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ABSTR,ACT

Matrix analytical methods are developed for the modelling and

analysis of some retrial queues. A sufficient condition for ergodicity of
a single server retrial queue with Markovian arrival process and phase

type service is derived and block Gaussian elimination is used to solve

linear systems of equations arising in the calculation of the stationary
distribution of states, the distribution of the number of retrials exe-

cuted by an arbitrary customer, the waiting time distribution and the
moments of the waiting time. A bound is obtained on the probability
lost due to truncation of the infinite generator by considering an ap-

proximation which stochastically dorninates the exact queue. For the

special case of Poisson arrivals, an explicit expression is obtained for the

level dependent rate matrices and a sufficient condition for ergodicity
is obtained by considering the convergence of a reiated matrix series.

trfficient numerical methods are developed for retrial queues with finite
buffers or multiple servers and an approximate model is developed for
retrial queues with phase type interretrial times. A sufficient condition
for ergodicity is obtained and numerical experiments are performed to
examine the effectiveness of the approximation in predicting the first
two moments of the waiting time. A level dependent extension of the
single server retrial queue with Markovian arrival process and phase

type service is used to model a local area network with CSMA proto-

col and extensions of the model with Poisson arrivals, arbitrary level

dependence and geometric ioss are considered.
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INTRODUCTION

A retrial queue is one in which a customer, if he finds all servers

busy and waiting positions (if any) occupied upon arrival, waits some

random period of time (usually exponentialty distributed) and then tries
for service again. While the customer is waiting to retry he is considered

to be "in orbit "and retries for service periodically at random intervals

until he either seizes a server or waiting position or gives up and is
lost to the system forever. These models are common in areas such

as telephone and computer communication systems. There is a large

volume of research which has been published on various models of retrial
queues and comprehensive reviews can be found in Yang and Templeton
(1987) and Falin (1990).

Results are available for retrial queues with loss (customers may

give up and leave the system), with batch arrivals, with finite buffers,

and with multiple servers as well other structurally complex systems.

Keilson et al. (1968) considered the }/rIGII retrial queue and used the
method of supplementary variables to obtain the generating function
for the joint distribution of the number of customers in the system and

elapsed service time. Falin (1979) obtained the joint Laplace transform
of the length of the busy period and the number of customers served

in the period. He also obtained (1991) the Laplace transform of the
waiting time for the NIIGII queue. Yang (1990) developed algoithms to
evaluate the stationary distribution of queue length for the GllMlslm
retrial queue.

So far, most models of retrial queues have been analyzed using
classical analytic methods which are sometimes difficult and risky in
their numerical implementation. Results are usually given in the form
of Laplace transforms or generating functions which must be obtained
by solving an integral and then inverted . Little or no attention is paid



to the algorithmic implementation of these solutions. While the direct
numerical computation of existing analytic solutions is best considered

within the framework of classical numerical analysis, there is clearly
room for an approach in which algorithmic feasibility is a primary cri-
terion in the modelling process from the outset. The field of compu-

tational probability and, more specifically, matrix analytical methods

adopt this point of view. Matrix analytical methods take advantage

of structural properties of Markov chains in order to obtain stable nu-

merical methods for the calculation of quantities of interest. They also

provide insight into the behavior of models through a probabilistic un-

derstanding of intermediate steps of algorithms which is unavailable in
the purely formal manipulations of many classical methods.

llntil now, all models of retrial queues have assumed either expo-

nentially distributed service times or a Poisson input process. While
these assumptions have been necessary in order to make the analysis of
the models tractable, they may not accurately reflect the behavior of
real systems of interest. The matrix analytical approach allows us to
avoid these restrictive assumptions. If we replace the Poisson process

and the exponential distribution with the more general Markovian ar-

rival process (MAP) and phase type (PH) distribution (see Neuts 1981

and Lucantoni 1991), we can obtain queues, with neither Poisson input
nor exponential service times, which can be modelled as Markov Chains.

We can then exploit the structure of the Markov chains to obtain stable

and efficient numerical methods for the analysis of the queueing models.

A phase type distribution is the distribution of the time until ab-

sorption in a finite absorbing Markov chain and is represented by a pair
of objects of the form (P' , S). þ' i" the initial probability vector for the

absorbing chain and ,S is the portion of the generator for the absorbing

chain corresponding to transitions between transient states. Any distri-
bution on (0, oo) can, in principle, be approximated arbitrarily closely



by a phase type distribution, although the dimensions of BT and,S may

be large. Phase type distributions of reasonably small dimensions have

been used to approximate many distributions of practical importance (
see Bobbio et al. 1980, Johnson and Taaffe 1988, Asmussen and Nerman

1991) and some very common distributions such as the Erlang, Coxian
and hyperexponential are special cases of the phase type distribution.

The Markovian arrival process generalizes the phase type renewal
process by allowing the initial probability vector for each phase type
interarrival time to depend on the phase (transient state of absorbing

chain) from which the last interarrival time terminated (entered absorb-
ing state). This allows for correlation between successive interarrival
times and we can use MAPs to model processes which are bursty.

In the first chapter, we consider the MAP lPIllr retrial queue. We

apply block gaussian elimination to obtain the stationary distribution
of the number of customers in the orbit and the number of retrials per-

formed by an arbitrary customer as well as the moments of the waiting
time. We furnish probabilistic interpretation for all of the objects in-
volved in the calculation and we obtain a bound for the probabitity
lost to truncation of the infinite dimensional generator. We apply the
randomization method to obtain the distribution of the waiting time
and suggest an approximation for the waiting time distribution, based

on the distribution of the number of retrials, which is less computa-
tionally intensive. We also present a state dependent extension to the
MAP/PH f 7 retrial queue which models a local area network with car-

rier sense multiple access protocol.

In the second chapter, we obtain some explicit results for the spe-

cial case of Poisson arrivals and a sufficient (stability) condition for
convergence of a matrix series which arises in the normalization of the
stationary probability vector. \Me also consider the possibility of state
dependent extensions and examine another extension, the MIMII re-



trial queue with los, from the matrix analytical point of view. In Chap-

ter Three, we adapt the methods of the first chapter to retrial queues

with finite buffers or multiple servers. In Chapter Four, we adapt an

approximation method developed by Yang et al. (1994) for the station-
ary distribution of M/G/1 retrial queues with general retrial times to
the problem of determining the waiting time distribution and moments

and the distribution of the number of retrials for M/PH/I queues with
phase type retrial times. We perform some numerical experiments to
determine the accuracy of the approximation in determining the first
two moments of the waiting time.



CHAPTER, ONE

THE MAP/PI{/L RETRIAL QUEUE

]-.1 INTRODUCTION

So far, most models of retrial queues have employed the Poisson

arrival proces to model the input stream to the queue. This is somewhat
restrictive since arrival streams to various kinds of queues are often not
well modelled by a Poisson process. Homitchkov (198T and 1988) con-

sidered retrial queues with a single exponential server and independent

interarrival times with Erlangian or hyperexponential distributions of
second order. Yang (i990) obtained the stationary distribution of queue

size for the GI/M /"1^ retrial queue and Yang, Posner and Templeton
(L992) developed numerical methods for the special case of Coxian ar-
rival process.

Sondermann and Pourbabai (1987) developed an approximation
method for single server recirculation systems. These systems are simi-
lar to retrial queues in that there are no waiting spaces and the overflow

of customers not receiving service merges with the arrival process from
outside to request service again instead of disappearing from the sys-

tem. The algorithm used is an iterative one in which, at each stage,

the overflow process is approximated by matching its first two moments

and then merged with the arrival process from outside. The resulting
superposition arrival process is then approximated by matching its first
two moments and becomes the new input stream (to the server) used

to recalculate the overflow moments. The interarrival and service time
distributions are assumed to be either hyperexponential of order two or
delayed exponential for the purpose of moment matching but the algo-

rithm is intended to be applied to the case of arbitrary distributions for



these times.

We consider an exact model of a retrial queue with non-exponential

service times as well as non-exponential interarrival times. Service and

interarrival time distributions are assumed to be members of the class

PH of phase type distributions defined by Neuts (1931). This is a versa-

tile class of distributions and can be used to approximate any distribu-
tion arbitrarily closely. The phase type distribution with representation

(P, S) is the distribution of the time until absorption of the finite di-
mensional absorbing Markov chain with generator

s,- lsi {l
L 0 0 j

and initial probability vector (0, Br) where ,S0 : -Se and e is a col-

umn vector of 1's. The subgenerator ,S has negative diagonal elements

and nonnegative off-diagonal elements and ,S0 is nonnegative. The cu-

muiative distribution function of the time until absorption is given by
F (t) - 1 - BrerplStle.

Since a superposition of renewal processes is not , in general , a
renewal process, considering only arrival streams which are renewal pro-

cesses may be too restrictive. The arrival process may be bursty and

successive interarrival times may be correlated. The Markovian arrival
process (MAP) provides a model which posesses these characteristics

and which is tractable via matrix analytical methods. It is a rich class

of processes which includes, as special cases, the phase type renewal

process and the Markov modulated Poisson process. A Markovian ar-

rival process can be considered a Markov process {l/(ú),J(t)} on the
state space {(i,, j) : i, } Q,I < j < m} with an infinitesirnal generator Q
having the structure

fDo Dt 0 I
lo Do Dr o I

lo o Do Dt o IL' : : j
Q_



where Ds and D1 are nxxmL matrices, Ds has negative diagonal elements

and nonnegative off-diagonal elements, D1 is nonnegative and (Do +
Dùe - 0 where e is an n'L dimensional column vector of ones. N(t) : i
represents the number of arrivals in (0, ¿) and J(ú) - j represents an

auxiliary state or phase variable.

\Me consider a MAP/PH f 7 retrial queue with arrival process repre-

sented by (Do , Dt), service time distribution represented by (0',,S) and
interretrial times exponentially distributed with rate 0. The state space

is given by {(r, j,k,¿)lz : 0, 1,.. . ; j : 0,1;k: 1,. . .,ffi11, - I,.. .,nj}
where ïLo : L, TLt : T1, àfid m and n are the dimensions of the arrival and

service process representations respectively. 'i, j, k, and (. represent the
number of customers in orbit, state of server (idle for k: 0 and busy
lor lc:1), arrival phase and service phase respectively. If we order the
state space so that the iabels (i,j,k,() appear in lexicographic order,

the generator has the following structure:

Q- (1.i)

where:

A¿o:

fAu Aoo 0 0

|o' Att Arc o

I O Azz Azt AzoI-L: : : :

DtØ þr I
18,S*DoS/_l'' : [3 ,'o* r] A¿t: l'; ; !i'

o*: l3 
'¿oI Ø prf

(1.2).

and 
^90 - -Se.
\Me are interested in the stationary distribution z which satisfies

rQ :0. We employ block Gaussian elimination to obtain a numerical
solution. Because the subdiagonal blocks are quite sparse, we can cut
down the complexity of each step of the algorithm to O(m3n2) from the



O(msn3) which would be required otherwise, where m and, n are the di-
mensions of the arrival and service process representations respectively.

We eliminate the levels (level i refers the set of states with i customers

in the orbit.) 0,1,2,.. . one at a time in that order. Eliminating the
lower levels first allows us to defer deciding at what level to truncate or

approximate the system until we have sufficient information to do so.

When applying numerical solutions to infinite systems with level

dependence it is usually necessary to approximate the system either
with a finite system or with a system which is spatially homogeneous

for sufficiently high levels. We will employ the former method, how-

ever \Me will consider two spatially homogeneous extensions in order to
determine where to truncate the system.

The first homogeneous extension we consider was proposed by Falin
(1983) for the M/M/s retrial queue. In this approximation, the server

begins a new service immediately after each service completion if there

are more than a fixed number N of customers in the orbit. Thus, above

level l/ , the queue is identical to a MAP/PHIL queue with infinite
buffer space and random service order and the stationary distribution
has a modified matrix geometric (see Neuts 1981) form. The advantage

of this approximation is that the rate matrix associated with the homo-

geneous extension is independent of the transition level N so that we

can increase l/ without having to recalculate the rate matrix.

The second homogeneous extension we consider is similar to the one

used by Neuts and Rao (1990) as an approximation to the M/Mls retrial
queue. The approximation is obtained by allowing only -/\y' customers

to attempt retrials when there are more than l/ customers in the orbit.
The total retrial rate from the orbit is thus bounded by N0 and the

resulting generator is spatially homogeneous above level l/ and has a

modified matrix geometric stationary distribution. This approximation
was also proposed by Greenberg (1986) and Stepanov (1988).



It is intuitively clear that this approximate system is , in some

sense, less efficient than the exact queue since the mean server idle time
is larger for each level. Vy'e can formalize this observation in terms of
stochastic dominance of one process over another if one of the processes

is monotonic (see Massey (1987)). We define a class of service time
distributions which afford the queue the required monotonicity. Since

the approximation is homogeneous above a certain level we can use the
methods of Neuts (1981) to calculate the tail probability above a certain
level. This provides an upper bound on the probability which is lost in
the exact queue if we truncate at that level.

L.2 STABILITY CONDITION

We obtain a sufficient condition for ergodicity by applying
Mustafa's criterion, as suggested in Falin (1984). A Markov chain

{Z"ln: 0, 1,...} on a state space E is ergodic if there exists a non-
negative function f ,E ---+ ft such that the mean drift Elf Ø"+t)lZn:
t]- f (z) 1-e for some e ) 0 and for all but a finite number of points
z €E

Proposition l-.1: If a MAP/PH/1 queue wi,th i,nfini,te buffer capac,ity

and 'irreduci,ble arriual and seru'ice process representations ,is ergod,ic,

then the MAP/PH/I retri,al queue wi,th i,dent'ical arri,ual and seru,ice

processes'is also ergodi,c.

Proof: . Let (Do, Dt) and, (Br ,,9) be irreducible representations of
the arrival and service processes respectively for an ergodic MAP/PH/I
queue. The transition probability matrix P for the jump chain of the



retrial queue imbedded

P-

where

I)ti.1 '

,*:13 io(^o+ioÐ-r * *l
Bt:1+Al1(/ø,S*Do8/)

Bz : a, t(18 
^90p")

Ao : -di'ag(Ds) Ar : -di,ag(18,S + Do 81).

Let -B be the rate matrix associated with the infinite buffer queue

and let r¡ < L be its spectral radius. Then, from the discussion in the
proof of Lemma L.3.4 in Neuts (1981), we know that for all e e (r¡,7),

sp(Bo|eBl+e2&r):6t 1e. Let r > 0 be the right eigenvector

associated with e' so that (86 I eB1+ e2B2)r: etr 1 er.
Now define the vector f : llo, ft, f2,.. .] according to

Í¿:e-i(l.'uru'l "* *)
where ø € (0, 1). We need only show that (P - I)f < -e"e (except for

a finite number of components) for some €" > 0. I\{ow we have

r(p_ r)nn: [ï:l
where

e,¿o :.-n(ao + i2Ð-r (r@o * nùQ ø 0r)r - i,a(r - e)\e)

10

00
Pso
Pzt Ps

at each even

I Por Ps

IP' Pn
lo PzzL, :

t has the form

[¡ + (Ao + i,|t¡-t(Do - i1I) (ao r i,ît¡-t(Dr ø p')]
l, nr" Bt l

',: [3 å]
Bo: Âlt(Pr ø ¡)



e¿r :.-(z+i¡ (r(t - e)Bse * (Bo * eBy * e2 82 - eI)r) .

Since þt : -(Bo I eB1+ e2 B, - eI)r ) 0, we can choose ¿ € (0, 1)

so that a¿t 1 -e" e : -m,in{0t}"12 for all i > L Since CI,0 --+ -oo
as i --+ oo there exists an integer z/ such that c.¿s < -e" e for al i > it .

Thus t(P - I)fln < -e" efor all i > i,t . I

A necessary and sufficient condition for ergodicity of the
MAPIPH/I queue with infinite buffer capacity can be obtained by
applying Theorem 7.7.1 in Neuts (1981). The condition is given by
r(DpØ e -e ø,90) ( 0 where z- is the solution to n[I ø(,S + S0 pT) +
(Do + Pr) 8 /] : 0 and re: I.

We would also like to note, as a corollary to Proposition 1.1, that
if a MAP /PHIL queue with infinite buffer capacity is irreducible and
ergodic, then the approximation to the retrial queue referred to as the
second homogeneous extension (with bounded retrial rate) is also er-
godic provided the maximum retrial rate (l/0) is large enough.

BLOCK GAUSSIAN ELIMINATION

Gaver, Jacobs and Latouche (1984) have applied block gaussian

elimination to obtain the stationary distribution for finite level depen-

dent quasi birth-death processes. Bright and Taylor (19g5) have sug-

gested applying this method to infinite systems and have given some

suggestions on where to truncate the system. They have also provided

some probabilistic interpretation to the scheme by identifying the level

dependent rate matrices -R¿ which are generalizations of the matrix ge-

ometric rate matrix J? in Neuts (1981) and which satisfy the equations

A¿o i R¿A¿+IJ t R¿R¿¡t A¿+z,z : 0.

1.3

11



Both of these methods eliminate the rightmost levels first, succes-

sively eliminating levels one at a time until the system under consider-

ation consists of the lowest level only.

One problem with this approach is that the decision of where to
truncate the system has to be made at the outset, when tittte informa-

tion is available. We will reverse this procedure, eliminating the lowest

levels first, so that the reduced system is always infinite and, instead of
truncating the system, we replace the reduced system with a homoge-

neous approximation. We can thus gradually increase the level where

the hornogeneous extension begins until the tail probability above that
Ievel is sufficiently small. Since the block Gaussian elimination part
of the procedure does not depend on the form of the generator above

the levels which are being eliminated, it is not necessary to restart the
procedure every time we increase the level where the extension begins.

Since we work in the opposite direction to that of Bright and Taylor
(1995), instead of encountering the rate matrices R¿,, we encounter the
level dependent generalizations R¿ of the dual R of .R defined in Hajek
(1932). Whereas the elements of -R¿ represent expected sojourn times

in states of level i+I given a chain which starts in level ,i,the elements

of R¿ represent sojourn times in the states of level i - I given a chain

which starts in level z.

Consider the equation EQ: a where Q is a generator or subgener-

ator. In order to obtain the stationary distribution we must solve this
equation with a : 0 and Q a generator while obtaining the distribution
and moments of the waiting time will require solution of the system with
a + 0 and Q a subgenerator. In applying block Gaussian elimination,
we divide the state space into two parts so that the balance equations

can be written

I q" e,rf
lQr" a, l

(a, at)

I2

: (a"rc"t)



or, alternatively

atQi

where

and us : (o" - atQt)Q "'-ai (1.3)

Qi: Q, - Qt"Q"LQ,t and aI:d.-a"QrLQ"t. (1.4)

For a generator of the form in (1.1), we take Us : Uo, e" : e0¡

At: lAr,Az,...] and a¿ - lat,az,...). Then Q" - Aot, Qrt : Ao,

Qt" : A2 and Qf has the form

Qi:

where Alt: An-AnAlrt Aoo. The reduced system atQî - af can now

be solved and the solution substituted into (1 3) to obtain gr. When
combined with the solution for g¿, this yields the entire solutiorr A :
(U',At). We can interpret the reduced syste^ AtQi - af as describing
the evolution of the Markov chain on the set of levels {I,2,...} i...
this is how we would describe the system if we could only view the
chain when it was in one of those levels. There are two advantages to
using this procedure. First, if Q is a generator (subgenerator), the above

calculations do not require subtractions , so the procedure is numerically
stable. Second, the matrix Qi of the reduced system is also a generator

(subgenerator) for a (tevel dependent) Qgo process. This allows us

to apply the process repeatedly, eliminating one level at each step. At
the zth step, we obtain a generator (subgenerator) which describes the
evolution of the chain on the subset of ievels {i,i + 1,...} and has the
form

lfrt 
il: :?,,. 

]

I A!¿, A¿o 0 0 ...1
I An*r,, A¿+t,t A¿+r,o 0 

I

Q¿ : I o An*r,, An*r,, A¿+z,o 
I

I 
o'.o'o ":"'' u'.u'u 

IL : : : : ".-l

(1.5)
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where A!¿t : An - A¿,r(A!¿_r,r)-tAo-r.,0. This process is referred to
as the reduction phase of the algorithm. If the system is homoge-

neous above level l/, then the reduced system with generator (sub-

generator) Qx can be solved using the methods in Neuts (1g83)] to
obtain Ut: lAN,Uw+t,...]. \Me can substitute this into (1.3) to obtain

Us : A¡v-t, then substitute Ut - [a*_r,UN,...] into (1.3) to obtain

Us : lA*-r,Aw-t] and so on, expanding the solution by one level at
a time until we obtain the entire solution A : l7o,Ut. ...1. This pro-

cess is referred to as the expansion phase of the algorithm. The entire
algorithm can be summarized as follows:

Algorithm 1.L

Reduction Phase

i,*-0
A!s1 *- As1

ato *- ag

Ilntili:l/,do
A!¿t * An - An,r(Al-r,r)-t An-'t,o

a!¿ * a¿ - a!¿-t(A!n-t,t)-t An-r,o

i*-i,*7
End

Middle Phase

Solve l7¡v,A¡v+t, . . .lQ w :
( 1.5).

l*'*,o**t, . . .] where 8¡¡ is defined by

T4



Expansion Phase

i,+-N-L
Untili-0,do

U¿ <- @!o - Y¿¡rAt+t,r)(A!o)-t
i,<-i,-I

End

This algorithm (with a : 0) was applied by Boel and ralat (1994)

to a block tridiagonal generator with level dependent boundary. The
time complexity of the algorithm is clearly linear in l/. When the
generator is finite with l/ levels and homogeneous throughout, a similar
algorithm referred to as the folding algorithm (Ye and Li (1991) ) can

be applied with time complexity linear in log2N.

L.4 The Dual Rate Matrices

If we define the matrices l?¿ - -A¿z(A!n_r,r,)-1, where the A!n, are

defined as in Algorithm 1.1, the recursion in the expansion phase can

be written (replacing A with r) as

r'¿-7: r¿Ê¿'

This is similar to the equation ri+r: r¿R¿ which is used in Bright and
Taylor. The recursion for the A!n, can be expressed in terms of the Ëi
as follows:

Ên: -A¿r(Ar-r,, -f R¿tAn-r,o)-t (1.6).

OT

A¿+r,z -l R¿+tAn I Ê.¿¡1Ê.¿A¿-1,s - Q.

The properties of block Gaussian elimination for generators guar-

antees that the Ê4 arenonnegative and that the matrix inverted in (1.6)

15



is nonsingular. The ft¿ are the level dependent generalizations of the
dual rate matrix ,R defined in Hajek (1982) and the duals of the rate
matrices fi¿ defined in Bright and Taylor (1995). The Ê.¿ play the same

role in the M/G f rparadigm as the rate matrices R¿play in the GUMIL
paradigm. Understanding the role of the duals ,Ê¿ requires two modifi-
cations to the discussion of the rate matrix -B defined in the first chapter

of Neuts (1981): We consider generators of the M/G lL type instead of
the GI/M lL type and we include level dependence in the generator. The
analysis is not significantly different from that presented in l\euts (1981)

but we include the modified form for the sake of completeness. We be-

gin with discrete time Markov chains, because the analysis is simpler in
that context, and then present the modification required for continuous

time chains.

Consider a Markov chain with transition probability matrix of the

form

P-

Boz Bo+
Bn Bn
Bzt Bzz
Bso Bn

The fundamental property or P is that any transition can jump at
most one level at a time to the left. We define the taboo probability

nPt)ltn-r",,) to be the probability that, starting in the state (i,, j), the
chain reaches (i, - k,u) at time n without returning to the level z in
between. Note that if the system cannot return to level z in between it
can also not visit any ievel above z since it must pass through level z to
get to i - k from any level above z. The quantitie" nÊ:y) defined by

õ(k) 
- 

oo

inj, _ I ipt)un_r,,t
n:O

are of basic interest. ,OIy is the expected number of visits to the state
(i,- k,z) before the first return to ievel e given that the chain starts at

Bu Boz
Brc Bn
0 Bzo
00
::
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(i,, j). The matrix with elements nÊQ)¡, will be denoted by Rjk) and
we will agree to set Êjo) - 1, the identity matrix, for all i > 0. we will
supress the superscript for the case k - 1 so that R¿ refers to -Rj1) and
we refer to R¿ as the zth dual rate matrix of the Markov chain.. We also

denote the stationary distribution of the chain by r : fro, frL,t . ..] where

each vector z¿ corr€sponds to level i, and consists of scalar elements r¿7

representing the steady state probability of occupying the state (i,, j).
The following proposition summarizes the required modifications to the
results in Section I.2 of Neuts (1981).

Proposition 1.2: If the Marlcou Chai,n P ,is posi,tiue recurrent, then

fori,>0
0) R:r*I) : R¿Ri-r- . .Rn-r.

(it,) R,: DËo RÍr) Bn-^,*.
(i,i,i,) r¿-1 : r¿Ê.¿.

(i,a) B¿se : Ðï,:, nÍr) D}-r"+r, Bn-t,,,".

Proof:

(i) Let n > k + 7. By conditioning on the time r of the last visit to
the level i-k and on the state (i,-k,h) of that visit, before the chain
reaches (i,- k - I,u) at time n) we obtain, for n > k + 1

n 
p[i) 

t rn - r - r,,) - Ð Ð, r[:) ) (i - k, h) n 
p[î-î)nt 

ri, - r, - r, u) .

h r:0

Summation on r¿ now yields

lnÍ**') I ¡, - ÐÐ r r[;) 
) (i _ k,u) Ð, - r 

p 
[ï) rc, h) (i, _ tc _ 1, u)

h r:0

- Ð ti+i 
r) 

I ¡ n[an- t"] n,.
h

nl:O

77



Thus p\n+tl - A[r) n;-¿ âr.d the result follows by induction on k.

(ii). Clearly rP[,)r(i-r,u : [B¿o]¡,. For n ] 2 we have

n 
p[i)t 

rn-.,,) : I Ð, Pt¡ji) 
- r,n¡[B o - r", r") n,

h k:L

by conditioning on the state (i,- k,h) from which the state (i,- L,u) is

entered at time r¿. Summation on n yields the required result.

(iii). By conditioning on the time and the state of the last visit to level

z, if there is such a visit, we obtain the relation

P[î)r,¡¡1n-r,j) : nPt)r,¡¡<i-r,j)+ I Ð "Er,j)(i,,) 
nptÃî)-t,¡t

u r:0

for n ì 1 where the quantitie, Pt)rrn,, represent the unrestrictecl prob-

ability the chain is in state (i,' , j') at time n given that it started at
(i,, j). We add these equations for zz ranging from 1 to N and divide
the resulting sums by N. As N --; oo, the left hand side tends to r¿¡t,¡
by virtue of the classical ergodic theorem for Markov Chains. Since the
sum f[ , Pt)r,¡l(i.-t,j is finite, the first term on the right hand side

tends to zero. The second term

1¡/rL
Tz : Ð F Ð t't)r,,rrn,,, P[iøi)-r,,t

u n-I r-O
r ¡,I ll-r

: Ð r f P[î)r,¡¡ç.,,) I ¿P[î)t<n-.,,¡
u r:o

tends to Ð, r¿"[Ri], j by an elementary summability argument, since

¡¿-t Ð"-10 P[î)r,¡lro,,¡ tends to r¿, and tf;: onp[î)¡rn-r,j) hu, the limir
i,R¡,-

n:o
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(iv). Since the chain is positive recurrent, if it is at some time in the state

(i', j) and a transition to the left of level i occurs, the chain eventually
returns to the state (i,,j) with probability 1. Thus we can equate the
probability that the chain moves to the left with the probability that
the chain moves to the left and eventually crosses back to the level e

or above. By conditioning on the state (h, jt) of the first visit (after

leaving (i,, j) ) to level i, or above and the time n and state (i,2, j2) of
the last visit to a level below z before crossing back, we obtain

\lano)i/o:ÐtÐtt
Jo iali, i,21i, j1 jz n:O

" n P[î)> rn,,¡,¡lB n,,n t - iz + r] i zi t

-t lÉ*l-' Ë un-r,1
jt L¡r:r u:k*I J i¡,

The result follows immediately. I

For continuous parameter Markov processes, we consider infinites-
imal generators I which posess the same basic form as the transition
probability matrix P except that the diagonal elements are negative and

each row of the generator sums to zero instead of one. If Q is positive

recurrent then there exists a positive vector z satisfying rQ - 0 and

r€ - 1. This balance equation can be rewritten

i,+1

r'¿ : Ð"LnL,i,-tç+r
lc:0

where r'¿ : hr¿A,¿, B|¡ : 6¡J -f Lnt Bn¡, L¿ : -d,i,ag(Bri) and h is any
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real number. rQ - 0 is equivalent to the equation rtP - r/ where

P-

B'0, B'0, B'0, B'on

B'ro B|, B'r, Bn
0 8il20 BL, BL,
0 o B'r, BL,

is the transition matrix for the chain imbedded at each successive tran-
sition of the continuous time chain with generator Q. If h is chosen

such that re: 1 then u represents the stationary distribution for that
chain. fer Rl denote the zth dual rate matrix of this chain and define

Rn by

Ê¿: LcRiLcj'.

\Me refer to R¿ as the ath dual rate matrix of the continuous time
chain Q and interpret its elements as follows: We can write

tRnt¡,:(#n) ro,r,,

where lL¿]¡¡ represents the inverse of the expected sojourn time in the
state (i,, j). Thus [Rn]¡, represents the time spent in state (l - t,u)
before the first return to level i, measured in units of duration fA¿]rrl
which is the mean sojourn time in the state (i,, j).

The continuous time analog of Proposition 1.2 follows from that
proposition and the definition Ên: X¿nifnlr,

Proposition 1.3: If the Markou Chai,n Q i,s posi,ti,ue recurrent, then

fori,>0
0 R:r*t) -RnRn-l ...Rn-r.
(ä) o: DËo RÍr) nn-r,r.

(i,i,i,) r¿-1 : r¿Ê.¿.
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(i,u) B¿se : Dok:, nÍr) Ð}k+t B¿-t,,,e. n

The recursion formula (i,i,i,)for the r¿ is clearly familiar and equation
(1.6) can be obtained from (ü)if we set 8¿6 - A¿2, B¿t : A¿t and
B¿z: A¿0.

1.5 S TATIONARY DISTRIBUTI ON

In order to approximate the stationary distribution of the exact
queue, we solve for the stationary distribution of the first approxima-
tion, in which the server is never idle at levels above l/, and increase

the value of l/ until the probability of states above that level becomes

insigificant. In order to obtain the stationary distribution for the ap-
proximate queue, we must solve the equation rQ - 0 where Q is a
generator. We can do this by executing Algorithm 1 with a : 0, and
setting the stationary distribution r equal to the result g. The re-

duction phase eliminates levels 0, 1,...,¡r - 1 in that order and the
middle phase finds the component r¡¿ (up to a constant factor) bv
applying methods in l\euts (1981). The expansion phase then finds
rN-t,frN-2)...)rs in that order. If we were to apply this algorithm
directly to the MAP/PH f 7 retrial queue, the time complexity of the re-

duction phase would be O(Nm3n3) where n'L and n are the dimensions

of the arrival and service process representations respectively. We can

reduce this to o(Nmsn') by taking advantage of the sparsity of ,4s and

the A¿2.

The interpretation of the matrices -Ê¿ makes it clear that they must
have the form

u,:lT r]
in a state (i., j) in which the server is busy cannotsince any chain started

2I



reach level i - I without first visiting some state at level a in which the

server is idle. This can also be shown by induction on the level z. If we

combine the definition Ên: -A¿z(A!n-r,r)-1 wiih the recursion for the

A!0, given in Algorithm 1, we obtain, after substituting from (t.2), the
following recursion for the M¿ and 6f,:

where

óo:o

Mo:o

f¿¡r: (i, + r)7lu' + lrn771

M¿+t-(i,+r)îJLi

,r: -(rø pr)e 8s+DoE1)-t

J:uT(I g,so)

tT : -lD, Ø Pr + 6T (Dr ø /)l(18 s + Do 81)-t

L¿ : -lDo - iot +.yT Q I so)l-t.

(r.7)

(1.8)

The components r,¿:1"?,"I1 @? e n'\ i,:0, 1,...,¡/- 1of the

stationary distribution are given by

*? : ro*AI¡¡M*-1 . . . M¿+t

*I : *?+16Tr. (1.9)

The generator for the approximate queue has the form
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AoJ As
At,z At,t

8- Awz A¡vt ANo
AN+t,z AL

AL

where Ao,A¿t and A¿2 are as in (1 .2) fori:0,1,...,N, AI: DtØ1,

0

0
As

0

Ala

A1 Alo

A\ :/ 6l,S I Do Ø I, At : I Ø So pT,

. l-olA¡vo: lnr""lJ and

If we view this chain only when

the evolution by the generator

A,K, :

where -R is the minimal nonnegative solution to the matrix quadratic

equation

Dr 8 I + R([8,s+ Do E 1) + R'(Iø,Sop?; : g.

Dr8þr+ól(p'ø¡) I/8,SïDo81+A(/s S'p')l

Methods for solving this equation are discussed in Neuts (1981).

We might think of A'lo, as if it was obtained from Q¡¿ (see (1.b)) ¡V
truncating at some level above -A/, and by applying biock Gaussian

elimination as in Gaver, Jacobs and Latouche (1984), (eliminating the
topmost level first and then successively lower levels, one at a time) until
only level l/ remained. In fact, since in practice we must terminate the

algorithm which obtains -R after a finite number of steps, if we use the

algorithm X <- 0 ; Loop{X <- -Ao(At+XA2)-t} to obtain,R instead

A¡v+r,z-[0 IØSoprl.

it is in level ly', we can describe

lDo-Nor
I røso

(1.10)
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of the usual one (X <- 0 ; Loop{X * -(Ao + X2A2).4it}), then this
characterization is correct. Neuts (1931) has suggested that the former
algorithm, while it usually requires less iterations than the latter to
converge to .R, often requires more computation time because of the
effort required to invert the matrices. This description of Alu, may not
be exactly correct if we use the latter algorithm however the connection

to block Gaussian elimination seems clear.

We can now obtain r¡¿ by solvingruA'l,n- - 0 or by solving

*o*lDo- NÉI - (D,Ø þ'+
6K,@ts1))(1øS *DoØI

and then setting

+ R(I Ø so p\ )-'(r ø so)1 : s
(1.1 1)

r'w : -rollDßþr +6T@rs/)ll1øS+D081*fi( IØSo pr)l-r Q.n)

and r¡¿4 j - nkfui for j : L,2,. ... Of course (1.11) must be solved

subject to a normalization condition. Define r¡¿ and {¿ according to

Then roxn¡v

condition re

To:0

€o-o ;

lffit rle, ro*{¡¡

1 can be written

n¿ -- M¿(Tr-t * e)

€¿: 6T e I M¿€¿-t (1.13)

sÀ/-1 1: )_;:;' rle and the normalization

*o*lrt¡v *€¡¿ Ie- (Dtø 0'+
6T,@ts 1)X/ 8,s + Do I I + R(I8,soB"))-t(1 - R)-t"l- 1

(1.14)

Once we have scaled r to satisfy (1.14), we will be interested in the
tail probability

Px:Ð*p - 1- *o*(n* +€¡r)
i:.ò/

(1.15)
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above level ¡f - 1. We propose to increase I{ until Pw 1e for some

small € € (0, 1) and then replace r with the finite vector

frf : (1 - pr l r¡'¡e)-t [ro, rL¡ . . . ,r¡v] (1.16)

\Me summarize this procedure as follows:

Algorithrn L.2

Mo,6T ,?0, {o *- o
N*-0
Calculate R from (1.10)

Until P¡¡ ( e, do

For ¿ - ¡/ to l/ I n, Calculate M¿,6T ,, rl¿ and {¿ from (1.7), (1.8)

and (1.12)

ly'<- N+n
Calculate rfu from (1.11) and (1.1a)

Calculate P¡¿ from (1.15)

Choose a new integer step n
End Loop

Calculate rfu via (I.I2)
Calculate rN-t,rN-2). . .)rs from (1.9)

Approximate r with ry defined in (1.16)

In order to illustrate the methods developed in this chapter, we consider

a particular case of a MAP IPHIL retrial queue and appiy the methods

developed to the analysis of this queue. The example we consider has

retrial rate 0: 2, service time distribution (B,S) with

[-o 6 ol
þ':lr o ol sr:lo -6 6l

Lo o -6_j
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and arrival process (Do, Dt) where

Do: Dt=

Figure 1.1 shows the estimate of the tail probability P¡¿ based on the

first approximation as well as a similar estimate based on the second

approximation with bounded retrial rate. Fbom the graph, it is clear

that the tail probability of the second approximation dominates. In the
next section, we prove that this estimate is, in fact an upper bound on

the true tail probability. We chose to truncate the generator above level

N - 30 which yields an estimate for P¡¿ of approximately 10-5. The

upper bound (from the second approximation) on the tail probability
above level ¡/ - 30 is 1.15 x 10-5.

Figure 1.2 compares the cumulative distribution of the number of
customers in the system to the same distribution for a nonretrial queue

(i... with infinite buffer) with the same arrival and service processes.

As expected, the number of customers is smaller in the nonretrial queue

since, unlike the retrial queue, the server is never idle when the system is

nonempty.

l, 3 ål
fs 4 6l

l--¡ 2 ol
lo -2 1.8 I

f o o -4)
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1.6 BOUND ON TAIL PR,OBABILITY

We refer to the queue with the homogeneous extension used by

Neuts and Rao (1990) (with bounded retrial rate) as the second ap-

proximation. Unlike the first approximation used in the previous sec-

tion, the rate matrix Ë associated with this extension depends on the

level l/ at which it begins and so must be recalculated if this level is

increased. However, it is a pessimistic approximation and so, under

certain conditions, can give us an upper bound on the tail probability

above level N in the exact queue. The first approximation can be used,

via Algorithm I.2,, to determine N without repeated calculations of ft,
and the bound from the second approximation can be used afterward

as a check to guarantee that the tail probability of the exact queue is

sufficiently small.

In this section, we define a class of phase type distributions. The

tail probability of any MAP/PH/I retrial queue with a service time dis-

tribution from this class is bounded above by the tail probability of the

second approximation. In order to prove this, we make use of theorems

in Massey (1987) to show that the second approximation stochastically

dominates the exact queue. Bright and Taylor (1995) have applied this
method, considering service time distributions in which service comple-

tion can occur from any stage of service.

We begin by presenting some theoretical results from Massey

(1987). For a set E, 1n is a partial order on E if

(i)r<rs Vse E
(ii) s 1øt and ú (ø s imply s:t
(iii) s 1ø t and ú 1ø u imply s 1s u.

Consider a Markov process on a state space -Ð upon which is defined

a partial order (¿. For any subset I of E we define l1 - {AlA >, *
for some r € fÌ. A subset I is said to be an increasing set if f : 11.



The partial order on E induces a partial order on probability measures

defined on E: If p and q are probaility measures , rMe say p <ø q if
p(f) < q(f) for all increasing sets I ç E. 'we 

can also define a partial
order on generators for Markov processes on -Ð as follows: If A and B
are bounded linear operators on ¿t(E) we say that A 1ø B provided
Aey 1B Bey for all increasing sets f Ç E where e¡ denotes the indicator
function for the set f. Proposition 3.1 in Massey (1982) proves that
these are, in fact, partial orders. A generator A for a Markov process

on E is said to be strongly monotone if for all probability vectors p and
qin (.1(E), p 1n e+ p erp(At) 1ø e enp(At) for all ú > 0. A Markov
process with generator B is said to stochastically dominate the process

with generator Aif p1ø q+ p erp(At) S" qenp(Bt) for alt ú > 0.

According to Theorem 3.4 in Massey (1982) , if A and B are

bounded,, A 1ø B and one of A or B is monotone, then the process

with generator B stochastically dominates the process with generator

A. Brandt and Last (1993) have removed the requirement of bounded
generators from Theorem 5.3 in Masssey and their version can be used

to generalize Theorem 3.4 to the unbounded case as well. \Me will also

make use of Theorem 4.I in Massey which can be similarly generalized

to the unbounded case.

A phase type distribution is the distribution of the time to absorp-

tion in a finite absorbing Markov chain. For distributions in class 1

defined below, the associated Markov chains are monotonic by virtue of
Theorem 4.7 in Massey (1937). This monotonicity is inherited by the
Markov chain representing the MAP/PH/I retrial queue with the same

service time distribution. Theorem 3.4 in Massey can then be used to
show that the second approximation stochastically dominates the exact
queue and so has a larger tail probability.

Definition 1-.L: \Me say that a phase type distribution with repre-



t. : lT i] : -i-r-(o(/r) - 
¡)

where for any function f , oi - oi, O(/) is the matrix defined by

lo(Í)ln¡:{1 j,,:r(i)
L 0 othertai,se

sentation (P, S) on the state space o" belongs to Class 1 if there ex-

ists a partial order (denoted by l") on the state space oI : {0} U o"

({0} represents the absorbing state in which service is completed), a
set of nonnegative scalars {1rlk : 1,... ,K"} and a set of functions

{fn, øi - mlk - L,...,K"} such that

(1). lþl¿>o +temar(o[)

(2).

(3). The fuctions {fn} are monotone:

i 1" j + f*(i) <" fr(j)l

This class of distributions has the following closure property:

Proposition l-.4: Class 1 i,s closed under conuolution.

Proof: Let (a,,S) and (P,T) belong to class 1 and denote their
convolution by (n, H) where

nr :(o',0) ": [f 
*f']

V/e denote the state space associated with this representation by of;:

oI: {(0, i)li, e o[] u {(t, j)U e ",)
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(oi - ø¿ U {0}). Let (" and (¿ denote the partial orders on o" and

øf respectively and define the partial order (¿ on of; according to the
following:

(i) (0,0) <¿ (0,r) <n (L, j) Vi, e of, j Ç o".
(ii) (0, i) ln (0, j) i,r Í i, <t j.
(iii) (1 ,i) <n (r, j) i,f f i, 1, j.

Let {falk:1,...,K,} and {g¡,lk:1,...,Kt} be the monotone
fuctions (defined on øs and o¿ respectively) in properties (2) and (3)

of the definition of Class 1. Define the functions {h¡"¿ i o¡, ---+ of;lk :
1,. . . , K" * Kt, (, € o¡, l0]¿ > 0) according to:

( (o,t) Ín(i)-o and" k1K"
hn¿(I, j) : { (1, fn(jÐ Ín(j) lJ and k 1 K,

L (1, j) otherw,ise

Let 'yn and ó¿ denote the scalars associated with f¡ç and g/c respec-

tively in property (2) of the definition of class 1. With each function
h¡ç¿ we associate the scalar

Then we have

H*:

It remains to show that the h¡r¿ are monotonic with respect to (¿.
We consider separately the three cases ((i), (ii) and (iii above) which
define the partial order (¿:

hrc¿(,, i) : { 
,o' sn-,x"(ù) 

"fnìrff;r"

.a -lmlþl¿ k1K,Lte(-\o*lpln klK"

li' ll : "f'Ð,*n(ø(hn¿)- 
r).

L J Ic:I le.ot
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(i). hk¿(o,i) an (0, ¿) <n hn¿(r, j).

(ii). Let i, <t j. If k < 11", then hn¿(O,,i) : (0, i) <n (0, j) - hn¿(O, j).
If k > K", then hn¿(0,i) - (0, 7n_xs(¿)) <¿ (0,7n_x,(j)) : hn¿(O, j).

(iii). Let i 1" j. If k < K" and fn(¿) I 0 then hn¿(I,i) : (L,ln(i,))
(t, Írc(j)) - hn¿(I, j). If k 1 K" and f¡,(i) : 0, then hn¿(I,i,) - (0,¿)

hn¿(I, j) . If k ) K,, rhen hn¿(L,,i) : (I, i,) < (1, j) : hn¿(I, j) .

Thus i 1n j a fn¿(i) <n f w(i) and the proposition is proved. I

It can easily be shown that hyperexponential distributions are in
class 1. A Coxian distribution is a member of this class if the probability
of service completion after each stage increases monotonically with the

tnaximum number of stages ahead (i.e. the number of stages left to visit
for a customer who visits every stage).

Asmussen and l\erman (1991) have applied the EM algorithm, a
maximum likelihood approach, to fitting arbitrary phase type distribu-
tions to empirical data. An implementation under the name EMPHT
by Häggström, Asmussen and l\erman (1991) allows the user to specify

which transitions between states of the underlying process are allowed.

This implementation could thus be used to fit phase type distributions
which are convolutions of hyperexponentials and thus members of class

1. It has been demonstrated empirically (see whitt (1984)) that for
queues with service time distriutions having coefficients of variation
smailer than 1.0, it is often sufficient to match the first two moments of
the distribution to obtain a good approximation. We can always match

the first two moments of a distribution with c.v. c ( 1 to a mixture of
two Erlang distributions of order n and n*I and common rate parame-

ter where Il(n+1) < t < 7/n. These distributions are members of class

1. Hyperexponential distributions could be used ( see Altiok (1935)) to

1¡
1¡

32



match the first three moments for the case c > 1.0. If empirical service
time moments can be matched to a distribution in this class, it would
be possible to obtain bounds on tail probabilities for MAP/PH f I rctriaI
queues with the chosen service time distribution.

The following proposition applies a theorem (4.1) from Massey
(1937) to show that a MAP/PH f I rctrraL queue is strongly monotone if
the service time distribution is a member of class 1.

Proposition 1.5: If the seru,ice ti,me di,stri,buti,on (p,S) for a

MAP/PH/I retrial queue i,s'in class 1, tlten the queue,is strongly rnono-
tone wi,th respect to the followi,ng parti,al order:

(r,t,t)S(r',,s',,t') iff s:st, rlr and, (r<r, or t1"t,)
(1.17)

where r,s and t represent the number of customers ,in orb,it, phase of
arriaal and phase of seruice (t :0 i,f seruer i,s idte) respect,iuely.

Proof: LeL y" and f¡ be the scalars and functions referred to in
the defiition of class 1 and define the following functions and scalars:

Fn(r,, s,t) - (r, t, f n(t)) k - I,. . ., K,

dl¡(,, s,t) : {Í?,:,i\ orl"i,i,n," ,i, i : r, . . ,ffi

6l¡ : lDdn¡

dî¡n?,', 
') 

: 
{

(r, i,l)
(rf1,j,t)

(r, s,t)

s:'i, ú:0 and lþl¿>0s-'i., t+0 and [0]¿>0
otherw,ise

6l¡¿: lDtln¡l7l¿

@¡t(r, s,t) -- { 
,"," t:,îln) t : o*,lifrurî. t

.)r)
ùù



0¿: e[0]¿.

The generator for the queue can now be expressed as

K,

A --Ðtn,c(Fn) - /) +

(1.18)

(1.1e)
lc:I

Tfù+t
i,i:7

y/,(o(r'k)-/) + I 6lj(ø(d?j)-/)
i,fje{\,...,rn}

6l¡nreo(ú¡¿) - r)+Ë I o¡e(a(Øir)
j:o {¿llØùo}

o¡e(a(Øit) - r).

t:0, i<r and j<N
otherw'i,se
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It is easy to see that dl, is monotonic with respect to the given

partial order. F¿ is monotone by virtue of property (3) of the definition
of class 1 and @¡t and dlrn are monotone by virtue of property (1) of that
definition. The queue is thus monotone with respect to the given partial
order by theorem 4.1 in Massey (1987) and an extension to unbounded

generators obtained from Brandt and Last (1993). I

Note, as a corollary to Proposition 1.5, that the second approxima-

tion for the queue is also monotone. We can obtain this approximation

by replacing the infinite upper limii in the expression for Q with I/. We

can now compare the exact queue to the second approximation.

Proposition 1.6: If the seru'ice t,ime di,stri,buti,on for a MAP/PH/I
retri,al queue i,s i,n class I then the second approrimati,on (i,.e. where the

total rate of retrial attempts from orbi,t'is bounded by N0) stochast'ically

dom'inates the eract queue wi,th respect to the parti,al order (1.17).

Proof: Let Q and Qt denote respectively the generators for the ex-

act queue and the approximation. We can obtain Q' fromthe expression

(19) for Q if we replace O¡z with

I?-r,s,l)
[ (r, s, ú)

(1.20)@'¡t(r, s,t) -



Since Ø¡t 1 @'j,r, we can show that Q < Q' by an argument similar
to the proof of Theorem 4.2 in Massey (19s7). The result is proved by

applying Proposition 1.5 together with rheorem 3.4 in Massey . !

This stochastic dominance clearly guarantees that the tail probabil-
ity of the second approximation is larger than that of the exact queue.

Since the stochastic dominance holds for all time, it may be possible

to obtain similar results concerning other performance criteria, however

we do not consider these here.

L.7 DISTRIBUTION OF THE NUMBER, OF RETRIALS

In the following sections, we assume the following approximate form
for the generator of the queue:

Q:

Ao,, Ag
An An

0

As
A¡vz B xt

where

B¡vt:¿r, * [9 o-^ 
-. I'Lo R(rØsopr)l

and ,R is the solution of (1.10). This is the generator which describes the
evoiution of the first approximation on the set of levels {0, 1,...,¡r}.

For retrial queues it is natural to measure the waiting time not
only in absolute units but also by the number of retriais performed by
an arbitrary customer. It is an important quantity in itself because

it determines the additional load on control devices for some systems.

Let n denote the number of retrials performed by a randomly chosen

customer before entering into service. We obtain the probability of



immediate service P(n - 0) as follows. Let Q " 
be the matrix constaining

the elements of Q which correspond to transitions in which a customer

arrives and, finding the server idle, begins his service immediately. Q,
is block diagonal with blocks

Similarily, iet Qt be the matrix containing the elements of Q cor-

responding to transitions where an arriving customer enters the orbit.

Qt is obtained from Q bV deleting the diagonal and subdiagonal blocks.

AIso define Qo: 8-Qr-Qr. We can find the probability that an arbi-
trary customer enters service immediately upon arrival by considering

an absorbing Markov chain with the following generator:

The stationary distribution of states after an arbitrary arrival is
given by

r(Q, + Qt)
ecl 

- r(Q' + Qt)e

This is the stationary vector of the transition probability matrix

-Qot (Q" + Q¿) which evolves the system from one arrival to the next.

The probability of immediate service is just the probability of eventual

absorption into the "s groilp "of states given that we start the chain at

an arbitrary arrival. This probability is given by

P(n- 0) : -r"QlLQs€:

The stationary distribution of states

the orbit is given by

{xt,:4"
rQte'

rQ re
r(8" + Qt)e'

,":13 ','l*)

I Qo Q, Qr1
Q,: lo 0 0l

lo o ol

(1.2r)
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This is the stationary vector of the transition probability matrix -(Qsa
Q")-tQ¿ which evolves the system from one orbit entry to the next.

Clearly ro and fr¿ 8ïe easy to calculate (in O(Nm2n2) time) once u is
known.

The conditional distribution of the number n of retrials performed

by a customer who enters the orbit is given by the following:

Proposition 1-.7: The condi,ti,onal probabi,li,ty di,stri,bution for the nunL-

ber of retrials n per customerin an M/PH/I retrial queue i,s gi,uen by:

P(n : kl, > 0) : r,lr6eçeI - 8)-']* (¡ - pùe

Proof: Let pk € n* @ -- 0,L,2,,...) b. such that nfn,r, is the
probability that a randomly chosen customer makes at least k retrials
(not including the request for service upon arrival) before being served

and that the system is in the state (i,, j) immediately after the lc - 1st

retrial. We consider the request for service made immediately upon
arrival to be the zeroth retriai. Similarly, Iet qk € m- be such that
qtn,j) is the probability that the customer makes at least k retrials and

that the system is in the state (i,, j) immediately before the kth retrial.
If the system is in equilibrium , then qo : r¿ (the stationary distribution
after arrivals) and pl - rtPb. By conditioning on the time s between

the k - 1st and kth retrial, (recall s is exponentially distributed with
mean 0-t) we obtain

qk : o* [* 0 erp(--ls) erp(es)ds - pkeçet - q)-t.
Jo

Combining this with the relation pk : qk-rPu yields, by induction on

lr,

qk : rr 116r.çr.r - q)-'lr .

.\o
,f/



After each retrial, the customer

P(n-kln> 0): qk(I - Pa).

The operator 0(01-Q)-t is a stochastic matrix whose elements are

the transition probabilities for the Markov chain embedded at successive

retrials. Premultiplying by Pu creates a substochastic matrix which is
identical to O(il - 8)-t except for the rows corresponding to idle states

(where the server is idle) which become zero. This allows the system to
escape from these states to an absorbing state which we can add to the

state space and which corresponds to the customer in question having

already left the orbit. The distribution of the number of retrials is of
phase type with infinite dimensional representation (r, P60(01 - 8)-t).
We can caiculate the action of the operator 0(01 - A)-1 on a vector

recursively if we can solve equations of the form A@I - A) - a. This
can be done by making the substitution Ds *- Ds-01and then applying

the following :

Algorithm 1-.3

Ms,6{ <- Q

Forz-1,...,N,do:
(1.8)

Calculate -R from (1.10)

Calculate L¿.yT, M¿ and ófl from (1.7) and

d[ - ao

Forz-1,...,-öy',do:
a¡v <-- a'xXN
For z - ¡y', ¡/ - 1,. . .,0 do

a'¿-a¿ldI-rY

A¿ <- a!¿X¿ I A¿+tR¿+t
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where

Y¿ - (-Alnr)-tÁo

x¿: (-A'r)-l -

Recall that, for this particular application we have made the sub-

stitution Do * Ds- 0.I before executing Algorithm 1.3 so that R,L¿,
lT, M¿ and 6f, are different than they were in executing Algorithm 1.2.

The elements of ,Ê¿ must now be interpreted as expected sojourn times
in level i - l given a chain starting in level z before the first return to
level z or the next retrial of our tagged customer. The interpretation
of A is also similarly altered. Clearly we must apply this algorithm M
times to calculate P(n - k) for lc: 1,2,...,M. However, the first
part of Algorithm 1.3, which has a time complexity of O(Nm3n2), only
needs to be executed once. The time required to get alI M probabilities
is thus O(Nm3n') + O(NMm'r'). Figure 1.3 shows the cumulative
distribution of the number of retrials for the example in Section 1.5.

The distribution in the figure is the unconditional one: P(, < k) and
not P(n < kl, > 0).

_ f o Lní{ (D,I 1) l- f o r,¿[r + (/ ø ,so)r nfl )

I rn L¿tT l
LnQ 8 ,so)¿i T,lI + (r ø so)r ¿t¿l )

u,:l*; f ]
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1.8 WAITING. TIVIE DISTRTBUTION

If a customer does nor enter service immediareiy, his waiiing time

in the orbit has a phase type distribution with represenration (*t,Q -
gPt) where P¡ : I - Pa is the projefiion operator associated wiih
sta¡es in which the server is idle. The term -0h represents a consr{rd

fl.ow of probability (with rate d) fr'om. idle srates into the absorbing

srate corresponding to the tagged customer having entered service. The

cumulative distribution function of the waiiing time is thus grven by

F(t¡ - L - 4erp\A - 0P¡)tie.

Since we have already assumed an approximarion in which Ç is finiie

dimensional. we can e.¿aluate this expression by applying the randomiza-

¡ion rnerhod as ioÌlows: If À is che absoiure value of the largesr oiagonai

Ð

--{

q 0.62
o
fi

o

! 0.4

=
CJ

n-)
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element of Q, then P - I +À-1 (A-gPò is substochastic and the series

{r¿Pkelk : 0, 1,.. .} will converge to zero as lc ---+ æ. Then we can

expect a reasonable convergence for the Taylor series expansion

F(t) -Ð
Æ:0

%-*o(-À¿) (1 - r¿Pke).

\Me can also obtain an approximate upper bound on the error
due to truncating the series by applying Stirtings approximation (ct x
tckerp(-k)J1rk. If k is larger than Àú and iarge enough to merit the
use of Stirling's approximation (about ITo error for lc:10 or .IYo error
for k:50) then

so that the error Lr<F(t) due to truncating the series at Ic :1( approx-
imately satisfies

^r{F(t) 
tW#Ði,,er"

lc:K

: @$Ðr,pKg _ p)-,".

Since this bound is an increasing function of ú, \Ã/e can choose 1l such

that A6 F(t*"r) ( e wherê t*o* is the latest time at which we wish to
evaluate l¡(ú) and the approximation will obey the error bound for all
smaller times as well.

Figure 1.4 compares the distributions of waiting time for the retrial
queue example from section 1.5 and for a nonretrial queue with infinite
waiting room and identical arrival and service processes.

=rn(;) - h.o
(-À¿)rp

H
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'The problem qriih this method is Lhat. although it quire

sïraighrforq/ard. it requires a iong cime to impÌement. In generai. the

randomizarion me¡hod is not renowned for iis speed of implementa[ion.

It is normally used for obtaining the transien¡ behavior of queues. If
informarion is required about the transienr behavior of a retrial queue

during the waiting time of a cus¡omer. we can obtain this informarion

without much elfiIa effort. For exampie, we may be interes¡ed in the

evolution of measures such as the mean number in the orbit during the

wairing time of a cusromer. The conditional distribution of states at

iime f inro ihe rerriai of a cusromer given that the customer is stiii in

orbit is given by serpi(A -?Pr)tll0 -F(¿)) if 9 is the distribution of

Sra¡es ac the arrivai iime of the cus[omer. Note tha¡ we may v/am to

take t/ different from xt ii we are interested in ihe waiiing time of ¿ cus-

iomer ''vho arrives when the svsrem is not ln eouiìibrium. For example.



we may be interested in the waiting time as a function of the number

of customers in orbit at the time of arrival.

One factor contributing significantly to the computational effort re-

quired for this method is the short length of the time step 1/À. Since À is

the fastest transition rate in the queue, it will almost always be given by

À - N0 the maximum composite retrial rate. We are essentially taking
into account every retrial, successful or not, of every customer. How-

ever, the very short interretrial times at high levels do not contribute
very much to the total retrial time. Thus we can expect to obtain a
good approximation by omitting the time that the server is idle when

the queue is above a certain level, say ¡tr1. This will clearly yield a lower

bound on the waiting time. We can accomplish this by calculating the
distribution of waiting time using the generator that describes the evo-

lution of the queue on the subset of states corresponding to idle and

busy states below level ,nft and only busy states above levellft. We can

obtain this generator by applying block Gaussian elimination to elimi-
nate the idle states above level l/r. We accomplish this by making the
replacements

A¿o*DtØI

A¿t */ 8,S I Do8 / + (1 ø,S0) (i,il _ nù-t (h ø þr)

A¿z * i|(iil - nù-r I So p,

for i, ) itft. The time step for calculating the lower bound will be If 0N1,,

which is larger than the original time step. A good rule of thumb for

estimating N1 is that approximately I[r, rle of the waiting time is
discarded (recall r! is the vector of stationary probabilities correspond-

ing to the idle states at level i,,, if the queue does not stray very far from
equilibrium during the waiting period.

We can obtain an upper bound on the waiting time by considering

the queue in which the composite retrial rate for level z is slowed down
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to N20 for i, ) Nz and by not allowing the tagged customer to retry

above level Àþ. Prohibiting retrials for the tagged customer above level

ÄIz is necessary since, otherwise, slowing down the retrial rate of the

other customers would give the tagged customer an advantage and we

would not obtain an upper bound. A formal argument establishing this

as an upper bound can be obtained from Proposition 1.6 if we modify

the partial order (1.17) so that the absorbing state (tagged customer in

service) is smaller than all other states and delete the partial order re-

iations between states with different server configurations (idle or busy)

below level Nz. The partial order then becomes : (r, s,t) 3 (r' ,, s' ,t') iff
s : st and (r 1 rt or t 1, t') and (r' ) Nz or t,tt - 0 or t,t' +0). The

partial orders between idle and busy states below level Äþ are removed

because otherwise, in the mappings @'¡t defined in (1.20), the transi-

tions from idle states to the lowest state would "cross over "identity
transitions in the busy states. This would violate the monotonicity of

the Q'¡t. We omit the details of the proof.

Both of the above approximations above will reduce the compu-

tation time by increasing the step size. We expect that the rate of

convergence would be approximately linear in the relative increase in

stepsize (N/N, or Nf N2) since the mean number of steps in a given

time interval is inversely proportional to the size of the step. Although

this would represent some time savings, the method is still, by its nature

time consuming and faster approximations would be desirable.

A faster approximation can be obtained as follows: The joint dis-

tribution of the number of retrials and the inter-retrial times for all of

the retrials is given by

f rc(tr,. . . ,tn) :r, (0erpl-0tllerplQttlPu) . . .

x (0 erpl- 0t ¡, - llerplQt n -tl Pa)

x (0erp[-0t¡,]erplQtnl(r - Pa)) 
".

The joint distribution of the number of retrials and the jth (j < k)
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retrial time is

f n(t¡) :0enpl-0t¡lr¿(0 (il - Q)-' eu¡i -'
x erplet¡lpb(o@r - 6)-tpo)r-¡-|çeçet - Ø-t(t - pa))"

Because of the presence of the factor erp[Qt¡), it is clear that the
conditional distribution of the jth retrial time given that there are k
retrials is not exponential. AIso, the jth retrial time cannot be con-

sidered independent of the number of retrials. However, the effect of
enplQt¡l is not very important when t¡ is large because of the expo-

nential damping factor expf-ît¡1. If the jth retrial time is small, then
the evolution of the queue through this relatively short time should not
have a great effect on the distribution of the number of retrials which
follow it. If we make the zeroth order approximation enplQt¡l È /, we

obtain fn(t¡) x P(n: lc)?erpl-?t¡l so that, in our approximation, ú7 is

exponentially distributed and independent of the number of retrials. If
we also assume that all of the retrial tirnes in a sequence ending in ab-

sorption (tagged customer enters service) after the kth are independent,

we obtain the following approximation for the distribution of waiting
time in the orbit:

p-(t) xP(n: 0)ó(¿)

- P(r: o)) î,rr, - kln> o) ^+ {ç_7e-ot Q'22)

rc:r '(k-I)l
where ó(ú) is the Dirac delta function centered at zero. This assumption
of independence should not be too far from the truth since the retrial
times are related only by the fact that the server is busy at the end of
each of them, except for the last. An exact expression for the conditional
waiting time distribution is given by

r(t) -Ë", ll,'", fo'-" 
dtz

r'-Ði:i"
J, dtn

x (ïerpl(Q - 0I)t'lpa) . . . (7erpKA - 0I)tk-lPb)
x erpl(Q - elþkl(I - P6)e.
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Unfortunateiy, we have no bound on the error for this approxim.ation

but it performs remarkably well in the example considered. The exact

waiiing time distribution is compared to the approximation in figure

1.5.

Figure 1.5: CDF of Waiti-ng Time (Exact, and Approxi-¡nate
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1.9 CONDITIONI\I 'WAITING TIIVIE MOiVIENTS

If only the moments of the waiting time distribution are required,

it is possible ro obtain these wiihout caicuiating the entire distribution.

The wairing rime of a customer not receiving immediate service has a

phase fype distribu¡ion with representation (rt, Q - 01f and so the 7ih

momenr is given bY

lv[j : (-t)i itx'(Q - 0P,¡-i u-

In rtrcier ro obcain ihese n'lomenrs. we need [o solve svstems of the iorm

Ue, :,-v. This can be clone bv aoolving -\lgoriihm 1.3 if we first t'eoiace

-!6



the recursion for L¿ in (1.8) with

L¿ : -lDo - (¿ + 1)0r + il Q a,so)-t.

This requires o(Nm3n') +o(wMm2n2) time to calculate the first
M moments. Again, R¿ and,.E must be reinterpreted as expected so-
journ times before the first return to some initial level or the entry into
service of our tagged customer.

1.10 LEVEL DEPENDENT EXTENSION:
LOCAL AREA NET-WORK \MITH CSMA PROTOCOL

There are some models of intereste ciosely related to the
MAP/PH f I retrial queue which posess some level dependence other
than that of the composite retrial rate. 1\otably, models with a finite
number of customers, such as models of small computer networks, often
posess such level dependence. Coyle and Liu (1985) presented a matrix
representation of a network with carrier sense multiple access protocol
and collision detection. In this protocol, users check a single shared bus
to determine if it is busy before sending a packet onto the bus. If the
bus is busy, the user attempts transmission again at some exponentially
distributed time later. When a user begins transmission, it requires
some time (PH distributed in the Coyle and Liu model) for other users

to detect the transmission during which time another user may begin
transmitting. This is known as a collision and, when it occurs, both
users must retransmit and the bus requires some time (PH distributed)
to reset itself and become available for transmission once again. IJsers

which have messages to send retry periodically and are considered busy
until the message is sent. We will refer to customers with no message

to send as active (since they are presumably active in generating the
messages). It is assumed that messages to be sent on the bus arrive to
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each non-busy user according to a Poisson process.

\Me relax the assumption of Poisson arrivals to the active users

and allow the time between the appearance of successive messages at

each active user to have a two dimensional phase type distribution.
The arrival process to the bus then becomes a level dependent MAP.

Assuming a two dimensional representation allows us to reduce the size

of the representation for the arrival process by lumping together states

with the same number of customers in the second phase of their arrival
process. The dimension of the arrival process then grows only linearly
with the number of active stations. In order to simplify the model, we

ignore the possibility of collisions and assume that each user becomes

aware of a busy bus immediately. The collisions can be returned to
the model without significantly altering the method of analysis, but
since our purpose is simply to give an example of a level dependent

IVIAP/PH/1 queue, we omit that aspect from this model.

The Network is modelled as a PH2lPHllllll retrial queue. The

interarrival time for each of the ly' sources has a phase type distribution
with representation (*,7) where a: (at,c"2) and

*_l-(t'+tù tu I'-L t2 -(tr+ù)'
The time required to transmit a message (service time) has a phase

type distribution with rn-dimensional representation (P',5). The re-

trial rate 0 is the reciprocal of the mean time between checks of the bus

for a customer in orbit. The state space for the Markov chain which

models the network is given by {(r, j,k,¿)lz - 0, 1,... ,M; j:O,,L;lc -
0, ¡tr-? -6¡t;(:1, . .. ,m¡j where TTLI: L,Trùo - n'L and the Kroenecker

,ô7r is equal to one if ¡ : 1 and zero otherwise. The labels ,i, j, lc and (.

represent respectively the number of customers (stations) in orbit, the

number of customers (stations) in service (currently transmitting via
the bus), the number of customers in phase two of their two state in-

terarrival process and the phase of service. If we order the state space



so that the labels (i, j,lc,l) appear in lexicographic order, the generator

for the Markov chain has the following structure:

8-
,1 Aoo 0

zAnArc0

Aw -z,o
A'v -t-,2 A¡v-t,t

where:

A¿l: (1.23)

AN -t,t : l";,,;t|: 
h Øs Pr 

)

and,90 : -Se. This is the generator for a MAP/PHIll lN retrial queue

with level dependent arrival process represented by (Co, Dn) when there

are'i active customers. Note that if there are l/ - 1 customers in orbit
and one active customer, the active customer goes directly into service

if he attempts to seize the bus before the next retrial from orbit. If there

are N - 1 customers in orbit and one in service, then the customer in
service becomes active when he completes his service. There is thus no

way for all l/ customers to be in orbit at the same time. This is why

there is no level N represented in the generator.

The matrices C¿, D¿ and U¿ are given by

c'¿,,¿-l,o

c¿¿t

As
A1

0

^ -[ot-n*rx.ô/-i o It-L¿o- 
| o D¡v-,-ts/.l

Aro : [Ot-n*t" N-¿+2 i,0I¡¡-¿¡1Ø Pr I'1'¿2- | O 0rr¿(¡¿-¿)xr¿¿(¡¿-¿+r)l

I C*-n - i,gI¡¡-¿¡1 D¡v-¿ Ø pT I
L U*-¿ 8,90 I¡v-¿ 8,S + CN-¿-t s 1l

c¿ot c¿oo

c¿tz

c¿¿z

C¿:
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d¿ot

dnzD¿: € ftlear)xz

ft(¿+r) xe,*2)
a1 4,2

identity rn rix and the scalars c¿¡¿ and

d¿,¿-

d¿¿'

-1,1

:t

,](
rnat

f at Q.2

U¿--I
L

where 1¿ is the z-dimensional

d,¿¡¡x are defined by

c¿jo: (i - j)t, c¿jz: jtz c¿jt : -(j(t, * tz) + (i,- j)(t, + ri))

d¿il:(i-j)tr.d¿jz : j'yz

If there are 'i active customers and j of them are in phase 2 of
their arrival process, then i - j are in phase 1. c¿jo is the rate of
phase 1 customers switching to phase 2 and c¿¡2 is the rate of phase 2

customers switching to phase 1. d,¿¡1 and d,¿¡2 arc the arrival rates of
customers in phase 1 and phase 2 respectively. D¿ has no superdiagonal

elements because the number of customers in phase 2 of their arrival
process cannot increase due to a customer arriving to join the orbit or

service. This number will remain the same (d¿¡t) if a phase 1 customer
joins the orbit or service and will decrease by one (d,¿¡2) if a phase 2

customer joins the orbit or service. The form of U¿ arises from the

fact that the number of phase 2 customers will remain the same if a
customer completes service and begins an arrival process in phase 1

(with probability aù and will increase by one if a customer completes

service and joins the active customers in phase 2 (with probability c.z)

of their arrival processes.

The solution method is similar to the one used in the previous

sections except that the recusion relations (I.7) and (1.8) are altered,

to take into account the form of the level dependent arrival process.
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After substituting from (I.23), we obtain the following recursion for the
M¿ and 6f,:

óo:0

Mo:o

6l+t : (r + lo[u{ + JiLii{]

M¿+t-(i+1)0J¿L¿

where

,T : -Q*-n Ø P\(I¡u-08 s + Cu-¿-tø /)-t

J¿: 
"T 

(U*-n 8,so)

tT : -lD*-nØ Pr +67@N-¿ E1)l(/¡r-¿ I S+ CN--¿-t8 1)-t

L¿ : -[C*_n - i,|I¡¡_¿+r f lT (Ux_¿ I So)]-t

(r.24)

(i.25)

Since the matrices 1¡¡-¿ I 
^9 + C ¡v -¿-t I / are block tridiagonal, we

can use block gaussian elimination to apply its inverse to a row vector

of the appropriate dimension in O((lf - i)*t) + O((¡¡ - i)*,) time
instead of the O((N - i)t*t) time required to invert a general matrix
of the same dimension. The zth step of the algorithm thus requires

O((¡r - i,)t) + O((¡/ - i)*t) + O((¡r - ù'*') time and the entire
algorithm requires O(Nn) * O(Nzm3) + O(.n'rsm2) time. Since we only
have to invert matrices of dimension N ot n'L instead of matrices of
dimension Nm, software limitations on the size of matrices which can

be inverted may be less of a problem.

In order to calculate the conditional probabilities P(n - kln > 0)

of the number of retrials we must be able to solve equations of the
form A@I - A) - a. This can be done by making the substitutions
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C¿ * C¿ - 0I¿+, and then applying Algorithm 1.3 with the following
substitution for the matrices X¿ and Y¿:

Yi - (-Air)-'A,

and 7¡¿-r : -,S-1 We must apply the algorithm M times to calculate

P(n : kln > 0) for lc : I,2, . . ., M. Since the first part of Algorithm
1.3, which has a time complexity of O(Nn)*O(N2m3)+OlLrt*,), only
needs to be executed olrce, the time required to get alI M probabilities
is O(1t/a) * O(N2m3) + Ollrsm2) + O(MN,*2) + O(lVINt*).

In order to calculate the moments of the waiting time distribution,
we must repiace the recusion for L¿ in (1.25) with

L¿ : -[C ¡u _n - (i, + L)01N _¿+t + tT (U N_¿ I So )] - 
t

and apply algorithm 1 .4 to solve systems of the form A@ - ePt) - a.
We do not include any further detailed analysis of the model since

our purpose was merely to give an example of modifications required to
adapt the method to queues with level dependence. This provides an

idea of the range of models to which the method is applicable. If the
number of stations is large (more than 20-30 or so), an adaptation of
the methods in Chapter Four may provide a good approximation which
requires significantly less computational effort than the exact solution
. We leave the description of this approximation method to Chapter
Four.

_ [o LnT (D¡v-z-r a /) I- | O T¿11,,(¡v -,;¡ f (t/¡¿-r A ,So)l nTl )

x¿: (-A!Ð-t

:l L¿ L¿tT I- lr"((I*-na,sO)¿i T\I,,(N-z¡ * (I/¡¡-r 8,90)trof )
T¿: -(I*-n8S+ C¡v-¿-tØl)-t ,i:0,...,N- 1
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We have derived a numerical method for obtaining the stationary
distribution of states and the distributions of waiting time and the num-

ber of retrials for a MAP/PH f I reftial queue. We have also obtained a

relatively fast method for obtaining the moments of the waiting time.
This extends previous models by allowing the inclusion of correlation in
the arrival process as well as nonexponentially distributed interarrival
times.

We have also derived a method for obtaining bounds on probability
lost due truncation by considering approximations which are monotonic
and homogeneous above some level. In doing so, we have identified a

class of phase type distributions which is closed under convolution and

which, we believe , frày give rise to monotone processes when it appears

in models other than the MAP IPHII retrial queue as well. The strategy
of using the M/G f I paradigm and focusing on the duals R¿ of the rate
matrices R¿ of the GI/M f 7 paradigm allows us to delay decisions about
where to truncate or approximate level dependent QBD processes until
we have sufficient information to guarantee a certain level of accuracy

in the approximation. This strategy should prove useful in the analysis

of general level dependent QBD processes. We have also demonstrated
that the method of this chapter can be extended to QBD processes with
level dependence other than the composite retrial rate, as in the case

of the CSMA LAN model. In the following chapter, we present some

analytical results for the special case of the M/PHf I reftial queue which
are not available in the more general model. In subsequent chapters,

we show how the methods of this chapter can be adapted and extended

to other related retrial models such as retrial queues with buffers and

retrial queues with non-exponential retrial times.
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CHAPTER TWO

THE M/PH/I RETRIAL QUEUE

1..1 INTRODUCTION

Keilson et al. (1968) derived the generating function of the station-
ary distribution of queue length for the M/GlI retrial queue with no

loss or buffer. Obtaining the distribution itself, however, can be cum-

bersome in practice. The expression for the generating function involves

an integral which may be difficult to solve explicitly and the z-transform

thus obtained may also be difficult to invert.

Greenberg (1989) developed a method to approximate the steady

state distribution by assuming that returning customers see time av-

erages. Greenberg and Wolff (1987) have shown that this assumption
ieads to an upper bound on server utilization.

De Kok (1984) derived separate expressions for the generating func-

tions of the number of customers in the queue when the server is busy

and when the server is idle. Artalejo (1993) solved the integral in the
latter expression explicitly for the special case of the M/H2lI retrial
queue, inverted the transform and used the Kolmogrov equations di-
rectly to solve for the busy probabilities in terms of the idle ones.

De Kok also developed a numericai method for some special cases

including service time distributions which are finite mixtures of Erlangs

with common intensity. Since any phase type distribution can be con-

sidered an infinite mixture of this form, more general phase type dis-

tributions could be approximated by truncating the mixture series. In
fact, any distribution on (0, -) can be approximated arbitrarily closely

by a distribution of the form considered by de Kok, however the di-
mension of the representation may become impractically large. Since
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current methods (see Asmussen and Nerman (1991), Bobbio et al (1980)

and Johnson and Taaffe (19S8))for fitting phase type distributions use

either general phase type distributions or other special cases (Coxian,

mixture of Erlangs with different intensities, triangular representations)

it would be of more practical use to have a simple method applicable

to retrial queues with general phase type service time distributions.

Neuts and Ramalhoto (1990) consider a service model in which

the server is required to search for customers. Though the context is

different frorn that of the retrial queue, the model is equivalent to an

\[lGll retrial queue where all arriving customers go immediately into

orbit even when the server is idle. The generating function is derived

and a numerical method of obtaining the stationary distribution is given.

This method (as l\euts and Ramalhoto point out) can be adapted to
obtain the distribution for the MIGII retrial queue and does not require

numericai integration if the service time distribution is of phase type.

Although an analytically explicit solution is presented in Neuts and

Ramalhoto (198a), the method suggested is more cumbersome than nec-

essary for distributions of phase type because they arrive at the station-

ary distribution via the generating function whereas the balance equa-

tions are more easily solved directly. The suggested method requires

calculation of the distribution {o,,, > 0} of the number of arrivals dur-

ing a service as well as the convolution of an infinite number of Poisson

distributed variables and a number of other convolutions. The effort

required to calculate the stationary distribution directly is similar to

the first of these steps and no convolutions are necessary. A more direct

method is applied in Neuts and Rao (1990) to investigate the M/M/s
retrial queue. Although generating functions are avoided, the method

differs somewhat from ours in that an iterative scheme is applied to
solve the balance equations whereas we apply a direct method.

If we model the M/PHf L retrial queue as a discrete space Markov
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process, we find that the generator is block tridiagonal with subdiagonal

blocks of rank one. Generators of this form admit an explicit matrix
product form solution for the stationary distribution, when it exists.

Though a stability condition has already been established for the more

general }i'f'lcll retrial queue, for the sake of completeness we show how

this stability condition determines the convergence or divergence of the

matrix series which arises in the normalization.

Falin (1991) obtained a closed form expression for the Laplace

transform of the waiting time distribution and for the generating func-

tion of the number of retrials per customer in the M/G/1 queue. How-

ever, it may be difficult in practice to solve the integrals and invert
the transforms which appear in these expressions. If the service time
distribution is of phase type, it is possible to obtain the distribution of
the number of retrials numerically using only matrix multiplication and

a single matrix inversion. The waiting time distribution and moments

can be obtained by applying the methods outlined in Chapter One.

2.2 STATIONARY DISTRIBUTION

Consider a retrial queue with arrival rate À, retrial rate 0 per cus-

tomer and service time distribution represented bV (,6, S). The state

space is the set

E: {-L} u {(0, j)U:1,... ,n-L}U{(i,, j)li -r,2,...; j:0, 1,. ..,r.n}.

The indices z and j represent respectively the number of customers in
orbit and the phase of service (j : 0 if the server is idle) and {-1}
represents the state of the system when the orbit is empty and the

server idle. m is the dimension of the service time distribution.



The generator of the corresponding Markov process is of the form

8:

A-t,t A-t,o
Aoz Aot
0 Atz
00
::

00
Aoo o

An As
Azz Azt

0

0

0

As
(2.r)

where:

A-t,t - -À A-t,o : 
^pr

Aoz: So

Atz:

and for i, ) I:

(2.2)

For any vector r € U?oo we partition r according to
r - l*-t,ro,,frr,...] where r-1 € m, rs € ft* and r¿ € ffi-*1 for

i > L We also define r(¿,j) e ffi to be the 7th (scalar) component of

the vectot fr¿. The generator Q is block tridiagonal with subdiagonal

blocks of rank one. Ramaswami and Latouche (1936) gave the station-

ary distribution for the special case of generators of this type for which

the blocks along a diagonal are also identical, except for the first. Sr,y-

der and Stewart (1935) gave the solution for generators with rank one

subdiagonal blocks and superdiagonal blocks which are diagonal. The

method used in both these cases is similar to that used in Neuts (1981)

to solve the M/PH/I queue. The following two propositions summarize

the extension of this method to the general case of block tridiagonal

generators with rank one subdiagonal blocks. The result is a particular

case of a general result for the matrix multiplicative form of station-

ary vectors for generators with block Hessenberg structure and rank

Ao, :,S - À1 Ase : [0 À/ ]

ltß' ] ,.: 
^ [3 ?]

, [o i,lpr I r -(i0 + 
^) ^pr 

I
'a'nr: ló "'6 ) or' : | ' go s- À1.] Q'3)

57



one subdiagonal blocks (see Basharin and Naumov (1983) and Naumov

(1985)). It is the GIl}/rll analog of Proposirion 1.8.

Proposition 2.Lz If the generator for ø pos'it'iue recurcent Marlcou

process has the form

8:

AotAoo 0 0 0
AnAnAn00
Azz Azz Azt Azo 0
As¿, Ass Asz Ast Azo

: : : i : ".

(2.4)

where eaclt, A¿¡ 'is an rrl¿ x m¿-j+t matrir, the stati,onl,ra di,stri,buti,on r
sati,sfies r¿+t : ri R¿ where the m¿ x Tn¿-j+1 matrices R¿ sati,sfy:

(r) o: DLo R[*) An**,r

(i,i,) A¿se: IL, nÍ*) Ð1,!'rI', A¿+t ,,e

wirh R[k) : lI"r!-t Rn. The component lI,n)¡n ,is the erpected, time

spent i,n the state (i+7,k) before the first return to leuel,i measured,in

un'its of durati,on equal to the n'Lel,n sojourn ti,me i,n the state (i,, j).

Proof: The proof is analogous to that of Proposition 1.3. I

The stationary distribution is thus given by

j-r
r¡f r-1 - II R¿ Q.5)

i,:-I

where the matrices -R¿ are determined by the following:
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Proposition 2.2: If Q as defi,ned i,n (2.1 i.s bloclc tri,di,agonal and

sati,sfi,es A¿z - naT¡ i, : L,2,3,.. . where 1¿ and, a¿-1 are non-
zero column uectors of the appropriate length sati,sfying .y¿, d¿ ) 0 and

af, e : I, then, for i, ) 0:

R¿: -A¿o(An+r,, * A¿¡1,seoT+)-'.

Proof: For block tridiagonal generators, pari (i) of Proposition
2.1 reduces to

0 : A¿o t R¿ A¿+t,t * R¿ ¿+tR A¿¡z,z (2.6)

and part (ii) reduces to

A¿oe : R¿A¿¡r,z€. (2.7)

If we replace i, in (2.7) with i + I and postmultiply by af,*r, we

obtain

A¿¡1,s€a,T+t : ¿¡1 RAt¡2,2.

Substituting this into (2.6) yields

R¿(A¿+t,t I A¿+t,oeaï) - -A¿o.

Let B¿ : (A¿t i A¿seaf, ) and Iet [B¿]¡n denote the (i, k) element

of B¿. Then B¿ satisfies

(u) LB¿l¡n>0if j+k.
(b) B¿e : -y¿ (10 and + 0).

(a) and (b) are sufficient to conclude that B¿ is a stable matrix (see

Marcus and Minc (196a) p. 15s). Thus all the eigenvalues of B¿ are

strictly negative and the inverse Bn 1 exists so that we can write

R¿ : - A¿,0(A¿+r,r * A¿¡1,s€aolr)-t. f
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Substituting the coefficient

pression for R¿ in Proposition

à"þ'Rl and :

matrices in (2.2) and (2.3) into the ex-

2 yields l?-1 - þr R, Ao : []e, R +

i, - r,2,... (2.9)R¿: [å' o*u.*-L,B,Rf

where R - -À(,9 - ^I 
I ),eBT)-l is the rate matrix derived in Neuts

(1981) for the \/IIPH/I queue with an infinite number of waiting po-

sitions. The first component of the relation r¿+r : r,¿ A¿ corresponds

to equation (2.6) in De Kok (198a). Note that, in the limit as d ap-

proaches infinity, the probability DË, re,o) that the server is idle with
customers in the queue approaches zero and the probabilities rçt,¡¡ with
j + 0 approach their counterparts from the M/PH/I queue with an in-

finite number of waiting positions. This is, of course, expected since, if
the expected timeLl0 which a customer waits before he retries is zero,

the queue reduces to an M/PHII queue with random service order.

2.3 POSITIVITY AND STABILITY

If the representation (P, S) is irreducible, the matrix (S-À1+ À"0')
is stable and irreducible so that its inverse (and thus ,R) is positive. This

guarantees the positivity of r. The stability condition p: \l p,( 1,

where þ-r - -PS-le is the expected service time, is well known (see

Falin (1990)). We shall prove that this guarantees the convergence of

the matrix series obtained by summing the right hand side of (2.5). The

method we use is an extension of Theorem 3.2.2 in Neuts (1981).

We define the quantities r¿ (i: I,2,. . .) bV

r¿ : -aT+r(Ao I A¿¡t,t)-I Aoe-

We shall show that if the limit of the sequence {r¿} is less than I then re
is finite so that the probability vector z is normalizab\e. The following
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proposition provides an alternative expression for R¿ which we require

to formulate a bound on the spectral radius sp(R¿).

Proposition 2.3: If the generator for a Markov Process satisfies

the conditions of Proposition 2.2, then the corresponding rate matrices

,R¿ defined in Proposition 2.1 satisfy:

AoAoir,rAseaf, Ai*tr,,
R¿: -AoAnj,r *

+

Proof:

(An+r,,.:^::rr;,

L

t-

An]r,r lI
L

: O.' l,"?+1,1 
L'

oT An|r,rto

: Alnir,tll
oo

Now we have

r - aT e : 
"T 

AnÌr,rAo+-t,re : -aT Air,r(Ao" -l l¿)

: -aT A¿]r,rAo" - "T 
Anj,n y¿.

Thus
R¿ -- -As(An+r,''. + Aseaf,)-r

¡ ¡_L AoAo]r,,rAseaf, A#r,, .

--./ao.rt-i+1,1 -w

. Arnir,rll * AseaT Ani,,,rl
ool

Ð(-¿o "*1 
,+:n]r,r)" 

Iu:I I
oo

Aseaf, An]r,r\{-"T n;

AoeaT Aîr,, Iw)

-1

1

-1,
-1
+1 ,ooù"f
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emen

T

Corollary 2.3: If A¿+t,t t Aseaf, ,is ,irreduci,ble and, Ao # 0 then

sp(R¿) > sp(-AoA¿]t,).

Proof: Let (An+r,t I Asea{) b" irreducible. Since it is also a
stable matrix, its inverse is negative and thus E¿ is positive. Clearly

R¿ ) -AoA¿Ìr,, since the second term for R¿ in Proposition 3 is non-

negative. Suppose that R¿ - -AoAn]r,r. Then AoAnir,, is neg-

ative and AsAlnir,rAoo"oT AnÌr,, : 0. But this is impossible since

ArAlni,,,r/se must be negative if A0A¿;r,, is negative and. Ase + 0.

Thus we have R¿ ) -AoAnlr,r ând lB¿]¡rc # l_AoAtn]r,r]¡r for some el-

t (j,k). This is sufficient to conclude that sp(,Bn) > rp(- AoAnr\.

We can now relate r¿ to sp(R¿).

Proposition 2.4: Let r¿ : -a\r,(Aol A¿+t,t)-'Ao" where e¿+t,

,4s and A¿+t,t are components of a generator satisfying the conditions
of Proposition 2.2. If r¿ 1 I then sp(R¿) < 1. If r¿ ) 7 then sp(R¿) > I.

Proof: Let u be the left eigenvector of R¿ corresponding to n -
sp(R¿). Then the equation z R¿ :4u leads to

u - -rt(uAse)aT;1[Áo * nA¿+t,t]-r .

Postmultiplying by Ase yields

L : -'oaT*tlAo I nA¿+t,tl-r Aoe

: rtd|rl?AoA:n]r,r) - ,rIl-'AnltrAoe .

- o(ri)
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where O(t) - t*TirlA" + sA¿+t,tf-t Ao" is defined on the domain

D(O) : (sp(-AsA#r,r),*] . For s € D(O) rhe marrix G(r)
: [(-AoA]r,r) - 11] is stable so that, by Theorem 1 on page 2b0

of Bellman (1970),

l'i,m¿---oo erpfG(s)ú] : 0

and so we can write f{1fu ,'i-ry'. '''1"'

o(,) : - [* r-fii;ri*uuro¡,,,,t0"ai'$ilfi ,,Jo - -'-,- 
.

: [* , erp(-.st)f Q)dt
Jo

where f (t) - -*T+, erp(-AsAftr,rt)A,,t'r,r,4ee. Note that

f'ft): a\rAoA,ir,rAs erp(-AoAtnlr,,.t)e ) 0

since A,|'r,r. < 0. Thus O(r) is non-increasing. Let ut be a left eigen-

vector of -AsA#r,, with eigenvalue u. Then we must have

u'[Ao*uA;]r,Ll :o
but the matrix Ao * uA¿+t,t is stable (and thus nonsingular) if u > I
which implies that sp (-lolnÌr,r) . 1 and 1 e D(Õ) . If r¿: A(1) < 1

and Q(r7) : 1, we must have r¡ < L since lÞ is nonincreasing. Similarily,

lf r¿ ) 1, we must have r¡ > 1.

The following lemma and proposition establish conditions for the

invariant probability vector r to be normaiizable.

Lemma 2.6zLet {Rn, ,i: I,2,. . .} b, a sequence of n x n compler

matri,ces. If there erists an 'integer M and a real number ( < 7 (> 1)

such that sp(R¿) I € (> Ë) for all i > M then the seri,es

ooj

Dllo'
j:7'i:I

s-
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'i,s conu erg ent ( di,uerg ent) .

Proof: See Section 1.7.

Proposition 2.62 If the

Marlcou cha'in wi,th generator Q
reccurentiÍp>7

li,mi,t p : Iim¿---oor¿ e*ists, then the

i,s posi,ti,ue recurcent i,f p < I and non-

Proof: The proposition follows directly from Proposition 4 and

Lemma 2.5.

For the M/PHIrretriat queue, we have ,n: ì (t * dt) ,where

p,: -Pr S-re is the expected service time, so that p - ì.

2.4 EXTENSION f 1: M/M/L RETRIAL QUEUE WITH
GEOMETRIC LOSS

Consider anMlMll retrial queue in which customers leave the sys-

tem with probabiiity r each time they retry for service and fail. Falin
(1930) obtained the partial generating function for the joint distribution
of the number in service and the number in orbit. Neuts and Ramalhoto
(1984) considered a similar model where the server is required to search

for customers and where customers leave the pool at a rate proportional

to the number of customers present. They obtained the partial gener-

ating functions for the number in the orbit when the server is busy and

when the server is idle.

The reason that this model is tractable only for the case of expo-

nential service times is rather transparent from the point of view of the



matrix analytical method. The subdiagonal blocks of the generator as-

sociated with the M/PHf 7 retrial queue with geometric loss are given

by

o": l3 ':f,i)
where (P, S) is a representation of the service time distribution. The

rank of the subdiagonal blocks of the generator are equal to the dimen-

sion of this representation so that, if the service times are exponentially

distributed, the subdiagonal blocks have rank one. The method of Sec-

tion 2.1 can then be used to obtain explicit results for the stationary
distribution, thus avoiding the inversion of the generating functions.

The generator associated with this model is given by Q in (2 I)
with:

A-t,t - -À A-t,o : \

and, for i, ) I:

where ¡-l is the service rate. Substituting into the expression above for

r¿ yields
À(1 - r),7.-

(t+t)0 ["*+rr-]
Since p : Iim¿---ær¿: 0, the queue is always stable as noted by

Falin [10]. The rate matrices are given by A-r : Àl p, and

Êo:;\f#,']
R¿:,nl o, ?l ;i,>r.

L À+(r+1)a 'l

'i:2,3,...,

Aoz:¡f, Aor:-(ø+,1¡ A6s:[0 À]

o-: Itol ,, : 13 À(10_ ,) ]

^ _[-(À+i,o) À Ir1¿r-1. p -0tli,7r+À(1 -"))l'
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The stationary

where

r is given by r/n-t _ [r, a'o, r'r, u'r, rL, uL, . . .],

a'o:

al:

al:

r'¿ :

^/pÀrs
pr-r

ì*'ü,,

þr'i, o,r

^ 
+ i0yi,_L.

;i> L

2.5 EXTENSION f2: LEVEL DEPENDENCE

The result of Proposition 2.1 depends only on the tridiagonal struc-
ture of the generator Q and on the rank of the subdiagonal blocks. Our
result for the stationary distribution can thus be extended to include

arbitrary state dependence of the arrival and retrial rates and of the
service time distribution. If these are given by À¿, 0¿ and (þ¿, S¿) re-

spectively when there are 'i customers in orbit, we need only add the
subscript i + L to À, 0 and (P, S) where they appear in (2.8) (includ-
ing the expression for -R) and multiply the right hand side of (2.8) by

À¿lÀ¿+t.

The results concerning the stability condition, however, also de-

pend on the fact that the superdiagonal blocks are identical except for
the first. This property was required to show that 1 € D(o) in Propo-
sition 2.4. Other methods may be required to take into account state

dependent arrival rates. It is a simple matter, however, to extend these

results to the case in which the retrial rates and service time distribu-
tions are state dependent but the arrival rates are not. In this case we

have:

r.,: À (t*, t,, \.'' - lro*1 \' ' (i,+ r)gn+t ) '
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There are three state dependent models which we feel may merit
some future consideration. The first concerns computer communications
networks. If the network is small, it may be necessary to model the
system as one with a finite number of customers. In this case rve have

À¿ : Ào(1 - LIN) where N is the number of customers. Though the
arrival rate is state dependent, there is no problem concerning stability
conditions because the state space is finite.

The second model includes state dependent service time distribu-
tions. Consider a model in which the server must do some work to
process requests for service which arrive when he is busy. In this case,

we would expect the service times to be longer when there are a large

number of customers in the orbit since the server must spend tirne send-

ing busy signals to these customers. Of course, some mechanism must

be available to increase the service rate when the number of customers

iir the orbit grows too large so that the system can reach stability.

The third model includes state dependent retrial rates. This type of
behavior may occur if the system has limitations on the number of retri-
als which it can process simultaneously. This may occur with telephone

traffi.c, for example, where the time to complete an unsuccessful call and

receive a busy signal may increase when the system is overloaded.

2.6 CONCLUSION

We have obtained analytical expressions for the rate matrices asso-

ciated with the M/PH/I retrial queue and provided sufficient condition
for the convergence of the matrix series which appears in the normal-
ization condition for the stationary distribution of states. The more

general numerical methods of Chapter One can be applied to obtain the
distributions of the waiting time and number of retrials. We also pro-

vided an explicit solution for the stationary distribution of the MIMII
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retrial queue with geometric loss which provides some insight into why
the problem is tractable for exponential service times. We have noted
that the method used is well suited to dealing with some models which
include state dependent parameters.

2.7 PIìOOF OF LEMMA 2.5

Lemma 2.5: Let {R¿ : ,i : 7,2,...} b, a sequence of n x n compler
matrices. If there erists an i,nteger M and a real number € < 1 (> r)
such that sp(Rn) < € (> €) for aII i, > M then the series

is conuergent ( di,uerg ent) .

Proof:
(i) convergence

For each matrix R¿ ret ,S¿ be the n x n matrix which reduces (via
a similarity transformation) R¿ to its Jordan canonical form Ê¿ (see

Bellman 1970). Then

nñ:S¿R¿Sot:

Àra100
0À2a20
0 0 : ...
0 0 Àn-t an-I
000^n

where a¡ € {0,1} and À¿ (i : L,2,. . .,n) is an eigenvalue of R¿. For all
A € Cn we define the norm

llsll - ,yf¿luil
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tn{m+a, :.y¡rn,, :fr¡1n,, 
ll,ïij,,rll

= 
*fr,¡¡an,,4ft2,{ 

I t ¡,'{,-l }

=,ïirnnr ,#t2,{ [jij, l,ul],_]

where, for any matrix B, lBl is defined by

llBll¡r : lB¡nl.

and the associated operator norm

ll.4ll - sup ll1rall
llsll<t

for matrices in Cn*n Consider the product

M+¿
p(rø+t¡: ff Rn

i:7

for (. ) 1. Then

However, fori ) M, we have

l,t?l < A€ --

€1
€1

{1

0 €1
È
S

f M+!. I

l n t,qI
L¿:tw+t ) ¡*
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lr-
for all r ) {,t and for aII j,k e {

ll7m+l+'ll < n

: { ( n¿- ¡) {-'r*t; i < tc 1 mi'n{n,t -t i},
[ 0; otherwise,

- {*n'--*' ( rn-,)ri:, -;æ-; i <k < min{ n'(r i},
|. 0; otherwise

where ¿t <(.. Let { <q < l andchoose ( and.(,rargeenoughsuchthat
(,' > k - j, ¿' even and

so that 
tuI+{'' j

usr < 
' 

,Ë_lI',,o, 
v¡ + -r- (nïr) I ¡lazl

(ii) divergence

rf sp(R¿) > € > 1 for i ) M, then by an argument similar to that
in (i) above, we can show that there exists an integer M'such that

ll ¡w'+¿ ll

ll il noll>(,
ll ,:r ll

tor (.: 0, 1, 2,,. . .. Thus the series diverges. I

n we have

lt\
¿i¡2)n'

rt
@_ ùl<rl
1, . . ., n). The

(ü""'") (
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CHAPTER THREE

RETRIAL QUEUES WITH FINITE BUFFERS

3.1. INTRODUCTION

So far, models of retrial queues with buffers have always assumed

exponential service times and most have assumed Poisson arrivals as

well. With the exception of Jonin and Sedol (1973) and Eldin (1967)

described below, this is also true for multiserver retrial queues . Since

multiserver queues have a structure similar to state dependent queues

with buffers, we consider both cases together here. The M/M f s rc-

trial queue \Mas first considered by Wilkinson (1956). The first model

of a retrial queue with buffer was studied by Kornishov (197a) and an

extensive investigation was made by Rideout (1984). Yang (1990) inves-

tigated the GI/M |tl^ retrial queue and Yang, Posner and Templeton

(1992) developed numerical methods for the speciai case of Coxian in-

terarrival times.

A multiserver model with primary service was considered by Jonin

and Sedol (1973). In this model, a customer receives an exponentially

distributed preliminary service (corresponding to connect time). If the

connection is realized (with probability p) then the customer begins

an exponentially distributed main service. Otherwise (with probability

1 - p ) the customer joins a source of repeated calls. A variation was

also considered by Eldin (1967) in which the future of a call is deter-

mined at the epoch of arrival and the call either proceeds through a
short service (connect time only) and then joins the source of repeated

calls or proceeds through a long service (connect time plus main ser-

vice) and then leaves the system. Both of these models are similar to a
multiserver retrial queue with two dimensional phase type service time
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distributions (generalized Erlang for the first model and hyperexponen-

tial for the second model) except that the customer enters the orbit if he

passes through phase one only, whereas in the M/PH2ls retrial queue

customers leave the system if they exit service from either phase. These

models are fundamentally different from models without the prelimi-

nary service however because they allow customers to enter the orbit or

source of repeated calls at times when there are free servers or waiting
positions.

The fundamental property of retrial queues with buffers is the fol-

lowing: customers only enter the orbit when the buffer is full. This

fact ieads to substantial simplification and savings in computaional ef-

fort for Markov chain models of such systems. We model retrial queues

with buffers as MAPfi)/SMû) lllb retrial queues where the index j
represents the number of customers in the buffer. We model the ser-

vice process as a state dependent MAP-like semi-Markov process. This

allows us to include multiserver retrial queues since \Me can consider

a MAP/PH/s queue as a MAP/SM(j)/1 queue with state dependent

MAP-like service process. The dependence on the sub-level j also al-

lows us to include models with overload control. \Me wili not consider

all of these models in detail but begin with the most general model to
illustrate the fundamental property common to all of them. We make

the following assumptions about the queue under consideration:

(a). The state of the queue at any time can be completely specified by

the triplet (i,7, k) where z represents the number of customers in the

orbit, j < b represents the number of customers in service or waiting in
a buffer position and k is a supplementary phase variable. The sojourn

time in each state is exponentially distributed.

(b). Customers arriving to the queue enter service immediately if any

servers are free or enter the FIFO buffer if all servers are busy but a



buffer position is free.

("). A customer enters the orbit only if the buffer is full at the epoch of
her arrival. This arrival may affect the phase k of the system but the

buffer will remain full after she joins the orbit.

(d). Customers in the orbit retry for service periodically and enter the

buffer if a position is free at the epoch of their retrial. Inter-retrial times

for each customer are exponentially distributed with rate parameter 9.

Entrance into the buffer may affect the phase k of the queue but e and
j must decrease and increase by one respectively.

("). Only one customer may arrive to the queue, complete service or

enter the buffer from orbit at a time: i.e. no bulk service, arrivals or

retrials.

(f). The arrival and service processes are independent of the number of

customers in the orbit, although they may depend in an arbitrary way

on the number of customers in the buffer.

Assumption (a) implies that the queue can be modelled as a contin-

uous time Markov chain with state space o: {(i,j,k)li,:L,2,...; j:
0, 1,. ..,b;k - I,2,,...,mjÌ. Assumption (e) guarantees that the gen-

erator of the Markov chain is block tridiagonal and that the diagonal

blocks are themselves block tridiagonal. Assumption (c) implies that
the superdiagonal blocks have only one nonzero block in the diagonal

position corresponding to a full buffer. Assumption (d) implies that the

subdiagonal blocks are block superdiagonal and assumption (f) gives the

level dependence of the blocks a particularly simple form. The generator

ryr)tÐ



has the form:

where the blocks A¿, B¿,

Bs As
Ct By A1

Cz B2 A2

and C¿ have the general

l
forms

Q-l (3.1)

B¿:

0Ks

C¿ : i,0

K1

0 Ka-t
0

Assumption (d) implies that the matrices K¡ are alI

The MAPIPIJILIb retrial queue is perhaps the

ward example of a queue which falls into the category

Consider a retrial queue with MAP arrival process

(Do, Dr) and phase type service time distribution
(P' , S). There is a single server, b buffer positions

0 per customer. Then we have

Bot : Do Boo : Dt

Bjt:/8,StDoØI
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Bor - i,0I Boo

Btz Bn - i9I Brc

Bu-'-t,z Ba-t,t'_ i0I Bb-t,o
Baz But

stochastic.

(3.2)

most straightfor-

described above.

represented by

represented by

and retrial rate

j : r,.. .,,b



Bjr:SoPr Kj:I Bjo:Bo:DtØ1.

Depending on the size of the buffer and the representations for the

arrival and service processes, this model may prove too large to analyze

in a reasonable time. If the dimensions of the arrival and service process

representations are rn and n respectively, then there are m(L * nb)

states for each level (number of customers in the orbit) and the time

complexity of the algorithm which calculates the stationary distribution
is O(Nbm3n3) where l/ is the level at which the system is truncated.

The most obvious way to keep the complexity down is to keep m and n
relatively small. For example, two dimensional representations are often

sufficient if we only want to specify the first two or three moments of
interarrival or service times (We can match the first two moments if the

coefficient of variation is between .5 and 1 or the first three moments if
the coefficient of variation is greater than 1). Models with exponential

interarrival or service times ("g. M/PHI1, PHlNIll retrial queues)

where ffi: I or n: 1 may be sufficient for some applications.

The MAP lPH2ls/b retrial also belongs to the class of queues con-

sidered here. Consider a retrial queue with s servers and b - s buffer

positions. The arrival process is a MAP with representation (To,Tr)
and the service time for each server has a phase type distribution with
two dimensional representation (P' , S) where þ' : (fu, B2) and

s: 
I

Interretrial times are exponentially distributed with rate 0 per customer.

The state space for the associated Markov chain is given by

{(¿,i,k,¿)li - 0, 1,...i i :0,...,b;lc: l)...,m;(, - 0,. .. ,mi,n{j,s}}

. z represents the number in orbit, j the number in service or waiting in

the buffer, lc the arrival phase and (. the number of customers in phase 2

-(ot * gt) a1 Ia2 -(o, + sz) )'
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of thier service. If we order the state space with the labels (i, j,k,,l) in
lexicographic order, the generator has the form in (3.1) and (3.2) with :

B¡s - {t:i!:, ' ;1',;; ',',;'

( r, j:o
Bjt: { 1S S¡ -lTo Ø I¡+Í .i : L,. . ., s

|. 1s ^9" + 7o ø 1"+i i : s,...,b

B^,:{ !n't j:7'"''5
-rz ¡lø1"+r i:s1I,...,b

where D.¡, S.¡ and

sj:

KJ:IØU¡
U¡ are given by

sjol s¡00

5 j12
€ W(¡+t)x(r*1)

s i,i -t,o
sjjzsjjt

Dj:

d¡ot

d¡oz

fu02
(J¿-I

.I7 is the j-dimensional

defined by

a)
lJ7

identity ma

€ ffi(r+t)*j

-(l(o, -r gz) + (j - 4@,, +si))

(j - ¿)s'.

s;oc : .(ac
J"-

d¡n: (gz

S¡T7:

d'¡n :
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If / customers are in phase 2 of their service, then j - (. are in phase

1. s¡to is the rate of phase 1 customers switching to phase 2 and s¡n
is the rate of phase 2 customers switching to phase 1. d,¡n and d4n

are the service completion rates of customers in phase 1 and phase 2

respectively. D¿ has no superdiagonal elements because the number of
customers in phase 2 cannot increase due to a service completion. This
number will remain the same (d¡¿t) if a phase 1 customer completes

service and will decrease by one (d¡n) if a phase 2 customer completes

service. The form of U¿ arises from the fact that the number of phase 2

customers will remain the same if a customer begins a service in phase

1 (with probability 0t) and will increase by one if a customer begins

service in phase 2.

3.2 STABILITY CONDITION

We obtain a sufficient condition for ergodicity by applying
Mustafa's criterion:

Proposition 1: If the homogeneous quasi, bi,rth death process w'ith B6s,

Bn and, 862K6-t ïor superd'iagonal, di,agonal and subd,iagonal bloclcs

respect'iuely 'is 'irreduci,ble and ergod'ic then so i,s the retri,al queue w,ith

generator Q.

Proof: Let P be the transition probability matrix for the jump

chain of the retrial queue imbedded at each event and let Pa be the

corresponding matrix for the homogeneous QBD process with blocks

AL -- Llt Bro, BL : I + L;L a61 and Cl : L;L F,62K6-1 where A¿ :
-di,ag(861). Let R be the rate matrix associated with this chain and

let r¡ ( 1 be its spectral radius. Fbom the discussion in the proof of
Lemma L.3.4 in Neuts (1981), we know that for all e € (n,1), sp(A!6-l



eBi + ,'CÐ : et < e. Let 16 > 0 be the right eigenvector associated

with e' so that (A!u + eBtu -l ezC')rb : etrb 1 er6. We now define a

vector f : lfo, fr,...] with f¿: lÍ¿o, f¿t,. .., f¿u] such that, for z > 1,

fnj : e-i(ae + eb-i K¡K j*, . . .Kutrt)

where o € (0, 1). To prove ergodicity, w€ need to show that (P - I)f <
-e" e (except for a finite number of components) for some e" > 0. Now

for j - 0,. . .,,b - 1 we have

I(p - i,) fl¿¡ - r-o U,eI + a¡) -11(e2 B¡zK¡_tK¡ t eB¡K¡

+B¡o))Ki+1 . . . Ka-tra - i'0a(7 - .)]

where Lj: -diag(B¡1). For j :b, we have

t(p - Dflnu: €-(i+1) [r(1 - e)A!6e + (AL -t eBto + e2C,u - eI)r6]

. Since 0t: -(AL:-'eBtu+e2clr-eI)r6 ) 0, we can choose ø € (0, 1)

so that t(P - I)flnu < -e" e - -m'in{þt} /Z . Since t(P - I)fln¡---+ -oo
as i -+ oo for j : 0, . . .,b - 1, there exists an integer z1 such that

t(P - I)fln¡ < -e"e for all i, ) i,t I

A necessary and sufficient condition for the ergodicity of the homo-

geneous chain associated with P6 can be obtained by applying Theorem

I.7.7 in Neuts (1981). The condition is given by r(B6s- BazKa-r)e < 0
where n is the solution to r(B6s * Bn I BazKa-r) : 0 and r€. : I.
It is interesting to note that the sufficient condition in Proposition 1

depends only on the behavior of the queue when the buffer is full. This
is similar to the well known condition Àltlt ( 1 for ergodicity of the

M lM I s queue since sp is the service rate when all service positions

are occupied. In both cases, the ergodicity condition takes this form

not because the full buffer state corresponds to the fastest service but
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because the queue must pass through this state in order to add any

customers to the queue (or orbit).

3.3 SOLUTION METHOD

The sparsity of the A¿ together with the block tridiagonal form of

the B¿ allow a substantial saving in the computational effort required

to calculate the stationary distribution of states and the distribution of

waiting time for the queue. As in the previous chapters, this requires

the solution of systems of the form UQ : a. For example, the stationary

distribution r is the solution of the system rQ : 0. In all other cases,

a will be non-zero and Q will be a subgenerator with a form similar

to that in (3.1)-(3.2). In that case, for efficiency of notation, we wili
stili denote the subgenerator by Q and maintain the same labels for

its various components (A¿, B¡ etc.). We proceed, as in Chapter One

, by eliminating levels one at a time via block Gaussian elimination,

starting from the lowest level. The basic algorithm used is the same as

Algorithm 1.1, but we repeat the description of this algorithm below,

with the notation used in this chapter.

Algorithm 3.1-

Reduction Phase

i<-0
86 *- Bs

afi - as

Untili:N,do
Bl * B¿t - C¿(Bi-t)-t Ao-t
aI - Q.¿ - al-t@iì-t A¿-,
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i,+-i,lI
End

Middle Phase

Solve IUw,U¡v+r,...]8¡¡ - la'¡¡,oru+r,...] where Q¡v is the gener-

ator obtained from Q bV eliminating all levels below l'I and replacing

B¡¿ with Bfu.

Expansion Phase

z+-l/-1
Ijntilz:0,do

U¿ <- (*n - A¿+tC¿+t)(BÐ-'
i,<-i,-r

End

In order to accompiish the middle phase of this algorithm, it is

necessary to truncate or approximate the generator in some rvay so

that we can eliminate the level dependence above some level l/. We do

so by making the approximating assumption that when there are more

than l/ customers in the orbit) one customer from the orbit joins the
buffer immediately after each service completion. Then the buffer is
always full when there are more than l/ customers in the orbit and the

approximate generator has the form:

A1

C¡v B¡¡
Ct¡+t

Bs As
Ct 81

A¡v
BA
CBA

Q-
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where A - Buo, B: Bat, C - BazKu-t, CN+t: [0,...,0,C] and

AN:

If we are calculating the stationary distribution r, we can accomplish

the middle phase of algorithm 3.1 by soiving the system

rx+r [B + RC - C¡v+t(B'*)-tA¡¡] : 0

where Ë is the minimal nonnegative solution to the matrix quadratic
equation A + RB + R2C - 0 which can be obtained by applying the
methods in l{euts (1981). We can then obtain rN,rN-t)...)ro by

applying the expansion phase of Algorithrn 3.1 (with U <- r and a - 0)

and the components of r above level N are given by r¡¿+r+ j : r¡v+tfui
. we must normalize n so that re: zN+1 (I - R)-tr + ÐIsr¿.- : r.
In practice, we gradually increase the value of l/ until the probability
nN+t(I - R)-'" of being above level l/ is sufficiently small (perhaps

10-5 or so). \Me then truncate the system by replacing B with B + RC
and deleting all levels above ¡/ + 1. In all further calculations, when we

solve systems of the form UQ : a, Q will be a subgenerator obtained
by altering this finite generator in some way and the system UQ : a
will be finite. In that case, the middle phase corresponds to solving

U N+IIB + RC - C x+t(Bí")-t,A¡¿] : a'¡¿+r.

3.4 IMPLEMENTING THE ALGORITHM

Consider the matrices G¿ : -(BÐ-1A¿ for i,:0, 1,... where the
Blare as defined in Algorithm 3.1 above. When Q is agenerator, the
(s, t)th element of G¿represents the probability that, starting from state

ül
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(i,t), the process eventually reaches level i+I and enters it at phase ú

(Here "phase "refers to number j in buffer as weII as phase k). Gt is the

dual of the matrix G¿ defined in Pearce (1994) in the same sense that
-Ê¿ defined in Chapter 2 is the dual of R¿ defined in Pearce (1994) and

Bright and Taylor (1995). We get one from the other by reversing the

order of levels and a proof for the interpretation of and G¿ would follow

exactly the corresponding proof for G¿ which appears in Pearce (1994).

The reduction phase of Algorithm 3.1 can be expressed as the re-

cursions

Gn : -(Bn * C¿G¿_ù-r A¿

or equivalently

A¿ -f B¿G¿ I C¿G¿-yG¿:0. (3 3)

and

a|: a¿**!n-rGn-t (3.4)

of G¿ it is clear thatfüom the form of A¿ and from the interpretation

i¿ must have the form

G¿:

If we substitute this form and the forms of the blocks of the generators

0 Çno1o c¿rl
I
I

Io Gna)
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into (3) we obtain a system of the form

Bor - i?I Boo

Bn Bn 
.- 

i,el B.rc

t)Db2

i,0KsG¿-1,1

:

i,0Ku-zGi,-r,b-r
Bb-t,o + i0Itb-r1o-r,u

1)Di.b7

G¿o

:

G¿a

0

:

0
_P.^UbU

(3.5)

(3.5)

. The system in (3.5) is tridiagonal except for the last column. We can

thus solve the system efficiently (in O(b) time) by using block Gaussian

elimination, eliminating one sublevel at a time, starting from the lowest

sublevel. Each step is obtained according to the general model implied
by (1.3) and (1.4) in Chapter One except that we have a system with
column vectors instead of row vectors. The analogs of these equations

are

Qia, - ai and as:Q;'(*'r_ QrtUt)

where

Qi:Qt-Qr,Q;,Q,t and cr|: e.¡ - Qt"Q"'6,r. (3.6).

lower sublevels first,
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system of the form

Bl.¡, B¡o

DDJ+I,2

Hij
:

i,0Ku-zG¿-L,b-I

Bb-t,o + i0Kb-r1n-r,u
Buz But (3.6)

0

:

0
_P.^UbU

lJ. .,-t zJ

:

:

\f,i,b

where the blockt Bl¡r and H¿¡ are defined by the following algorithm
which soives the system of equations:

Algorithm 3.2

Reduction Phase

Blot*Bu-i,01
H¿o * i,TKo}¿-t,t
j *r
Until i:b-1,do

Bl.¡r - Bj, - ieI - B¡z(Bl,¡-r,r)-L B¡-t,o
g4 - i0K jc¿-r,j+t - B jr(Bl,¡-r,r)-t Ho,j-,
j +- j -tI

End

H¿,b-t <- Bb-t,o + i0Kb-rên-r,u - Bb-t,z(Bl,u-r,r)-'Hn,o-,
Blu, - Bn - Bøz(B¿,u-1,t)-r H¿,6-1

Middle Phase
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G¿ø - -(Bíor)-'Buo.

Expansion Phase

ê n,o-, *- - (B'i,b-1, 
1 )-' Hn,u-rêou

j +-b-2
Untili:0,do

ê¿¡ - -(B'n¡r)-r (B joci;+t I H¿¡G ¿6)

End

Aigorithm 3.2 provides the components of G¿ fori : 0,1,. .., N
and (3.a) provides o'N+t With the approximate generator we have

I-G¡¡o I
êr: | ", I

LGtal

i.e. the large blocks of zeros are missing because level l/ has only one

subievel. The middle phase of algorithm 3.1 provides gr¡¡l-1 according

to

U¡v+tlB + RC + CGxu]: e'N+r.

The expansion phase of Algorithm 3.1 provides UN, . . . ,Uo according to

a¿lB¿ * C¿G¿-rl : *!n - A¿+tC¿+t (3 7)

. Fortunately the matrix B¿ I C¿G¿ is the same as the square matrix in
(3.5) so we can use use the same algorithm to solve this system with-
out repeating the steps necessary to reduce the matrix. The following
algorithm summarizes this method:
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Algorithm 3.3

(To solve: A¿IB¿ * C¿G¿-t] : ^,1¿ for y¿)

Reduction Phase

j-0
'/lo -'Y¿o
'úø - ^Y¿a

IJntili:b-1,do
'Yl.¡ * 'Y¿i - 1'r,,¡-t(B|,¡-r,r)-r B¡-r,o

''th * 'Y¿a - 4,¡-t(Bl,¡-r,r)-t Ho,i-,
j <- j +7

End

'Ylu * 1¿u - "ú,a-t(Bl,a-r,r)-t Hu,u-,

Middle Phase

a¿u <- tio@ia)-t

Expansion Phase

j *-b-t
IJntilj:0,do

u¿j - (ln¡ - a¿,i+tB j+r,,r)(B'o¡r)-'
j-j-r

End

where 'y¿ : l'yno,. ..,'y¿al. We can use Algorithm 3.3 to solve (3.7)

if we set 1¿s : c"io and 1¡ - sti -'iqA¿+t,¡-tK¡-t fot i - 1, . . .,b.

If the service time for a MAP/PH lllb retrial queue follows an
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Erlang or generalized Erlang distribution, the reduction phase of Al-
gorithm 3.2 can be performed in O(bm3rz) time. This is because the

rnatrices B¡z arc non-zero only in the last row of blocks correspond-

ing to service completion from the last stage of the generalized Erlang.

Since the matrices B¡r are also block tridiagonal, the form of the Bl,
are block tridiagonal except for the last row of blocks. The system of
equations associated with evaluating B¡z(Bl,¡-r,r)-1 then has a form

similar to that in (3.a) and Algorithm 3.3 can be adapted to solve the

system. Similarly, if the arrival process is Erlang or generalized Erlang

renewal, then only the first column of blocks of G¿¡ are non-zero. This

is because the chain always enters the next highest level via the first
arrival phase (recall the interpretation of ê¿). Because of this, both

the reduction phase and the expansion phase of Algorithm 3.2 can be

executed in O(bmn3) tirne.

The number of states for the MAP/PHrlrlb retrial model is
Nm(s + 1Xb - sl2) and the time complexity of finding the station-

ary distribution is O(Nbmtru). As in the previous example, this can

be reduced to O(Nbmst) if the arrival process is Erlang or generalized

Erlang renewal.

3.5 \iTI-AITING TIME
FOFI, MAP/PIJ/L/b RETR,IAL QUEUE

In a retrial queue with buffer, the waiting time consists of the

time in orbit as well as the time in the buffer. The distribution and

moments of the waiting time in orbit can be obtained using the methods

of Sections 1.8 and 1.9. Perhaps of more interest is the total waiting

time: i.e. the sum of the waiting times in the orbit and in the buffer.

Intuitively, we expect the addition of a buffer to have a small effect

on the mean waiting time due to the elimination of server idle time
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when there are customers in the orbit. We expect the variability of the

total waiting time to decrease with the addition of a buffer since the

essentially random service order of the orbit becomes less important.

This reduction in waiting time variability may be the motivation for

introducing a buffer into a retrial queue.

For simplicity, v/e consider the total waiting time of a

MAP/PH lI/b retrial queue, although the MAP lPfl2lslb can also be

examined using the same method. We choose an arbitrary arrival of a

customer, tag that customer, and measure his total waiting time. When

the tagged customer is in orbit, we must keep track of the nurnber of cus-

tomers in orbit, the nurnber of customers in the buffer, and the phase of
the arrival and service processes. Once the tagged customer enters the

buffer, we only need to keep track of his position in the buffer and the

phase of the current service. This is because the waiting time in buffer

of a customer is not affected by the presence of customers in the orbit
or by the presence in the buffer of customers which arrive after him.

This is true for the MAP/PH lllb and MAP lPH2ls/b retrial queues

although it is not true for retrial queues with overload controi where

the service times depend on the number of customers in the buffer. In
that case, we would need to keep track of the arrival phase and the

number of customers in the orbit and buffer as well. \Me thus construct

an absorbing Markov chain on the state space Ð : ol) ouuf Í", U {r}
where o is the state space defined in Section 3.1, {r} is the absorbing

state corresponding to the tagged customer having entered service and

obuffer - {(j,k)lj : 1, . . .,b - 7;k : 1, . . ., n} contains the states with
the tagged customer in the buffer. The parameter j in abuf f er reresents

the number of customers in the buffer; not the number of customers

in service and in the buffer. The generator for this absorbing Markov



chain has the form

Define P¡ to be the b + I dimensional diagonal matrix with a one in

the last diagonal position and and zeros everywhere else: The one cor-

responds to a full buffer. Then Qo:8-01S(/- P¡)øI ØI (where Q
is the generator in (3.1)), corresponds to the tagged customer in orbit.

Qob : 0e Ø Jou Ø e Ø I corresponds to the tagged customer entering the

buffer where

I Q, Qou Qo"1
Q': lo Qu Qu, l.

[o o oj

Iol
Job: I ¡u-r 

I

Io-l
is the b - I dimensional identity matrix. The

corresponding to the tagged customer already

eu:['jr' I

L so,p, sJ

f 8"" Qorbit Qouf f ", Q ".rrt""l
Q":l 3 3 3 3lLo o o o I

and 16-1

generator

portion of the

in the buffer is

€ ffi",(¿-r)ørr1a-r;'

Qo, : -(Q"*Qoa)e and Qa" : -Que are column vectors corresponding

to the tagged customer entering service (absorption) from orbit or from

the buffer respectively.

The first step in obtaining the distribution or moments of the wait-

ing time is to determine the initial vector associated with this absorbing

chain: i.e. the stationary distribution of states after an arbitrary arrival.

To do this, we must consider the absorbing chain with generator
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where

Qorbit

P¡ØD1

Quurl., - € I

) in (3.1) and (3.2) by

ng off the arrivals. The

arrival is given by ro -
'.tion (rQ - 0) of states

distribution just before

rtion of states after the

,"rui,""l
rQnoe

The waiting time has a phase type distribution with representation

(*ron,Q). As in Section 1.8, we can use the randomization method

to obtain the distribution of the waiting time according to F(ú) :
I - r¿onerplQ'"tle where the subgenerator Q/" is the upper left hand

corner (delete absorbing state {s}) of Q':

e," __ 18" Q"u1

f o aol'
Calculating the entire distribution in this manner will be quite

time consuming although simple to implement. The jth moment of the

waiting time is given by

M j : (-t)i ¡lrros(e',)-i "

l
:l'

[n-'+'*'] '

8/
P¡ØDtØI

e".,,i."-€8 [i-l .r,'
LoJ

and Qno is the subgenerator obtained from Q in
making the substititions B¡o - 0, i.e. by turning c

stationary distribution of states at an arbitrary arri

rQn"lrQnoe where r is the stationary distributior
at an arbitrary point in time. The stationary dist

an arbitrary arrival is -roQ;) and the distributio:

arrival of a tagged customer is

r+nn: -rlQo'u¿t Qu-urÍu' Q"",u'
"tag ^^/\
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and the inverse (Q')-' is given by

(9")-' :

We can calculate the effect of post-multiplying a vector by Q;' if we

apply Algorithms 3.L,3.2 and 3.3 with B¡s - 0. The effect of post-

multiplying by Q6t "un 
be calculated easily using block Gaussian elim-

ination and no reduction phase is required because the superdiagonal

blocks are zero. In fact, because Qa is homogeneous, this could be

done quicker using Ye and Li's (1991) folding algorithm although the

savings would be minimal compared to the effort required to postmul-

tiply by Q;t. We calculated the mean and the coefficient of variation

of the total waiting time for the example retrial queue with various

buffer sizes b. The results are illustrated in Figure 3.1 and Figure 3.2.

Note the dramatic drop in the mean waiting time which results from

adding the first buffer position (b : L -- b - 2). The plot of the co-

efficient of variation falls quite sharply as we go from b : 2 to b : 1.

This is due to the dramatic change in the mean and not due to a rad-

ical change in the variance. In fact the curve for the variance appears

monotonic. Clearly, for this example there is very little benefit to the

mean in adding more than about 4 or 5 buffer positions, while the co-

efficient of variation continues to decrease until around b : I or b : 10,

l q;' -q;'e,uel'1fo Q;' l
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3.6 EXTENSION: FINITE NUMBER OF CUSTOMER,S

The form of the generator given in (1) and (2) does not encompass

models with a finite number of customers such as, for example, models

of local area networks. In that case, the number of sublevels (b in the

model above) varies with the number of customers in the orbit. If there

are N customers in total, there can be at most N -i customers in service

or waiting in the buffer when there are'i customers in the orbit. Also,

the arrival process will depend on i,the number of customers in the orbit
as well as j the number of customers in service or waiting in the buffer
.since the number of active sources contributing to the input stream is
N -i-7. For this model, the components B¡o ,, B jr etc. of the generator

become level dependent and so require an extra index (B¿jo,B¿j1 etc.).

Algorithms 3.1, 3.2 and 3.3 however can be applied in the same way as

above if we simply add the appropriate level indices to the components

where required. The algorithms depend on the structure of the blocks

of the generator and not the content of the components.

Consider an M/PH lllblN retrial queue with arrival rate À for each

of Ä/ customers, 1 server with service time distribution represented by

P' , S), b buffer positions and exponential retrial times with rate á per

customer. The states are labeled by (i,, j,k) respectivety the number

of customers in orbit, number of customers in service or waiting in the

buffer and phase of service. Each level z has b¿ : m'in{b, N -i) sublevels

and the components of the generator are given by:

j:0
j:r,..-,b¿

j --0j:I,...,bi

B¿jo: 
{ ,Ífl-;'!fr:,

)À

- j)r
B¿i,:{ r-,S--;

(so
Bnjr: 

t ,oB,
j:0

j : I,.- .,bi.
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-I j:0,...rb¿.

We could also generalize this model by allowing the interarrival time

for each customer to have a PH2 type distribution (Br,,S) as defined in

the previous section. This model without buffer is considered in detail

in Chapter 4. The number of states for this model can be quite large

so, in practice, the size of the service time representation will have to

be kept small in order to avoid very lengthy computation times. The

time required in the reduction phase can be reduced if the service time

distribution is of Erlang type but the expansion phase is not accelerated.

If (l', ?) denotes the service time representation, then the components

of the generator are given by:

B¿io: {?i_:lÄ"

K¿j

j:0
j : r,-..,b¿

t) - f ,s¡¿-¿DijL - I It-n-¡+r E ?*,9¡¿- ;¡ Ø I
( Uw-j-r E ?o jB¿j':t"r;t"r'P' j:

j:0
j:r,...,,b¡.

-0
1,' ' 'rb¿

K¿j: Iw-¿-j+tØ I j:0,...,b¿.

Other models with a finite number of customers include the

MlPH2ls/b/N and PHzlPH2/slb/N retrial queues. We do not de-

scribe these in any detail since the previous examples are sufficient to

demonstrate the construction of the generator for these and other simi-

lar models. We can aiso add overload control to any of these models by

making the service time distribution depend on the number of customers

in the buffer in some way. AII of these models have the same fundamen-

tal structure so that the same or similar computational schemes can be

applied. The only restriction is the computational time available which

restricts the size of the models which can be utilized.
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3.7 CONCLUSION

We have provided a computational scheme which can be used to
determine the stationary distribution of states, the distributions of the

waiting time and number of retrials and the moments of the waiting

time for retrial queues with buffers. We have generalized significantly

past models with exponential interarrival and service time distributions.
The computational methods described can be applied to a wide range

of models and computational complexity for large models is the limiting
factor in the analysis of these models.
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CHAPTER FOUR

APPROXIMATION METHOD FOR RETRIAL QUEUES
WITH PHASE TYPE RETRIAL TIMES

4.T INTRODUCTION

In almost all models of retrial queues, the time between retrials

for any customer is assumed to be exponentially distributed. Kapyrin
(1977) atternpted to derive an analytic solution for the MIGII retrial
queue with general retrial time distribution but the method and results

\Mere found to be incorrect (Falin, 1986). Pourbabai developed an it-
erative method for a Gl}{lKlO queueing loss system with retrials in

which the net retrial process from returning customers is approximated

by matching parameters of the overflow process. Liang and Kulkarni
(1993) introduced a relation, which they called K-dom inance on the

class of phase type distributions and showed that, for single serve r re-

trial queues with general arrival processes and service time distributions

an d phase type retrial times, longer retrial times with respect to this

reiation re sult in more congested systems in the stochastic sense.

The inherent difficulty with non-exponential retrial times stems

from the fact that the model must, in some way, keep track of the elapsed

retrial time for each of possibly a very large number of customers. The

net retriai process from all customers is an extremely complex non-

renewal process. Choi (1993) avoided this problem by considering an

}l'4I}i4II retrial queue with general retrial times where only one customer

may attempt retrials from orbit. Liang (1991) developed an approxi-

mate method for obtaining the stationary distribution of queue size for

MlGll retrial queues with retrial time distributions which are mixtures

of Erlangs. Yang et al (1994), developed an effective approximation for



the M/G f I retrial queue with general retrial times by noting that, for

most applications, retrial times are significantly shorter than service

times. In aa typical retrial queue, most customers in the orbit will
make numerous requests during any given service interval. Thus, while

the elapsed retrial times for different customers in orbit are dependent,

the dependence will be very weak. The approximation assumes that the

elapsed retrial time for any customer is a random variable independent

of other customers elapsed retrial times. According to renewal theory,

the distribution of elapsed retrial time observed at a point far from the

time origin has the form *(r) - [i 0(l - T(u))d,u (see Ross, 1933)

where f(") is the cumulative distribution function, with mean If 0,, of

the retrial time. The approximation is used to derive the distribution
of the number of customers in orbit and the mean waiting time and

number of retrials per customer. The algorithm is shown to perform

well in predicting the mean and variance of queue length by comparing

to an exact solution for retrial queues with hyperexponential or Erlang

distributions of order two for retrial and service times.

In this chapter we develop an approximation for retrial queues with
phase type retrial time distributions. Our goal is not to improve upon

the approximation used by Yang et al, but to extend the basic idea of

the approximation so that we can use it to approximate higher moments

or the entire distribution of the waiting time . Instead of using the

approximation only in the calculation of the stationary distribution, as

in Yang et al, we use it to approximate the generator of the queue itself.

We can then use the numerical methods developed in previous chapters

to obtain information about the waiting time from the approximate

generator.

The use of numerical methods also makes it easier to extend the

approximation to other models such as the MlMls or MAP/Ph|I retrial
queue with phase type retrial times. We will only explore theMlPHlI



case in detail but the extensions to these other models are not difficult,
except for possibly high dimensionality resulting in long computational

times.

Although Yang et al. provide a necessary condition for stability,

they do not show that the condition is also sufficient. We show that
this is the case for phase type retrial times and extend the result to the

multiserver case as well.

4.2 STABILITY CONDITION

The following proposition provides a necessary and sufficient con-

dition for ergodicity of an \/l,lcll retrial queue with phase type retrial

times by considering the mean drift.

Proposition 4.L: An M/G/1 retrial queue wi,th phase type retri,al-t'imes

'is ergod'ic i,f and only i,f p : Àl t-t < I where À i,s the arriual rate to the

queue and ¡.t-r i,s the n'Lean seru'ice t'ime.

Proof: Assume that the retrial time distribution is of phase type with
n dimensional representation (*',7) and consider the Markov chain

embedded at the epochs of service completion. Let 4¿ denote the epoch

of the úth service completion and let 4 denote the number of customers

in orbit at time 4r+. Then we have

rt+r: L - Bt *Y+t

where Bt e {0, i} is the number of orbiting customers who begin service

in the interval (qt,nr+t) (i.. Bt : 1 if the ú * 1st customer served comes

from the orbit and B¿: 0 if he comes from the primary arrivai stream)

and Yçt + 1) is the number of customers arriving during the ú -l lst
service. Clearly Y¿ has mean p for all ú - L,2,. . .. Let the vector



J¿ : (jt,. . ., j.,-) contain the numbers of customers in each of the rz

phases of retrial at time 4r+ and let

pk - eff(lt -T)-t",

where e¿ is the indicator vector for phase k of the retrial time distribu-
tion, denote the probability that a customer in phase k makes no retrial
before the next arrival of a primary customer. Then the mean drift of
the embedded chain from state (i,, J) is given by

d(o,t) : E(It+t - I¿lI, : ¿ and Jt : (ir, . . ., j.))
: E(Yt+t) - ø(gtlIt: i, and Jt: J -- (jt,...,i,))
- P- L+ P(& :}lIt : i' and Jt : (i,.,...,i.))

7L

-p-1+lI@n)i*
It:I

< p - 1 + (max{p*})n ---) p - L as,i ---+ æ

Thus, if p < 1, the mean drift is negative for large enough z and the

chain is ergodic. Yang et al (1994) have already shown that this is a

necessary condition.

The following generalizes Proposition  .Ito the case of multiserver
queues although the conditions are more difficult to verify. Consider

an M/PH/s retrial queue with phase type retrial times represented by
(o' ,T) and service times by (þ', S). Let o : {1 ).. .)rn} denote the

set of service phases and let E : os denote the state space of possible

combinations of phases for all s servers. Let ,S7 be a random variable

representing the service time for a service which starts in phase j e o.

,S¡ has the cumulative distribution F¡(¿) - I - ef erplSt]e where e¡ is
a column vector with a 1 in the 7th position and 0 everywhere else.

If J : (jt,j2,...,j") € Ð is a vector recording the phases of all s
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servers, then the cumulative distribution of the time r.y until the next

service completion is given by Gt(t) - 1- flå:r(7 - F¡*(t)). f-,et ¡r -
rrìâXyE¡ E(rt) denote the maximum expected time (over all possible

server configrations) until the next service completion. Then we have

the following.

Proposition 4.22 An M/PH/s retrial queue wi,th phase type retrial

t'imes i,s ergodi,c if p: 
^l 

p 1I where ). i,s the arri,ual rate andLlp, i,s

the mari,mun'L ouer all possi,ble seru'i,ce phase configurøti,ons (øssum'ing all

seraers are busg) of the erpected t'i,me unti,l the nert sera'ice completi,on.

Proof: The proof follows that of Proposition 1 except that we consider

the chain imbedded at the start (stitl denoted by nt) of each service.

Then Y¿, the expected number of arrivals before the next start of a
service, is identically equai to zero if all servers are not busy at time r¡¿.

If all servers are busy, Y¿ depends on the server configuration J e E.

However, since ¡l is calculated assuming a worst case scenario (longest

time to next service completion), we have n(VrU) < p for aII J € X so

that the mean drift satisfies

d(n,t) < p - 1 * (max{prc})' --) p - L as'i -- æ

Only relatively simple phase type distributions, with small dimen-

sion (one or two; maybe three) will be practical for multiserver models

since the dimension of the state space increases exponentially as the

number of phases increases. However, it may be desirable to obtain at

least a stability condition for more complex systems. For the case of ex-

ponential servers, the stability condition is given by the usual )./s¡t < I
where p is the service rate for each server. If a service phase j is such

that the next phase of service is always k (i.e. all paths to service
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completion from phase j pass through k) it is not necessary to consider

phase k in the calculation of p, and we can ignore elements of X in which

any server is in phase k since it will clearly not lead to the worst case.

For example, if the service time distribution is a mixture of two erlangs,

of order n and n * I with identical rate parameter, then we only need

to consider the case where all servers are in the phase furthest from ser-

vice completion. Recall this distribution is good for fitting the first two

moments of a distribution when the coefficient of variation is smaller

than 1.0. Similarly, if the service time distribution is hyperexponen-

tial, we can assume that all servers are in the phase with the longest

sojourn time. More complex distributions pose an interesting problem

in combinatorial optimization but we will not pursue this here. Two di-

mensional phase type distributions are either hyperexponential (when

the coefficient of variation is greater than 1) or a generalized Erlang

(".t. less than one). The former case we have already mentioned and,

in the latter case, we can assume that all servers are in the first phase.

The time until the next service can then be represented as a phase type

distribution with tridiagonai subgenerator ( keep track of the number

of servers in phase 2) and p can be calculated in O(s) time.

4.3 APPROXIMATION METHOD

Although we could construct the generator for an M/PH/I retrial
queue with phase type retrial times and solve for the stationary distribu-

tion in principle, it would require an immense computational effort for

any retrial time distributions with representations of dimension larger

than about 2. In fact we we will use two dimensional representations

(as in Yang et al) to obtain exact solutions in order to evaluate the

performance of the approximation.

The key to the approximation is that interretrial times are gen-
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erally shorter than service times so that most customers will execute

a number of retrials during each service. Yang et al assume that the

distribution of the elapsed retrial time for each customer after a ser-

vice completion takes on its asymptotic form m(r) - [i 0Q - f (Q)du

(see Ross, 1983) . If the retrial time has a phase type distribution,

the obvious analog of elapsed retrial time is the phase of retrial and, if
(o' ,T) represents the retrial time distribution, then, after a sufficiently

long time, the distribution of phases is given by the solution r" of the

equation nr'(T + fo P') - 0. If we assume that every customer has

this average distribution z' of phases after each service completion, the

time until the next retrial would simply be the minimum of z retrial

times (with 'd customers in the orbit) each of which has the distribution
(n',7). Therefore the approximate distribution of the time until the

next retrial has cumuiative distribution

F(t) - I - ltrr erp(rt)eli .

IJnfortunately, although this is a phase type distribution, unless the

retrial time distribution posesses some special structure, we can only

gaurantee the existence of representations with dimensions ni ori,n,,

which are far too large for large z. On the other hand, we can approx-

imate this distribution with a phase type distribution of much smaller

dimension. For each value of z, thwe construct an approximate phase

type distribution (a{ ,7,) for the time until the next request from orbit

by matching the moments of the exact distribution. If the coefficient

of variation c of the distribution is smaller than 1, we match the first

two moments to a mixture of two Erlang distributions of order n and

n*I(n<c2 <n*I) withcommonrateparameter. If c> l,wematch
the first three moments to a hyperexponential distribution of order 2 by

aplying the method in Altiok (1985). \Me assume that, after each service

completion, the time until the next retrial has the resulting distribution
(on,Tn) when there are 'i customers in the orbit.
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4.4 STATIONARY DISTRIBUTI ON

The approximate generator has the form

Q-

A-t,t
Aoz

0

0

A-t,o
Aot
Atz

0

:

(4.1)

(4.2)

(4.3)

000
Aoo00
AnAso
Azz Azt As

:::

where:

Aoz - So

Arz:

and for i, ) I:

A-tJ - -À A-t,o: 
^pT

,s - À/ ,4oo :

Ao:^ 
[3

^ _lrn-xtl-Lir - L So*T
r: p'1

oJ
À"nþ' 1

s - À/l

Aot:
I rl p'1
Io]

Io À1]

?l

o": 
lZ

€¿ r€pr€sents a column vector of ones with the same dimension as the

representation (oo,fo). The level z represents the number of customers

in the orbit except that we have split the server idle state from the server

busy states in the case of no customers in the orbit. This is done to avoid

solving a boundary condition to obtain the stationary probabilities for

the lowest level. The subdiagonal blocks have rank one (A¿2 : yp{-t
where J¿ and þ¿-t are column vectors) and so we can use Propositions 1

and 2 from Chapter 1 to obtain the stationary distribution r. We have

r : lro, rr¡ . ..] and the r¿ are obtained by the recusion

I¿+I: r¿R¿.

The rate matrices R¿ are given by

R¿: -A¿o(An+r,, I A¿+t,oe'y')-'
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where .yr : [0 P']. Substituting from (4.2) and (a.3) yields

R-t : 
^pr 

ØQ - ep\ - s)-'

sr-']

-Ro: lfr - p)eal(x, -Tù-L,x¡xlep' - t) +prsjþr - s]-t]

7)rLi, -

Io
L(i - p¿+t)"aT+r(À/ -Tn+t)-' ÀfÀ(eBr - 1) + p¿+tSo þr -

where p¿ : a¿Q.I - fò-le¿ is the probability that an exponential in-

terarrival time completes before the end of an interretrial time with

distribution (a¿,T¿). Of course, in practice we must truncate and nor-

malize in order to solve for the scalar ro. If we let fr,¿: l*?,"I], where

the elements of rl and r¿1 correspond to states in which the server is

idle or busy respectively, then we have

rle¿:(7-po)'rI-ß

*f, :ø]-t.r1.11 I - eP\ - p¿so þr - s)-t.

Clearly, if we are interested only in the joint distribution of the number

of customers in orbit and the number of customers in service, we require

only the p¿ for the approximate retrial distributions and we can omit

the step of approximating them by phase type distributions. This is
not surprising since that is exactly the information required for the

approximation in Yang et al. (1994). However, we are interested in

obtaining more information about the queue and so will require the

forms (on,Tn) of the approximate retrial time distributions. This will
also be required for more complex models such as the MAP/PH f I rctrial
queue with phase type retrial times, although we do not examine these

explicitly here.
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4.5 NUMBER OF R,ETRTALS AND WAITING TIME

Vy'e can obtain the distribution of the number of retrials by track-

ing one customer through all of his retrials with the queue functioning

independently in the background. We evolve the system from one re-

trial to the next until the server is found to be idle at the epoch of one

of our customer's retrials. To do this, we must construct a generator

which describes the evolution of both the customer and the queue. This

generator has the form

where Q is the generator in (a.1) and Q" and Ql are block diagonal with
blocks ,4.f and ,4j respectively :

At

Q, corresponds to transitions in which the tagged customer retries for

service when the server is idle and begins service. Q¡ corresponds to

transitions in which the tagged customer finds the server busy upon

retrying for service and begins another retrial period. Q6 corresponds

to the rest of the possible transitions and has the form

Q:

Q' : ln'[o' 
nd]

[o o I: fo tøToozl',f: [3 
e#r 

oørof

0

À/ 8 e¿lr I
À1) 8I+Is7l-lTo-L

A8, A8 o
tci t0 lOt Ll2 t LII -a0

0

A8
Ao*, ÁÎtt

-À1)a1+IØT
I ø Soa! (S -

where:

A¿t

105



^o _lgo-Àl)8/+IØTåNr - | I Ø Soa{

¿q-[o o] ¿r-|-9o - LO À1.] '-tz - l0
Consider now the absorbing Markov chain

À/ I e¿7r
S8/+IØT
I Ør: Pr1ol

with generator

Q,, :

Since arrivals follow a Poisson distribution, arriving customers see time

averages. Thus when our customer arrives, the probability that he

receives immediate service is just P(n :0) : Ðn*?"n, the stationary

probability that the server is idle. The conditional distribution of states

of the combined customer-queue system at his arrival given that he

does not receive service immediately is given by *' :lr'o,r'r,...] where

r'¿ : (1 - P(n :0))-tlQ,"Ð ø ot]. The probability that he enters

service at his first retrial (given he does not enter service immediately)

is given by -r'Ql'Qr". If he does not enter service at this point, the

stationary distribution of states is given by n'QltQt¡*'ql'Qt". We

can continue this process, going from one retrial to the next, to obtain

the distribution of the number of retrials:

P (n - kln > 0) : *' (-Qlt Qt)r-' (-8;t Q ")".

We can use Algorithm 1.1 from Chapter One to multiply an arbi-

trary row vector by 8o 
1 and thus, eventually calculate the probabilities

above. The conditional waiting time has a phase type distribution with

representation (*',Qo + Qt) and we can use the methods of Section

1.8 to obtain this distribution via the randomization method. As in

Section 1.8, we could eliminate the idle states above some level to ob-

tain an approximation which is also a lower bound for this distribution

however obtaining an upper bound would be significantly more compiex

I Qo Q, Qtllo o ol.
lo o oj
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because of the non-exponential nature of the approximate interretrial

time distributions (a¿,4). W" might also approximate the waiting time

distribution p-(¿) bV employing the distribution of the number of retri-

als n according to
oo

p*(t) = P(n: 0)ó(¿) + I p(n - te)¡{") çt¡
lc:I

where Í@) i, the r¿th convolution of the retrial time distribution with
itself. \Me did not attempt any of these approximations so we cannot

comment on their effectiveness, however we did investigate the perfor-

mance of the approximation for the first two moments of the waiting

time. If we only require moments of the waiting time, they can be

obtained by applying the reiation

Mj : (-t)i ¡tr,(Qo + Qr)-i ".
Algorithm 1.1 can also be used to operate on vectors with the tridiagonal

subgenerator (Qs + Qr)-I in order to evaluate the moments.

4.6 EXACT SOLUTTON FOR PHz RETRTAL TrMES

If inter-retrial times have a phase type distribution with a two

dimensional representation, we can obtain the stationary distribution

and the moments of the waiting time in a reasonable amount of time

without approximating the system. The state space is given by o -
{(¿,i,k,¿)li: 0, 1,...;i : o,r;k: 0, 1,... ,'i;(, : 1,... ,ni) where r¿

is the dimension of the service time representation. i, j, k, represent

respectively the number of customers in orbit, in service and in phase

two of retrial. / represents the current phase of service. The generator

has the usual block tridiagonal form (1.1) with

Aio:lrf* t] o*: l3 
DcØ.prl
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A¿t

where C¿, D¿ and U¿ are as defined in Section (1.10). In order to deter-

mine where to truncate the generator, we assume that when there are

rnore than N customers in the orbit, the server begins serving the next

customer immediately after each service completion. We assume that
the retrial process ceases when the N * 1st customer joins the orbit, and

that the retrial process (C*, D¡vUN-t) is restarted in its staionary dis-

tribution nv (llCN * DNU¡v-t] - 0) when a service completion leaves

l/ customers in the orbit. The approximate generator has the form

Q_

^fr10

A¡v, A¡vt A¡¡o
A¡v+t,, A1 As

Az Ar As

where As -- ÀL, A1- S - À1, A2: Soþr, A¡v+t,, - [0 ?¡¡ 6l SjPT]
and

A¡ro

V/e gradually increase the value of Ä/ until the probability ( in the

approximate queue) of the orbit containing more than lú customers is

less than some small number e. \Me used e : 10-5 for the numerical

examples we considered. Once N is determined, we truncate the orbit
above l/ so that all customers who arrive when there are N in the orbit
are lost to the system forever.

In order to obtain the distribution or moments of the waiting time,

we must track a tagged customer from her arrival until she begins ser-

vice. The probability of immediate service is given by r(I - Pu)e where

_lcn-Àr ^rØpr I- f r8,so (c¿-fD¿(J¿-t-Àl) 8/+/ssl

Aoo Aot
An Att

lol: 
Lrrsrl '
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ø is the stationary distribution and P6 is the projection matrix corre-

sponding to states in which the server is busy. The waiting time for

customers who do not receive immediate service has a phase type dis-

tribution with representation (*' , Q') where r' - (*Pa Ø a) lrP6e (recall

(o,T) is the retrial time representation) and Q' is a block tridiagonal

generator with blocks A!¿o : A¿,0 Ø I, A!¿,, : A¿,2 I 1 and

A!¿t:A¿tØr*|-9 - o.^ -l'- Lo IøToar)'
We can obtain the distribution of the waiting time by applying the ran-

domization method as in Section 1.8 although the computation will be

extremely time consuming unless the utilization of the queue is low.

\Me couid also find the distriution of the number of retrials by a method

analogous to the one applied in Section 4.5. These methods are compu-

tationally intensive although not difficult to implement. In the follow-

ing section, we obtain the moments of the waiting time for a number

of different examples. Since there does not appear to be any particu-

lar structure we can exploit to speed up computation of the stationary

distribution and the waiting time moments (which require multiplying
vectors by powers of Q-1), we use Algorithm 1.1 directly when applying

block Gaussian elimination. For some of the numerical examples con-

sidered with high traffic intensities (p : Xl tt) or low retrial rates (0),

the computational time required to implement the block Gaussian elim-

ination for the exact model was excessive. In these cases, we still used

block Gaussian elimination to solve the approximate model, because

the method provides a good scheme for deciding where to truncate the

system, but we used block Gauss-Seidel iteration to obtain the solutions

for the exact model. The block Gauss-Seidel method is efficient here

because the diagonal blocks of the generator are block tridiagonal if we

re-order the state space, grouping together the states in each level with
the same number of customers in phase 2 of retrial. The effect of multi-
plying a vector by the inverse of one of the diagonal blocks A¿1 can then
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be calculated in O(i,) time via block Gaussian elimination once the re-

duction phase has been performed on the blocks of A¿1. Since we need to
perform the latter operation only once and the former operation many
times in the block Gauss-Seidel method, this affords a significant sav-

ings in computational time if we are willing to accept the corresponding

loss of accuracy that results from using an iterative scheme.

4.7 NUMERICAL IìESULTS AND CONCLUSIONS

We demonstrate the performance of the approximation in predict-
ing the first two moments of the waiting time for a number of different
examples. Although we could estimate the first moment from the sta-

tionary distribution by applying Little's law, we calculate it in both the
approximate and exact models via the general formula for moments.

Since we need to apply the inverse of the subgenerator twice anyway
in order to obtain the second moment, this does not require any extra
computational effort and it allows us to verify Little's law explicitly as

a consistency check.

We tested our approximation on the set of examples used by Yang
et al. : Ml\trl|, MlÐrll and Ml$2ll retrial queues with two stage

Erlang or two stage hyperexponential retrial time distributions. The
Erlang service time distributions had a mean service time of 1.0 and
the hyperexponential service times had the representation (p, S) with

þ: (.1, .9) and

q:l-.22 o l
L 0 -1.73 J'

The Erlang retrial time distributions were taken to have mean I/0 and
the hyperexponential retrial times were assumed to have the form (*,7)
with

a:( 1,lr+I,K+L) -L -t 0 _ffi)
1i0



where K - c2 + @- and c ) 1 is the coefficient of variation. Ta-

bles 4.I,4.2 and 4.3 present the values of the mean and coefficient of

variation of waiting time for the exact models and the relative error

in these quantities (aproximatef exact-1) for the approximate models of

the M/M lL,}/'lF,zf I andMlHzlI (with c: I.5) retrial queues respec-

tively. Table 4.4 presents the same quantities for the M/M f I retrial
queue for various values of the retrial time coefficient of variation c.

The relative error in both moments seems to decrease with the

retrial rate 0 for queues with Erlang retrial times and increase with
the retrial rate for queues with hyperexponential retrial times. Also

the approximation appears to perform better when the coefficient of

variation of the service time and the retrial time is closer to 1.0. The

approximation becomes poorer as the utilization p grows larger but the

effect is minimal if the coefficients of variation for the service and retrial

times are ciose to 1.0. In general, the approximation performs quite

well as iong as we do not stray too far from the cv of the exponential

distribution for service and retrial tirnes. Most of the relative errors are

close to I%. The approximation performs well at low utilizations for all

service and retrial time distributions considered.
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Table 4.L: Waiting time for M/82/L retrial queue

E2

retrial
times

p e mean
Vo

CTTOT cv
To

EITOT
mean

7o

error
cv

7o

erTor'

.1137 .t7 r.920 -.00 ia:4:4:lt,,:

I J.J .r094 .09 t.972 .00 0.:,
tjt::f: t .'

10 .0918 .04 2.02r .00

.41

::t::::::::::¡ - :: j::: .:1::i:i
:::::..:.i::i: :.. :.. :: .::iil

::ji:a!:::ii:::i

iljiir:i,-ii.ï:i::i;

t.47r -.01
1 6778

.3 J.J .42Æ .23 1.518 -.01

r.554 -.01 t.'5i'g:ri10 .3546 .08

2:43'10 .45 1.265 -.04 ffi
.6 3.5 i.5000 .37 1.320 -.03 t;OSO .19:9'ii,',,

i:: : r:l::r: ,.,riä'r+.

10 r.2460 ,fl r.352 -.02 I,3..r

T12



Table 4 .2: Waiting time for M/H2/L retrial queue

:,,,.,i .r1;,,..:,...r :..:::.:.:.r

Er illilft::r rj:' ''
' ,,,irêfiatl:,;.retrial ::'i::: :::: 

:. :: :::. l

times ,;fimeS¡ 
,,r,

mean Vo

effor
cv Vo

EITOTp e mean Vo

error
cv

2.t95

7o

enor

.02 .i:..,ril4''.,;'
i::: j :..:: :: :l:::::i :.

I .3597 05

2.319 -.01
.1 -1.J .296r .02

.0010 .n83 .01 2.365

:: :::::ii 
::: 

:::::Ì:: :.j:

::i
ìi;

-.05
1 t.399 .04 t.66r

.J 3.3 t.146 .02 t.749 -.03

-.0i10 r.075 .00 t.782
::::,::.;:':

j! iil iii.¡ffi
-.04 .i5ri¡

,:¡,',, O7
I 4.959 -.02 r.395

i116,
.::: :,:: :::i

.6 J.J 4.030 .01 1.460 -.01

1.484 ,01 1ó¡fi ,,,L'Æ,,8 <â'
10 3.768 .00
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Table 4.3: Waiting time for M/M/7 retrial qu.eue

E2

retrial
times

p 0 mean 7o

ETTOT

CV Vo

elÏor
mean Vo

elTor
cv 7o

efïor

i .2009 t4 1.948 .00

J.J r312 .04 2.029 .01

10 rt96 -.01 2.082 .02

I .7832 .31 1,.493 -.03
:,|::,:n::':.1:::::::::::]::::::¡:::i:i::

iii:::ì::, l"i;i:'f it!:i:ii;ri:::::

.J J.J .5314 18 1.556 -.01 ili:ili;
I ilJ:ir::i
:iri :t:.;ìl:::::üi::i!

10 .4619 .07 r.593 .00

2.802 .28 1,.285 .06
',,,

.6 J.J r.878 .21 t3M -.04
:i: ; ::.:i::::ii::::::j:::ì::i
::{.::1.: . ::r: j.::.:...il

10 1.622 .09 t.374 -.02 l,5i 1i.:1,

II4



' Table 4 . 4 : Wait ing time f or M/M/L retrial queue

: :: :j::rli :: ::::::l:::::::::;:::::f::: !:i
:: . : :.: :: : : 

.. 
:.::: :ii:::::: :::::.: !:!:!:

CV Ol :':'l::i:.:':li::i::i'l'i:;lllii':lll:'i:::i

retrial .707 2 .,.,.ii;:'1i;1g:,.,r,ir,i¡;tl:;t 4
.:,:,:1;,::,i,;;lÌ,.,liij:l:l:::i:.1:

times :::t:,.:l::tt;;:rii:Ìi:,1:ir:ll.:iiri:

p 0 cv o/o

error
cv Vo

ETTOT

cv o/o

EITOT

cv Vo

EITOT

I r.457 -.04 1.832 -.05 2.426 -.04

.J r.493 -.03 r.646 -.08 2.029 -.36

10 1,.593 -.00 t.575 .88 T.627 .25

1 r.203 -.05 t.418 -.08 r.813 .r9

.6 I 1.285 -,06 1.347 .Æ r.572 -.71

10 t.374 -.02 1.358 1.5 r.366 t')

.5 1.r78 -.08 1.235 .64 1.413 -.89

.8 1.222 -.07 1.244 1.4
.::: .).-
::-,)0
':.. .:. '

1.368 _.49

10 1.314 -.02 1.305 1') 1t:,r6i,,.;; 1.300 t.7
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CONCLUSION

We have applied matrix analytical methods to a number of key

models of retrial queues. We have found that this allows the inclusion

of significantly more general arrival and service processes than those ap-

pearing in other models. The use of the Markovian arrival process and

the phase type distribution allows for the straightforward construction

of numerically tractable problems without sacrificing too much freedom

in specifying the arrival and service processes. Errors introduced by nu-

merical approximations have been bounded analytically where possible

and demonstrated empirically to be small for a significant set of models

where analytical bounds were not available.

The transparent probabilistic interpretation of the calculations

which are performed should make it easy to extend the method to obtain
information about other performance criteria which may not have been

considered here. The goal of this thesis has been the development of

some general methods for the analysis of retrial queues. There are no

doubt many retrial queues not considered here which can benefit from

these methods. Also, a greater understanding of the models included

may be gained by applying the methods to more extensive numerical

experiments. Since our focus was on the development of the methods,

this is somewhat outside the scope of the thesis; however, the tools are

now available for this future research.
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