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ABSTRACT

A reduction in the memory space required to store sub-
band coded (Split-Band ADPCM) speech 1is achieved using en-
tropy encoding. Two methods of entropy encoding used to
reduce the average word length of Split-Band ADPCM digital
output symbols are presented in this study. Huffman coding
(a minimum redundancy technique) is compared to a sub-opti-
mal approach developed by Paul D. Shaft, which is useful
when source statistics are not accurately specified. Both
marginal and conditional probability estimates are employed
in the coding procedures. The Split-Band ADPCM encoder im-
plementation is a variation on current designs and employs
off-the-shelf switched-capacitor filters for the band-split-

ting function.

The average code word length resulting from Huffman cod-
ing was found to be within 2% of the calculated entropy (the
theoretical minimum). Actual space savings of 14.2% for
marginal coding and 29.9% for conditional coding were ob-
tained. Shaft coding performed comparably in both the mar-
ginal and conditional cases (within 3% of Huffman coding)

with savings of 12% and 27.9%, respectively.
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Chapter 1I

INTRODUCTION

Advances in digital technology have spawned the develop-
ment of various digital systems for communication purposes
[1]. Since speech is clearly the most natural form of human
communication, it is not surprising that the digitization of
speech signals has been and continues to be a major compo-

nent of digital communications research.

Efficient representation of digitized speech not only
provides savings 1in channel bandwidth (or storage require-
ments) 1in conventional systems such as telephony, but also
facilitates many new and innovative approaches to communica-
tion. Among these are voice response from computers, 'store
and forward' voice messageing, aids to the visually handi-
capped, instructional aids, emergency alert systems, etc.
In short, any application where voice 1s the desired mode of
communication can exploit this technology. The desirability
for speech as a éommunication medium has spurred on years of

research in the field of coding digitized speech.

The wunderlying goal 1in efficient speech coding is to
achieve maximal speech quality at a minimal data rate with
the simplest (or least expensive) coder configuration [2].

Coder complexity tends to be proportional to the efficiency



-of the coding technigue and therefore the channel utiliza-
tion. Complex coders are typically expensive so that in the
design of digital speech systems one must balance coding
efficiency with coder cost, trading off efficiency for com-

plexity.

Current advances in large scale and very large scale in-
tegration (LSI and VLSI) have shifted the emphasis in speech
coding to more complex schemes since more powerful signal
processing hardware is becoming available. An indicator of
this trend is the appearance of so-called 'specialty' pro-
cessors, such as the single-chip signal processors by Bell
Labs (DSP), Texas Instruments (TMS 320-10) and Nippon Elec-
tric (uPD7720). Using these devices alongside the current
higher speed microprocessors now makes the implementation of

highly efficient speech coders at reasonable costs possible.

Efficient coding of speech involves the exploitaton of
various speech signal characteristics. These include time
domain and frequency domain signal characteristics [2].
Waveform coding is a broad category of speech coding tech-
niques which involves facsimile reproduction of an input
waveform through the use of time and/or frequency domain
charateristics bf the signal [2]. This most often results
in a tolerably distorted signal replica which satisfies the
requirements of a given application while achieving an over-
all reduction in the output data rate of the coder. Sub-

band coding 1is a speech <coding technique which falls into



the broader category of Waveform coding. It requires a
relatively complex hardware structure but produces a high
quality representation of the speech signal (according to
certain noise preference criteria) at moderate bit-rates
[3]. A subset of‘sub~band coders, an approach known as

Split-Band ADPCM, is the focus of this thesis.

Entropy coding (or variable-length coding) is an approach
to encoding quantized data with a variable word-length for-
mat to compress the amount of data produced by the digitiza-
tion process. This technigue relies on a nonuniform prob-
ability distribution of the quantized data points [4].
Shert code words are assigned to the most likely data points
while longer code words are assigned to less probable guan-
tizer outputs. This yields an average data rate that is
lower than the wuncoded data rate, provided that the prob-
ability distribution of the guantizer output is non-uniform.
An optimal code word assignment procedure (lowest average

code word length) is that due to D. A. Huffman [5].

The use of variable-length coding to decrease the average
data rate of a Split-Band ADPCM coder is described in this
thesis. Basic speech signal characteristics are presented
initially, in Chapter II, followed by an overview of Wave-
form Coders, including ADPCM and Sub-band coding, in Chapter
III. The type of 'noiseless' entropy coding discussed above
is presented in Chapter IV where two procedures for vari-

able-length coding are described: Huffman coding and a pro-




cedure developed by P. D. Shaft [6]. A Split-Band ADPCM co-
der implemented for this study 1is presented in Chapter V,
including a description of the coder implementation and co-
der performance measurements. The coder used was implement-
ed in hardware and speech data were collected and entropy
coded on a microcomputer. The analysis/coding procedures
are described in Chapter VI and the results of performing
entropy coding on the Split-Band ADPCM coder output are pre-
sented and discussed in Chapter VII. Two variable-length
coding procedures are compared: Huffman coding and Shaft
coding. Conditional coding (using conditional probabili-

ties) is also implemented for both variable-length schemes.

Conclusions and recommendations for further work are pre-

sented in the concluding chapter, Chapter VIII.



Chapter 1I1I

SPEECH SIGNAL CHARACTERISTICS

2.1 QVER VIEW OF SPEECH PRODUCTION

Figure 2.1 shows a simplified speech production model
typically used in describing speech [7,8]. This model con-
sists of two linearly separable sections, the sound source
and the vocal tract filter. The sound source consists of two
separate, alternately selectable sources : a) a pulse source
representing the periodic excitation of the vocal tract by

the vocal chords (during vowels and dipthongs) called voiced

NOISE SOURCE
VOICED/UNVOICED DECISION

\ ‘
___d450—~———-——' VOCAL TRACT FILTER

T SPEECH OUTPUT

PULSE SOURCE

!

PITCH INFORMATION

VOCAL TRACT RESONANCES

Figure 2.1: Speech Production Model



excitation, and b) a noise source representing the excita-
tion of the wvocal tract by air flowing past a constriction
(typical of fricatives) called unvoiced excitation. The vo-
cal tract filter section is a model of the rescnant filter-
- ing action .0of the vocal tract which spectrally shapes the
excitation (sound source). This model has been used to pa-

rameterize the speech production process.

Parameterization of the speech production process has
been exploited in encoding procedures known as speech source
coding technigques [2]. These source coding techniques rely
on mathematically modelling speech generation in order to
mimic vocal tract operation. Key parameters of the model
are extracted from real speech, and then used in a mathemat-
ical analog to regenerate speech at will. The primary in-
formation-carrying parameters of the vocal process model are
considered to be pitch, voiced/unvoiced decision, and pole
frequencies of the modulating vocal tract filter [8]. This
approach has been successfully used in a variety of voice
coders (vocoders) employing analog components initially and
later digital hardware. Although efficient from a bit-rate
point of view, these approaches have been typically costly

and complex.

A second <class of speech <coders is termed waveform co-
ders. Waveform coders strive for facsimile reproduction of
the input waveform. Several properties of the speech signal

are used 1in the design of Waveform coders. These include



power and amplitude distributions, spectral characteristics

and certain temporal waveform properties.

Some basic speech waveform properties are discussed be-

low.

2.2 BASIC SPEECH WAVEFORM PROPERTIES

Among the most basic properties of speech waveforms is
that speech is bandlimited and thus may be sampled at a fi-
nite rate [2]. This bandlimiting is partially due to the
process of speech production, but more typically bandlimit-
ing is performed by voice transmission circuits. A typical
conservative sampling rate of 8 kHz is used in telephony ap-
plications where the signal is bandlimited in the range of

300 to 3.2 kHz by conventional voice circuits.

A second basic property of speech which can easily be ob-
served on an oscilloscope is the dual nature of the speech
excitation as shown by the speech production model of Figure
2.1 Intense, guasi-periodic segments of voiced speech are
observed which contrast with lower amplitude noise-like pas-
sages corresponding to unvoiced sounds [2]. Properties of
this dual source excitation are reflected in the short-term

signal statistics of the speech waveform.

Characteristics of the speech waveform can be observed in

both the time domain and the frequency domain.




Time domain characterisitics are measured using the prob-
ability density function (PDF) and the autocorrelation func-
tion (ACF) of the signal. The PDF of speech (representing
the characteristics of speech amplitude) 1is in general non-
uniform, with a high probability of zero and near-zero am-
plitudes and a significant probability of very high ampli-
tudes [2]. Both long-term and short-term PDFs of speech
have been modelled, the former as the sum of Gaussian and
Laplace functions (or by the Gamma function) and the latter

by simply a Gaussian model [8].

The quasi-periodic nature of speech is easily shown using
the ACF. The ACF (which represents the correlations among
amplitude samples of a waveform) shows large adjacent-sample
correlations in Nyquist sampled speech when averaged over
long segments (55 seconds) [2]. Short-term ACFs of speech
(20 milliseconds) show secondary peaks due to the guasi-
periodicity [2]. These correlations indicate that redundan-
cy is present in the signal and that data compression can be

achieved by removing this redundancy.

In the frequency domain, the power spectral density (PSD)
is typically used to characterize the speech waveform. A
long-term averaged PSD of speech shows a predominantly low-
pass spectrum. Unvoiced segments of speech can have high-
pass spectra while voiced segments can show local resonances
(called formants) despite their globally low-pass nature

[8]. The time course of these formants as well as the high



frequency waveform components are recognized as important
factors in speech intelligibility and must therefore be ade-

guately represented.




Chapter III

WAVEFORM CODING TECHNIQUES

As mentioned 1in the previous chapters, Waveform coders
are used to replicate a digitized waveform through the ex-
ploitation of certain waveform properties to reduce the co-

der output data rate.

Waveform coders can be classified according to the type
of signal characteristics a particular coder utilizes. Spe-
cifically, two classes of Waveform coders are defined: i)
time domain Waveform coders and 1ii) frequency domain Wave-
form coders. Although the sub-band coder investigated in
this study is regarded as a member of the latter category,
this designation is somewhat inaccurate, since sub-band cod-
ing tends to be on the threshold between the two classes and

has been classified by some as an intermediate technique

[9].

Split-Band ADPCM sub-band coding employs both time domain
and frequency domain speech characteristics. Hence, both
classes of coders are described in this chapter, followed by
a description of the Split-band ADPCM approach. A detailed

discussion of Waveform coders can be found in [2] and [10].



3.1 TIME DOMAIN WAVEFORM CODERS

" Pulse Code Modulation (PCM)

All digital signal processing techniques, including Wave-
form coding, require that the signal be digitized. This in-
volves the conversion of the analog input signal into a dis-
crete-time  (sampled at uniform intervals) and
discrete-amplitude (guantized to one of a finite number of
levels) representation. In this form, the signal can be
subjected to a variety of mathematical operations in order
to arrive at a desired output sequence and ultimately a de-
sired output signal. Digitization is also referred to as

Analog-to-Digital (A/D) conversion.

The term Pulse Code Modulation (PCM) is used to describe
one of the most commonly used forms of A/D conversion. The

following steps are involved in PCM [10]:

1. As with all sampled signals, the input signal is
bandlimited and then sampled at the Nyquist frequen-
cy. If W is the bandwidth of the 1input signal, a
sampling rate of 2W (at least) is used.

2. For a given number of bits per guantum level, r, the
input signal is qQuantized to one of 2 levels where
each level is represented by a distinct binary num-
ber.

3. To decode, the binary words are mapped back into am-

plitude levels at each sampling interval and then in-



terpolated by a low pass filter to reconstruct the

continuous waveform.

Recalling that speech amplitudes exhibit a wide dynamic
range with both 1low amplitude segments and large amplitude
excursions, the noise associated with approximating ﬁhe sig-
nal with a finite number of guantum levels comes strongly
into play. If the levels are uniformly distributed over the
range of the guantizer, then the low amplitude segments are
quantized with only a few levels. This degradgs the signal
representation by increasing the quantization noise during
low amplitude passages. Increasing the number of quantizer
levels 1improves the signal-to-quantizing noise ratio but
also increases the output data rate. A non-uniform quanti-
zation scheme can alleviate the 'quantizing noise problem
somewhat by providing a greater number of quantizing levels
for the 1low amplitudes and fewer levels for the less fre-
quent larger amplitude excursions. Such non-uniform quan-
tizers are used in telephony and are classified according to
the formula used to determine the (logarithmic) level dis-

tribution curve (u-law and A-law gquantizers).

A second approach to improving the signal-to-quantizing
noise ratio is to vary the guantizer step-sizes dynamically
according to the variance of the input signal. One such ap-
proach is known as Adaptive PCM and is discussed in a later

section.




Differential Approaches

Since the variance of the input signal affects the sig-
nal-to-quantization noise ratio, reduction of the input sig-
nal variance can improve the performance of a uniform quan-

tizer.

One way to decrease the variance of a signal to be quan-
tized is to apply differential encoding to the signal. Dif-
férential encoding 1involves quantization of the difference
between an input sample and an estimate of that sample based
on past input estimates. The following technique is such an

approach.

Differential Pulse Code Modulation (DPCM)

Nygquist rate sampled speech exhibits large adjacent sam-
ple correlation [8]. 1If this correlation is greater than 50
% then a differential encoding scheme can be effectively em-

ployed.

Figure 3.1 shows a Differential PCM block diagram. The

input/output expressions are given by
-~ ~ M
dn=xn_xn=xn—281xn—l (3.1)
=1 :

where X, is the predicted value of X,, based on N weighted
samples of X, . Jayant has shown that the variance of d, is
smaller than the variance of the input signal [10]. Hence,

the required dynamic range for the quantizer can be lower or



fewer bits can be used to quantize the difference signal.
The estimate X, is a best estimate in a minimum mean squared
error sense if the & are computed using the first N samples
of the speech ACF [11, 8]. Since these & are fixed, only

long-term average ACF values are used.

d P, )?
) +/§:L" QUANTIZER _CHANNEL  + E .
S ; J
+ PHEDBIPR
., * (@ z”
%; 22,
PREDICTOR
@z .
Xn
Figure 3.1: Differential PCM Block Diagram
Drawbacks of a fixed set of such & are apparent. Long-

term ACFs do not accurately reflect short-term speech sta-
tistics. Hence, the coder will not perform optimally over a
range of inputs. A more effective approach, adaptive DPCM,

is discussed later.

A simplified form of differential coding known as Delta

Modulation is often used where inexpensive coder hardware is



required. In Delta Modulation, the speech signal is over-
sampled at typically 4 to 10 times the Nyquist rate and then
coarsely quantized 1into a one-bit value. This technique
uses simple, inexpensive hardware and generates good quality

speech at moderate bit rates (16-64 kbits/sec) [10].

Adaptive Approaches

The error signal will have less redundancy than the input
signal if the adjacent sample correlations are high. The

better the estimate, the lower the variance of the error

signal will be, resulting in less redundancy 1in the error
signal.
Matching quantizer step-size (quantizer levels) = to the

input signal variance can be achieved using adaptive tech-
nigues. Adaptive technigues must somehow measure input sig-
nal activity, wusually from past values of the coder output,
and modify the step-size accordingly. Input signal power
for speech coders varies slowly enough so that one or two
sample adaption schemes are possible [2]. This implies that
the coder requires a one or two sample memory and that a new
step-size must be computed at each sampling instant. Adap-
tive PCM is such an approach. The Quantizer step-size is
varied according to one or two past values of the coder out-
put. The inverse process is performed at the decoder and
the original waveform is reproduced. (Note: Since past out-

puts are used, both the encoder and decoder have the same



information for varying the step-size. No side information

is needed at the decoder).

Adaptive Differential PCM

Ideally, a priori knowledge of the input to a coder would
allow two forms of adaption in an ADPCM coder: i) an adap-
tive guantizer matched to the PDF of the input signal to
maintain a fixed signal-to-quantizing noise ratio, and ii)
an adaptive predictor matched to the ACF of the input signal
to remove redundancy and to further decrease the data rate.
Since very little a priori knowledge of the signal is avail-
able, local estimates of input signal parameters must be
computed. These parameters may be applied either to quan-
tizer adaption or predictor adaption. A combination of

these two is also possible, although much more complex.

A schematic block diagram of an ADPCM (Adaptive Quantiz-
er) coder is shown in Figure 3.2. It contains a fixed first
order predictor and step size adaption logic which operates

on the most recent quantizer output.
If the output of an r-bit uniform quantizer is given by
An =13 - 20 -1
yn=Pn—§— where = P, 1, 3, (3.2)
the step size A, 1is

An =‘A,,_1M('P"..1l) (3.3)
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Figure 3.2: Block Diagram of Adaptive DPCM Coder (Adaptive
Quantizer)

where M( ) 1is a time-invariant function of the quantizer
level magnitude. Table 3.1 shows adaption multipliers asso-
ciated with a 3-bit quantizer [12]. The design of such mul-
tipliers is based on the maximization of the signal-to-quan-

tizing noise power averaged over an entire test signal [12].

This type of adaptive quantizer ADPCM coder is used in
the Split-Band ADPCM coder implemented for this study. De-
tails of the specific adaption scheme used in this coder are

given in Chapter V.



TABLE 3.1

Step-Size Adaption Multipliers of a 3-Bit Quantizer

Quantizer Qutput Word Multiplier Value
(1Ps—11) M(IP,_{1)
- 111 or 000 2
110 or 001 5/4
101 or 010 7/8
100 or 011 7/8

ADPCM with adaptive prediction is a second possible ap-
proach. The technique involves computation of the short-
term ACF of the speech segment to be quantized, implying
some encoding delay. The coefficients derived from the ACF
are used in the predictor and are transmitted to the receiv-
er as side information along with thé guantizer output. The
transmission of the predictor coefficients does not require
a great deal of channel bandwidth since updates are infre-

quent and the coefficients can be encoded coarsely [2].




3.2 FREQUENCY DOMAIN WAVEFORM CODERS

Split-Band ADPCM is a subcategory of frequency domain
coders (specifically sub-band coders). Frequency domain co-
ders are coders which segment the speech signal according to
frequency and encode each segment separately. In this way,
it is possible to vary the overall quantizing noise spectrum
to obtain perceptually optimum coding by adjusting individu-
al band gquantizers. As well, bits can be allocated as re-
gquired and may even be dynamically reallocated to encode

only active sub-bands with a minimum number of bits.

Frequency domain coders vary in complexity from the sim-
pler sub-band coders to more complex Adaptive Transform Co-
ders which use block transformations. The emphasis in this
section will be on sub-band coding techniques. Adaptive’

Transform Coding is briefly described for completeness.

Sub-Band Coding

Sub-band coding [3] involves partitioning the speech
spectrum into typically four to eight sub-bands using band-
pass filters. Each of these bands is then low-pass trans-
lated, sampled at the Nyquist rate for that band, and then
digitally encoded. Each band 1is independently encoded ac-
cording to perceptual criteria specific to that band. De-
coding involves the translation of the digital information

back into band signals, again through modulation and band-



pass filtering, and then the summation of the band signals

to recover a replica of the original signal. Figure 3.3 is
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Figure 3.3: Sub-band Coder Block Diagram

a block diagram of a sub-band coder. Various schemes of
band-pass and low-pass translation exist, but a common ap-
proach is to use integer-band sampling to eliminate the need

for modulators [13].

The main design considerations in sub-band coding are

[13]:

1. selection of the number of sub-bands and their band-
widths, g

2. the implementation of the band-pass filters,



3. selection of the type of band encoders and the number

of bits per band.

The emphasis in this study is placed on a sub-band coder
which encodes 7 kHz bandwidth speech at 64 kbits/sec. a
type of sub-band coder employing two bands and using ADPCM
for encoding each band is implemented. A description of

this type of coder is given in the following section.

Split-Band ADPCM

If a 7 kHz bandwidth signal is split into two 3.5 kHz
bands and each band is sampled at 8 kHz, then a 64 kbits/sec
bit rate 1is achieved if 4 bits/sample are used to encode
each band. This can be realized using ADPCM encoders on
each band. The target of 64 kbits/sec data rate 1is not a
justification for use of two sub-bands or ADPCM. In fact,
various combinations of coders and band partitionings are
possible with sub-band coding. The particular configuration
employed in this study is documented in [14] and [15]. The
relative simplicity and ease of implementation makes this

configuration a suitable choice for this study.

One aspect which is investigated is an alternate filter-
bank implementation. Traditional implementations have ei-
ther been analog filter banks [14] or digital quadrature
mirror filters [15]. An alternate, switched-capacitor fil-

ter bank implementation with off-the-shelf integrated cir-
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cuit Reticon switched-capacitor filters is wused in this
study. The filter bank implementation and other implementa-

tion details are presented in Chapter V.

Adaptive Transform Coding

Transform coding involves the transformation of windowed
segments of speech data. The transformation yields a set of
coefficients which are encoded (quantized) and transmitted
to the decoder. Upon decoding, the quantized coefficients
are inverse-transformed and concatenated to produce a repli-

ca of the original waveform.

Time-to-frequency block transformations are of interest
in speech processing since such transformations allow coding
noise to be controlled 1in the frequency domain [2]. As
well, time-varying properties of speech can be accomodated
in the fregquency domain through adaptive techniques if the
speech production process is modelled as a linear, time-in-
variant filter model, as is typically the case [8]. An ex-—
ample of such a transform is the Discrete Cosine Transform
which has been found to be particularly suited to speech
coding. A summary of the adaption strategies, quantization
strategies and noise shaping techniques in ATC 1is given in

[2].



Chapter 1V

NOISELESS SOURCE CODING

Data compression is merely the removal of redundancy from
a signal [16]. Redundancy in a signal may result from a
characteristic of the signal source or it may be introduced
by some operation on the signal. Nonetheless, redundancy
removal yields a more efficient wuse of signal processing,
transmission or storége resources in a signal handling sys-

tem.

A class of operations used for redundancy removal is the
Information-Preserving Transformation, which 1is reversible
[16]. This class employs a mapping procedure to reversibly
decrease the correlation between the message symbols of a
source. The result is a set of code words with, on average,

fewer bits than the original message alphabet.

A review of some information theoretic definitions 1is
presented below followed by a discussion of Huffman and

Shaft coding.



4.1 INFORMATION

Information is formally defined in relation to the prob-
ability of an event, E, occuring. Specitically, 1if the
probability of event E is P(E) then the information result-

ing from the occurrence of E is defined as

I{E) = log,

1 .
= - bit
P (E) logz P (E) bits (4.1)

The units of (4.1) are determined by the base of the loga-

rithm.

4,2 DISCRETE INFORMATION SOURCE

Given that a source S is emitting a sequence of statisti-
cally indepéndent source symbols from a fixed and finite al-
phabet S = {s;, s3, S3,..8¢}, then the source can be com-
pletely described by the source alphabet and the
brobabilities with which the symbols occur, P(s;), P(s,),
P(53),...P(sq). The source is considered discrete since the
source alphaket 1s not continuous. A zero-memory source is
defined as a a source which emits symbols which are statis-

tically independent.
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4.3 ENTROPY AND REDUNDANCY

The information associated with each symbol emitted from

a zero—-memory source is given by
1(S) = —loga, P(S) bits (4.2)

and is called the self-information or the marginal informa-
tion of that symbol. An average amount of information per

symbol is defined as

H(S)=I§ P(s;) I(s,) bits (4.3)
=1

and is known as the entropy (H(S)) of the source S. H(S) is

therefore

q
H(S)=-§1P(s,-)logaP(s,)bits (4.4)

The redundancy of the source is simply defined as

R(S)=1- H(S) (4.5)

4.4 MARROV SOURCES AND CONDITIONAL ENTROPY

As mentioned in Chapter I1I, an important feature of the
speech signal 1is the adjacent sample correlations inherent
in the speech production process. A zero-memory source is

therefore too restrictive a model for speech. A more gener-



alized source, called a Markov source, is defined to account

for adjacent sample correlations.

For a Markov source of order m, each source symbol s de-
pends on m preceeding symbols and the source 1is entirely
specified by the source alphabet and a set of condiéional
probabilities. Initially one must consider the Markov
source as being in a 'state' which is defined by the occur-
rence of a sequence of m symbols. This state has a prob-
ability of occurrence P(s; S;,» " Sj,) and is one of g™ pos-
sible states. A conditional symbol probability is defined
as P(si/sh'slz' ©rr8;) where 1 = 1,2, 3...gand j, =1, 2,
3...q such that the occurrence of the symbol s; depends only
on the preceeding state of m symbols. One can combine the
above probabilities and define the probability of a joint
event of the state (S;,S8, *'*S;,) and the present symbol s
occuring P‘%fsh""SMvsﬂ which is simply the product of
the state probability and the conditional symbol probabili-

ty.

The information provided by an mth order Markov source is

(given the source is in state (Sj,81, "85, )

/(S[/Sii, 812. ve. Slm) = — loga P(SI/SI‘, slz’ e Sim) (4.6)

Therefore, the entropy of the source for state (ﬁ,sh."'sm)

is

q
H(S/Sh, "'S/m) = — z P(SI/Sl'1, "'Slm) |092 P(S,'/Sii, -"s,-m) (4.7)
=1



m

When averaged over q possible states, the entropy of the

mth order source is

qm
H(S)=21P(S"1, '”'Slm)H(S/sh, "‘Slm)

MQ

qm
=2 Py, o8;,) 3 Hisi /sy, o0 sp)
=1 i=1

~
i

q™ q” :
= - 1‘§ 2;, Psjy <+ 8j,) Pisi/sjy -+ 8j,) 1082 Psi/sjy -~ S1,) (4 g

Let subscript J represent the previous state of the Markov
source and subscript N represent the present state. Rewrit-

ing H(S)

m

Py Pyyylogs Py
)

Q

qm
H(S) = -
i

=1 (4.9)

This 1is referred to as the conditional entropy of the

source.

4.5 REDUNDANCY REMOVAL

Information-Preserving Transformations

An information-preserving transformation 1is a reversible
mapping of a messége seguence into an output sequence of
fewer bits [16]. Reversibility allows the input to be en-—
tirely reconstructed from the output seqguence; hence the in-
formation-preserving nature of the transformation. The
greater the correlations between message symbols, the great-
er the redundancy present in the message and the lower the
information c;ntent. Through redundancy removal, which is

based upon a knowledge of the source statistics, the mapping



of the input segquence results in a nearly random output se-
guence. One may consider this a flattening of the source:

PDF.

Minimum-Redundancy Codes (Huffman Codes)

Typical signal representétions consist of a finite alpha-
bet (such as an r-bit A/D converter with 2 output states).
Knowing the statistics of the finite alphabet source allows
one to construct a code which 1is optimal in a minimum aver-

_age code word length sense [5].

Huffman coding 1is known as minimum-redundancy coding
or optimal coding. Optimality in this case means a set of
code words with the shortest possible average length. The
properties of the broader class of codes to which Huffman

codes belong are briefly described below.

Uniquely Decodable and Instantaneous Codes

Two restrictions placed on the Huffman coding procedure
are that no two code words shall have identical arrangements
of digits and that once the begining of the message 1is
known, no other indicators are needed to determine where a
particular code word begins or ends [5]. The first restric-
tion implies that the code constructed is uniquely decodable
[17]. Unique decodability states further that any distinct
sequence of source symbols must result 1in a distinct se-

guence of code words.



The second restriction implies that the code is
instantaneous; no reference to succeeding code words is re-
quired to decode any code word 1in a sequence [17]. A nec-
cessary and sufficient condition for a code to be instanta-
neous is that no complete code word is a prefix of any other
code word. The prefixes of the code word 0111, for example,

are 0111, 011, 01 and O.

Three additional restrictions define the framework for
the construction of an optimal code. A basic requirement is
that the most probable source symbols be assigned the shor-
test code words. The two other restrictions deal with en-
suring that the fewest possible digits are assigned to each

code word.

Consider an ensemble of N messages. Let P(1i) be the

probability of the ith méssage. It follows that
N -
12‘,1P(l)=1 (4.10)

Let the length of the ith message be L(i), corresponding to.
the number of coding digits assigned to it. The average

message length is therefore
N - -
Lav=zp(’)L(') (4.11)
i=t

Minimum-redundancy or optimality is defined here as a code
with the lowest possible L,, for an ensemble of N messages

and for a given number of coding digits, r.
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The procedure used to generate an optimum binary code is
given in Chapter VI. A description of this procedure is

also available in [5, 17-20].

Alternate Redundancy Removing Codes

Shaft Encoding

In comparison to the Huffman encoding scheme, an alter-
nate variable-length approach, developed by Shaft [6], is
implemented for this study. The approach is intuitive and
is applicable to situations where source statistics are only
partially known or are time-varying. Speech falls into this
category of sources [2, 8]. The performance of a coding
scheme varies according to the degree of error in the speci-
fication'of the source statistics (Huffman coding 1is known
to be fairly robust with respect to errors in the source
symbol probabilities [21]). The coding procedure of Shaft

is described in Chapter VI.

Some properties of the Shaft code are:

1

1. Minimum length n

n+2r -+ d 2

Il

2. Maximum length

where n' 1s the fewest number of bits to be assigned to rep-
resent any source symbol. Thus, if r-n' increases, the min-
imum length code word decreases while the maximum length
code word increases. As a result, the performance bounds

are well defined: r-n' bits/symbol at best and
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nt 420 "M+ 2 —r hits/symbol more than the uncoded case, at

worst.

For the Shaft encoding scheme, the average number of bits

per symbol can be computed using equation (4.11),.

Fixed-Length Encoding

Prior to a description of fixed-length redundancy-remov-

ing codes, a motivation for their use is presented.

The use of Huffman codes can pose practical problems when
transmitted. Due to their variable length, any error in a
code word can cause loss of code word synchronization at the
receiver. Long sequences of errors at the receiver output
can result from a single channel error. Only through care-
ful code selection can this problem be decreased, but still

not eliminated.

Variable-length input-to-fixed-length output coding or
just variable input coding performs a type of mapping oppo-
site to Huffman coding: a sequence of source symbols are
mapped into one of a number of fixed-length code words. The
sequence length varies, . hence the 'variable input' designa-
tion. The approach described by Cohn and Melsa in [22] ap-
plied to an ADPCM speech digitizer, consists of accepting a
sequence of source symbols until a message is formed. This
message is then associated with a corresponding code word

(channel symbol). Symbols are read from the source until a
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member of the message alphabet is recognized and then an ap-
propriate code word 1is generated and the encoder is reset.
One can see that this is one form of run-length encoding
[23]. It can be shown [22] that this type of coding has an
average minimum-bits-per-symbol property similar to Huffman
codes. Because of the fixed-length nature of the code, long
strings of errors are avoided during transmission. On the
other hand, a single error in a channel symbol can result in
a string of errors at the receiver, depending on the length

of run which the channel symbol represents.

4.6 FIXED-RATE CHANNELS: BUFFER CONSIDERATIONS

Typically, channels used in digital communications oper-
ate at a fixed rate i.e. channel symbols leave the transmit-
ter and arrive at the receiver at equal, uniformly-spaced
time intervals. 1In order to accomodate fixed-rate transmis-
sion, variable-length and variable input codes must be buff-
ered prior to transmission or after reception i.e. variable-
length codes must be formatted into fixed length channel
symbols and variable input codes must buffer source symbols

until a message is assembled.

Jelinek has shown [24] that codes designed to minimize
the probability of buffer overflow in variable-length codes
are not minimum-average-length code words. This indicates
that Huffman codes are non-optimal in a minimum-buffer-

overflow sense. Since Shaft codes are variable-length



codes, the problem of buffer overflow and also buffer ex-
haust (when the buffer empties and no symbols are available

for transmission) is also present.

Run-length codes also require buffering of both source
and received symbols in order for a fixed rate of transmis-
son in the channel to be possible. Jelinek and Schneider
discuss variable-length-to-block coding and buffer consider-

ations in [25].

Buffer considerations are important in communication sys-
tem design and especially source coding techniques. In the
evaluation of the coder implemented for this study, emphasis
is placed on measuring sub-band coder performance and the
bit-rate reduction associated with entropy encoding. The
need for appropriate buffer design is recognized, but is not

undertaken.



Chapter Vv

A SPLIT-BAND ADPCM CODER

Sub-band coding was discussed in Chapter III. In this
chapter a simplified sub-band coder wusing two sub-bands and
ADPCM quantizers is described. The configuration implement-
ed for the purpose of this study is described in the context
of previous work, as reported in the literature [14,15], on

'commentary grade' speech and music encoding.

5.1 CODER CONFIGURATIONS

As described briefly in Chapter III, Split-Band ADPCM in-
volves the splitting of an input signal into two frequency
bands followed by the digitization of each band with a sepa-
rate ADPCM coder. Figure 5.1 shows the encoding/decoding
blocks of such a coder. The rationale behind this or any
sub-band coding scheme is to allow individual segments of
the input signal spectrum to be Quantized in the most per-
ceptually advantageous manner so that bits are allocated
where required and quantization noise 1is 'shaped' in a per-
ceptually acceptable way. As Figure 5.1 shows, two filters,
one low-pass and one band-pass, perform the band-splitting
function. The filters are followed by two ADPCM encoders, a

transmission channel and two ADPCM decoders. Finally, the
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Figure 5.1: Split-Band ADPCM Coder Block Diagram

outputs of the ADPCM decoders are filtered by a filter bank
similar to that of the encoder stage and the filter outputs
are summed to form a reconstructed replica of the original

input waveform.

Band-Splitting Filters R

The filter bank in Figure 5.1 can be implemented in vari-
ous ways. In the evolution of this coder structure, analog
filters were initially used by Johnston and Goodman to per-
form the band-splitting [14]. However, a significant phase
difference was encountered between the two filters of the
filter bank. The measured frequency response of the coder

in [14] is shown in Figure 5.2. The response is affected



+3r

+2

AMPLITUDE (d8)
Q
T

-3 ] 1 i i

FAEQUENCY (kHz)

Figure 5.2: Frequency Response of Split-Band Filter Bank
[14]

most significantly around the cross-over point between the
two bands, where the phase difference has the greatest ef-
fect. ‘As well, the use of two different types of coders
(ADPCM and APCM) contributed to the different delays in each

band.

As an improvement to the design in [14], an all-digital
version of the coder was developed by Johnston and Crochiere
[15]. An all—digital approach affords better overall per-
formance (due to the degree of control over the coder param-
eters) and employs a Quadrature-Mirror Filter (QMF) bank as
well as two ADPCM encoders. Quadrature-Mirror Filters are
a special filter 1implementation using Finite Impulse Re-
sponse (FIR) filters designed with fewer taps than are typi-
cally required to obtain the desired response. They provide
a frequency response with only +/- 0.2 dB ripple at the

transition between bands.
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OMF banks, 1f constructed carefully, allow an efficient
all-digital filter bank implementation.  These filters do
require significant computational power to implement the
processing algorithms. QMFs are described in detail in [15]

and [26].

As an alternative to digital filter banks, the implemen-
tation described herein employs Reticon switched-capacitor

filters arranged as in Figure 5.3.

Switched-capacitor filters are a type of sampled-data
filter (discrete-time but continuous amplitude) which can be
easily and efficiently integrated 1into single-chip devices.
No external components are required to determine the filter
corner frequency sinée it is controlled entirely by an input
clock (the cutoff 1is proportional to the clock fregquency).
Switched-capacitor filters are very stable since only ratios
of capacitor values are used to determine the filter charac-

teristic.

Band-splitting is achieved using an overall low-pass fil-
ter at 7 kHz followed by low-pass and high-pass filters in
parallel to split the band around 3.5 kHz. This particular
configuration was selected to impart as much common delay as
possible to the filters in each band. Specifically, rather
than constructing a band-pass filter from a cascade of high-
pass and low-pass filters which involves two stages and more
delay than a single filter, the configuration in Figure 5.3

was used.
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Figure 5.3: Reticon Switched-Capacitor Filter Bank
Implementation

Specifications of the Reticon devices along with the
clock frequencies used to set the cutoffs of the filter

banks are given in Table 5.1.




TABLE 5.1

Reticon Switched-Capacitor Filter Specifications

Filter Type: R5609 R5611
Low-pass High-pass
7" order Elliptic 5" order Chebeyshev

75 dB stop-band rejection 30 dB/oct roll-off

Dynamic Range 75 dB 80 dB
Clock/Corner Freq. Ratio 100 500
Clock Freq. used
Upper Band 700 kHz 1750 kHz
Lower Band 350 kHz -—--

ADPCM Coders

As with the filter implementations, various coder imple-
mentations have been employed in two-band sub-band coders.
Again, the objective is to encode each band with perceptual-
ly minimal distortion by selecting an appropriate coding
scheme for a particular band. Johnston and Goodman employed
two robust adaptive gquantizers implemented using voltage
controlled amplifiers (ADPCM for the lower band and APCM for
the upper band) [14]. Johnston and Crochiere implemented
two ADPCM coders, again with adaptive guantizers [15]. This
approach involved the optimization of the step-size multi-
pliers to include music as well as speech. The first order
predictor coefficients for both ADPCM coders were also se-

lected to accomodate both speech and music signals.

The ADPCM coders used in this study are the commercially

available OKI Semiconductor ADPCM codecs {(MSM5218). The OKI

+/- 0.5 dB pass-band ripple | < 0.6 dB pass-band ripple




MSM5218 is a single chip ADPCM codec which can perform both
ADPCM analysis and synthesis. An 8-bit input sample (a sam-
ple of up to 12 bits is possible) 1is converted to either 3
or 4 bits of ADPCM data at the output by the analysis stage
of the devicevThe A/D conversion 1is performed by an OKI
MSM5204ARS 8-bit CMOS A/D converter. The data can be stored
or transmitted and then passed to the synthesis stage of an
identical device to be decoded back into the original sig-
nal. For convenience, 8 bits are used at the input and 4
bits at the output. Sampling rates of up to 8 kHz are pos-
sible and since the Nyquist rate for a 3.5 kHz bandwidth is

7kHz, the highest rate is employed.

The OKI device consists (internally) of an adaptive quan-
tizer and a first order fixed predictor as described in
Chapter III (Figure 3.1) with one exception. The coeffi-
cient associated wiﬁh the predictor is, in this case, unity.
This represents an ideal integrator (or accumulator) 1in the
feedback loop. Use of an integrator yields less-than-opti-
mal prediction, that is theverror signal variance is not en-
tirely minimized [7]. Speech is a pseudo-stationary process
and therefore one cannot expect to achieve minimum error
signal variance even with an optimal fixed predictor.
Hence, the integrator implementaton is an acceptable alter-
native to the optimal predictor. As well, the first-order
optimal fixed predictgr is only slightly more advantageous

than the ideal integrator [7].
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Recalling equation (3.3), the step size in the adaptive

quantizer changes according to the relationship
Ay = Apy M(1P,41) (5.1)

More specifically, in the case of the OKI device [27] the

relationship is described by

An =An_11'1M(Pn—1) (5.2)

TABLE 5.2

Step-Size Multiplier Function

4-Bit Code | M(P,_y) |
1111 +8
1110 +6
1101 +4
1100 +2
1011 -1
1010 -1
1001 -1
1000 -1
0000 -1
0001 -1
0010 -1
0011 -1
0100 +2
0101 +4
0110 +6
0111 +8

where the function M(IP,_,l) is tabulated in Table 5.2. Thus,
for a given past output quantizer value, an exponent is se-
lected to compute the next step size. The step size is

guantized to 49 values with a minimum of 16 and a maximum of
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TABLE 5.3

Quantized Step-Sizes (A,)

No. Step-size | No. Step-size | No. Step-size
1 16 18 80 35 408
2 17 19 88 36 449
3 19 20 o7 37 494
4 21 21 107 38 544
5 23 22 118 39 598
6 25 23 130 40 658
7 28 24 143 41 724
8 31 25 157 42 796
9 34 26 173 43 876
10 37 27 190 44 963
1 41 28 209 45 1060
12 45 29 230 46 1166
13 50 30 253 47 1282
14 55 31 279 48 1411
15 60 32 307 49 1552
16 66 33 337
17 73 34 371

1552 as shown in Table 5.3. The actual output value g, is

determined by solving the equation

1 1 1
Gn = (1= 283)8nBat 5 A, Bt A, Botodn) (5.3)

(in the 4-bit case) where the B, are the values of the pow-
ers of 2 in the quantizer output P, . To reconstruct the

original input value at the nth instant the equation
)?n=xn_1+qn (5.4)

is used. The initial conditions used in the OKI device are

Xo=0 and Ay =16.

Complete schematics of the coder and the microprocessor

interface are given in Appendix C.
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5.2 CODER PERFORMANCE

The performance
in this study was assessed

measurements.

Measured Freguency Response

For comparison,
filters used by Johnston and Goodman

where the maximum deviation from a

of the Split-Band ADPCM

see the frequency response of
shown in

flat response

coder described

using frequency responsé and SNR

the analog
Figure 5.2

is seen to

be +/- 2 dB. The measured frequency response of the Split-
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Figure 5.4:
ADPCM Coder
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Band ADPCM coder used in this study is given in Figure 5.4.
Two features are apparent from this figure: the deviation in
the frequency response is +/- 4.5 dB and the upper freguency
band is significantly attenuated. Ideally, the upper and
lower bands should be equalized so that the response is as
uniform as possible. Attenuation of the lower band serves
to improve the audio guality of the output signal somewhat
(using an informal listening test) but is found to have a
negligible effect on the relative frequency probability
measurements. All data were encoded »using the filter bank

with the above fregquency response.

SNR Measure

The signal-to-noise ratio of the Split-Band ADPCM Coder
was measured using a sinusoid at the input to the coder, a
Hewlett—-Packard 3400A True RMS meter and an SAE 1800 Para-
metric Equalizer configured as a tunable notch filter con-
nected to the coder output. The input sinusoid was progres-
sively swept through the frequency range of 100 Hz-8000 Hz.
At each measurement frequency, the RMS value of the coder
output was measured as well as the output of the notch fil-
ter which was tuned to the freqﬁency of the input sinusoid.
The ratio of the RMS coder output and the RMS notch filter
output was taken to obtain the SNR (in dB). The SNR versus
frequency of the Split-Band ADPCM Coder is given in Figure

5.5. The SNR of the Split-Band ADPCM Coder is similar to
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Figure 5.5: SNR vs. Frequency of the Split-Band ADPCM Coder

the analog filter-based implementation by Johnston and Good-
man [14]. The analog filtered system is on average 10 dB
higher in the lower band, but comparable to the Split-Band

ADPCM Coder in the upper frequencies.

An important consideration in the use of off-the-shelf
switched-capacitor filters 1is the clock residue present at
the output of the filters. Since switched-capacitor filters
are sampled-data devices, sampling residue at the filter
output in the form of sampling clock related noise is pres-
ent. This noise, when fed into a second sampled-data filter
that uses a clock not synchronized to the first filter'(as
in the filter bank implemented in this study), 1is aliased

into the audio band by the second filter and results in au-
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dible frequencies harmonically related to the two clocks.
This problem was encountered when the Reticon devices were
used, since the high-pass filter clock was derived separate-
ly from the low-pass filter clocks. Clock synchronization
of a single filter bank design with only one input clock
would alleviate the problem of sampling clock residue.
(Note: Passive RC low-pass filters are used after each out-
put to minimize sampling residue, although complete elimina-

tion of it is not achieved in this way.)
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Chapter VI

ANALYSIS TECHNIQUES

6.1 RELATIVE FREQUENCY ANALYSIS

A requirement of any variable-length coding scheme is the
knowledge of the a priori probabilities of the source sym-
bols to be encoded. Since the actual statistics of a given
speech passage are rarely known in advance, measurements of
the speech statistics must be performed. Although it is un-
likely that an exact evaluation of the probabilities associ-
ated with a digitized speech passage can be made without ex-
tremely long observations, estimates of these values can be

obtained using relative frequency analysis techniques.

The relative frequency interpretation of probability is
well known and states that if an experiment is repeated n
times and an event E cccurs n, times then the probability
P(E) 1is closely approximated by-%%, provided n is suffi-
ciently large. In asking how large is a sufficiently large
number of trials one must employ the law of large numbers

[28], specifically Bernoulli's and Borel's theorems.

Given an event E, 1in an experiment, which occurs with

probability p, one can define the following random variable

1 if E occurs at the i" trial
X; = (6 .1 )

0 otherwise
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The sample mean of this random variable can be defined as
_ x1+ e e xn
Xn = ——F (6.2)
Bernoulli's theorem is then given by

1
4ne

P{Ui’,,-pl<e}21— > (6.3)

where epsilon is a non-negative constant. The theorem
states that one can calculate the probability of the sample
mean being within epsilon of the actual probability. There-
fore, by selecting an epsilon and a desired degree of cer-
tainty, the number of trials required to satisfy these cri-
teria can be calculated. This then becomes a lower bound on
the 'sufficient' number of trials mentioned above. Borel's
Theorem is a stronger statement of Bernoullli's Theorem in
that it states that the sample mean tends to the true prob-

ability with probability 1.

Two additional factors affect the required number of tri-
als in the experiment. The value of epsilon obtained using
Bernoulli's Theorem represents an ‘error' within which the
actual probability values can be calculated with a selected
certainty. This implies that the measured probability esti-
mates must be greater than or equal to epsilon and that two
adjacent probabilities must not be closer than twice epsilon
in order for the probability estimates to be unambiguously
resolved. The above conditions depend directly on the num-

ber of trials (n) and the source symbol statistics (which
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are not known a priori). An initial guess for a maximum ep-
silon can be made: epsilon must be smaller than 1/N, where N
is the number of distinct source symbols This assumes that
the source symbols are eguiprobable. Measurements of the
symbol probabilities can be used to further adjust the num-
ber of trials, based on the smallest measured distance be-

tween adjacent probability estimates.

For probability estimates whose magnitudes are less than
epsilon, i.e. the magnitude of the error is greater than the
magnitude of the measurement, one can adjust these values
according to the following rule: all non-zero values of less
than epsilon are assumed to be eqguiprobable and are assigned
equal yalues. These values, when summed, constitute the
difference between the sum of the remaining probability es-
timates (those greater than epsilon) and 1. Thus, the ambi-
guity of these estimated values is arbitrarily removed and
the worst case for coding purposes is imposed. The only
factor which must then be considered is how many adjusted
values one is Qilling to accept. This decision can be based
on the maximum number of trials which can be realistically
handled by the processing system employed and the character-

istics of the random source being measured.

For this study, relative frequency analysis was performed
on the speech data acquired from the sub-band coder. Each
4-bit sample was treated as a source symbol and counted.

The total number of samples was also counted and then the
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ratio of source symbol count to total count was taken,
yielding an estimate of the probability of occurrence of the

given source symbol.

Based on speech sample sizes used in published studies
[4, 29], approximately 220 seconds of speech were collected
and a corresponding value of epsilon was calculated based on
a 99% certainty value. Adjustments based on epsilon were
made to the probability estimates which were less than epsi-
lon (18% of the marginal values and 46% of the conditional
values). Differences between probability estimates were not
used to vary epsilon since the time required to collect and
process the data had become prohibitive. It was determined
that doubling the number of data points, for example, would
not effect the results significantly but would increase col-

lection and processing times dramatically.

The ﬁrobabilities measured using the above approach rep-
resent the marginal probabilities of the different source
symbols. The conditional probabilities used in the condi-
tional form of coding are obtained by extending the above
procedure. The computation of conditional probabilities is
discussed in a later section. Histograms of the marginal
and conditional probability estimates are given in Appendix

B.
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6.2 AVERAGE LENGTH CRITERION

The degree to which a given approach compresses data must
ultimately be measured by applying the coding technique to
raw data and observing the resulting reduction. More typi-
cally for a variable-length code the average length of the
code is specified. The average length (as mentioned in

Chapter 4) is given by the sum
-4
Loy =3 PG) L) (6.4)
i=

Substituting in the relative freguency representation of the

probability yields the equation

L]

ﬂ[’
"N / (6.5)

L, =
i

[}

where /; s the length assocliated with the i probability estimate

For the purposes of this study, the average length is used

as the figure of merit.

The average length is calculated according to equation
(6.5) wusing the symbol probabilities and the symbol lengths
generated by the coding programs. One can show that the av-
erage length corresponds directly to the reduction in stor-
age due to coding for both the marginal and conditional cas-

es. This is shown in Appendix A.




6.3 CONDITIONAL PROBABILITY CALCULATIONS

Since the Split-Band ADPCM coder output can be modelled
as a Markov source, due to large adjacent speech sample cor-
relations, conditional coding can be used in an attempt to
further decrease the average word-length of the entropy en-
coding. In this study, the coder output is modelled as a
first order Markov source in accordance with the discussion
in Chapter 1V, The conditional relative frequencies are
calculated using the formulations below. Initially, one

must recall a definition of probability which states

P(l/i)=£,,%1)l (6.6)

Recall that in Chapter IV, the probability of the occurrence
of a joint event (the present symbol and the past, condi-
tional state) is defined for a Markov source. Thus, by cal-
culating the relative frequency of the joint event and di-
viding by the marginal relative frequency of the conditional
state, the conditional probability is computed. The result-
ing conditional probability is given by

P/j)= -t

; (6.7)
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6.4

HUFFMAN CODING PROCEDURE

Following the basic provision that the most probable sym-

bols are coded with the shortest code words, the Huffman

procedure involves the following steps:

1.

The source symbols are rank ordered according to
probability.

The least probable symbol (the Nth symbol, for exam-
ple) is combined with the N-1 symbol to create a new
composite symbol whose probability 1is the sum
P(N)+P(N-1).

A new source with one fewer symbols 1is then con-
structed and the rank ordering procedure 1is applied
again.

The process of combining the least probable source
symbols and then rank ordering a new -smaller source
is repeated until only one symbol remains.

In order to assign sequences of digits to each source
symbol one must determine how many times an original
source symbol has been combined to produce a new,
composite source symbol; this corresponds to the num-
ber of digits to be assigned to the original source
symbol.

The process of assigning actual digits to the source
symbols requires that the path traced through the se-
ries of composite symbols (as followed in the previ-

ous step to determine the code word 1length) be re-
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versed, beginning at the source containing a single

symbol and tracing backward

each time a composite symbol

to the original symbols;

is split into two, a

digit is assigned to the least probable symbol while

the opposite digit is assigned to the second-least

probable symbol.

The above process is best described through an example.

EXAMPLE 6-1

Given a source S={s;, S2, S3, ..
probability assignments
s1=0.55
s2=0.01
s3=0.06
s4=0.30
s5=0.01
s¢=0.01
s7=0.05
sg=0.01

Huffman coding procedes as follows:

- 54 -

sg} with the following



1. Step 1: The symbols are rank ordered 1in decreasing
probability:
s1=0.55
s4=0.30
s3=0.06
s7=0.05
s.=0.01
s5=0.01
sg=0.01
sg=0.01
2. Step 2: The two lowest probabilities are combined to
make a new symbol and a new source containing one
less symbol
s1=0.55
s4=0.30
s3=0.06
s7=0.05
s2=0.01
s5=0.01

sg= Sg+s5=0.02
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Step 3: Steps 1 and 2 are continued until only one

symbol remains

Step 1 Step 2 Step 1 Step 2
s1=0,.55 S 1 s1=0.55 S

s;=0.30 Ss - 82=0.30 S

s3=0,06 S3 s3=0.06 S3

s7=0.05 S7 s7=0.05 S7

sg=0.02 Sg sg=0.02 S11=S10+Sg
52=0.01 S10=S5+S2 S10=0.02

ss=0.01

Stepl Step 2 Step 1 Step 2
s1=0.55 St s1=0.55 S

s4=0.30 S3 s4=0.30 Sa

s3=0.06 | S7 s12=0.09 S13812+S3
s7=0.05 S12=S11+S7 s3=0.06

s11=0.04

Step 1 Step 2 Step 1 Step 2
s1=0.55 S s1=0.55 S15=S14+5S1
s4=0.30 S14=S13+S4 S14=0.45

s13=0.15

Step 4: To determine the word lengths (and subseg-
uently the actual code words) the composite source
symbols must be decomposed into their original source
symbol combinations. This 1is most easily accom-
plished by drawing a tree structure with each compos-

ite symbol as a node and 1its two components as
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Figure 6.1: Huffman Code Tree Structure (from
EXAMPLE 6-1) '

branches (as shown in Figure 6.1). Each branch has
associated with it a 1 or a 0 depending one whether
the branch is to the left or right. To obtain a par-
tieular code word, the tree is followedlfrom the top,
through the branches wuntil the symbol is reached.
Each time a branch is encountered, the value of the
branch (1 or 0) 1is recorded and added to the symbol
code word. Fér example, to obtain the code word for
s7 one passes through the following symbols: starting
at si1s5-=> s94 (1), s13 (1), sy2 (1), s; (0), There-
fore, the code word for s; is 1110 and the code word

length is 4.
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Performing the above operation results in the fol-

lowing code words:

Symbol Code Word Length(l) Probability(p) p x 1

S 0 1 0.55 0.55
Sa 10 2 0.30 0.60
S3 110 3 0.06 0.18
S7 1110 4 0.05 0.20
Sa2 111110 6 0.01 0.06
Ss 111111 6 0.01 0.06
Se 111100 6 0.01 0.06
Sg 111101 6 0.01 0.06

Average Length = 1.77 bits

(The units of average length are bits/symbol.)
For comparison, the entropy is calculated:

H(S)= - pilog:ps - p2logzpz ... - Pslog:ps

0.474 + 0.066 + 0.244 + 0.521 + 0.066 + 0.066

+ 0.216 + 0.066

i}

1.72 bits/symbol

Therefore, the maximum possible reduction in bit-rate is

(1 - 1.72/3) 100 = 42.7 %
while Huffman coding achieves
(1 - 1.77/3) 100 = 41.0 %.
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In this case, Huffman coding provides a reduction in

code word length within 3 % of the entropy.

6.5 SHAFT CODING PROCEDURE

An example of a non-optimal source encoding algorithm is
one developed by Paul D. Shaft [6]. This approach is of in-
terest since it addresses a problem encountered in Huffman
coding: source statistics are not always available or meas-
urements of the source are not completely accurate. The
Shaft approach uses an intuitive algorithm which demon-
strates good performance over a range of inputs [6]. The
algorithm involves one variable parameter which is adjusted
to obtain a minimum average code word length. The procedure
for 'Shaft' coding is as follows for a source with 20 sym-

bols:

1. As in Huffman coding, source symbols are rank ordered
in decreasing probability.

2. The variable parameter n' is selected; n' must be
less than r, otherwise the code words become simply r
bits long.

3. The entire list of source symbols is divided into two
sections, one section which is 2"' symbols long and
the other which contains the remaining symbols.

4. The section of 21 symbols is assigned a 0 while the

remaining symbols are assigned a 1.
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5. The 2""' symbols are then divided in half with each
half being assigned zeros and ones respectively; this
continues until words are n' bits long (all the last
digits in the 2" ' levels have alternate ones and ze-
ros).

6. The above sequence of subdivision followed by digit
assignment is repeated until the final 2" symbols

have been assigned.

In the following example the procedure is illustrated.
One should note that each subdivision differs in length from
the successive subdivision by one bit except for the final
two subdivisions. This is the case since the final subdivi-
sion requires no 0 prefix (assignment of a 0 to the 2!
levels and a 1 to the remaining levels) since there are no

levels remaining to assign 1s to.
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EXAMPLE 6-2

Using the same source symbols and probability assignments

as in Example 6-1 the following steps are performed in Shaft

coding:

1.

Step 1: As with Huffman coding the source symbols are

rank ordered in decreasing probability

s1=0.55
s4=0.30
s3=0.06
s7=0.05
s2=0.01
s5=0.01
s=0.01

sg=0.01

Step 2: The parameter n' must be selected. In order
to obtain the value of n' which yields the lowest av-

]

erage code word length, n' is varied, 1in this case,
from 1 to 2 (since three bits are used). The value
2"'  is computed, which establishes how each column
is to be subdivided.

n'=1 a) 2"1'= 1

b) subdivide the above column into an upper group

of 1 symbol,
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1st

2nd

3rd

4th

5th

6th

7th

c) assign a 0 to the upper group and a 1

to the remaining symbols,

d) divide the upper group into halves and

assign 0s to upper halves and 1s to the

lower halves continuing until allvupper

levels have been assigned n'

e) repeat b) through d) until the final

bits,

subdivision assignments have been made;

subdivision

subdivision

subdivision

subdivision

subdivision

subdivision

subdivision

Average length

L

<]

0.05

0.01

0.01

0.01

[l
i

0.60

0.20

0.06

bits



i e lxp

s:1 00 2 0.55 1.10

ss 0 1 2 0.30 0.60
ist subdivision -—--—-—---

ss 100 3 0.06 0.18

s; 10 1 3 0.05 0.15
2nd subdivision —-—-—-———-—~

s, 1100 4 0.01 0.04

ss 1 10 1 4 0.01 0.04
3rd subdivision -—-—-=————~-

se 11 1X0 4 0.0t 0.04

sg 11 1 X 1 4 0.0f1 0.04

Average length = 2.19 bits

Note: The-final two code words contain X where nor-
mally a O prefix would be included if further subdi-
visions were possible. This prefix would serve to
differentiate the current subdivided group from the
succeeding group. Since there 1is no succeeding
group, the prefix is dropped to decrease the code

word length.

The value of n' which yields the lowest average length is 1.

From Example 6-1

"H(S)= 1.72 bits/symbol
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Therefore, the maximum possible reduction in bit-rate is
(1 - 1.72/3) 100 = 42.7 %

while Shaft coding (with n'=1) achieves
(1 - 1.78/3) 100 = 40.7 %

which compares favourably with Huffman coding (41.0 %) and

is within 3.5 % of the entropy.

6.6 CONDITIONAL SHAFT AND HUFFMAN CODING

Conditional entropy encoding involves the use of condi-
tional probabilities to generate a variable-length code.
Since conditional probabilities involve two entities, the
present symbol and the conditional state, the resulting
noiseless source code contains sets of variable-length sym-
bols, one for each conditional state. Therefore, for 4-bit
ADPCM and a first order Markov model, one obtains 2% or 16
sets of 16 variable-length codes. This yields a total of
256 code words (16x16) and is referred to as 4x4 conditional
coding. Both conditional Shaft and conditional Huffman cod-

ing are reported in this study.
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6.7 EXPERIMENTAL TEST SET-UP

Facilities to evaluate the performance of the Split-Band
ADPCM coder were constructed around a University of Manitoba
microcomputer (BB-I1I System) and the Millenium 9508S Micro-

system Emulator emulating a Motorola 6802 microprocessor.

System Hardware

The hardware of the development station includes a
Z80-based microcomputer with two 8 inch floppy disc drives
and built-in keyboard and monitor. The computer runs under

the CP/M disc operating system.

The Milllenium 9508S is a microprocessor emulator which
can be configured to emulate one of many commercially avail-
able microprocessors. The system consists of a main proces-
sor and an emulation pod which connects to external hardware
via a 40 pin connector, replacing the actual microprocessor.
Communication between the 9508S and the BB-II System is via
an RS232 type connection. The emulator/coder interface con-
sists of a wire-wrapped circuit board containing a MC6821
Peripheral Interface Adaptor {(PIA) and address decoding log-
ic. As well, a socket and some support hardware connected
to the PIA in a fashion identical to a MC6802 microprocessor
serve as the connector to the emulator. The OKI ADPCM de-

vices are connected to the peripheral ports of the PIA such
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that one port receives the ADPCM data during encoding while
the other port sends data to the ADPCM devices during the

decoding process.

System Software

Several software programs have been developed on the
BB-II in Motorola 6802 and Intel 8080 assembly language, and
the Pascal programming language. Assembly language utility
routines were initially written to facilitate file transfers
between the BB-II and the 9508S. This allowed 6802 assembly
language programs to be downloaded into the 9508S and exe-
cuted. These routines were also used to acquire speech data
and transfer them to the BB-II to be stored on disc for fur-

ther processing.

The data acquisition system configuration is illustrated
in Figure 6.2. The process of data acquisition is as fol-

lows:

1. A tape recorded version of the input speech 1is fed
into an amplifier and then passed to the band-split-
ting filter bank.

2. The resulting two signals are converted to 4-bit
ADPCM data by the OKI devices and passed to the PIA
parallel interface.

3. At each sampling instant the emulator processor (exe-
cuting a machine language program) loads a new data

point and stores it in an internal memory location.
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Figure 6.2: Data AcqQuisition System Configuration

4. When the speech passage is completed, the emulator is
halted and the speech data which are stored 1in the
emulator is then available for transfer to the BB-II

system.

Assembly language routines for acquiring the coder output
data are written in 6802 assembly language largely due to
the availablity of that particular emulator pod. An emula-
tor was incorporated into the system since it contains 64 K
bytes of Random Access Memory (used as a data buffer) and
has wutility routines onboard for data transfers via its

RS-232 port. Due to the limited memory available in the em-



ulator, the speech was encoded one sentence at a time and
then compiled 1into one large record. To facilitate the
transfer of encoded speech data to and from the disc files
of the BB-II, 1Intel 8080 assembly language routines were

written and executed on the BB-II.

6.8  ANALYSIS OF DATA

The acquired speech data, after being transferred to a
disc file on the BB-II, were operated on by several programs
written in the Pascal programming language. Data was parti-
tioned into 4-bit and 8-bit catagories. The 4-bit category
consists of an upper and lower channel designation. The
- 8-bit category 1involves the 4x4 conditional coding of the
upper and lower bands. The entropy for both data catagories
was computed as well as the reduction in storage require-
ments due to coding. The process of generating codes from
the marginal values is illustrated 1in Figure 6.3. Each of
the coding procedures as well as the entropy calculation
yields a value in bits/symbol, an average length. A similar
process is used to analyze and code the data 1in the condi-
tional case. This process is depicted in Figure 6.4. Com-
puter programs for performing the above calculations are

listed in Appendix D.
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Chapter VII

RESULTS AND DISCUSSION

Two sets of ten syllabically balanced Harvard sentences
(as specified by the IEEE Standards of Speech Quality Meas-
urements [30]) spoken by one male and one female speaker as
well as numerous speech passages obtained‘from a television
broadcast were analyzed. Approximately 220 seconds of con-
tinuous speech (comprised of 4 male and 5 female speakers)
were used as the input signal to the coding system. As de-
scribed in the previous chapter, the data were collected and
stored on disc on the BB-II microcomputer, where they-were
subsequently analyzed and entropy coded. As was also dis-
cussed, the data were partitioned into two catagories and

several subcatagories prior to analysis. A summary of the

TABLE 7.1

Summary of Results of Entropy Encoding Split-Band ADPCM
Speech

Lg (bits)  Saving(%) H(S)(bits) Max. Saving(%)

4-Bits | Huffman 343 142 3.37 15.8
Shaft 3.52 120 3.37 15.8
8-Bits | Huffman
Conditional 561 299 554 30.8
Shaft
Conditional 577 279 5.54 30.8

* Both upper and lower bands have equal values.
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results of the coding procedures is given in Table 7.1

Marginal Entropy Coding

An average length within 2 % of the entropy is achieved
using marginal Huffman coding. This result 1is consistent
with other investigations reported in the literature involv-
ing entropy coding of both ADPCM and ADM encoded speech and
television signals [4,29,and 31]. As well, space savings of
approximately 14% are within the ranges reported 1in two of
the aforementioned studies which used speech as the input

signal [4, 29].

Shaft coding performed comparably in the 4-bit case (av-

erage length within 5 % of the entropy).

Conditional Entropy Coding

The conditional entropy calculation indicated that nearly
twice the savings in space are possible wusing conditional
coding. This is in fact the case for both Huffman and Shaft
encodings. As well, the relationships between the entropy,
Huffman coding and Shaft coding observed 1in the marginal
case are preserved in the conditional case: Huffman coding
is within 2% of the entropy and Shaft coding is within 5% of
the entropy. Also, the Shaft average length remained within

3% of the Huffman average length.
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In observing the histograms of the conditional probabili-
ty estimates (given in Appendix B) it is noted that numerous
zero entries are encountered throughout the sets of esti-
mates. Initial calculations of entropy and average code
word lengths using probability estimates which were not ad-
justed in the manner described in Chapter VI resulted in in-
correct values (average lengths were less than the entropy -
an impossible result). After adjustment, the relationship
between the entropy and the average lengths complied with
theoretical predictions. Based on the number of values low-
er than epsilon (46%), it appears that a greater number of
trials must be performed before conditional probabilities
can be accurately measured. In comparison, Bocci and Lo-
Cicero used 150 seconds of speech in their analysis of en-
tropy coding of Adpative Delta Modulated speech [29] while
Papamichalis used approximately one hour of speech from 58
speakers (under a variety of sound quality conditions) [32].
Papamichalis was measuring the the conditional probabilities

of linear prediction speech parameters.

An interesting property of this sub-band coder which the
results indicate is that the entropy of both coder channels
is essentially equal. Observation of the actual signals
from the upper and lower bands indicated a significant dif-
ference in the energies of the two bands. This is further
complicated by the uneven frequency response of the filter

banks. 1Independent variation of the levels of the two bands
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did not seem to affect the entropy values. On the other
hand, overall input signal level did seem to affect the ob-

served statistics of the coder outputs.
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

An investigation into the application of entropy coding
to a Split-Band ADPCM coder with a switched-capacitor filter
bank has been presented. The main objective of this study
was to determine the degree to which entropy coding (specif-
ically Huffman and Shaft coding) reduces the amount of memo-
ry space required to store Split-Band ADPCM coded speech.
Entropy coding of ADPCM and ADM coded speech has been re-
ported in the literature [4, 29, 31], but the application of
entropy coding to Split-Band ADPCM coded speech has not yet

been addressed. Therein lies the uniqueness of this thesis.

As described in Chapter VII, the amount of space required
to store Split-Band ADPCM coded speech is reduced by 14.2%
when 4-bit Huffman 'coding is employed. A different vari-
able-length coding scheme developed by P. D. Shaft performs
comparably, providing a saving of 12%. Conditional coding
yields a doubling in the space savings for both variable-
lengéh schemes. These values agree with those reported in

other studies involving entropy coding of digitized speech.

Use of relative frequency analysis to estimate the coder
output source symbol probabilities required the adjustment

of the probability estimates according to a simple rule.
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The adjustment is based on the use of Bernoulli's Theorem to
calculate the number of trials required for a probability
estimate to be within epsilon of the true value. The values
which are less than epsilon are assigned worst case (equi-
probable) values. This results in slightly higher but theo-
retically valid values for entropy and Huffman and Shaft av-

erage lengths computed using the adjusted probabilities.

The use of switched-capacitor filters for band-splitting
proved to be a viable alternative to analog approaches. The
configuration used for this study suffered from two major
problems: poor frequency response, especially at the tran-
sition between sub-bands and audible clock residues. Both
of these problems can be diminished by designing filters
specifically for the band-splitting task. Cascading off-
the-shelf filters (such as the Reticon devices) will not re-
alize a filter function with the type of accuracy required
for this application. By designing for the task, a transfer
function as accurate as the existing analog Split-Band ADPCM
filter banks can likely be realized. As well, by selecting
appropriate component values in the design, the aliased
cleck residue problem can be eliminated by using a single

input clock.

In considering that OKI CMOS single-chip devices exist to
perform ADPCM coding and that switched-capacitor filters are
easily integrated, the incorporation of such devices into

single-chip Split-Band ADPCM coders and decoders appears to
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be a realistic objective. Such devices could be readily in-
corporated into voice systems which currently use smaller
bandwidth, less sophisticated encoding schemes such as PCM
in telephony. This would result in an improvement in signal
bandwidth at little or no cost in data rate, since a stan-
dard 64 kbit/sec data rate is maintained. For speech stor-
age systems, such as store-and-forward meassaging, the fur-
ther application of entropy coding to stored passages of
speech could provide an additional space saving of up to

30%, based upon the results of this study.

Further study in the area of entropy coded sub-band cod-

ing may include the following topics:

1. Simulation of the entire sub-band coder may be per-
formed with the incorporation of various quantizer
structures (with emphasis on the effect of these
structures on coder output symbol statistics) such
as:

a) first and second order weighted fixed predictors,
b) first and second order adaptive predictors.

2. The following transmission requirements of variable-
length and fixed length entropy encoding schemes
maybe studied:

a) transmit and receive buffering,
b) performance in the presence of channel errors of

various rates,
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c) data multiplexing, framing and demultiplexing.
Entropy coding of multi-band sub-band coders (4, 6,
and 8 bands) could be performed to observe the sta-
tistical behavior of the individual sub-bands alone
and relative to each other.

Further investigation of the probability adjustment
procedure for relative frequency analysis appears
warranted. Adjustments based on smallest adjacent
probability differences could be implemented in addi-

tion to the simple scheme described in this study.
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Appendix A

AVERAGE CODE-WORD LENGTH AND REDUCTION OF
BIT-RATE

Definitions:

N = total number of source samples processed.

r = number of bits per uncoded symbol.

n; = total number of occurrences of the i th symbol in the record of N data points.

n; ; = total number of occurrences of the it symbol preceeded by the j th state (joint event).
p! = i symbol marginal probability.

p,-",i = jt symbol conditional probability given the j th conditional state.

I; = length of the encoded i th symbol (using marginal probabilities).

l;j = length of the encoded i th symbol assoclated with the j# preceeding state.

L., = average length of the code Words encoded using marginal probabilities.

L:V,- = average length of the encoded symbols associated with the j th conditional state.
There are 2’ such symbols.

L% = average length of the Lg,;s over all | states (2').

It is proved below that for probabilities calculated using relative frequency
analysis, the average length for coded data using Huffman or Shaft encoding directly
corresponds to the amount of space which is saved if the coding procedure is direcily
applied to the data. This is true for both mai'ginal and conditional coding procedures.



Marginal Coding

In the marginal case the probability of an i th symbol is (using relative frequency

analysis)
m_ i
Pi" = (A)
The average length is defined as
2f
Ly =3 p™; (A.2)
i=1
Substituting (A.1) into (A.2)
2 n
Lm = 51 TVL I,
2
1
=N > ml (A.3)

i=1
The total amount of space required to store the encoded version of the data is given

by

>
Stotar = /2 n; (A.4)
=1

Therefore, from (A.3) and (A.4)

Stotar =N L7, (A.5)

Conditlonal coding

In the conditional cass, two probabilities are defined:

ny

marginal : p/" = N (A.6)
and
. e _ My ‘
conditional : p;y; = —;;—- (A.7)
]



The average length of the conditionally coded symbols for the conditional state j is

given by
Lavj Z P 1
2 n.;
=3 L, (A.8)

The total average length is the combination of the conditional average lengths
given by

LlOtﬂl 2 p] Lach

1 2 2
= W 2 2 n,"l' I’J (A.g)

The space required to store the i symbol given the j conditional state is

4
S,'J = 2 ny I’.I {A.10)
i=1

The total space required for all j states is

2r ¥
=2 30l (A.11)

Therefors, from (A.10) and (A.11)

S =N L ¥ (A.12)

- 80 -



Appendix B

HI STOGRAMS

Marginal Probability Histogram

PROBABILITY Il

il . X X

I X * X

il * ¥ K

] * ¥ X

1] + K X

] k3 ¥ K X

1} x X X *

[} * ® X *

il X K X K K ¥ ¥ X

il X K X ¥ & X ¥ ¥ %

] X K X X X X X K X

] X K K X ¥ ¥ ¥ X X

% % % K X ¥ ¥ X ¥ ¥ ¥ £ ¥ ¥ %
LFMON—O
TTTrEr QOO NM WS

SOURCE SYMBOL



HERERRERY

X'

T2

*¥y

A RN R R RN AR KL RN KRR
XERENX

LYY

%%y

HEXKKNY

*® %

ETYs

FRFEXRREERKRKEANRRNRLR

FTTETY
FERRAAEREKRKEN KRR KRR RERRRERRE

ENRERRN
¥x%
FEXH

s

ETT

FERERERAKELNEK

EERERERBRNKE

L R LY T Y R R R R R E Fry R vgvaravgvyvggvgn

EERRRARN
%%
F'3]

SEl
yEL
€EL
(A1
Lel
oel
621
821
9€1
LEL
8EL
6¢1
0wl
34}
ol
£t

611
8il
Lit
9l
Sht
It
€Lt
(41
ozt
Lzt
icl
£Cl1
¥l
SZl
9zl
LTH

€0t
4]
101
001
66
86

96
¥01
S01
901
L0}
801
601
oLt
(91

w0
s’

j
e

Ry,
s

E¥XEXRN

X%

*%

RS XX
AXERAXRNREXRENXXXERNRNRXENNNSNRN
XX EXXXN

XX X%ENR

XXEXXN

2 S RS LSS SR LR

¥

¥

xx¥x

FARXNY
EAXXEEXKEX
FREXEERXEXNRAXN XY X
FEXREXFXXKNK
FREXEXRN KRN
XXX RY

*¥

£ 3

F3

3

¥

*

*XX

FXXKRX

XERXNERNN
KEXEXEXERRRNRNRN R
EXXREXAERK
EXEXEXERXNRNF RN KN X
FXRRK

FXXN

x¥

L9l
991 661
591 861
91 L6}
£91 961
291 S61
191 61
091 o £61
891 +— z61 ‘o
691 = 002 -
0Lt 102 ks

z0z
bLL q

£0¢ _
Ll
£L) 02
PLl 50¢
i1 902

L02

151

0S|

6!

891

Lyl

971

Sv1

W o
CSl
£G1 .

241

§S1

961

LS

8G1 :
661



Conditional Probability Histograms

(by Conditional State depicted in brackets)
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Appendix C

HARDWARE DIAGRAMS
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Appendix D

SOFTWARE LISTINGS

R R R A R R A N A A A A A R R A R A A A A T A A A A A A A A A A A A R A A A AR AR AR AR A A A AR ARER

{THIS PROGRAM CALCULATES THE RELATIVE FREQUENCY PROBABILITY}
{ESTIMATES OF AN INPUT ASCII-CODED HEX DATA FILE}
program rfreg5(input,output,infile,outfilel);
type
datanum = string[1];

string[2];

hexnum

newstr string[3];

filenam = string[13];

dual = record pattern: 0..3%$ff:
probability: real;

end:;

var
name: array[1..30] of filenam:
probl: arrayl[0..$ff] of real;
prob2: array[0..15] of real;
newprobf: array[O.:$ff] of dual;
newprob2: array[0..15] of dual:
ent,total2,totall,temp,sumtotal: real:
dot,n,pcsition: integer;
answer :hexnum;

upper,lower,both,finished:bqolean;
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data: array[1..2] of string[1];
data0: char:
dummy: char;
datal: char:
data2: char;
str1: newstr;:
str2: hexnum;
str3: hexnum;
pointr: integer:
count: integer; e
namel: filenam:

name2: filenam:;

i: integer;

j: integer;

ji: integer;

enn: integer;

twotoenn:integer;

counter: integer:;

code: integer:

index: integer;

infile: text;

outfile,outfilel,outfile2,outfile3: text:;

const
cr = #%$04:;
1f = #3%$0a:

label loop,loopl,loop2;
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begin
upper:=false;
lower:=false;
both:=false;
write(cr,1f);
reset(input);
write(cr,1f,'-- Relative Frequency Calculation --',cr,lf):
write(cr,1f);
reset(input);
write('Enter file(s) to be processed ',cr,lf):
n:=1;
finished:=false;
while finished <> true do begin
while not eoln(input) do begin
read(input,name[n]);
end;
write(cr,1f);
reset (input);

if namel[n] = "!

then begin

finished:=true;

write(cr,lf, 'Enter result file -- ');
reset(input):

while not eoln(input) do begin
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read(input,name2):

end;
assign(outfilel,name2);
{here's where the work starts}
write(cr,1f, 'Enter number of bits/symbol -- ');
reset(input);
while not eoln(input) do begin

read(input,enn);

end;
twotoenn:=round(exp(enn*1n(2)));
write(cr,1£f);
write(output,cr,1lf,'Please select one of the following
options:');
write(output,cr,1f);
write(output,' Upper nibble - U',cr,lf);
write(output,' Lower nibble - L',cr,1lf):
write(output,cr,lf,'( B for both nibbles) ==> '):
reset(input);
while not eoln(input) do begin

read(input,answer):;

end;
if answer = 'U' then upper:=true;
if answer = 'u' then upper:=true;
if answer = 'L' then lower:=true;
if answer = 'l' then lower:=true;
if answer = 'B' then both:=true:
if answer = 'b' then both:=true;

write(output,cr,1f);



write(cr,1f," k%k%* Working **%*%%x' cr, 1f):

totall:=0;

total2:=0;

count:=0;

counter:=0:

for counter:=0 to 255 do
begin
probi[counter]:=0.0;
newprob1[counter] .pattern:=0;
newprob1[counter].probability:=0.0;
end;

for counter:=0 to 15 do begin
prob2[counter] :=0.0;
newprob2[counter] .pattern:=0;
newprob2[counter] .probability:=0.0;

end;

for counter:=1 to n-1 do begin
namel:=name [counter];
assign(infile,namel);
reset(infile);
write(namel,cr,1lf);
if both = true then begin
while not eof(infile) do begin
while not eoln(infile) do begin
loop: read(infile,data0);

if datal = then goto loop;

datals:=datal;
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read(infile,data0);
datal:=datal;
stri:='§"'+datal+data2;
str2:='$'+datal:;
str3:='§$"'+data2;
val(stri1,index,code):
prob1[index] :=probi[index]+1;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
val(str3,index,code);
prob2[index] :=prob2[index]+1;
totall:=totall+1;
total2:=total2+2;
end;
readln(infile);
end;

end

else begin

if 'lower = true then read(infile,dummy);

while not eof(infile) do begin

loopl: read(infile,data0);

if dataOl ' ' then goto loopl:;

if datal

cr then goto loopl;

if data0l 1f then goto loopl;
read(infile,dummy);
read(infile,dummy);
datal:=datal;

loop2: read(infile,data0);
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if data0 = ' ' then goto loop2:;
if data0 = cr then goto loop2;
if data0 = 1f then goto loop2:

read(infile,dummy);
read(infile,dummy);
data2:=datal:
strl:='$'+datal+data2;
str2:='$"'+datal;
str3:="3%3'+data2:;
val(str1,index,code);
probl1[index] :=probi[index]+1;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
val(str3,index,code);
prob2[index] :=prob2[index]+1;
totall:=totall+1;
total2:=total2+2;

end;

close(infile):
end;
write(cr,1f);
if enn > 4 then begin
for i:=0 to twotoenn-1 do begin
prob1[i] :=prob1[i]/totall;
newprobl1[i] .probability:=newprobi[i].probability/totall:
end;
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end
else begin
for 1:=0 to twotoenn-1 do begin

prob2[il :=prob2[i] /total2;

newprob2[i] .probability:=newprob2[i].probability/total2;

end;
end;
{Rank ordering routine}
write(cr,1f,'Rank Ordering',cr,1f);
if enn <= 4 then begin
pointr:=twotoenn-1;:
i:=twotoenn-1;
while pointr >= 0 do
begin

if prob2[pointr] = 0.0 then

begin

newprob2[i] .patterns=pointr;
i:=i-1;

end;

pointr:=pointr-1;
end;
pointr:=0;
while pointr < twotoenn do
begin

i2=0¢

while i < twotoenn do

begin

if prob2[i] > newprob2[pointr].probability then
- 96 -



begin
newprob2[pointr].probability:=prob2[i];
newprob2[pointr].pattern:=(i);
end;
ie=i+1:
end;
prob2[newprob2[pointr].pattern]:=0;
pointr:=pointr+1;
end;
end
else begin
pointr:=twotoenn-1;
i:=twotoenn-1;
while pointr >= 0 do
begin
if probi[pointr] = 0.0 then
begin
newprob1[i].pattern:=pointr;
ie=1i-1;
end;
pointr:=pointr-1;
end;
pointr:=0;
while pointr < twotoenn do
begin
i:=0;
"while i < twotoenn do
begin
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if prob1[i] > newprobl[pointr].probability then
begin
newprobl[pointr].probability:=probi1[i];
newprobl[pointr].pattern:=(i);
end;
is=i+1;
end;
probl[newprobl[pointr].pattern] :=0;
pointr:=pointr+1;
end;
end;
write(cr,1lf,'Writing to file',cr,lf);
rewrite(outfilel);
writeln(outfilel,enn);
if enn > 4 then begin
writeln(outfilel,totall);
for count:=0 to twotoenn-1 do begin
write(outfilel,newprobl[count].probability,' ',
newprobi[count] .pattern,cr,1f);
write(newprobl[count].probability,' ',
newprobl[count] .pattern,cr,1f);
end;
end
else begin
writeln(outfilel,total2);
for count:=0 to twotoenn-1 do begin
write(outfilel,newprob2[count].probability,"' ',
newprob2[count] .pattern,cr,1f);
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write(newprob2[count].probability," ,
newprob2[count].pattern,cr,1f);
end;
end;
write(cr,1£f);
close(outfilel);
write(cr,1f);
write('finished---- total data points processed = ');
if enn > 4 then write(totall) else write(total2);

write(cr,l1£f);

write(#$07);

end.
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A R A A A R R R A A R A A A A R A R A A A R R R R R R R R A A R A A R A A A AR AN AR AR R RNARR
program hufmn(input,output,infile,outfile);

{THIS PROGRAM CALCULATES THE AVERAGE WORDLENGTH OF A SOURCE }

{WHEN IT IS HUFFMAN ENCODED. THE INPUT FILE MUST CONTAIN AS THE}
{FIRST RECORD THE TOTAL NUMBER OF POSSIBLE SOURCE SYMBOLS (FOR }
{EIGHT BITS IT IS 256, FOR EXAMPLE). THE PROGRAM CONSTRUCTS A TREE}
{AND TRACES THROUGH IT TO DETERMINE THE LENGTHS OF EACH CODEWORD. }
{THE AVERAGE WORDLENGTH IS THEN COMPUTED AND DISPLAYED.}

{THE MAXIMUM NUMBER OF SOURCE SYMBOLS ALLOWED IS 256.}

type
treerec= record
leftchild: integer;
rightchild: integer;
parent: integer;

end;

alphatree= record
probability: real;
leaf: integer;
number:integer;

end:

forestree= record
weight: real;
pattern:integer;
root: integer;:
end;

filename= string[13];
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hexnum = string[2];

var
tree : array [1..512] of treerec:
alphabet : array [1..256] of forestree:
forest : array [1..256] of forestree;
length: array [1..256] of integer;
n,x,limit,lastree,lastreel: integer;
enn,totall:integer;
total:real;
prob,newsum:real:
filenaml: filename;
filenam2: filename;
infile: text;
outfile: text}
answer :hexnum;
lastnode,ending,symlength,zeros: integer;
const
cr= #304;
1f= #3%0a;

label again;

procedure lightones(var least,second: integer):

var

i:integer;
begin
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if forest[1].weight <= forest[2].weight then
begin least:=1; second:= 2 end
else

begin least:=2; second:=1 end;

for 1:=3 to lastree do begin
if forest[i].weight < forest[least].weight then
begin second:=least; least:=i end
else if forest[i].weight < forest[second].weight then
second:=i:

end;
end {lightones};
procedure print;

var
n: integer;
begin
for n:=1 to lastree do
begin
write(lst,forest[n].weight,' ', forest[n].root,' ',
forest[h].pattern,cr,lf);
end;
n:=1;
while n <= lastnode do
begin
write(lst,#$0d,#$0a);

write(lst,treeln].leftchild,' ',treeln].parent,' ',

tree[n].rightchild,' ')

~o
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{writeln(outfile, #$0d,#%0a);
writeln(outfile,tree[n].leftchild,' ',treeln].parent,' ',
tree[n].rightchild,' *');}

n:=n+1;

end;

end{print};

function create(lefttree,righttreesinteger):integer;
begin

lastnode:=lastnode+1;
tree[lastnode] .leftchild:=forest[lefttreel].root;
tree[lastnode] .rightchild:=forest[righttreel] .root:
tree[lastnode] .parent:=0;
tree[fdrest[lefttree]eroot].parent:=lastnode;
tree[forest[righttree] .root].parent:=lastnode;
create:=lastnode:

end {create};
procedure Huff;

var
i,j,t:integer:;
newroot:integer;
begin
while lastree > 1 do begin
lightones(i,j):
newroot:=create(i,j);
forest[i].weight:=forest[i].weight+forest[j],weight;

forest[i] .root:=newroot;
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forest[j]l:=forest[lastree];
lastree:=lastree-1;

end:;
end{huff};

procedure tfacetree;
var
i,j: integer;
begin
for i:=1 to 256 do
begin
length[i]:=0;
end;
is=1;
while i <= lastreel do
begin
je=i;
while tree[j]l.parent <> 0 do
begin
length[i]:s=length[i]+1;
j:=treelj] .parent;
end;
is=i+1;
end;

end{tracetree};

begin

again:
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reset(input);
write(cr,1f);
write(output, 'Huffman Wordlength Calculator', #$0d,#$0a);
write(output,'Input Filename ==> ');
while not eoln(input) do begin
read(input,filenaml);
end;
assign(infile,filenaml);
write(output, #30d,#%0a);
write(output, 'Output Filename ==> ');
reset(input);
while not eoln(input) do
begin
read(input,filenam2);
end;
assign(outfile,filenam2);
reset(infile);
rewrite(outfile);
readln(infile,enn):
readln(infile,total);
write(output,#304,#%$0a);
n:=1;
lastree:=0;
while not eof(infile) do
begin
readln(infile,forest[n].weight,forest[n].pattern);
forest[n] .root:=n;
alphabet[n] :=forest[n];
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{write(forest[n].weight,' ', forest[n].root,' ',

forest[n].pattern,cr,1f);}

lastree:=lastree+1:;

if forest[n].weight =

n:=n+1;
end;

write(lastree,cr,1f);

0.0 then lastree:=lastree-1:

write(output, "HUFFING',#$0d,#%$0a);

for n:=1 to lastree do begin

tree[n].leftchild:=0;
tree[n].rightchild:=0;
treel[n].parent:=0;

end;

lastnode:=lastree;
ending:=lastree;
limit:=lastree;
lastreel:=lastree;

huff;
write(output,#3$04d,#3%0a);
writeln(outfile,#30d,#%0a);
tracetree;

x:=1;

newsum:=0:

while x <= limit do

begin

newsum:=(alphabet[x] .weight*length[x])+newsum:

Xs=x+1;
end;
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write(cr,1lf, ((newsum/enn)*100),'% space used',cr,lf);

totall:=round((1-(newsum/enn))*100);

write(output,'The average wordlength for source ',filenamt,

' is ',newsum,' bits/symbol’',cr,lf);

write(cr,lf,'A total of ',totall,'% is saved thru coding ',

cr,lf);

writeln(outfile,#3$0d,#%0a,'The average wordlength for source ',

filenaml,' is ',newsum,' bits/symbol',cr,lf);

writeln(outfile,cr,1f,'A total of ',totall,'% is saved thru codi; _,

cr,lf); |

close(outfile);

close(infile);

write(#$07);

write(cr,lf,'Do you wish to go again? (Y/N) ');

reset(input);

while not eoln(input) do begin
read(input,answer);

end;

if answer 'Y' then goto again;

1] T

if answer = 'y' then goto again;

end.
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{THIS PROGRAM ACCEPTS A DATA FILE WHICH HAS BEEN.PROCESSED BY}
{RFREQ.COM AND CONTAINS THE RANK ORDERED RELATIVE FFREQUENCIES}
{OF A SOURCE. }
{THE LENGTH OF THE SHAFT CODEWORD IS COMPUTED FOR EACH SOURCE SYMBOL}H
{AND THEN THE AVERAGE LENGTH OF THE SHAFT ENCODED DATA IS COMPUTED }
{FOR VALUES OF n' FROM 1 TO 8.}
{THE MINIMUM AVERAGE LENGTH IS THEN STORED IN THE OUTFILE}
program shaft(input,output,infile,outfile);
type
hexnum = string[2];
filenam = string[13];
dual = record pattern: 0..3%ff:
probabiliéy: real;
length: integer;

end;

var
prob: array[0..$ff] of real;
newprob: array[0..$ff] of dual;
total,total2: integer;
totall,total3:real;
nprime: integer;
newn: integer;
n: integer;
primeval: integer;
count: integer;

i: integer;
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j: integer;

t: integer;
counter: integer;
laverage: real;
namel: filenam;
name2: filenam;
index: integer:
infile: text:
outfile: text;

answer: hexnum;

const
cr = #304d;
1f = #%$0a;

label again;

begin
again:
write(cr,1£f);
reset (input);
write('-- Shaft Code Average Codeword Length Calculation --',
cr,l£); '
write('Enter data file to be processed ==> ');
while not eoln(input) do
begin
read(input,namel);
end;

assign(infile,namel);
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write(cr,1f);
reset(input);
write('Enter result file ==> ');
while not eoln(input) do
begin
read(input,name2);
end;
{write(cr,1lf, 'Enter the value of n" ==>'):
reset (input);
while not eoln(input) do
begin
read(input,nprime);
end; }
assign(outfile,name2);
rewrite(outfile);
reset(infile);
readln(infile,n);
readln(infile,totall);
write(cr,1lf," *%x*** Shafting ****x*x' cr K 1f);

total3:=(totall#*n)/8;

write('total space required (uncoded) = ',total3,' bytes',cr,lf,
write(outfile, 'total space required (uncoded) = ',total3,' byte:
cr,1f);

total:=0;
count:=0;
counter:=0;
while counter < 256 do
begin
- 110 -



problcounter]:=0.0;
newprob[counter] .pattern:=0;
newproblcounter].length:=0;
newprob[counter] .probability:=0.0;
counter:=counter+1;
end;
i:=0;
while not eof(infile) do
begin
readln(infile,newprob[i] .probability,newprobl[i].pattern);
1e=i+1;
end;
{compute total number of subdivisions}
for nprime:=1 to 7 do
begin
primeval:=round(exp((nprime-1)*1n(2)));
:=round(exp(n*1n(2))/exp((nprime-1)*1n(2))):
i:=0;
count:=1;
newn:=nprime;
while count < t do
begin
j:=0;
while j < primeval do
begin
newprob[(i+j)].length:=newn;
ji=i+1;
end;
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end:;

is=i+primeval;
newn:=newn+1:
counts=count+1;

end;

~o

while j < primeval do

begin
newprob[(i+j)].length:=newprob[((i-1)+j)].length;
ji=3+1;

end

-o

1:=0;
laverage:=0.0;
for i:=0 to 255 do
begin
laverage:=laverage+(newprob[i].probability=*
newprob[i].length);
end;
total2:=round((1-(laverage/n))*100);
if laverage > n then total2:=0;
write(outfile,cr,lf, ' **x*xxxx*xSHAFT CODE********',cr,lf);hy4
write(outfile,cr,1lf,'Average Length for n" = ', nprime,
' is ',laverage,cr,lf);

write(cr,1f, 'Average Length of Shaft Code',cr,lf):

write('n" = ',nprime,' Lav = ',laverage,cr,lf);
write('percent space saved is = ',total2,'%',cr,lf);
write(outfile, 'percent space saved is = ',total2,'%',cr,

- 112 -



end.

close(infile);

close(outfile);

write(cr,1f);

write('--- finished ----');

write(cr,1£f);

write('Do you wish to go again? (Y/N)

reset(input);

while not eoln(input) do begin
read(input,answer);

end;

if answer 'Y' then goto again;

if answer y' then goto again:
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{THIS PROGRAM COMPUTES THE CONDITIONAL ENTROPY, THE MARGINAL PROB.
AND THE CONDITIONAL PROB. OF AN INPUT FILE}
{THE MEASURED PROBABILITIES WHICH ARE SMALLER THAN EPSILON

ARE ADJUSTED AS DESCRIBED IN THE TEXT}

program ncon(input,output,infile,outfilel,outfile2);
type

string[2];

i

hexnum

newstr string[3];

filenam = string[13];

dual = record pattern: 0..$ff:
probability: real;

end;

var
name: arrayl[1..30] of filenam;
probl: array[0..3$ff] of real;
tprls arrayl[0..3ff] of real;
tpr2: arrayl[0..15] of real;
prob2: array[0..15] of real:;
newprobil: array[0..$£ff] of dual;
newprob2: array[0..15] of dual;
ent,totalC,totalM, temp,sumtotall,sumtotal2, fixup,epsilon,probtot:
real;
dot,n,position,epscnt: integer;
answer :hexnum;
upper ,lower,both,trans,finished:boolean;
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data: char:
néme2,name3,name4: filenam:
dummy: char;
datal: char;
data2: char;
strl: newstr:
str2: hexnum;
str3: hexnum:
pointr: integer;
count: integer;
namel: filenam;
i: integer;

j: integer;
ji,ij,k: integer;
counter: integer;
code: integer;
index: integer:
infile: text;

outfile,outfilel,outfile2,outfile3: text:

const
cr = #3%$0d;
1f = #3%0a;

label loop,loopl:

begin
upper:=false;
lower:=false;
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both:=false;
trans:=false;
write(cr,1f):
reset(input);
write(cr,1f,'-- Conditional Entropy Calc [Rel Freg. Output
and Epsilon Compensation] --',cr,1f);
write(cr,1f);
reset(input);
write('Enter epsilon ==> ');
while not eoln(input) do begin
read(input,epsilon);
end;
write(cr,1f);
reset(input);
write('Enter file(s) to be processed ',cr,lf);
n:=1;
finished:=false;
while finished <> true do begin
while not eoln(input) do begin
read(input,name[n]);
end;
write(cr,1f);
reset(input);

Ty

if nameln] = then begin
finished:=true;

n:=n-1;

end;

n:=n+t;
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end;
reset(ihput);
write(cr,lf, 'Enter conditional result DTA file -~ '):
while not eoln(input) do begin
read(input,name2);
end;
write(cr,1l£);
reset (input);
write(cr,lf,'Enter marginal result DTA file -- ');
while not eoln(input) do begin
read(input,name4);
end;
write(cr,1£f);
reset (input);
write(cr,lf, 'Enter result ENT file -- ');
while not eoln(input) do begin
read(input,name3);
end;
write(cr,1f);
{here's where the work starts}
write(cr,1£);
write(output,cr,lf,'Please select one of the following options:’
write(output,cr,1£f):
write(output,' Upper nibble - U',cr,lf);
write(output,' Lower nibble - L',cr,1lf):
write(output,' Both nibbles -B',cr,1f);
write(output,cr,lf,' ==> ');
reset(input);
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while not eoln(input) do begin

read(input,answer);

end;
if answer = 'U' then upper:=true;
if answer = 'u' then upper:=true;
if answer = 'L' then lower:=true;
if answer = 'l' then lower:=true;
if answer = 'B' then both:=true;
if answer = 'b' then both:=true;

write(output,cr,1£f);

write(output,' Transpose nibbles? (Y/N)',cr,lf);

reset(input);

while not eoln(input) do begin
read(input,answer);

end;

if answer 'Y' then trans:=true:;

y

]

if answer then trans:=true;
write(output,cr,1£f);
write(cr,1f,’ *%x*x%x* Working ****xx' cr,1f);
totalM:=1;
totalC:=0;
count:=0;
counter:=0;
for counter:=0 to 255 do
begin
prob1[counter]:=0.0;
newprobl[counter] .pattern:=0;
newprobl[counter] .probability:=0.0;
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end;

for counter:=0 to 15 do begin
prob2[counter] :=0.0;
newprob2[counter] .pattern:=0;
newprob2[counter] .probability:=0.0;

end:;

for counter:=1 to n-1 do begin
namel:=name [counter];
assign(infile,name1);
reset(infile);
write(namel,cr,1f);
if both = true then begin
read(infile,data);
str2:="¢$'+data;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
while not eof(infile) do begin
while not eoln(infile) do begin
datal:=data;
loop: read(infile,data);
if data = ' ' then goto loop;
data2:=data;
if trans = true then begin
strl:='§"'+data2+datal:
end else stril:='$'+datal+data?l;
str2:='$"'+data2;

val(str1,index,code):;
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probilindex] s=probi[index]+1;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
totalM:=totalM+1;
totalC:=totalC+1;
end;
readln(infile);
end;
end
else begin
if upper = true then begin
read(infile,data):
read(infile,dummy);
read(infile,dummy);
end
else begin
read(infile,dummy);
read(infile,data);
read(infile,dummy);
read(infile,dummy);
end;
str2:='$"'+data;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
while not eof(infile) do begin
datal:=data;
loopl: read(infile,data);
if data = ' ' then goto loopl;
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end;

n:=n-1;

if data cr then goto loopl;

if data 1f then goto loopl;
data2:=data;
read(infile,dummy);
read(infile,dummy) ;

if trans = true then begin
strl:='$"'+data2+datal:

end

else stri:='$"'+datal+data?l;
str2:="'$"'+data2;
val(str1,index,code);
probl[index] :=probl[index]+1;
val(str2,index,code);
prob2[index] :=prob2[index]+1;
totalM:=totalM+1;

totalC:=totalC+1;

end:;

close(infile);

end;

assign(outfile2,name2);

rewrite(outfile2);

assign(outfile3,named);

rewrite(outfile3l):

writeln(outfile3,4);

writeln(outfile3,totalM):

writeln(outfile2,8);
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writeln(outfile2,totalC);
write(cr,1£);
sumtotall:=0;
sumtotal2:=0;
for j:=0 to 15 do begin
for i:=0 to 15 do begin
ije=(i%x16)+7;
pfob1[ij]:=(prob1[ij]*totalM)/(probZ[i]*totalC);
tpr1[ij]l:=prob1[ijl;
end;
end;
for i:=0 to 15 do begin
prob2[il :=prob2[il /totalM;
tpr2[i] :=prob2[i];

end;

{Rank ordering routine}
write(cr,1lf,'Rank Ordering');
pointr:=15;
i:=15;
while pointr >= 0 do
begin
if prob2[pointr] = 0.0 then
begin
newprob2[i] .pattern:=pointr;
is=i-1;
end;

pointr:=pointr-1;
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end;
pointr:=0;
while pointr < 16 do
begin
i:=0;
while 1 < 16 do
begin
if prob2[i] > newprob2[pointr].probability then
begin
newprob2[pointr].probability:=prob2[il;
newprob2[pointr].pattern:=(i);

end;

end;
prob2[newprob2[pointr].pattern] :=0;
pointr:=pointr+1;
end;
{Adjust for values less than or equal to epsilon}
probtot:=0.0;
j:=0;
for i:=0 to 15 do begin
if newprob2[i].probability > epsilon then begin
probtot:= probtot+newprob2[i].probability;
ji=g+1;
end;
end;
if j >0 then begin
if j <> 16 then begin
- 123 -



probtot:=(1.0-probtot)/(16-3);
while j < 16 do begin
newprob2[j].probability:=probtot;
tpr2[newprob2[j]l.pattern] :=probtot;
ji=3+1;
end;
end;
end;
{Rank ordering by conditional state}
for j:=0 to 15 do begin
pointr:=15;
for i:=0 to 15 do begin
jie=(j*16)+1i;
if prob1[ji] = 0.0 then begin
newprobl[j*16+pointr].pattern:=ji;
pointr:=pointr-1;
end;
end;
end;
for j:=0 to 15 do begin
for pointr:=0 to 15 do begin
for 1i:=0 to 15 do begin
jis=(j*16)+i;
if prob1[ji] > newprobl[j*16+pointr].probability
then
begin
newprobl1[j*16+pointr].pattern:=ji;
newprob1[j*16+pointr] .probability:=probi[jil;
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end;
end;
probl{newprobl[j*16+pointr] .pattern] :=0.0;
end;
end;
{Epsilon compensation}
probtot:=0.0;
for j:=0 to 15 do begin
:=0;
for 1:=0 to 15 do begin
if newprob1[j*16+i].probability > epsilon then begin
probtot:= probtot+newprobl[j*16+i] .probability;
ke=k+1;
end;
end;
if k > 0 then begin
if k <> 16 then begin
probtot:=(1.0-probtot)/(16-k);
while k < 16 do begin
newprob1[j*16+(k)].probability:=probtot;
tpr1[newprob1[j*16+(k)].pattern] :=probtot;
ke=k+1;
end;
end;
end;
end;
{ENTROPY CALC}
write(cr,1lf, 'Computing Entropy’',cr,1f);
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ent:=0;
for j:=0 to 15 do begin
for 1:=0 to 15 do begin
jis=(j*16)+1;
temp:=tpri1[jil;
if tpr1[ji] = 0.0 then temp:=1;
ent:= ent - (tpr2[jl*temp*1ln(temp)/1n(2));
end;
end;

write('the entropy is ',ent);

for i:= 0 to 15 do begin
sumtotal2:=sumtotal2+tpr2{i];
end;
write(cr,1f,'The sum of the Marginal Probabilities is ',
sumtotal2);
for i:=0 to 255 do begin
sumtotall:=sumtotall+newprobl[i].probability;
end;
write(cr,lf,'The sum of the Conditional Probabilities is ',

sumtotall):

assign(outfilel,name3);

rewrite(outfilel);

write(outfilel,cr,1f,'The conditional entropy (4x4) is: ',ent,
' bits/symbol’');

if both = true then write(outfilel,cr,lf,'(Both nibbles)');

if lower = true then write(outfilel,cr,lf,'(Lower nibbles)');
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if upper = true then write(outfilel,cr,lf,'(Upper nibbles)'):

close(outfilel);

write(cr,lf,'Conditional Probabilities',cr,lf):

for count:=0 to 255 do begin
write(outfile2,newprobi[count].probability,"' ',
newprobi[count] .pattern,cr,1£f);
end;

write(cr,1£f);

close(outfile2);

write(cr,1f,'Marginal Probabilities',cr,lf);

for count:=0 to 15 do begin.
write(outfile3,newprob2[count] .probability,"' ',
newprob2[count] .pattern,cr,1£f);
end;

close(outfile3);

write(cr,1£f);

epscnt:=0;

for i:=0 to 255 do begin
if newprobl[i].probability <= epsilon then epscn :=epscnt+1pﬂ35
end;

write(cr,lf, 'The number of conditional values < = epsilon = ',

epscnt) ;

write(cr,lf,'This is ',epscnt*100/256,' % of the total'):

epscnt:=0;

for i:=0 to 15 do begin
if newprob2[i].probability <= epsilon then epscnt:=epscnt+1;
end;

write(cr,1lf, 'The number of marginal values < = epsilon = ',
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epscnt);
write(cr,1f,'This is ',epscnt*100/16,' % of the total');
write('finished---- total data points processed = ',totalM):

write(cr,lf);

write(#$07);

end.
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{THIS PROGRAM CALCULATES THE MARGINAL ENTROPY OF A SOURCE.}

{THE VALUE OF THE MARGINAL ENTROPY IS STORED IN THE OUTFILE.}
program entropy2(input,output,infile,outfile);

type

hexnum string[2];

newstr string(3];
filenam = string[13];

var
prob: array[0..$ff] of real;
totalﬁ real;
data: char;
datal: char;
data2: char:
strl: newstr:
ent: real;
i,n,twoton:integer;
count: integer;
counter: integer;
code: integer;
namel: filenam;
name2: filenam;
index: integer;
infile: text;
outfile: text;
totall:integer;
answver thexnum;

const
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#304;
#3$0a;

cr

1f

label loop,next,again;

begin
A again:
reset(input);
write(cr,1f,' -- Entropy Calculation -- Use a DTA file -- ',cr,l ’
write('Enter data file to be processed ==> ');
while not eoln(input) do
begin
read(input,namel);
end;
assign(infile,namel);
write(ecr,1f);
reset (input);
write('Enter result file ==> ');
while not eoln(input) do
begin ffli
read(input,name2);
end;
assign(outfile,name2);
{write(output,cr,lf, 'Enter number of bits/symbol ==> ');
reset(input):
while not eoln(input) do begin
read(input,n):
end;}
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reset(infile);
rewrite(outfile);
readln(infile,n);
readln(infile);
twoton:=round(exp(n*1n(2)));
total:=0;
count:=0;
counter:=0;
while counter < 256 do
begin
problcounter] :=0.0;
counter:=counter+1;
end;
{while not eof(infile) do
begin
while not eoln(infile) do
begin
loop:
read(infile,data):
if data = ' ' then goto loop;
datal:=data;
strl:="'$'+datal;
if n > 4 then
begin
read(infile,data):
data2:=data;
strl:='$'+datal+data?2;
end;
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val(str1,index,code);
if index <= twoton then begin
problindex] :=prob[index]+1.0:;
totall:=totall+1;
end;
total:=total+1.0;
end:;
readln(infile);

end;

if total= 0 then total:=1;
if totall = 0 then totall:=1;}
i:=0;
while not eof(infile) do begin
readln(infile,probli]);
ie=i+1;
end;
ent:=0;
while count < 256 do
begin
if problcount] <= 0 then goto next;
problcount]:=(problcount])*(1ln(problcount])/1n(2.0));
problcount]:=(-1.0)*problcount];
next:
ent:=ent+Problcount];
count:=count+1;
end;

write(outfile, 'The Entropy of the source:',namel,' is ',ent,

- 132 -



' bits');

close(infile);

close(outfile);

write(cr,1£f):

write('Finished---- the Entropy of the source: ',namel,' is
ent,' bits');

write(cr,1lf,'Do you wish to go again? (Y/N) ');

reset (input);

while not eoln(input) do begin

read(input,answer);

end;
if answer = 'Y' then goto again;
if answer = 'y' then goto again;

end.
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