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Abstract

In survey sampling, policymaking regarding the allocation of resources to sub-

groups (called small areas) or the determination of subgroups with specific proper-

ties in a population should be based on reliable estimates. Information, however,

is often collected at a larger scale (e.g., surveys) than that of these subgroups. As a

result, the sample sizes within subgroups (areas) are often too small to warrant the

use of the traditional area-specific direct estimates. Mixed models (unit-level or

area-level) are usually used to borrow strength from other resources to get reliable

estimates for small areas.

The underlying assumptions of unit-level regression models in small area esti-

mation are often not met in applications. For instance, in most business surveys,

errors may have a skewed distributions, and the relationship of response and

auxiliary variables often deviate from a linear form. In order to develop a strat-

egy for modeling non-normal continuous data, a flexible small area estimation

model has been recently proposed using the linear regression to estimate the

error terms and a multivariate exchangeable copula model to characterize the

error distribution within each small area.

In this thesis, a likelihood framework is proposed to estimate the intra-class

dependence of the multivariate exchangeable copula for empirical best unbiased



prediction (EBUP) of small area means. We consider both parametric and semi-

parametric approaches, and propose a bootstrap method under each approach to

obtain a nearly unbiased estimate of the mean squared prediction error (MSPE)

of the EBUP of small area means.

Our findings suggest that the parametric and semi-parametric approaches

yield similar prediction results in respect of the EBUP of small area means; the

proposed bootstrap method is capable of capturing complete information of the

MSPE of the EBUP of small area means; low relative bias of MSPE estimation of

the EBUP of small area means is observed; and in particular, the semi-parametric

method consistently performs well in comparison with the parametric method.
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Chapter 1

Introduction

Small area estimation (SAE) has gained popularity in sample surveys due to growth

in the demand of reliable small area statistics, in both private and public sectors.

Sample surveys, whether conducted by policy makers or private organizations,

aim to provide reliable estimates not only for the whole population but also for

small areas/domains. SAE is a method to tackle with problems when sample size

is not large enough in small areas/domains to provide estimates with adequate

precision. The term "small area" refers to the sample size of the area rather

than the actual size of the area where we assume that the sample size is small

compared to the population size. In addition, the term “area” does not always

define as geographical region or district; it may define a specific demographic

group or domain (e.g., age-sex-race domains).

In the context of estimation, the traditionally designed direct domain estima-

tors only use domain-specific sampled data that are often less reliable due to small

sample size. To overcome this difficulty, it is common to borrow strength from

8
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related sources. This is usually done in a modeling framework, where auxiliary

data on covariates, typically obtained from administrative records and census,

are used to share information across the small areas. The resulting estimators are

referred to as indirect estimators, which are broadly classified into two categories:

(i) traditional estimators such as synthetic estimators based on implicit linking

model, and (ii) model-based estimators based on explicit linking model. The

traditional estimators proceed with an assumption that small area will follow the

same features as the large area. If the implicit linking model is close to the true

model, the estimators are expected to have small mean squared prediction errors

(MSPE).

To handle complex issues in traditional indirect estimators like a violation of

homogeneity within a domain or changes in the population structure, the use

of mixed models is proposed in the literature. The area-level model of Fay and

Herriot (1979) and the unit-level model of Battese et al. (1988) have been exten-

sively employed in SAE as a special cases of mixed models. In both, area-specific

random effects are usually assumed to be normally distributed. In addition, the

area-level covariates are used in the area-level model while the unit- and area-

level covariates can be used in the unit-level model. Also, the design-based direct

estimates in the area-level model often primes to unreliable estimates due to small

sample sizes and not including survey weights (You and Rao, 2003; Torabi and Rao,

2010). Many popular small area models and methods have been developed under

area-level and unit-level models (Rao and Molina, 2015). The commonly used

model-based estimators are empirical best linear unbiased prediction (EBLUP)
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(Prasad and Rao, 1990) and (Lahiri and Rao, 1995), James-Stein shrinkage estima-

tion or the empirical Bayes (EB) procedures (Fay and Herriot, 1979) and (Ghosh

and Lahiri, 1987), and the hierarchical Bayes (HB) (Datta and Ghosh, 1991) and

(Ghosh and Lahiri, 1992). These estimators often provide reliable estimates for

SAE obtained under assumed models with respect to the nature of the response

variable.

However, when the underlying assumptions of area-level and unit-level mod-

els are not met in applications, the EBLUP may lead to biased estimates. The

violations may be due to:

1. Errors may have a skewed distribution.

2. Relationship between auxiliary data and response variable is not linear.

In order to address these data aspects in the modeling strategy, Rivest et al.

(2016) introduced a flexible small area model that is characterized by multivari-

ate exchangeable copulas. Their work outlined a two-stage semi-parametric

approach where the marginal distribution of regression errors is estimated using

their empirical distribution and the intra-class dependence is quantified via the

empirical Kendall’s tau. Using this model, they derived the empirical best unbi-

ased prediction (EBUP) of small area means and used the jackknife to estimate

the MSPE of the EBUP.

In an effort to contribute to this new methodology, this thesis revisits the

quantification of the dependence measure of errors within each small area and
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the estimation of MSPE of the EBUP of small area means. Our first contribution

is a maximum pseudo copula log-likelihood framework to estimate the intra-

class dependence of the error distribution. The second contribution is a complete

assessment of the MSPE of the EBUP, in particular the pattern of the cross-product

term, via extensive simulations. The third contribution is a bootstrap approach to

estimate the MSPE of the EBUP of small area means.

A major advantage of the proposed approach is that it can accommodate

both the two-stage parametric and two-stage semi-parametric estimation. Along

with this, the copula-based SAE gives a more flexibility in modeling the error

distribution. Further, we compare the performances of the proposed methods to

those in Rivest et al. (2016), which we refer to as the RVB method throughout the

thesis.

The remaining of this chapter provides an overview of small area estimation

and copula models.

1.1 A Brief Overview of Small Area Estimation

SAE is a solution to the problem of producing adequate estimates of the charac-

teristics of interest, such as mean, counts and proportions for areas with small

or no sample. While the main interest is in point estimators, evaluation of their

precision and the estimation error are also important (Pfeffermann et al., 2013).

Before introducing small area estimation methods, we briefly describe small

area models, which are broadly divided into two types: (i) Area-Level Model, and
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(ii) Unit-Level Model. First, we introduce linear mixed models (LMM) which are

regarded as a general case of the above mentioned models.

1.1.1 Linear Mixed Model

Suppose sample data obey the linear mixed model where the term "mixed" de-

notes the mixture of random and fixed effects. Then, the LMM can be expressed

as

y = Xβ+Z v +ξ (1.1)

where y is the n×1 vector of sample observations, X and Z are the known matrices

n ×p of full rank, β is the vector of unknown fixed effects, v and ξ are distributed

independently with mean 0 and covariance matrices G and R, respectively de-

pending on some variance component parameters θ. If v and ξ follow a normal

distribution, then the distribution of y can be derived as

y ∼ N (Xβ,V )

y |v ∼ N (Xβ+Z v,R)

where V is the variance-covariance matrix of y , Var(y) = V = R + ZG Z T . To be

more precise V =V (θ) is non-singular for all θ, belonging to a specified subset of

Euclidean q-space, θ = (σ2
1, . . . ,σ2

q ) but not necessarily positive. Under model (1.1),

we are generally interested in estimating the linear combination µ= l Tβ+hT v ,

of fixed parameter β and realized value v , for the specified vectors of l and h, of
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constants. Also, if they are known, i.e., v and ξ follow normal distributions then,

the BLUP of µ is given as

µ̃= l T β̃+hT ṽ , (1.2)

where β̃= (X T V −1X )−1(X T V −1Y ) is generalized least square estimator of β, and

the BLUP of v is defined as ṽ =G Z T V −1(y −X β̃).

The BLUP (1.2) depends on the variance components. Generally, these values

are unknown. If θ is replaced by θ̂, i.e., replacing variance components with their

estimates is called EBLUP, obtained as

µ̂= l T β̂+hT v̂ , (1.3)

where β̂ = β̃(θ̂), v̂ = ṽ(θ̂), and µ̂ = µ̃(θ̂). Commonly used approaches to esti-

mate the variance components are maximum likelihood (ML) and restricted ML

(REML).The details of various approaches to estimate the variance components

can be found in Ghosh and Rao (1994) and Rao and Molina (2015).

1.1.2 Small Area Models

As discussed, small area models are classified into two types: (i) Area-level model,

where area-specific covariates are modeled with the small-area response variable,

and (ii) Unit-level model, where unit-specific covariates are modeled with the

unit-level response variable.



14 CHAPTER 1. INTRODUCTION

Area-Level Model

Fay and Herriot (1979) introduced the basic area-level model to predict small

areas using the census information. It assumes that the model linking area means

is related to areas-specific auxiliary data. Such models use information on the

area-level when the unit-level information is unavailable and are also useful to

reduce computational complexities. The basic area-level model is represented as

yi = xT
i β+νi +ξi i = 1, . . . ,m, (1.4)

where yi is a direct estimator, xi is a p × 1 vector containing information for p

variables, β is a p × 1 vector of regression coefficients, νi is area-specific random

effects assumed to be independent and identically distributed as N (0,σ2
ν), and

the sampling error ξi is assumed to be independent and identically distributed as

N (0,σ2
ξi

) where σ2
ξi

is assumed to be known due to identifiability issue.

The above mentioned model is represented as a combination of the sampling

model and the linking model. More specifically, it is assumed that the population

area mean, and area-specific auxiliary data have the following form available for

area i (= 1, . . . ,m),

µi = xT
i β+νi , (1.5)

where µi is the small area parameter of interest. We assume that a direct survey

estimator yi is available as

yi =µi +ξi . (1.6)
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Furthermore, combining equation (1.5) and (1.6) leads to equation (1.4), where ξi

(design-induced errors) and νi (model error) are assumed to be independent.

Unit-Level Model

The population model for unit-level data can be represented as

yi j = xT
i jβ+νi +ξi j i = 1, . . . ,m; j = 1, . . . , Ni , (1.7)

where yi j is the variable of interest and xi j is the vector of element-specific aux-

iliary variable, i = 1, . . . ,m; j = 1, . . . , Ni , β is the vector of regression parameters,

νi ’s are the area-specific random effects which are assumed to be independent

with mean 0 and variance σ2
ν, and ξi j ’s are individual unit errors which are ran-

dom variables with mean 0 and variance σ2
ξ
. Also, νi and ξi j are assumed to be

independent. If Ni is large and the sampling fraction ( fi = ni /Ni ) is negligible,

the mean of the i th area can be written as

µi = x̄T
i β+νi , i = 1, . . . ,m, (1.8)

where x̄i is the known mean of covariates at the i th area. Here, we assume that the

sample is representative of the population, i.e., there is no selection bias. Thus,

our model can be written as

yi j = xT
i jβ+νi +ξi j , i = 1. . . ,m; j = 1, . . . ,ni , (1.9)

where sample size in each area can be ni ≥ 1.
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1.1.3 Model-based Estimation

MSPE of the EBLUP

In the LMM setting, the MSPE of the EBLUP of small area means with respect to

the model (1.1) takes the form

MSPE(µ̂) = MSPE(µ̃)+E(µ̂− µ̃)2. (1.10)

Also, under normality assumption it is clear that the MSPE of the EBLUP is always

larger as compared to the BLUP of µ̃. Now, the first term of MSPE(µ̂) can be

expressed as MSPE(µ̃) = g1(θ)+ g2(θ), where

g1(θ) = hT (G −G Z T V −1ZG)h (1.11)

and

g2(θ) = d T (X T V −1X )−1d (1.12)

with d T = 1T − bT X and bT = hT G Z T V −1 (Rao and Molina, 2015), and g2(θ)

accounts for the variability of β.

The last term in the equation (1.10) can be approximated by Taylor series

(Kackar and Harville, 1984). Prasad and Rao (1990) provided the following, for

large m,

E(µ̂− µ̃)2 = g3(θ)+o(m−1), (1.13)

where g3(θ) is defined as

g3(θ) = tr
{∂bT

∂θ
V

(∂bT

∂θ

)
Va

}
(1.14)
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with the asymptotic covariance matrix of θ̂ as Va . Noted that g2(θ) and g3(θ) are

O(m−1), and g1(θ) is O(1) for large m. Hence, the MSPE of the EBLUP of small

area means lead to a second-order approximation as

MSPE(µ̂) = g1(θ)+ g2(θ)+ g3(θ), (1.15)

where the approximation is accurate to the term o(m−1), i.e., the terms which

is neglected as m, the number of small areas, goes to infinity (Rao and Molina,

2015).

In general, the MSPE of the EBLUP estimator µ̂ (1.3), can be written as

MSPE(µ̂) = E(µ̂−µ)2 = MSPE(µ̃)+E(µ̃− µ̂)2 +2E(µ̃− µ̂)(µ̃−µ), (1.16)

where µ̃ = µ̃(θ), BLUP of µ, and MSPE(µ̃) = E(µ̃−µ)2. Under the normality as-

sumption of random effects v , and random errors ξ defined in model (1.1), the

cross-product term is zero on condition that θ̂ is translation invariant i.e., θ̂ re-

mains unchanged when y is changed to −y or to y −xa for all y and a.

Using the equations from (1.11) - (1.14), the MSPE of the EBLUP of µ̂i under

the area-level model can be written as

MSPE(µ̂i ) = g1i (σ2
ν)+ g2i (σ2

ν)+ g3i (σ2
ν)+o(m−1),

here

g1i (σ2
ν) = γi 1σ

2
ξ

where γi 1 =σ2
ν/(σ2

ξ
+σ2

ν),

g2i (σ2
ν) = (1−γi 1)2x

′
i [

m∑
i=1

xi x
′
i /(σ2

ξ+σ2
ν)]−1xi ,
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g3i (σ2
ν) = (σ2

ξ)2(σ2
ξ+σ2

ν)−3V (σ̂2
ν),

where V (σ̂2
ν) is asymptotic variance of σ̂2

ν which depends on the method of esti-

mation used for σ2
ν.

Similarly, the MSPE of the EBLUP of µ̂i under the unit-level model is given by

MSPE(µ̂i ) = g1i (θ)+ g2i (θ)+ g3i (θ)+o(m−1),

here

g1i (θ) = γi 2σ
2
ξ
/ni where γi 2 =σ2

ν/(σ2
ν+σ2

ξ
/ni ),

g2i (θ) = (x̄i −γi 2x̄i )(
m∑

i=1
x

′
i V −1

i xi )−1(x̄i −γi 2x̄i ),

g3i (θ) = n−2
i (σ2

ν+σ2
ξ/ni )−3[σ4

ξVνν(σ̂2
ν)+σ4

νVξξ(σ̂2
ξ)−2σ2

ξσ
2
νCovθ(σ̂2

ξ, σ̂2
ν)],

where Vνν and Vξξ are the asymptotic variance of σ̂2
v and σ̂2

ξ
, and Covθ(σ̂2

ξ
, σ̂2

ν) is

the asymptotic covariance of σ̂2
ξ

and σ̂2
ν.

Estimation of MSPE of the EBLUP

In reality, an estimator of MSPE is required as the MSPE depends on the unknown

parameter vector θ. A naive approach (Rao and Molina, 2015) approximates

MSPE[µ(θ̂)] by MSPE[µ(θ)] and then replace θ̂ for θ. Hence, the resulting MSPE

estimator is stated as
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mspeN[µ(θ̂)] = g1(θ̂)+ g2(θ̂),

which is the first-order unbiased. Another method for the MSPE estimation is

obtained by substituting θ̂ for θ in the MSPE approximation equation defined in

(1.15),

mspe1(µ̂) = g1(θ̂)+ g2(θ̂)+ g3(θ̂). (1.17)

In this, g2(θ̂) and g3(θ̂) have desired order of approximation but g1(θ̂) is not the

correct estimator of g1(θ) (Rao and Molina, 2015). In order to correct this, Prasad

and Rao (1990) proposed another estimator of MSPE, given as

mspe(µ̂) = g1(θ̂)+ g2(θ̂)+2g3(θ̂), (1.18)

which is second-order unbiased provided that the variance components are es-

timated unbiasedly (e.g., REML); otherwise a correct term needs to be added in

(1.18). Following Prasad and Rao (1990), which proposed mspe estimator in (1.18)

for the linear mixed model (1.1) is also named as Prasad-Rao estimator under the

assumption E(θ̂) = θ. Further, the approach was extended by Datta and Lahiri

(2000) including ML and REML estimators.

The second-order unbiased estimate of the MSPE under area-level model when

σ̂2
ν is obtained by REML may be written as

mspe(θ̂i ) = g1i (σ̂2
ν)+ g2i (σ̂2

ν)+2g3i (σ̂2
ν). (1.19)

Whereas, when σ̂2
ν is obtained using MLE method, an extra term of bias in σ̂2

ν

must be added in the above equation (1.19).
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Similarly, the second-oder unbiased estimate of the MSPE under unit-level

model is defined as

mspe(θ̂i ) = g1i (σ̂2
ν, σ̂2

ξ)+ g2i (σ̂2
ν, σ̂2

ξ)+2g3i (σ̂2
ν, σ̂2

ξ), (1.20)

where σ̂2
v and σ̂2

ξ
are obtained using the REML. Similar to the area-level model,

the bias terms should be added to the above equation (1.20) if one uses a bias

estimation approach such as the MLE.

1.2 A Brief Overview of Copulas

Copulas are a popular multivariate modeling tool in many fields, such as finance

and insurance, where the multivariate normality is questionable and the interest

lies in multivariate dependence.

Copulas are functions that couple marginal distributions of random variables

to form a multivariate distribution. Let Z= (Z1, . . . , Zd ) be a d-dimensional ran-

dom vector. Then, by Sklar’s theorem (Sklar, 1959), the joint distribution F of Z

can be written as

F (z1, . . . , zd ) =C {F1(z1), . . . ,Fd (zd )}, (1.21)

where C is a copula function of Z and Fi is the marginal distribution functions

of Zi , for i = 1, . . . ,d . For the case when all the variables are continuous, C is

unique and captures the complete dependence. In this case, i.e., when F and C

are differentiable, the d-dimensional joint density function is given by
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f (z1, . . . , zd ) = c(F1(z1), . . . ,Fd (zd )) x
d∏

i=1
fi (zi ), (1.22)

where c is the copula density defined as

cα(z1, . . . , zd ) = ∂i :dC (z1, . . . , zd )

∂z1 , . . . ,∂zd

.

From Equations (1.21) and (1.22), the joint distribution is decomposed into

marginal distributions and dependence characteristics, which can be modeled

separately. This gives a considerable flexibility in model fitting as there is no im-

posed restriction on the marginal distributions. Furthermore, one can construct

many new multivariate distributions by choosing different marginal distributions

and a copula function.

Many parametric copula families have been proposed in the literature which

exhibit very different dependence patterns. Most commonly used parametric

copulas are elliptical (Gaussian and Student t-copulas) and Archimedean copulas

(Clayton, Gumbel and Frank copulas). Below, we briefly introduce the scale-free

dependence measure Kendall’s tau (τ) and the parametric copulas used in this

thesis.

Kendall’s Tau

Consider two random variables X and Y with continuous marginal distributions

F1 and F2, respectively, and joint distribution F (x, y) =C (F1(x),F2(y)). Kendall’s

tau of X and Y is defined as
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τ(X ,Y ) = Pr[(X1 −X2)(Y1 −Y2) ≥ 0]−Pr[(X1 −X2)(Y1 −Y2) ≤ 0], (1.23)

where (X1,Y1) and (X2,Y2) are two independent pairs of random variables from F .

The equation (1.23) gives the difference between the probability of concordance

and the probability of discordance. It can also be expressed in terms of copula C

as follows:

τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C (z1, z2)dC (z1, z2)−1.

See Nelsen (2006) for details.

Some Copula Families

In this thesis, we consider four copula families: Gaussian, Clayton, Frank and

Gumbel. The contour plots of these copulas with standard normal margins are

displayed in Figure 1.1 for τ = 0.2, 0.5, and 0.8.

• The Gaussian (Normal) copula takes the form

Cρ(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
1

2π(1−ρ2)1/2
exp

{−(s2 −2ρst + t 2)

2(1−ρ2)

}
d sd t

=ΦG (Φ−1(u),Φ−1(v);ρ), −1 ≤ ρ ≤ 1,

hereΦ is the cdf of standard normal andΦG (u, v) is the standard bivariate

normal distribution with correlation parameter ρ.

For the Gaussian copula, Kendall’s tau is given by
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Figure 1.1: Contour plots for Gaussian, Frank, Gumbel and Clayton copula families
with standard normal margins when τ= 0.2 (left panel), 0.5 (middle panel), and
0.8 (right panel).
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τ= 2

π
arcsin(ρ).

• The Clayton copula exhibits strong lower tail and relatively weak upper tail

dependence. It takes the form

Cα(u, v ;α) = (u−α+ vα−1)−1/α, α≥ 0, (1.24)

with the dependence parameter α. As α tends to 0, the copula approaches

to the independent copula.

Kendall’s tau for the Clayton copula is given by

τ= α

α+2
.

• The Frank copula exhibits no tail dependence and can be used to represent

both positive and negative dependence. It takes the form

C (u, v ;α) =− 1

α
ln

{
1+ (eαu −1)(e−αv −1)

e−α−1

}
, α ∈ℜ\{0}. (1.25)

Kendall’s tau for the Frank copula is

τ= 1+ 4

α
{D1(α)−D2(α)}

where D j (α) = j

α j

∫
α

0

t j

e t −1
d t is the Debye function.

• The Gumbel copula takes the form

C (u, v ;α) = exp
(
− (u−α+ v−α)1/α

)
, α ∈ [1,∞). (1.26)
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In contrast to the Clayton copula, the Gumbel copula has strong upper tail

and weak lower tail dependence.

Kendall’s tau of the Gumbel copula is given by

τ= 1− 1

α
.

Further details on copulas and their properties can be found in Nelsen (2006).

1.3 Thesis Outline

The structure of this thesis is as follows: Chapter 2 describes the SAE model

based on multivariate exchangeable copulas and outlines the proposed methods.

Chapter 3 provides extensive simulation studies to evaluate performance of the

proposed methods. Chapter 4 contains a real data application on Landsat data.

Chapter 5 summarizes our main findings and outlines future work.



Chapter 2

Small Area Estimation using Copulas

In this chapter, we briefly describe the small area model, where the joint error

distribution is defined using the multivariate exchangeable copulas, and outline

the estimation approaches used for small area predictors. After introducing the

notations and the model in Section 2.1, small area predictors are defined in Section

2.2. Then, we describe the two-stage estimation procedure to estimate the model

parameters in Section 2.3 and present the empirical BUP (EBUP) of small area

means in Section 2.4. We derive the MSPE of the EBUP of small area means in

Section 2.5. We also outline a bootstrap method under both parametric and semi-

parametric methods for the estimation of MSPE of the EBUP of small area means

in Section 2.6.

26
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2.1 Multivariate Exchangeable Copula Model

Consider a population of m small areas of sizes N1, N2, . . . , Nm . Let Y be the

variable of interest and x be a corresponding p-dimensional vector of auxiliary

variable. The population is defined by the linear model for Y given x,

Yi j = xT
i jβ+εi j , i = 1, . . . ,m; j = 1, . . . , Ni , (2.1)

where the error terms εi j have the marginal distribution Fε with zero mean and

finite varianceσ2. Suppose the marginal error distribution Fε is parametrized by δ,

and the joint error distribution of each area is expressed in terms of a parametric

exchangeable copula Cα,1:Ni as

Fα,Ni (εi ,1, . . . ,εi ,Ni ) =Cα,Ni {Fε(εi ,1;δ), . . . ,Fε(εi ,Ni ;δ)}. (2.2)

Here α is the copula parameter, which quantifies the within-area dependence.

Furthermore, it is connected with the intra-class correlation (ICC) of εi j = νi +

ξi j given by ρ = σ2
ν/(σ2

ν+σ2
ξ
), where σ2

ν and σ2
ξ

are the variances of νi and ξi j ,

respectively. Under the independence of these terms, the variance of εi j is given

by σ2 =σ2
ν+σ2

ξ
.

We assume the following two conditions for the joint error distribution.

Assumption 1 Exchangeable property: the value of copula is invariant under

permutation of its arguments, i.e.,

C (u1, . . . ,ud ) =C (uπ(1), . . . ,uπ(d));u1, . . . ,ud ∈ [0,1].
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Assumption 2 Invariance property for dimensions: the joint cumulative func-

tion of say ε1, . . . ,εNi is defined as Fα,δ(ε1, . . . ,εNi ) =Cα{Fε(ε1), . . . ,Fε(εNi )} which

satisfies the invariance property, i.e.,

Fα,δ(∞, . . . ,∞,ε1, . . . ,εNi ,∞, . . . ,∞) = Fα,δ(ε1, . . . ,εNi ).

The model (2.1) where regression error is expressed in terms of an exchange-

able copula was introduced by Rivest et al. (2016). This model provides flexibility

to practitioners in modeling of the errors when their joint distribution deviates

from a multivariate normal distribution.

2.1.1 Notation

Suppose that a random sample denoted by si of size ni is drawn using simple

random sample for each small area i for i = 1, . . . ,m with known population size

Ni . The sample {(Yi j , xi j ); i = 1, . . . ,m, j = 1, . . . ,ni } is assumed to obey the model

defined in equation (2.1), i.e., there is no sample selection bias. The non-sampled

units within the i th small area are denoted by ri . Also, the mean of errors from

the sampled data for each i th small area is ε̄i s =∑ni
j=1εi j /ni . The true small area

mean is expressed as ȲiU =∑Ni
j=1 Yi j /Ni and the mean of the auxiliary variable for

each area is x̄iU =∑Ni
j=1 xi j /Ni .
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2.2 Small Area Predictors

The model (2.1) is a general case of the linear mixed model (1.1), where the multi-

variate exchangeable copula model is used to characterize the error distribution

within each small area. Under this model with known parameters, one can obtain

the best linear unbiased predictor (BLUP) of the small area means using a linear

mixed model and the best unbiased predictor (BUP) using the conditional distri-

bution of unobserved errors given the ones from the sampled. Here the "best"

term stands for the lowest variance and "unbiased" refers to the true value of

parameter being equivalent to the estimated value. In the following, we introduce

the BLUP and BUP. We also define the MSPE under these estimators.

2.2.1 BLUP of Small Area Means

In the literature, Henderson (1975) developed the BLUP for mixed models. The

most important property of this method is the ability to predict linear combination

of fixed and random effects. Likewise, Rivest et al. (2016) derived the BLUP when

the model is designed using exchangeable copula as

Ȳ BLU P
iU = x̄T

iUβ+ ni

Ni
ε̄i s + Ni −ni

Ni

niρε̄i s

1+ (ni −1)ρ
,

where ȲiU is the true small area mean, x̄iU is the population mean of auxiliary

variable, and ε̄i s is the sample mean of errors for the i th small area. Also, ρ is the

ICC as defined in Section 2.1.
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The MSPE of the BLUP for the i th small area is given by

MSPE(Ȳ BLU P
iU ) = σ2ρ(1−ρ)

1+ (ni −1)ρ
+O(ni /Ni ). (2.3)

The MSPE(Ȳ BLU P
iU ) stands for the g1i term defined in MSPE of the BLUP of small

area means (Prasad and Rao, 1990; Rao and Molina, 2015).

2.2.2 BUP of Small Area Means

The BUP of small area means for the model (2.1) is given as

Ȳ BU P
iU = x̄T

iUβ+ ni

Ni
ε̄i s + Ni −ni

Ni
E(εi a |εi j ; j ∈ si ), (2.4)

where a is an un-sampled unit of i th small area. The MSPE of the BUP is given by

MSPE(Ȳ BU P
iU ) = E (Cov{εi a ,εi b |εi j , j ∈ si })+O(ni /Ni )

=σ2ρ−E {E(εi a |εi j , j ∈ si )2}+O(ni /Ni ),
(2.5)

where (a,b) stands for the units from ri .

The BUP is derived in the case where the model parameters are known. In

practice, the parameters are unknown and have to be estimated using the sample

data.

2.3 Model Parameters Estimation

Given data {(Yi j , xi j ); i = 1, . . . ,m, j = 1, . . . ,ni }, one can fit the model in (2.1)

through a two-stage estimation procedure, by first estimating the marginal error

distribution and then the copula parameter.
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2.3.1 Model Fitting and Conversion of Residuals to Copula Data

Assuming a simple linear regression in model (2.1), to estimate Fε, first the regres-

sion vector β is estimated under the linear regression model and the residuals

ei j (= Yi j −xT
i j β̂) are obtained. The residuals ei j are then converted to the uniform

scale using the marginal error distribution.

Parametric method

If a parametric model Fε(·;δ) is available, the marginal error distribution is esti-

mated parametrically using F̂ε = F̂ε(ei j ; δ̂), where δ̂ is the maximum likelihood

estimate of δ. The estimated marginal error distribution is then used to obtain

pseudo observations, i.e., the copula data

(ûi ,1, . . . , ûi ,ni ) = (
F̂ε(ei ,1), . . . , F̂ε(ei ,ni )

)
.

Semi-parametric method

In the absence of a suitable parametric model, the empirical cumulative distribu-

tion function

F̃ (e) = 1

n +1

m∑
i=1

∑
j∈si

1{εi j≤e}

is used to estimate the marginal error distribution where 1/(n +1) is used instead

of 1/n to avoid evaluation of the copula density at boundary [0,1]n (Genest et al.,

1995). The pseudo-observations are defined as
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(ũi ,1, . . . , ũi ,ni ) = (
F̃ε(ei ,1), . . . , F̃ε(ei ,ni )

)
, (2.6)

This approach is often referred to as rank transformation.

2.3.2 Copula Parameter Estimation

After fitting the marginal error distribution, one can estimate the copula parameter

α of the multivariate exchangeable copula Cα using the maximum pseudo copula

log-likelihood.

Parametric method

For the fully parametric two-stage estimation, the pseudo copula log-likelihood is

given by

`(α) =
m∑
i

ln[cα(ûi 1, . . . , ûi ni |α)], (2.7)

where cα is the copula density. Then, the estimated copula parameter α̂ is the one

that maximizes the pseudo log-likelihood (2.7).

Semi-parametric method

For the semi-parametric approach, the margins are estimated by the empirical

cdfs, which yields the pseudo copula log-likelihood as `(α) defined as

`(α) =
m∑
i

ln[cα(ũi 1, . . . , ũi ni |α)]. (2.8)
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The estimated copula parameter α̃ is obtained by maximizing the pseudo log-

likelihood (2.8).

2.4 Empirical BUP of Small Area Means

The BUP is constructed with a conditional distribution of un-sampled error term

given the sampled error terms and defined as

E(εi a | εi j , j ∈ si ) =
∫ ∞

−∞
zw1i {Fε(z),Fε(εi j ) : j ∈ si ,α}dFε(z), (2.9)

where z is the unobserved error term with marginal distribution defined as Fε(z).

The weight function w1i is the conditional density, when the copula family and

margins are known, which is defined as

w1i {v,Fε(εi j ) : j ∈ si ,α} =
cα,ni+1{v,Fε(εi , j1 ), ...,Fε(εi , jni

)}

cα,ni {Fε(εi , j1 ), ...,Fε(εi , jni
)}

. (2.10)

Since the model parameters are unknown in practice, the estimates of the

regression coefficient β, marginal error distribution Fε, and the copula parameter

α are used to obtain an empirical predictor of (2.9), i.e.,

êi =
∑m

i1=1

∑
j1∈si1

ei1 j ,1 w1i {F̂ε(ei1 j ,1 ), F̂ε(ei , j ) : j ∈ si , α̂}∑m
i1=1

∑
j1∈si1

w1i {F̂ε(ei1 j ,1 ), F̂ε(ei , j ) : j ∈ si , α̂}
. (2.11)

Then, the EBUP of ȲiU is defined as

ˆ̄YiU = x̄T
iU β̂+ ni

Ni
ēi s + Ni −ni

Ni
êi . (2.12)
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For the semi-parametric case, to get the EBUP of small area means (called ˜̄YiU ),

one can replace the êi and F̂ε(ei , j ) in (2.12) by ẽi and F̃ε(ei , j ).

2.5 Mean Square Prediction Error

The prediction error of the EBUP of small area means can be decomposed as

ˆ̄YiU − ȲiU = (Ȳ BU P
iU − ȲiU )+ ( ˆ̄YiU − Ȳ BU P

iU ). (2.13)

We can then write

MSPE( ˆ̄YiU ) = E {( ˆ̄YiU − ȲiU )2}

= E {(Ȳ BU P
iU − ȲiU )2}+E {(Ȳ BU P

iU − ˆ̄YiU )2}

+2E {(Ȳ BU P
iU − ȲiU )(Ȳ BU P

iU − ˆ̄YiU )}

= M1i + M2i + M3i ,

(2.14)

where M1i is MSPE(Ȳ BU P
iU ) given in (2.5). Note that the MSPE( ˆ̄YiU ) is a function of

unknown parameters. It is then necessary to provide a nearly-unbiased estimator

of the MSPE( ˆ̄YiU ).

Under the jackknife approach (Rivest et al., 2016), the estimation of MSPE of

the EBUP of small area means can only capture the variations of the first two terms

of (2.14). Hence, the estimation of MSPE can lead to significant bias by ignoring

the variation of the cross-product term in (2.14). In light of this, the cross-product

term cannot be ignored and hence it is necessary to account for this term in the

estimation procedure of MSPE of the EBUP of small area means.
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2.6 MSPE Estimation using Bootstrap Method

For the complex small area models such as (2.1), the closed analytical expression

of MSPE is not possible to obtain. In a situation when explicit formula for MSPE

cannot be obtained, it is even a harder task to estimate the MSPE. One way to

tackle this issue is to use re-sampling methods for the estimation of the MSPE of

the EBUP of small area means. In order to properly capture the all variations in

the MSPE of the EBUP of small area means including the cross-product term i.e.,

M3i in (2.14), we propose a bootstrap approach.

Bootstrap methods have been previously employed in SAE (Hall and Maiti,

2006; Torabi, 2012) but these are not directly applicable under the exchangeable

copula model. Furthermore, a careful treatment is needed when the two-stage

semi-parametric estimation is employed. Below, we first outline the parametric

bootstrap method under the exchangeable copula model in Algorithm 1 and then

present a corresponding semi-parametric bootstrap approach in Algorithm 2.

Both algorithms start with the generation of copula data using the fitted copula

Cα̂ to define bootstrap populations. In particular, under the parametric approach,

the inverse cdf of the fitted marginal distribution F̂ε(·; δ̂) is used to obtain the error

terms of the bootstrap population. On the other hand, under the semi-parametric

approach, obtaining the error terms from the generated copula data is not straight-

forward due to the absence of a generative marginal error distribution. We address

this challenge using a quantile mapping approach that maps the generated copula

data to the empirical quantiles of the residuals in the sample.
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Using the fitted linear models with the corresponding bootstrap error terms, we

define bootstrap populations under the proposed parametric and semi-parametric

approaches. The remaining steps of the algorithms are very similar and involve

simple random samples from the bootstrap populations, performing the estima-

tion the same way it is done and getting the EBUP of the small area means.
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Algorithm 1 Parametric bootstrap method for the estimation of MSPE of the EBUP
of small area means
Given the estimated model parameters (β̂, δ̂, α̂) from the dataset {(Yi j , xi j ); i =
1, . . . ,m; j = 1, . . . ,ni }:

Bootstrap population:

1: Generate copula data u(b)
i j , (i = 1, . . . ,m; j = 1, . . . , Ni ;b = 1, . . . ,B) from Cα̂,

where B is the number of bootstrap runs.
2: Use the inverse cdf method to obtain bootstrap error terms ε(b)

i j = F−1
ε (û(b)

i j ; δ̂),
(i = 1, . . . ,m; j = 1, . . . , Ni ;b = 1, . . . ,B).

3: Obtain bootstrap population Y (b)
i j = xT

i j β̂+ε(b)
i j , (i = 1, . . . ,m; j = 1, . . . , Ni ;b =

1, . . . ,B).
4: Compute the mean of the bootstrap population as Ȳ (b)

iU = N−1
i

∑Ni
j=1 Y (b)

i j , (i =
1, . . . ,m).
Bootstrap sample:

5: Get a bootstrap sample from the bootstrap population using simple random
sample without replacement.

6: Perform the parametric estimation, using the bootstrap sample {(Y (b)
i j , xi j ); i =

1, ...,m; j = 1, ...,ni } to get the bootstrap estimates (β̂(b), δ̂(b), α̂(b), ê(b)
i ), (b =

1, . . . ,B).
7: The bootstrap EBUP of small area means is calculated as

ˆ̄Y (b)
iU = x̄T

iU β̂(b) + ni

Ni
ē(b)

i s + Ni −ni

Ni
êi

(b).

8: After obtaining the bootstrap EBUP for a large number of bootstrap samples,
B, compute the parametric bootstrap MSPE estimation by

mspeboot(
ˆ̄YiU ) = 1

B

B∑
b=1

( ˆ̄Y (b)
iU − Ȳ (b)

iU )2. (2.15)
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Algorithm 2 Semi-parametric bootstrap method for the estimation of MSPE of
the EBUP of small area means
Given the estimated model parameters (β̃, δ̃, α̃) from the dataset {(Yi j , xi j ); i =
1, . . . ,m; j = 1, . . . ,ni }:

Bootstrap population:

1: Generate copula data u(b)
i j , (i = 1, . . . ,m; j = 1, . . . , Ni ;b = 1, . . . ,B) from Cα̃.

2: Proceed with quantile mapping of u(b)
i j to ũi j and get ε∗(b)

i j , (i = 1, . . . ,m; j =
1, . . . , Ni ;b = 1, . . . ,B).

3: Obtain bootstrap population Y ∗(b)
i j = xT

i j β̃+ε∗(b)
i j , (i = 1, . . . ,m; j = 1, . . . , Ni ;b =

1, . . . ,B).
4: Compute the bootstrap population mean as Ȳ ∗(b)

iU = N−1
i

∑Ni
j=1 Y ∗(b)

i j .
Bootstrap sample:

5: Get a bootstrap sample from the bootstrap population using simple random
sample without replacement.

6: Perform the semi-parametric estimation, using the bootstrap sam-
ple {(Y ∗(b)

i j , xi j ); i = 1, ...,m; j = 1, ...,ni } to get the bootstrap estimates

(β̃∗(b), δ̃∗(b), α̃∗(b), ẽ∗(b)
i ).

7: The bootstrap EBUP of small area means is calculated as

˜̄Y ∗(b)
iU = x̄T

iU β̃∗(b) + ni

Ni
ē∗(b)

i s + Ni −ni

Ni
ẽi

∗(b).

8: After obtaining the bootstrap EBUP for a large number of bootstrap samples,
B, compute the semi-parametric bootstrap MSPE estimation by

mspeboot(
˜̄YiU ) = 1

B

B∑
b=1

( ˜̄Y ∗(b)
iU − Ȳ ∗(b)

iU )2.



Chapter 3

Simulation Study

This chapter evaluates the performance of the proposed parametric and semi-

parametric methods to that of the RVB method under various settings using

Gaussian, Clayton, Frank, and Gumbel copulas.

3.1 Simulation Setting

Following Rivest et al. (2016), we generated the responses Yi j for the population

units from the simple linear regression model (2.1) with β0 and β1 equal to 1.

We considered a population with m = 20 and 40 small areas, where each area

consists of Ni = 200 units. The population data were generated as follows: we

first generated the copula data using the exchangeable copula in (2.1). For the

copula family, we considered the Gaussian, Clayton, Frank, and Gumbel copulas

with ICC of ρ = 0.5. For the marginal error distribution, we considered standard

normal and skewed normal distributions with µε = 0 andσ2
ε = 1. Here, the skewed

39
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normal distribution, SK N (ζ,ω,γ), is defined in terms of the location (ζ), scale (ω),

and skewness (γ) parameters, with conversions from the mean µε, variance σ2
ε,

and skewness parameter γ by

µε = ζ+ωκ
√

2

π
, (3.1)

where κ= γp
1+γ2

and ω can be deduced as

σ2
ε =ω2(1− 2κ2

π
).

Then other parameter, ζ, can be obtained using (3.1), after plug-in κ and ω. For a

given µε = 0, σ2
ε = 1, and γ= 10, we obtained ζ= 1.31 and ω= 1.65. We generated

R = 500 independent sets of {e(r )
i j ; i = 1, . . . ,m; j = 1, . . . , Ni ;r = 1, . . . ,R}, u(b)

i j to ũi j

were generated from N (1,1) and kept fixed across the Monte-Carlo replicates. Con-

sequently, R = 500 population datasets {Y (r )
i j ; i = 1, . . . ,m; j = 1, . . . , Ni ;r = 1, . . . ,R}

were obtained using the model (2.1): Yi j = β0 +β1xi j + ei j . The corresponding

population mean for the r th simulation run (r = 1, . . . ,R) and i th area was given

by

Ȳ (r )
iU = N−1

i

Ni∑
j=1

Y (r )
i j .

Using simple random sample, sampled data {Y (r )
i j ; i = 1, . . . ,m; j = 1, . . . ,ni ;r =

1, . . . ,R} were drawn for each area of size ni = 4.
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Using the sampled data {(Y (r )
i j , xi j ); i = 1, . . . ,m; j = 1, . . . ,ni }, the model pa-

rameters β= (β0,β1) were estimated under linear regression, δ and α were then

estimated using the log-likelihood framework (see Section 2.3) and the known

copula family for the parametric approach. Afterwards, the EBUP of small area

means ˆ̄Y (r )
iU (2.12) was obtained using the parametric approach, and similarly

the EBUP of small area means ˜̄Y (r )
iU was obtained using the semi-parametric ap-

proach. Noted that δ was also estimated using log-likelihood framework under

the semi-parametric approach, and the estimation of α was proceeded as defined

in Section 2.3.

We employed the Algorithm 1 and Algorithm 2 for the estimation of MSPE of

small area mean predictors using a bootstrap approach with B = 100.

3.1.1 Evaluation of Estimators Performance

The performances of the parametric, semi-parametric, and RVB approaches were

assessed using the bias and the empirical MSPE (EMSPE) of small area mean

predictors; In the case of parametric approach, these are calculated using

Bias( ˆ̄YiU ) = 1

R

R∑
r=1

{ ˆ̄Y (r )
iU − Ȳ (r )

iU }, (3.2)

and the EMSPE of ˆ̄YiU as
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EMSPE( ˆ̄YiU ) = 1

R

R∑
r=1

{ ˆ̄Y (r )
iU − Ȳ (r )

iU }2

= 1

R

R∑
r=1

{Ȳ BU P (r )
iU − Ȳ (r )

iU }2 + 1

R

R∑
r=1

{Ȳ BU P (r )
iU − ˆ̄Y (r )

iU }2

+2
1

R

R∑
r=1

{Ȳ BU P (r )
iU − ˆ̄Y (r )

iU }{Ȳ BU P (r )
iU − Ȳ (r )

iU }

= M̃1i + M̃2i + M̃3i ,
(3.3)

where Ȳ BU P (r )
iU is the BUP of small area mean for r th simulation run at area i . To

evaluate the performance of MSPE estimation of the EBUP of small area means

using the three approaches, we define the relative bias (RB) of MSPE estimator,

say mspe, where RB of mspe is given by

RB(mspeboot(
ˆ̄YiU )) =

1
R

∑R
r=1 mspeboot(

ˆ̄Y (r )
iU )

EMSPE( ˆ̄YiU )
−1. (3.4)

Note that the bootstrap approach was used for the parametric and semi-parametric

methods while the jackknife method was used for the RVB method to get the esti-

mation of MSPE of the EBUP of small area means.

The performance of semi-parametric approach was assessed similarly by re-

placing ˆ̄YiU with ˜̄YiU .
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3.1.2 Simulation Experiments

Our objective is to evaluate the estimation performance under four different

scenarios:

(i) Correctly specified joint model: the copula and error margins are correctly

specified during estimation procedure.

(ii) Misspecified copula: the Gaussian copula is misspecified by other copula

families in the estimation process.

(iii) Misspecified margins: the skewed normal distribution is misspecified as

normal under the parametric method.

(iv) Different sample size: the sample drawn from each area ranges from 1 to 4.

Under setting (i)-(iii), the true variance of the BLUP of small area means is 0.1,

calculated using (2.3).

3.2 Simulation Results

The results under each simulation experiment are summarized in Sections 3.2.1 -

3.2.4. Additional simulation results are deferred to Appendix.
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3.2.1 Results under Correctly Specified Joint Model

In this simulation experiment, the true regression model and error margins were

correctly specified in the estimation. Tables 3.1, 3.2 and 3.3 summarize the results

for different copula family (Clayton, Gaussian, Frank, and Gumbel), number of

small areas m(= 20,40), and error margins (normal and skewed normal). The

output of Table 3.1 consists of Bias and MSE of τ. In respect to the estimation

of copula parameter, the RVB method uses the empirical Kendall’s tau obtained

from the pairs of residuals, see Rivest et al. (2016).

In Table 3.2, M̃1 is M̃1i averaged over small areas where M̃1i is calculated when

all parameters are known and thus, it is expected to be approximately equal

in all cases. Similarly, M̃2 and M̃3 are M̃2i and M̃3i averaged over small areas,

respectively. Notably, the cross-product term, M̃3, is not ignorable for m=20. The

RVB method uses jackknife for the MSPE estimation which constitutes only M̃1

and M̃2. As seen in Table 3.2,the magnitude of the cross-product term M̃3 is

the same as the M̃2 in most cases, and has a negative sign in all cases; noting

that M̃2 captures the variation due to the estimation of the model parameters.

As a result of ignoring the cross-product term, the MSPE estimator in the RVB

method is always higher than the true EMSPE which leads RB to be positive

and larger than the parametric and semi-parametric bootstrap approaches as

shown in Table 3.3. Note that the biases of small area mean predictors are very

similar for the three estimation methods. To give an illustration, there is 1.3 units

absolute difference between the RB of parametric and the RVB method and 2.4
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Table 3.1: Average bias and mean squared error of copula parameter expressed in
terms of τ when the true τ= 0.33 for three different methods (parametric,

semi-parametric, and RVB), the copula family (Clayton, Gaussian, Frank, and
Gumbel), and normal error margins are correctly specified.

Parametric Semi-parametric RVB Method
m γ Biasτ MSEτ Biasτ MSEτ Biasτ MSEτ

Clayton

20
0 -0.016 0.006 -0.024 0.006 0.006 0.009

10 -0.061 0.010 -0.036 0.010 0.005 0.009

40
0 -0.011 0.003 -0.019 0.003 0.000 0.005

10 -0.039 0.006 -0.028 0.006 -0.003 0.005

Gaussian

20
0 -0.027 0.008 -0.014 0.008 -0.005 0.009

10 -0.046 0.009 -0.026 0.009 -0.006 0.009

40
0 -0.015 0.003 -0.007 0.003 -0.004 0.004

10 -0.026 0.004 -0.015 0.004 -0.005 0.004

Frank

20
0 -0.023 0.006 -0.024 0.006 0.001 0.007

10 -0.035 0.007 -0.033 0.007 0.000 0.007

40
0 -0.008 0.003 -0.008 0.003 0.000 0.004

10 -0.018 0.004 -0.017 0.004 0.002 0.004

Gumbel

20
0 -0.019 0.010 -0.015 0.010 0.008 0.011

10 -0.035 0.011 -0.024 0.011 0.009 0.011

40
0 -0.009 0.005 -0.007 0.005 0.007 0.006

10 -0.026 0.006 -0.021 0.006 0.008 0.006

units absolute difference between semi-parametric and the RVB method in case

of the Clayton copula with skewed normal error margins for m = 40.

In the case of correctly specified copula family and m = 20, Figure 3.1 shows

that the variability of absolute RB is relatively small under the parametric and
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Table 3.2: Decomposition of EMSPE for the three small area mean predictors
(parametric, semi-parametric, and RVB) under each copula family (Clayton,

Gaussian, Frank, and Gumbel) with correctly specified error distribution, and
error margins (normal, skewed-normal with skewness parameter 10) for

m(= 20,40).
Parametric Semi-parametric RVB Method

m γ M̃1 M̃2 M̃3 M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

Clayton

20
0 0.085 0.011 -0.012 0.085 0.021 -0.020 0.085 0.022 -0.017

10 0.086 0.018 -0.013 0.086 0.019 -0.015 0.084 0.018 -0.013

40
0 0.079 0.005 -0.006 0.079 0.012 -0.011 0.079 0.013 -0.010

10 0.079 0.010 -0.007 0.079 0.011 -0.008 0.079 0.010 -0.007

Gaussian

20
0 0.118 0.011 -0.020 0.118 0.020 -0.028 0.118 0.019 -0.028

10 0.120 0.012 -0.020 0.120 0.021 -0.029 0.120 0.021 -0.032

40
0 0.108 0.005 -0.009 0.108 0.010 -0.015 0.108 0.010 -0.015

10 0.109 0.006 -0.009 0.109 0.010 -0.014 0.109 0.011 -0.016

Frank

20
0 0.090 0.013 -0.013 0.090 0.016 -0.015 0.090 0.015 -0.015

10 0.085 0.012 -0.011 0.085 0.016 -0.013 0.085 0.015 -0.015

40
0 0.081 0.006 -0.006 0.081 0.008 -0.008 0.081 0.008 -0.007

10 0.078 0.007 -0.007 0.078 0.009 -0.008 0.078 0.008 -0.007

Gumbel

20
0 0.091 0.012 -0.015 0.091 0.018 -0.021 0.091 0.016 -0.021

10 0.079 0.013 -0.012 0.079 0.017 -0.015 0.079 0.015 -0.018

40
0 0.082 0.006 -0.007 0.082 0.009 -0.010 0.082 0.008 -0.009

10 0.070 0.006 -0.006 0.070 0.009 -0.008 0.070 0.007 -0.007

semi-parametric approaches in comparison with the RVB method.

To study the effect of cross-product term in the MSPE estimation for smaller m,

we considered the case when m = 10 and marginal error distribution assumed to

be normal (Appendix A.1). The percent RB of MSPE estimator (averaged over small
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Table 3.3: Average response bias, empirical MSPE, and percent relative bias of
MSPE estimate of small area mean predictors for three different methods

(parametric, semi-parametric, and RVB) when copula family (Clayton, Gaussian,
Frank, and Gumbel) and margins (normal, skewed-normal with skewness

parameter 10) are correctly specified for m(= 20,40).
Parametric Semi-parametric RVB Method

m γ Bias EMSPE RB (%) Bias EMSPE RB (%) Bias EMSPE RB (%)

Clayton

20
0 -0.012 0.084 -2.4 -0.002 0.087 -2.2 -0.016 0.090 10.0

10 -0.002 0.091 -4.4 -0.004 0.089 -0.2 -0.019 0.089 12.3

40
0 -0.006 0.078 -1.3 0.000 0.080 2.5 -0.009 0.082 3.7

10 -0.002 0.082 -3.6 -0.001 0.079 2.5 -0.009 0.081 4.9

Gaussian

20
0 0.003 0.109 -3.7 0.003 0.109 -1.8 0.003 0.108 5.5

10 0.001 0.112 -8.0 -0.004 0.111 -4.5 0.000 0.109 6.4

40
0 -0.001 0.104 -1.9 -0.001 0.104 0.2 -0.001 0.103 3.9

10 0.002 0.105 -2.8 -0.002 0.105 -1.9 -0.003 0.104 3.8

Frank

20
0 -0.005 0.089 -1.1 -0.002 0.090 3.3 -0.012 0.090 6.7

10 -0.014 0.087 -6.9 -0.011 0.087 -1.2 -0.016 0.085 7.1

40
0 -0.006 0.081 0.1 -0.005 0.082 2.4 -0.012 0.082 4.9

10 -0.005 0.079 -3.3 -0.005 0.079 -1.3 -0.010 0.078 2.6

Gumbel

20
0 -0.001 0.088 -6.8 0.006 0.088 -1.1 0.000 0.086 5.8

10 0.008 0.079 -10.1 0.009 0.080 -6.2 -0.004 0.074 8.1

40
0 -0.001 0.080 -2.5 0.004 0.081 0.4 -0.001 0.081 2.5

10 0.005 0.070 -5.7 0.005 0.071 -4.2 0.001 0.068 4.4

areas) under the Clayton copula family is -2.1, 4.9, and 16.1 for the parametric,

semi-parametric and RVB methods, respectively, which shows that the RB is

comparatively high in the RVB method.
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Figure 3.1: Boxplots of absolute RB (averaged over small areas) for each method
when m=20 and model is correctly specified.

3.2.2 Results under Copula Misspecification

Under this setting, the error were drawn from a standard normal distribution only.

The EBUP and MSPE estimation of the small area mean predictors were calculated

when true copula family, the Gaussian copula, was misspecified as the Clayton,

Gumbel and Frank copulas. Table 3.4 summarizes the results under the copula

family misspecification. As expected, M̃2, which captures the variation due to the
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estimation of model parameters, was observed to be at least tripled in magnitude

in comparison with M̃2 when the copula family is correctly specified irrespective

of the method used for the inference. Thus, in practice, a wrong assumption

regarding the copula family will lead to significant increase in MSPE of small area

mean predictors.

Table 3.4: Decomposition of EMSPE for the three small area mean predictors
(parametric, semi-parametric, and RVB) under a situation where the Gaussian
copula is misspecified by other copula family (Clayton, Frank, and Gumbel) in

the cases of error normal margins for different m(= 20,40).
Parametric Semi-parametric RVB Method

m γ M̃1 M̃2 M̃3 M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

True
Gaussian

20
0

0.118 0.011 -0.020 0.118 0.020 -0.028 0.118 0.019 -0.028
40 0.108 0.005 -0.009 0.108 0.010 -0.015 0.108 0.010 -0.015
Misspecified

Clayton
20

0
0.118 0.051 -0.019 0.118 0.052 -0.025 0.118 0.057 -0.022

40 0.110 0.047 -0.013 0.110 0.047 -0.018 0.110 0.057 -0.015
Frank

20
0

0.118 0.046 -0.024 0.118 0.050 -0.026 0.118 0.045 -0.026
40 0.110 0.045 -0.016 0.110 0.047 -0.018 0.110 0.046 -0.018

Gumbel
20

0
0.118 0.048 -0.022 0.118 0.054 -0.027 0.118 0.044 -0.025

40 0.110 0.043 -0.014 0.110 0.048 -0.017 0.109 0.042 -0.016

3.2.3 Results under Misspecified Marginal Error Distribution

Another simulation experiment was conducted when the population was drawn

with error margins of skewed normal distribution. In this setting, we evaluated

the performance specifically for the parametric case when error margin is mis-
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specified as the standard normal distribution. As a known fact, distributional

assumption is required in parametric case, that is to say, error marginal distribu-

tion needs to be specified while doing estimation. The results under this setting

are reported in Table 3.5.

As expected, the EMSPE of the small area means remains the same in the

semi-parametric and RVB methods. Whereas, in the parametric method there is

a significant increase in M̃2 of the EMSPE results under misspecification of the

marginal distribution. In practice, depending upon the provided data information,

one should move forward with either parametric or semi-parametric method in

order to achieve good performance in terms of the EMSPE of small area mean

predictors.

So far, in Sections 3.2.1 to 3.2.3, we discussed results can change when one

assumes true or false information in the MSPE estimation of small area mean

predictors. For simplicity, we assumed that the sample sizes are the same in each

small area. Next, we evaluate the performance of all three methods when the

number of sample size is different in small areas.

3.2.4 Different Sample Size

Another simulation experiment was conducted with different sample sizes ranging

from 1 to 4 in the case of m = 20. In this simulation experiment, we considered

the Frank copula and normal margins. In particular, we assumed that areas 1-5

have sample sizes one, areas 6-10 have sample sizes two, areas 11-15 have sample
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Table 3.5: Decomposition of EMSPE for the three small area mean predictors
(parametric, semi-parametric, and RVB) under each copula family (Clayton,

Gaussian, Frank, and Gumbel) when error margins (with skewness parameter 10)
are misspecified as normal distribution for different m(= 20,40).

Parametric Semi-parametric RVB Method
m γ M̃1 M̃2 M̃3 M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

Clayton
True

20
10

0.086 0.018 -0.013 0.086 0.019 -0.015 0.086 0.018 -0.015
40 0.079 0.010 -0.007 0.079 0.011 -0.008 0.079 0.010 -0.007
Misspecified
20

0
0.084 0.037 -0.012 0.084 0.019 -0.015 0.084 0.018 -0.013

40 0.078 0.035 -0.004 0.078 0.011 -0.008 0.078 0.010 -0.007

Gaussian
True

20
10

0.120 0.012 -0.020 0.120 0.021 -0.029 0.120 0.021 -0.032
40 0.109 0.006 -0.009 0.109 0.010 -0.014 0.109 0.011 -0.016
Misspecified
20

0
0.120 0.032 -0.018 0.120 0.022 -0.033 0.120 0.021 -0.032

40 0.109 0.030 -0.006 0.109 0.011 -0.016 0.109 0.011 -0.016

Frank
True

20
10

0.085 0.012 -0.011 0.085 0.016 -0.013 0.085 0.015 -0.015
40 0.085 0.012 -0.011 0.085 0.016 -0.013 0.085 0.015 -0.015
Misspecified
20

0
0.086 0.022 -0.011 0.086 0.016 -0.015 0.086 0.015 -0.015

40 0.077 0.018 -0.005 0.077 0.008 -0.008 0.077 0.008 -0.007

Gumbel
True

20
10

0.079 0.013 -0.012 0.079 0.017 -0.015 0.078 0.015 -0.017
40 0.070 0.006 -0.006 0.070 0.009 -0.008 0.070 0.007 -0.008
Misspecified
20

0
0.077 0.026 -0.015 0.077 0.017 -0.017 0.077 0.015 -0.018

40 0.069 0.020 -0.008 0.069 0.008 -0.008 0.069 0.007 -0.007

sizes three, and areas 16-20 have sample sizes four. The true MSPE of the BLUP

(see (2.3)) is 0.250, 0.167, 0.125, and 0.100 for small areas with sample size ni =
1, 2, 3, and 4, respectively. As expected, the true MSPE of the BLUP of small area
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means decreases with increasing sample sizes.

Table 3.6: Decomposition of EMSPE for the three estimators under Frank copula
family for different sample sizes with standard normal error margins.

Parametric Semi-parametric RVB Method
Area i ni M̃1 M̃2 M̃3 M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

1-5 1 0.267 0.027 -0.011 0.267 0.031 -0.014 0.267 0.035 -0.013
6-10 2 0.169 0.026 -0.019 0.169 0.033 -0.023 0.169 0.034 -0.022

11-15 3 0.117 0.024 -0.020 0.117 0.030 -0.023 0.116 0.032 -0.024
16-20 4 0.096 0.021 -0.018 0.096 0.026 -0.022 0.096 0.026 -0.022

1-20 0.162 0.024 -0.017 0.162 0.030 -0.020 0162 0.032 -0.020

The results based on this experiment are summarized in Tables 3.6 and 3.7.

Turning on to the evaluation of three approaches, the EMSPE of small area mean

predictors decreases with increasing sample sizes. Also, we observed that the

EMSPE of small area mean predictors in this scenario (sample sizes vary from 1

to 4) are consistently larger than the corresponding values from Table 3.3 where

the sample sizes were 4 in all areas. Moreover, in terms of RB of MSPE estimation,

in general, the parametric approach shows smaller RB with increasing sample

sizes (Table 3.7). However, totally opposite trend is noticed in the RVB method i.e.,

firstly the RB increases with an increase in sample size from 1 to 2 which is almost

89.8%, and then 23.3% increment when sample size is 3. Furthermore, there is

a sudden downfall by 49.9% in RB when sample size is 4. This demonstration

illustrates how good the parametric method captures variations of the true EMSPE.

On the other hand, considering empirical version of the estimation procedure,

semi-parametric approach performs better than the RVB method in terms of RB

of the MSPE estimation of small area mean predictors.
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Table 3.7: Average response bias, EMSPE, and percent relative bias of MSPE
estimate of small area mean predictors for different sample sizes under Frank
copula family with error margins drawn from standard normal distribution.

Parametric Semi-parametric RVB Method
Areai ni Bias EMSPE RB (%) Bias EMSPE RB (%) Bias EMSPE RB (%)

1-5 1 0.027 0.282 -10.3 0.026 0.284 -4.9 0.027 0.289 7.9
6-10 2 0.012 0.176 -6.2 0.011 0.179 -1.1 0.000 0.180 15.0

11-15 3 -0.002 0.121 0.8 0.001 0.123 6.5 -0.011 0.124 18.5
16-20 4 -0.002 0.099 -1.0 0.002 0.100 5.0 -0.009 0.100 10.0

1-20 0.009 0.169 -5.9 0.010 0.172 -0.6 0.002 0.174 11.5

3.3 Summary

For all the scenarios considered in our simulations, the EMSPE was found to be

very similar in all three estimators when sample size was equal for each small

area. We observed that the semi-parametric method consistently performed well

even when the copula family is misspecified. As expected, the parametric method

had the best performance among the three methods when the joint model was

correctly specified. However, a slight variation was observed in the parametric

method in the context of variation in model parameters estimation, i.e., M̃2, when

the copula family or the marginal error distribution were misspecified.

For the case when sample sizes were different, unexpectedly the EMSPE was

comparatively high in the RVB method, specifically when sample size in each

area was either 1 or 2. Not only that, RB showed variation in its trend with an

increase in the sample sizes. However, the impact of difference in sample sizes on

RB was found to be almost negligible over both parametric and semi-parametric

methods.
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As expected, the proposed bootstrap method was capable to capture complete

information in the MSPE of small area mean predictors. Overall, assuming the

cross-product term to be negligible was found to be inappropriate for non-normal

data due to the significant contribution of the cross-product term to the MSPE.



Chapter 4

Data Application

In this chapter, we apply our proposed methodology to the real data using land

observatory satellite (LANDSAT) on county crop data. We then investigate the

estimation performance under all three methods for comparison.

4.1 LANDSAT - County Crop Data

The county crop data considered here is based on LANDSAT readings obtained

in 1978 during growing season of corn and soybean by the U.S Department of

Agriculture (USDA) in the counties (area) of north central Iowa (Battese et al.,

1988). The auxiliary data has been employed in form of LANDSAT data, where

"segment" is the primary sampling unit and "pixel" is a picture element for which

satellite information is recorded. Approximately 250 hectares, where each pixel

is about 0.45 hectares, are represented by each segment. Further, it is estimated

from satellite photographs by counting the number of individual pixels. Whereas,

55
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the area of corn and soybean crop is determined by interviewing farm opera-

tors. Based on these information, the USDA procedures were used to classify 12

counties in 37 segments.

The aim of this study is to predict mean hectare of corn crop in each county

based on 1978 June Enumerative Survey and satellite data. Table 4.1 presents (i)

number of segments in each county, (ii) number of hectares for corn crop and

pixels for corn and soybeans in each sample segment and (iii) mean of pixels

per segments for corn crop. As per the report of preliminary analysis of the corn

data, second segment of county named Hardin deviated from other observations.

Therefore, data regarding that second segment is deleted for further analysis

leaving 36 total segments.

The residuals display asymmetric distribution in small areas. Also, the maxi-

mum log-likelihood is obtained under the Frank copula and thus, estimation is

carried forward by comparing Frank’s EBUP of small area means in each method.

For the parametric approach, skewed normal distribution is used for error mar-

gins. The log-likelihood values were -4.21 and -3.75; average bootstrap residuals

were 145.3 and 160.1; and the residual exchangeable Kendall’s tau values were 0.27

and 0.28, respectively for parametric and semi-parametric approaches. The small

area mean predictors are presented in Table 4.2 along with root mean squared pre-

diction error (Rmspe) where B=1000 bootstrap samples were used in the bootstrap

method.
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Table 4.1: Survey and satellite data for corn and soybeans in 12 north central Iowa
counties.

No. of Reported No. of pixel in Mean no. of
Segments Hectares sample segments pixel per segment

County Sample(ni ) County (Ni ) Corn (Y1) Corn (X1) Soybeans (X2) Corn (X̄1) Soybeans (X̄2)

Cerro Gordo 1 545 165.76 374 55 295.29 189.70
Hamilton 1 566 96.32 209 218 300.40 196.65

Worth 1 394 76.08 253 250 289.60 205.28

Humboldt 2 424
185.35 432 96

290.74 220.22
116.43 367 178

Franklin 3 564
162.08 361 137

318.21 188.06152.04 288 206
161.75 369 165

Pocahontas 3 570
92.88 206 218

257.17 247.13149.94 316 221
64.75 145 338

Winnebago 3 402
127.07 355 128 291.77 185.37
133.55 295 147
77.70 223 204

Wright 3 567
206.97 459 77 301.26 221.36
108.33 290 217
118.17 307 258

...
...

...
...

...
...

...
...

Hardin 5 556

88.59 220 262

325.99 177.05
165.35 355 160
104.00 261 221
88.63 187 345

153.70 350 190
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Table 4.2: EBUP of small area means and corresponding Rmspe for LANDSAT
data under Frank copula.
Parametric Semi-parametric RVB Method

County ni EBUP Rmspe EBUP Rmspe EBUP Rmspejk

Cerro Gordo 1 124.2 11.9 123.1 12.3 120.2 11.4
Hamilton 1 125.2 12.0 124.6 12.1 127.5 11.8

Worth 1 108.2 11.1 108.1 11.4 104.9 10.7
Humboldt 2 106.2 8.6 106.2 8.8 102.3 12.2

Franklin 3 142.4 5.7 141.3 5.9 145.2 4.3
Pocahontas 3 110.5 6.1 109.1 6.1 111.8 6.0
Winnebago 3 110.0 6.0 111.3 6.2 111.0 11.2

Wright 3 118.7 6.3 119.4 6.4 120.8 7.5
Webster 4 114.6 4.4 113.8 4.6 117.4 3.8
Hancock 5 118.8 4.2 121.4 4.4 125.2 6.4
Kossuth 5 109.4 4.1 109.9 4.2 107.8 4.1
Hardin 5 137.2 4.8 136.4 4.9 140.8 4.7

As shown in Table 4.2, in the cases of the parametric and semi-parametric

approaches, Rmspe values significantly decrease with an increase in the num-

ber of sample segments. Furthermore, the improvement in Rmspe is modest

when sample size is greater than 3 or more. However, Rmspe of counties 4 and 7

namely, Humboldt and Winnebago, are at least 1.5 times higher in the RVB method

compared to the corresponding values in the parametric and semi-parametric

approaches. Note that in the MSPE estimation of the RVB method for the counties

4 and 7, the Rmspe values do not decrease with increasing sample sizes unlike the

parametric and semi-parametric approaches. One possible explanation for the

higher magnitude of Rmspe for counties 4 and 7 is the usage of jackknife, which

does not capture the all variations of the EBUP of small area means, as also shown

in the simulation study.



Chapter 5

Conclusion

In this thesis, we have studied a small area model using the unit-level regression

model (Rivest et al., 2016) where the joint distribution of error terms belongs to

the family of the multivariate exchangeable copulas. For this model, we proposed

a more flexible and general framework for predicting small area means where the

copula parameter is estimated via the maximum pseudo copula log-likelihood

method. The proposed approach can accommodate both parametric and semi-

parametric methods. We also investigated the impact of the variation of the EBUP

of small area means due to misspecification of the copula family or marginal error

distribution in order to assess performance of the proposed methods, and to also

compare with the RVB method.

Unlike the normal model, the cross-product term involved in the MSPE of

the EBUP of small area means is not negligible. We addressed this aspect of

cross-product term by doing inspection on the contribution of each term under

the MSPE of the EBUP of small area means. Our results indicated that each
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decomposed term of the MSPE has its own contribution. Hence, the proposed

bootstrap method was used to capture all variations in the MSPE of EBUP of small

area means including the possible cross-product term.

Overall, the results from the simulation experiments for the proposed ap-

proach showed various phases in different settings like misspecified copula family,

misspecified margins, and difference in sample size selection. As expected, the

parametric method performed relatively better when the underlying distribution

is correctly specified in context of the variation of model parameter estimation

of small area mean predictors. In almost all scenarios, our semi-parametric ap-

proach performed relatively well in comparison to the RVB method. Nevertheless,

in context of RB, semi-parametric approach performed relatively well in almost

all scenarios in terms of the MSPE of the EBUP of small area means. In addition,

when the simulation was performed under different sample sizes, the parametric

approach was more consistent in the decrement of RB as compared to the RVB

method. As a result, the proposed bootstrap approach performed better for the

MSPE estimation than the jackknife estimation used in the RVB method. Also, we

investigated the results based on double bootstrap method however, the gained

in the RB was not significant, see Appendix A.2. Thus, we proceeded with single

phase bootstrap method for the estimation of MSPE of the EBUP of small area

means as we got relatively small RB in most scenarios.

We also applied our proposed methodology on the real data example: LAND-

SAT on county crop data. In practice, one needs to decide which copula family

best suits the data. So, we proceeded our analysis with the decision of selection of
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the copula family based on the log-likelihood value. We observed that Rmspe of

parametric and semi-parametric methods decrease with an increase in sample

size. Whereas, the RVB method showed dislocation from the track at some points.

In conclusion, a major advantage of proposed method is that it provides more

flexible approach for small area estimation under both parametric and semi-

parametric methods. The proposed bootstrap procedure can capture all terms of

MSPE of small area mean predictors to obtain its corresponding estimate. The

proposed approach can be further extended to discrete outcomes and also for

a situation when the covariates are measured with error. These are some of the

topics for future study.



Appendix A

A.1 Results for correctly specified joint model in the

case of m=10

We also considered the situation when number of small area m =10 under similar

setting as of Section 3.2.1, where error margins are from standard normal distribu-

tion. The results are summarized in Table A.1. As expected, the cross-product term

is relatively high in all cases in comparison with a situation when m=20. Also, the

percent RB of MSPE estimator is almost high in most of the cases especially in the

RVB method. Thus, when number of small area is small, the cross-product term

cannot be ignored while doing estimation of MSPE of small area mean predictors.

A.2 Results while using double bootstrap method

We also studied the double bootstrap method when number of bootstrap samples

in second-phase B2 (= 1) under the same setting of the simulation study in Sec-

tion 3.2.1, for the Clayton copula family where error margins are from standard
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Table A.1: Decomposition of EMSPE, average bias, EMSPE, and percent relative
bias of MSPE estimate of small area mean predictors for three different methods
(parametric, semi-parametric, and RVB) when copula family (Clayton, Gaussian,

Frank, and Gumbel) and margins (normal) are correctly specified for m = 10.
Parametric Semi-parametric RVB Method

Copula M̃1 M̃2 M̃3 M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

Clayton 0.101 0.024 -0.029 0.101 0.041 -0.041 0.101 0.041 -0.031
Gaussian 0.130 0.023 -0.035 0.130 0.039 -0.052 0.129 0032 -0.045

Frank 0.108 0.027 -0.029 0.108 0.032 -0.033 0.108 0.029 -0.031
Gumbel 0.107 0.028 -0.039 0.107 0.037 -0.048 0.104 0.034 -0.042

Bias EMSPE RB (%) Bias EMSPE RB (%) Bias EMSPE RB (%)
Clayton -0.008 0.095 -2.1 0.006 0.101 4.9 -0.011 0.112 16.1

Gaussian 0.002 0.118 -10.2 0.001 0.118 -4.3 -0.009 0.115 13.9
Frank 0.001 0.106 -3.8 0.006 0.107 3.8 -0.016 0.105 10.5

Gumbel -0.008 0.096 -7.3 0.003 0.096 2.1 -0.003 0.096 15.6

normal distribution. The results are summarized in Table A2, where RBboot2 is

calculated using the MSPE estimator defined in Hall and Maiti (2006) and Torabi

(2012) described as: using Algorithm 1, we can obtain mspeboot ( ˆ̄YiU ) ≡ k̂i , aver-

aged over simulation runs, for first-phase bootstrap method. Again, from the

estimated parameters obtained in first phase, generate population dataset for

second-phase and repeat steps from 1 to 8 in Algorithm 1 to get the EBUP of small

area means ( ˆ̄Y ∗∗(b2)
iU ) and average mspe∗∗boot ( ˆ̄YiU ) = l̂i for R simulation runs, where

mspe∗∗boot ( ˆ̄YiU ) = 1
R

∑R
r=1

[ 1
B

∑B
b=1

{ 1
B2

∑B2
b2=1( ˆ̄Y ∗∗(b2)

iU − Ȳ ∗∗(b2)
iU )2

}]
. Then, we have

following MSPE estimators proposed by Hall and Maiti (2006):

mspeboot2( ˆ̄YiU ) ≈
{

2k̂i − l̂i , k̂i ≥ l̂i

k̂i exp{−(l̂i − k̂i )/l̂i }, k̂i ≤ l̂i

and
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mspeboot3( ˆ̄YiU ) ≈ k̂2
i /l̂i .

The RB (for example in the case of mspeboot2) can be written as

RB(mspeboot2( ˆ̄YiU )) = mspeboot2( ˆ̄YiU )

EMSPE( ˆ̄YiU )
−1.

Similarly, we can obtain for semi-parametric approach by employing Algorithm 2.

As a result, we observed that using double bootstrap method, we gain in terms

of RB with an increase in sample size but not significant. Also, this procedure

is computational intensive and thus, in this paper we follow only single phase

bootstrap method as we also got relatively small RB.

Table A2: Decomposition fo EMSPE, average bias, EMSPE, and percent relative
bias of MSPE estimate of small area mean predictors in case of the double

bootstrap method for three different methods (parametric, semi-parametric)
when the copula family (Clayton) and margins (normal) are correctly specified for

m(= 20,40).
Clayton Parametric Semi-parametric

m M̃1 M̃2 M̃3 M̃1 M̃2 M̃3

20 0.084 0.011 -0.012 0.084 0.022 -0.021
40 0.080 0.006 -0.006 0.080 0.013 -0.012

Bias EMSPE RBboot3 (%) Bias EMSPE RBboot3 (%)
20 -0.013 0.082 3.6 -0.003 0.084 4.1
40 -0.006 0.079 -1.2 0.000 0.080 0.8
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