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ABSTRACT

Matrix analytical methods are developed for the modelling and
analysis of some retrial queues. A sufficient condition for ergodicity of
a single server retrial queue with Markovian arrival process and phase
type service is derived and block Gaussian elimination is used to solve
linear systems of equations arising in the calculation of the stationary
distribution of states, the distribution of the number of retrials exe-
cuted by an arbitrary customer, the waiting time distribution and the
moments of the waiting time. A bound is obtained on the probability
lost due to truncation of the infinite generator by considering an ap-
proximation which stochastically dominates the exact queue. For the
special case of Poisson arrivals, an explicit expression is obtained for the
level dependent rate matrices and a sufficient condition for ergodicity
is obtained by considering the convergence of a related matrix series.
Efficient numerical methods are developed for retrial queues with finite
buffers or multiple servers and an approximate model is developed for
retrial queues with phase type interretrial times. A sufficient condition
for ergodicity is obtained and .numerical experiments are performed to
examine the effectiveness of the approximation in predicting the first
two moments of the waiting time. A level dependent extension of the
single server retrial queue with Markovian arrival process and phase
type service is used to model a local area network with CSMA proto-
col and extensions of the model with Poisson arrivals, arbitrary level

dependence and geometric loss are considered.
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INTRODUCTION

A retrial queue is one in which a customer, if he finds all servers
busy and waiting positions (if any) occupied upon arrival, waits some
random period of time (usually exponentially distributed) and then tries
for service again. While the customer is waiting to retry he is considered
to be “in orbit ”and retries for service periodically at random intervals
until he either seizes a server or waiting position or gives up and is
lost to the system forever. These models are common in areas such
as telephone and computer communication systems. There is a large
volume of research which has been published on various models of retrial
queues and comprehensive reviews can be found in Yang and Templeton
(1987) and Falin (1990). —

Results are available for retrial queues with loss (customers may
give up and leave the system), with batch arrivals, with finite buffers,
and with multiple servers as well other structurally complex systems.
Keilson et al. (1968) considered the M/G/1 retrial queue and used the
method of supplementary variables to obtain the generating function
for the joint distribution of the number of customers in the system and
elapsed service time. Falin (1979) obtained the joint Laplace transform
of the length of the busy period and the number of customers served
in the period. He also obtained (1991) the Laplace transform of the
waiting time for the M/G/1 queue. Yang (1990) developed algoithms to
evaluate the stationary distribution of queue length for the GI/M/s/m
retrial queue.

So far, most models of retrial queues have been analyzed using
classical analytic methods which are sometimes difficult and risky in
their numerical implementation. Results are usually given in the form
of Laplace transforms or generating functions which must be obtained

by solving an integral and then inverted . Little or no attention is paid
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to the algorithmic implementation of these solutions. While the direct
numerical computation of existing analytic solutions is best considered
within the framework of classical numerical analysis, there is clearly
room for an approach in which algorithmic feasibility is a primary cri-
terion in the modelling process from the outset. The field of compu-
tational probability and, more specifically, matrix analytical methods
adopt this point of view. Matrix analytical methods take advantage
of structural properties of Markov chains in order to obtain stable nu-
merical methods for the calculation of quantities of interest. They also
provide insight into the behavior of models through a probabilistic un-
derstanding of intermediate steps of algorithms which is unavailable in

the purely formal manipulations of many classical methods.

Until now, all models of retrial queues have assumed either expo-
nentially distributed service times or a Poisson input process. While
these assumptions have been necessary in order to make the analysis of
the models tractable, they may not accurately reflect the behavior of
real systems of interest. The matrix analytical approach allows us to
avoid these restrictive assumptions. If we replace the Poisson process
and the exponential distribution with the more general Markovian ar-
rival process (MAP) and phase type (PH) distribution (see Neuts 1981
and Lucantoni 1991), we can obtain queues, with neither Poisson input
nor exponential service times, which can be modelled as Markov Chains.
We can then exploit the structure of the Markov chains to obtain stable

and efficient numerical methods for the analysis of the queueing models.

A phase type distribution is the distribution of the time until ab-
sorption in a finite absorbing Markov chain and is represented by a pair
of objects of the form (87, S). BT is the initial probability vector for the
absorbing chain and S is the portion of the generator for the absorbing
chain corresponding to transitions between transient states. Any distri-

bution on (0, 00) can, in principle, be approximated arbitrarily closely
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by a phase type distribution, although the dimensions of 87 and S may
be large. Phase type distributions of reasonably small dimensions have
been used to approximate many distributions of practical importance (
see Bobbio et al. 1980, Johnson and Taaffe 1988, Asmussen and Nerman
1991) and some very common distributions such as the Erlang, Coxian
and hyperexponential are special cases of the phase type distribution.

The Markovian arrival process generalizes the phase type renewal
process by allowing the initial probability vector for each phase type
interarrival time to depend on the phase (transient state of absorbing
chain) from which the last interarrival time terminated (entered absorb-
ing state). This allows for correlation between successive interarrival

times and we can use MAPs to model processes which are bursty.

In the first chapter, we consider the MAP/PH/1 retrial queue. We
apply block gaussian elimination to obtain the stationary distribution
of the number of customers in the orbit and the number of retrials per-
formed by an arbitrary customer as well as the moments of the waiting
time. We furnish probabilistic interpretation for all of the objects in-
volved in the calculation and we obtain a bound for the probability
lost to truncation of the infinite dimensional generator. We apply the
randomization method to obtain the distribution of the waiting time
and suggest an approximation for the waiting time distribution, based
on the distribution of the number of retrials, which is less computa-
tionally intensive. We also present a state dependent extension to the
MAP/PH/1 retrial queue which models a local area network with car-

rier sense multiple access protocol.

In the second chapter, we obtain some explicit results for the spe-
cial case of Poisson arrivals and a sufficient (stability) condition for
convergence of a matrix series which arises in the normalization of the
stationary probability vector. We also consider the possibility of state
dependent extensions and examine another extension, the M/M/1 re-

3



trial queue with los, from the matrix analytical point of view. In Chap-
ter Three, we adapt the methods of the first chapter to retrial queues
with finite buffers or multiple servers. In Chapter Four, we adapt an
approximation method developed by Yang et al. (1994) for the station-
ary distribution of M/G/1 retrial queues with general retrial times to
the problem of determining the waiting time distribution and moments
and the distribution of the number of retrials for M/PH/1 queues with
phase type retrial times. We perform some numerical experiments to
determine the accuracy of the approximation in determining the first

two moments of the waiting time.



CHAPTER ONE

THE MAP/PH/1 RETRIAL QUEUE

1.1 INTRODUCTION

So far, most models of retrial queues have employed the Poisson
arrival proces to model the input stream to the queue. This is somewhat
restrictive since arrival streams to various kinds of queues are often not
well modelled by a Poisson process. Homitchkov (1987 and 1988) con-
sidered retrial queues with a single exponential server and independent
interarrival times with Erlangian or hyperexponential distributions of
second order. Yang (1990) obtained the stationary distribution of queue
size for the GI/M/s/m retrial queue and Yang, Posner and Templeton
(1992) developed numerical methods for the special case of Coxian ar-
rival process.

Sondermann and Pourbabai (1987) developed an approximation
method for single server recirculation systems. These systems are simi-
lar to retrial queues in that there are no waiting spaces and the overflow
of customers not receiving service merges with the arrival process from
outside to request service again instead of disappearing from the sys-
tem. The algorithm used is an iterative one in which, at each stage,
the overflow process is approximated by matching its first two moments
and then merged with the arrival process from outside. The resulting
superposition arrival process is then approximated by matching its first
two moments and becomes the new input stream (to the server) used
to recalculate the overflow moments. The interarrival and service time
distributions are assumed to be either hyperexponential of order two or
delayed exponential for the purpose of moment matching but the algo-
rithm is intended to be applied to the case of arbitrary distributions for

d



these times.

We consider an exact model of a retrial queue with non-exponential
service times as well as non-exponential interarrival times. Service and
interarrival time distributions are assumed to be members of the class
PH of phase type distributions defined by Neuts (1981). This is a versa-
tile class of distributions and can be used to approximate any distribu-
tion arbitrarily closely. The phase type distribution with representation
(B8, S) is the distribution of the time until absorption of the finite di-

mensional absorbing Markov chain with generator

S0 s

r_

=[]

and initial probability vector (0,57) where S° = —Se and e is a col-

umn vector of 1’s. The subgenerator S has negative diagonal elements
and nonnegative off-diagonal elements and S° is nonnegative. The cu-
mulative distribution function of the time until absorption is given by
F(t) = 1 — BTexp[St]e.

Since a superposition of renewal processes is not , in general , a
renewal process, considering only arrival streams which are renewal pro-
cesses may be too restrictive. The arrival process may be bursty and
successive interarrival times may be correlated. The Markovian arrival
process (MAP) provides a model which posesses these characteristics
and which is tractable via matrix analytical methods. It is a rich class
of processes which includes, as special cases, the phase type renewal
process and the Markov modulated Poisson process. A Markovian ar-
rival process can be considered a Markov process {N(t), J(¢)} on the
state space {(¢,7) : ¢ > 0,1 < j < m} with an infinitesimal generator Q
having the structure

Dy D; O

0 Dy D; 0 ...
Q=10 0 Dy, D; 0



where Dy and D; are mxm matrices, Dy has negative diagonal elements
and nonnegative off-diagonal elements, D; is nonnegative and (Dy +
Ds)e = 0 where e is an m dimensional column vector of ones. N(t) =i
represents the number of arrivals in (0,¢) and J(¢) = j represents an
auxiliary state or phase variable.

We consider a MAP/PH/1 retrial queue with arrival process repre-
sented by (Do, D;), service time distribution represented by (87, S) and
interretrial times exponentially distributed with rate . The state space
is given by {(4,7,k,0)[i =0,1,...;5=0,,k=1,....m{=1,...,n;}
where ng = 1, n1 = n and m and n are the dimensions of the arrival and
service process representations respectively. 4, j, k, and £ represent the
number of customers in orbit, state of server (idle for £ = 0 and busy
for k = 1), arrival phase and service phase respectively. If we order the
state space so that the labels (7,7, k,£) appear in lexicographic order,

the generator has the following structure:

A12 All AlO O
Q=10 Ay Ay Agp ... (1.1)

where:

o _ 0 0 o Dqo — 01 D1®ﬂT
AzO—AO—I:O D1®Ijl Azl—li]-(gso I®S+D0®I
o wrep”

ha= [0 9155 02
and S? = —Se.

We are interested in the stationary distribution z which satisfies
2 = 0. We employ block Gaussian elimination to obtain a numerical
solution. Because the subdiagonal blocks are quite sparse, we can cut
down the complexity of each step of the algorithm to O(m3n?) from the
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O(m®n3) which would be required otherwise, where m and n are the di-
mensions of the arrival and service process representations respectively.
We eliminate the levels (level i refers the set of states with ¢ customers
in the orbit.) 0,1,2,... one at a time in that order. Eliminating the
lower levels first allows us to defer deciding at what level to truncate or
approximate the system until we have sufficient information to do so.

When applying numerical solutions to infinite systems with level
dependence it is usually necessary to approximate the system either
with a finite system or with a system which is spatially homogeneous
for sufficiently high levels. We will employ the former method, how-
ever we will consider two spatially homogeneous extensions in order to

determine where to truncate the system.

The first homogeneous extension we consider was proposed by Falin
(1983) for the M/M/s retrial queue. In this approximation, the server
begins a new service immediately after each service completion if there
are more than a fixed number N of customers in the orbit. Thus, above
level N , the queue is identical to a MAP/PH/1 queue with infinite
buffer space and random service order and the stationary distribution
has a modified matrix geometric (see Neuts 1981) form. The advantage
of this approximation is that the rate matrix associated with the homo-
geneous extension is independent of the transition level N so that we

can increase N without having to recalculate the rate matrix.

The second homogeneous extension we consider is similar to the one
used by Neuts and Rao (1990) as an approximation to the M/M /s retrial
queue. The approximation is obtained by allowing only N customers
to attempt retrials when there are more than /N customers in the orbit.
The total retrial rate from the orbit is thus bounded by N@ and the
resulting generator is spatially homogeneous above level N and has a
modified matrix geometric stationary distribution. This approximation

was also proposed by Greenberg (1986) and Stepanov (1988).
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It is intuitively clear that this approximate system is , in some
sense, less efficient than the exact queue since the mean server idle time
is larger for each level. We can formalize this observation in terms of
stochastic dominance of one process over another if one of the processes
is monotonic (see Massey (1987)). We define a class of service time
distributions which afford the queue the required monotonicity. Since
the approximation is homogeneous above a certain level we can use the
methods of Neuts (1981) to calculate the tail probability above a certain
level. This provides an upper bound on the probability which is lost in

the exact queue if we truncate at that level.

1.2 STABILITY CONDITION

We obtain a sufficient condition for ergodicity by applying
Mustafa’s criterion, as suggested in Falin (1984). A Markov chain
{Z,Jn = 0,1,...} on a state space X is ergodic if there exists a non-
negative function f : ¥ — R such that the mean drift E[f(Z,11)|Z, =
2] — f(z) < —e for some € > 0 and for all but a finite number of points
zeX

Proposition 1.1: If a MAP/PH/1 queue with infinite buffer capacity
and irreducible arrival and service process representations is ergodic,
then the MAP/PH/1 retrial queue with identical arrival and service

processes 18 also ergodic.

Proof: . Let (Do, D1) and (87, S) be irreducible representations of
the arrival and service processes respectively for an ergodic MAP/PH/1
queue. The transition probability matrix P for the jump chain of the

9



retrial queue imbedded at each event has the form

Py B 0 0
Py P B O
P=110 Py Pn Py

where

po — [T+ (Do+i01)~H (Do —i0I) (Ao +i61)~H (D1 @ 7)
b= Bge Bl

_ o o |0 i0(Ap+i0D) "t @ T
PO‘“[O BO} Pﬂ‘{o 0

Bo=ATHD1®I) Bi=I+A7'I®S+Dy®]I)
By = AT (I ® S8%67)
Ao = —diag(Do) Al = —dz'ag(f & S + Do & I)

Let R be the rate matrix associated with the infinite buffer queue
and let 7 < 1 be its spectral radius. Then, from the discussion in the
proof of Lemma 1.3.4 in Neuts (1981), we know that for all € € (n,1),
sp(Bo + €B1 + €2Bg) = € < €. Let £ > 0 be the right eigenvector
associated with ¢ so that (By + €B1 + €2Bs)z = 'z < ex.

Now define the vector f = [fo, f1, fo, .. .] according to

£ = ([el@}ﬁT} :1:+ae>.

where a € (0,1). We need only show that (P — I)f < —¢”e (except for
a finite number of components) for some €’ > 0. Now we have

(=Dl = | )

Q51
where
ap =€ (Ao +i0I)7" (e(Do + D1)(I ® BT)z —ia(l — €)fe)

10



a1 = € D (a1 — €)Boe 4 (Bo + €By + 2By — el)z).

Since B = —(Bo + €B1 + € By — el )z > 0, we can choose a € (0,1)
so that oy < —€’e = —min{B1}e/2 for all i > 1. Since oy — —0
as 1 — oo there exists an integer ¢’ such that a;9 < —€’e for al i > 7.
Thus [(P —I)f]; < —€¢’e for all i > ¢,

A necessary and sufficient condition for ergodicity of the
MAP/PH/1 queue with infinite buffer capacity can be obtained by
applying Theorem 1.7.1 in Neuts (1981). The condition is given by
T(Die®e—e® S%) < 0 where 7 is the solution to [T ® (S + S°47T) +
(Do + D1) ® I] =0 and me = 1.

We would also like to note, as a corollary to Proposition 1.1, that
if a MAP/PH/1 queue with infinite buffer capacity is irreducible and
ergodic, then the approximation to the retrial queue referred to as the
second homogeneous extension (with bounded retrial rate) is also er-

godic provided the maximum retrial rate (V) is large enough.

1.3 BLOCK GAUSSIAN ELIMINATION

Gaver, Jacobs and Latouche (1984) have applied block gaussian
elimination to obtain the stationary distribution for finite level depen;
dent quasi birth-death processes. Bright and Taylor (1995) have sug-
gested applying this method to infinite systems and have given some
suggestions on where to truncate the system. They have also provided
some probabilistic interpretation to the scheme by identifying the level
dependent rate matrices R; which are generalizations of the matrix ge-
ometric rate matrix R in Neuts (1981) and which satisfy the equations

A+ RiAsp1) + RiRip1Aip02 =0.

11



Both of these methods eliminate the rightmost levels first, succes-
sively eliminating levels one at a time until the system under consider-

ation consists of the lowest level only.

One problem with this approach is that the decision of where to
truncate the system has to be made at the outset, when little informa-
tion is available. We will reverse this procedure, eliminating the lowest
levels first, so that the reduced system is always infinite and, instead of
truncating the system, we replace the reduced system with a homoge-
neous approximation. We can thus gradually increase the level where
the homogeneous extension begins until the tail probability above that
level is sufficiently small. Since the block Gaussian elimination part
of the procedure does not depend on the form of the generator above
the levels which are being eliminated, it is not necessary to restart the

procedure every time we increase the level where the extension begins.

Since we work in the opposite direction to that of Bright and Taylor
(1995), instead of encountering the rate matrices R;, we encounter the
level dependent generalizations R; of the dual R of R defined in Hajek
(1982). Whereas the elements of R; represent expected sojourn times
in states of level ¢ 4 1 given a chain which starts in level ¢, the elements
of R; represent sojourn times in the states of level ¢ — 1 given a chain

which starts in level .

Consider the equation y@) = o where @ is a generator or subgener-
ator. In order to obtain the stationary distribution we must solve this
equation with & = 0 and ) a generator while obtaining the distribution
and moments of the waiting time will require solution of the system with
a # 0 and @ a subgenerator. In applying block Gaussian elimination,
we divide the state space into two parts so that the balance equations

can be written

(Vo 11) [ 2 %ﬂ _ (a, a0)
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or, alternatively

Y:Q; = oy and Ys = (as - thtS)Qs_l (1'3)
where

Qf = Qr — QisQ; ' Qs and of = — Q7 Qst (1.4)

For a generator of the form in (1.1), we take ys = %o, as = ao,

Yt = [Y1,¥2,...] and oy = [a1,@z,...]. Then Qs = A1, Qs = Ao,
Qts = A and Q} has the form
Ay A O

Qf = | 422 Axn Ag
where A}, = A1 —Alegll Ago. The reduced system 4:Q; = o can now
be solved and the solution substituted into (1.3) to obtain 7,. When
combined with the solution for y;, this yields the entire solution y =
(¥s»ye). We can interpret the reduced system 7:Q} = oy as describing
the evolution of the Markov chain on the set of levels {1,2,...} ie.
this is how we would describe the system if we could only view the
chain when it was in one of those levels. There are two advantages to
using this procedure. First, if Q) is a generator (subgenerator), the above
calculations do not require subtractions , so the procedure is numerically
stable. Second, the matrix @} of the reduced system is also a generator
(subgenerator) for a (level dependent) QBD process. This allows us
to apply the process repeatedly, eliminating one level at each step. At
the ith step, we obtain a generator (subgenerator) which describes the
evolution of the chain on the subset of levels {i,7 4+ 1,...} and has the

form ,
"l A’I:O O O
Asr12 Air11 Aigipo 0 e
Q; = 0 Asroo Aipon Aigoo ... (1.5)
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where A} = A;1 — A;2(A]_ 1) Aj_10. This process is referred to
as the reduction phase of the algorithm. If the system is homoge-
neous above level N, then the reduced system with generator (sub-
generator) Qn can be solved using the methods in Neuts (1983)] to
obtain y; = [yn,Yn+1,...]. We can substitute this into (1.3) to obtain
Ys = Yn-—1, then substitute y; = [yn_1,yn,...] into (1.3) to obtain
Ys = [Yyn—2,Yn—-1] and so on, expanding the solution by one level at
a time until we obtain the entire solution y = [yo,%1....]. This pro-
cess is referred to as the expansion phase of the algorithm. The entire

algorithm can be summarized as follows:

Algorithm 1.1

Reduction Phase

7+ 0

Ay — Aot

ol +— Qg

Until 2 = N, do
Ay = An — Ao (Af 1) i
o —ay —af_1(Ai_y 1) im0
1—1+1

End

Middle Phase

Solve [yn, Yn+1,-.JQN = [&y, @N+t1,-..] Where @ is defined by

(1.5).
14



Expansion Phase

1+— N—1

Until 2 = 0, do
Yi — (o — Ysp14i41,2)(A5) 71
1—1—1

End

This algorithm (with o = 0) was applied by Boel and Talat (1994)
to a block tridiagonal generator with level dependent boundary. The
time complexity of the algorithm is clearly linear in N. When the
generator is finite with IV levels and homogeneous throughout, a similar
algorithm referred to as the folding algorithm (Ye and Li (1991) ) can
be applied with time complexity linear in logaN.

1.4 The Dual Rate Matrices

If we define the matrices R; = —A;, (A;_; 1)~", where the Aj; are
defined as in Algorithm 1.1, the recursion in the expansion phase can

be written (replacing y with z) as

Ti—1 = IL'ZRZ
This is similar to the equation z;11 = z;R; which is used in Bright and
Taylor. The recursion for the A%, can be expressed in terms of the R;

as follows:
R; = —Aip(Aim1 1+ Ri_1As 90)7? (1.6).

or
Aipro+ Rip1An + R RiA 10 =0.

The properties of block Gaussian elimination for generators guar-
antees that the R; are nonnegative and that the matrix inverted in (1.6)
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is nonsingular. The R; are the level dependent generalizations of the
dual rate matrix R defined in Hajek (1982) and the duals of the rate
matrices R; defined in Bright and Taylor (1995). The R; play the same
role in the M/G/1 paradigm as the rate matrices R; play in the GI/M/1
paradigm. Understanding the role of the duals R; requires two modifi-
cations to the discussion of the rate matrix R defined in the first chapter
of Neuts (1981): We consider generators of the M/G/1 type instead of
the GI/M/1 type and we include level dependence in the generator. The
analysis is not significantly different from that presented in Neuts (1981)
but we include the modified form for the sake of completeness. We be-
gin with discrete time Markov chains, because the analysis is simpler in
that context, and then present the modification required for continuous
time chains.

Consider a Markov chain with transition probability matrix of the

form
[Boi Boz Boz Boa ...7°
Bio Bii Bi2 Bis
P=| 0 By By B
0 0 B3y Bs;

- . . . . -

The fundamental property of P is that any transition can jump at
most one level at a time to the left. We define the taboo probability
Z'P((:;)(i_k,y) to be the probability that, starting in the state (, j), the
chain reaches (i — k,v) at time n without returning to the level 4 in
between. Note that if the system cannot return to level § in between it
can also not visit any level above ¢ since it must pass through level i to

get to ¢ — k from any level above i. The quantities zRg’Z) defined by
50 _ N5 p()
iftj, = ZiP 4,9)(i—k,v)
n=0

are of basic interest. ZR§’§> is the expected number of visits to the state
(¢ — k, v) before the first return to level i given that the chain starts at
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(4,7). The matrix with elements Z-R(k:)j,, will be denoted by R,gk) and
we will agree to set RZ(O) = I, the identity matrix, for all # > 0. We will
supress the superscript for the case k = 1 so that R; refers to Rﬁl) and
we refer to I—ABZ as the ith dual rate matrix of the Markov chain.. We also
denote the stationary distribution of the chain by x = [z¢, z1, .. .] where
each vector z; corresponds to level 7 and consists of scalar elements T3
representing the steady state probability of occupying the state (4, j).
The following proposition summarizes the required modifications to the
results in Section 1.2 of Neuts (1981).

Proposition 1.2: If the Markov Chain P is positive recurrent, then
fori>0
(i) B = BBy .. Ry,
(ii) B =320 B Bi_yi.
(i4) Ts_1 = 23 R;.
(i) Bie = Yjey R 5202411 Bigve.

Proof:

(i). Let n > k+ 1. By conditioning on the time r of the last visit to
the level ¢ — k and on the state (¢ — k, h) of that visit, before the chain
reaches (¢ —k — 1,v) at time n, we obtain, for n >k + 1

(n) N o) (n—r)
Pl ibo1) = D2 D i Nk P ikt
h r=0
Summation on n now yields

O (o ¢]
Ak+1)y (r) (n)
(R 1w = ZZZ’P Zj)(z-_k,y) Z i~k b z‘ik,h)(z‘—k—l,w
h r=0 n/=0

= Z[ng)]jh[éi—k]hu-
h

17



Thus R§k+1) = Rz(k)}?{i_k and the result follows by induction on k.

(ii). Clearly ZP((zg)(Z 1

(n) pr—1)
iPln-1m) = ZZ P -k Bi—k el
h k=1

= [Byo|;v- For n > 2 we have

by conditioning on the state (i — &, h) from which the state (i — 1,v) is

entered at time n. Summation on n yields the required result.

(iii). By conditioning on the time and the state of the last visit to level

i, if there is such a visit, we obtain the relation

(n) (n) (r) pln—r)
P15 i-1.5) = e i-1,5) 6 1,g>+ZZP@ L)) G0 6-1,)

v r=0

for n > 1 where the quantities P(( ; ))( ) represent the unrestricted prob-
ability the chain is in state (i/, ') at time n given that it started at
(i,7). We add these equations for n ranging from 1 to N and divide
the resulting sums by N. As N — oo, the left hand side tends to ;41
by virtue of the classical ergodic theorem for Markov Chains. Since the
sum » o>, P P (i—1,; 18 finite, the first term on the right hand side

(z—1,7)
tends to zero. The second term,

Z ZZ P iy Pomtovs

n=1r=0
L p(r)
_ el T
—ZNZOPu 1,5)Gw) ZZ L)
v r=

tends to ) =, [R; ]u; by an elementary summability argument, since
—1 Z o P(r)l )iy tends to z;, and Zn o ((an)(z 1.;) has the limit
zRJ,,.
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(iv). Since the chain is positive recurrent, if it is at some time in the state
(4,j) and a transition to the left of level i occurs, the chain eventually
returns to the state (7, j) with probability 1. Thus we can equate the
probability that the chain moves to the left with the probability that
the chain moves to the left and eventually crosses back to the level i
or above. By conditioning on the state (i1,j1) of the first visit (after
leaving (4, 4) ) to level ¢ or above and the time n and state (2, j2) of

the last visit to a level below ¢ before crossing back, we obtain

S lBalis = XY

.70 ’Ll>’1,'1,2<7, 31 jo m= 0
(n)
X P(?')J)(Z2a.j2) [Bz217’1_712+1] j

I LI S

J1 k=1 v=k+1 ji1

The result follows immediately. D

For continuous parameter Markov processes, we consider infinites-
imal generators () which posess the same basic form as the transition
probability matrix P except that the diagonal elements are negative and
each row of the generator sums to zero instead of one. If @ is positive
recurrent then there exists a positive vector x satisfying @ = 0 and

ze = 1. This balance equation can be rewritten

241

r ! !
Ly = E :kalc,i—k+1
k=0

where z; = hxz; A, BZ’-J- = jll—f—A;le-j, A; = —diag(B;1) and h is any
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real number. @) = 0 is equivalent to the equation 2’ P = 2’ where

By Bl Blg By ..
10 11 12 B13
p_| 0 B"0 B, B,
0 0 B B

is the transition matrix for the chain imbedded at each successive tran-
sition of the continuous time chain with generator ). If h is chosen
such that ze = 1 then x represents the stationary distribution for that
chain. Ler R/ denote the 4th dual rate matrix of this chain and define
R; by

Ry = MRIATE.

We refer to RZ as the ith dual rate matrix of the continuous time

chain ) and interpret its elements as follows: We can write

S [R5
[Riljv = (m) (A5

where [A;];; represents the inverse of the expected sojourn time in the
state (4,5). Thus [R;];, represents the time spent in state (i — 1,v)
before the first return to level i, measured in units of duration [AZ]J_Jl
which is the mean sojourn time in the state (i, ).

The continuous time analog of Proposition 1.2 follows from that

proposition and the definition R; = AZ-R,’&-A,&-__ll:

Proposition 1.3: If the Markov Chain @ is positive recurrent, then
fori >0
(i) R*™ = RR, 1. Ry
(i) 0= R B; ;.
(ii) 23—, = 23 R;.
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(i) Boe =Y BP 2, B e L

The recursion formula (44 )for the z; is clearly familiar and equation
(1.6) can be obtained from (%i)if we set Byy = Aja, B; = A and
Bz = Ay.

1.5 STATIONARY DISTRIBUTION

In order to approximate the stationary distribution of the exact
queue, we solve for the stationary distribution of the first approxima-
tion, in which the server is never idle at levels above IV, and increase
the value of N until the probability of states above that level becomes
insigificant. In order to obtain the stationary distribution for the ap-
proximate queue, we must solve the equation () = 0 where Q is a
generator. We can do this by executing Algorithm 1 with o = 0, and
setting the stationary distribution x equal to the result y. The re-
duction phase eliminates levels 0,1,...,N — 1 in that order and the
middle phase finds the component zy (up to a constant factor) by
applying methods in Neuts (1981). The expansion phase then finds
TN-1,TN—2,...,%o In that order. If we were to apply this algorithm
directly to the MAP/PH/1 retrial queue, the time complexity of the re-
duction phase would be O(Nm3n3) where m and n are the dimensions
of the arrival and service process representations respectively. We can
reduce this to O(Nm3n?) by taking advantage of the sparsity of Ay and
the A;s.

The interpretation of the matrices B; makes it clear that they must

o [M; T
ey 3]

since any chain started in a state (¢, ) in which the server is busy cannot

have the form
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reach level ¢ — 1 without first visiting some state at level 4 in which the
server is idle. This can also be shown by induction on the level i. If we
combine the definition R; = —A;2 (A;_; ;)" with the recursion for the
A}y given in Algorithm 1, we obtain, after substituting from (1.2), the
following recursion for the M; and &7

6L, = (i + 10T + JLAF]

where

vV i=—-Ie8MI®S+Dy®I)™?
J=vT(I® 8%
YV =—-[D1@8T +6F(D1 NI QS+ Dy®I)™!
L; = —[Dy —i0I +~F' (I ® S~ 1. (1.8)

The components z; = [29,z]] () € R™)i=0,1,...,N — 1 of the

stationary distribution are given by
zd =2 MyMpy_1 ... My,
0 T
The generator for the approximate queue has the form
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Ao A1n A 0

0 . . .
Q = AN2 AN1 ANO
Anpr2 A1 A

/ ’ /
2 Al AO

where Ag,A;1 and A;p are as in (1.2) for ¢ =0,1,...,N, A = D1 ® I,
A =T®S+Dy®1I, Ay =1® S5°47,

0
Ano = I:Dl ® I:' and AN+1,2 = [O I® SOBT] .

If we view this chain only when it is in level N, we can describe

the evolution by the generator

"o DO_NOI Dl@ﬁT‘f‘é‘]j\}(Dl@I)
N7 T®@SY T®S+Dy®I+R(I®SET)

where R is the minimal nonnegative solution to the matrix quadratic

equation
Di®I+RIQ®S+Dy®I)+ R*(I®S°6Y)=0. (1.10)

Methods for solving this equation are discussed in Neuts (1981).
We might think of A%, as if it was obtained from Qn (see (1.5)) by
truncating at some level above N, and by applying block Gaussian
elimination as in Gaver, Jacobs and Latouche (1984), (eliminating the
topmost level first and then successively lower levels, one at a time) until
only level N remained. In fact, since in practice we must terminate the
algorithm which obtains R after a finite number of steps, if we use the
algorithm X « 0 ; Loop{X «— —Ao(A; + X A3)~1} to obtain R instead
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of the usual one (X « 0 ; Loop{X « —(A4¢ + X2A2)A7'}), then this
characterization is correct. Neuts (1981) has suggested that the former
algorithm, while it usually requires less iterations than the latter to
converge to R, often requires more computation time because of the
effort required to invert the matrices. This description of A%, may not
be exactly correct if we use the latter algorithm however the connection
to block Gaussian elimination seems clear.

We can now obtain zn by solving 2 A%, = 0 or by solving

2% [Dy — NOI — (D; @ BT+

SH(D1®I)I®S+Dy®I+RI®SBT) IS5 =0
(1.11)

and then setting
ty = —aX [D1@BT +85(D1@N][I®S+De@I+R(I®S°FT) ™! (1.12)

and xy4; = ahR? for j = 1,2,.... Of course (1.11) must be solved

subject to a normalization condition. Define 7; and §; according to
=0 m = M;(ni—1 +e)

o=0 ; & =6le+ M. (1.13)

Then 2y = Sy 20, 2%én = YN ' zle and the normalization
condition ze = 1 can be written
o[y +én +e— (D1 @ BT+

SND1RI))I®S+Dy®I+RI®SBY))II—R)e=1
(1.14)

Once we have scaled z to satisfy (1.14), we will be interested in the

tail probability

o0
Py = sz‘e: 1——:17(])\/-(’)71\[ +§N) (1.15)
=N
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above level N — 1. We propose to increase N until Py < ¢ for some
small € € (0,1) and then replace x with the finite vector

xf:(1—PN+mNe)”‘1[xo,x1,...,scN]. (1.16)

We summarize this procedure as follows:

Algorithm 1.2

My, 63 ,m0,&0 < 0
N «+—0
Calculate R from (1.10)
Until Py < ¢, do
For i = N to N + n, Calculate M;,6], n; and & from (1.7), (1.8)
and (1.12)
N — N+n
Calculate 2 from (1.11) and (1.14)
Calculate Py from (1.15)
Choose a new integer step n
End Loop
Calculate z}; via (1.12)
Calculate xy_1,ZN_2,...,Zo from (1.9)
Approximate x with z; defined in (1.16)

In order to illustrate the methods developed in this chapter, we consider
a particular case of a MAP/PH/1 retrial queue and apply the methods
developed to the analysis of this queue. The example we consider has
retrial rate 0 = 2, service time distribution (3, S) with

—6 6 O
0 0 -6
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and arrival process (Dyg, D7) where

-3 2 0 o 0 .5
Dy=10 -2 1.8 Di=].2 0 0
0 0 -4 3 4 6

Figure 1.1 shows the estimate of the tail probability Py based on the
first approximation as well as a similar estimate based on the second
approximation with bounded retrial rate. From the graph, it is clear
that the tail probability of the second approximation dominates. In the
next section, we prove that this estimate is, in fact an upper bound on
the true tail probability. We chose to truncate the generator above level
N = 30 which yields an estimate for Py of approximately 1072. The
upper bound (from the second approximation) on the tail probability
above level N = 30 is 1.15 x 1072.

Figure 1.2 compares the cumulative distribution of the number of
customers in the system to the same distribution for a nonretrial queue
(i.e. with infinite buffer) with the same arrival and service processes.
As expected, the number of customers is smaller in the nonretrial queue
since, unlike the retrial queue, the server is never idle when the system is

nonempty.
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1.6 BOUND ON TAIL PROBABILITY

We refer to the queue with the homogeneous extension used by
Neuts and Rao (1990) (with bounded retrial rate) as the second ap-
proximation. Unlike the first approximation used in the previous sec-
tion, the rate matrix R associated with this extension depends on the
level N at which it begins and so must be recalculated if this level is
increased. However, it is a pessimistic approximation and so, under
certain conditions, can give us an upper bound on the tail probability
above level N in the exact queue. The first approximation can be used,
via Algorithm 1.2, to determine N without repeated calculations of R,
and the bound from the second approximation can be used afterward
as a check to guarantee that the tail probability of the exact queue is
sufficiently small.

In this section, we define a class of phase type distributions. The
tail probability of any MAP/PH/1 retrial queue with a service time dis-
tribution from this class is bounded above by the tail probability of the
second approximation. In order to prove this, we make use of theorems
in Massey (1987) to show that the second approximation stochastically
dominates the exact queue. Bright and Taylor (1995) have applied this
method, considering service time distributions in which service comple-
tion can occur from any stage of service.

We begin by presenting some theoretical results from Massey
(1987). For a set E, <g is a partial order on F if

(i) s<gs VseFE
(ii) s<gptand t <g s imply s =t
(iii) s <g t and t <g u imply s <g u.

Consider a Markov process on a state space F upon which is defined
a partial order <g. For any subset I' of E we define I'! = {yly >g =
for some z € I'}. A subset T is said to be an increasing set if I' = I'T.
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The partial order on F induces a partial order on probability measures
defined on E: If p and ¢ are probaility measures , we say p <g ¢ if
p(I') < q(T") for all increasing sets I' C E. We can also define a partial
order on generators for Markov processes on E as follows: If A and B
are bounded linear operators on ¢;(E) we say that A <g B provided
Aer <g Ber for all increasing sets I' C E where er denotes the indicator
function for the set I'. Proposition 3.1 in Massey (1987) proves that
these are, in fact, partial orders. A generator A for a Markov process
on F is said to be strongly monotone if for all probability vectors p and
qin 41(E), p <p ¢ == p exp(At) <g q exp(At) for all t > 0. A Markov
process with generator B is said to stochastically dominate the process
with generator A if p <gp ¢ = p exp(At) <g q exp(Bt) for all t > 0.

According to Theorem 3.4 in Massey (1987), if A and B are
bounded, A <g B and one of A or B is monotone, then the process
with generator B stochastically dominates the process with generator
A. Brandt and Last (1993) have removed the requirement of bounded
generators from Theorem 5.3 in Masssey and their version can be used
to generalize Theorem 3.4 to the unbounded case as well. We will also
make use of Theorem 4.1 in Massey which can be similarly generalized

to the unbounded case.

A phase type distribution is the distribution of the time to absorp-
tion in a finite absorbing Markov chain. For distributions in class 1
defined below, the associated Markov chains are monotonic by virtue of
Theorem 4.1 in Massey (1987). This monotonicity is inherited by the
Markov chain representing the MAP/PH/1 retrial queue with the same
service time distribution. Theorem 3.4 in Massey can then be used to
show that the second approximation stochastically dominates the exact

queue and so has a larger tail probability.

Definition 1.1: We say that a phase type distribution with repre-
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sentation (5,S5) on the state space o belongs to Class 1 if there ex-
ists a partial order (denoted by <;) on the state space o = {0} U o,
({0} represents the absorbing state in which service is completed), a
set of nonnegative scalars {y;|k = 1,..., K} and a set of functions
{fe:0f > Rlk=1,...,K} such that

(1). [Ble >0 = £ € max(o})
(2). p
. S0 s -
s= 1% ol > w(@() 1
where for any function f: ¥ — o%, ®(f) is the matrix defined by

[@(f))i5 = { y =T

0 otherwise

(3). The fuctions {fx} are monotone:

i <s § = fu(®) <s fx(4) []

This class of distributions has the following closure property:

Proposition 1.4: Class 1 is closed under convolution.

Proof: Let (o,S) and (8,T) belong to class 1 and denote their
convolution by (n, H) where

77T=(OAT,O) H = [S SOﬂle‘

0 T

We denote the state space associated with this representation by o7
op ={(0,9)]i € 0{} U{(1,5)Ij € 05}
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(of = 04 U {0}). Let <, and <; denote the partial orders on o, and
o/ respectively and define the partial order <; on o} according to the

following;:

(i) (0,0) <p (0,4) <n (1,5) Vieo!, jeco,
(i) (0,4) <p (0,5) iff i<;3j.
(i) (1,7) <p (1,5) iff i<s3.

Let {fx|lk = 1,...,K} and {gx|k = 1,..., K;} be the monotone
fuctions (defined on o, and oy respectively) in properties (2) and (3)
of the definition of Class 1. Define the functions {hg, : 05 — orlk =
L...,Ks + K¢, L€, [B]e> 0} according to:

0,8  f(§)=0 and k<K,
hee(1,5) = § (L, fu(5))  fo(4) #0 and k<K,
(1,7) otherwise

5 J0,9k-k,(5)) k> K,
hre(0,5) = { (0, 5) otherwise

Let v and 0 denote the scalars associated with f and g respec-
tively in property (2) of the definition of class 1. With each function

hie we associate the scalar

e, — L Bl k<K,
ke 6B k> K,
Then we have

Ks+Kt

H*:[HOO ](:)IJ: Z Zeke(@(hkg)—f)

k=1 EEGt

It remains to show that the hyy are monotonic with respect to <j,.
We consider separately the three cases ((i), (ii) and (iii above) which

define the partial order <j:
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(1)- Pre(0,%) <n (0,€) <n hre(1,5).

(ii). Let i <; 5. If K < K, then hke(o, Z) = (0, ’&) < (O,j) = hkg(o,j).
If k > Ksa then h’kﬁ(oa Z) - (Oagk—Ks(i)) Sh (07gk——Ks (])) - hkﬁ(07j)'

(iii). Let ¢ <, 5. If k < K, and fi (%) # 0 then hge(1,1) = (1, fr(4)) <n
(1, f(y)) = hie(1,7). If k < K, and fr(?) = 0, then hie(1,7) = (0,£) <p
h/cg(l,j). If £k > K, then hkg(l,i) = (l,i) <(L,j) = hie(1, 7).

Thus ¢ <p, 7 = fre(?) <p fre(7) and the proposition is proved. D

It can easily be shown that hyperexponential distributions are in
class 1. A Coxian distribution is a member of this class if the probability
of service completion after each stage increases monotonically with the
maximum number of stages ahead (i.e. the number of stages left to visit
for a customer who visits every stage).

Asmussen and Nerman (1991) have applied the EM algorithm, a
maximum likelihood approach, to fitting arbitrary phase type distribu-
tions to empirical data. An implementation under the name EMPHT
by Haggstrom, Asmussen and Nerman (1991) allows the user to specify
which transitions between states of the underlying process are allowed.
This implementation could thus be used to fit phase type distributions
which are convolutions of hyperexponentials and thus members of class
1. It has been demonstrated empirically (see Whitt (1984)) that for
queues with service time distriutions having coefficients of variation
smaller than 1.0, it is often sufficient to match the first two moments of
the distribution to obtain a good approximation. We can always match
the first two moments of a distribution with c¢.v. ¢ < 1 to a mixture of
two Erlang distributions of order n and n+1 and common rate parame-
ter where 1/(n+1) < ¢ < 1/n. These distributions are members of class
1. Hyperexponential distributions could be used ( see Altiok (1985)) to
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match the first three moments for the case ¢ > 1.0. If empirical service
time moments can be matched to a distribution in this class, it would
be possible to obtain bounds on tail probabilities for MAP/PH/1 retrial
queues with the chosen service time distribution.

The following proposition applies a theorem (4.1) from Massey
(1987) to show that a MAP/PH/1 retrial queue is strongly monotone if

the service time distribution is a member of class 1.

Proposition 1.5: If the service time distribution (8,S) for a
MAP/PH/1 retrial queue is in class 1, then the queue is strongly mono-
tone with respect to the following partial order:

(r,s,t) < (', 8",t) iff s=¢, r<r and (r<v or t<, t')
(1.17)
where r,s and t represent the number of customers in orbit, phase of

arrival and phase of service (t = 0 if server is idle) respectively.

Proof: Let vx and fi be the scalars and functions referred to in

the defiition of class 1 and define the following functions and scalars:

F]g(T',S,t):(’l",S,fk(t)> k:13'°'7Ks
0 | (r4,0) §=1 .
dij(r’ 5,t) = {(7‘, s,t) otherwise Li=1L...,m
655 = [Dols;

(r,5,8)  s=1i, t=0 and [B]¢>0
d%jg(r,s,t): (r+1,5,t) s=4i, t#0 and [Bl;>0
(r,s,t) otherwise
6ij0 = [D1]s;[Ble

(r—1,8¢4) t=0 and r>j
(r,s,t) otherwise

Oje(r, s,t) = {
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0, = 0[Be. (1.18)

The generator for the queue can now be expressed as

K,
Q=Y w@E)-D+ 3 &) -1)
k=1

i#£je{l,...,m} (119)
+ Z §50(®(dije) — 1) + Z Z 0;0(®(Oje) — I).
=1 3=0 {¢|[B].>0}

It is easy to see that dgj is monotonic with respect to the given
partial order. F}, is monotone by virtue of property (3) of the definition
of class 1 and O, and dj;, are monotone by virtue of property (1) of that
definition. The queue is thus monotone with respect to the given partial

order by theorem 4.1 in Massey (1987) and an extension to unbounded
generators obtained from Brandt and Last (1993). D

Note, as a corollary to Proposition 1.5, that the second approxima-
tion for the queue is also monotone. We can obtain this approximation
by replacing the infinite upper limit in the expression for Q) with N. We

can now compare the exact queue to the second approximation.

Proposition 1.6: If the service time distribution for a MAP/PH/1
retrial queue ts in class 1 then the second approzimation (i.e. where the
total rate of retrial attempts from orbit is bounded by NO) stochastically
dominates the exact queue with respect to the partial order (1.17).

Proof: Let Q and @’ denote respectively the generators for the ex-
act queue and the approximation. We can obtain ()’ from the expression
(19) for @ if we replace ©;, with

(r—1,8¢) t=0, j<r and j<N

(r,s,t) otherwise (1.20)

Oy(r, 8,t) = {
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Since ©j; < O, we can show that Q < @ by an argument similar
to the proof of Theorem 4.2 in Massey (1987). The result is proved by
applying Proposition 1.5 together with Theorem 3.4 in Massey .

This stochastic dominance clearly guarantees that the tail probabil-
ity of the second approximation is larger than that of the exact queue.
Since the stochastic dominance holds for all time, it may be possible
to obtain similar results concerning other performance criteria, however

we do not consider these here.

1.7  DISTRIBUTION OF THE NUMBER OF RETRIALS

In the following sections, we assume the following approximate form

for the generator of the queue:

Aoy Ao O ... :
Az A Ay 0
o= o - . .
. L4
i An2 By
where
Bn1=An1 + 0 0

0 R(I®S96T)
and R is the solution of (1.10). This is the generator which describes the
evolution of the first approximation on the set of levels {0,1,..., N}.
For retrial queues it is natural to measure the waiting time not
only in absolute units but also by the number of retrials performed by
an arbitrary customer. It is an important quantity in itself because
it determines the additional load on control devices for some systems.
Let n denote the number of retrials performed by a randomly chosen

customer before entering into service. We obtain the probability of
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immediate service P(n = 0) as follows. Let @, be the matrix constaining
the elements of () which correspond to transitions in which a customer
arrives and, finding the server idle, begins his service immediately. @,

is block diagonal with blocks

[0 Dy®pT
ae[o Pos]

Similarily, let ); be the matrix containing the elements of Q cor-
responding to transitions where an arriving customer enters the orbit.
Q) is obtained from @ by deleting the diagonal and subdiagonal blocks.
Also define Qo = Q@ —Q; —Q:. We can find the probability that an arbi-
trary customer enters service immediately upon arrival by considering

an absorbing Markov chain with the following generator:

QO Qs Qt
Q=10 0 0
0O 0 O

The stationary distribution of states after an arbitrary arrival is

given by
T, = x(Qs + Qt)
¢ x(@s + Qt)e .

This is the stationary vector of the transition probability matrix

—Qo 1 (Qs + Q¢) which evolves the system from one arrival to the next.
The probability of immediate service is just the probability of eventual
absorption into the “s group ”of states given that we start the chain at

an arbitrary arrival. This probability is given by

P(n=0) = —2,Q; Qe — x(Q:Z%ZQt)e' (1.21)

The stationary distribution of states after an arrival which enters

the orbit is given by

Q)
Ty =

A
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This is the stationary vector of the transition probability matrix —(Qo+
®@s)"1Q; which evolves the system from one orbit entry to the next.
Clearly x, and z; are easy to calculate (in O(Nm?n?) time) once z is
known.

The conditional distribution of the number n of retrials performed

by a customer who enters the orbit is given by the following:

Proposition 1.7: The conditional probability distribution for the num-
ber of retrials n per customer in an M/PH/1 retrial queue is given by:

P(n=kln > 0) = x; [B0(0 — Q)] (I — Py)e

Proof: Let pF € R (k = 0,1,2,...) be such that p@jj) is the
probability that a randomly chosen customer makes at least k retrials
(not including the request for service upon arrival) before being served
and that the system is in the state (¢, ) immediately after the k — 1st
retrial. We consider the request for service made immediately upon
arrival to be the zeroth retrial. Similarly, let ¢* € R be such that
qé“z., 7 is the probability that the customer makes at least k retrials and
that the system is in the state (4, j) immediately before the kth retrial.
If the system is in equilibrium , then ¢° = z; (the stationary distribution
after arrivals) and p! = z,P,. By conditioning on the time s between
the k — Ist and kth retrial, (recall s is exponentially distributed with

mean 6~1) we obtain
k_ ok [ .k —1
g =p / 0 exp(—0s) exp(Qs)ds = p*0(0I — Q)™ ".
0

Combining this with the relation p* = ¢®*~1 P, yields, by induction on
k,

k 11k

q° =z, [PbO(OI - Q) ] .
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After each retrial, the customer enters service if the server is idle so that
P(n=k|n >0)=q¢*(I — B).

The operator 8(6 —Q) ! is a stochastic matrix whose elements are
the transition probabilities for the Markov chain embedded at successive
retrials. Premultiplying by P, creates a substochastic matrix which is
identical to 0(61 — Q)1 except for the rows corresponding to idle states
(where the server is idle) which become zero. This allows the system to
escape from these states to an absorbing state which we can add to the
state space and which corresponds to the customer in question having
already left the orbit. The distribution of the number of retrials is of
phase type with infinite dimensional representation (z, P,0(01 — Q)™ 1).
We can calculate the action of the operator 8(0I — @Q)~! on a vector
recursively if we can solve equations of the form y(6I — Q) = «. This
can be done by making the substitution Dy «— Do—6I and then applying
the following :

Algorithm 1.3

My, 88 0

Fori=1,...,N, do: Calculate L; vF, M; and 8] from (1.7) and
(1.8)

Calculate R from (1.10)

CY6<—O£0

Fori=1,...,N, do: o, —a;+ o} Y;

YN — oy Xn

Fori=N,N—1,...,0do: yi<—a;Xi+yi+1Ri+1
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where

Y L L XY IN

0 T[I+(I®S%Livf]

X;=(—4;) " = [ L Loy }

Ti(I® S°)L; T[I+ (I ® 8% L]

~ [ M; 8T
a=[M )

Recall that, for this particular application we have made the sub-
stitution Do «— Dy — 01 before executing Algorithm 1.3 so that R ,L;,
v¥, M; and & are different than they were in executing Algorithm 1.2.
The elements of R; must now be interpreted as expected sojourn times
in level ¢ — 1 given a chain starting in level i before the first return to
level ¢ or the next retrial of our tagged customer. The interpretation
of R is also similarly altered. Clearly we must apply this algorithm M
times to calculate P(n = k) for k = 1,2,..., M. However, the first
part of Algorithm 1.3, which has a time complexity of O(Nm3n?), only
needs to be executed once. The time required to get all M probabilities
is thus O(Nm3n?) + O(NMm?2n?). Figure 1.3 shows the cumulative
distribution of the number of retrials for the example in Section 1.5.
The distribution in the figure is the unconditional one: P(n < k) and
not P(n < kln > 0).
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1.8 WAITING TIME DISTRIBUTION

If a customer does not enter service immediately, his waiting time
in the orbit has a phase type distribution with represensation (z;, @ —
6Pr) where Pr = [ — Py is the projection operator associated with
states in which the server is idle. The term —8 P represents a const%c,é
flow of probability (with rate §) from idle states into the absorbing
state corresponding to the tagged customer having entered service. The
cumulative distribution function of the waiting time is thus given by

F(t) = 1 —ziexp{(Q — 6P; ) tle.

Since we have already assumed an approximation in which () is finite
dimensional. we can evaluate this expression by applying the randomiza-
tion method as foilows: If A is the absolute value of the largest diagonal

40

i
!
!
;



element of @, then P = I+ A~1(Q—6P) is substochastic and the series
{x:P*elk = 0,1,...} will converge to zero as k — co. Then we can

expect a reasonable convergence for the Taylor series expansion

x

F(t) = Z

k=0

e:vp( At)(1 — z; PFe).

We can also obtain an approximate upper bound on the error
due to truncating the series by applying Stirlings approximation k! ~
kFexp(—k)v/2rk. If k is larger than At and large enough to merit the
use of Stirling’s approximation (about 1% error for k = 10 or .1% error
for k = 50) then

d (At)*exp(—At) a 1
%l”( ! ”l”(z>_%<0

so that the error A F'(t) due to truncating the series at k = K approx-
imately satisfies

AxF(t) < ()\t)Kea:p( M) & Z 2, Pre

_ (At)E exp(—At)
K!

LUtPK(I -— P)_le.

Since this bound is an increasing function of ¢, we can choose K such
that Ag F'(tmaz) < € where t,,44 is the latest time at which we wish to
evaluate F'(t) and the approximation will obey the error bound for all
smaller times as well.

Figure 1.4 compares the distributions of waiting time for the retrial
queue example from section 1.5 and for a nonretrial queue with infinite

waiting room and identical arrival and service processes.
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The problem with this method is that. although it quite
scraightforward: it requires a long time to implement. In general, the
randomization method is not renowned for its speed of implementation.
It is normally used for obtaining the transient behavior of queues. If
information is required about the transient behavior of a retrial queue
during the waiting time of a customer, we can obtain this information
without much extra effort. For example, we may be interested in the
evolution of measures such as the mean number in the orbit during the
waiting time of a customer. The conditional distribution of states at
time t into the retrial of a customer given that the customer is still in
orbit is given by yexp{(Q — 0P;)t]/(1 — F(t)) if y is the distribution of
states at the arrival time of the customer. Note that we may want to
take y different from z; if we are interested in the waiting time of a cus-

romer who arrives when the svstem is not in equilibrium. For example.
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we may be interested in the waiting time as a function of the number
of customers in orbit at the time of arrival.

One factor contributing significantly to the computational effort re-
quired for this method is the short length of the time step 1/\. Since ) is
the fastest transition rate in the queue, it will almost always be given by
A = N the maximum composite retrial rate. We are essentially taking
into account every retrial, successful or not, of every customer. How-
ever, the very short interretrial times at high levels do not contribute
very much to the total retrial time. Thus we can expect to obtain a
good approximation by omitting the time that the server is idle when
the queue is above a certain level, say N;. This will clearly yield a lower
bound on the waiting time. We can accomplish this by calculating the
distribution of waiting time using the generator that describes the evo-
lution of the queue on the subset of states corresponding to idle and
busy states below level N; and only busy states above level N;. We can
obtain this generator by applying block Gaussian elimination to elimi-
nate the idle states above level N;. We accomplish this by making the
replacements

A — D1 ®1T

A —IQS+ Do ® I+ (I®S%)(E0I — Do) (D, ® 7)
Azp 10310 — D)~ ® S96T

for 7 > N;. The time step for calculating the lower bound will be 1 /0Ny,
which is larger than the original time step. A good rule of thumb for
estimating N; is that approximately Zi\i N, ze of the waiting time is
discarded (recall 20 is the vector of stationary probabilities correspond-
ing to the idle states at level 4, if the queue does not stray very far from
equilibrium during the waiting period.

We can obtain an upper bound on the waiting time by considering

the queue in which the composite retrial rate for level i is slowed down
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to Nof for ¢ > Ns and by not allowing the tagged customer to retry
above level Na. Prohibiting retrials for the tagged customer above level
Ny is necessary since, otherwise, slowing down the retrial rate of the
other customers would give the tagged customer an advantage and we
would not obtain an upper bound. A formal argument establishing this
as an upper bound can be obtained from Proposition 1.6 if we modify
the partial order (1.17) so that the absorbing state (tagged customer in
service) is smaller than all other states and delete the partial order re-
lations between states with different server configurations (idle or busy)
below level Ny. The partial order then becomes : (r,s,t) < (r/,¢,t) iff
s=sand (r<r ort<s;t')and (' > Ng or ¢,t’ =0 or t,t’ # 0). The
partial orders between idle and busy states below level Ny are removed
because otherwise, in the mappings 07, defined in (1.20), the transi-
tions from idle states to the lowest state would “cross over ”identity
transitions in the busy states. This would violate the monotonicity of
the ©,. We omit the details of the proof.

Both of the above approximations above will reduce the compu-
tation time by increasing the step size. We expect that the rate of
convergence would be approximately linear in the relative increase in
stepsize (N/N; or N/Nj) since the mean number of steps in a given
time interval is inversely proportional to the size of the step. Although
this would represent some time savings, the method is still, by its nature
time consuming and faster approximations would be desirable.

A faster approximation can be obtained as follows: The joint dis-
tribution of the number of retrials and the inter-retrial times for all of

the retrials is given by
fr(ti,. .., ty) =z (Bexp[—0t,|exp[Qt1]Fy) . . .
X (Qexp[—0ty_1|exp|Qty—1] Py)
x (Oezp[—0tilexp|Qtr](I — Py))e.
The joint distribution of the number of retrials and the jth (j < k)
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retrial time is
T (t;) =6exp[—6t;]z,(0(0I — Q)™ Py)I 1
x explQt;]1Py(0(01 — Q)™ Py)*~9=1(0(6I — Q)™ (I — P,))e

Because of the presence of the factor exp[Qt;], it is clear that the
conditional distribution of the jth retrial time given that there are k
retrials is not exponential. Also, the jth retrial time cannot be con-
sidered independent of the number of retrials. However, the effect of
exp[Qt;] is not very important when ¢; is large because of the expo-
nential damping factor exp[—6t;]. If the jth retrial time is small, then
the evolution of the queue through this relatively short time should not
have a great effect on the distribution of the number of retrials which
follow it. If we make the zeroth order approximation exp[Qt;] ~ I, we
obtain fi(t;) = P(n = k)fexp[—0t;] so that, in our approximation, ¢; is
exponentially distributed and independent of the number of retrials. If
we also assume that all of the retrial times in a sequence ending in ab-
sorption (tagged customer enters service) after the kth are independent,
we obtain the following approximation for the distribution of waiting
time in the orbit:

Puw(t) =P(n = 0)4(t)

Lo (1:22)

+ (1 - P(n=0)) ZP(n = k|n > O)(—k—gk—l—)—!tk_
k=1

where (%) is the Dirac delta function centered at zero. This assumption
of independence should not be too far from the truth since the retrial
times are related only by the fact that the server is busy at the end of
each of them, except for the last. An exact expression for the conditional

waiting time distribution is given by

0o ¢ t—t; t—-Z;:ll t;
FO) =) m U dt1/ dtz.../ dty,
—1 0 0 0

X (Oexp[(Q — OI)t1]Py) . .. (Bexp[(Q — O1)tx_1]Ps)
x exp((Q — 01)tk](I — Py)e.
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Unfortunately, we have no bound on the error for this approximation
but it performs remarkably well in the example considered. The exact
waiting time distribution is compared to the approximation in figure
1.5.

Figure 1.5: CDF of Waiting Time (Exact and Approximate
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1.9 CONDITIONAL WAITING TIME MOMENTS

If only the moments of the waiting time distribution are required,
it is possible to obtain these without calculating the entire distribution.
The waiting time of a customer not receiving immediate service has a
phase type distribution with representation (z¢, @ —9F) I and so the jth

moment is given by

IV[j = (—l)jj!ﬂ)t(Q - GP[)’je.

' 1In order to obtain these moments. we need to solve systems of the form

y(Q' = «v. This can be done by applying Algorithm 1.3 if we first replace
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the recursion for L; in (1.8) with
L;=—[Do— (i +1)0I + 7T (I ® §°)~1.

This requires O(Nm3n?) + O(NMm?n?) time to calculate the first
M moments. Again, R; and R must be reinterpreted as expected so-
journ times before the first return to some initial level or the entry into

service of our tagged customer.

1.10 LEVEL DEPENDENT EXTENSION:
LOCAL AREA NETWORK WITH CSMA PROTOCOL

There are some models of intereste closely related to the
MAP/PH/1 retrial queue which posess some level dependence other
than that of the composite retrial rate. Notably, models with a finite
number of customers, such as models of small computer networks, often
posess such level dependence. Coyle and Liu (1985) presented a matrix
representation of a network with carrier sense multiple access protocol
and collision detection. In this protocol, users check a single shared bus
to determine if it is busy before sending a packet onto the bus. If the
bus is busy, the user attempts transmission again at some exponentially
distributed time later. When a user begins transmission, it requires
some time (PH distributed in the Coyle and Liu model) for other users
to detect the transmission during which time another user may begin
transmitting. This is known as a collision and, when it occurs, both
users must retransmit and the bus requires some time (PH distributed)
to reset itself and become available for transmission once again. Users
which have messages to send retry periodically and are considered busy
until the message is sent. We will refer to customers with no message
to send as active (since they are presumably active in generating the

messages). It is assumed that messages to be sent on the bus arrive to
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each non-busy user according to a Poisson process.

We relax the assumption of Poisson arrivals to the active users
and allow the time between the appearance of successive messages at
each active user to have a two dimensional phase type distribution.
The arrival process to the bus then becomes a level dependent MAP.
Assuming a two dimensional representation allows us to reduce the size
of the representation for the arrival process by lumping together states
with the same number of customers in the second phase of their arrival
process. The dimension of the arrival process then grows only linearly
with the number of active stations. In order to simplify the model, we
ignore the possibility of collisions and assume that each user becomes
aware of a busy bus immediately. The collisions can be returned to
the model without significantly altering the method of analysis, but
since our purpose is simply to give an example of a level dependent
MAP/PH/1 queue, we omit that aspect from this model.

The Network is modelled as a PHy/PH/1//N retrial queue. The
interarrival time for each of the NV sources has a phase type distribution
with representation («,T") where a = (a1, as) and

T — [—(tl +m) t .
ta —(t2 +2)

The time required to transmit a message (service time) has a phase
type distribution with m-dimensional representation (87,S5). The re-
trial rate 0 is the reciprocal of the mean time between checks of the bus
for a customer in orbit. The state space for the Markov chain which
models the network is given by {(i,4,k,¢)[i =0,1,...,M;5=0,1;k =
0,N—i—6;1;£=1,...,m;} where mg = 1, myp = m and the Kroenecker
;1 is equal to one if j = 1 and zero otherwise. The labels ¢, 5, k and £
represent respectively the number of customers (stations) in orbit, the
number of customers (stations) in service (currently transmitting via
the bus), the number of customers in phase two of their two state in-
terarrival process and the phase of service. If we order the state space
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so that the labels (4, j, k, £) appear in lexicographic order, the generator
for the Markov chain has the following structure:

-AO,I Aogo 0 .. i
Ao A Ay 0
o= o ) . :
; An—_20
A An—12 An—1 ]
where:
Ao — | ON—it 15N 0

20 0 Dn_i-1®1

A — I:ON—'L'+1><N—7L+2 0IN_i41 @ BT }

m(N—2)xm(N—i+1)
Cn—i — 01N _s41 Dy—_; ® 3T
g = 2
Aix [ UN_Z'®SO INi QS+ Cn_i—1®1 (1 3)

Ayori— [(11 —i0I, D, ®ﬁT}

’ Ui ® Sg S
and S® = —Se. This is the generator for a MAP/PH/1//N retrial queue
with level dependent arrival process represented by (C;, D;) when there
are ¢ active customers. Note that if there are N — 1 customers in orbit
and one active customer, the active customer goes directly into service
if he attempts to seize the bus before the next retrial from orbit. If there
are N — 1 customers in orbit and one in service, then the customer in
service becomes active when he completes his service. There is thus no
way for all N customers to be in orbit at the same time. This is why
there is no level N represented in the generator.

The matrices C;, D; and U; are given by

[ Cio1  Cioo
Ci12 . E

C; = . . € Risr1)x(+1)
’ ) Ci,i—1,0
B Cii2 Ciz;1
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[ a;01 ]
daa -
Di= |7 € Riir1)xi

odis-1,1

i dsza

oy Qo

U; = € Riir1)x(i+2)

a1 Q2

where I; is the i-dimensional identity matrix and the scalars c;;; and

d;;1, are defined by
cijo = (1 — J)t Cijo = Jta cij1 = —(j(ta +72) + (@ = 5)(t1 + ™))

dijo = jy2  dij1 = (i —j)m.

If there are i active customers and j of them are in phase 2 of
their arrival process, then i — j are in phase 1. c¢;;0 is the rate of
phase 1 customers switching to phase 2 and c¢;;o is the rate of phase 2
customers switching to phase 1. d;;; and d;;2 are the arrival rates of
customers in phase 1 and phase 2 respectively. D; has no superdiagonal
elements because the number of customers in phase 2 of their arrival
process cannot increase due to a customer arriving to join the orbit or
service. This number will remain the same (d;;1) if a phase 1 customer
joins the orbit or service and will decrease by one (d;;2) if a phase 2
customer joins the orbit or service. The form of U; arises from the
fact that the number of phase 2 customers will remain the same if a
customer completes service and begins an arrival process in phase 1
(with probability c;) and will increase by one if a customer completes
service and joins the active customers in phase 2 (with probability as)
of their arrival processes.

The solution method is similar to the one used in the previous
sections except that the recusion relations (1.7) and (1.8) are altered,
to take into account the form of the level dependent arrival process.
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After substituting from (1.23), we obtain the following recursion for the
M; and 67

8o =0
Mo =0
8L = (i + 1)0[vT + J;LAT]
My = (i + 1)0J; L, (1.24)

where

Ji =v] (Un—; ® S°)
V= -Dn-i @ BT + 6T (Dn_s @ D](UN—; @ S+ Cn—i1 @ It
L; = _[CN——i — 0N _;11 + ’)’;'T(UN_@' & SO)]ml. (1.25)

Since the matrices In_; ® S +Cn_;—1 ® I are block tridiagonal, we
can use block gaussian elimination to apply its inverse to a row vector
of the appropriate dimension in O((N — i)m3) + O((N — i)m?) time
instead of the O((N — ¢)3>m3) time required to invert a general matrix
of the same dimension. The ith step of the algorithm thus requires
O((N — 4)3) + O((N — i)m3) + O((N — 4)?>m?) time and the entire
algorithm requires O(N*) + O(N?m3) + O(N3m?) time. Since we only
have to invert matrices of dimension N or m instead of matrices of
dimension N'm, software limitations on the size of matrices which can
be inverted may be less of a problem.

In order to calculate the conditional probabilities P(n = k|n > 0)
of the number of retrials we must be able to solve equations of the

form y(0I — Q) = a. This can be done by making the substitutions
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C; «— C; — 01,11 and then applying Algorithm 1.3 with the following
substitution for the matrices X; and Y;:

0 LyF(Dn—i—1 ® 1) }

= (—A' )14, =
Y =(—441)"" 4o {0 Tillin—i) + (Un—-: ® SO) Ly ]

X = (=A™
- L LT ;
N T%(UN—z‘ X SO)LZ' Tz'[Im(N—-i) + (UN——z' &® SO)LZ")/;-F
Ti=—-(IN-i®S+Cn_s1 @)™t  i=0,...,.N—1

and Ty_1; = —S~! We must apply the algorithm M times to calculate
P(n =kln > 0) for k =1,2,..., M. Since the first part of Algorithm
1.3, which has a time complexity of O(N*)+O(N?m3)+O(N3m?2), only
needs to be executed once, the time required to get all M probabilities
is O(N*) + O(N?*m3) + O(N3m?) + O(MN?m?) + O(MN3m).

In order to calculate the moments of the waiting time distribution,

we must replace the recusion for L; in (1.25) with
Ly = =[Cn—i = (i + DIy i1 + 7 (Un—: @ 8]

and apply algorithm 1.4 to solve systems of the form y(Q — 6P;) = .
We do not include any further detailed analysis of the model since
our purpose was merely to give an example of modifications required to
adapt the method to queues with level dependence. This provides an
idea of the range of models to which the method is applicable. If the
number of stations is large (more than 20-30 or so), an adaptation of
the methods in Chapter Four may provide a good approximation which
requires significantly less computational effort than the exact solution
. We leave the description of this approximation method to Chapter

Four.

1.11 CONCLUSION
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We have derived a numerical method for obtaining the stationary
distribution of states and the distributions of waiting time and the num-
ber of retrials for a MAP/PH/1 retrial queue. We have also obtained a
relatively fast method for obtaining the moments of the waiting time.
This extends previous models by allowing the inclusion of correlation in
the arrival process as well as nonexponentially distributed interarrival
times.

We have also derived a method for obtaining bounds on probability
lost due truncation by considering approximations which are monotonic
and homogeneous above some level. In doing so, we have identified a
class of phase type distributions which is closed under convolution and
which, we believe , may give rise to monotone processes when it appears
in models other than the MAP /PH/1 retrial queue as well. The strategy
of using the M/G/1 paradigm and focusing on the duals R; of the rate
matrices R; of the GI/M/1 paradigm allows us to delay decisions about
where to truncate or approximate level dependent QBD processes until
we have sufficient information to guarantee a certain level of accuracy
in the approximation. This strategy should prove useful in the analysis
of general level dependent QBD processes. We have also demonstrated
that the method of this chapter can be extended to QBD processes with
level dependence other than the composite retrial rate, as in the case
of the CSMA LAN model. In the following chapter, we present some
analytical results for the special case of the M/PH/1 retrial queue which
are not available in the more general model. In subsequent chapters,
we show how the methods of this chapter can be adapted and extended
to other related retrial models such as retrial queues with buffers and

retrial queues with non-exponential retrial times.
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CHAPTER TWO

THE M/PH/1 RETRIAL QUEUE

1.1 INTRODUCTION

Keilson et al. (1968) derived the generating function of the station-
ary distribution of queue length for the M/G/1 retrial queue with no
loss or buffer. Obtaining the distribution itself, however, can be cum-
bersome in practice. The expression for the generating function involves
an integral which may be difficult to solve explicitly and the z-transform

thus obtained may also be difficult to invert.

Greenberg (1989) developed a method to approximate the steady
state distribution by assuming that returning customers see time av-
erages. Greenberg and Wolff (1987) have shown that this assumption

leads to an upper bound on server utilization.

De Kok (1984) derived separate expressions for the generating func-
tions of the number of customers in the queue when the server is busy
and when the server is idle. Artalejo (1993) solved the integral in the
latter expression explicitly for the special case of the M/Hy/1 retrial
queue, inverted the transform and used the Kolmogrov equations di-
rectly to solve for the busy probabilities in terms of the idle ones.

De Kok also developed a numerical method for some special cases
including service time distributions which are finite mixtures of Erlangs
with common intensity. Since any phase type distribution can be con-
sidered an infinite mixture of this form, more general phase type dis-
tributions could be approximated by truncating the mixture series. In
fact, any distribution on (0, c0) can be approximated arbitrarily closely
by a distribution of the form considered by de Kok, however the di-

mension of the representation may become impractically large. Since
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current methods (see Asmussen and Nerman (1991), Bobbio et al (1980)
and Johnson and Taaffe (1988))for fitting phase type distributions use
either general phase type distributions or other special cases (Coxian,
mixture of Erlangs with different intensities, triangular representations)
it would be of more practical use to have a simple method applicable
to retrial queues with general phase type service time distributions.

Neuts and Ramalhoto (1990) consider a service model in which
the server is required to search for customers. Though the context is
different from that of the retrial queue, the model is equivalent to an
M/G/1 retrial queue where all arriving customers go immediately into
orbit even when the server is idle. The generating function is derived
and a numerical method of obtaining the stationary distribution is given.
This method (as Neuts and Ramalhoto point out) can be adapted to
obtain the distribution for the M/G/1 retrial queue and does not require
numerical integration if the service time distribution is of phase type.

Although an analytically explicit solution is presented in Neuts and
Ramalhoto (1984), the method suggested is more cumbersome than nec-
essary for distributions of phase type because they arrive at the station-
ary distribution via the generating function whereas the balance equa-
tions are more easily solved directly. The suggested method requires
calculation of the distribution {a,,v > 0} of the number of arrivals dur-
ing a service as well as the convolution of an infinite number of Poisson
distributed variables and a number of other convolutions. The effort
required to calculate the stationary distribution directly is similar to
the first of these steps and no convolutions are necessary. A more direct
method is applied in Neuts and Rao (1990) to investigate the M/M/s
retrial queue. Although generating functions are avoided, the method
differs somewhat from ours in that an iterative scheme is applied to

solve the balance equations whereas we apply a direct method.

If we model the M/PH/1 retrial queue as a discrete space Markov
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process, we find that the generator is block tridiagonal with subdiagonal
blocks of rank one. Generators of this form admit an explicit matrix
product form solution for the stationary distribution, when it exists.
Though a stability condition has already been established for the more
general M/G/1 retrial queue, for the sake of completeness we show how
this stability condition determines the convergence or divergence of the
matrix series which arises in the normalization.

Falin (1991) obtained a closed form expression for the Laplace
transform of the waiting time distribution and for the generating func-
tion of the number of retrials per customer in the M/G/1 queue. How-
ever, it may be difficult in practice to solve the integrals and invert
the transforms which appear in these expressions. If the service time
distribution is of phase type, it is possible to obtain the distribution of
the number of retrials numerically using only matrix multiplication and
a single matrix inversion. The waiting time distribution and moments

can be obtained by applying the methods outlined in Chapter One.

2.2 STATIONARY DISTRIBUTION

Consider a retrial queue with arrival rate A, retrial rate 0 per cus-
tomer and service time distribution represented by (8,S). The state

space is the set
E={-1}u{0,5)i=1,...,m}u{@GE,H)i=1,2,...;5=0,1,...,m}.

The indices ¢ and j represent respectively the number of customers in
orbit and the phase of service (j = 0 if the server is idle) and {—1}
represents the state of the system when the orbit is empty and the

server idle. m is the dimension of the service time distribution.
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The generator of the corresponding Markov process is of the form

-A—l,l A—l,O 0 0 0 ...
Ao Apn Ao O 0o ...
Q=1 0 Az A 4 0 ... (2.1)
0 0 Aga Ay Ag

where:
A1 =-A A_10=28"
Ap =8 Apn=S—-A  Ap=[0 ]
087 00
App = [ ; } AOZA{O I} (2.2)
and for ¢ > 1:
[0 BT [ -@e+x)  AgT
Aﬂ‘{o 0 } Azl_{ SO S—A|° (2:3)

For any vector x € R we partition x according to
T = [z_1,%0,%1,...] where z_; € R, zg € R™ and z; € ™! for
i > 1. We also define z(; ;y € R to be the jth (scalar) component of
the vector z;. The generator () is block tridiagonal with subdiagonal
blocks of rank one. Ramaswami and Latouche (1986) gave the station-
ary distribution for the special case of generators of this type for which
the blocks along a diagonal are also identical, except for the first. Sny-
der and Stewart (1985) gave the solution for generators with rank one
subdiagonal blocks and superdiagonal blocks which are diagonal. The
method used in both these cases is similar to that used in Neuts (1981)
to solve the M/PH/1 queue. The following two propositions summarize
the extension of this method to the general case of block tridiagonal
generators with rank one subdiagonal blocks. The result is a particular
case of a general result for the matrix multiplicative form of station-

ary vectors for generators with block Hessenberg structure and rank
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one subdiagonal blocks (see Basharin and Naumov (1983) and Naumov
(1985)). It is the GI/M/1 analog of Proposition 1.3.

Proposition 2.1: If the generator for a positive recurrent Markov
process has the form

r1401 AOO 0 0
Ay A A O
Q= |A2s A An Ag
Azqg Azz Azp Az Aso

o OO

(2.4)

. . .

where each As; is an m; X m;_j11 matriz, the stationary distribution

satisfies x;41 = x; R; where the m; X m;_jy+1 matrices R; satisfy:

(i) 0= 7", Rz(k)Az'+k,k
(i) Ae =300, RPYFEA Ape

with ng) = HHk"l R;. The component [R;) ;i is the expected time

j=i
spent in the state (i + 1,k) before the first return to level i measured in

units of duration equal to the mean sojourn time in the state (i, j).

Proof: The proof is analogous to that of Proposition 1.3. D

The stationary distribution is thus given by
j—1
xj/:c_l == H RZ‘ (2.5)
i=—1
where the matrices R; are determined by the following:

98



Proposition 2.2: If Q as defined in (2.4) is block tridiagonal and
satisfies Ay = vyl | 1t =1,2,3,... where v; and a;_1 are non-
zero column vectors of the appropriate length satisfying v;,c; > 0 and
ale=1, then, fori> 0:

R; = —Ai(Aiy1,1 + Ai+1,0604g+1)—1-

Proof: For block tridiagonal genef‘i;étors, part (i) of Proposition

2.1 reduces to
O0=Ap+R; A1+ Ry i1 R A2 (2.6)

and part (ii) reduces to
Aijpe = R;A;11 2e. (2.7)

If we replace 7 in (2.7) with ¢ + 1 and postmultiply by ol ,, we
obtain

T
Asr10e0 | = 41 RA 00

Substituting this into (2.6) yields
Ri(Ait1,1 + Aiy10ea;,,) = —Agp.

Let B; = (Ay1 + Ajoecd) and let [B;)jx denote the (4, k) element
of B;. Then B; satisfies

(a) [Biljx > 0if j £ k.
(b) Bse =; (<0 and # 0).

(a) and (b) are sufficient to conclude that B; is a stable matrix (see
Marcus and Minc (1964) p. 158). Thus all the eigenvalues of B; are

strictly negative and the inverse B, ! exists so that we can write
R; = —Az',O(Ai+1,1 + Az'-l—l,OeazT—i-l)_l‘ D
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Substituting the coefficient matrices in (2.2) and (2.3) into the ex-
pression for R; in Proposition 2 yields R_; = BTR, Ry = [%e,R +
2eBTR] and :

0 0

) ) i=1,2,... (28
wrnee B+ ineel B 28)

-
where R = —A(S — Al + XefT)~! is the rate matrix derived in Neuts
(1981) for the M/PH/1 queue with an infinite number of waiting po-
sitions. The first component of the relation x;11 = z; R; corresponds
to equation (2.6) in De Kok (1984). Note that, in the limit as 6 ap-
proaches infinity, the probability > ., Z(;,0) that the server is idle with
customers in the queue approaches zero and the probabilities z(; ;) with
j # 0 approach their counterparts from the M/PH/1 queue with an in-
finite number of waiting positions. This is, of course, expected since, if
the expected time 1/6 which a customer waits before he retries is zero,

the queue reduces to an M/PH/1 queue with random service order.

2.3 POSITIVITY AND STABILITY

If the representation (3, S) is irreducible, the matrix (S—AI+XeB7)
is stable and irreducible so that its inverse (and thus R) is positive. This
guarantees the positivity of . The stability condition p = A/u < 1,
where p~! = —(3S~le is the expected service time, is well known (see
Falin (1990)). We shall prove that this guarantees the convergence of
the matrix series obtained by summing the right hand side of (2.5). The
method we use is an extension of Theorem 3.2.2 in Neuts (1981).

We define the quantities 7; (1 = 1,2,...) by

Ty = —azT—l—l(AO + Ai+1,1)~1A06.

We shall show that if the limit of the sequence {r;} is less than 1 then ze
is finite so that the probability vector x is normalizable. The following

60



proposition provides an alternative expression for R; which we require

to formulate a bound on the spectral radius sp(R;).

Proposition 2.3: If the generator for a Markov Process satisfies
the conditions of Proposition 2.2, then the corresponding rate matrices
R; defined in Proposition 2.1 satisfy:

A Az—i—l , Aoeary Az+1 1
Az+l 17

Ry = —AoA7} 1 +

Proof:

(Aigr1 + Aoeaz‘T)—l Az_—i-l I+ Aoea Az—l—l 8 -t

= Az'_+11,1 I+ Z(_AoeaZA;—l—ll,l)U:l

| v=1
K fo'e]
= A7L | [T — Ageal A7} (—aT AL [ Age)” |
— 411 0 i+1,1 7 “1441,14%0
i v=0
T A—1
=M1 |4 T A—1
| Iy A Ace
Now we have
T T 4—1 T 4—1
l=aje=0o Az‘+1,1Ai+l,le =0y Az’+1,1(A0€ + %)

T 4—1
—Qy Az’+1,1A06 o; Az+11%

Thus
R; = —Ao(Aiy1,1 + Agea; )™
AOAH—l 1 Aoeaf A -

ol
Az+1 17

_ -1
- _AoAz'+1,1
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Corollary 2.3: If A;111 + Aoeal is irreducible and Ag # 0 then
Sp(Rz’) > Sp(—*AoAi-_—*_ll,l .

Proof: Let (A;411 + Apeal) be irreducible. Since it is also a
stable matrix, its inverse is negative and thus R; is positive. Clearly
R; > —A¢A;. _&1,1 since the second term for R; in Proposition 3 is non-
negative. Suppose that R; = —ApA;, +11,1. Then AgA;, 4_11’1 is neg-
ative and AgA;, fl,lAioeagA,;fl,l = 0. But this is impossible since
Ao A _*_11’1/106 must be negative if AgA, 4}1,1 is negative and Age # 0.
Thus we have R; > —AgA;, _*_11,1 and [R;];x # [—AoAﬁl,l] % for some el-
ement (j,k). This is sufficient to conclude that sp(R;) > sp(—AgAz;").

We can now relate r; to sp(R;).

Proposition 2.4: Let r; = —a;ﬂrl(Ao +Air1,1) "L Age where a1,
Ap and A;41,1 are components of a generator satisfying the conditions
of Proposition 2.2. If r; < 1 then sp(R;) < 1. If r; > 1 then sp(R;) > 1.

Proof: Let u be the left eigenvector of R; corresponding to n =
sp(R;). Then the equation u R; = nu leads to

u = —n(udoe)aii;[Ao + ndir11] "

Postmultiplying by Age yields

1= —nog 1 [Ao +nAiy1,1] " Ace
= 77@?+1[(_A0A7;_+11,1) - 77]]—114;31,11406-
= ®(n)

62



where ®(s) = sal ;[A, + sAir1,1] 1 Age is defined on the domain
D(®) = (sp(—AoA;_ll’l),oo]. For s € D(®) the matrix G(s)
= [(—AoA, +11,1) — sl is stable so that, by Theorem 1 on page 250
of Bellman (1970),

limg— oo ea:p[G(s)t] =

and so we can write %*‘”“‘

o0 \7"@& Ca ﬂ
B(s) = Q/o nol expG(s)t] A7} 1 Avedt =

= /Ooo s exp(—st) f(t)dt

where f(t) = —al, exp(—AoA;_ll 1t)A;+11 1Aoe. Note that

f(t) = 0%+1A0Az+21 1 Ao exp(— AoAz—I—l 1t)e >0

since A;ll,l < 0. Thus ®(s) is non-increasing. Let u’' be a left eigen-

vector of —AgA; ", | with eigenvalue v. Then we must have

u'[Ag + VAz-l—l =0

but the matrix Ag + vA;41 1 is stable (and thus nonsingular) if v > 1
which implies that sp (— AOAZ+1 1) <land1leD(®). Ifr,=®(1) <1
and ®(n) = 1, we must have 7 < 1 since ® is nonincreasing. Similarily,

if r; > 1, we must have n > 1. D

The following lemma and proposition establish conditions for the

invariant probability vector x to be normalizable.

Lemma 2.5:Let {R;:i=1,2,...} be a sequence of n X n complex
matrices. If there exists an integer M and a real number £ < 1 (> 1)
such that sp(R;) < & (> &) for alli > M then the series

S = ZHR

Jj=1=1
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is convergent (divergent).

Proof: See Section 1.7.

Proposition 2.5: If the limit p = lim; oo r; exists, then the
Markov chain with generator Q is positive recurrent if p < 1 and non-

reccurent if p > 1

Proof: The proposition follows directly from Proposition 4 and

Lemma 2.5.

For the M/PH/1 retrial queue, we have r; = i\l (1 + ZTJ}D@) ,where

p = —BT S e is the expected service time, so that p = i\;

2.4 EXTENSION #1: M/M/1 RETRIAL QUEUE WITH
GEOMETRIC LOSS

Consider an M/M/1 retrial queue in which customers leave the sys-
tem with probability r each time they retry for service and fail. Falin
(1980) obtained the partial generating function for the joint distribution
of the number in service and the number in orbit. Neuts and Ramalhoto
(1984) considered a similar model where the server is required to search
for customers and where customers leave the pool at a rate proportional
to the number of customers present. They obtained the partial gener-
ating functions for the number in the orbit when the server is busy and
when the server is idle.

The reason that this model is tractable only for the case of expo-

nential service times is rather transparent from the point of view of the
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matrix analytical method. The subdiagonal blocks of the generator as-
sociated with the M/PH/1 retrial queue with geometric loss are given

by
|0 68T .
Azg—{o 297‘[} 2—2,3,...,

where (8,5) is a representation of the service time distribution. The
rank of the subdiagonal blocks of the generator are equal to the dimen-
sion of this representation so that, if the service times are exponentially
distributed, the subdiagonal blocks have rank one. The method of Sec-
tion 2.1 can then be used to obtain explicit results for the stationary
distribution, thus avoiding the inversion of the generating functions.

The generator associated with this model is given by @ in (2.1)
with:

A1 =\ A_10=2A

)

and, for 7 > 1:

- +10) A
Aﬂ_[ L —(,LL+2'07°+)\(1—7*))J’

where p is the service rate. Substituting into the expression above for

r; yields
. Al —1)

w(i+1)0[r+ﬂ—(ﬁ—n—9]'

Since p = lim;_, 7; = 0, the queue is always stable as noted by

Falin [10]. The rate matrices are given by R_; = \/u and

Ro ”’{“ 1J

I L
Rz:n-[___g__ (1)} 4> 1.
A(H1)0
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The stationary vector z is given by z/z_1 = [1,y}, 2], ¥}, 25,95, ],

where
Yo = N
y/__>\ )
1 pl—r
A To
/ L
Y; = ,LL1—~7“HT‘7 ;02> 1
r . MT /
x?,_A_*_?:ey?,—l'

2.5 EXTENSION #2: LEVEL DEPENDENCE

The result of Proposition 2.1 depends only on the tridiagonal struc-
ture of the generator () and on the rank of the subdiagonal blocks. Our
result for the stationary distribution can thus be extended to include
arbitrary state dependence of the arrival and retrial rates and of the
service time distribution. If these are given by \;, 6; and (G;, S;) re-
spectively when there are ¢ customers in orbit, we need only add the
subscript 7 4 1 to A, 6 and (3, S) where they appear in (2.8) (includ-
ing the expression for R) and multiply the right hand side of (2.8) by
Aif N1

The results concerning the stability condition, however, also de-
pend on the fact that the superdiagonal blocks are identical except for
the first. This property was required to show that 1 € D(®) in Propo-
sition 2.4. Other methods may be required to take into account state
dependent arrival rates. It is a simple matter, however, to extend these
results to the case in which the retrial rates and service time distribu-
tions are state dependent but the arrival rates are not. In this case we

have:

T, = A (1—!——————1 >
Y i (t+1)0i41 /)
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There are three state dependent models which we feel may merit
some future consideration. The first concerns computer communications
networks. If the network is small, it may be necessary to model the
system as one with a finite number of customers. In this case we have
Ai = Xo(1 —1/N) where N is the number of customers. Though the
arrival rate is state dependent, there is no problem concerning stability
conditions because the state space is finite.

The second model includes state dependent service time distribu-
tions. Consider a model in which the server must do some work to
process requests for service which arrive when he is busy. In this case,
we would expect the service times to be longer when there are a large
number of customers in the orbit since the server must spend time send-
ing busy signals to these customers. Of course, some mechanism must
be available to increase the service rate when the number of customers
in the orbit grows too large so that the system can reach stability.

The third model includes state dependent retrial rates. This type of
behavior may occur if the system has limitations on the number of retri-
als which it can process simultaneously. This may occur with telephone
traffic, for example, where the time to complete an unsuccessful call and

receive a busy signal may increase when the system is overloaded.

2.6 CONCLUSION

We have obtained analytical expressions for the rate matrices asso-
ciated with the M/PH/1 retrial queue and provided sufficient condition
for the convergence of the matrix series which appears in the normal-
ization condition for the stationary distribution of states. The more
general numerical methods of Chapter One can be applied to obtain the
distributions of the waiting time and number of retrials. We also pro-
vided an explicit solution for the stationary distribution of the M/M/1
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retrial queue with geometric loss which provides some insight into why
the problem is tractable for exponential service times. We have noted
that the method used is well suited to dealing with some models which

include state dependent parameters.

2.7 PROOF OF LEMMA 2.5

Lemma 2.5: Let {R; : i = 1,2,...} be a sequence of n X n complex
matrices. If there exists an integer M and o real number € < 1 (> 1)
such that sp(R;) < & (> &) for all i > M then the series

R;

0
j 1

S:Z‘

J
3:1 ==

is convergent (divergent).

Proof:
(i) convergence
For each matrix R; let S; be the n x n matrix which reduces (via
a similarity transformation) R; to its Jordan canonical form R; (see
Bellman 1970). Then
A1 a1 O 0 e ]
0 )\2 as 0
R=SRS7"=|¢9 o .
0 ... 0 A1 apno1
L0 0 ... 0 An

where a; € {0,1} and \; (¢ = 1,2,...,n) is an eigenvalue of R;. For all
y € C,, we define the norm

lyll = max [yl
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and the associated operator norm

[A]l = ”2},151 || Ay||

for matrices in C,«,,. Consider the product

M4-£
R(M-{-Z) —_— H R’L
i=1
for # > 1. Then
M+ M M+e
IRM*O) = TT IRl = T IR 11 z‘R‘
i=1 i=1 i=M+1

M M+e )
<n]IRl max [H B
=1 =1 Jk| )

=M-+1

M ML
< nH |R:|| max H Z-R‘
Py 1<j,k<n

where, for any matrix B, |B| is defined by

[[Bl ;5 = |Bjsl.
However, for ¢ > M, we have

K3

[iR| < A¢ =

SO

J



= { (kfj> gk <k < min{n,1+ 5},

0; otherwise,
/ : A
0 —k+j
_ {6 (2,

where £/ < /. Let £ <n < 1 and choose # and ¢ large enough such that
¢ >k— 4, even and

[I—o p=f=y § <k <min{n, £+ 5},
0;

otherwise

ré
[r— (k= 7)]

for all 7 > ¢" and for all 5,k € {1,...,n}. Then we have

M
IR+ < (TR (5, )7
- L ? 6//2

<n

so that
M+e

isi < 3 T+ = ( m)HHR I

Jj=1 <=1

(ii) divergence
If sp(R;) > & > 1 for 4 > M, then by an argument similar to that
in (i) above, we can show that there exists an integer M’ such that

M'+-¢

H Rz Zfea
=1

for £=0,1,2,.... Thus the series diverges. D
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CHAPTER THREE

RETRIAL QUEUES WITH FINITE BUFFERS

3.1 INTRODUCTION

So far, models of retrial queues with buffers have always assumed
exponential service times and most have assumed Poisson arrivals as
well. With the exception of Jonin and Sedol (1973) and Eldin (1967)
described below, this is also true for multiserver retrial queues . Since
multiserver queues have a structure similar to state dependent queues
with buffers, we consider both cases together here. The M/M/s re-
trial queue was first considered by Wilkinson (1956). The first model
of a retrial queue with buffer was studied by Kornishov (1974) and an
extensive investigation was made by Rideout (1984). Yang (1990) inves-
tigated the GI/M/s/m retrial queue and Yang, Posner and Templeton
(1992) developed numerical methods for the special case of Coxian in-

terarrival times.

A multiserver model with primary service was considered by Jonin
and Sedol (1973). In this model, a customer receives an exponentially
distributed preliminary service (corresponding to connect time). If the
connection is realized (with probability p) then the customer begins
an exponentially distributed main service. Otherwise (with probability
1 — p ) the customer joins a source of repeated calls. A variation was
also considered by Eldin (1967) in which the future of a call is deter-
mined at the epoch of arrival and the call either proceeds through a
short service (connect time only) and then joins the source of repeated
calls or proceeds through a long service (connect time plus main ser-
vice) and then leaves the system. Both of these models are similar to a

multiserver retrial queue with two dimensional phase type service time
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distributions (generalized Erlang for the first model and hyperexponen-
tial for the second model) except that the customer enters the orbit if he
passes through phase one only, whereas in the M/P Hs /s retrial queue
customers leave the system if they exit service from either phase. These
models are fundamentally different from models without the prelimi-
nary service however because they allow customers to enter the orbit or
source of repeated calls at times when there are free servers or waiting
positions.

The fundamental property of retrial queues with buffers is the fol-
lowing: customers only enter the orbit when the buffer is full. This
fact leads to substantial simplification and savings in computaional ef-
fort for Markov chain models of such systems. We model retrial queues
with buffers as MAP(j)/SM(j)/1/b retrial queues where the index j
represents the number of customers in the buffer. We model the ser-
vice process as a state dependent MAP-like semi-Markov process. This
allows us to include multiserver retrial queues since we can consider
a MAP/PH/s queue as a MAP/SM(j)/1 queue with state dependent
MAP-like service process. The dependence on the sub-level j also al-
lows us to include models with overload control. We will not consider
all of these models in detail but begin with the most general model to
illustrate the fundamental property common to all of them. We make

the following assumptions about the queue under consideration:

(a). The state of the queue at any time can be completely specified by
the triplet (4,7, k) where 4 represents the number of customers in the
orbit, 7 < b represents the number of customers in service or waiting in
a buffer position and k is a supplementary phase variable. The sojourn

time in each state is exponentially distributed.

(b). Customers arriving to the queue enter service immediately if any

servers are free or enter the FIFO buffer if all servers are busy but a
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buffer position is free.

(c). A customer enters the orbit only if the buffer is full at the epoch of
her arrival. This arrival may affect the phase k of the system but the

buffer will remain full after she joins the orbit.

(d). Customers in the orbit retry for service periodically and enter the
buffer if a position is free at the epoch of their retrial. Inter-retrial times
for each customer are exponentially distributed with rate parameter 6.
Entrance into the buffer may affect the phase k of the queue but ¢ and

4 must decrease and increase by one respectively.

(e). Only one customer may arrive to the queue, complete service or
enter the buffer from orbit at a time: i.e. no bulk service, arrivals or

retrials.

(f). The arrival and service processes are independent of the number of
customers in the orbit, although they may depend in an arbitrary way

on the number of customers in the buffer.

Assumption (a) implies that the queue can be modelled as a contin-
uous time Markov chain with state space o = {(¢,,k)|i =1,2,...;j =
0,1,....,00k=1,2,...,m;}. Assumption (e) guarantees that the gen-
erator of the Markov chain is block tridiagonal and that the diagonal
blocks are themselves block tridiagonal. Assumption (c) implies that
the superdiagonal blocks have only one nonzero block in the diagonal
position corresponding to a full buffer. Assumption (d) implies that the
subdiagonal blocks are block superdiagonal and assumption (f) gives the
level dependence of the blocks a particularly simple form. The generator
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has the form:

By Ap
Ci B1 A

Q: Cz Bg A2 (31)

where the blocks A;, B;, and C; have the general forms

0
A = .
Byo
~ Bg, — 101 Boo ]
Blg Bll — ZHI BlO
B; = ' -
By_12  By_1,1—01 By_1p
; Byo By
0 K, )
K,
C; = i (3.2)
0 Ky
i 0 i

Assumption (d) implies that the matrices K; are all stochastic.

The MAP/PH/1/b retrial queue is perhaps the most straightfor-
ward example of a queue which falls into the category described above.
Consider a retrial queue with MAP arrival process represented by
(Do, D;) and phase type service time distribution represented by
(BT,S). There is a single server, b buffer positions and retrial rate
0 per customer. Then we have

Bo1 = Dy Boo = Dy

Bp=I®S+Dy®I j=1,...,b
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Bjp=88" K;j=I Bjy=By=D1®I.

Depending on the size of the buffer and the representations for the
arrival and service processes, this model may prove too large to analyze
in a reasonable time. If the dimensions of the arrival and service process
representations are m and n respectively, then there are m(1 + nb)
states for each level (number of customers in the orbit) and the time
complexity of the algorithm which calculates the stationary distribution
is O(Nbm3n3) where N is the level at which the system is truncated.
The most obvious way to keep the complexity down is to keep m and n
relatively small. For example, two dimensional representations are often
sufficient if we only want to specify the first two or three moments of
interarrival or service times (We can match the first two moments if the
coeflicient of variation is between .5 and 1 or the first three moments if
the coefficient of variation is greater than 1). Models with exponential
interarrival or service times (eg. M/PH/1, PH/M/1 retrial queues)
where m = 1 or n = 1 may be sufficient for some applications.

The MAP/PHs/s/b retrial also belongs to the class of queues con-
sidered here. Consider a retrial queue with s servers and b — s buffer
positions. The arrival process is a MAP with representation (Tp,7})
and the service time for each server has a phase type distribution with

two dimensional representation (87, S) where 87 = (81, 52) and

G — l:‘“(al + g1) ai
as —(a2 +g2) |

Interretrial times are exponentially distributed with rate 6 per customer.

The state space for the associated Markov chain is given by
{(4,7,k,0)]i=0,1,...55=0,....,0k=1,...,m; £ =0,...,min{j,s}}

. ¢ represents the number in orbit, j the number in service or waiting in
the buffer, k the arrival phase and £ the number of customers in phase 2
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of thier service. If we order the state space with the labels (3, j, &, £) in
lexicographic order, the generator has the form in (3.1) and (3.2) with :

s _[TieU; j=0,.,5-1
P\ ®Lyr j=8...,b

To J=0
le“—‘ I@SJ—I-T()@IJ.{;;_ .j=1,...,8
I®SS+T0®IS_;:’1'1 ji=s,...,b

B' . I@DJ j=1,...,8
2TVIQI j=s+1,...,b

Kj——-I(X)Uj

where D;, S; and U; are given by

—3j01 5500 ]
5412
185
S = € Rij+1)x(G+1)
Sj?j_lao

i Sjj2 8ji1 ]
dion )
djo02 -

Y

Dj; = _ € Rij+1)xj
djaj“l:l

) djj2 |
B1 Bo

U; == € Rj+1)x(ro)-

B1 P
I; is the j-dimensional identity matrix and the scalars s;¢ and dje, are
defined by

si00 = (7 —0)aq Sje2 = Lay sien = —(llag+g2)+(j—£)(a1+g1))

dje2 = £go djpr = (J — £)g1.
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If ¢ customers are in phase 2 of their service, then j— £ are in phase
1. sj40 is the rate of phase 1 customers switching to phase 2 and 5542
is the rate of phase 2 customers switching to phase 1. d;p; and djpm
are the service completion rates of customers in phase 1 and phase 2
respectively. D; has no superdiagonal elements because the number of
customers in phase 2 cannot increase due to a service completion. This
number will remain the same (djz1) if a phase 1 customer completes
service and will decrease by one (d;¢2) if a phase 2 customer completes
service. The form of U; arises from the fact that the number of phase 2
customers will remain the same if a customer begins a service in phase
1 (with probability £;) and will increase by one if a customer begins

service in phase 2.

3.2 STABILITY CONDITION

We obtain a sufficient condition for ergodicity by applying

Mustafa’s criterion:

Proposition 1: If the homogeneous quasi birth death process with By,
By1 and By Ky—1 for superdiagonal, diagonal and subdiagonal blocks
respectively s irreducible and ergodic then so is the retrial queue with

generator Q).

Proof: Let P be the transition probability matrix for the jump
chain of the retrial queue imbedded at each event and let P, be the
corresponding matrix for the homogeneous QBD process with blocks
Al = Ay ' Byo, By = I+ A;'Byy and Cf = Ay By K,y where Ay =
—diag(Bp1). Let R be the rate matrix associated with this chain and
let n» < 1 be its spectral radius. From the discussion in the proof of
Lemma 1.3.4 in Neuts (1981), we know that for all € € (n,1), sp(4} +
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eB} + €C}) = ¢ < e. Let z, > 0 be the right eigenvector associated
with € so that (4} + eB} + €2C})xy = €'zp < exp. We now define a
vector f = [fo, f1,...] with f; = [fi0, fi1,- - ., fip] such that, for i > 1,

fij = € *(ae + eb—jKjKj-H oo Ky 1)

where a € (0,1). To prove ergodicity, we need to show that (P —1I)f <
—¢e”’e (except for a finite number of components) for some ¢’ > 0. Now

for j=0,...,b—1 we have

[(P - ’l,)f]zj = 6'“7;(’1:9[ + Aj)_l[(észng_lKj -+ GleKj
+Bj0))Kj+1 e Kb_liL'b — an(l - 6)]

where A; = —diag(B;1). For j = b, we have
(P —ID)flip = e HD[a(1 — €)Abe + (A, + eB) + €2Ch — el )zs]

. Since B1 = —(A4} + eBj + €2C}, — el )z, > 0, we can choose a € (0, 1)
so that [(P —I)fls < —€’e = —min{B1}/2 . Since [(P —I)f];; — —o0
as ¢ — oo for j = 0,...,b — 1, there exists an integer i; such that
[(P—1I)flij < —€"e for all § > 41, []

A necessary and sufficient condition for the ergodicity of the homo-
geneous chain associated with P, can be obtained by applying Theorem
1.7.1 in Neuts (1981). The condition is given by m(Byo — By Kp—_1)e < 0
where 7 is the solution to 7(Byy + Bp1 + B2 Kp—1) = 0 and we = 1.
It is interesting to note that the sufficient condition in Proposition 1
depends only on the behavior of the queue when the buffer is full. This
is similar to the well known condition A/su < 1 for ergodicity of the
M/M/s queue since sy is the service rate when all service positions
are occupied. In both cases, the ergodicity condition takes this form
not because the full buffer state corresponds to the fastest service but
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because the queue must pass through this state in order to add any

customers to the queue (or orbit).

3.3 SOLUTION METHOD

The sparsity of the A; together with the block tridiagonal form of
the B; allow a substantial saving in the computational effort required
to calculate the stationary distribution of states and the distribution of
waiting time for the queue. As in the previous chapters, this requires
the solution of systems of the form y() = a. For example, the stationary
distribution x is the solution of the system z() = 0. In all other cases,
a will be non-zero and @} will be a subgenerator with a form similar
to that in (3.1)-(3.2). In that case, for efficiency of notation, we will
still denote the subgenerator by ) and maintain the same labels for
its various components (A4;, Bj1 etc.). We proceed, as in Chapter One
, by eliminating levels one at a time via block Gaussian elimination,
starting from the lowest level. The basic algorithm used is the same as
Algorithm 1.1, but we repeat the description of this algorithm below,

with the notation used in this chapter.

Algorithm 3.1

Reduction Phase

10
Bj «+ By
ag — Qo
Until i = N, do
B}« By — Cy(Bj_;) " Aia

/ / / -1
Q; < Q4 — ai—l(Bz'—l) Ay
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t+—1+1
End

Middle Phase

Solve [yn,Yn+1,--]QN = [&)y,an+1,...] where Qp is the gener-
ator obtained from @) by eliminating all levels below N and replacing

BN with B.;V

FExpansion Phase

t+— N—1

Until 7 = 0, do
s (0 — Ys1Cs41)(B]) 1
T4 —1

End

In order to accomplish the middle phase of this algorithm, it is
necessary to truncate or approximate the generator in some way so
that we can eliminate the level dependence above some level N. We do
so by making the approximating assumption that when there are more
than N customers in the orbit, one customer from the orbit joins the
buffer immediately after each service completion. Then the buffer is
always full when there are more than IV customers in the orbit and the

approximate generator has the form:

"By Aq )
Ci By A
Q= Cn By An
Cvii B A

C B A
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where A = Bbo, B = Bb17 C = BbgKb_l, CN+1 = [O, . .,O,C] and

0

If we are calculating the stationary distribution z, we can accomplish

the middle phase of algorithm 3.1 by solving the system
$N+1[B + RC — CN+1(B;V)~1AN] =0

where R is the minimal nonnegative solution to the matrix quadratic
equation A + RB + R?>C = 0 which can be obtained by applying the
methods in Neuts (1981). We can then obtain zy,Zn—_1,...,2Z09 by
applying the expansion phase of Algorithm 3.1 (with y « z and o = 0)
and the components of z above level N are given by z Ntl4j =2 N1 R
. We must normalize z so that ze = xy1(I — R) e + Zf;io zie = 1.
In practice, we gradually increase the value of N until the probability
zny1(I — R)"'e of being above level N is sufficiently small (perhaps
107> or so). We then truncate the system by replacing B with B + RC
and deleting all levels above N + 1. In all further calculations, when we
solve systems of the form y@Q = «, @ will be a subgenerator obtained
by altering this finite generator in some way and the system yQ = o
will be finite. In that case, the middle phase corresponds to solving

yn+1[B + RC — Cn11(By) T An] = g

3.4 IMPLEMENTING THE ALGORITHM

Consider the matrices Gy = —(B])"'4; for i = 0,1, ... where the
B; are as defined in Algorithm 3.1 above. When @ is a generator, the
(s,t)th element of G; represents the probability that, starting from state
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(4, s), the process eventually reaches level i + 1 and enters it at phase ¢
(Here “phase "refers to number j in buffer as well as phase k). G; is the
dual of the matrix G; defined in Pearce (1994) in the same sense that
R; defined in Chapter 2 is the dual of R; defined in Pearce (1994) and
Bright and Taylor (1995). We get one from the other by reversing the
order of levels and a proof for the interpretation of and G; would follow
exactly the corresponding proof for G; which appears in Pearce (1994).

The reduction phase of Algorithm 3.1 can be expressed as the re-

cursions

Gi=—(B; + CiGi1) LA,
or equivalently
and
Oé; = oy + Oég__léz‘_l (34)

From the form of A; and from the interpretation of G; it is clear that

CA?Z- must have the form

0 0 Gy

R 0 0 Gi
G; = )

0 0 Gy

. If we substitute this form and the forms of the blocks of the generators
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into (3) we obtain a system of the form

—Bol — 101 Boo ieKOGi—l,l
Bis Bi1 —i0I B :

10Ky _o éi—l,b—:l
By_104+ 10Ky 1Gi—1p

By Bip1
- A - 3.5
Gio C 0 (3:5)
X = ;
: 0
| G | | —Beo |

. The system in (3.5) is tridiagonal except for the last column. We can
thus solve the system efficiently (in O(b) time) by using block Gaussian
elimination, eliminating one sublevel at a time, starting from the lowest
sublevel. Each step is obtained according to the general model implied
by (1.3) and (1.4) in Chapter One except that we have a system with
column vectors instead of row vectors. The analogs of these equations

are

Qiyr=of and  y, = Q7 (af — Qutti) (3.5)
where
Qf =@ — QuQ;'Qe and  of = — QusQ; . (3.6).

If we eliminate the lower sublevels first, after the jth stage we obtain a
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system of the form
[ Biji  Bj Hj |
Bjy1,2 .
iaKb—Zéi-d,b—l
By—_10+i0Ky 1Gi_1p

- B Bp1 i (3.6)
(Gl T 0 7
X = :
: 0
| Gw]  L=5w

where the blocks B;;; and H;; are defined by the following algorithm

which solves the system of equations:

Algorithm 3.2

Reduction Phase

Bly, — Boi — 01
Hip — i0KoGy 11
71
Until j =b—1, do
Bijy < Bj1 — 401 — Bja(B] ;_1 1) Bj-1,0
Hij — i0K;Gi 1,541 — Bja(Bj;_1 1) Hi 5
J—Jj+1
End
Hip1 « Bp_10+i0Kp 1G5 15 — By 12(B}y_51) " Hipo
Bl < By1 — Bya(Bip—1,1) " Hip—1

k3

Middle Phase
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G — —(Bly1) "' Beo.

Expansion Phase

A _1 A
Gip—1 — —(Bjy_1.1)  Hip—1Gap

j—b—2
Until j =0, do

Gy — —(Bjj1) " (BjoGija1 + HiGin)
End

Algorithm 3.2 provides the components of G; for i = 0,1, .. LN
and (3.4) provides a/y 11 With the approximate generator we have

G'no
Gy = :
G b

i.e. the large blocks of zeros are missing because level N has only one

sublevel. The middle phase of algorithm 3.1 provides yy.1 according

to

yn+1[B + RC + CéNb] = Oé§v+1-

The expansion phase of Algorithm 3.1 provides yy, . .., 9o according to
Y[ B; + CsGi—1] = o — yi41Cia (3.7)

. Fortunately the matrix B; + C;G; is the same as the square matrix in
(3.5) so we can use use the same algorithm to solve this system with-
out repeating the steps necessary to reduce the matrix. The following

algorithm summarizes this method:
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Algorithm 3.3
(To solve: y;[B; + C;Gs_1] = s for )

Reduction Phase

70

Yio < Yo

Yip < Vib

Until j =b—1, do
Vij < Vig — 7§,j—1(Bz/',j—1,1)_1Bj—1,0
Yip < Vib — ’Yz",j—l(Bz/',j—l,l)—lHi,j—l
j—7+1

End

Yip < Yib — 7§,b—1(Bz",b~1,1)_le‘,b—1

Middle Phase

Yiv — Vip(Bip)

Expansion Phase

j—b—-1

Until j =0, do
Yis — (Vij — Yij+1Bjr1,2)(Bij1) ™"
Je—j—1

End

where v; = [Ys0,.-.,7ip). We can use Algorithm 3.3 to solve (3.7)
if we set y;0 = oo and 55 = ai; — 10y;41, ;1K1 for 5 =1,...,b.

If the service time for a MAP/PH/1/b retrial queue follows an
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Erlang or generalized Erlang distribution, the reduction phase of Al-
gorithm 3.2 can be performed in O(bm3n) time. This is because the
matrices Bjs are non-zero only in the last row of blocks correspond-
ing to service completion from the last stage of the generalized Erlang.
Since the matrices Bj; are also block tridiagonal, the form of the B;;;
are block tridiagonal except for the last row of blocks. The system of
equations associated with evaluating Bj2(Bz/',j—1,1)_l then has a form
similar to that in (3.4) and Algorithm 3.3 can be adapted to solve the
system. Similarly, if the arrival process is Erlang or generalized Erlang
renewal, then only the first column of blocks of éij are non-zero. This
is because the chain always enters the next highest level via the first
arrival phase (recall the interpretation of G;). Because of this, both
the reduction phase and the expansion phase of Algorithm 3.2 can be
executed in O(bmn3) time.

The number of states for the MAP/PHs/s/b retrial model is
Nm(s + 1)(b — s/2) and the time complexity of finding the station-
ary distribution is O(Nbm3s®). As in the previous example, this can
be reduced to O(INbms?) if the arrival process is Erlang or generalized

Erlang renewal.

3.5 WAITING TIME
FOR MAP/PH/1/b RETRIAL QUEUE

In a retrial queue with buffer, the waiting time consists of the
time in orbit as well as the time in the buffer. The distribution and
moments of the waiting time in orbit can be obtained using the methods
of Sections 1.8 and 1.9. Perhaps of more interest is the total waiting
time: i.e. the sum of the waiting times in the orbit and in the buffer.
Intuitively, we expect the addition of a buffer to have a small effect

on the mean waiting time due to the elimination of server idle time
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when there are customers in the orbit. We expect the variability of the
total waiting time to decrease with the addition of a buffer since the
essentially random service order of the orbit becomes less important.
This reduction in waiting time variability may be the motivation for

introducing a buffer into a retrial queue.

For simplicity, we consider the total waiting time of a
MAP/PH/1/b retrial queue, although the MAP/PHs/s/b can also be
examined using the same method. We choose an arbitrary arrival of a
customer, tag that customer, and measure his total waiting time. When
the tagged customer is in orbit, we must keep track of the number of cus-
tomers in orbit, the number of customers in the buffer, and the phase of
the arrival and service processes. Once the tagged customer enters the
buffer, we only need to keep track of his position in the buffer and the
phase of the current service. This is because the waiting time in buffer
of a customer is not affected by the presence of customers in the orbit
or by the presence in the buffer of customers which arrive after him.
This is true for the MAP/PH/1/b and MAP/PH,/s/b retrial queues
although it is not true for retrial queues with overload control where
the service times depend on the number of customers in the buffer. In
that case, we would need to keep track of the arrival phase and the
number of customers in the orbit and buffer as well. We thus construct
an absorbing Markov chain on the state space ¥ = o U opyfrer U {s}
where o is the state space defined in Section 3.1, {s} is the absorbing
state corresponding to the tagged customer having entered service and
Obuffer ={(5, k)| =1,...,0—1;k=1,...,n} contains the states with
the tagged customer in the buffer. The parameter j in opyffer reresents
the number of customers in the buffer; not the number of customers

in service and in the buffer. The generator for this absorbing Markov
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chain has the form

Qo Qob Qos
Q=10 Q Qs
0 0 0

Define P; to be the b+ 1 dimensional diagonal matrix with a one in
the last diagonal position and and zeros everywhere else: The one cor-
responds to a full buffer. Then Qo =Q—0I(I—P;)I®I (where Q
is the generator in (3.1)), corresponds to the tagged customer in orbit.
Qop = 0e® J,p, @e® I corresponds to the tagged customer entering the

buffer where

and [,_; is the b — 1 dimensional identity matrix. The portion of the

generator corresponding to the tagged customer already in the buffer is

ST
Qb = o0 S . € Rpp—1)@n(b-1)-
| Soﬂ.T S
QRos = —(Qo+Qop)e and Qps = —Qpe are column vectors corresponding

to the tagged customer entering service (absorption) from orbit or from
the buffer respectively.

The first step in obtaining the distribution or moments of the wait-
ing time is to determine the initial vector associated with this absorbing
chain: i.e. the stationary distribution of states after an arbitrary arrival.

To do this, we must consider the absorbing chain with generator

Qna Qorbit Qbuffer Qserm’ce

"o 0 0 0 0
Q" = 0 0 0 0
0 0 0 0
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where
0 Pr@Di®I1

Qorbz’t: Pf®D1®I

0
Qbufferze@ Ib——l®Dl®I ’
0

Qsermﬁce =eR® . ® Dse

0

and @, is the subgenerator obtained from @ in (3.1) and (3.2) by
making the substititions Bjg < 0, i.e. by turning off the arrivals. The
stationary distribution of states at an arbitrary arrival is given by z, =
TQna/TQnee where z is the stationary distribution (z@Q = 0) of states
at an arbitrary point in time. The stationary distribution just before
an arbitrary arrival is —z,Q; > and the distribution of states after the
arrival of a tagged customer is

—Z [ Qorbit  Qousfer Qservice]

TQnee '

The waiting time has a phase type distribution with representation

Ltag =

(%1ag, Q). As in Section 1.8, we can use the randomization method
to obtain the distribution of the waiting time according to F(t) =
1 — x00exp[Qtle where the subgenerator (), is the upper left hand
corner (delete absorbing state {s}) of @'

! Qo Qob
Qs - { 0 Qb } .
Calculating the entire distribution in this manner will be quite

time consuming although simple to implement. The jth moment of the

waiting time is given by
M; = (_1)jj!wta9(Q/s)_je
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and the inverse (Q.)~! is given by

S [Q7Y —Q7rQaQ;
(Qs) 1_ K Qb—lb b

We can calculate the effect of post-multiplying a vector by Q! if we
apply Algorithms 3.1,3.2 and 3.3 with Bjo < 0. The effect of post-
multiplying by Qb_l can be calculated easily using block Gaussian elim-
ination and no reduction phase is required because the superdiagonal
blocks are zero. In fact, because () is homogeneous, this could be
done quicker using Ye and Li’s (1991) folding algorithm although the
savings would be minimal compared to the effort required to postmul-
tiply by @5 1. We calculated the mean and the coefficient of variation
of the total waiting time for the example retrial queue with various
buffer sizes b. The results are illustrated in Figure 3.1 and Figure 3.2.
Note the dramatic drop in the mean waiting time which results from
adding the first buffer position (b = 1 — b = 2). The plot of the co-
efficient of variation falls quite sharply as we go from b = 2 to b = 1.
This is due to the dramatic change in the mean and not due to a rad-
ical change in the variance. In fact the curve for the variance appears
monotonic. Clearly, for this example there is very little benefit to the
mean in adding more than about 4 or 5 buffer positions, while the co-

efficient of variation continues to decrease until around b = 9 or b = 10,
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3.6 EXTENSION: FINITE NUMBER OF CUSTOMERS

The form of the generator given in (1) and (2) does not encompass
models with a finite number of customers such as, for example, models
of local area networks. In that case, the number of sublevels (b in the
model above) varies with the number of customers in the orbit. If there
are N customers in total, there can be at most N —i customers in service
or waiting in the buffer when there are ¢ customers in the orbit. Also,
the arrival process will depend on 7 the number of customers in the orbit
as well as j the number of customers in service or waiting in the buffer
-gsince the number of active sources contributing to the input stream is
N —i—j. For this model, the components Bjo, B;1 etc. of the generator
become level dependent and so require an extra index (Bj;;0,B;;1 etc.).
Algorithms 3.1, 3.2 and 3.3 however can be applied in the same way as
above if we simply add the appropriate level indices to the components
where required. The algorithms depend on the structure of the blocks
of the generator and not the content of the components.

Consider an M/PH/1/b/N retrial queue with arrival rate A for each
of N customers, 1 server with service time distribution represented by
BT,9), b buffer positions and exponential retrial times with rate 6 per
customer. The states are labeled by (i, 4, k) respectively the number
of customers in orbit, number of customers in service or waiting in the
buffer and phase of service. Each level 7 has b; = min{b, N —i} sublevels

and the components of the generator are given by:

B _ [ (N=ixrs" i=0
GOTV(N—i— PN j=1,...,b

B _ —(N —9)A i=0
WETVS—(N—i—HI j=1,...,b
S0 j=0
BW:{WW‘FAWWQ
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Kij=1 j=0,...,b.

We could also generalize this model by allowing the interarrival time
for each customer to have a PH, type distribution (87, S) as defined in
the previous section. This model without buffer is considered in detail
in Chapter 4. The number of states for this model can be quite large
so, in practice, the size of the service time representation will have to
be kept small in order to avoid very lengthy computation times. The
time required in the reduction phase can be reduced if the service time
distribution is of Erlang type but the expansion phase is not accelerated.
If (vT,T) denotes the service time representation, then the components

of the generator are given by:

B Dy_;®@~T j=0
%0 DN——z'—j®I j=1,...,b

By — SN-i j=0
Wt IN-i—j1 QT +Sn_i—; @1 j=1,...,b

By d Unja®TY i=0
V2T U ® T8 j=1,....b

Kij=In_;j11®I j=0,...,b;.

Other models with a finite number of customers include the
M/PH5/s/b/N and PHy/PHs/s/b/N retrial queues. We do not de-
scribe these in any detail since the previous examples are sufficient to
demonstrate the construction of the generator for these and other simi-
lar models. We can also add overload control to any of these models by
making the service time distribution depend on the number of customers
in the buffer in some way. All of these models have the same fundamen-
tal structure so that the same or similar computational schemes can be
applied. The only restriction is the computational time available which
restricts the size of the models which can be utilized.
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3.7 CONCLUSION

We have provided a computational scheme which can be used to
determine the stationary distribution of states, the distributions of the
waiting time and number of retrials and the moments of the waiting
time for retrial queues with buffers. We have generalized significantly
past models with exponential interarrival and service time distributions.
The computational methods described can be applied to a wide range
of models and computational complexity for large models is the limiting

factor in the analysis of these models.
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CHAPTER FOUR

APPROXIMATION METHOD FOR RETRIAL QUEUES
WITH PHASE TYPE RETRIAL TIMES

4.1 INTRODUCTION

In almost all models of retrial queues, the time between retrials
for any customer is assumed to be exponentially distributed. Kapyrin
(1977) attempted to derive an analytic solution for the M/G/1 retrial
queue with general retrial time distribution but the method and results
were found to be incorrect (Falin, 1986). Pourbabai developed an it-
erative method for a G/M/K/0 queueing loss system with retrials in
which the net retrial process from returning customers is approximated
by matching parameters of the overflow process. Liang and Kulkarni
(1993) introduced a relation, which they called K-dom inance on the
class of phase type distributions and showed that, for single serve r re-
trial queues with general arrival processes and service time distributions
an d phase type retrial times, longer retrial times with respect to this

relation re sult in more congested systems in the stochastic sense.

The inherent difficulty with non-exponential retrial times stems
from the fact that the model must, in some way, keep track of the elapsed
retrial time for each of possibly a very large number of customers. The
net retrial process from all customers is an extremely complex non-
renewal process. Choi (1993) avoided this problem by considering an
M/M/1 retrial queue with general retrial times where only one customer
may attempt retrials from orbit. Liang (1991) developed an approxi-
mate method for obtaining the stationary distribution of queue size for
M/G/1 retrial queues with retrial time distributions which are mixtures

of Erlangs. Yang et al (1994), developed an effective approximation for
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the M/G/1 retrial queue with general retrial times by noting that, for
most applications, retrial times are significantly shorter than service
times. In aa typical retrial queue, most customers in the orbit will
make numerous requests during any given service interval. Thus, while
the elapsed retrial times for different customers in orbit are dependent,
the dependence will be very weak. The approximation assumes that the
elapsed retrial time for any customer is a random variable independent
of other customers elapsed retrial times. According to renewal theory,
the distribution of elapsed retrial time observed at a point far from the
time origin has the form m(z) = f; (1 — T(v))du (see Ross, 1983)
where T'(u) is the cumulative distribution function, with mean 1/6, of
the retrial time. The approximation is used to derive the distribution
of the number of customers in orbit and the mean waiting time and
number of retrials per customer. The algorithm is shown to perform
well in predicting the mean and variance of queue length by comparing
to an exact solution for retrial queues with hyperexponential or Erlang

distributions of order two for retrial and service times.

In this chapter we develop an approximation for retrial queues with
phase type retrial time distributions. Our goal is not to improve upon
the approximation used by Yang et al, but to extend the basic idea of
the approximation so that we can use it to approximate higher moments
or the entire distribution of the waiting time . Instead of using the
approximation only in the calculation of the stationary distribution, as
in Yang et al, we use it to approximate the generator of the queue itself.
We can then use the numerical methods developed in previous chapters
to obtain information about the waiting time from the approximate

generator.

The use of numerical methods also makes it easier to extend the
approximation to other models such as the M/M /s or MAP/Ph/1 retrial
queue with phase type retrial times. We will only explore the M/PH/1
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case in detail but the extensions to these other models are not difficult,
except for possibly high dimensionality resulting in long computational
times.

Although Yang et al. provide a necessary condition for stability,
they do not show that the condition is also sufficient. We show that
this is the case for phase type retrial times and extend the result to the

multiserver case as well.

4.2 STABILITY CONDITION

The following proposition provides a necessary and sufficient con-
dition for ergodicity of an M/G/1 retrial queue with phase type retrial

times by considering the mean drift.

Proposition 4.1: An M/G/1 retrial queue with phase type retrial times
is ergodic if and only if p = A/ < 1 where A is the arrival rate to the

1

queue and u~ - 1S the mean service time.

Proof: Assume that the retrial time distribution is of phase type with
n dimensional representation (a?,T) and consider the Markov chain
embedded at the epochs of service completion. Let 7, denote the epoch
of the tth service completion and let I; denote the number of customers

in orbit at time n;". Then we have
Liy1 =1 — By + Y11

where B; € {0, 1} is the number of orbiting customers who begin service
in the interval (n;,7:4.1) (i.e By = 1 if the ¢ + 1st customer served comes
from the orbit and B; = 0 if he comes from the primary arrival stream)
and Yt + 1) is the number of customers arriving during the ¢ 4 1st
service. Clearly Y; has mean p for all t = 1,2,.... Let the vector
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Ji: = (J1,-.-,Jn) contain the numbers of customers in each of the n

phases of retrial at time 7;" and let
pr=er (A —T) e,

where e, is the indicator vector for phase k of the retrial time distribu-
tion, denote the probability that a customer in phase k makes no retrial
before the next arrival of a primary customer. Then the mean drift of

the embedded chain from state (7, J) is given by

d(i,J) = E(It+1 — Ij;l_[t =1 and Jt - (jla .- 7.]71))
= E(Yiy1) —EBi|l; =i and J;=J = (j1,...,Jjn))
=p—1+PB;=0L=i and J,=(j1,..,jn))

n
=p—1+ H(pk)j’“
k=1
gp—l—l—(mlgxx{pk})i —p—1 as i— o0

Thus, if p < 1, the mean drift is negative for large enough 7 and the
chain is ergodic. Yang et al (1994) have already shown that this is a

necessary condition.

The following generalizes Proposition 4.1to the case of multiserver
queues although the conditions are more difficult to verify. Consider
an M/PH/s retrial queue with phase type retrial times represented by
(T, T) and service times by (8%,S). Let ¢ = {1,...,m} denote the
set of service phases and let 3 = ¢° denote the state space of possible
combinations of phases for all s servers. Let S; be a random variable
representing the service time for a service which starts in phase j € o.
Sj has the cumulative distribution Fj(t) = 1 — €] exp[St]e where e; is
a column vector with a 1 in the jth position and 0 everywhere else.

If J = (j1,72,.-.,7s) € ¥ is a vector recording the phases of all s
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servers, then the cumulative distribution of the time 7; until the next
service completion is given by Gs(t) = 1 — [[1_; (1 — Fj,(¢)). Let p =
max ey E(7;) denote the maximum expected time (over all possible
server configrations) until the next service completion. Then we have

the following.

Proposition 4.2: An M/PH/s retrial queue with phase type retrial
times is ergodic if p = M/ < 1 where X is the arrival rate and 1/p is
the mazimum over all possible service phase configurations (assuming all
servers are busy) of the expected time until the next service completion.

Proof: The proof follows that of Proposition 1 except that we consider
the chain imbedded at the start (still denoted by 7)) of each service.
Then Y;, the expected number of arrivals before the next start of a
service, is identically equal to zero if all servers are not busy at time 7;.
If all servers are busy, Y; depends on the server configuration J € X.
However, since u is calculated assuming a worst case scenario (longest
time to next service completion), we have E(Y;|J) < p for all J € ¥ so
that the mean drift satisfies

d(z-,J)Sp—1+(ml?x{pk})i—>p—1 as 1 — 00 D

Only relatively simple phase type distributions, with small dimen-
sion (one or two; maybe three) will be practical for multiserver models
since the dimension of the state space increases exponentially as the
number of phases increases. However, it may be desirable to obtain at
least a stability condition for more complex systems. For the case of ex-
ponential servers, the stability condition is given by the usual A\/su < 1
where u is the service rate for each server. If a service phase j is such

that the next phase of service is always k (i.e. all paths to service
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completion from phase j pass through k) it is not necessary to consider
phase k in the calculation of 1 and we can ignore elements of 3 in which
any server is in phase k since it will clearly not lead to the worst case.
For example, if the service time distribution is a mixture of two erlangs,
of order n and n + 1 with identical rate parameter, then we only need
to consider the case where all servers are in the phase furthest from ser-
vice completion. Recall this distribution is good for fitting the first two
moments of a distribution when the coefficient of variation is smaller
than 1.0. Similarly, if the service time distribution is hyperexponen-
tial, we can assume that all servers are in the phase with the longest
sojourn time. More complex distributions pose an interesting problem
in combinatorial optimization but we will not pursue this here. Two di-
mensional phase type distributions are either hyperexponential (when
the coefficient of variation is greater than 1) or a generalized Erlang
(c.v. less than one). The former case we have already mentioned and,
in the latter case, we can assume that all servers are in the first phase.
The time until the next service can then be represented as a phase type
distribution with tridiagonal subgenerator ( keep track of the number

of servers in phase 2) and p can be calculated in O(s) time.

4.3 APPROXIMATION METHOD

Although we could construct the generator for an M/PH/1 retrial
queue with phase type retrial times and solve for the stationary distribu-
tion in principle, it would require an immense computational effort for
any retrial time distributions with representations of dimension larger
than about 2. In fact we we will use two dimensional representations
(as in Yang et al) to obtain exact solutions in order to evaluate the
performance of the approximation.

The key to the approximation is that interretrial times are gen-
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erally shorter than service times so that most customers will execute
a number of retrials during each service. Yang et al assume that the
distribution of the elapsed retrial time for each customer after a ser-
vice completion takes on its asymptotic form m(z) = [; 6(1 — T'(u))du
(see Ross, 1983) . If the retrial time has a phase type distribution,
the obvious analog of elapsed retrial time is the phase of retrial and, if
(aT,T) represents the retrial time distribution, then, after a sufficiently
long time, the distribution of phases is given by the solution 77 of the
equation 7T (T + TOBT) = 0. If we assume that every customer has
this average distribution 7 of phases after each service completion, the
time until the next retrial would simply be the minimum of i retrial
times (with ¢ customers in the orbit) each of which has the distribution
(7T, T). Therefore the approximate distribution of the time until the

next retrial has cumulative distribution
F(t)=1— [nTexp(Tt)e]*.

Unfortunately, although this is a phase type distribution, unless the
retrial time distribution posesses some special structure, we can only
gaurantee the existence of representations with dimensions n* or 7",
which are far too large for large ¢. On the other hand, we can approx-
imate this distribution with a phase type distribution of much smaller
dimension. For each value of ¢, thwe construct an approximate phase
type distribution (', T;) for the time until the next request from orbit
by matching the moments of the exact distribution. If the coefficient
of variation ¢ of the distribution is smaller than 1, we match the first
two moments to a mixture of two Erlang distributions of order n and
n+1 (n < c? < n+1) with common rate parameter. If ¢ > 1, we match
the first three moments to a hyperexponential distribution of order 2 by
aplying the method in Altiok (1985). We assume that, after each service
completion, the time until the next retrial has the resulting distribution

(e, T;) when there are ¢ customers in the orbit.
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4.4 STATIONARY DISTRIBUTION

The approximate generator has the form

_A—l,l A—l,O 0 0 0 ]
AOQ A01 Aoo 0 0 S,
Q= 0 Az A A4 0 ... (4.1)
0 O A22 A21 AO « .

where:

A 11=-) A_10=26"
A =8  Ap=S-A  Ayp=[0 )]

TOT 0 0
Am:{ 17 } Aoz,\[O 1} (4.2)
and for ¢ > 1:
o 1Pe”T T =T Ne8t
Ai?“{o 0 ] A“_[Soagf s_ar| @3

e; represents a column vector of ones with the same dimension as the
representation (a;,7;). The level i represents the number of customers
in the orbit except that we have split the server idle state from the server
busy states in the case of no customers in the orbit. This is done to avoid
solving a boundary condition to obtain the stationary probabilities for
the lowest level. The subdiagonal blocks have rank one (4;2 = ;8% ,
where 7; and §;_1 are column vectors) and so we can use Propositions 1
and 2 from Chapter 1 to obtain the stationary distribution z. We have

x = [xg, Z1, ... and the z; are obtained by the recusion
Tit1 = T R;.
The rate matrices R; are given by
Ry = —Aip(As11 + Asy10eyT) ™
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where v = [0 BT]. Substituting from (4.2) and (4.3) yields

R_y =X8T(\I —ep")—-9)"1

Ro = [(1 — pr)eaf AT = T0) ", A (BT — I) + ;567 — S]7Y)

R; =
0 0
(1 —pip1)eat (AL — Tip1) ™t AA(efT — 1) + ps1S°87 — )71
where p; = a;(A — Ti)"le; is the probability that an exponential in-
terarrival time completes before the end of an interretrial time with
distribution (ay,T;). Of course, in practice we must truncate and nor-
malize in order to solve for the scalar xqo. If we let x; = [22,z}], where
the elements of z{ and z} correspond to states in which the server is

idle or busy respectively, then we have

o _ 2 1
z;e; = (1 —p;)z;_qe

zr =axi AT —eBT) — p:S°8T — S)7h.

Clearly, if we are interested only in the joint distribution of the number
of customers in orbit and the number of customers in service, we require
only the p; for the approximate retrial distributions and we can omit
the step of approximating them by phase type distributions. This is
not surprising since that is exactly the information required for the
approximation in Yang et al. (1994). However, we are interested in
obtaining more information about the queue and so will require the
forms (o, T;) of the approximate retrial time distributions. This will
also be required for more complex models such as the MAP/PH/1 retrial
queue with phase type retrial times, although we do not examine these

explicitly here.
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4.5 NUMBER OF RETRIALS AND WAITING TIME

We can obtain the distribution of the number of retrials by track-
ing one customer through all of his retrials with the queue functioning
independently in the background. We evolve the system from one re-
trial to the next until the server is found to be idle at the epoch of one
of our customer’s retrials. To do this, we must construct a generator
which describes the evolution of both the customer and the queue. This

generator has the form

f_ | Qo+ Q: Qs
Q_I:OO t Q:|

where @ is the generator in (4.1) and @, and @, are block diagonal with
blocks Af and A! respectively :
0 BT ®@T° 0 0
s @ [
Ai_{O 0 4 0 I®T%T|"

@, corresponds to transitions in which the tagged customer retries for
service when the server is idle and begins service. (); corresponds to
transitions in which the tagged customer finds the server busy upon

retrying for service and begins another retrial period. (g corresponds

to the rest of the possible transitions and has the form

FAS, A3 0 ... 7
A AL AL O
o=|o - - :
: ANy ARy
where:
g | G=M)@T+IRT M ® e; 87
“ I® S%7 (S—A)RI+I®T
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40 _[(Ti—)\l)®1+I®T M ® e[ ]

N1 I® 8%T SQI+I®T
o _[0 O o [0 I®TPB”
Ao = [0 A ] Aip = 0 0
Consider now the absorbing Markov chain with generator
QO Qs Qt
Q"=10 0 0
0 0 O

Since arrivals follow a Poisson distribution, arriving customers see time
averages. Thus when our customer arrives, the probability that he
receives immediate service is just P(n = 0) = >, z7e;, the stationary
probability that the server is idle. The conditional distribution of states
of the combined customer-queue system at his arrival given that he
does not receive service immediately is given by &’ = [z(, %], ...] where
zi = (1 — P(n = 0))7(0,z}) ® aT]. The probability that he enters
service at his first retrial (given he does not enter service immediately)
is given by —z'Qy 1Q.e. If he does not enter service at this point, the
stationary distribution of states is given by 2/Qy Q:/z' Qs Qie. We
can continue this process, going from one retrial to the next, to obtain

the distribution of the number of retrials:
P(n=Fkn>0)=2'(—Q5 Q)" 1 (—Q5Qs)e.

We can use Algorithm 1.1 from Chapter One to multiply an arbi-
trary row vector by (g 1 and thus, eventually calculate the probabilities
above. The conditional waiting time has a phase type distribution with
representation (z’,Qo + ;) and we can use the methods of Section
1.8 to obtain this distribution via the randomization method. As in
Section 1.8, we could eliminate the idle states above some level to ob-
tain an approximation which is also a lower bound for this distribution

however obtaining an upper bound would be significantly more complex
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because of the non-exponential nature of the approximate interretrial
time distributions (o, T;). We might also approximate the waiting time
distribution p,,(t) by employing the distribution of the number of retri-

als n according to
pu(t) = P(n=0)6(t) + )  P(n=k)f"™ (1)
k=1

where f(™ is the nth convolution of the retrial time distribution with
itself. We did not attempt any of these approximations so we cannot
comment on their effectiveness, however we did investigate the perfor-
mance of the approximation for the first two moments of the waiting
time. If we only require moments of the waiting time, they can be

obtained by applying the relation
Mj = (—1)jj!$/(Q0 -+ Qt)"je.

Algorithm 1.1 can also be used to operate on vectors with the tridiagonal

subgenerator (Qp + Q;)~! in order to evaluate the moments.

4.6 EXACT SOLUTION FOR PH:; RETRIAL TIMES

If inter-retrial times have a phase type distribution with a two
dimensional representation, we can obtain the stationary distribution
and the moments of the waiting time in a reasonable amount of time
without approximating the system. The state space is given by o =
{G,4,k,0)t =0,1,...;5 =0,1;k =0,1,...,4;£ = 1,...,nj} where n
is the dimension of the service time representation. %, j, k, represent
respectively the number of customers in orbit, in service and in phase
two of retrial. £ represents the current phase of service. The generator
has the usual block tridiagonal form (1.1) with

A, — [0/\()Ui O} Ay = [8 Di%)ﬂT}
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| Ci= A1 Mo BT

Ay = I®S® (Ci+DiUi1 —X)QI+I®S

where C;, D; and U; are as defined in Section (1.10). In order to deter-
mine where to truncate the generator, we assume that when there are
more than N customers in the orbit, the server begins serving the next
customer immediately after each service completion. We assume that
the retrial process ceases when the NV -+ 1st customer joins the orbit, and
that the retrial process (C, DyUn_1) is restarted in its staionary dis-
tribution yny (v[Cn + DnyUn—1] = 0) when a service completion leaves
N customers in the orbit. The approximate generator has the form

(Ao Aor ]
A A Ao
Q= Ana  Anvi Ano
Ansi12 A1 Ao

Ay A1 Ao

where Ao = )\I, Al = S— /\I, A2 = SO,BT, AN+1,2 = [O YN ®SOﬁT}

and
0
Ano = [Ae@]}

We gradually increase the value of N until the probability ( in the
approximate queue) of the orbit containing more than N customers is
less than some small number e. We used ¢ = 10~° for the numerical
examples we considered. Once N is determined, we truncate the orbit
above N so that all customers who arrive when there are N in the orbit
are lost to the system forever.

In order to obtain the distribution or moments of the waiting time,
we must track a tagged customer from her arrival until she begins ser-

vice. The probability of immediate service is given by (I — P)e where
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z is the stationary distribution and P, is the projection matrix corre-
sponding to states in which the server is busy. The waiting time for
customers who do not receive immediate service has a phase type dis-
tribution with representation (2/, Q') where ' = (2P, ® a)/xPye (recall
(o, T) is the retrial time representation) and @’ is a block tridiagonal
generator with blocks Ay = A;0® I, A, = A;2 ® I and
a=Aa 0T+ {8 I®g’OaT} '

We can obtain the distribution of the waiting time by applying the ran-
domization method as in Section 1.8 although the computation will be
extremely time consuming unless the utilization of the queue is low.
We could also find the distriution of the number of retrials by a method
analogous to the one applied in Section 4.5. These methods are compu-
tationally intensive although not difficult to implement. In the follow-
ing section, we obtain the moments of the waiting time for a number
of different examples. Since there does not appear to be any particu-
lar structure we can exploit to speed up computation of the stationary
distribution and the waiting time moments (which require multiplying
vectors by powers of Q1) we use Algorithm 1.1 directly when applying
block Gaussian elimination. For some of the numerical examples con-
sidered with high traffic intensities (p = A/u) or low retrial rates (0),
the computational time required to implement the block Gaussian elim-
ination for the exact model was excessive. In these cases, we still used
block Gaussian elimination to solve the approximate model, because
the method provides a good scheme for deciding where to truncate the
system, but we used block Gauss-Seidel iteration to obtain the solutions
for the exact model. The block Gauss-Seidel method is efficient here
because the diagonal blocks of the generator are block tridiagonal if we
re-order the state space, grouping together the states in each level with
the same number of customers in phase 2 of retrial. The effect of multi-

plying a vector by the inverse of one of the diagonal blocks A;; can then
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be calculated in O(%) time via block Gaussian elimination once the re-
duction phase has been performed on the blocks of 4;;. Since we need to
perform the latter operation only once and the former operation many
times in the block Gauss-Seidel method, this affords a significant sav-
ings in computational time if we are willing to accept the corresponding

loss of accuracy that results from using an iterative scheme.

4.7 NUMERICAL RESULTS AND CONCLUSIONS

We demonstrate the performance of the approximation in predict-
ing the first two moments of the waiting time for a number of different
examples. Although we could estimate the first moment from the sta-
tionary distribution by applying Little’s law, we calculate it in both the
approximate and exact models via the general formula for moments.
Since we need to apply the inverse of the subgenerator twice anyway
in order to obtain the second moment, this does not require any extra
computational effort and it allows us to verify Little’s law explicitly as
a consistency check.

We tested our approximation on the set of examples used by Yang
et al. : M/M/1, M/E2/1 and M/Hy/1 retrial queues with two stage
Erlang or two stage hyperexponential retrial time distributions. The
Erlang service time distributions had a mean service time of 1.0 and

the hyperexponential service times had the representation (3,S) with

B =(.1,.9) and
—.22 0
5= [ 0 —1.73] '
The Erlang retrial time distributions were taken to have mean 1/6 and
the hyperexponential retrial times were assumed to have the form (, T)

with
0
1 K T [————-IfH 0 }

CE*——( ) ) 0
K+1'K+1 0 2%
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where K = ¢ + v/c* — 1 and ¢ > 1 is the coefficient of variation. Ta-
bles 4.1, 4.2 and 4.3 present the values of the mean and coefficient of
variation of waiting time for the exact models and the relative error
in these quantities (aproximate/exact-1) for the approximate models of
the M/M/1, M/E2/1 and M/Hy/1 (with ¢ = 1.5) retrial queues respec-
tively. Table 4.4 presents the same quantities for the M/M/1 retrial
queue for various values of the retrial time coefficient of variation c.
The relative error in both moments seems to decrease with the
retrial rate 6 for queues with Erlang retrial times and increase with
the retrial rate for queues with hyperexponential retrial times. Also
the approximation appears to perform better when the coefficient of
variation of the service time and the retrial time is closer to 1.0. The
approximation becomes poorer as the utilization p grows larger but the
effect is minimal if the coefficients of variation for the service and retrial
times are close to 1.0. In general, the approximation performs quite
well as long as we do not stray too far from the cv of the exponential
distribution for service and retrial times. Most of the relative errors are
close to 1%. The approximation performs well at low utilizations for all

service and retrial time distributions considered.
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Table 4.1: Waiting time

for M/E,/1 retrial queue

E;
retrial
times
p 0 mean %
eITor cv
1 1737 | .17 1.920
1 |33 |.1094 | .09 1.972
10 0918 | .04 2.021
1 6778 | 41 1.471
3 133 |.4240 | .23 1.518
10 3546 | .08 1.554
1 2;43-10 45 1.265
6 |33 1.5000 | .37 1.320
10 1.2460 | .17 1.352




Table 4.2: Waiting time for M/H,/1 retrial queue

Ey
retrial
times
p 0 mean % cv % mean cv %
error error error error
1 3597 |.05 2195 |-02
1 3.3 | .2961 02 2.319 -01
10 |.2783 .01 2.365 -.00
1 +1.399 04 1.661 -.05
3 |33 |L1l46 .02 1.749 -.03
10 | 1.075 .00 1.782 -01
1 4.959 -.02 1.395 -.04
6 |33 |4.030 .01 1.460 -01
10 | 3.768 .00 1.484 -01
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Table 4.3: Waiting time for M/M/1 retrial queue

E;
retrial
times
o} 6 mean % cv % mean cv %
error error error error
1 2009 .14 1.948 -.00
1 33 |.1372 .04 2.029 -.01
10 1196 .01 2.082 -.02
1 7832 31 1.493 -.03
3 3.3 | .5314 .18 1.556 -.01
10 4619 07 1.593 -.00
1 2.802 28 1.285 | -.06
6 33 | 1.878 21 1.344 -.04
10 1.622 .09 1.374 -.02
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Table 4.4: Waiting time for M/M/1 retrial queue

cv of
retrial 707 2 4
times
p 0 cv % cv % % cv %
error error error error
1 11457 |-04 |1.832 |-05 2.426 | -04
3 1 1.493 |-.03 | 1.646 | -.08 2.029 | -36
10 [ 1.593 |-.00 |1.575 | .88 1.621 | .25
1 11203 |-05 |1.418 |-08 813 | -.19
.6 1 1.285 |-.06 |1.347 | .40 1.572 | -71
10 | 1.374 |-.02 | 1358 |15 1.366 | 1.2
S5 | 1.178 | -.08 | 1.235 | .64 1.413 | -89
8 1 1.222 1-07 |1.244 |14 | 1.368 | -.49
10 | 1.314 -02 | 1305 |12 | 1.300 | 1.7
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CONCLUSION

We have applied matrix analytical methods to a number of key
models of retrial queues. We have found that this allows the inclusion
of significantly more general arrival and service processes than those ap-
pearing in other models. The use of the Markovian arrival process and
the phase type distribution allows for the straightforward construction
of numerically tractable problems without sacrificing too much freedom
in specifying the arrival and service processes. Errors introduced by nu-
merical approximations have been bounded analytically where possible
and demonstrated empirically to be small for a significant set of models
where analytical bounds were not available.

The transparent probabilistic interpretation of the calculations
which are performed should make it easy to extend the method to obtain
information about other performance criteria which may not have been
considered here. The goal of this thesis has been the development of
some general methods for the analysis of retrial queues. There are no
doubt many retrial queues not considered here which can benefit from
these methods. Also, a greater understanding of the models included
may be gained by applying the methods to more extensive numerical
experiments. Since our focus was on the development of the methods,
this is somewhat outside the scope of the thesis; however, the tools are

now available for this future research.
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