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Abstract

In this thesis we study the asymptotic solutions

difference equation

of the second-order linear

y(n * 2) + nM"a(n)EØ+ 1) + nM'b(n)s(n) : 0,

where both M" and M6 are integers and the coefficient functions are

a(n) : î o"n-"
¿=0

and. b(n) : ii"n-'
s=0

for large values of n, and ao I 0, bo # 0. Our discussion is divided into two parts.

The first part, in which M" < 0 and Mu:0, consists of three cases according to

whether the roots of the characteristic equation p2 + øop * bo : 0 are distinct,

or equai and do not satisfy the auxiliary equation atp * bt :0, or equal and do

satisfy the auxiliary equation. The last case is further divided into three subcases,

according to whether the zero of the indicial polynomial a(a-I)p2 *(a1a+az)p+bz

do not differ by an integer, or differ by a nonzero integer, or are equal. In these

cases, the formal series solution wili be shown to be asymptotic. The approach

is based on the method of successive approximation. In the second part, we shall

deal with the general situation where Mo and M6 ate arbitrary integers. Our

discussion wiil also be divided into three cases according to whether the constant

K : 2Mo - M6 is zero, or negative, or positive. When K is positive, there are

two subcases according to whether K is equal to one or not. When K is negative,

there are three subcases according to whether K is equal to -1, or odd but not

-1, or even. In all these cases, formal solutions are established.
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Chapter 1

Introduction

1-. L Introduction

The second-order linear difference equation

(1 1) a(n -t 2) + nM"a(")a(" + t) + nMub(n)y(n) : 0,

where both M" and M6 are integers and

a(n) : Ð o"n-"
s=0

the coefficient functions are

b(n) : Ðb"n-u,
g=O

and

for large values of z and ao * 0, bo I 0, arises frequently in many branches of

mathematics. For example, special functions of mathematical physics satisfy a

three-term recurrence relation; a second-order linear differential equation when

discretized, leads to a corresponding difference equation. Topics similar to this

thesis have been developed by E. W. Barnes [2], P. M. Batchelder l3l, W. J.

Culmer and W. A. Harris /r. [8], etc., btú Barne.s and Batchelder discussed only

lrypergeometric equations which are a part of our cases whiie Culmer and Harri,s

dealt with a diference equation system with 2 by 2 matrix. StiLl, the solutions

constructedby Culmer and Harris Jr. were not directly from the original system
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but from the eight canonical forms whicir are reduced from it.

We also know that there is a well-known theorem concerning zth-order

linear diference equations represented by G. D. Birkhoff and W. J. Trji,tzinsky

([7] p.l-+). The theorem indicates that the equation ( 1.1) admits two linearly

independent formai series solutions with elements of general type

(1.2)

where

ea@) S@)

Q@) : pnlogn I 1n + 6nT + ... + unT,

S(n):"" {(otol a6(o),r-i'+...) + (ot-l ¡6@)n-i +...) tog-"r},

and where p is a positive integer, p,p is an integer and rn is 1 or 0. Here, p does

not need to be the same as the integer, denoted by the same letter, occuring

in connection with the coefficients of the equation ( see G.D.Bi,rkhoff and W.J.

Trjitzi,nsky l7l p.+ ). They further proved that these formal solutions are indeed

asymptotic. According to their definition, series ( 1.2) is called a formal series

solution or a formal solution if, when is substituted in ( 1.1), the sum of the

coefficients of the terms with the same po\ryers of n are zero. We, in the thesis,

use capitai letters, for example, Y(n), Z(n) and X(n) as formal solutions while

small letter, E@), z(n) and z(z) as exact solutions. AIso, when ( 1 2) is called an

asymptotic solutions, denoted by

u(n) - "a@) 
s(n), n -) æt

wlrere y(n)is the exact solution of equation ( 1.1), it means that for every ff ) 1,
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we can determine functions nH)@), j :0,rzz, such that

(1.3)

""ð, 
Ell@) : O(n-i), i : o,rn, asn --+ oo.

However, we found that their proof was essentially existential, and no direct

method was given to compute successive coefficients in ( 1.2). From the viewpoint

of the computation, the approach to the problem is always clumsy and quite

unsatisfactory. Furthermore, the method of verification seems to be somewhat

complicated. G. K. Immik ([9] p.tZ8) has rightlypointedout that " Some of the

proofs are incomplete and not all tire conclusions seem to be justified." A short

summary and comments on this massive work can also be found in J. Wi.mp (fLzl

Appendix).

This thesis wili offer some types of formal series solutions in the iight of

the papers by C. R. Adams [1], and the earlierworks of. Bi.rkhoff [5] and [6]. The

reason for this is that in these papers, they classifi.ed the general equation into

several cases (although incomplete as they seem to be), and gave the type of

asymptotic solutions for each of them. These are the foundation of the paper of

Birkhoff and Trjitzi,nsky l7l.

We shall discuss the problem in two parts. First, we study equation( 1.1)

with M" ( 0 and Mu :0, We give the explicit expression of solutions in Chapter

2. These expressions may be obtained by substitution and direct comparison.

The proof that these formal solutions are indeed asymptotic, i. ". , 
g(n) - Y(n)

¿-Q(n)n-,'(r) : (otol+ 6l)n-i +...+c(o)n-#)

+ (ot-l ¡ 6@)n-ï+ . .. + "(*)n-#) tos-r"

+EÍP@) + nfriç"¡ros^ n,
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will be given in Chapter 3. We provide a neïu and elementary proof based on

the method of successive approximation which is customarily used in differeniial

equation theory ( [11] p.229-235 ). Second, we shall deal with equation ( 1 1)

where Mo and M6have no restrictions. We shall give formal solutions in Chapter

4.

In Chapter 2, equation ( 1.1) may be rewritten as

(1 4) s(n-r 2) + a(n)y(n + 1) * b(n)s(n) : s,

where a(n) and ó(z) have povrer series expansions of the form

(1.5) ø(n):îo,n-' and b(n):iu,n-"
s=0 s=0

for large values of z, and bo # 0. The classification of cases depends on the roots

of the characteristic equation

(1 6) p2+aoP*óo:0.

If the two values of p arc not equal, i. ". , af; I 4bs, ther- B,irkhotr 15) showed

that equation ( i. ) has two iinearly independent solutions both of asymptotic

expressions of the form

(1.7) U(n) - p^r'Ðc"tu-",
s=0

r¿ --+ oo.

Motivated by the terminologies in differential equation theory ([11] p.230), we cail

series of the form ( 1.7) normal series solutions or normal solutions. We shall give

explicit recurrences reiation for the all cE as (2.4) and (2.5).
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equation

(1.8)

INTRODUCTION

muitipie root of equation

5

( 1.6), but not a zeto of the auxiliary

i. e. ,2b1 t ooor, then

aú I ór :0,

Ada,ms [1] gave two lineariy independent solutions

(1 e)

( 1. 11)

g(n) - pnetJnr] c,n"-T",
s=0

Tl -) æ)

which we shall call subnormal soiutions ([1i] p.231). In $2.2, formulas for the

constants 7 and a are given by ( 2.17) and ( 2.18), and recurrence relations for

the coefficients c, are derived in ( 2.19).

Furthermore, in $2.3 and $2.4, we shall discuss in detail three exceptional

cases in which the double roots of characteristic equation ( 1.6) satisfy the auxil-

iary equation ( 1.8), and the zero dl and a2 ( Re a2 ) Re a1, where Re a is the

real part of the complex number o ) of the indicial polynomial

( i.10)

satisfy

q(o) : o(o - L)p' + (ap + a2)p * bz

(i)

(ii)

(iii )

- at I 0,1,2,. . .,

- dl : Ir2r. .. ,

-ar:0'

In case (i), it will be shown that equation ( 1.4) has two independent asymptotic

solutions of the form ( 1.7), where o¿ : a¿, i : L,2, are zeros of ( 1.10), and

that the coefficients c, can be determined by the recurrence formula ( 2.23). The
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possibility that tire subnormal solutions may be reduced to the normal solutions

in this case was also pointed out by Adams ([t] p.,lt0).

In the other two cases, Birkhoff [6] suggested that one of the two independent

solutions, say E{n), is the same solution as in case (i). The second solution

involves a logarithmic term

(1.12) uz(") : z(n) + Cs{n)losn,

whe¡e C is a constant anð, z(n) has an expansion

(1.i3)
co

z(n) - p^n'Ð d,tu-u ,

a:0
TL -) OO.

In case (ii), C is specified by ( 2.38), d : 02 and d" can be determined

iteratively by formulas ( 2.35), ( 2.37) and ( 2.39). In case (iii), a : or : dz in

( 1.13). C is a non-zero constant specified by (z.aa), and d," may be determined

iteratively by ( 2.43), ( 2.45) and ( 2.46).

Chapter 4 is devoted to the general situation where Mo and M6 have no

restriction. In $4.1 three cases will be obtained by transformation. The classifica-

tion is according to whethe¡ K :2Mo- M6is equal to zero, positive or negative.

The cases in which K : 0 or negative and even shall be shown to be included in

Chapter 2. In $4.2 the formal solution

Y(n) : f(n - z)ll-^' pTno' Ð "f)n-', i : L,2,
s=0

(1.14)

will be obtained for K > 0. À¿ and p¿ may be determined from ( 4.9), ( 4.12) and

( 4.13). The determination oL a¿, 
"Ít) 

i. dependent of. K. If. K : 1, a; and c!t)

are from recurrence formulas ( 4.29) and ( 4.30) for i : L, and from ( 4.40) and
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( 4.41) for i =
( 4.33) lori:

solutions

( 1.15 )

2. I1 K ) L, a; and c!i) are determined from ( 4.31), ( a.32) and

1, and from ( 4.42),(4.43) and ( 4.44)for i : 2. In $4.3, the formal

Y(n) : [(z - Z)!]- ^' pr"t"'/-nn'' i "t;)n-n" ,

i: L,2, are formed for K ( 0 and odd. À¿ and p; can be obtained from ( 4.15)

and ( 4.16). The determination of .y¿, a¿ and c!t) is dependent on whether K : -L
ornot. If.K : -7,^t¿, d¿ and 

"Li) ^oy 
beobtainedfrom (4.52), (4.53) and (a.5a)

for i. -- 7,2. If K 1 -1,'y : 0. a¿ and "f) ^uy 
be odtained from ( 4.53), ( 4.57)

and ( 4.58) for i : I,2. Throughout this thesis, without loss of generaiit¡ we

shall always assume that c6 : 1 in ( 1.7), ( 1.9), ( 1.14) and ( 1.15).



Chapter 2

Formal Solutions (1)

2.L Case L,, pt # p,

We begin by showing that the infiníte series in ( 1.7) is indeed a formal solution

of equation ( 1 4) with øfr I 4bo o, p # -ool2. Let L denote the linear difference

operator

(2.1) L{Y(n)} = Y(n + 2) + a(n)Y(n + 1) + b(n)Y(n).

Inserting ( 1.7) into ( 2.1), and making use of the identity

(2.2) (n-rtù'-':",'Ë( ";')unn-t'*nt, t,:r,2,

we have

L{Y(n)}: pnnoå 
{r' P_^r"-o 

( :- 
t,) 

",

* rÐlÉ (' î -t,) ",1 '"-o *fu"-,",]"-''?*LAt rc-r /'l '" 7o- ")
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By exchanging summations in the middle term of the right-hand side, the above

equality may be reu'ritten as

L{Y(n)}: pnrlo

å {å ln,"-' 
( :- i).,-l ( î -l) ""-n* u,-,1 ",},-"

Equating the coefficients of terms in n-' l,o zeto gives the relations

(2 B) 
n{nr"-, ( : -í) * ,Ð.( ; - ',) ",--+b"-¡} ", 

: o

It is readily found that when s : 0, ( 2 3) reduces to the characteristic equation

( 1.6) When s : 1 in ( 2.3), it can be shown by using ( 1.6) that

(24) a:-#+h:##
Since we are dealing with the case of distinct characteristic roots, i. .. , p #

-(Zbs)las, the denominator in ( 2.a) is not zero. Now notice that the coefficients

of c" and c,-1 in ( 2.3) are p2 t poo -¡ ó¡ and

l\r' * o"o) o * Par+ b'] + Q - s)(zP + ao)P,

respectiveiy. In view of ( i.6) and ( 2.4), these are, in turn, zero and (s -l)(asp*
2ós). Thus ( 2 3) becomes
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(2.5)

We also find that the denominator in ( 2.5) is not zero.

2.2 Case2rÆ:pz but atp*h#0
At pt : p2 implies asp + zbo : 0, the denominators of both ( 2.4) and ( 2 5)

vanish. Howevet, two independent subnormal solutions ( 1 9) \ryere suggested by

Ad'ams ([t] p.s09). Before inserting ( 1 9) into equation ( 2.1), we observe the

formal identity

(2 6) 
"t6+u - er6 Ð c!r)(r)"r--|", þ : 7,2,

s=0

where

(27) cL')(ù:,,t=,E;t( i) r'rf" ,

the summation being taken over a"ll multi-indices lo : (1r,. . .,lo) for non-negative

integers 1", s - L,2,... ,p, such that

(2.8) a(lo) : h I 3Iz+ ... + (2p - 1)lo : s,

10

1

f"'p

{ 0,,
t

-s
a-2

Ð
j=o

(1
u¡-1 - + zbo)

"-' ( î -Ð + pD( ;-',) ",-r+b"-i\"i,
s:2,3,....
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and the last value lo # 0 if p > 1. Elementary calculatons give

11

(2.e )

We also have another identity

ææ
Ð ""(n + p)'-r" : no Ð P(ù1a¡n-1" ,
s=0 ¡=O

G[')(r) : t,
sf')(r) : T1,
cL')h) : !1,,
c[')(,y) : år'- år,
c\')e): #¿tn - #tr,

Gå')(r) : r,
G\') 0) : t,
cL')6):11,,
c?) 0): år' - lt,
cf)o):h-,tn-lÌ

P:7,2,

2.1) gives

(2.10)

where

(2.11) p,{r)1a) :Ëi+(-t)'-¡
j=o 2

In view of ( 2.6) and ( 2.10), substitution

rI{'-i) ". .G;it)
of ( 1.e) in (

1,--trlq(')(')]

!("-t)ci]|,-r'

a-k

Ðc("
l=0

r)"-j,

CLL

(-
2

1+

1 + (-1)fr

t {Y(n)} - "t'fipnno

å {r' F-*f,r(z)4')(o) 
- rå 

I

L {v(n)}
æ(

.s- J.Ll
a=o I

2

a

-r- \-IL
i=o

Making use of ( 2.11) and exchanging summations, we have

- g6 pnno

å þ'à 
-fu,,r (",r+, ) "!'ì-,r.,r

.,:i_-'-t+! ",: n =fq ( 1," ) "t'1,---, 
r,r
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(2.r2)

Equating coefficients of n-å to zero gives

L2

u+u-rf ",\n+'
1+ (-r¡'-i

Ë {E -çu lr,,- (" ,*r,) "Í,ì_,r.,r¡=o I r=o

*pa¡n"-f-' 
r + (-r)¿ (" 1,t, ) "l!,-.-,trl]

(2.13) --stE b;{,-i) 
}", 

: o, s : o, 1,2,....

Since C[t)(r) : Cå')(z) :1and co:L, (2.13) reduces to (1.6) if s:0. We

observe the coefficients of c, and c,-1 in ( 2.13). In view of ( 1.6), they are zero

and p1þ * Too), respectiveiy. Since p is a double root of ( 1.6), or p: -!as in

this case, the second coefficient vanishes as well. Consequently, (2.13) becomes

a-2 ( ¿-i t ,

iitã=çry lr"r (" ,*" )"l'ì-,r,r
-tpa;n'5f-i r + (-r)', (" 1,tt ) "f'1,-.-,rrl]

(2.r4) -t$,E bio-¡)) 
", 

: o, s :2,s,. . . .

The parameters 7 and a in ( 1.9) should necessarily satisfy (2.14) for s:2 and

s: 3. Now we set s : 2 and s : 3. In view of ( 2.9) and the fact that p: -Lroo,

we have

(2.1b) (Tt.,, * po,* ,,) co : o
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' + por* u') cr : o.

that p: -Ioo and p2 -

b1

2b"

the coefficients of c"-2 aîd c,-3 in ( 2.L4) are, respectively,

13

and

(2.16) p.l

Solving equa

(2.18)

Finally, we note that

þ(å"*a-å) *1,,] "+(|tt
tion ( 2.15) gives, in view of the fact bo,

(2.17) ^, - 
J-'

J-Lþ

By taking into account that hp * b, I 0 in our case, we find that 7 does not

vanish. Therefore substituting ( 2.17) into ( 2.i6) yields

1
_I
4t

Io'r't pat*bt

and

et ln (þ' - tn *") * i^l - Lre'tl - z)

Looking back to (2.L7) and ( 2.18), these are in turn equal to 0 and -Lp'lG-3).
Therefore, ( 2.L4) can be written as

tpa;r"'-Ë-' 
t * [-t)' ? rr, ) "fl,---,rrl]

-tfry lo,r+* 
(" tru, ) "!,1-_,rrr

bN"-nj 
"o'

o,oat - 2bt

2bo

(2.le)
1+ (-i;'-i s:4r5,....
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The coefficients c1 ,c2,-..in ( 1.9) are now determined recursively by ( 2.19). In

particular, we have

i .^
ct : 

2462*@á"í - 24asa1bs * Saoatù - 24asa2b6

-gb', - gzb? + z4boh +  ïbobz).

2.3 Exceptional Case (i)

In this section we shall discuss the exceptional case (i) in ( 1.11) where p is a

double root of the characteristic equation ( 1.6), and the diference of the roots

of the indicial polynomial q(o) ( 1.10) ,e2 - a1, is not an integer.

\Me shall show that the subnormal solution may "reduce" to the normal

solution if we insert ( 1.9) into ( 2.1) as in the last section. Since pat ibt:0,.y

must be zero to satisfy the relatio" ( 2.15). Consequently, from ( 2.7) and ( 2.8),

we find all G!r)1t¡ : 0 except CPh) : I,, þ:1,2. Thus ( 2.14) becomes

Ç{t+(-t)"-¡ lo,2ir"-it ( .:-i¡..\?-\ 2 L'"' \åt'-j))
"_it*(_1)o ( ,*rà '-ï-"+- 

1. år,'-, 
T: ,)* a+,,-,,] 

] ", 
- o,

(2.20) s:2,3,....

By the same argument as in the last section, the coefficients oL cr-2, c,-3 âr€

14

(2p + oo)p(o - |" * I) * (pat -t bt)

and zero, respectivily. In view of the fact that p : -Iao and pq * bt :0 in this
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case, these both vanish. Thus ( 2.20) becomes

à{-S*le,z^"-n( *J, )

*, 
=Ð-t--1#"+- 

(;f - ¡r! -))* ¿;,,-,,] 
) ", 

- o,

(2.21) s:4,5,....

Now, when we set s : 4 in ( 2.2I), we find that a should satisfy the indicial

polynomial ( 1.10).

Next, we find that the coefrcient of c,-a in ( 2.21) is

As a2 - ar (assume Re a2 > Re a1 )is not an integer, both g(or- |s+2),
i:1,2, do not vanish when s > 4. Hence, from ( 2.2L) we have the recurrence

relation,

n("-ï*r)
:o'(o-]+r) (" -|+t)+eo,("-;+z) + paz-rbz

ua-4 -

s-6
\-¿¿
j=o

q(

{

2)

-j

+

I1

T"
(-

2

o¿-

1+

lo'r+,'-, ( *J, )

* oît1-*",r ( ;rï --,r: r)*,,,"-,,] ) ",,

(2.22) .s:5,6,...,

where the coefficient of c"-5 vanishes. Furthermore we find that if s is odd, c"-a
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is the linear combination of all c¡ with j odd. As c1 : 0 when s : 5 in ( 2.22), we

find that all c" vanish when s is odd. This indicates that the subnormal solution

( 19) reduces to the normal solution ( 1.7) Thus we must change ( 2.22) to

refl.ect the coefficients of ( 1 7). We first replace s, j and lc by 2s', 2j' ard 2k, ,

and then replace czþ,-2) and c2¡, by q,_z¡ and c¡, and finally change s', j, and le,

back to s, j and k. We obtain the recurrence formula for the coefficients in ( 1.7),

La-2 
-

16

-1

+ b"-j\ "i'* oÐ"r(

q(o,-s*2)

P-^{r'-'(
"-11s-t )

a-i \
"- j-k )

(2.23) s:3,4r...,

where q(a) is the indicial polynomial ( 1.10). Thus we obtain two linearly inde-

pendent formal series solutions to the difference equation ( 1 4)

2.4 Exceptional Case (ii),

When o¿z - at - p is a non-negative integer, the recursive formula ( 2.23) for

the coefficients breaks down when a is replaced by a2 ar.d s : p * 2. Hence the

preceding argument for case (i) yields only one formal series solution, namely

(iii)

(2.24) Y(r) : pn'ÌLor i ""n-" ,
g=0

the coefrcients c, being determined by (2.23) with a replaced by *r. Birkhoffín

([6] p.213) presented the second solution in the form

Yr(") : pnn' fsz(n) + ,91(z)1og rz] ,
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where r is an unspecified constant, and

S¿(n):Ðdf)r-', i,:!,2.
¡=0

Here we shall show that the second formal series solution has, in fact, the simpler

form given by ( 1.12) and ( 1.13), i. 
". ,

L7

(2.25)

and

(2.26)

Yr(") : Z (n) * CY1(n)Ios n

Z(n) : pn',Lo'îO,n-",
g=0

C being a constant, and Y(") the first formal solution. To show that Y2(n)

formally satisfi.es equation ( 1.4), we make use of the expansion

(2.27) tos(z + p) :tos n. * Ë 
CË (#)" , þ : !,2.

a=7

SubstitutinE ( 2.27) and ( 2.26) into ( 2.1) gives

L {Y,(n)} : t' {z (n)} + c t{r1 (z)} log z

tc p*å 
ûi iÐ =+ 

{0""-o (";- i )

(2 28) +pf, ("; _ i ) 
,-r)] ",) TLo,-",
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where ci are the coefrcients of Yr(") in ( 2.21. In view of the fact that

2p*ao:0, the coefficients of.nor-1 and cs-1 a.r€ zero. Thus (2.28) becomes

(2.2s) t.{Y2(n)} : L{z(n)} + ct {v,(,)}iosz r c p"i1(s)no'-",
s=2

where, for convenience, v¡e use the notation

%(s) :

(230) i{'Í=# lo,'"-o (:'_-i)*,,Ð,(; _í),-rf}",;=o[l=¡ ö-L L \

By the argument used for case (i), we have

(2.31) L {Z(n)} : p-î Z¿(s)no"-",

where we also use the notation

(2.32)

which can be obtained directlyfrom ( 2.23)by replacing a1 and c¡by a2 and d".

It is easy to see that Z¿(2): 0. Thus ( 2.31) may be rewritten as

(2.33) L {Z(n)} : p^ Ð Z¿(s)n-,-" .

a=3

Fi¡st we consider case (ii) where oe - o4 - p is a positive integer. Inserting

18

z¿(r) : e(az- s * 2)d"-r *iln"-t ( o'-i \
;=oL \ t-¡ /

*oÐ( ,: ;: ,) o, +u,_,f d,,
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( 2.33) into ( 2.29), and rearranging the o¡der produces

P+1

L {v;(n)} : c L {Y(")} log n f p^ Ð za(s)n"z-'
a=3

-fp" [Z¿(p + 2) + CY"(z)]vdz-P-2

(2.34) *pn Ë lzr(r) + Cy.(s - p)lno,-".
-P+3

Note that the coefficients of n-'in t{Y(")} are equal to zero. Thus, upon

equating coefficients of rlo"-', s from three to pl1, in ( 2.34) to zero)we obtain

We find that the denominator is not zero. Now, upon equating the coefrcients of

ndz-P-2 to zeto, we have

(2.36) z¿(p*2)+cYQ) :0.

We find the coefrcient of d,oin ( 2.36) is q(ar) : 0. This implies do can be an

arbitrary constant. For convenience we may choose

(2.37) dp: I'

Thus, from ( 2.36) we obtain the constant

19

t
sq(azd"-z:

(2.35)

+2) ,Ë1r,"-' (": - í) *,Ð ( 
":: ;: ¡) ",+u"-,f d,

.ç:3,4r...rp+I.
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_1
11 

- 
f

"- p(2pdr+"r- p)

(288) îln.'-'( az-i \ -r"Þ;'(r;;-l- j),,*u*,-,f;,,=oL \P+z-i )'

The denominator is not zero since a1 is not a double root of the indicial polynomial

( 1.10), or a1 f (p - "r)12p.
Finaily equating the coefrcients of rzdz-o, s from p +3 to oo, yields

-1d"-z :
q(az - s -12)

20

{,i ln,'-' (": - i ) 
*,Ð (,: ;:,) o,+ t,-i)ai

*c"S'"1'f:ll#î 
lo,r"-,-, (";_ i)F' ã s-

(2.3e )

*of (";_i).,--] ",) ,

s:pl3,p*4,....

The denominator q(o, - s * 2) is not zero.

Next, we consider p :0 or a1 : o¿2 : a. ( 2.|'{) becomes

L{Yr(n)} : cL{v,(r)ilosn * o"î,lz¿(")+ c%(")l tuo-",
o-a

where a1 and a2 in %(s) and Z¿(") are replaced by a. Equating coefficients of
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n-" to zero, we obtain

(2.40) Z¿(t) * CY"(s) : 9, s:2,3,....

Since q(o) : 0 and (2po, * at - p) : 0, ( 2.40)for s : 2 is the triviai identity

0:0. If

(2.41) %(a¡ : Y(+¡ : ...: Y"(Q - I) and Y(Q) + 0,

for some integer Q > 3, in order to have ( 2.40) satisfied, zo(t) also has to be

zeto for s : 3, 4,. . .,Q - L. Thus, we obtain

r _ -1
úa_2- 

-

q(a-s*2)

"# I o,r"-,( : _i) *,Ð( 
": ;:,) o,+t,_,Id,,.¿,¿ |

j=o I

(2.42) s:3,4,...,Q-t.

lf we assume do - 0, this implies

2T

(2.43) do: dt:...: ilq-s:0.

Consequently, from (2.30), (2.32) and ( 2.40) for s: Q, we obtain

t:-t18:_.q(d-e+z¡

{ãiÞ, 
(+ry 

{t'o-'(;-t)
(2 44) *,þ,(; _"),,-r)] ",)-',
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where we assume

(2.45) d.q_2: r.

(2.47) Yr(") : z (n) + Y'(n)rogn,

where

Z(n¡ : p-n* i ã"n-" .

¿=0

Looking at (2.23) and ( 2.42), from ( 2.40) we find

22

Then by making use of ( 2.30) and ( 2.32), d" fot s > Q -2 can be determined

recursively from ( 2.40),

r _ -1

-

q(cr-s+2)

{ 
'f 

1,,,,-, ( :_ l) .,Ð ( ,:,: j),,+ u,_i)ai
[¡=Q-z L

*' nÐ =# ?',"-' ft - l) *, þ,(; -i) .,-rf",j,
(2.46) t:Q+t,Q*2,....

Thus substitution ( 2.43), ( 2.44), ( 2.45) and ( 2.46) in ( 2.25) yields the

second independent formal solution.

It should be pointed out that if we assume d,s : 1 and C : 1,we obtain an

alternate second independent formal solution, say,

(2.48) ã":c", E:0,1,...,Q-3.
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Then from ( 2.40) again, making use of ( 2.30) and ( 2.32), we obtain

i!.-,: ' -1-ð-' q(cr-sI2)

(2.4e) s : Q,Q + L,.. ..

These two second formal solutions Yr(n) and ?2(n) do not yield a contra-

diction, since Y1(z) is a linear combination of Y2(n) ar.d Y2(n). In fact, \ry'e can

show that

(2.50) Yr(n) : Yr(n) - ät r",

From ( 2.25) and ( 2.47), we have

\Me novt' investigate the coefficients of terms in n-' in ( 2.51). In view of. ( 2.a3)

and ( 2.48), we find

(2.51) y,(,) - [wøl : z(n) - btr", : pnnoå (r, - Io") "-".

{ä lr,"-, ( :: i) .,8(,:; ! j) ",+u,-if at

.'nE=# 
ln,,-' G -l) *,- ( ; -i),--f",1,

_1dr- rdr:dr:cr, s:0, 1,...,8-3.

By making use of ( 2.44) and the fact that d,q-z : I,

_ 1 -1,iq-, - ;dq-,u q(o- s *2)
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Finally, in view of ( 2.48), ( 2.49) and ( 2.46), we obtain

for s : Q +7,Q +2,... . Applying the method of induction, we immediately

obtain

(2.52) d,-r-ä0"-r:cs-2t ,:Q+I,qi2,....

Hence, the assertion ( 2.50) follows.

+ pi( 
" 
: ; :,) ", + b,-,)"r + Y@)\

: cQ-z

2)

)*'Ð(,:,: j)'*''-'f"'

l) .,ã ( ,:,: j),* u"-,1 lr,- ä0,]\,

"_r- Is-J )

Y@)

{Þ: ln''-'(
+ q(o-s-t2)

J
I

j
j

-i
-s
d.-
5-

lo¿
I\s

d,_z
1-)_
c-"-'- q("

(a-s f /

t¿ lr''-' ç

s-3 T

+ t lp'z'-t
¡:q-z I



Chapter 3

Existence Theorem

3.1. Case L (i)

In this case, equation ( 1.6) has two roots which are distinct and different from

zero. Then as we have shou'n in $2.1, equation ( 2 1) has two formal series

solutions of the form

Y(n) : pTno'Ð"L')n-", 'i : I,2,
s=0

where the exponent a¿ is determined by ( 2.a) with p replaced by p¿ and the coefr-

cients cl¿), i: L,2, are determined recursively by ( 2.5). In this and the foilowing

sections, it will be proven that these formal solutions are indeed asymptotic.

Throughout this Chapter, we shall assume that lp2l ì lptl. First, we con-

sider tlre solution of y{n). In the sense of ( 1.3), we set

(3.1) u,@):tlP@)+e$)(",¡,

where
JV_1

t li) @) : pTno' Ð "L')n-',s=0

25
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""a ef,})("r) is the correspond,ing error term. In view of ( 1.6), (2.4) and ( 2.5), it

is readily found that the coefficients of. pfnø-a for s : 0, 1, . . . ,ly' in C {2,f,}t1"¡}
ate zero. Accordingly,

(3.2) t {rfti6¡} : pin',nl})(",),

where aÍü)(") : o(n-N-i) as z --+ oo. Therefore, from

we have the equation fo¡ rf,})("),

(3.3) 
'l})(," + 2) + "(n)elj)@ + i) + t(n)e\l@) : -p1no'n$)(')

To soive the last equation, we retain the leading terms in the expansions of a(n)

and ó(z), and transfer the rest to the right-hand side. Thus, we have

'j})(', + 2) + oorlj)çn+ 1) + roe$)(,o)

(3 4) : -pTno,aÍi)(") - l"(") - "olel$)(" + 1) - lb(") - a6l e$)1'r).

Using the method of variation of parameter. ( [4] p.49 ), we obtain the equation

u')(",) : Ë K@,k)
k=¡t

26

0 : L{s,('")} : L {tlJ)(')} * c {el])1"¡},

(8.5) .{nlrr-, nll)(¿) + ["(k) - "01 
e$)1t + i) + tå(fr) - aole$)1r¡] ,

pi-k-, _ pî-o-,
where

K(n,le):
Pz-Pt
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It is easily verified that every solution of ( 3.5) is a solution of ( 3.4).

The equation ( 3.5) will be solved by the method of successive approxima-

tion. We express

(3 6) ,|})(rr) : Ë {tr,*r(n) - h"(n)} ,

s=0

where the sequence {h."(n)} is defined by h.s(n): 0 and

h"+r(n): Ë K@,k)
k=n

(s.z) .{plt'",n$)(¿) + [å(k) - bo)h"(k) + [a(k) - as]h"(k + 1)]

We shall show that the series ( 3.6) is absolutely and uniformly convergent in z,

and that its sum r|})(r) is a solution of ( 3.5).

Let n6(l/) be sufficiently large so that

la$)(")l 1 B¡¡n-N-1

for some positive constant B.¡y and for all n > ns(N). Since lprl > lprl, u simple

estimation gives

(38) lK(n,k)11=,2 ,lprl'-o-'.
lPz - Ptl

From ( 3 7) it follows that

(B.e) lh,(n)ls#Ãlp,l.-'ir-*-'

27
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for n ) ro(l/), rvhere ø:Re a1. If p ) L, we have

(3 10) Ð#= I^*-,*o*:;ø-1)-r+ræ=n

For sufficiently large n ) ns(p), it follows that

(8 11) Ðhs¡\n-,*'lr=n

Coupling ( 3 9) and ( 3.11), we obtain

(8.12) lt r(r)l < , "fî' , lprln-'no-*,lPz-Ptl(rv-øl

if // > ø, and without loss of generality, rile may assume that this holds for all

n > ns(N).

The same argument gives

(3.13) lh1(nit\= l*4ffi=lp'rn"-*.
By induction, we shall prove that

(3.14) lh,*r(n) - t "(n)l . -- 
z'(s+t)3*Bs

w' - P'P*l#: oY'll'l--"-'n-(N-")'

and

lh"+t(n + 1) - h"(n+I)l

(3.15) s, "'e+t)B*Ba 't 
,- lp, - /¡ffi"¡"+rlP,'ln-"n-{*-o),

28
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for s : 0,1,..., and n> ns(N), where

,6: sup{eiló(/c) -óol * l"(k)- ¿ollprll , k> t}.

From ( 3.12) and ( 3.13), we find that when s :0 the last two statements are

true. we noïv assume that when s: t, ( 3.14) and ( 3.15) are true, then

hr+r(n) - hr*r(n): Ð K(n,k)
k=rt

.{tå(k) - óol[å'+'(n) - It¿(n)] + [ø1r¡ - oo][ä,+r(n * 1) -tt,(n + 1)]]

Applying ( 3.8), ( 3.7), ( 3.14) and ( 3.15) to the last equation gives

llrr+r(n)- ä,*r(r)l s , "tl,"B*B'+t 
t tn- æ

lpz - ptttft - "l*rlp'l--'-'D 
k-@-"+t) '

From ( 3.11), it then follows that ( 3.1a) is also true when s : ú * 1. By the same

argument, ( 3.i5) can be proven as well.

From (3.14), it is now evident that the series in (3.6) is uniformly conver-

gent in z, if we choose ly' sufficiently large so that

(3.16) lprØ, - prX¡r¡ - o)l > 4p.

Summation of ( 3.6) gives

(3.17) r$)('r) : pTno,O("-*).

( we first fix // from ( 3.16) and then choose zs(¡/) in ( 3.12).) since ( 3.6) can

29
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be also written as

'l})(',) 
: Jl* h"(n),

by taking s --+ oo in ( 3.7), we have established that el])(æ) is a solution to ( 3.5),

and therefore to ( 3.3) satisfying ( 3.17).

3.2 Case 1. (ii)

We next show that the formal series uz(n) ín ( 1 7) is also asymptotic. We set

uz(n):tl?@)+e$)("¡,

where

tl?@) : pîno,l 
"LÐn-",g=0

""a ejf)("r) is the correspond.ing error term. tß)@) wili be shownin this section

to be

(3.18) tj.?) : pin"O(n-N), as r¿---+ oo.

If lprl: lpll then the analysis in $2.1 can be repeated with only the roies

played by p1 and p2 being interchanged. However,illp2l > lp, I then this argument

fails at ( 3.8), and an alternative method must be sought. A natural attempt is to

use the method of varition of parameters (also known as the method of reduction

of order ([+], p. 3)), which is to set gz(n) : u(n)g{n) and show that the difference

u(n) = o(n + I) - a(n) satisfies the first-order equation

30

u{n*z)u(n + 1) - b(n)s{n)u(r) : o.
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From this, one readily obtains (see [4], p. 38-39)

31

a(n) :z(0) + [,(r) -,(0)] 
_Ð. 

y_##,

but the behavior of g2@) is difficult to derive from the above equation. Therefore,

we make the following alteration. If we set

(3.1e) sz(n) -- [K*(") + árv(z)] et(n),

where U{n) is the first solution found in $2.1,

/ \" N-l
Kw(n): (?l no,-", Ð d"n-"

\et I 7=o

and the coefficients d", s - 0, 1,. ..,¡y' - 1, are determined by

"t') 
: I dr"l')r'

ú=0

Note that this can always be done. It is easily shown that

K 7¡(n)s1(n) : t'13) @) + pîno' o @- 
u -t r.

In view of ( 3.18), this implies that it is equivalent to prove

6*(n) : (i),ndz-æ, o(.--*).(3.20)

From the fact that p2 satisfies the characteristic equation ( 1.6), it readily follows



CHAPTER 3. EXISTENCE THEOREM 32

that

(3.21) L{K¡¡(n)s,(,)} : L{tl|)(")i * pîno,o@-nt¡.

By makins use of (3.21) and L{t\|rt"¡} : pîno,O(n-w-t),.f.(8.2), and

substituting ( 3.19) into ( 1.4), we have

u{n ¡ 2)6 ¡¡(n + 2) + a(n)s{n + 1)ó;y(rl + i) + b(n)s7(n)6¡¡(n)

(3.22) : p\no,O(n-w-rr.

Furthermore, since Er@) is a solution of ( 2.1), i. e.

a(n)s{n+1) : -lE'@+2) +b(n)s{n)1,

it can be verified from ( 3.22) th,at the difference

(3.23) A¡v(") :6u(n + 1) - 6¡¡(r)

satisfies the fi.rst order equation

(3.24) ut(n ¡ 2)L¡¡(n + 1) - b(n)E{n)Liv(z) : pin-2 O(n-t-t ).

From ( 1.5), ( 1.7) and in view of ( 2.2) we have

U{n ¡ 2) : pi+zn'' [1 + "r(n)]

and

b(n)s{n) : pTno' lbo + oz(n)1,
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where

ot(n) : O(n-'), and or(n) : O(n-t).

Now define €¡o(") bV

(8 25) ar(,) : 
ß)'r"1,,¡

In terms of {7,/(n ), equation ( 3.24) becomes

rl'ezll* a1(n)] {ry(", + 1) - [óo + o2(n)]€¡o(") : TLø2-ct, O(n-w-t1.

Since PtPz : ós, the last equation can be rewritten as

(3.26) {r(" + 1) - €r(r) : 'y¡d2-a1 E*(n) - o'(z)€r (n + 1) * Q@)fi¡(n),

where oi@): oz(n)lbo and

lUw(n)l 1 K¡vn-N-t,

K7y being some constant independent of n. Treating ( 3.26) as a first-order lin-

ear equation with the right-hand side being the nonhomogeneous term, one can

formally derive the equation

(3.27) {r(z) : - Ë lrr-"--, E¡o(k)- ar(fr)€¡v(/c + r) + øi(t){ry(r)]
k=n

Obviously, every solution of ( 3.27) is a solution of ( 3.26). We shall show that

equation ( 3.27) has a solution satisfying

(3.28) {r(") :7¡d2'a'O(n-*), ,, --+ oo,

.)t
Ðd
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which can be obtained by method of successive approximation.

Define 7o(n) :0 and

(3.29) e"+r(n): Ë l-ko,--, Ew(k) -t ot(k)s"(k + t) - a;(k)s,&)l
k=n

for s:0,7,2,... . Put nz: Re (or- a1) and choose N > m. We have

34

ls'6¡l I K¿u f n^-*-' 3 -!"-(, - 1)--t., lY -rn'E=n

Let zs(¡/) be sufficiently large so that (n - t¡^-w S 2n^-w for all n > ns(N).

Consequently,

lgr@)ls#n*-N, n>ns(N).

By the same argument, we have

Ë n*-N+t S Kr i *--t*, < #+nr-N .

h=ni.7 l--^ ]u - TrL

In terms of the method of induction, it can be estabiisired that

lg"*r(n) - s"(n)|, |¡9,+r(, + 1) - s"(n * L)l

=+(#^)'*'n*-*
for n ) no(N),s : 0, L,2,..., where

,6:sup{kllo{k)l + lør(Ë)ll : fr> 1}.
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Let l/ be larger than rn | 2B so that the series

æ
(3.30) ,igg o,(r) : Ð lg"+r(n) - s,(")l

=0

is absoluteiy and uniformly convergent in z. ( We first fix // and then choose the

integer ro(lf) ). Since {¡o(") can also be written in the form

(3.31) {,v(n) :,ii* g"(n),

Solving this first-order equation, we obtain

(3.32)

From ( 3.28), if we set

l{¡o(¿)l SMk^-w, Ie }r,

for some M ) 0, we have

otrùrJ

by taking the limit as s --+ oo in ( 3.29), we conclude that {1y(r) is a solution to

(3.27). Substituting (3.30) into (3.31), it is evident that {ru(r) satisfres (3.28).

By defi,nition ( 3.23), we can rewrite ( 3.25) as

6,¡(n *1) - á,y(z) : (i,)" ,*1n¡.

6*(n): áiv(1) - 
þ: Ê)^ {¡o(k)

nÊ)' {"(*)l 
= 
* 

lfl",^-. Elilr 
" 

(*) 
--'
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: Mlprl" n^-n r leal' ( " \--t-'- l^l tL 2l*l \" - ú/

Since

1,,'(*)o:o(r),

for any positive integer p and any real number p e (0,1), we have

(8.33) 
rr_Ê)*r,"(*) 

: 
Ê) 

rldz-a,-"o(r).

Thus the required result ( 3.20) now follows from ( 3.32) and ( 3.33).

3.3 Case 2 (i)

In $2.3, we established two formal solutions of equation ( 1.a) where the roots

of the characteristic equation ( t.6) are equal, but different from the zero of the

auxiliary equation ( 1 8) Both solutions are of the form

(3.34) y(n) : pn{Jnlc,no-i,
¿=0

where 1 aî a are determined by ( 2.17) and ( 2.18), and the coefrcients cr are

determined recursively by ( 2.19). It is easy to see that we may assume without

loss of generality that p: 1 orr equivalently, oo: -2 and åo : 1.

To show that these formal series solutions are asymptotic, as in (3.1), we

now set

(3.35) s(n): L¡o(") t E¡¡(n)

36
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with
1V- 1

L¡o(")-¿tJnnol""n-ï.
¡=0

Since the coefficients of cetc"-rt and c,-2in (2.L2) are all zero, in view of (2.r9),

it is easily verified that

(3.36) Lu(, + 2) + a(n)L¡¡(n + 1) + b(n)L¡¡(n) : er6noRw(n)

where

(3.37) Rw("): O ("-å(1v+3)) .

Substituting ( 3.35) in ( 1.4), we obtain from ( 3.36)

E ¡ç (, + 2) + a(n) E ¡¡ (n + 1 ) + b(n) E ¡¡ (n) - - er6 n' Rw (n).

Write

Ew(") - e1frnoe¡v(r).

Then ,*(n) satisfies the equation

(3.38) e¡v(n * 2) -t a.(n)er(rl * 1) * ó.(z)eiv(z) : Rh("),

where

o*(n) - ¿Jn+t-1t , (#)" o@),

b*(n): ¿tJnt'/*z (#)" u(n),

ÐnÐr

( 3.3e)
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and

(8.40) Riuø) - -"tJã-trr, (h)" 
"r(,,).

Recalling that we have assumed p : 1, or equivaiently ao : -2 and å¡ : 1, a

simple calcuiation shows that

(3.41)

and

(3.42)

where

(3.43) R"(n), Ru(n) : O(n-2), as r¿ --+ oo,

Furthermore,

Since ao : -2 and óe : 1, we have from ( 2.17) and ( 2.18)

"12 : -4(a, * ór), ": I*Tur.

38

o'(,) - -2 r 1n-ï * (r, - f,-,' + 2o) n-'

+ (- 
t 
", -ln* *r, - ,) r*-î + R"qn¡,

b*(n): I - 1n-ttz * (U, *Tr' - zo) n-'

- (; - lr' * z* - b,) -yn-s/z * R6(n),

nio(r) : O ("-irrv+s)) 1 as ?? --+ oo.
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Inserting ( 3.41) and ( 3.42) in ( 3.38) then gives

e¡¡(n r Ð + l-z 
-t 1n-ï - (; * 2a1 + zbt) n-t

- (t * ?", *zuu,) r"-å] eiv(, + r)

* lt - tn-ï - (I*r",+za,) n-, + (t* 3,,* 3u,) ,"-*f u*@)

(3.44) :Ëiv(") -R"(n)e¡¡(n +1) -R5(n)e¡¡(n),

which can also be written as

(3.45)

, - (; * 2at + zbt) n-I

(t * l",* 3u,) 
pi)**@)

: Ãh(z) - R"(n)e¡¡(n + 1) - R6(n)e¡¡(n),

I
L,e¡¡(n+1) - lL-tr,

L

+

(3.46) 0(n):! --,tn-, - (;*2a1+zbt)n-, + (t * 3", *?u,)ln-î,

with Ae¡(n): eu(n + 1) - ,*(n).For convenience, we introduce the notation

and

(3.47) q(ew(n * 1),e.¡y(n),n): Rio@) - R.(n)e¡¡(n + 1) - R6(n)e¡¡(n).

Equation ( 3.45) then becomes

(3.48) Le¡¡(n + 1) - 0(n)Le¡¡(n) : q(r*(n * 1), e;s(n ), n ) .

To show that the formal se¡ies solution ( 3.34) is asymptotic, it sufficies to prove

that equation ( 3.44), or equivalently equation ( 3.48), has a solution e.¡v(n) sat-
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isfying

(3.4e)

Considering ( 3.48) as a first-order linear nonhomogeneous equation, one

can formally derive the equations

ææ
(3.50) ,*(n): Ð Ð0-,(i)0-1U + 1) . . .0-r(j)q(rr(r -t r), e¡¡(j), j) ,

i=n j=i

where 0-t(j) : tl0(j), and

oo i-l
(3.51) t*(") : - Ð ÐeU - r)0(i - z)... 0(j + r)q(r*(j * 1),e¡v(j),j),

i=n j=!

whereitis understood that 0(i-I)0(i-2)...0(j + 1) :1when j:i -1. It

is easily verified that every solution of ( 3.50) and every solution of ( 3.51) is a

solution of ( 3.48). Now recall that the constant 7 in ( 3.34) has two possible

values given in ( 2.17). We shall show that when Re 7 ( 0 then equation ( 9.50)

has a solution satisfying ( 3.49), and that when Re 7 ) 0 then equation ( B.rt) has

such a solution. This will complete our investigation of the subnormal solutions.

In this section, \Ã/e are concerned only with the case Re 7 ( 0. Before

proceeding, we first record some preliminary results.

LEMMA L Forpositi,ae'integers j>i>l,thefunct'ion0(n) i.n ( g /16) sat'isf,es

40

,*(n) : O ("-+) ) as 7L---+ oo.

(8.52) 0-1(i)0-1(i + r)... 6-t(r) : et,(ri-ú) íllr + o (n,,,)),

as i --+ æ, where the O-term is un'iform with respect to j.
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Proof: First we recall the well-known asymptotic formulas ([11] p.292)

(B.bB) fr*((-"):#*o(n'), n-,æ,

and

(3.54) 
Zl-losntc+o(z-t), 

rL---eoo,

wlrere ((z) is the RiemannZetafunction and c denotes the Euler constant. Since

ios(1 - *):-æ-j-'iO(æ3), æ-0,

and the fact that 'y2 : -4(o' + b2), we have from ( 3.46)

Upon summation, we obtain

j
(8 55) -Ëto* 0(k):11 (rfr -,tù + |r"s (Í) -r o (;-+), i - oo,

k=i

uniformly for j ) i > r. The result ( 3.52) now follows from ( 3.55) by exponen-

tiation. !

LEMMA 2 For Re1 10, I # 0, andff ) 1, we haue

(3.56) i"'''("tt-ú)i-i-,
j=i

rosl(k): -1tc-ï - T*' + o (te-*) , k-- æ.

: -!nî-ï + o (ni-') , 'i --+ oo.'t\
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Proof: Recaii lhe Euler-Maclaurin formula ([1t] p.28t)

42

/(0) + . -. + f@) : Io" f@)aæ+ ]tffol + f@)l * 1," 
u1(æ)f'(æ)d.æ,

where the saw-tooth function u1(æ): x) - l"]- T,læ] is the greatest integer less

than or equal to ø. Applying this formula to the function

f @) : "21(J'+;-'rt)(r * l-l-t,

,r(
"rr(J, 

-ú) *- I -, d,* + I¡- + -t

+ l* a{æ - lftl"rtt'-^n)*-i-t]aæ.

7 ( 0, we obtain---¡ oor in view of Re

Ji-ú);-+-1 : f*r I.¿z

and letting

æ

f"
j=i

(3.5 7)

Making use of the fact that lú1(æ - ,)l < 1, the last term of ( B.5z) has the

estimate

ll,* 
o,(. - ù*1"'''{'r'-'n)--+-'l a-l

I s-2a^,G l,- l*lez.,r;,-t-'llo"= (t - ry) i-t-,,

where ø :Re 7. Integration by parts twice gives

ir oo

l* "r-,(,t;-^fr) 
r-!-t d,æ : _!n +-ï + o (n-+-')

7

Coupling the last two results, we obtain the approximation ( 8.56). n
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We now return to equation ( 3.50), and defi.ne the successive approximants

ho("): 0 and

(3.bs) h,+,(n):Ð_it-,(i)0-1(i+ 1). ..0-'(j)q(h,(j + L),h,(j), j),

for s : 0, 1,.... In particular, we have

(8.5e) h,(n): ËËr-'(z) ...i.-,U)RhU),
i=n j='i,

where Ri"U) is given in ( 3.a0). From ( 3.37), it is readily seen that Ã.¿y(n ) has

an asymptotic approximation

rvhere c is some constant whose exact value is immaterial for our purpose. Hence

( 3.40) gives

(3.60) Æîo(") : -"r-l-i- + O ("-+-') .

Inserting (3.60) in ( 3.59), and applying Lemma t, we obtain

43

R¡v(n): cn *-* + O (n-i-') ,

- l-
lh,(")l r l"lÐ lÐ "'',(ri-ú) j-i-'¿-i

. t.z:n lJ=z

* Ë Ë lo Q-+-*) n-ål
L=n J=tr

Applying Lemma 2, and making use of ( 3.10) and ( 8.11), we obtain

hr("):O("-i).
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LeL M be a positive number such that

lä,(")l , lhr(" + 1)l < Mn-* .

ln view of ( 3.a3) and Lemma 1, itis possible to choose P > 0 so that

l*"(j)l +lÃb(j)l<pj-'

and

for j ) i > L. A combination of ( 3.58) and ( 3.47) yieids, by induction,

44

le-'ç¡e-,1i + r) ...l-'(j)l < p

lh"+r(n + 1) - þ"(n f 1)1, llr"+t(n) - h"(ùl

. ,l ,tuþ' 
'l " 

- rv

=" L^(/ú+Ðl " ',

if. n ) ro(//) for s : 0,I,2,.' . . Now we choose l/ so that

16ß2

1q¡i+Ð<1'

The series

,r(r) : ,lirå h"*r(n): Ë lh,+r(n) - h"(n)l
¡=0

is then uniformly convergent in z, and its sum t*(n) satisfies ( 3.50) and ( J.4g).
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3.4 Case 2 (ii)

When the constant 7 in ( 3.34) has a positive real component, then the series

in ( 3.56) is divergent and hence equation ( 3.50) cannot be used to establish

the existence of a solution of ( 3.a8) satisfying ( 3.49). In this case, we shali use,

instead, equation ( 3.51). Define the sequence {h"(n)} of successive approximants

byñ.6(n) :0and

h"¡1(n):
æ i-I

(3.61) -t Ð 0(i -Ð0(i -2)...0(j + r)q(h,(j + r),h"(j), j),
i=n j=I

whereit is understood thaf 0(i-I)0(i-2)...0(j + 1) : t when j: i,- 1. From

( 3.52), we have

0(i - 1)0(i - 2). ..0(i + 1) : ¿zt(Jt+t-J;T) {i-I! lt + oç¡-,r,¡1 ,

as j --+ oo, uniformly with respect to i ) j + Z. Noting that

45

l"r-,r^-r=)^li-ltl < Ji"ro"ro(Ji-$-\ t- i
l" \/cLl\v¿c e "- v;7'

where a :Re 7, thus it is possible to choose a constant P > 1 such that

l\(i - 1)0(i - 2)...0(i+ r)l s B"'"(Ji-,Ã-) ^[ r'\¿_ t'

for¿)j+I,

lBî"(i )l < pi-+-+,
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and

l&"(j)l+lau(j)ls pj-,

also holds, when j > L. From ( 3.61) and ( 3.47), it then follows that

æ i-l
lh'(")l < p'\ e-z"J;t (, - q-ttz I ez"Ji ¡-I-t .

i=n j=I

Using the Euler-Maclaurin formula, it can be shown that

i-r
I ez"Ji ¡- f -r < Mo"roñ (; _ t¡-i-i
3=l

for some constant Il[o ] 0, and i 2 n > zo(1ü). Therefore

46

lh,(n)l s Moþ'Ëfn - 1)-î-r saM-^'rþ'n-*
i=n ¡r

for sufficiently iarge n, n ) ro(l/). By induction, the same argument gives

lh"+,(n) - h"(ù1, ltt"+t(n+ 1) - h"(n + Ðl < (ry)"*',-*

for z ) ,o(tr). As before, 'we now choose N > 4Mop2 so that the series

,*(n): ,lirå h"*r(n): Ë [h"+r(n) - Ir"(n)]
¿=0

converges uniformly in n, and its sum e(z) satisfies ( 8.51) and ( B.4g).
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3.5 Exceptional Case (i)

In $1.5, we established the formal series

Y(n) : p^r"icutu-".
a=0

Without loss of generality ìü¡e may assume that p : 1 or equivaiently, oo - -2
and ós : 1, as in the last two sections. From ( i.8), it foliows that

(3.62) q!\-0.

As in the previous section, we set

( 3.63 ) s(n):Lu(")-lE¡,¡(n)

with
N-1

L*(n): Ð c"tuo-".
s=0

Using (2.23), it is easily verified that

Lt¡(n + 2) + ø(n)L¡¡(n + 1) + b(n)L¡¡(n): n"Rw(n)

where

RN("): o (n-*-') , as r¿ -) oo.

IIence

(3.64) E¡v(n + 2) + a(n)E¡¡(n + 1) + b(n)87ç(n) : -n* Rn(n).

47
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If we write

E¡o(") : noew(n),

then eiy(n) satisfies the equation

(3.65) en(n * 2) * a.(n)e¡v(z + t) -f b-(n)e;v(n ) : Rîu(ù,

where

o*(n) : (" -t!r)" o(n),

b(n):(#)*u(n),

and

(3.66) RiuØ): - (h)-a,1,,¡

Recalling that we have assumed p:1 or, equivalentiy ao: -2 and b6 : 1, using

( 3.62), a simple calculation shows that

( 3.67)

(3.68)

o.(n) - -2 * (2a * a1)n-1 * R.(n),

b"(n) : 1 - (2a I a1)n-1 * R6(n),

where

(3.69) R"(n), Ru(n): O ("-') ,as rL --+ oo.

Furthermore

(3.70) Rîu@) : o ("-') 
' 
as r¿ -+ oo'



CHAPTE,R 3, EXISTENCE THEOREM

Inserting ( 3.67), ( 3.68) in ( 3.65), we obtain

ery(z* Ð+l-2-t(2arar)n-lle¡,¡(n* 1) + 
11 -Qota)n-r)r*@)

(3.71) : Êi¡(r) -R"(n)e¡¡(n +1) -R6(n)e¡¡(n),

which can be written as

(3.72) Le¡¡(n + 1) - O(n)Le¡¡(n) : q(u*(n * 1), e¡y(n),n) ,

where

(3.73)

and

Ae¡y(n) :e¡¡(n+1) - ew(n),

0(n):I-(2a+0.7)n-1,

q(ew(, * 1),e.¡y(n),n): Riu@) - R,(n)e¡¡(z + 1) - R6(n)e¡¡(n).

To prove that the solution U@) -Y("), it suffices to show that

(3.74)

By considering ( 3.72) as a first-order linear nonhomogeneous equation, one can

formally derive the equation

æoo
(3.75) r*(n): ÐDe-'U)0-1(i+ 1). .. s-'(j)q(r*(j -t 1),e¡¡(j),j).

i=n j-i

49

tt(t) : o ("-") ' as r¿ -+ oo.
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It is easily verified that every solution of ( 3.75) is a solution of ( 3.72). To solve

the equation ( 3.75) rvhich satisfies ( 3.74), we frrst prove the foilowing analogue

of Lemma 1.

LEMMA 3 For posùt'iue 'integers j > i > L, the functi,on 0(n) i,n ( g.7S) sati,sfies

(3.76) 0-1(r¡a-t1i + t)...0-'(i) : (+)'o*"' [, + o (;-')] ,

as i - æ, where the O-term ,is uniform with respect to j.

Proof: We first recall the well-known asymptotic approximations

50

n-l 
-2 1

Y.lr-'- !-- !+o@-'), n--+ æ,
-6nE=I

and
n-1

Ðk-t - log n+c+O (n-L), ,rL---¡ oo,
k=7

where c denotes the Euler constant; cf. ( 3.53) and ( 3.54). Since log(1 - æ) :

-æ * O (*'), as ¿ -) 0, we have from ( 3.73)

1os0(k): -(2a+or)lr-'+O(te-z), k ---.¡ oo,

where the remainder is uniformly bounded when k > I.

Upon summation, we obtain

J

- i to, 0(k) : (za + øi)los (í) - o (u,) , i---¡ oo,
k=i

uniformiy for j ) i > I. The resuit in ( 3.76) now follows by exponentiation. tr
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We now return to equation ( 3.75), and define the successive approximants

lro(n): 0 and

(s.TT) h,*,(n): Ë Ë 04U)0-1(i+ 1). ..0-,(j)q(h"(j + L),h"(j), j),
i=n j=i

for s : 0, 1,... .. \Mhen s : 0, we have

(8.28) h,(n):Ëio-'(i)...l-'(j)Ri,¡U)
i-n j-i

where RioU) is given in ( 3.66). From ( 3.70) and ( 3.75) there is a positive

constant M1 and a positive integer z1 such that

(3.7e)

and

(3.80) la-(j)l s M,j-*-r,

for j ) i) n1, where ø: Re (2a* a1). Consequently,

(3.81) lh,(n)l S MiË Ë ¿-Qa+at)¡-N-2+a
¿=n j=i

for ail n ) n1. Let y'/ + 1 > o and prrt P :4M?, choosing ro(¡/) ) n.r so that

two applications of ( 3.11) and ( 3.81) give

51

-lþ¡e-tçt+ 1) . ..|-,(i)l s u, (+)" ,

lå.1(n+1)1, lhr(ùl .r,^, 1. ,n-*,'-¡l(¡/*I-o) '
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for ail n > ns(N). In view of ( 3.69), the constanl Ml and integer ni in ( 3.79)

and ( 3.80) may be chosen so that

lil"(j)l + lfub(j)l S M,j-'

for j > 21. Induction then shows that

if. n ) ro(l/) for s : 0,I,2,..'. As long as 1ü(¡/ + 1 - ") > B theseries

,*(r): 
"llrg 

h"*r(n): Ë lh"+r(n) - h,(n))
¿=0

is then uniformly convergent in n for n ) ns(N), where we first fix l/ and then

clroose ro(l/) )21. Thus the sum of e¡y(z) satisfies (3.74) and (3.75).

For each zero a. of the indicial polynomial ( 1.10), the above construction

provides a solution to ( 3.75) and hence a solution to ( 3.71). Since, in the present

case, ( 1.10) has two distinct zero a1 and 02 and dz - 04 is not an integer, this

establishes the existence of two asymptotic solutions to ( 1.a) both of which are

of the form ( 2.24).

52

lh"

I

llr,+r(n + 1) - h,(n -l L)1, +r(z) - IL"(

p c*1

tu-N,

")l

")¡,/(^/ + 1 -
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3.6 Exceptional Case (ii), (iii)

In these cases, one of the independent solutions U{n) was proved in the previous

section to be the asymptotic form ( 2.24). We set the second solution

(3.82) az(n): Ï d.,noz-" + E¡¡(n) t cs1(n)tog z,
s=0

cf. ( 2.25), where we assume as in the previous case, without loss of generality,

that p: 1 ot equivalently as : -2 and óo : 1.

In case (ii), p - ot2 - a1 is a positive integer, c and the coefficients d" are

given by ( 2.38), ( 2.35), (2.37) and ( 2.39). Substituting ( 3.82) into ( 2.1) gives

(3.8r) L{y,(n)}:, 
{Þj 

d.,.r¿oz-"} *. {E*(n)} + ct {a,6¡logz}.

Refering to the formulas ( 2.31) and ( 2.32) we have

(\1 I rv+r
(3.84) L1Ðd,"Tloz-" f : I Za(s)noz-" *O(n',-t-,) ,(=õ ) l=,

where the notation

write 

g{n): 
tf' 

c,¡¿dt-s * o (n',-w-z¡
g=0

53

z¿(") :"-f_-þ'-' ( ": - i ) 
-, 

E (,: ;:,) o, + u,-ifai
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where o¿2:dr*pand

which is exactly of the form ( 3.64) with e. : o¿2. Ilence the existence of a solution

to ( 3.86) satisfying

54

tog(n + p) :tog z *'Ë, " 

=A 
e)" + o (n-@*,-o))

Then we have, after many computations,

L {u'@)los z}

(3.85) : [{ar(z)}logr,*tîo y"(s)n-'-" *o (n',-w-z¡
e=2

where

Y("):i f i (-r)"+-'-¿

,=1,\?= s _ r

lrr"-o 
(i,_ i) *, 

_=r=("; _ i),=-)\",,

for trl ) oL2 ai * 1; cf.. ( 2.32) and ( 2.30).

Upon substitution of ( 3.84) and ( 3.85) in ( 3.83), and noting that g1(n) is

the solution of equation ( 1.4), in view of the recurrence equations fot d" and c,

we obtain

t {E¡¡(n)}

(3.86) : Ew(n+2)+a(n)E¡¡(n+1) + b(n)E¡¡(n):o (r',-"-') ,

E¡o("): O (n"-*)
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is guaranteed by the construction provided in previous section.

The analysis in the case where o¿1 : e.2 is done in a manner similar to that

given above. It needs to be noted that in this case do: dt: ... : d,q_e,:0,

c, and du for s > Q - 2 aregiven by ( 2.a!-( 2.46),a2 is replaced by ai and ly'

should b. > I - 1, where Q is defined in ( Z.4I).

3.7 Examples

Example L Behaai,or of the Legendre Polynom,ials of large d,egree.

The Legendre porynomials P.(*) satisfy the recurrence relation

(n -12)a^+r(*) - (2n * B)*y-*r(') + (n * I)u^: 0,

(3.87) n:-I,0,1,...,

for all æ. The behavior of p"(*) as rL ---+ oo for fixed z may be studied by

considering the possible behavior of solutions of ( 3.82) as n. --+ oo.

( 3.87) can be changed to

u-+z(æ) I a(n)y-*t(r) + b(n)g^(æ) :0,

where

55

2n*3
a(n) : -ffit : -Zæ I æn-7 - 2æn-2 * 4æn-3 + O (n-a),

b(n) : #- 1 - n-r + 2n-2 - 4n-" + o (*-^) .
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Thus the characteristic equation is

P2 -2æP * 1:0

which has two distinct roots if æ + l, namely

and

-ær/æz-t-t

Pt,z:¿¡f*z-7'

Note that if læl < 1, then hpís complex. We know that two normal solutions of

the form ( 1 7) can be obtained. a¿ and 
"!t) "uo 

be determined from ( 2.4) and

( 2.5), i. 
". ,

atPlh i
q? 

- 

- 

: 
--- atp*2bo 2

and

(;\(t1\
--t.- \a('P' )- 8)

Thus we obtain two indepe'dent normal solutions of ( B.8z), namely,

u-¡(r): (æ + J-' - ùn n-I

{'* il" +- -,] ,-' +o(*)},

56

a^,2(æ) : ('-

{'-, å -' -t] ,-'+o(",)j
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By comparing the behavior of the Legendre polynomials [i0]

57

P^(*) - (2trn)-i(*' -

P-(*) - ( - 1)'(2 rn)- i (r' -

while for læl < 1

-t/1)-; (-æ + J;, - r)-+i , rz--æ, æ1-L,

r¡-l (æ + ^+,
, flè oo; rlI,

p,(cos ù : (--Z-)å ,io (no +
\ 7T7Z Sln A ,/ \

we find that

T"*I")+o@-1)

P-(*) : (2tr)-i(*' - r¡-å (r +

P-(*): (zz-)-i(*, - r)-å (-ø +

æ)I,

æ 1I,

and

p,("os ù : *(-Ð 
i 

¡"i,*i*nr(cos a) - "-*o-å*sr(co, a)] .

Example 2 Behaaior of the Laguerre Polynomials tf)çæ¡ of large d,egree. The

Tecurrence relation for the Laguerre Polynomials , is

ç"+t¡sf],(') * (æ -2n- p - t)yf)(*)-t(n-r Ðsf),(,) :0,

foræ)0.

Changing this into the form of ( 1.4) gives

J,, - r)' ,,1'¡,

_, 1

læ2 - t)" yz(æ),

of],@ + a(n)sf],(,) + b(n)yf)@) : o,
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where
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a(n):

We find that the characteristic equation

P2-2P*1:0

has double roots p1,2 : 1 which do not satisfy the auxiliary equation for æ f 0.

Thus the subnormal solutions are given by ( 1.g), where -yt", ak and c!È) (k : r,2)

are from ( 2.I7), ( 2.18) and ( 2.Lg), i. 
". ,

-+Ji - -2.-+l] -z(æ -.F +t) 
+ o (n-s) ,

b(n):+#-1+ +-ry+o(,4)

, ^ I "o"t - zb| : t2t[:æi.,-tk: Í"U 
2b,

pi
L¿ 

- - - -.24',

and

"\o) 
: +#G (n*, - rzp, - 24æB - 2aæ + B) .

Thus the formal solutions are

ufì@ - "+zJ'"in|-I

{t * 
"G 

(n*' - r2B' - 24æB - 24æ * 3),-++ o (,-')},

for k: I,2.
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Refering to the behavior of the Laguerre polynomials 
[10],

59

Lf)(*)

: n-îeiæ-"-in*-ï ,o,(r^ - + -î) {r + o ("-å)}

+tr-î ei æ-9-ïns-î ,t^ (rJ;a - + - î) o (,-ï) ,

we have

r,ftçæ¡ : 'r*-, "i *-9-* 
{,-( 

+*+),sn(,Xl - ù + "(l+î),uf)@)(L + ;l}



Chapter 4

Forrnal Solutions (2)

4.1 Introduction

So far we have dealt with the case in which M. < 0 and Mu : 0 in the equation

(4.1) u(n -r 2) I nM"a(n)E(" + 1) + nMob(n)y(n) : 0,

where ø(z) and ö(n ) have poïyer series expansions of the form

n(n):Ðo,n-', b(n):Ðb"n-'
a=0 ¿=0

for large values of n, and ao I 0, bo I 0. For the general situation where Mo and

M6 are arbitrary integers, the method of deriving formal solutions that we shall

use vùas introduced bV C. R. Adams[l] who applied it to equations of any order.

The transformation

(4.2) æ(n) : n^n"-^ng(n¡

will change equation ( a.1) into

(4 3) *(n + 2) ¡ nM"+tãL(n)æ(n + 1) + nMo+r^i(n)æ(n) : g,

60
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where

(4.4) a(n): (H)À(n{r) (+)^ "-^o(n): a(n) {r + o(,-,¡},

(4 5) iç,7 : (+)- (+)'^ "-,^b(n) 
: b(n) {r + o1,-1¡}

We find that the leading terms of the three coefficient functions in equation ( 4 3)

are

(4 6) 1, asnMolÀ and bsnMo+\.

\Me can choose a suitable ), such that two of these are of the same power while

the other is lower. If we have two such À's, the characteristic equation

may be replaced by two characteristic equations each of which is associated with

each ). The characteristic equation can be given by taking the term in equation

( 4.7) whose coefficient is associated with the lower po\4rer in ( a.6) out of the

equation. The choice of À depends on whether

(4 7)

(4 8)

is zero, or positive or negative.

(1) When K :0, we choose

P2tøoP*óo:0

K:ZMo-M6

À: -Mo
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so that equation ( 4 3) becomes

*(n + 2) + ã.(n)æ(z + 1) * b(n)æ(n) : s.

It is clear that this case is included in Chapter 2.

(2) When K ) 0, we choose
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(4.e) Àt : -Mo and Àz: Mo - M6.

Therefore equation ( 4 3) becomes

(4.10) æ(n * 2) + a(n)æ(n + 1) + n-Kt(n)æ(n) : s

OT

(4.11) *(n + 2) + nK â(n)æ(n -r r) + nKb(n)æ(n ) : 9

respectively, corresponding to each À. As the degrees of the coefficient functions

in (a.10) and (4.11) are zero and K respectively, we shall show that the charac-

teristic equations associated with each À are

(4.r2) Pt I ao:0,

and

(4.13) pzao * óo : 0.

The normal solutions for both ( 4.10) and ( 4.11) were shown by Ad,ams to be

(4.L4) æ(n) - pTro'î"r,r-", rL --+ æ) i : I,2,
¡=O
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where p; associated with each À¿ satisfies the characteristic equations ( 4.12) and

( 4.13) respectively.

(3) When K 10, we choose

(4.15)

Equation of ( a.3) becomes

Àr:)z=-Mul!.

*(n + 2) + niK a@)æ(n + 1) + t'("¡*1.r-¡ : g.

With the same reasoning, the characteristic equation is
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(4.16) p2 * bo: 0.

It is easy to see that the case in which K is even is included in Chapter 2. When

K is odd, the subnormal series solution was established by Adams (p.512) to be

(4.I7) æ/n) - pT.t;^/,-no;i"lÐn-t, rL --+ (n, ,i -- L,2,
¿=0

where p¿ is the root of the characteristic equation ( 4.16). I{e also pointed out

that the exponential factor will probably disappear. We shali find out in $4.3 that

this occurs when K < -I and odd.

It is noteworthy lhat Adams proved the existence theorems about the nor-

mal and subnormal solutions ( 4.I7) and ( 4.14) except when lptl : lp2l and

.y.í + 0 ([t] p.5t3), which will happen when K : -I in our problem.

According to C. R. Adøms[l], the choice of ) has a very simple geometric
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interpretation. Let m -- max{O, Mo, M6}, lhen

Ss(n)y(n + 2) + S{n)s(n + 1)

express equation ( a.1) as

* S2(n)s(n) : 0,
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where

,90(t) : v¿-n :

Sr(") :,rLMo-^o.(r) : Ð Sr,¡n-i,
j--o

Sr(n) : nMu-*b(r) : Ë Sz,jn-i,
j=o

Ð So,¡n-i ,
j=o

So,^ :7,

St,^-ttt.: aot

Sr,^-Mo: bo.

Thus -rn, Mo-rnand Mu-m are non-positive, and at least one of themis zero.

If we denote by S¿,¡, the coefficient of the leading term of Sr(") ('i : 0,1,2 ), we

have

jo : m, ir: rn - Mo, i, : ,n - I[u.

Choosing i- and j-axes, and plotting the points A¿: (i,, j¿) oo the plane,

we may construct a broken line, convex upward, such that both ends of each

segment of the line are points of the set ( i, j; ) and all three points of the set lie

upon or beneath the line. At least one of the points is situated on the i-axis (

see Figures 1 to 11). Thus, the pamameter À can be chosen as the slope 1 of any

segment. Therefore the coefficients of the characteristic equation associated with

À or consequentiy, with each segment, are the 5;,r., corresponding to points L¿

actually on that segment, and the coefrcient corresponding to a point á¿ beneath

lln the paper of C. R. Ad,øms [1], it may be a mistake to chose À as the opposite sign of
the slope. For example, in his paper, formula (8) will agree with (9) oniv if one exchanges the
positions of funtions J(æ) and 9(æ) in (8).
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the segment is zero. ( see C.R.Ad,ams [1] p.5t1).

of segment A¿Ai, we have

IAoAr:jr-jo--Mo,

IA,A, :

lA,Ar:jz-jr-Mo

Then in (1), in vieu' of ( 4.8), K : 0

that I¡o¿, : IA,A, : IArA, i. ". At,

1,2,3). À should be chosen as

oÐ

lf we denote lar¿, as the slope

2'

-Mu

tuIul2 - Mu - Mo. This implies

As are on one line. (see Figures

M6Jz-Jo

or Mo:

A2 and

Àr:Àz:lAoAr--Mo.

The characteristic equation is ( a.7). In (2), K > 0 or Ma , ttIul2.This implies

that Al is situated above the line l¿,'-dr.( see Figures 4,5,6,7,8 ). Thus we choose

\t: l¿o,q, - -Mo and )z: Itr¿r: Mo - M6

For 11, As and A1 are on the line /¿o¿, and A2 is beneath the iine. The corre-

sponding coefficients of As and A1 are 1 and as. Thus the characteristic equation

associated with À1 is ( a.12). Accordingly, the characteristic equation associated

with .\2 is ( 4.13). In (3), K < 0 or Mo . ttIulZ. This impiies that ,4.1 is situated

beneath the line I¿,0+ ( see Figures 9,10,11 ). Thus we choose

Àt : Àz : IAoAz : Mu
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The characteristic equation is therefore ( a.1O). When A6

below the segment I¿u¡., Adams ([i] p.StZ) pointed out

factor in the formal series ( 4.17) vanishes. This is just our

66

is one unit verticallS'

that the exponentia.l

case wlren I{ < -1.

F II:iUFJES
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Finally in this thesis, inspired by the famous Sti,rli,ng formula

TLl. - nne-nrÆ;;,

we use the transformation

(4.18) æ(n) : [(n - 2)t]^ s(n)

instead of ( a.2). Thus equation ( 4.1) becomes

(4.19) æ(n + 2) ¡ nM"+xa*(n)æ(n + 1) + nMu+2^b*(n)æ(z) : 6,

where

co

(4.20) o*(n): lain-" : a(n),
a=0

æ

(4.2r) b*(n):årr,-, : b(n) (+)^ : å {n,-t), ( } ) 
u,-,},-,,

for large values of n, and aö -- ao + 0, bä: bo # 0. It is clear that ( 4.21) and

( 4.20) are simpler than ( 4.4) and ( a.5).

4.2 Case 1-, K > 0

In the case where K : 0, as described in condition (1) in the preceding section,

) may be chosen as -Ilt[o. Then ( 4.19) becomes

oi

*(n + 2) * a*(n)æ(n + 7) t b(n)æ(n) : 0,
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where

(4.22)

(4.23)

o.(n) : o(n),

b-(n) (-y"

68

:å{Ér-'r'
) 

u,-,) '-', TL ---+ æ.

As ófi : bo I 0, this case is included in Chapter 2. The normal or subnormal

solutions may be obtained according to the properties of characteristic equation

( 1 6) , or auxiliary equation ( 1.8), or indicial polynomial ( 1.10) in Chapter 2.

In the case of K ) 0, it has been pointed out that À1 - -Mo and À2 :
Mo- M6 may be chosen for the transformation ( 4.18). When À: -Mo, ( 4.19)

becomes

(4.24) *(n + 2) -t a"(n)æ(z + 1) ¡ n-K b*(rt)æ(n) : g,

where o*(r) and ó*(z) are the analogues of (a.22) and (a.23) in which eä: d.o # 0

and ófi(n) : bo I 0. To show that the infinite series ( 4.L4) is indeed a formal

series solution of equation ( 4.24), we substitute it into (4.24). Let L denote the

linear difference operator

L {X(n), À}

: x(n + 2) + nM"*Ào*(n)x(n + r) ¡ nMu+z^b*çn¡x1r.¡,

and make use of formula (2.2) and ( 4.23), we have

"-i Is-J )

L {X(n), -M"}

:å{åþ",,( - 
Ð ( î -i) "r-,1 

,,j p^*'n'-'
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(4.25)

In the last term above if we use the transform I : I - j andthen repla.. iby / io

the result, we obtain

.å 
{å 

bi-¡c¡},^n -*-"

: 
å {å þ,,, ( :- i) .nG -l) ",-,] ",} p-*,n--"

.å 
{å lÐ,-',' (-Y" ) n-,-,] ",}p*n 

-*-,

L {X(n), -M"}

: 
å {nl,-',( :- l) .= ( ; -í),"-,]",} e-*'n*-"

-'å 
{å iå,_,,,-,(;!;) 

,,_,] "o}p-n 
_*_"

F-1,'-,n( :_ i).Ð,(î_í) .,-,] 
",

."nl:i,-','-' (;!; ) 
u,---,] ci:0,

(4.26)

Equating the coefficients of terms with like pov/ers of n to zeroj we obtain

(4.27)

and

s:0, 1r....K-\,
Ð"1,"-',( :- i).zG-l)""-,] ci:0,

(4.28)
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for s:K,K+1,. . ..

When .s : 0, ( 4.27) reduces to the equation

(Plas)cs:g'

By assuming c6 : 1, we obtain the characteristic equation ( 4.I2).

To determine a and c", it should be considered whether K : 1 or not.

When K = I, a may be obtained from ( 4.28) for s : 1, which is

(2p'o * par l paas* ó¡)cs : g.

In view of ( 4.L2), we obtain

(4.2g) o:9- 
r+,

We note that the coefficients of c, and c,-1 in ( 4.28) are, respectively, p2 * poo

and

2p'(o- s * L) + plo, + (o- s * 1)øsl + óe.

In view or ( a.n) and ( 4.29), these are in turn equal to 0 and (r - s)a!. Therefore

( 4.28) can be w¡itten as

cs-, :G_; 
{,i þ'' ( :- i)", Ð ( î-i)o.-"-,

(4 so) +i](-,), , (;!; ) 
u"-,-,] ",) , s:2,8,

When K ) 7, a can be obtained from the reiation ( a.27) for s : 1, i.e.,

70

(2pa -f 04 + o¿o,o)co i (p * øo)ci - 0.
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In view of ( 4.72), we have

(4.31) o : 9.
Ag

Observe that the coefficients of c, and c,-1 in ( 4.27) arc p + ae and

2p("- s+1) *at* (o-"*1)øs.

These are in turn equal to 0 and oo(r - 1) on account of ( a.n) and ( 4.31).

Therefore from ( 4.27) and the fact that p - -clo,¡ we obtain

ca-,:4*T 
{Ë1,_'*(î _j)

Ð ( î _i) .,_,] ",) ,

(4.32) s:2,3,...,K-I.

Similarly, observe that the coefrcients of c" and c,-1 in ( 4.28) are p2 * pas and

2p'(o- s * r) -f pq + p(d- s * 1)ø6.

These are in turn equal to 0 and o\G - s). Thus in view of ( 4.28) and ( 4.I2),

we obtain

ca-,:#Ða{,-i 
[,' '"t(î-i) å ( î-í),*"-,f",

.:i lä'-"'-'(;!;) ''---'] "')
(4.33) s:K,K+I,....
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Thus we obtain one formal series solution by inserting ( aJÐ into ( 4.18).

Another solution may be derived by choosing À : Mo - Ma Equation

( 4.19) changes to

(4.34) *(, + 2) * nK a"(n)æ(n + 1) + nKb-(n)æ(n) : 0,

where

72

(4.35) o*(n) : o(n), aå: ao I 0,

(486) b.(n) : å{å,- ry ( ,*u )u,-,},-", b6:bot0

for large values of z. Similariy, substituting ( 4.L4) and ( 4.36) and ( 4.35) into

( 4.34) gives

(4.37)

L{x(n),Mo - Mu} :å 
{å 

,"-' (î _l ) ",} on*2,,a-s

.å 
{å lå (,".-, 0-l)

+(-1),-' (*i _y, ) u,-,) ct]| P'n*+x-".

Letting the coefficient of the ieading term in ( 4.37) be equal to zero, we obtain

the characteristic equation ( 4.13). Generally, equating the coefficients of terms

in ( 4.37) with like povüers of. n to zero, we have

å {Ð 1,,"_,ft_l) *,_,,,_,(*i_1, 
) 

u"_,] 
}",: 

o

(4.38) s:0,L,...,K-I,
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and

È7D
¡ .)

(4.3e)

t"i z"-K-i ( 
" 
:;,_ ,) ",*Ð-{å [r,,- 

,(; _í)

+ (-r¡,-i (*; _{, ) n_,] 
} 

., : o,

s:K,K+1,....

When K:1, a can beobtained from (4.39) for s: l whichis

lo' + eor* ór * Paoa - (M" - Mùbol co I [pao+ ó0] c1 : 0.

In view of ( 4.13), this produces

(4.40) o:b)*9- 9+Mo-Mo
Og O"O Ag

Since the coeficients of c, and c,-1 in ( 4.39) are pa,s + óo and

p' + por* år * pao(a- s * r) - (M" - Ma)bo,

and consequently, these are in turn zero and (s - i)óo on account of ( 4.13) and

( 4.40), \rye may obtain the recurrence relation from ( 4.39), i. 
". ,

ca-L:#Ð 
E{""-'-' ( 

' 
:"- r)

- fÉ 0""-,(î _i) * r-,r,- ' (*i _1, ) 
,,_,] 

) ",,Lt=j

(4.41) s:2,3,....
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When K )7, a can be obtained from (4.38) for s: l whichis

lpo, + h I paoa - (M" - Mu)bo)co * lpao* ó6] c1 : ¡.

In view of ( 4.13), this leads to

(4.42) ":b;-9!+Mu-Mo.

Since the coefficients of c, and c"-1 in ( 4.38) and ( 4.39) are zero and åe(s - 1),

we obtain the recurrence relation from ( 4.38),

cs-'7:ilå,-ì 
{å lo""-'(; -l)

(4 4s) +(-1)¿-i ('; _ y') ,,-,] 
) ",,

s:2r3,...,K_L,

and from ( 4.39),

cs_7:-+ 
{"r,_-rr-"-, 

( ,:Kt_,)",ôo(s_

.,i 
[å (0""-,G-l)

(4 44) +(-1)¿-i (*; _ f, ) 
,,-,)] ",) ,

E:KrK*I,....

Thus from (4.18) and ( 4.14) we obtain the other formal series solution.
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4.3 Case 2, K ( 0 and Odd

We next consider the case K < 0 and odd. Condition (3) in $4.1 tells us that

when choose

\ -\ 
M6

/r7-/12-- 
2,

( 4.19) becomes

(4.45) '(n + 2) + niK d,*(n)æ(n+ 1) + b*(n)æ(n) : 0,

where

(4.46) o*(n) : o(n), a[: as f 0,

(4 47) b*(n) : 
å {å,- ', 

(-*;t, ) 
u"-,},-,, bå: bo t 0,

for large values of n. We shaJl show that ( 4.LT) is indeed the formal solution of

(4.45) andT:0when K <-1.
Upon substituting ( 4.46), ( 4.47) and ( 4.17) into ( 4.45) and making use

of thenotation Glr)0)of (2.7) andF,(e)(a) of (2.11) inchapter2,wehave

r {x ç*¡, - +} - ",6 pn n" 
{å n 

lÐ^cl,),11¡ 
r{,t ç,¡] *- t

*Ëo f;tçu ,iÐct!,h)e[-t1,¡] ,"+
a=0 [t=O 

o ' O=, 
-J

.å tå.-s'Eu+",)"-r\

(5

(4.48)

Substituting the expansion of F[u)(a) into ( 4.48) and changing the order of
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summation signs yields
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/ '-i
(,=

(-1
2

+

(4 4e)

æ [,pt It
a=o fj=o

I 1-r
t¡l

q-- j+t

r {xç*¡, -+l : "',r^p-n

{I [å (,' å =5*'* ( ö - íli,) "!r,r.',
,1+(-1)'-j,- \ l_q---'2-o+ )",)" 

2

Substituting ( a.a6) and ( a.47) into ( 4.49), changing variables and then equating

coefficients of n-"12 to zeto, we obtain

¿{nfi 
i + (-r)¿ z* ( ",,1,' 

) 
G,"'),-or-,t7-l' 7-u 2 \

(450) -,-ltsry''É"(-,) r (-Mft2)u=-,} ",:0,

for s : 0,1,.. . r-K - 1, and

, !Ïtp) ci'ìr'r) ",1"*\

(4.51)

1" 
( a-j

Ð{p'Ð
j=o I t=o

a*}f
+pÐ

j=o

) G'"')'-'t'')

'(-r), 
(-Mf t'z 

) 
u*_,\ 

",
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s+¡r-i-ú1+(-r)q ("_ j12\nF)__ I

l* 
- 

\* nti'- )':i.-"-i-'0)]ci:o'
s:-Kr-K+1,....

Since CL')6): I and co: !, ( 4.50) for s : 0 reduces to the characteristic equa-

tion ( 4.16). Similarly, the determination of parameters 7 and a are dependent

on K. When K: -L,7 and a should necessarily satisfy ( 4.51) for s: l and

s: z which, sioce G[')(-y):1, c[')(-y) : L, G!:)(r\: lt2, c\')0) - 7 and

Clt)(r) -- !7 ur., respectively,

Ø'l + pao)co -l (p'-l- ó6)c1 : Q

and
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(inr' * 2pza* ór * ry -'ro,,r) 
^

+ (n't + Pao) ", + (P'* óo) c2 : 6.

In view of ( 4.16), we obtain successively

(4.52)

and

(4.53)

An
't - --p

b, M^

": ú+ i'
As ós l0 and ao # 0, we find that p,7 do not vanish.

Finally we note that the coefficients of c", c"-1 and c,-2 in ( a.51) for s > 2
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are p2 * bo, p2.,Í | pa,s and
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o' lTr' * 2a -(" - 2)] * ór * lu +|teoo,

respectiveiy. In view of ( 4.16), ( 4.52) and ( 4.53), it is easy to see that the first

two of these are zero and the last is -p'(" - 2). Hence, ( 4.51) can be written as

cs-2: ñï¡{Ë [,'Ð-fu r, (" ,,'r'')Gt!,-,r',t

.t-tsry''É",-,, ¿ (- M; tz 
) 

u 

= 
_,

(4.54) *o'ft ts1)',*
ú=02'?

'-,Ð--' l+fry ? ;,,r,, ) "!'1,_,_,_,rrr] ",),
^_Ð Aò-dltr.,..

The coefficients c1, czt . . .in ( a.17) are now determined recursively by ( a.5a),

and c¡ : 1. In particuiar, we have

c1 : |t' - Lr, * ,r* *I (Ir'"o * aøo* o,) ,

c2 : ;, {lt (*',^ - }r' + ,''t' t 2,2 -'") -t bz * tu*,r*, 
+ z)bo

l,*,u, * o ((å" - å') oo + Ioto,) * |,r",)

þ'(åt'- i"' *(za-ih) *r(!r'*o- Ð^+p",] ",i

When K 1 -I,7 should necessarily satisfy ( 4.50) for s : 1 rather than

( 4.51). We find that when s : 1, ( 4.50) becomes, in view of ( 4.16) and
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Gl')h): t,
P'''l"o : o'

This implies ? - 0 as p I 0. We note, from ( 2.7)in Chapter 2, thatG!r)10¡ : g,

þ : 1,2 for allpositive integers s except tor C[')(O) : l, þ : I,2. Therefore

( 4.50) and ( 4.51) may be simplified to

å=5* {r'= (,î--il,')

(4 55) *''-Ë'' r-r' (-';'' )r*-,)", 
: o,

s:2r8,...,_K_\,

and

(4.56)

-;f,1 + (-l)s+ri-i
j=o 2

{",Ë,' 
'-t'!", ( r, .îr--'l'-Ðp) }", 

: o,

s:-K,-K+1,....

Noting that K is odd implies lhat K a -3, a should be determined from

( 4.55) with s : 2 which is
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{t'=
1 )"-jt1+(

Ð
j=o (,î -i¡;,¡

*'"-*'' r-u' (-*f '' ) u=-,\ 
",

('o'** ór -F y co t (pz * bs)c2 : s'
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(4.57)

In view of ( 4.16), a is the same as ( 4.53). We find that the coefrcients of c; in

( 4.55) vanish for such j that s - j is odd, and the coefficients of c, and cs-2 àre

p2 * bo and

2p2a*rr*ry-p'(r- 2),

and, consequentiy, equal to zero and -p2(s - 2) respectively. Hence we have the

recurrence relation lot cr-2,

1 
= 

1+ (-1)'-r
\ ___________f_____L"a_¿ ,f q\,L ,p"\s - ") Fo ¿

{n,= (,î _- llT,) *'"-t_^'',-r, (- *f ,' ) u 

= 
-,} ",,

80

where the coefficient of c,-s vanishes, and cr : 0 if K < -3. Thus, by the method

of induction, we find the fact that aII cu-2: 0 when s is odd but not larger than

-K -7.
By a similar method applied to ( 4.56), the coeffi.cients of ca cs-t and c"-2

ate zero, zero and -p'(s - 2). Hence from this follows

r_l'gr+(-r),-;
v8_2 _ 

p2(" _ 2) \?" 2

ln,= ( ,î-- ilï,) *'"-{_-',-u,(-*f ,')u=-,f.,

s:4r5,...,-K-L,

f",ä''-+!", ( r" .îr--' l'-,) p)f",I,(4.58)
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s:-Kr-K+1,...,

where the coefficient of c,-3 in the fi.rst summation vanishes.

Thus we have fulfilled all the derivations of formal solutions.

4.4 Examples

Example L Behaai,or of the number of inaoluti,ons t(n) on {I,2,. . . ,n), which

satisfies

(4.5e) t(n * 2) - t(n + 1) * (n + I)t(n) : 0.

Comparing ( 4.59) to the standard form ( 4.1) gives
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Mo-0,

a(n): -1'

Mt: r,

ao: -I,

b(n):-(t**) 
' 

óo:-1,

an:0, nì_t,

ðr:-1, bn:0, n)2.

As K - -1, the formal solutions are given by inserting ( 4.18) into ( 4.rT),

the parameters l, pt .1, a and coefficients c", s : 1, 2, . . . ., may be calculated by

recurrencerelations (4.15), (4.16), (4.52), (4.58), and (a.b4). Wefind À;: -1,,

p; : *7, .'l¿ : tI, and a¿ : 1,, i : 1,2. The two subnormal series solutions of

( 4.59) are

t1(n): {@-ù"r;"i {rn *"-, - #"-, +oþ-å)}
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and
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t2(n) : (-1)'

By making use of the Stirl'ing formula

(4.60) (n - 2)l : (2tr)I e--n^n

we obtain

and

-6n? [t - L,-+
t24 -#"-'+o("-å))

-'*H'-'+o("-')),t( 13-i 1I+ -nt72

Since ú(n) is monotone, increasing to oo, we have

t(n): Kt{n),

for some constant K > 0. The same results can be seen in "I. Wimp and D,

Zei,Iberger [L3].

Example 2 Construct formøI solutions for the equation

t1(n) : e6nt e-i
(71
17* -n 

,t24 #"-'+o("-"r)j,

t2(n) : (-t¡-"-^t;ni u-i {t - *-, - #"-, + o ("-å)}

U-,+t(æ) - (2" * 7)æs^(æ) - U--t(æ) : 0.(4.61)

Changing the equation into the form ( 4.1) by means of replacing "r,by n f 1 gives

(n - z)le

Mo:7, Mu-0,
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a(n) : -(2æ -l3æn-r); ao: -2æ, at : -3æ, an: 0 n ) 2,

b(n) : -1' öo : -1, bn: 0, n ) L.

As K : 2, when æ + 0, the formal series solutions are given by inserting ( a.La)

into ( 4.18). From formulas ( 4.9), ( 4.I2), ( 4.31), ( 4.33), ( 4.13), ( a.42) and

( 4.44)we have Àr : -1, pt :2æ, at : l,Àz : 1, p2 : -*, o, : -r. The two

formal series solutions of ( 4.61) are

s),(r):(n-2)t(2Q-n*

{r - (3 * å'-')) "-' - (h* * ** h.)n-2 +, ("-')},

and

v1@):ffi.y"-î

{t * (I*'u-')) "-'-r (i# - {-'* #.^),"-'+, þ-')}

By making use of the St'irli,ng formula ( 4.60), we have

V](*): e-nnn(2æ)n

{1 - (*.?')n-r + (h* * # - #-') n-' +o ("-')i,

and

Y] (r) : (-L)n en n-^ (2æ¡-n n-a'

{'* ?#*I-'t)n-t + (-# -ff-'* #-^)n-z +, ("-')}
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Example 3 Fi,nd the formal solut'ions for the equation

cf],@)+ (z * a - æ)c@(') + ""Cf),(,) 
: o.

Replacing nby n * l gives

Mo: L, Mu - I,

a(n):1+(1 la-*)n-', øo:I, at:Ila- n,

b(n) : a I an-l; bo: a, bt : a,

and an - bn : 0 when n ) 2. As K : 1, \rye can use formulas ( 4.9), ( 4.L2),

(4.29), ( 4.30) to form one solution and ( 4.9), ( 4.13) ( 4.40) and (4.41) to form

another solution, i.e.,

and

84

cf)t-t: (-ø)nn'

{1 - l}* .(' - }) *l*-, + o ("-,)\

In terms of the Sti,rli.ng formula ( 4.60), Cfìøl can be written as

cf)øl : (n - 2)t(-r)^nr-'

{t * li* . (,. ;) æ * a- r] ,-' + o ("-,)},

cf)fù : (-r)^ e-n nn n- (! +')

. 
{' * li* .("- ;) æ t a_r å] n-, + o ("-,)}
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