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Abstract

In this thesis we study the asymptotic solutions of the second-order linear

difference equation
y(n +2) +nMa(n)y(n + 1) + 2Mb(n)y(n) = 0,

where both M, and M, are integers and the coefficient functions are

a(n) = i a,n”* and b(n) = i by,n~*
5=0 5=0
for large values of n, and ag # 0, by # 0. Our discussion is divided into two parts.
The first part, in which M, < 0 and M; = 0, consists of three cases according to
whether the roots of the characteristic equation p? + agp + by = 0 are distinct,
or equal and do not satisfy the auxiliary equation a;p + b; = 0, or equal and do
satisfy the auxiliary equation. The last case is further divided into three subcases,
according to whether the zero of the indicial polynomial a(a—1)p®+(a;a+as)p+b.
do not differ by an integer, or differ by a nonzero integer, or are equal. In these
cases, the formal series solution will be shown to be asymptotic. The approach
is based on the method of successive approximation. In the second part, we shall
deal with the general situation where M, and M, are arbitrary integers. Our
discussion will also be divided into three cases according to whether the constant
K = 2M, — M, is zero, or negative, or positive. When K 1is positive, there are
two subcases according to whether K is equal to one or not. When K is negative,
there are three subcases according to whether K is equal to —1, or odd but not

—1, or even. In all these cases, formal solutions are established.
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Chapter 1

Introduction

1.1 Introduction

The second-order linear difference equation
(1.1) y(n +2) + nMea(n)y(n 4+ 1) + nMob(n)y(n) = 0,

where both M, and M, are integers and the coefficient functions are

a(n)=> amn"* and b(n) = > bmn,
=0

8=0

for large values of n and ag # 0, by # 0, arises frequently in many branches of
mathematics. For example, special functions of mathematical physics satisfy a
three-term recurrence relation; a second-order linear differential equation when
discretized, leads to a corresponding difference equation. Topics similar to this
thesis have been developed by E. W. Barnes [2], P. M. Batchelder [3], W. J.
Culmer and W. A. Harris Jr. [8], etc., but Barnes and Batchelder discussed only
hypergeometric equations which are a part of our cases while Culmer and Harris
dealt with a difference equation system with 2 by 2 matrix. Still, the solutions

constructed by Culmer and Harris Jr. were not directly from the original system
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but from the eight canonical forms which are reduced from it.

We also know that there is a well-known theorem concerning nth-order
linear difference equations represented by G. D. Birkhoff and W. J. Trjitzinsky
([7] p.3-4). The theorem indicates that the equation ( 1.1) admits two linearly

independent formal series solutions with elements of general type
(1.2) e?™S(n)

where

Q(n) = pnlogn + yn + §n'F 4+ ..+ un%,
S(n) =n" {(a(O) + bOn 7 + .. ) + (a(m) + RCOMe + .. ) log™ n} ’

and where p i1s a positive integer, pp is an integer and m is 1 or 0. Here, p does
not need to be the same as the integer, denoted by the same letter, occuring
in connection with the coefficients of the equation ( see G.D.Birkhoff and W.J.
Trjitzinsky [7] p.4 ). They further proved that these formal solutions are indeed
asymptotic. According to their definition, series ( 1.2) is called a formal series
solution or a formal solution if, when is substituted in ( 1.1), the sum of the
coeflicients of the terms with the same powers of n are zero. We, in the thesis,
use capital letters, for example, Y(n), Z(n) and X(n) as formal solutions while
small letter, y(n), 2(n) and z(n) as exact solutions. Also, when ( 1.2) is called an

asymptotic solutions, denoted by
y(n) ~ eQ(n)S(n)a n — 00,

where y(n) is the exact solution of equation ( 1.1), it means that for every N > 1,
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we can determine functions E](\{)(n), j = 0,m, such that

e~ ="y(n) = <a(0> IO S c(o)n~ﬂ$>

N-1

N (a(m) GO S c(m)n_T> log™ n

(1.3) +EG (n) + E{P(n) log™ n,

and EJ(\?)(n) = O(n_%), j =0,m,as n — oo.

However, we found that their proof was essentially existential, and no direct
method was given to compute successive coefficients in ( 1.2). From the viewpoint
of the computation, the approach to the problem is always clumsy and quite
unsatisfactory. Furthermore, the method of verification seems to be somewhat
complicated. G. K. Immik ([9] p.128) has rightly pointed out that “ Some of the
proofs are incomplete and not all the conclusions seem to be justified.” A short
summary and comments on this massive work can also be found in J. Wimp ([12]
Appendix).

This thesis will offer some types of formal series solutions in the light of
the papers by C. R. Adams [1], and the earlier works of Birkhoff [5] and [6]. The
reason for this is that in these papers, they classified the general equation into
several cases (although incomplete as they seem to be), and gave the type of
asymptotic solutions for each of them. These are the foundation of the paper of
Birkhoff and Tryitzinsky (7).

We shall discuss the problem in two parts. First, we study equation( 1.1)
with M, < 0 and M, = 0. We give the explicit expression of solutions in Chapter
2. These expressions may be obtained by substitution and direct comparison.

The proof that these formal solutions are indeed asymptotic, i. e. , y(n) ~ Y(n)
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will be given in Chapter 3. We provide a new and elementary proof based on
the method of successive approximation which is customarily used in differential
equation theory ( [11] p.229-235 ). Second, we shall deal with equation ( 1.1)
where M, and M, have no restrictions. We shall give formal solutions in Chapter
4.

In Chapter 2, equation ( 1.1) may be rewritten as
(1.4) y(n+2) + a(n)y(n + 1) + b(n)y(n) = 0,

where a(n) and b(n) have power series expansions of the form

(1.5) a(n) = i an”® and b(n)= ibsn_”

8=0

for large values of n, and by # 0. The classification of cases depends on the roots

of the characteristic equation
(16) p2 + app + bo = 0

If the two values of p are not equal, i. e. , a2 # 4by, then Birkhoff [5] showed
that equation ( 1.4) has two linearly independent solutions both of asymptotic

expressions of the form
(1.7) )~p nachn ‘s n — oo.

Motivated by the terminologies in differential equation theory ([11] p.230), we call
series of the form ( 1.7) normal series solutions or normal solutions. We shall give

explicit recurrences relation for the a, ¢, as ( 2.4) and ( 2.5).
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If p is a multiple root of equation ( 1.6), but not a zero of the auxiliary

equation

(18) G1p+b1 = O,

i. e., 2b; # apa;, then Adams [1] gave two linearly independent solutions

(1.9) y(n) ~ p"e’ﬁz o2, n — 00,

8:==0

which we shall call subnormal solutions ([11] p.231). In §2.2, formulas for the
constants v and a are given by ( 2.17) and ( 2.18), and recurrence relations for
the coeflicients ¢, are derived in ( 2.19).

Furthermore, in §2.3 and §2.4, we shall discuss in detail three exceptional
cases in which the double roots of characteristic equation ( 1.6) satisfy the auxil-
iary equation ( 1.8), and the zero a; and @y ( Re ap > Re a4, where Re a is the

real part of the complex number « ) of the indicial polynomial
(1.10) g(a) = a(a — 1)p* + (a1 + az)p + by
satisfy

(1) az—a1#0,1,2,...,
(111) (11) Qy — Q1 = 1,2, ceey

(111) Qo — Q] = 0.

In case (i), it will be shown that equation ( 1.4) has two independent asymptotic
solutions of the form ( 1.7), where @ = oy, i = 1,2, are zeros of ( 1.10), and

that the coefficients ¢, can be determined by the recurrence formula ( 2.23). The
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possibility that the subnormal solutions may be reduced to the normal solutions
in this case was also pointed out by Adams ([1] p.510).

In the other two cases, Birkhoff |6] suggested that one of the twoindependent
solutions, say yi(n), is the same solution as in case (i). The second solution

involves a logarithmic term
(1.12) y2(n) = z(n) + Cyi(n)logn,

where C is a constant and z(n) has an expansion

(1.13) )~p n"‘Zdn ‘s n — oo.
8=0

In case (i1), C is specified by ( 2.38), @ = a, and d, can be determined
iteratively by formulas ( 2.35), ( 2.37) and ( 2.39). In case (iii), @ = @; = a3 in
( 1.13). C is a non-zero constant specified by ( 2.44), and d, may be determined
iteratively by ( 2.43), ( 2.45) and ( 2.46).

Chapter 4 is devoted to the general situation where M, and M; have no
restriction. In §4.1 three cases will be obtained by transformation. The classifica-
tion 1s according to whether K = 2M, — M, is equal to zero, positive or negative.
The cases in which K = 0 or negative and even shall be shown to be included in

Chapter 2. In §4.2 the formal solution

(1.14) Yi(n) = [(n = 2)!]7 o2 a=z din=e, i=1,2,

8=0

will be obtained for K > 0. A; and p; may be determined from ( 4.9), ( 4.12) and
( 4.13). The determination of o, c{*) is dependent of K. If K = 1, a; and ¢{?

are from recurrence formulas ( 4.29) and ( 4.30) for ¢ = 1, and from ( 4.40) and
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(4.41)fori =2 If K > 1, & and c{) are determined from ( 4.31), ( 4.32) and
(4.33) for 7 = 1, and from ( 4.42),( 4.43) and ( 4.44) for : = 2. In §4.3, the formal

solutions

(1.15) Yi(n) = [(n — 217 pre™/in 3 clnt,
8=0

1 = 1,2, are formed for K < 0 and odd. A; and p; can be obtained from ( 4.15)
and (4.16). The determination of v;, a; and c{¥) is dependent on whether K = —1
ornot. If K = —1, v, ; and c{*) may be obtained from ( 4.52), ( 4.53) and ( 4.54)
fori=1,2. f K < —1, v = 0. o; and c{) may be odtained from ( 4.53), ( 4.57)
and ( 4.58) for ¢ = 1,2. Throughout this thesis, without loss of generality, we

shall always assume that ¢o = 1in ( 1.7), ( 1.9), ( 1.14) and ( 1.15).



Chapter 2

Formal Solutions (1)

2.1 Case 1, p; # po

We begin by showing that the infinite series in ( 1.7) is indeed a formal solution

of equation ( 1.4) with a2 # 4by or p # —ao/2. Let L denote the linear difference

operator

(2.1) L{Y(n)}=Y(n+2)+a(n)Y(n+ 1)+ b(n)Y(n).

Inserting ( 1.7) into ( 2.1), and making use of the identity
(22) (TL + #)a—s = n° f: a— 8 /Lkn—(a+k) b= 1.9
) k b bt}

we have

8=0 F=0 S ﬁJ
8 k a——'j 8
9921 > (i RS »AP
k=0 |Jj=0 7=0
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By exchanging summations in the middle term of the right-hand side, the above

equality may be rewritten as

LY} = ponc
> {\;0 {,ﬁzw (22 ) +p§ (527 ) o +ba-j} }n

Equating the coeflicients of terms in n™* to zero gives the relations

(2.3) i{pzr*ﬂ'(j:;>+pi(2‘:;)as_k+ba_j}cjzo.

7=0 k=3

It is readily found that when s = 0, ( 2.3) reduces to the characteristic equation

(1.6). When s = 1in ( 2.3), it can be shown by using ( 1.6) that

_ aip+b  aip+b
202 + pag  aop + 2by

(2.4)

Since we are dealing with the case of distinct characteristic roots, i. e. , p #
—(2bo) /a0, the denominator in ( 2.4) is not zero. Now notice that the coefficients

of ¢, and ¢,_; in ( 2.3) are p? + pao + by and
[(2;)2 + pao) a -+ pay + 61] + (1 —5)(2p + ao)p,

respectively. In view of ( 1.6) and ( 2.4), these are, in turn, zero and (s —1)(agp+

2bo). Thus ( 2.3) becomes



CHAPTER 2. FORMAL SOLUTIONS (1) 10

1
(1= s)(aop + 2bo)

8—2 . 8 .
i 0 —?)+pz(“‘%)a8_k+b3_‘}c
g:O{ 57 k=j k-7 T

(2.5) s=2,3,....

Co—1 =

We also find that the denominator in ( 2.5) is not zero.

2.2 Case 2, p; =ps but a;p+5b; #£0

As p1 = p; implies aop + 2by = 0, the denominators of both ( 2.4) and ( 2.5)
vanish. However, two independent subnormal solutions ( 1.9) were suggested by
Adams ([1] p.509). Before inserting ( 1.9) into equation ( 2.1), we observe the

formal identity

(2.6) eVt = VRN QW (y)n R, p=1.2,
s=0
where
P/ .14
(2.7) G (v Z Hl—[(; )#7J ,
)= :
the summation being taken over all multi-indices I, = (Iy,...,1,) for non-negative

integers l,, s = 1,2,..., p, such that

(2.8) oly)=bL+3L+...+(2p-1), =
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and the last value [, # 0 if p > 1. Elementary calculatons give

Gy =1, Go’(7) =1,
G(y) = 1y, G () =1,
(2.9) G(y) = 12, GP(y) = 1y%,
G(7) = &7° - Ln, GP(y) = 1v* - 1y,
1 2
GEl )(7) = 31@’74 - 1'15’727 G! )(7) 214 f - %72
We also have another identity
(2.10) Z es(n + ,u)"“§3 =n" Z l'—"q(“)(a)n_%"7 p=172,
8=0 8=0
where
1)e—3
211 F¥)(a ) ( a—3j ) 1(e-d)
211 ; Ws—34) ) ’

In view of ( 2.6) and ( 2.10), substitution of ( 1.9) in ( 2.1) gives

L{Y(n)} = eV "n

{20(2) F(z)a)+pz{+2 akZG—-lk \ (g )}

=0 k=0

SICIEN
Z bis —j)ca‘}” o
Making use of ( 2.11) and exchanging summations, we have

L{Y(n)} = eVrprn®

> {Z % Z PO ( ) )

8=0 k=0
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1+ (_“1)8_]' —1,
- SR

Equating coefficients of n=% to zero gives

Z{ ng—_lyc{pzzék(a_

] k=0

J=0
— lj (1)
1 l2 ) Ga—l—k—j (7)

(213) +_————2_b%(3—‘7)} Cj = 07 s = 0, 1,2, PPN

Since G{(7) = G{(y) = 1 and ¢ = 1, ( 2.13) reduces to ( 1.6) if s = 0. We
observe the coefficients of ¢, and ¢,—; in ( 2.13). In view of ( 1.6), they are zero
and py(p + ;a0), respectively. Since p is a double root of ( 1.6), or p = —1a in

this case, the second coeflicient vanishes as well. Consequently, ( 2.13) becomes

3=0 (k=0

S b (7 ot

(2.14)

The parameters v and « in ( 1.9) should necessarily satisfy ( 2.14) for s = 2 and
s = 3. Now we set s =2 and s = 3. In view of ( 2.9) and the fact that p = —Za,,

we have

1
(2.15) (sz,yz + pay + bl> co=0
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and

1 1 1 1
(2.16) oY [p (gfyz +a— Z) + 5@} co+ (szﬁyz + pa; + bl> ¢ = 0.

Solving equation ( 2.15) gives, in view of the fact that p = —Jao and p? = by,

apay — 2b1

. = +£2
(2.17) y=d=+ T

By taking into account that a;p + b; # 0 in our case, we find that 4 does not

vanish. Therefore substituting ( 2.17) into ( 2.16) yields

1 b
2.1 =lib
(2.18) *=37 %

Finally, we note that the coeflicients of ¢,_» and ¢,_3 in ( 2.14) are, respectively,
1
sz'yz + pa; + by

and

1 1 1 1
oo (57 - 3+ e) + 5m] - 5etate -0

Looking back to (2.17) and ( 2.18), these are in turn equal to 0 and —2p?y(s—3).

Therefore, ( 2.14) can be written as

(219) +T)b%(8‘-j)}cj7 S :4,5,....
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The coeflicients ¢;, ¢y, - -+ in ( 1.9) are now determined recursively by ( 2.19). In

particular, we have

1
 24b%y

Cy (aﬁa% - 24a0a1bg + 8&0&161 - 24&0@260

—9b% — 3202 + 24bob; + 48bob,).

2.3 Exceptional Case (i)

In this section we shall discuss the exceptional case (i) in ( 1.11) where p is a
double root of the characteristic equation ( 1.6), and the difference of the roots
of the indicial polynomial g(a) ( 1.10) , @2 — a4, 1s not an integer.

We shall show that the subnormal solution may “reduce” to the normal
solution if we insert ( 1.9) into ( 2.1) as in the last section. Since pa; +b; = 0, v
must be zero to satisfy the relation ( 2.15). Consequently, from ( 2.7) and ( 2.8),
we find all G{¥(7) = 0 except G{)(y) =1, p = 1,2. Thus ( 2.14) becomes

(2.20) §=2,3,....
By the same argument as in the last section, the coefficients of ¢,_, ¢,_3 are

1
(2p + a0)p(a — g5 +1) + (pas + br)

and zero, respectivily. In view of the fact that p = ~—%a,0 and pa; + b; = 0 in this
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case, these both vanish. Thus ( 2.20) becomes

“41+04yﬂ[21 .(a-l'>

STAT) | 295(s-d) 2J

2 { 2 [ 3(s —7)
+

=0

(2.21)

Now, when we set s = 4 in ( 2.21), we find that « should satisfy the indicial

polynomial ( 1.10).
Next, we find that the coefficient of ¢,_4 in ( 2.21) is

)
—Z4+2
q(a 57 )
= 2<a—%+2> (a—%+l)+pa1<a—%+2>+pa2+bz.

As ap — oy ( assume Re a; > Re oy ) is not an integer, both ¢ (ai - %s + 2),

1 = 1,2, do not vanish when s > 4. Hence, from ( 2.21) we have the recurrence

relation,

(2.22) s=56,...,

where the coeflicient of ¢,_5 vanishes. Furthermore we find that if s is odd, ¢,_4
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is the linear combination of all ¢; with j odd. As ¢; = 0 when s = 5 in ( 2.22), we
find that all ¢, vanish when s is odd. This indicates that the subnormal solution
( 1.9) reduces to the normal solution ( 1.7). Thus we must change ( 2.22) to
reflect the coefficients of ( 1.7). We first replace s, 7 and k by 2s', 25’ and 2k,
and then replace cy(,r_3) and cy;0 by c(,—2) and c;, and finally change s', j and &/

back to s, j and k. We obtain the recurrence formula for the coefficients in ( 1.7),

g{p22s—j<s >+p2 ( 'k)+bs ,}
(2.23) s=3,4,...,

where g(a) is the indicial polynomial ( 1.10). Thus we obtain two linearly inde-

pendent formal series solutions to the difference equation ( 1.4).

2.4 Exceptional Case (ii), (iii

When a; — a1 = p is a non-negative integer, the recursive formula ( 2.23) for
the coefficients breaks down when a is replaced by @y and s = p + 2. Hence the

preceding argument for case (i) yields only one formal series solution, namely
(2.24) Yi(n) = p"n®™ Z can”?,

the coefficients ¢, being determined by ( 2.23) with a replaced by a;. Birkhoffin

(6] p.213) presented the second solution in the form

Ya(n) = p"n” [Sa(n) + 5 (n)logn]
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where 7 is an unspecified constant, and

oo

=Y din, i=1,2.

8=0

Here we shall show that the second formal series solution has, in fact, the simpler

form given by ( 1.12) and ( 1.13), 1. e. ,

(2.25) Ys(n) = Z(n) + CYi(n)logn
and
(2.26) Z(n) = p"n®? Z d,n~°,

C being a constant, and Yi(n) the first formal solution. To show that Y3(n)

formally satisfies equation ( 1.4), we make use of the expansion

(2.27) log(n + p) = logn + Z = (-/-L-)s, p=172.

=1 S n

Substituting ( 2.27) and ( 2.26) into ( 2.1) gives

L{Yy(n)} = L{Z(n)} + CL{Yi(n)}]ogn

o (S[R3

1 { =0 [Il=35 s —

(2.28) +p§l: ( ‘;‘:_‘J.j ) al_kH cj} o=,
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where c; are the coefficients of Yi(n) in ( 2.24). In view of the fact that

2p + ag = 0, the coefficients of n**~! and ¢,_; are zero. Thus ( 2.28) becomes

(229) L{%(n)} = L{Z(n)} + CL{Ki(n)}logn + Cp" 3 Ve(s)n™,

§=2
where, for convenience, we use the notation
Ye(s) =
8—2 [ s-1 (__1)3-{-1——1 ) o — 1 1 ar — i
2.30 | 2 ! J>+ ( ! '.7)0,__ ;.
o S{EEE o (37) o5 (17 )
By the argument used for case (i), we have
(2.31) L2} = Y Zafs)n=",
§=2
where we also use the notation
8—3 . Qo — .
Za(s) = qlop — s+ 2)d,o + Z [p22"_7 ( :_ ]:7 )
=0
8—3 .
(232) +p ( l . ) a; + ba__.,' d_,',
o\ ST~

which can be obtained directly from ( 2.23) by replacing @; and ¢; by a, and d,.

It is easy to see that Z;(2) = 0. Thus ( 2.31) may be rewritten as
(2.33) L{Z(n)}=p Z Zg(s)n2*

First we consider case (ii) where a; — a; = p is a positive integer. Inserting
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( 2.33) into ( 2.29), and rearranging the order produces

p+1
L{Ya(n)} = CL{Yi(n)}ogn + p" 3 Zu(s)no*

8==3

10" [Za(p + 2) + CYo(2)) no2 7

(2.34) +00 Y [Zals) + OYils — p)lno.

s=p+3

Note that the coefficients of n~* in L{Y1(n)} are equal to zero. Thus, upon

equating coefficients of n*27*, s from three to p + 1, in ( 2.34) to zero, we obtain

d;

_1 8—3 . o a—j .
;18_2:____2[’022»;—1(042 J>+pz<s"fl—9j)al+b8_j
=0

don—s+2) 2 s

(2.35) s=3,4,...,p+ 1L

We find that the denominator is not zero. Now, upon equating the coeflicients of

n®2~P~% {0 zero, we have
(2.36) Za(p +2) + CYe(2) = 0.

We find the coefficient of d;, in ( 2.36) is g(ay) = 0. This implies d, can be an

arbitrary constant. For convenience we may choose
(2.37) d, = 1.

Thus, from ( 2.36) we obtain the constant
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—1
p(2pc1 + a1 — p)

= az —J PR az —J
. 20p+2—7 - - . .
(238) Z P2 (p_*_z_J)—i_pZ <p+2_l_j>al+bp+2-—.7 d.’l'

7=0 =0

The denominator is not zero since a; is not a double root of the indicial polynomial

( 1.10), or o # (p — a1)/2p.
Finally equating the coefficients of n*2~¢, s from p + 3 to oo, yields

-1
dyyg = ——=
glas — s + 2)

8—3
.{Z{pﬁa—](?‘: )+pz(s——l ,)al—l-bs_dej
7=0
8-p—2s—p-—1 l)a—p—f-l—l ) o — 4
268—p—j 1 J
> Zs—p+1 l{pz (l—j>

j=0 =3
L —;
+PZ( kl . )a'l—k Cj ¢,
k=j

(2.39) s=p+3,p+4,....

The denominator g(ay — s + 2) is not zero.

Next, we consider p = 0 or a; = a3 = . ( 2.34) becomes

L{Ya(m)} = CL{Ha(m)}logn + * 3 [Za(s) + CYils)|no,

8=2

where a; and o, in Y(s) and Zy(s) are replaced by a. Equating coefficients of
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n~*% to zero, we obtain

(2.40) Z4(s)+ CYe(s) = 0, s=2,3,....

Since ¢(a) = 0 and (2pa; + a1 — p) = 0, ( 2.40) for s = 2 is the trivial identity
=0.If

(2.41) Y.3)=Y.(4)=...=Y.(Q-1) and Y(Q) #0,

for some integer @ > 3, in order to have ( 2.40) satisfied, Z4(s) also has to be

zero for s = 3,4,...,Q — 1. Thus, we obtain

(2.42) s=34,...,Q—1.

If we assume dg = 0, this implies

(243) d() - d1 —_ ... = dQ..g = 0

Consequently, from ( 2.30), ( 2.32) and ( 2.40) for s = @, we obtain

__ZQ) _

C= V.(0) = g(a—Q +2)
Q-2 1Q-1 (__1)Q+1-l 20— [ @ =37
= (1)

(2.44) +p§ ( z:j ) a,_kH cj}‘l,
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where we assume

(2.45) do_p = 1.

Then by making use of ( 2.30) and ( 2.32), d, for s > @ — 2 can be determined

recursively from ( 2.40),

-3

. a— i 8~7 a_.
{ z {pzz J(s—a]')”;(s#ff)“’“’”
I=Q~2 =0

5—2s-1 (_l)e-}-l—l 2e_j @ __] ! a—j
+CY > ——— |p*2 [ > b | Gk
—J o\ k=7

isoim S5 l

o

d;

Cj},

(2.46) s=Q+1,Q+2,....

Thus substitution ( 2.43), ( 2.44), ( 2.45) and ( 2.46) in ( 2.25) yields the
second independent formal solution.

It should be pointed out that if we assume dy = 1 and C = 1, we obtain an

alternate second independent formal solution, say,

(2.47) Ya(n) = Z(n) + Yai(n)logn,
where
Z(n) = p™n*> dn°
=0

Looking at ( 2.23) and ( 2.42), from ( 2.40) we find

(2.48) d, = ¢, s=0,1,...,Q — 3.
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Then from ( 2.40) again, making use of ( 2.30) and ( 2.32), we obtain

- -1
dy_g = ———mme
T la—s+2)

5—3 . 8—j7 .
: 22”"5<a“3.>+ ( a_].>a+b,_'
{j:ﬂ [p s—1J pl:O S_l_J l ?

T 3 gl e Lﬂzs—f (527) +pi(::;’>al_k} }

imoimy s k=j

d;

(2.49) s=Q,Q+1,....

These two second formal solutions Y3(n) and Y3(n) do not yield a contra-

diction, since Y;(n) is a linear combination of Y3(n) and Y3(n). In fact, we can

show that

(2.50) Vi(n) = Fi(n) - =Yi(m)

From ( 2.25) and ( 2.47), we have

(2.51)  Ta(n) - %Yz(n) — Z(n) - %Z(n) = ey (Js - é;d) .

8=0

We now investigate the coefficients of terms in n~° in ( 2.51). In view of ( 2.43)
and ( 2.48), we find

- 1

do~ Gl =di =cu, s=0,1,...,Q — 3.

By making use of ( 2.44) and the fact that dg_, = 1,

1 -1

l2mghr=a ey
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Q-3 ) a—j 8—3 a—j
{Z {szﬂ ( s—i )+PZ(S_Z_]- )al‘}‘bs—jJ Cj-l-Yc(Q)}
7=0 =0

Ye(@)

" = Cp-—
gla—s+2) 7

Finally, in view of ( 2.48), ( 2.49) and ( 2.46), we obtain

- 1 -1
sy — —d,
ds-2 C*? gla—s+2)
Q-3 . 8-
208—j3 a—=7 Q J
(£ (524) 222 oo
8—3 ] 8—7 1
+ Z po2°77 ( ) + PZ ( I ) a + b,; {dy - _"dj] )
i=Q-2 577 =0 \ ° 7
for s = @+ 1,Q +2,.... Applying the method of induction, we immediately
obtain
- 1
(252) d‘,_z - Eda_g = Cg—32, S = Q+1,Q+2,

Hence, the assertion ( 2.50) follows.



Chapter 3

Existence Theorem

3.1 Case 1l (i)

In this case, equation ( 1.6) has two roots which are distinct and different from
zero. Then as we have shown in §2.1, equation ( 2.1) has two formal series

solutions of the form
Yi(n) = pfa™ Y i, i=1,2,
=0

where the exponent a; is determined by ( 2.4) with p replaced by p; and the coeffi-

cients c{?), i = 1,2, are determined recursively by ( 2.5). In this and the following

sections, it will be proven that these formal solutions are indeed asymptotic.
Throughout this Chapter, we shall assume that |p;| > |p1|. First, we con-

sider the solution of y1(n). In the sense of ( 1.3), we set

(3.1) yi(n) = LG (n) + e(n),
where
N-1
LP(n) = ppn= 3 W,
8=0

25
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and ei)(n) is the corresponding error term. In view of (1.6), ( 2.4) and ( 2.5), it
is readily found that the coefficients of p7n*~* for s = 0,1,...,Nin L {L_(,\lf)(n)}

are zero. Accordingly,

(32) L{Ly(n)} = pin B (n),

where R§(n) = O(n="-1) as n — oco. Therefore, from
0=L{n(n)}=L{LP(n)} + L{F(n)},

we have the equation for £§¢(n),

(3.3) e (n+2) + a(n)ei(n + 1) + b(n)el)(n) = —pFn™ R (n).

To solve the last equation, we retain the leading terms in the expansions of a(n)

and b(n), and transfer the rest to the right-hand side. Thus, we have

es\})(n +2)+ aoeg\lr)(n +1)+ bos%)(n)

(3.4) = —pin® RY(n) — [a(n) — a0l e (n + 1) — [b(n) — bo] ) (n).

Using the method of variation of parameters ( [4] p.49 ), we obtain the equation

eP(n) = gj K(n, k)

(3.5) { Pk R (k) + [a(k) — a0l e (k + 1) + [b(k) — bl eJ (k)] ,
where
K(n, k) — p;_k—l - p?-k——l

P2 — p1
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It is easily verified that every solution of ( 3.5) is a solution of ( 3.4).
The equation ( 3.5) will be solved by the method of successive approxima-

tion. We express

(36) (1) Z {ha+1 ( )} ’

=0

where the sequence {h,(n)} is defined by ho(n) = 0 and

hoy1(n) = Z K(n, k)
(3.7) { k= RP (k) + [b(k) — bo] hy(k) + [a(k) — ao] hu(k + 1)} .
We shall show that the series ( 3.6) is absolutely and uniformly convergent in =,

and that its sum €§(n) is a solution of ( 3.5).

Let no(N) be sufficiently large so that
R (n)] < Byn~"

for some positive constant By and for all n > no(N). Since |ps| > |p1|, a simple
estimation gives

(38) K (n, k)] < E%p—llipll"-k-l.

From ( 3.7) it follows that

2B > N
(3.9) |hy(n)] < =N |py "1 Y RN
: |P2 Pl| k—n
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for n > ngo(N), where 0 =Re a;. If p > 1, we have

o 1 © 1 1
3.10 —</ Zdr = —(n — 1)P+,
( ) kzz;zkp_ n—1 TP v p-—l(n )

For sufficiently large n > no(p), it follows that

x 1
(3.11) > o S ——wn P

k=n

|_.\

Coupling ( 3.9) and ( 3.11), we obtain

‘n——l o—~N

22 By
(3.12) ()] < s e

?

if N > o, and without loss of generality, we may assume that this holds for all
n > no(N).

The same argument gives

In a—N‘

22By
3.13 hi(n+ 1) <
( ) ’ 1( )[ |P2—,01|(N—0')lp1

By induction, we shall prove that

22(a+1)BNﬂs )
i n—s—1_—(N-c)
(314) Iha'f'l(n) ha(n)| S IPZ . p118+1(N 0-)8+1 lpll n )
and
hasa(n+ 1) — ho( + 1)
2(s+1) 8
(315) 2 BNﬁ 'plln—an—(N—U)7

= o2 = pa[tH(N = o)t
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for s =0,1,..., and n > no(N), where
B = sup {k[|b(k) — bo| + |a(k) — aollps[]:  k>1}.

From ( 3.12) and ( 3.13), we find that when s = 0 the last two statements are

true. We now assume that when s = ¢, ( 3.14) and ( 3.15) are true, then

hera(n) = hegi(n) = kf: K(n,k)

=n

{[b(k) — bol[he11(n) — hy(n)] + [a(k) — aollhers(n + 1) — he(n + 1)]}.

Applying ( 3.8), (1 3.7), ( 3.14) and ( 3.15) to the last equation gives

Iplln—t—2 Z k——(N—U-{-l)_

k=n

22t+BBNIBt+1
|he+a(n) — hepa(n)| < |p2 — p1|tH2(N — o)t+!

From ( 3.11), it then follows that ( 3.14) is also true when s = ¢ + 1. By the same
argument, ( 3.15) can be proven as well.
From ( 3.14), it is now evident that the series in ( 3.6) is uniformly conver-

gent in n, if we choose N sufficiently large so that
(3.16) p1(p2 — p1)(N — )| > 4B.
Summation of ( 3.6) gives

(3.17) e (n) = prn=0(n7Y).

( We first fix NV from ( 3.16) and then choose no(N) in ( 3.12).) Since ( 3.6) can
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be also written as

eP(n) = lim hy(n),

=0

by taking s — oo in ( 3.7), we have established that e{)(n) is a solution to (3.5),

and therefore to ( 3.3) satisfying ( 3.17).

3.2 Case 1 (ii)

We next show that the formal series y,(n) in ( 1.7) is also asymptotic. We set
ya(n) = LY (n) + e (n),

where

and e%)(n) 1s the corresponding error term. e_(,g)(n) will be shown in this section
to be

(3.18) eQ) = pn=20(n~N), as n — oo.

If |p2| = |p1| then the analysis in §2.1 can be repeated with only the roles
played by p; and p; being interchanged. However, if |p2| > |p;| then this argument
fails at ( 3.8), and an alternative method must be sought. A natural attempt is to
use the method of varition of parameters (also known as the method of reduction
of order ([4], p.43)), which is to set y3(n) = v(n)y:(n) and show that the difference

w(n) = v(n + 1) — v(n) satisfies the first-order equation

y1(n + 2)w(n + 1) — b(n)y: (n)w(n) = 0.



CHAPTER 3. EXISTENCE THEOREM 31

From this, one readily obtains (see [4], p. 38-39)

but the behavior of y5(n) is difficult to derive from the above equation. Therefore,

we make the following alteration. If we set
(3.19) y2(n) = [Kn(n) + 6n(n)]31(n),

where y1(n) is the first solution found in §2.1,

n N-1
Kn(n) = (&) no2=e 3™ g.p=
8=0

P1

and the coefficients d,, s =0,1,..., N — 1, are determined by
052) = Z dtcgl_)t‘
t=0

Note that this can always be done. It is easily shown that

Kn(n)yi(n) = L (r) + pgn2O(n~N 1),
In view of ( 3.18), this implies that it is equivalent to prove

_ P2 " ag—oay ~-N
(3.20) én(n) = (;) n O(n™).
1

From the fact that p, satisfies the characteristic equation ( 1.6), it readily follows
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that
(3.21) L{Kn(n)y(n)} = L{LP ()} + pfn20(n~N ).

By making use of ( 3.21) and C{Lg)(n)} = pgn*20(n~V-1), cf. ( 3.2), and

substituting ( 3.19) into ( 1.4), we have

yi(n 4 2)6n(n+2) + a(n)yi(n + 1)én(n + 1) + b(n)y1{n)én(n)

(3.22) = pgn®20(n~N 1),
Furthermore, since y;(n) is a solution of ( 2.1), i. e.

a(mys(n +1) = — [ga(m + 2) + b(n)ya(n)],
it can be verified from ( 3.22) that the difference
(3.23) An(n) = én(n+ 1) — én(n)
satisfies the first order equation
(3.24) yi(n + 2)An(n 4+ 1) — b(n)y1(n)An(n) = p3n>20(n~N1).
From ( 1.5), ( 1.7) and in view of ( 2.2) we have

yi(n+2) = pI "1 + o1(n)]

and

b(n)yi(n) = p7n* [bo + o2(n))],
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where

oi(n) = O(n™1), and oz(n) = O(n71).

Now define éx(n) by
(3.25) Avta) = () nta),

P1

In terms of én(n), equation ( 3.24) becomes
PPz [L+ a1(n)]én(n + 1) — [bo + 0a(n)]En(n) = n** "= O(n™N 7).
Since p1ps = by, the last equation can be rewritten as
(3.26) &n(n + 1) — En(n) = n®7% En(n) — o1(n)én(n + 1) + o5(n)én(n),
where o3(n) = 02(n)/by and
|En(n)] < Kyn™"71,

Ky being some constant independent of n. Treating ( 3.26) as a first-order lin-
ear equation with the right-hand side being the nonhomogeneous term, one can

formally derive the equation

(e +]

(3.27)  én(n) ==Y [k En(k) — on(k)en(k + 1) + o3(k)én(R)] -

k=n

Obviously, every solution of ( 3.27) is a solution of ( 3.26). We shall show that

equation ( 3.27) has a solution satisfying

(3.28) En(n) = n2 2 Q(n~N), n — 00,
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which can be obtained by method of successive approximation.

Define go(n) = 0 and

(3.29)  gua(n) = 3 [~k Ex(k) + ox(K)ga(k + 1) — o5(k)au(R)]

k=n

for s =0,1,2,--- . Put m = Re (a2 — o) and choose N > m. We have

o K
l9:(n)| < Ky Z - < ﬁ‘:N—“

k=n

(n — l)m"N.

Let no(NV) be sufficiently large so that (n — 1)™ ™ < 2n™=¥ for all n > ng(N).

Consequently,

N—m" ’ -

lg1(n)] <

By the same argument, we have

2K
_____N—nm_N'

lgl(n+1)l S KN Z km——N—}-l S KNZ km—N+1 S
k=n-+1 k=n N-m

In terms of the method of induction, it can be established that

for n > no(N),s =0,1,2,---, where

B =sup{klloi(k)| + [oa(R)l] :  k>1}.
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Let N be larger than m + 283 so that the series

8—+ 00O

(3.30) lim g,(n i [9e+1(n) — go(n)]

is absolutely and uniformly convergent in n. ( We first fix N and then choose the

integer no(/V) ). Since {n(n) can also be written in the form

(3.31) én(n) = lim g,(n),

8—00

by taking the limit as s — oo in ( 3.29), we conclude that £y(n) is a solution to
(13.27). Substituting ( 3.30) into ( 3.31), it is evident that x(n) satisfies ( 3.28).

By definition ( 3.23), we can rewrite ( 3.25) as

b(n +1) — Su(n) = (/’j—j)n@v(n).

Solving this first-order equation, we obtain

(3.32) svn) = 61+ 3 (2] en(h)
From ( 3.28), if we set
[én (k)] < ME™F, k21,

for some M > 0, we have

-1

nm—N Z re

k=1 P1

[n
<M|P2
P1

£ (2)
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=)

t

P2
P1

P
P2

n n-—-1
nm—N

=M

t=1

Since

zp (%) = o,

n—j

for any positive integer p and any real number p € (0,1), we have

(333) > (@)kw) = (&) weeroq.

k=1 pl

Thus the required result ( 3.20) now follows from ( 3.32) and ( 3.33).

3.3 Case 2 (i)

In §2.3, we established two formal solutions of equation ( 1.4) where the roots
of the characteristic equation ( 1.6) are equal, but different from the zero of the

auxiliary equation ( 1.8). Both solutions are of the form

(3.34) y(n) = peV" Y cnE,

8=0

where v an « are determined by ( 2.17) and ( 2.18), and the coefficients ¢, are
determined recursively by ( 2.19). It is easy to see that we may assume without
loss of generality that p = 1 or, equivalently, ap = —2 and b, = 1.

To show that these formal series solutions are asymptotic, as in ( 3.1), we

now set

(3.35) y(n) = Ln(n) + En(n)
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with
N-1 )
Ly(n) = e"Vn® > emne.

5=0

Since the coefficients of ¢,, ¢,_1, and ¢,_, in ( 2.12) are all zero, in view of ( 2.19),

1t 1s easily verified that
(3.36) Ly(n+2) + a(n)Ly(n + 1) + b(n)Ly(n) = e"V*n*Ry(n)

where

(3.37) Ry(n) = O (n730V+3)
Substituting ( 3.35) in ( 1.4), we obtain from ( 3.36)
En(n +2)+ a(n)En(n + 1) + b(n)Ex(n) = —"V*n*Ry(n).

Write
En(n) = e™V"ny(n).

Then en(n) satisfies the equation
(3.38) en(n +2) + a*(n)en(n + 1) + b*(n)en(n) = Ry(n),

where

* — YV l—7/nt2 n+1>a
a’(n)=e (n+2 a(n),

(3.39) b*(n) = e?/nni2 (nL—}-2>a b(n),
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and
(3.40) Riy(n) = —eWm-1mi2 (-T;%) Ru(n).
Recalling that we have assumed p = 1, or equivalently ag = —2 and b, = 1, a

simple calculation shows that

1 1
a’(n)=—-24+vn"7 + (al — 172 + 2a> n?

1 3 1 3
(3.41) + (—50,1 ~1 + —2—172 - a) "2 + R,(n),

and

b (n)=1—yn"12 + (bl + —;—72 — 2a> n!

(3.42) + (% - %72 +2a— b )y 4 Ryfn),
where
(3.43) Ra(n), Ry(n) = O(n™2), as n — 00,
Furthermore,

Ry(n)=0 (n_;‘(N“)) , as n — oo.

Since ag = —2 and by = 1, we have from ( 2.17) and ( 2.18)

1 1
’}'2 = "‘4(041'*‘61); o = Z-{—'Z"bl
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Inserting ( 3.41) and ( 3.42) in ( 3.38) then gives

1 1
en(n+2)+ [—2 +yn"z -+ (5 + 2a; + 2b1> nt
2 2
- <1 + e + §b1> 7n_%} en(n + 1)

1 1 2 2
+ [1 —yn"z — <§ + 2a; + 261> nt 4 <1 + :_);al + §bl) 7n_%] en(n)

(3.44) = Ry(n) — Ro(n)en(n + 1) — Rp(n)en(n),
which can also be written as

1 1
Aey(n+1) — [l -7z — (5 4+ 2aq + 2b1> n~1

2 2
+ <1 + ga T §bl> 'yn%J Aen(n)

(3.45) = Ry(n) — Ra(n)en(n + 1) — Ry(n)en(n),
with Aen(n) = en(n + 1) — en(n). For convenience, we introduce the notation

1 2 2
(3.46) 8(n)=1—yn"7 — (% + 2a; + 261> n”l 4 (1 + 3h + §b1> yn7E,

and

(3-47) g(en(n+1),en(n),n) = Ry(n) — Ra(n)en(n + 1) — Ry(n)en(n).
Equation ( 3.45) then becomes

(3.48) Aen(n + 1) — 8(n)Aen(n) = g(en(n + 1),en(n),n).

To show that the formal series solution ( 3.34) is asymptotic, it sufficies to prove

that equation ( 3.44), or equivalently equation ( 3.48), has a solution ex(n) sat-
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1sfying
(3.49) en(n) =0 (n”T) , as n — 00.

Considering ( 3.48) as a first-order linear nonhomogeneous equation, one

can formally derive the equations

(3.50) en(n ZZH TEH D) 67 g (en(d + 1) en(9), ),

i=n j=i
where §71(7) = 1/6(j), and

oo i—1

(351 2262—19(1_2) ( +1)Q(5N(j+1)7€N(j)aj)a

i=n j=1

where it is understood that §(i — 1)(: — 2)---8(j + 1) = 1 when 7 =4 — 1. It
1s easily verified that every solution of ( 3.50) and every solution of ( 3.51) is a
solution of ( 3.48). Now recall that the constant v in ( 3.34) has two possible
values given in ( 2.17). We shall show that when Re v < 0 then equation ( 3.50)
has a solution satisfying ( 3.49), and that when Rey > 0 then equation ( 3.51) has
such a solution. This will complete our investigation of the subnormal solutions.

In this section, we are concerned only with the case Re v < 0. Before

proceeding, we first record some preliminary results.

LEMMA 1 For positive integers j > i > 1, the function 6(n) in ( 3.46) satisfies

(3.52) 67120 (E+ 1) - 07Y(H) = 62’7(\/1_'—-\/5)\/: [1 +0 ( —1/2)} 7

as 1 — oo, where the O-term is uniform with respect to j.
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Proof: First we recall the well-known asymptotic formulas ([11] p.292)

n—1 n2+1
(3.53) kgl k* — ((—2) = po— + O(n?), n — 00,
and
n—1
(3.54) ZE :logn—i-c—{-O(n_l) , n — 00,
k=1

where ((z) is the Riemann Zeta function and ¢ denotes the Fuler constant. Since
log(l —2z) = -z — %:cz + O(z?), z— 0,
and the fact that 4% = —4(a? + b?), we have from ( 3.46)
log 8(k) = —vk—¥ — %k'l +0 (K1), k — oo,

Upon summation, we obtain

(3.55) — zj:logﬂ(k) =2y (\ﬂ— \/z_) + %log (‘%) +0 (i_%) , 11— 00,

k=1

uniformly for j >4 > 1. The result ( 3.52) now follows from ( 3.55) by exponen-

tiation. O

LEMMA 2 For Rey <0, #0, and N > 1, we have

(3.56) S eV Eao _Li-rey o (%1), i
v

j=i
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Proof: Recall the Euler-Maclaurin formula ([11] p.281)

FO) + -+ () = [ f(@)de+ S150) + F)] + [ @r(a)f (o)da

where the saw-tooth function & (z) = ¢ — [2] — 1, [z] is the greatest integer less

than or equal to z. Applying this formula to the function
fw) = Vg 1) ¥o,

and letting n — oo, in view of Re v < 0, we obtain

Zezv (V3- \f _/ v(Vz-V7i) —__1d:c n %z-—§-1
(3.57) +/°° (2 —z')di [e%(\f-ﬂ)m——z’!-l] de.
7 T

Making use of the fact that |&i(z — ¢)] < 1, the last term of ( 3.57) has the

estimate
fw an(z — z);lc—l— [627(‘/5_‘/;)2:"%_1] de

€T
S 6—20'\/2/“‘ i [e d(I) S (1 - M) ,i"'lzl—l,
H (22

de
where ¢ =Re . Integration by parts twice gives

N
ZWﬁm‘?—l}

Coupling the last two results, we obtain the approximation ( 3.56). O
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We now return to equation ( 3.50), and define the successive approximants

ho(n) =0 and

(3.58) hups(n) = 305 67667 (6 4+ 1) 0-(i)a (bl + 1), ha(3).5),

i=n j=i

for s = 0,1,---. In particular, we have

(3.59) ha(n) = 3232 070) - 67 () Ry ),

i=n j=1

where Ry (7) is given in ( 3.40). From ( 3.37), it is readily seen that Ry(n) has

an asymptotic approximation
Ry(n) =cen~

where c is some constant whose exact value is immaterial for our purpose. Hence
( 3.40) gives
(3.60) Ry(n) = —en~ 2" 4+ 0 (n"g_z) ‘

Inserting ( 3.60) in ( 3.59), and applying Lemma 1, we obtain

o) < | 850505807 s o (4) |
=R I= i=n j=2
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Let M be a positive number such that
Ba(@)l,  [a(n +1)] < M=%
In view of ( 3.43) and Lemma 1, it is possible to choose 8 > 0 so that
|Ra(7)] + |Re(5)| < B2

and

67 @8+ 1) 67 )| < By,

2

for j >4 > 1. A combination of ( 3.58) and ( 3.47) yields, by induction,

lhori(n+1) = hs(n +1)],  |hey1(n) — hy(n))|

1682 1"
- N(N +1) ’
if n > ng(N) for s =0,1,2,--- . Now we choose N so that
1662
— < 1
N(N +1) <
The series
ev(n) = im hoy1(n) = 3 [hara(n) — hy(n)]
=0

44

is then uniformly convergent in 7, and its sum ex(n) satisfies ( 3.50) and ( 3.49).
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3.4 Case 2 (ii)

When the constant 4 in ( 3.34) has a positive real component, then the series
n ( 3.56) is divergent and hence equation ( 3.50) cannot be used to establish
the existence of a solution of ( 3.48) satisfying ( 3.49). In this case, we shall use,
instead, equation ( 3.51). Define the sequence {h,(n)} of successive approximants

by ho(n) = 0 and

hs+1 (n) =
oo i—1

(3.61) =222 0 =1)6(5 —2) -+ 0(j + 1)q (ha(5 + 1), ha(4), 5,

i=n j=1

where it is understood that 8(z —1)8(: —2)---6(j+ 1) = 1 when j = i — 1. From

( 3.52), we have

(i — 1)8(i — 2) -+ 0(j + 1) = e (VFFI- f—,/Z 11[1+0( 7],

as j — oo, uniformly with respect to ¢ > j + 2. Noting that

627(V.7'+1—\/:1—) -7 +1 < \/1620620' (V7—/i=1)
Vi— Vi— 1’

where o =Re «, thus it is possible to choose a constant B > 1 such that

6= 1)6(i ~2)---6(j +1)| < per(~vF), [,

fori:>j5+1,
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and

[Ba(3)] + [Ro(4)] < B3

also holds, when j > 1. From ( 3.61) and ( 3.47), it then follows that

ad ie1
lhi(n)| < 52 Z e”z"\/i-l(i _ 1)~1/2 Z eZa'\/;j._lz!_l'
1:=-n, J=1

Using the Fuler-Maclaurin formula, it can be shown that
i-1
3 Vi E < Mo V(s — 1)"F
j=1

for some constant My > 0, and ¢ > n > no(N). Therefore

hn(n)| < Mo? S (i — 1)-52 < M

i=n

for sufficiently large n, n > no(N). By induction, the same argument gives

hor1(n) = Ra(n)],  |hasa(n +1) = hy(n + 1) <

for n > no(N). As before, we now choose N > 4My3? so that the series

o0

en(n) = lim h,p1(n) =D [hep1(n) — he(n)]

8—+00
8=0

converges uniformly in n, and its sum £(n) satisfies ( 3.51) and ( 3.49).
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3.5 Exceptional Case (i)

In §1.5, we established the formal series

)=p naan e

Without loss of generality we may assume that p = 1 or equivalently, ap = —2

and by = 1, as in the last two sections. From ( 1.8), it follows that
(3.62) a1+ b =0.
As in the previous section, we set

(3.63) y(n) = Ly(n) + En(n)

with
N-1
Ly(n) = Z c,n~"°
8=0

Using ( 2.23), it is easily verified that
Ly(n+2)+a(n)Ly(n+ 1)+ b(n)Ly(n) = n*Ry(n)

where

Ry(n)=0 (n_N_z) , as m — 0o.

Hence

(3.64) En(n+2)+a(n)En(n +1) + b(n)Ex(n) = —n*Ry(n).
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If we write

then en(n) satisfies the equation

(3.65) en(n+2) +a*(n)en(n + 1) + *(n)en(n) = Ry(n),
where
- (222 40

T+

and

* n «
(3.66) Ry(n) = — (n - 2) Ru(n).
Recalling that we have assumed p = 1 or, equivalently ag = —2 and by = 1, using
( 3.62), a simple calculation shows that
(3.67) a*(n) = =2+ (2o + a1 )n"' + Ry(n),
(3.68) b*(n)= 1—(2a+a)n™! + Ry(n),
where
(3.69) Ra(n), Rp(n)=0 (n'z) ,a8 I — 00.
Furthermore

(3.70) Ry(n)=0 (n‘2> ,as m — 00.
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Inserting ( 3.67), ( 3.68) in ( 3.65), we obtain

en(n+2)+ [—2 + (20 + al)n'l} en(n+1)+ [1 - (2a + al)n—l] en(n)

(3.71) = Ry(n) — Ra(n)en(n + 1) — Ry(n)en(n),
which can be written as
(3.72) Aen(n + 1) — 0(n)Aen(n) = g(en(n + 1),en(n),n),

where

Aen(n) =en(n + 1) — en(n),
(3.73) f(n) =1-(2a+a;)n7!,
and
g(en{n +1),en(n),n) = Ry(n) — Ra(n)en(n + 1) — Ry(n)en(n).
To prove that the solution y(n) ~ Y (n), it suffices to show that
(3.74) en(n) =0 (n"N) , as n — 00.

By considering ( 3.72) as a first-order linear nonhomogeneous equation, one can

formally derive the equation

(3.75) en(n) =33 6 (@) i+ 1) 6-(7)a(en(i + 1seni), ).

i=n j=i
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It is easily verified that every solution of ( 3.75) is a solution of ( 3.72). To solve
the equation ( 3.75) which satisfies ( 3.74), we first prove the following analogue

of Lemma 1.

LEMMA 3 For positive integers j > > 1, the function 8(n) in ( 3.73) satisfies

G @ -0mG) = (D) Lo ()],

1
as i — oo, where the O-term is uniform with respect to j.

Proof: We first recall the well-known asymptotic approximations

n—1 2 1
Zk'zzl——+0(n_2), n — 00,
k=1 6 n
and
n—1
Zk*lzlogn—kc—f—O(n_l), n — 00,
k=1

where ¢ denotes the Euler constant; cf. ( 3.53) and ( 3.54). Since log(l — z) =

—z + O (2?), as ¢ — 0, we have from ( 3.73)
logf(k) = —(2a + @)k~ + O (k72) k — oo,

where the remainder is uniformly bounded when & > 1.

Upon summation, we obtain

— ilog 6(k) = (2a + a;1)log (%) + 0 (i"l) , i— 00,

k=t

uniformly for j >4 > 1. The result in ( 3.76) now follows by exponentiation. O
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We now return to equation ( 3.75), and define the successive approximants

ho(n) = 0 and

(377) hon(n) = 35 07(0)67 (6 + 1) - 07 (7)q (ha(f + 1), ha(3), ),

i=n j=1i
for s =0,1,---.. When s = 0, we have
(3.78) ha(n) =323 67(1)--- 677 (5) Ry(4)

i=n j=i

where R%(j) is given in ( 3.66). From ( 3.70) and ( 3.75) there is a positive

constant M; and a positive integer n; such that

(3.79) 6706 +1) - 67 ()| < My (%)U
and

(3.80) |R*(7)| < Myj~"2,

for j > ¢ > ny, where 0 = Re (2a + a,). Consequently,
(3.81) ha(m)] < M2 303 i Crkon)joN-zse

i=n j=1i

foralln > n;. Let N4+ 1 > o and put 8 = 4M?, choosing no(N) > n; so that

two applications of ( 3.11) and ( 3.81) give

nnt D), ()] € f1~a)”_N7
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for all n > no(N). In view of ( 3.69), the constant M; and integer n; in ( 3.79)

and ( 3.80) may be chosen so that
[Ra(3)] + | B(5)| < My5*
for 7 > n;. Induction then shows that

Batr(n +1) = ho(n + 1)|, |hars(n) — hu(n)|

B S
= {N(N—{-I—O')J Y,

if n > no(N) for s =0,1,2,.--. Aslong as N(N + 1~ o) > 8 the series

ex(m) = Jim huss(n) = 3= [hosa(n) = (o)

is then uniformly convergent in .n for n > no(N), where we first fix N and then
choose no(N) > n;. Thus the sum of en(n) satisfies ( 3.74) and ( 3.75).

For each zero a of the indicial polynomial ( 1.10), the above construction
provides a solution to ( 3.75) and hence a solution to ( 3.71). Since, in the present
case, ( 1.10) has two distinct zero @; and o, and ay — oy is not an integer, this
establishes the existence of two asymptotic solutions to ( 1.4) both of which are

of the form ( 2.24).
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3.6 Exceptional Case (ii), (iii

In these cases, one of the independent solutions y;(n) was proved in the previous

section to be the asymptotic form ( 2.24). We set the second solution

N-1
(3.82) v2(n) = Y d,n*"° + En(n) + cyi(n) logn,

8=0

cf. ( 2.25), where we assume as in the previous case, without loss of generality,
that p = 1 or equivalently ap = —2 and by = 1.
In case (ii), p = @z — o is a positive integer, ¢ and the coeflicients d, are

given by ( 2.38), ( 2.35), (2.37) and ( 2.39). Substituting ( 3.82) into ( 2.1) gives

(3.83) L{y(n)}=L { 2-:1 dmaz*ﬂ} + L{En(n)} + CL{yi(n)logn}.

8=0
Refering to the formulas ( 2.31) and ( 2.32) we have

N+1

N-1
(384) L { Z dsna2*5} — Z Zd(s)naz—a + 0 (naz—N—Z) )
=0 8=2

where the notation

Write
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where ap = oy + p and

N+i-p  1ys41 s
log(n +p) =logn+ > e (’—‘} + O (n~(+2-m))
s=1

S n

Then we have, after many computations,

L{yi(n)logn}
(3.85) = L{n(mlogn+ > Y(sJn™ ™ 4 0 (nosN-2)

where

. l .

20s—5 [ %1 7] a1 —J
p2 < . )+p ( . )a’l:k }C',
[ =7 :";:J k=i ’

for N > ap — oy + 1; cf. ( 2.32) and ( 2.30).
Upon substitution of ( 3.84) and ( 3.85) in ( 3.83), and noting that y;(n) is
the solution of equation ( 1.4), in view of the recurrence equations for d, and ¢,

we obtain

L{En(n)}

(3.86) = En(n+2)+a(n)Ey(n+1)+b(n)En(n) = O (n=~72),

which is exactly of the form ( 3.64) with a = a,. Hence the existence of a solution
to ( 3.86) satisfying
En(n) = O (n*~¥)



CHAPTER 3. EXISTENCE THEOREM 55

is guaranteed by the construction provided in previous section.

The analysis in the case where a; = a5 is done in a manner similar to that
given above. It needs to be noted that in this case dg = dy = --- = do-3 = 0,
¢, and d, for s > Q) — 2 are given by ( 2.44)—( 2.46), a; is replaced by a; and N

should be > @ — 1, where Q is defined in ( 2.41).

3.7 Examples

Example 1 Behavior of the Legendre Polynomials of large degree.

The Legendre polynomials P,(z) satisfy the recurrence relation

(7 + 2)yns2(z) — (2n + 3)yns1(z) + (n + 1)y, = 0,

(3.87) n=-101...,

for all z. The behavior of P.(z) as n — oo for fixed z may be studied by
considering the possible behavior of solutions of ( 3.87) as n — oo.

( 3.87) can be changed to

Yn+2(2) + a(n)yns1 (@) + b(n)ya(2) = 0,

where

__m+3 -1 -2 -3 -4
a(n)n—n+2m——2m+mn —2zn”* + dzn -J—O(n ),
b(n) = ntl =1—n’1+2n_2—4n“3+0(n"4).

n+2
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Thus the characteristic equation is
pP—2zp+1=0

which has two distinct roots if z # 1, namely
pr2=z+ vz —1.

Note that if |z| < 1, then p;; is complex. We know that two normal solutions of
the form ( 1.7) can be obtained. o; and c{?) can be determined from ( 2.4) and

(2.5),1 e,
_wpth 1
aip+2by 2

and

and
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By comparing the behavior of the Legendre polynomials [10]
Po(z) ~ (27n) 3 (2? — 1)~% (m + Va2 —1 )n+5 , m—o00; z>1,

Po(z) ~ (—=1)™(27n) % (a? — 1) % (—:c +Vz? - l)n-’-E , m—ooo; < -1,

while for |z| < 1

P.(cosa) = ( 2 )5 sin (na + la + lﬂ') +0 (n_%) ,

TN S o 2 4

we find that

and

1 2 1 1 1 1
Pu(cosa) = - (71- sina) ’ [ef°‘+?”y1(cos a)— e 2% "y, (cos a)} .

Example 2 Behavior of the Laguerre Polynomials L®)z) of large degree. The

recurrence relation for the Laguerre Polynomials |, 4s
(n+ Dyih (@) + (2 — 20 — B — 1)y)(z) + (n + By (2) = 0,

forz > 0.

Changing this into the form of ( 1.4) gives

(@) + a(n)y () + b(n)yP(z) = 0,
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where
a(n):m—2:_:2ﬁ—3:_2+m—7ﬁz+1_2(z~n,f+1)+O(n-3)7
1 -1 2(8-1
R

We find that the characteristic equation
pPP—20+1=0

has double roots p; ; = 1 which do not satisfy the auxiliary equation for z # 0.
Thus the subnormal solutions are given by ( 1.9), where 4%, o) and k) (k=1,2)
are from ( 2.17), ( 2.18) and ( 2.19),i. e. ,

pY)
TR Y i S VIS Y
250

and

B

i 2 2
:;48\/5(% — 126% — 242 — 24z + 3) .

Thus the formal solutions are

o) = =t

.{1 F @Z-—m (4132 —~ 1282 — 24z —24:0—{—3) n-3 +0 (n‘l)},

for k=1,2.



CHAPTER 3. EXISTENCE THEOREM

Refering to the behavior of the Laguerre Polynomials [10],

L¥)(z)
= Tr"%efm"g_%ng"l? cos (2\/7% -5~ %) {1 + 0 (n_f)}
—|—7r_%e§w_§”‘l?n§_% sin | 24/nz — @ _r 0 (n_%)
2 4 ’
we have
1 1 T 1 7 ™Y % T
L) (z) = 57{'_56533_5_:{ {e“(ﬂz_""?)’yffl)(m)(l —1)+ e(%""?)’y,(l’z)(zz:)(l + z)}
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Formal Solutions (2)

4.1 Introduction
So far we have dealt with the case in which M, < 0 and M, = 0 in the equation
(4.1) y(n + 2) + nMea(n)y(n + 1) + nMb(n)y(n) = 0,

where a(n) and b(n) have power series expansions of the form

a(n) = i a;n”*, b(n) = iobgn_’

8=0

for large values of n, and aq # 0, by # 0. For the general situation where M, and
My are arbitrary integers, the method of deriving formal solutions that we shall
use was introduced by C. R. Adams[1] who applied it to equations of any order.

The transformation

(4.2) z(n) = n*"e " y(n)
will change equation ( 4.1) into

(4.3) z(n + 2) + oM Aa(n)z(n + 1) + nM+2(n)2(n) = 0,

60
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where

(44)  an) = (”‘ + 2>Mn+1) (” il 2>A e=a(n) = a(n) {1+ O(n~)},

n+1 n

(45)  B(n) = (” + 2)” ("’ i 2)” e=b(n) = b(n) {1 + O(n~")}.

n n

We find that the leading terms of the three coefficient functions in equation ( 4.3)

are

(4.6) 1, agn™et* and  ben?tA

We can choose a suitable A, such that two of these are of the same power while

the other is lower. If we have two such A’s, the characteristic equation
(47) p2 + agp + bo = 0

may be replaced by two characteristic equations each of which is associated with
each A. The characteristic equation can be given by taking the term in equation
( 4.7) whose coefficient is associated with the lower power in ( 4.6) out of the

equation. The choice of A depends on whether
(4.8) K =2M,— M,

1s zero, or positive or negative.

(1) When K = 0, we choose
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so that equation ( 4.3) becomes

z(n+2) + a(n)z(n + 1) + b(n)z(n) = 0.

It is clear that this case is included in Chapter 2.
(2) When K > 0, we choose

(4.9) M=-M, and X =M, — M,.

Therefore equation ( 4.3) becomes

(4.10) z(n +2) + d(n)z(n + 1) + n"Xb(n)z(n) = 0
(4.11) z(n + 2) + n¥a(n)z(n + 1) + 2Xb(n)z(n) = 0

respectively, corresponding to each A. As the degrees of the coefficient functions
n ( 4.10) and ( 4.11) are zero and K respectively, we shall show that the charac-

teristic equations associated with each X are

(4.12) p1+ag =0,
and
(413) P2ag + bo =0.

The normal solutions for both ( 4.10) and ( 4.11) were shown by Adams to be

(4.14) n) ~ p'n “‘ch 2 n — 00, 1=1,2,
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where p; associated with each A; satisfies the characteristic equations ( 4.12) and

( 4.13) respectively.
(3) When K < 0, we choose

(4.15) AL = Ay = —My/2.
Equation of ( 4.3) becomes
z(n + 2) + n2%a(n)z(n + 1) + b(n)z(n) = 0.
With the same reasoning, the characteristic equation is
(4.16) %+ by = 0.

It is easy to see that the case in which K is even is included in Chapter 2. When

K is odd, the subnormal series solution was established by Adams (p.512) to be

(4.17)  zi(n) ~ pPemVrns i n=%, n — 00, i=1,2,
s=0

where p; is the root of the characteristic equation ( 4.16). He also pointed out
that the exponential factor will probably disappear. We shall find out in §4.3 that
this occurs when K < —1 and odd.

It 1s noteworthy that Adams proved the existence theorems about the nor-
mal and subnormal solutions ( 4.17) and ( 4.14) except when |p;| = |p2| and
v # 0 ([1] p.513), which will happen when K = —1 in our problem.

According to C. R. Adams[1], the choice of A has a very simple geometric
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interpretation. Let m = max{0, M,, M.}, then express equation ( 4.1) as

So(n)y(n +2) + Si(n)y(n + 1) + Sa(n)y(n) = 0,

where
So(n) =n"" = Z Son~1, Som =1,
1=0
Si(n) = nM“"ma(n) = Z Sl’j'n_j, S1,m-M, = Qo,
7=0
Sa(n) = nM"_mb(n) = Z Sz,jn—j, So,m-n, = bo.
=0

Thus —m, M, — m and M, —m are non-positive, and at least one of them is zero.
If we denote by 5; ;; the coefficient of the leading term of S;(n) (7 =10,1,2 ), we

have

Jo=m, J1=m— M,, J2 =m — M.

Choosing i— and j—axes, and plotting the points A; = (¢, ;) on the plane,
we may construct a broken line, convex upward, such that both ends of each
segment of the line are points of the set ( 7,7; ) and all three points of the set lie
upon or beneath the line. At least one of the points is situated on the 7—axis (
see Figures 1 to 11). Thus, the pamameter A can be chosen as the slope ! of any
segment. Therefore the coefficients of the characteristic equation associated with
A or consequently, with each segment, are the S;; corresponding to points A;

actually on that segment, and the coefficient corresponding to a point A; beneath

'In the paper of C. R. Adams [1], it may be a mistake to chose A as the opposite sign of
the slope. For example, in his paper, formula (8) will agree with (9) only if one exchanges the

positions of funtions f(z) and g(z) in (8).
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the segment is zero. ( see C.R.Adams [1] p.511). If we denote 4,4, as the slope

of segment A;A;, we have

lAgAl = jl —jO = _Ma7

I :jz—jo:_%
Ag Az 9 9’

lA1A2 = jz _jl - Ma - Mb'

Then in (1), in view of ( 4.8), K = 0 or M, = My/2 = M, — M,. This implies
that [g4, = laga, = la,a,, 1. €. Ay, Ay and Az are on one line. (see Figures

1,2,3). A should be chosen as

)\1 = /\2 = lAOAl - —Ma.

The characteristic equation is ( 4.7). In (2), K > 0 or M, > M,/2. This implies

that A, is situated above the line I4, 4,. ( see Figures 4,5,6,7,8 ). Thus we choose

/\1:lA0A1 Z—Ma and ’\2:lA1Az :Ma—Mb.

For A1, Ao and A; are on the line [4 4, and A, is beneath the line. The corre-
sponding coefficients of Ag and A; are 1 and ao. Thus the characteristic equation
associated with A; is ( 4.12). Accordingly, the characteristic equation associated
with Az is ( 4.13). In (3), K < 0 or M, < M,/2. This implies that A; is situated

beneath the line l4,4, ( see Figures 9,10,11 ). Thus we choose
M,

M=o = Liga, = ="
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The characteristic equation is therefore ( 4.16). When Aq is one unit vertically

below the segment ZAOAZV, Adams ([1] p.512) pointed out that the exponential

factor in the formal series ( 4.17) vanishes. This is just our case when K < —1.

A A A :
s 4 VAR 0 A &
\
A
2
1 2
1 N
Fa A ) Fiy ,
- B L o
._'!%’ 2 A
4 5 2
M M
A .
f% -
O =
v +
A ] A
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By el Ja 0 T
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M ¥
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Finally in this thesis, inspired by the famous Stirling formula

n

n! ~ n"e "V 2mn,

we use the transformation

(4.18) z(n) = [(n - 2)] y(n)

instead of ( 4.2). Thus equation ( 4.1) becomes

(4.19) z(n + 2) + nMTra*(n)z(n + 1) + M2 (n)z(n) = 0,
where

(420) () = 3 ain™" = aln),

(122) ) = S = o) (P2) = S S0 (] )b,

n

for large values of n, and af = ao # 0, bj = bo # 0. It is clear that ( 4.21) and
( 4.20) are simpler than ( 4.4) and ( 4.5).

4.2 Casel, K >0

In the case where K = 0, as described in condition (1) in the preceding section,

A may be chosen as —Af,. Then ( 4.19) becomes

z(n+2)+a*(n)z(n + 1) + o*(n)z(n) = 0,
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where

(4.22) a*(n) = a(n),

(423) B =Y {i(—l)’ ( e ) b,,_l} n, n— oo

8=0 \[=0

As by = by # 0, this case is included in Chapter 2. The normal or subnormal

solutions may be obtained according to the properties of characteristic equation

( 1.6) , or auxiliary equation ( 1.8), or indicial polynomial ( 1.10) in Chapter 2.
In the case of K > 0, it has been pointed out that A\; = —M, and A, =

M, — My may be chosen for the transformation ( 4.18). When XA = —1/,, ( 4.19)
becomes

(4.24) z(n+2) +a*(n)z(n + 1) + n ¥ (n)z(n) = 0,

where a*(n) and b*(n) are the analogues of ( 4.22) and ( 4.23) in which af = ao # 0
and bj(n) = b # 0. To show that the infinite series ( 4.14) is indeed a formal
series solution of equation ( 4.24), we substitute it into ( 4.24). Let £ denote the

linear difference operator

LA{X(n),A}

= X(n +2) + 2™ a*(n) X (n + 1) + 2225 (n) X (n),
and make use of formula ( 2.2) and ( 4.23), we have

LA{X(n),~M,}

S I L S PR M e
8=0 | j=0 =17 I=j l"'.?
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+Z{th—_] } naKs

{5l (57) 507 e

(4.25) i {28: [ij(—l)l ( mjlwa ) ba—j—l} Cj} prnTHe,

8=0 =0

In the last term above if we use the transform [ = [ — 7 and then replace [ by lin

the result, we obtain

L{X(n), - M.}
o {; {2” J ) +§ ( ?:]J ) a,,-{l cj} e
(4.26) +§ {;ﬂ [g(—l)l—j ( l—f‘fj ) bs_z} Cj} P

Equating the coefficients of terms with like powers of n to zero, we obtain

§[28_jp<j~1)+§( ' )“s—l} ¢ =0,

(4.27) s=0,1,... K —1,

and

(4.28) +8~K [afc—l)’-i ( l‘i”y ) bg_K_z} ¢; =0,
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for s=K,K+1,. ...

When s = 0, ( 4.27) reduces to the equation
(p+ ag)co = 0.

By assuming co = 1, we obtain the characteristic equation ( 4.12).
To determine a and c,, it should be considered whether K = 1 or not.

When K = 1, o may be obtained from ( 4.28) for s = 1, which is
(2p%a + pa; + paag + by)co = 0.

In view of ( 4.12), we obtain

(4.29) a=——-—.

We note that the coefficients of ¢, and ¢,—; in ( 4.28) are, respectively, p? + pao

and

2p* (e — s+ 1) + plas + (o — 5 + 1)ao] + bo.

In view of ( 4.12) and ( 4.29), these are in turn equal to 0 and (1 —s)a2. Therefore

( 4.28) can be written as

el () £(5)
Cpq = —— 2877 " a2 — T ] apa,—
1 (3_1)0/(2){‘72:(:)‘: (5—] Olz:; l_j 0ls—1

(4.30) +§(_1y—j ( l—i‘/-’] ) b,_l_,J cj}, §=23,....

I=

When K > 1, o can be obtained from the relation ( 4.27) for s = 1, i.e.,

(2pa + a1 + aag)co + (p + ao)er = 0.
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In view of ( 4.12), we have

ai
4.31 = .
(4.1 azd
Observe that the coefficients of ¢, and ¢,—; in ( 4.27) are p + ag and
2p(a—s+1)+a;+ (e — s+ 1)ao.

These are in turn equal to 0 and ag(s — 1) on account of ( 4.12) and ( 4.31).

Therefore from ( 4.27) and the fact that p = —ap, we obtain

(4.32) s=23,.. ,K—1

Similarly, observe that the coefficients of ¢, and ¢,_; in ( 4.28) are p? + pagy and

20%(a— s+ 1) + pa; + p(a — s + 1)aq.

These are in turn equal to 0 and a(1 — s). Thus in view of ( 4.28) and ( 4.12),

we obtain

(4.33) s=KK+1,....
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Thus we obtain one formal series solution by inserting ( 4.14) into ( 4.18).
Another solution may be derived by choosing A = M, — M,. Equation

( 4.19) changes to

(4.34) z(n +2) + n¥a*(n)z(n + 1) + nXt*(n)z(n) = 0,

where

(4.35) a*(n) = a(n), ag =ap # 0,
(4.36) b*(n) = ij:o {lé_\i‘d(—l)l ( M. ; My ) ba—l} n”’, by =bo # 0

for large values of n. Similarly, substituting ( 4.14) and ( 4.36) and ( 4.35) into

( 4.34) gives

L{X(n), M, — M} =3 {Z ge—i ( a—j ) cj} S ipas

=0 | =0 s—1J
SEEE- ()
(4.37) 4{—U“J(A%:jﬂ>bh0}q}ﬂmﬁxﬂ.

Letting the coefficient of the leading term in ( 4.37) be equal to zero, we obtain
the characteristic equation ( 4.13). Generally, equating the coefficients of terms

in ( 4.37) with like powers of n to zero, we have

Sl (1) (4 e

7=0 \l=j

(4.38) s=0,1,...,K—1,
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and
23_K s—K—j a—j - : oa—j
L (S_K_j)cﬁ;{;[paa_,(l_j)
+ (-1 < M}‘:JM’ ) b»z]}q =0,
(4.39) s=K,K+1,....

When K =1, a can be obtained from ( 4.39) for s = 1 which is
[pz + pai + by + paga — (M, — Mb)bo} co + [pao + boj c1 = 0.

In view of ( 4.13), this produces

b
(4.40) a=t l @

bo Cl-(z) ag

Since the coefficients of ¢, and c¢,_; in ( 4.39) are pag + by and

p® + pay + by + pag(or — s + 1) — (My — My)bo,

73

and consequently, these are in turn zero and (s — 1)by on account of ( 4.13) and

( 4.40), we may obtain the recurrence relation from ( 4.39), i. e. ,

-1 & 2 j a-—j
s—1 — 7 IV 2s-1=3 ]
Gt bo<s—1>z{” (s—l—a)

=0

‘ -3 - M, — M,
Zpaa—l ( ?_; ) + (_l)l—:’ ( l—j ’ ) ba—l:l } Cjs
=5

+

(4.41) s=2,3,....



CHAPTER 4. FORMAL SOLUTIONS (2)

When K > 1, a can be obtained from ( 4.38) for s = 1 which is

[par + b1 + paoa — (M, — My)bo) co + [pao + bo] c1 = 0.

In view of ( 4.13), this leads to

b
(4.42) a=-2— My~ M,

bo ag

74

Since the coefficients of ¢, and ¢,—; in ( 4.38) and ( 4.39) are zero and bo(s — 1),

we obtain the recurrence relation from ( 4.38),

=0 {I=j

(4.43) +(=1)7 ( Mo — M, ) bs-zJ } ¢

- gis e (1)

and from ( 4.39),
_ -1 siK 228—K—j a _.7 .
S (-1 | &7 s—K—j )%
8—2
+2

15l (1)
(4.44) +(—1)! < Mo — M > bs_z)} Cj} ;

]
s=K,K+1,....

Thus from ( 4.18) and ( 4.14) we obtain the other formal series solution.
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4.3 Case 2, K <0 and Odd

We next consider the case K < 0 and odd. Condition (3) in §4.1 tells us that

when choose

A=A = —%,
( 4.19) becomes
(4.45) z(n + 2) + n7¥a*(n)z(n + 1) + 8 (n)z(n) = 0,
where
(4.46) a*(n) = a(n), ay=ao # 0,

(4.47) b(n) = 2 {i(—l)l ( “]‘fb/ 2 )bs_l}n", B = bo £ 0,

[=0

for large values of n. We shall show that ( 4.17) is indeed the formal solution of
(4.45) and v = 0 when K < —1.

Upon substituting ( 4.46), ( 4.47) and ( 4.17) into ( 4.45) and making use
of the notation G{*)(7) of ( 2.7) and F®)(a) of ( 2.11) in chapter 2, we have

E{X( ]‘g“}:evﬁ {Zp [ZG(Z) F )}n
0
o i 1+ K—s
+Xop ZG(” F )}n 2
8=0 t=0
e I+ (1), s
a=0 |j=0 2

Substituting the expansion of F{¥)(a) into ( 4.48) and changing the order of
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summation signs yields

L {X(n), - ]ga} = WV prp®

{i{ (,; S LUy (12 ) oo

I=j

(4.49) -q;tw ( (qf:'/j?)/z ) Gﬁl_)q(v)) cy} nKz"’}

Substituting ( 4.46) and ( 4.47) into ( 4.49), changing variables and then equating

coefficients of n%/2 to zero, we obtain

= i~ 2 l/2 s—l—j(’),)
—j (s=4)/2
14 (—1)7 —M,/2
(4.50) +—(—-2——)— > (—1) ( zb/ ) b,_;i_,} ¢; =0,
=0
fors =0,1,...,—K — 1, and

76
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E T L4 (e ( a“i/2>
S eWy . . (7)}0' _o,
q; 9 q/2 +K—q—j—t J

s=—-K,—-K+1,....

Since ng)('y) =1 and ¢g = 1, ( 4.50) for s = 0 reduces to the characteristic equa-

tion ( 4.16). Similarly, the determination of parameters v and o are dependent

on K. When K = —1, v and a should necessarily satisfy ( 4.51) for s = 1 and

s = 2 which, since G{"(y) = 7, G{'(7) = 1, GP(y) = 142, GP(7) = 4 and
~ 1

Ggl)(’y) = 37 are, respectively,

(p*y + pao)eo + (p* + bo)er = 0

and

Mypbo
2

1 1
(~p272 +2p%a + by + + 5,0&0’7) co

2

+ (,02’)/ + Pao) ¢ + (P2 + bo) c; = 0.

In view of ( 4.16), we obtain successively

Qo
4.52 ==
(4.52) .
and
b, M,
4, -t 7%
(4.53) a 2bo+ 2

As by # 0 and ag # 0, we find that p, 4 do not vanish.

Finally we note that the coefficients of ¢,, ¢,—1 and ¢,_p in ( 4.51) for s > 2
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are p? + by, p*y + pay and

1 M, 1
p? 572 +2a—(s—=2)|+b + 7bbo + §7pa0,

respectively. In view of ( 4.16), ( 4.52) and ( 4.53), it is easy to see that the first

two of these are zero and the last is —p?(s — 2). Hence, ( 4.51) can be written as

1 IS LS (D s (a-/2 ) e

7=0 =0

=0 l
71+ (1)
(4.54) +p Y —j—g—)a%
t=0
LA (=D (a2
) ;) _hé— ( q/2 > Ggl—)l—q—j——t(’)l)J C.'i}:

s=3,4,....

The coeflicients ¢y, cp, ... in ( 4.17) are now determined recursively by ( 4.54),

and ¢p = 1. In particular, we have

1, 1 1/1,
a = v —~7+27a+—<—7ao+aao+a1),
6 2 p \8

— 1 2 1 4 1 2 2 2 1
Cy = ‘2—’; { [p ('271")/ — 5")’ -+ a~y + 2a° — 2&) + bz + gMb(Mz -+ 2)b0
1 1 1 1 1
b o ({577 = 57) a0+ gor00) + 070

1 1 1 1
v tn ) o (o o)
When K < —1, 74 should necessarily satisfy ( 4.50) for s = 1 rather than

( 4.51). We find that when s = 1, ( 4.50) becomes, in view of ( 4.16) and
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GP(v) =1,

p>vco = 0.

This implies v = 0 as p # 0. We note, from ( 2.7) in Chapter 2, that G{*)(0) = 0,
¢ = 1,2 for allpositive integers s except for Gg”)(O) =1, p = 1,2. Therefore
( 4.50) and ( 4.51) may be simplified to

=

0

J

(s=3)/2
— M, /2
(4.55) + > (—1)l< zb/ )bi_}i_,}c,-:o,
=0

5=23,...,—K—1,

and

B (o4

(s—5)/2
—M/2
(4.56) + Y (—1)l< l”/ )b,_;_i_,}cj
=0
s+ K 1 -1 st+k—j

14 ()
J=0 2

5+K—j1_+_ _lt _'2

{ 2, _“(2__)“% ( (s+?(—3j/—t)/2 ) %=0

t==0

s=—-K,-K+1,....

Noting that K is odd implies that K < —3, a should be determined from

( 4.55) with s = 2 which is

Mb
(2p2a 4+ by + 2b 0> co + (p® + bo)ez = 0.
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In view of ( 4.16), a is the same as ( 4.53). We find that the coefficients of ¢; in
( 4.55) vanish for such j that s — j is odd, and the coefficients of ¢, and c¢,_, are

p? + by and
Mpbo
2

20°a + b, + —p*(s —2),

and, consequently, equal to zero and —p?(s — 2) respectively. Hence we have the

recurrence relation for ¢,_,,

1 14 (-1
TR -2) 23

7=0
. . (s—3)/2
i (a2 AV
{Pz ((3_]-)/2)+ ; ( 1) ( I b"—;l-—l Cjs
(4.57) s=4,5,...,—K —1,

where the coefficient of ¢,_3 vanishes, and ¢; = 0if K < —3. Thus, by the method
of induction, we find the fact that all ¢,_, = 0 when s is odd but not larger than
-K 1.

By a similar method applied to ( 4.56), the coefficients of ¢, ¢,_; and c,_;

are zero, zero and —p?(s — 2). Hence from this follows

o1 3L+ (—1)
2 p2(s —2) {Z 2

P (i) o (7)o

s+K 1 + (_1)3+K——j

+p
23

L4 (-1 o - j/2
(4.58) { _2—a5((s+K—Jj~t)/2 )} }

i
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s=—-K,-K+1,...,

where the coefficient of ¢,_3 in the first summation vanishes.

Thus we have fulfilled all the derivations of formal solutions.

4.4 Examples

Example 1 Behavior of the number of involutions t(n) on {1,2,...,n}, which
satisfies
(4.59) ttn+2)—t(n+1)—(n+ 1t(n) = 0.

Comparing ( 4.59) to the standard form ( 4.1) gives

M, =0, M, =1,
a(n) = —1; ap = —1, a, =0, m>1,
1
b(n)=—<1+—); bo=—1, bi=-1, by=0, n>2
n
As K = —1, the formal solutions are given by inserting ( 4.18) into ( 4.17),
the parameters A, p, v, a and coefficients ¢,, s = 1,2,. ..., may be calculated by

recurrence relations ( 4.15), ( 4.16), ( 4.52), ( 4.53), and ( 4.54). We find X; = -3
pi = 1, v = %1, and oy = 2,4 = 1,2. The two subnormal series solutions of

( 4.59) are

3 7T 1 743 3
= +/(n — 2)leVPni —n"f — —p1 -2
t1(n) (n —2)lev™n {1+ 1™ 15" +0 (n )}
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and

3 7 1 743 3
= (=1)"/(n—2)le Vi {l— —n"z — ——p~! —2
to(n) = (=1)"y/(n — 2)le™V"n {1 51" 115" +O(n )}

By making use of the Stirling formula

(4.60) (n—2)!=(2m)ze ™n™n"2 {1 + En”1 + §En_2 +0 (n_s)} ,

12 288
we obtain
a _n T 119
— V/n R -2 L= -1 -
ti(n) =eV'n2e2 {1—!—24n 1150 (n 2)}7
and
n n 7 1 119
:_'n—\/'r_l——— P i | _3
ta(n) = (—1)"eVAnie 2{1 - 040 (n )}

Since t(n) is monotone, increasing to co, we have

t(n) = Kti(n),

for some constant K > 0. The same results can be seen in J. Wimp and D.

Zeilberger [13].

Example 2 Construct formal solutions for the equation

(4.61) Yn+1(z) — (2n + Dzyn(z) — yn-1(z) = 0.

Changing the equation into the form ( 4.1) by means of replacing n by n + 1 gives

M, =1, M, =0,
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a(n)=—2z+3zn7'); a=-22, a;=-3z, a,=0 n>2,

As K = 2, when z # 0, the formal series solutions are given by inserting ( 4.14)
into ( 4.18). From formulas ( 4.9), ( 4.12), ( 4.31), ( 4.33), ( 4.13), ( 4.42) and

(4.44) we have Ay = -1, p; =22, oy =

oo

,)\2:1,,02:— a2=—~g. The two

227

formal series solutions of ( 4.61) are

1) = (n — 220
{r-Graem) 4 (et o)+ 0 7))

and

2

_
()= iy

§ l—z) -1 (_1_9_5_ l—z i—4) —2 —3}
{1+<8+4m y)nTh+ 198 32a: +32m n +O(n ) }

By making use of the Stirling formula ( 4.60), we have

I
e

| A

11 9 111 49
A1 =2z —2> -1 (_ 2 = —2) -2 -3 }
{ <24+4$ m 6™ T3 T 192° )" +0(27)

11 65 47 1
1 It —2> (_______ -2, 1 —4) -2 -3 }
{ +( ) 1152 96~ T3° )" +0(n7)
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Example 3 Find the formal solutions for the equation
Cli(2) + (n+ a — 2)CN(2) + anC; (z) = 0.

Replacing n by n + 1 gives

a(n)=14+(1+a—z)n™Y ap = 1, a;=14+a-—z,

and a, = b, = 0 when n > 2. As K = 1, we can use formulas ( 4.9), ( 4.12),
(4.29), ( 4.30) to form one solution and ( 4.9), ( 4.13) ( 4.40) and ( 4.41) to form

another solution, i.e.,

C8l(e) = (n = DU (~1"n"

-{1-}-[%wz—l-(a—%—%)m—l—a—l]n_l—l—()(n"z)},

and

L s 1 -1 -2
{1- [z (a=3) om0 )}
In terms of the Stirling formula ( 4.60), O,S?l) (z) can be written as

Cl(a) = (~1)emn a5+

. 1, 1 171 -—z}
{H[z” +<a+2>m+“+12}n +0 (=)
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