
        CALL COBICI(29,XF,YP,Y1F1)
        DO 780 MP=1.29
        DO 780 MP=1.29
        Y1F(MP+1)= Y1F1 (MP)
        Y1F(MP+1)= Y1F1 (MP)
    780 CONTINUE
    780 CONTINUE
        DO 770 MQ=2,30
        DO 770 MQ=2,30
        # 1F (62-MQ) =- Y1F (MQ)
        # 1F (62-MQ) =- Y1F (MQ)
    770 conminue
    770 conminue
        PI=ATAN(1.0)*4.0
        PI=ATAN(1.0)*4.0
        \1F(1)=TAN(PI/2.)
        \1F(1)=TAN(PI/2.)
        Y1P(31)=TAN(PI/2.)
        Y1P(31)=TAN(PI/2.)
        Y1P(61)=TAN(PI/2.)
        Y1P(61)=TAN(PI/2.)
        RETORN
        RETORN
        END
        END
C
C
C
C
    SUBROUTINE STAGPT(IND,XL,XLL,STE,GABMA,ROOT)
    SUBROUTINE STAGPT(IND,XL,XLL,STE,GABMA,ROOT)
    DIMENSION STE(61),GAMMA (61), POL(3)
    DIMENSION STE(61),GAMMA (61), POL(3)
    DUAROT=((STE(IND+1)-STE (IND))/(GAMMA (IND+1)-GASHA (IND)
    DUAROT=((STE(IND+1)-STE (IND))/(GAMMA (IND+1)-GASHA (IND)
    *)*(-GAB4A (IND) ) +STE (IND)
    *)*(-GAB4A (IND) ) +STE (IND)
    DIST1=DUMRUT=STE (IND)
    DIST1=DUMRUT=STE (IND)
    DIST2=STE(IND+1)-DUMRUT
    DIST2=STE(IND+1)-DUMRUT
    IF(DIST1.LT.DIST2) GO TO 1368
    IF(DIST1.LT.DIST2) GO TO 1368
    NUM=IND+1
    NUM=IND+1
    GO TO 1369
    GO TO 1369
    1368 NOH=IND
    1368 NOH=IND
    *-STE(NOH+1)))
    *-STE(NOH+1)))
    CC2=GAMMA (NUM) / (STE (NUM)-STE (NUM-1))* (STE (NOM)
    CC2=GAMMA (NUM) / (STE (NUM)-STE (NUM-1))* (STE (NOM)
    *-STE(NOM+1)))
    *-STE(NOM+1)))
        CC 3=GAMHA (NUM+1)/((STE(NUM+1) - STE (NUM))*(STE (NUA+1)
        CC 3=GAMHA (NUM+1)/((STE(NUM+1) - STE (NUM))*(STE (NUA+1)
    *-STE(NUM-1)))
    *-STE(NUM-1)))
        POL (1) =CC1+CC2*CC3
        POL (1) =CC1+CC2*CC3
        POL(2)=-(CC1*(STE(NOM+1)+STE(NOM))+CC2* (STE (NUM-1)+
        POL(2)=-(CC1*(STE(NOM+1)+STE(NOM))+CC2* (STE (NUM-1)+
    *STE (NOM+1)) +CC3*(STE(NU&-1)&STE(NUM)))
    *STE (NOM+1)) +CC3*(STE(NU&-1)&STE(NUM)))
        POL (3)=(CC1*STE (NUT)*STE (NOH+1)) +(CC2*STE (NUM-1)*STE
        POL (3)=(CC1*STE (NUT)*STE (NOH+1)) +(CC2*STE (NUM-1)*STE
    *(NOM+1))+(CC3*STE (NOM)*STE (NUH-1))
    *(NOM+1))+(CC3*STE (NOM)*STE (NUH-1))
        ACC=0,000001
        ACC=0,000001
        CALL FINDRO(POL, 2,XI*XLL,ROOT,ACC)
        CALL FINDRO(POL, 2,XI*XLL,ROOT,ACC)
        ROOT=DUMROT
        ROOT=DUMROT
        RETURN
```

 RETURN
    ```
```

9610. 1375 PRINT 1376
9611. 1376 PORMAT('-',5X, THE DIFFERENSE BRTGEEN LINEAR E POLY
9612. NONIAL IS LARGE')
9613. RETORN
9614. E\&D
9615. C
9616. C
9617. C
9618.
9619.
9620.
9621.
9622.
9623.
9624.
9625.
9626.
9627.
9628.
9629.
9630.
9631.
9632.
9633.
9634.
9635.
9636.
9637.
9638.
9639.
9640.
9641.
9642.
9643.
9644.
9645.
9646.
9647.
9648.
9649.
9650.
9651.
9652.
9653.
9654.
9655.
9656.
9657.
9658.
9659.
9660.
9661.
9662.
9663.
9664.
9665.
9666. C
9667. C
9668.
9669.
9670.
9671.
9672.
9673.

C

```
```

10250.
10251.
10252.
10253.
10254.
10255. C
10256. C
10257. C
10258.
10259.
10260.
10261.
10262.
10263.
10264.
10265.
10266.
10267.
10268.
10269.
10270.
10271.
10272.
10273.
10274.
10275.
10276.
10277.
10278.
10279.
10280.
10281.
10282.
10283.
10284.
10285.
10286.
10287.
10288.
10289.
10290.
10291.
10292.
10293.
10294.
10295.
10296.
10297.
10298.
10299.
10300.
10301.
10302.
10303.
10304.
10305.
10306.
10307.
10308.
10309.
10310.
10311.
10312.
10313.
```
```

 DO 1460 LR=1,TNE
    ```
    DO 1460 LR=1,TNE
    DSTAGL (LR)=STE (IND+IR)-ROOT
    DSTAGL (LR)=STE (IND+IR)-ROOT
1460 CONTINUE
1460 CONTINUE
RETURN
RETURN
END
END
C
C
    ONCTION VEL(DIST)
    ONCTION VEL(DIST)
    COMMON/SPERD/STC,GAMCON,GAA4CO,ROOT
    COMMON/SPERD/STC,GAMCON,GAA4CO,ROOT
    DIAENSION STC(61),GAH4CO(61).GAMCON(61)
    DIAENSION STC(61),GAH4CO(61).GAMCON(61)
    DO 1 I=1,59
    DO 1 I=1,59
    IP(STC(I).LT.DIST)GO TO 1
    IP(STC(I).LT.DIST)GO TO 1
    DUM=STC (I)-DIST
    DUM=STC (I)-DIST
    IF(DOM.EQ.O.0) GO TO 4
    IF(DOM.EQ.O.0) GO TO 4
    BUM=DIST-STC (I-1)
    BUM=DIST-STC (I-1)
    IP(BUH.EQ.O.0)GO TO 5
    IP(BUH.EQ.O.0)GO TO 5
    IF(DUA.GT.BUM)GO TO 2
    IF(DUA.GT.BUM)GO TO 2
    R=I
    R=I
    GO TO 3
    GO TO 3
2 K=I-1
2 K=I-1
    VEL = ((DIST-STC (K))*(DIST-STC (K+1))/((STC (K-1)-
    VEL = ((DIST-STC (K))*(DIST-STC (K+1))/((STC (K-1)-
    *STC (K))*(STC (K-1)-STC (K+1))))*GAM4CO (K-1) +(()DIS
    *STC (K))*(STC (K-1)-STC (K+1))))*GAM4CO (K-1) +(()DIS
    *T-STC (K-1))*(DIST-STC (K+1)))/((STC (K)-STC (K-1))*
    *T-STC (K-1))*(DIST-STC (K+1)))/((STC (K)-STC (K-1))*
    * (STC (K) - STC (K+1) )) *GAM4CO(K) +(((DIST-STC (K-1))*
    * (STC (K) - STC (K+1) )) *GAM4CO(K) +(((DIST-STC (K-1))*
    *(DIST-STC (R)))/((STC (K+1)-STC (K-1))* (STC (K+1)-
    *(DIST-STC (R)))/((STC (K+1)-STC (K-1))* (STC (K+1)-
    *STC (K)))I*GAM4CO(K+1)
    *STC (K)))I*GAM4CO(K+1)
        GO TO 7
        GO TO 7
1 CONTINOE
1 CONTINOE
4 \nablaEL =GAM4CO(I)
4 \nablaEL =GAM4CO(I)
        GO TO 7
        GO TO 7
5 VEL =GAM4CO (I-1)
5 VEL =GAM4CO (I-1)
7 RETURN
7 RETURN
        END
        END
        SUBROUTINE THCKNS(ROOT,GAMCON,RE,DSTUP,DSTLW, LASTUP,LASTDN,
        SUBROUTINE THCKNS(ROOT,GAMCON,RE,DSTUP,DSTLW, LASTUP,LASTDN,
    *LUP,LDN,IND,THICMO,THICHL,STC,NSTATU,NSTATL)
    *LUP,LDN,IND,THICMO,THICHL,STC,NSTATU,NSTATL)
        DIMENSION GAMCON(69),DSTUP(50),DSTLG(50),THICMO(50),THICML(50)
        DIMENSION GAMCON(69),DSTUP(50),DSTLG(50),THICMO(50),THICML(50)
        *,STC(61)
        *,STC(61)
        D1=STC (IND)-ROOT
        D1=STC (IND)-ROOT
        C1=GAMCON(IND-1)/((STC (IND-1) - STC (IND))* (STC (IND-1)-
        C1=GAMCON(IND-1)/((STC (IND-1) - STC (IND))* (STC (IND-1)-
        *STC(IND+9)))
        *STC(IND+9)))
            C2=GAMCON (IND) / ((STC (IND)-STC (IND-1))* (STC (IND)-STC (IND
            C2=GAMCON (IND) / ((STC (IND)-STC (IND-1))* (STC (IND)-STC (IND
        *+1)!)
        *+1)!)
        C3=GAMCON(IND+1)/((STC (IND+1)-STC (IND-1))*(STC (IND+1)-
        C3=GAMCON(IND+1)/((STC (IND+1)-STC (IND-1))*(STC (IND+1)-
        *STC (IND)))
        *STC (IND)))
        DVDS1=C1*(2.*ROOT-STC (IND)-STC (IND+1)) +C2*(2**ROOT-STC (IND-1)
        DVDS1=C1*(2.*ROOT-STC (IND)-STC (IND+1)) +C2*(2**ROOT-STC (IND-1)
        #mSTC(IND+1))+C 3*(2.*ROOT-STC (IHD-1)-STC (IND))
        #mSTC(IND+1))+C 3*(2.*ROOT-STC (IHD-1)-STC (IND))
        IF(D1.GT.0.0)GO TO 1
        IF(D1.GT.0.0)GO TO 1
        THICHO(1)=(0.075/RE)*(1./DVDS1)
        THICHO(1)=(0.075/RE)*(1./DVDS1)
        THICHL(1) =(0.075/RE)*(1./DVDS1)
        THICHL(1) =(0.075/RE)*(1./DVDS1)
        MSTATU=IND
        MSTATU=IND
        NSTATL=IND+9
        NSTATL=IND+9
        GO TO 2
        GO TO 2
1 THICMO(1) =(0.075/RE)*(1./DVDS1)
1 THICMO(1) =(0.075/RE)*(1./DVDS1)
        THICML (1) = (0.075/RE)*(1./DVDS1)
        THICML (1) = (0.075/RE)*(1./DVDS1)
        NSTATU=IND-1
        NSTATU=IND-1
        NSTATL=IND
        NSTATL=IND
        LUP=LASTUP-1
        LUP=LASTUP-1
    IF(D1.GT.0.0)THEN DO
    IF(D1.GT.0.0)THEN DO
    SINT=(ROOT-STC (IND-1))/10.
    SINT=(ROOT-STC (IND-1))/10.
    OINT=(0.0-GAHCON (IND-1))/10.
    OINT=(0.0-GAHCON (IND-1))/10.
    O=UINT
    O=UINT
    SUM=0.0
    SUM=0.0
    DO 50 I=1,9
```

 DO 50 I=1,9
    ```
\begin{tabular}{|c|c|c|}
\hline 10890. & & \(P=(0 * * 5) * 2.0\) \\
\hline 10900. & & SUM \(=\) SOM +F \\
\hline 10910. & & \(\mathrm{O}=0+\mathrm{OINT}\) \\
\hline 10920. & 50 & CONTIMOE \\
\hline 10930. & & SOM \(=\) SOM + (OINT*10.) **5 \\
\hline 10940. & &  \\
\hline 10950. & & SINTL= \((S T C\) (IND \()=\) ROOT \(/ 10.0\) \\
\hline 10960. & & OINTL \(=(\operatorname{GAMCON}(\mathrm{IND})-0.0) / 10.0\) \\
\hline 10970. & & O=OINTL \\
\hline 10980. & & SUM \(=0.0\) \\
\hline 10990. & & DO \(30 \mathrm{I}=1.9\) \\
\hline 11000. & & \(\mathrm{F}=(\mathrm{0} * * 5)\) \% 2.0 \\
\hline 11010. & & SUM \(=\) SUM +P \\
\hline 11020. & & \(\mathrm{U}=\mathrm{U}+\mathrm{OINTL}\) \\
\hline 11030. & 30 & CONTINUE \\
\hline 11040. & & SUR=SUM + (UINTL*90.0)**5 \\
\hline 11050. & & THICML (2) \(=0.5 *\) SUA*SINTL*0.45/(RE* (GAMCON(IND)**6) \()\) +THICML (1) \\
\hline 11060. & & ElSE DO \\
\hline 11070. & & SINT=(ROOT-STC (IRD) )/10. \\
\hline 11080. & & UINT \(=(0.0-G A M C O N(I N D) ~) / 90\). \\
\hline 11090. & & \(\mathrm{U}=\mathrm{OINT}\) \\
\hline 11100. & & \(S U M=0.0\) \\
\hline 11110. & & Do \(40 \quad I=1.9\) \\
\hline 11120. & & \(\mathrm{F}=(0 * * 5) * 2.0\) \\
\hline 11130. & & SUM \(=\) SUA +F \\
\hline 11140. & & \(\mathrm{J}=\mathrm{O}+\) UINT \\
\hline 11150. & 40 & CONTINUE \\
\hline 11160. & & SUM=SUA+(UTNT* 10.)**5 \\
\hline 11170. & &  \\
\hline 11180. & & SINTL= \(\operatorname{STC}(\) IND +1\()-\mathrm{ROCI}) / 10.0\) \\
\hline 11190. & & UINTL \(=(\) GAMCON (IND* 1 ) -0.0\() / 10.0\) \\
\hline 11200. & & U=UINTL \\
\hline 11210. & & \(50 \mathrm{~m}=0.0\) \\
\hline 11220. & & D0 \(60 \mathrm{I}=1.9\) \\
\hline 11230. & & \(\mathrm{F}=(\mathrm{U} * * 5) * 2.0\) \\
\hline 11240. & & \(S U M=S U M+F\) \\
\hline 11250. & & \(0=\mathrm{U}+\mathrm{OINTL}\) \\
\hline 11260. & 60 & CONTINOE \\
\hline 11270. & & SOM \(=\) SUM + (OINTL* 10.1 )*5 \\
\hline 11280. & & IEICML (2) \(=0.5 *\) SUM*SINTL*0.45/(RE* (GAMCON(IND+1)**6)) +THICML (1) \\
\hline 11290. & & END IP \\
\hline 11300. & & \(\mathrm{N}=10\) \\
\hline 11310. & & \(\mathrm{FN}=\mathrm{N}\) \\
\hline 11320. & & DO \(10 \mathrm{I}=2 . \mathrm{LASTUP}\) \\
\hline 11330. & & \(\mathrm{A}=\mathrm{DSTUP}(\mathrm{I}-1)\) \\
\hline 11340. & & \(\mathrm{B}=\mathrm{DSTOP}(\mathrm{I})\) \\
\hline 11350. & & \(\mathrm{DX}=(\mathrm{B}-\mathrm{A}) / \mathrm{PN}\) \\
\hline 11360. & & TDX \(=2 . * D X\) \\
\hline 11370. & & FIT \(=\mathrm{FS}(\mathrm{ROOT}-\mathrm{A})+\mathrm{FS}(\mathrm{ROOT}-\mathrm{B})\) \\
\hline 11380. & & \(\mathrm{FI} 2=0.0\) \\
\hline 11390. & & \(\mathrm{PI} 3=0.0\) \\
\hline 11400. & & \(\mathrm{NN}=\mathrm{N} / 2\) \\
\hline 11410. & & \(\mathrm{X}=\mathrm{A}+\mathrm{DX}\) \\
\hline 11420. & & Do \(3 \mathrm{~J}=1 . \mathrm{NN}\) \\
\hline 11430. & & FI2 \(=\) FI2 + FS ( \(\mathrm{ROOT}-\mathrm{X}\) ) \\
\hline 11440. & 3 & \(X=X+T D X\) \\
\hline 11450. & & \(\mathrm{X}=\mathrm{A}\) \\
\hline 11460. & & \(\mathrm{NM}=\mathrm{NN}-1\) \\
\hline 11470. & & DO \(4 \mathrm{~J}=1 . \mathrm{NH}\) \\
\hline 11480. & & \(\mathrm{X}=\mathrm{X}+\mathrm{TDX}\) \\
\hline 11490. & 4 & \(\mathrm{PI} 3=\mathrm{FI} 3+\mathrm{FS}(\mathrm{ROOT}-\mathrm{X})\) \\
\hline 11500. & & \(\mathrm{PI}=\mathrm{DX*}(\mathrm{PI} 1+4.0\) * \(\mathrm{PI} 2+2.0 * \mathrm{PI} 3) / 3.0\) \\
\hline 11510. & &  \\
\hline 11520. & &  \\
\hline
\end{tabular}
```

11530.
11531.
11532.
11533.
11534.
11535.
11536.
11537.
11538.
11539.
11540.
11541.
11542.
11543.
11544.
11545.
11546.
11547.
11548.
11549.
11550.
11551.
11552.
11553.
11554.
11555.
11556.
11557.
11558.
11559.
11560.
11561.
11562.
11563.
11564.
11565.
11566.
11567.
11568.
11569.
11570.
11571.
11572.
11573.
11574.
11575.
11576.
11577.
11578.
11579.
11580.
11581.
11582.
11583.
11584.
11585.
11586.
11587.
11588.
11589.
11590.
11591.
11592.
11593.
```

CONTINUE
LDN＝LASTDN－1
DO \(20 \mathrm{~J}=2 . \mathrm{IASTDN}\)
\(A=D \operatorname{STL}(J-1)\)
\(B=D S T L H(J)\)
\(D X=\left(B^{-\infty} A\right) / F N\)
\(T D X=2.0 * D X\)
PI \(1=\mathrm{FS}(\mathrm{BOOT}+\mathrm{A})+\mathrm{PS}(\mathrm{HOOT}+\mathrm{B})\)
\(P I 2=0.0\)
\(P I 3=0.0\)
\(\mathrm{N}=\mathrm{N}=\mathrm{N} / 2\)
\(X=A+D X\)
DO \(5 K=1, \mathrm{NN}\)
PI2 \(=\) FI \(2+P S(R O O T+X)\)
\(X=X+T D X\)
\(X=A\)
\(N M=N N-1\)
DO \(6 \mathrm{~L}=1, \mathrm{NM}\)
\(\mathrm{X}=\mathrm{X}+\mathrm{T} \mathrm{DX}\)
PI \(3=\mathrm{FI} 3+\mathrm{FS}(\) ROOT +X\()\)
\(\mathrm{FI}=\mathrm{DX} *(\mathrm{FI} 1+4.0 * \mathrm{FI} 2+2.0 * \mathrm{FI} 3) / 3.0\)
TMOMDN \(=0.45 * P I /(R E *(G A M C O N(N S T A T L-2 \$ J) * 6))\)
THICML（J）＝THICML \((\mathrm{J}-1)+\mathrm{T}\) MOMDN
CONTINUE
RETURN
END
SUBROUTINE SEPRET（RE，GRADD，THICMU，THICML，LASTOP，LASTDN，PAEAMO，
＊PARAML，SEPUP，SEPLON，VSEPU，VSEPL，DSTUP，DSTLG，ROOT，IND，LSEPD，LSEPL，
＊\({ }^{\text {NSTATU．NSTATL）}}\)
DIAENSION GRADD（61），THICMU（50），THICAL（50），PABAMU（50），PARAML（50），
＊DSTUP（50） \(\operatorname{DSTL}\)（50）
CALCULATION OF PARAMETER \(H\)
LOP＝LASTOP－1
\(L D N=L A S T D N=1\)
PARAMU（1）\(=-0.075\)
PARAAL（1）\(=-0.075\)
DO \(10 I=2\) ，LASTUP
PARAMO（I）\(=-\operatorname{THICMO}(I) * R E * G R A D D(N S T A I J+2-I)\)
LSEPU＝I
IP（PARAMO（I）．GT．0．09）GO TO 15
10 CONTINUE
15 DO \(20 \mathrm{~J}=2, \mathrm{IASTDN}\)
PARABL \((J)=T H I C M L(J)\) \＃RE＊GRADD（NSTATL＊J－2）＊（－1．）
LSEPL＝J
IP（PARAML（J）．GT．0．09）GO TO 25
20 CONTINUE
25 SEPUP＝（DSTUP（LSEPU）\(-D S T U P(L S E P U-I)) /(P A R A M U(L S E P U)=P A R A M U(\)
＊LSEPU＝1）＊（0．09－PARAGU（LSEPU－11）©DSTUP（LSEPU－1）
SEPLOW＝（DSTLG（LSEPL）－DSTLG（LSEPL－1））／（PARABL（LSEPL）－PARAML（
＊LSEPL－1）＊（0．09－PARAML（LSEPL－1））＊DSTLG（LSEPL－1）
VSEPU＝VINT（ROOT－SEPUP）
VSEPL＝VINT（ROOT + SEPLOH）
RETURN
END
SUBROUTINE DISPLTSEPUP，SEPLOW，DSTUP，DSTLH，THICAJ。
＊THICAL，PARAMU，PARAML，IND，DPLAC，DPLAL，LSEPO，LSERL，
＊DISPU，DISPL，NUP，NLOW）
DIMENSION DSTUP（50），DSTLY（50），PARAMU（50），PARAML（50）。
＊THIC目U（50），THICBL（50），DPLAC（50），DPLAL（50）
NUP＝LSEPO～1
DO \(10 \quad I=1 . \mathrm{NUP}\)
EABEQ＝PARAHO（I）
DPLAC（I）＝HPAB（EAREQ）＊SQRT（TRICMU（I））
10
```

 CONTINOE
    ```
12170. 12180. 12190.
12200.
12210.
12220.
12230.
12240.
12250.
12260.
12270.
12280.
12290.

12300．
12310.
12320.
12330.
12340.

12350
12360 ．
12370.
12380.
12390.
12400.
12410.

12420．
12430.

12440．
12450.
12460.
12470.

12480．
12490.
12500.
12510.

12520．
12530.
12540.

12550．
12560．
12570.
12580.
12590.
12600.
12610.
12620.
12630.

12640．
12650.
12660.
12670.
12680.
12690.
12700.
12710.

12720．
12730.
12740.

12750．
12760.
12770.
12780.

12790．
12800．

KLO \(\mathrm{H}=\mathrm{LSEPL}-1\)
DO \(20 \mathrm{~J}=1\) ， NLOW
EMREQ＝PARAML（J）
DPLAL（J）＝HPAM（EMBEQ）＊SQRT（THICHL（J））
THIMU＝（THICMO（NUP＋1）－THICAU（ROP））／（DSTUP（NOP＋1）－DSTUR（NOP））＊
＊（SEPUP－DSTUP（NUP））＋THICMO（NOP）
DISPO \(=3.55 *\) SQRT（TAIMU）
THIAL＝（THICML（NLOW＋1）－THICML（NLOW））／（DSTL甘（NLOH＋1）－DSTLY（NLOH））＊
＊（SEPLOH－DSTL年（NLOA））＋THICAL（NLOW）
DISPL＝3．55＊SQRT（THIML）
RETURN
END
SUBROUTINE DISLOP（DSTUP，DSTLG，LSEPU，LSEPL，DPLAC，DPLAL，DISPU，
＊DISPL，DDDSO，DDDSL，DDOP，DDLOH，SEPUP，SEPLOH，NOP，NLOH，CHK）
DIAENSION DSTUP（50），DSTL
＊DDDSL（40），CHK（40）
\(\mathrm{NOP}=\mathrm{LSEPD}-1\)
DPLAC（NUP＋9）＝DISPO
DO \(20 \mathrm{I}=2\) ，NOP
\(\approx 1=\operatorname{DPLAC}(\mathrm{I}-1) /((\operatorname{DSTUP}(\mathrm{I}-1)-\operatorname{DSTOP}(\mathrm{I})) *(\operatorname{DSTOP}(\mathrm{I}-1)-\operatorname{DSTOP}(\mathrm{I}+1)))\)
c2＝DPLAC（I）／（（DSTUP（I）－DSTUP（I－1））＊（DSTUP（I）－DSTUP（I＋1）））
C 3＝DPLAC（I＋1）／（（DSTUP（I＋1）－DSTUP（I－1））＊（DSTUP（I＋1）－DSTUP（I）））

＊DSTOP \((I-1)-\operatorname{DSTUP}(I+1))+C 3 *(\operatorname{DSTOP}(I) * 20-\operatorname{DSTOP}(I-1)-\operatorname{DSTUP}(I))\)
COATINUE
DO． \(1516 \mathrm{KT}=1\) ，NUP
\(\operatorname{DDDSO}(K T)=(D P L A C(K T+1)-\operatorname{DPLAC}(K T)) /(D S T O P(K T+1)-D S T O P(K T))\)
1516 CONTINOE
NLO日＝LSEPL－1
DRLAL（NLOM＋1）\(=\) DISPL
DO \(1517 \mathrm{KV}=1\) ，NLOH
DDDSL \((K V)=(D P L A L(K \nabla+1)=\operatorname{DPLAL}(K V)) /(D S T L \&(K 甘+1)-D S T L G(K V))\)
1517 CONTINUE
NEG＝LSEPD－12
IF（NEW．LE．O）GO TO 2366
DO 2360 I＝NER，NOP
IP（DDDSU（I）．LT．DDDSU（I－1））GO TO 2360
\(\operatorname{DIFF}=\operatorname{ABS}(D D D S D(I-3)-\operatorname{DDDSU}(I-4))\)
GO TO 2361
2360 CONTINOE
2361 DO \(2362 \mathrm{~J}=\mathrm{I}\) ，NUP
\(\operatorname{DDDSU}(\mathrm{J})=\operatorname{DIFF}+\operatorname{DDDSU}(\mathrm{J}=1)\)
2362 CONTINOE
2366 NER＝LSEPL－ 12
IF（NE日，LE．O）GO TO 2367
DO 2363 I＝NEG，NLO日
IP（DDDSL（I）．LT：DDDSI（I－1））GO 2363
DIFF＝ABS（DDDSL（I－3）－DDDSL（I－4））
GO TO 2364
2363 CONTINUE
2364 DO \(2365 \mathrm{~J}=\mathrm{I}, \mathrm{NLO}\)
DDDSL（ \(J\) ）＝DIFF＋DDDSL（ \(\mathrm{J}=1\) ）
2365 CONTINOE
2367 I＝LSEPO－1
\(\operatorname{DDOP}=((\operatorname{SEPUP}-D S T U P(I-2)) *(S E P U P-D S T U P(I-1))) /((D S T U P(I-3)-D S T U P\)
＊\((I-2)) *(\operatorname{DSTUP}(I-3)-\operatorname{DSTUP}(I-1))) * \operatorname{DDSU}(\mathrm{I}-3)+((\operatorname{SEPOP}-\operatorname{DSTUP}(\mathrm{I}-3))\)＊
＊（SEPUP－DSTUP \((I-1))) /(\operatorname{DSTOP}(I-2)-\operatorname{DSTUP}(I-3)) *(D S T O P(I-2)-D S T U P\)
＊（I－1）））＊DDDSO（I－2）\(+((\operatorname{SEPUP}-\operatorname{DSTOP}(\mathrm{T}-3)) *(\operatorname{SEPUP-DSTUP}(\mathrm{I}-2))) /((\mathrm{DS}\)
＊TUP \((I-1)-\operatorname{DSTUP}(I-3)) *(\operatorname{DSTOP}(I-1)-\operatorname{DSTOP}(I-2)) * \operatorname{DDDSU}(I-1)\)
\(\mathrm{J}=\mathrm{L}\) SEPL－-1
DDLOH＝（（SERLO日－DSTL自（J－2））＊（SEPLO日－DSTLG（J－1）））／（（DSTLG（J－3）－DST


12810.
12820.

12830 12840 。 12850. 12860 12870 ． 12880 12890. 12900. 12910． 12920 12930. 12940 12950. 12960 。 12970. 12980 12990. 13000 13010. 13020． 13030 ． 13040． 13050. 13060 ． 13070. 13080. 13090. 13100. 13110. 13120。 13130. 13140. 13150. 13160. 13170. \(13180^{\circ}\) 13190. 13200． 13210. 13220. 13230. 13240 ． 13250. 13260. 13270. 13280. 13290. 13300. 13310. 13320. 13330. 13340. 13350． 13360. 13370. 13380. 13390. 13400 ． 13410. 13420. 13430. 13440.
＊TLW（J－2）－DSTLG（J－3））＊（DSTL甘（J－2）－DSTL日（J－1）））＊DDDSL（J－2）＋（（SEPLO
＊日－DSTL日（J－3））＊（SEPLOW－DSTLW（J－2）））／（（DSTL日（J－1）－DSTLG（J－3））＊（DST

\(\operatorname{DDDSU}(\mathrm{NUP}+1)=\mathrm{DDUP}\)
\(\operatorname{DDDSL}(\mathrm{NLOH}+1)=\) DDLOM
beturn
END
SUBROUTINE ANVEGR（ALPHA，NN，DUDS）
DIMENSION XN（61），YN（61）．THETA（61），PAI（61），OCIR（61）。
＊VCIR（61），DODT（61），DVDT（61），DODS（61），BELL（61）
＊，UELL（61），VELL（61），PEIN（61），XCON（61），YCON（61）
\(\mathrm{N}=\mathrm{N} \mathrm{N}-1\)
\(A=0.5\)
\(\mathrm{BB}=\mathrm{AA} / 6.0\)
PI＝4．0＊ATAN \((1,0)\)
\(\mathrm{CSQR}=A \mathrm{~A} * * 2-B B^{*} * 2\)
\(\operatorname{RSQR}=(A A+B B) * * 2\)
DO \(1330 \quad I=1\) ， NN
PHIN（I）\(=2.0\)＊PI＊（I－1）／N
\(X N(I)=0.5 *(1.0+\operatorname{COS}(P H I N(I)))\)
IF（I．LE．NN／2）THEN DO
\(Y \mathrm{~N}(\mathrm{I})=2.0+\mathrm{BB} * \operatorname{SQRT}\left(1.0-\left((\mathrm{XN}(\mathrm{I})=.5) * * 2 / \mathrm{A} \mathrm{A}^{* *} 2\right)\right)\)
ELSE DO
\(\mathrm{YN}(\mathrm{I})=2.0-\mathrm{BB} * \mathrm{SQRT}(1.0-(\mathrm{XN}(\mathrm{I})-.5) * * 2 / \mathrm{AB} * 2))\)
END IF
1330 CONTINUP
DO \(1310 \mathrm{KE}=1\) ， N
\(X \operatorname{CON}(K E)=(X N(R E)+X N(K E+1)) / 2.0\)
\(Y \operatorname{CON}(K E)=(Y N(K E)+Y N(K E+1)) / 2.0\)
PAI（KE）\(=\operatorname{ATAN} 2((\operatorname{YCON}(K E)-2.0),(X C O N(K E)-0.5))\)
THETA（KE）＝ATAN（6．＊TAN（PAI（KE）））
IF（PAI（KE）．GT，O，O．AND，KE，GT．N／2）PAI（KE）\(=P I+P A I(K E)\)
IF（THETA（KE）－GT，O．O．AND．KE．LE． \(\mathrm{H} / 2\) ）THETA（KE）＝PI＋THETA（KE）

1310 continue
DO \(1300 \mathrm{KD}=1, \mathrm{~N}\)
\(\operatorname{UCIR}(K D)=\operatorname{COS}(A L P E A)-\operatorname{COS}(A L P H A-2.0 * P H E T A(K D))+2\).
＊＊SIN（ALPHA）＊SIN（THETA（RD））
\(\operatorname{VCIR}(K D)=\operatorname{SIN}(A L P E A)+\operatorname{SIN}(A L P H A-2.0 * I H E T A(K D))-2\) ．
＊＊SIN（ALPHA）＊COS（THETA（KD））
FACT \(9=1.0-(\operatorname{CSQR} / R S Q R) * \operatorname{COS}(2.0 * T H E T A(K D))\)
FACT2＝（CSQR／RSQR）＊SIN（2．0＊THETA（KD））
F1 \(=\) FACT \(1 /((\) PACT 1\() * * 2+(\) FACT 2\() * * 2)\)
\(\mathrm{P} 2=-\mathrm{FACT} 2 /((\mathrm{PACT} 1) * * 2+(\mathrm{PACT} 2) * * 2)\)
\(\square \mathrm{ELL}(\mathrm{KD})=\mathrm{UCIR}(\mathrm{KD}) * \mathrm{~F} 1+\mathrm{VCIR}(\mathrm{KD}) * \mathrm{~F} 2\)
VELL（KD）\(={ }^{-\infty}(\mathrm{UCIR}(\mathrm{KD}) * F 2-\mathrm{VCIR}(\mathrm{KD}) * \mathrm{~F} 1)\)
RELL（KD）\(=\operatorname{SQRT}(U E L L(K D) * * 2 * V E L L(K D) * * 2)\)
IF（KD．LE．N／2）THEN DO
IF（VELL（KD）．GT．0．0．AND．UELL（KD）．GT．0．0）RELL（KD）\(=-\) RELL（KD）
IF（VELL（KD）．LE．0．0．AND．UELL（KD）．GT．0．0）RELL（KD）＝－RELL（KD）
ELSE DO
IP（UELL（KD）．LT． 0.0 ．AND．VELL（KD）．GT． 0.0 ）RELL（KD）\(=-\) RELL（KD）
END IP
IP（KD．LEa \(/ 2\) ）THEN DO
OELL（KD）\(=-\operatorname{DELL}(K D)\)
\(V E L L(K D)=-\nabla E L L(K D)\)
END IF
IP（KD．GT．N／2．AND．BELL（KD）．LT． 0,0 ）THEN DO
\(\square E L L(K D)=-\square E L L(K D)\)
VELL（KD）\(=\mathbf{- V E L L}(K D)\)
END IF
\(D I S=S Q R T((X N(K D)-0.5) * * 2+(Y N(K D)-2.0) * 2)\)
\(\operatorname{CON} 1=1 .-(C S Q B / R S Q R) * \operatorname{COS}(2.0 * T H E T A(K D))\)
\(\operatorname{CON} 2=(\operatorname{CSQR} / \mathrm{RSQR}) * \operatorname{SIN}(2.0 * T H E T A(K D))\)
13450. 13460. 13470. 13480. 13490. 13500. 13510. 13520. 13530. 13540. 13550. 13560. 13570. 13580. 13590. 13600. 13610. 13620. 13630. 13640. 13650. 13660. 13670. 13680. 13690. 13700. 13710. 13720. 13730. 13740. 13750. 13760. 13770. 13780. 13790. 13900. 13810. 13820. 13830. 13840. 13850. 13860. 13870. 13880. 13890. 13900. 13910. 13920. 13930. 13940. 13950. 13960. 13970. 13980. 13990. 14000. 14010. 14020. 14030. 14040. 14050. 14060. 14070. 14080.
    \(\operatorname{con} 3=(\cos 1 * * 2)+(\operatorname{CoN} 2 * * 2)\)
    \(\operatorname{CON} 4=(A L P H A-2.0\) सTHETA (KD) \()\)
    \(\operatorname{CON} 5=\operatorname{COS}(\operatorname{ALPRA})-\operatorname{COS}(\operatorname{CON} 4)+2 * * \operatorname{SIN}(\operatorname{ALPHA}) * \operatorname{SIN}(\)
    *THETA (KD)
    \(\operatorname{CON} 6=\operatorname{SIN}(A L P H A)+\operatorname{SIN}(\operatorname{CON} 4)-2.0 * \operatorname{SIN}(A L P H A) * \operatorname{COS}(\)
    *THETA(KD)
    \(\operatorname{CON} 7=4.0 * \operatorname{CON} 7 * \operatorname{CON} 2+4.0 * \operatorname{CON} 2 *(\mathrm{CSQR} / \mathrm{BS} Q \mathrm{R}) * \operatorname{COS}(2.0 *\)
    *THETA (KD) )
    \(\operatorname{CON} 8=\operatorname{CON} 3 * * 2\)
    DUDT (KD) \(=(-2.0 * \operatorname{SIN}(\operatorname{CON4})+2.0 * \operatorname{SIN}(A L P H A) * \operatorname{COS}(T H E\)
    *TA \((K D))) *(\operatorname{CON} 1 / \operatorname{CON} 3)+(\operatorname{CON} 5) *(((\operatorname{CON} 3 * 2.0 * \operatorname{CON} 2)-\)
    * \((\operatorname{CON} 1 * \operatorname{CCN} 7)) / \operatorname{CON} 8)+(-2.0 * \operatorname{COS}(\operatorname{CON} 4)+2.0 * \operatorname{SIN}(A L P H A) * S I N\)
    * (THETA \((K D))) *(-\operatorname{CON} 2 / \operatorname{CON} 3)+(\operatorname{CON} 6) *((\operatorname{CON} 3 *(-2.0 *(\operatorname{CSQR}\)
    */RSQR)*COS (2.0*THETA (KD) )) ) \(-(-\operatorname{CON} 2 * \operatorname{CON} 7)) / \operatorname{CON} 8)\)
        DVDT \((K D)=(-2.0 * \operatorname{SIN}(\operatorname{CON4})+2.0 * \operatorname{SIN}(A L P H A) * C O S(T H E T A(K D\)
    *) ) ) * \((-\operatorname{Con} 2 / \operatorname{CON} 3)+(\operatorname{CON} 5) *((\operatorname{CON} 3 *(-2.0 *(\operatorname{CSQR} / \mathrm{RSQR}) * \operatorname{COS}(\)
    *2.00*THETA (KD) ) ) \(-(-\operatorname{CON} 2 * \operatorname{CON} 7)) / \operatorname{CON} 8)-(-2.0 * \operatorname{COS}(\operatorname{CON}\)
    *4) \(+2.0 * \operatorname{SIN}(\operatorname{ALPHA}) * \operatorname{SIN}(T H E T A(K D))) *(\operatorname{CON} 1 / \operatorname{CON} 3)-(\operatorname{CON} 6)\)
    ** ( \(((\operatorname{CON} 3 * 2.0 * \operatorname{CoN} 2)-(\operatorname{CON} 1 * \operatorname{Con} 7)) / \operatorname{CoN} 81\)
        DRDP=-35.*DIS*SIN(2.*PAI (RD) )/(37.-35.*COS (2.*PAI (KD)) )
        DTDP=6.*(COS (THETA (KD))**2) /( \(\operatorname{Cos}(\mathrm{PAI}(K D)) * * 2)\)
        DPDS \(=1.0 /(S Q R T(D I S * * 2+D R D P * * 2))\)
        \(\operatorname{DUDT}(K D)=\operatorname{DODT}(K D) * D T D P * D P D S\)
        DVDT \((K D)=D V D T(K D) * D T D P * D P D S\)
        \(\operatorname{DUDS}(K D)=(O E L L(K D) * D O D T(K D)+V E L L(K D) * D V D T(K D)) /\)
    * (SQRT (UELL (KD) **2*VELL (KD) **2))
1300 CONTINUE
        beturn
        END
    SUBROUTINE SHIPT(N,NS, XCON, YCON,DEL,ELEN, RH, XCONM。
    * Y CONA, DELA, ELENA, BHH)
        DIAENSION XCON (60), YCON (60), DEL (60), ELEN (60), BR (50),
    * \(\mathrm{ICONa}(60)\). YCONa ( 60 ), DELM ( 60 ), ELENM ( 60 ), BRH ( 60 )
        DO 1 M \(Y=1,60\)
        IF (HY. LE. \((N-(N S-1)))\) THEN DO
        \(\mathrm{AY} 3=\mathrm{BY}+(\mathrm{NS}-1)\)
        \(X \operatorname{CONM}(\mathrm{AY})=X \operatorname{CON}(\operatorname{HY} 3)\)
        \(Y \operatorname{CONA}(\mathrm{AY})=\mathrm{YCON}(\) (AY 3\()\)
        \(\operatorname{ELENM}(M Y)=\operatorname{ELEN}(M Y 3)\)
        \(\operatorname{DELN}(\mathrm{MY})=\mathrm{DEL}\) (MY3)
        RHH (MY) \(=\mathrm{BH}\) (MY3)
        ELSE DO
        MY \(3=\mathrm{MY}-(\mathrm{N}-(\mathrm{NS}-1))\)
        \(X \operatorname{CONA}(M Y)=X \operatorname{CON}(M Y 3)\)
        \(\mathrm{YCONM}(\mathrm{HY})=\mathrm{YCON}\left(\mathrm{HY} \mathrm{Y}_{3}\right)\)
        DELA (MY) =DEL (MY3)
        ELENA (MY) =ELEN(MY3)
        RHH (AX) \(=\mathrm{BH}\) (MY3)
        ERD IF
            CONTINOE
        beturn
        END
        SUBROUTINE SOURCE(XCON,YCON,DEL,ELEN, QSEP, LSEPD, LSERL, NSTATU,

        DIMENSION XI \((60,60)\), \(\operatorname{ETA}(60,60)\), RCON \((61), Y C O N(61), \operatorname{CONS} 1(\)
    * 60,60 ), CONS \(2(60,60), \operatorname{CONSA}(60,60), \operatorname{CONSB}(65,60)\), DEL \((60)\), ELEN
    (60) , ON (60), OT (60), COEPA \((60,60), \operatorname{COEPB}(60,60), \operatorname{COEF}(60,61)\), , IG
    * (60), SIGMA \((60,5)\), TANG \((60,60)\), BETA \((50), 00(60,60)\), VU \((60,60)\).
    *GAMCON (61), DDDSO (40), DDDSL (40), \(\operatorname{COFT}(60,60), \operatorname{HKAREA}(4000)\)
    DIAENSION CONSX \((60,60), \operatorname{CONSY}(60,60), \operatorname{COEFO}(60,60), \operatorname{SIG} 2(60)\)
    PI=4.0\%ATAN(1.0)
        DO \(50 \mathrm{~K}=1\), H
        DO \(60 \quad \mathrm{~L}=1\). N
        \(\operatorname{IF}(D E L(L) \cdot G T \cdot(P I / 2.) \cdot A N D . D E L(L) \cdot L T \cdot P I) B E T A(L)=D E L(L)-P I\)
14090.
14100.
14110.
14120.
14130.
14140.
14150.
14160.

14170．
14180.
14190.
14200.

14210 。
14220 a
14230.

14240 ．
14250.
14260.
14270.
14280.
14290.
14300.
14310.

14320 ．
14330
14340.
14350.
14360.

14370
14380.

14390 。
14400.

14490
14420.

14430 ．
14440.

14450
14460 ．
14470
14480 ．
14490.
14500.
14510.
14520.
14530.
14540.

14550 ．
14560
14570.
14580.

14590
14600
14610 14620. 14630 14640 ． 14650. 14660 14670. 14680. 14690. 14700.
14710. 14720.

IF（DEL（L）－GT．PI．AND．DEL（L）．LT•（1．5＊PI））BETA（L）＝DEL（L）－PI IF（DEL（L）．GT．（1．5＊PI）．AND．DEL（L）．LT．（2．＊PI））BETA（L）＝DEL（L）－PI
 \(X I(K, L)=(X C O N(K)-X C O N(L)) * \operatorname{COS}(B E T A(L))+(Y C O N(K)-Y C O N(L)) *\)
＊SIN（BETA（L）） \(\operatorname{ETA}(K, L)=(\operatorname{XCON}(K)-\operatorname{ICON}(L)) * \operatorname{COS}(B E T A(L))-(X C O N(K)-X C C N(L))\)
＊SIN（BETA（L））
60 CONTINUE
50 CONTINUE
DO \(90 \quad I=1, \mathrm{~N}\)
DO \(100 \mathrm{~J}=1, \mathrm{~N}\)
IF（J．EQ：I）GO TO 110
\(R 1=S Q R T((X I(I, J) * 0.5 * \operatorname{ELEN}(J)) \neq 2+E T A(I, J) * 2)\)
R2 \(=\operatorname{SQRT}((X I(I, J)=0.5 * E L E N(J)) * * 2+E T A(I, J) * * 2)\)
IF \((X I(I, J), G T, 0,0, A N D . E T A(I, J), G T .0 .0) G O T O 31\)
\(\operatorname{IF}(X I(I, J) . L T 。 0.0 . A N D . E T A(I, J) . G T .0 .0) G O\) TO 32
IF（KI（I，J）．LT． \(0,0, A N D, E T A(I, J) . L T \& 0,0)\) GO TO 33
IP \((X I(I, J), G T, 0,0, A N D, E T A(I, J), L T, 0,0) G O\) TO 34
IF（ABS（XI（I，J））．GE．（o5＊EIEN（J）））THEN DO

PHIT＝PHIT＋PI
ELSE DO
PHI \(=\) ATAN（ETA \((I, J) /(X I(I, J) 4,5 * E L E N(J)))\)
END IF

PHI2＝PHI2＋PI
GO TO 38
33 IP（ABS（XI（I，J））．GT．（．5＊ELEN（J）））THEN DO
PHI \(1=A T A N(E T A(I, J) /(X I(I, J) *\)（ 5 ELEN（J）））
PRI1＝PHIi＋PI
ELSE DO
PHI \(1=A T A N(E T A(I, J) /(X I(I, J) 4,5\) \＆ELEN（J））） PHI 1＝PHI1＋2．＊PI
END IF
PHI2＝ATAN（ETA（I，J）／（XI（I，J）\(=.5\) 事ELEN（J））
\(\mathrm{PHI} 2=\mathrm{PHI} 2+\mathrm{PI}\)
GO TO 38
31 IF（ABS（XI（I，J））•GE．（．5＊ELEN（J）））THEN DO PEI2＝ATAN（ETA \((I, J) /(X I(I, J)=.5 * E L E N(J)))\) ELSE DO
PHI2 \(2=A T A N(E T A(I, J) /(X I(I, J)=.5 * E L E N(J)))\)
PHI 2＝PHI2 +PI
END IP
PHII＝ATAN（ETA（I，J）／（XI（I，J）+5 \＆ELEN（J））） GO TO 38
34 IF（ABS（XI（I，J））．GE．（s 5＊ELEN（J）））THEN DO PRI 2＝ATAN（ETA（I，J）／（XI（I，J）©．5＊ELEN（J）） PHI 2＝PHI242。＊PI
ELSE DO
PRI2＝ATAN（ETA \((I, J) /(X I(I, J) * 5 * E L E N(J)))\) PHI2＝PI＋PHI2
END IF
PHI \(1=A T A N(E T A(I, J) /(X I(I, J) *\)（ 5 \＃ELEN（J）））

\(38 A=X I(I, J)+0.5 * E L E N(J)\)

\(\forall \mathbb{V}(I, J)=(1 . /(2 . * P I)) *(\) PHI \(2 \infty\) PHI 1）
IP（DEL（J）．LT．PI．AND．DEL（J）：GT．（PI／2．））GO TO 111
IF（DEL（J）\＆GT．PI．AND．DEL（J）．LT。（1．5＊PI））GO TO 112

IP（DEL（J）．LT。（PI／2．）．AND．DEL（J）．GE，0．0）THEN DO
\(\operatorname{CONSX}(I, J)=U U(I, J) * \operatorname{COS}(D E L(J)+P I)+V U(I, J) * \operatorname{COS}((P I / 2) * P I+.D E L(J))\)
\(\operatorname{CONSY}(I, J)=00(I, J) * \operatorname{COS}(D E L(J)+P I / 20)+V U(I, J) * \operatorname{COS}(D E I(J) \leftarrow P I)\)
END IP
```

14730.
14731.
14732.
14733.
14734.
14735.
14736.
14737.
14738.
14739.
14740.
14741.
14742.
14743.
14744.
14745.
14746.
14747.
14748.
14749.
14750.
14751.
14752.
14753.
14754.
14755.
14756.
14757.
14758.
14759.
14760.
14761.
14762.
14763.
14764.
14765.
14766.
14767.
14768.
14769.
14770.
14771.
14772.
14773.
14774.
14775.
14776.
14777.
14778.
14779.
14780.
14781.
14782.
14783.
14784.
14785.
14786.
14787.
14788.
14789.
14790.
14791.
14792.
14793.
```
```

 GO TO }11
    ```
    GO TO }11
111 }\operatorname{CONSX(I,J)=0U(I,J)*\operatorname{COS}(\operatorname{PI-DEL}(J))+VU(I;J)*COS((PI/2.)-(PI-DEL(J)))
111 }\operatorname{CONSX(I,J)=0U(I,J)*\operatorname{COS}(\operatorname{PI-DEL}(J))+VU(I;J)*COS((PI/2.)-(PI-DEL(J)))
        CONSY(I,J)=OU(I,J)*COS((PI-DEL(J))*PI/2.) +VO(I,J)*COS(PI-DEL(J))
        CONSY(I,J)=OU(I,J)*COS((PI-DEL(J))*PI/2.) +VO(I,J)*COS(PI-DEL(J))
        GO TO 115
        GO TO 115
    112 }\operatorname{consX(I,J)=UO(I,J)*\operatorname{Cos(DEL (J) - PI) +VU(I,J)*COS (DEL (J)-PI) +PI/2.)}
    112 }\operatorname{consX(I,J)=UO(I,J)*\operatorname{Cos(DEL (J) - PI) +VU(I,J)*COS (DEL (J)-PI) +PI/2.)}
        CONSY(I,J)=UU(I,J)*\operatorname{COS}((PI/2.)-(DEL(J)-PI)) +VU(I,J)*\operatorname{COS(DEL(J)}
        CONSY(I,J)=UU(I,J)*\operatorname{COS}((PI/2.)-(DEL(J)-PI)) +VU(I,J)*\operatorname{COS(DEL(J)}
        **PI)
        **PI)
        GO TO }11
        GO TO }11
    113 }\operatorname{CONSX(I,J)=OU(I,J)*\operatorname{Cos(DEL (J) -PI) + VO(I,J)*COS (DEL(J)-PI/2.)}
    113 }\operatorname{CONSX(I,J)=OU(I,J)*\operatorname{Cos(DEL (J) -PI) + VO(I,J)*COS (DEL(J)-PI/2.)}
    CONSY(I,J)=OU(I,J)*CCS((PI/2.)-(2.*PI-DEL(J))) +VO(I,J)*COS
    CONSY(I,J)=OU(I,J)*CCS((PI/2.)-(2.*PI-DEL(J))) +VO(I,J)*COS
    * (DEL (J)-PI)
    * (DEL (J)-PI)
    115 COBFU(I,J)=CONSX(I,J)*COS (DEL (I) -PI/2.) +CONSY (I,J) *CCS (DEL (I) - PI)
    115 COBFU(I,J)=CONSX(I,J)*COS (DEL (I) -PI/2.) +CONSY (I,J) *CCS (DEL (I) - PI)
        GO To 100
        GO To 100
    110 COEFU (I,J)=0.5
    110 COEFU (I,J)=0.5
    100 CONTINUE
    100 CONTINUE
    90 CONTINOE
    90 CONTINOE
C calculation of normal veloctmies in amtached region
C calculation of normal veloctmies in amtached region
    NOP=LSEPU-2
    NOP=LSEPU-2
    DO 10 I=1,NOP
    DO 10 I=1,NOP
    UN(NSTATU-I+1)=GAMCCN(NSTATO-I+1)*DDDSO(I+1)*(-1.)
    UN(NSTATU-I+1)=GAMCCN(NSTATO-I+1)*DDDSO(I+1)*(-1.)
    10 contINJE
    10 contINJE
        NLOH=LSEPL-2
        NLOH=LSEPL-2
        DO 20 J=1,NLOW
        DO 20 J=1,NLOW
        ON(NSTATL+J-1)=DDDSL(J+1)*GAMCON(NSTATL+J-1)
        ON(NSTATL+J-1)=DDDSL(J+1)*GAMCON(NSTATL+J-1)
    20 CONTINOE
    20 CONTINOE
        NSTU=NSTATU-(LSEPU-2)
        NSTU=NSTATU-(LSEPU-2)
        DO 30 K=1,NSTU
        DO 30 K=1,NSTU
        ON(K)=SQRT(QSEP**2* (GAMCON(K))**2)
        ON(K)=SQRT(QSEP**2* (GAMCON(K))**2)
    30 conTINUE
    30 conTINUE
        NSTL=NSTATL+LSEPL-2
        NSTL=NSTATL+LSEPL-2
        DO 40 L=NSTL,N
        DO 40 L=NSTL,N
        c=QSEP**2-(GAMCON(L)**2)
        c=QSEP**2-(GAMCON(L)**2)
        IF(C.LE.0.0)THEN DO
        IF(C.LE.0.0)THEN DO
    UN(L) =0.0
    UN(L) =0.0
    GO TO 40
    GO TO 40
    END IF
    END IF
    UN(L)=SQRT(QSEP**2-(GAMCON(L))**2)
    UN(L)=SQRT(QSEP**2-(GAMCON(L))**2)
    40 CONTINUE
    40 CONTINUE
    DO 850 I=1,N
    DO 850 I=1,N
    SIG(I)=ON(I)
    SIG(I)=ON(I)
    850 CONTINUE
    850 CONTINUE
        IDGT=0
        IDGT=0
        CALL LEQT2F(COEFU, 1, NgN,SIG,IDGT,GKAREA,IER)
        CALL LEQT2F(COEFU, 1, NgN,SIG,IDGT,GKAREA,IER)
        IT=1
        IT=1
        DO }851\textrm{J}=1.\textrm{N
        DO }851\textrm{J}=1.\textrm{N
        SIGMA(J,IT)=SIG(J)
        SIGMA(J,IT)=SIG(J)
    85 CONTINOE
    85 CONTINOE
C
859 DO 852 I= T.N
859 DO 852 I= T.N
    SOM=0.0
    SOM=0.0
    DO 853 J=1.N
    DO 853 J=1.N
    IP(J.EQ.I)THEN DO
    IP(J.EQ.I)THEN DO
    TANG(I,J)=0.0
    TANG(I,J)=0.0
    ElSE DO
    ElSE DO
    TANG(I,J)={\operatorname{ConSX(I,J)*COS(DEL}(I))+\operatorname{CONSY(I,J)*SIN(DEL(I)))*SIGMA(}
    TANG(I,J)={\operatorname{ConSX(I,J)*COS(DEL}(I))+\operatorname{CONSY(I,J)*SIN(DEL(I)))*SIGMA(}
    *J.IT)
    *J.IT)
        END IF
        END IF
        SUM=SUM+TANG(I,J)
        SUM=SUM+TANG(I,J)
    853 CONTINUE
    853 CONTINUE
    OT(I)=SOM
    OT(I)=SOM
    852 CONTINUE
    852 CONTINUE
    KOD=2
    KOD=2
    IF(KOD,EQ.1)GO TO }85
    IF(KOD,EQ.1)GO TO }85
    DO 854 T=1,8STU
```

 DO 854 T=1,8STU
    ```
```

15370.
15371.
15372.
15373.
15374.
15375.
15376.
15377.
15378.
15379.
15380.
15381.
15382.
15383.
15384.
15385.
15386.
15387.
15388.
15389.
15390.
15391.
15392.
15393.
15394.
15395.
15396.
15397.
15398.

\$5650.
15660.
15670.
15680.
15690.
15700.
15710.
15720.
15730.
15740.
15750.
15760.
15770.
15780.
15790.
15800.
15810.
15820.
15830.
15840.
15850.
15860.
15870.
15880.
15890.
15900.
15910.
15920.
15930.
15940.
15950.
15960.
15970.
15980.
15990.

```
```

 C=QSEP**2-(GAMCON(I)+UT(I))苗%2
    ```
    C=QSEP**2-(GAMCON(I)+UT(I))苗%2
    IP(C.LT.O.O)THEN DO
    IP(C.LT.O.O)THEN DO
    UN(I)=0.0
    UN(I)=0.0
    ELSE DO
    ELSE DO
    ON(I)=SQRT (QSEP**2* (GAMCON (I) +OT(I))**2)
    ON(I)=SQRT (QSEP**2* (GAMCON (I) +OT(I))**2)
    END IF
    END IF
954 CONTINOE
954 CONTINOE
    DO 855 J=NSTL , %
    DO 855 J=NSTL , %
    C=QSEP**2-(GA&CO* (J) +UT (J))**2
    C=QSEP**2-(GA&CO* (J) +UT (J))**2
    IP(C.LT:O.0)THEN DO
    IP(C.LT:O.0)THEN DO
    UN(J)=0.0
    UN(J)=0.0
    ELSE DO
    ELSE DO
    ON(J)=SQRT(QSEP**2- (GAMCON(J)*UT(J))**2)
    ON(J)=SQRT(QSEP**2- (GAMCON(J)*UT(J))**2)
    END IF
    END IF
855 CONTINUE
855 CONTINUE
    DO }856\textrm{I}=1.
    DO }856\textrm{I}=1.
    SIG2(I)=0N(I)
    SIG2(I)=0N(I)
856 CONTINUE
856 CONTINUE
    IT=IT+1
    IT=IT+1
    CALL LEQT2F(COEFD,1,N,N,SIG2,IDGT&HKAREA.IEB)
    CALL LEQT2F(COEFD,1,N,N,SIG2,IDGT&HKAREA.IEB)
    DO 857 J=1.N
    DO 857 J=1.N
    SIG&A(J,IT)=SIG2(J)
    SIG&A(J,IT)=SIG2(J)
8 5 7 ~ C O N T I N U E
8 5 7 ~ C O N T I N U E
    IF(ABS((SIGMA (LSEPU,IT)-SIGHA(LSEPU,IT@I))/SIGHA(LSEPU,IT))
    IF(ABS((SIGMA (LSEPU,IT)-SIGHA(LSEPU,IT@I))/SIGHA(LSEPU,IT))
    *.LE.0.01)GO TO 858
    *.LE.0.01)GO TO 858
    GO TO 859
    GO TO 859
    RETURN
    RETURN
    END
    END
    SUBROUTINE DSTNCE(STC,IND.ROOT,DSTUP,DSTLG,LASTUP,LASTDN)
    SUBROUTINE DSTNCE(STC,IND.ROOT,DSTUP,DSTLG,LASTUP,LASTDN)
    DIMENSION STC(61),DSTUP(50),DSTLG(50)
    DIMENSION STC(61),DSTUP(50),DSTLG(50)
    DSTUP(1)=0.0
    DSTUP(1)=0.0
    DSTLG(1)=0.0
    DSTLG(1)=0.0
    D1=STC(IND)-ROOT
    D1=STC(IND)-ROOT
    IP(D1.GI:0.0)GO TO 5
    IP(D1.GI:0.0)GO TO 5
    INF=IND+1
    INF=IND+1
    DO 10 I=2,INP
    DO 10 I=2,INP
    DSTUP(I)=ROOT-STC(IND-I*2)
    DSTUP(I)=ROOT-STC(IND-I*2)
    CONTINOE
    CONTINOE
    LASTUP=INF
    LASTUP=INF
    gO TO 25
    gO TO 25
    IN=IND-1+1
    IN=IND-1+1
    DO }15\textrm{J}=2.I
    DO }15\textrm{J}=2.I
    DSTUP(J)=ROOT-STC(IND-J+1)
    DSTUP(J)=ROOT-STC(IND-J+1)
    CONTIROE
    CONTIROE
        LASTUP=IN
        LASTUP=IN
    25 IF(D1.GT. 0.0)GO TO 20
    25 IF(D1.GT. 0.0)GO TO 20
        INE=60-IND+1
        INE=60-IND+1
        DO 30 K=2.INE
        DO 30 K=2.INE
        DSTLW(K)=STC(IND+K-1)-ROOT
        DSTLW(K)=STC(IND+K-1)-ROOT
        CONTINUE
        CONTINUE
        LASTDN=INE
        LASTDN=INE
        GO TO 40
        GO TO 40
        INE=60-IND+2
        INE=60-IND+2
        DO 35 L=2,INE
        DO 35 L=2,INE
        DSTLW(L)=STC (IND+1-2)-ROOT
        DSTLW(L)=STC (IND+1-2)-ROOT
        CONTINUE
        CONTINUE
        LASTDN=INE
        LASTDN=INE
    4O RETURN
    4O RETURN
        END
        END
        SUBROOTINE COLIPT(GAMMA,GA*CON,STC,N,CL,STE)
        SUBROOTINE COLIPT(GAMMA,GA*CON,STC,N,CL,STE)
        DIMENSION GABMA(61),GAMCON(61),STC(61),SPE(61),CL(61)
        DIMENSION GABMA(61),GAMCON(61),STC(61),SPE(61),CL(61)
        CL(1)=((GABCON (1)*GAMMA(1))/2.0)*(STこ(1) =STE(1))
        CL(1)=((GABCON (1)*GAMMA(1))/2.0)*(STこ(1) =STE(1))
        DO 5 I=2,N
        DO 5 I=2,N
        A=STC (I- T)
```

 A=STC (I- T)
    ```
\begin{tabular}{|c|c|c|}
\hline 16000. & & \(\mathrm{B}=\mathrm{STC}(\mathrm{I})\) \\
\hline 16010. & & \(\mathrm{N} 1=10\) \\
\hline 16020. & & \(\mathrm{PN}=\mathrm{N} 1\) \\
\hline 16030. & & \(D \mathrm{X}=(\mathrm{B}-\mathrm{A}) / \mathrm{PN}\) \\
\hline 16040. & & TDX \(=2.0 * D X\) \\
\hline 16050. & & PI1 \(=\) VINT(A) + VINT (B) \\
\hline 16060. & & \(P I 2=0.0\) \\
\hline 16070. & & PI3 \(=0.0\) \\
\hline 16080. & & \(\mathrm{NH} 1=\mathrm{N} 1 / 2\) \\
\hline 96090. & & \(\mathrm{X}=\mathrm{A}+\mathrm{DX}\) \\
\hline 16100. & & DO \(3 \mathrm{~J}=1\), NN 1 \\
\hline 16110. & & FI2 \(=\) FI2* \(\mathrm{VINT}(\mathrm{X}\) ) \\
\hline 16120. & 3 & \(\mathrm{X}=\mathrm{X}+\mathrm{T}\) D X \\
\hline 16130. & & \(\mathrm{X}=\mathrm{A}\) \\
\hline 16140. & & NK=NN1-1 \\
\hline 16150. & & Do \(4 \mathrm{~K}=1\), NH \\
\hline 16160. & & \(\mathrm{X}=\mathrm{X}+\mathrm{TD} \mathrm{X}\) \\
\hline 16170. & 4 & FI3 \(=\) PI3 +VINT ( X ) \\
\hline 16180. & & \(\mathrm{FI}=\mathrm{DX*}(\mathrm{PI} 1+4\) * \(\mathrm{FI} 2+2\) * FI 3\() / 3\). \\
\hline 16190. & & \(C L(I)=C L(I-1)+F I\) \\
\hline 16200. & 5 & CONTINUE \\
\hline 16210. & & CL \((\mathrm{N}+1)=\mathrm{CL}(\mathrm{N})+(\) (GAMCON \((N)+G A M M A(N+1) / 2.0) *(\operatorname{STE}(\mathrm{~N}+1)-\operatorname{STC}(\mathrm{M})\) ) \\
\hline 16220. & & \(\operatorname{CL}(\mathrm{N}+1)=2.0 * \operatorname{CL}(\mathrm{~N}+1) *(-1\). \\
\hline 16230. & & RETURN \\
\hline 16240. & & END \\
\hline 16250. & & SUBROUTINE GAUS (ROOT, GARCON, RE, DSTUP, DSTLG, LASTUP, LASTDN, \\
\hline 16260. & & *OP, LDN, IND, TUM, TLM, STC, NSTATU, NSTATL) 50 , TUM (50), TIM (50) \\
\hline 16270. & & DIMENSION GABCON (61), DSTUP(50), DSTLH (50), TUM (50), TLA (50) \\
\hline 16280. & & *, STC (61), \(\mathrm{V}^{(3), Z(3)}\) \\
\hline 16290. & & D1 \(=\) STC (IND)-ROOT \\
\hline 16300. & & C1=GAMCON(IND-1)/( (STC (IND-1)-STC (IND) )*(STC (IND-1)-SIC(IND \\
\hline 16310. & & *+1)) ) \\
\hline 16320. & &  \\
\hline 16330. & & C3=GAMCON (IND+1)/( \((\operatorname{STC}(I N D+1)=\operatorname{STC}(1 N D-1)) *(S T C(I N D+1)-5 T C(I N D\) \\
\hline 16340. & &  \\
\hline 16350. & &  \\
\hline 16360. & & *-STC (IND+1) ) +C 3* (2**ROOT*STC (IMD-1) \(-\operatorname{STC}(\mathrm{SND})\) ) \\
\hline 16370. & & IF (D1.GT.0.0)GO TO 1 \\
\hline 16380. & &  \\
\hline 16390. & & TLM(1) \(=(.075 / \mathrm{RE}) *(1 . / D V D S 1)\) \\
\hline 16400. & & *STATU=IND \\
\hline 16410. & & NSTATL=IND+1 \\
\hline 16420. & & GO TO 2 \\
\hline 16430. & 1 & \(\operatorname{TOM}(1)=(.075 / \mathrm{RE}) *(1 . / \mathrm{DVDS} 1)\) \\
\hline 16440. & & \(\operatorname{TLM}(1)=(.075 / \mathrm{RE}) *(1 . /\) DVDS 1\()\) \\
\hline 16450. & & NSTATU=IND-1 \\
\hline 16460. & & NSTATL=IND \\
\hline 16470. & 2 & LUP=LASTUP-1 \\
\hline 16480. & & LDN = LASTDN-1 \\
\hline 16490. & & 目 (1) \(=\) 。 8888888 \\
\hline 16500. & & (12) \(=.5555555\) \\
\hline 16510. & & Y(3) \(=.5555555\) \\
\hline 16520. & & \(\mathrm{Z}(1)=0000000\) \\
\hline 16530. & & \(\mathrm{Z}(2)=.7745966\) \\
\hline 16540. & & \(\mathrm{Z}(3)=-.7745966\) \\
\hline 16550. & & DO \(20 \mathrm{I}=2 . \mathrm{LASTUP}\) \\
\hline 16560. & & \(A=D S T U P(T-1)\) \\
\hline 16570. & & \(B=\operatorname{DSTOP}(\mathrm{I})\) \\
\hline 16580. & & \(S U M=0.0\) \\
\hline 16590. & &  \\
\hline 16600. & &  \\
\hline 16610. & 10 & CONTINOE \\
\hline 16620.
16630. & &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 16640. & 20 & continoe \\
\hline 16650. & & DO \(30 \mathrm{I}=2, \mathrm{LASTDN}\) \\
\hline 16660. & & \(\mathrm{A}=\mathrm{DSTL}\) ( \((\mathrm{I}-1)\) \\
\hline 16670. & & \(\mathrm{B}=\mathrm{DSTL} \mathrm{Bl}^{(1)}\) \\
\hline 96680. & & \(S U M=0.0\) \\
\hline 16690. & &  \\
\hline 16700. & &  \\
\hline 16710. & 25 & CORTINUE \\
\hline 16720. & &  \\
\hline 16730. & & * (I-1) \\
\hline 16740. & 30 & CONTINUE \\
\hline 16750. & & beturn \\
\hline 16760. & & END \\
\hline 16770. & & FUNCTION TPAM( \({ }^{\text {S }}\) ) \\
\hline 16780. & & COMMON/AREA/EH (26), FM (26), EL (26) \\
\hline 16790. & & IF (S.GT.EM (26).OR.S.LT.EA (1) GO TO 6 \\
\hline 16800. & &  \\
\hline 16810. & &  \\
\hline 16820. & 1 & \(\operatorname{CONTINOE~}\) \\
\hline 16830. & 2 & TPAM \(=(E L(I+9)-E L(I)) /(E M(I+1)-E M(1)) *(S-E M(1)\) \\
\hline 16840. & & GO TO 7 \\
\hline 16850. & 6 & IF (S.LT. EM (1)) TPAM=0.5 \\
\hline 16860. & & IP(S.GT. EM (26)) TPA \({ }^{\text {a }}=0.0\) \\
\hline 16870. & 7 & RETURN \\
\hline 16880. & & END \\
\hline 16890. & &  \\
\hline 16900. & & *PARAMO, PARAML, NSTATO, ASTATL) 50 , Thicml (50), PARAMO(50) , Paraml (50). \\
\hline 16910. & & DIMENSION GAMCON (61), THICMU (50), THICML (50), PARAMO(50), PARAML(50). \\
\hline 16920. & & *CONSLO (50), CONSLL (50) \\
\hline 16930. & & CONSLU (1) \(=0.0\) \\
\hline 16940. & & CONSLL (1) \(=0.0\) \\
\hline 16950. & & DO \(10 \mathrm{I}=2\), NOP \\
\hline 16960. & & ELREQ=PARAMU(I) \\
\hline 16970. & &  \\
\hline 16980. & & ** (-1,0) \\
\hline 16990. & 10 & CONTINUE \\
\hline 17000. & & DO \(20 \mathrm{~J}=2\) 。NLOM \\
\hline 17010. & &  \\
\hline 17020. & &  \\
\hline 17030. & 20 & CONTINUE \\
\hline 17040. & & RETURN \\
\hline 17050. & & END \\
\hline 17060. & & PUNCTION CPINT (REEQ,NSUR) \\
\hline 17070. & & COEAON/PRESRE/XCON, YCCN, CP \\
\hline 17080. & & DIUEASION XCON (61), YCON (61), CP (60).0日EQ (60) \\
\hline 17090. & &  \\
\hline 17100. & & DO \(1 I=1,30\) ( 30\()\) AND, XREQ, GT, 0.0) GO TO 10 \\
\hline 17110. & & IF (XREQ. IT. XCON (30) - AND. XREQ . GI. 0.0 ) Go 10 \\
\hline 17120. & & IF (XREQ. IT. XCON (I) ) GO TO 1 \\
\hline 17130. & & \[
\begin{aligned}
& \operatorname{IF}(I \cdot E Q \cdot 1) G O \operatorname{TO} 9 \\
& \operatorname{CPINT}=((\operatorname{CP}(I)-\operatorname{CP}(I-1)) /(X \operatorname{CON}(I)-X C O N(I-1))) *(X R E Q-X \operatorname{CON}(I-1))+
\end{aligned}
\] \\
\hline 17140. & & \(\operatorname{CPINT}=((C P(I)-C P(I-1)) /(X \operatorname{Con}(1)-X \operatorname{Con}(1-1))) *(X R B Q=X \operatorname{Con}(1-1))\) \\
\hline 17150. & & * CP (I-1) \\
\hline 17160. & & go To 7 \\
\hline 17170. & &  \\
\hline 17180. & 9 & CRINT \(=((\operatorname{CP}(1)-0.0) /(X \operatorname{CON}(1)-0.0)) *(X R E 2-1.0)+1.00\) \\
\hline 17190. & 10 & \[
\begin{aligned}
& \text { GO TO } 7 \\
& \text { CPINT }=(.5 *(C P(31)+C P(30))-C P(30)) /(0.0-X=O N(30)) *(X R E Q-X C O N(30))
\end{aligned}
\] \\
\hline 17210. & & * +CP (30) \\
\hline 17220. & & GO TO 7 \\
\hline 17230. & 2 & DO \(3 \mathrm{I}=31,60\) ( \({ }^{\text {a }}\) ( 11 \\
\hline 17240. & &  \\
\hline 17250. & &  \\
\hline 17260.
17270. & &  \\
\hline 17270. & & *CP(I-1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 17280. & & GO TO 7 \\
\hline 17290. & & CONTINUE \\
\hline 17300. & 11 & EPINT=-(CP(31)-.5*(CP(30)+CP(31)) \(/(x \operatorname{CON}(31)-0.0) *(X R E Q-0.0) *\) \\
\hline 17310. & & * \({ }^{\text {P }}\) (31) \\
\hline 17320, & 7 & RETURN \\
\hline 17330. & & END \\
\hline 17340. & & SUBROUTINE CDRAG(CP, ALPHA, CLIPTp \({ }^{\text {a }}\), XCON) \\
\hline 17350. & & DIAENSION XCON (61), CLIPT (60), CP (60) \\
\hline 17360. & & CLIPT (1) \(=\) CP (1)* (1.-XCON (1)) \\
\hline 17370. & & DO \(5 \mathrm{I}=2.59\) \\
\hline 17380. & & \(\mathrm{A}=\mathrm{XCON}(\mathrm{I})\) \\
\hline 17390. & & \(B=X C O N(I+1)\) \\
\hline 17400. & & \(\mathrm{H} 1=10\) \\
\hline 17410. & & \(\mathrm{FN}=\mathrm{N} 1\) \\
\hline 17420. & & \(D X=(\) ( -A\() / \mathrm{FN})\) \\
\hline 17430. & & TDX=2.*DX \\
\hline 17440. & & IF (I.LE.N/2) THEN DO \\
\hline 17450. & & NS UR=1 \\
\hline 17460. & & ELSE DO \\
\hline 17470. & & NS OR=2 \\
\hline 17480. & & END IF \\
\hline 17490. & & PII=CPIAT (A,NSUR) + \(\operatorname{CPINT}(\mathrm{B}, \mathrm{NSOR})\) \\
\hline 17500. & & PI2 \(=0.0\) \\
\hline 17510. & & PI \(3=0.0\) \\
\hline 17520. & & WN1=N1/2 \\
\hline 17530. & & \(\mathrm{X}=\mathrm{A}+\mathrm{DX}\) \\
\hline 17540. & & DO \(3 \mathrm{~J}=1 . \mathrm{NNT}\) \\
\hline 17550. & & FI2 2 FI2+CPINT ( \(\mathrm{X}, \mathrm{NSUR}\) ) \\
\hline 17560. & 3 & \(X=X+T D X\) \\
\hline 17570. & & \(\mathrm{X}=\mathrm{A}\) \\
\hline 17580. & & \(\mathrm{HH}=\mathrm{NN} 1-1\) \\
\hline 17590. & & DO \(4 \mathrm{~K}=1 . \mathrm{NH}\) \\
\hline 17600. & & \(\mathrm{X}=\mathrm{X}+\mathrm{TD} \mathrm{X}\) \\
\hline 17610. & 4 & PI \(3=\) FI \(3+C R I N T(X, N S U R)\) \\
\hline 17620. & & \(\mathrm{FI}=\mathrm{DX} *(\mathrm{FI} 1+4\) * \(\mathrm{FI} 2+2 . * \mathrm{FI} 3) / 3.0\) \\
\hline 17630. & & \(\operatorname{CLIFT}(1)=\operatorname{CLIPT}(\mathrm{I}-1)+\mathrm{FI}\) \\
\hline 17640. & 5 & \(\operatorname{CONTINOE}\) \\
\hline 17650. & & \(\operatorname{CLIPT}(N)=\operatorname{CLIFT}(\mathrm{N}-1)+\operatorname{CP}(60) *(1 .-X \operatorname{CON}(60))\) \\
\hline 17660. & & GETUR \\
\hline 17670. & & END \\
\hline 17680. & & PONCTION CINT (YREQ, NQUAD) \\
\hline 17690. & &  \\
\hline 17700. & & DIMENSION YCON (61), \(C P(60), \mathrm{OREQ}(60), \mathrm{XCON}(61)\) \\
\hline 17710. & & IP(NQUAD.EQ.1) GO TO 1 \\
\hline 17720. & & IF (NQUAD.EQ.2)GO TO 2 \\
\hline 17730. & & IF (NQUAD.EQ.3) GO TO 3 \\
\hline 17740. & & IF (MQUAD.EQ. 4) GO TO 4 \\
\hline 17750. & & IF (NQUAD.EQ.5) GO TO 12 \\
\hline 17760. & & IF (NQOAD. EQ.7) GO TO 14 \\
\hline 17770. & 1 & DO \(5 \mathrm{I}=1.15\) ( 15 \\
\hline 17780. & & \(I F(Y C O N(I)-L T . Y R E Q) G O T O\)
\(C I N T=(C P(I)-C P(I-1)) /(Y C O N(I)-Y C O N(I-1)) *(Y R E Q-Y C O N(I-1))\) \\
\hline 17790. & &  \\
\hline 17800. & & \[
\begin{aligned}
& \text { * }+ \text { CP }(I-1) \\
& \text { GO TO } 7
\end{aligned}
\] \\
\hline 17820. & 5 & CONTINUE \\
\hline 17830. & 2 & DO \(6 \mathrm{I}=16,30\) \\
\hline 17840. & & IP (YREQ.LT. YCON (I)) 60 TO 6 \\
\hline 17850. & & IP(YREQ.EQ. YCON (16))TEEN DO \\
\hline 17860. & & CINT=CP(46) \\
\hline 17870. & & ELSE DO \\
\hline 17880.
17890. & &  \\
\hline 17900. & & END IF \\
\hline 17910. & & GO TO 7 \\
\hline
\end{tabular}
```

17920. 6 CONTINUE
17921. 3 DO 8 I=31.45
17922.
17923.
17924.
17925.
17926.
17927.
17928.
17929.
17930.
17931.
17932.
17933.
17934.
17935.
17936.
17937.
17938.
17939.
17940.
17941.
17942.
17943.
17944.
17945.
17946.
17947.
17948.
17949.
17950.
17951.
17952.
17953.
17954.
17955.
17956.
17957.
17958.
17959.
17960.
17961.
17962.
17963.
17964.
17965.
17966.
17967.
17968.
17969.
17970.
17971.
17972.
17973.
17974.
17975.
17976.
17977.
17978.
17979.
17980.
17981.
17982.
17983.
```
```

 IF(ICON(I).GT.YREQ)GO TO 8
    ```
    IF(ICON(I).GT.YREQ)GO TO 8
    CINT=(CP(I)-CP(I-1))/(YCON(I)-YCON(I-1))*(YREQ-YCON(I-1))
    CINT=(CP(I)-CP(I-1))/(YCON(I)-YCON(I-1))*(YREQ-YCON(I-1))
    *+CP(I-1)
    *+CP(I-1)
        GO To 7
        GO To 7
        CONTINUE
        CONTINUE
        DO 9 I=46,60
        DO 9 I=46,60
        IF(YCON(I).LT. YREQ)GO TO 9
        IF(YCON(I).LT. YREQ)GO TO 9
            IP(YREQ.EQ.YCON(46))THEN DO
            IP(YREQ.EQ.YCON(46))THEN DO
            CINT=CP(46)
            CINT=CP(46)
            ElSE DO
            ElSE DO
        \approxINT=(CP(I)-CP(I-1))/(YCON(I)-YCON(I-1))*(XREQ-YCON (I-1))
        \approxINT=(CP(I)-CP(I-1))/(YCON(I)-YCON(I-1))*(XREQ-YCON (I-1))
    **CP (I-1)
    **CP (I-1)
        END IF
        END IF
        GO TO 7
        GO TO 7
    CONTINUE
    CONTINUE
    12 IF(YREQ.IE.2.083333)THEN DO
    12 IF(YREQ.IE.2.083333)THEN DO
        CINT=(.5*(CP(16)*CP(15))-CP(15))/(2.083333-YCON(15))*(YREQ
        CINT=(.5*(CP(16)*CP(15))-CP(15))/(2.083333-YCON(15))*(YREQ
    *- FCON(15)) *CP(15)
    *- FCON(15)) *CP(15)
        ELSE DO
        ELSE DO
        CINT=-(CP(16)-.5*(CP(15)+CP(16)))/(YCON(16)-2.083333)*(YCON
        CINT=-(CP(16)-.5*(CP(15)+CP(16)))/(YCON(16)-2.083333)*(YCON
    *(16)-\PsiREQ) +CP(16)
    *(16)-\PsiREQ) +CP(16)
        END IF
        END IF
        GO TO 7
        GO TO 7
14 IF(YREQ.LE.9.916666)THEN DO
14 IF(YREQ.LE.9.916666)THEN DO
        CINT=(.5* (CP(46)*CP(45))-CP(45))/(1.96666-YCON(45))*(YREQ-
        CINT=(.5* (CP(46)*CP(45))-CP(45))/(1.96666-YCON(45))*(YREQ-
    *YCON(45))+CP(45)
    *YCON(45))+CP(45)
        ELSE DO
        ELSE DO
        CINT=-(CP(46)*.5*(CP(45)*CP(46)))/(YCON(46)-1.96666)*(YCON(
        CINT=-(CP(46)*.5*(CP(45)*CP(46)))/(YCON(46)-1.96666)*(YCON(
    *46)-YREQ) +CP(46)
    *46)-YREQ) +CP(46)
        END IF
        END IF
    7 RETORN
    7 RETORN
    END
    END
    SOBROUTINE CDBAG2(CP,ALPHA,CD,YCON,N)
    SOBROUTINE CDBAG2(CP,ALPHA,CD,YCON,N)
    DIMENSICN CP(60),CD(60),YCON(61)
    DIMENSICN CP(60),CD(60),YCON(61)
    CD(1)=0.0
    CD(1)=0.0
    DO 5 I=2,59
    DO 5 I=2,59
    A=YCON (I)
    A=YCON (I)
    B=YCON(I+1)
    B=YCON(I+1)
    N1=10
    N1=10
    FN=N1
    FN=N1
    DX=(B-A)/PN
    DX=(B-A)/PN
    TDX=2.0*DX
    TDX=2.0*DX
    IF(I.EQ 15) NQUAD=5
    IF(I.EQ 15) NQUAD=5
    IF(I.EQ.45) NQOAD=7
    IF(I.EQ.45) NQOAD=7
    IF(I.IT. 15) NQUAD=1
    IF(I.IT. 15) NQUAD=1
    IF(T.GT. 15.AND.I.IE. 30) NQUAD=2
    IF(T.GT. 15.AND.I.IE. 30) NQUAD=2
    IP(I.GT. 30.AND.I.LT.45)NQUAD=3
    IP(I.GT. 30.AND.I.LT.45)NQUAD=3
        IP(I.GT.45)NQOAD=4
        IP(I.GT.45)NQOAD=4
        FI1=CINT(A,NQUAD) +CINT(B,NQUAD)
        FI1=CINT(A,NQUAD) +CINT(B,NQUAD)
        FI2=0.0
        FI2=0.0
        FI3=0.0
        FI3=0.0
        NN1=N1/2
        NN1=N1/2
        X=A+DX
        X=A+DX
        DO 3 J=1,NN1
        DO 3 J=1,NN1
        FI2=FI2+CINT(X,NQOAD)
        FI2=FI2+CINT(X,NQOAD)
3 K=x+TDX
3 K=x+TDX
    R=A
    R=A
    NM= NNT-1
    NM= NNT-1
    DO 4 K=1.NM
    DO 4 K=1.NM
    X=X*TDX
    X=X*TDX
    FI3=FI3+CINT(X,NQUAD)
    FI3=FI3+CINT(X,NQUAD)
    PI=DX*(FI 1+4.*FI2+2.*FI3)/3.0
```

 PI=DX*(FI 1+4.*FI2+2.*FI3)/3.0
    ```
18560. 18570. 18580. 18590. 18600. 18610. 18620. 18630. 18640. 18650. 18660. 18670. 18680. 18690. 18700. 18710. 18720. 18730. 18740. 18750. 18760. 18770. 18780. 48790. 18800. 18810. 18820. 18830. 18840. 18850. 18860. 18870. 18880. 18890. 18900. 18910. 18920. 18930. 18940. 18950. 18960. 18970. 18980. 18990. 19000. 19010. 19020. 19030. 19040. 19050. 19060. 19070. 19080. 19090. 19100. 19110. 19120. 19130. 19140. 19150. 19160. 19170. 19180. 19190.
```

CD(I)=CD(I-1)\&PI
5 CONTINUE
CD(N)=CD(N-1)
RETORN
END
SUBROUTINE CMT(XCON,N,CP,CMOT)
DIMENSION XCON(61),CP(60),CMO1(60)
ImTEGRATION CPXDX
CMU1(9)=0.0
DO 5 I=2,59
A=XCON(I)
B=xCON(I+1)
N 1=10
FN=N1
DX=(B-A)/PN
TDX=2.0*DX
IF(I.LE.N/2)THEN DO
NSOR=1
ELSE DO
*SUR=2
END IF
PII=CPINT(A,NSUR)*A+CPINT (B,NSUR)*B
PT2=0.0
PI3=0.0
NN1=N1/2
X=A +DX
DO 3 J=1,NN1
FI2=FI2+CPINT(X,NSUE) *X
3 X=X +TDX
X=A
NG=NN1-1
DO 4 K=1,NM
X=X+TDX
4 PI3=PI3+CPINT(X,NSUR)*X
FI=DX*(FI1+4.*FI2+2.*FI3)/3.0
CMO1(I)=CMU1(I- 1) \&FI
5 Continue
CMO4(N)=CHOT(N-1)
RETURN
END
SOBRODTINE CM2(IA,IB,CP,YCON,CMO2)
DIMENSICN CP(60),YCCN (61),CMU2(60)
INTEGRATION CPYDY
IP(IA.EQ.2)THEN DO
CMU2(IA-1)=0.0
ELSE DO
CHU2(IA-1)=CMU2(30)
END IF
DO 5 I=IA.IB
A=YCON(I)
B=YCON (I+1)
:1=10
FN=N4
DE= (B-a)/FN
TDX=2.*DX
IF(I.EQ.15) NQUAD=5
IP(I.EQ.45) NQUAD=7
IF(I.LT, 15) NQUAD=1
IP(I.GT.15.AND.I.IE.30)NQUAD=2
IF(I.GT. 30.AND.I.IT.45) NQOAD=3
NQOAD=4
PIT=CINT(A,NQOAD)*ABS (A - 2.0) *CINT (B,NQUAD) *ABS (B-2.0)
PI2=0.0
FI3=0.0

```


\section*{REFERENCES}
1) Zumwalt, G.W., and Elangovan, R.: "Computation of Low Speed Flow Past Multi-Element Airfoils with Large Flow Separation", 13th Congress of the International Council of the Aeronautical Sciences, August 1982.
2) Howarth, L.: "The Theoretical Determination of the Lift Coefficient for a Thin Elliptic Cylinder", Proceedings of the Royal Society of London, Series A, Vol. 149, 1935.
3) Geising, J.P.: "Potential Flow About Two-Dimensional Airfoils", Douglas Aircraft Co., Report No. LB 31946 (1965).
4) Williams, B.R.: "An Exact Test Case for the Plane Potential Flow About Two Adjacent Lifting Aerofoils, ARC R \& M No. 3717 (1973).
5) Milne-Thomson, L.Mo: "Theoretical Hydrodynamics", Macmillan Press Ltd., 1977 Edition.
6) Gibson, I., and Tinkler, J.: "A Summary of Surface Singularity Techniques Applied to 2-Dimensional Aerofoil Flows", Dept. of Mechanical Engineering Publications, University of Manitoba, ER 25.36, July 1982.
7) Hess, J.L. and Smith, A.M.O.: "Calculation of Potential Flow About Arbitrary Bodies", Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, 1967.
8) Gibson, I. and Wilcox, D.J.: "The Prediction of 2-Dimensional Aerofoil Performance Utilizing Distributed Surface Vortices and the Fredholm Integral of the First Kind", Dept. of Industrial Engineering Publications, University College, Galway, October 1982.'
9) Sch1itching, H.: "Boundary-Layer Theory", Chapter X, Seventh Edition, McGraw-Hill Book Company, 1979.
10) Thwaites, B.: "Approximate Calculation of the Laminar Boundary Layer", The Aeronautical Quarterly, Vol. 1, November 1949.
11) Curle, N. and Skan, S.W.: "Approximate Methods for Predicting Separation Properties of Laminar Boundary Layers", The Aeronautical Quarterly, Volume VIII, February-November, 1957.
12) Duncan, W.J.; Thom, A.S. and Young, A.D.: "Mechanics of Fluids", Chapter VI, Second Edition, Edwards Arnold (Publishers) Ltd., 1970.
13) Preston, J.H.; Sweeting, N.E.: "The Experimental Determination of the Boundary Layer and Wake Characteristics of a Simple Joukowski Aerofoil with Particular Reference to the Trailing Edge Region", ARC R \& M No. 1998 (1943).

\section*{86}
14) Preston, J.H.: Sweeting, N.E.: "The Experimental Determination of the 2-Dimensional Interference on a Large Chord Piercy 12/40 Aerofoil in a Closed Tunnel Fitted with a Flexible Roof and Floor", ARC R \& M No. 2007 (1944).
15) Spath, H.: "Spline Algorithms for Curves and Surfaces", Utilitas Mathematica Publishing Inc., Winnipeg 1974.

TABLE 1

PRESCRIBED FUNCTIONS FOR MODIFIED THWAITES' METHOD
\begin{tabular}{lll}
\hline & & \\
m & \(\ell\) & H \\
\hline & & \\
-0.25 & 0.500 & 2.00 \\
-0.20 & 0.463 & 2.07 \\
-0.14 & 0.404 & 2.18 \\
-0.12 & 0.382 & 2.23 \\
-0.10 & 0.359 & 2.28 \\
-0.08 & 0.333 & 2.34 \\
-0.064 & 0.313 & 2.39 \\
-0.048 & 0.291 & 2.44 \\
-0.032 & 0.268 & 2.49 \\
-0.016 & 0.244 & 2.55 \\
0 & 0.220 & 2.61 \\
0.016 & 0.195 & 2.67 \\
0.032 & 0.168 & 2.75 \\
0.040 & 0.152 & 2.81 \\
0.048 & 0.138 & 2.87 \\
0.056 & 0.122 & 2.94 \\
0.060 & 0.113 & 2.99 \\
0.064 & 0.104 & 3.04 \\
0.068 & 0.095 & 3.09 \\
0.072 & 0.085 & 3.15 \\
0.076 & 0.072 & 3.22 \\
0.080 & 0.056 & 3.30 \\
0.084 & 0.038 & 3.39 \\
0.086 & 0.027 & 3.44 \\
0.088 & 0.015 & 3.49 \\
0.090 & 0 & 3.55
\end{tabular}

THE SURFACE VELOCITY DISTRIBUTION ON A 6:1 ELLIPTIC AEROFOIL: INVISCID FLOW, \(\alpha=0^{\circ}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{POSITION} & \multicolumn{2}{|l|}{VELOCITY (U/U@)} & \multirow[b]{2}{*}{\[
\underset{\%}{\text { ERROR }}
\]} \\
\hline \[
\begin{aligned}
& \text { Chord- } \\
& \text { Wise } \\
& \text { Position } \\
& \text { (x/d) }
\end{aligned}
\] & Control point No. & \begin{tabular}{l}
Conformal \\
Transformation \\
Theory (Exact)
\end{tabular} & \begin{tabular}{l}
Distributed \\
Vortices
\[
(N=60)
\]
\end{tabular} & \\
\hline 0.998 & 1 & -0.349 & -0.320 & -8.3 \\
\hline 0.993 & 2 & -0.803 & -0.780 & -2.8 \\
\hline 0.982 & 3 & -0.990 & -0.982 & -0.8 \\
\hline 0.966 & 4 & -1.070 & -1.066 & -0.4 \\
\hline 0.945 & 5 & -1.109 & -1.107 & -0.2 \\
\hline 0.918 & 6 & -1.130 & -1.129 & -0.09 \\
\hline 0.888 & 7 & -1.142 & -1.142 & 0.0 \\
\hline 0.853 & 8 & -1.150 & -1.150 & 0.0 \\
\hline 0.814 & 9 & -1.156 & -1.156 & 0.0 \\
\hline 0.772 & 10 & -1.159 & -1.159 & 0.0 \\
\hline 0.726 & 11 & -1.162 & -1.162 & 0.0 \\
\hline 0.679 & 12 & -1.164 & -1.164 & 0.0 \\
\hline 0.629 & 13 & -1.165 & -1.165 & 0.0 \\
\hline 0.578 & 14 & -1.166 & -1.165 & 0.0 \\
\hline
\end{tabular}

Note: 1. The velocity is considered positive if it is counterclockwise about the aerofris.

TABLE 3

SURFACE VELOCITY GRADIENT AROUND A 6:1 ELLIPTIC AEROFOIL: INVISCID FLOW, \(\alpha=5^{\circ}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{POSITION} & \multicolumn{2}{|l|}{VELOCITY GRADIENT \(\frac{\mathrm{d}\left(\mathrm{U}^{\mathrm{U}} / \mathrm{U}(\mathrm{d})\right.}{\mathrm{d} / \mathrm{d})}\)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { ERROR } \\
\%
\end{gathered}
\]} \\
\hline \begin{tabular}{l}
Chord- \\
Wise \\
Location \\
( \(\mathrm{x} / \mathrm{d}\) )
\end{tabular} & Control point No. & \begin{tabular}{l}
Conformal \\
Transformation \\
Theory (Exact)
\end{tabular} & \begin{tabular}{l}
Distributed \\
Vortices
\[
(N=60)
\]
\end{tabular} & \\
\hline 0.998 & 1 & -69.82 & -62.11 & \(-11.0\) \\
\hline 0.993 & 2 & -24.29 & -25.37 & 4.0 \\
\hline 0.982 & 3 & - 7.51 & - 7.85 & 4.0 \\
\hline 0.966 & 4 & - 2.82 & -2.97 & 5.0 \\
\hline 0.945 & 5 & - 1.31 & - 1.38 & 5.3 \\
\hline 0.918 & 6 & -0.72 & \(-0.76\) & 5.5 \\
\hline 0.888 & 7 & - 0.46 & - 0.48 & 4.3 \\
\hline 0.853 & 8 & - 0.33 & -0.34 & 3.0 \\
\hline 0.814 & 9 & - 0.25 & - 0.27 & 8.0 \\
\hline 0.772 & 10 & - 0.21 & -0.23 & 9.5 \\
\hline 0.726 & 11 & - 0.19 & - 0.20 & 5.0 \\
\hline 0.679 & 12 & - 0.17 & - 0.19 & 11.7 \\
\hline 0.629 & 13 & - 0.16 & -0.18 & 12.5 \\
\hline 0.578 & 14 & -0.16 & - 0.18 & 12.5 \\
\hline 0.526 & 15 & - 0.18 & - 0.19 & 5.5 \\
\hline
\end{tabular}

Note: Error (\%) \(=100 \times\left(\frac{\text { Approx. Gradient-Exact Gradient }}{\text { Exact Gradient }}\right)\)

TABLE 4

COMPUTED SEPARATION CHARACTERISTICS FOR 6:1
ELLIPTIC AEROFOLL AT REYNOLDS NUMBER \(=800\)
\begin{tabular}{lccl}
\hline & & & \\
ANGLE OF & SEPARATION POSITION & SEPARATION & NO. \\
\begin{tabular}{lll} 
ATTACK \\
(DEGREES) & (Nearest control point) & VELOCITY
\end{tabular} & OF \\
UPPER SURFACE LOWER SURFACE & \(\left(U / U_{\infty}\right)\) & ITERATIONS
\end{tabular}

table 5. COEFFICIENT OF DRAG VALUES
\begin{tabular}{cccc} 
ANGLE OF & COEFFICIENT OF & COEFFICIENT OF & COEFFICIENT \\
ATTACK (IN & SKIN FRICTION & FORM DRAG & OF PROFILE \\
DEGREES \()\) & DRAG & & DRAG
\end{tabular}
\begin{tabular}{llll}
0 & 0.043 & 0.102 & 0.145 \\
1 & 0.044 & 0.101 & 0.145 \\
2 & 0.045 & 0.101 & 0.146 \\
3 & 0.046 & 0.099 & 0.145 \\
4 & 0.051 & 0.097 & 0.148 \\
5 & 0.054 & 0.095 & 0.149 \\
6 & 0.059 & 0.090 & 0.149 \\
7 & 0.066 & 0.090 & 0.156
\end{tabular}


Fig. 1. Control Points for Network Method


Fig. 2. The Uniform Flow Around an Elliptic Aerofoil


Fig. 3. Distribution of Elements Around the Aerofoil by Cosine Rule.


Fig. 4. Induced Velocity Components at a Point due to Distributed Vortices on an Element.



Fig. 6. Inviscid Pressure Distribution at \(\alpha=8^{\circ}\) by Surface Vortex Method.



Fig. 7. Boundary Layer. Results \(\left(\alpha=7^{\circ}, N=60, R e=800\right)\)


Fig. 8. Pressure Distribution Including Boundary Layer Effects. \(\left(N=60, \alpha=1^{\circ}\right)\)


Fig. 9. The Coefficient of Lift Curve.


Fig. 10. The Coefficient of Skin Friction Distribution \(\left(\alpha=3^{\circ}\right)\)


Fig. 11 . The Coefficient of Profile Drag Curve.


Fig. 12. Coefficient of Pitching Moment Curve.


Fig. 13. The Uniform Flow Around a Circular Cylinder


Fig. 14. Induced Velocities at a Point due to Distributed Vortices.


Fig. 15. Induced Velocities at a Point due to Distributed Sources.


Fig. 16. Normal Pressure on an Element of Aerofoil Surface.


Fig. 17. Pitching Moment About the Leading Edge of the Aerofoil.```

