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ABSTRACT

It is desired to estimate the proportion of nonconforming
items in a population, and to place a lower "confidence"
bound on this proportion. The sampling plan is subject to
the following constraints: items in an initial sample are
classified by an imperfect classifier, a small subsample is
taken from the group classed as nonconforming, and these

items are reclassified by a perfect classifier.

Bayes Theorem is used to obtain a posterior distribution
for the proportion of nonconforming items in the population.
From this an estimate of the proportion and lower credibil-
ity bounds may be determined using numerical methods. Prior
distributions for the proportion of nonconforming items in
the population and for the probability of misclassifying
conforming items are modelled using independent beta distri-

butions.

A computer program is provided that accepts a set of ob-
served values and a set of values for the parameters of the
priors. Using this input the expected value and standard
deviation of the posterior distribution are calculated, as
well as (1-a)100% lower credibility bounds. Plots of the
posterior density function and posterior cumulative distri-

bution function are also generated.
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Chapter I
INTRODUCTION AND SUMMARY

In a sample taken from a population, the proportion of items
with a certain characteristic can provide an estimate of the
proportion of items with this characteristic in the popula-
tion. In certain situations it may be very expensive to
correctly classify items in a sample, but there may be a
cheaper classification method that does not classify items
correctly all of the time. To economically obtain an esti-
mate of the population proportion in such situations it may

be desirable to use some combination of these two methods.

An example from the health research field of the use of
two types of <classifiers is presented by Deming (1977) in
which the problem 1is to estimate the proportion of persons
with a particular psychopathology. A large sample of persons
are screened at the first stage by trained interviewers and
placed into two groups, those apparently having the psycho-
pathology and those appearing not to have it. At the second
stage a small sample from each of these two groups is exam-
ined by a psychiatrist who makes the final determination of
their psychiatric and medical characteristics. The estimate
of the population proportion is formed by weighting the pro-

portion of cases in each of the screening stage groups by
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the proportion of persons found to have the psychopathology

in each of the second stage samples.

Perfect and imperfect classifiers are also used in qual-
ity control procedures. Frequently a simple method is used
for classifying items in a sample from a batch off a produc-
tion line. If the batch is rejected then the classification
of the sample items may be redone using more thorough meth-
ods. In many cases two types of classifiers are available,
although they may not be used in the manner being considered
in this thesis. For example, a sample of items might be
classified by the perfect classifier. This set of items 1is
then reclassified by an inspector and the proportion of cor-
rect classifications is wused to evaluate the inspector's

performance.

In order to place a lower bound on a binomial proportion,
where the data is subject to misclassification, a two-stage
sampling plan may be used to provide information about the
misclassification rate. At the first stage a random sample
is «classified by a fallible method into two categories.
From one of the first stage categories a subsample is taken,

which is classified by an exact, but expensive, method.

Research into this type of problem was motivated by the
need to solve a specific inspection problem from the grain
industry. In this thesis, the specific problem will be de-

scribed in detail, and a Bayesian solution will be devel-
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oped. This sclution can easily be adapted for use in simi-

lar situations arising in other fields.

1.1 THE SPECIFIC PROBLEM

A mixture of more than one variety of wheat can occur in a
boxcar shipment. In the problem under consideration the
mixture consists of two varieties that look very similar,
one conforming to licencing standards and the other not. An
estimate of the proportion of nonconforming kernels, po, 1is
used to grade the carlot; a poorer grade of wheat has in it
a larger percentage of the nonconforming variety. As pay-
ment to the shipper is based on the grade of wheat, lowering
the grade on a carlot has serious consequences. Therefore
it is desirable to be able to provide, with a given degree

of confidence, a lower bound on po.

1.2 THE SAMPLING PROCEDURE

In order to estimate po in any one boxcar, and to place a
lower bound on po, a two-stage sampling plan is used. At

the first stage a random sample of three hundred kernels is

taken. These kernels are visually inspected and classified
into two groups, those thought to be conforming and those
thought to be nonconforming. The characteristics for cor-

rect visual classification are not always present, so some
kernels may be misclassified into either group. At the sec-
ond stage a subsample of ten kernels is take from the group

classified as nonconforming and these are analyzed by an
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expensive laboratory technique which correctly classifies

each kernel.

No sample is taken from the group classified as conform-
ing, and thus no estimate is available for the number of
nonconforming kernels misclassified into this group. It
will therefore be assumed that there is no misclassification
of nonconforming kernels. This assumption, as will be ex-
plained later, provides a conservative result, that is the
carlot is less likely to be assigned to a lower grade, which

is to the shippers' advantage.

1.3 THE SOLUTION

A Bayesian approach is used to find a solution. This method
allows information which has been gathered from the sample
to be combined with any information which may be available
(prior to the sample being taken) concerning the proportion
of interest and the misclassification rate. This prior "in-
formation" may be subjective feelings about the distribution
of the unknown parameters or it may be based on more spe-
cific information provided by an examination of estimates of
parameters in earlier samples. The two relevant factors
about which there may be some prior knowledge are: the pro-
portion of the nonconforming variety present in previous
boxcar shipments, and the proportion of the conforming vari-
ety correctly classified by the inspection process in other

samples. If it is felt that the process is relatively sta-
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ble over time, then it would be sensible to utilize the
knowledge from past samples in the solution to the current
problem. In this particular solution, knowledge about the
population proportion and the misclassification probabili-
ties is modelled by independent beta distributions. The
beta distribution is a function of two parameters and
changes to these parameters permit the approximation of a
wide variety of distributions. In particular, a suitable
choice of parameters reduces the beta distribution to a uni-
form distribution which can be used to represent lack of
knowledge (that is, from what is known, "any proportion is
equally likely to occur"). These prior distributions are
combined with the sample information (the number classified
as nonconforming from the three hundred kernel sample and
the number classified as nonconforming from the ten kernel
subsample) to produce a posterior distribution for po, the
proportion of nonconforming kernels in the carlot. The mean
of this distribution provides a point estimate of po and
this posterior distribution can also be used to provide a
lower bound for po. For example, if the 5th percentile of
this distribution is found to be 0.15, then one may be 95%
confident that po is 0.15 or 1larger, in the sense that the
posterior probability that po exceeds 0.15 1is 0.95. In
Bayesian terminology, 0.15 is thus a 95% lower credibility

bound for po-.



1.4 AN EXAMPLE

Assume there 1is no information from previous shipments to
incorporate. An inspector classifies a 300 kernel sample as
255 kernels conforming and 45 kernels nonconforming. A 10
kernel subsample is taken at random from the 45 kernels
thought to be nonconforming. If thé laboratory analysis
found all 10 kernels to be nonconforming, indicating that
the inspection process is quite effective, a point estimate
for po 1is the posterior mean at 14.28% and the 95% lower
bound is 10.63% (Figure 1.1). Suppose high grade wheat can
contain at most 8% of the nonconforming Variety. Then, as
the lower bound is greater than 8%, there is sufficient evi-
dence to conclude that this boxcar contains enough noncon-

forming kernels to be graded as lowgrade wheat.

However if the subsample indicated that the inspector was
less accurate, with only 8 kernels in the subsample being
found to be nonconforming, then a point estimate for po
would be 11.70% and the 95% lower bound would be 7.72% (Fig-
ure 1.2). In this case the estimate of po would still be
greater than 8%, but the lower bound would be below 8%. This
indicates that, due to the uncertainty associated with the
sampling and inspection processes, there is not sufficient
evidence to conclude that the boxcar contains enough noncon-

forming kernels to grade the carlot as low grade wheat.

If it is known from earlier samples that the proportion

of Variety 1 kernels that were correctly classified was



Figure 1.1: POSTERIOR DENSITY FUNCTION FOR Po

EXPERIMENTAL 300 kernels randormiy selected from the boxcar;
EVIDENCE: 45 kernels classified as nonconforming, of which
10 ore seiected ond all 10 are confirmed to be nonconforming
PRIOR Independent uniform priors, 8(1,1), on po ond on the probability
SPECIFICATION: of misclassifying conforming kerneis.
POSTERIOR Posterior mean of po = 0.1428;
VALUES: 95% lower bound for pe = 0.1063.
//
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Figure 1.2: POSTERIOR DENSITY FUNCTION FOR po

EXPERIMENTAL As obove, except that of the 10 kernels in the subsampie,
EVIDENCE: 8 are found to be nonconforming.

PRIOR As above.

SPECIFICATION:

POSTERIOR Posterior meon of po = 0.1170,

VALUES: 95% iower bound for po = 0.0772.

S
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Figure 1.3: POSTERIOR DENSITY FUNCTION FOR Po

EXPERIMENTAL As in Figure 1.2,

EVIDENCE:

PRIOR Independent uniform prior, 8(1,1), on po, and B(10,1) prior
SPECIFICATION: on the probobility of misclassifying conforming kerneis.
POSTERIOR Posterior mean of po = ©.1194;

VALUES: 95% Iower bound for po = 0.0802.

%
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0.91, on average, and if 95% of the time the proportion of
Variety 1 kernels that were correctly classified was 0.74 or
greater, then inclusion of this information into the analy-
sis would change the result. One prior distribution that
would have these properties would be a beta distribution
with parameters (10,1). Using this as a prior for the in-
spection step, and with the same sample data as in the pre-
vious example, the point estimate for po would become 11.,94%
and the 95% lower bound would become 8.02% (Figure 1.3)-- a
large enough value to grade the boxcarlot as low grade

wheat.

1.5 ORGANIZATION OF THESIS

A detailed explanation of the problem is given in Chapter
II, together with the notation used and a discussion of con-
ditions particular to this problem. Chapter III contains an
overview of relevant Bayesian methods. In Chapter IV a
Bayesian solution to the specific problem is presented. A
literature survey of related work is given in Chapter V.
Chapter VI contains concluding remarks about the problem,
the proposed solution, and possible adaptations and exten-
sions of the solution. A computer program to generate a so-
lution for observed sample values can be found in Appendix

A,



Chapter II
THE PROBLEM

2.1 THE GENERAL PROBLEM

It is desired to estimate the proportion of items in a popu-
lation having a particular characteristic and to place a
lower bound (in some statistical sense) on this proportion.
The reason for placing a lower bound on this proportion is
to see whether the sample provides sufficient evidence for
concluding that the proportion exceeds some critical value.
The case where there are two methods of classifying items in
a sample is being considered. One is an infallible, but
very expensive, method, such that only a small, fixed number
of items can be classified. The other is a fallible, but
less expensive, method, and thus many more items, within

practical limitations, can be classified.

2.2 THE SPECIFIC PROBLEM

The specific problem under consideration arises in the grad-
ing of boxcarlots of wheat. The boxcar may contain a mix-
ture of two varieties of wheat: Variety 1, that conforms to
grading standards and Variety 2, that does not. The shipper
is paid less if the carlot contains more than a specified

proportion, p', of the nonconforming variety. It is there-
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fore desirable to test the following hypotheses concerning
Po, the proportion of Variety 2 in the carlot:

Ho: po £ p
Hi: po > p'.

The specified value, p', can be quite small (less than 0.1).

Determining a lower bound on the proportion po, with a
certain degree of "confidence", will permit the testing of
these hypotheses. If the lower bound is found to be greater
than p', then the null hypothesis will be rejected in favour

of the alternative.

In this thesis Bayesian methods will be used to determine
this lower bound, that is, for some values of a, 0 < a < 1,
(1-a)-100% lower <credibility bounds will be found. Hence

the associated tests will have a Bayesian interpretation.

The two varieties of wheat mentioned previously are very
similar in appearance. Correct visual identification 1is
based on subtle variations in shape and colour and on the
relative lengths and positions of parts of the kernels. Due
to variations in growing conditions, storage periods and
other uncontrollable factors the characteristics for correct
visual classification are not always distinguishable or
present. Thus, during visual inspection some kernels of
wheat may be misclassified. The misclassification can be in
either direction: a Variety 1 kernel may be classified as

Variety 2, or a Variety 2 kernel may be classified as Vari-
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ety 1. There is a laboratory technique available that can
give an exact identification of kernels of wheat, but this
method is very expensive and so only an extremely small num-

ber of kernels can be classified.

2.3 NOTATION
To clarify discussion of the problem the following notation
is introduced and a diagram of the sampling procedure is

presented in Figure 2.1.

Po proportion of non-conforming kernels in the carlot.

p1 = probability of a conforming kernel being correctly
identified at the inspection step.

P2 = probability of a non-conforming kernel being correctly

identified at the inspection step.

n = total number of kernels in the initial sample.
y = number of non-conforming kernels in the initial sample.
ny = number of kernels in the initial sample that are class-

ified as conforming at the inspection step.

number of kernels in the initial sample that are class-

o}
]
]

ified as non-conforming at the inspection step.

Y1 = number of non-conforming kernels in the initial sample
classified as conforming at the inspection step.

Yz = number of non-conforming kernels in the initial sample
classified as non-conforming at the inspection step.

m = total number of kernels in the subsample.

x = number of kernels confirmed to be non-conforming by the

laboratory technique.



ni kernels

Figure 2.1:

SAMPLING PLAN

CARLOT

Po = proportion Variety 2

RANDOM INITIAL SAMPLE

n-y | y n kernels
Maoriety 1 l Variety 2
VISUAL
CLASSIFICATION
pr (1=pz) \(1-pv)
M=y % " 2 ~y: l Yz
Nariety 1 | Voriety 2 Nariety 1 Variety 2
RANDOM SUBSAMPLE
m-=x X
Mariety 1 Variety 2|
LABORATORY
CLASSIFICATION
m-=x X
Variety 1 Voriety 2

nz kernels

m kernels

12
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2.4 SAMPLING PLAN
The carlot contains a proportion po of Variety 2 kernels.
An initial random sample of n kernels is taken from the car-
lot., It contains an unknown number, y, Kkernels of Variety
2. These n kernels are classified by visual inspection into
2 groups: n; kernels thought to be Variety 1 and n, kernels
thought to be Variety 2. The n; kernels thought to be Vari-
ety 1 consist of an unknown number, y:, kernels of Variety 2
kernels misclassified as Variety 1 and ni-y; kernels of Va-
riety 1. Similarly the n; group consists of y, kernels of
Variety 2 and n;-y, kernels of Variety 1 misclassified as

Variety 2.

The probability of a Variety 1 kernel being correctly
classified as Variety 1 is p; and the probability of a Vari-
ety 2 kernel being correctly classified as Variety 2 is ps.
The probability ps is not necessarily equal to p3. It is
assumed that these probabilities of correct classification
are constant from kernel to kernel, independent of the clas-

sifications of any other kernels.

Since no sample is taken from the n; group and as only a

one-sided bound on po is desired, an assumption that p; = 1
will be made in deriving the answer. Under this assumption
v1 = 0 and therefore all kernels in the n; group are consid-

ered to be Variety 1. The assumption that p, = 1 provides a
conservative result, as any smaller value of ps would cause

the estimated value of po and the lower bound for po to be
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larger. From the hypothesis testing point of view, 1if Ho
can be rejected with the assumption that p, = 1, then it

would also be rejected for smaller values of p;.

A random subsample of size m is taken from the n, kernels
thought to be Variety 2. These m kernels are examined by
the laboratory technique and classified as m-x kernels of
Variety 1 and x kernels of Variety 2. In n; < m no subsam-

ple is taken.

The values of n, ny, nz, m and X can be observed. For
example, in an actual problem an initial sample of n = 300
kernels would be taken from the carlot, these kernels being
divided by visual inspection into two groups, ny = 255
thought to be Variety 1 and n, = 45 thought to be Variety 2.
A subsample of m = 10 kernels would then be taken from the
45 kernels thought to be Variety 2. Upon laboratory analy-
ses, x = 8 kernels may be found to be of Variety 2 and
m-x = 2 kernels may be found to be of Variety 1. The gues-
tion is "How can po be estimated and how can a lower bound
for po be determined, in order to test the hypotheses

Ho: po £ 0.08 vs Hy: po > 0.087"
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2.5 CONDITIONS PARTICULAR TO THIS PROBLEM

There are two methods available for classifying kernels of
wheat, visual inspection and laboratory analysis. The im-
perfect classification method, wvisual inspection, 1is rela-
tively inexpensive, however, use of this method alone will
lead to a biased estimate of the proportion of Variety 2
wheat in the carlot (Bross 1954). If the misclassification
rates were known to be the same for kernels from any boxcar,
calibration samples could be classified by both the imper-
fect and perfect methods, and the average results could be
used to correct for bias in the estimates from samples clas-
sified only by the imperfect method (Trader 1983, Wooding
1979). In this problem, hovever, the misclassification
rates may not be constant from carlot to carlot and thus in-
formation about the misclassification rates needs to be ob-

tained from each carlot.

The perfect classification method, laboratory analysis of
the kernels, is very expensive and thus it is impractical to
use this method to classify all kernels in the initial sam-
ple. Laboratory analysis is therefore used to reclassify a
subsample of kernels, previously classified by visual in-
spection, 1in order to provide information about the prob-
ability of <correctly classifying kernels. Because of the
nature of the Jlaboratory analysis the subsample size is
fixed and no variation in size of subsample, either with the
size of the group it is removed from, or with other factors

which might affect optimal subsample size, is considered.
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As a lower bound is desired in this problem, the whole of
the subsample is taken from the n, group, those classified
as Variety 2 by inspection. As mentioned above, this re-
sults in a conservative answer, in view of the assumptions
that will be made. If an upper bound was also desired, a
second subsample would need to be taken from the n; group in
order to obtain information about the probability of mis-
classification in the other direction. In fact it is clear
that samples should be taken from both groups (occasionally
at least) 1in order that the effects of both kinds of mis-

classification can be assessed.

The proportion of interest, po, may be quite small. This
small proportion, together with the small size of the sub-
sample prohibits the use of asymptotic maximum likelihood
technigues based on normal approximations. 1In order to com-
bine the information available from the two stages of this
particular sampling procedure, to incorporate information
available prior to sampling and to cope with the limitations
mentioned above, Bayesian methods will be used to estimate

the proportion po, and to provide a lower bound for po.



Chapter III
BAYESIAN METHODS

Before developing the Bayesian solution to the sampling
problem presented in Chapter II, an overview of relevant
Bayesian methods and their purpose and implication will be
presented. A simple binomial example will be wused to de-
scribe these methods. In Bayesian inference, 1in order to
make statements about a parameter p, information from the
sample (expressed through the 1likelihood function) 1is com-
bined with any prior information that exists about p (ex-
pressed through the prior distribution). The effect of the
choice of the prior on the answer in the binomial example
will be examined as motivation for the choice of the prior
in the problem of interest. A basic general reference for

Bayesian procedures is Box and Tiao (1973).

3.1 A BINOMIAL EXAMPLE

Consider a binomial random variable Y, so that

f(ylp) = c(n,y) py(1—p)n—% y = 0,1,...,n.
For a fixed observed y, if f(y|p) 1is regarded as a function
of p (0 £ p < 1), then it is referred to as the likelihood
function (unigque up to a multiplicative constant). The
likelihood functions for two sets of data (n = 25, y = 5 and
n =25, y = 15) are shown in Figures 3.1(a) and 3.1(b).
- 17 -
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3.2 PRIOR DISTRIBUTION

Information known about p, without knowledge of the data, is

expressed in a prior probability distribution. For conven-

ience, the distribution will be assumed to be continuous and
the prior density function will be denoted by h{(p). The use
of a prior distribution allows assumptions about the distri-
bution of the parameter of interest to be formally consid-

ered.

One possible prior distribution for p in the binomial ex-
ample being considered is a beta distribution, B8(a,b). The

probability density function for the beta distribution,

B(a,b) is
[}a+b) a-1 b-1
hip) = — p (1-p) , 0<ps1,
[}a)[}b)
for 0 < a,b. Changes to the two parameters to this distri-

bution will allow approximation of a wide variety of distri-

butions.

An initial choice of parameters for the beta prior might
be a =1, b = 1, which reduces the beta distribution to the
uniform distribution. Use of the uniform distribution can
be thought of as modelling "ignorance", "any value of p be-

ing equally likely" prior to sampling.

Box and Tiao (1973) suggest that Jeffrey's prior,

8(0.5,0.5), 1is the appropriate non-informative prior for a
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binomial mean, but that for moderate sample sizes "the pos-
terior density is not very sensitive to the precise choice
of a prior" (page 36), and the use of 8(1,1) is approxi-

mately eguivalent to using 8(0.5,0.5).

In many problems the use of Bayesian procedures with spe-
cific non-informative priors will produce answers that agree
with classical answers (having a freguency interpretation).
In some cases the appropriate prior may be improper, in the
sense that the integral of the prior over the parameter
space is infinite. The choice of the prior used to get
classical answers partially depends on the goal. For exam-
ple, when the lower bound is of interest, a 95% lower credi-
bility bound for a binomial proportion found using an im-
proper prior of B(0,1) is the same as the classical 95%
lower confidence bound. Alternatively when the upper bound
is of interest the use of the improper prior, 8(1,0), leads
to a 95% upper credibility bound that corresponds to a clas-

sical 95% upper confidence bound.

If more precise information is available about which val-
ues of p are more likely to occur, perhaps from earlier
similar experiments, then alternate values for a and b can
be chosen. For example a = 10, b = 1 might be chosen to
model prior knowledge that P(p > 0.7402) = 0,95, Priors

8(1,1) and B(10,1) are illustrated in Figure 3.2.
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3.3 POSTERIOR DISTRIBUTION

Using Bayes Theorem the sampling information and prior in-
formation are combined into the conditional distribution of

P, given the sample results, known as the posterior distri-

bution. The posterior density function is given by

f(y|p) -hip)

glply) =

f1(Y)
where the marginal distribution £,(y) = oJ'f(y|p) -hi(p) dp
'normalizes' the product so that g(ply) 1is a proper prob-

ability density function. That is, o/'g(p|y) dp = 1.

The family of beta distributions 1is the conjugate family
for binomial sampling (Raiffa and Schlaifer). That is, when
a beta prior is combined with binomial sample information
through Bayes Theorem the resultant posterior distribution
is also a member of the family of beta distributions. For
the binomial example considered here , with a beta prior,
the ©posterior distribution is the beta distribution,

B((a+y), (n-y+b)).

In the numerical example, with n = 25 and y = 5, 1if the
prior is B8(1,1) then the posterior distribution is £(6,21),
In this same example if y = 15 then the posterior distribu-
tion is B(16,11). Similarly for a prior of B(10,1) the pos-
terior for y = 5 is B8(15,21) and for y = 15 is B8(25,11).

The plots in Figures 3.3.(a) and 3.3.(b) show that with
the ignorance prior, B8(1,1), there 1is no shift from the
likelihood, whereas the prior 8(10,1) has a stronger influ-

ence.
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Figures 3.4, 3.5 and 3.6 illustrate that when the sample
size increases from n = 25 to n = 200, with the proportion
of successes remaining constant, (that is, y = 15 for n = 25
and y = 120 for n = 200), changing the parameters for the
prior has 1less effect on the posterior distribution. The

data then "dominates" the prior for large sample sizes.
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3.4 BAYES CREDIBILITY REGION

Inferences about the parameter of interest are made based on
the posterior distribution. One way to summarize the infor-
mation presented by the posterior distribution is to report
a credibility interval which contains a stated amount of the
probability. A (1-a)-100% lower credibility bound for the
population proportion is that value of p which divides the
area under the posterior density curve into two regions,
that below p contains a-100% of the area (or a of the prob-

ability) and that above p contains (1-a)-100% of the area.

For the numerical example being considered, 1lower credi-

bility bound for p, for a = 0.10, 0.05 and 0.01 are given in

Table 3.1.
TABLE 3.1
(1—a)-100% lower bounds
PRIOR vy n 90% 95% 99%
B(1,1) 5 25 0.1260 0.1056 0.0733
B(10,1) 5 25 0.3129 0.2858 0.2380
B(1,1) 15 25 0.4707 0.4357 0.3716
B(10,1) 15 25 0.5944 0.5637 0.5057
B(1,1) 120 200 0.5546 0.5418 0.5178
3(10,1) 120 200 0.5730 0.5605 0.5370
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3.5 NUISANCE PARAMETERS

If the distribution of the observed value depends not only
upon the parameter of interest, but also on other parame-

ters, then these are known as nuisance parameters. In the

Bayesian approach inferences about the parameter of interest
are based on the marginal posterior distribution that is ob-
tained by integrating, over the parameter space of the nui-
sance parameters, the joint posterior distribution of the
parameter of interest and the nuisance parameters. That is,

the nuisance parameters are "integrated out".

3.6 SENSITIVITY

In drawing conclusions based on a posterior distribution,
the sensitivity of the posterior to changes to the parame-
ters of the priors should be considered. If the posterior
distribution shows little change wunder different prior dis-
tributions this 1indicates that the information coming from
the sample dominates the results. In this case the choice
of parameters for the prior 1is not very critical. However
if the posterior 1is sensitive to changes to the parameters
of the prior then it is important to recognize this fact. In
some cases this may indicate the advisability of obtaining

more data.
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3.7 RELATIONSHIP TO CLASSICAL RESULTS

As mentioned in Section 3.2, with ignorance priors the Baye-

sian results may agree with classical results. If there is

a discrepancy, then it will tend to be smaller for large

sample sizes. In binomial sampling the (1-a)-100% classical
lower confidence bound is that value of p for which
n i n-i
Z C(n,i) p (1-p) =
i=y

a, 0<p=1,

By examining Table 3.2 it can be seen that the classical

lower confidence bounds are egqual to the lower credibility

bounds with an improper prior, 8(0,1).

TABLE 3.2

CLASSICAL LOWER BOUNDS

y n 90% 95% 995

5 25 | 0.1006 | 0.0822 | 0.0542

10 25 | 0.4523 | 0.4168 | 0.3524

120 | 200 | 0.5525 | 0.5397 | 0.5156

BAYES LOWER BOQUNDS

PRIOR y n 90% 95% 99%
B(0,1) 5 25 | 0.1006 | 0.0822 | 0.0542
B(0,1) 10 25 | 0.4523 | 0.4168 | 0.3524
B(0,1) 120 | 200 | 0.5525 | 0.5397 | 0.5156
B(1,1) 5 25 | 0.1256 | 0.1056 | 0.0734
B(1,1) 15 25 | 0.4707 | 0.4357 | 0.3716
B(1,1) 120 | 200 | 0.5547 | 0.5419 | 0.5178
8(10,1) 5 25 | 0.3129 | 0.2859 | 0.2383
B(10,1) 15 25 | 0.5944 | 0.5637 | 0.5059
B(10,1) | 120 | 200 | 0.5730 | 0.5605 | 0.5371




Chapter IV
THE SOLUTION

4.1 WHY A BAYESIAN SOLUTION?

The grain grading problem was first considered using a clas-
sical approach. However difficulties arose in developing an
estimator that would combine the information coming from the
initial sample with that coming from the subsample, and in
particular in the placing of confidence bounds on the esti-
mator. The small subsample size and the interest in testing
for a small proportion suggested that asymptotic methods
such as those proposed by Tenenbien (1970) would not be
suitable. Use of Bayesian methods allows for handling of
the nuisance parameters p; and p; (the probability of cor-
rectly classifying Variety 1 and Variety 2 kernels). It
also allows explicit inclusion of information external to
the data, such as opinions about likely values of the param-
eters or estimates of parameter distributions from earlier

samples.

- 27 -
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4,2 CHOICE OF PRIOR DISTRIBUTIONS

It has been indicated in the literature (Biegel 1974, Sin-
clair 1978) that po, the parameter of interest, and the nui-
sance parameters, p; and p:, may be dependent upon one an-
other. Despite this, a solution to the specific problem
presented in this thesis will be developed that considers
these parameters to be independent. This assumption of in-
dependence allows the joint prior distribution of these pa-
rameters to be written as the product of independent prior
distributions. As was mentioned in Section 2.4, an assump-
tion will be made that no misclassification of nonconforming
kernels occurs. Thus the prior distribution of p, is mod-
elled by the delta function p; = 1. The prior distributions
of po and p;: will be modelled by independent beta distribu-
tions. The choice of beta distributions as priors for these
parameters is further discussed in Sections 5.2.2 and 5.2.3.
As noted in Section 3.2 the beta is a flexible distribution
with an appropriate range which can approximate many other
distributions. Because of 1its mathematical manageability,
use of beta priors in this problem permits clear illustra-
tion of the use of priors in general and their effect on in-
ferences. If more suitable prior distributions can be
found, or empirical distributions can be developed from a
series of samples, then they can be incorporated into the
analysis in a manner similar to that used for the indepen-
dent beta priors. If the prior is more complex, then addi-

tional numerical difficulties will undoubtedly arise. On the
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other hand, the beta distributions could be replaced by fi-
nite mixtures of betas without increasing the complexity a
great deal. This would permit approximation to a wider

class of prior distributions.

4.3 DISTRIBUTION OF THE SAMPLE

From the sampling plan in Figure 2.1, in Chapter II, it is
seen that only values of the random variables N; and X may
be observed. Since it is assumed, for reasons given in Sec-
tion 2.4, that p» = 1, the probability of observing values
of these random variables is only conditional on the values

of Po and Pi1.

Lemma 4.1.

P(N,=n,,X=x|po,pi1) =

r n! n-ns No—-y2 Y2
z L '[p1(1—po)] [(1—p1)(1—po)] Po :
y2t{n-ny) ! (na-ys)tya!

C(y2,x)'C(n2—y2,m—x)1
1 (4.3.1)
C(nz,m)

for x = 0,1,...,m; n, = m,m+1,...,n: and where the summation
is over y2 = x,x+1,...,n,-m+x. [Here, 0 < po,ps < 1]

Proof of Lemma 4.1. The necessary assumptions are that
the carlot approximates an infinite population, that the

probability of correctly classifying any one kernel is inde-
pendent of how any other kernel is classified, and that the
probabilities of correctly classifying kernels, p; and p»,

are constant for all kernels. It can then be shown that af-
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ter classification of the initial sample the joint distribu-
tion of Ny - ¥4, ¥4y, N2 - Y, and Y, is multinomial, with ob-

served values as shown in Table 4.1 below.

TABLE 4.1

C TRUE CLASSIFICATION
L VARIETY 1 VARIETY 2
I A
N §
S S VARIETY 1 N1—-Y1 Y1 niq
P1I
E F
C1I
T C VARIETY 2 Nao—Yo2 Y2 No
I A
oT
NI
o) n-y y n
N

The associated probabilities are given in Table 4.2

TABLE 4.2

C TRUE CLASSIFICATION
L VARIETY 1 VARIETY 2
I A
N S
S S VARIETY 1 p1{1-po) (1-p2)po p1+(1-p1-p2)po
PI
EF
Cc1I
T C VARIETY 2 |[(1-py)(1-po) P2Po (1-p1)-(1-p1-p2)po
I A
OT
NI
0 T-po Po 1
N
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As only a lower credibility bound is desired in this par-
ticular case, and as a subsample is taken only from the
group classified as Variety 2, an assumption is made that
p2z = 1. Under this assumption y; = 0, and the joint distri-
bution of Ny, N - ¥, and Y, is multinomial with cell prob-

abilities as given below.

cell , n; I No-yo l Yo ‘! n

cell probability ] p1(1-po) l (1-p1) (1-po) | Po ]’ 1

Therefore,

P(N;=n;,Nz=n,,¥2=y2|po,p1) =

n! nj Nao-y¥2 Y2
'[p1(1-po)] [(1—p1)(1—po)] Po
ny!{nz-yz2)!ya! (4.3.2)
where n, = 0,1,...,n; y» = 0,1,...,n, and ny + n, = n,

The conditional distribution of the number of Variety 2
kernels confirmed to be in the subsample by the laboratory
technique is hypergeometric. In other words,

C(y2,x)C{ns-y2,m-x)

P(X=x|[Ny=n,,¥y=y,) = ,
C(n,,m) (4.3.3)

where x = MAX(0,(m-na+y2)),...,MIN(m,y2), and it follows
that
P(N2=njy,Y,=y;,X=x|po,p1) =

P(Ny=n;,N2=nz,Y¥2=y,|po,p1) P(X=x|Nz=n,,¥,=y,) ,
where the expressions on the right hand side are given in
Equations 4.3.2 and 4.3.3. As Y, is not observable, in or-
der to obtain P(N,=n,,X=x]|po,p:) the above probabilities are

summed over values of y, to obtain Equation 4.3.1.
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Note. If.Equation 4.3.1 is summed over the stated values
of N, and X then the result is equal to

n

2 n-np
P(N,2m) = % [ cln,nz) [1-(1-po)pil [(1-po)p:] } <1,

n»z
where the summation is over n; = m,m+1,...,n. The over-all
sum being less than one is a consequence of no subsample be-
ing taken if n; < m. (Notice that N, follows a binomial

distribution.)

4.4 PRIOR DISTRIBUTION

For a Bayesian solution a prior needs to be specified for po
and pi. For simplicity the joint distribution of po and p;

will be modelled as two independent beta distributions, so

that
h(po,p1) = ho(po) -hi(p:), 0=po,pi<1. (4.4.1)
where
[}ao+bo) ao-1 bo-1
ho(po) = "Po (1-po) + 0=<ao,bo
Rao) Rbo)
and
Ha1+b1) 81“1 b1—1
hT(p1) = Pi (1—p1) 7 O_<.a1,b1 o

P(adﬂbd
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4.5 POSTERIOR DISTRIBUTION

Lemma 4.2. Having observed N;=n,; and X=x, and using in-
dependent beta priors for po and p:, the posterior density
function of po, go(po|nz2,x), is given by

ya2+tao—T n-ys+bo-1
Z {(nz—y2+b1—1)!po (1_p0) ]

y
L (y2-x)!(ny-yo-m+x) ! (n-yo+as+by=1)! l

, (4.5.1)
1 r(nz—y2+b1—1)!(n—y2+bo—1)!(y2+ao—1)!1
z

(n+ag+bo-1)! yzL (yz—x)!(n2~y2—m+x)!(n-y2+a1+b1~1)!J

0 < pp £ 1, Here, x = 0,1,...,m; ny = m,m+1,...,n and the

summations are over y; = X,x+1,...,n-m+x.

Proof of Lemma 4.2. The joint posterior of po and p; is

P(Nz=n;,X=x|po,p1) h(po,p1)

g(po,p1lnz,x) =
P(N2=n2,x=x)
where the expression in the numerator is the product of
Equations 4.3.1 and 4.3.2, and where the normalizing con-
stant is given by

P(Nz=n,,%=x) = g1£1P(N2=n2rX=X|Po'P1)'h(po,P1) dpo dp1.

It follows that the marginal posterior for po is

go(po,nzyx) = é‘g(po,p1|n2,x) dpi,

as given by Equation 4.5.1.
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The associated posterior cumulative distribution function
is given by

Po ,
Go(polnaz,x) =o! go(pinsz,x) dp ,

Po yao+ag—1 n-ya,+bo-1
=Z J A p (1-p) ap
y2 ° Y2
where the summation is over y, = X,x+1,...,n-m+x.
Here
(na-y2+bi=1)! (n+ap+bo-1)!
Ayz ) (y2-x)!(nz~y2-m+x)! (n-yo+a +b;-1)! B
where
. [(ﬂz“Y2+b1—1)!(n—yZ+bo—1)!(Y2+ao—1)!]

Y2 (y2-x)!(na-yp-m+x)!(n-yz+a;+b;-1)!

As Go(po|n2,x) is a linear combination of incomplete beta
functions, available computer algorithms for solving incom-

plete betas can be utilized.

Figure 4.1 is an example of a particular posterior den-
sity function and its associated posterior cumulative dis-

tribution function.

Remark. Although it is not of primary interest in this
thesis, the marginal posterior for p; can be found 1in a

similar manner. That is

g1(p1lN2=n2,X=x) = é1g(po:P1|n2,X) dpo =
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Figure 4.7: POSTERIOR DISTRIBUTION FOR po
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= [‘(n"Y2+bo—1)!(Y2+ao_1)! 1'1"“2'*'31"1(_l )
P —P1

nz—y2+b1—1}

Y
gl (yo-x)1{na-yo-m+x)!

r(nz‘Y2+b1”1)!(D—Y2+bo—1)!(Y2+ao—1)!1

(n-ny+aq(-1)!Z I ]
Y2 (n—y2+a1+b1—1 )! (yz—x)! (nz—yz—m+x)!

0 £ py 21, Here, x = 0,1,...,m; n, = m,m+1,...,n and the

summations are over y, = X,%x+1,...,n-m+x.

4.6 CREDIBILITY BOUNDS

A (1-a)-100% lower credibility bound for po is found by in-
verting the posterior cumulative distribution. That is, a
value of ppo = LB is found such that

Go(LB) = a.
This value can be found using a search procedure such as
that used in the computer program presented in Appendix A.

The results of such a search are shown in Figure 4.2.

The Figure presents graphically the 95% lower credibility
bounds for py¢ for n = 15,...,300 and x = 0,...,10 when the
priors on po and p; are B(1,1). For observed values of nj
and x, a 95% lower bound for po can be found from the dia-

gram using graphical interpolation.

Alternatively equations could be fit to the lines in Fig-
ure 4.2 and these equations could then be used to estimate
95% lower credibility bounds for observed sets of n, and x.
Over the smaller values of n; (those that are of most inter-
est in this thesis) it can be seen that there 1is a nearly

linear relationship between the values of the 1lower bound
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95% LOWER BOUNDS

Figure 4.2:
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and the size of ns.

the linear relationship

for x = 0,...,10 and n, = 15,...165,

4.2,

LB = A + B-ny

TABLE 4.3

X A B

0 -0.0000114 0.00001624
1 -0.0001260 0.00011642
2 -0.0003781 0.00027555
3 -0.0007704 0.00047218
4 -0.0012772 0.00069679
5 -0.0019412 0.00094557
6 -0.0027517 0.00121627
7 -0.0037809 0.00151112
8 -0.0050879 0.00183150
9 -0.0068985 0.00218621
10 -0.0099915 0.00259971

For posterior distributions that are not

the lower credibility bound can

approximation.

E(po|nz,x) = é1po‘90(poln21X)‘dpo

and the standard deviation, Std(po)

Var(po|nz,x) = E(po?|na,x)

where

E(pozlner) = é‘poz'go(polnz,x)-dpo

These integrals can be easily evaluated as linear combinations

over y2 of complete beta integrals, see Appendix A (Main Program).
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Table 4.3 presents the coefficients for

for the plots in Figure

highly skewed

be estimated using a normal

The posterior mean can be found from

;from the square root of

(E(po|nz,x))?2
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With these values, a (1 - a) lower credibility bound can be
approximated as
LB = E(polnz2,x) - c-Std(po|na,x)
where ¢ is that value such that P(2<c) = a for a standard

normal distribution.

It should be noted that although the central region of
the posterior distribution (the region around the mode) may
be roughly normally distributed, the 1left hand tail of the
distribution is typically "fatter" than the right hand tail.
Hence an estimate of the lower bound calculated using a nor-
mal approximation may not be very accurate. For example,
for the skewed posterior density function shown in Figure
4.3 a 95% lower credibility bound found using a normal ap-
proximation is 0.03918 - (1.645)(0.01965) = 0.007 whereas

the true 95% lower credibility bound is 0.012.
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Figure 4.3: HIGHLY SKEWED POSTERIOR DISTRIBUTION

Posterior Density Function
go(polnz = 45, x = 2), n =300, m=10
Prior for po = £(1,1), Prior for p» = g(1,1)
Posterior Mean = 0.03918, Posterior Standard Deviation = 0.019654
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SENSITIVITY CHECKS
be acquired

the inspection

4,7
Information about

over time and therefore priors

correctly classifying a conforming kernel, can be used which
likely that the

process will

on py, the probability of

knowledge. Since it is

be fairly

will reflect this
accurate in most in-

process will

inspection
priors reflecting this assumption will be examined

stances,
in this section for their effects on the posterior distribu-

Four priors will be examined: 8(1,1) (representing

tion.
and 8(20,1) (representing increasingly

ignorance), £(10,1)

greater inspection accuracy) and B(2.43,4) (representing in-
spection that 1is generally good, but often not perfect).
Figure 4.4 shows plots of these beta distributions.

Figure 4.4: BETA DISTRIBUTIONS USED AS PRIORS FOR P
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Posterior distributions for po with these priors on pj
are shown in Figures 4.5 and 4.6, It can be seen that the
effect of the various priors is amplified by increasing val-
ues of ny. There is also some increase in the effect of the
prior as the number of kernels confirmed to be nonconforming

in the subsample decreases from x = 10 to x = 8.

The effect of changes to the prior for po 1is also exam-
ined. Four priors for po are examined for their effect on
the posterior distribution. The priors 1looked at are;
B(1,1) (representing ignorance about the probable proportion
of nonconforming kernels in the carlot), 8(1,5) and 8(1,10)
( representing decreasingly smaller proportions of the non-
conforming variety expected to be in the carlot) and
8(1.5,5) (representing the belief that there are at least
some nonconforming kernels in the carlot, but they are not
expected to be a large proportion of them present). These

priors are displayed in Figure 4.7.

The effect of these changes to the prior for po is exam-
ined in conjunction with two priors for p;, B(1,1) (repre-
senting ignorance) and B8(10,1) (representing better than av-
erage 1inspector accuracy). The posterior distributions
under these various priors are displayed in Figures 4.8 to
4,11, It can be seen that when there are only a small num-
ber of kernels classified as nonconforming that the choice

of priors for po and p; has negligible effect.



Figure 4.5:

EFFECTS OF VARYING THE PRIOR FOR p; ON THE
POSTERIOR FOR po

n = 300, nz = 30, m= 10, x = 10
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Figure 4.6: EFFECTS OF VARYING THE PRIOR FOR p: ON THE
POSTERIOR FOR po

n = 300, n= 100, m = 10, x = 10
Prior for po= g(1,1)
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Figure 4.7:
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Figure 4.8: EFFECTS OF VARYING THE PRIOR FOR Po ON THE
POSTERIOR FOR po

n =300, nz= 30, m= 10, x = 10 n =300, nz =30, m=10,x =8
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Figure 4.9: EFFECTS OF VARYING THE PRIOR FOR Po ON THE
POSTERIOR FOR po
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Figure 4.10: EFFECTS OF VARYING THE PRIOR FOR Po ON THE
POSTERIOR FOR po

n = 300, nz = 30, m= 10, x = 10 n =300, n= 30, m=10,x=8
Prior for pr = g(10.1) Prior for pr = 8(10,1)
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Figure 4.11: EFFECTS OF VARYING THE PRIOR FOR po, ON THE
POSTERIOR FOR po
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4.8 EFFECTS OF CHANGES TO SAMPLE OR SUBSAMPLE SIZE

Figures 4.12 and 4.13 illustrate the effect of changes to
sample size or subsample size. Priors for po and p; were
maintained as independent ignorance priors, [B(1,1)]. It

can be seen that doubling the sample size from n = 300 to

n 600 kernels when the subsample size is held constant at

m 10 or m = 20 has minimal effect on the lower tail region
of the posterior distribution (the region affecting lower

credibility bounds). However doubling the subsample size

fromm = 10 to m 20 (when the sample size is held constant

at n = 300 or n 600) does affect the lower tail region.
This effect is magnified by increases in n». The effects
observed above are fairly similar for cases when x/m = 1.0

and when x/m = 0.8.

It should be noted that, based on the above observations,
the greatest improvement to the power of a test based on a
lower credibility bound would come from increasing the size

of the subsample.
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Figure 4.12: EFFECT OF CHANGES TO SAMPLE OR SUBSAMPLE SIZES
ON THE POSTERIOR FOR po
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Figure 4.13: EFFECT OF CHANGES TO SAMPLE OR SUBSAMPLE SIZES
ON THE POSTERIOR FOR po

nz/n = 0.33, x/m = 1.0 nz/n = 0.33, x/m = 0.8
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Chapter V
LITERATURE SURVEY

Literature examined as background to this thesis was princi-
pally in two broad categories: the role of misclassification
in reaching statistical conclusions, and Bayesian methods in

sampling.

5.1 MISCLASSIFICATION

5.1.1 MISCLASSIFICATION IN QUALITY CONTROL

The effect of misclassification or 'inspector error' 1is of
importance in the field of quality control. A survey paper
by Dorris and Foote (1978) gives a good outline of proposed
models for inspection error for attribute data, count data
and variables data. It summarizes work done on the effects
of inspector error in statistical quality control proce-

dures, measuring inspector accuracy and modelling the causes

of inspector error. The paper concludes by pointing out
areas where further research should be considered. The au-
thors note, that even if there 1is a reasonable model for

misclassification "it is not possible to assess the extent
of the difficulty or design a compensating plan without
knowledge of the error probabilities" and "in practice, of
course, these values (for error probabilities) are rarely if

ever known and probably change over time" (page 190).

- 49 -
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This need for knowing the error probabilities is exempli-
fied by many of the articles examined. There are a large
number of articles (Beainy and Case, 1981; Carr, 1982; Case,
Bennett and Schmidt, 1973,1975; Collins, Case and Bennett,
1973; Hoag, Foote and Mount-Campbell, 1975; Minton, 1972;
Wooding, 1979) in which particular quality control proce-
dures are examined and adjustments for known error probabil-
ities are proposed. In the reverse direction Healy (1981)
develops a model for classification subject to error so that
the classification mechanism can be designed to have a

known, acceptable error probability.

5.1.2 TWO-STAGE SAMPLING PLANS

In order to incorporate estimates of the error probabilities
into the estimate of a population proportion Tenenbien
(1970) proposed a two-stage sampling plan. In this plan an
initial sample is drawn. From this a smaller subsample is
removed. The units in the subsample are examined by both the
fallible and infallible classifiers, whereas the remaining
units in the initial sample are only classified by the fal-
lible classifier. This differs from the problem being con-
sidered in this thesis wherein information about only one
misclassification probability is acquired. Tenenbien ob-
tains maximum likelihood estimates of the population propor-
tion and both error probabilities. The asymptotic variance
of the estimate of population proportion is also derived.

In the thesis problem the subsample size is very small, and
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the population proportion of interest may be very small;
therefore the asymptotic results from Tenenbien's paper can-
not be applied. In Tenenbien (1971) procedures for deter-
mining optimal sample or subsample sizes are presented and
cost comparisons are made to sampling using only the infal-
lible classifier. Tenenbien (1972) extends the results from

binomial data to multinomial data.

A similar two-stage sampling plan, applied to a health
care survey, 1is given in Deming (1977). Information per
unit cost is examined for two methods of allocating the sub-
sample size (proportional and Neyman) and using the infalli-
ble classifier only. Deming concludes that the two-stage
plan is only cost effective if there is a large difference
per item between the cost of classifying using the fallible
method and the «cost using the infallible method. He sug-
gests the break-even point is roughly 1:6. In the problem
under consideration 1in this thesis the cost difference is
considerably larger. He also notes (page 36)

sampling to measure the prevalence of a rare char-
acteristic is a subject all by itself, beyond the
scope of this paper,... Statistical procedures to
determine with a prescribed probability the preva-
lence of a certain rare disease does not exceed
some small proportion such as p < 1/50 call forth
still further theory, also not covered here.

A further example of use of a two-stage procedure 1is

given in Fleiss (1981), Chapter 12.
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Hochberg (1977) uses Tenenbien's work to develop a gener-
alized approach for multidimensional cross-classified data,
where there is no structure to the error probabilities. He
proposes a combined maximum likelihood, least squares meth-
odology, and a least squares methodology, but finds that un-
less some restrictions can be placed on the structure of the
error probabilities that there are "too many degrees of

freedom for the misclassification error space" (page 920).

5.1.3 OTHER APPROACHES

Other approaches to incorporating misclassification into the
model include using log-linear models (Chen, 1979), <classi-
fying items by two <characteristics (Diamond and Lilienfeld,
1962; Chiacchurini and Arnold, 1977), doing repeated clas-
sifications of the items (Sutcliffe, 1965a,1965b; Koch,
1969) and using a game theoretic approach (Rahali and

Foote, 18982).

5.1.4 MODELS FOR MISCLASSIFICATION RATES

Much of the work on developing models for misclassification
rates has been done in the fields of psychology and signal
detection theory. Sinclair (1978) provides a survey of some
of the more mathematically oriented of these models. Tiems-
tra (1981) looks at measures of inspector effectiveness. 1In
the wheat classification problem under consideration in this
thesis not only are many of the variables mentioned by Sin-

clair (such as working conditions or number of 'defects'
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already found) affecting inspector performance, but also the
items being examined, the wheat kernels, vary in how identi-

fiable they are.

5.1.5 SAMPLING DISTRIBUTION OF THE NUMBER CLASSIFIED
NONCONFORMING

Collins and Case (1976) show that when sampling with re-
placement from an "infinite" population, where misclassifi-
cation is present, the distribution of the number classified
nonconforming is binomial. In a group of related papers,
Johnson, Kotz and Rodrigues (1985), Johnson, Kotz and Sorkin
(1980) and Kotz and Johnson (1982) the distribution of the
number classified nonconforming when sampling without re-
placement from a finite population is shown to be compound
binomial, confounded with the hypergeometric distribution of

the true number of nonconforming items in the sample.

5.2 BAYESIAN METHODS

Box and Tiao (1973) and Raiffa and Schlaifer (1961) were

used as general references on Bayesian methods.

5.2.1 BAYESIAN SAMPLING PROCEDURES

Godfrey and Neter (1984) develop a sampling procedure to de-
termine an upper credibility bound for a proportion in a
problem in accounting. They do not consider misclassifica-
tion. In Coombs and Stephens (1980) an upper credibility

bound for a proportion is also determined, in this case it
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is assumed that the maximum value of this upper bound is
known to be something less than one. Hald (1968) and Guild
and Raka (1980) provide examples of Bayesian sampling plans

in guality control.

5.2.2 PRIORS FOR THE POPULATION PROPORTION

Case and Keats (1982) examine distributions which "describe
the number of defectives from lot to lot" (page 10). They
recommend the use of a mixed binomial distribution as a
prior to describe situations where items in a lot come from
a variety of sources. They also look at the Polya distribu-
tion (a discrete form of the beta), the uniform distribution
(which they feel is unrealistic but suitable as an "igno-
rance prior") and the binomial distribution (which they show

"renders sampling useless and inappropriate" (page 10)).

Because of its ability to approximate a wide variety of
distributions and because of the simplification of the math-
ematics which it provides, the beta distribution 1is fre-
quently chosen as a prior to model the distribution of the
population proportion from lot to lot. Hald (1968) and
Lauer (1978) provide examples of single sample attribute
sampling plans using a beta prior on the population propor-
tion. Trader (1983) shows that, in sampling from a ber-
noulli process where misclassification is present, the con-
jugate family of distributions for the population proportion
is an infinite mixture of beta distributions. Use of conju-

gate distributions as priors generally leads to mathematical
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tractability, however in this case fitting an infinite
mixture 1is not feasible. Trader therefore looks at a
"stretched" truncated beta distribution as a prior. She
finds this difficult to handle computationally, and con-
cludes that a beta distribution, (the conjuéate distribution
when inspection is perfect) 1is the most reasonable prior to
use. The Bayesian analysis here has only one unknown param-
eter as the probabilities of misclassification are assumed

to be known.

5.2.3 PRIORS FOR THE NUISANCE PARAMETERS

Menzefriche (1984) uses a product of betas to model the
joint distribution of the misclassification probabilities.
He finds that a normal approximation to this joint distribu-
tion is adequate, where there is a moderate to large popula-
tion size, a moderate sample size, and either a moderate
population proportion or very small misclassification prob-

abilities.

5.2.4 ROBUSTNESS

Box and Tiao (1962) provide arguments for the robustness of
inferences based on the use of prior distributions and Baye-
sian methods. The papers by Godfrey and Neter (1984) and
Pfanzagl (1963) are good examples of thorough examination of

the robustness of inferences to the choice of prior.
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5.2.5 ESTIMATING PARAMETERS FOR PRIORS

Skellam (1948) and Weiler (1965) provide methods for esti-
mating the parameters for a beta prior from past records of
estimates of the population proportion. Their examples do

not include the effect of misclassification.

5.2.6 BAYESIAN ACCEPTANCE SAMPLING PLANS UNDER
MISCLASSIFICATION

Two papers were found in which the effects of misclassifica-
tion on Bayesian acceptance sampling plans are considered.
Moskowitz and Fink (1977) develop a recursive algorithm to
find the optimal single sample acceptance plan, with a dis-
crete prior on the population proportion, when misclassifi-
cation is present. Kittler and Pau (1980) also develop a
Bayesian quality control scheme. Their scheme requires the
use of a test set to determine the misclassification prob-
abilities, but they are unable to determine good guidelines
for deciding how large this test set should be 1in order to
have acceptablely accurate estimates of the misclassifica-
tion probabilities. There appears to have been little work
done in the area of obtaining information about misclassifi-

cation from the data in Bayesian acceptance sampling plans.



Chapter VI
CONCLUDING REMARKS

6.1 POSSIBLE IMPROVEMENTS TO THE SAMPLING PLAN

A (1-a)-100% lower credibility bound for po based on the
posterior distribution developed in Chapter IV has been pro-
posed in this thesis as a method of testing the hypotheses:

|

Ho: po =< p' vs. Hy: po > p'.

There are some changes to the sampling plan that could be
looked at that might lead to making a correct decision more

frequently and provide a more reliable estimate of po.

For practical reasons the size of the initial sample and
the subsample in the thesis problem were fixed. As discussed
in Section 4.8 increasing the size of the initial sample

and/or the subsample might be considered.

Alternatively the size of the subsample might be allowed
to vary with the size of the groups classified as noncon-
forming, and an optimal subsample size might be determined

(taking costs into account) as in Deming (1977).

A multistage sampling procedure could also be used at the
subsample stage, with second and subsequent samples being

taken depending upon the number of kernels confirmed to be

- 57 -
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nonconforming by the laboratory test, and the size of the

group classified as nonconforming.

The group classified as conforming could also be subsam-
pled and this information could be wused to develop an upper
credibility bound. Having an upper credibility bound would
allow the implementation of a quality assurance plan for
meeting grading standards when the carlots of wheat are
sold. Sampling from this group should also be done in order
to acquire information about the probability of misclassify-

ing a nonconforming kernel.

6.2 AREAS FOR FURTHER RESEARCH

Even though the group classified as conforming is not
sampled, the posterior distribution developed in this thesis
could be modified so that the assumption that pz = 1 could

be changed to ps; = ¢, where ¢ is some fixed value.

For simplicity, independent beta priors (for the popula-
tion proportion and the probability of misclassifying a con-
forming kernel) were used in the development of the poste-
rior distribution in Section 4.5. As mentioned in Chapter V
it might be reasonable to consider independent mixtures of
beta distributions as priors. This would not greatly in-
crease the computational difficulties and would increase the
number of other distributions which could be approximated.
Other families of distributions might be considered as pri-

ors but their choice may be limited by their tractability.
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From the material in Chapter IV the sample covariance
between po and p; could be examined. This might provide
justification for the use of independent priors or permit
the development of a more suitable joint prior. A bivariate

beta distribution might be considered.

From the posterior distribution developed in Chapter IV
and the capability of finding 1lower credibility bounds pro-
vided by the computer program in Appendix A, acceptance sam-
pling procedures could be developed for testing the hypothe-
sis po £ p'. Based on the work in this thesis the rule is
to accept the carlot as high grade wheat if the lower credi-
bility bound is £ p'. An alternative way of displaying this
answer might be to develop a table of all values of n, and
X. For each n; there would be some test value, g(n2),
0 £ g(n2) £ m. If it was observed that x < g(n2), the carlot
would be graded as low grade wheat. It is possible that
there will be large values of n, for which all values of x

would lead to the carlot being graded as low grade wheat and

therefore the subsample would not need to be taken.

Once such an acceptance rule was established its operat-
ing characteristic curve could be examined, and comparisons

made to existing or standard acceptance rules.

Methods still need to be developed to extract information
about inspection performance from a series of samples in or-

der to estimate parameters to the prior for p,;, the prob-
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ability of correctly classifying conforming kernels. It
would be helpful if this was a dynamic method as there is
likely to be a "training" effect on the the inspectors per-
formance over one crop year, as well as possibly a seasonal
effect due to deterioration of kernels during storage or an
annual effect due to changes to growing conditions in dif-

ferent crop years.

6.3 CONCLUSION

The posterior distribution developed for the sampling prob-
lem presented in this thesis 1illustrates how information
available from the sampling plan and any prior information
can be combined to provide a distribution upon which conclu-
sions about the proportion on nonconforming kernels in the

carlot can be based.

Strengths and weaknesses of the sampling plan have been
examined and improvements suggested. Incorporation of prior
information has been illustrated and alternative specifica-
tion of prior information considered. It is hoped that the
information in this thesis provides a base for further re-

search and development of applied procedures.



Appendix A

The following program will, for one user supplied set of
sample values, produce plots of the posterior density func-
tion and the posterior cumulative distribution function de-
veloped in Section 4.5. It also prints out the posterior
mean and posterior standard deviation. It searches for and
prints out the lower bound for three user selected credibil-

ity coefficients.
The user is to supply the following values.

e From the sample, values of n, m, n; and x. n = ns,
nm, n, 2 X.

e Parameters for the priors for po and pi1, ao, bo, ai,
and bi. ao,bo,as,b1 > 0.

e The maximum number of times that Go(po) can be calcu-
lated 1in any one search for a lower bound, MAXFN.
MAXFN > 0.

e How close the value of Go(p) 1is to the desired (1 - a)
value before the search stops, ACC. ACC < 1.

e Number of significant digits of accuracy desired in the
estimate of the lower bound, NSIG. NSIG = 1,

e For three desired (1 - a) lower credibility bounds pro-
vide the <corresponding a levels, ALPHAT, ALPHA2 and

ALPHA3. 0 < ALPHA1,ALPHA2,ALPHA3 < 1

- 61 -
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The values are entered in the program after the CARDS state-

ment, in the order given, separated by blanks.

The program is written in SAS Version 5.08 (Statistical
Analysis System). This programming package was chosen be-
cause of the availability of built-in functions for calcu-
lating beta probabilities and inverse beta values, 1its use
of 16 bit precision and the integration of a programming

language and graphical procedures.

No formal test of the accuracy of results from the built-
in functions was done, but in all cases where results could
be cross checked by other methods the results were accepta-
ble. Because of the limitations on the range of values that
various built-in functions will accept, this program checks
for out of range values, prints an error message and then
tries to continue. Therefore there may be some input values

for which valid results are not available.

This program has been used over a wide variety of input
values, but has not been tested for extreme values. It is
the responsibility of the user to provide valid input data,

as the program does not check input values.

The program consists of four modules. The first calcu-
lates one value of the posterior density function, given a
value of p. The next calculates one value of the posterior
cumulative distribution function, given a value of p. The

search module uses Brent's algorithm (Brent, 1977) to search
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for the zero of a function. In this case it is searching for
that value of p such that Go(p) - a = 0. It calls the mod-

ule which calculates the posterior cumulative distribution.

The main program performs several functions. It calcu-
lates the posterior mean, posterior standard deviation and
that portion in the denominator of both the posterior den-
sity function and posterior cumulative distribution function
that is the summation B of Section 4.5. From the posterior
mean and standard deviation a range of values is determined
for which the posterior density function is sufficiently
larger than zero to show in a plot. Values for plotting the
posterior probability function and the posterior cumulative
distribution function are calculated by calling the appro-
priate modules. The search module is called to determine
the lower bounds corresponding to the input a values. Plot-
ting procedures are called to display the results. The
GOPTIONS may be specific to the University of Manitoba sys-

tem.

The program is presented next, and sample output for in-
put values of:

N = 300, M= 10, N2 = 45, X = 8,
AO =1, BO =1, A1 =1, B1 = 1,
MAXFN = 8, ACC = 0.001, NSIG =
ALPHA1 = 0.10,

3,
ALPHA2 = 0.05, ALPHA3 = 0.01

follows in Figure A.1.
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OPTIONS DQUOTE NOCAPS;

***********************************************************;

* MACRO GP CALCULATES ONE VALUE OF THE PDF;

***********************************************************;

SMACRO

GP( P, /% VALUE OF P AT WHICH TO CALCULATE THE PDF %/

PDF) /* CALCULATED VALUE OF PDF TO BE RETURNED x/3
%LOCAL '
NUM /* NUMERATOR ACCUMULATOR */
v2 /* SUMMATION INDEX */
TEMP /% LOG OF ONE VALUE IN SUMMATION x/;
K e e o e e ——————— *
*ZERO ACCUMULATOR;
NUM = 0;
* CALCULATE NUMERATOR;
DO Y2 = X TO MAXY2;
TEMP = ((N - Y2 + B0 - 1)*LOG(1 - &P)
+ (A0 + Y2 - 1)*LOG(&P)
+ LGAMMA(N2 + B1 - ¥Y2) - LGAMMA(Y2 - X + 1)
- LGAMMA(N2 - Y2 - M + X + 1)
- LGAMMA(N - Y2 + A1 + B1) + CONST);
NUM = NUM + EXP(TEMP) ;
END;
* CALCULATE VALUE OF PDF;
&PDF = NUM/DENOM;
B e e e e ———— e % o
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***********************************************************;

* MACRO FP CALCULATES ONE VALUE OF THE CDF;

***********************************************************;

%MACRO
FP( P, /* VALUE OF P AT WHICH TO CALCULATE THE CDF */
CDF) /* CALCULATED VALUE OF CDF TO BE RETURNED */¢
%LOCAL
NUM /* NUMERATOR ACCUMULATOR %/
Y2 /* SUMMATION INDEX */
PB /* INCOMPLETE BETA RESULT */
PREVINCR /* LOG OF PREVIOUS VALUE IN SUMMATION */
INCR /* LOG OF CURRENT VALUE IN SUMMATION *x/
T2 /* TOLERANCE */
T3 /* MINIMUM POSSIBLE VALUE FOR BETA FUNCTION */;
K e e e e ———— e ——————— % o

*# SUFFIX FOR LABELS IN CURRENT CALL TO THIS MACRO;

%LET ID = &SYSINDEX;

* CALCULATE TOLERANCES;

T2 = T/100000000; T3 = 10 ** (-60);

* FOR SMALL VALUES OF P RETURN CDF=0,

FOR LARGE VALUES OF P RETURN CDF=1;

IF (&P < T2) THEN &CDF = 0;

ELSE IF (&P > 1 - T2) THEN &CDF = 1;

* ELSE CALCULATE VALUE OF FUNCTION AT P;

ELSE DO;

* ZERO ACCUMULATOR;

NUM = 0;

INCR = -180;

* CALCULATE NUMERATOR;



DO Y2 = X TO MAXY2;

* IF INCOMPLETE BETA VALUES ARE CLOSE TO ZERO THIS
TERM IN THE SUMMATION CONTRIBUTES LITTLE TO THE
SUM. PASS ON TO THE NEXT TERM;

PB = PROBBETA(&P, Y2+A0, N-Y2+BO0);
IF (PB < T3) THEN GOTO NEXT&ID;
* ELSE CALCULATE INCREMENT TO SUM;
ELSE DO;
PREVINCR = INCR;
INCR = LGAMMA(N2 - Y2 + B1) + LGAMMA(Y2 + AO)
+ LGAMMA(N - Y2 + B0O) + LOG(PB)
- LGAMMA(Y2 - X + 1)
- LGAMMA(N2 - Y2 - M + X + 1)
- LGAMMA(N - Y2 + A1 + B1);
* CATCH VALUES OF INCR OUT OF RANGE FOR EXP FUNCTION;

IF (INCR > 174 OR INCR < -180) THEN GOTO NEXT&ID:
* ADD INCREMENT TO SUM;
NUM = NUM + EXP(INCR):

END;
NEXT&ID: END;
LAST&ID: &CDF = NUM/DENOM;

END:;
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* MACRO SEARCH USES BRENT'S ALGORITHM TO FIND THE VALUE

OF P FOR WHICH THE CDF IS EQUAL TO ALPHA.;

***********************************************************;

%SMACRO
SEARCH (
LB, /* LOWER BOUND VALUE, RETURNED */
ALPHAI) /* OF THE (1 - ALPHA) LOWER BOUND * /3
%LOCAL

COUNT /* COUNTER TO LIMIT THE NUMBER OF TIMES THE */

/* FUNCTION CAN BE CALLED */

ABC /* VALUES OF P THE SEARCH IS CHECKING x/
FA FB FC /* VALUE OF FUNCTION AT A,B OR C */
D E /* TEMPORARY HOLDERS OF A B OR C IN EXCHANGE #*/
MID /* MID WAY BETWEEN B AND C */
PQR S /* CALCULATED VALUES USE IN INTERPOLATION */
TEMP /* RATIO OF FUNCTION VALUES */
TOL /* CURRENT DESIRED TOLERANCE *x/
z /* STANDARD NORMAL PERCENTILE VALUE */
/* GREATER THAN (1 - ALPHA) */s

K e e e e i e e e *

*# SUFFIX FOR LABELS IN CURRENT CALL TO THIS MACRO;
SLET IDX = &SYSINDEX;

* CALCULATE AN APPROXIMATE LOWER BOUND USING NORMAL
DESIRED VALUE APPROXIMATION AS ONE END POINT FOR
THE SEARCH. IT MUST LIE BETWEEN THE INITIAL ENDPOINTS;

ALPHA

&ALPHATI;

COUNT = 0;
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z

~ PROBIT(ALPHA):

B = MAX((EPO -~ 2=*SDO),ACC);
%FP(B,FB);
FB = FB - ALPHA;
* IF FUNCTION DOES NOT EXIST AT THIS POINT HALT PROCEDURE;
IF (FB=.) THEN DO;
PUT 'VALUE NOT FOUND';
B = 0;
GO TO LOOP&IDX;
END;
*CHOOSE APPROPRIATE END OF RANGE AS OTHER END POINT;

IF (FB<0) THEN DO;

A=1; FA = 1 - ALPHA;
END;
ELSE DO;

A=0; FA = - ALPHA;
END;

* USE ALGORITHM TO FIND THE ZERO OF A FUNCTION;
TOL = T*MAX(ABS(B),.1);
C=A; FC = FB;
IF (FA*FB > 0) THEN
PUT 'FA AND FB HAVE THE SAME SIGN ';
ELSE DO;
* DETERMINE WHICH TWO POINTS OUT OF A,B AND C ARE CLOSEST
TO THE DESIRED POINT;
DO WHILE ((ABS(FB) > ACC) AND (ABS(C-B) > TOL)
AND COUNT < MAXFN);

IF (FB*FC>0) THEN DO;



C=A; FC=FA;
D=B-C; E=D;

END;

IF (ABS(FC) < ABS(FB)) THEN DO;
A=B; B=C; C=A;
FA=FB; FB=FC; FC=FA;

END;

MID =(C-B)/2;

TOL = T*MAX(ABS(B),0.1);

IF ((ABS(E) >= TOL) AND (ABS(FA) > ABS(FB)))
THEN DO;
S=FB/FA;

*INVERSE QUADRATIC INTERPOLATION;
IF (A NE C) THEN DO;

TEMP = FA/FC;

R = FB/FC;
P = S*x((C-B)*TEMP*(TEMP-R) - (B-A)*(R-1));
Q = (TEMP -1)*(R-1)*(S-1);

END;

*LINEAR INTERPOLATION;
ELSE DO;
P=(C-B)*S;
0=(1-8);
END;
IF (P>0) THEN Q = -Q:
ELSE P = -P;
IF (2*P >= 3*MID*Q OR P>= ABS(E*Q*.5)) THEN

GOTO JUMP&IDX;
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E=D; D=P/Q;
END;
*BISECTION;
ELSE DO;
JUMP&IDX: E=MID;
D=E;
END;
A=B; FA=FB;
IF (ABS(D) <= TOL/2) THEN
TEMP = ABS(TOL/2)*SIGN(MID);
ELSE TEMP =D;
B = B + TEMP;
%FP(B,FB);
FB = FB - ALPHA;
IF (FB=.) THEN DO;
PUT 'VALUE NOT FOUND IN SEARCH';
GO TO LOOP&IDX;
END;
COUNT = COUNT +1;
END;
IF (COUNT >= MAXFN) THEN
PUT 'STOPPED DUE TO MAXIMUM ITERATIONS ';
IF ABS(C-B) < TOL THEN
PUT 'C AND B CLOSE ';
END;

LOOP&IDX: &LB = B;
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***********************************************************;

* MAIN PROGRAM;

***********************************************************;

DATA PDFDATA(KEEP=P0 GPO)

/* DATA FOR PLOTTING DENSITY FUNCTION */

CDFDATA (KEEP=P0 FPO)

INPUT
N /*
M /*
N2 /*
X /*
AQ /*
BO /*
A1l /*
B1 /*
MAXFN /*

/*
ACC /*

/*
NSIG /%

/*

/*
ALPHA1 /*
ALPHA2 /*
ALPHA3 /*

/* DATA FOR CUMULATIVE DISTRIBUTION FCT. */;

NUMBER IN INITIAL SAMPLE x/
NUMBER IN SUBSAMPLE */
NUMBER CLASSIFIED VARIETY 2 IN INITIAL SAMPLE*/

NUMBER CONFIRMED TO BE VARIETY 2 IN SUBSAMPLE*/

PARAMETER OF PRIOR FOR PO */
PARAMETER OF PRIOR FOR PO %/
PARAMETER OF PRIOR FOR P1 */
PARAMETER OF PRIOR FOR PT *x/
MAXIMUM NUMBER OF TIMES FUNCTION IS TO BE */
CALLED IN SEARCH FOR LOWER BOUND */
ACCURACY TO WHICH THE AREA UNDER THE CDF */

EQUALS THE DESIRED ALPHA BEFORE SEARCH STOPS */
NUMBER OF SIGNIFICANT FIGURES OF AGREEMENT  x/
BETWEEN DESIRED VALUE FOR THE LOWER BOUND x/
AND THE ONE FOUND */
ALPHA VALUE FOR SPECIFIC LOWER BOUND DESIRED */
ALPHA VALUE FOR SPECIFIC LOWER BOUND DESIRED */

ALPHA VALUE FOR SPECIFIC LOWER BOUND DESIRED */;
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* GLOBAL VARIABLES

DENOM /*
MAXY2 /*
EP0  /*
EP0SQ /*
SDO0  /*
R /*
\Y% /*
TEMP /%
LOW /%
Low /*
HIGH /*
DIFF /x
STEP /*
CONST /*

/*

/%
T /*
PO /*
GP0O  /*
FPO /%
LBT /%
LB2 /x
LB3 /*

SUMMATION IN DENOMIMATOR OF PDF AND CDF */
UPPER LIMIT OF SUM */
EXPECTED VALUE OF PO */
EXPECTATION SQUARED OF TERMS IN SUMMATION */
STANDARD DEVIATION OF PO x/
CONSTANT IN NUMERATOR */
CONSTANT IN DENOMINATOR */
ONE TERM IN SUMMATION OF DENOMINATOR */
LOWER LIMIT FOR PO */
LOWER LIMIT FOR PO x/
UPPER LIMIT */
DIFFERENCE BETWEEN HIGH AND LOW %/
INCREMENT */
LOG OF CONSTANT IN DENOMINATOR, PLACED IN */
NUMERATOR TO PREVENT VALUES BEING OUT OF */
RANGE FOR EXP FUNCTION. x/
TOLERANCE VALUE */
VALUE OF PO THAT FUNCTION IS CALCULATED AT x/
DENSITY AT PO */
CUMULATIVE DENSITY AT PO x/
LOWER BOUND OF 1 - ALPHAT1 CREDIBILITY INTERVAL*/

LOWER BOUND OF 1 - ALPHA2 CREDIBILITY INTERVAL*/

LOWER BOUND OF 1 - ALPHA3 CREDIBILITY INTERVAL*/;

* CALCULATE THE SUMMATION IN THE DENOMINATOR OF BOTH THE

PROBABILITY DENSITY FUNCTION AND THE CUMULATIVE DIST-

RIBUTION

FUNCTION. CALCULATE THE EXPECTED VALUE AND THE
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STANDARD DEVIATION. ;

* ZERO ACCUMULATORS;

DENOM = 0;
EPO = 0;
EPOSQ = 0;

* CALCULATE UPPER LIMIT OF SUMMATION;
MAXY2 = N2 - M + X;
* CALCULATE SUMMATION;
DO Y2 = X TO MAXY2;
TEMP = EXP(LGAMMA(N2 + B1 - Y2) + LGAMMA(N + B0 - Y2)
+ LGAMMA(AO + Y2) - LGAMMA(Y2 - X + 1)
- LGAMMA(N2 - Y2 - M + X + 1)
- LGAMMA(N - Y2 + A1 + B1));
DENOM = DENOM + TEMP;
R = Y2 + AQ;
EP0 = EP0 + TEMP*R;
EP0SQ = EP0SQ + TEMP*R#*(R+1);
END;
V =N+ A0 + BO;

EPO

ROUND( (EP0 /(V*DENOM) ), .00001);

ROUND( (SQRT(EP0SQ/(V* (V+1)*DENOM) - EPO*EP0),

SDO
.00001);
* CALCULATE A +/- 4 STANDARD DEVIATION BOUND AS A
REASONABLE RANGE TO CALCULATE VALUES OF THE
PDF AND CDF OVER;
LOW = ROUND(MAX(O,(EPO - 4*SD0)),.0001);
HIGH = ROUND(MIN(1,(EPO + 4*SD0)),.0001);

* IF THIS RANGE IS NARROW, THIS IS A DEGENERATE FUNCTION;
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DIFF = HIGH - LOW;
IF DIFF < 0.005 THEN DO;
PUT "DEGENERATE FUNCTION";
GOTO LAST;
END;
DETERMINE AN INCREMENT FINE ENOUGH TO GIVE GOOD PLOTS;
STEP = ROUND(MIN(0.01,(DIFF/10)),0.0001);
SELECT RANGE OF VALUES WITHIN (0,1);
LOW = MAX(STEP/2,LOW);
HIGH = MIN((1 - STEP/2),HIGH);
CALCULATE CONSTANT USED IN PDF;
CONST = LGAMMA(V);
CALCULATE ACCURACY FACTOR;
T = 10*%*(-NSIG);
GENERATE VALUES OF THE PDF AND CDF;
DO PO = LOW TO HIGH BY STEP;
%GP(P0,GP0) ;
%FP(PO,FPO);
OUTPUT PDFDATA;
OUTPUT CDFDATA;
END;
FIND LOWER BOUNDS CORRESPONDING TO THE INPUT ALPHAS ;
%SEARCH(LB1,ALPHA1);
%SEARCH(LB2,ALPHA2);
%SEARCH(LB3,ALPHA3);
ROUND RESULTS TO THE ACCURACY WITH WHICH THEY WERE FOUND;

LB1

i

ROUND(LB1,T);

LB2

ROUND(LB2,T);



LB3 = ROUND(LB3,T);
* STORE VALUES FOR PRINTING TITLES;
CALL SYMPUT('NN',LEFT(N));
CALL SYMPUT('MM',LEFT(M));
CALL SYMPUT('NN2',6LEFT(N2));:
CALL SYMPUT('XX',LEFT(X));
CALL SYMPUT('AAQ',LEFT(A0));
CALL SYMPUT('BBO',LEFT(BO));
CALL SYMPUT('AA1',LEFT(A1));
CALL SYMPUT('BB1',LEFT(B1));
CALL SYMPUT('EEPO',LEFT(EPO));
CALL SYMPUT('SSDO',LEFT(SDO));
CALL SYMPUT('AAPH1',LEFT((1 - ALPHA1)*100));
CALL SYMPUT('AAPH2',LEFT((1 - ALPHA2)*100));
CALL SYMPUT('AAPH3',LEFT((1 - ALPHA3)*100));
CALL SYMPUT('LLB1',LEFT(LB1));
CALL SYMPUT('LLB2',6LEFT(LB2));
CALL SYMPUT('LLB3',LEFT(LB3));
CALL SYMPUT('LLOW',
LEFT(MAX (0, (ROUND(LOW,0.01) - 0.05))));
CALL SYMPUT('HHIGH',
LEFT(MIN(1, (ROUND(HIGH,0.01) + 0.05))));
IF HIGH - LOW > 0.2 THEN CALL SYMPUT('BBY',0.1);

ELSE CALL SYMPUT('BBY',0.05);

it

LABEL FPO "CUMULATIVE PROBABILITY";
LAST: STOP;
CARDS;

300 10 458 11118 .001 3 .10 .05 .01
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***********************************************************;
GOPTIONS NOTEXT82 ROTATE DEVICE=XEROX COLORS=(BL);

PROC GPLOT DATA=PDFDATA GOUT=GRAPHLIB;
TITLE1 H=2.4 "POSTERIOR DENSITY FUNCTION";
TITLE2 F=SIMPLEX H=2.0 "g" H=1.0 "O" H=2.0 "(p" H=
1.0 "0" H=2.0 "|n" H=1.0 "2" H=
2,0 " = gNN2.,, x = &XX.), n = &NN., m = &MM.";
TITLE3 F=SIMPLEX H=2.0 "Prior for p" H=1.0 "O" H=
2.0 " = " F=GREEK "b(&AA0.,&BB0)" F=
SIMPLEX " Prior for p" H=1.0 "1" H=
2.0 " = " F=GREEK "b(&AA1.,&BB1.)";
TITLE4 F=SIMPLEX H=1.0 OCC=2 "E(p" H=2.0 "O" H=

2.0 "

&EEPO., STD(p" H=1,0 "O" H=

2.0 "

&SSDO.";

AXIS1 LABEL=(F=SIMPLEX H=2 "P" H=1 "0") VALUE=(H=1.5)
ORDER=(&LLOW TO &HHIGH BY &BBY);

AXIS2 LABEL=NONE MAJOR=NONE VALUE=NONE STYLE=0;

PLOT GP0*P0 /HAXIS=AXIS1 VAXIS=AXIS2;

SYMBOL1 I=SPLINE L=1;
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***********************************************************;

PROC GPLOT DATA=CDFDATA GOUT=GRAPHLIB;

TITLE1 H=2.4 "POSTERIOR CUMULATIVE DISTRIBUTION FUNCTION";

TITLE2 F=SIMPLEX H=2.0 "G" H=1.0 "0" H=2.0 "(p" H=

1.0 "0" H=2.0 "|n" H=1.0 "2" H=

2.0 " = &NN2,, x = &XX.), n = &NN,, m =
TITLE3 F=SIMPLEX H=2.0 "Prior for p" H=1.0 "O"

2.0 " = " F=GREEK "b(&AA0.,&BB0)" F=

SIMPLEX " Prior for p" H=1.0 "1" H=2.,0

GREEK "b(&AA1.,&BB1.)";

TITLE4 F=SIMPLEX H=2,0 "Lower Bounds: &AAPH1.%

2.0 "&LLB1., &AAPH2.% = &LLBZ2., &AAPH3.

2.0 "&LLB3.";

&MM. "

o®

"

" F=

" H=

AXIS1 LABEL=(F=SIMPLEX H=2.0 "P"™ H=1.0 "O") VALUE=(H=1.5);

ORDER=( &LLLOW TO &HHIGH BY &BBY) MINOR=(N=9):

AXIS2 ORDER=(0 TO 1 BY 0.1) MINOR=(N=3) VALUE=(H=1.5):

PLOT FPO*P0 /HAXIS=AXIS1 VAXIS=AXIS2;

SYMBOL1 I=SPLINE L=1;

***********************************************************;

PROC GREPLAY IGOUT=GRAPHLIB;

REPLAY 1 2;
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Figure A.1: SAMPLE OUTPUT PLOTS

Posterior Density Function
go(po|nz = 45, x = 8), n = 300, m =10
Prior for po = 8(1,1), Prior for p» = g(1,1)
Posterior Mean = 0.11701, Posterior Standard Deviation = 0.02446
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Posterior Cumulative Distribution Function
Go(polnz = 45, x =8), n =300, m =10
Prior for po = £(1,1), Prior for pr = g(1,1)
Lower Bounds: 90% = 0.086, 95z = 0.077, 99z = 0.062
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