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ABSTRACT

The aim of this study was to develop a computational technique to
predict the incompressible, two—dimensional flow around an elliptic aerofoil
at low Reynolds number at angles of attack up to and beyond the stall. The
potential flow was to be calculated by a uniform flow and a distribution of
vortices on the elliptic aerofoil. The displacement effects of the boundary
layer and the separated wake were to be represented by a distribution of
gsources on the surface of aerofoil.

An elliptic cylinder with a fineness ratio of 6:1 at a Reynolds
number of 800 was ’used as a representative aerofoil. Its shape was
approximated by an inscribed polygon of flat elements. The vortices with
linearly increasing strength were distributed on these elements. The
potential flow around the aerofoil was computed by satisfying the zero-
normal velocity condition at the mwmid-point of each element and the
downstream end of the elliptic aerofoil as a stagnation point. The boundary
layer calculations and the separation points were predicted using Thwaites'
method. Another potential flow solution with a different stagnation point
was developed. These two potential flows were combined to adjust the
circulation to the value needed to equalize the upper and lower surface
separation velocities. This modified the surface pressure gradient; -the
boundary layer was recalculated and the process iterated wuntil the
separation points stabilized. The sources were distributed on the same flat
elements as were used in developing the potential solutions. The strengths

of the sources were adjusted iteratively so that the surface streamline was

(1)




displaced by an amount equal to the displacement thickness of the attached
boundary layer and the separated wake was a constant pressure region.

For angles of attack between O and 7 degrees, the flow was
represented successfully. The coefficients of 1lift, drag and pitching
moment were caculated. The coefficients of lift were compared with those
calculated by Howarth. A slight difference in these results was due to
different methods of boundary layer calculations. For angles of attack from
8 to 11 degrees, the iterative process for circulation adjustment failed to
converge. The solution predicted oscillatory leading edge and trailing edge
separation points. This may be indicative of an unsteady flow and requires
further study. For angles of attack greater than 12 degrees, the separated
flow model predicted source strengths which gave velocities incompatible
with the constant pressure criterion. Further work is required to model the

separated wake at higher angles of attack.
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ij

At

NOMENCLATURE

radius of circular cylinder

normal velocity at i due to uniform source of strength of 1 at
element j.

tangential velocity at i due to uniform source of strength of 1 at
element j.

semi-minor axis of the elliptic cylinder

semi-major axis of the elliptic cylinder

distance defined by c¢2 - b2

coefficient of form drag

coefficient of 1lift

coefficient of pitching moment

PP

coefficient of pressure (= 1/2 pU )
(=]

major axis of the elliptic cylinder (chord)
force in x—direction

force in y-direction

a fraction

shape factor

strength of circulation in classical method and a counter in the
surface vortex method

, . © ,du
a parameter used in Thwaites' method, = —'('“ﬂ

v d; surface
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L(m) function of m

02 ,d%u
- a parameter used in Thwaites' method, m = T E:E
y< surface
n. unit vector at point i
i

N number of surface elements

p pressure of the fluid

P pressure of the uniform stream at infinity

r distance of a point from the origin

r distance of a point as shown in Figure 14

r, distance of a point as shown in Figure lé4

| R distance in the Z—plane

Re Reynolds number based on the major axis and the uniform stream |

(Re = U d/v) i
©

S distance along the surface as measured from the downstream end of |
the elliptic cylinder

u velocity component parallel to x—axis

U tangential velocity at the surface of the aerofoil due to
distributed vortices and omnset flow

Uoo velocity of the uniform stream at infinity

Uij velocity induced at point 1 parallel to and due to vorticity
distributed at element j

u velocity in the real axis direction in conformal transformation
method

%} . Vector velocity induced at a point i

Vni normal velocity at a point i in the attached part

Vij velocity induced at a point i perpendicular to and due to

(x)




<\

sep

vorticity distributed at element j

velocity in the direction perpendicular to real axis direction in
conformal transfarmation method

velocity component parallel to y

velocity at the point of separation

complex potential of flow around a cylinder

axis and distance parallel to major axis of the elliptic cylinder
distance parallel to the surface of the elliptic cylinder

axis and distance parallel to minor axis of the elliptic cylinder
;xis and distance perpendicular to the surface of the elliptic
cylinder

plane containing the circular cylinder section

angle of attack

angular position of a point on circular cylinder in polar
coordinates

uniform vorticity strength on element j

gradient of linearly increasing vorticity strength on element j
circulation around the elliptic cylinder

inclination of surface element with x—axis

displacement thickness

angular position of a point on elliptic cylinder in polar
coordinates

angle as shown in Figure 14

angle as shown in Figure 14

fluid density

uniform source strength




gradient of linearly increasing source strength

c

) momentum thickness

£ axes parallel to surface elements

7 axes perpendicular to surface elements

gij distance of.point i in direction of & from point j

nij distance of point { in direction of n from point j

Tw shear stress on the surface
plane containing the elliptic cylinder

¢ angle on circle with diameter as the major axis of the elliptic
cylinder as shown in Figure 3

Aj half the length of the.j—th surface element

v kinematic viscosity of the fluid

9 angle as shown in Fig. 14 and Fig. 15

L lift force

D drag force

M pitching moment 2

(xii)




1. INTRODUCTION

It has always been one of the interests of aerodynamists to be

able to predict the. performance of an aerofoil in flight, or conversely, to
design an aerofoil for a given flight performance. Experiments are carried
out to measure the characteristics (coefficients of 1lift, drag, pitching
moment, etc.) of an aerofoil, involving wind tunnels of various sizes.
These experiments are time consuming and expensive. It is also difficult to
achieve exact flight conditions in the wind tunnel tests. Despite these
shortcomings, the wind tunnel tests are carried out as the present
computational techniques are unable to include the complete boundary layer
effects.

It has been observed that for two-dimensional aerofoils at low
ang}es of attack, the boundary layer around the aerofoil is thin and a
separated region; if it exists, is small. The inviscid flow theory gives
fairly close results to those obtained experimentally. The inviscid fluid
flow pressure gradients can be used with the boundary Ilayer theory to
predict the skin friction for the attached region. As the angle of attack
increases the theoretical results for the inviscid flow show marked
differences from the experimental results (for example - the predicted
coefficient of 1lift is too high). This probably can be attributed mainly to
the separated flow which1modifies the circulation around the aerofoil. The
pressure in the separated region is nearly constant. This real pressure
distribution around the aerofoil can determine the form drag.

At high Reynolds number encountered in actual flights the

boundary layer 1is wusually turbulent leading to turbulent separation at




higher angles of attack. It is difficult, theoretically, to model the
geparated region. 1In a recent attempt Zumwalt and Elangovan (Ref. 1) have
tried to represent the separated region using some empirical relations from
jet mixing theory. They have achieved good agreement with the experimental
results for their chosen aerofoils. Their results are dependent on the
empirical relations used. It has been observed that the laminar boundary
layer is more predictable with good methods available to compute the
displacement thickness and the separation points. The separated region
still remains to be analysed.

The aim of the present study is to develop a technique to compute
the characteristics of an aerofoil accounting for the effects of both the
boundary layer thickness and the separation. The computational technique to
be developed is intended to be a general one and thus applicable to any
aerofoil. Here, this technique will be applied to a two—dimensional
elliptic aerofoil in an incompressible flow at low Reynolds numbers so that
the boundary layer is laminar. If this technique is successful then it can
be extended to aerofoils with sharp trailing edges, multi-element aerofoils,
and to a boundary layer which is initially laminar and undergoes transition
to turbulent flow. The elliptic aerofoil is chosen to work with as an exact
analytical solution for the potential flow can be obtained easily. Howarth
(Ref. 2) has made a first approximation of the effects of laminar boundary
layer separation on the coefficient of 1ift of an elliptic aerofoil and his
results are available for comparison.

In the present study the potential flow will be represented by a
uniform flow and distributed vortices on the aerofoil surface. It 1is
Zutended to represent the boundary layer displacement thickness and the

separated wake by a distribution of sources on the surface of the elliptic




aerofoil. With suitable boundary conditions, this will shift the dividing
streamline away from the elliptic aerofoil by a distance equal to the
displacement thickness in the attached part of the flow and cause a constant
pressure wake region after separation. The assumption of a constant
pressure in the wake region has been observed experimentally and reference

to these experimental evidences will be made in the later chapters.




2. INVISCID FLUID FLOW

2.1 Classical Method:

This section deals with the classical method of obtaining the
pressure and velocity distribution around the two-dimensional body of any
shape. The fundamental assumptions made here are that the fluid, through
which the body moves, is incompressible, inviscid and irrotational.

The various early approaches for obtaining the surface pressure
distributions around aerofoils have been compiled in Ref. 3. For the sake
of completeness, the principle used for such computations can be restated
here. The aerofoil is first mapped into a pseudo-circle by an inverse
Joukowski transformation and then into an exact circle by a second
transformation. The procedure can be generalized andJimproved by replacing
the single Joukowski transformation by one or more inverse Karman-Trefftz
transformations. If the Karman-Trefftz transformation 1s used, an aerofoil
with any number of surface slope discontinuities can be mapped into a smooth
pseudo-circle. The inverse Joukowski transformation can only be used for an
aerofoil that has no surface slope discontinuities except at the trailing
edge, where the change in slope 1is 180°. When the inverse Joukowski
transformation is used on any other type of aerofoil, the results are
incorrect in the region near the surface—-slope discontinuities. Although it
appears to be a powerful technique, it is limited to a single element
aerofoil since it is a mapping technique. The Riemann mapping theoren
guarantees that any single body can be mapped into a single circle but says

nothing about multiple bodies. However; the potential flow about two




5
1ifting circles can be calculated and the circles are then transformed
conformally onto two aerofoils (Ref. 4y,

An elliptic aerofoil can easily be transformed conformally onto a
circle using Joukowski transformation (Ref. 5). The circulation around the
ellipse can be obtained by specifying, arbitrarily, the downstream end of
the major axis of the elliptic aerofoil to be a stagnation point. This is
equivalent to specifying the Kutta—condition for the aerofoil with sharp
trailing edge. The theorem of Kutta—Joukowski can be used to evaluate the
coefficient of 1lift. Appendix A gives the derivation of the formulae used
_ to calculate the surface velocity distribution on the elliptic aerofoil.

Appendix A also gives the surface velocity derivatives with
respect to the surface distance of the elliptic aerofoil starting at the
trailing edge. These values will be used to check the velocity gradients

obtained by other approximate methods.

2.2 Approximate Solutions:

In the last section, it was mentioned that the classical method of
solving fluid dynamic problems could not be used for flow around more than
one body except in a few special cases.  In the last five decades
researchers have tried two techniques to solve these problems = approximate
analytical methods and exact numerical methods. The approximate solutions
introduce analytical approximations into the formulation itself and thus
place a limit on the accuracy that can be obtained in a given case
regardless of the numerical procedures used. In contrast, in exact
numerical methods the analytical formulation, dincluding all equations,
is exact and numerical approximations are introduced for purposes of

calculation. Exact numerical methods have the property that the errors in




the calculated solution can be made as small as desired, by sufficiently
refining the numerical calculations.

Because exact analytic solutions (classical approach) are scarce
for practical aerofoils and exact numerical methods were beyond the
capability of hand computation, approximate solutions received the attention
of the investigators in the field of inviscid flow. Many approaches have
been formulated. Some are analytic in that the general solution can be
written in simple closed form and others are numerical in that considerable
computation is required to obtain the solution for each specific case. The
common property of all approximate solutions is that restrictions are placed
on the type of body or body surface about which the flow can be computed.
Moreover, it is not always clear whether or not a particular approximate
method 1is valid for a given body..

One type of abproximate solution can be obtained by considering
one or both of the following assumptions:

(a) the body is slender, with small local surface slope;

(b) the perturbation-velocity components due to the body are
small with respect to the uniform stream that is the onset
flow.

Thin aerofoil theory based on these assumptions has been developed by
Glauert. These approximations are valid for thin aerofoils having small
camber and small surface curvatures at small angles of attack. The accuracy
of the computed solution is unknown.

Another large and well known approximate solution utilizes a
distribution of singularities (sources and vortices) interior to the body
surf.ce. For example, the singularities are normally placed along the chord

or camber line for two-dimensional aerofoils. The singularities may be




discrete or distributed. The location and general properties of the
singularities "are assumed and their strengths are determined so that the
body surface coincides with a streamline of the flow. This method 1is
iimited to the bodies with small surface curvatures.

Approximate solutions ‘are therefore unsatisfactory for two
reasons. First, they are obviously inapplicable in many cases such as
bodies with sharp edges, two bodies in close proximity and many non-uniform
flows. Second, their wvalidity in many cases is not predictable, and the
accuracy of the computed solutions 1is wunknown. These facts 1lead to

consideration of exact numerical methods of solution.

2.3 Exact Numerical Methods:

Exact numerical methods for the solution of the problem of
potential flow are characterized by the fact that, at least in principle,
any degree of accuracy may be obtained by sufficiently refining the
calculational procedure without changing the analytical formulation. There
appear to be two classes of exact numerical solutions that have been applied
to the general fluid-dynamics problem: network methods based on finite-
difference approximations of the derivatives of the potential and integral

equation methods such as the surface singularity method.

2.3.1 Network Method:

Network method is based on distributing a network of points
(termed control points) many body lengths in each direction around the body
throughout the flow field. The finite-difference of the wvalues of the
potential at various control points around the aerofoil can be calculated by

satisfying the boundary conditions at the surface in some form. Thus the
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solution must be obtained for the whole field even if it is required only on
the boundary. Moreover, the most common application is that of the exterior
flow about a closed body, where the flow field is infinite but the body is
finite. The situation is illustrated in Figure 1. This results in the
distribution of control points around the body in each direction. A large
number of equations need to be solved to obtain the results on thebsurface
of the body.

The results can be refined by decreasing the spacing between the

points being considered.

2.3.2 1Integral Equation Method:

Exact integralfequation representation of the problem of potential
flow may be formulated in a variety of ways, all leading to a Fredholm
integral equation of either the first or the second kind. Most of the
methods that have been formulated are equivalent to determining a
distribution of singularities over the body surface. Both sources and
vortex distributions have beeﬁ used. The boundary conditions are satisfied
so that the body surface 1is a streamline of the flow. There are no
restrictions on the shape of the bédy or the type of flow. Thus it is quite
a versatile method and has been used widely. A good survey of the surface-

singularity methods is presented in Ref. 6.

2.3.3.1 Present Theoretical Model:

The present method uses the vortex diétribution on the surface of
the elliptic aerofoil. The basic idea of the surface-vortex method is as
follows. The flow, which must satisfy J:zplace's equation, is produced by
superimposing a uniform stream U_ at angle @ to the x-axis, (Figure 2), and

a continuous distribution of vortices round the perimeter of the




aerofoil. The boundary condition must be such as to ensure that the
aerofoil surface is a streamline of the flow. It is convenient to stipulate
the condition of zero velocity normal to the aerofoil surface. The present
formulation generates a Fredholm integral equation of the first kind. This
integrai equation may be changed to a summation equation by dividing the
aerofoil surface into a finite number of elemental arcs and satisfying the
boundary condition at a similar number of points.

Mathematically, if the elliptic aerofoil surface is divided into N
vortex elements then the boundary condition of zero mnormal velocity applied
to the mid-point of each element (termed control point henceforth) leads to

a linear equation of the type

N
V., on, U « D, 0 seneevesocoeenssnsnaressensea(2.1
Z=1 TS I S (2.1)
J.
where Ei is the unit vector normal at the control point; U°° is the

uniform vector onflow and Vij is the vector velocity induced at the control

point i by the j-th wvortex element around the Dbody surface. The

mathematical expression for Qij depends on the order of approximation
demanded by equation (2.1). The =zeroth order model déveloped by Hess and

Smith (Ref. 7) utilizes flat surface elements of constant singularity

strength. In the surface vortex model considered here, it 1s convenient to
adopt a modest improvement over the zeroth order approximation; namely use
of flat elements with linear wvariation in singularity strength. This

improvement, as noted by Gibson and Wilcox (Ref. 8) ensures continuity in
vortex strength between adjacent elements and avoids the increase in

computation time associated with parabolic approximations.
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2.3.3.2 Numerical Formulation:

In this section it is intended to throw some light on the actual
pumerical formulation of the potential flow problem. The vortex type of
gingularity distribution is chosen for the present work. It has the
distinct advantage that the vortex density, which is determined directly, 1is
equal to the surface velocity.

The two—-dimensional elliptic aerofoil is approximated by a large
number of surface elements, whose characteristic dimensions are small as
compared to those of the elliptic aerofoil itself. The total number of
surface elements and their distribution influence the accuracy of the
resulting calculations. As noted by Hess and Smith (Ref. 7) elements should
be concentrated in regions where the body geometry—-slope changes rapidly.
The size of the elements should change gradually between the regions of
concentrations and regions where the distribution is sparse. In the
elliptic aerofoil here, the distribution of elements is achieved by applying
the 'cosine rule',

Xx = 0.5 (1 + cos¢2) N Y|
which is illustrated in Figure 3, and where % is an integer between 1 and N.
The elliptic aerofoil surface is thus approximated by an inscribed polygon
of N sides. Solutions with N = 10, 20, 40 and 60 have been tried. With 60
elements it is possible to obtain the pressure distribution up to 0.13% of
the chord. It may be noted that the element end-points are on the aerofoil
surface. The control points are then located at the mid-point of each
elenment.

After specifying the control points, it is required to determine
the velocity at all control points induced by all vortex elements. In

Appendix (B) the induced velocity at any point due to a line vortex with
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linearly increasing vortex strength has been derived. These expressions are
used repeatedly for each element and each control point.
If j represents an element over which the distributed vortex
strength increases linearly from Yj to Yj+l with a gradient of y3 =
(Yj+l —yj)/ZAj, then the induced velocities at i-th control point in the

directions parallel to and perpendicular to the j~th element, denoted by

U, ,and V, respectively are
ij ij

Y 1 B A, 1 Bl LA, y! Bl B
U, = % [tan (=22 J) —tan VAR Sy 3 (e, + ) {ran H(LE )
ij 2n 17 nij T ij 3 nij
. 1/2
E.. . A. (5,. - A2 +q, .2
~-1.,2ij + 7j ij J iJ
- tan ("""_‘_—_‘)} —n..,?_n{ 7y ™y } }0.00.;000.-00.(2-3)
M 5 ij (Eij + Aj) + N9 5
and
Y Y Y 2. .1/2 '
_ 3 {Cigr 79y + 53} 7, 3 +
VlJ 2n [Rn (gij_ Aj)z nijZ J 27 [(513 Aj)xn
3 A% 2, 1 &L : L &L, A,
(2ij+ 73) +7ij 1/2 =t Cij - 3 - ij+ Jyvy
-2 A~ n.. {t —-tan (2.4)
{ (gij _Aj)z +”§j } i ”13 { an ( nij ) ( nij }}J

where these notations have been explained in Figure (4).
These components are -further resolved into a direction normal to
the i-th element at the i-th control point. Keeping i-th element to be the

same and varying the position j, the total normal component at i is
N
vy o»ni = jzl [{UijSlnéj + Vijcos&j}»(:oséz.L - {Uijcoséj -

=V, sind }sind, Jeseeerereneenianenenneea(2.5)
ij N i
where § is the inclination of the element with the positive x—axis as shown
in Figure (4). Equation (2.5) simply means that the total normal velocity

induced at the i-th control point is the sum of the N velocities due to the

distributed vortex at each of the j-th elements.
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The onset flow (Uoo at angle of attack a) has a component of

velocity normal to the i-th element given by

Uo: . ni = Um Sin (a - 6i)cnooovoloooau-.o...ooo-oo...oo.-0000(206)

The boundary condition of zero normal velocity at the body surface
at the 1i~th control point, as given by Equation (2.1) now leads to N

equations

N
z [(U__sin6‘+V .cosd dcosd - (U.,cosé.—V_.siné')siné.}+U sin(a-8, )=0..(2.7)
i ij i i3 j i’ e i

=1 1 J 1] i,

where i =1, 2, ..... N
The number of equations is N while the number of unknown y's is

(N+1). The stagnation point'is specified at the downstream end of the major

axis of the elliptic aerofoil. This gives

- ® 8 0 0 8 508 00800089 E 0000000 IGN0IIEEIIEENLNOBIEERISESITST ST 2.
Y (2.8)

Y1

Incorporating Equation (2.8) in the Equation (2.7) reduces the
number of unknown y's to the number of equations. The N linear equations
with N unknowns can be solved on a computer using any well-known algorithm
to find the unknown y's. Here, the Gaussian elimination technique is used
to evaluate the unknown y's. The surface tangential velocities are the same
as the values of the local vortex strength since the internal velocity is

ZeY0.




3. LAMINAR BOUNDARY LAYER CONSIDERATIONS

3.1 Theory:

The general problem of the flow in the laminar boundary layer with
the prescribed pressure distributions is one of formidable complexity,
involving as it does, partial differential equationé with two independent
variables. The most effective analytic attack on it has been by the so-
called series solution method to which Blasius, Howarth and Frossling have
made the most important contributions. The essential features of these
methods are given in Ref. 9. However, many external velocity distributions
of practical interest can not be handled by these methods. The numerical
difficulties involved in obtaining exact solutions of the boundary layer
equations for the general case has led to much attention being paid to the
development of approximate methods. Usually such methods have been developed
with the limited objective of predicting the overall characteristics of the
boundary layer, e.g. momentum thickness, displacement thickness and the
points of separation, if any, rather than the velocity distribution of the
boundary layer flow. The momentum integral equation generally provides the
basis for such methods and the approximations are manifest in the
assumptions adopted to solve that equation.

The momentum integral equation of the boundary layer is obtained
by integrating the equation of motion of the boundary layer. Pohlhausen's,
Thwaites' and Young's methods are the important ones in which attempts have
been made to solve the integral equations using different approximating
assumptiorz. Thwaites' method (Ref. 10) as modified by Curle and Skan (Ref.

11) has been found to give good predictions of the separation point and
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therefore it is adopted for use in the present work. The pertinent details
of the method are repeated below.

Two non—-dimensional parameters £ and m are defined by the

equations:
0 du
= — | O - T ¢
A U (d§) wall ‘ ( )
and 62 d%u
m = Cﬁj‘) R R R € X))
U dy2 wall

where u 1is the boundary layer velocity parallel to the solid boundary, U is
the value of u at the outer edge of the boundary layer, ; ié the distance
perpendicular to the boundary and © is the momentum thickness.

The parameter & is directly related to the skin friction while m
is related to the pressure (or velocity, U ) through the only boundary
condition in which the external pressure appears, viz. -

(é;J = L8 o U (30D)
dy2 wall P ax dx
The first part of this equation is obtained from the equation of motion
evaluated at the wall; the second part is obtained from Bernoulli's
equation. Here x is the distance parallel to the boundary and v is the

coefficient of kinematic viscosity.

Combining (3.2) and (3.3),

m = ——— --'-cloc'.u..oOoonooloo-o...o.oooctiloooo.n.oon.!o(3c4)

where m is a very important parameter of velocity profile and if we assume
that the laminar boundary layer velocity profiles form a uniparametric
family, then we can regard m as the form parameter. In that case X must be
a unique function of m for all velocity profiles, as must be H = 6*/9 where

*
& 1s the displacement thickness and H is the shape fatctor. The momentum
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integral equation can then be written successively as

a6 - T v
- =t m S 6 I
=+ 92(H+2)(dU/dx)/U 502 e (3.5
d(e )
or MAY - +
) U 2v [m (H+2)+2]
= VL () eeeeeeneoneseonseoconnasesesssoasanssossses(3.6)
where L(m) = 2 [m(H+2)+ 2]

Thwaites evaluated the expression represented by the right hand side of the
Equation (3.6) for velocity profiles given by known exact solutions covering
a wide range of pressure gradients and found that the resulting curves lay
close to a straight line for which the equation was L (m) = 0.45 + 6m.

Equation (3.6) therefore can be written as

2
2
U g:(e ) _0.45 v + ggg_ 6 =0
dx dx
X 5 _
or, 2 2 0445V [ U dX sevieeiiiciinencnnrnesaesaassessesss(3.7)

O =8ty o

where 0, is the momentum thickness at the stagnation point. Thus the value
2 . 2

of & can be determined at any point by a simple quadrature. Once & 1is
determined the parameter m can be obtained from Equation (3.4). Thwaites
selected certain of the exact solutions most relevant to the flow past
aerofoils as a guide, particularly the case of a constant adverse velocity
gradient, and on the basis of these solutions, he devised a table of & and H
as unique functions of m.

Thwaites (Ref. 10) suggests the value of m at the stagnation point
as =0.075, which, with Equation (3.4) gives the initial values of momentum

thickness. The separation point occurs when m reaches the value of 0.082.

Later, Curle and Skan (Ref. 11) applied Thwaites' method to more examples of
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separation and noted that Thwaites' method systematically underestimates the
distances to separation from the stagnation point for different types of
velocity distributions. Curle and Skan recommended modified values of 2 and
H for values for m greater than 0.06. According to this modification the
parameter m is equal to 0.09 at the point of separation. Values of 1 and H,

including Curle and Skan's modifications, are presented in Table 1.

3.2 Numerical Method:

It is 'intended here to outline, briefly, the numerical technique
used to evaluate the laminar boundary layer characteristics, along the
surface of the aerofoil, up to the separation points. The momentum
thickness, the parameter m and the displacement thickness are given by

*
Equations (3.7), (3.4), Table 1 and the relation § = H@ respectively.

Equation (3.7) can be written in non-dimensional form as

% 5
012 _ (812, 0.45 x4y x
(3) = (d) * U@ 6 (F7) a(3)  ceevreeeeennn(3:8)

@

where d is a characteristic length, here chosen as the major axis of the
Ud
elliptic aerofoil, Uco is the free stream velocity and Re(=—;0 is the

Reynolds number based on the main stream velocity and the major axis of the
aerofoil. The main task then is to evaluate the integral in Equation (3.8)

U
while (E—)can be determined from the potential flow solution, as obtained

«©

in the previous chapter. The integral can be evaluated by the 10-point

Simpson's 1/3 rule. Thus
x/d -

i-1 =
[ (P ed =z G
0 j=

bx/d [ ( 3y 4 4f (§l+é5) + 2f (——+2 2y +
=1

w0

i
i
|
i
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- X, . - X,
where Ax = “;ii;———;'where M = 10, f(x) = (H—Jb and 1 = number of control

M U

o

points after the stagnation point, on each surface, up to the downstream end
of the major axis. It can be observed from the Equation (3.9) that in order
to find the momentum thickness at a control point the velocities must be
interpolated between that point and the previous control point. This
interpolation of velocities at intermediate points is carried out using
Lagrangian interpolation. Near the stagnation point, these velocities are
interpolated linearly.

7 Once the distribution of momentum thickness is known, the values

of the parameter m can be determined from Equation (3.4) as

B E L]
" v d®
. u/u
2
—'(%) N d( '__——O.J . Re
d (x/4)
U
where the velocity gradient (of ——j is calculated by differentiating a cubic

U

[ee]
spline relating the known values of velocities at control points to the
distances of the control points from the trailing edge. The calculation of
the parameter m is stopped as soon as m has a value equal to or greater than
0.09. The separation point is located wherever the parameter m has a value
0.09.

The shape factor H is calculated by linear interpolation of the

values of the parameter m in Table 1 and the displacement thickness is given

*
by § = H6.



4. TINVISCID FLOW AND BOUNDARY LAYER REPRESENTATION

general:

The surface-vortex method, described earlier, determines the

atial velocity distribution around the elliptic aerofoil for the given

conditions. Then Thwaites' method is used to calculate the

jbution of displacement thickness on the upper and lower surfaces in

regions of attached flow and the points of separation on both the

aces of the elliptic aerofoil. The existence of the boundary layer and
rated wake modifies the circulation around the elliptic aerofoil. These

cts can be represented by a distribution of sources on the elliptic
foil surface. In terms of the surface-vortex method this 1is
mplished by treating the flow induced by the sources as an additional

t flow. This concept of the boundary layer source flow is termed as the

lacement onset flow.

The same surface elements are used for the source distributions as
é~hsed for the surface-vortex method. Sources with uniform strength are
ributed on each of these elements. In order to calculate the strength
these sources, boundary conditions are applied at the mid points of each
these elements. The boundary conditions differ in the attached and the

rated parts of the flow. These are discussed in the following

_Attached Part:

The main flow in the presence of the boundary layer behaves as if

is flowing without friction past a surface displaced outwards by a
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Jistance §*. The displacing effect is produced here by discharging sources

dd*

at the surface with velocity normal to the surface given by V,, = U. -
dx

The derivation of this formula is given in Ref. 12. The displacement

thickness slope along the surface of the elliptic aerofoil is determined by

apumerical differentiation of &* with respect to the distance from the

stagnation point. The boundary condition in the attached region is set by

defining the normal velocities at the control points in that region. This

effectively means that at a given control point, i, in the attached region,
. . . dé*

the normal velocity induced by all the sources is Vni = Ui g;g—?i. In terms

of the strength of sources the equation can be written as

N
) An; ..0.= Vn, R N €2 D
=1 i3

where i refers to the control points in the attached region, Anij is the
normal velocity induced at 1 due to a unit source at j, Gj refers to the
uniform strength of the source at the element j and N is the total number of

elements around the elliptic aerofoil.

4.3 Separated Part:

Due to the presence of the boundary layer and the separated wake
the determination of circulation around the aerofoil is not possible by
simpl& specifying the stagnation point at the downstream end of the major
axis of the elliptic aerofoil. For this it is argued that if the flow
conditions are steady then the rate at which vorticity is discharged into
the wake from the upper and.lower surfaces must be equal and opposite (Ref.
13 & 14). It further follows then that the free stream velocity at the edge

of the separated wake must be the came for both upper and lower surfaces in
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the region of the separated wake. This then is the condition that must be
applied to determine the circulation. Since the present model is all
potential flow, the constant velocity condition in the separated wake leads
to a counstant preésure wake region. The technique to determine the
circulation with a constant pressure wake region is described in Section
4.4,

It must be noted here that main stream veiocity at the upper and
lower separation points is the resultant of the total tangential component
(due to onset, vortex distribution and source distribution) and the normal
component (due to the source distribution). Thus the separation velocity

can be written as

N N
v2 = (U, + At.. 0.)% + AN, . 0.)% eeecenscennases(b.2
sep ( i §=l tlJ GJ) (§=1 ij GJ) ( )

where i refers to the control points in the separated region, Ui is the
tangential velocity at i—th control point due to the vortex distribution and
the onset flow, Arij is the tangential velocity induced at i due to a unit
source at j, oj refers to the uniform strength of source at the element j
and VSep represents the total velocity at the separation point.

Equations (4.1) and (4.2) have N unknowns (o's) and there are N
equations. Since Equation (4.2) is not a linear equation, an iterative
procedure is followed to solve the Equations (4.1) and (4.2). The first
iteration begins by assuming the tangential component of the velscities
induced by the distributed sources is zero. This gives us the first

approximation of the strength of the sources from the following equations:

N
) An.. .o, = VYV? - U2i - for i in the separated region
3

ij 73 sep
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N

A . = V
§=1 Y13 0% ni for i in the attached region.

In the subsequent iterations denoted by k, equations (4.1) and (4.2) can be

re-written as follows:

N N
k /é’ k-1
) An; . o, = Zse —(Ui +L At .0 )2 eiiieieneeea(423)
3=1 i3] % =1 J 3
for i in the separated region, and
N k
LooAnL L 0= VR, e (B04)
j=1 J 3

for 1 in the attached region.

Equation (4.3) simply means that for the kth iteration for
evaluating the strength of the sources, the tangential velocity induced is
due to the sources from the previous iteration. This process of iteration
is stopped when the strengths of sources do not vary significantly in the
subsequent iterations. The criterion chosen to achieve this is to test the
strength of the sources near the upper and lower separation points in the
subsequent iterations. If the corresponding strengths of the sources do not

vary by more than 1%, the iteration process is stopped.

4.4 Circulation Adjustment With Separated Wake:

As was pointed out earlier, the circulation around the elliptic
aerofoil was calculated by specifying the stagnation point at the downstream
end of the major axis. This specification is no longer applicable in the
presence of the separated wake. The modified condition requires the
separation velocities at the wupper and lower surfaces to be equal. To
satisfy this condition the tangential velocities at the control points
nearest to the separation points are equate&. If Yy and Yj are the

vortex strengths at the upper and lower separation points, then




This reduces the number of unknown y's from (N+1) to N but by doing so the
right hand side of the matrix system is disturbed. Thus the modified Kutta
condition can not be: applied in the same manner as the conventional Kutta
condition in the surface—vortex method.

A different and new approach is followed to satisfy the modified
Kutta-condition. Firstly, we have a potential flow solution satisfying the
conventional Kutta condition. Using Thwaites' method the separation points
on the upper and lower surfaces are determined. Secondly, a new potential
flow solution is calculated with an arbitrary stagnation point for the same
onset flow conditions. Now, these two potential flow solutions are combined
so as to give equal velocities at the upper and lower separation points.
However, the new resultant potential flow solution gives a new pressure
field for the boundary layer. The boundary layer is recalculated giving new
separation points. This leads to an iterative process to follow. These
iterations are carried on till the upper and lower separation velocities are
not different by more than 1%Z. The flow is now a potential flow satisfying
the conditions that: )

(i) far away the flow has a velocity of U_ inclined at a to the
ellipse major axis,

(ii) in the region where the laminar boundary layer would be
attached, the mainstream is displaced from the elliptic aerofoil
surface by the same distance as the laminar boundary layer would
displace it;

(iii) in the region downstream of separation, the pressure is

constant, which is observed to be nearly true in Ref. 13 and 14.
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4.5 Estimation of the Lift, Drag and Pitching Moment Coefficients:

Appendix C gives the derivation of the formulae used to estimate
the coefficients of lift, drag and pitching moment. Once the potential flow
representation of the flow has been made, the coefficients of 1ift, drag and
pitching moment can be estimated.

A flow-chart, Figure 5, lists all the operations carried out to

predict these coefficients.




5. RESULTS & DISCUSSION

The problem of the steady, dincompressible, low Reynolds number
1aminar flow around an elliptic aerofoil was formulated in the earlier
chapters. A computer program was developed and a ébpy of the listing is
attached in Appendix D. Figure 5 shows a flow—chart of the sequence of
computations carried out. The program was tested on an elliptic aerofoil
with a fineness ratio of 6:1 at a Reynolds number of 800. The prograﬁ was
used on an Amdahl 470/V8 computer of the University of Manitoba. The
program was tested fo? angles of attack from zero to 20 degrees. This
program was intended to be a general one and hence will accept coordinates
of any aerofoil and any Reynolds number appropriate for laminar boundary

layers.

5.1 Potential Flow:

The adequacy of tﬁe surface-vortex method for the potential flow
was tested by predicting the flow about the elliptic aerofoil at several
angles of attack using from 20 to 60 elements. When the number of elements
chosen was 20, the control point nearest to the upstream end of the elliptic
aerofoil was 1.2% aft of the front point. This was not good enough to
represent the true contour because the shape of the aerofoil changed rapidly
in the vicinity of either end. Therefore, to obtain the rapid velocity
changes near both ends, it was decided to use 60 elements which made it
possible to calculate the tangential velocity at 0.138% chord.

Table 2 represents the velocities obtained at chord positions from
57.8% to 99.8% using 60-element surface-vortex method at an angle of attack

of 0 degree. Table 2 also includes the corresponding velocities obtained by
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the exact Conformal Transformation method and the error in the surface-

vortex method which was defined as

(Approximate velocity — Exact velocity) X 1007
Exact velocity

Percentage error =
1t was found that the error was much less than 1% over most of the aerofoil
surface for all angles of attack, but near the stagnation point it was 8 to
10%. This high percentage of error is due to the small value of the
denominator.

Figure 6 represents the pressure distribution calculated from the
velocities obtained by the surface-vortex method at an angle of attack of 8
degrees. The differences in pressures obtained by surface-vortex method and
the exact method are difficult to distinguishvon the graph.

In general, the 60-element surface-vortex method predicted the
potential flow around the elliptic aerofoil with high accuracy and was used
for the subsequent work. Ref. 7 mentions that numerical difficulties may
arise while solving the Fredholm equation of the first kind. But no such
difficulties were encountered here and one reason for the present success is
that the non-uniform distribution of vorticity on the elements leads to a
better conditioned matrix than when uniform vorticity is used: the latter
gives a zero diagonal in the coefficient matrix.

The surface velocity gradients, required for the boundary layer
calculations, were calculated from the velocity distribution using cubic
splines; the details of the method are given in Appendix B. An example of
the accuracy of this wmethod is given in Table 3 where the gradients
calculated by the Conformal Transformation method are used as the basis of

comparison.
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5.2 Potential Flow Results for Circulation Determined by Boundary Layer
Separation:

The boundary layer calculations began by calculating the momentum
thickness using Thwaites' method. Then the parameter m was calculated up to
a position where m reached the value 0.09; the displacement thickness was
also calculated for each of the control points on both upper and lower
surfaces. The exact positions of the points of separation (determined by
m= 0.09) were calculated. The mnormal components of velocity due to the
boundary layer growth at the separation points on both the surfaces were
calculated. If the upper and lower separation velocities were not equal, a
potential flow with an arbitrarily chosen stagnation point was calculated
(loop 1, Figure 5). A fraction f of this new potential flow was combined
with a fraction (1~f) of the original (rear stagnation point) flow in
proportions required to equalize the upper and lower separation velocities,
and at the same time keep the omset flow unchanged. This resulted in a
modified surface pressure distribution; thé boundary layer was recalculated
and the process iterated until the separation points were stabilized with
equal separation velocities.

The growth of momentum thickness when the angle of attack was 7
degrees 1is shown in Figure 7a for the <final iteration. The momentum
thickness on both the surfaces increases rapidly from the stagnation point
and then grows more slowly. The predicted values appear to be quite smooth.

The distribution of parameter m was studied for each angle of
attack on both the upper and lower surfaces of the aerofoil. Figure 7b
shows the distribution of m, in the final iteration at an angle of attack of
7 degrees. It is observed that for both the surfacez, near the stagnation

point, the m-values were irregular. But these smooth out away from the
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stagnation point. The lower surface m - wvalues risé steeply near the
separation point. Since separation occurs when m = 0.09, the values of m
downstream of separation were not calculated.
This displacement thickness up to the separation point was then
estimated. Figure 7c¢ shows the final iteration result for an angle of attack

of 7 degrees. The growth is rapid near the stagnation point because of the

high shear stress at the surface. The growth is again very rapid as the
separation points are approached. These large slopes of the displacement
thickness would dimply unrealistically high normal velocities. It was

observed that, after the initial rapid growth, the displacement thickness
rate of growth decreased as % increased excépt near the separation points.
In the absence of a better technique, the displacement thickness growth was
arbitrarily restricted near the separation points*. The modified values of
8% are shown dotted on Figure 7c. The normal velocities at the separation
points were thus small as compared to the tangential velocities.

Table 4 shows the locations of the nearest control points where
the separation occurred on each surface at various angles of attack: The
Table also shows the number of iterations required to adjust the circulation
so that the - upper and lower separation velocities were equal. The
magnitudes of these velocities are also given. It is observed that from
angles of attack of 0 to 7 degrees, only 2 to 4 iterations were required to
adjust the circulation so that the upper and lower separation velocities
were equal.

From 8 degrees up to 11 degrees the iteration process failed to
converge. It was observed that at 8 degrees, the value of parameter m on
the upper surface reached 0.09 very close to the upstream end of the

elliptic aerofoil. When the circulation was adjusted, as a next step, the

- *
* The values of ng were checked for a few control points upstream the
dé*

X
separation point. Whenever began to rise rapidly the displacement

dx
thickness was not allowed to grow more than the average growth of the
previous interval in proportion to its length.
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ation point moved way back on the upper surface. On read justing the

geparl

circulation, the separation point moved again close to the upstream end of
the aerofoil. This oscillatory behaviour continued between upstream and
downstream separations and a unique solution could not be obtained. The

same was true for angles of attack from 9 to 11 degrees. Some further.
discussion of this problem is given later.

For angles of attack of 12 degrees, a unique stable solution was
obtained after about 14 iterations. As a matter of investigation, angles of
attack well beyond the stall up to 20 degrees, in steps of 2 degrees, were
tried. The circulation was able to be adjusted in 4 to 6 iterations; These
separation results are also included in Table 4. )

There are two possible explanations for the behaviour of the
solution between 8 and 11 degrees. First, the iterative computational
procedure itself might have been the cause of failure to converge. Second,
the real flow may be oscillatory, like Karman vortex sheddiné, for these
angles of attack.

Therefore, whenever a unique solution was not obtained, further
investigation was carried out. For example, at an angle of attack of 8
degrees, the parameter m was calculated for the full range of control points
even after m had first acquired the value of 0.09. It was observed that m
was greater than 0.09 for only four or five control points. Beyond theée,
the values of m became and stayed less than 0.09 for quite a distance
downstream. Eventually, m exceeded 0.09 again where "trailing edge”
separation would normally be expected. It was postulated that this trailing
edge separation was close to the real separation position and the
circulation was adjus<ca to make the upper and lower separation velocities

equal. The process was iterated and after the solution stabilized, the
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yalues of m were checked. It was found that m still had upper surface
values greater than 0.09 near the upstream end of the aerofoil. This meant
that the solution obtained was invalid and a leading edge separation would
occur . Similar results were obtained for angles of attack of 9 and 10
degrees.

Since this method failed to produce a unique valid solution, it is
possible that the flow may be naturally unéta@le for angles of attack
between 8 and 11 degrees. As mentioned in Chapter IV of Reference 12, it is
possible that a vortex street may occur under these conditions. This
unsteady flow cannot be predicted by the computer program developed here
because steady flow was postulated.

A few values of the parameter m greater than 0.09 near the
upstream end of the aerofoil may lead to another conclusion that a
separation bubble may have been formed. The treatment required to handle
the separation bubble near the leading edge of an aerofoil is dependent on
empirical relations (Reference 1) and is beyond the scope of the present
study.

Further work is necessary to investigate whether the iteration
process can be modified to give a steady solution for angles of attack

between 8 and 11 degrees.

5.3 The Iterative Solution for Displacement and Wake Effects:

To represent the boundary layer displacement effects and the
separated wake, uniform sources were distributed over the surface elements.
The strengths of these sources were calculated to satisfy the normal-
velocity and constant pressure boundary conditions in the attached and

separated regions respectively as discussed in Chapter 4. As illustrated by
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the flow chart (Figure 5), the strengths of these sources were calculated as
a first approximation by neglecting the contribution of the tangential
velocities induced by the sources. In the subsequent iteration (loop 2,
Figure 5), the tangential velocities induced by the sources of the previous
iteration were considered. This iterative process was continued till the
strengths of these sources did not vary. An average of two iterations was
required.

As shown in Figure 5, during the last pass through loop 2, the
normal and tangential velocities due to sources were combined with the
tangential velocities obtained by the onset flow and the distributed
vortices. This resulted in modified surface velocities. The boundary layer
calculations were performed again to predict the separation points. If the
velocities at the separation points were not equal, loop 3, Figure 5 was

followed in. which the modified velocity distribution was combined with a

potential flow to adjust the circulation till equal velocities resulted.

The source-calculation was performed again and the process iterated till
equal velocities resulted at the upper and lower separation points. The
number of iterations required were 1 to 3 for various cases.

The cases of angles of attack from O to 7 degrees were obtained
with the boundary layer displacement thickness and the wake represented by
source distributions. Figure & shows the pressure distribution at an angle
of attack of 1 degree satisfying the above conditions. The full solution
could not be applied to the cases with angles of attack between 8 and 11
degrees becausé the separation points were not stationary. When the full
solution was sought for angles of attack between 12 and 20 degrees, it was
found that the source; generated such high tangential and normal velocities

that a constant pressure separated wake could not be obtained. A possible
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cause for this is that in the first iteration to obtdin the strengths of the
sources, the boundary conditions changed too abruptly from the attached
region to the separated region. In the attached region the normal velocity
was related to the displacement thickness while the normal velocity in the
separated region was related to the separation velocity and the tangential

velocity due to the onset flow and the distributed vortices. This first
approximation produced very high source strengths which were poorly
conditioned for input to the subsequent iteration and convergence was not
achieved. Proper representation of the separated wake at higher angles of
attack will require further study. A recommendation to this effect is to
re—specify for the first iteration the normal velocities in the separated
region of the upper and lower surfaces. It is suggested that the normal
velocities should be specified equal to their values at the separation
points. Since these normal velocities are small, the first approximation of
the strengths of sources should not induce high tangential and normal

velocities.

5.4 Results of Force and Moment Coefficients

5.4.1‘ The Coefficient of Lift:

The coefficient of 1ift was calculated at several stages of the
calculations. Tt was first calculated where the inviscid velocity
distribution was determined by the rear stagnation point being at the
downstream end of the aerofoil. These results show a linear variation with
angle of attack right up to 20 degrees. - The lower end of the range is

plotted on Figure 9.




32

The coefficient of 1lift was calculated after the circulation was
adjusted to equalize the upper and lower separation velocities. Figure 9
shows these values of the coefficient of 1lift. These results will be
discussed in three parts for three ranges of angle of attack.

For angles of attack up to 7 degrees, the results were well
behaved and are very close to those of Howarth who used the same criterion
for determining the circulation from the boundary layer separation. The
small differences in the lift-coefficients can be attributed to the
different methods of calculating the boundary layer. Howarth wused a
Pohlhausen—type solution which 1is known to have limited accuracy in
predicting separation. The present analysis used Thwaites' method as
modified by Curle and Skan specifically for improving the prediction of
separation. It is therefore assumed that the slightly higher 1lift predicted
by this method is valid. These results up to an angle of 7 degrees show a
marked reduction of 1lift compared to the potential flow solution.
Unfortunately, there are no suitable experimental results for comparison but
the computed results are consistent with typical aerofoil data. It is
interesting to note that Howarth was able to establish that the lift reached
a maximum round about 7 degrees and that the stalling occurred by 8 degrees.
The present method seems to indicate that the stalling angle was about 7
degrees but the solutions in the post-stall region require special
discussion.

The oscillatory solutions obtained for angles between 8 and 11
degrees are also represented by two possible values of the coefficients of
lift at each angle. The higher values of the coefficients of lift are for
the cazes when the separation occurs near the downstream end of the

aerofoil. The lower values correspond to leading edge separation. If the
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real flow is indeed oscillatory in this range of angles of attack, it is
unlikely that the dynamic solution would have such a large amplitude.

The coefficients of 1lift obtained for angles of attack of 12
degrees and greater are truly in the stalled region and the flow 1is
characterized by the wupper surface boundary layer separating near the
leading edge.

When the displacing effects of the boundary layer and the wake
were taken into consideration, solutions were obtained for angles of attack
up to 7 degrees and the coefficients of 1ift are plotted on Figure 9. These
values are a little less than when only the points of separation were
allowed for. This can be interpreted as meaning that the displacing effect
does not greatly modify the boundary layer growth and its separation. For
single element aerofoils, it could be concluded that the 1lift could be
adequately predicted by calculating the boundary layer separation and its
effect on circulation. For aerofoils with slotted flops, it is probably
ﬁore important that the wake of the main aerofoil be represented when
calculating the boundary layer behaviour on the flap.

5.4.2 The Coefficient of Drag:

The profile drag force experienced by an aerofoil is due to the
frictional stresses called the skin-friction drag and due to a distribution
of surface pressures contributing a force component in the direction of the
flow, called the form drag-.

Figure 10 represents the distribution of the coefficient of skin-
friction on the upper suxrface of aerofoilv at an angle of attack of 3
degrees as calculated by Thwaites' method. It is observed that near the
stagnation point the skin friction drs; 1s high and reduces downstream of

the velocity maximum. The skin friction distribution was calculated up to
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the separation points. High value of the skin friction near the stagnation
point is due to high velocity gradients existing near the stagnation point.
Table 5 presents the values of the coefficient of skin friction drag at
various angles of attack. It is observed as the angle of attack increases
the coefficient of skin-friction drag increases very slowly.

The coefficients of form drag were calculated by integrating the
drag forces due to the normal pressure distribution on the surface of the
aerofoil. The values of the coefficients of form drag at various angles of
attack are presented in Table 5 where it is observed that as the angle of
attack increases the coefficient of form drag decreases slightly.

Table 5 and Figure 11 give the values of the coefficients of
profile drag at angles of attack up to 7 degrees. The calculations depended
on a successful representation of the boundary layer displacement and wake

effects by sources.

5.4.3 The Coefficient of Pitching Moment:

The moments of the 1ift and drag forces about the upstream end of
the aerofoil were calculated and normalized to give the pitching moments for
angles of attack up to 7 degrees. These coefficients are presented in
Figure 12. The sign convention is such that a positive pitching moment
tends to increase the angle of attack.

It 1is observed from Figure 12 that as the angle of attack
increases, the pitching moment decreases. This 1is due to the increasing
contribution to the moment by the lift force, which increases as the angle
of attack increases.

The compilation and execution times were 0.75 seconds and
approximately 40 seconds respectively for the angles of attack between O and

7 degrees.




6. CONCLUSIONS

The surface-singularity method to represent two-dimensional,
incompressible flow around an elliptic aerofoil of fineness ratio 6:1 with a
laminar boundary layer at a Reynolds number of 800 gave the following
results:

1. The potential flow is represented accurately by 60 flat

elements and a linearly increasing strength of distributed
vortices.

2. The boundary layer calculations using Thwaites' method
were successful except for the rapid growth of the

displacement thickness near the separation point which had
to be modified.

3. The displacing effects of the attached boundary layer and
a constant pressure wake region were modelled successfully
by adding source distribution for angles of attack between
0 and 7 degrees.

4. The oscillatory flow obtained for angles of attack between
8 and 11 degrees may be real or it may be due to the
iterative process which failed to converge. Further
investigation is needed to establish the genuineness of
the oscillatory flow.

5. For angles of attack greater than 12 degrees, the present
work predicted excessively high velocity contributions
from the source distribution as a result of which the
iterative process breaks down. It is recommended that the
first approximation of strengths of sources be changed
such that the normal components of velocities calculated
at the separation points be specified at points aft the
separation points on both upper and lower surfaces.

6. The force and moment coefficients were calculated
successfully up to 7 degrees of angle of attack.




APPENDIX A

COMPUTATION OF VELOCITY AND VELOCITY GRADIENT
— ANALYTICAL METHOD

The potential flow around an elliptic aerofoil can be obtained by
conformally transforming it from the flow around a circular cylinder. The
velocity distribution and the velocity gradient along the aerofoil surface
are calculated as a check for the results obtained by the panel method.

The flow past a circular cylinder of a uniform stream Uoo inclined
at an angle of a to the real axis is shown in Figure (13) and its complex
potential, W, in the Z-plane is (Ref. 5)

-y io

24 a2 S i (AMD)

W = U [e =

where a is the radius of the circular cylinder.

The comﬁlex potential (in the Z-plane) of a pure circulation of
strength k about the origin is given by

W = 4 K AN Z ceovececocoooasnsssrossscsssssssscesssscannsse(As2)

Thus the complex potential of the uniform flow combined with the
circulatory flow can be obtained by adding the equations (A.l) and (A.2) as

follows:

W = U [e 7Z+ =] + 3kAinZeeeurencanocosoncrosnnscasens(A3)

The position of the rear stagnation point can be used as a
condition to calculate the circulation. If u and v are the velocity
components in the x and y directions respectively, then

- .= aw

U = 1V 5 S teirececcnsscasccnsstccesocessacesosscssssnacseso(Ach)

dz
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dw
At a stagnation point, such as B in Figure (13), 1z - 0.
For the circular cylinder,
- i
e S N
dz o & 72 ¢ )ty
and at the point B (R = a, g = 0),
i
Z = Re P = a
so that
aw —ia ia ik
az 0 = T (e -e ) f "
Therefore
aUoo , )
k = 5 (éa - )y = 2ay sina sessecssacesscosaseess(AD)

Thus the complex potential of a uniform stream at an angle of
attack a, with circulation, around the circular cylinder such that the point

B is a stagnation point, is given by
~-ia 2 la
W=10_ (e Z + a—zg——) + 12aU_sina.2nZ cesecsescsssesssascss(AD)

The region outside the circular cylinder is mapped on the region

outside the elliptic aerofoil in the {-plane by using the transformation
c?
A s NN -0

¢ 47

c? - b2, c is the semi major axis and b is the semi minor axis of

where (2

the elliptic aerofoil. The velocities in the [—plane are .given by

dw dw dz
| i " az v sesecseosacesasossaosvecesscasvocooasccsacsses(As8)
From the equation (A.6),
i 2a U i
Wy pte_alel) T e TR
dz w Z Z

which can be rearranged to give (on the surface of the circular cylinder)

dw
a - U_ [{cosa—cos (a-2B) + 2 sina sinﬁ}+i {-sina—sin (a-28) + Zsinacosﬁ}}

Q...O'.'..'OO..OO....(Alg)
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from (A.7),

e, _ ¢
dz ~ 472 »

AlsO,

put on the surface of the circular cylinder,

Z = aelB s
s0 that
e, e -fip
dz 1 4a? ©
or
dg c? . C2 |
az - (1‘227 cos2f) + i (227'51n25) cessssasassasssnensscses(As10)

Therefore the velocities on the surface of the elliptic aerofoil are given

by
dw
EE‘= Um[{cosa—cos(a—ZB) +2sina sinBli+i{=-sina-sin(a=-28)+2sina cosB}] /
c2 ' c?
{(1—482 cos2B) + 1 (777 sin < R - T B
dz dw dw
It should also be noted that as Z + o« ac + 1, so that a7 > a

This means that the ellipse is in a stream of strength Um at an angle a to
the real axis.

The relationship between the position of a point on the elliptic
aerofoil and the corresponding point on the circular cylinder can be found
out as follows:

In polar coordinates,

Z = Re ,
therefore the transformation function, Equation (A.7) becomes
i® ig . ¢c?
re = Re B +-—fz
4Re B

or
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c2 2

_ s R . R ¢
cos® + i sin® = ;‘cosﬁ + —— cosf + 1 (;’SlnB ~ 4Rr

4Rr r sinf)

Equating the real and imaginary parts gives

o = (B'+~93— (A.12
cos - 4%r) COSP covecesnssosssvssnssansssaconasosnnass(Ae
R C
i = (—= — i P -
sind (r 4Rr) sinf (
and elimination of r gives
02
R + -——
tanf = ——~—Ez—-tan® I - )
R
Knowing the position of a point on the ellipse, ie, angle @, R (=

+b , 172
EE—) and C (= (c?2-b?) / ), we get the corresponding position (B) on the

circular cylinder. This value of P can be used in the equation (A.1ll) to
compute the velocity at the point ® on the elliptic aerofoil.

Once the velocity distribution has been obtained on the elliptic
aerofoil, the velocity gradients with vrespect to the distance along the
surface of the aerofoil can be computed as follows:

du _du dp do
ds dp " d® ° ds
dv _dv dp a9

=TT e . Ia-ootto00.0..0OO0000'Oooooo....llt..c.o-.(Aol6)

ds dg  d® ds

0..‘..0'I.l...........l..’....OIOCQOOQOOOO(AOIS)

o du T v
QY S a8 et (ALT)

ds (g2 + 32y1y2

where u and v are the x and y components of the velocity on the elliptic
aerofoil, s is the distance along the elliptic aerofoil surface, measured as

shown in Figure (2) and V represents the resultant of u and v at a given

point on the elliptic aerofoil.

In the Equations (A.lS) and (A.16), %%-and-%% are calculated from
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dB .
(A'll)"ag is calculated by (A.1l4) and %% is calculated from the

properties of the ellipse as follows. 1In polar coordinates the equation of

the ellipse is

r cosd? r sin ®,2
( . ]+ ( - T I €. T £
which gives
C2
dr - r sin 2 ® (b2 - 1)
—_— = 5 2 esecsscessecsscnsssescsasscsacses(As19)

c
d®  (-1-b2)= cos 2& (1-b?)
and this can be used in the expression for the required derivative

d® . dr ,,~172
1s {r‘2 + <EE 2} T - WA )




APPENDIX B

COMPUTATION OF VELOCITY & VELOCITY GRADIENT
~ SURFACE SINGULARITY METHOD

In this section the formulae are developed for the dinduced
velocity at a point due to an element with a distributed vortex of uniform
strength, a linearly varying strength and a combination of these two types
of distributions.

Similarly, the corresponding formulae are derived for the induced
velocities at a point due to distributed sources of uniform strength, linear

strength and a combination of these two types.

B.1 Uniformly Distributed Vortex Strength:

Let y be the strength of uniformly distributed vorticity over a
straight element AB with O as the centre such that O0A=0B=A, as shown in
Figure 1l4. Consider a small portion ds of the element at a distance s from
the centre 0. Let P (x,y) be the point where the induced velocity is to be

found. The velocity induced at P, due to the small length ds, is dV.

Therefore
dv:ﬁ
27T

) 1/2
where r = {(x~s)? + y?}

Assuming positive vorticity gives counter-clockwise flow, the x-

component of the induced velocity at P is given by du

_ Yy ds sinb ceeeo(B.1)

du = W o oo cos oo ocscoscsoaceoocesesooosesse s v

27r

where 6 is the angle between the x—axis and the line joining the point P to

a point on the x-axis distant s from the origin.
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Similarly, the y—component of the induced velocity at P is given

by dv such that

dv = y _ds cosé
2Ry

I @ - 2

Therefore, u, the total x—component of the induced velocity at P, due to the
element AB i1s given by integrating (B.l) over the length of the element

(i.e., from —A to A). Then

A -

Y _sinb ds

w=f-Yxsin®ds
-A 2nr

%; (O] = 02) +eeverenseneenassesnaseensasansonsessacnees(Be3)

Similarly, v, the total y—component of velocity is given by

it

or, u

v = IA Y cosé ds
A 2nr
r
_X :

or, v

— e
2% n (rz ) ( )
B.2 Linearly Increasing Strength of Vortex:

Consider a short element AB along the x—axis with its centre at 0
such that A0 = OB = A, as shown in Figure 1l4. Let the vortex strength be

zero at A and increase linearly towards B at the rate of y'. A small length

ds at a distance s from the centre induces the velocity dV at P(x,y)

y'ds (s + A)

dv = 27y

thus, the x and y components are

u _~y'(s + A) sina ds

d znr ...9..........‘0....0.‘.....0.........(B.S)
' _
dy = X (8% girCOSG 3 e e (BB

To find the total x-component of the induced velocity at O due to AB, (B.5)

is integrated over the length AB (i.e., from — A to A)




43

A—Y'(s + A) sind ds

u =
A 2nr
' i
or, u-—znhx+mwf¢p+yzn;q.“. ..... Ceveinieneaa o (BLT)
Similarly, for the y-component,
B (s + ) cost d
v = f Y (s cos S
-A 2Rr
' ! !
=X ) - - L
or, v o= [x 4n (rz) 26 +y (¢, = §) + 4 2 (rz)]...........(B.S)

B.3 Uniformly Distributed and Linearly Increasing Vortex Strength:
Combining Equations (B.3) and (B.7), the x—-component of the
induced velocity at P due to uniformly distributed vorticity of strength Yj

and linearly varying vortex strength which increases at the rate of Y3

given by
Y, vl r
= L (g, - g - 2 1 eeiiieneene (B
u =5 (0 o)+ [T gy [ Ha (0 ~e) +y s ) H] (B.9)
Y. Y.
R i Sl | - 2,2 - A y2 L 2172
where Yj = > Aj T {(x + Aj) + y } » Ty {(x Aj) + vy }
-1 y -1 y
¢1 = tan (§~1—Ej) s ¢2 = tan (§~:~Z;J and ¢1 and ¢2 vary between 0 and 27.

Similarly, the y-component of the induced velocity at P is given by

combining the equations (B.4) and (B.8)

1

Yy T Yy 1 !
= =L gn — 4 [ = - - —}]eeeiieea (B0
v =3 in ) + [5{x 4n : 265 %5 4y = ¢p) *+ by An rz}J (B.10)

In the above equations (B.9) and (B.10), the distances x and y
have been referred to as the parallel and perpendicular distances from the
element whose effect is being considered. In the computer program, x and y

have been referred to as XI and ETA. In the equations (B.9) and (B.10),
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special cases arose when trying to find the induced velocities at the centre
of the element due to the element itself.

From (B.9), as x> 0 and y » + 0

From (B.10), as x » 0, and y » + O,

<

1
v=zd (- 24,)
B.4 Uniformly Distributed Sources:

Let ¢ be the strength of a uniformly distributed source over an
element AB with O as the centre such that A0 = 0B = A, as shown in Figure
15. Consider a small portion ds of the. element at a distance s from the
centre 0. Let P (x,y) be the point where the induced velocity due to the
element AB is to be found. The velocity induced at P, due to the small

length ds, is dV

Therefore,

_ ads
27y

where r = {(x - s)2 + yz}

dav
1/2
The x-component, du, of the induced velocity is given as follows:

du = dv cosé...,....a...e...................o..........a.,.(B.ll)
where 0 is the angle between the x—axis and the line joining thé point P to
a point on the x—axis, distant s from the origin.
Similarly, the y-component, dv, of the induced velocity is given as

AV = AV S10Be e e venneoonesnneosnecnssesssonsnnsseannsseanas(Bal2)

On integrating (B.11) and (B.12) over the -element length, the total

components of the induced velocities u and v in x and y directions
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respectively are

g rl
u ='2‘;E‘/Q,n;‘r“ -ooooouooo-oococoaoo-....-tonocoooc-oooo-a--.a(B.l3)
2
g
and Vo= o (¢2 - ¢l)......................................o....(B.l4)
2 2,1/2 2 2.1/2
where r1={(X+A) +y} ,I'2={(X~'A) +y} ’
e pan b oY I S
¢l = tan (X n A) and ¢2 = tan (X = A)

B.5 Linearly Incereasing Strength of Sources:

Consider a short element AB along the x—axis with its centre at 0
such that A0 = OB = A, as shown in Figure 5. Let the source strength be
zero at A and increase linearly towards B at the rate of 0'. A small length
ds at a distance s from the centre induces the velocity dV at P(x,y)

c'ds (s + A)

v = = — P ¢ T8 1)

The total =x—component of the induced velocity at the point P due to a

linearly increasing strength of source is found as

1 r -
u =%? [ (x + A) Rn%_ 28 =y (6, - ¢2)J..................(B.l6)

Similarly, the total y-component of the induced velocity at the point P due
to a linearly increasing strength of source is found as
T

Al - . 2
v=o— (x4 ) (9 - 0 +y kg e e (BALT)

1

Equation (B.16) is of the same form as Equation (B.8) whereas

Equation (B.17) is - of the Equation (B.7).

B.6 Uniformly Distributed & Linearly Increasing Source Strength:
The sources of uniform strength and linearly increasing strength

can be combined to evaluate the total x and y components of the induced

1
z
i
1
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yvelocities at a given point in a similar manner to what was done in Section
(B.3) for vortices. Thus, combining (B.13) and (B.16) gives the total
induced x—component while on adding (B.14) and (B.17), the total y-component

of the induced velocities is obtained. These components are:

r r
1 ' 1
U="2“%,QH (;;—)‘*‘%{X"‘A) ,Qn—r—z-—ZA-y(¢l‘¢2)}--'--'(B-18)
and
1 7."2
v = -5‘—; (6, = 6 +§:,; {x+8) 4, -0 + yJLn(?I Yeerrt (B.19)

It is, again, possible to find the induced velocities at the
centre of the element itself due to partly uniformly distributed strength
and partly linearly increasing strength of the source.

From the equation (B.18), on putting x=o and y=to,

= 9
u_ 2‘)’E( ZA).................---.....‘......-............(B.ZO)
and
o o' A
v =+ > + 5 I € 1A

B.7 Computation of Velocity Gradient on the Surface:

The velocity gradients on the aerofoil surface are determined by
differentiating . cubic splines fitted to the known velocity distribution
along the surface. It was convenlent to measure the surface distance
counterclockwise from the downstream end of the elliptic aerofoil.

The theory of fitting cubic splines between two variables is given
in Reference 15. The principle involved is re-written here. Let the
aerofoil surface be divided into N parts. Let S represent the distance and

U represent the velocity. Consider the k-th interval which 4is between
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(Uk’sk> and (Uk+l’ Sk+l)' The cubic for the k~th interval is written as
= U = - 3 3 §-8 )2 + C 3-8 S R ) J B.22
£,(5) = U =4 (S5)3 + B (5-5) ¢, (578.) K ( )
where Ak’ Bk’ Ck and Dk are determined so that the slope and curvature of

the spline is the same for the splines in (k-1)th interval and (k+1)the

interval. If A = Sk+lusk’ then the spline function values from Equation

(B.22) at Sk and Sk+l are given by

U = D eeeevnnnnnnnnnannnnneeneseess B - X )

U = A AS3 4+ B ASZ + C AS F D eeeeiiiiiiiiiieiin covsees(Bl24)

k+1 k™" k k k k k

The first derivatives of the spline function from Equation (B.22) at Sk and

5 are given by

K+1
U'k = e e (B.25)
and
u' = 3A ASZ 4 2B AS. F € vetreienrennconnesenesonneene(Ba26
k+1 k k k k k ( )
. du
where U' = agn

Then the coefficients Ak’ Bk’ Ck’ D, for the k-th interval are written as

k
follows:
~2AU )
1 k
= - _{. ] ]
Ay = 7382 ( AS Uy U k+l)
k k
AU
: 1 k ' y
= — . - ceoosesa(Be27
Be = a5 Bas ~ 20U 7 V) 3 (B-27)
k - k
= 1
Ck v k )
D =1
k k )
where AU = 1U - U

k k+1 k
The continuity condition (f"k~l (8,) = £ (Sk)) gives

S = 2 =2, ¢0as.N-1 cevcessasssnnasea(B.28
6A, | O, _, + 2B, = 2B (k=2, N-1) ( )
which leads to N-2 equations in the N unknowns Uy, — U'N viz.:
3 AU 3AU
1 : 1 1 k~1 k
= Ut o+ 2 (_M_g. + = ) U = o 2 (k=2 ,---N-1)..(B.29)
ASk__l k-1 Ask—l ASk k+1 <Ask—1) (ASk)




1f the quantitites Ui and U'N are given, the Equation (B.29) can be solved

for Uy (k = 2, ===N-1).

The values of U', and U'n are approximated using the finite difference form

and the rest of the velocity derivatives are evaluated.




APPENDIX - C

ESTIMATION OF THE LIFT, DRAG AND PITCHING MOMENT COEFFICIENTS

c.1 The Lift Coefficient by Integration of the Pressure Distribution Around
the Elliptic Aerofoil:

Let Figure (16) represent a séction of the elliptic aerofoil at an
incidence « to the fluid stream, which is assumed to be from left to right
at a speed of Um. Consider the pressure, p, acting on a small element AB,
of length ds, of the surface. Let P_ be the static pressure of the
undisturbed stream. The normal force on the element is pbs inwards. This
force per unit span may be resolved into components 8D and 8L acting
parallel and perpendicular to the direction of the undisturbed stream
respectively.

Then

dL = - {*pds siné} sina + {pds.cosé} COSQ sevosssssssasecsssss(Cul)
where & is the counterclockwise inclination of the element AB from the
positive x-axils (Figure 16).

Replacing ds.sind by dy and ds.cosd by dx, the Equation (C.l) is
re-written as

dL = (pdy) sina + (pdx) COSQ eecosoossssascocaossocossensnass{(Cal)

If this is integrated round the contour of the elliptic aerofoil,
the total lift force, acting normal to the direction of the undisturbed
stream, can be obtained. The coefficient of 1lift, CL’ is obtained by
dividing the total lift force by 1/2 pU2d where d is the chord of the

elliptic aerofoil.

|
i
|
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Then
.21
L~ 1/2pU2d
or CL = é;(i/g UZ)d( =) . sina + é;(l/Z Uz)d ( )eCOSQA eavessaoess{(Cu3
PP
gsince §;Pmd(%9 = (0. Then introducing Cp = 175555

= &c d(D) si §; Z eneeene s (Clh
CL §;Cp d(d) sing + Cp d(d) COSQ svsescsnsoasaco (C.4)

Cc.2 The Lift Coefficient by Calculating the Circulation Around the Elliptic
Aerofoil:

The 1lift force of an aerofoil is given by the Kutta-Joukowski
Theorem as

L=p UwT N € 1)
where I' is the total circulation given by

r =fé U (8) dS eeeeccasnssnssnsossoscensssasscssssansassssses(C0)
where s is the arc length of the contour, measured counterclockwise from the
down stream end of the elliptic aerofoil. If the fluid 1is considered
inviscid U(s) is the tangential velocity along the surface of the elliptic
aerofoil. Combining Equations (C.5) and (C.6) and normalizing by 1/2pUid,

gives the lift coefficient
L pUmng(s)ds
LT TI72p0%d T 1/2p02d

C

T :
- zqg (ﬁiélq A(E) e (CLT)

C.3 The Form Drag Coefficient by Integration of the Pressure Distribution

Around the Elliptic Aerofoil:

The form drag is due to the pressure distribution on the aerofoil

in a direction parallel to the stream.
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For a small surface element AB, (as in Fig. 16)

it

4D (~p ds. sing) cosa + (p ds cosd) sina i ecersseeresesesss(C.8)

it

—pdy . cos0 + pdX . SINA cerroscerrecsscsecsncoiscscacss(C9)
Integration round the aerofoil contour gives the form drag. The

coefficient of drag, C is obtained by dividing the drag force by 1/2pU£d.

D)
Then
o =é___dD = 9,4—“—_(13‘?&) d(L) cosa + é ("——”‘p—pw) d(%) sina
D 1/2pU%d 1/2pu2 4 1/2pU27d
- - pA Ay a4
or CD «fﬁ Cp d(d) cosq + §'Cp d (d) SINE soesesvcssssescsncses{C.10)

C.4 The Coefficient of Pitching Moment by Integration of the Pressure
Distribution Around the Elliptic Aerofoil:

The pitching moment can be calculated about any point by taking
the moments of the lift force and the drag force about that point. Here,
the pitching moment about the upstream end of the major axis is calculated
by first finding the moments of the 1lift and the drag forces on the element
shown in Fig. 17. Then on integratiﬁg this round the contour, the total
pitching moment about the leading edge is calculated.

Let dFX and dFy be the forces in the element AB as calculated in
Section (C.1l) and (C.2). x and y are the coordinates of the mid-point of
elemént AB. Then wmoment of dFX and dFy about 0' is equal to the moment of
the 1lift and drag force on AB about 0'. Thus the pitching moment on the
element AB about 0' is

dM = dFX.(y—yo) + dFy ¢ X seecassescescncensensssosesvossses(Call)

The sign convention for the pitching moment is chosen so that a

moment which tends to increase the angle of attack is positive. Evicressing
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dF and dFy in terms of pressure, Equation (C.1ll) is re-written as
X

dM = (“pdS-siné)(y—yo) + (pds.cos@).x

P Ay(y=yy) + PAXeX tevvrninnceninosrrnnesenanaceaesansa(Ci12)
The coefficient of moment, C is obtained by dividing the total moment by
m
2 g2
1/2 pr d<.

(y=yy) (y=vyg)
by P OO Gy @
M T 172p02d2" 172602 ‘ 1/2pU2

Then C

. Y=Y Y=Yo - %
f-ca () (5 + b c (Z) - a (B e (013)
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APPENDIX - D

COMPUTER PROGRAM FOR LAMINAR BOUNDARY LAYER AROUND AN ELLIPTIC AEROFOLL

The computer program for the laminar boundary layer around an

elliptic aerofoil is presented here.
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//AUXLAR JOB °1390,KANBHAT,T=1M',YBHATIA®
// EXEZ WATFIV,SIZE=1024K

GO, SYSIN DD *

$JOB WATFIV BHATIA,HOEXT

a

anaoaaoaoaaan

12
5300

10
1
40

21

DIMENSION X(61),Y(61) ,PHI(61) ,XCOK(61) ,YCON(61) ,DEL (60),

*ELEN (60) ,XI (60,60) ,ETA (60,60) ,00(60,60),V0(60,60),UL(60,60),
*V1(60,60) ,CONSA (60,60),CONSB(60,60) ,COEFA (60,60) ,COEFB (60
%,60) ,COBF (60,61) ,RH (60) ,GAM (60) ,GAKNA (61) , GAMCON (61),
%5CIR(60),VCIR(60) ,RCIR{60),UELL{60),VELL(60),RELL(60),
*PHETA(60) ,YCIR(60) ,ERROR(60),Y1US1(61) (DAHPF (10)

DIMENSION THICHU(50),THICHL(S0),PARANU{50),PARAHL (50)

#,GAA (4) ,XB(61),Y1L(61),Y1F (61) ,6RADC(61) ,STAGU (50) , DSTAGL
%(50) ,DUDS (61) ,DPLAC (50) ,DPLAL (50) ,STE(61) ,GANU4 (61) ,T1(61)
20MMON/SPEED/STC,GANCON,GAH4CO,ROOT

COMHMON/AREA/EH (26) , EK (26) ,EL (26)

DIXENSION DDDSU (80) ,DDDSL (840) ,STC(61) ,GRADD{61),DSTUP(50) ,DSTLW
*(50) ,CONSLU {50) ,CONSLL (50} ,CP (60) ,CD(60) ,CHU1 (60) ,CHU2(60) ,
*3ANUCO(61) ,CORPH (60,61) ,GANUF (61) ,RHHE (60) ,CLIPT (60)

DIMENSION XCONM (60) ,YCONH (60) ,ELENX (60) ,DELH(60)

DIXENSION SIGCON(60,5),SIG(60),SIGHA(60,5) ,UT (60),CHK (40),CL(61)

DIMENSION TUH(50),TLH(50) ,UN(60),FPIRST (61),DP (60)

INTEGER G6,H,R,S,T,U0,V,W,IA,1J0B,IZ,IER,CODE

COMHMON/PRESRE/XCON,YCON,CP

REAL COMAT(60,60) ,%K(3720)

COMPLEX WA(60),ZA2(60,60),2N

A e K KA R R R R R R ROR R KRR KKK
# DISTRIBUTION OF ELEMENTS AROUND AEROFOIL *%#x
R o oo ol ok o e oo o ke R O X ok o K ok ok e ok o o R ok 0k K R OR K

N=NO. OF ELEMENTS

N+1=N0. OF PANEL ENDS

PTI=4, 0%ATAN (1. 0)

N=50

NN=N+1

20DE=1

IP(CODE.EQ. 1) GO TO 12

TALL CORDNT (A,B,C,HN)

G0 TO 21

PRINT 5300

PORMAT (*~*, 45X, THE COORDINATES ARE GENERATED')
DO 10 I=1,NN

PHI (I)=2.0%PI*PLOAT (I=1) /FLOAT (N)

X (I) =0. 5% (1.0+COS (PHI (I)))

AR=0.5

BB=Ak/6.0

IF(I.LE.N/2)THEN DO

Y (I) =BB*SQRT (1. 0= { (X (I)=0.5) *%2/AA%%2) ) +2,0
ELSE DO

Y (I) ==BB*SQRT (1o 0= ( (X (I)=0.5) #*2/RA%%2)) +2.0
END IP

CONTINUE

PRINT 1,RA/BB

PORMAT (*~%,20X, ' THE FINENESS RATIO OF ELLIPSE',F7.2)
PRINT 40 :

PORMAT (*=*,3X,*N®,8X,°X?, 13X,°Y',13X,°XCON*,11X," YCCN",
#12X,*DELTA? , 14X, "ELENY, 12X, "THETA ")

DO 20 J=1,N

L(NN)Y=X (1)

Y (NN) =Y (1)

XCON (J) = (X (J) +X (J+ 1)) /2.0
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YCOR (J) = (Y (J) +Y (J+1)) /2.0

DEL (J) =ATAN2 ((Y (J+1)=Y(J) ), (X (J+1) =X (J)))

DEL (J) =DEL (J) *180. 0/PT

IP(DEL(J).LT.0.0) THEN DO

DEL (J) =360, 0+DEL (J)

END IF

DEL (J) =PI*DEL (J) /180.0

BELEN (J) =SQRT ( (X (J) =X (J¢1) ) %%2+ (T (J) =¥ (J+1) ) x%2)

THETA (J) =ATAN2 ((YCON (J)=2.0) , (XCON (J) ~0.5))

THETA (J) =ATAN (TAN (THETA (J) ) *AA/BB)

IF(THETA(J) o LE.0.0 .AND. J.LE.N/2)THETA(J)=PI+THETA (J)
IP(THETA(J) +GT.0.0 .AND.JoGT, §/2) THETA (J) =PI+THETA (J)
PRINT 30,J,X(J),Y(J)},XCON (J), YCON (J) ,DEL (J) ,ELEN(J),
#THETA (J)

PORMAT(® *,1X,I3,1X,6 (E14.7,2X),F11.7)

CONTINUE

CALCULATION OF ANALYTICAL VELOCITIES
ALPHA=2.00%PI/180.0

PRINT 1777,2ALPHA*180. /PI

FORMAT (*~",20X,*THE ANGLE OF ATTACK IS=?,F5,1)

DO 160 H=1,X

UCIR (H) =COS (ALPHA) =COS (ALPHA=2,0%THETA (H) ) +2, 0%SIN (ALPHA) *
#STIN (THETA (1))
VCIR (H) =SIN(ALPHA) +SIN(ALPHA=2,0%THETA (H) ) =2, 0%SIN (ALPHA) *
®COS (THETA (H))

RCIR (H) =SQRT (UCIR (H)*#2+VCIR (H)*%2)

C1=AR%¥2uBR**2

RR= (AA+BB) *%2

FACT1=1,0=C0S (2. 0%*THETA (H) ) *C1/RR

FACT2=SIN (2.0%THETA (H))*C1/RR
P1=FACT1/ ((FACT 1) %% 2+ (FACT2) *%2)
P2==FACT2/( (FACT1) #%2+ (FACT2) *%2)

UELL (H) =UCIR (H) *F1+VCIR (H)*F2

VELL (H) == (UCIR (H) *F2=-VCIR (H)*F1)

RELL (H) =SQRT {(UELL (H) #*2+VELL (H) %*2)

IF (H.LE.N/2) THEN DO

IP (UELL (H) .GE. 0. 0. AND. VELL (H) « LE, 0.0) RELL (H) =RELL (H) * (= 1)
TP (UELL (H) « GE« 0. 0u AND.VELL (H) . GT. 0. 0) RELL (H) =RELL (B) * (= 1)
ELSE DO

IF(UELL (H) o LT. 0.0 AND.VELL {H) o GT+ 0.0) RELL {H) ==RELL (H)
END IF

ZONTINUE .

ZALL RHS(ALPHA,DEL,N,RH)

DO 200 IA=1,N

COEF (IA,NN)=RH (IA)

CONTINUE

CALL VELOC (XCON,YCO¥,DEL,ELEN,N,COEF)

CALL EQN(COEF,GAMMA,N,NN)

DO 155 IB=1,N

GAMMA (NN) ==GAMMA (NN=F)

GAMCON (IB) = (GAMMA (IB) +GANHMA (IB+1)) /2.00

ERROR (IB) = (GAMCON (IB)=RELL (IB} ) /RELL (IB) *100. 0

CONTINUE

PRINT 156

PORMAT (*~*,20X,"THE VELOCITY DISTRIBUTION=-PANEL METHI
%D

PRINT 159, (GAHCON (I),I=1,H

PRINT 157 :

FORMAT(*=*,20%,THE VELOCITY DISTRIBUTION=ANALYTICALLY
&')

PRINT 159, (RELL{I) ,I=1,N)

PRINT 158

PORMAT (%=%,20X,*THE % ERROR IN VELOCITY DISTRIBUTION')
PRINT 159, (ERROR(I),I=1,H)
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FORMAT (6 (5X,P12.7))
PRINT 3502
PORMAT (°=7,45Y, "THE PRESSURE DIST.=INVISCID')
D0 3503 I=1,R
CP(I)=1.0=GAMCOR (I) *%2
PRINT 159, (CP(I),I=1,¥N)
CALCULATION OF SURFACE SLOPES
g ek koot ok ok ek kK Rk
CALL SLOPE(X,Y,N,¥N,XR,Y1L,Y1F,DER1,DER2)
PRINT 161
FORMAT (*=',20X,"THE SURPACE SLOPES AT CONTROL POINTS')
PRINT 159, (Y1F(I),I=1,¥N)
CALCULATION OF PANEL END DISTANCES PROM TRAILING EDGE')
£ Bxok sk e e e st e o o ok sk sk o o ol o i ok ok s ok ol A e o ok ok ok ek d vk o ot o ol ok ol ook ok ok e ok Rl ok Aok ok K
CALL SORLEN (X,Y1F,N,XR,¥1L,Y1,STE,DER1,DER2)
PRINT 162
FORMAT (*~', 20X, THE PANEL END DISTANCES FROM TEY)
PRINT 1599, (STE(I),I=1,NN)
PORMAT (6 (5X,F12.7))
DO 140 J=1,¥
STC (J)=(STE(J+1) +STE(J)) /2.0
CONTINOE
PRINT 141
PORMAT(® ',20X,'THE DISTANCE OF CONTROL POINTS')
PRINT 1599, (STC(I) ,I=1,%)
CALL ANVEGR (ALPHA,NN,DUDS)
PRINT 163
PORMAT('-',20X,°THE ANALYTICAL VELOCITY GRADIENTS')
PRINT 159, (DUDS (I) ,I=1,N)
Y10S1(1)=(GAMCON (1) =GAMMA (1)) /(STC (1) =STE (1))
Y1US1(60)=(GAMCON(60)=GAMHMA (60) )/ (STC(60) =STE (60))
CALL CUBICI(60,STC,GAMCON,Y1US1)
PRINT 1220
FORMAT (*=*,20X,'THE VELOCITY GRADIENTS BY CUBIC SPLINE')
PRINT 1210, (Y1US1(I),I=1,N)
FORKAT (6 (5X,F12.7))
READ 1440, (EM(I),I=1,26)
READ 1440, (EH(I),I=1,26)
READ 1440, (EL(I),I=1,26)
PORMAT (9 (F8.4))
PRINT 1447
FORHAT ('="', 14X, %% ,18%,'H?,18%, L")
DO 1445 LQ=1,26
PRINT 1446,EM(LQ),EH(LQ), EL (LQ)
FORMAT (' *,10X,F8.4,10X,FP8.4,10X,F3.4)
CONTINUE
ITERATIONS BEGIN HERE FOR BOUNDARY LAYER CALCULATIGHNS')

CALCULATION OF VELOCITY DERIVATIVES BY LAGARANGIAN
IPLAG=1

ITER=1

CALL DERIV(STC,GAHCON,GRADD)

PRINT 1502

FORMAT (*~7,20X, " THE YELOCITY GRADIENTS BY LAGRANGIANY)
PRINT 1503, (GRADD(I),I=1,60)

FORMAT (6 (5X,F12.7))

Y1US1(1) = (GARCON (1) =GRHEA (1)) / (STC(1) =STE(1))
71051 (60) = (GAMCON (60) ~GARNA (60)) / (STC (60) =STE (60})
IF (IFLAG. EQ. 1) THEN DO

CALL COBICI(60,STC,GAHCON,Y10S1)

PRINT 1220

PRINT 1210, (Y10S1(I),I=1,¥)
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1930, CALL ZERO (GAMMNA,STE,IND,XL1,XLL1,XL,XLL)

1940, CALL STAGPT (IND,XL,XLL,STE,GAHHA, ROOT)

1950, PRINT 3509, IND

1960, 3509 FORMAT('-?,45X,'THE STAGNATION POINT IS ON PANEL #',I4)
1970, PRINT 1507,RO0T

1980, 1507 FORMAT(' °,20X,'THE STAGNATION POINT IS AT',F10.7)
1990. CALL COLIFT (GAMHA,GAMCON,STC,N,CL,STE)

2000. PRINT 2600

2010, 2600 PORMAT('~',45X,'THE LIFT COEP, POR INVISCID FLOW')
2020, PRINT 1980,CL(NN)

2030, 1980 PORMAT('~',20X,*THE COEFFICIENT OF LIFT=',F12.7)
2040, END IF

2050, IP (IFLAG. NE. 1) THEN DO

2060, CALL VNOT (GAMCON,STE, IND,ROOT, STC)

2070. PRINT 3509,IND

2080. PRINT 1507,RO0T

2090. END IF

2100. CALL DISTAG(STE,IND,ROOT,STAGU,DSTAGL,INE)

2110. PRINT 1381

2120. 1381 PORMAT('~',20X,'THE DISTANCES FROM STAGNATION POINT
2130. 0N UPPER SURFACE?')

2140, PRINT 1382, (STAGU(I),I=17,IND)

2150. 1382 PORMAT(6(5X,F12.7))

2160. PRINT 1383

2170, 1383 FORMAT('=*,20X,'THE DISTANCES FROM STAGNATICN POINT
2180. #JF NODES')

2130, PRINT 1382, (DSTAGL (I),I=1,IKE)

2200, CALL DSTNCE(STC,IND,ROOT,DSTUP,DSTLW,LASTUP,LASTDN)
2210, PRINT 3501,LASTUP,LASTDN

2220. 3501 FORHAT('-',20X,'THE LAST CONTROL PT.UPPER #',I3,2X,°TIKE LAST
2230, #CONTROL PT. LOWER #',I3)

2240. PRINT 1751

2250, 1751 FORMAT('~*,20X,'THE CONTROL POINT DISTANCES~UPPER')
2260, PRINT 1750, (DSTUP(I),I=1,LASTUP)

2270, PRINT 1752

2280. 1752 FORMAT ('=?,20X,'THE CGNTROL POINT DISTANCES=LOWER')
2290. PRINT 1750, (DSTLW (I),I=1,LASTDN)

2300, 1750 FPORMAT(6(5X,F12.7))

2310, RE=800,0

2320« CALL THCKNS (ROOT,GAMCON,RE,DSTUP,DSTLW,LASTUP ,LASTDN,LUP, LDN
2330. #,IND,THICHU,THICHL, STC,NSTATU, NSTATL)

2340, PRINT 1384

2350, 1384 FORMAT('=',20X,"THE MOMENTUH TFICKNESS DISTRI.
2360. %===UPPER SURFACE"')

2370, PRINT 1385, (THICHU (I),I=1,LASTUP)

2380, PRINT 1386

2390, 1386 FORMAT('-',20X,'THE MKOMENTUM THICKNESS DISRRI.
2400, #e==LOWER SURFACE')

2410. PRINT 1385, (THICHL(I),I=1,LASTDN)

2820. 1385 FORMAT(6(5X,F12.7))

2430, CALL GAUS (ROOT,GAMCON,RE,DSTUP,DSTLW,LAST0P,LASTDN,LUP,LDN
2440, #,IND,TUM,TLM,STC,NSTATU,NSTATL)

2450, PRINT 1981

2460, 1981 FORMAT('=',20X, GAUSSIAN THICKNESS~UPPER')

2470, PRINT 1385, (TUH(I),I=1,LASTUP)

2480, PRINT 1982

2490. 1982 FORMAT ('~',20X,*GAUSSIAN THICKNESS=-LOWER')

2500. PRINT 1385, (TLH (I),I=1,LASTDN)

2510, DO 1989 TI=1,LUP

2520, THICHU (I} =TUM(I)

2530. 1989 CONTINGUE

2540, DO 1988 I=1,LDN

2550. THICHL (I)=TLHM (I)

2560. 1988 CONTINUE
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CALL SEPRET (RE,GRADD, THICMU, THICHL,LASTUP,LASTDN, PARANY,
#*PARANL,SEPUP,SEPLOK,YSEPU,VSEPL,DSTOP, DSIL¥,ROOT, IND,LSERPU
%, LSEPL,NSTATU, NSTATL)
PRINT 1400
1400 POBRMAT('~',20X,'THE PARAMETER M ON UPPER SUR.')
PRINT 1401, (PARAHMU (I),I=1,LSEPD)
PRINT 1402
1402 PORMAT ('~ ,20%,'THE PARAMETER ¥ ON LOWER SUR. ‘)
PRINT 1401, (PARAML (I) ,I=1,LSEPL)
1401 PORHAT(6(5X,F12.7))
PRINT 1403,SEPUP,SEPLOY,VSEPU,VSEPL
1803 PORHAT(=¢,20X,F10.7,10X,P10.7//" *,20%,F10.7,10X,
®*F10.7)

CALL DISPLT(SEPUP,SEPLOW,DSTOP,DSTLW, THICMO,THICHL,
#PARAMU,PARAML,IND,DPLAC,DPLAL,LSEPU, LSEPL, DISPU,DISPL,
®NUP,NLOW)

PRINT 1400

1404 PORMAT('=",20X,°THE DISPLACEMENT THICKNES DIST.
#* ON UPPER SURFACE!)
PRINT 1405, (DPLAC (I},I=1,NUP)
1405 PORMAT(6(5X,F12.7))
PRINT 1406
1406 FORMAT(®-",20X,'THE DISPLACEMENT THICKNESS DIST.
* ON LOWER SURFACE?Y)

PRINT 1405, (DPLAL(I),I=1,NLOW)

CALL DISLOP (DSTUP,DSTLW,LSEPU,LSEPL,DPLAC,DPLAL,DISPU,
*DISPL,DDDSU,DDDSL, DDUP, DDLOW, SEPUP, SEPLOW, NOP, NLOH , CHK)

PRINT 1979

1979 PORMAT(' °,20%,'THE DISPLACEMENT SLOPE BY LAGRANGIAN')

PRINT 1570, (CHK (I),I=2,NUP)

PRINT 1570, (DDDSU(I),I=1,NUP)

PRINT 1570, (DDDSL(I),I=1,NLOW)

1570 FORMAT(6(5X,P12.7))
PRINT 1575,DDUP,DDLOW
PRINT 1576,DISPU,DISPL

1576 FPORMAT('~¢,20%,*THE DIS. TH. AT UPP.°,F10.5,2X,*THE DIS.
¥ TH., AT LOWER *,F10.5)

1575 FORMAT ('=',20X,*THE DIS. SLOPE AT UPPER SEP.',F10.5,
#20X,'THE DIS. SLOPE AT LOWER SEP,',F10.5)

UNRUP=VINT (ROOT=-SEPUP) *DDUP

UNBLOW=VINT (ROOT+SEPLOH) *DDLOW

PRINT 1560,UNRUP,UNRLOW

1560 FORMAT(*=¢,20X, NORHAL VEL. AT UPPER SEP. PT.',F10.5,20X,
%9 §ORMAL VEL, AT LOWER SEP PT.',P10.5)

VELUP=SQRT ( (VINT (ROOT=SEPUP) } %2+ UNRUP**2)

VELLOW=SQRT { (VINT (ROOT+SEDPLOW) ) %2+ UNRLOW*%2)

PRINT 7550, VELUP,VELLO®

1550 PORKAT ('=°,20X,*UPPFR SEPARATIOK VELOCITY®,20X,'LOWER
¢SEPARATION VELOCITY'//' ',22X,F12.5,25X,F12,5)

CALL CDRAG (CP,ALPHA,CLIPT,N,XCON)

CALL CDRAG2(CP,ALPHA,CD,YCON,N)

PLIFT=CLIFT (N) *COS (ALPHA) +CD (N) *SIN (ALPHA)

CODRAG=CLIFT (N) *SIN (ALPHA)=CD {N) *COS (ALPHA)

PRINT 2365,PLIFT,CODRAG

CALL SKIN (GAHCON,RE,THICHU,THICHL,CONSLU,CONSLL,NUP,NLOW,
*PARAMU, PARANL, NSTATU, NSTATL)

PRINT 2360

PRINT 2361, (CONSLU(I),I=1,NUP)

PRINT 2362

PRINT 2361, (CONSLL(I),I—1,NLOH)

IF((ABs(VELUp)-ABS(VELLoa)).LE.0.01.AND. (ABS (VELLOHW)=ABS (VELUP
%) ). LE.0,01)GO TO 1601

NS=4

CALL SHIFT(N,NS,XCON,YCON,DEL,ELEN, RH,XCONM,
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*YCONH ,DELM,ELENN,RHH)

ITER=ITER+1

CALL VELOC(XCONM,YCONK,DELM,ELENH,N,CORFH)

DO 1905 IA=1,N

COEFPM (IA,NN)=RHH (IR)

CONTINUE

CALL EQN(COEFHM,GAHMUF N, NN)

GAMUF (NN) =~GAHLF (NN=X)

DO 1910 I=1,uN '

IP(I.GT. (UN={NS5~1))) THEN DO

GAMY (I+NS=1=N)=GAHUF (I)

ELSE DO

GAMY (I+NS=1)=GAM4F (I)

END IF

CONTINUE

PRINT 1605

FORMAT (*=*,20X,*THE VEL., DIST. WITH SHIFTED STAGNATICN
% POINT')

GARY (NN=N)=GAMNY (NN)

PRINT 1606, (GAHU (I),I=1,NN)

PORMAT (6(5X,F12.7))

DO 1660 I=1,N

GAHMLCO (I)=(GANYU (1) +GARL (I+1)) /2.0

CONTINUE

PRINT 1661

FPORMAT (*~*,20X, THE VELOCITY AT SHIFTED CONTROL POINTS?)
PRINT 1606, (GAHUCO (I),I=1,N)

VELBUP=VEL (ROOT-SEPUP)

VELBLH=VEL (ROOT+SEPLCH)

PRINT 1610,SEPUP,SEPLOW,VELBUP,VELBLW

FORMAT (*=*,20X,F10,7,10X,F10.7//" ',20X,P10,7,10X,F10.7)
AAA=1,0+ ( (VELUP=-VELLOW) / (VELBLW=ABS (VELBUP}))
AAA=1.0/AAR

PRINT 1915,2A7

FORMAT (*~',20%X,*THE ORIGINAL SOLN. *',F12.7)
DO 1500 KY=1,N

GAMCON (RY) =GAMCON (KY) *AAA+GAMUYCO (KY) * (1.0=2A4)
CONTINUE

IP(IFLAG. EQ. 1) THEN DO

DO 2000 KP=1,NW

GAMMA (KP) =GAMHMA (KP) *AAA+GAMU (KP)* {1,0=AAR)
CONTINUE

END IF

DO S200 I=1,W

ZP(I)=1.0=GAHCON (I) *%2

CONTIWNUE

IF (IFLAG.EQ, 1) THEN DO

PRIKT 1990

PORMAT (*=*,20%X,*THE MODIFIED PANEL SOLUTIONY)
PRINT 1606, (GAMHA (I),I=1,NN)

END IF

PRINT 1501

FORMAT ('=%,20X,°THE MODIFIED POTENTIAL FLOW®)
PRINT 1509, (GAMCON({I) ,I=1,N)
PORMAT (10 (2X,F10.7))

IF(IPLAG.EQ. 1) THEN DO

CALL COLIFT (GAMHA,GAHMCON,STC,E,CL,STE)

PRINT 2601 .
PORMAT ("= ,45X,"THE LIFT COEFF, AFTER CIRCULATION CHANGE®)
PRINT 1980,CL (NN)

END IF

Go TO 1510

SURFACE SOURCE DISTRIBUTION

PRINT 1602,ITER
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FORMAT ('=?,20X,'NO. OF ITERATIONS TO EQUALISE
* VELOCITIES AT SEPARATICON POINT=*,I3)
IF(IPLAG. EQ. 1) THEN DO

CALL COLIFT (GAKMA,GAHMCON,STC,N,CL,STE)

PRINT 4440,CL (N¥)

PORMAT (*~%,20%X, 'THE CL APTER EQUAL VELOCITIES',F12.7)
END IF

IP(VELLOW.GT.VELUP) THEN DO

QSEP=VELLOW

ELSE DO

QSEP=VYELUP

END IF

KOD=1

CALL SOURCE (XCON,YCON,DEL,ELEN,QSEP,LSEPU,LSEPL,NSTATU,NSTATL,
*SIG,SIGMA,N,NN,GAMCON,DDDSU,DDDSL,UT, UN,IT,KOD)

PRINT 1950

FPORMAT(® *,20X,°THE TANGENTIAL VELOCITIES BY SOURCES®)
PRINT 1951, (UT (I),I=1,H)

FORMAT (10 (2X,F10.7))

PRIRT 1952

PORMAT (* ',20X,*THE PIRST APPROX. OF SOURCE STRENGTHS AT PANEL')
PRINT 1951, (SIG(I) ,I=1,N)

PRINT 1953,1IT

IF(KOD.EQ.1)GO TO 1600

DO 2100 K=1,IT

PRINT 1951, (SIGHA(I,IT),I=1,K)

CONTINUE

PRINT 1983

FORMAT ('=?,20X,'THE NOBMAL VELOCITIES DUE TO SOURCES?Y)
PRINT 1951, (UN(I),I=1,N)

DO 2300 I=1,N

GAMCON (I) =GAMCON (I) +UT(I)

CONTINUE

IF (IFLAG. EQ.1) THEN DO

PRINT 2603

FORMAT (*="',45X, "THE LIFT COEFF.AFTER SOURCE DISTRIBUTION')
CALL COLTIPT (GAMMA,GAHCON,STC,¥,CL,STE)

PRINT 1980,CL(NF)

END IF

CALL TEST(ROOT,FI,PRESNT)
PRIKNT 1900,FY,PRESNT
PORMAT ('~ ,20X, YTHE INTEGRAL=Y,F10,7,2%,'AND',F10.7)

FORMAT (*=~1,20X,'THE NO. OF ITERATIONS FOR SOURCES=?,13)

CALL SKIN(GAHCON,RE,THICMU,THICHL,CORSLU,CONSLL,NUP,NLOW,PARANU,
*PARAML, NSTATD,NSTATL)

PRINT 2360

FORMAT (%=,45X, ¢ THE SKIN PRICTION~UPPER SOURFACE')

PRINT 2361, (CONSLO(I),I=1,NUP)

FORMAT (10 (2X,F10.7))

PRINT 2362

FORMAT (%=° ,45X, " THE SKIN FRICTION-LOWER SURFACE®)

PRINT 2361, (CONSLL (I),I=1,NLO¥)

DO 2700 I=1,¥

CP{I)=1.0= (GAHCON (I) **2+UN (I) *%2)

CONTINUE

PRINT 2363

FORMAT (*=', 45X, THE PRESSURE COEFF, DIST.AT CONTEOL POINTS')

PRINT 2361, (CP(I),I=1,N)

CALL CDRAG (CP,ALPHA,CLIFT,N,XCOK)

CALL CDRAG2(CP,BLPHA,CD,YCON,¥N)

PLIPT=CLIFT (N) ¥COS (ALPHA) +CD (N) *SIN (ALPHA)

CODRAG=CLIFT (N) *SIHN (ALPHA)=CD (K) *C3S (ALPHA)
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4890. PRINT 2365,PLIFT,CODRAG

4500, 2365 PORMAT (*=-",20X,'THE LIFT COEFF. BY PRESSURE DIST.=',F12.7,2%,
4510, #VTHE DRAG COEFFP.=',F12.7)

4520. CALL CH1(XCON,N,CP,CEU1)

4530, TA=2

4540, IB=30

4550, CALL CH2(IA,IB,CP,YCON,CHUZ)

4560, IA=31

4570, I8=59

4580, CALL CHM2(IA,IB,CP,YCON,CHU2)

4590, CHOMNT==CHBU1 (N) ~CHU2 (30) +CHU2 (59)

4600. PRINT 2370,CHOMNT

4610. 2370 FORMAT (*=',45X,*THE MOMENT COEFF, ABOUT THE LEADING ED.',F12,7)
4620. CALL DERIV (STC,GAMCCN,GRADD)

4630, PRINT 1502

4640, PRINT 1503, (GRADD(I),I=1,60)

4650, CALL VNOT (GAMCON,STE,IND,ROOT,STC)

4660, PRINT 3509, IND

4670. PRINT 1507,RO0T

1680, CZALL DSTNCE (STC,IND,ROOT,DSTUP,DSTLY,LASTUP,LASTDN)

8690. PRINT 3501,LASTUP,LASTDN

4700. PRINT 1751

4710, PRINT 1750, (DSTUP{I),I=1,LASTUP)

4720. PRINT 1752

4730. PRINT 1750, {DSTLW (I),I=1,LASTDN)

4740, CALL THCKNS (ROOT,GAMCON,RE,DSTUP,DSTLW,LASTUP,LASTDN,LUP,LDN,IND
4750. %, THICHMU, THICHL,STC, NSTATU,NSTATL)

4760, PRINT 1384

4770. PRINT 1385, (THICHU(I),I=1,LASTUP)

4780, PRINT 1386

4790, PRINT 1385, (THICHL (I),I=1,LASTDN)

4800, CALL SEPRET (RE,GRADD,THICHU,THICHL,LASTUP,LASTDN,PARANU, PARAKL,
4810, sSEPUP,SEPLOW,VSEPU,VSEPL,DSTUP,DSTLW,ROJT,IND,LSEPU,LSEPL,
4820, #NSTATU, NSTATL)

4830. PRTNT 1400

4840, PRINT 1401, (PARAMU (I),I=1,LSEPU)

4850, PRINT 1402

4860, PRINT 1401, (PARAHML (I),I=1,L5SEPL)

4870. PRINT 1403,SEPUP,SEPLOW,VSEPU,VSEPL

4880, CALL DISPLT(SEPUP,SEPLOW,DSTUP,DSTLW, THICHU,THICML, PARAKU,
4890, *PARAML,IND,DPLAC,DPLAL,LSEPU, LSEPL, DISPU, DISPL,NUP, NLOW)
4900, PRINT 1404

4910, PRINT 1405, (DPLAC(I),I=1,KUP)

4920, PRINT 1406

4930, PRINT 1405, (DPLAL(I),I=1,NLOW)

4940, CALL DISLOP{DSTUP,DSTLW,LSEPU,LSEPL,DPLAZ,DPLAL,DISPU,DISPL,
4950, *DpDSY,DDDSL,DDUP,DDLOW,SEPUP, SEPLOY, NUP,NLOW, CHK)

4960, PRINT 1570, (DDDSU(I),I=1,NUP)

4970, PRINT 1570, (DDDSL(I),I=1, NLOW)

4980, PRINT 1575,DDUP,DDLOW

4990, PRINT 1576,DISPU,DISPL

5000, UNRUP=VINT (ROOT=SEPUP)*DDUP

5010, UNRLOW=VINT (ROOT+SEPUP) *DDLOW

5020, PRINT 1560,UNRUP,UNRLON

5030, VELOP=SQRT ( (VINT (ROOT=SEPUP)) #%2¢ UNRUP*#2)

5040, VELLOW=SQRT { (VINT (ROOT+SEPLOW) } *%2+ UNRLOWX%2)

5050. PRINT 1550,VELUP,VELLOW

5060, IF ( (ABS (VELUP) =ABS (VELLOW)) o LE.0. 01« AND. (ABS(VELLCW) =ABS (VELUP
5070, #)).LE.0.01)GO TO 1600

5080, TIFLAG=IFLAG+1

5090. G0 TO 1510

5100, C

5110. C

5120. .C
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5130. C
5140. C
5150. C
5160. C
5170. C
5180. C
5190. C
5200, C
5210, C
5220, C
5230. C
5240, C
5250. C
5260. C
5270, 1600 sTOP
5280. END
5290, SUBROUTINE CORDNT (A,B,C,N)
5300, PRINT 1
5310. 1 PORMAT ('=?,20X,*THE CORDINATES MISSING?)
5320. RETURN
5330. END
5340, SUBROUTINE RHS (ALPHA,DEL,N,RH)
5350. DIMENSICN DEL(N) ,RH(N)
5360, Do 1 I=1,¥%
5370, RH(I)==(COS (DEL(I))*SIN(ALPHA)=SIN(DEL(I))*COS (ALPHA))
5380. 1 CONTINUE
5390, RETURN
5400, END
5410, SUBROUTINE TEST (ROOT,FI,PRESNT)
5420, N=10
5430, PN=N
5440, A=0.0050573
5450, B=0,0162640
5460, DX= (B=1) /PN
5470, FI1=FS (ROOT=2) +FS (ROOT=B)
5480, PI2=0.0
5490, PI3=0,0
5500, TDY=2,0%DX
5510a X=A+DX
5520, NN=N/2
5530, DO 3 J=1,NN
5540, FI2=FI24FS(ROOT=X)
5550, 3 X=X+TDX ®
5560, X=1
5570. NH=NN=1
5580, DO 4 J=1,NH
5590, X=X+TDX
5600. 4 PI3=FI3+FS (ROOT=X)
5610. PI=DX* (FI1+4,*FI2+2,%FI3) /3.
5620, A=0.0
5630, B=, 0050573
5640, DX= (B=A) /FN
5650, BDX=2,*DX
5660, FI1=PS{ROOT=R) +FS (ROOT=B)
5670, PI2=0,0
5680, FI3=0.0
5690, NN=N/2
5700, X=A+DX
5710. DO B8 J=1,N¥
5720. FI2=FI2+FS {(ROOT=X)
5730. 8 X=X+TDX
5740. X=21
5750% NH=NN=1

5760, DO 9 J=1,HN
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5770. X=X+TDX

5780, 9  PI3=FI3+FS(ROOT=X)

5790. PI=DX#* (FI1+4.*FI242.%FI3) /3.0
5800. PRESNT=FI

5810, RETURN

5820, END

5830, C

5840, C

5850, SUBROUTINE EQN (A,X,N,NN)
5860, DINENSION A (N,NN),X(N)

5870. M=N+1

5880, L=N=1

5890, DO 12 K=1,1

5900. JJI=K

5910. BIG=ABS (A (K,K))

5920. KPI=K+1

5930. C SEARCH FOR LARGEST PIVOT ELEMENT
5940, DO 7 I=KPI,N

5950. AB=ABS (A (I,K))

5960, IF (BIG=AB)6,7,7

5970. 6 BIG=AB

5980, Ji=1

5990, 7 CONTINUE

§000. C DECISION OF NECESSITY OF ROW INTERCHANGE
6010. IF(JJ=K)8,10,8

6020. C ROW INTERCHANGE

6030. 8 DO 9 J=K,H

6040, TEMP=A (JJ,4J)

6050, R (J3,J)=A(K,Jd)

6060. 9 A (K,J)=TENP

6070. 10 DO 11 I=KPI,H

6080, QUOT=A(I,K) /A (K,K)

6090, DO 11 J=KPI,H

6100, 11 A (I,J)=A(I,J)=QUOT*A (K,J)
6110. DO 12 I=KPI,N

6120, 12  A(I,K)=0.0

6130, C PIRST STEP IN BACK SUBSTITUTION PROCESS
6140. X (N) =2 (N,H) /& (N, N)

6150. C REMAINDER OF BACK SUBSTITUTION PROCESS
6160, DO 14 MH=1,L

6170. SUM=0.0

6180, I=N=HH

6190, IPI=T+1

6200. DO 13 J=IPI,N

6210, 13  SUM=SUM+A (I,J)*X(J)
6220, 14 X (I)={A(I,H)=SUH)/A(I,I)

6230. RETURN

6240, END

6250, SUBROUTINE CUBICI (N,X,Y,Y11)
6260, DIMENSION X (61),Y(61) ,F(61),6(61),Y11(61),Y1(61)
6270, H1=N=1

6280, 6(1)=0.0

6290. F(1)=0.0

6300, DO 2 K=1,N1

6310, J2=K+1

6320, H2=1.0/(X (J2) =X (K) )

6330, R2=3, ®H2%H2* (Y (J2) =¥ (K) )
6340, IF(K.EQ.1)GO TO 1

6350, Z2=1.0/ (2 0% (H14H2) =H1%G (J 1))
6360, G (K) =Z%H2

6370. H=R1+R2

6380. IF( K.EQ.2)H=H=H1*Y11 (1)
63905 IP(K.EQeN1) H=H=H2%Y 11 (N)

6400, F (K) =2Z%* (H=H1%P (J1))
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J1=K

H1=H2

R1=R2

CONTINUE

Y11 (N1)=F (N 1)

IP (N1.LE.2) RETURN
F2=N1-1

DO 3 J1=2,N2
K=N=J1

Y11 (K) =P (K) =G (K) *Y11 (K+1)
CONTINUE

RETURN

END

FUNCTION VINT(SREQD)

COXHMON /SPEED/STC,GAMCON,GAR4CO,RODT

DIMENSICN STC(61),GAHCON(61),GAHUCI (61)

PO 1 I=1,60

IP (STC(I).LT.SREQD)GO TO 1

IF(I.EQ.1)GO 7O 9

IF (GAMCON (I=1),LT.0.0.AND.GAMCON(I).6T.0,0)G0 TO 11
VINT=((GAHCON(I)~GAHBCON (I=1)) /(STC(I)=STC(I~1)})* (SREQD~-
®STC (I~1)) +GAHCON (I=1)

G0 TO 7

CONTINUE

VINT=((GAHCON(1)=0.0)/(STC (1) ~0.0)) *SREQD

g0 TO 7

L=I

IF (SREQD.GT.ROOT) THEN DO

VINT= ((GAKCON (L) =0, 0) / (STC (L) =ROOT) } * (SREQD=ROOT)
ELSE DO
VINT={(0.0=-GAHCON (L=1))/ (ROOT=STC(L=1)))* (SREQD=STC (L=1)) +
*GAMCON (L= 1)

END IF

RETURN

END

FONCTION FS(CLEN)
COMNON/SPEED/STC,GAHCON,GAMUCO, ROOT

REAL PS,CLEN

DIMENSION STC(61),GANCON (61),VELS (61) ,GAMUCO(67)
DO 2 J=1,60

VELS (J) =GAMCON (J)

CONTINUE

po 1 I=1,60

IF(STC(I).LT-CLEN) GO TO 1

IP(I.EQ.1)GO T0 9

IF(VEL5 (I=1) e LT< 0. 0. AND. VEL5 (1) +GTc0.0) GO TO 11
PS= ((VELS (I)=VELS5 (I=1) )/ (STC(I)=STC (I~1))) * (CLEN=STC (I~1))
#+VELS (I~1)

PS=FS*%5

60 TO 7

CONTINUE

PS={(VEL5 (1) =0, 0) / (STC(1)=0.0) ) *CLEN

PS=FS%%5

GO TO 7

L=I :

IF(CLEN ,EQ.ROOT)FS=0,0

IF(CLEN.GT. ROOT) THEN DO

PS= ((GANCON (L) =0, 0) /(STC (L) ~ROOT) ) * (CLEN=ROOT)
PS=FS*%S

ELSE DO
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FS= ( (0. 0=GAHCON (L=1})}/ (ROOT=STC (L=1) ) ) * (CLEN=STC (L=1)) +GAMCON (
sL-1)

FS=FPSE%5

END IF

RETURN

END

SUBROUTINE FINDRO(A,¥,X1,X2,X,ACC)
DIEENSION & (3)
J=1

X=X2

Z=4{1)

DO 3 I=1,N
Z=Z*X+h (I+1)
30 TO (4,5),J
X=x1

J=2

7=2

0 TO 2
IP(ABS(X2=X)=ACC*ABS(X))10,10,6
IF(Y*2)7,10,8
X1=%

GO TO 9

X2=X

X=(X14X2) /2.0
GO TO 2
RETURN

END

SUBROUTINE VHOT (GAMCON,STE,IND,ROOT,STC)

DIMENSION GAMCON(61),STE(61),STC(61)

po 1 I=3,59

TP (GAMCON {I)+LT.0.0.AND. GAMCON (I+1) .LT.0,0)GO TO 1
TP (GAKCON (I) «GT. 0. 0. ANDLGAHCON (I+1}.5T.0.0)G0 TO 1
ROOT=STC (I} + {({STC(I+1)=STC(I)) /(GANCON (I+1)=GANCON (I}})*
* (=GANCON (I))

IF (ROOT.GT. STE(I¢1)) THEN DO

IND=T+1

ELSE DO

IND=1

END IF

CONTINUE

RETURN

END

FUNCTION HPAH (EHREQ)

COMMON /AREA/EH (26) ,EH(26),EL (26)

IF (EMREQ.GT. EM (26) . OR.EXREQ.LT.EH (1)) GO TO 6
po 1 1=1,25

IF( (EAREQ=EH (I))* (EMREQ=EH (I+1)).LT.0.0)GO TO 2
CONTINUE

HPAHM= (EH (I+1)=BH (I))/(EN (I+1) ~EH (I)) * (EXREQ=EN (1)) +EH (1)
GO TO 7

PRINT 8,EHREQ

PORMAT (%=*,20%,"H="',F12.7,1X,°IS OUT OF RANGE')
RETURN

END
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7690. SUBROUTINE VELOC (XCON ,YCON,DEL,ELEN,N,COEF)
7700, INTEGER R,S,0,V
7710. DIMENSION XI(60,60),ETA(60,60) ,COEFA(60,60),COEFB(60,60),
7720, ®COEF (60,61) ,XCON(60),YCON (60) ,DEL(60) ,ELEN (60),
7730. *00(60,60) ,VU(60,60) ,UL(60,60),VL(60,60),CONSA (60,60},
7740, «CONSB(60,60)
7750. C
7760. PI=8,0%ATAN (1. 0)
7770. DO 50 K=1,N
7780. DO 60 L=1,N
7790. IF(K.EQ.L)GO TO 70
7800. XI(K,L)=(XCON(K)=XCON (L)} *COS (DEL (L)) + (YCON (K) =YCON {
7810. L)) *SIN(DEL (L))
7820. ETA {(K,L)=(YCON (K)=YCON (L) ) #COS (DEL{L) ) = {XCON (K) =XCON (
7830, %#L)) *SIN (DEL (L))
7840, A=XI(K,L)+0,5%ELEN(L)
7850. B=XT (K, L)=~0.5%ELEN (1)
7860, C=ETA(K,L)
7870, PHI1=ATAN (ETA (K,L) / (¥I(K, L) +0. 5%ELEN (L)))
7880, IF(PHI1.LE. 0.00) PHI1T=PHI1+PI
7890, PHI2=ATAN (ETA (K,L) / (XI(K,L)=0.5%ELEN(L}))
7900. IF(PHI2.LE.0.0)PHI2=PI+PHI2
7910. U0 (K,L)=(PHI1=PHI2) /(2.0%PI)
7920, VU(K,L)=ALOG{SQRT ( (A%%2+C*%2) / (B**2+C%%2)} ) /(2. %PI
7930. *)
7940, UL(K,L)={(A%* (PHI1=PHI2)~C*ALOG (SQRT((B®%2+C¥%2) / (A%*%2
7950, *+C%¥%2)))) /(2. 0*PI*ELEN (L))
7960, VL(K,L) ={=A*ALOG (SQRT ((B**24C*%2) /(A%*¥2+C*k%2) )} =ELEN
7970. * (L) =ETA(K,L)* (PHI1=PHI2)) /(2. O*PI*ELEN (L))
7980, CONSA(K,L)=UU(K,L)=UL{K,L)
7990. CONSB{K,L)=VU(K,L)=VL(K,L)
8000, COEFA(K,L)=CONSA (K, L) *SIN (DEL (L)} #C0S (DEL (K)) +CONSB (K
8010. %, L) *COS (DEL (L) ) ¥*COS (DEL (K) ) =CONSA (K, L) *COS {DEL (L)} *SI
8020, #N (DEL (K) ) *CONSB (K, L) *SIN (DEL (L)) *SIN (DEL(K))
8030, COEFB(K,L)=UL(K,L)*SIN(DEL (L)) *COS(DEL(K)) +VL (K,L) *CO
8040, %35 (DEL (L)) *COS(DEL(K))=UL(K,L) *COS {DEL (L)) *SIN (DEL(K))+
8050, %YL (K,L) *SIN(DEL (L)) *SIN(DEL (K))
8060, GO TO 60
8070, 70 COEFA(K,L)=1.0/(2. 0*PT)
8080.. COEFB(K,L)==1,0/{2. 0%PI)
8090. 60 CONTINUE
8100, S0 CONTINUE
8110. DO 80 U=1,N
8120, DO 90 Vv=2,N
8130. COEPF (U, V) =COEFA (U,V) +COEFB (U, V~1)
8140. 90 CONTINUE
8150. 80 CONTINUE
8160, S=1
8170. DO 100 R=1,N
8180, COEF (R, S) =COEFA (R, S)=COEFB (R, X)
8190, 100 CONTINUE
8200, RETURN
8210, END
8220, C
8230. C
8240. C
8250. C
8260, SUBROUTINE SURLEN(X,Y1F,N,XR,Y1L,Y1,STE,DER1, DER2)
8270. DIMENSION X (61),Y1F(61) ,STE(61),51(61) ,XR(61) ,YIL(61)
8280, *,Y1(61)
8290, DO 900 IN=1,29
8300, XINT=(X(IN+1)=X(IN)) /9.0
83104 DINT=(Y1P (IN+1)=Y1F (IN)) /8.0

8320, SUH=0.0
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900
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1145
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DO 910 IP=1,9

TERH=Y1F (IN) ¢ (IP=1) ¥DINT

TERH=SORT (1. 0+ TERE*%2)

IF(XINT.LT.0.0) XINT==XINT

PACTOR=TERM%XINT

SOUM=SUM+FACTOR

S1({IH)=5UH

CONTINUE

CONTINUE

XINT1=(XR(2)~XZR (1)) /9.0
DINT1= (DER2=DER1}) /8.0

IP(XINT1.LT<0.0) XINT1==XINT1

SGMA=0.,0

DO 920 JK=1,9

TERN=DER1+ (JK=1) *DINT1

TERM=SQRBT (1. 0+TERM*%2)

PACTOR=TERM*XINT1

SUMA=SUMA+FACTOR

CORTINUE

S1(1)=SUMA

$1(30)=SUHA

S1(31)=SUNA

51(60)=SUMA

STE (1)=0.0

DO 700 H=1,28

S1(31+H) =51 (30~H)

CONTINUE

DO 1145 JB=2,61

STE (JB) =STE (JB=1) +S1(JB=1)

CONTINUE

RETURN

END

SUBROUTINE SLOPE(X,Y,N,NN,XR,Y11L,Y1F,DER1,DER2)
DIMENSICN X (61) ,Y(61),Y1F (61) ,¥1(61),XR(61),YR(61),
®Y 1M (61) ,
£XC(61) ,YC(61) ,XP(61) ,YP(61) ,XF(61) ,YP (61) ,Y1L (61) ,Y1F1(61)
PI=4, 0*ATAN (1. 0)

IA=N/2=1

DO 640 JJ=1,IA

XC(JJ) =X (JI+1)

YC (3J) =Y (JJ+1)

CONTIKUE

71(1)==2.38

Y1(IA)=2.38

CALL CUBYCI (IA,XC,YC,Y1)

BETA==30,%P1/180.0

X0=1.0

70=2.0

DO 710 1=1,16
XR(L)=(X(L)~X0) #COS (BETA) +{(Y(L)=Y0) *SIN(BETA) ¢+X0
YR(L)= (Y (L) =Y0) #COS (BETA) = (X (L) ~X0) ®*SIN (BETA) +YO
CONTINUE

Y1L (1) == 1.7320508

Y1L (16)==TAR (ATAN(Y1{15)) +BET])

CALL CUBICI(16,XR,YR,Y1L)
DER=ABS{YIL(1)=Y1L (2))

DO T40 H=1,16

Y1L () =TAN (ATAN (Y1L (H) ) +BETA)

CORTINUE

BETA=30,0%PI/180.0

X0=0.0
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Y0=2.0

DO 700 J=16,31

IR (J) = (X (J) «XO) *COS (BETA) + (Y (J)=YO) *SIN (BETA) +X0
YR (J)= (Y (J) =YO) *COS (BETA) = (X (J)~X0) *SIN (BETA) + YO
CONTINUE

DO 750 HH=1,16

XP (HM)=XR (32=HH)

TP (MM) =YR(32=KH)

CONTINUE

Y 1% (1)=1.7320508

Y1H (16) =TAN (ATAN (Y1 (15) ) ~BETA)
CALL CUBICI(16,XP,YP,Y1H)
DER1=Y1H (1)

DER2=Y 1M (2)

DO 70 KJ=1,16

Y18 (KJ) =TAN (ATAN (Y 1K (KJ)) +BETA)
CONTINUE

T1F1(1) =YL (2)

Y1P1(29) =Y1K (2)

DO 760 HN=1,29

XF (HN) =X (MN+1)

TF(MN) =Y (RN+1)

CONTINUE

CALL COUBICI(29,XF,YF,Y1F1)

po 780 HP=1,29

{1F (MP+1) =Y 1F1 (HP)

CONTINUE

DO 770 KQ=2,30

Y1F (62=HQ) ==Y1F (HQ)

CONTINUE

PI=ATAN (1.0)*4,0

Y1F (1) =TAN (PI/2.)

Y1P (31) =TAN(PI/2.)

Y1F (61) =T2AN (PI/2.)

RETURN

END

SUBROUTINE STAGPT (IND,XL,XYLL,STE,GAHMA,ROOT)

DIMENSION STE(61) ,GAMHA(61),POL(3)

DUNBUT= ((STE(IND+1)=STE (IND)) / (GAMMA (IND*+1)=GAMNA (IND)
%) % (~GAHHA (IND))) +STE (IND)

DIST1=DUMRUT=STE (IND)

DIST2=STE (IND+1)=DUNRUT

IF(DIST1.LT.DIST2) GO TO 1368

NUH=TND+1

GO TO 1369

1368 NUH=IND
1369 CC1=GAMMA (NUH=1) /((STE(NUM=1) ~STE (NUH) ) * (STE (NUH=1)

#=STE (NUK+1)))

CC2=GAHMA (NUH) / ( (STE (NUM)=STE (NUM=1) ) * (STE (NUH)
*=STE (NUK+1)))

CC3=GAEMA (NUH+1) /{ (STE(NUM+1) =STE (NUM) ) * (STE (NUN+1)
*=STE (NUM=1)))

POL (1) =CC1+CC2+CC3

POL (2) == (CC1* (STE (NUM+1) + STE (NUH) ) +CC2%* (STE (NUN=~1) +
*STE (NUM#1) ) +CC3*% (STE (HUM=1) +STE (NUM)) )

POL (3) = (CC1%STE (NUH) *STE (NUH+ 1)) + (CC2%STE (NUM=1) *STE
% (NUH41))+ (CC3#STE (NUM) *STE (NUN=1) )

RCC=0.000001

CALL FINDRO(POL,2,%XI,XLL,ROCT,ACC)

ROOT=DUMRUT

IP (ABS (DUMRUT=ROOT) «GTo 0.,01) GO TO 1375

RETURN
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1375 PRINT 1376
1376 PORMAT('~",5%,'THE DIFFERENSE BETHEEN LINEAR & POLY
#NOMIAL IS LARGE'}
RETURN
EWD

SUBROUTINE ZEBRO (GAMHA,STE,IND,XL1,XLL1,XL,XLL)

DIHENSION GAMMA (61) ,STE(61)
DO 1365 IQ=1,60
IF (GAMMA (IQ).LT.0.0.AND,GANKA(IQ+1) .LT.0.0)GO TO 1365
IF (GAHMA (I0) «GTs 0 0o AND.GAHHEA (IQ+1) . GTo 0. 0) GO TO 1365
IND=1IQ
XL=STE (IQ)
XLL=STE (I0+1)
IF{IQ.LT-15)G0 TO 1364
G0 TO 1367

1364 XL1=XL
XLL1=XLL
PRIKT 1352,%L1,XLL1

1352 FORMAT('~',20X,"THE PIRST STAGNATION POINT IS BETWEEN
#owet ,F10.7,° =AND=?,F10.7)

1365 CONTINUE

1367 PRINT 1366,XL,XLL

1366 PORBAT('~*',20X,*THE FRONT STAGNATIDN POINT LIES
*BRTWEEN',P10.7,'~AND=%,F10.7)
RETURYN
END

SUBROUTINE DERIV(STE,GANHA,GRADC)

DIMENSION STE(60) ,GAHHNA (60) ,GRADC (60)

DO 1501 KG=1,58

CC1=GABMA (KG) / ( {STE (KG) =STE (KG+1) ) * (STE(KG) =STE(KG¢2)
*})

CC2=GAMMA (KG+1) / ((STE (KG+1) =STE(KG) ) * (STE (RG+1)=STE
*(KG+2)))

CC3I=GAMMA (KG+2) / ((STE (KG+2) ~STE (KG) ) * (STE (KG+2) =STE
®(KG+1)))

GRADC (KG+1) =CC1* (2, #STE (KG+1) = STE (KG+2) =STE (KG+ 1)) +CC2
#% (2, #STE (KG+1) =STE (KG)=STE (KG+2)) +CC3% (2. *STE (KG+1) =
#STE (KG+1)=STE (KG))

1501 CONTINUE

CC1=GAMMA (1) / ((STE (1) =STE (2)) * (STE(1) =STE(3)))

CC2=GAHMA (2) /( (STE (2)=STE (1)) * (STE(2) =STE(3)))

CC3=GAMMA (3) /( (STE (3)=STE (1)} * (STE(3) =STE (2)))

GRADC (1) =CC1% (2. *STE (1) =STE (3) =STE(2) ) +CC2* (2. *STE(V) ~
®STE (1) =STE (3)) 4CC3% (2.*STE (1) =STE (1) =STE(2))

CC1=GAMHA (58) / ( (STE (58) =STE (59) ) * (STE (58) =STE (60)))

CC2=GAHNA {59) 7 ({STE (59) =STE (58) ) * (STE (59) =STE (60)) )

CC3=GAMMA (60) / ( (STE (60) =STE (58) ) * (STE (60) ~STE (59)))

GRADC (60) =CC1% (2. *STE (60) =STE (59) =STE (60) ) +CC2* (2, *STE (
#60) -STE (58) =STE (60) ) #CC3* (2. *STE (60) ~STE (58) =STE(59))

RETURN

ERD

SUBROUTINE DISTAG(STE,IND,ROOT,STAGU,DSTAGL,INE)
DIMENSIGN STE(61),STAGOD (50),DSTAGL(50)
po 1380 IT=1,IND
STAGU (IT) =ROOT=STE (IND+1=1T)
1380 COHTINGE
INE=61=TIND




10250.
10260,
10270.
10280,
10290.
10300,
10310.
10320,
10330.
10340,
10350,
10360,
10370,
10380,
10390.
10400,
10410.
10420,
10430.
10440,
10450.
10460,
10470,
10480.
10430,
10500,
10510,
10520.
10530,
10540,
10550,
10560,
10570,
10580,
10590,
10600,
10610.
10620,
10630,

10640..

10650,
10660.
10670.
10680.
10690.
10700.
10710,
10720,
10730.
10740,
10750,
10760,
10770,
10780.
10790,
10800.
10810.
10820,
10830,
10840,
10850,
10860.
10870,
10880,

aaa
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w N

-
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DO 1460 LB=1,INE

DSTAGL (LR) =STE (IND+LR)=ROQT
CONTINUE

RETURN

END

FONCTION VEL(DIST)
COBMON/SPEED /STC,GANCON,GAH4CO,RO0T
DIMENSION STC(61) ,GAMNCO(61) ,GAHCON (61)
po 1 I=1,59
IP(STC(I).LT.DIST)GO TO 1
DUM=STC (I)=DIST
IF (DUH. BQ.0.0) GO TO 4
BUM=DIST=STC (I=1)
IF(BUH.EQ.0.0) G0 TO 5
IP (DUM.GT.BUH) GO TO 2
R=T
GO TO 3
K=I=1
VEL =((DIST=STC (K))*{(DIST=STC (K+1))/((STC(K=1)=
®STC (K) ) # (STC(K=1)=STC(K+1)))) ¥GAMUCO (K~1) + ({{DIS
#T=STC (K=1)) * (DIST=STC (K+1)) )/ ((STC(K) =STC (K=1) ) *
® (STC (K)=STC (K+1) ) ) ) *GAHLCO (K) + (({DIST=STC (K=1) ) *
% (DIST=STC (K} ))/ ((STC (K+1)=STC (K=1)) * (STC (K+1) =
®STC (K)))) *GAMUCO (K+ 1)
GO TO 7
CONTINOE
VEL =GAEUCO (I)
Go TO 7
VEL =GANUCO (I-1)
RETURN
END
SUBROUTINE THCKNS (ROOT,GAMCON,RE,DSTUP,DSTLW, LASTUP,LASIDN,
®LUp,LDN,IND, THICHU, THICHL ,STC, BSTATU, NSTATL)
DIMENSION GAHCON({61),DSTUP{50) ,DSTLW {50) ,THICHU {50) ,THIC¥L (50)
#,5TC(61)
D1=STC(IND) =ROOT
C1=GABCON (IND=1) / ( (STC(IND=1) =STC (IND) ) * (STC (IND=1}~
*STC (IND+1)))
C2=GANCON (IND) / ({STC (IND)=STC (IND~=1) ) * (STC(IND)=STC (IND
*+1)))
C3=GAMCON (IND+1) / { (STC(IND+1)=STC (IED=1)) * (STC (IND+ 1)~
#3TC (IND)}) :
DVDS1=C1% (2. *ROOT=STC (IND)=STC (IND+1) ) $C2% (2, ¥ROOT=SIC (IND=1)
#=STC{IND+1)) +C3% (2. *ROOT=STC (IND=1) =STC (IND))
IF(D1.67.0.0)G0 TO 1
THICHU (1) = (0.075/RE}* (1. /DVDS 1)
THICHL (1) =(0.075/RE)}* (1. /DVDS 1)
NSTATU=IND
NSTATL=IND+1
G0 TO 2
THICHU (1) = (0.075/RE) * {1. /DVDS1)
THICHL (1) ={0.075/RE)* (1, /D¥DS 1)
NSTATU=IND=1
NSTATL=IND
LUP=LASTUP=1
IF(D1.GT. 0. 0) THEF DO
SIKT= (ROOT=STC (IND=1))/10.
OINT=(0.0=GAKCON (IND=1))/10.
U=UINT
SUH=0.0
po 50 I=1,9
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P=(U%%5)%2,0

SUM=SOM+F

U=U+UINT

CONTIRUE

SUM=SOM+ (UINT*10,.) *¥%5

THICHMU (2) =0, 5*SUH*SINT*0. 45/ (RE* (GAMCON (IND=1) *%6) ) +THICHU (1)
SINTL= (STC (IND)=ROOT) /10.0
DINTL= (GAKCON (I¥D)=0.0) /0.0
U=U INTL

SOM=0,0

Do 30 I=1,9

F=(U%%5)%2,0

SUN=SUHM+F

U=U+UINTL

CONTINUE

SUM=SUM+ (UINTL*10, 0) *%5

THICML (2)=0.5%SUN®SINTL*0, 45/ (RE* (GAHCON (IND) #%6) ) + THICHL (1)
ELSE DO

SINT= (ROOT=STC (IND)) /10,
DINT=(0.0=GAMCON (IND))/10.
U=UINT

SUM=0.0

DO 40 I=1,9

F=(0%%5)*2,0

SUM=SUH+F

U=U+UINT

CONTINDE
SUM=SOM + (UINT*10,) *%5
THICHU(2) =0, 5%SUH*SINT*0. U5/ (RE* (GAHCON (IND) #%6)) ¢ THICHU (1)
SINTL=(STC (IND+1)=ROCT) /10,0
UINTL=(GAMCON(IND+1)=0.0)/10.0
U=UINTL

SU¥=0.0

DO 60 I=1,9

P=(U**5) %2, 0

SUM=SUM+F

0=0+40INTL

CONTINUE

SUM=SUHK+ (DINTL*10,) %25

THICHL (2) =0.5%SUM*SINTL*0,. 45/ (RE¥ (GAMCON{IND+1) **6) ) +TEICHKL (1)
E¥D IP

N=10

FN=N

po 10 I=2,LASTUP

A=DSTUP (I=1)

B=DSTUP (I)

DX= (B=A) /PN

TDX=2, ¥DX

FI1=FS (ROOT=A) ¢¥S (ROOT=B)
FI2=0.0

PI3=0,0

RN=§/2

X=1+DX

DO 3 J=1,NN

FI2=FI2+FS (ROOT~X)

X=X+TDX

X=1

NH=NN=1

DO 4 J=1,NH

X=X+TDX

?13=FI3+FS (ROOT=X)

PI=DX* (FI144,0%PI2+2,0%FI3) /3.0
THOMUP=0. 45%FI/ (RE® (GAKCON (NSTATU42~1) #%6) ) * (= 1)
THICHU (I) =THICHUT (I-1) +THOKUP
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CONTINUE

LDN=LASTDN=1

DO 20 J=2,LASTDN

A=DSTLW (J=1)

B=DSTLW (J)

DX= (B=-1) /FN

TDX=2.0%DX

FI1=FS (ROOT+A) +PS (ROOT+B)

FI2=0.0

PI3=0.0

EN=H/2

X=A+DX

PO 5 K=1,8N

FI2=PI2+PS (ROOT+X)

X=X +TDX

X=2

NH=NN=1

DO 6 L=1,NH

X=X +TDX

FI3=FI3+F5 (ROOT+X)

FI=DX* (FI1+4,0%FI2+2,0%FI3) /3,0
THOMDN=0,45%PY / (RE* (GAMCON (NSTATL=2+J) %%6) )

THICHL (J)=THICEL (J~1) +THONDR

CONTINUE

RETURN

END

SUBROUTINE SEPRET (RE,GRADD,THICHOU,THICML,LASTUP,LASTDN,PARANU,
«pARAML, SEPUP,SEPLOW,VSEPU, VSEPL,DSTUP, DSTLY,RO0OT,IND,LSEPU, LSEPL,
*NSTATU,NSTATL)

DIMENSION GRADD(61) ,THICMU(50) ,THICHL (50) ,PARAMU(50) ,PARANL(50),
#DSTUP (50) ,DSTLH (50)

CALCULATION OF PARAMETER H

LUP=LASTUP=1

LDN=LASTDN=1

PARANU (1) ==0.075

PARAHL (1) ==0,075

DO 10 I=2,LASTOP

PARANU (T) == THICMU (I) *RE*GRADD (NSTATU+2=1)

LSEPU=I

IF (PARAMU(I).GT.0.09) GO TO 15

CONTINUE

po 20 J=2,LASTDN

PARAML {J) =THICML (J) *RE*GRADD (NSTATL+J=2) ¥ (=1.)
LSEPL=J

IF (PARAML(J} .GT.0.09) GO TO 25

CONTINUE

SEPUP= (DSTUP (LSEPU) =DSTUP (LSEPU-1)) / (PARAHKU (LSEPU) =PARRHU (
®LSEPU=1)) * (0,09=PARAHU(LSEPU=1)) ¢DSTUP (LSEPU=1)
SEPLOW= (DSTL¥ (LSEPL)=~DSTL® (LSEPL=1)) / (PARAHL (LSEPL) =PARAML (
$LSEPL=1))# (0. 09=PARAKL (LSEPL-1)) +DSTLH (LSEPL=1)
VSEPU=VINT (ROOT=SEPUP)

VSEPL=VINT (RCOT+SEPLOW)

RETURN

END

SUBROUTINE DISPLT(SEPUP,SEPLOW,DSTUP,DSTLW,THICHU,
#PHICHL, PARANG, PARAML,IND, DPLAC,DPLAL,LSEPU,LSEPL,
*DISPU,DISPL,NUP,NLOW)

DIMENSION DSTUP (50) ,DSTLW (50) , PARANU (50) ,PARANL(50),
#THICHU (50) , THICHL (50) ,DPLAC (50) ,DPLAL (50)
NUP=LSEPU=~1 ‘

po 16 I=1,NUP

EMREQ=PARAMU (I)

DPLAC (I)=HPAM (EXREQ) *SQRT (THICHU (I))

CONTINUE
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12170, SLOW=LSEPL~1

12180. DO 20 J=1,NLOW

12190, EMREQ=PARAML (J)

12200. DPLAL (J) =HPAK (EHREQ) *SQRT (TEICHL{J))

12210. 20 CONTINUE

12220, THIMU= (THICHU (NUP+1)=THICNU (NUP)) /(DSTUP(NUP+ 1) =DSTUP (NUP) ) *
12230, ® (SEPUP=DSTUP (NUP)) + THICHU (NUP)

12240, DISPO=3.55%SQRT (THINY)

12250, THIHL“(THICHL(NLOH+1)-THICHL(NLOW))/(DSTLH(NLOH+1)-DSTLW(NLOH))*
12260. # (SEPLOW=DSTLW (NLOW) ) + THICHL (NLOW)

12270. DISPL=3.55%SQRT (THINL)

12280, RETURN

12290. END

12300, SUBROUTINE DISLOP(DSTUP,DSTL¥,LSEPU,LSEPL,DPLAC,DPLAL,DISPU,
12310, *DISPL,DDDSU,DDDSL,DDOP, DDLOW, SEPUP, SEPLOW, NUP , NLOW , CHK)
12320, DIMENSION DSTUP (50) ,DSTLW (50) ,DPLAZ(50),DPLAL (50),DDDSU(40),
12330, *DDD SL (40) ,CHK (40)

12340, NUP=LSEPU=1

12350, DPLAC (NUP+1)=DISPU

12360. DO 20 I=2,NUP

12370, C1=DPLAC(I=1)/ ((DSTUP (I=1)=DSTUP(I)) * (DSTUP (I=1)=DSTUP(I+1)))
12380. C2=DPLAC (1) / ({(DSTUP (I)=DSTUP (I=1))* (DSTUP (I)=DSTUP (I+1)))
12390. C3=DPLAC(I+1)/((DSTUP {I+1)=DSTUP(I-1))* (DSTUP (I+1)~DSTUP (I)))
12400, CHK (I)=C1% (DSTUP (I) #2.=DSTUP (I)=DSIUP (I+1))+C2% (DSTUP (I) *2.~
12410, #¥DSTUP (I=1) =DSTUP (I+1))+C3* (DSTUP (I) #2, =DSTUP (I~1)=DSTUP(I))
12420, 20 CONTINUE

12430, DO. 1516 KT=1,NUP

12440, DDDSU (KT) = (DPLAC (KT+1)=DPLAC(KT)) /(DSTOP (KT+1) =DSTUP (KT) )
12850, 1516 CONTINUE

12460, NLOW=LSEPL=1

12470, DPLAL (NLOW+1) =DISPL

12480, DO 1517 KV=1,NLOW

12490, DDDSL (KV) = (DPLAL (KV+1)=DPLAL (KV)) / (DSTL¥ (KV+1) =DSTLW (KV) )
12500, 1517 CONTINUE

12510. NEW=LSEPU=12

12520, IP (NEW.LE.0)GO TO 2366

12530, DO 2360 I=NEW,NUP

12540, I¥(DDDSU(I).LT.DDDSU(I=1))GO TO 2360

12550, DIFF=ABS (DDDSU (I=3) =DDDSU (I=4}))

12560. GO TO 2361

12570. 2360 CONTINUE

12580. 2361 DO 2362 J=I,NUP

12590, DDDSY (J) =DIFF+DDDSU (I=1)
12600, 2362 CONTINUE

12610. 2366 NEW=LSEPL=12

12620, IF(¥NEW.LE.0)GO TO 23867

12630, DO 2363 I=NEHW,NLOW

12640, IF(DDDSL(I).LT.DDDSL{I=1))GO TO 2363
12650, DIFP=ABS (DDDSL (I=3)=DDDSL (I=4))
12660, GO TO 2364

12670. 2363 CONTINUE

12680, 2364 DO 2365 J=I,NLO®

12690, DDDSL (J) =DIFF+DDDSL (J=1)
12700, . 2365 CONTINUE

12710. 2367 I=LSEPU=1

12720, DDUP=({SEPUP=DSTUP {I=2) ) * (SEPUP=DSIUP (I=1) )}/ ( (DSTUP (I~3) =DSTUP
12730, ® (I~2))* (DSTUP (I~3) =DSTUP (I~1)) ) *DDDSU (I-3) + ( (SEPUP=DSTUP (I~3)) *
12740. ® (SEPUP=DSTUP (I~1))) /({DSTUP (I~2) =DSTUP (I=3))* (DSTUP (I~-2) =DSTUP
12750. #(I~1)))*DDDSO (I=2) ¢ ((SEPUP=DSTUP (I~3))* (SEPUP=-DSTUP (I-2))) /((DS
12760, #T0P (I=1) =DSTUP (I=3))* (DSTUP (I=1) =DSTUP (I-2))) *DDDSU (I-1)

12770, J=LSEPL=1

12780, DDLOW= ( (SEPLOW=DSTLH (J=2) ) * (SEPLOW=DSTLH (J=1) ) ) /{ (DSTLW (J=3) =DST
12790, LW (J=1) ) * (DSTLW (J=3)=DSTLE (J=

12800, %2)) ) *DDDSL (J=3) ¢ ( (SEPLOW=DSTLW (J=3) ) # (SEPLOH=DSTLR (J=1))) / ((DS
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#TLW {(J~2)=-DSTLW {(J~3) ) * (DSTLH (J=2)~DSTLH (J~1))) *DDDSL (J=~2) ¢+ ( (SEPLO
#§=DSTLW (J=3)) * (SEPLOW~DSTLW (J~2)}) )} /{(DSTL¥ (J-1)=DSTLH (J=3) ) * (DST

LW (J=1) =DSTLH (J=2) ) ) *DDDSL (J- 1)

DDDSU (NUP+1)=DDUP

DDDSL (NLOW+1) =DDLOW

RETURN

END

SUBROUTINE ANVEGR (ALPHA,NN,DUDS) )
DIMENSION XN(61),YN(61),THETA (61) ,PAI (61) ,UCIR(61),
®*YCIR(61) ,DUDT(61) ,DVYDT (61) ,DODS(61) ,RELL(61)
%, 0ELL(61) ,VELL (61) , PHIN (61) , XCON{61) , YCON (61)
N=NN=1

A2=0.5

BB=AA/6.0

PI=4.0%ATAN (1.0)

CSQR=AA*%2=BB%%2

RSQR= (AR+BB) *%2

B0 1330 I=1,HN

PHIN (I} =2.0%PI* (I~1) /N

XN (I)=0,5%(1,0+COS (PHIN (I)))

IF(I.LE.NN/2)THEN DO

YN (1) =2.0+BBXSQRT (1o 0= ({XN (I) =o5) ¥%2/AA%%2))

ELSE DO

YR (I)=2.0=BBXSQRT (1o 0= ( (XN (I} =o5) #€2/AA%*%2))

END IF

CONTINU®

DO 1310 KE=1,N

XCON(KE) = (XN (KE) +XN (KE+1) ) /2.0

YCON (KE) = (YN (KE) +YN (KE+1) ) /2.0

PAI (KE) =ATAN2 ( (YCOX (KE)=2.0), {XCON (KE) =0.5))

THETA (KE) =ATAN (6. *TAN (PAI (KE)))

IP (PAI(KE).GT.0.0.AND,KE. GTs N/2) PAT (KE) =PI+PAT (KE)
IF (THETA (KE) » GTo 0o 0 AND.KEoLE. N/2) THETA (RE)=PI+THETA (KE)
IF (THETA (KE) .GT.0.04AND. KE,GT, ¥/2) FHETA (KE)=PI+THETA (KE)
CONTINUE

DO 1300 KD=1,N

UCIR (KD)=COS (ALPHA)=COS (ALPHA=2.0*THETA (KD)) +2.
*€SIN (ALPHA) *SIN (THETA (KD))
VCIR(KD)=SIN(ALPHA) +SIN (ALPHA=2,0%THETA (KD))=~2,
#*%SIN (ALPHA) #COS (THETA (KD))

FACT1=1, 0= {(CSQR/RSQR) *COS (2. 0*THETA (KD) )

PACT2= (CSQR/RSQR) *SIN (2. OXTHETA (KD) )

FP1=PACT 1/ ((FACT 1) *%*2¢ (FACT2) %¥%2)
F2==FACT2/ ((FACT1) *%2+ (FACT2) *%2)

GELL (KD) =UCIR (KD) *F 1+VCIR (KD) *F2

VELL (KD) == (UCIR (KD) *F2=VCIR (KD) *FP 1)

RELL (KD) =SQRT (UELL {KD) *%2+VELL (KD) **2)
IF(KD.LE.K/2) THEN DO

TP (VELL (KD) .GT. 0.0, AND, UELL (KD) . GT. 0, 0) RELL (KD) ==RELL (KD)
IP (VELL (KD) o LE« 0. 0o AND, UELL {KD) . GTa 0, 0) RELL (KD) ==RELL (KD)
ELSE DO

IP (UELL (D) « LT. 0.0, AND. VELL {KD) . GT, 0, 0) RELL (KD) ==RELL (KD)
END IF

IF (KD.LE.N/2)THEN DO

UELL (KD) ==UELL (XD)

YELL (KD) ==VELL (KD)

END IF

IF (KD.GT.H/2.AND.RELL (KD) o LT, 0,0) THEN DO

UELL (KD) ==UELL (KD)

VELL (KD) ==VELL (KD)

END IF

DIS=SQORT ( (XN (KD)=0.5) *%2+ (YN (KD)=2,0) %%2)

CON1=1.= (CSQR/RSQOR) *COS (2. 0%T HETA (KD) )
CON2=(CSOR/RSQR) *SIN (2. D*THETA (KD))
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13450, CON3= (CON1%%2) + (CON2%%2)

13460. CON4=(ALPHA=2. 0%XTHETA (KD) )

13470. CONS5= COS(ALPHA)-COS(CONQ)+2.*SIN(ALPHA)*SIR(

13480, *THETA (KD))

13490. CON6=SIN(ALPHA) +SIN (CONU)=2.0%SIN(ALPHA) *COS(

13500. *THETA (KD))

13510, CON7=4. 0%¥CONT*CON2 +4, 0%#CON2* (CSQR/BSQR) *COS (2. 0%

13520, #*THETA (KD) )

13530, CONB=CON3*%2

13540, DUDT (KD) = (=2.0%SIH (CON4) +2. 0% SIN (ALPHA) *COS (THE

13550, ®TA (KD)) ) * (CON1/CON3) + (CONS5) * { { (CON3%*2,0*CON2) -

13560, . # (CON1%CCN7) ) /CONB) + (=2, 0%COS (CONY) +2,0*SIN (ALPHA) *SIN
13570, % (THETA (KD) ) ) % (=CON2/COK3) + (CON6) * ({ (CON3* (=2, 0* (CSQR
13580. % /RSQR) *COS (2. 0O*THETA (KD) ) ) ) = (=CON2*CON7)) /CONB)

13590, DVDT (KD)={=2,0*SIN (CON4) +2,0%5IN (ALPHA) *COS (THETA (KD
13600, %)) ) % («CON2/CON3) + (CON5) * ( ({CON3* (=2,0% (CSQR/RSQR) *COS (
13610. #2.00*THETA (KD) ) ) ) = (=CON2%CON7) } /CONB) = (=2, 0*COS (CON
13620. %4y +2,0%SIN (ALPHA) #SIN (THETA (KD))) * (CON1/CON3) - (CON6)
13630. ®% (( (CON3*2, 0%CON2) = (CON1%*CON7) ) /CON8)

13640. DRDP==35,*DIS*STIN (2. *PAT (KD)) /{37.=35,%C0OS (2. *PAI (KD)))
13650. DTDP=6, * (COS (THETA (KD) ) *%2) / (COS (PAI (KD} ) %**2)

13660. DPDS=1. 0/ (SQRT (DIS*%*2+DRDP*%2) )

13670. DUDT (KD) =DUDT (KD) *DTDP*DPDS

13680, DVDT (KD} =DVDT (KD} *DTDP*DPDS

13690. DUDS (KD) = (UELL (KD) #DUDT (KD) +VELL (KD) *#DVDT (KD) ) /

13700, * (SORT (UELL (KD) **2+VELL (KD) *%2) )

13710. 1300 CONTINUE

13720, RETURN

13730. END

13740, SUBROUTINE SHIPT (N,NS,XCON,YCON,DEL, ELEN, RH,XCONK,
13750. *{CONM,DELN,ELENH,RHH)

13750, DIMENSION XCOW (60),Y¥CON{60),DEL(60),ELEN(60),RH(50),
13770. #*XCONM (60) ,YCONH (60) ,DELM (60) , ELENH (60) ,RRH (60)

13780, DO 1 HY=1,60

13790, IFP(HY.LE. (N=(NS=1)))THEN DO

13800, HY3=HY+ (NS=1)

13810. XCONM (MY) =XCON (RY3)

13820, YCOHNM (MY) =YCON (MY3)

13830. ELENM (MY)=ELEN (HY3)

13840. DELM (HY) =DEL (MY 3)

13850. RHH (MY) =RH (HY3)

13860, ELSE DO

13870, HY3=MY= (H= (§S=1))

13880. XCONM (MY) =XCON (HY3)

13890, YCONN (HY) =YCOW (EY3)

13900. DELH (MY) =DEL (HY3)

13910. ELENH (MY) =ELEN (NY3)

13920, RHH (MY) =RH (HY3)

13930, END IF

13940. 1 CONTINUE

13950. RETURN

13960. END

13970, SUBROUTINE SOURCE (XCON,YCON,DEL,ELEN,QSEP,LSEPU,LSEPL,NSTATU,
13980, #NSTATL,S1G,SIGHA,N,NN,GAMCON,DDDSU,DDDSL,UT,UN,IT,KOD)
13990. DIMENSION XI(60,60),ETA(60,60),XCON(61),YCON(61),CONST(
14000, %60, 60) ,CONS2(60,60) ,CONSA (60,60) ,CONSB(60,60) , DEL (60) , ELEN
14010, #(60) , 0N (60) ,UT (60) ,COEFA (60,60) ,COEFB (60,60) ,COEF (60,61) ,SIG
14020, #(60) ,SIGNA (60,5) ,TANG (60,60) , BETA (60) ,00(60,60) ,VU (60,60),
14030, #*GAMCOR (61) ,DDDSU (#0) ,DDDSL {40) ,COPT (60,60) ,HKARFA (4000)
14040, DIMENSION CONSX(60,60),CONSY(60,60),COEFU (60,60} ,5SIG2 (60)
14050, PI=4,0%ATAN (1.0)

14060, DO S0 K=1,N

14070 DO 60 L=1,¥

14080, IF(DEL (L) «GTe (PI/2+) 0 AND. DEL{L} LT, PT) BETA(L)=DEL(L)=PI
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IP (DEL(L) «GToPI.AND.DEL (L) o LT, (1. 5%PI)) BETA (L) =DEL (L) ~PI
IF(DEL(L)+GTs (1.5%PI) . AND. DEL(L). LT, (2.%PI))BETA(L)=DEL (L) =PI
IP (DEL (L)< LE. (PI/2.).AND. DEL (L).GT.0.0) BETA (L) =DEL (L) +PI
XI(K,L)=(XCON(K)=XCON (L)) *COS (BETA (L)) + (YCON (K) =YCON (L)) *
#SIN (BETA (L))

ETA (K,L) = (YCON (K)=YCON(L) ) *COS (BETA (L) ) - (XCON (K} =XCCN (L) ) *
#*SIN (BETA(L))

CONTINUE

CONTINUE

DO 90 I=1,N

DO 100 J=1,N

IF({J.¥0.I)GO TO 110

R1=SQRT ( (XI (I,J) +0.5*ELEN (J)) *#*2+ETA (L,J) **2)

R2=SQRT ((XI (I,J) =0 S*ELEN (J)) **2+ETA (I,J) **2)
IFP(XI{I,J).GT.0.,0,AND.ETA(I,J).6T.0.0)G0 TO 31
IF(XI(I,J)LTe0.0.AND.ETA(I,J).GT.0,0)GO TO 32
IF(XI(I,J).LT+0,0.AND.ETA(I,J).LT.0,0)GO TO 33
IP(XI(I,3)e6Te0.0.AND.ETA(I,J)«LT.0.0)GO TO 38

IF (ABS (XI{I,J))«GE. (- S*ELEN {J))) THEN DO

PHI1=ATAN (ETA (I,J)/ (XI(I,J)+. S*ELEN (J)))

PHI 1=PHI1+PI

ELSE DO

PHI1=ATAN (ETA (I,Jd)/ (XI{I,J)+.5%ELEN(J)))

END IP

PHI2=ATAN (ETA(I,J) / (XI{I,J)=.S*ELEN(J}))

PHI2=PHI2+PI ‘

G0 TO 38

IF (ABS(XI(I,J))«GTa (o SXELEN (J))) THEN DO

PHI1=ATAN (ETA(I,J)/ (XI(I,J)+. S¥ELEN (J)))

PHI 1=PHI1+PI

ELSE DO

PHI1=ATAN (ETA (I,J)/ (XI(I,J)+.5*ELEN (J)))

PHI 1=PHI1+2.%PI

END IF

PHI2=ATAN (ETA(I,J) /(XI(I,J)~.5%ELEN(J)))

PHI2=PHI2+PT

G0 TO 38

IF (ABS (XI (I,J)).GE. (. 5*ELEN(J)))THEN DO

PHI2=ATAN (ETA(I,J)/ (XI(I,J)=. SEELEN (J}})

ELSE DO

PHI2=ATAN(ETA(I,J)/ (XI(I,J)=.5*ELEN(J)})

PHI2=PHI2+PI

END IF

PHI1=ATAN (ETA (I,J)/ (XI(I,J)+.S*ELEN(J)))

60 TO 38

LP (ABS (XI(I,J))«GE. (. S*ELEN (J))) THEN DO

PHI2=ATAN (ETA(I,J)/ (XI(I,J)=.5%ELEN(J)})

PHI 2=PHI2+2,%*PI

ELSE DO

PHI2=ATAN (ETA (I,J)/ (XI(I,J)=. S*ELEN(J)))

PHI2=PI+PHI2

END IF

PHI1=ATAN (ETA(I,J)/(XI(I,J) ¢, S*ELEN (J)))

PHI 1=PHT 142, %P1

A=XI (I,J) +0.5%ELEN (J)

U0 (I,J)=(1./(2.%PI))*ALOG (R1/R2)

VO(I,J)=(1./(2.%PI))* (PHI2=PHI 1)

IP (DEL(J) «LT.PT. AND. DEL (J)% GT, (PI/2.))G0 TO 111

IF (DEL (J) o GTo PIo ANDGDEL (J) o LT+ (14 5%PI)) GO TO 112

IP (DEL(J)«GTe (1o 5%PI) s AND.DEL(J) o LT+ (2.%PI))GO TO 113
IP(DEL(J).LT. (PI/2.) . AND, DEL(J).GE. 0, 0) THEN DO
CONSX(I,J)=00(I,J)*COS(DEL (J) +PI) +VU (I,J) *COS ((PI/2.)+PI+DEL(J))
CONSY (I,J)=U0(I,J)*COS(DEL(J) ¢+PI/2.) + VU (I,J)*COS(DEL (J) +PI)
END IF
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15160.
15170.
15180,
15190,
15200,
15210.
15220,
15230.
15240,
15250,
15260,
15270,
15280,
15290,
15300.
15310,
15320.
15330,
15340,

15350%

15360.

111

112

113

115

110
100
90

10

20

30

40

850

851

859

853
852
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80 TO 115 .
CONSX (I,Jd)=00(I,J)*COS(PI~DEL (J)} +VU (I,J) *COS ( (PI/2.}=(PI=DEL(J)))
CONSY(I,Jd)=00(I,J) #COS((PI=DEL (J)) +PI/2.) +VU(I,J)*COS (PI~DEL(J))
GO TO 115
CONSX(I,J)=00(I,J)*COS(DEL (J)=PI) +VU (I,J) *#COS ( (DEL (J)=PI) +PI/2,)
CONSY(I,J)=U0(I,J)*COS{{(PI/2.)=~(DEL(J)=PI))+VU (I,J)*COS(DEL (J)
%= PI)

0 TO 115 .
CONSX(I,J)=0U(T,J)*COS(DEL (J)=PI}+VU (I,J)*COS (DEL(J)~PI/2.)
CONSY (I,Jd)=00(I,J)*CCS((PI/2.)=(2.%PI=DEL (J)}))+VU(I,J)*COS

* (DEL (J) =PI)

COEFU (I,J) =CONSYX (I,J)*COS (DEL (I) =PI /2.) +CONSY (I,J) *CCS (DEL (I) =PI)
GO0 TO 100

COEPU(I,J)=0.5

CONTINUE

CONTINUE

CALCULATION OF NORMAL VELOCITIES IN ATTACHED REGION
NUP=LSEPU=2

DO 10 I=1,NUP
UN(NSTATG=I+1) =GAMCON (NSTATU=I+1) *DDDSU (I+1)* (=1.)

CONTINUE

NLOW=LSEPL=2

DO 20 J=1,NLOW

UN(NSTATL#J~1) =DDDSL (J+1) *GAMCON (NSTATL¢J=1)

CONTINOE

KSTU=NSTATU= (LSEPU~-2)

po 30 K=1,NSTU

UN (K)=SORT (QSEP¥%2= (GAMCON (K) ) #%2)

CORTINUE

NSTL=NSTATL+LSEPL=2

PO 40 L=NSTL,N

C=QSEP¥*% 2= (GAMCON (L) *%2)

IP(C.LE.0.0) THEN DO

UN (L)=0.0

G0 TO 40

END IF

UN (L) =SQRT (QSEP*%2= (GAMCON (L) ) *%2)

CONTINUE

D0 850 I=1,¥

SIG (I)=UN(I)

CONTINUE

1DGT=0

CALL LEQT2F (COEFU,1,N,N,SIG,IDGT,HKAREA,IER)

TT=1

DO 851 J=1,¥

SIGHA (J,IT)=SIG (J)

CONTINUE

CALCULATION OF TANGENTIAL VELOCITIES DUE TO SOURCES

DO 852 I=1,N

SON=0,0

DO 853 J=1,¥

IF(J.EQ.I) THEN DO

TANG (I,J)=0.0

ELSE DO

TANG (I, J)=(CONSX(I,J)*COS (DEL (I)) +CONSY (I,J) *SIN(DEL(I))) *SIGMA (
«3,IT)

END IF

SUH=SUM+TANG (I,J)

CONTINUE

UT(I)=S0M

CONTINUE

RKOD=2

IF (KOD.EQ.1)GO TO 858

DO 854 I=1,HSTU




15370.
15380,
15390.
15800,
15410.
15420,

15430, .

15440,
15450.
15460,
15470.
15480,
15490,
15500,
15510,
15520,
15530,

15540,

15550.
15560,
15570.
15580,
15590,
15600,
15601.
15610.
15620,
15630.
15640,

15650,

15660,
15670,
15680.
15690,
15700,
15710,
15720.
15730,
15740,
15750.
15760,
15770,
15780.
15790,
15800,
15810,
15820.
15830,
15840.
15850,
15860.
15870,
15880,
15890.
15900.
15910,
15920,
15930,
15940,
15950,
15960,
15970,
15980,
15990,

854

855

856

857

858

10

15

25

30

20

35

40
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C=Q SEP*%2= (GAHCON (I) +UT (1)) **2
IF(C.LT.0.0) THEN DO

UN{I)=0.0

ELSE DO

ON(I) =SQRT (QSEP#*#%2= (GAMCON (I) +UT(I)) **2)
END IF

CONTINUE

DO 855 J=NSTL ,H
C=QSEP**2= (GAMCOR {J) +UT (J) ) **2
IF(C.LTs0,0) THEN DO

ON (J)=0.0

ELSE DO

UN (J) =SQBRT (QSEP**2= (GANCON (J) +UT (J) ) ¥*2)
END IF

CONTINUE

po 856 I=1,N

SIG2(I)=UN (1)

CONTINUE

IT=1IT+1

CALL LEQT2F (COEFU,1,N,N,SIG2,IDGT,WKAREA, IER)
DO 857 J=1,N

SIGHA (J,IT)=SIG2(J)

CONTINUE

IF( ABS((SIGNA (LSEPU,IT)~-SIGHA(LSEPU,IT=1))/SIGHA(LSEPU,IT))
%, LE.0.01) GO TO 858

G0 TO 859

RETURN

END

SUBROUTINE DSTNCE(STC,IND,ROOT,DSTUP,DSTLW,LASTUP,LASTDN)
DIMENSION STC(61),DSTUP (50) ,DSTLH (50}
DSTUP (1) =0.0

DSTLR(1)=0.0

D1=STC (IND) =BOOT

IF(D1.6T.0.0)G0 TO 5

INF=IND+1

DO 10 I=2,IWF

DSTUP (I) =ROOT=STC (IND=I+2)

CONTINUE

LASTUP=INF

0 T0 25

IN=IND=1+41

Do 15 J=2,1IN

DSTUP (J) =ROOT=STC (IND=J+1)

CONTINUE

LASTUP=IN

IF (D1.6T.0,0)G0 TO 20

INE=60=IND¢1

DO 30 K=2,INE

DSTLW (K) =STC (IND+K=91)=ROOT

CONTINUE

LASTDN=INE

GO TO 40

INE=60-TND+2

DO 35 L=2,IKE

DSTLW (L) =STC (I¥D+L=2)=ROOT

CONTINUE

LASTDN=INE

RETURN

END

SUBROUTINE COLIFT (GAHMMA,GAMCON,STC,N,CL,STE)
DIMENSION GAMMA (61) ,GAMCON(61) ,STC(61),STE(61),CL(61)
CL (1) =( (GAKCON (1) +GAHMA (1)) /2. 0) ¥ (STC (1) =STE(1))
DO 5 I=2,W

A=STC (I=1)




16000.
16010,
16020.
16030,
16040,
16050,
16060.
16070.
16080,
16090,
16100,
16110,
16120,
16130,
16140,
16150,
16160,
16170,
16180,
16190,
16200,
16210,
16220,
16230,
16240,
16250,
16260,
16270,
16280,
16290.
16300,
16310.
16320,
16330,
16340,
16350,
16360,
16370.
16380,
16390.
16400,
16410,
16420,
16430,
16440,
16450,
16460
16470,
16480,
16490,

16500, ,

16510.
16520,
16530,
16540,
16550,
16560.
16570.
16580.
16590,
16600,

16610,
16620%

16630,

10
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B=STC (I)

N1=10

PN=N1

DX= (B=A) /PN

TDX=2. 0*DX

PI1=VINT (A) +VINT (B)

$I2=0.0

FI3=0.0

NR1=N1/2

X=A+DX

po 3 J=1,E81

FI2=FI24VINT (X)

X=X +TDX

X=2

NH=NN1=-1

DO 4 K=1,NH

X=X+TDX

PI3=FI3+VINT(X)

FI=DX* (FI1+4,%FI2+2,%FI3) /3.

CL (I)=CL (I=1) +FI

CONTINUE

CL(H+1) =CL (N) + ( (GAHCON (N) +GAMEA (N+1)) /2. 0) * (STE(N+1) =STC(N))
CL (¥+1) =2, 0%CL (N+1) *{=1.)

RETURN

END

SUBROUTINE GAUS (ROOT,GAMCON,RE,DSTUP,DSTLH,LASTUP,LASTDN,L
*0p, LDN, IND, TOM,TLH,STC, NSTATU,NSTATL)

DIMENSION GAKCON (61),DSTUP(50),DSTLU (50),TUN(50),TL¥(50)
®,STC(61) ,W(3),Z(3)

D1=STC (IND) =ROOT

£ 1=GANCON (IND=1) / ( (STC (IND=1) =STC (IND) ) * (STC (IND~1) =STC(IND
#+1)))

C2=GAHCON (IND) / ( (STC (IND)~STC (IND=1))* (STC(IND)=STC (IND+1)))
c3=GAMCON (IND+1) / { (STC (IND+1) =STC (IND=1)) % (STC (IND+1) =STC (IND
*)})

DYDS1=C1% (2. *ROOT=STC (IND)=STC (IND+1)) #C2% (2. *ROOT=SIC (IND=1)
#=STC(IND+1) ) +C3* (2. *ROOT=STC (IKD=1) =STC (IND})
IF(D1.GT.0.0)GO TO 1

TU (1) = (» 075/RE) * {1, /DVDS 1)

TLF (1) = (« 075/RE) * (1. /DVDS 1)

BSTATU=IND

NSTATL=IND+1

GO TO 2

TUN (1) = (- 075/RE) * (1. /DVDS 1)

TLM (1) = (s 075/RE) * (1. /DVDS 1)

NSTATU=IND-1

NSTATL=IND

LUP=LASTUP=1

LDN=LASTDN=1

W(1)=.8888888

W (2)=.5555555

¥ (3)=.5555555

7 (1) =, 0000000

7 (2) =. 7745966

7 (3) ==, 7745966

po 20 I=2,LASTUP

A=DSTUP (I-1)

B=DSTUP (1)

SUM=0.0

po 10 J=1,3

SUM=SUM+H (J) *PS (ROOT= (Z (J) * (B=A) + (B+A)) /2.)

CONTINUE
Tun(I)=(—1.)*sun*.5*(e-n)*.45/(RE*(Gnacon(NSTATUozcx)**s))
%+ TUH (I=1)




16640,
16650,
16660,
16670,
16680.
16690,
16700.
16710,
16720,
16730,
16740.
16750,
16760,
16770.
16780.
16790,
16800,
16810,
16820.
16830,
16840,
16850,
16860,
16870,
16880.
16890,
16900.
16910.
16920.
16930,
16940,
16950,
16960,
16970,
16980.
16990,
17000.
17010,
17020
17030.
17040,
17050,
17060.
17070,
17080,
17030.
17100,
17110,
17120,
17130,
17140,
17150.
17160,
17170,
17180,
17190,
17200,
17210,
17220,
17230,
17240,
17250,

17260«

17270,

80

20 CONTINUE
po 30 I=2,LASTDN
A=DSTLW (I=1)
B=DSTLH (1)
SO¥=0,0
po 25 J=1,3
SUM=SUN+W (J) #FS (ROOT+ (Z (J) * (B=A) + (B+R)) /2.)
25 CORTINUE -
TLH(I)=SUH*O.5*(B-A)*O.QS/(BE*(GAHCON(NSIATL+I-2)**6))+TLn
®*(I-1)
30 CONTINUE
RETURN
END
FUNCTION TPAH(S)
COHMON/RREA/EH (26) , EM (26) ,EL(26)
IF (S.GT.EN(26) cOR. S.LT.EH (1)) GO TO 6
po 1 I=1,25
IF( (S=EH(I))*(S=EH(I+1)).LT.0.0)GO T 2
1 CONTINUE
2 rPAn=(EL(I+1)-BL(I))/(EH(I+1)~BM(I))*(s-gn(x))+EL(I)
GO TO 7
6 IF(S5.LT.EN (1)) TPAK=0.5
IP(S.GT.EH(26))TPRH=0.0
7 RETURN
END
SUBROUTINE SKIN(GAHCCN,RE,THICEU,THICHL,CONSLU,CONSLL,NUP,NLOH,
#PARAMU, PARAML,NSTATU,NSTATL)
DIMENSION GAﬂCON(61),THIC&U(SO),THICHL(SO),PARAHU(SO),PARAHL(SO),
#CONSLU (50) ,CONSLL(50)
CONSLU(1)=0.0
CONSLL{(1)=0.0
Do 10 I=2,NWOP
ELREQ=PARAHU (I}
CONSLU(I)=2.0*TPAH(ELREQ)*GBECON(NSTATU-I+2)/(BE*SQBT(THICMU(I)))
% (=1,0)
10 CONTINUE
DO 20 J=2,NLO¥
ELREQ=PARAHKL (J)
CONSLL(J)=2.0*TPAﬂ(ELRBQ)*GAMCON(NSTATL+J~2)/(RE*SQRT(THICHL(J)))
20 CONTINUE
RETURN
END
PUNCTION CPINT (XREQ,NSUR)
COHMH¥ON/PRESRE/XCON,YCCON,CP
DIMENSION XCON(61),YCO¥(61) ,CP(60),UREQ(60)
IF (NSUR.EQ.2)GO TO 2
po 1 1=1,30
1F (XREQ.LT. XCON (30) o AND. XREQ. 6T, 0.0) GO TO 10
IF (XREQ.LT. XCON(I))GO TO 1
IF(I.EQ.1)G0 T0 9
CPINT=((CP(I)—CP(I-1))/(XCON(I)~XC3N(1-1)))*(XREQ~XCON(I-1))+
«CP (I-1)
Go T0 7
1 CONTINUE
9 cplur=((cp(1)-0,0)/(XCON(1)-0.0))*(XREQ-1,0)+1.0
Go TO 7
10 CPINT=(.5*(CP(31)+CP(30))—CP(30))/(0.0-XCON(30))*(XREQ-XCON(30))
#4+CP {30) :
GO TO 7
2 po 3 I=31,60
IF(XREQ.GT.0.0.AND.XBEQ.LT.XCON(31))GO o 11
IF (XCON (I).LT. XREQ) GG TO 3
CPINT=((CP(I)-CP(I-1))/(XCON(I)-XC3N(I—1)))*(XREQ—XCGN(I°1))*
%CP (I=1)
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17280, GO T0 7
17290, 3 CONTIRUE
17300. 11 CPINT=-(CP(31)-.5*(CP(30)+CP(31)))/(XCON(31)-0.0)*(XREQ-0.0)#

17310. ®CP(31)

17320, 7 RETURN

17330, ERD

17340, SUBROUTINE CDRAG(CP,ALPHA,CLIFT,N,XCON)
17350, DIHENSIOR XCON (61) ,CLIFT (60} ,CP(60)
17360. CLIPT (1)=CP (1) * (1.=XCOR (1))

17370, po 5 I=2,59

17380. A=XCON (I)

17390. B=XCON(I+1)

17400, N1=10

17410, FN=X1

17420, DX={(B=2) /FN)

17430, TDX=2, *DX

17840, IF (1.LE.X/2) THEN DO |
17450, NSUR=1 |
17460, ELSE DO |
17470, NSOR=2

17480, END IF

17490, PI1=CPINT(A,NSUR) +CPIRT (B,NSUR)

17500. PI2=0.0

17510. PI3=0.0

17520, RN1=N1/2

17530, X=A2+DX

17540. Do 3 J=1,NN1

17550, PI2=FI2+CPINT (X,NSUR)

17560, 3 X=X+TDX

17570, X=A

17580, HE=NN1=1

17590, DO 4 K=1,NH

176004 X=X+TDX ’

17610, 4 PI3=FI3+CPINT (X,NSUR)

17620, PI=DX#* (PI1+U,*FI2+2.*F13) /3.0

17630. CLIPT(I)=CLIFT (I=1)+FI

17640, 5 CONTINOE

17650, CLIPT (N) =CLIFT (N=1) +CP (60) * (1.=XCON (60))
17660, RETURN

17670. END

17680, PUNCTION CINT(YREQ,NCUAD)

17690, COMHON/PRESRE/XCON, YCCH,CP

17700, DIMENSTON YCON (61),CP (60) ,UREQ(60),XCON(61)
17710. IF (NQUAD.EQ.1) GO TO 1

17720, IF (NQUALLEQ.2)GO TO 2

17730, IP(NQUAD.EQ.3)G0 TO 3

17740, IF (NQUAD.EQ.4) GO TO 4

17750, IF (NQUAD.EQ.5)60 TO 12

17760. TP (NQUAD.EQ.7) GO TO 14

17770. 1 po 5 I=1,15

17780. IFP (YCON(I)«L1lT.YREQ) GO TO 5

17790, CINT=(CP(I)-CP(I-1))/(YCON(I)~YCON(I-1))*(!REQ—ycou(1~1))
§7800. #+CP (I=1)

17810, GO T0 7

17820, S CONTINUE

17830, 2 po 6 I=16,30

17840, IF (YREQ.LT. YCON(I)) 60 TO 6

17850. 1F {YREQ.EQ. YCON (16) ) THEN DO

17860. CINT=CP (U6)

17870. ELSE DO

17880. CINT=(CP(I)~CP(I-1))/(YCON(I)“YCON(I-1))*(YREQ-YCON(1*1))
17890. ®+CP {I-1)

17900, ERD IF

97910, GO T0 7
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17920. 6 CONTINUE
17930, 3 DO B8 I=31,45

17940. IP(YCON (I).GT.YREQ)GO TO 8

17950. CINT=(CP(I)=CP (I~1))/(YCON{I)=YCON(I=1))* (YREQ=YCON (I=1))
17960. ®+CP (I=1)

17370, GO TO 7

17980, 8 CONTINUE

17990, & DO 9 I=46,60

18000, IF(YCON(I).LT.YREQ)GO TO 9

18010, IF (YREQ. EQ. YCON (46)) THEN DO

18020, CINT=CP (46)

18030, ELSE DO

18040, CINT=(CP(I)=CP(I~1))/(YCON(I)=YCON(I=1))* (YREQ=YCON (I=1))
18050, ®¢CP (I=1)

18060. END IP

18070, GO TO 7

18080. 9 CONTINUE

18090. 12 IP(YREQ.L1E.2.083333)THEN DO

18100, CINT=(.5%(CP(16) +CP (15))=CP(15))/(2.083333=YCON(15)) *(YREQ
18110, ®=YCON (15)) +CP (15)

18120, ELSE DO

18130, CINT== (CP(16)=o 5% (CP (15)¢CP(16})) /{ICON(16)=2,083333)*(YCON
18140, %(16)=YREQ) +CP (16)

18150. END IP

18160, GO TO 7

18170, 14 IF(YREQ.LE.,1.916666)THEN DO

18180, CINT= (o 5% (CP{U6) +CP (45) )=CP (45)) /(1.96666~=YCON (45) ) * (YREQ~
18190. SYCON (45)) +CP (45)

18200, ELSE DO

18210. CINT==(CP(46)=,5%(CP(45)+CP(46))) /(YCON(U46)=1,96666) * (YCOY (
18220, *4§) =YREQ) +CP (46)

18230, END I¥?

18240, 7 RETURN

182590, END

18260, SUBROUTINE CDRAG2(CP,ALPHA,CD,YCON,N)
18270. DIMENSICN CP(60) ,CD(60) ,YCON(61)
18280, CD{1)=0.0

18290, DO 5 I=2,59

18300, A=YCON (I)

18310. B=YCOW (I+1)

18320, N1=10

18330. PN=X1

18340, DX= (B=A) /FN

18350, TDX=2,0%DX

18360, IFP(I.FQ.15)KQUAD=5

18370. IF(I.EQ.U45) RQUAD=T

18380, IF(X.LT.15) NQUAD=1

18390, IP(I.GTo 15. ANDaILE.30) NQUAD=2

18400, IP(I.GT.30,AND.T.LT.45) NQUAD=3

18410. IP (I.GTo45)QUAD=Y

18420, FI1=CINT (A,NQUAD)+CINT (B,NQUAD)
18430, FI2=0.0

18440, PI3=0.0

18450, NN1=N1/2

18460, K=k +DX

18470, DO 3 J=1,HN1

18480, FPI2=FI2+CINT (X,NQUAD)

18490, 3 X=X+TDX

18500, =4

18510, NE=NN1=1

18520, DO 4 K=1,uM

18530, X=X+TDX

18540, 4 FI3=FI3+CINT(X,HNQUAD)

18550, PI=DX%®(FIT+4,*FI242,%FI3) /3.0
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18560, CD(I)=CD(I=1) +PI

18570. 5 CONTINUE

18580. CD(N) =CD (N=1)

18590, RETURN

18600. END

18610. SUBROUTINE CM1 (XCON,N,CP,CHU1)
18620, DINENSION XCON(61),CP(60),CHU1(60)
18630, C INTEGRATION CPXDX

18640, CHU1 (1) =0.0

18650. DO 5 I=2,59

18660. A=XCON (I)

18670, B=XCON (I+1)

18680, N1=10

18690, FN=N1

18700. DX= (B=-A) /PN

18710, TDX=2. 0%DX

18720. IFP(I.LE.N/2) THEN DO

18730, NSUR=1

18740, ELSE DO

18750. NSUR=2

18760, ERD IF

18770. FI1=CPINT (A,NSUR)*A+CPINT (B,NSUR) *B
18780. PI2=0.0 :
18790, FI3=0.0

18800. WN1=N1/2

18810, X=2+DX

18820, DO 3 J=1,NN1

18830, FI2=FI2+CPINT (X, NSUB)*X

18840, 3  X=X+TDX

18850, X=3

18860, NM=NN1=1

18870. DO 4 K=1,NK

18880. X=X +TDX

18890, 4  PI3=PI3+CPINT(X,NSUE)*X

18900. FI=DX* (FI1+¢U.,#FI2+2.%FI3) /3.0
18910. CHU1(I)=CHU1(I=1)+FI

18920, 5 CONTINUE

18930. CHU 1 (N) =CHU1(N=1)

18940, RETURN

18950, END

18960. SUBROUTINE CM2(IA,IB,CP,YCON,CHU2)
18970, DIMENSICN CP(60),YCCN(61) ,CHU2 (60)
18980. ¢C INTEGRATION CPYDY

18990, IF (IA.EQ.2) THEN DO

19000. CHU2(IA=1)=0.0

19010, ELSE DO

19020. CHU 2 (IA=1) =CHU2 (30)

19030, END IF

19040, DO 5 I=IA,IB

19050. A=YCON (I)

19060, B=YCON (I+1)

19070, H1=10

19080. PN=N1

19090, DX= (B=A) /FN

19100. TDX=2. #DX

19110, I¥ (I.EQ.15) NQUAD=S

19120, IP(I.EQ.45) NQUAD=7

19130, IFP(I.LT.15) NQUAD=1 _
19140, IP(X.GT.15.AND. I.LE.30) NQUAD=2
19150, IF(I.GT.30.AND,T,LT,45) HQUAD=3
19160, NQUAD=4

19170. PI1=CINT(A,NQUAD)*ABS (A=2.0) +CINT (B, NQUAD) *ABS (B=2, 0)
19180, PI2=0.0

19190, FI3=0.0
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19200, HN1=81/2

19210. X=1+DX

19220. DO 3 J=1,NN1

19230. PI2=FI2+CINT (X,NQUAD) *ABS (X=2.0)

19240, 3 X=X+TDX

19250. X=A

19260, HE=REN1=1

19270. DO 4 K=1,NH

19280, X=X+TDX

19290, 4 PI3=PI3+CINT(X,NQUAD)*ABS (X=2.0)

19300, FI=DX* (FI1¢+4,0%FX2+2,0%FI3) /3.0

19310. CHU2 (I) =CRU2 (I=1)+FI

19320. 5 CONTINUE

19330. RETURN

19340, END

19350. SENTRY

19360. =0.250 <«0,200 =0.740 «0.120 =0.100 =0.080 =0.064 =0,048 =0,032
19370, -0.016 0. 000 0.016 0.032 0.040 0.0u48 0. 056 0,060 0. 064
19380, 0.068 0,072 0.076 0,080 0,084 0,086 0,088 0.090

19390. 2.00 2.07 2.18 2.23 2.28 2,34 2. 39 2. 44 2. 49
19400, 2.55 2,61 2,67 2.75 2,81 2.87 2,94 2.99 3,04
19410, 3. 09 3. 15 3,22 3.30 3.39 3.44 3.49 3.55

19420, 0.500 0,463 0. 404 0.382 0.359 0.333 0.313 0.291 0.268
19430, 0. 244 0.220 0.195 0,168 0.153 0.138 0.122 0113 0.10u

19440, 0.095 0. 085 0,072 0,056 0.038 0.027 0.015 0.0
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TABLE 1

PRESCRIBED FUNCTIONS FOR MODIFIED THWAITES' METHOD

m 2 H
~0.25 0.500 2.00
-0.20 0.463 2.07
-0.14 0.404 2.18
~0.12 0.382 2.23
~0.10 0.359 2.28 |
~0.08 0.333 2.34
-0.064 0.313 2.39
-0.048 0.291 2.44
~0.032 0.268 2.49
-0.016 0.244 2.55
0 0.220 2.61
0.016 0.195 2.67
0.032 0.168 2.75
0.040 0.152 2.81
0.048 0.138 2.87
0.056 0.122 2.94
0.060 0.113 2.99
0.064 0.104 3.04
0.068 0.095 3.09
0.072 0.085 3.15
0.076 0.072 3.22
0.080 0.056 3.30
0.084 0.038 3.39
0.086 0.027 3,44
0.088 0.015 3.49

0.090 0 3.55
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TABLE 2

THE SURFACE VELOCITY DISTRIBUTION ON A 6:1 ELLIPTIC AEROFOIL:
/ INVISCID FLOW, o = 0°

POSITION VELOCITY (U/Uw)

Chord- Control Conformal Distributed ERROR
Wise point Transformation Vortices %
Position No. Theory (Exact) (N = 60)

(x/d)

0.998 1 ~-0.349 -0.320 -8.3
0.993 2 -0.803 -0.780 -2.8
0.982 3 -0.990 -0.982 -0.8
0.966 4 -1.070 ~1.066 -0.4
0.945 5 ~1.109 -1.107 -0.2
0.918 6 -1.130 -1.129 -0.09
0.888 7 -1.142 ~1.142 0.0
0.853 8 -1.150 -1.150 0.0
0.814 9 -1.156 -1.156 0.0
0.772 10 -1.159 -1.159 0.0
- 0.726 11 ~1.162 ~1.162 0.0
0.679 12 ~1.164 -1.164 0.0
0.629 13 -1.165 -1.165 0.0
0.578 14 ~-1.166 -1.165 0.0

Note: 1. The velocity is considered positive if it is counterclockwise
about the aerofcii.
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TABLE 3

SURFACE VELOCITY GRADIENT AROUND A 6:1 ELLIPTIC AEROFOIL: » |
INVISCID FLOW, a = 5° |

u/u

POSITION VELOCITY GRADIENT 4§ -2
Chord- Control  Conformal Distributed ERROR
Wise point Transformation  Vortices %
Location No. Theory (Exact) (N = 60)
(x/d)
0.998 1 ~69.82 -62.11 -11.0
0.993 2 -24.,29 ~25.37 . 4.0
0.982 3 - 7.51 - 7.85 4.0
0.966 4 - 2.82 - 2.97 5.0
0.945 5 - 1.31 - 1.38 5.3
0.918 6 - 0.72 - 0.76 5.5
0.888 7 - 0.46 - 0.48 4.3
0.853 8 - 0.33 - 0.34 3.0
0.814 9 - 0.25 - 0.27 8.0
0.772 10 - 0.21 - 0.23 9.5
0.726 11 -~ 0.19 - 0.20 5.0
0.679 12 - 0.17 - 0.19 11.7
0.629 13 - 0.16 - 0.18 12.5
0.578 14 - 0.16 - 0.18 12.5

0.526 15 - 0.18 - 0.19 5.5

Note: Error (%) = 100 x (APRLOX. Grﬁiiggtggggggngradient)
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TABLE 4

COMPUTED SEPARATION CHARACTERISTICS FOR 6:1
ELLIPTIC AEROFOIL AT REYNOLDS NUMBER = 800

ANGLE OF SEPARATION POSITION SEPARATION NO. »
ATTACK (Nearest control point) VELOCITY OF
(DEGREES) UPPER SURFACE LOWER SURFACE (U/Um) ITERATIONS
0 : 8 54 1.14 1
1 8 54 1.14 1
2 9 54 1.15 i 2
3 9 55 1.15 2
4 9 55 1.15 2
5 10 56 1.16 2
6 11 56 1.17 4
7 12 57 1.18 4
8 NO UNTIQUE SOLUTION
9 NO UNIQUE SOLUTION
10 NO UNIQUE SOLUTION
12 | 21 58 1.72 14
14 28 59 1.91 5
16 29 59 2.10 6
18 29 59 2.28 4
20 29 60 2.47 5




TABLE 5. COEFFICIENT OF DRAG VALUES
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ANGLE OF COEFFICIENT OF COEFFICIENT OF COEFFICIENT
ATTACK (IN SKIN FRICTION FORM DRAG OF PROFILE
DEGREES) DRAG DRAG

0 0.043 . 0.102 0.145

1 0.044 0.101 0.145

2 0.045 0.101 ~0,146

3 0.046 0.099 0.145

4 0.051 0.097 0.148

5 0.054 0.095 0.149

6 0.059 0.090 0.149

7 0.066 0.090 0.156




Fig. 1.

92

NETWORK

Control Points for Network Method
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{ —Plane

Fig. 2. The Uniform Flow Around an Elliptic Aerofoil
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Fig. 3. Distribution of Elemenis Around the Aerofoil by
Cosine Rule. '
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Fig. 4. Induced Velocity Components at a Point due fo
Distributed Vortices on an Element.
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EXACT METHOD

® SURFACE VORTEX
METHOD (N=60)

Fig. 6. Inviscid Pressure Distribution at & =8° by
Surface Vortex Method.
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Fig. 10. The Coefficient of Skin Friction Distribution (Q=3°)
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Fig. 11. The Coefficient of Profile Drag Curve.
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Fig. 14. Induced Velocities at a Point due to Distributed
Vortices.
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Fig. 15. Induced Velocities at a Point due to Distributed
Sources.




Fig. I16. Normal Pressure on an Element of Aerofoil
Surface.
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g X

Fig. 17. Pitching Moment About the Leading Edge
of the Aerofoil.






