
4D MR Phase and Magnitude Segmentations with GPU Parallel Computing

By

Robert V. Bergen

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Physics and Astronomy

University of Manitoba

Winnipeg

c©2014 by Robert V. Bergen

Dedication

To Robyn, who is always there for me.

To my father and grandfather, to whom my education was always very important.

i

Acknowledgments

I would like to thank my co-supervisors, Dr. Chris Bidinosti and Dr. Murray Alexander, for the

support given and interest taken in this thesis. I am very grateful for the advice given in regards

to the research, writing and editing of this work, as well as helping me on the way to submitting

my research for publication for the first time.

I would like to thank both Dr. Murray Alexander and Dr. Randy Kobes for giving me my first

research opportunity as an undergraduate many years ago. It proved to be a valuable experience,

and the work I continued to do over the next few summers with Dr. Alexander were rewarding ones.

To Dr. Hung-yu Lin, Dr. Stephen Pistorious and Dr. Gabriel Thomas, thank you for agreeing

to read my thesis as reviewers for my defense. I would also like to thank Dr. Lin for providing me

the data used in this thesis, and for his time in answering any questions I had.

Thank you to Dr. Simon Liao and the Department of Applied Computer Science at the Uni-

versity of Winnipeg for the workspace which they provided for me. Many thanks to James Deng,

who troubleshot the seemingly endless amount of computer glitches that arose over the course of

my research.

I would also like to acknowledge the funding from this project from The University of Manitoba

and the Faculty of Graduate Studies.

ii

Abstract

The increasing size and number of data sets of large four dimensional (three spatial, one temporal)

MR cardiac images necessitates efficient segmentation algorithms. Analysis of phase-contrast MR

images yields cardiac flow information which can be manipulated to produce accurate segmentations

of the aorta. New phase contrast segmentation algorithms are proposed that use simple mean-

based calculations and least mean squared curve fitting techniques. The initial segmentations are

generated on a multi-threaded CPU in 10 seconds or less. All CPU algorithms are sped up by

a factor of 2 on the GPU, except for a more complex algorithm which fits flow data to Gaussian

waveforms, and produces an initial segmentation in 0.5 seconds. This is a massive 2760x speedup

over the CPU. The CPU computation time suggests that a complex segmentation of large 4D data

sets are only practical with GPU computing. Level sets are applied to a magnitude image, where

the initial conditions are given by the previous CPU and GPU algorithms. A qualitative comparison

of results show that the GPU algorithm appears to produce the most accurate segmentation. After

segmentation, particle trace simulations are run to visualize flow patterns in the aorta using two

different representations of the flow field. One simulation plots streamlines which are lines tangent

to the instantaneous flow field. The other plots pathlines which represent the path a virtual particle

takes in the time-varying field. A procedure for the definition of analysis/emitter planes is proposed

from which virtual particles can be emitted or collected within the vessel, which are useful for future

quantification of various flow parameters.

iii

Contents

Dedication i

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables xi

1 Introduction 1

2 Principles of Magnetic Resonance Imaging 4

2.1 Nuclear magnetic resonance . 4

2.2 Net magnetization . 8

2.3 RF pulse . 9

2.4 Rotating reference frame . 10

2.5 Bloch equation . 12

2.6 Flip angle and transverse magnetization . 12

2.7 Signal detection . 14

2.8 Gradient echoes . 16

2.9 Slice-selectivity . 18

iv

2.10 Frequency and phase-encoding . 20

2.11 k-space . 22

2.12 Image Reconstruction . 24

2.13 Velocity Encoding and Flow Imaging . 24

2.14 MR Acquisitions . 28

2.15 Magnitude and Phase-contrast Images . 28

3 Image Analysis Methods and Techniques 31

3.1 Level Sets . 32

3.2 Magnitude Segmentation . 35

3.3 Phase Segmentation . 39

3.3.1 GAC extraction . 44

3.4 Curve-fitting pulsatile flow . 46

3.5 Combined Phase and Magnitude Segmentation Method 47

3.6 Applications and Flow Visualization . 48

3.6.1 Euler method and interpolation of velocity data 48

3.6.2 Analysis planes . 50

3.6.3 Principal component analysis and singular value decomposition 55

3.6.4 Summary of procedure for analysis plane definition 58

3.6.5 Visualization and particle traces . 58

4 Parallel computing 61

4.1 Multi-core processing and hyper-threading . 61

4.2 Graphics Processing Units . 63

4.3 Algorithm Optimizations . 64

4.4 Computer Specifications . 65

5 Results 66

5.1 Magnitude Segmentation . 66

v

5.2 Phase Segmentation . 69

5.3 Curve-fitting pulsatile flow . 74

5.4 Phase-Magnitude Segmentation . 77

5.5 Summary of Segmentation Results . 80

5.6 Applications . 86

5.6.1 Analysis planes . 86

5.6.2 Visualization and particle-tracing . 89

5.7 GPU optimization . 93

6 Discussion and Conclusions 96

A Computer code for GPU-accelerated segmentations and applications 108

A.1 Phase-contrast segmentation . 108

A.2 GDS Segmentation with GPU in MATLAB . 112

A.3 GPU kernel for CFS segmentation . 113

A.4 MATLAB code for the definition of emitter planes 120

A.5 Particle trace with GPU in MATLAB . 123

vi

List of Figures

2.1 A charged particle spins about an axis and creates a magnetic field. 5

2.2 Zeeman splitting for a spin 1/2 particle. 6

2.3 Alignment of spins in an object. 7

2.4 Precession of spins about a magnetic field axis. 8

2.5 The motion of the magnetization vector M in the lab and rotating frames. 11

2.6 The relaxation of the longitudinal and transverse magnetizations. 14

2.7 The decay of an FID signal induced by an RF-pulse. 16

2.8 Gradient-echo pulse sequence. 17

2.9 A slice oriented perpendicular to the z-axis, with thickness ∆z. 18

2.10 k-space sampling trajectory at angle φ. 23

2.11 Generic gradient-echo imaging sequence. 23

2.12 Bipolar gradient signals. 27

2.13 Pulse sequence for velocity encoding. 28

2.14 A 2D sagittal slice of a magnitude image with its corresponding phase images. . . . 30

3.1 A flowchart which overviews the segmentation algorithms. 34

3.2 Three 2D sagittal slices of the magnitude image. 35

3.3 Three 2D sagittal slices of the magnitude image gradient. 37

3.4 Three sagittal 2D slices of the sigmoid output. 37

3.5 Evolution of the level set. 38

3.6 Pre-processing pipeline for the magnitude image. 38

3.7 Coordinate system used for flow analysis. 40

vii

3.8 Three 2D sagittal slices of a phase image encoded in the z-direction. 40

3.9 Flow velocity vs. time curves at different image locations. 41

3.10 Regions of interest within a flow curve. 42

3.11 2D sagittal slices of phase segmentations for flow in the –z direction before noise

correction. 43

3.12 Nearest-neighbour filter. 44

3.13 GAC extraction example. 45

3.14 A Gaussian fit of a flow curve. 47

3.15 Illustration of a 2D interpolation. 51

3.16 Analysis plane for a cylindrical volume. 52

3.17 Signed distance function. 53

3.18 Analyzing the output of the SDF. 53

3.19 Gradient of Figure 3.17. 54

3.20 The centerline after thresholding of the SDF gradient. 54

3.21 The centerline overlayed on the magnitude image. 55

3.22 The two principal components for a scattered Gaussian distribution. 56

3.23 Pathline visualization in a non-healthy patient. 60

4.1 A grid representing the GPU. 64

5.1 Pre-processing images for the upper magnitude segmentation. 67

5.2 Pre-processing images for the lower magnitude segmentation. 68

5.3 Results of the level set segmentation (red) overlayed on the magnitude image. . . . 69

5.4 Three different 2D slices lying on the y-axis of phase segmentations for flow in the

–z direction (before noise correction). 71

5.5 Three different 2D slices lying on the y-axis of phase segmentations for flow in the

–z direction after nearest-neighbor based noise reduction. 71

5.6 2D slices of phase segmentations for flow in the –z direction after Gaussian filter noise

reduction. 72

viii

5.7 3D mesh representations of phase segmentation with Gaussian filter noise reduction. 73

5.8 Final phase segmentation with nearest-neighbor noise reduction and GAC aorta ex-

traction overlayed on magnitude image. 73

5.9 CFS output. 75

5.10 Final CFS segmentation after NN noise reduction and GAC aorta extraction over-

layed on magnitude image. 75

5.11 Output of the GDS algorithm before thresholding. 76

5.12 Final GDS segmentation after thresholding, nearest-neighbor based noise reduction

and GAC aorta extraction overlayed on the magnitude image. 77

5.13 Overlay of PM segmentation with phase-based initialization on magnitude image. . 78

5.14 Overlay of PM segmentation with CFS-based initialization on magnitude image. . . 79

5.15 Overlay of PM segmentation with GDS-based initialization on magnitude image. . . 79

5.16 Comparison of segmentations overlayed on magnitude images. 81

5.17 Comparison of segmentations overlayed on magnitude images. 82

5.18 Comparison of segmentations overlayed on magnitude images. 83

5.19 Mesh representation of magnitude image segmentation. 84

5.20 Mesh representation of phase segmentation with nearest neighbour based noise re-

duction and GAC extraction. 84

5.21 Two different views of the mesh representation of the segmentation produced by the

PM algorithm with CFS-based initialization. 85

5.22 Two different views of the mesh representation of the segmentation produced by the

PM algorithm with GDS-based initialization. 85

5.23 The CFS algorithm wrongly segments a small portion of the superior vena cava. . . 85

5.24 Calculating the centerline of the aorta. 87

5.25 Another view of Figure 5.24. 88

5.26 A semi-transparent mesh of the CFS segmentation. 89

5.27 Streamline representation of blood flow in the aorta during systole. 90

5.28 Streamline representation of blood flow in the aorta during early diastole. 90

ix

5.29 Particles are emitted in the ascending aorta and traced for one heart cycle. 91

5.30 Particles are emitted in the abdominal aorta and traced for one heart cycle. 92

5.31 Particles are emitted in the ascending aorta and traced for three heart cycles. 92

5.32 In the streamline respresentation during peak systole, some evidence of helical flow

can be seen in the ascending aorta. 93

x

List of Tables

5.1 Filter values for magnitude image segmentation. 68

5.2 Table of acceptable ranges for mean (m) and standard deviation (σ) values for flow

curves (in cm/s) . 70

5.3 GAC values used for PM Segmentations. 77

5.4 Computation times for initial segmentations (seconds). 94

xi

Chapter 1

Introduction

Cardiac magnetic resonance imaging (MRI) is a clinically-proven imaging modality that shows high

levels of accuracy and reproducibility in a wide spectrum of cardiovascular diseases [1]. An impor-

tant problem in MRI is detecting abnormalities in cardiac flow, which is currently done through

echocardiography in three dimensions (two spatial, and one time). However, with the advance of

4-dimensional (three spatial, one time) MRI techniques, it is now possible to improve upon the

previous methods to give more accurate, reliable and comprehensive clinical diagnosis of vascular

diseases which can be life-threatening and difficult to detect. To study the dynamics of motion or

flow during the cardiac cycle, a complete series of 3D datasets acquired at different times during

the cardiac cyle is required. Phase contrast MRI can measure all three directions of blood flow

velocity relative to all four spatio-temporal dimensions of the heart and great vessels which can

then be analyzed to quantify regional flow and velocity parameters such as flow rate, peak velocity

and retrograde flow [2, 3, 4, 5, 6]. Other hemodynamic parameters such as pressure differences and

vessel wall shear stress can also be calculated [7, 8, 9, 10, 11]. Segmented data can aid in the early

detection of congenital aortic disease leading to aortic aneurysms and dissections.

There have been a variety of proposed solutions to the four dimensional segmentation of the

aorta. A common method for segmentation is the level set technique [12, 13]. This method creates

a contour, and deforms it around an object by solving partial differential equations based on image

1

intensity and the curvature of the contour itself. The contour is represented as the zero level set of a

higher dimensional function, called a level set function, whose motion is formulated as an evolution

equation. The main advantages of using level sets is that arbitrarily complex shapes can be modeled

and topological changes such as merging and splitting are handled implicitly.

The most general level set, called the geodesic active contour (GAC) model, updates its level set

function based on image intensity, image edges, and the curvature of the contour itself. However,

in many cases the aorta boundary can be very difficult to detect because of low contrast within the

image. In these cases, additional filters may be used along with the level set. One such solution is

an Adapting Active Shape Model [14] which uses a level set method with a tubular filter to prevent

the contour from expanding into areas of the image where the contrast is low. Others have ac-

quired high resolution images of the aortic arch and renal arteries using phase-contrast information

weighted by the image intensity of the magnitude image [15].

In this thesis we explore five different algorithms to segment the aorta from 4D cardiac MR

images. The first algorithm uses only the magnitude information by preprocessing the magnitude

image for application of the GAC level set. The second, third, and fourth algorithms use phase-

contrast information exclusively. In the second algorithm, the cardiac cycle is separated into four

different time regions, in which mean and standard deviations of the blood flow are calculated at

each voxel for each directional component of the blood flow. The voxels whose values fall into

an accepted range are segmented, while others are thrown away. The third algorithm instead fits

Gaussian waveforms to the flow curves at each voxel, and segments the voxels whose Gaussian

parameters fall into acceptable ranges. The fourth algorithm yields a similar segmentation by com-

paring the flow curves at each voxel to one standard Gaussian. Finally, the last algorithm uses both

phase and magnitude information by initializing the GAC level set with the initial phase-based

segmentations. This level set is then evolved on the magnitude image to conform the segmentation

boundary to nearby magnitude image edges and accurately segment the aorta in three dimensions.

All the segmentation algorithms are compared in terms of accuracy and processing time.

2

Because of the large amount of data obtained from 4D MRI scans and the computational needs

of image processing, rapid methods of segmentation, 3D surface model construction and visualiza-

tion are needed. Even the most accurate segmentations lose practicality once their run times stretch

into hours or even days. Recently, Graphics Processing Units (GPUs) have become increasingly

popular in the field of image processing, due to their ability to parallelize computations among its

many cores, in a way that cannot be done with Central Processing Units (CPUs). For this reason,

we optimize our segmentation methods for the GPU architecture. GPUs have already been shown

to be useful in the medical image processing field; for example, the level set and other methods

have already been implemented on GPU architecture [16, 17]. We show that for certain algorithms

where calculations are sufficiently parallelizable, the GPU greatly outperforms the CPU to produce

accurate results at speeds which would otherwise be impossible.

In the following chapter, the theory behind nuclear magnetic resonance and how it can be ma-

nipulated to produce MR images is reviewed, and the specific MR encoding and imaging sequences

used to generate the 4D cardiac data analyzed in this thesis are presented. Chapter 3 explains each

of the five segmentation methods, and discusses de-noising techniques for the initial segmentations.

The level set is also discussed in detail, and it is shown how the various parameters in the level

set equation controls the growth of the level set contour. Chapter 4 introduces applications of

segmentation, specifically the visualization of blood flow in three dimensions and the definition of

analysis planes within a segmented volume, which are useful for the quantifications of a variety of

flow parameters. Chapter 5 discusses the idea of parallel computing and explains the advantages

and drawbacks of GPUs in scientific computing. CPU vs. GPU runtimes are then compared for all

our algorithms, and further possibilities for optimization are discussed. In Chapter 6 we discuss the

advantages and limitations of our algorithms, and suggest possible improvements for future work.

3

Chapter 2

Principles of Magnetic Resonance

Imaging

This chapter presents an overview of the theory behind MRI. First, the idea of nuclear magnetic

resonance is introduced and we discuss how a net magnetization may be induced in an object and

how it is mathematically formulated. We discuss how a signal may be detected that originates

from this net magnetization, and how it may be manipulated through the application of various

radio-frequency pulses and/or gradient fields (or imaging sequences) to yield spatial and velocity

information of the object itself. As the following overview is meant to be brief, a more complete

explanation of the processes involved can be found in “Principles of Magnetic Resonance Imaging”

by Z.-P. Lhiang and P. C. Lauterbur, which was used as the main source for the content of this

chapter [18].

2.1 Nuclear magnetic resonance

MRI is based on the phenomenon of nuclear magnetic resonance (NMR), which was first observed

independently by Felix Bloch [19] and Edward Purcell [20]. As its name implies, NMR involves a

resonance effect arising from the interactions between magnetic fields and the nuclei of the object

being imaged. Then to describe the theory, we need to start at a nuclear level. Fortunately, most

MRI principles can be accurately described using classical vector models because we are only con-

4

cerned with the collective behaviour of the huge number of nuclei involved.

Figure 2.1: A charged particle spins about an axis and creates a magnetic field similar to that of a
bar magnet. (Image from M. Puddephat [21].)

Nuclear magnetism describes the behaviour of a nucleus placed in an external magnetic field.

For simplicity, consider the hydrogen nucleus. The nucleus rotates about its own axis if it has

nonzero spin. Like any charged object, this spin creates a magnetic field around it, analogous to a

bar magnet (Figure 2.1). This field can be represented by a vector quantity ~µ, which is called the

nuclear magnetic dipole moment. This can be related to spin angular momentum by

~µ = γ ~J, (2.1)

where γ is the gyro-magnetic ratio, whose value depends on the nucleus. Before going further, it

is important to note that this description of magnetic moments is just a conceptual model, and

cannot explain the magnetic moments of uncharged particles like the neutron. Ultimately, a quan-

tum mechanical explanation is necessary for a complete description of spin and atomic magnetic

moments.

Quantum mechanics tells us that the energy associated with a dipole moment in a magnetic

field B0 is

E = −~µ · ~B0 = −µzB0 = −γ~mIB0, (2.2)

where mI is the spin quantum number and ~ is Planck’s constant. For a hydrogen nucleus, mI =

5

±1/2. We refer to spins pointing along B0 as spin“up”. For spins pointing up, mI is positive and

E↑ = −1

2
γ~B0, (2.3)

while for spins aligned opposite to B0, or spin “down” nuclei

E↓ =
1

2
γ~B0, (2.4)

and their energy difference is

∆E = E↓ − E↑ = γ~B0. (2.5)

The difference between the energy levels of the two spin states is known as the Zeeman splitting

phenomenon. This is illustrated in Figure 2.2. The difference in population of spins in each energy

level is related to the energy difference between them. According to the Boltzmann equation, we

get

N↑
N↓

= exp

(
∆E

kBT

)
= exp

(
γ~B0

kBT

)
, (2.6)

where N is the population of spins pointing up (↑) or down (↓), T is the absolute temperature of

the system, and kB is the Boltzmann constant.

Figure 2.2: Zeeman splitting for a spin 1/2 particle, in an external field B0. (Image modified from
[22].)

6

Figure 2.3 shows what an entire object might look like before and after being subjected to an

external magnetic field, where the number of spin up and spin down particles follows the Boltzmann

distribution (Equation (2.6)).

Figure 2.3: Spins are randomly aligned in an object when there is no field present. Application of
a magnetic field aligns the spin parallel or anti-parallel to the field depending on the magnetic spin
quantum number of the particle. (Image from M. Puddephat [21].)

When placed in an external magnetic field, an object with a magnetic moment experiences a

torque. The torque, τ , can be written as

~τ = ~µ× ~B0. (2.7)

It is conventional to choose a coordinate system so that ~B0 = B0k̂. Classical mechanics tells us that

the torque experienced by a dipole moment is equal to the rate of change of its angular momentum,

so

d ~J

dt
= ~µ×B0k̂

or
d~µ

dt
= γ~µ×B0k̂ (see Equation (2.1)).

(2.8)

The solution to such a set of differential equations is

µxy(t) = µxy(0)e−iγB0t

µz(t) = µz(0),

where µxy = µx + iµy.

(2.9)

7

Figure 2.4 illustrates Equations (2.8) and (2.9). Normally, the orientations of the nuclear mag-

netic moments in an object are random, but when the external field is applied to a hydrogen nucleus

the magnetic moment vectors are oriented in one of two directions (parallel or anti-parallel). Equa-

tion (2.9) shows that the nucleus precesses about the z-axis, which is simliar to that of a spinning

top precessing about the gravitational axis. Note that in Equation (2.9), the vector precesses at a

frequency ω0 = γB0, which is known as the Larmor frequency.

Figure 2.4: Equation (2.9) shows that the spins precess about the magnetic field axis, similar to a
spinning top. (Image from M. Puddephat [21].)

2.2 Net magnetization

The net magnetization resulting from the addition of all the dipole moments can be calculated after

they have been aligned with the B0 field. The net magnetization vector ~M for N spins can be

calculated as

~M =

(
N∑
n=1

~µn

)
=

(
N∑
n=1

µx,n

)
x̂+

(
N∑
n=1

µy,n

)
ŷ +

(
N∑
n=1

µz,n

)
ẑ. (2.10)

Since there is no preferred orientation of the dipoles in the x and y -directions, they average to zero

and we are left with

~M =

(
N∑
n=1

µz,n

)
ẑ =

(
N∑
n=1

γ~(mI)n

)
ẑ, (2.11)

8

where
N∑
n=1

(mI)n =
1

2
(N↑ −N↓). (2.12)

Then for hydrogen nuclei,

~M = γ~
[

1

2
(N↑ −N↓)

]
ẑ. (2.13)

From Equation (2.6), we make the observation that ∆E << kBT , so we can use a first order

approximation to write

(N↑ −N↓) ≈
Nγ~B0

2kBT
, (2.14)

which can be substituted into Equation (2.13) to obtain

~M =
Nγ2~2B0

4kBT
ẑ. (2.15)

This is the net magnetization in static equilibrium, and is usually denoted ~M0. The magnetiza-

tion is proportional to both the number of spins N and the external magnetic field strength B0

and inversely proportional to T . Since T and N are fixed for a given biological sample, increased

magnetization can only be achieved by increasing B0. This has been the primary motivation for

the increase in field strength of MRI scanners over the years.To acquire an image, we will need to

perturb this spin system with additional fields.

2.3 RF pulse

To acquire an NMR signal, we need to excite the magnetization vector ~M so that we induce

a coherent transition of spins from one energy state to another. A short pulse of time-varying

magnetic field, ~B1, is applied perpendicular to the magnetic field ~B0 with | ~B1| << | ~B0|. The

radiation energy of this field must be equal to the energy difference of the spin states, so

9

~ωrf = ∆E = ~γB0,

ωrf = ω0.

(2.16)

This is called the resonance condition. Note that the pulse frequency typically lies within the radio

frequency range and for this reason, ~B1 is called a radio frequency (RF) pulse. A typical RF pulse

can be written as

~B1(t) = Be
1(t)e−i(ω0t+φ), (2.17)

where φ is the initial phase angle of the RF field, and Be
1(t) is called the envelope function. Before

describing the types of envelope functions used in RF pulses, we can simplify the mathematics

involved by switching reference frames.

2.4 Rotating reference frame

For simplification, we can switch to the rotating reference frame with the Larmor frequency, ω0.

Mathematically, the transformation can be written as


x̂′ = cos(ω0t)x̂− sin(ω0t)ŷ

ŷ′ = sin(ω0t)x̂+ cos(ω0t)ŷ

ẑ′ = ẑ

 (2.18)

Setting ~M1,rot = ~M and ~B1,rot = ~B1, the transformations of ~M and ~B1 into the rotating frame are

then given by


M ′

x

M ′
y

M ′
z

 =


cos(ω0t) −sin(ω0t) 0

sin(ω0t) cos(ω0t) 0

0 0 1



Mx

My

Mz

 (2.19)

10

B′1x
B′1y

 =

cos(ω0t) −sin(ω0t)

sin(ω0t) cos(ω0t)


B1x

B1y

 (2.20)

The motion of the bulk magnetization can be seen in Figure 2.5. In the rotating frame, the ~B1 field

tips the magnetization vector at an angle α away from the z′ axis. This angle is called the flip angle.

Figure 2.5: The magnetization vector M in the lab frame will precess in the xy-plane, at an angle
from the z-axis given by α. In the rotating frame, M appears stationary and tipped along the
y′-axis. (Image modified from [23].)

It is also of interest to define the rate of change of ~M with respect to the rotating frame. Taking

the derivative of ~M gives:

d ~M

dt
=
dMx′

dt
x̂′ +

dMy′

dt
ŷ′ +

dMz′

dt
ẑ′ +Mx′

dx̂′

dt
+My′

dŷ′

dt
+Mz′

dẑ′

dt
,

=

(
d ~M

dt

)
rot

+Mx′
dx̂′

dt
+My′

dŷ′

dt
+Mz′

dẑ′

dt
,

=

(
d ~M

dt

)
rot

+ ~ω × ~Mrot,

(2.21)

since the time derivatives of the unit vectors are of the general form dx̂′/dt = ~ω×x̂′. Since ~M = ~Mrot,

we can simply write

(
d ~M

dt

)
lab

=

(
d ~M

dt

)
rot

+ ~ω × ~M. (2.22)

11

2.5 Bloch equation

We can now examine the time-dependent behaviour of ~M in the presence of the field ~B1 which is

described by the Bloch equation,

d ~M

dt
= γ ~M × ~B − Mxx̂+Myŷ

T2

− (Mz −M0
z)ẑ

T1

, (2.23)

where M0
z is the thermal equilibrium value for ~M in the presence of ~B0 only, and T1 and T2 are

time constants characterizing the relaxation process of the spins after they have been perturbed

from their equilibrium states. This is explained in more detail in Section 2.6. Since the RF pulse is

short compared to these times, we can ignore the last two terms in Equation (2.23) for now.

Substituting Equation (2.22) into Equation (2.23) gives

(
d ~M

dt

)
rot

= γ ~M ×
(
~B +

~ω

γ

)
, (2.24)

where the effective magnetic field in the rotating frame is

~Beff = ~Brot +
~ω

γ
. (2.25)

In the case that ~Brot = B0ẑ, and ~ω = −γB0ẑ, then Equation (2.25) gives ~Beff = B0ẑ − γB0ẑ
γ

= 0.

Therefore, in the rotating frame, the apparent magnetic field vanishes and ~Mrot appears to be sta-

tionary.

2.6 Flip angle and transverse magnetization

Recall that the angle that ~M is tipped from the z-axis is α, the flip angle. The flip angle can be

calculated by

12

α =

τ∫
0

γBe
1(t)dt, (2.26)

where τ is the duration of the pulse. Choosing a rectangular pulse for the envelope function Be
1 is

common, because Equation (2.26) simplifies to

α = γBe
1τ, (2.27)

so that the flip angle is easily controlled by varying the strength of the B1 field and its duration.

The amount of transverse magnetization can then be found by

Mxy = | ~M |sin(α). (2.28)

After the spin system has been perturbed from its thermal equilibrium by the RF pulse, it will

return to this state provided that the external RF pulse is removed and sufficient time is allowed.

Two processes occur during this time: a recovery of the longitudinal magnetization Mz, called

longitudinal relaxation, and the destruction of the transverse magnetization Mxy, called transverse

relaxation. The exact mechanisms of these processes are beyond the scope of this text, but we can

describe the evolution of the transverse and longitudinal magnetizations with the Bloch equation:

dMz′

dt
= −Mz′ −M0

z

T1

,

dMxy′

dt
= −Mxy′

T2

,

(2.29)

where the first term in the Bloch equation has been dropped since ~Beff = 0 in the Larmor frame.

The solutions for these differential equations are exponential decays and are given by

Mxy′(t) = Mxy′(0)e−t/T2 ,

Mz′(t) = M0
z (1− e−t/T1) +Mz′(0)e−t/T1 .

(2.30)

Figure 2.6 graphs the longitudinal and transverse magnetizations over time. The values of T1 and

T2 depend on the tissue composition, structure, and surroundings. In general, T1 is always longer

13

than T2. Usually, T1 ranges from 300 to 2000 ms, and T2 ranges from 30-150 ms [18].

Figure 2.6: The longitudinal relaxation (left) after the magnetization vector has been tipped 90deg
by an RF pulse into the xy-plane. Simultaneously, the transverse magnetization exponentially
decays (right).(Image from S. Day [24].)

To summarize, we have described how placing an object (whose constituent particles have 1/2

integer nuclear spin) in an external magnetic field ~B0, and perturbing the system with another al-

ternating field ~B1 induces a macroscopic rotating magnetization vector. This phenomenon is called

NMR or nuclear magnetic resonance. In the rotating frame, the magnetization vector M is tipped

at an angle α. After the B1 field is removed, the net magnetization in the xy-plane exponentially

decays with a time constant T2. The change in magnetization will generate an RF signal which we

will need to detect and interpret.

2.7 Signal detection

According to Faraday’s law of electromagnetic induction, the voltage generated in a coil is pro-

portional to the rate at which the magnetic flux through a coil changes. If ~B(~r) is the lab frame

magnetic field at location ~r produced by a unit direct current flowing in the detection coil, the

magnetic flux can be calculated by

Φ(t) =

∫
object

~B(~r) · ~M(~r, t)d~r. (2.31)

By the law of induction, the voltage is then

14

V (t) = −∂Φ(t)

∂t
= − ∂

∂t

∫
object

~B(~r) · ~M(~r, t)d~r. (2.32)

This is often regarded as the rawest form of the NMR signal. A detection scheme known as

quadrature detection is commonly used in MRI systems. In this scheme, two coils are orthogonal

to each other and their outputs are combined in complex form so that

S(t) = S1(t) + iS2(t). (2.33)

In practice, the voltage detected is usually moved to a low-frequency band using phase-sensitive

detection or signal demodulation. The details of this process are not given here, but may be found

in [18]. An inhomogeneous field ~B(~r) can be expressed as the summation of its homogeneous and

inhomogeneous parts by ~B(~r) = ~B0 + ∆ ~B(~r), so that ∆ω(~r) = γ∆B(~r). The resulting signal from

such a field can be expressed by

S(t) =

∫
object

Mxy(~r, 0)e−i∆ω(~r)td~r. (2.34)

Note that we assume the field inhomogeneities are not time-varying in this formulation.

By introducing the spin spectral density function ρ(ω), we can characterize the frequency dis-

tribution of a heterogeneous spin system. In terms of the bulk magnetization,

M =

∞∫
−∞

ρ(ω)dω. (2.35)

Our signal can then be rewritten as

S(t) = sin(α)

∞∫
−∞

ρ(ω)e−t/T2(ω)e−iωtdω, (2.36)

which is called a free induction decay (FID) signal. FID signals are the most basic form of transient

signals from a spin system after a pulse excitation. The FID signal from a spin system with one

15

spectral component resonating at a frequency ω0 is

S(t) = M0
z sin(α)e−t/T2e−iω0t t ≥ 0, (2.37)

where we see that the amplitude of the signal depends on the thermal equilibrium and flip angle

values. The FID signal also has a characteristic T2 decay, as can be seen in Figure 2.7. In the case

of field inhomogeneities, T2 is replaced by T ∗2 in a manner approximated by

1

T ∗2
=

1

T2

+
1

T ′2
, (2.38)

where T ′2 takes into account any static field inhomogeneities that cause spins to dephase faster.

Figure 2.7: The decay of an FID signal induced by an RF-pulse. The echo pulse after the initial
FID pulse is discussed in section 2.8. Note the oscillations of the signal, which can be traced back
to the e−iω0t term in Equation (2.37).

2.8 Gradient echoes

Echoes are another type of signal used in MRI. An echo can be generated by multiple RF pulses or

by magnetic field gradient reversal. The former type of echo is called an RF echo, while the latter

is called a gradient echo. Either method works by refocusing the transverse magnetization after the

initial FID signal to produce a second echo signal. The images used for analysis within this thesis

used gradient echoes, so only they will be discussed here.

Gradient echoes require another set of coils to produce gradient fields. These fields can dephase

and rephase the transverse magnetization in a controlled fashion so that multiple echo signals can

16

be created. A gradient field ~BG is defined so that the z-component of the field varies linearly along

a specific direction. In most cases, the z-component of the gradient field is so strong that the other

components may be ignored. For this reason, ~BG and ~BG,z are used interchangeably. ~BG is called

an x-gradient field if

BG,z = Gxx, (2.39)

where Gx is the x-gradient. We can define a y or z-gradient in a similar fashion. If we define

~G = (Gx, Gy, Gz), called the gradient direction of ~BG, we can find the value of BG by

BG = ~G · ~r. (2.40)

Figure 2.8: Gradient-echo pulse sequence. After an RF pulse, a negative gradient is turned on to
dephase spins which are then rephased by a positive gradient.

Now, consider the spin sequence in Figure 2.8. After an initial RF pulse, a negative x-gradient

is turned on. Spins in different x-positions will acquire different phases, expressed by

φ(x, t) = γ

t∫
0

−Gxxdt
′ = −γGxxt 0 ≤ t ≤ τ, (2.41)

where the loss of spin coherence becomes worse over time. After a time τ , the duration of the

first gradient, the signal goes to zero. However, if another positive gradient of the same strength

17

is applied, the magnetization gradually rephases which results in the regrowth of the signal, or an

echo. The phase angle after the second gradient is

φ(x, t) = −γGxxt+ γ

t∫
τ

Gxxdt
′

= −γGxxt+ γGxx(t− τ) τ ≤ t ≤ 2τ.

(2.42)

so that at t = 2τ , the total phase equals zero and the spin system has regained coherence.

2.9 Slice-selectivity

In MRI, gradient fields are also useful for spatially selecting one or more slices of an object to image.

A slice (Figure 2.9), can be mathematically defined as

|~µs · ~r − s0| < ∆s/2, (2.43)

where ~µs specifies the slice orientation, ∆s is the slice thickness in the direction of ~µs, and s0 is

the distance of the slice from the origin. For example, by letting ~µs = ẑ, and s0 = z0, we define a

slice along the z-direction. To excite a slice along the z-axis during an RF pulse, we apply a linear

Figure 2.9: A slice oriented perpendicular to the z-axis, with thickness ∆z.

18

gradient field along the z-axis,

~Gss = (0, 0, Gz) = Gz ẑ. (2.44)

Now, in the presence of this gradient, the Larmor frequency of a spin at position z is

ω(z) = ω0 + γGzz, (2.45)

and its frequency is

f(z) = f0 + γGzz/2π. (2.46)

Based on the slice equations already given, we can define a spatial selection function,

ps(z) = Π

(
z − z0

∆z

)
, (2.47)

which is a boxcar function of width ∆z centered at z0. Its corresponding frequency would then be

ps(f) = ps

(
2πf

γGz

)
= Π

(
f − fc

∆f

)
,

where fc = f0 + γGzz0/2π,

∆f = γGz∆z/2π.

(2.48)

Recall that an RF pulse is characterized by an envlope function Be
1 and an excitation frequency ωrf

by

B1(t) = Be
1(t)e−iωrf t. (2.49)

We can determine the proper envelope and frequency by assuming that B1 is related to p(f) by

the Fourier transform. Specifically,

B1(t) ∝
∞∫

−∞

p(f)e−i2πftdf. (2.50)

19

By inserting Equation (2.47) into Equation (2.50), we can derive

B1(t) ∝ ∆fsinc(π∆ft)e−i2πfct. (2.51)

We can now determine the values of ωrf and Be
1:

ωrf = 2πfc = ω0 + γGzz0, Be
1(t) = Asinc(π∆ft), (2.52)

where A is a constant determined by the flip angle. In practice, these pulses are not physically re-

alizable and must be truncated, but for brevity the effects of pulse truncation are not discussed here.

2.10 Frequency and phase-encoding

After a signal has been activated by a slice-selective pulse, we can extract the spatial information

from the signal during the free precession period. Two methods are used to achieve this: frequency

encoding and phase encoding.

Consider a one-dimensional object with spin distribution ρ(x). If the magnetic fields present are

the homogeneous B0 field and a linear gradient field Gxx, the Larmor frequency will be given as

ω(x) = ω0 + γGxx. (2.53)

The FID signal generated by the spins from an interval dx at point x will then be

dS(x, t) ∝ ρ(x)dxe−iγ(B0+Gxx)t, (2.54)

where the proportionality constant is dependent on the flip angle α. This signal is called frequency-

encoded because its frequency is linearly related to the spatial location. Therefore, Gx is called

the frequency-encoding gradient. If we ignore the constant of proportionality for the moment,

20

integrating over the entire object gives

S(t) =

∞∫
∞

ρ(x)e−iγ(B0+Gxx)tdx =

 ∞∫
∞

ρ(x)e−iγ(Gxx)tdx

 e−iω0t. (2.55)

We can drop the term e−iω0t by demodulation, and extend our argument to multiple dimensions so

that

S(t) =

∫
object

ρ(~r)e−iγ(~Gf ·~r)td~r, (2.56)

where Gf = (Gx, Gy, Gz) is the frequency encoding gradient.

Consider the one-dimesional case again, but this time we turn on a gradient Gx for only a short

interval Tpe and then turn it off. The local signal is given as

dS(x, t) =


ρ(x)e−iγ(B0+Gxx)tdx 0 ≤ t ≤ Tpe

ρ(x)e−iγGxxTpee−iγB0tdx Tpe ≤ t

(2.57)

During the first interval, the local signal is frequency encoded so that spins at different x positions

have different frequencies. If the gradient is turned off at Tpe, these spins will again precess at the

same rate, but will have acquired different phase angles

φ(x) = −γGxxTpe. (2.58)

It is now clear that the signal is phase-encoded. Similar to frequency encoded signals, the one-

dimensional argument can be generalized and demodulated so that the final signal can be expressed

by

S(t) =

∫
object

ρ(~r)e−iγ
~Gp·~rTped~r. (2.59)

21

2.11 k-space

From Equation (2.56), we can show the Fourier transform relationship between S(t) and ρ(x) if we

write

S(~k) =

∞∫
−∞

ρ(~r)e−i2π
~k·~rd~r, (2.60)

where ~k = γ ~Gf t/2π. In two dimensions, we may rewrite this as

S(kx, ky) =

∞∫
−∞

∞∫
−∞

ρ(x, y)e−i2π(kxx+kyy)dxdy. (2.61)

Note that S(k) is only available for a limited set of points in k-space. The set of these points is

called the sampling trajectory of k-space. The trajectory can be found by

kx = γGxt/2π,

ky = γGyt/2π,

or

kx = γGx(t− TE)/2π,

ky = γGy(t− TE)/2π,

(2.62)

depending on whether the signal is an FID or echo signal, respectively. The echo time, TE, is the

time between the echo pulse and the initial FID signal. We can also define the angle φ from the

origin at which we would like to sample k-space (see Figure 2.10):

φ = tan−1

(
Gy

Gx

)
. (2.63)

This can easily be generalized to three dimensions using Gx, Gy, and Gz to define the spheri-

cal azimuthal and zenith angles. Further pulse sequences at different gradient strengths can then

provide a more complete coverage of k-space, allowing us to reconstruct our image. Although there

are many strategies to map k-space completely, they are not discussed in detail here. Figure 2.11

22

Figure 2.10: The trajectory at which k-space is sampled at angle φ for an FID and echo signal. The
two-sidedness of the echo signal doubles the sampling size of k-space relative to the FID.

combines the concepts introduced so far, and shows a complete gradient-echo imaging sequence to

obtain a signal that can be converted into a 2D image. It should be understood that the sequence

is taken multiple times with different values of Gy, to obtain a full coverage of k-space, while Gz

and Gx remain constant for slice and frequency selectivity, respectively.

Figure 2.11: Generic gradient-echo imaging sequence. Gz is used for slice-selectivity. Gy is varied
for each iteration of the sequence to map different k-space trajectories. Gx is used for frequency
encoding. TE is the echo time. The time between successive sequences TR is such that TR >> TE.

23

2.12 Image Reconstruction

Ultimately, our goal is to acquire a 2D-image slice of a three-dimensional object. To this end, we

can denote our image function by I(x, y) and relate it to the underlying function ρ(x, y, z) by

I(x, y) =

z0+∆z/2∫
z0−∆z/2

ρ(x, y, z)dz. (2.64)

The basic imaging equation is

S(kx, ky) =

∞∫
−∞

∞∫
−∞

I(x, y)e−i2π(kxx+kyy)dxdy. (2.65)

A scheme that uses n sequences to cover k-space could be defined by

Gn,x = Gcosφn,

Gn,y = Gsinφn,

(2.66)

where φ is defined by Equation (2.63). The acquired signal for the n-th cycle is defined as

Sn(t) =

∞∫
−∞

∞∫
−∞

I(x, y)e−iγGt(xcosφn+ysinφn)dxdy. (2.67)

Image reconstruction methods such as a Fast Fourier Transform (FFT) can then solve Equation

(2.67) for I(x, y). The techniques of this section can be applied successively along the slice-selective

axis to yield a stack of 2D images, forming a 3D image.

2.13 Velocity Encoding and Flow Imaging

Most MR-sequences demonstrate sensitivity to flow and motion, which can lead to artifacts in many

applications [25]. However, this motion sensitivity can also be manipulated to quantify blood flow

and motion of tissue. The quantification of flow relies on the fact that the local spin magnetization

is a vector quantity. Using appropriate velocity encoding gradients, motion dependent phase effects

24

can be extracted from the signal. Velocity gradients can be encoded in all three directional com-

ponents to acquire three separate spin phase signals that can be used to quantify motion in each

direction.

The motion dependency of spin phase signals can be derived by examining the precession fre-

quency of spins in a local magnetic field. The Larmor frequency ωL of a spin at a spatial location

~r in a static magnetic field B0 with a local field inhomogeneity ∆B0 and a magnetic field gradient

~G is given by

ωL(~r, t) = γBz(~r, t)

= γB0 + γ∆B0 + γ~r(t) · ~G(t),

(2.68)

where γB0 = ωL,0. The acquired FID signal is demodulated with respect to the Larmor frequency

in the static field B0 so that the static field contribution can be ignored (see Equations (2.56) and

(2.59)). Integrating Equation (2.68) gives the phase of the precessing magnetization and thus the

phase of the measured MR signal at echo time t = TE after an excitation pulse at t = t0:

φ(~r, TE)− φ(~r, t0) =

∫ TE

t0

ωL(~r, t) dt,

= γ∆B0(TE − t0) + γ

∫ TE

t0

~G(t)~r(t) dt.

(2.69)

This can be further expanded in the following Taylor series:

φ(~r, TE) = φ(~r, t0) + γ∆B0(TE − t0) +
∞∑
n=0

φn(~r(n), TE),

= φ0 +
∞∑
n=0

γ

n!

∫ TE

t0

~r(n) ~G(t)(t− t0)n, dt.

(2.70)

Here, ~r(n) is the nth derivative of the time dependent spin position and φn the corresponding

25

nth order phase. If the change of flow is small with respect to the temporal resolution of data

acquisition the velocities can be approximated to be constant during data acquisition. Then ~r(t)

can be approximated as a first order displacement ~r(t) = ~r0 + ~v(t − t0) with a constant velocity

~v = ~v(~r0). Equation (2.70) then becomes

φ(~r, TE) = φ0 + γ ~r0

∫ TE

0

~G(t) dt+ γ~v

∫ TE

0

~G(t)t dt, (2.71)

where the three terms correspond to an unknown background phase φ0, and the effects of the

gradient field on static and moving spins, respectively. The integrals in Equation (2.71) are also

known as nth order gradient moments Mn so that

φ(~r, TE) = φ0 + γ ~r0M0 + γ~vM1, (2.72)

where M1 determines the velocity induced signal phase. As a result, appropriate control of the first

gradient moment can be used to specifically encode spin flow or motion.

A bipolar gradient signal can be used to eliminate M0 from Equations (2.71) and (2.72). Equa-

tion (2.71) then gives

φ = φ0 + γGv

(
T

2

)2

, (2.73)

where G is the gradient amplitude and T is the gradient duration. It is now easily seen that velocity

induced phase shifts can be controlled by adjusting either of these two parameters.

To remove background phase effects φ0, two measurements with different first moments (M
(1)
1

and M
(2)
1) are necessary. The simplest case would be to then use two bipolar gradient signals with

inverted polarity (shown in Figure 2.12). These moments can be subtracted from each other to

result in a first gradient moment ∆M = M
(1)
1 −M

(2)
1 which is proportional to v. By using the

26

gradient signals described above, Equations (2.72) and (2.73) give

∆φ = γv∆M1,

v =
∆φ

γ∆M1

.
(2.74)

Figure 2.12: Bipolar gradient signals with inverted polarites are used to eliminate M0 and M1 from
Equation (2.72).

Note that any phase shift that exceeds π will result in phase wrapping. Therefore, some prior

knowledge of the maximum velocities is required. A velocity sensitivity venc is defined so that

venc = π/γ∆M1. ∆M1 should then be adjusted so that venc corresponds to the highest expected

velocity. Only velocities along the direction of the gradient contribute to the MR-signal, so multiple

measurements are needed for a complete three-directional velocity dataset. Figure 2.13 shows the

pulse sequence for one such measurement

Noise in a phase contrast image is defined as the standard deviation σφ of the phase differences

in a homogeneous region with no flow. It can be shown that this is inversely related to the signal-

to-noise ratio (SNR) in the corresponding magnitude images [25]. This noise can be estimated

by

σφ =

√
2

π(SNR)
venc. (2.75)

Therefore, venc should be chosen as small as possible to minimize noise in the phase images.

27

Figure 2.13: Pulse sequence for velocity encoding. After the blue pulse, the net magnetization is
M

(1)
1 . The red pulse gives us a net magnetization of M

(2)
1 . Subtraction of these terms leaves us with

a term proportional to the velocity of moving spins.

2.14 MR Acquisitions

The work on image segmentation presented in this thesis was done using retrospective data for post

analysis. The MRI 4D in vivo flow data were acquired using a sagittal oblique 3D volume covering

the entire thoracic aorta. Three-dimensional MRI volume scans with three-directional flow encod-

ings were implemented on a 3.0 T MRI system (Trio, Siemens Healthcare, Malvern, PA USA) with

ECG signal triggering and free breathing. A segmented spoiled gradient-echo flow sequence with

three-directional encodings was performed with echo time (TE) of 2.5 ms, repetition time (TR) of

5.5 ms, flip angle of 10 degree, temporal resolution of 40ms, spatial resolution of 1.7×3.3×1.7mm3,

and a velocity sensitivity of 150 cm/s along three directions.

2.15 Magnitude and Phase-contrast Images

We have shown in Section 2.12 that a Fourier transform can transform our measured k-space data

into image space. In Equation (2.67), the image I(x, y) is complex, so we have the option of manipu-

lating this data in different ways. A magnitude image result from combining the real and imaginary

28

parts in quadrature.

While the magnitude image is useful in brightly displaying objects of a certain tissue composition,

we have also seen in Section 2.13 that a phase-image is useful for quantifying movement and flow.

Each pixel in the complex image has a phase which may be calculated by tan−1(Im/Re), where

Re and Im refer to the real and imaginary parts of the complex image. Figure 2.14 shows an

example of a magnitude image and its corresponding phase images. Recall from Section 2.13 that

the phase-contrast images are encoded in three directions, yielding three separate images.

29

A two dimensional mag-
nitude image

Phase image encoded in
the z-direction.

Phase image encoded in
the x-direction.

Phase image encoded in
the y-direction.

Figure 2.14: A 2D sagittal slice of a magnitude image with its corresponding phase images. This
image is taken during the point in the heart cycle where blood is flowing fastest. In the phase
images, a bright spot indicates positive flow in the direction it is encoded, while dark indicates
negative.

30

Chapter 3

Image Analysis Methods and Techniques

This chapter introduces the five segmentation algorithms we use in this thesis. The first algorithm

uses a level set, a powerful tool used in image segmentation, on the magnitude image. A description

of the level set parameters and how they control the evolving level set contour is given. We also

introduce various preprocessing techniques for the magnitude image that allows the application of

the level set to segment the aorta. Next we introduce three segmentation algorithms to be used on

phase-contrast images, which work by analyzing blood flow velocity patterns at voxels within the

image and determining whether those corresponding voxels are likely to be inside or outside the

aorta. These phase segmentations are further refined by de-noising techniques such as Gaussian

filtering. The level set is then used as a means to extract the aorta from any surrounding artefacts

that have been picked up by the initial segmentation. Finally, in the last segmentation algorithm

we combine the level set and phase-contrast techniques by initializaing a level set on the magnitude

image with the phase-based segmentation results. We discuss some post-processing calculations

and applications of segmentation including velocity interpolation, the definition of analysis planes,

and the visualization of flow data. Images were displayed using ITK-SNAP, an image processing

application built upon the open source Insight Toolkit (ITK) [26]. This module has some built in

image-processing features which were useful for creating the images of this and later chapters.

31

3.1 Level Sets

The level set method was devised by S. Osher and J. A. Sethian [27] as a versatile way for computing

and analyzing the evolution of a curve Γ which bounds a region of interest Ω in two or more

dimensions. We wish to compute the motion of Γ under a velocity field v, which can depend on

position, time, the curvature of the curve itself, or any other external physics. To this end, we

define the level set function so that

Φ(~x, t) > 0 for ~x ∈ Ω,

Φ(~x, t) < 0 for ~x /∈ Ω,

Φ(~x, t) = 0 for ~x ∈ ∂Ω = Γ(t),

where ~x is a n-dimensional vector. Since we have defined Φ such that Γ(t) is the set where Φ(~x, t) =

0, we have reduced the segmentation problem to locating the set Γ(t) for which Φ vanishes. The

equation of motion is then

∂Φ

∂t
+ ~v · ∇Φ = 0, (3.1)

which can be rewritten as

∂Φ

∂t
+ C(~N)|∇Φ| = 0, (3.2)

where ~N is the normal vector, ~N = ∇Φ/|∇Φ|, and C is a function containing features of the image

that will determine the speed at which the curve will evolve.

The advantage of the level set method of segmentation is that arbitrarily complex shapes can

32

be modeled and topological changes such as merging and splitting are handled implicitly. The

level-set equations need be solved only at voxels near the boundary Γ, so the computation time

will be proportional to the size of the surface (in 3 dimensions). This can result in slow segmen-

tations in four-dimensional images where datasets are very large since the number of voxels on a

surface increases with image resolution. Slow segmentations can also result from poor placement

of the initial contour, so that many iterations of the level set are needed. However, since all points

on the evolving contour are described by the same equation, the level set method is also highly

parallelizable on a Central Processing Unit (CPU) or Graphics Processing Unit (GPU), which can

significantly reduce computation times [28]. This will be further discussed in Chapter 4.

The level set used in the following segmentations is a Geodesic Active Contour (GAC) model

[29], taken from the Insight Toolkit [30], which defines C as

C = ((α− βκ)f − γ(∇f · ~N)) ~N, (3.3)

where f is the feature image, and κ is the mean curvature. Here, α, β and γ are scalar constants

which can be used to weight the influence of the propagation, curvature and advection terms, re-

spectively. In our case, the feature image will be the magnitude of the gradient at each point in the

magnitude image. The idea is that the edges of structures in an image will vary greatly in contrast

with the background of the image. Therefore, a gradient magnitude image has high image intensity

at structural edges, and low intensities elsewhere. Using this as a feature image will allow us to

slow contour growth near image edges by equating the speed of the contour with the intensity of the

gradient. In general, level set convergence is not guaranteed, and the contour may expand beyond

image edges if they have either been poorly defined in the feature image or the algorithm runs for

too long. This is discussed in further detail in section 3.2. In Chapter 5, we will discuss how the

scalar constants in Equation (3.3) are chosen for each use of the level set.

In the following sections, we will discuss three different segmentation methods: First, the level

33

set is used on a single time slice of the magnitude image to illustrate the weakness of relying on

only magnitude information. Second, the phase data are analyzed over time to rule out voxels that

are noisy, have no signal, or have a blood flow velocity in a direction not consistent with the aorta

shape. Flow curves are also fit to Gaussian waveforms and segmented, based on the fitting parameter

values. These initial segmentations are refined by noise reduction techniques and extracted from

surrounding erroneously segmented vessels with the GAC level set. Lastly, the results from the

phase segmentations will be used to provide an initial contour for a level set used on the magnitude

image, to incorporate both phase and magnitude information into the segmentation. A summary

of this procedure is shown in in Figure 3.1.

Figure 3.1: A flowchart which overviews the segmentation algorithms to be discussed in more detail
later in this Chapter.

34

3.2 Magnitude Segmentation

For a segmentation of the magnitude image, we choose from our 4D data the 3D time slice that

has the best contrast (which corresponds to the time at which average flow speed is the largest).

Some 2D slices of the magnitude image can be seen in Figure 3.2. It has been shown that changes

in aortic dimensions over time are at scales below our image resolution, so a 3D segmentation taken

from the clearest data slice should in theory be valid throughout the cardiac cycle [31].

Figure 3.2: Three 2D sagittal slices of the magnitude image used. The goal is to segment the aorta,
the large hook-shaped vessel in the center of the images.

Before applying the GAC level set method discussed above, a few pre-processing steps were

taken. The magnitude image is first smoothed using a Curvature Anisotropic Diffusion filter, which

makes use of a modified curvature diffusion equation (MCDE). This technique was developed by

Perona and Malik as a way to smooth an image while preserving edges [32]. The MCDE equation

for a two-dimensional image is given as the evolution equation:

ft =| ∇f | ∇ ·
[
c(| ∇f |) ∇f

| ∇f |

]
, (3.4)

where f = f(x, y, t) and f(x, y, 0) is the image I(x, y). Progressively smoothed images are obtained

by choosing greater values of t from the solution. The conductance function c is defined as

35

c(|∇f |) = k2/(k2 + |∇f |2). (3.5)

The filter is sensitive to a conductance parameter k, which is analogous to the width of a Gaussian

filter, and also the number of iterations to be computed. The intensity values of the aorta within

the image are non-homogeneous which will result in the detection of false edges if passed to an

edge-detecting filter before smoothing. Generally, a higher k value is appropriate for lower contrast

images, since this will widen the filter and smooth over larger areas.

After smoothing, the gradient magnitude image is calculated with an Infinite Impulse Response

(IIR) filter which approximates the convolution of the image with the derivative of the Gaussian

kernel [33, 34]. The Gaussian kernel width σ can be increased, which can help eliminate any false

edges picked up by the MCDE. The gradient image intensities are then rescaled with a Sigmoid

transform to better define edges [26]. In terms of voxel intensity, the Sigmoid transform is defined

as

I ′ = (Max - Min) · 1

1 + e−(I−βs
αs

)
+ Min, (3.6)

where I is the input voxel intensity, I ′ the output voxel intensity, αs defines the width of the input

intensity range, βs defines the intensity around which the range is centred, and max and min refer

to the maximum and minimum values of the output image. Examples of the gradient magnitude

and sigmoid filters can be seen in Figures 3.3 and 3.4.

Due to the high average intensity in the upper aorta versus the low average intensity in the

lower aorta, we found that applying the sigmoid separately to the two halves of the image allowed

for better edge distinction. Well defined edges are important because they define our feature image

in Equation (3.3) and slow the propagation of the level set. The two sigmoid images are passed

as inputs for two GAC level sets, whose outputs are recombined to give us our final segmentation.

Figure 3.5 shows an example of the evolution of a level set using the sigmoid as a feature image,

36

Figure 3.3: Some sagittal 2D slices of the gradient magnitude image. Notice the large difference
in intensities between upper and lower aorta. A sigmoid filter can only be made sensitive to the
intensity ranges of the upper or lower aorta, but not both. Some blurring of image edges can also
be seen. We overestimate edges, so that when the level set is applied it does not escape the aorta
and engulf the image.

and demonstrates the importance of good edge detection.

Figure 3.4: Some sagittal 2D slices of the sigmoid output. The outermost slices along the y-axis
(Figures 3.4a and 3.4c) have heavily blurred edges, but the central image shows good edge resolution.
This is a result of the relatively poor resolution along the y-axis. (See Section 2.14). Notice that
the intensity relative to the gradient image is inverted as a result of choosing a negative value for
αs.

Figure 3.6 shows an example of the full pre-processing pipeline that is performed on a magnitude

image before a segmentation can take place. Notice that in Figures 3.4, 3.5, and 3.6, changes in

Sigmoid parameters greatly effect the edge detection of the lower or abdominal aorta but the edges

37

Figure 3.5: Example of the evolution of a level set on a sub-optimal sigmoid image. The sigmoid is
passed as the feature image to the GAC algorithm. Initially, it is seeded with user-defined points.
The middle image shows the level set after 30 iterations of the algorithm. The final image shows the
level set after 50 iterations. Notice that in the lower descending aorta, because the edges are poorly
defined, the contour begins to escape the aortic walls, while in the ascending aorta the contour is
wrapped to the stronger defined image edges.

detected in the upper aorta do not vary nearly as much. This is due to the poor image contrast

in the lower part of the original image. Results of the magnitude segmentation are presented and

discussed in Chapter 5.

Original image Smoothed image Gradient image Sigmoid image

Figure 3.6: Pre-processing pipeline for the magnitude image. The original image is smoothed first
to obtain a more homogeneous intensity across the object. This allows the gradient image to detect
edges optimally, and the Sigmoid simply transforms the intensities.

38

3.3 Phase Segmentation

Poor image contrast in the magnitude images can sometimes lead to poor edge detection, so that

the level set contour expands beyond the vessel walls. For most accurate results, some additional

information is needed for segmentation. This suggests a method which utilizes flow data or phase-

contrast imaging. We propose 3 methods which analyze flow data over time at each 3D voxel

location. These will be discussed here and in the next section.

All three segmentation algorithms make use of phase images encoded for flow in 3 different di-

rections, so it is necessary to define some coordinate system in which to work. Figure 3.7 defines the

coordinate system used in this thesis. Some 2D slices of a phase image encoded in the z-direction

can be seen in Figure 3.8 for reference. The voxel intensity, which is proportional to flow speed, can

be plotted in each phase-encoded direction as a function of time to obtain three intensity curves at

each 3D location. We expect well-defined curves in voxels which are inside the aorta, and noise or

no signal in voxels that are not. The aorta is oriented in such a way that large flow velocities are

constrained to the x- and z-directions, and peak velocities in the y-direction will be comparatively

small. For this reason, we focus primarily on the phase data encoded in the x- and z-directions.

Figures 3.9a - 3.9d show typical flow curves for voxels within the aortic arch, lower aorta and outside

the aorta, respectively. With limited flow in the y-direction, we only expect to measure curves like

Figures 3.9a and 3.9b or a combination of both (with flow in the z-direction switching sign in the

ascending aorta).

It should be noted that in the case of an unhealthy patient with turbulent flow, these assump-

tions may not hold. In this case, peak velocities will also sometimes lie in the ±y directions. The

algorithm described below could be extended to also search for flow in these directions. However,

further testing of these algorithms on new data sets are needed before any further discussions on

this subject can be made.

39

Figure 3.7: Coordinate system used for flow analysis. (Picture modified from a public domain image
of the body planes).

Figure 3.8: Three 2D sagittal slices of a phase image encoded in the z-direction. Intensity of
voxels denotes direction and magnitude of flow speed. A linear relationship exists between the
pixel intensity value and the flow speed. Darker pixels indicate downwards flow, while bright pixels
indicate upwards flow.

40

a) Aortic arch b) Lower aorta

c) Outside aorta d) Outside aorta

Figure 3.9: The curves show the typical directional speed of blood flow over time within voxels,
depending on their location in the image. x-direction: blue, y-direction: green, z-direction: red. In
a), the aortic arch is oriented with respect to our coordinate system so that we can expect large
x-velocities here during systole. This can be seen clearly as the blue curve spikes in the first 70 ms
of the heart cycle. A similar argument can be made for the lower aorta, where we expect blood to
flow in the –z-direction. c) and d) show noise and no signal, respectively. We can identify whether
a voxel belongs in our segmentation by comparing its flow curves to the patterns we expect to find.

41

In the first segmentation method, which we simply call the phase-segmentation, we can classify

a ’good’ voxel from a noisy or no signal voxel (Figures 3.9c and 3.9d) by examining the mean and

standard deviation of flow velocity for various data regions on the curve. For example, if a voxel

has a large mean or deviation of intensity on the tail of its flow curve, we can confidently eliminate

it from the segmentation because it does not resemble Figures 3.9a and 3.9b, or any combination

thereof. Similarly, we can eliminate any voxel that displays large mean flow speeds in the y-direction

at any point. Figure 3.10 depicts the data regions used in calculations. Mean (m) and standard

deviation (σ) values are labeled with the subscripts es (early systole), s (systole), and d (diastole)

depending on the portion of the heart cycle we wish to examine. Calculations done on the entire

curve will use the subscript c (curve).

Figure 3.10: Regions of interest within a flow curve. Mean and standard deviations can be calculated
for each region depicted here, as well as on the entire curve. These calculations can then be used
to form inclusion criteria for the segmentation algorithm.

By creating a range of acceptable mean and standard deviation values, we can narrow the cri-

teria for a voxel to be accepted into the segmentation. This ensures that flow curves resemble the

shapes we see in Figures 3.9a and 3.9b. Every range of acceptable values can be estimated based on

the venc and the predominant direction of flow, and then adjusted by the user if needed, based on

the outputs produced. Although there are many parameters to be considered, they are independent

of each other. Therefore, once an optimal range has been found for the first parameter, the second

parameter can be adjusted without the need to readjust the first, and so on.

42

With as many as fifteen million voxels in a 4D image, even the strictest inclusion criteria will

fail to perfectly filter out noise voxels whose flow curves have randomly taken on a shape similar to

the one we expect to find in the aorta. To reduce the amount of noise, three separate segmentation

algorithms are run to segment flow in the +x and ± z-directions. Figure 3.11 shows the output

of one such algorithm. Notice the noise present in the segmentation. The three segmentations are

noise corrected separately and then recombined to form a final segmentation. This is preferable

since the combined noise of all three images may result in artefacts that are more difficult to filter

than the individual images themselves.

Figure 3.11: 2D sagittal slices of phase segmentations for flow in the –z direction before noise
correction.

Two different noise reduction techniques were used which are discussed below. The first is ob-

tained by examining six nearest neighbours of a voxel and determining the status of the majority

(either they are included in the segmentation, or they are not). If there is a majority, that voxel is

assigned the same status as its neighbours. This process can be iterated until the desired result is

obtained. Figure 3.12 illustrates how this filter operates. We call this filter the nearest neighbour

(NN) filter.

The second type of noise reduction employed here is the gaussian filter. The filter convolves

the image voxels with a Gaussian kernel, which has the effect of transforming the voxel intensity

43

Figure 3.12: In the 2D example above, the blue line represents the segmentation before the nearest
neighbour filter is applied. The red pixel has 5 out of 8 neighbours included in the segmentation, so
the filter has the effect of changing the segmentation boundary to include the red pixel. This process
may be iterated if necessary, so that more pixels are included or excluded from the segmentation.

to a weighted average of the voxels neighbours. The output of a Gaussian filter on a binary image

gives values ranging between 0 and 1, so we threshold the result at 0.5 to obtain a noise-corrected

binary segmentation (see Chapter 5). Although the results of the Gaussian filter are smoother it

has the effect of eliminating smaller arteries, which may be undesirable depending on the intended

application of the segmentation.

Unfortunately, this method of segmentation and noise reduction is still susceptible to erroneous

segmentation of nearby structures that have similar flow characteristics to the aorta. A connectivity

based algorithm could potentially extract the aorta from other structures, but in our case the reso-

lution was too poor and the pulmonary artery appeared to be connected to the aorta in several areas.

3.3.1 GAC extraction

In order to solve the problem we encountered of segmenting other vessels with similar flow character-

istics, we use a geometrical approach, and rely on the previously described GAC algorithm and its

ability to maintain a low curvature contour. To initialize the GAC, a seed point is manually placed

inside the aorta. Recall from Equation (3.3) that a feature image is used to define the speed at

44

which the contour expands or contracts. Our initial segmentation serves as a binary feature image

which allows the contour to wrap around the segmentation we have already produced. However, by

increasing the weighting of the curvature term in the GAC evolution equation, we stop the contour

from bleeding into nearby structures by maintaining a smooth boundary. Figure 3.13 illustrates the

GAC extraction on one of the phase segmentations. This segmentation will be discussed later in

Section 5.2.

Figure 3.13: Two views of the same segmentation are on the left, where we see that some nearby
structures were erroneously segmented. The pulmonary artery (behind the aorta), is being partially
segmented, which is the main source of error. The poor resolution of our image makes it appear
as if there is no physical separation between the pulmonary artery and the aorta, and their flow
characteristics are very similar. By applying the techniques of this section, the aorta is extracted
from the pulmonary artery and other structures. The GAC-extracted counterparts may be seen on
the right.

Since the feature image is binary, the location of the initial seed (or small sphere) inside the

aorta does not affect final results. However, placing a seed at either end of the aorta will result in

a slower convergence of the level set since the boundary must travel the entire length of the artery.

The user may also choose to place more than one seed for faster convergence.

Although this proposed phase-based technique of segmentation has advantages in speed (see

Chapter 5.7) and ease of use (it only requires a minimum of one user defined seed, and its calcu-

lations are very simple), it may be desirable to reduce the number of variables needed to run the

algorithm. Such schemes are presented in the next section. Ideally, magnitude image information

45

would be used in tandem with phase-contrast information to make use of all available information.

These issues are further addressed in section 3.5.

3.4 Curve-fitting pulsatile flow

We have demonstrated how mean and standard deviation calculations on the flow curves of the

phase images can be good indicators of whether a voxel is inside the aorta. We now propose a

more elegant curve-fitting approach which may possibly yield better results. To the best of our

knowledge, there is no standard waveform that has been shown to fit measurements of blood flow

through the aorta at any given 3D spatial location, although a theoretical waveform for patients

with an abdominal aortic aneurysm has been proposed [35]. Determining a good waveform would

help considerably by reducing the number of parameters needed to check for a ’good’ flow curve.

Below, we discuss the methods in which we fit the flow curves of our segmented voxels to a Gaus-

sian waveform to determine whether the Gaussian curve could be considered a good candidate for

modeling blood flow through the aorta. Two different fitting methods are used:

i) Flow curves at each 3D voxel go through a least-squares curve fitting routine to find the

Gaussian with mean µ and deviation σ that best fits the flow curve. A range of µ and σ values are

then defined which determine which voxels are allowed in the segmentation. This can be described

succinctly by

x ∈ S(x) iff G(x) = G(σ, µ), (3.7)

given the conditions

σmin ≤ σ ≤ σmax, (3.8)

µmin ≤ µ ≤ µmax, (3.9)

46

where x is the voxel of interest, G is the Gaussian fit to the flow curve at voxel x, S is the segmen-

tation region and σmin,max, µmin,max are chosen by trial and error. We will refer to this method as

the curve-fitting segmentation, or CFS.

ii) Each flow curve is compared to a single standard Gaussian curve with µ = 28 ms, σ = 21 ms.

These values were chosen by trial and error. By a visual inspection, these values appear to segment

the largest portion of the aorta while minimizing the number of erroneously segmented voxels. An

error function is calculated as χ = (G(σ, µ)− f(t))2 where G is the Gaussian function, and f(t) is a

measured flow curve. The error function χ produces a continuous image in each encoded direction,

and an error threshold is defined to create a segmentation. We will refer to this method as the

Gaussian deviation segmentation (GDS). Figure 3.14 shows an example of a Gaussian fit to the

z-component of the MR velocity data at a voxel in the ascending aorta.

Figure 3.14: An example of a Gaussian fit to the z-component of flow at a voxel in the ascending
aorta.

3.5 Combined Phase and Magnitude Segmentation Method

We have already discussed a number of segmentation techniques that take in magnitude image in-

formation or phase-contrast information as input. However, a segmentation technique which makes

use of both data sets could be advantageous. This is especially true in our case, since the magnitude

image we work with has poor contrast in the abdominal aorta, and good contrast in the aortic arch.

47

Conversely, the phase-contrast segmentations we will see in Section 5.2 show strong accuracy in the

abdominal aorta, and poorer results in the aortic arch. A segmentation which makes use of the

strengths of both methods might be more accurate.

To initialize our phase-magnitude (PM) segmentation , we use the GDS and CFS segmentations

as initializations for the GAC level set algorithm. Instead of the chain of pre-processing filters pre-

viously used to create a feature image for the GAC, we define our new feature image by thresholding

the voxel intensity of the magnitude image. Recall that our magnitude images have good contrast in

the aortic arch and poor contrast in the abdominal aorta. Therefore, the feature image, being just a

thresholded version of the magnitude image, encourages contour expansion/contraction in the arch

while discouraging it in the abdominal aorta. In this way the evolution of the level set from its initial

conditions is fastest where the magnitude image is the clearest and negligible where contrast is poor.

We use a thresholding algorithm built into the ITK-SNAP module which performs well when

image contrast is good. The threshold defines a lower bound and a smoothness parameter which

tapers the intensity of voxels near the lower bound. In our case, a small smoothing value seemed

to improve results. Otherwise, the GAC algorithm is unmodified from section 3.2.

3.6 Applications and Flow Visualization

3.6.1 Euler method and interpolation of velocity data

Efficient methods of visualization and quantification are needed to convey the large amounts of data

contained within the 4D phase-contrast images in a meaningful way. For the analysis of multidirec-

tional blood flow in a 3D volume, visualization methods such as 2D vector-fields, 3D streamlines

and 3D pathlines are common [36, 37, 38, 39]. These choices of visualization can potentially offer

different and complementary representations of the same flow field.

48

The phase-contrast images define a time-varying velocity field under which we would like to

track the path of a particle over time given some initial conditions. We define our variables as

~y′(t) = f(t, ~y(t)), ~y(t0) = ~y0, (3.10)

where f(t, ~y(t)) is the velocity field and ~y0 is the initial position of the particle(s) under inspection.

Our goal then is to solve this equation for ~y(t), which in our case is a three-dimensional vector.

From the definition of the derivative, we can derive the Euler method of solving this differential

equation. Given

~y′(t) =
~y(t+ h)− ~y(t)

h
, (3.11)

~y(t) can be recursively solved for by

~y(t+ h) = ~y(t) + hf(t, ~y(t)). (3.12)

The accuracy of such a solution is dependent on the step size h. Other methods such as Runge-

Kutta [40] have also been used in particle traces which have been shown to converge faster than

its Euler counterpart. For simplicity, we use the Euler solution and a step size h that is much less

than the temporal resolution of our image (h << 14 ms). Notice that each particle in the trace is

governed by the same equation and is therefore highly parallelizable. The majority of computing

time will be spent updating the solution at each iteration.

Recall from Equation (3.12) that the velocity field f(t, ~y(t)) is derived from the phase-contrast

images. To evaluate ~y(t) at points between voxels, some type of velocity interpolation must be

used. We use a quadrilinear interpolation in the case of the time-varying field. With a static field

f(t, ~y(t)) = f(~y), only trilinear interpolation is needed.

Trilinear interpolation can be described as follows: given a point p on some three-dimensional

49

regular grid, let x0, x1 be the grid points nearest p in the x-direction, with x0 being the smaller of

the two. y0, y1, z0, and z1 are similarly defined. Let α, β, γ be the difference of p from x0, y0 and

z0, respectively. For example, if p lies at (2.3, 3.7, 3.3), α = 0.3, β = 0.7, γ = 0.3. Then a linear

interpolation of a function f(p) in the x-direction can be written as

f(p)x = (1− α)f(x0) + αf(x1), (3.13)

f(p)x = 0.7f(2) + 0.3f(3). (3.14)

Similarly, f can be interpolated in the y and z -directions by substituting the appropriate

constants in Equation (3.14). Figure 3.15 illustrates linear interpolation in two dimensions, which

can easily be extended to the three dimensional case. Equation (3.14) is also easily extended to

four-dimensions by introducing another offset for the time dimension.

f(p)t = (1− ω)f(t0) + ωf(t1). (3.15)

With this formulation, a point near the segmentation boundary will be weighted by velocity

data outside the segmentation. For this reason, any velocities outside the segmentation are set to

zero before any interpolation. Once these steps have been taken, we can solve Equation (3.12) given

some initial conditions y0.

3.6.2 Analysis planes

For flow simulations (discussed later in Section 3.6.5), we would like to place some particles into

our segmentation and track their progress through the velocity field by the interpolation method

just described. While we could easily place the initial particle locations at random locations within

50

Figure 3.15: If we wish to interpolate for some value F (X, Y), we use Equation (3.14) to define α
and β as shown above. The black circles represent the image pixels, while the red circle shows the
point which we would like to interpolate.

the aorta, it would be more desirable to define some analysis plane that is perpendicular to the

longitudinal axis of the vessel. Velocity data acquired in this 2-D plane is useful since it can be used

to quantify a number of parameters including flow rate and shear stress [41]. The analysis plane

can also be referred to as an emitter plane, since it is a both a plane in which we can emit particles

for simulation, and from which we can measure flow parameters.

In our definition of the analysis planes, we assume that the aorta can be locally approximated

by a cylinder. Therefore, an ideal analysis plane can be defined at any point within the aorta as

the plane parallel to the cylindrical face. Since a plane may be defined by ~n · (~r− ~r0) = 0, where ~r0

is a point on the plane, our problem is then reduced to finding the normal vector ~n and the center

point of the cylinder (see Figure 3.16).

If we were to find the center line of the entire aorta, we could then use any point on the line to

define planes throughout the vessel. We can search for the center line of the aorta by noting that

the points furthest away from the vessel walls corresponds to the vessel center. We use a signed

distance function (SDF) to calculate the distance from any voxel in our image to the vessel wall

51

Figure 3.16: If we imagine a small length of the aorta as a cylinder, the analysis plane we want to
define is just the cylindrical face. Finding ~n and the point at the center of the cylinder defines the
plane. (Image modified from [42].)

defined by our segmentation. In general, the SDF is defined as

f(x) =


d(x,Ωc), if x ∈ Ω,

−d(x,Ω), if x ∈ Ωc,

(3.16)

where Ω is the segmented region and Ωc is its complement, x is a point in 3D space, and (x, d) is

some metric space. Notice that any point inside the boundary will be positive, increasing in value

the further away from the boundary. Therefore, the centerline will correspond to the highest values

in the SDF. Ω will be defined by our segmentation and we use the Euclidean metric. The resulting

SDF applied on the CFS segmentation can be seen in Figure 3.17.

It is not immediately obvious from Figure 3.17 where the centerline lies. Consider Equation

(3.16) evaluated at two neighbouring points on the centerline, x1 and x2. If the radius of the aorta

does not change dramatically in the region, then f(x1) ≈ f(x2) (Figure 3.18). Then taking the 3D

gradient of Equation (3.16) gives |∇f(x1)| ≈ |∇f(x2)|. Imaging the gradient allows us to discern

the centerline of the vessel in Figure 3.19.

It is then a simple matter to threshold Figure 3.17 or Figure 3.19 and obtain the centerline in

52

Figure 3.17: Three 2D sagittal slices that show the signed distance function (Equation (3.16)) of
an aortic segmentation. Darker intensities correspond to voxels inside the aorta, but further away
from the aortic edge. Voxels outside the aorta become brighter the farther away they are. The
centerline of the vessel is darkest, though it is not discernible by eye here.

Figure 3.18: For a small section of the aorta, we can assume nearly constant radius and approximate
the vessel shape as cylindrical. The distance from two neighbouring points on the centerline are
approximately the same, and equal to the radius of the vessel.

53

Figure 3.19: Gradient of Figure 3.17. The centerline is now discernible and lies mostly in the center
image slice. We can easily filter out the rest of the image with a simple thresholding algorithm.

its entirety. Programs like ITK-SNAP allow users to interactively control the threshold and see

results in real-time. A thresholded image is shown in Figure 3.20. Figure 3.21 shows the centerline

overlayed on the magnitude image for more clarity. Given a point on this centerline, the normal

vector of the analysis plane we wish to define can be calculated by principal component analysis

(PCA) and singular value decomposition (SVD), as discussed in the next section.

Figure 3.20: The centerline left over after thresholding the SDF gradient. The line is 2-3 voxels
wide. These points can now be used to approximate the cross-sectional normal vector ~n at any
point in the vessel.

54

Figure 3.21: The centerline overlayed on the magnitude image.

3.6.3 Principal component analysis and singular value decomposition

In general, principal component analysis is a method used to transform a set of points or obser-

vations which are possibly correlated, into a set of linearly uncorrelated variables called principal

components. The principal components are mutually orthogonal, and they may be regarded as basis

vectors. The transformation is defined so that the first principal component has the largest variance

with the data, with each successive component having the next highest variance. When this trans-

formation is applied to a line in 3D space, it is easy to imagine that the condition of highest variance

sets the first two principal components to vectors perpendicular to the line. The idea then, is that

the 3rd principal component will be parallel to the line, since it must be orthogonal to the other two.

Figure 3.22 illustrates the principal components of points scattered in a Gaussian distribution.

When applied to points scattered in a linear distribution, the third principal component corresponds

to the least squares linear fit of the data. This linear fit is exactly the normal vector to our analysis

plane we wish to find. The procedure will then be to take a small neighbourhood on our centerline,

and using PCA, extract the third principal component which is the least-squares fit for the normal

vector. The determination of the exact size of the neighbourhood will be discussed later in Chapter

5.6.

55

Figure 3.22: The two principal components for a scattered Gaussian distribution are shown in two
dimensions. The first component (shown with smaller magnitude) has the highest variance. (The
above is modified from a public domain image.)

Suppose we define a small neighbourhood in our image somewhere on the centerline so that s

points are in the neighbourhood. The transformation T that transforms a set of s 3D points M in

this way is defined as

T = MW, (3.17)

where W is an s× s matrix whose columns are the eigenvectors of MTM, and M is a s× 3 matrix.

Note that for Equation (3.17) to hold, M’s mean value must equal zero. An elegant solution method

presents itself if we consider the SVD Theorem [43]. The theorem states that for any m×n matrix

M with real values, there exists a factorization of the form

M = UΣVT, (3.18)

where U is an m × m unitary matrix, V is an n × n unitary matrix and Σ is a diagonal matrix.

Since U and V are unitary, the columns of each matrix form orthonormal vectors which can be

56

regarded as basis vectors. Then if M is comprised of the coordinates of s centerline points within

some neighbourhood in our image,

M =


x1 y1 z1

...
...

...

xs ys zs

 (3.19)

We set the mean to zero by modifying M to

M =


(x1 − µx) (y1 − µy) (z1 − µz)

...
...

...

(xs − µx) (ys − µy) (zs − µz)

 (3.20)

where ~µ = (µx, µy, µz) is the mean of the distribution. We may now apply PCA to M. The matrix

MTM can be written as

MTM = VΣUTUΣVT

= VΣ2VT,

(3.21)

which is the eigenvector decomposition of MTM. This exactly matches the criteria defining the

matrix W in Equation (3.17). This allows us to set W = V in Equation (3.17), giving us

T = MV

= UΣVTV

= UΣ.

(3.22)

It is easy to see from Equations (3.17) and (3.22) that the columns of V are then the principal

components of M. Therefore, to obtain the third principal component of a set of data, one needs

only to extract the third column of the matrix V.

57

3.6.4 Summary of procedure for analysis plane definition

To define a plane in general, a point P on the plane and a normal vector ~n are needed. In an effort

to define an analysis plane which cross-sects the aorta at any point, we first find the center line.

A signed distance function transforms our image so that an image gradient maximizes the pixel

intensity at the centerline, making it easily discernible. P can be defined to be any point on this

line. To find ~n, we notice that a small neighbourhood around P resembles some linear data with

error. Applying singular value decomposition and using the theory of principal component analysis,

we can extract the third principal component which corresponds to the least squares linear fit of

our data points. This component vector is ~n.

The reader may be curious as to why this particular technique of linear least squares fitting

was used. By formulating the least-squares problem in matrix form, we allow ourselves many ad-

vantages in the MATLAB environment, which was designed to operate primarily on matrices and

arrays. Additionally, many parallelized matrix operations are pre-defined in MATLAB which are

easily integrated into the GPU architecture, which we will make use of later.

3.6.5 Visualization and particle traces

A method of velocity interpolation and the definition of analysis planes now allows us to visualize

flow data within the segmented aorta. Many different visualizations of flow are possible, with each

technique potentially offering different and complementary representations of the same flow field.

Since it is not possible to clearly show without overlap all the velocities measured in a volume, the

method of visualization is important.

Two visualization methods are streamlines and pathlines. A streamline is defined as a path

instantaneously tangent to the velocity vector of the blood flow, whereas pathlines can be thought

of as the path a virtual particle would take when released in the time-varying flow field. After

58

placing an analysis plane (or emitter plane) within the aorta, virtual particles are seeded at points

within the plane. Streamlines can then be calculated forwards and backwards in time to show flow

velocity along an arbitrary length of the streamline. We can acquire different streamline represen-

tations at any point in the cardiac cycle. The easiest way to convey speed information for both

streamlines and pathlines is to colour code each trace according to the instantaneous speed. Recall

from Section 3.6.1 that velocities outside the segmentation are set to zero. This way particles that

hit the segmentation boundary do not escape.

Pathlines are emitted at a chosen time-frame and propagate according to the time-varying flow

field. By emitting pathlines at successive instants in time, we can visualize the dynamics of 3D

blood flow over the cardiac cycle. Particles speed up during systole, and are directed away from

the heart. During diastole, the particles slow down and diffuse. For this reason, particle traces are

usually emitted for short time periods, and if further information is required, a new emitter plane

will be defined.

Some characteristic flow patterns have been observed in healthy patients. Helical flow patterns

and mild early diastolic retrograde flow have been identified in the ascending aorta, while abnormal

flow patterns can also be distinguished in cases of aortic aneurysm. In Figure 3.23, a vortical flow

pattern can be seen enveloping an aneursym. Visualizations like these could serve as good early

warnings for aortic disease, or as a data check when used in combination with other velocity map

acquisitions. In addition to visualization, a pathline representation of flow can be used as an in-

ternal check of data quality. A large number of pathlines inappropriately leaving the blood pool

indicates insufficient data quality, which might be due to noise, background error, or insufficient

spatial or temporal resolution [55].

59

Figure 3.23: An example of pathline visualization, in a non-healthy patient. In the ascending aorta
(AAo), a nine year old pediatric patient with aortic valve stenosis has a vortex flow pattern of
pathlines which occupies the shape of the aneurysm. (Image from M. Markl et al [55].)

60

Chapter 4

Parallel computing

In this chapter, we discuss computing on the Central Processing Unit (CPU) and the Graphics

Processing Unit (GPU), and how either architecture can be used to compute in parallel, or to

perform multiple instructions simultaneously. Different forms of parallel computing, such as multi-

core processing, hyper-threading, and GPU computing are discussed, and we discuss why parallel

computing is becoming so important in the field of medical imaging. We also describe in the

architecture of the GPU conceptually, and how it is used to accelerate our segmentation algorithms.

4.1 Multi-core processing and hyper-threading

In the last few decades, single-core processors have undergone a trend described by Moore’s Law

[44], roughly doubling their performance every 18 months. Recently, however, the performance of

single-core processors has slowed due to excessive power dissipation at GHz clock rates [17]. The

advancement of parallel computing has encouraged many programmers to increasingly shift their

algorithms to parallel computing architectures for more practical processing times. Already, there

has been much enthusiasm for the advantages GPU computing offers in fields and disciplines such

as linear algebra, differential equations, ray tracing, computational biophysics and fluid dynamics,

to name a few [45, 46, 47, 48].

Normally, a CPU core can only handle one instruction at a time. When programs on a computer

61

are run at the same time, the processor is asked to execute several commands simultaneously. The

list of instructions would be handled sequentially, and doubling the amount of data to be processed

by a CPU would also double the processing time involved. Within the CPU architecture there

have been two advancements in technology that allow us to partially avoid the bottleneck of serial

processing: multi-core CPUs, and hyper-threading.

A multi-core processor is simply a CPU with physically separate cores on the same chip. Mul-

tiple I/O (input/output) registers control the traffic of instructions by sending commands to idle

cores so that multiple instructions can be executed in parallel. Some level of coordination is needed

between cores. Imagine processors A and B are working on programs 1 and 2. If processor A finishes

program 1, it might find that the next program on its to-do list, requires some initial data from

program 2. It must wait for processor B to finish its calculations before proceeding. For this reason,

an X-core processor does not equal the processing power of a single-core processor multiplied by

X, but it is a close approximation if you avoid cross-communication bottlenecks. As always, the

actual speedups depend on the application and implementation of parallel coding.

In contrast to the multi-core approach, hyper-threading maximizes the throughput of any single

core on the CPU. If a core starts a calculation and finds that it requires additional data that has

not yet arrived from memory or another core, it will continue work on the next instruction in its list

until that information is available. In this way, the CPU keeps any delays to a minimum and from

the software’s viewpoint, appears to be executing two commands simultaneously. The speedups of

hyper-threading again depend on the application, but have been found to be around the 30% mark

[49]. Hyper-threading can then be implemented on multi-core processors, so that each individual

core has maximized throughput.

62

4.2 Graphics Processing Units

The GPU was first introduced to process pixel and texture data, involving calculations that are

inherently parallel and very time-consuming on a CPU. As the GPUs name suggests, this data

is used to display graphics, in the form of complex 3-D scenes. Since 1997, the number of GPU

cores have doubled every 1.4 years [17], and have become increasingly sophisticated with expanded

instruction sets and support for double-precision floating-point arithmetic, built-in mathematical

functions, and more [17].

An application programming interface (API) is useful to develop programs for the GPU. A

common API, and the one used in this thesis, is NVIDIA CUDA (Compute Unified Device Archi-

tecture). CUDA extends the computer language C to allow the user to access GPU resources. For

example, a developer may write an application in C that executes on the CPU, and only calls the

GPU to perform a parallel task when a separate program called a kernel is executed within the

application. The CUDA library allows this kernel access to the GPU and to a variety of built-in

functions that are optimized for parallel computing, for example, the summation or multiplication

of two or more large data arrays or matrices.

To visualize how a kernel is executed on a GPU, refer to Figure 4.1. A GPU consists of a

grid which is divided into blocks and threads. Each block manages a group of threads, and issues

instructions in parallel to them. Memory is shared between these threads in the form of registers,

local memory and shared memory. Data is stored in these hierarchical memories in order of how

frequently they need to be accessed. In addition to block-local memory, there is also global memory

alotted for interaction between blocks. Although the GPU is designed to issue the same instruction

to all threads within a block, threads can follow different branches of the same kernel. For example,

developers can place an if statement within a kernel that will determine which threads follow which

branch of code. This will, however, substantially reduce the performance of the GPU since these

diverging threads are serialized [17].

63

Figure 4.1: A grid representing the GPU. The grid is divided into blocks with are further subdivided
into threads. Local memory (LM), registers (R) and shared memory for threads are shared within
each block. Threads within the same block are all given the same instructions. (Image modified
from B. Pratx and L. Xing [17].)

Optimal performance with a GPU depends on the careful allocation of computing and storage

resources. A major bottleneck for any application is the transfer of data between the computer host

and the GPU device. Transfer of data should be minimized at all times. A careful analysis of code

efficiency could reveal that implementing small serial calculations on the GPU in between parallel

tasks may be faster than switching back and forth between the CPU and GPU. In the end, the

highest achievable speedup is determined by the sequential fraction of the program. This is known

as Amdahl’s law [50], where the speedup S is given by

S(n) =
1

B + 1
n
(1−B)

B ∈ [0, 1], (4.1)

where B is the fraction of the algorithm that is serial and n is the number of threads.

4.3 Algorithm Optimizations

The segmentations introduced in Chapter 3 can all be parallelized to some extent. For example,

each point on an evolving level set contour evolves according to Equation (3.3). The level set al-

gorithm can be parallelized by assigning a GPU thread to each voxel on the contour to calculate

its evolution independently of other voxels. Since there have already been numerous studies on the

optimization of the level set for the GPU [16, 17], we have foregone any optimization of the level

set in this thesis, and have focused on the phase-based segmentation algorithms.

64

The phase algorithms of Sections 3.3 and 3.4 both involve the examination of flow curves at

each voxel of the image. An image with N voxels yields 3N curves which must be examined (one

for each phase-encoded direction). The 3N curves are each assigned their own GPU threads so that

any calculations required of the algorithm (mean flow speed, standard deviations of flow speed, or

Gaussian fitting) are all done in parallel.

The visualization of flow through the aorta is also inherently parallel, with each particle of the

simulation evolving under Equation (3.12). Although a parallel algorithm was developed for the

particle trace calculations, other algorithms still need to be written for the GPU in order to display

the wealth of information in the form of an animation or 3D image. To the best of our knowledge,

MATLAB does not yet support graphical GPU functions that would allow the quick rendering of a

particle trace animation. This is discussed further in Section 5.7 and Chapter 6.

4.4 Computer Specifications

GPU computing work in this thesis was done using the NVIDIA Tesla C2070 featuring 448 CUDA

cores at 1.15 GHz. The C2070 has a total dedicated memory of 6GB GDDR5 with a memory speed

of 1.5 GHz [51]. Double and single precision floating point performances are 515 Gflops and 1.03

Tflops, respectively. The workstation used a 3.2 GHz Intel Xeon E5-1650 six-core CPU [52] with a

12 MB cache and 16 GB DDR5 RAM. The processor uses ’Hyper-Threading Technology’, so that

two threads per core can run calculations simultaneously. Algorithms for the GPU were written on

the CUDA platform, or in MATLAB (see Appendix A for source code).

65

Chapter 5

Results

This chapter presents the results of the segmentation algorithms first introduced in Chapter 3. We

describe the strengths and weaknesses of each algorithm, and choose the most accurate segmentation

for calculation and visualization of flow through the aorta. Using the definition of analysis planes

also described in Chapter 3, we set up a plane for the emission of particles into the aorta, in an

effort to simulate the flow of blood. The motion of these particles are tracked by the interpolation

method in Section 3.6.1.

5.1 Magnitude Segmentation

As discussed in Chapter 3, the level set requires a feature image which will control the level set

contours growth. If the feature image is an edge image, we can discourage growth of the contour

past image edges, and encourage it elsewhere. Ideally, if part of the contour reaches an image edge

before another, the slowing of growth will be enough to let other parts of the contour catch up

until the whole aorta is wrapped by the level set. We shall see in the following section that this

unfortunately is not the case for our images.

To create a feature image, choices for parameters need to be made for the various pre-processing

filters. The MCDE smoothing parameter, k, the Gradient Magnitude kernel width, σ, and the

sigmoid parameters are all listed in Table 5.1. The values were chosen by trial and error, with two

66

sets of values for the upper and lower portions of the image. This was necessary because it was

impossible to create a satisfactory feature image of the aorta due to its inhomogeneous intensity.

Some parameters needed to be fine tuned in order to pick up the very faint edges of the abdominal

aorta. Figures 5.1 and 5.2 show the preprocessing stages for the upper and lower image. These

images were combined to create the feature image for the magnitude level set.

Figure 5.1: Pre-processing images for the upper magnitude segmentation. Notice that the edge
detection in the lower aorta is very poor, creating a number of jagged edges at the bottom of the
image. This necessitates another set of filter parameters for this portion of the image.

Small seed points (three-dimensional spheres of radius < 3 voxels) were manually inserted along

the aortic center line for the initial level set contours. Values of parameters passed to the GAC

algorithm are presented in Table 5.1. The final results of the magnitude segmentation are repre-

sented as an overlay on the original magnitude images in Figure 5.3.

As discussed in the caption of Figure 5.3, the magnitude segmentation performs very poorly, due

to the combination of poor initialization of the level set contour and poor image contrast leading to

poor edge detection (which controls when the level set stops expanding). It is not obvious how long

the algorithm should iterate before completing - if too long, the level set expands beyond the desired

boundary; if too early, the contour will not have yet reached the edge of the aorta. In Figure 5.3,

67

Figure 5.2: Pre-processing images for the lower magnitude segmentation. A large amount of smooth-
ing is used in order to distinguish clearly the abdominal aortic wall with the background of the image.
Unfortunately, the edge detection is still not ideal, but it is an improvement.

Upper region Lower Region

Smoothing Filter

k 9 13

Gradient Magnitude Filter

σ 0.01 3

Sigmoid Filter

αs -3.8 -2.4
βs 5.2 4.2

GAC

α 5 5
β 0 0
γ 5 5

Table 5.1: Filter values for magnitude image segmentation. Larger smoothing parameters k and σ
are used in the lower region in an effort to eliminate noise. Optimal αs and βs values are estimated
based on the output intensites of the Gradient Magnitude Filter (refer to Equation (3.6)). Large
propagation and advection parameters are passed to the GAC in order to wrap the level set boundary
to image edges (refer to Equation (3.3)). The curvature term β is supressed because it discourages
the growth of the initial small spherical contours, while the α and γ terms were chosen through a
trial and error process.

68

Figure 5.3: Results of the level set segmentation (red) overlayed on the magnitude image. The
level set conforms well to image edges in the center image where edge detection was good. The left
and right images show different image slices of the same segmentation. The left image shows the
level set has not yet converged on image edges, while in the right image the contour has expanded
beyond the image edges.

we see that the contour has not expanded uniformly, and some portions of the segmentation have

expanded outside of the aorta, while others have not.

5.2 Phase Segmentation

Recall from Section 3.3, the goal of the phase segmentation was to examine each voxel in the image,

and find some criteria for the inclusion or exclusion of the voxel from the segmentation based on

the flow data obtained there. We calculate mean and standard deviation values of flowspeed for

different cycles of the heart (early systole, systole, diastole, and the entire heart cycle), and narrow

the ranges of mean and deviation values we will accept into the segmentation until an optimal range

is found.

Table 5.2 shows the acceptable ranges of mean and standard deviation values for different sec-

tions of a flow curve as determined by trial and error. Three regions of the aorta are segmented

separately, each corresponding to a different predominant direction of flow. Region 1 is the as-

cending aorta, where the predominant direction of flow is the +z-direction. Region 2 is the aortic

arch, where the predominant direction of flow is in the x-direction. Region 3 is the descending and

69

abdominal aorta, where the predominant direction of flow is the −z-direction.

In addition to the mean and standard deviation values, it was found to be useful to include

additional criteria for Regions 1 and 2. In Region 1, the aorta is very bright on the magnitude

image and we may use a minimum voxel intensity i as a check on our data. In Region 2, we only

include voxels with a max velocity of 34.5 cm/s in the x-direction. In practice we found that the

segmentations in Regions 1 and 3 capture most of the aortic arch, so only the high velocities in the

x-direction need to be captured.

Region 1 (+ z-direction)

mes - ms (3.125, 150) md (0, 12.5) |mc| (0, 6.25)

σes - σs (0, 37.5) σd (0, 12.5) σc (0, 6.25)

Additional dependencies: imin = 70

Region 2 (x-direction)

mes (15.6, 53) ms (9.5, 50) |md| (0, 12.5) |mc| (0, 12.5)

σes (0, 18.75) σs (5, 43.75) σd (0, 15) σc (6.8, 31.25)

Additional dependencies: vmax > 34.5

Region 3 (– z-direction)

mes (-45, -18.75) ms - |md| (0, 7.5) |mc| (0, 9.5)

σes (0, 18.75) σs (0, 37) σd (0, 7.5) σc (0, 9.5)

Additional dependencies: None

Table 5.2: Table of acceptable ranges for mean (m) and standard deviation (σ) values for flow
curves (in cm/s). Refer to Figure 3.10, which define the periods over which each m and σ value are
calculated. A range of acceptable parameter values are listed for each predominant direction of flow
in the aorta. Lower and upper bound values for each parameter are listed in brackets. Some param-
eters did not improve the segmentation results and are listed with no range. A minimum intensity,
imin, and a lower bound for maximum velocity, vmax, were also found to improve segmentations for
regions 1 and 2.

The results of one of these segmentations is shown in Figure 5.4. The noise reduction techniques

of Section 3.3 are next applied to these segmentations to eliminate the random voxels which have

erroneously been segmented.

70

Figure 5.4: Three different 2D slices lying on the y-axis of phase segmentations for flow in the –z
direction (before noise correction).

Two different noise reduction techniques were used whose results can be seen below. Figure 5.5

is obtained by applying the nearest-neighbour filter. The main advantage of this filter is that it will

keep intact any small branch arteries that only reach widths of two or three voxels. This can best

be seen in the figures referred to in Section 5.5.

Figure 5.5: Three different 2D slices lying on the y-axis of phase segmentations for flow in the –z
direction after nearest-neighbor based noise reduction.

Figure 5.6 uses a 3D Gaussian filter with a width of 3 voxels to eliminate noise. The output of a

Gaussian filter on a binary image gives values ranging between 0 and 1, so we threshold the result

at 0.5 to obtain a noise-corrected binary segmentation. Although the results of the Gaussian filter

are smoother, it has the effect of eliminating smaller arteries, which may be undesirable depending

71

on the intended application of the segmentation.

Figure 5.6: 2D slices of phase segmentations for flow in the –z direction after Gaussian filter noise
reduction.

Unfortunately, neither method filters out nearby structures that have similar flow characteris-

tics to the aorta. In particular, our algorithm was unable to differentiate sections of the pulmonary

arteries from the aorta (Figure 5.7). A connectivity based algorithm could potentially extract

the aorta from other structures, but in our case the resolution was too poor and the pulmonary

artery appeared to be connected to the aorta in several areas. For this reason we use the GAC

level set to extract the aorta. Scalar constant values used for the GAC (Equation 3.3)) were

α = 3, β = 3.3, γ = 0. Figure 5.7 shows mesh representations of the segmentation before and after

GAC extraction.

Figure 5.8 shows an overlay of the segmentation after noise reduction and GAC extraction on

the magnitude image. Notice in the right image, there is a large portion of the aorta clearly visible

on the magnitude image that has not been segmented. It is clear there is still room for improvement

upon this result, though it is a good starting point.

72

Figure 5.7: 3D mesh representations of phase segmentation with Gaussian filter noise reduction.
The silver mesh represents the initial segmentation before GAC extraction. The two sets of images
here are different views of the same segmentation. Notice that the pulmonary artery is the main
source of error here. The red meshes show the corresponding output after GAC extraction.

Figure 5.8: Final phase segmentation with nearest-neighbor noise reduction and GAC aorta ex-
traction overlayed on magnitude image. The ascending aorta in the right image has not been fully
segmented.

73

5.3 Curve-fitting pulsatile flow

Refining the ideas of the previous section, we would like to reduce the number of variables we need

to calculate and keep track of, in order to produce a segmentation. Instead of calculating mean and

standard deviations of flow speed at various intervals on the cardiac cycle, we fit the entire flow

curves to Gaussian waveforms. The fitted Gaussians will have parameters σ and µ associated with

them, with which we can define ranges of σ and µ that will be accepted into the segmentation.

Figure 5.9 shows the output of the initial CFS algorithm for different ranges of µ and σ. The CFS

correctly segments the region of interest, but also incorrectly segments many voxels. Tightening re-

strictions on µ and σ eliminates some noise but the remaining segmentation is poor, particularly in

the abdominal aorta. Similar to the previous phase segmentation, user defined seed points may be

placed within the aorta as initializations of the GAC, which can be evolved using a high curvature

force to prevent leakage into noisy voxels. Although at first this method seems less useful than the

previous phase segmentation (producing initial output with less accuracy, and requiring a minimum

of three seed points in the ascending and descending aorta, and the aortic arch), using the CFS as

an initialization of the phase-magnitude segmentation method produces comparable results to the

other phase-based segmentations. Figure 5.10 shows the results of the CFS after GAC extraction.

Although some noise is still present, the segmentation conforms very well to the image edges.

The GDS segmentation algorithm, rather than fitting each flow curve to a Gaussian, took one

Gaussian wave (whose µ and σ were chosen by trial and error) and compared each flow curve to

this standard. The deviation from this standard can then be plotted. This produces a continuous

image with a more uniform intensity throughout the aorta, and better contrast between aorta and

background than the original phase and magnitude images. This suggests that the GDS may be

implemented so as to enhance contrast of the original datasets, though this possibility is not further

explored in this thesis. Thresholding the output of the GDS (which is shown in Figure 5.11) allows

us to apply the noise correction and GAC extraction techniques of the previous section, which re-

74

Figure 5.9: CFS output. Flow curves are fitted to Gaussian curves, and then included in the
segmentation based on fitted values of µ and σ. Left and center images show segmentations in
the z- and x- direction, respectively, with 7 ≤ µ, σ ≤ 63 ms being the criteria for segmentation.
Right image shows a restriction of the criteria to 10 ≤ µ, σ ≤ 49 ms. Notice how the noise in the
segmentation has not been altered much, but the segmentation begins to fail in the lower aorta.

Figure 5.10: Final CFS segmentation after NN noise reduction and GAC aorta extraction overlayed
on magnitude image. Through a visual inspection, the right image appears to show some improved
accuracy in the ascending aorta compared to the previous phase-segmentation.

75

sults in the segmentation shown in Figure 5.12.

We see some small improvement in both the CFS and GDS segmentations over the phase-contrast

segmentation in the segmentation of the ascending aorta. This is based on a visual inspection of

both the 2D overlays as well as the 3D meshes of the segmentation results. Some holes appear in

the lower aorta of these segmentations, but as we shall see in the following section, these are easily

smoothed over by level set techniques. The important improvement upon the previous segmentation

techniques is that we have increased the percentage of aortic volume that our segmentation covers

without expanding the contour out too far. This will make refining the segmentation much easier.

Figure 5.11: Output of the GDS algorithm before thresholding. A 2D slice of the GDS is shown for
flow curves encoded in the z- and x-directions, respectively. Darker pixels represent a low deviation
from the Gaussian waveform with µ = 28 ms, σ = 21 ms.

76

Figure 5.12: Final GDS segmentation after nearest-neighbor based noise reduction and GAC aorta
extraction overlayed on the magnitude image. The segmentation produces a smoother output than
the CFS, but it slightly underestimates the size of the abdominal aorta (based on a visual comparison
with the magnitude image).

5.4 Phase-Magnitude Segmentation

Although the phase segmentations of the previous sections showed promising results, accuracy is

generally poor in the ascending aortic arch. Conveniently, this is where the magnitude image

has the best contrast, so we can take advantage of this by using the phase-based segmentations as

initializations for another GAC level set on the magnitude image. Accuracy will be greatly improved

and computation time reduced compared to the segmentations of section 5.1 since the contour is

already near the desired region.

α β γ iterations

Phase 0.6 0.8 0 27

CFS 0.5 0.8 0 27

GDS 0.4 0.56 0 27

Table 5.3: GAC values used for PM Segmentations. The advection parameter γ, from Equation
(3.3), is suppressed, since our contour is already close to the image edges. All algorithms required
a maximum of 27 iterations to complete. The inherent noise of the phase and CFS techniques
required a larger smoothing parameter than the GDS counterpart.

Table 5.3 shows the GAC parameter values and number of iterations for each initial level set

used. An overlay of the PM segmentations on the magnitude image shows improved accuracy. A

small propagation factor, α, prevents the contour from shrinking in areas where the magnitude

77

image has poor contrast while expanding it in regions where the initial segmentation was poor.

The curvature weighting eliminates any noise near boundaries. The level set reintroduces sub-voxel

resolution for the segmentation and by eliminating the crutches of poor edge resolution in the mag-

nitude image and potentially large processing times for the GAC, the final segmentation possesses

all the strengths of both the phase-based and magnitude-based methods while also eliminating their

largest weaknesses.

In practice, we found that the initial boundary was close enough to the desired location so

that a maximum of 27 iterations of the GAC were needed. As a comparison, the GAC used

in the magnitude segmentation, which was initialized from seed points, generally required many

hundreds of iterations whose exact number varied with seed placement. The processing time for the

additional 27 iterations was under 1.5 seconds on the CPU. As with the magnitude segmentations in

section 3.2, it is important that the level set not undergo too many iterations, since convergence is

not guaranteed and the contour may propagate outside the aorta. The results of the GAC initialized

with phase, CFS and GDS segmentations are presented in Figures 5.13, 5.14, and 5.15, respectively,

overlaid on the magnitude image.

Figure 5.13: Overlay of PM segmentation with phase-based initialization on magnitude image.

78

Figure 5.14: Overlay of PM segmentation with CFS-based initialization on magnitude image.

Figure 5.15: Overlay of PM segmentation with GDS-based initialization on magnitude image.

79

5.5 Summary of Segmentation Results

Accuracy of final segmentations can be judged by inspecting the results overlayed on the original

magnitude images, and 3D mesh representations. We first present a side by side comparison of

each segmentation overlayed on the magnitude image to show the strengths and weaknesses of each

segmentation. Figures 5.16, 5.17, and 5.18 each show one sagittal magnitude slice of the aorta,

with each segmentation overlayed on top. Since this only represent a small sample of possible 2D

cross sections that make up the whole 3D volume, it is also of great interest that we produce and

compare 3D meshes of each segmentation.

Below are some 3D mesh representations of each of the segmentations we have seen. The mesh

representation of the magnitude segmentation of section 5.1 can be seen in Figure 5.19. Final PM

meshes initialized by the phase, CFS and GDS methods are seen in Figures 5.20, 5.21, and 5.22,

respectively. It is immediately clear that the magnitude segmentation initialized from seed points

is of poor quality, and must be supplemented by additional filters or information. Poor image

contrast leads to poor edge detection, which allows the level set to escape and ’bubble out’ of the

vessel. The phase segmentation is particularly well suited to the detection of branch arteries in the

abdominal aorta when using the nearest neighbour-based noise filter. The CFS and GDS results

are similar, although the GDS produces output with a narrower abdominal aorta. Unfortunately,

it is impossible to exactly quantify the accuracy of each segmentation, since we have no standard

segmentation to compare with. In the future, a comparison should be made with an expert manual

tracing, or the segmentation routines should be performed on a test segmentation

All segmentations incorrectly segment a small portion of the superior vena cava (shown in

Figure 5.23), which is difficult to differentiate in both magnitude and phase images. Through

examination of meshes and the overlays of each result, it appears that the CFS-initialized PM

segmentation produces the most accurate results, though this is difficult to quantify without some

ideal segmentation to compare with.

80

Mag. segmentation Phase Segmentation CFS Segmentation GDS Segmentation

PM Segmentation
(Phase initialized)

PM Segmentation
(CFS initialized)

PM Segmentation
(GDS initialized)

Figure 5.16: Comparison of segmentations overlayed on magnitude images. In this slice, there is not
a huge difference in accuracy between all PM segmentation. Notice that even though the intial CFS
segmentation is quite noisy on the edges of the aortic walls, the level set smooths the segmentation
quite nicely in the CFS-intialized PM segmentation.

81

Mag. segmentation Phase Segmentation CFS Segmentation GDS Segmentation

PM Segmentation
(Phase initialized)

PM Segmentation
(CFS initialized)

PM Segmentation
(GDS initialized)

Figure 5.17: Comparison of segmentations overlayed on magnitude images. In this slice, all the seg-
mentations are fairly similar. The magnitude segmentation still underestimates the aorta, however.
The initial CFS segmentation has a few holes around the abdominal aorta, but the level set again
removes this noise. The initial GDS segmentation underestimates the size of the abdominal aorta,
and this carries over to the GDS-initialized PM segmentation. The phase-based initialization also
slightly underestimates the abdominal aorta.

82

Mag. Segmentation Phase Segmentation CFS Segmentation GDS Segmentation

PM Segmentation
(Phase initialized)

PM Segmentation
(CFS initialized)

PM Segmentation
(GDS initialized)

Figure 5.18: Comparison of segmentations overlayed on magnitude images. In this slice, it is perhaps
most clear how all the segmentations differ in accuracy. The contour bleeds out in several areas
in the magnitude segmentation. Each initial phase, CFS and GDS segmentation does not segment
a small portion of the ascending aorta, though the CFS does the best job. Again, some noise is
present in the CFS segmentation. After applying the PM segmentations, we see that the phase
and GDS initializations both start to pinch off in the lower aorta. The CFS segmentation is a bit
smoother in the same area.

83

Figure 5.19: Two different views of a mesh representation of the segmentation produced by the
GAC on the magnitude image with user-defined seed point initialization. Notice how the contour
has expanded beyond image edges along the descending aortic arch.

Figure 5.20: Two different views of a mesh representation of the segmentation produced by the
phase algorithm with nearest neighbour based noise reduction and GAC extraction. An advantage
of this technique is its ability to capture small branch arteries such as the one pictured at the
bottom of the figure here. This is due to nearest-neighbour noise filter effectively having a radius
of 1 voxel.

84

Figure 5.21: Two different views of the mesh representation of the segmentation produced by the
PM algorithm with CFS-based initialization.

Figure 5.22: Two different views of the mesh representation of the segmentation produced by the
PM algorithm with GDS-based initialization.

Figure 5.23: Left: A 2D slice of the magnitude image. The superior vena cava can easily be seen
in the top left section of the chest cavity. Right: The CFS algorithm wrongly segments a small
portion of the superior vena cava.

85

5.6 Applications

Now that we have some aortic segmentations to work with, we can apply the visualization techniques

discussed in Section 3.6 to the segmented region of data. We choose to use the CFS segmentation

as our data region, as it appears to be the most accurate. From here, we can set velocity data

outside of the segmented region to zero, so it does not interfere with any interpolation calculations.

We are now able to define analysis planes on the segmented aorta so that we can emit particles at

points of our choosing for particle tracking simulations and flow visualization.

5.6.1 Analysis planes

We are able to test our algorithm for the automated definition of analysis planes along the aorta.

Recall that a point and a vector are all that are necessary to define the analysis plane. Since we

want to define our analysis planes so that they are perpendicular to the longitudinal axis of the

vessel, the normal vectors we want are just those vectors parallel to the centerline. Therefore,

finding and fitting the points of the centerline gives us all the information we need to define an

analysis plane anywhere on the aorta. Figures 5.24 and 5.25 show ~n along the entire center line

from different viewing angles. Three different centerline fits are shown, where the neighbourhood

size that determines how many points are inside the fit changes. This corresponds directly to

changing the size of M in Equation (3.19). Since the centerline can only be locally linearly fit,

we must determine the number of points that yields the truest centerline fit. A neighbourhood of

6×3×6 voxels appeared to produce the most accurate results.

86

Figure 5.24: In this image, circles represent voxels that lie on the centerline, as determined by
the SDF algorithm in Section 3.6.2. The red lines represent the normal vector ~n calculated at
each point on the center line. On top, a neighbourhood size of 10×3×10 voxels was chosen for
principal component analysis. The middle and bottom images have neighbourhood sizes of 6×3×6
and 3×3×3, respectively. With a smaller neighbourhood, the centerline fit becomes bumpy and
disjointed, while a larger neighbourhood moves the centerline from its true position on the aortic
arch.

87

Figure 5.25: Another view of the centerline fit. Notice how the calculated centerline lies slightly
below the voxels in the top image. This is the result of using too large of a neighbourhood in the
PCA calculation, so that the local mean in Equation (3.20) falls outside of the true centerline and
skews the results of the fit.

88

5.6.2 Visualization and particle-tracing

Figure 5.26 shows a semi-transparent mesh of the CFS segmentation of Section 5.4. Into this mesh,

we can emit our particles and track them over time, colour-coding each trace by its speed. We

first present some streamline representations of flow. Recall that these representations show the

instantaneous velocity field at a point in time in the heart cycle. Figure 5.27 shows the streamline

representation for the aorta at peak systole. This can be compared to the streamline representation

during diastole (Figure 5.28), where the flow velocity is small. Although the streamlines can be

traced for an arbitrary amount of time, it is inevitable that some traces will leave the segmentation

region after a period of time. This is not necessarily the result of a poor segmentation, and could

be attributable to poor temporal/spatial resolution of the data. Figure 5.27 and Figure 5.28 are

traced for the same amount of time. More streamlines leave the segmentation during diastole since

the flow is less directed and particles diffuse throughout the volume.

Figure 5.26: A semi-transparent mesh of the CFS segmentation.

The pathline representation of flow has a velocity field that varies with time, unlike the stream

line respresentation. While streamlines are useful for an overall picture of the flow field at cer-

89

Figure 5.27: During systole, blood flows more quickly through the aorta. Here is a representation
of the velocity field at an instant during systole. Streamlines are followed from the ascending to
descending aorta. As streamlines leave the segmentation they are stopped. Additional emitter
planes can be defined at any point to map a more complete velocity field if necessary.

Figure 5.28: Streamline representation at early diastole. Streamlines were followed for the same
amount of time as in Figure 5.27. Many more streamlines leave the aorta sooner due to the diffusion
of virtual particles in the low-velocity stream.

90

tain points in time, pathlines are used for simulations of flow. It is also possible to animate the

pathlines, to get a sense of the flow characteristics in a way that a static image cannot convey.

Figures 5.29 and 5.30 show the path that virtual particles would take over a heart cycle, emitted at

two different planes in the aortic vessel. Notice in Figure 5.31, when particles are traced after the

first heart cycle, the diffusion of particles makes it difficult to make out the pattern of flow. This

representation becomes more interesting when rendered into an animation where pathlines are con-

tinuously emitted from the plane over time, to simulate the real-time flow of blood through the aorta.

Figure 5.29: Particles are emitted in the ascending aorta and traced for one heart cycle.

Some evidence of the characteristic helical flow patterns identified in the ascending aorta in

healthy patients can also be found in our data in Figure 5.32 [53]. This is a good sign that our

segmentation, and the steps we have taken to represent the flow information are effective. It is also

encouraging that not many stream or pathlines leave the segmentation region.

91

Figure 5.30: Particles are emitted in the abdominal aorta and traced for one heart cycle.

Figure 5.31: Particles are emitted as in Figure 5.29, but this time they are tracked for three heart
cycles. Notice that during diastole, when flow velocity is low, the particles motion is more random
and they diffuse. More pathlines exit the segmentation the longer the simulation runs.

92

Figure 5.32: In the streamline respresentation during peak systole, some evidence of helical flow
can be seen in the ascending aorta.

5.7 GPU optimization

Processing time is always an important consideration with medical imaging. Less processing time

can directly translate into less waiting times for patients and faster diagnoses. A GPU can perform

many calculations in parallel which can vastly decrease computation time compared to the CPU.

All of the segmentation methods above rely on performing the same computations many times on

multiple flow curves, so it is of interest to see if and to what extent the GPU can decrease compu-

tation times. Table 5.4 shows computation times of all initial segmentation algorithms and noise

reduction, where applicable. Since the GAC extraction computation time is highly dependent on the

location and number of seed points defined by the user, its computation time is not listed, though

generally this task could be accomplished in under one minute. Calculations for the CPU were

performed in MATLAB, which makes use of CPU multithreading [54]. Algorithms were specifically

coded with this in mind, so that the fastest possible CPU computational times could be acheived.

Out of interest, we also show the computational time for the phase-segmentation method where no

form of multithreading or parallel computing is used.

93

CPU GPU Noise Reduction

Phase (no multi-threading) 430 - -

Phase 9.8 5.2 Nearest Neighbour

Phase 2.5 1.3 Gaussian Filter

CFS 1380 0.50 -

GDS 0.23 0.10 -

Table 5.4: Computation times for initial segmentations (seconds). Noise reduction times are in-
cluded in listed values where applicable. No noise reduction techniques were used before GAC
extraction for the CFS and GDS methods. Extraction times are not listed because of the high de-
pendence of computation time on user input. It was found that a GAC extraction could generally
be accomplished in under one minute on the CPU.

The method that most benefits from the GPU is by far the CFS. Each GPU thread is assigned

one voxel whose flow data undergoes the Gaussian fit. These calculations are rapidly performed

in parallel in under one second. The amount of information processed using this method is not

too large to be suitable for calculation on a CPU. Though the accuracy of the initial segmentation

appears poor, noise correction and GAC extraction produced results that seem to outperform the

other segmentation algorithms presented here. The other algorithms perform well enough with CPU

multi-threading that GPU calculations are not particularly beneficial. This is because of the sim-

plicity of the calculations involved, which the CPU can speedily perform. However, it is important

to remember that in the future as imaging resolution increases and data sets become larger, GPUs

will greatly outperform any CPU, as the sheer number of computations must necessarily increase.

Over 90% of total computation times were attributable solely to noise reduction in phase, CFS and

GDS segmentations and/or the GAC extraction.

Unfortunately, the GAC extraction technique used to separate the aorta from other vessels that

were incorrectly segmented is a bottleneck for speed in each algorithm. The program must stop and

wait for the user to initialize the GAC extraction by entering seed points into the aorta. It would

be desirable to introduce some way of automatically reducing noise in a way that would require no

user initialization. Our GPU-based segmentation has shown that once a solution to this problem

94

is found, it will become increasingly possible that an application could be developed that performs

complex computations that automatically produce accurate 3D results in real-time.

95

Chapter 6

Discussion and Conclusions

In this thesis, we have explored several methods for the segmentation of the aorta. First we illus-

trated that the level set, which has been previously shown by others to be a useful segmentation

tool, is by itself insufficient for an accurate segmentation on magnitude image data. We proposed

that for the level set to be useful, some initial 3D contour that is already close to the desired seg-

mentation region must be found.

We devised new algorithms which use phase-contrast data to determine whether voxels belong

inside the segmented region. These algorithms calculated mean flow speed and standard deviations

of flow speed during different time frames of the heart cycle, or compared flow curves to Gaussian

waveforms. Based on the results of these calculations, voxels were included or excluded from the

segmentation, depending on whether the calculated parameters fell inside an expected range. The

segmentations that used phase-contrast data were then refined by noise correction techniques, and

the aorta was extracted from any other structures the algorithms erroneously segmented, through

a level set initialized by seed points defined by the user. Afterwards, these segmentations served as

initializations to another level set on the magnitude image.

Our best segmentation appeared to be the CFS initialized algorithm, which makes use of a GPU

to rapidly perform curve fits on all voxels in parallel. Other segmentation algorithms are shown to

96

have similar performance on the CPU in terms of run-time, but only when some form of parallel

computing across multiple CPU cores is used, and the algorithms are not computationally expen-

sive. However, these come at the cost of somewhat less accurate results. The efficiency of the GPU

versus the inefficiency of the CPU for the CFS algorithm (see Table 5.4) stems from the relative

complexity of the algorithm relative to the other phase-based segmentation algorithms presented

in this thesis. (Fitting curves to pulsatile flow is an iterative process where one must minimize the

difference between the data and fit, which is more computationally complex than simply taking

the mean or standard deviation of some data, for example.) This suggests that any segmentation

algorithm (on large 4D data sets) that is sufficiently complex will only be practical on the GPU. In

fact, it can be argued that as demands for visualization and analysis of large 4D data sets increase

with imaging technology and capabilities, GPU computing will become increasingly practical, and

perhaps necessary for image processing.

Our proposed automated technique for which analysis planes are defined on the aortic volume

appears to function well, and its definition constructed in such a way as to make use of the GPU

architecture needed for massively parallel, rapid calculation. Our visualization of the aortic flow

appears to validate the segmentation and the method of interpolation we have used, as some evi-

dence of characteristic flow patterns normally found in healthy patients are also found in our data.

Unfortunately, the work in this thesis was done entirely with the MR images of one healthy patient.

In the future, the segmentation algorithms should be tested across multiple data sets on healthy

and non-healthy patients, to confirm that the algorithms are robust.

4D flow visualization has yet to become commonly accepted in routine clinical cardiovascualar

MR practice, mainly because of the time and experience currently needed for appropriate acquisition

and analysis of the large 4D data sets. Additionally, irregular heart beat or breathing during data

acquisition tend to result in suboptimal data [55]. More automated methods for flow visualization

and retrospective quantification of data would therefore be extremely beneficial towards introducing

4D flow applications within a clinical setting. New software tools and algorithms should also be

97

developed. For example, there is no standardized way of defining the analysis planes of section 3.6.2

[55]. A standard definition of these planes in routinely acquired 4D velocity data would be useful

for easy post-analysis of flow.

The parallelization of a particle trace presents some challenges that this work has not been able

to explore fully. It is true that all the particles of a trace simulation evolve under the same equation

(Equation (3.12)), making at least the calculation of instantaneous particle velocities and positions

a trivial task to parallelize across the threads of a GPU. In a time-varying field however, velocity

information must always be updated at each successive iteration, slowing the potential speed up of

the application. Some solutions to this problem involve pre-partitioning of the 4D domain into re-

gions that approximate the flow directions. The preprocessing of such a method is quite expensive,

and Yu et. al [56] have reported that less than one second of rendering required approximately 15

minutes of preprocessing time.

Another approach to the problem is the use of partitioning and load balancing. This involves

the division of the velocity information into subdomains and the assignment of these subdomains

to the GPU cores in such a way as to reduce overall computation and communication between

cores. A common approach is geometry-based partitioning, where a core will monitor and update

all the particles within a volume of the simulation, only transmitting new information to other cores

when the particles leave its assigned subdomain [57]. These methods should be further studied to

optimize the visualization of 4D flow data sets. Additionally, some algorithms that calculate flow

parameters like wall shear stress may be devised in the future, which would also benefit from GPU

computing in that the pressure or stress at each point on the aortic wall could be calculated in

parallel. However, the usefulness of such an algorithm may be questionable, as some studies have

found that calculations based on MR flow data generally underestimate true wall shear stress, and

sometimes have very large errors associated with them [58].

98

Bibliography

[1] J. Earls, V. Ho, T. Foo, E. Castillo, S. Flamm. Cardiac MRI: Recent Progress and Continued

Challenges. Journal of Magnetic Resonance Imaging 2002; 16: 111-127.

[2] P. Chai, R. Mohiaddin. How we perform cardiovascular magnetic resonance flow assessment

using phase-contrast velocity mapping. Journal of Cardiovascular Magnetic Resonance 2005;

7(4):705-716.

[3] P. Beerbaum, H. Korperich, P. Barth, H. Esdorn, J. Gieseke, H. Meyer. Noninvasive quan-

tification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance

imaging compared with invasive oximetry. Circulation 2001; 103(20):2476-2482.

[4] D. Didier. Assessment of valve disease: qualitative and quantitative. Magn Reson Imaging

Clin N Am 2003; 11(1):115-134.

[5] P.D. Gatehouse, J. Keegan, L.A. Crowe, S. Masood, R.H. Mohiaddin,K.F. Kreitner, D.N.

Firmin. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur

Radiol 2005; 15(10):2172-2184.

99

[6] S.R. Underwood, D.N. Firmin, R.S. Rees, D.B. Longmore. Magnetic resonance velocity

mapping. Clin Phys Physiol Meas 1990; 11(Suppl A):37-43.

[7] A.F. Stalder, M.F. Russe, A. Frydrychowicz, J. Bock, J. Hennig, M. Markl. Quantitative 2D

and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters.

Magn Reson Med 2008; 60(5):1218-1231.

[8] T. Ebbers, L. Wigström, A.F. Bolger, B. Wranne, M. Karlsson. Noninvasive measurement of

time-varying three-dimensional relative pressure fields within the human heart. J Biomech

Eng 2002; 124(3):288-293.

[9] G.Z. Yang, P.J. Kilner, N.B. Wood, S.R. Underwood, D.N. Firmin. Computation of flow pres-

sure fields from magnetic resonance velocity mapping. Magn Reson Med 1996; 36(4):520-526.

[10] J.N. Oshinski, D.N. Ku, S. Mukundan Jr, F. Loth, R.I. Pettigrew. Determination of wall shear

stress in the aorta with the use of MR phase velocity mapping. J Magn Reson Imaging 1995;

5(6):640-647.

[11] S. Oyre, W.P. Paaske, S. Ringgaard, S. Kozerke, M. Erlandsen, P. Boesiger, E.M. Pedersen.

Automatic accurate non-invasive quantitation of blood flow, cross-sectional vessel area, and

wall shear stress by modelling of magnetic resonance velocity data. Eur J Vasc Endovasc Surg

1998; 16(6):517-524.

[12] V. Caselles, J.-M. Morel, G. Sapiro, A. Tannenbaum, editors. 1998. Special Issue on Partial

Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis.

100

IEEE Transactions on Image Processing 1998; 7:269.

[13] M. Nielsen, P. Johansen, O. F. Olsen, J.Weickert, editors. Scale-Space Theories in Computer

Vision. Lecture Notes in Compuer Science 1999; 1682.

[14] M. Lynch, O. Ghita, and P. F. Whelan. Segmentation of the left ventricle of the heart in

3-D+t MRI data using an optimized nonrigid temporal model. IEEE Trans. Med. Imag. 2008;

27(2):195-203.

[15] L. Wigström, L. Sjöqvist, B. Wranne. Temporally Resolved 3D Phase-Contrast Imaging.

Magnetic Resonance in Medicine 1996; 36(5):802.

[16] J.E. Cates, A.E. Lefohn, R.T. Whitaker. GIST: an interactive, GPU-based level set segmen-

tation tool for 3D medical images. Medical Image Analysis 2004; 8:217-231.

[17] G. Pratx, L, Xing. GPU Computing in medical physics: A review. Medical Physics - New

York - Institute of Physics 2011; 38(5):2685 -2697.

[18] Z.-P. Lhiang, P. C. Lauterbur. Principles of Magnetic Resonance Imaging. New Jersey.

Wiley-IEEE Press 2000.

[19] E.M. Purcell, H.C. Torrey, R. V. Pound. Resonance Absorption by Nuclear Magnetic Moments

in a Solid. Physical Review 1946; 69(1,2): 37-38

101

[20] F. Bloch, W.W. Hansen, M. Packard. The Nuclear Induction Experiment. Physical Review

1946; 70:474-485

[21] Puddephat, M. Principles of magnetic resonance imaging; c2014 [cited 2014 April 27].

Available from: http://www.mikepuddephat.com/page/1603/Principles-of-magnetic

-resonance-imaging

[22] Nuclear magnetic Spectroscopy. University of California, Davis; [cited 2014 April 27].

Available from: http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/

Magnetic_Resonance_Spectroscopies/Nuclear_Magnetic_Resonance/Nuclear_Magnetic_

Resonance_II

[23] Hyperpolarized Noble Gas MRI Laboratory. Harvard Medical School; c2006 [cited 2014 April

27]. Available from: http://www.spl.harvard.edu/archive/HypX/theory1.html

[24] S. Day. Basic principles of NMR. [cited 2014 April 27]. Available from http:

//www2.warwick.ac.uk/fac/sci/physics/research/condensedmatt/imr_cdt/students/

stephen_day/relaxation/.

[25] M. Markl. Velocity Encoding and Flow Imaging. 2006 [cited 2013 November 28]. Available

from: http://ee-classes.usc.edu/ee591/library/Markl-FlowImaging.pdf.

[26] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho,

James C. Gee, and Guido Gerig. User-guided 3D active contour segmentation of anatomical

structures: Significantly improved efficiency and reliability. Neuroimage 2006; 31(3):1116-1128.

102

[27] S. Osher, J. Sethian. Fronts Propagating with Curvature-Dependent Speed: Algorithms Based

on Hamilton-Jacobi Formulations. Journal of Computational Physics 1988; 79:12-48.

[28] M. Roberts, J. Packer, M. Costa Sousa, J. Ross Mitchell. A Work-Efficient GPU Algorithm

for Level Set Segmentation. High Performance Graphics 2010.

[29] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal on

Computer Vision 1997; 22(1):61-97.

[30] L. Ibáñez, W. Schroeder, L. Ng, J. Cates and the Insight Software Consortium. The ITK

Software Guide. Kitware Inc., 2005.

[31] L.M. de Heer, R.P. Budde, W.P. Mali, A.M. de Vos, L.A. van Herwerden, J. Kluin. Aortic

root dimension changes during systole and diastole: evaluation with ECG-gated multidetector

row computed tomography. Int J Cardiovasc Imaging 2011; 27(8):1195-1204.

[32] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE

Transactions on Pattern Analysis Machine Intelligence 1990; 12:629-639.

[33] R. Deriche. Fast algorithms for low level vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence 1990; 12(1):78-87.

[34] R. Deriche. Recursively implementing the gaussian and its derivatives. Technical Report,

INRIA, 1993.

103

[35] K.H. Fraser, S. Meagher, J.R. Blake, W.J. Easson, P.R. Hoskins. Characterization of an Ab-

dominal Aortic Velocity Waveform in Patients with Abdominal Aortic Aneurysm. Ultrasound

in Medicine & Biology 2008; 34(1):73-80.

[36] M.H. Buonocore. Visualizing blood flow patterns using streamlines, arrows, and particle paths.

Magn. Reson. Med. 1998; 40(2):210-226.

[37] H.G. Bogren, M. H. Buonocore. 4D magnetic resonance velocity mapping of blood flow

patterns in the aorta in young vs. elderly normal subjecs. J Magn. Reson. Imaging 1999;

10(5):861-869.

[38] S. Kozerke, J.M. Hasenkam, E.M. Pedersen, P. Boesiger. Visualization of flow patterns distal

to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J

Magn. Reson. Imaging 2001; 13(5):690-698.

[39] L. Wigström, T. Ebbers, A. Fyrenius, M. Karlsson, J. Engvall, B. Wranne, A.F. Bolger.

Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI.

Magn. Reson. Med. 1999; 41(4):793-799.

[40] J.C. Butcher, 1987. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta

and General Linear Methods. Wiley-Interscience, New York, NY.

[41] C.P. Cheng, D. Parker, C.A. Taylor. Quantification of Wall Shear Stress in Large Blood Vessels

Using Lagrangian Interpolation Functions with Cine Phase-Contrast Magnetic Resonance

Imaging. Annals of Biomedical Engineering 2002; 30:1020-1032.

104

[42] Tutorvista; [cited 2014 Feb 27]. Available from http://image.tutorvista.com/content/

feed/tvcs/cross4.PNG.

[43] L.N. Trefethen, D. Bau III. Numerical linear algebra. Philadelphia: Society for Industrial and

Applied Mathematics, 1997.

[44] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics 1965; 114-117.

[45] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, T.J. Purcell. A

survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 2008;

26(1):21-51.

[46] J. Owens, M. Houston, D. Leubke, S. Green, J. Stone, J. Phillips. GPU Computing. Proc.

IEEE 2008; 96(5): 879-899.

[47] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,

Y. Zhang, V. Volkov. Parallel computing experiences with CUDA. IEEE MICRO 2008;

28(4):13-27.

[48] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron. A performance study of

general-purpose applications on graphics processors using CUDA. J. Parallel Distrib. Comput.

2008; 68(10):1370-1380.

[49] W. Magro, P. Peterson, and S. Shah. Hyper-Threading Technology: Impact on Compute-

Intensive Workloads. Intel Technology Journal 2002.

105

[50] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing

Capabilities. AFIPS Conference Proceedings 1967. 30:483485.

[51] Tesla C2050/C2070 GPU Computing Processor [Internet]. NVIDIA Corporation; c2010 [cited

2013 October 29]. Available from: http://www.nvidia.ca/docs/IO/43395/NV_DS_Tesla\

_C2050_C2070_jul10_lores.pdf.

[52] Ark Intel Xeon Processor E5-1560 (12M Cache, 3.2GHz, 0.0 GT/s Intel QPI [Internet]. Intel;

[cited 2013 October 29]. Available from: http://ark.intel.com/products/64601

[53] P.J. Kilner, G.Z. Yang, R.H. Mohiaddin, D.N. Firmin, D.B. Longmore. Helical retrograde

secondary flow patterns in the aortic arch studied by three-directional magnetic resonance

velocity mapping. Journal of the American Heart Association 1993; 88:2235-2247.

[54] MATLAB multicore. Mathworks; c1994-2013 [cited 2013 October 29]. Available from:

http://www.mathworks.com/discovery/matlab-multicore.html

[55] M. Markl, P. J. Kilner, T. Ebbers. Comprehensive 4D velocity mapping of the heart and great

vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance

2011; 13:7.

[56] H. Yu, C. Wang, K.-L. Ma. Parallel hierarchical visualization of large time-varying 3d vector

fields. SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing. New York,

NY: ACM, 2007, pp. 1-12.

106

[57] M. J. Berger, S. H. Bokhari. A partitioning strategy for nonuniform problems on multiproces-

sors. IEEE Trans. Comput. 1987; 36(5):570-580.

[58] S. Petersson, P. Dyverfeldt, T. Ebbers. Assessment of the accuracy of MRI wall shear

stress estimation using numerical simulations. Journal of Magnetic Resonance Imaging 2012;

36(1):128-138.

[59] C. Humphries. University of California, 2000 [cited 2014 Feb 27]. Available from http://www.

neuro.mcw.edu/~chumphri/matlab/writeanalyze.m.

107

Appendix A

Computer code for GPU-accelerated

segmentations and applications

A.1 Phase-contrast segmentation

The following code is the segmentation and noise reduction of one direction-encoded phase image.

The code follows the same structure as the other direction-encoded phase-images, with the param-

eters restricted according to Table 5.2.

This script uses a function ’writeanalyze’, which written by Colin Humphries at the University

of California [59]. This function allows MATLAB to write .hdr format images.

% Read magnitude and phase-contrast image, then rescale

A = analyze75read(’MM’);

P1 = analyze75read(’1P’);

sA=size(A);

input1 = zeros(sA(1),sA(2),sA(3)/15, 15);

for i = 1:sA(3)

if mod(i,38) == 0

v = 38;

input1(:,:,v, floor(i/38)) = P1(:,:,i);

108

else

input1(:,:,mod(i,38), floor(i/38)+1) = P1(:,:,i);

end

end

% Write arrays to GPU

Gvec1a = gpuArray(input1);

Gvec1 = gpuArray(input1(:,:,:,1:5));

G1 = gpuArray(input1(:,:,:,1:3));

Gvecend1 = gpuArray(input1(:,:,:,7:15));

% Calculations of mean and std

minGvec1 = min(Gvec1,[],4);

stdGvec1 = std(Gvec1,0,4);

meanG1 = mean(G1,4);

stdG1 = std(G1,0,4);

meanGvec1a = mean(Gvec1a,4);

stdGvec1a = std(Gvec1a,0,4);

meanGvecend1 = mean(Gvecend1,4);

stdGvecend1 = std(Gvecend1,0,4);

minGvec1 = minGvec1(:,:,:) < 1600; %All elements meeting this requirement are set to 1

dummy = stdGvec1(:,:,:) < 600; %All elements less than 600 are 1

dummy2 = stdGvec1(:,:,:) > 80; %All elements more than 80 are 1

stdGvec1 = dummy .* dummy2; %All elements less than 600 and more than 80 are 1

dummy = Gvec1a(:,:,:,2) < 2075;

dummy2 = Gvec1a(:,:,:,1:4) < 2021;

dummy3 = Gvec1a(:,:,:,2:5) < 2021;

109

dummy2 = sum(dummy2,4);

dummy3 = sum(dummy3,4);

dummy2 = dummy2 >= 4;

dummy3 = dummy3 >= 4;

%This statement checks all conditions above

Goutput = minGvec1.*stdGvec1.*dummy.*dummy2 + minGvec1.*stdGvec1.*dummy.*dummy3;

dummy = meanG1 < 1750;

dummy2 = meanG1 > 1330;

stdG1 = stdG1 < 300;

dummy3 = G1(:,:,:,3) > G1(:,:,:,2) -50;

%This statement checks new conditions

Goutput = Goutput + minGvec1.*dummy.*dummy2.*dummy3.*stdG1;

Goutput = Goutput >= 1;

dummy = stdGvec1a >= 500;

Goutput = Goutput - dummy;

Goutput = Goutput >=1;

dummy = meanGvec1a < 2200;

dummy2 = meanGvec1a > 1900;

dummy3 = stdGvec1a < 150;

Goutput = Goutput - dummy.*dummy2.*dummy3;

Goutput = Goutput >=1;

dummy = abs(meanGvecend1 -2048) > 150;

dummy2 = stdGvecend1 > 200;

dummy3 = abs(meanGvecend1 -1848) > 80;

110

Goutput = Goutput - Goutput.*dummy.*dummy3 - Goutput.*dummy2.*dummy3;

Goutput = Goutput >=1; % Last if

Goutput = Goutput.*255;

% Write images

outimg = gather(Goutput);

% Need to switch x and y axes for image to write properly with writeanalyze

for i = 1:192

outimg2(:,i,:) = outimg(i,:,:);

end

writeanalyze(outimg2, [144 192 38],’test’, [1.771 1.771 3.3]);

% Apply gaussian noise reduction

h = fspecial3(’average’, [4 4 2]);

outimg3 = imfilter(outimg2,h);

%Thresholding the filter

outimg3 = (outimg3>=110).*255;

writeanalyze(outimg3, [144 192 38],’test-gauss’, [1.771 1.771 3.3]);

% Apply NN noise-reduction

outimg2 = GPUnoise(outimg, 5);

B = zeros(144,192,38);

for i = 1:192

B(:,i,:) = outimg2(i,:,:);

end

writeanalyze(B, [144 192 38],’test-NN’, [1.771 1.771 3.3]);

111

A.2 GDS Segmentation with GPU in MATLAB

%Read in segmentation and the phase-contrast images

A = analyze75read(’finalcfs’);

P1 = analyze75read(’1P’);

P2 = analyze75read(’2P’);

P3 = analyze75read(’3P’);

s=size(P1);

%Give GPU the data

A = gpuArray(A);

P1 = gpuArray(P1);

P2 = gpuArray(P2);

P3 = gpuArray(P3);

input1 = double(reshape(P1, s(1), s(2), s(3)/15, 15));

input2 = double(reshape(P2, s(1), s(2), s(3)/15, 15));

input3 = double(reshape(P3, s(1), s(2), s(3)/15, 15));

%Define error function

input1 = input1 - 2048;

input2 = input2 - 2048;

input3 = input3 - 2048;

%Use absolute values of flow curves

input1 = abs(input1);

input2 = abs(input2);

input3 = abs(input3);

%Define the gaussian parameters

mu = 2;

sigma = 1.5;

112

%Normalize flow curves

norm1 = max(input1,[],4);

norm2 = max(input2,[],4);

norm3 = max(input3,[],4);

input1 = input1./norm1;

input2 = input2./norm2;

input3 = input3./norm3;

%Define Gaussian we wish to compare flow curves to

x = 1:15;

gauss = (1/(sqrt(2*pi))*sigma)*exp(-(0.5*((mu-x)/sigma)^2));

gauss = repmat(gauss, [144 192 38]);

gauss = reshape(gauss, 144, 192, 38, 15);

Chi1 = (input1 - gauss)^2;

Chi2 = (input2 - gauss)^2;

Chi3 = (input3 - gauss)^2;

%Chi can be imaged in each direction

%Thresholding to be done interactively in ITK-SNAP

A.3 GPU kernel for CFS segmentation

#include <iostream>

#include <cuda.h>

#include <stdlib.h>

#include <ctime> //need only for random number generator

#include <fstream>

#include <vector>

#include <time.h>

113

#define _USE_MATH_DEFINES

#include <math.h>

using namespace std;

//Start definition of GPU kernel

__global__ void CUDAGaussFit(float * a, float * b, int count)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx < count/15)

{

//Initial guesses for mu, sigma is 2 and 0.8

double mu = 2;

double sigma = 0.8;

double param = 2*M_PI; //define 2*pi

double result = sqrt(param); //define sqrt(2*pi)

double sdsigma;

double sdmu;

double sdsigma2;

double sdmu2;

double sdsigmamu;

double elem1;

double elem2;

for (int it = 0; it<10; it++)

{

sdsigma = 0;

sdmu = 0;

sdsigma2 = 0;

sdmu2 = 0;

sdsigmamu = 0;

//Assume data is already normalized (gaussian lies above +y axis, goes to y = 0

114

// at infinite)

for (int i = 0; i < 15; i++) //Calculate fit for 15 point curve

{

double param2 = -(i+1-mu)*(i+1-mu)/(2*sigma*sigma);

double result2 = exp(param2); //define exp(-((x-mu)^2)/2*sigma^2)

//sum of dsigmas

sdsigma += -1/(result*sigma*sigma) * result2 + 1/(result*sigma) * result2 * (i+1-mu)

* (i+1-mu) / (sigma*sigma*sigma);

//sum of dmus

sdmu += 1/(result*sigma) * result2 * (i+1-mu) / (sigma * sigma);

//sum of squares of dsigma

sdsigma2 += (-1/(result*sigma*sigma)* result2 + 1/(result*sigma) * result2 * (i+1-mu)

* (i+1-mu) / (sigma*sigma*sigma)) * (-1/(result*sigma*sigma)* result2 + 1/(result*sigma)

* result2 * (i+1-mu) * (i+1-mu) / (sigma*sigma*sigma));

//sum of squares of dmu

sdmu2 += (1/(result*sigma) * result2 * (i+1-mu) / (sigma * sigma))*(1/(result*sigma)

* result2 * (i+1-mu) / (sigma * sigma));

//sum of mu*sigma

sdsigmamu += (-1/(result*sigma*sigma)* result2 + 1/(result*sigma) * result2 * (i+1-mu)

* (i+1-mu)/(sigma*sigma*sigma))*(1/(result*sigma) * result2 * (i+1-mu) / (sigma * sigma));

}

elem1 = 0;

elem2 = 0;

// Calculate fit for 15 point flow curve (should be generalized in the future)

for (int i = 0; i < 15; i++)

115

{

double param2 = -(i+1-mu)*(i+1-mu)/(2*sigma*sigma);

double result2 = exp(param2); //define exp(-((x-mu)^2)/2*sigma^2)

elem1 += ((-1/(result*sigma*sigma)* result2 + 1/(result*sigma) * result2 * (i+1-mu)

* (i+1-mu) / (sigma*sigma*sigma))*sdmu2 - (1/(result*sigma) * result2 * (i+1-mu)

/ (sigma * sigma))*sdsigmamu)*(a[idx+i*count/15] - 1/(result*sigma)*result2);

elem2 += (-(-1/(result*sigma*sigma)* result2 + 1/(result*sigma) * result2 * (i+1-mu)

* (i+1-mu) / (sigma*sigma*sigma))*sdsigmamu + (1/(result*sigma) * result2 * (i+1-mu)

/ (sigma * sigma))*sdsigma2)*(a[idx+i*count/15] - 1/(result*sigma)*result2);

}

elem1 = elem1/(sdsigma2*sdmu2 - sdsigmamu*sdsigmamu) + sigma;

elem2 = elem2/(sdsigma2*sdmu2 - sdsigmamu*sdsigmamu) + mu;

mu = elem2;

sigma = elem1;

b[2*idx] = elem1; //store sigmas in b matrix

b[2*idx+1] = elem2; //store mus in b matrix

//one loop complete!

}

}

}

\\end of kernel

\\main program to read in data, call kernel

int main()

{

srand(time(NULL));

116

//number of data points in 4D image - should be generalized in future

int count = 15*38*192*144;

//b will store the sigmas and mus, so the number of stored data points is divided

//by the time resolution, multiplied by two

float *b = new float[((count/15)*2)];

float *d_a;

float *d_b;

clock_t begin, end;

double time_spent;

begin = clock();

// READ FILE

//Create a dynamic array to hold the values

vector<float> numbers;

//Create an input file stream

ifstream in("input1.txt",ios::in);

/*

As long as we haven’t reached the end of the file, keep reading entries.

*/

float number; //Variable to hold each number as it is read

//Read number using the extraction (>>) operator

while (in >> number) {

//Add the number to the end of the array

117

numbers.push_back(number);

}

//Close the file stream

in.close();

/*

Now, the vector<float> object "numbers" contains both the array of numbers,

and its length (the number count from the file).

*/

float *a = new float[count];

for(int i = 0; i<count; i++)

a[i] = numbers[i];

//

end = clock();

time_spent = (double)(end-begin) / CLOCKS_PER_SEC;

//Print out time elapsed while reading in data to CPU

cout << "Elapsed time is " << time_spent << " milliseconds." << endl;

for(int i = 0; i<((count/15)*2); i++)

{

b[i] = 0;

}

cudaMalloc(&d_a, sizeof(float)*count); // Allocate memory on the GPU

cudaMalloc(&d_b, sizeof(float)*(count/15)*2);

cudaMemcpy(d_a, a, sizeof(float) * count, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, sizeof(float) * (count/15)*2, cudaMemcpyHostToDevice);

118

float memsettime;

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start,0);

CUDAGaussFit<<<count/256 + 1,256>>>(d_a, d_b, count); //Run CUDA Kernel

cudaEventRecord(stop,0);

cudaThreadSynchronize();

cudaEventElapsedTime(&memsettime,start,stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

//Print out elapsed time while running fitting kernel

cout << "Elapsed time is " << memsettime << " milliseconds." << endl;

cudaMemcpy(a, d_a, sizeof(float) * count, cudaMemcpyDeviceToHost);

cudaMemcpy(b, d_b, sizeof(float) * (count/15) * 2, cudaMemcpyDeviceToHost);

//Write array to text file for import of data into MATLAB///////////////////

ofstream fl("output1short.txt");

//Check data for infinite or NAN values (which MATLAB will not be able to read)

for (int k=0;k<2*(count/15);k++)

{

if (isfinite(b[k])==1)

{

fl<<b[k]<<endl;

}

119

if (isfinite(b[k])==0) //check for NAN

{

fl<<0<<endl;

}

}

fl.close();

///

cudaFree(d_a); //Free memory

cudaFree(d_b);

free(a);

free(b);

return 0;

}

A.4 MATLAB code for the definition of emitter planes

%Returns a set of points within a plane centered near user-defined ’point1’

function [X,Y,Z] = planeemitter(point1)

%Read centerline and segmentation images

A = analyze75read(’cfscenterline’);

s=size(A);

B = analyze75read(’finalcfs’);

%Search for nearest center line points

ind = 1:(size(A,1)*size(A,2)*size(A,3));

[I,J,K] = ind2sub(size(A),ind);

dist = (I-point1(1)).^2 + (J-point1(2)).^2 + (K-point1(3)).^2;

120

distmat = zeros(size(A));

distmat(ind(:)) = dist(:);

W = A.*distmat;

W(~W) = nan; %Set points outside of segmentation to NAN

[~,IND] = min(W(:));

[aIND,bIND,cIND] = ind2sub(size(W),IND);

point1 = [aIND bIND cIND];

%Calculate local linear fit

mat1 = (abs(I-point1(1))<10).*(abs(J-point1(2))<10).*(abs(K-point1(3))<3);

mat2= zeros(size(A));

mat2(ind(:)) = mat1(:);

linfitpts = A.*mat2;

linfitptindex = find(linfitpts);

[x,y,z] = ind2sub(size(A),linfitptindex);

%Points are weighted exponentially by their SDF values

w = exp(-(A(linfitptindex))/25);

x = x’;

y = y’;

z = z’;

w = w’;

s2 = size(x);

n = s2(2);

xyz = [x’,y’,z’];

%Weighted mean to find center of plane

P01 = ((w./sum(w))*xyz) ;

121

%Subtract P0 from all xyz2 elements

xyz = xyz-repmat(P01,n,1);

%Weighted linear fit

[~,~,V]=svd(xyz.*repmat(w’/mean(w),1,3),0);

%First component is linear fit, other components comprise perpendicular plane

P12 = V(:,2)’;

P13 = V(:,3)’;

%Emit particles in plane in a radius r around point P01

r = 0:0.4:6;

theta = (0:(2*pi)/60:2*pi);

costheta = cos(theta);

sintheta = sin(theta);

X = [];

Y = [];

Z = [];

for i = 0:0.4:6

rctheta = i’*costheta;

rstheta = i’*sintheta;

X = [X (P01(1)+P12(1).*rctheta + P13(1).*rstheta)];

Y = [Y (P01(2)+P12(2).*rctheta + P13(2).*rstheta)];

Z = [Z (P01(3)+P12(3).*rctheta + P13(3).*rstheta)];

end

s = size(r,2)*size(theta,2);

X1 = reshape(X, 1, s);

Y1 = reshape(Y, 1, s);

Z1 = reshape(Z, 1, s);

122

floorX = floor(X1);

ceilX = ceil(X1);

floorY = floor(Y1);

ceilY = ceil(Y1);

floorZ = floor(Z1);

ceilZ = ceil(Z1);

floorB = sub2ind(size(B), floorX, floorY, floorZ);

ceilB = sub2ind(size(B), ceilX, ceilY, ceilZ);

floorB = B(floorB);

ceilB = B(ceilB);

X = X1(~~(floorB.*ceilB));

Y = Y1(~~(floorB.*ceilB));

Z = Z1(~~(floorB.*ceilB));

%If using the GPU, need to gather data for CPU

% X = gather(X);

% Y = gather(Y);

% Z = gather(Z);

A.5 Particle trace with GPU in MATLAB

In the following script, we have used a function, ’cline’, which was written by Daniel Ennis, and taken

from the MATLAB file exchange. The code is available for download at http://www.mathworks.

com/matlabcentral/fileexchange/3747-cline-m, and is used to colour code the particle traces

according to their velocities.

%Read in segmentation and the phase-contrast images

A = analyze75read(’finalcfs’);

123

P1 = analyze75read(’1P’);

P2 = analyze75read(’2P’);

P3 = analyze75read(’3P’);

s=size(P1);

%Give GPU the data

A = gpuArray(A);

P1 = gpuArray(P1);

P2 = gpuArray(P2);

P3 = gpuArray(P3);

input1 = double(reshape(P1, s(1), s(2), s(3)/15, 15));

input2 = double(reshape(P2, s(1), s(2), s(3)/15, 15));

input3 = double(reshape(P3, s(1), s(2), s(3)/15, 15));

%Set all points outside the segmentation to zero

%An intensity of 2048 corresponds to a speed of 0

repA = (repmat(A,[1 1 1 15]));

input1 = input1.*((repA) > 0);

input1 = input1 + ~input1.*2048;

input2 = input2.*((repA) > 0);

input2 = input2 + ~input2.*2048;

input3 = input3.*((repA) > 0);

input3 = input3 + ~input3.*2048;

%Calculate speed at each point in the image

speedimg = sqrt((input1-2048).^2 + (input2-2048).^2 + (input3-2048).^2).*1./2048;

%Open figure window

124

fullscreen = get(0,’ScreenSize’);

hf = figure(’Position’,[0 -50 fullscreen(3) fullscreen(4)]);

%Create trasnparent mesh of segmentation

isosurface(A)

alpha(0.1);

%Define variables

[X, Y, Z] = planeemitter([80 85 20]);

numparticles = size(X,2); % Number of particles being emitted

T = ones(numparticles,1); %Time

it = 195; %iterations

t = 1.0; %Starting time

n = 14; %Number of time steps between frames

h = 1/n; %Step size

%Define GPU storage arrays

GPUppos = gpuArray([X(:) Y(:) Z(:) T(:)]);

GPUnewppos = GPUppos;

GPUpvel = gpuArray.zeros(numparticles,4);

GPUhist = gpuArray.zeros(numparticles,it+1,4);

GPUhist(:,1,:) = GPUppos;

GPUspeed = gpuArray.zeros(numparticles,it+1);

%Begin particle trace

for i = 1:it

GPUppos = GPUnewppos;

GPUhist(:,i+1,:) = GPUppos;

%Points used for velocity interpolation

125

intpos1 = floor(GPUppos);

intpos2 = intpos1 + 1;

%Offsets

alpha = GPUppos(:,1)-intpos1(:,1);

beta = GPUppos(:,2)-intpos1(:,2);

gamma = GPUppos(:,3)-intpos1(:,3);

omega = GPUppos(:,4) - intpos1(:,4);

%Use the code below if interpolating streamlines (time constant)

% xspeed = interp3(single(gather(input1(:,:,:,t))),single(gather(GPUppos(:,2))),

% single(gather(GPUppos(:,1))),single(gather(GPUppos(:,3))));

% yspeed = interp3(single(gather(input3(:,:,:,t))),single(gather(GPUppos(:,2))),

% single(gather(GPUppos(:,1))),single(gather(GPUppos(:,3))));

% zspeed = interp3(single(gather(input2(:,:,:,t))),single(gather(GPUppos(:,2))),

% single(gather(GPUppos(:,1))),single(gather(GPUppos(:,3))));

% xspeed = interp3_gpu(gpuArray(1:144), gpuArray(1:192), gpuArray(1:38),

% input1(:,:,:,t),GPUppos(:,2),GPUppos(:,1),GPUppos(:,3));

% yspeed = interp3_gpu(gpuArray(1:144), gpuArray(1:192), gpuArray(1:38),

% input3(:,:,:,t),GPUppos(:,2),GPUppos(:,1),GPUppos(:,3));

% zspeed = interp3_gpu(gpuArray(1:144), gpuArray(1:192), gpuArray(1:38),

% input2(:,:,:,t),GPUppos(:,2),GPUppos(:,1),GPUppos(:,3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Use code below for interpolation of pathlines

%X values

x1 = input1(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(1-omega(:));

x2 = input1(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(gamma(:)).*(1-omega(:));

x3 = input1(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

126

.*(1-alpha(:)).*(beta(:)).*(1-gamma(:)).*(1-omega(:));

x4 = input1(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(1-omega(:));

x5 = input1(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega(:));

x6 = input1(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta(:)).*(gamma(:)).*(1-omega(:));

x7 = input1(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma(:)).*(1-omega(:));

x8 = input1(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega(:));

x9 = input1(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(omega(:));

x10 = input1(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(gamma(:)).*(omega(:));

x11 = input1(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4))

).*(1-alpha(:)).*(beta(:)).*(1-gamma(:)).*(omega(:));

x12 = input1(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(omega(:));

x13 = input1(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

x14 = input1(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta(:)).*(gamma(:)).*(omega(:));

x15 = input1(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma(:)).*(omega(:));

x16 = input1(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

xspeed = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16;

%Y values

x1 = input3(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(1-omega(:));

127

x2 = input3(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4))

).*(1-alpha(:)).*(1-beta(:)).*(gamma(:)).*(1-omega(:));

x3 = input3(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(beta(:)).*(1-gamma(:)).*(1-omega(:));

x4 = input3(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(1-omega(:));

x5 = input3(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega(:));

x6 = input3(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta(:)).*(gamma(:)).*(1-omega(:));

x7 = input3(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma(:)).*(1-omega(:));

x8 = input3(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega(:));

x9 = input3(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(omega(:));

x10 = input3(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta(:)).*(gamma(:)).*(omega(:));

x11 = input3(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(beta(:)).*(1-gamma(:)).*(omega(:));

x12 = input3(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta(:)).*(1-gamma(:)).*(omega(:));

x13 = input3(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

x14 = input3(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta(:)).*(gamma(:)).*(omega(:));

x15 = input3(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma(:)).*(omega(:));

x16 = input3(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

yspeed = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16;

%Z values

128

x1 = input2(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(1-beta).*(1-gamma).*(1-omega);

x2 = input2(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(1-beta).*(gamma(:)).*(1-omega);

x3 = input2(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(beta(:)).*(1-gamma).*(1-omega);

x4 = input2(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta).*(1-gamma).*(1-omega);

x5 = input2(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega);

x6 = input2(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(1-beta).*(gamma(:)).*(1-omega);

x7 = input2(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma).*(1-omega);

x8 = input2(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos1(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(1-omega);

x9 = input2(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta).*(1-gamma).*(omega(:));

x10 = input2(sub2ind(size(input1),intpos1(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(1-beta).*(gamma(:)).*(omega(:));

x11 = input2(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(beta(:)).*(1-gamma).*(omega(:));

x12 = input2(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta).*(1-gamma).*(omega(:));

x13 = input2(sub2ind(size(input1),intpos1(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(1-alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

x14 = input2(sub2ind(size(input1),intpos2(:,1),intpos1(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(1-beta).*(gamma(:)).*(omega(:));

x15 = input2(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos1(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(1-gamma).*(omega(:));

x16 = input2(sub2ind(size(input1),intpos2(:,1),intpos2(:,2),intpos2(:,3),intpos2(:,4)))

.*(alpha(:)).*(beta(:)).*(gamma(:)).*(omega(:));

129

zspeed = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16;

%Speed normalized to range of 0-1 (for colouring purposes)

GPUspeed(:,i+1) = (1/2048).*sqrt((xspeed-2048).^2 + (yspeed-2048).^2 + (zspeed-2048).^2);

%Advance time by 1ms

t = t + h;

GPUpvel = [(xspeed-2048) (yspeed-2048) (zspeed-2048)].*repmat([1 1 0.5],numparticles,1)./2048;

GPUnewppos = GPUppos + [GPUpvel repmat(h,numparticles,1)];

%Use this update scheme if keeping time constant

%GPUnewppos = GPUppos + [GPUpvel zeros(numparticles,1)];

%Fix precision error

if t > 15

t = 1;

GPUnewppos = GPUnewppos - repmat([0 0 0 14+h],numparticles,1);

GPUnewppos(:,4) = ceil(GPUnewppos(:,4));

end

end

%Use cline to colour line

hist = gather(GPUhist);

sp = gather(GPUspeed);

for s = 1:numparticles

h = cline(hist(s,:,2), hist(s,:,1), hist(s,:,3), sp(s,:));

set(h, ’LineWidth’, 1)

end

hcb = colorbar;

set(hcb, ’YTick’, [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]*sqrt(3))

set(hcb, ’YTickLabel’, {’0 cm/s’,’26 cm/s’,’52 cm/s’,’78 cm/s’,’104 cm/s’,’130 cm/s’,

130

’156 cm/s’,’182 cm/s’,’208 cm/s’,’234 cm/s’,’260 cm/s’})

axis equal

axis tight

%Create movie

set(gca, ’NextPlot’, ’replaceChildren’);

F(it+1) = struct(’cdata’, [], ’colormap’, []);

for frame = 1:it+1

for s = 1:numparticles

h = cline(hist(s,1:frame,2), hist(s,1:frame,1), hist(s,1:frame,3), sp(s,1:frame));

set(h, ’LineWidth’, 3.5)

set(hcb, ’YTick’, [0, 0.2, 0.4, 0.6, 0.8, 1])

set(hcb, ’YTickLabel’, {’0 cm/s’,’52 cm/s’,’104 cm/s’,’156 cm/s’,’208 cm/s’,’260 cm/s’})

axis equal

axis tight

hold on;

end

F(frame) = getframe;

end

hcb = colorbar;

set(hcb, ’YTick’, [0, 0.2, 0.4, 0.6, 0.8, 1])

set(hcb, ’YTickLabel’, {’0 cm/s’,’52 cm/s’,’104 cm/s’,’156 cm/s’,’208 cm/s’,’260 cm/s’})

movie2avi(F, ’Flow.avi’);

131

