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ÀBSTRACT

It is desired to estirnate the proportion of nonconforming

items in a population, and to place a lower "confidence"
bound on this proportion. The sampling plan is subject to
the following constraints: items in an initial sample are

crassified by an imperfect crassifier I a smarl subsampre is
taken from the group classed as nonconforming,

items are reclassified by a perfect classifier.
and these

Bayes Theorem is used to obtain a posterior distribution
for the proportion of nonconforming items in the population"

From this an estimate of the proportion and lower credibil-
ity bounds may be determined using numerical methods. prior

distributions for the proportion of nonconforming items in
the population and for the probability of misclassifying
conforming items are modelled using independent beta distri-
butions.

À computer program is provided that accepts a set of ob-

served values and a set of values for the parameters of t.he

priors. using this input the expected varue and standard

deviation of the posterior distribution are carculated, as

well as (1-a)100e. rower credibirity bounds. ptots of the

posterior density function and posterior cumurative distri-
bution function are also generated.
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Chapter I
T¡{TRODUCTTON ÀND ST'MMARY

rn a sampre taken from a population, the proportion of items

with a certain characteristic can provide an estimate of the

proportion of items with this characteristic in the popula-

tion. In certain situations it, may be very expensive to
correctly classify items in a sample, but there may be a
cheaper classification method that does not crassify items

correctry all of the time. To economically obtain an esti-
mate of the population proportion in such situations it may

be desirable to use some combination of these two methods.

An example from the health research field of the use of

two types of classifiers is presented by Deming (1977) in
which the problem is to estimate the proportion of persons

with a particurar psychopathology. A rarge sampre of persons

are screened at the first stage by trained interviewers and

placed into two groups, those apparently having the psycho-

pathology and those appearing not to have it. Àt the second

stage a small sample from each of these two groups is exam-

ined by a psychiatrist who makes the finar determination of

their psychiatric and medical characteristics. The estimate

of the population proportion is formed by weighting the pro-
portion of cases in each of the screening stage groups by

1-
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the proportion of persons found to have the psychopathology

in each of the second stage samples.

Perfect and imperfect classifiers are also used in qual-

ity control procedures. Frequently a simple meLhod is used

for classifying items in a sample from a batch off a produc-

tion line. rf the batch is rejected then the crassification
of the sample items may be redone using more thorough meth-

ods. In many cases two types of classifiers are available,
arthough they may not be used in the manner being considered

in this thesis" For example I a sample of items might be

classified by the perfect classifier. This set of items is
then recLassified by an inspector and the proportion of cor-
rect classifications is used to evaluate the inspector's
per formance .

In order to place a lower bound on a binomial proportion,
where the data is subject to misclassificalion, a two-stage

sampling plan may be used to provide information about the

miscrassification rate" Àt the first stage a random sampre

is classified by a fallible method into two categories.
From one of the first stage categories a subsample is taken,

which is classified by an exact, but expensive, method.

Research into this type of problem was motiva

need to solve a specific inspection problem from

industry. In this thesis, the specific problem w

scribed in detail, and a Bayesian solution will

ted by the

the grain

iIl be de-

be devel-
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oped. This soLution can easily be adapted for use in simi-
lar situations arising in other fields.

1 ..I TI{E SPECIFIE PROBTEM

A mixture of more than one variety of wheat can occur in a

boxcar shipment. In the problem under consideration the

mixture consists of two varieties that look very simirar,
one conforming to licencing standards and the other not" An

estimate of the proportion of nonconforming kernels, po, is
used to grade the carlot; a poorer grade of wheat has in it
a larger percentage of the nonconforming variety. As pay-

ment to the shipper is based on the grade of wheat, rowering

the grade on a carlot has serious consequences. Therefore

it is desirable to be able to provide, with a given degree

of confidence, a lower bound on po.

1"2 THE SÀMPLING PRoCEDT'RE

In order to estimate po in any one boxcar, and to place a

lower bound on po, a two-stage sampling plan is used. Àt

the first stage a random sampre of three hundred kerners is
taken. These kerners are visually inspected and classified
into two groups, those thought to be conforming and those

thought to be nonconforming. The characteristics for cor-
rect visuar classification are not always present, so some

kerners may be misclassified into either group. Àt the sec-

ond stage a subsample of ten kernels is take from Lhe group

crassified as nonconforming and these are analyzed by an



which correctl-y

4

classifiesexpensive laboratory technique

each kernel "

No sample is taken from the group classified as conform-

ing, and thus no estimate is available for the number of

nonconforming kernels misclassified into this group. ït
will therefore be assumed that there is no miscfassification
of nonconforming kernels" This assumption, as wiII be ex-
prained rater, provides a conservative resurL, that is the

carlot is less likely to be assigned to a lower grade, which

is to the shippers' advantage.

1,3 rHE SOLIITTON

À Bayesian approach is used to find a sorution. This method

arlows information which has been gathered from the sampre

Lo be combined with any information which may be avairabre
(prior to the sample being taken) concerning the proportion
of interest and the misclassification rate. This prior "in-
formation" may be subjective feelings about Èhe distribution
of the unknown parameters or it may be based on more spe-

cific information provided by an examination of estimates of
parameters in earlier samples. The two relevant factors
about which there may be some prior knowledge are; the pro-
portion of the nonconforming variety present in previous

boxcar shipments, and the proportion of the conforming vari-
ety correctly classified by the inspection process in other

samples. rf it is fert that the process is reratively sta-
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bre over time, then it wourd be sensible to utirize the

knowJ.edge from past sampres in the sorution to the current
problem" In this particurar sorution, knowledge about the
popuration proportion and the miscrassification probabili-
ties is moderled by independenL beta distributions. The

beta distribution is a function of two paramet,ers and

changes to these parameters permit the approximation of a

wide variety of distributions. In particular, a suiLable
choice of parameters reduces the beta distribution to a uni-
form distribution which can be used to represent rack of

knowledge (that is, from what is known, "any proportion is
egually likery to occur"). These prior distributions are

combined with the sample information (the number classified
as nonconforming from the three hundred kernel sample and

the number crassified as nonconforming from the ten kernel
subsample) to produce a posterior distribution for po, the
proportion of nonconforming kernels in the carlot. The mean

of this distribution provides a point estimate of po and

this posterior distribution can arso be used to provide a

rower bound for po" For exampre, if the 5th percentile of

this distribution is found to be 0"'15, then one may be gseo

confident that po is 0"15 or larger, in the sense that the
posterior probability that po exceeds 0.15 is 0.95. In

Bayesian terminology, 0"15 is thus a 95eo lower credibirity
bound for po 

"
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1"4 AN EXåMPTJE

Àssume there is no information from previous shipments to
incorporate. An inspector classifies a 300 kerner sampre as

255 kernels conforming and 45 kerners nonconforming. A 1o

kernel subsample is taken at

thought to be nonconforming.

random from the 45 kerneLs

lf the laboratory analysis
found all 10 kernels to be nonconforming, indicating that
the inspection process is quite effective, a point estimate

f or po is the posterior mean at 14.28e" and the gse" rower

bound is 10.63e. (rigure 1.1). suppose high grade wheat can

contain aL most 8eo of the nonconforming variety. Then¡ ôs

the lower bound is greater than 9eo, there is sufficient evi-
dence to conclude Lhat this boxcar contains enough noncon-

forming kernels to be graded as lowgrade wheat.

However if the subsample indicated that the inspector vras

ress accurate, with only I kerners in the subsample being

found to be nonconforming, then a point estimate for po

wourd be 11.7 Oeo and the 95eo lower bound would be 7.72eo (rig-
ure 1.2)" In this case the estimate of po would stirr be

greater than 9eo, but the lower bound would be below 8eo. This
indicates that, due to the uncertainty associated with the

sampling and inspection processes, there is not sufficient
evidence to conclude that the boxcar contains enough noncon-

forming kernels to grade the carlot as low grade wheat.

rf it is known from earlier samples that the proportion

of Variety 1 kernels that were correctry crassified was
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0.91, on average, and if 95eo of the time the proportion of

variety 1 kernels that r/rrere correctly classif ied was o "74 or

greater, then inclusion of this information into the anary-

sis would change the result. One prior distribution that
wourd have these properties would be a beta distribut.ion
with parameters (10,1). using this as a prior for the in-
spection step, and with the same sampre data as in the pre-
vious example, the point estimate for po wourd become 11"94>"

and the 95e" l-ower bound would become 8.02e" (rigure 1"3)-- a

rarge enough val-ue to grade the boxcarrot as low grade

wheat "

1.5 ORGANIZATION OF THESIS

A detailed expranation of the problem is given in chapter
II, together with the notation used and a discussion of con-

ditions particurar to this probrem. chapter rrr contains an

overview of relevant Bayesian methods. rn chapter rv a

Bayesian solution to the specific probrem is presented. A

riterature survey of relaLed work is given in chapter v.
chapter vr cont,ains concluding remarks about the problem,

the proposed sorution, and possible adaptations and exten-
sions of the solution. À computer program to generate a so-

lution for observed sample values can be found in Appendix

A.



Chapter II
THE PROBLEM

2"1 TI{E GENERÀL PROBLEM

It is desired to estimate the proportion of items in a popu-

lation having a particuLar characteristic and to place a

lower bound (in some statistical sense) on this proportion.
The reason for placing a lower bound on this proportion is
to see whether the sampre provides sufficient evidence for
concruding that the proportion exceeds some critical va1ue.

The case where there are two methods of classifying items in
a sample is being considered. One is an infallible, but

very expensive, method, such that only a small, fixed number

of items can be classified. The other is a fallib1e, but

less expensive, method, and thus many more items, within
practical Iimitations, can be classified.

2"2 THE SPECIFIC PROBTJEM

The specific problem under consideration arises in the grad-

ing of boxcarlots of wheat. The boxcar may contain a mix-

ture of two varieties of wheat: Variety 1, that conforms to
grading standards and Variety 2, that does not. The shipper

is paid less if the carLot contains more than a specified
proportion, p', of the nonconforming variety. It is there-

9
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fore desirable to test the following hypotheses concerning

po, the proportion of Variety 2 ln the carlot;
Hos po 5 p'

Hr: po > p'.
The specified value, p', can be quite small (less than 0.1).

Determining a lower bound on

certain degree of "confidence",
these hypotheses" If the lower

than Þ', then the null hypothesi

of the alternative.

the proportion po, with a

will permit the testing of

bound is found to be greater

s will be rejecLed in favour

rn this thesis Bayesian methods will be used to determine

this lower bound, that is, for some values of o.t O < a < 1,

(1-a)'100e" lower credibility bounds wirr be found. Hence

the associated tests will have a Bayesian interpretation.

The t,wo varieties of wheat mentioned previously are very

similar in appearance. correct visual identification is
based on subtle variations in shape and corour and on the

rel-ative rengths and positions of parts of the kerners. Due

to variations in growing conditions, storage periods and

other uncontrollable factors the characteristics for correct
visuar crassification are not always distinguishabre or

present. Thus, during visual inspection some kerners of

wheat may be misclassified. The misclassification can be in
either direction: a variety 1 kerner may be classified as

variety 2, or a variety 2 kerner may be classified as vari-



11

eLy 1. There is a laboratory technigue available that can

give an exact identificat.ion of kernels of wheat, but this
method is very expensive and so onry an extremery small num-

ber of kernels can be classified"

2"3 NOTÀTION

To clarify discussion of the problem the forrowing notation
is introduced and a diagram of t,he sampling procedure is
presented in Figure 2"1"

Po = proportion of non-conforming kernels in the carlot.
pr = probability of a conforming kernel being correctly

identified at the inspection step.

pz = probability of a non-conforming kernel being correctly
identified at the inspection step.

n = total number of kernels in the initial sample.

y = number of non-conforming kernels in the initial sample.

n1 = number of kernels in the initial sample that are crass-
ified as conforming at the inspection step.

A2 = number of kerners in the initial sample that are crass-
ified as non-conforming at the inspection step.

yr = number of non-conforming kernels in the initial sample

classified as conforming at the inspection step.
yz = number of non-conforming kernels in the initial sample

classified as non-conforming at the inspection step.
m = total number of kernels in the subsample.

x = number of kernels confirmed to be non-conforming by the

laboratory technique"
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2"&, SÀMPLING PLAN

The carlot contains a proportion po of Variety 2 kernels.

An initial random sample of n kerners is taken from the car-
lot. It contains an unknown number, y, kernels of Variety
2" These n kernels are classified by visual inspection into
2 groups: n1 kernels thought to be Variety 1 and ñ2 kernels

thought to be Variety 2. The D1 kernel-s thought to be Vari-
eLy 1 consist of an unknown number, y1, kernels of Variety 2

kernel-s miscl-assif ied as Variety 1 and nr-y
riety 1. Similarly the n2 group consists
Variety 2 and nz-y2 kernels of Variety 1

Var iety 2.

1

of

mi

kernels of Va-

y z kernel-s of

sclassi f ied as

The probability of a Variety 1 kernel being correctly
classified as Variety 1 is pr and the probability of a Vari-
ety 2 kernel being correctly classified as Variety 2 ís pz.

The probability pr is not necessarily equal to gz. It is
assumed that these probabilities of correct classification
are constant from kernel to kernel, independent of the cras-
sif ications of any other kernels.

Since no sample is taken from the D1 group and as only a

one-sided bound on po is desired, an assumption that pz = 1

will be made in deriving the answer. under this assumption

yr = 0 and therefore all kernels in the D1 group are consid-

ered to be Variety 1. The assumption that gz = 1 provides a

conservative result, as any smaller value of gz would cause

the estimated value of po and the lower bound for po to be



larger. From the hypothes

can be rejected with the

would also be rejected for

14

is testing point of view, íf Ho

assumption that Þz = 1, then it
smaller values of gz"

À random subsample of size m is taken from the D2 kerners

thought to be variety 2" These m kernels are examined by

the raboratory technique and classified as m-x kerners of

Variety 1 and x kernels of Variety 2. In ñ2 < m no subsam-

ple is taken.

The values of n, D l r frz ¡ m and x can be observed. For

example, in an actual problem an initial sample of n = 300

kerners would be taken from the carLot, Lhese kerners being

divided by visual inspection into two groupsr n1 = 255

thought to be Variety 1 and û2 = 45 Lhought to be Variety 2"

À subsampre of m = 10 kernels would then be taken from the

45 kernels thought to be Variety 2" upon laboratory analy-
ses, x = I kernels may be found to be of. Variety 2 and

m-x = 2 kernels may be found to be of Variety 1. The ques-

tion is "How can po be estimated and how can a lower bound

for po be determined, in order to test the hypotheses

Ho: Po
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2"5 CO}IDITIO}{S PARTICT'LAR TO TI{IS PROBLEM

There are two methods available for classifying kernels of

wheat, visual inspection and laboratory analysis, The im-

perfect classification method, visual inspection, is rela-
tively inexpensive, however, use of this method alone wilI
lead to a biased estimate of the proportion of Variety z

wheat in the carlot (Bross 1954) " If the miscrassification
rates were known to be the same for kerners from any boxcar,

calibration samples could be classified by both the imper-

fect and perfect methods, and the average results could be

used to correct for bias in the estimates from sampres clas-
sified only by the imperfect method (Trader 1983, Wooding

1979). In this problem, however, the miscl-assif ication
rates may not be constant from carlot to carlot and thus in-
formation about the miscrassification rates needs to be ob-

tained from each carlot.

The perfect classification method, laboratory analysis of

the kerners, is very expensive and thus it is impractical to
use this method to classify all kerners in the initial sam-

pIe. Laboratory analysis is therefore used to reclassify a

subsample of kernels, previously classified by visual in-
spection, in order to provide information about the prob-

ability of correctly classifying kernels. Because of the

nature of the laboratory analysis the subsample size is
fixed and no variation in size of subsample, either with the

size of the group it is removed from, or with other factors
which might affect optimal subsample size, is considered.
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As a lower bound is desired in this problem, the whole of

the subsampre is taken from the D2 group, those crassified
as Variety 2 by inspection" As mentioned above, this re-
surts in a conservative answer, in view of the assumptions

that will be made. If an upper bound was also desired, a

second subsample would need to be taken from the D r group in

order to obtain information about the probability of mis-

classification in the other direction. Tn fact it is clear
that samples shourd be taken from both groups (occasionarly

at least) in order that the effects of both kinds of mis-

classification can be assessed.

The proportion of interest, po, may be quite small-. This

small proportion, together with the smarl size of the sub-

sample prohibits the use of asymptotic maximum likelihood
technigues based on normal approximations. In order to com-

bine the information availabre from the two stages of this
particurar sampring procedure, to incorporate information

available prior to sampring and to cope with the rimitations
mentioned above, Bayesian methods wirl be used to estimate

the proportion po, and to provide a lower bound for po 
"



ehapter III
BÀYESIA}T METHODS

Before deveroping the Bayesian sorution to the sampling

probrem presented in chapter rr, an overview of relevant
Bayesian methods and their purpose and implication will be

presented. À simple binomial exampre wil-l be used to de-

scribe these met.hods" rn Bayesian inference, in order to
make statements about a parameter p, information from the

sampre (expressed through the likelihood function) is com-

bined with any prior information that exists about p (ex-

pressed through the prior distribution). The effect of the

choice of the prior on the answer in the binomiar exampre

wirr be examined as motivation for the choice of the prior
in the problem of interest. À basic generar reference for
Bayesian procedures is Box and Tiao (1973),

3.1 ð BINOMIAL EXÀMPLE

Consider a binomial random

f(ylp) = C(n,y) pY

var iabl-e

n-y
( 1-p) ,

Y, so that

Y = 011r...fn.

For a fixed observed y, if f(vlp) is regarded as a function
of p (o 5 p s 1), then it is referred to as the rikelihood
function (unique up to a murtipricative constant). The

likelihood functions for two sets of data (n = 25, y = 5 and

n = 25, y = 15) are shown in Figures 3.1(a) and 3.1(b).
17
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3"2 PRTOR ÐISTRIBUTTON

Information known about p, without knowJ-edge of the data, is
expressed in a prior probabilitv distribution. For conven-

ience, the distribution wirl be assumed to be continuous and

the prior density function will be denoted by h(p), The use

of a prior distribution allows assumptions about the distri-
bution of the parameter on. interest to be formarly consid-

ered "

One possible prior distribution for p in the binomial ex-

ample being considered is a beta distribution, ß(a,b). The

probabi I i ty densi ty funct ion for the beta di str ibut ion ,

ß(a,b) is

lìa*u) a-1 b-1
p (1-p) , 0<ps1,h(p) =

T1 n
l(a) l(b)

Changes to the two parameters to this distri-
allow approximation of a wide variety of distri-

An initial choice of parameters for the beta prior might

be a = 1, b = 1, which reduces the beta distribution to the

uniform distribution. use of the uniform distribution can

be thought of as modelting "ignorancê", "any value of p be-

ing equally 1ikeIy" prior to sampling.

Box and Tiao (1973) suggest that Jeffrey's prior,
ß(0.5,0,5), is the appropriate non-informative prior for a

for 0 <

but i on

butions

â, b.

will
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binomial mean, but that for moderate samp]-e sizes "the pos-

terior density is not very sensitive to the precise choice

of a prior" (page 36), and the use of ß(1,1 ) is approxi-
mately equivalent to using ß(0.5,0.5) 

"

In many problems the use of Bayesian procedures with spe-

cific non-informative priors will produce answers that agree

with classical answers (having a frequency interpretation).
In some cases the appropriate prior may be improper, in the

sense that the integral of the prior over the parameter

space is infinite. The choice of the prior used to get

classical ansvrers partially depends on the goar. For exam-

ple, when the lov¡er bound is of interest, a 95e" lower credi-
bility bound for a binomial proportion found using an im-

proper prior of ß(0,1 ) is the same as the classical gïeo

lower confidence bound. Alternatively when the upper bound

is of interest the use of the improper prior , ß(1,0) , Ieads

Lo a 95e" upper credibility bound that corresponds to a clas-
sical 95e" upper conf idence bound.

If more precise information is ava

ues of p are more likeIy to occur,

similar experiments, then alternate
be chosen. For example a = 1 0, b

ilabIe about which val-
perhaps from earlier

values for a and b can

= 1 might be chosen to
model prior knowledge that P(p > 0"7402) = 0.95.

ß(1 ,1) and ß(10,1) are illustrated in Figure 3"2"

Priors
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3"3 POSTERIOR DISTRIBTTTION

Using Bayes Theorem the sampling information and prior in-
formation are combined inLo the conditional distribut.ion of

p, given the sample results, known as the Þosterior distri-
bution" The posterior density function is given by

f (v lp) 'h(p)
g(plv) =

f 
' 
(y)

where the marginal distribution f r (y) = o!1f. (Vlp).fr(p) dp

'normalizes' the product so that g(plV) is a proper prob-

ability density function" That is, o!tg(plV) dp = 1 
"

The family of beta distributions is the conjugate family
f or binomial sampling (Raif ta and schl-aifer). That is, when

a beta prior is combined with binomiar sample information
through Bayes Theorem the resultant posterior distribution
is also a member of the family of beta distributions. For

the binomial example considered here , with a beta prior,
the posterior distribution is the beta distribution,
ß( (a+y), (n-y+5) ) "

In the numerical example, with n = 25 and y = 5, if the
prior is ß(1 ,1 ) then the posterior distribution is ß(G,21) .

rn this same exampre if y = 15 then the posterior distribu-
tion is ß(16,1 1 ) . Similarly for a prior of ß( 1 0,1 ) the pos-

terior for y = 5 is ß(15,21) and for y = 15 is ß(25,11).

The plots in Figures 3.3, (a) and 3"3. (b) show that with
the ignorance prior, ß(1,1), there is no shift from the

likelihood, whereas the prior ß(10,1) has a stronger infru-
ence.
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Figures 3.4, 3 " 5 and 3 "6 illustrate that v¡hen the sample

sÍze increases from n = 25 to n = 200, with the proportion
of successes remaining const,ant, (that is, y = 15 for n = 25

and y = 120 for n = 200) , changing the parameters for the

prior has less effect on the posterior distribution. The

data then "dominates" the prior for large sample sizes.
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3"4 BAYES CREDIBILITY REGION

Inferences about the parameter of interest are made based on

the posterior distribution. One way to summarize the infor-
mation presented by the posterior distribution is to report
a credibility intervar which contains a stated amount of the

probability" A (1-a).100e" lower credibility bound for the

populat ion proport ion i s that val-ue of p which divides t.he

area under the posterior density curve into two regions,

that below p contains a'100% of the area (or a of the prob-

ability) and that above p contains (1-c-).100e" of the area.

For the numerical example being considered, lower credi-
bility bound for p, for a = 0.10, 0.05 and 0.01 are given in
Table 3.1 .

TABLE 3.1

(1-ø)' 1 00e" lower bounds

PRIOR v n 9 0e" 95e" gge"

ß(1 ,1)
ß(10,1)
ß(1 ,1)
ß(10,1)
ß(1 ,1)
ß(10,1)

5
5

15
t5

120
120

25
25
25
25

200
200

0.1260
0.3129
0"4707
0 "5944
0.5546
0.5730

0.1 056
0.28s8
0 .4357
0.5637
0.5418
0. s60s

0.0733
0.2380
0.3716
0.5057
0.5178
0.5370
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3"5 NUISANCE PARAMETERS

rf the distribution of the observed varue depends not onry

upon the parameter of interest, but also on ot.her parame-

ters, then these are known as nuisance parameters. In the

Bayesian approach inferences about the parameter of interest
are based on the marginar posterior distribution that is ob-

tained by integrating, over the parameter space of the nui-
sance pa.rameters, the joint posterior distribution of the

parameter of interest and the nuisance parameters. That is,
the nuisance parameters are "integrated out".

3.6 SENSITIVITY

rn drawing concl-usions based on a posterior distribution,
the sensitivity of the posterior to changes to the parame-

ters of the priors should be considered. rf the posterior
distribution shows little change under different prior dis-
tributions this indicates that the information coming from

t.he sample dominates the results. In this case the choice

of parameters for the prior is not very critical. However

if the posterior is sensitive to changes to the parameters

of the prior then it is important to recognize this fact" In

some cases this may indicate the advisability of obtaining
more data "
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3"7 RELATTONSHIP TO CLASSICAL REST'LTS

As mentioned in Section 3"2, with ignorance priors the Baye-

sian results may agree with classical results. If there is
a discrepancy, then it will tend to be smal-Ier for large

sample sizes. ïn binomial sampling the (1-a).lOOeo classical
lower confidence bound is that value of p for which

nin-i
l_..a(n,i) p (1-p) - (trì 0<p<1 .
¿-J

By examining Tab1e 3.2 it can be seen that the classical
lower confidence bounds are equal to the lower credibility
bounds with an improper prior , ß(0,1) .

TÀBLE 3.2

CLASSICÀL LOWER BOUNDS

v n g0e" 95e" 99>"

5
10

120

25
25

200

0.1006
0 .4523
0.5525

0
0
0

0822
41 68
5397

0
0
0

0542
3524
51 56

BÀYES LOWER BOUNDS

PRI OR v n 90e" g5e" gge"

ß(0,1)
ß(0,1)
ß(0,1)

5
10

120

25
25

200

0
0
0

1 006
4523
5525

0
0
0

0822
41 68
5397

0
0
0

0542
3524
51 s6

ß(1 ,1)
ß(1 ,1)
ß(1 ,1)

5
15

120

25
25

200

0. 1 256
0.4707
0.5547

0
0
0

1056
4357
541 9

0
0
0

07 34
3716
517I

ß(10,1)
ß(10,1)
ß(10,1)

5
15

120

25
25

200

0
0
0

3129
5944
573 0

0
0
0

2859
5637
5605

0
0
0

2383
50s9
537 1



Chapter IV

rHE SOLT'TTO}d

4"1 IIHY A BAYESIÀN SOtIIIION?

The grain grading probrem was first considered using a clas-
sicar approach. However difficulties arose in developing an

estimator that wourd combine the information coming from the

initial sample with that coming from the subsample, and in
particurar in the pracing of confidence bounds on the esti-
mator. The small subsampre size and the interest in testing
for a smal1 proportion suggested that asymptotic methods

such as those proposed by Tenenbien (1970) would not be

suitabre" use of Bayesian methods atlows for handling of

the nuisance parameters pr and pz (the probability of cor-
rectly classifying Variety 1 and Variety 2 kernels) " It
also arlows explicit inclusion of information externar to
the data, such as opinions about likery varues of the param-

eters or estimates of parameter distributions from earlier
samples.

-27
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&"2 CHOICE OF PRTOR ÐISTRIBTITIONS

It has been indicated in the literature (Aiege1 1974, Sin-

clair 1978) that po, the parameter of interest, and the nui-
sance parameters, pl and p2, may be dependent upon one an-

other. Despite this I a solution to the specific problem

presented in this thesis will be developed that considers

these parameters to be independent " This assumption of in-
dependence allows the joint prior distribution of these pa-

rameters to be written as the product of independent prior
distributions. Às vras mentioned in Section 2.4, an assump-

tion will be made that no misclassification of nonconforming

kernels occurs. Thus the prior distribution of pz is mod-

elled by the delta function gz = 1. The prior distributions
of Po and p1 will be modelled by independent beta distribu-
tions. The choice of beta distributions as priors for these

parameters is further discussed in Sections 5.2.2 and 5.2"3"

As noted in Section 3.2 the beta is a flexible distribution
with an appropriate range which can approximate many other

distributions. Because of its mathematical manageability,

use of beta priors in this problem permits clear illustra-
tion of the use of priors in general and their effect on in-
ferences. If more suitable prior distributions can be

found, oF empirical distributions can be developed from a

series of samples, then they can be incorporated into the

analysis in a manner similar to that used for the indepen-

dent beta priors. If the prior is more complex, then addi-

tional numerical difficulties will undoubtedly arise. On the
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other hand, the beta distributions could be replaced by fi-
nite mixtures of betas v¡ithout increasing the complexity a

great deal" This would permit approximation to a wider

class of prior distributions.

1[.3 DISTRIBUTION OF THE

From the sampling plan in
seen that only values of

be observed" Since it is
tion 2.4, that pz = 1,

of these random variables

of Po and p1.

Lemma 4"1.

P(Nz=rrz¡X=xlpo,pr) =

n!

SÀMPLE

Figure 2"1, in Chapter II, it is
the random variables Nz and X may

assumed, for reasons given in Sec-

the probability of observing values

is only conditional on the values

L

Yz

C(nz rm)

for x = 011r...rmì nz

is over yz = xrx+1, " " "

fl-D z
lp'(l-po)l

n z-Y 2 Y z

1-po)l po[(t-p'¡1(n-nz)t(nz-yz)lyzl

C (y ,, x ) ' C ( n z -y 2 , m-x )

= ßrm+1,

t fì 2 -llì*X .

(4"3.1)

...,n; and where the summation

IHere, 0

Proof of Lemma 4.1" The necessary assumptions are that
the carl-ot approximates an infinite population, that the

probability of correctly classifying any one kernel is inde-
pendent of how any other kernel is classified, and that the
probabilities of correctly classifying kernels, pr and pz,

are constant for all kernels. It can then be shown that af-



ter classification of the

tion of N1 Yt, Yl, N2

served val-ues as shown in

initial sample the joint

Y2 and Yz is multinomial,

Tab1e 4"1 below.
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disLribu-
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TABLE 4 "1

TRUE CLASSIFICÀTION
VÀRIETY 1 VÀRTETY 2

VÀRIETY 1 nr-Yr Yr

nz-Y z YzVARIETY 2

n-y

The associated probabilities are given in Table 4 "2

TABLE 4 "2

TRUE CLÀSSIFTCATION
VÀRIETY 1 VARIETY 2

VÀRIETV 1 Pr(1-Þo) (1-pz)po

(1-pr)(1-po¡ PzÞo

pr+(1-pt-pr)po

(1-pr )-(1-pr-pz)po

fl 1

fr2

c
L

IÀ
NS
SS
PI
EF
CI
TC
ïÀ
OT
NI

o
N

VARTETY 2

1 -Po Po
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As only a lower credibifity bound is desired in this par-

t,icular case, and as a subsample is taken only from the

group classified as Variety 2, an assumption is made that

Pz = 1" Under this assumption yr = 0, and the joint distri-
bution of Nr, Nz Y2 and Yz is multinomial with ceIl prob-

abilities as given below.

ceI] nz-Yz

ce11 probability Pr (1-Po) (1-pr)(1-po¡

Therefore,

P(Nr=fì I rNz=n z ¡Yz=y z lpo rpr ) =

n!

Yz

Po

flr

nr!(nz-yz)

where f\2 = 0

- nl Dz-y2 Yz
[pt(l-po)] l(1-pr)(1-po¡1 po t

ly r! (4 "3 "2)

,1r... rn1 yz = 0 11r. n. ¡fì2 and D1 + t'r2 = n.

The conditional distribution of the number of Variety 2

kerners confirmed to be in the subsample by the laboratory
technique is hypergeometric. In other words,

P(X=xlNt=nz,Yz=yz) =
C (y ,, x ) C ( n z -y 2 , m-x )

C(nzrm)

where x = MAX(0r(m-nz+yz) ),...'MIN(m,yz), and

that

(4.3.3)

it foll-ows

P(Nz=rrz ¡Yz=y ztK=x lpo rpr ) =

P(Nl=rt1 rNz=n ztYz=y, lporpl ) .p(X=x lNr=n z,Yz=yz),
where the expressions on the right hand side are given in
Equations 4.3.2 and 4"3.3. Às Y2 is not observable, in or-
der to obtain P(Nz=nztX=x lpo,pr ) the above probabilities are

summed over val-ues of yz to obtain Equation 4"3"1"

il



P(Nz>m) = lr[.(n,nz) tl

Note "

of N2 and

hr (pr )=

ao-1 bo-'l
(1-Po) 

'

ar-1 br-1
'Pr (1-Pt) 

'
)

I f Equation 4.3.1 is
X then the result is

summed over

equal to

Ft2
-(1-po)p'l [(1-po¡n'
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the stated values

ll -fl zrrI
where the summation is over Tr2 = frrm+1 ,...,n. The over-all-
sum being less than one is a consequence of no subsample be-

ing t,aken if n2 < m. (Hotice that N2 forrows a binomial
distribution. )

4.4 PRIOR DISTRIBUTION

For a Bayesian solution a

and p1. For simplicity
will be modelled as two

that
h(po ,pr ) = ho (po ) 'h r (pr

where

ho(po) =

and

l-1a.,*u,)

prior needs to be specified for
the joint. distribution of Þo and

i ndependent beta di st r i but i ons ,

), 0Spo,pr5'1 , (4.4 "1 )

Po

Pr

SO

lìao*uo )

Iu" ) l-lo" I

Po 0<ao rbo

0<a 1 ,b1

[., r Iu,
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4.5 POSTERTOR DISTRIBT'TTON

Lemma 4.2" Having observed Nz=nz

dependent beta priors for po and p1,

function of po r 9o (pe I n2,x) , is given

and X=x, and using in-
Lhe posterior density

by

Ð

Yz

Yz+ao-1 n-Yz+bo--1
(nz-yz+br-1)!po

(yr-*) I (n 2-!2-Ín+x) t (n-yz+âr+b1-1) !

, (4"5.1)
r(nz-y z+bt-1 ) ! (n-yz+bo-1 ) ! (y2+ao-1 ) !-rs

yz L (yr-*) t (n z-yz-m+x) t (n-yz+ar+br-1) ll(n+ao+5o-1 ) !

where the expression

Equations 4,3.1 and

stanL is given by

P(N2=¡2,X=x) = I11'o0

o=Po
summations are over yz = xrx+1 r...,n-m+x,

Proof of Lemma 4.2. The joint posterior of po and pr is
P(Nz=rtz¡X=x lpo,pr ) .tr(po,p.¡ )

g(po,Pr lnz,x)
P(N2=rr2¡X=x)

in the numerator is
4 "3.2, and where the

the product of

normalizing con-

1p(H z=nz,X=x lpo,pr ) .tr(po,pr ) dpo dp.,.

It follows that the marginal posterior for po is

9o(po,n2,x) = Jtg(po,p1 In2,x) dpr,

as given by Equation 4.5.1. 
o

il



1S

The associated posterior
given by
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cumulative distribution function

9o(pinr,*) dp ,

n-Y z+bo - 1

( 1-p) dp t

= xrx+1 r...,n-m+x.

Po
Go(polnr,*) =o,

Po
=E I

o!2

where the summation

Here

Y z+ao-1
Àp

Yz

is over yz

À
(nz-yz+br-1 ) ! (n+¿o+bo-1 ) !

Yz (yr-*) t(nz-y2-m+x) t (n-yz+ar+br-1) ! B

(nz-yz+br-1) ! (n-yz+bo-1) ! (yz+ao-1)

(y r-*) t (n2-y2-m+x) t (n-yz+a r+br -1 )

v¡he re

As Go(polnr,*) is a linear combination

functions, available computer algorithms

plete betas can be utilized.

Remark. Although it is not

thesis, Lhe marginal posterior

similar manner. That is

9r (P.llNr=n2,x=x)

s.

Yz
B

I

I

Figure 4.1 is an exampl-e of a particular posterior den-

sity function and its associated posterior cumulative dis-
tribution function.

of incomplete beta

for solving incom-

of primary interest in this
for pr can be found in a

=!
o

t g(po,p1 | n2,x) dpo =
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z
Yz

t'¡-flz+a1-1 n z-Y z+b t- 'lPr (1-P')
(n-yz+bo-1) ! (yr+¿e-'1 ) !

(yr-") ! (n z-yz-m+x) !

(n-n z+ãt-1 ) !Ð
Yz

0 . pt . 1. Here,

summations are over

T(nr-yz+br-1 ) !(n-yz+bo-1) !(vz+ao-1) !r
tlr-(n-yz+ar+br-1) !(yr-*) t(n z-yz-m+x) ! J

x = 0r 1, "..,mi n2 = IIt,m+1 , o. o ¡fl and the

Yz = xrX+1,"".,n-m+x.

4"6 CREDIBILITY BOT'NDS

A (1-a)'100e" lower credibility bound for po is found by in-
verting the posterior cumulative distribution" That is, a

value of po = LB is found such that

Go (Ls) = a.

This value can be found using a search procedure such as

that used in the computer program presented in Appendix A.

The results of such a search are shown in Figure 4"2.

The Figure presents graphically the 95e" lower credibility
bounds for po for D2 = 15r.""r300 and x = 0r.."r10 when the

priors on po and pr âFê ß(1,1) " For observed values of D2

and x, a 95e" lower bound for po can be found from the dia-
gram using graphical interpolation.

Alternatively equations could be fit to the lines in Fig-
ure 4.2 and these equations could then be used to estimate

95e" l-ower credibility bounds for observed sets of D2 and x.

over the smaller values of D2 (those that are of most inter-
est in this thesis) it can be seen that there is a nearly
rinear rerationship between the varues of the rower bound
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Figure 4 "22 95% LOWER BOUNDS
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and the size of D2. Tab1e 4.3 presents the coefficients for
the linear relationship

LB = À + B'nz

for x = 0r"".r10 and rì2 = 15,"..165, for the pl-ots in Figure

4"2"

TÀBLE 4 "3

x À B

0
1

2
3
4
5
6
7
I
9

10

-0.0000'1 14
-0.0001260
-0 . 000378 1

-0.0007704
-0.0012772
-0.0019412
-0.0027517
-0.0037809
-0 " 0050879
-0.0068985
-0.009991 5

0.00001624
0.00011642
0.00027555
0.00047218
0.00069679
0.00094557
0.00121627
0.00151112
0.001831s0
0.00218621
0.00259971

For posterior distributions that are not highly skewed

the lower credibitity bound can be estimated using a normal

approximation. The posterior mean can be found from

E(po In2,x) = Jtpo.go(pe lnr,*).dpo
o

and the standard deviation, Std(po) ,from the sguare rooL of

Var(peln2,x) = E(po2ln2,x) (u(poln2,x))2

where

E(po2 In2,x) = Jtoo,.go(po Inz,x)'dpo

These integrals can be easily evaluated as linear combinations

over yz of complete beta integrals, see Appendix A (¡¿ain Program).
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with Lhese vaÌues, a (l a) lower credibility bound can be

approximated as

LB = E(poln2,x) - c.Std(polnz,x)
where c is that value such that P(Z<c) = a for a standard

normal disLribution.

It should be noted that although the central region of

the posterior distribution (ttre region around the mode) may

be roughly normally distributed, the left hand tail of the

distribution is typically "fatter" than the right hand taiJ-

Hence an estimate of the lower bound calculated using a nor-

mal approximation may not be very accurate. For example,

for the skewed posterior density function shown in Figure

4"3 a 95e" lower credibility bound found using a normal ap-

proximation is 0.03918 (1.645) (0.01965) = 0"007 whereas

the true 95e" lower credibility bound is 0"012"



40Figure 4.3: HIGHLY SKEWED POSTERIOR DISTRIBUTION
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&"7 SENSITIVIrg CT{ECKS

Information abouÈ Lhe inspection process wiII be acquired
over time and theref ore priors on pr, the probabiJ.ity of
correct.ly classi f ying a conf orming kernel , can be used which

wirl refrect this kno¡vledge. since it is rikely that the
inspection process will be fairly accurate in most in-
stances, priors reflecting this assumption wirl be examined

in this section for their effects on the posterior distribu-
tion. Four priors wiLl be examined ¿ ß( 1 ,1 ) ( representing
ignorance), ß(10,1 ) and ß(20,1) (representing increasingly
greater inspection accuracy) and ß(2"43,4) (representing in-
spection that is generally good, but often not perfect).
Figure &"4 shows plots of these beta distributions.

Figure 4.42 BETÀ DISTRIBUTIONS USED ÀS PRIORS FOR p1

-.t2*---*:::-l'?'- -

o.2 o.4 0.6 0.80.0

- 

p(1.1) ----- F(1o.1) - - - p<zo.1)---- F(2+,3)
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Posterior distributions for po with these priors on pr

are shown in Figures 4"5 and 4"6. It can be seen t.hat the

effect of the various priors is amplified by increasing val-
ues of D2. There is also some increase in the effect of the

prior as the number of kernels confirmed to be nonconforming

in the subsample decreases from x = 10 to x = 8"

The effect of changes to the prior for po is also exam-

ined. Four priors for Þo are examined for their effect on

the posterior distribution. The priors looked at are;

ß(1,1 ) (representing ignorance about the probable proportion

of nonconforming kernels in the carlot), ß(1,5) and ß(1,10)
( representing decreasingly smaller proportions of the non-

conforming variety expected to be in the carlot ) and

ß(1.5,5) (representing the belief that there are at least
some nonconforming kernels in the carlot, but they are not

expected to be a large proportion of them present). These

priors are displayed in Figure 4"7"

The effect of these changes to the prior for po is exam-

ined in conjunction with two priors for pr, ß(1,1) (repre-

senting ignorance) and ß(10,1) (representing better than av-

erage inspector accuracy). The posterior distributions
under these various priors are displayed in Figures 4.8 to
4.11. It can be seen that when there are only a small num-

ber of kernels classified as nonconforming that the choice

of priors for po and pr has negligible effect"
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Figure 4.5:
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Figure 4.7'" BETÀ DISTRIBUTIONS USED AS pRIORS FOR pe
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4"8 EFFECTS OF CT{ANGES TO SAMPLE OR SUBSAMPLE STUE

Figures 4.12 and 4.13 illustrate the effect of changes to
sample size or subsample size. Priors for po and p1 vrÊrê

maintained as independent ignorance priors, [ß ( 1 ,1 ) ] . I t
can be seen that doubling the sample size from n = 300 to
n = 600 kernels when the subsample size is held constant at
m = 10 or m = 20 has minimal effect on the lower tail region

of the posterior distribution (ttre region affecting lower

credibility bounds), However doubling the subsample size

from m = 10 to m = 20 (when the sample size is held constant

at n = 300 or n = 600) does affect the lower tail region.

This effect is magnified by increases in D2. The effects
observed above are fairly sirnilar for cases when x/n = 1.0

and when x/n = 0.8.

It should be noted that, based on the above observations,

the greatest improvement, to the power of a test based on a

rower credibility bound wourd come from increasing the size

of the subsample.
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ehapter V

T,TTERÀTURE SUR\¡EY

Literature examined as background to this thesis was princi-
pa1ly in two broad categories: the role of misclassification
in reaching statistical conclusions, and Bayesian methods in

sampl ing.

5.1 MISCIASSIFICATION

5.1.1 MISCLASSIFICATION IN QUALITY CONTROL

The effect of misclassification or 'inspector error' is of

importance in the fielo of quality control. A survey paper

by Dorris and Foote (1978) gives a good outline of proposed

models for inspection error for att.ribute data, count data

and variables data. It summarizes work done on the effects
of inspector error in statistical quality control proce-

dures, measuring inspector accuracy and modelling the causes

of inspector error" The paper concludes by pointing out

areas where further research should be considered. The au-

thors note, that even if there is a reasonable model for
misclassification "it is not possible to assess the extent

of the difficulty or design a compensating plan without

knowledge of the error probabilities" and "in practice, of

course, these values (for error probabilities) are rarely if
ever known and probably change over time" (page 190).

49
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This need for knowing the error probabilities is exempli-

fied by many of the articles examined" There are a large

number of articles (neainy and Case, 1981; Carr, 1982; Case,

Bennett and Schmidt, 1973,1975; CoIlins, Case and Bennett,

1973; Hoag, Foote and Mount-Campbel1, 1975; Minton, 1972i

Wooding, 1979) in which particular quality control proce-

dures are examined and adjustments for known error probabil-
ities are proposed" In the reverse direction Healy (1981)

develops a model for classification subject to error so that
the classification mechanism can be designed to have a

known, acceptable error probability.

5.1.2 TWO-STÀGE SÀMPLING PLANS

In order to incorporate estimates of the error probabilities
into the estimate of a population proportion Tenenbien

(1970) proposed a two-stage sampling plan. In this plan an

initial sample is drawn. From this a smal-Ier subsample is
removed. The units in the subsample are examined by both the

faIlibIe and infallible classifiers, whereas the remaining

units in the initial sample are only classified by the fal-
lible classifier. This differs from the problem being con-

sidered in this thesis wherein information about only one

misclassification probability is acquired. Tenenbien ob-

tains maximum likelihood estimates of the population propor-

tion and both error probabil-ities. The asymptotic variance

of the estimate of population proportion is also derived.

In the thesis problem the subsample size is very smaIl, and
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the population proportion of interest may be very smalI;

t.herefore the asymptotic results from Tenenbien's paper can-

not be applied. In Tenenbien (1971 ) procedures for deter-

mining optimal sample or subsampJ-e sizes are presented and

cost comparisons are made to sampling using only the infal-
tible classifier. Tenenbien (1972) extends the results from

binomial data to mul-tinomial data"

À similar two-stage sampling plan, appl ied to a health

Information percare survey, is given in Deming (1977).

unit cost is examined for two methods of

sample size (proportiona.l and Neyman) and

ble classifier only. Deming concludes

plan is only cost effective if there is
per item between the cost of classifying
method and the cost using t,he infallible
gests Lhe break-even point is roughly 1:

under consideration in this thesis the

considerably larger. He also notes (page

A further example of use of a

given in Fleiss ('1981), Chapter 12"

allocating the sub-

using the infalli-
that the two-stage

a large difference

using the fallible
method. He sug-

6. In the problem

cost difference is
36)

two-stage procedure 1S

sampling to measure the prevalence of a rare char-
acteristic is a subject all by itself, beyond the
scope of this paperr... Statistical procedures to
determine with a prescribed probability the preva-
lence of a certain rare disease does not exceed
some small proportion such as p S 1/50 call forth
still further theory, also not covered here,
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Hochberg (1977 ) uses Tenenbien's work to develop a gener-

alized approach for murtidimensional cross-cl-assified data,

where there is no structure to the error probabilities" He

proposes a combined maximum likelihood, least squares meth-

odology, and a least squares methodology, but finds that un-

less some restrictions can be placed on the structure of the

error probabilities that there are "too many degrees of

freedom for the misclassification error space" (page 920) 
"

5.1.3 OTHER APPROÀCHES

Other approaches to incorporating misclassification into the

model include using log-Iinear models (Chen , 1979) , classi-
fying items by two characteristics (Oiamond and LiIienfeId,
1962; Chiacchurini and Arnold, 1977) , doing repeated clas-
sifications of the items (SutcIiffe, 1965a,1965b; Koch,

1969) and using a game theoretic approach (Rahali and

Foote, 1982).

5"1.4 MODELS FOR MISCLASSIFICATION RATES

Much of the work on developing models for misclassification
rates has been done in the fields of psychology and signal
detection theory. Sinclair (1978) provides a survey of some

of the more mathematically oriented of these models" Tiems-

tra (1981) looks at measures of inspector effectiveness. In

the wheat classification problem under consideration in this
thesis not only are many of the variables mentioned by Sin-

clair (such as working conditions or number of 'defects'
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already found) affecting inspector performance, but also the

items being examined, the wheat kernels, vary in how identi-
fiable they are"

5".I .5 SAMPT,TNG DISTRIBTIrION OF THE IdT'¡f,BER CLASSTFIED
NONCONFORÌ.IING

CoIlins and Case (1976) show that when sampling with re-
placement from an "infinite" population, where misclassifi-
cation is present, the distribution of the number classified
nonconforming is binomial. In a group of related papers,

Johnson, Kotz and Rodrigues ('1985), Johnson, Kotz and Sorkin
(1980) and Kotz and Johnson (1982) the distribution of the

number classified nonconforming when sampling without re-
placement from a finite population is shown to be compound

binomial, confounded with the hypergeometric distribution of

the true number of nonconforming items in the sample.

5.2 BÀYESIAN METI¡ODS

Box and Tiao (1973) and Raiffa and Schlaifer (1961)

used as general references on Bayesian methods.

vre re

5.2"1 BÄVESIAN SAMPLING PROCEDURES

Godfrey and Neter (1984) develop a sampling procedure to de-

termine an upper credibility bound for a proportion in a

problem in accounting. They do not consider misclassifica-
tion. In Coombs and Stephens (1980) an upper credibility
bound for a proportion is also determined, in this case it



i s assumed that the max imum value of t.hi s

known to be something less than one. Hald (

and Raka (1980) provide examples of Bayesian

in quality control.
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upper bound is
1968) and GuiId

sampling plans

5.2.2 PRIORS FOR THE POPT'LÀTION PROPORTION

Case and Keats (1982) examine distributions which "describe
the number of defectives from lot to lot" (page 10)" They

recommend the use of a mixed binomial distribution as a

prior to describe situations where items in a lot come from

a variety of sources. They also look at the Polya distribu-
tion (a discrete form of the beta), the uniform distribution
(which they feel is unrealistic but suitable as an "ígno-
rance prior" ) and the binomial distribution (which they show

"renders sampling useless and inappropriate" (page 10)).

Because of its ability to approximate a wide variety of

distributions and because of the simplification of the math-

ematics which it provides, the beta distribution is fre-
quently chosen as a prior to model the distribution of the

population proportion from lot to lot. Hald (1968) and

Lauer (1978) provide examples of single sample attribute
sampling plans using a beta prior on the population propor-

tion. Trader (1983) shows that, in sampling from a ber-
noulli process where misclassification is present, the con-

jugate family of distributions for the population proportion

is an infinite mixture of beta distributions. Use of conju-

gate distributions as priors generally leads to mathematical
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tractability, however in this case fitting an infinite
mixture is not feasible" Trader therefore looks at a

"stretched" truncated beta distribution as a prior" She

finds this difficult to handle computationally, and con-

cludes that a beta distribution, (the conjugate distribution
when inspection is perfect) is the most reasonable prior to

use. The Bayesian analysis here has only one unknown param-

eter as the probabilities of misclassification are assumed

to be known "

5,2,3 PRIORS FOR THE NUISANCE PARÀMETERS

Menzefriche (1984) uses a product of betas to model the

joint disLribution of the misclassification probabilities"
He finds that a normal approximation to this joint distribu-
tion is adequate, where there is a moderate to large poputa-

tion sizet a moderate sample size, and either a moderate

population proportion or very smaIl misclassification prob-

abilities.

5"2"4 ROBUSTNESS

Box and Tiao (1962) provide arguments for the robustness of

inferences based on the use of prior distributions and Baye-

sian methods. The papers by Godfrey and Neter (1984) and

Pfanzagl (1963) are good examples of thorough examination of

the robustness of inferences to the choice of prior.
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5.2"5 ESTIMATING PAR.åMETERS FOR PRIORS

Skellam ( 1948 ) and l^Teiler ( 1965) provide methods f or esti-
mating the parameters for a beta prior from past records of

estimates of the population proportion" Their examples do

not include the effect of misclassification.

5"2"6 BÀYESIÀN ÀCCEPTÀNCE SAMPLING PtÀNS I'NDER
MISCLASSIFICATION

Two papers were found in which the effects of misclassifica-
tion on Bayesian acceptance sampling plans are considered.

Moskowitz and Fink (1977 ) develop a recursive algorithm to
find the optimal single sample acceptance plan, with a dis-
crete prior on the population proportion, when m'isclassif i-
cation is present. Kittler and Pau (1980) also develop a

Bayesian quality control scheme. Their scheme requires the

use of a test set to determine the miscLassification prob-

abilities, but they are unable to determine good guidelines

for deciding how large this test set should be in order to
have acceptablely accurate estimates of the misclassifica-
tion probabilities. There appears to have been little work

done in the area of obtaining information about misclassifi-
cation from the data in Bayesian acceptance sampling plans"



Chapter VI

CONCTT,'ÐTNG REI{ARKS

6.1 PoSSIBLE IMPRoVEMENTS To THE SAMPLING PLAN

A (1-a) .'100e" lower credibility
posterior distribution developed

posed in this thesis as a method

po based on the

IV has been pro-

the hypotheses:

bound for

in Chapter

of test ing

Hr: PoHo: Po S p' vS.

There are some changes to the sampling plan that could be

Looked at that might lead to making a correct decision more

frequently and provide a more reliable estimate of po.

For practical reasons the size of the initial sample and

the subsample in the thesis problem trere fixed. As discussed

in Section 4"8 increasing the size of the initial sample

and/or the subsample might be considered.

Alternatively the size of the subsample might be allowed

to vary with the size of the groups classified as noncon-

forming, and an optimal subsample size might be determined
(taXing costs into account) as in Deming (1977).

A multistage sampling procedure could also be used at the

subsample stage, with second and subsequent samples being

taken depending upon the number of kernels confirmed to be

-57
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síze of thenonconforming by the laboratory test,
group classif ied as nonconforming.

The group classified as conforming coutd al-so be subsam-

pled and this information could be used to develop an upper

credibility bound. Having an upper credibility bound would

aIlow the implementation of a quality assurance plan for
meeting grading standards when the carlots of wheat are

sold. Sampling from this group should also be done in order

to acquire information about the probability of misclassify-
ing a nonconforming kernel.

6.2 AREAS FOR FURTHER RESEARCH

Even though the group classified as conforming is noL

sampled, the posterior distribution developed in this thesis
could be modified so thaL the assumption that pz = 1 could

be changed to p, = c, where c is some fixed val-ue.

For simplicity, independent beta priors (for the popula-

tion proportion and the probability of misclassifying a con-

forming kernel) were used in the development of the poste-

rior distribution in Section 4.5. Às mentioned in Chapter V

it might be reasonable to consider independent mixtures of

beta distributions as priors" This would not greatly in-
crease the computational difficulties and would increase the

number of other distributions which could be approximated"

Other families of distributions might be considered as pri-
ors but their choice may be limited by their tracÈabitity"



From the material in

between po and pr could

justificat.ion for the use

the development of a more

beta distribution might be
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Chapter IV the sample covariance

be examined" This might provide

of independent priors or permit

suitable joint prior.

cons idered,

A bivariate

From the posterior distribution developed in Chapter IV

and the capabitity of finding l-ower credibility bounds pro-

vided by the computer program in Appendix À, acceptance sam-

pling procedures could be developed for testing the hypothe-

sis po 5 p'. Based on the work in this thesis the rule is
to accept the carlot as high grade wheat if the lower credi-
bility bound is S p'. An alternaLive vray of displaying this
ansvrer might be to develop a table of all values of rr2 and

x. For each n2 there would be some test value, e(n2),
0 < q(n2) ( ¡. If it rdas observed that x S q(n?), the carlot
would be graded as l-ow grade wheat . I t i s poss i ble that
there will be large values of n2 for which all values of x

would lead to the carlot being graded as low grade wheat and

therefore the subsample would not need to be taken.

Once such an

ing characterist
made to existing

Methods stiIl
about inspection

der to estimate

need to be

per formance

parameters

acceptance rule was established its operat-

ic curve could be examined, and comparisons

or standard acceptance rules.

developed to extract information

from a series of samples in or-

to the prior for pr r the prob-
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correctly classifying conforming kernels " It
would be helpf uI i f thi s vras a dynamic method as there i s

like1y to be a "training" effect on Lhe the inspectors per-

formance over one crop year, ês well as possibly a seasonal-

effect due to deterioration of kernels during storage or an

annual effect due to changes to growing conditions in dif-
ferent crop years.

6.3 coNcLusroN

The posterior distribution developed for the sampling prob-

1em presented in this thesis illustrates how information
available from the sampling plan and any prior information

can be combined to provide a distribution upon which conclu-

sions about the proportion on nonconforming kernels in the

carlot can be based.

Strengths and weaknesses of the sampling plan have been

examined and improvements suggested. Incorporation of prior
information has been illustrated and alternative specifica-
tion of prior information considered. It is hoped that the

information in this thesis provides a base for further re-
search and development of applied procedures"



Appendix A

The following program v¡iII, for one user supplied set of

sample values, produce plots of the posterior density func-

tion and the posterior cumulative distribution function de-

veloped in Section 4.5. It also prints out the posterior

mean and posterior standard deviation. It searches for and

prints out the lower bound for three user selected credibif-
ity coef f icients"

The user is to supply the following values.

ø From the sample¡ vêIues of n, m, A2 and x. n

n à In, n2

o Parameters for the priors for po and p1, êo¡ bo, âr¡

and bl. âorbo¡â1¡b1 ) 0"

e The maximum number of times that Go(po) can be calcu-
lated in any one search for a lower bound, MAXFN.

MAXFN

ø How close the value of Go(p) is to the desired (l a)

value before the search stops, ACC. ACC

ø Number of significant digits of accuracy desired in the

estimate of the lower bound, NSIG. NSIG

o For three desired (l a) lower credibility bounds pro-

vide the corresponding a leveIs, ÀLPHÀ1, ALPHÀ2 and

ALPHA3. 0 < ALPHÀ1,ÀLPHA2,ALPHÀ3

61
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The values are entered in the program after the CARDS state-
ment, in the order given, separated by blanks.

The program is written in SÀS Version 5.08 (Statistical

Analysis System) " This programming package was chosen be-

cause of the availability of built-in functions for calcu-
lating beta probabilities and inverse beta values, its use

of 16 bit precision and the integration of a programming

language and graphical procedures.

No formal test of the accuracy of results from the built-
in functions was done, but in all cases where results could

be cross checked by other methods the results r.rere accepta-

ble. Because of the limitations on the range of values that
various built-in functions will accept, this program checks

for out of range values, prints an error message and then

tries to continue. Therefore there may be some input values

for which valid results are not available.

This program has been used over a wide variety of input

values, but has not been tested for extreme values. It is
the responsibility of the user to provide valid input data,

as the program does not check input values"

The program consists of four modules. The first calcu-
lates one value of the posterior density function t given a

value of p. The next calculates one value of the posterior

cumulative distribution function, given a value of p. The

search module uses Brent's algorithm (Brent, 1977) to search
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for t.he zero of a function. In this case it is searchíng for

that value of p such that Go(p) - a. = 0. It calls the mod-

ule which calculates the posterior cumulative distribution"

The main program performs several functions. It calcu-

lates the posterior mean, posterior standard deviation and

that portion in the denominator of both the posterior den-

sity function and posterior cumulative distribution function

that is the summation B of Section 4,5. From the post.erior

mean and standard deviation a range of values is determined

for which the posterior density function is sufficiently
Iarger than zero to show in a plot. Values for plotting the

posterior probability function and the posterior cumulative

distribution function are calculated by calling the appro-

priate modules. The search module is called to determine

the lower bounds corresponding to the input ø values" Plot-
ting procedures are called to display the results. The

GOPTIONS may be specific to the University of Manitoba sys-

tem.

The program is presented next, and sample output for in-
put values of:

N = 300, |rt = 10, N2 = 45, x = 8,
À0 = 1, B0 = 1, A-1 = 1, 81 = 1,
MAXFN = 8, ACC = 0.001, NSrG = 3,
ÀLPHA1 = 0.10, ALPHA2 = 0.05, ÀLpHÀ3 = 0"01

follows in Figure 4"1.
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oPTroNS DQUOTE NOCAPS;

* * * * * * * rc * * * * * * ** * * * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;

* MÀCRO GP CALCULATES ONE VALUE OF THE PDF;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * :k * * * * ** * * * * * * * *** * * * * * * * * * * * * * * "

9"MÀCRO

cp( p, ,/" varue or p AT wHIcH To cALcuLATE THE pDF */
PÐF) /* CÀLCULÀTED VALUE oF PDF To BE RETURNED */¡

9"LOCAL

NUM /* NUMERÀTOR ÀCCUMULAToR */

Y2 /* SUMMATION INDEx */

TEMP /* LOG OF ONE VÀLUE IN SUMMÀTIoN "/¡
*------- --:k ô

*ZERO ACCUMULATOR;

NUM = 0;

* CALCULATE NUMERÀTOR;

DO Y2 = X TO MAXY2;

TEMP = ((¡¡ Y2 + B0 1)*LoG(l &p)

+ (eO + yz 1)*Loc(&p)

+ LGAMMÀ(N2 + 81 Y2) LGÀMMÀ(.Y2 _ X + 1)

LGÀMMÀ(N2 Y2 -M+X+1)

LGÀMMA(N y2 + À1 + 81) + CoNST);

NUM = NUM + EXP(TEMP);

END;

* CÀLCULATE VALUE OF PDF;

&PDF = NUM/DENOM;

*------- --* ô

%MEND;
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* * * * * * * ** * * * * ** * * ** ** * * * * * * * * * ** * * * * * * * tk ** * * * * * * * * * * * * * * * * * i

* MACRO FP CÀLCULATES ONE VÀLUE OF THE CDF;

* * * * * * ** * * * * * * * * * * * * * * * * * * * ir* * * * * * * * * * * * * * ** * * * * * * * * * * ¡t * * * * "

g"MÀCRO

FP( P, /* VALUE OF P ÀT WHICH To CALCULATE THE cDF */

CDF) /* CALCULÀTED VALUE OF CDF TO BE RETURNED "/i
9"LOCAL

NUM /* NTMERATOR ÀCCTMULAToR x /
Y2 /* SUMMÀTTON INDEX */

PB /X TNCOMPLETE BETA RESULT */

PREVINCR /* LOG OF PREVTOUS VÀLUE IN STIMMÀTION */

TNCR /* LOG OF CURRENT VALUE IN SUMMATION */

12 /* TOLERANCE */

T3 /* y-TNTMUM PosSIBLE vÀLUE FoR BETA FUNcTIoN */¡

*------- --*;
* SUFFIX FOR LABELS IN CURRENT CÀLL TO THIS MÀCRO;

e"LET ID = &SYSINÐEX;

* CALCULATE TOLERÀNCES;

T2 = T/100000000; T3 = 1o ** (-60);
* FOR SMALL VALUES OF P RETURN CDF=0,

FOR LARGE VALUES OF P RETURN CÐF=1;

rF (çp < T2) tHnx &cDF = 0;

ELSE IF (çP

* ELSE CALCULATE VALUE OF FUNCTION AT P;

ELSE DO;

* ZERO ACCUMULATOR;

NUM = 0; INCR = -180;
* CALCULATE NL'MERÀTOR;
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DO Y2 = X TO MAXY2;

* ÏF INCOMPLETE BETÀ VALUES ARE CLOSE TO ZERO THIS

TERM IN THE SUMMATTON CONTRIBUTES LITTLE TO THE

SUM. PASS ON TO THE NEXT TERM;

PB = PROBBETA(&P, Y2+AO, N-V2+EO);

IF (Pg < T3) THN¡I GOTO NEXT&ID;

* ELSE CALCULÀTE INCREMENT TO SUM;

ELSE DO;

PREVINCR = INCR;

INCR = LGÀMMÀ(N2 Y2 + 81) + LGAMMA(Y2 + ÀO)

+ LGAMMÀ(N Y2 + BO) + LOG(PB)

LGÀMMA(Y2 X + 1)

LGAMMÀ(N2 Y2 _ M + X + 1)

LGAMMA(N y2 + À1 + s1);
* CATCH VALUES OF INCR OUT OF RÀNGE FOR EXP FUNCTION;

IF ( TNCN

:K ADD TNCREMENT TO SUM;

NUM = NUM + EXP(INCR);

END;

NEXT&ID: END;

LAST&ID: &CDF = ¡¡UM/OENOM;

END;

* -------
g"MEND;

*.,



67

*********************************************************** .
,

* MACRO SEARCH USES BRENT'S ALGORTTHM TO FTND THE VALUE

oF p FoR WHICH THE CDF rS EQUAL TO ALpHA.;

* * ik * * * * * * * * * * * * * * * * * * tr * *:t *:k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ;

g"MACRO

SEÀRCH (

LB,

ALPHAI )

9"LOCAL

COUNT

/* LowER BoUND vALUE, RETURNEÐ

/* oF THE ( I ÀLPHÀ ) r,owen BouND

/* COUNTER TO LIMIT THE NUMBER oF TIMES THE

/x FUNcrroN cÀN BE cÀLLED

"/;

A B C ,/* VET,UES OF P THE SEARCH IS CHECKTNG */

FA FB EC /t VALUE OF FUNCTION AT A,B OR C x/

D E /x TEMPoRÀRY HoLDERS oF A B oR c IN EXCHÀNGE */

MTD /* v.TD WAY BETWEEN B AND c */

P Q R S /* CALCULATED VALUES UsE IN INTERPoLATIoN */

TEMP /X RATIO OF FUNCTTON VÀLuES */

TOL /* CURRENT DESIRED TOLERANCE X/

z /* sIANÐARD NoRMÀL pERcENTTLE vALUE */

/* GREATER THÀN (I _ ALPHA) o/;

*------- --*;
* SUFFIX FOR LABELS IN CURRENT CALL TO THIS MÀCRO;

e"LET IDX = &SYSINDEX;

* CALCULATE AN APPROXIMÀTE LOWER BOUND USING NORMAL

DESIRED VALUE ÀPPROXIMÀTTON AS ONE END POINT FOR

THE SEÀRCH. IT MUST LIE BETWEEN THE INITTAL ENDPOTNTS;

ÀLPHA = &ALPHÀI;

COUNT = 0;
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I = PROBTT(er,pua);

B = MAX( (epo Z*SDo),eCC);

9"FP(A,FB);

FB=FB-ALPHA;
* IF FUNCTION DOES NOT EXIST ÀT THIS POINT HÀLT PROCEDURE;

IF (TE=. ) THEN DO;

PUT IVALUE NOT FOUND';

B = 0;

GO TO LOOP&TDX;

END;

*CHOOSE ÀPPROPRTATE END OF RÀNGE AS OTHER END POTNT;

rF (r's<o) tHeN oo;

À=1; FA = 1 - ALPHA;

END;

ELSE DO;

À=O;FA=_ÀLPHA;

END;

* USE ÀLGORTTHM TO FIND THE ZERO OF A FUNCTION;

TOL = T*MAx(asS(s), "1 ) ;

C=A; FC = FBi

IF (TE*TS > O) THEN

PUT 'FÀ ÀND FB HAVE THE SÀME SIGN 'ì

ELSE DO;

* DETERMINE WHICH TWO POINTS OUT OF À,8 ÀND C ARE CLOSEST

TO THE DESIRED POINT;

DO wHrLE ( (esS(ns) > Àcc) eNo (ass(c-s) > ror)
ÀND COUNT < MAXFN);

rF (r'e*Fc>0) rHeN oo;
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C=A; FC=FA;

D=B-C; E=D;

END;

rF (aes(Fc) < ABs(r's) ) IHEN Do;

A=Bi B=C; C=A;

FÀ=FB; FB=FC; FC=FÀ;

END;

MrD =rc-a) /2¡
ToL = T*MAX(egS(g),0.'1 );
rF ( (eas(a) >= rol) ÀND (ess(ra) > ABs(re) ) )

THEN DO;

S=FB,/FA;

*TNVERSE QUÀÐRATIC INTERPOLATION;

IF (A HE C) THEN DO;

TEMP = gE/îC¡

R = FB/F3ì

p = s*((c-B)*TEMp*(rnup-n) - (s-a)*(n-1));

O = (teì'rp -'1 )*(R-1)*(s-1);
END;

*LTNEAR INTERPOLÀTIONi

ELSE DO;

p=(c-s)*S;

Q=(1-s);

END;

rF (P>0) tunN g = -Q;

ELSE P = -P;

IF (2¡,p >= 3,kMID*Q OR p>= ABS(E*Q*.5) ) THEN

GOTO JUMP&IDX;
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E=Di D=p/eì

END;

*BI SECTI ON;

ELSE DO;

JUMP&IDX: E=MID;

D=E;

END;

A=B; FA=FBi

rF (egs(o) <= tor,/2) rsn¡¡

IEMP = ABS ( TOL/2 ) *SrON (rqiO ) ;

ELSE TEMP =Di

B=B+TEMP;
g"FP(B,FB);

FB=FB-ÀLPHÀ;

rF (FB=. ) rHeH OO;

PUT IVÀLUE NOT FOUND TN SEARCH';

GO TO LOOP&IDX;

END;

COUNT = COUNT +1 ì

END;

IF (COUNT >= MÀXFN) rHeN

PUT 'STOPPEÐ ÐUE TO MAXTMUM ITERATIONS ' ì

TF ABS(C_S) < TOT, THEN

PUT 'C ÀND B CLOSE ';

END;

LOOP&IDX: &LB = B;

*_______ __:k i
g"MEND;
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *:k * * * * * * * * * * * *:k * * * * * * * * t( * * * *:k ;

* MÀIN PROGRAM;

* * rr * * * * * * * * * * * * * * :k * * * * * * * * * * * :t * * * * * * :k * * * * * :k * * * * * * * * * * * * * * * * ;

DÀTA PDFDATA(XNEP=PO GPO)

/* DATÀ FoR pl,orrINc DENsrry FUNcTToN */
CDFDÀTÀ(NNNP=PO FPO)

/* DATÀ FoR cUMULÀTIVE DrsrRrBUTroN Fcr " */;
INPUT

N/x

M/*

N2 /*
x/*
A0 /*
B0 /*
A1 /*
81 /*
MAXFN /*

/*
Acc /*

/*
NSIG /*

/*

/x
ALPHAl /*
ÀLPHA2 /*
ALPHÀ3 /*

NTIMBER ÏN INITIAL SAMPLE

NUMBER IN SUBSÀMPLE

NTMBER CLASSIFIED VARIETY 2 IN INITIAL SAMPLE*,/

NUMBER CONFIRMED TO BE VARIETY 2 IN SUBSAMPLE*,/

PARAMETER OF PRTOR FOR PO */

PÀRAMETER OF PRIOR FOR PO */

PARAMETER OF PRIOR FOR P1 */

PARAMETER OF PRIOR FOR P1 */

MAXIMUM NUMBER OF TIMES FUNCTION IS TO BE */

CALLED IN SEÀRCH FOR LOWER BOUND */

ÀCCURACY TO WHICH THE ÀREA UNDER THE CDF X/

EQUALS THE DESTRED ALPHA BEFORE SEARCH STOPS */

NUMBER OF SIGNIFICANT FIGURES OF AGREEMENT X/

BETWEEN DESIRED VALUE FOR THE LOWER BOUND */

AND THE ONE FOUND X/

ALPHA VALUE FOR SPECIFIC LOWER BOUND DESIRED X/

ÀLPHA VÀLUE FOR SPECIFIC LOWER BOUND DESIRED */

ALPHA VÀLUE FOR SPECIFIC LOWER BOUND DES]RED */;
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* GLOBAL VÀRIÀBLES

DENOM /* STIMMATION IN DENOMTMÀTOR OF PDF AND CDF

MÀXY2 /* UPPER LIMIT OF SUM

EPO /* E¡PECTED VÀLUE OF PO

F,POSQ /* EXPECTATION SQUARED OF TERMS IN SUMMATION

SDO /x STANDÀRD DEVTATION OF PO

R /x CONSTANT IN NUMERÀTOR

v /* coNsTANT rN DENoMTNAToR

TEMP /* ONE TERM IN SUMMATION OF DENOMINÀTOR

LO9ü /* LOçER LIMIT FOR P0

LOw /* LOpER LIMIT FOR P0

HTGH /X UPPER LIMIT

DTFF /* DTFFERENCE BETWEEN HIGH AND LOW

STEP /* INCREMENT

CONST /* LOG OF CONSTANT IN DENOMINATOR, PLACED TN

/* NTMERÀToR To pREVENT vALUEs BEING our oF

/x RANcE FoR ExP FUNcrroN.

T /x ToLERANcE vALUE */

PO /* VÀLUE OF PO THAT FUNCTION TS CALcULÀTED AT */

GPO /* DENSTTY AT PO */

FPO /* CUMULATIVE DENSITY ÀT PO */

LB1 /* LOwER BOUND OF 1 _ ALPHÀ1 CREÐIBILITV INTERVÀL*,/

LB2 /* LOWER BOUND OF 1 _ ALPHÀ2 CREDIBILITV INTERvÀL*,/

LB3 /* LOWER BOUND OF 1 _ ALPHÀ3 CREDIBILITV INTERVÀL*/;

:t------- --* 
o

* CALCULÀTE THE SUMMATION IN THE DENOMINATOR OF BOTH THE 

I

PROBÀBILITY DENSITY FUNCTION AND THE CUMULATIVE DIST_

RIBUTION FUNCÎION. CALCULÀTE THE EXPECTED VÀLUE AND THE
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STÀNDARD DEVIAT]ON.;

* ZERO ACCUMULATORS;

DENOM = 0;

EPO = 0;

EPOSO = 0;

* CALCULATE UPPER LIMIT OF SUMMATION;

MÀXY2=N2-M+X;
X CÀLCULÀTE SUMMATTON;

DO Y2 = X TO MÀXY2;

TEMP = EXP(LGAMMA(N2 + 81 Y2) + LGAMMA(N + BO Y2)

+ LGÀMMÀ(AO + Y2) LGÀMMÀ(Y2 - X + 1)

LGAMMÀ(N2 Y2 -M+X+1)

LGÀMMÀ(N Y2 + A1 + S1) );

DENOM=DENOM+TEMP;

R=Y2+À0;

EPO=EPO+TEMP*R'

EPOSQ = EPOSQ + TEMP*R*(n+1 ) ;

END;

V = N + A0 + B0;

Epg = ROUND( (epO /(v*onHOM) ), "00001);
sDo = RoUND( (SQRT(nposQ/(v*(v+l )*oeHo¡'r) - Epo'kEpo),

" 00001 );
:t CÀLCULATE À +/_ 4 STANDARD DEVIÀTION BOUND AS À

REÀSONÀBLE RANGE TO CÀLCULATE VALUES OF THE

PDF AND CDF OVER;

LOW = ROUND(UÄX(0, (Epo 4*SD0) ),.0001 );

HIGH = ROUNÐ(l¡r¡¡(1, (Epo + 4xSD0) ),.ooo1 ) ;

'K IF THIS RANGE IS NÀRROW, THTS IS À DEGENERATE FUNCTION;
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DIFF = HIGH LOW;

IF D]FF

PUT''DEGENERÀTE FUNCTION'' ;

GOTO LÀST;

END;

* DETERMTNE ÀN INCREMENT FINE ENOUGH TO GIVE GOOD PLOTS;

srEp = RoUND(urN(0"01 ,(otvr/1o) ),0.0001);
* SELECT RÀNGE OF VÀLUES WITHIN (0,1);

LOW = MÀX( STEP/z,LOW);

HrcH = MrN((1 STEP/z),nrcH);

* CALCULATE CONSTANT USED IN PDF;

CONST = LGÀMMÀ(V);

* CALCULÀTE ACCURÀCY FÀCTOR;

T = 1 0** (-NSrC) ;

* GENERATE VÀLUES OF THE PDF AND CDF;

DO P0 = LOW TO HIGH BY STEP;

e"GP(p0,GPo);

e"FP(p0,FPO);

OUTPUT PDFDATÀ;

OUTPUT CDFDÀTÀ;

END;

* FIND LOWER BOUNDS CORRESPONDING TO THE TNPUT ALPHÀS î

g"SEÀRCH ( IN'1, ET,PHAl ) ;

g"SEÀRCH $,N2,ÀLPHÀ2 ) 
'

9"SEARCH ( IN3, AT,PHA3 ) ;

* ROUND RESULTS TO THE ACCURACY WITH WHICH THEY I,IERE FOUNÐ;

LB1 = ROUND(r,gl ,t);

LB2 = ROUND(r,n2,r);
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LB3 = ROUND(I,B3,t) ;

* STORE VALUES FOR PRINTING TITLES;

CALL SYMPUT('NN' ,LEFT(N) );

CALL SYMPUT ( '¡Aq' , LEFT (¡A) ) ;

cÀLL SYMPUT('NH2 
"LEFT(¡¡Z 

) ) ;

CALL SYMPUT('XX' ,LEFT(X) );

CALL SYMPUT('AA0' ,LEFT(eo) );

cALL SYMPUT('ggo' ,LEFT(¡0) );

cALL SYMPUT('aa1' ,LEFT(a1 ) );

CALL SYMPUT('gg1 ' ,LEFT(91 ) );

CALL SYMPUT('nepo' ,LEFT(npo) );

cÀLL SYMPUT('ssDo' ,LEFT(soo ) ) ;

cALL syMpur('aapn1',lerr( (1 - ÀLpHA1 )*100) );
CALL SyMpUT('ÀApH2"LEFT( (1 - ÀLpHÀ2)*100) ) ;

CALL SyMpUT('AÀpH3' ,lert( (1 - ÀLpHÀ3)*100) );
CALL SYMPUT('llgl T,LEFT(r,s1) );
CALL SYMPUT(' lLs2',LEFT(rgz ) ) ;

cALL SYMPUT('LLB3',LEFT(rg3 ) ) ;

CÀLL SYMPUT('LLOw' ,

LEFT(r"fÀX(0, (nOUNO(rOW,0"01 ) - 0.05) ) ) ) ;

CALL SYMPUT ( ' TTHI GH' ,

LEFT(urN(1, (RouNo(HrcH,0.01 ) + 0.05))) ) ;

rF HrcH Low > 0.2 THEN CALL syMpur('ggy',0.1);

ELSE CALL SYMPUT('ggv' ,0.05);
LABEL FPO = "CUMULATIVE PROBABILITY";

LAST: STOP;

CARDS;

300 10 4s I 1 1 1 1 I "001 3 .10 .05 .01
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* * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * ** ** * * ** ** * :k * * * * * * * * * ** * * * * * "

GOPTIONS NOTEXTS2 ROTATE DEVICE=XEROX COLORS=(gL) ;

PROC GPLOT DÀTA=PDFDATA GOUT=GRAPHLIB;

TITLEI H=2.4 ''POSTERIOR DENSITY FUNCTTON'';

TITLE2 F=SIMPLEX H=2"0 trgrr H=1"0 "0" H=2"0 " (p" t{=

1.0 rtorr H=2.0 "ln" H=1.0 ttztt t{=

2.0tr= &NN2., x = &XX.), n = &NN., m = &MM"";

TITLE3 F=SIMPLEX H=2.0 "Prior for p" H=1"0 "0" H=

2.0rr= " F=GREEK "b(geAo.r&BB0)" !r=

SIMPLEX " Pr ior f or p" H=1 " 0 rr 1 'r t{=

2.0rt = " F=GREEK "b(&AA1 .,&BB1")";

TITLE4 F=SIMPLEX H=1.0 OCC=Z "E(p" H=2.0 "0" H=

2"0 ' = &EEp0., STD(p" H=1,0 "0" H=

2.0 rr = &SSDo. " ;

AXISl LÀBEL=(r=Slt'tplEX H=2 "p" H=1 r0'' ) VALUE=(H=1 .5)

ORDER= ( CT,T,OW TO &HHI GH BY &BBY ) ;

AXI52 LABEL=NONE MAJOR=NONE VÀLUE=NONE STYLE=O;

PLOT GPO*PO /UEXTS=AXTS1 VAXTS=AXIS2;

SYMBOLl I=SPLINE L=1;
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** * * * * ** * :k** * * * * * * ** * ** * * * * * * * * ** * * * * * * ** * * * * * ** * * * * * * * * * :!r * ;

PROC GPLOT DATÀ=CDFDÀTA GOUT=GRÀPHLIB;

TT TLE 1 H=2 .4 '' POSTERI OR CUMULATI VE DI STRI BUTI ON FUNCTI ON '' ;

TrrLE2 F=STMpLEX H=2.0 ',Grt H=1.0 "0" H=2.0 "(p" t{=

1.0 '0rt H=2.0 "ln" H=1 .o 't2't{=

2.0 tr = &NN2., x = &XX.), n = &NN., m = &MM.";

TITLE3 F=SIMPLEX H=2.0 "Prior for p" H=1,0 "0" H=

2,0 ,, = " F=GREEK "b(&ÀÀ0. r&BB0)" l=
STMPLEX " Prior for p" H=1"0 rt1¡r H=2"0 " = " F=

GREEK "b(&AÀ1 ",&BB1 . )";

TITLE4 F=SIMPLEX H=2.0 "Loirer Bounds: &AAPH1 .eo = " H=

2.0 "&LLB1 ", 6,44PH2"9" = &LLB2,, &AÀPH3.e. = " H=

2.0 "&LLB3 " ";

AXISl LÀBEL=(E=SIMPLEX H=2.0 IIPII H=1 .O ''O'') VALUE=(H=1 .5) 
'

ORDER= ( E.i.TOW TO &HHI GH BY &BBY ) ¡tI ¡¡OR= ( N= 9 ) ;

AXIS2 ORDER=(O TO 1 BY 0.1) MINOR=(¡I=3) VALUE=(H=1.5) 
'

PLOT FPO*PO /NENS=ÀXIS1 VÀXTS=AXI52 i

SYMBOLl I=SPLINE L=1;

* * * tr * * * * rk * * * * * :k * * * * * * * * * * * * * * * * * * * *:t * *:k * ik:k * * * * * * * * *:k * * * * * * * ;

PROC GREPLAY TGOUT=GRAPHLIB;

REPLÀY 1 2¡



78

Posterior

Figure 4.1 : SAMPLE OUTPUT PLOTS

Posterior Density Function
go(polnz : 45, x : 8), n : 300, m : 10

Prior for po : p(1 ,1), Prior for p, : ß(1 ,1)
Meon : 0.1 17O1, Posterior Stondord Deviotion : O.02446

0 .00 0 .05 0.10 0.i5
po

Posterìor Cumulotive Distribution
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