
THE DESIGN AND]MPLEMET{TATION

OF A REMOTE TERMTNAL MOITITOR

A thesis

Presented to

the Department of Computer Science

University of Manitoba

In Partial Ful-fi]lment

of the Requirements for the Degree

Master of Science

by

Will-iam Reid

December 1971

..,+r:'æi*ù\

-¡-)- t Ì.1 i li r- ¡ l--..
Ãr:.,'ç

U i: l, I f ù'ili;l
:t \' ' ,1"

1l, u, .:.\., j i , ;' .,,'\
ïi ..--..-.'-.*-.*-
\ <i. -$\ (/>- ô\''".'/n,, - . '\r\\.'.l,1: ¿-! Iii lLitç" .\):;:.'

ABSTRACT

This thesis describes the design and the implementation

of a monitor for Iow-speed remote terminal-s. The basic

features of the monitor are:

terminal users have access to a library of programs,

-:- all communication with the terminals i-s handled by the

monitor,

any program executing in the computer can communicate

with a terminal via the monitor,

programs which are communicating with the terminal-s are

transferred to backing storage when they are not

actj-ve. This allows different programs to use the

same memory area during their execution.

CHAPTER

I.

II.

ITI.

I}ITRODUCTION

On-1ine, ReaI

DESIGN CRITERIA

TABLE OF CO}.ITE}JTS

Time, Tirne-sharing

PAGE

1

2

4

EXTERNAL ÏMPLEMENTATÏON OF MUM

Signing On or Off

User Attributes 7

Monitor Requests 7

Example of Terminal Session. B

IV. INTERNAL T¡4PLEMENTATION OF MUM 12

Control and Service Routines 1 4

MI-IM Control Blocks 14

Dispatcher 17

Request Servicer 1 I

Application trrogram Manager. . 19

Svzapping Program.s. . 21

Jt4iscell-aneous Service Routines 26

Request Fiandlers 26

Teleprocessing I/O Request Handl-er 27

Send Request Handler 31

Passing Control Request Handl-er. 31

Termj-nation Request Flandler. . 33

Pause Request Handler. . 33

6

6

l_ l-

CHAPTER PAGE

Miscellaneous Request Handlers 34

Application Programs 34

Roll Programs. . 34

It{onitor RolI Programs. " 36

Resident Programs. . 38

Fl-ow of Data and Control Through MUM 40

Maintenance. 42

Development Aids 43

V. EXPERIENCE GAINED FROPI TMPLEIVIENTATTON. .

Communication with the Terminal- User

Command Language

Synchronous Processing

Buffer Pool. .

Abnormal Prooram Termination

Passwords.

Stati s t,ic s

Modularity

Pass ing Control-.

VI. CONCLUSIOT']S

APPENDIX A. Current Status

APPENDIX B. l"{tTM Control- Block Layouts .

APPENDIX C. MUÌ4 Macros.

APPENDIX D. Sample Application Program. .

45

4s

46

46

47

48

tl9

49

50

50

51

53

s6

62

67

r l_1

GLOSSARY AND ABBREVTATTONS 73

BIBLTOGRAPHY . 76

LIST OF FIGURES

FÏGURE PÀGE

1. Sample terminal session. . 9

2. MUM program structure. . 13

3. MUI4 control bl-ocks 1 5

4. Flowchart of swapping algorithm. 22

5. Locating translation tables and

device interface routines 28

r_V

CHAPTER I

INTRODUCTÏON

The aim of this thesis is to describe the design and

implementation of an on-line monitor for remote terminals.

The University of Manitoba was committed to supporting

remote terminals for a variety of on-l-ine applications. Trvo

on-line systems were considered: the Conversational Remote

Batch Entry (CRBE) and the Administrative Terminal- System

(ATS). CRBE allows the user to edit disk data sets and

submit card image data sets for batch execution. ATS

provides text editing facil-ities. Together they required- too

much of the computer's resources to justify their use. Also,

whenever more than one terminal system is used there is

always some duplication of resources. No existing system

coul-d support all the various applications proposed for the

terminals. Therefore, it was decided that the University

should. d.evelop a flexible terminal monitor wh-tch rvould

support the applications but woul-d not make excessive

demands on the computer resources. The monitor was named the

Manítoba University }4onitor (l'lul,i¡ .

The program developrnent was done in close consultation

r,vith Dr. C. Abraham v¿ho provided the basic design and

motivation of the MUM project and who was al-so working

simultaneously on parts of IIIUM such as:

program, and other programs which

changes in design and implementation

MUM.. (1)

File handlÍng, EDÏT

required continuous

of other parts of

On-Iine, Real Time, Time-sharing

An on-line system is one in which a direct path is

provided between the user and the computer. The path

commonly consists of a telephone line and a cathod.e ray tube

or typewriter which alfows the user to send or receive

information to or from the computer.

An on-line system can be passive or interactive with

the terminal environment. A data acquistion system is

passive wiÈh respect to the terminal environment. An

interactive system produces feedback to control or change

the environment. An example is a process control system. An

interactive system which comm.unj-cates r,vith people may also

be cal-Ied. a conversational system.

A real time system is an on-l-ine system rvhich reacts to

input sufficiently quickly to affect the functioning of the

environmenÈ at that time. À. criterion for differentiating

between real time and on-line, is hovr quickly does the

system "respond" to the input. For example, the response

time for a man-machine interaction may be defined as the

time when the last character v/as entered. to the time when

the computer types the first character of the ans!./er. For

conversatíonal systems, this response time should be in the

order of a few seconds to be considered real t,ime. (2) The

response time may vary from milliseconds in a missile

guidance system to hours in a process contro1 environment.

Any on-line system for whích more than one terminal- can

be active simul-taneousÌy can be cal-1ed a time-sharing

system. Since most on-l-ine systems have this capability, the

term siroul-d not be used in this general way. It is used more

commonly to refer to systems where the user's terminal

appears to be connected to a dedicated computer and the user

can enter, test, and execute programs. (3) The user of a

time-sharing system may have access to only one prograrnming

language r or to the extreme of loading his o\^/n operating

system.

MUM was designed primarily to meet the needs of a real
time conversational- system.

CHAPTER II

DESIGN CRÏTERTA

The following point,s \^iere the main features felt

necessary for the implementation of the MUM system.

1. The terminal- user musÈ have access to a library of

application oriented programs. These programs should

be able to be easily written and added to the

system.

All communication with the terminals should be handled

by the monitor. The monitor should provide a device

independent interface for the application programs.

Any program executing under the operating system but

not under the control of the monitor should be able

to communicate with the terminals through the

monitor.

Programs which are under the control- of the monitor

shoul-d share the same core storage. Since many

terminals can be operating simultaneously, many

application programs may be in use at the same time.

It would require excessive core storage if each

program v/as residenÈ during Èhe terminal session.

Therefore, whil-e data is being transmitted to or

received from the terminal, the program can be

2.

3.

4.

transferred from core storage to disk storage. This

allows another program to use the same core area. To

improve performance, more than one core area shoul-d

be avail-able.

5. Programs shoul-d be abl-e to pass control- to other

programs.

6. The implementation should be designecl to aid

debugging, maintenance, support of new terminal-

types, and the additj-on of new monitor facilities.

CHAPTER ITI

EXTER}TAL TMPLEMENTATION OF MUM

To use MUM, the user must first identify himsel-f with

an account number. If the account number is valid, he can

then request to communicate with a particular application

program. When the desired results are obtained, he indicates

to the program that he is finished. The program then returns

control of the terminal t,o M[IM; the user can now request to
communicate with another program.

Signing On or Off

The user signs on by giving his account number and an

optional password. The password is to prevent unauthorized

use of the account number. One can sign on implicitly or

explicit,ly. WiÈh the implicit signon the user gives only the

account number. lle is signed on only for the duration of the

requested program. l¡lhen the program Èerminates, he must sign

on again. To explicitly sign on the user precedes the

account number with "signon". When the program terminates,

he has the option of either requesting another program

without the neecl of entering his account number or signing

off. To sign off the user enters "signoff" or another signon

(either implicit or explicit).

I¡Jhen the user requests a program he has the option of

passing initial data to the program. This saves time since

the program can dispense with the first prompting message.

User Attributes

Data, describing a user's aÈtributes, are associated

with each account number. Data such as tab positions at

previous signoff, whether accounting information should be

displayed at signoff, whether signon messages may be

abbreviated, and the current password are kept and can be

modified by the user. The accumulated signon time, which can

be displayed by the user, is afso kept.

Monitor Requests

Monitor requests are commands which are serviced

directly by MUM and are transparent to the application

program. These requesÈs are functions which are required by

the user, but are independent of the application program

\,rith which communication has been established. The requests

permit the user to:

obtain the time and the date.

test the terminal by displayíng a fixed pattern of

characters or by echoing input data.

obtain the terminal identification.

obtain the number of signed on users.

obtain or change the current tab positions.

send messages to the computer operator.

LINK or STdAP (pass control) to another application

program.

To dífferentiate these requests from input to an

application program, the user precedes the request with two

question marks.

A Sample Terminal Session

FJ-gure 1 is the script for a typical terminal session.

Text in lower case \^/as entered by the user and text in upper

case was typed by the computer. The points below refer to

the numbers on the l-eft hand margin of Figure 1 .

1. A user rvhose account number is 4 requests to

communicate with the application program LIST. This

ENTER ACCT #,PRG NAME
1 4 list

LÏST PROGRAM, ENTER COMMAND
end
OK

265
ENTER ACCT #,PRG NAME

3 4 ?change,p123
ENTER ACCT #, PRG NAI{E

4 sig'non 4.p123 edit old demo
5 001s0 $$list 30 3

OOO3O $JOB WATFTV REID
00040 READ 1 ,X,Y
00050 1 FORMT(F5.2/85.2)

6 001 50 ??rime
TI¡4E TS 21.32.30

7 $$submit
FILE SUBMTTTED
1M 10s
ENTER PRG NA-I\48

B ?minimunr
PRG

9 ?no-account
PRG

10 print inquì-re demo
864 AWAITING PRINT

? ?ti
TrliJE IS 21 .33. 1 5

11 find 864 prtl 2 20
1 READ 1,X,Y
2 1 FORMT (F5.2/F5.2)

ERROR]NVALID ELEMENT TN TNPUT LIST OR DATA LTST

.
12 abandon
13 ??l-ink edit o demo
14 001s0 $$a s0

00050 1 FORMT (F5.2/F5.2)
1 5 00050 ##mat

001 s0 $$1 s0
00050 1 FORMAT(F5.2/F5.2)

16 001 s0 $$s
FILE SUBMITTED

17 i demo
8 6 B AV'IATT] NG PR]NT

18 rel-ease
end
PRG

19 off
#rp

FTGURE 1

Sample t,erminal- session

is an implicit signon.

2. After ending the LTST program (see appendix A) MUM

prints the time spent communicatíng with the

pïogram.

3. The password is changed to "P123".

4. l^7ith an explicit signon, using the new password, the

user passes a request to EDIT (see appendix A) to
l-oad an old file called DEI4O.

5. EDIT responds with the next available sequence number

for input. The user requests to list three lines
starting at line 30.

6. After listing the requested lines, EDIT again prompts

the user for input. At t,his point the time of day is
requested.

7. The fil-e is submitted to the batch job queue.

B. The user reguests that all- signon messages be of
minimum length. As can be seen by the next l-ine

"ENTER PRG NAME" has been shortened to "pRG".

9. The displaying of signon time is turned off.

10. The PRINT program (see appendíx A) is ca11ed up and

passed an inquiry about the status of the submitted

job. Since an explicit siginon was used no account

number was required.

1 1. After requesting the time, using the abbreviated

10

form, part of a print data set for the job is
Iisted.

12. Noticing the error, the output is abandoned.

1 3. Control- is transferred Èo EDIT with a request for the

file DEMO.

14. A requesÈ is made to edit line 50.

15. MT is replaced by I4AT.

1 6. After checking the correction the file is submitted

again.

17. Control- is returned to PRINT and an inquiry ís made

on the status of DEMO.

18. The output from the job is released t.o be printed on

the system l-ine printer.
19. The user signs off.

11

CHAPTER IV

INTERNAL TMPLEMENTATIO}] OF MUM

MUM was designed to'operate on an rBM 360/65 computer

under the control of the Operating System (OS), with the

options multiprogramming with a fixed number of tasks (MFT)

or mul-tiprogramming with a variarbe number of tasks (MVT).

The functions of job input, job scheduling, and colr-ection

and printing of job output is performed by the Houston

Automatic spooring and Priority system (HASP). HASP is not

required for the execution of MUM, but certain MUM

application programs interface with it. The monitor was

written in 360 Assembler and supports

terminal-s.

a variety ot

The basic purpose of a Èermina] monitor is to control
the flow of data between the terminal and the program which

processes the input data. lùith this in mind, the structure
of MUM can be represented by three sections (see Figure 2).

1. control and service routines This section contains

the monitoring routines which control- th.e fl-ow of
data between the various routines of MUM. It also

contains service routines which are used by Èhe

other MUM routines.
2. Request handlers These routines service the

12

Application
Programs

Rol1 Area
I4onitor

Roll-

Control
Service

and
Routi-nes

Request
Handlers

Device
r,/o Routines

Misc.
Service
Routine

i --'i ,-- -

F]GURE 2

program structure

=patcherþ$^*-7'*."-***'
i

l

lPassing
lControl
i
I

I
t_
It'ermrna
{
I

1

lMisc.
]nequest
Handler
I
I

IExterna
hequest1-
t

I

i

Programs

13

appl-ication programs' requests. For exampler âD

application program can request to communicate with

a terminal-.

3. Application programs

the controL of MUM or the operating system, process

the input data and produce output data which is sent

to a terminal- or anoÈher program' via the monitor.

The input data may also come from a terminal or

another program.

The remainder of this chapter discusses the internal

implementation of MUM under Èhe three sections outlined

above.

Control- and Service Routines

MUM Control Blocks

A control block is a bl-ock of consecutive memory in

which control information is kept for the purpose of

efficient communication among the modules of a system. The

control blocks in MUM serve similar purposes to control

blocks in other systems. In particular, control blocks

14

d.isplacement
T

I

f

I
I
I
f
¡
t
L

å
ì
f

i
II
I

!

v

I

i

i ROLL
i

i enira
i

;

:

i
I
IL___.__-

FIGURE 3

control bl-ocl<s

15

provide a means of organizíng the structure of a system in
an orderry manner. The main control blocks in I4uM, âs shown

in Figure 3, are clescribed below.

The main control block is the MUM communication vector
Table (MCVT) . As the term vector implies, it is a table
consj-sting mostry of pointers to other control blocks. The

advantage of the MCVT is that an externar routíne requires
only one address to access al-I of MUM|s control blocks.

The FuncÈion Control- Block (FCB) \^/as designed to
maintain the information required to service a terminal-

transaction. One FCB exists for each terminal_.

The Rol-l Area Tabl-e (RAT) and the Resident Application
Program Table (RAPT) contain information about programs

currently in core storage. The RAT is made up of one entry
for each rol-1 area in I{uM. likewise the R-Apr contains an

entry for each resident program-terminal association. The

entries in the tables have the same displacements for common

fields. This allows most routines to access the information
without regard to Èhe fact of whether the program is
resident or rollable.

For a detai] description of the control blocks' fields
see appendix e.

16

Dispatcher

The dispatcher passes control- of the cpu to the various

components of I4uM. rn os synchronization is achieved by the

event control block (ECB) . The program i^JÄrrs for an event to

complete via the ECB. i{hen The event completes, the EcB is
Posred with a completion code and. the waiting task receives
control.

If each routine in MUM were al_lorved- to wait

individually, Mulvl v¿ould be abl-e to process onÌy one

terminal. To prevent this probrem, a MUyr routine gives

control to the dispatcher rvit,h the address of the ECB when

it must wait for an event to complete. The dispatcher puts

the address in an ECB list and waits on al-l- non-posted

events. I{hen an event completes the operating system passes

control to the dispatcher which in turn decides which event

complet,ed. The dispatcher gives control- to the MUI{ routíne

whose address is stored immediately preceding the posted

ECB. The ECB list consists of a dynamic and a permanent

section. Tn the dynamic section, the EcB addresses aïe

deleted brefore control- is passed- to the waiting routine
while in the permanent section they are l-eft. EcBs in the
permanent section are used, by routines lvhich always require
an outstanding ECB.

17

Request, Servj-cer

All program requests to MUM are first handled by the

request servicer. Since requests can come from any program

(task) in the system, the supervisor call (SVC) is used.. A

SVC is a CPU instruction whj-ch all-ows control- to be passed

to a resident routine in the operating system's nucleus. The

instruction operand is used to determine which routine
should receive control. upon receiving control the MUM svc

routine saves register zero, register one, and the address

of the task control bLock. Register zero contains the

request code and request modifier" certain request codes are

handled immediately by the SVC routine and control is
returned to the calling program. If the request is a valid
MUM request, the ECB for the request, servicer is posted

before returning to the caller.
For test versions of MUM the SVC can be replaced by

branching internally to the SVC routine in MUÌ4. This of
course prevents communication between MUM and other resident
programs in the OS system.

Vlhen the request servicer receives controf from the

dispatcher it checks its gueue for a new request. The saved

contents of register one point to the communication block.

Depending on the request type, the contents of the

communication bl-ock are vaLidated. rf the contents are

18

valid, the request modifier is moved into the function

control- bl-ock and a branch is taken to the reguested

routine.

Application Progr:rm Manager

Before discussing the functions of t,he program manager,

we should define the states in which a program can be:

active has control of the CPU,

waiting - waiting for one or more events to complete,

ready requires the CPU but is held pending for some

reason.

From the point of view of MUM these states can be

redefined to read:

active a MUM request has been completed and MUM has

posÈed the program,

wait,ing a MUM request has been received and the program

is waiting either in core storage or on backing

storage (disk or drum) ,

ready the request has been completed but the program is

held pending because there is no free roll- area.

A rol-1 program is defined as a program which executes

under the control- of MUM and which may be transferred from

or to backing storage ivhenever it is inactive.

A resident program is defined as a program which

19

resides in core storage fox the duration of its executj-on.

rt wiLl- usually be a program which was submitted for batch

execution.

The program manager keeps the status of the programs

associated with MUM. For resident programs it verifies if
the program is stil-l- available. For ro11 programs the

fol-lowing decisions must be made. V'ihen a roll_ program is
required, a check must be made to determine if it is in a

roLl area or on backing storage. If it is in a roll area, is
it active or waiting? Tf it is on backing storage, is there

a free roll- area? The decisions involved in swapping

programs wil-l be discussed in the following section.

The request handl-ers interface with the program manager

through the following routines.

POST the request is complete and the ECB in the

communication block is posted with a completion

code.

ROLLOUT when a request can not be completed immediately

the request handler indicates that the program may

be rolled out. Of course for a resident program

nothing happens.

ROLLIN when a request has been compJ_eted, the request

handler informs the program manager to bríng the

program back into core storage. For a resident

20

program t,he program manager verifies that the

program is still in core. For a rol_l_ program the

request is j-nserted in a queue until the the program

is rolled into a ro11 area. When the program is in

core the program manager passes control_ back to the

request handler.

HOLD and FREE for cerÈain requests some events may

occur in parallel instead of sequentially. To

prevent the program from being rolled in before all_

events have been completed, t,he request handler will

issue a hol-d for each event. When each event has

completed, the request handler will issue a free.

Vühen the frees equal the ho1ds, the program wil_l be

ro1led in.

The use of these interface routines removes the

distinction beÈween a resident program and a rol-l- progiram.

Swapping Programs

The currenÈ version of MUM has only one ro11 area so

the swapping algoriÈhm does not support more than one rol-1

area, but the structure of MUM supports multiple rol-1 areas.

A rol-1 area can be in one of four states: free, active,
waiting t or swapping. In the free state the area can contain

a program which has been rolled out, but is stil1 usable t or

21

E
nt

ry
 f

ro
m

 D
is

pa
tc

he
r

f-
 T

ur
n;

ff
-1

i r
or

],
rlg

gj

."
A

re
a\

a.
#t

ív
e

.
or

'
\-

sw
ap

pl
-n

o
\"

,.

N
)

N
)

in
t

ar
ea

D
is

pa
tc

he
r

P
ro

gr
us

ab
l-

eq
ue

st
s

ue
ue

?

ro
9r

am

in
 w

ai
t

ea

ta
te

? l"
.j-

'
6w

aò

þe
I

T
ur

n
sw

ap F
T

G
U

R
E

 4
F

lo
rv

ch
ar

t
of

sw

ap
pi

ng
 a

lg
or

ith
m

--
-+

\w
ai

tin
g

re
qu

es
t

\-
èe

l9
fe

r_

on fla
g

/- ¡'B
ra

nc
h

to

-Turn off
sr.¡ap flag

-Turn on
ro11 fIaE

Reset RAT
enl,::y

Return to
Dispatcheq

Return froni DispatcÌrer
after I/O 'nas completecì

FÌGURE 4 (continued)
Flowchart of swapping algorithm

23

a copy of an unusable program. An example of an unusabl_e

program is one that has t,ermj-nated abnormally. The area must

be in the free state before another program can be rolled

into it. The area is active when the program, residng in it,

is executing. The waiting state implies that the program has

made a MUM request and can be rolled out. The area is in the

swapping state when a program is being rolIed in or out.

I¡Thenever a ro11 area changes states or has the

possibility of changing states, a ro11 possible flag is set.

Before the dispatcher waits on its ECB 1ist, it checks this
flag. If set, control is passed to the program manager.

Figure 4 gives a flowchart of the decisions to be made. As

can be seen this algorithm is for one rol-1 area. All- queued

requests for a program which is curently in the ro11 area

will be given priority over requests for other programs.

This is efficient, but there j-s the possibility of blocking

the roll area to other programs, if there ís always a

request in the queue for the current program. Factors which

will increase this possibility are a large number of
terminals using a common program, the tj-me required to

proccess the transacLion, and the time to transmit the

information to the terminal. This situaÈion is not handled

in the current implementaÈion, but with the current number

of terminal-s and types of application programs the situation

24

coul-d not occur.

Besides the above problem, multiple roll areas

introduce other problems. As \üi11 be described later some

programs can be roll-ed into any area whil_e others have to be

rolled into a particular area. To compensate for the fact
that some programs will have a better chance of finding a

free ro11 area, the algorithm could give preference to the

programs which must be rolled into a particular free area.

Similarly as above, this could prevent programs from being

rolled in. Both problems can be solved by having a

pre-emption count or time in queue limit which when exceeded

would force the program manager to service the ro11 request.

One other modification woul-d be to give swapping in
priority over swapping out. This is important when one roll-
area requires its program to be swapped out while another

requires its program to be swapped in. If the swap in is
done first, the execution of this program can then be

overlapped with the swapping out of the other program. A

pre-emption count would guarantee that a program would be

roll-ed out within a certain time interval.

-An attempt should always be made to keep frequently
used programs in core. Also, the atgorithm should attempt to

keep in core at Èhe same time programs that are linked

together.

25

Miscell-aneous Service Routines

common service routine used by control routines and

request handlers perform t,he following tasks.

changing the program status word.

rel-ocation of addresses in the roll area.

loading registers.

moving data between buffers.
locating a particular function control_ block.

enqueuing and dequeuing function control blocks.

REQUEST HANDLERS

Request handrers receive control from the request

servicer. They have the option of having the request

servicer load registers with the current function control-

bl-ock address, Èhe address of the entry in the application
program tabl-e, and the communication bl-ock address or with
the contents of the request regisÈers zero and one and the

address of the TCB of Èhe requesting task. MUM distinguishes
bewteen internal and external requests. ExÈernal request

handlers are exÈernal t,o the main MUM module. This is for
ease of implementing new requests. All internal requests are

implemenied in the same module so they can easily share

26

common routines and constants

with internal resuests.

This section wil-1 only deal

Teleprocessing I/O Request Handl-er

The teÌeprocessing (fe¡ T,/O request handler consists of

a main independent routine and many terminal dependent

routines. The main routj-ne interprets the request, formats

the message, transl-ates it. to the proper code, retries

errors, interfaces r,rzith the program managêr, and edits the

input data. The terminal routines insert the necessary

control characters, interface with the operating system,

handle error conditions, and calculate message lengths. The

connection between the main routine and the terminal-

routines is via a device interface tabl-e. It consists of a

base address and hal-f word displacementstfor each entry

point of the routine. The function control block for a

terminal contains an index into a list of device interface

tabl-e addresses. The advantage of this method is that new

terminals can be supported very easily by simply adding a

small devj-ce interface routine and modifing the FCB to point

to the correct address in the list of Device Interface Table

addresses. No changes are required in t,he main MUM mod.ul-e.

Output to the terminal can be requested in two ways.

The program may supply data which is translated and sent

27

I.,1U¡/J CVT FCB

isp J-acern

Trans late
tab le

[--_=
I :<t¿rr i,li
'úl

i_ull-": i

Dri.iï'

adcÌresses

ElsCDTC
I,*

i TIÍIT
Translation tables Device

Interface
Routine

FTGUPJJ 5

Locating translatj_on tabl_es ancl
device interface routines

2B

directly to the terminal. rn this mode the data must incl_ude

all necessary control- characters. The second way is for the
program to supply a message with instructions for
formatting. The message is in Èhe form:

The format control character indicates if the data
should begin at the beginning of the line, the number of
line feeds or carriage returns that shoul_d be inserted
before or after the data, and whether this data is the end

of the message. rn this way the program can send more than
one line of output with each reguest. The length of the
message depends on the size of the buffer assigned to the
terminal.

rnput from the terminal- can be requested with a normal
read or an interrupt read. I{ith the interrupt read the user
must first generate an interrupt before he can input data.
For some terminars a read once issued can not be terminated
by the computer, but with an interrupt read it can. This
allows the monitor to termj-nate a read if there is output
waiting to be sent to the terminaf.

For the sake of terminal independence alr data
processed by the application program is in Extended Binary

data
ength

format
contro

format
contro

29

coded Decimal- rnterchange code (EBCDrc). This implies that

before data is sent to a termina] it must be transl-ated to

the proper transmission code. Likewise data received from a

terminal must be translated to EBCDrc. Most programs require

the input to be in uppercase only, therefore the main

routine unless otherwise requested will translate al-l input

to uppercase EBCDIC. To obtain the address of the required

translate table the function control block contains an índex

into a list of table addresses. The three addresses pointed

to by the index are for the tables to transl-ate EBCDIC to

transmission code, transmission code to EBCDIC, and

transmission code to upper case EBcDrc. rf the index is zero

the transmission code is upper case EBCDIC and need not be

translated. If any of Èhe table addresses are zero the

translation is not done. For infrequently used termj_nal_

types only tr,vo tabl-es need be supplied. For upper case only

the l-ower case table will be used and after the final

ediÈing the data will be converted from lower Èo upper case

by logically oring the data wiÈh blanks.

The main routine will also edit the input data unless

the program requests no editing. The editing consists first

of checking the last significant character for a delete

character. Tf found the read will be re-issued. A backspace

character wilL del-ete the preceding character unless the

30

first non-backspace character after the backspace is an

underline character. characters, which are transl_ated to a

hexadecimal zeyo, and control characters wil_l be dereted. A.

tab character wil-l- generate blanks to the next specified tab
positì-on. The ed-iting routine attempts to estimate the
location of the terminal carriage. This enaÌ¡l-es the Èerminal-

routines to insert the proper number of control_ characters
in the output data.

The program can with the same reguest ask that the
write be immediately followed by a read or that the program

]>e terminated following the write.

Send Request llandl-er

Programs can send messagies to terminals other than the
one with which Èhey are currentry communicating. The progfram

is not all-owed to proceed untj-r- the message has been sent to
the ot,her terminal.

The three methods of passing contror of the cpu to
another program are Lr\lK, transfer control (xcrl,), and

sÞlAPping. The LïIIK request allov¡s a program to pass controf
to another program and when that program ends control is
passed back to the program lvhich issued the Lr¡lK. xcrI,

31

passes control- to another program but control_ is not
returned to the program which issued the xcrl. fn effect,
the proqram transferred to, repraces the program which
issued the xcr],. swAp passes control- from the current
program to the program which LrNKed. or slvApped to it and

al-lows control- to be returned. rn other words the programs

exchange places.

A program can LINK or xcrI, directly or by name. rn the
direct mode a program suppries the requested program's disk
l-ocation and the program's attributes. usually these are not
known so a program can LÏNK or xcrl by suppling the name of
the desired program.

Along with passing control of the cpu, a program can

pass data. whil-e the transfer is taking place the data is
stored in the buffer assigned to the terminal.

rn passing contro] the requested program's name may be

inval-id or there may be no temporary disk space avairabl-e.
The requesting program wir-1 be returned control_ with an

error indication, but it has the option to also have the
monitor send arì error message t,o the terminal.

Another feature is the ability of the program to pass

control of the cPU, yet remain in control of the terminal.
This is done by allowing the program to intercept all Tp r/o
request,s of the program to which control has been passed. rt

32

can also intercept only read

data is first passed to

issued the read request.

requests. This means that input
it instead of the program which

Termination Request Handl-er

A program may end normally or abnormally. For a normal

end, it may pass data back to the program whi-ch LrNKed or
xcrled to iÈ. An abnormal end causes the monitor to discard
the program copy in core. That is, it will not rol] it back

to the disk or a]low other terminals to use it.
After all- apprication programs have terminated, control_

is passed to the monitor signon/signoff program. This is a

ro11 program which handles t,he user signon and signoff. This

program will prompt the user for a nev,/ program name or a new

signon.

Pause Request H.andl-er

since MUM has no automatic time sricing, programs which

may reside in the ro11 area for long intervals must regulate
themselves. The PAUSE request al-lows MUM to decide if it is
necessary to rol-l- the program out to give other programs a

chance at the roll- area.

33

Miscel-laneous Request Handlers

Some other functions not mentioned yet are

checkpointing a program, informing the monitor of a waiting

resj-dent program, and enabling or disabling a terminal.

App]ication Programs

Rol-l- Programs

Roll programs must be written in rBM/360 Assembrer,

with the following restrictions:
the program must be no larger than 7294 bytes,

address constants can not be used,

certain system macros can not be used,

the program shoul-d consist of only one control section.
The program should be written so that it can be relocated
during MUM requests. rf Èhis is not possibl-e then MUM will-
always ro11 the program back into the same roll- area.

Roll areas consist of a resident area foll_ov¡ed by a

7294 byte area Ìnto and from which programs are rorl-ed. The

resident area contains a register save area, control bl-ock

pointers. and the start of the parameter List which is

34

passed to the roll program. The parameter list consists of
the address of the MUI{ communicatíon vector table, the
address of the routj-ne for making MUM requests, and the EcB

for posting MUM reguests. The ECB is the beginning of the
communication block for the ro]L program. The rol_labIe area
begins with the remainder of the communicaÈion block,
register save area, program interruption indicators, and

program staÈus word, followed by the program coding.

The ro11 areas interface with MUM Èhrough the ro11 area

monitor, a common re-entrant routine. To make a MUM request
the program]oads register zero with the request code and

register one with the parameter list address, then branches

to the address specified in the parameter list. The rol]
area monitor gets control, saves registers, adjusts register
one to point to the communication block, and. then issues the
MUM svc. rt then waits on the ECB. when the ECB is posted

the rol-1 area monitor returns control- to the rol_l_ program.

rt is important to realize that when the ECB is posted

another program may have been rol-led into the roll area.
This makes no difference since al-1 program dependent

information is in the rol_lable area.

Most ro11 programs can only communicate with one

terminal at a time. This is because the status of the
program is al-tered by each transaction. For these programs,

3s

MUM will assign a temporary disk location for the program to
which it wil-l- be rolled. rn other wordsr âs each terminal
requests the program, a new copy wilÌ be created.

Programs which require no information of previous

transactions need not be roll-ed out. Therefore, no tempoaray

copy is required. Programs, which are only rolled in, can

indicate that they are not reusable. The monitor will then

rol-1 in a fresh copy whenever a new request for the program

is received.

certain programs may be roll-ed back onto the master

copy. They must keep the status of each terminal
communicating with them. Programs of this nature usually
want to keep the program copy on the disk current with the

copy in corer so that in the event of an abnormal

termination of MUM the eopy is current. This wourd not.

happen if the program was being used frequently and was

never required to be rolled out. To prevent this, the

program indicates that it should be checkpoi-nted whenever

the rol-l- area goes into the wait state.

¡,{onitor Ro].l-_ Progr.ams

To decrease the monitor's core requirements certain
functions are implemented as ro11 pïograms. These programs

are not requested by name but are invoked by the monitor

36

when required. The disk locations and attributes of these
programs are stored in the MUI4 communication vector tabl-e.
Three functions currently handled by monitor roll programs

are signing users on and off, associating a program name

with a disk location and attributes, and servicing monitor
requests.

The signon/off program consists of four parts: program

code, userts attributes, user accounting information, and

program directory which consists of a list of program names

fol]owed by their disk locations and attributes. when arl_

the application programs associated with a particular
terminal have ended their communication with that terminal,
the monitor re-associates that terminal with the signon/off
program. The signon/off program -updates the accounting
information, saves the current tab positions, and displays
the operator's broadcast message if this user has not yet
received it. rt then prompts the user for a new progrram name

or signs the user off depending on whether the previous
sl-gnon was explicit or implicit. VJhen

requested, the program directory is searched

the program name is an entry in the directory. rf found, it
then XCTLs directly to the program. The signon/off program

has the attribute of rol-l-in only (no need to roll_ it out) .

of course when any of the user informati-on changes, the

a

to

program is
determine if

37

program overrides the rollin onJ_y attribute"
As was previously mentioned, control can be passed

indírectly to another program by specifying only the

requested programrs name. The request handler must associate

this name with a disk location and attributes. since the

program directory is in the signon/off program the request

handrer rol-l-s in the signon/off program and requests it to
provide the required information.

Monitor requests are serviced by another rol-1 program.

To make a request transparent Èo the application program MUM

checks the input data before it issues the rol]in request

for the application program. If the input data begins with
two question marks, the monitor reguest program is rol_led in
instead of the application program. The monitor request

program services the request, wriÈes a message to the

termj-nal-, and issues a read request with the same attriÌ:utes
as the application program.

Resi.9ent Programs

Applicat,ions, which do not meet the requirements for
the ro11 programs, can be run as separate resident programs.

MUM v¡il-l- still handre arl terminal communication. The

programs wil-l- be abl-e t,o make the same MUM requests as a

rol-1 program but of course it will not be swapped. This

3B

facility is al-so useful for debugging MUM roll application
programs, developing and demonstrating on-rine applications,
and monitoring long running programs.

An interface was developed to allor¡ resident programs

to communicate with a terminal- as if it were standard unit
record equipment. fn this way only the job control language

needs to be changed to permit any program to communicate

with a termj-nal. This was done by substituting the dummy

data set module (Tcc019AV) with the interface routine. (4)

All references

terminal.

to DD DUMMY would be directed to the

A resident progiram, simil-iar to a roll_ program, makes

MUM requests via the MUM svc. rt first makes an initial
request to suppry t,he communication block address. MUM

determines the job's name and waits for a terminal- user to
request a resident progiram with that name" MUM then

associates the terminal with the resident program and posts

the ECB in the communication bl-ock. From this point the

resident program can communicate with the terminal in a

manner simil-ar to the roll- program. The resident program can

communícate with more than one terminal by repeating the

initial request with differenÈ communication blocks.

39

Fl_ow of Data and Control_ Through MUM

The purpose of this section is to trace the fl-ow of
data and control through MUM. First we wilr describe in
detail the steps involved in processing a terminal_

transaction.

1. The terminal inputs a line of data.

2- The TP r/o request handler t,ransrates the input and

requests the program manager to roll in the required
program.

3. vühen it is possible the dispatcher gives the program

manager control to initiate the rolling i-n of the

desired program into a free rol1 area.

4. The TP r/o request handler receives control- when the
program is in core. It edits and moves the input
data into the programts buffer and then posts the

ECB in the communication b1ock.

5. The ro11 area monitor, which was waiting on this ECB,

receives control- and passes control to the

application program.

6- The application program processes the input data,
forms Èhe output message, and makes a terminal
write-read request via the ro11 area monitor.

7. The request servicer gets control-, varidates the

40

request, and passes control to the Tp f/O request
handl-er.

B. The TP r/o request handler edits the output data and

transmits it to the terminal.
9 - The TP r/o reguest handl-er issues a read to the

terminaf and waits for another input message.

Now in a less detailed manner, 1et us folrow the fl_ow

of data and control between a signon and a sígnoff.
1. The terminal- user enters his account number, program

name, and initial input data for the program.

2. The inpuÈ data is passed to the current program which

wil-l be the monitor signon/off ro11 program.

3. After validating the account number the signon/off
program searches the program directory for the
requested program. when the program entry is found

the signon/off program xcrls to the requested

program specifying the disk location and passing the
intial input data.

4. The Passing control request handler terminates the

signon/off program and reguests the rolring in of
the requesÈed application program.

5. The applicaÈion program is passed the input data and

from this point on can communicate with the terminal_

41

as detail_ed above.

6. T¡Ihen the application program wishes to end it makes a

termination reguest. The Termination request handler

terminates the application program and XCTLs to
signon/off program.

7- The signon/off program receives control-, updates the
user accounting information, and requests the user

to enter a new account number and program name.

Maintenance

since an on-Iine system usualry is required to be

operational for extended periods, most maintenance

procedures should be performed whil-e the system is on-Ìine.
while on-line, MUM aIlows account numbers to be added or
deleted and ro11 proglrams to be modified.

The system configuration can not be dynamically altered
except for the case of omitting terminals when MUM is
initiated. changes to the configuration are accomplished by

modifying one module which requires a reassembly and link
edit. Assembler macros make the generation of addit.ional
control- bl-ocks relatively easy.

-42

Development Aids

Although not an integral part of a system, the ease

with which modifications can be made and tested is an

import,ant consideration in Èhe implementation of a system.

v,lith MUM, nev/ monitor facil-ities may be added as

separate modul-es. This st,ill enables them to share common

routines that reside in the main MUM module but does not
require modification to the main module.

DSECTs describÌng MUM's control brocks and os Assembler

macros are provided to aid in the writing of MUM programs.

The use of DSECTs is very important when a modification to a

control block is required. providing that a program accesses

a control block via a DSECT a reassembly of the program is
all that is requi-red to maintain its integrity.

To test a mod.ification or develop a -new apptication
program a sysLem can be generated which a]lows the card

reader and line print,er to simulate a terminal. This is
particularly valuable when a rong script is required to
furiy test the program. More than one terminal can be

simulated if required.

A progiram, which resides in the IÍUM program library,
can be added, modified, renamedr or deleted whil-e the system

is on-]ine . A util-ity prograrn, given the program' s name ,

43

\,vi11 load it onto the proper

MUM attempts to trap
core dump is produced and

returned to the moni-tor.

disk location.

all- abends of a rol_l_ program. A

cont,rol of the terminal_ i_s

A program was developed which allows the user to
display or modify the contents of core storage. This has

proved to be a very useful debugging Èoo1 and should have

been the first application program written.

44

CHAPTER V

EXPERTENCE GAINED FROM TMPLEMENTATION

As a system is developed and used its good and bad

features become apparent; MUM j_s no exception.

Communication rvith the Terminal User

The first thing that was noticed was the t,ime required
for a user to achieve his resul-ts. This of course depends on

response time but al-so on the amount of information that is
required to be entered by t,he user. on low-speed terminals
the amount typed out wil-I also affect t,his time. Response

time was minimized in designi-ng MUM but not enough attention
was paid to the dialogue with the user. The experienced user

wishes to type as little as possibl-e and requires very

little information to determine an error. on the other hand

the novice wishes to enter requesÈs using co¡nmon words and

requires self-explanatory messages. A well designed system

should meet the requirements of both users. This could be

accomplished by allowing the program to provide short and

long informative messages. The monit.or would display one of
a user defined attribute. The

45

the messages depending on

experienced user \^¡ould still be abl-e to receive the J_ong

message if he coul-d not understand the short one. This

method was partially implemented to decrease the time

between program termination and program initiation, but was

not provided as a general facility.

Command Language

The second probrem was the command language implemented

by the various appri-cation programs. Rures for command

abbreviation, syntax, and valid delimiters varied from one

program to another. This provided much freedom to the
progranmer but was confusing to the user. This problem courd

be lessened if a common command parsing routine were used by

all- of the application programs.

Synchronous proces sing

Although individual requests to MUM are processed in an

asynchronous manner, the processing of the requests invol_ved

in one terminar transaction is basically synchronous. For

a terminal- I,/O request, it isexample the program makes

46

rol-l-ed out, the terminal I/O is initiated, and so on. This

synchronization is carried over to the function control-

block which is used to store information about the terminal

and the program. Difficulty was encountered when the

terminal- was al-lowed to be active at the same time as the

program since a number of the fields in the FCB were then

used for both operations. This problem was corrected. so that
output operations, but not input '-operations, could occur

asynchronously with the execution of the program. The

terminal buffer is also used to keep the input data until a

program is rolled in. This problem of course could be solved

by having two buffers.

Buffer PooI

MUM requires buffers to be unsegmented.

buf fers increases, t,he eff icient use

As

of

the number of

the buffer space

decreases. This is because a large number of messages are

short and unsegmented buffers must be the size of the

maximum message. If the buffers were segmented a buffer pool

could be maintained and requirements for a large buffer
could be fulfi]led with a number of small buffers.

A buffer pool woul-d also permit the output

47

of

continuous lines of data to be made more effi_cient. To

accomplish this the application program would be all-owed to
fill ad.ditional buffers while the current buffer is being
sent to the terminal. when the current buffer has been

transmitted there wou]d be another buffer waiting to be

transmitted. Besides improving output ef f iciency, the rol_l-

program woul-d not have to be rolLed into core as frequently
since it courd fil-l- more than one buffer with each rollin.

Abnormal Program Termination

Another improvement woul-d be the handling of abnormal

program termination. As MUM developed, the number of causes

of abnormal- t,ermination increased. No standard method of
passing an abend code was used, which of course proved a

problem to the user when a program abended. Also, if MUM is
required to terminate a program there should be a method of
passi-ng control- to a termination routine if special
termination action is required.

48

Passwords

As was stated earl-ier, the signon password can be

changed by the user. since the password is entered at each

signon, there is a high probabiliÈy that an unauthorized

person may see the password; therefore has access not only
to the use of the account number, but also the abiJ-ity to
change the password thus barring a valid user from signing
on. This could be prevented by not alÌowing the user to
change his password, but have him request some authorized
person to change it. A more fl-exibte method would be to
require that a second password be specified whenever the

signon password is changed. since the second. password woul-d

be specified infrequentry, there is a small-er prorrabirity of
j-ts discovery.

Statist ics

Run time statistics, which are not currently availabre,
would also be very useful in determining system util_ization.
These statistics shoul-d indicate response times, util_ization
of terminals, error rates, activity maximums, and. queue

occupancy times.

t+9

Modul-arity

on the positive side the modular design of MUM mad-e the

addition of ne\^z facilities and terminal types very easy.

This along with the ease of writing and adding application
programs reduced the development time required for nevT

applications.

Passing Control-

The method of passing control- v¡as useful externally and

internally. Externally it i-s very convenient for the user to
temporarily suspend communication with one program, ca]l
another program then return and continue with the first
program. rnternal-Iy the ability to intercept the terminal-

r/o was important since modifj-cations to the input or output

formats coul-d be done without modifing developed programs,

50

CHAPTER VI

CONCLUSIONS

MUM has been used successfully at the university for
the past two and a half years. The current maximum nurnber of
simultaneous users is twenty-five, but the average maximum

is around seventeen. The current impJ-ementation d.oes not
support more than one ro11 area. This is the probable cause

for an observed degradation in response time when the number

of signed on users approaches fifteen. The observed response

time for less than ten users averages from instantaneous to
2 seconds. when response time is greater than expected, it
is usually because of j-nterference by some other task in the

operating system.

llser response to l4uM has been good. An example of this
is the fact that one out of four jobs submitted for batch

execution come from MUD! terminals.

The efficiency of MUM is also good. A basic system wil-l_

execute in 40K bytes. The cpu overhead is approximately 1-zy,

for ten t.o fifteen active t,erminals.

Appendix A gives more details on the terminals
supported, core requirements, and application programs.

The current status and the growth of MUM are

indications that the design and implementation of the MUM

51

system are basically sound.

52

MUM

past two

terminals

has currently

and one half

supported are:

APPENDTX A: CUrrent StAtUS

been used at

years. The

the university for the

number and types of

Operator console 1

IBM 2260 cathode ray Èube (CRT) . 5

IBM 2741 typewriter leased line. . . B

IBI'I 2741 typewriter dial line. . 8

TBM 1 030 card and badge reader 2

Teletypewriter Exchange Service (TWX). 3

Total- 26

The core requirements in units of 1024 bytes are:

Monitor

One ro11 area

CRT support

Graphic access meÈhod for CRT

Operator console support

TWX and 2741 support

1 030 support

Control blocks and buffers

7.1

7.1

.5

4.2

.2

:1.0

.B

11 .7

53

File handl-er(5) 10.0

Library circulation system(9) . 8.2

Access methods and buffers for library . 26.0

Total 84.0

Some of the application programs which have been

developed and are in current use provide the user with the

following facilities.

1. EDIT - Card image fil-es, which are stored on disk, can

be created, retrieved, and updated on-Iine. The

fil-es can then be submitted to HASP for batch

execution. (5)

PRINT The SYSOUT data sets for a batch job can be

listed and then deleted or released to be printed on

the system líne printer. (6)

STAT The batch execution sueues and individual job

information can be displayed. (7)

DSUTIL and LTST - OS data sets can be listed, deleted,

renamed, cataloged, and uncataloged. Data set label

information and member names in a partitioned data

set directory can also be displayed. (6rB)

DUMP System control blocks and core locations can be

displayed or modified. (7rB)

ETEXT and TEXT By suppling additional formaÈ

2.

I

4.

5.

6.

54

commands with the card image file, a formatted typed

output is possible. (5) ETEXT was used to type this
thesis.

7- MSG - Messages can be sent to one or more users. They

are saved on disk and are displayed at the user's
request. (7)

B - TABLE MaÈhematical- tabl-e look up and a desk

cal-cul-ator. (5)

9. TEACH Computer aided instruction. (5)

10. crRC - A ro11 program arong with a resident module

handles all_ the daily 1oans, returns, holds,
inquiries, and renewals for t,he book circulation at
the main campus library. (9)

À resident file handler provides access to the card

image files used in applications 1, 6, and 9. (5)

The above description of the application programs is
included for completeness and shou]d not be considered as

part of the requirements for this thesis.

s5

APPENDIX B. MUM Control_ Block Layouts

The line describing each field in the contror br-ock
consists of four parts:

1. Displacement decimal (hexad.ecimal-) displacements of
each field from the beginning of control bl_ock. ff
blank -"hen same as previous field. This is used where
the second fiel-d is not aligned to a full word.
boundary.

2. Length decimal numl:er of bytes in field.
3. Name name of field used in the Assembl-er DSECT.
4. Description description of fíeId.

MUM Communication Vector Tabl-e

0 4 MCVTCB Address of I4U¡,t TCB
4 4 MCVTSTIM Time of day when MUM was loaded
B 4 I CVTDCB Address of DCB open list

12 (C) ¿l MCVTEDTT Address of buf f er ed.it routine
16 (10) 4 MCVTHPLA Ad-dress of HASP parameter list
20 (4) 4 MCVTRESQ Head of rollin queue for resident

18) 2
programs

Reserved for future use
1A) 4 MCVTHEXT Highest external request code

28 (1C) 4 MCVTEXTR Address of external request tabl_e
32 Q0) 12 MCVTREQU Pointers for request queue
44 (2C) 4 MCVTRINQ Head of rollin queue for rel-ocatable

ro11 programs
4e (30) 12 McvrRÀPT Pointers for the Resident Application

Program Table
60 (3C) 1Z MCVTRAT pointers for the Roll Areas Table
72 (48) 4 MCVTTIP Disk location and program attributes

for Èhe signon/off program
76 (ac) 4 MCVTMREQ Disk location ancl program attributes

B0 (s0) 4
for the monitor request program

Reserved for future use
54) 4 MCVTRSL Address of Translate Vector Tabl_e -158) 4 MCVTDIT\IT Address of Device InÈerface Vector

Tabl-e
5C) 4 MCVTFCB1 Address of first Function Control

Bl-ock
96 (60) 12 MCVTECBL Pointers for ECB list

1 gg (6C) 4 MCVTDECB Àddress of start of dynamic part of
ECB list

24
26

B4
8B

92

56

112 (70)

116 (74)
124 (7c)

128 (80

130 (82
132 (84
136 (BB)
138 (BC)

4 MCVTECBE Address of last valid entry in
ECB l-ist

B Reserved for future use
4 MCVTMAP Address of map indicating disk s\^/ap

areas rn use
2 MCVTDISP Beginning disk location for swap

areas
2 MCVTMAPL Number of available disk s$/ap areas
4 MCVTI{DCB Àddress of DCB for MSG program
4 MCVTHASP lrlumber and address of HASp DCBs
2 MCVTSVC MUM SVC instruction, NOP if SVC not

available

Function Control Block

0 4 FCBNME FCB name
4 2 FCBLNK Can be used to link associated FCBs
6 2 FCBCHAIN Displacement from t,his FCB to the

next FCB, last FCB points to the
first

B 2 FCBSTAT Status byÈes
1 0 (A) 1 FCBTYPE Code for FCB type
1 1 (B) t FCBMOD Modifier byte of a MUM request
12 (C) 4 FCBQ Used to insert FCB j-n a queue
16(10) 4 FCBRTN Location to save a return address
20(14) 4 FCBECB Can be used as an ECB

2 FCBCOMST Save area for disk location during
a coÍrmon function

22 (16) 2 FCBCOMPA Save area for program attributes
during a common function

18) 1 FCBCOMRA Save area for RÀT or RAPT index
during a cornmon function

19) 1 FCBHOLD Hold count, when zero can be rolled in
1A) 1 FCBPRTY Priority of FCB
18) 1 FCBDINT Index into Device Tnterface Vector

Table
1C) 2 FCBSTOR Disk location of current program,

is negative for resídent progirams
1E) 2 FCBPATR Program attributes

32 (20) 1 FCBRAT Index into RAT or RAPT
33 (21) 1 FCBMOD2 Save area for FCBMOD during ??LINK
34 (22) 2 FCBSDQ Displacement to next FCB in send

queue for this terminal
36 (24) 4 FCBCPU CPU time used by user (currently

not used)
40 (28) 2 FCBMSGL Message length for current write or

24

25
26
27

2B

30

57

42 (1A)

44 (2c)
60 (3c)
64 (40)
6B (44)

72 (48)
74 (4A)

76 (4c)
7B (4E)

B0 (s0)

B2 (s2)

B3 (s3)
B4 (s4)

Bs (ss)

FCBACCT

FCBFHAN
FCBTAB
FCBSIGON
FCBTRSI
FCBUFF
FCBUFSZ
FCBPOS

FCBLNSZ
FCBSTOR2

FCBRAT2

FCBTPST
FCBER

FCBRLN

FCBDEV
FCBDEVST
FCBTORTN
FCBIOECB

16
4
4
1

4
2
2

compl-eted read
Account number of current user, zero

if no user has signed on
Used by the file handler
Current tab settings
Time of day current user signed on
Index into Translation Vector Table
Address of terminal buffer
Buffer size
Postion of carriage on 1ine,

negative if unknown
Terminal line size
Save area for disk location during

a LïNK request

during a LINK request
Save area for R.AT or R"APT index

during a LINK request
Status for TP I/O
Error code to be posted to program

when it is rol-l-ed in
Releative line number for DEB (not

currently used)
Terminal characteristics
Terminal status
Return address when TP I,/O completes
ECB to be posted when Tp t/O compl-etes

Entry id
TCB address of task controlling

this ro11 area
Communication Block address
Address of FCB currently associated

with this area
Status of this rol] area
Address of ro11 area
Head of rollin queue for

non-relocatable programs for
this area

Disk location of current pïogram,
negative if program not usabl_e

2
2

1

1

1

1

u
4

FCBPATR2 Save area for program attributes

B6
B7
88
92

(s6
(57
(58
(sc)

Roll Area Table

The RAT consi-sts of one entry for each roll area. Eachentry contains the following fields.

1

4

4
4

4
B

12 (c) 1

4
16 (10) 4

20 (14) 2

RATÏD
RATCB

RATCBA
RÀTFCBA

RÀTSTAT
RATAD
RATOUN

RATSTOR

5B

.:]' -'.-'',.. .,'.'.:.ì

Resident Appl-ication Program Tabl-e

The RAPT consists of one entry for each terminal_-program
association. Each entry contains t,he following fields.

0 1 RÄPTID Entry id
4 RÀPTCB Address of TCB for resident program

4 4 RAPTCB.A Comunication Bl-ock address
I 1 RÀPTSTAT Status of entry

4 RAPTFCBA Address of FCB associated_ wíth
program

1 2 (C) B RAPTNME Job name of resident program
20 (14) 4 RÀPTRTN Address of cancel routine
24 (18) 4 RAPTECB ECB to post when cancel request is

received

Device Interface Tabl-e

0 4 DIIJTBASE Cor:tent of base register for routines

The followj-ng fiel-ds contain displacements from the DIlttT
address to the routine which does the indicated function.

L+ 2 DINTNEI\7L t{ew Line
6 2 DINTLF Line feed
B 2 DINTPAGE Begin ne\^z page

10 (A) 2 DILITSETI^7 Setup write
12 (C) 2 DINTI^/LIII Issue write when last I/O was write
1 4 (e) 2 DINTWLR Tssue write when last I/O was read
16(i0) 2 DINTSETR Setup reacl
18 (12) 2 DINTRLW Issue read when fast I/O was write
20(14) Z DINTRLR Issue read when last I/O was read
22 (16) 2 DINTTNTR Set,up J_nterrupt read

1 B) 2 DINTMSGL Determine input message length
1A) 2 DINTHLTI¡/ Hatt write
1C) 2 DTNTHLTR HaIt read

30 (1E) 2 DTNTERW Analyse a write error
32(20) 2 DII\ITERR Analyse a read error
34 (zz) 2 DTNTAFTR Exit after input has been translated

The follolving fields contain the character which wirr-
perform the indicated function.

36 (24) 1 DTNTDELL De1ete input line
37 (5) 'l DINTDEL Delete character from input

24
26
2B

59

38 (26) 1 DTNTNL New l-ine
39 (27) 1 DINTBS Backspace

Communication Bl-ock

0 4 CBECB Event Control_ Block
4 4 CBFCBN Name of FCB associated with program
B 4 CBFCBA Address of FCB

1Z (C) 20 CBPARM parameter area
4 CBPAR-I\41 Pararmeter one

1 0) 4 CBPARM2 parameter two
14) 4 CBPARM3 Parameter three
1 B) 4 CBPARM4 Parameter four
1C) 4 CBPARI45 ParameLer f ive

16
2A
24
2B

Parameter List Passed to RoLl- programs

0 4 PLMCVT Äcldrres of MUM CVT
4 4 PLMUMREQ Ad_dress of routine for making MUM

B 4 PLECB
""5;T"3:1i,",. Brock

12 (C) 4 PLNIIE FCB name
1 6 (1 0) 1 PLDEV Terminal_ characteristics

) ¿+ PLFCBA ACdress of FCB
20 (14) 4 PLPARMI parameter one, usualÌy output buffer

address
24 (18) 4 PLPARM2 parameter two, usualll' ouÈput lenqth
28 (1c) 4 PLPARM3 parameter three, usually iñput buffer

address
32Q0) 4 PLPARM4 parameter four, usually input buffer

length
36 (24) 4 PI,PARMS Parameter five

RoIl Area

0 4 AREARÀT Address of entry in RAT4 72 AREASÀV save area pointed to by register 1 3
when program is first entered

76 (4C) 40 AREAPARM parameter Iist
84 (54) SZ AP,EACB Communication Block
BB (58) 7294 AF.EASIO Rol]ab]e area

116 (74) 64 AREAREG Register save area when program is

60

S\^/apped out
180 (84) 4 AREASPIE Spie mask and displ-acement from.

AREACB of exit routine
184 (BB) 8 AREAPSI,V Resume PSW for prograrn
192 (C0) 7290 AREAPRG Program area

61

APPENDIX C: MUM MacTos

Ì"IUM macros can be divided into the fol-l-owing groups:

- macros which can be used in the writing of any MUM

pro9ram,

- macros which are used specifically in an application

roll- program,

- macros which generate and initialize control- bl-ocks.

General MUM Macros

$co¡¿yleNr - is used to place a comment card in front of

the program.'s ohrject deck. Besides a comment, the

card contains Èhe time and date of the assembly.

ioThenever the ob j ect decks are linlc edited the

contents of the card are printed.

$DSECT is used to give a selection or all of the

available DSECTs for MUM.

$s0U is used to give a selection or all of the groups

of EQUs commonly used in MUM.

$LPSW - makes a request to MUM to modify the current

program status v¡orcl to give key zero, problem

program key, supervisor stater or problem program

state.

$PARII - contains installation specified. parameters which

62

may be used in assembl_ing MUM programs.

would be to specify the MUM SVC nu.mber.

$fnUp generates a routine which will-

character string by logical1y oring it

An example

capital-i ze a

with bl-anks.

Roll Program Macros

$BEGTN defines and initial-izes the data area required

at the beginning of the roll program. The user can

arso specify the establ-ishing of a base regiister,
the loading of the address of the FCB and,/ox I{u}4

cvr' and the saving of Èhe address of the parameter

list passed to the rol-1 program from the rol-l- area

monitor.

$DELINK - l-oads regi-ster zero with the request code and

modifier for a DELINK reguest.

$eorr sets up the linkage and branches to a resident
buffer edit routine. This macro can be used by a

ro11 program which wa.nts to look at Èhe input data

before the monitor edits it.
$rF has the ef f ect of t.he forlowing statement:

IF THEN GO TO The user can check the

return code from a monitor request, the device type

of the terminal currently associated v¡ith the
program, and the status of a LINK or SWAP request.

63

$LINK - l-oads register zero with the request

modifier for a LINK request.

execution in another ro11 area.

$PÀUSE 1oad register zero lvíth the request code

$¡4SG - generates a formatted message. The user can

specify more than one line or part of a message.

$I4UMREQ sets up the linkage for making a monitor

request. The user can also specify the registers

that should be relocated in the event of resuming

code and

for a

pause request.

$RSTOREI - loads register one with the address of the

parameter list passed by the roll_ area monitor. It
l-oads the address from the area where the macro

$BEGIN saved it.

$SEND - load-s register zero wíth the request code to send

a message to a terminal other than the one that is
currently associated with the program.

$Spf e all-ows the user to change the program

interruptions that should- be t,rapped and the address

of the routine which will handle the interruption.
$SVIAP loads register zero with the request cod.e and

modifier for a SWAP request.

$TPro - l-oads register zero with the request code and

modifier to communicate lvith the terminal- currently

64

associated v¡ith the program.

$xCTL loads register zeYo with

modifier for an XCTL request.

request code and

Macros for Genera!íng Control Blocks

The fol-l-owing macros with the exception of $DINT are

al-l- l-ocated within one modufe. This simplifies modifing the

system configuration.

$ADDMCVT - generates an extension to the MUM

Communication Vector Tabl-e. fnstallation dependent

addítions wou]d be included in this macro. These

additions are inserted at the end of the normaf CVT

by the $cVT macro.

$CVT generates the lt{UM Communication Vector Tabl-e.

$DINT generates Èhe Device Interface Table and wil-l

also establ-ish addressibility for the interface

routine.

$ECBL generates the ECB list. The addresses of the ECBs

which wil-l be in the permanent section are specified

along with the size of the dynamic section.

$EXTR - generates the list of addresses of the external

request handlers. The user al-so specifies if the

request servicer should load the registers with the

FCB address, RÄT or RÀPT entry address, and the CB

65

address.

$FCB generates the basic function control bl-ock. All

macros which generate FCBs use t'his macro to

generate the basic section.

$Opfn - generates a FCB which is used to communicate with

the computer operator's console.

$RAPT generates a resident application prograrn tabl-e

with the specified numkrer of entries.

$RAT generates a ro11 area tabl-e with Èhe specified

number of entries.

$REQU - generates the request server queue. There must be

one additional entry for every task, which makes a

MUM request, rvith a higher CPU dispatching priority

than MUM.

$TEST - generates a FCB for simulating a terminal with a

card reader and printer.

fi226\ - generates a FCB for communicating with an fBPi

2260 (Cnr¡ .

92741 generates a FCB for communicating with an IBM

2741 (typewriter).

66

APPENDIX D. Sample Application Roll program

Bel-ow is an Assembler listing of a sample program.

Following the listing is the output of the test system which

simul-ates a terminal via the card reader and line printer.
The sample program demonstrates the use of the $efeflü

and $MUMREQ macro which are required for every application
program.

The program al-so shows the ease of writing to the

terminal- as well as intercepting termina] r/o via the LTNK

request.

67

LtC {II].JICT CütIF ¡u{iR 1 AIliiR2 SÎU3Cç STATLTTE\!T

* ¡li* :i::k ì¡ v¡.,*Ì¡ * Ì1. >1.:lÍ.* ¡k:i< $ >l: >j< :l: ::< >i. ìk>ir t. * ¡k *;t;F¡k j<* >j< j<.tí-* >k Ìi(* J,< * *.+ *< >k lr.iF *{-.*-ìi¡t.*

* Tl-IS lS A SAÌy,PLË i:iUrq APPLT-CAT.il\ RtLL P-RtGRÀlú . >F

J,+

J: GTVËi\i A Ci-IAR,lCT5R SîR1i{G IT. þiILL D8 THE FTLLì]I"JIryË: IK
>i< I. REPFAT THE CI-iARACTÊR STR ThlG *

'. 3O TIiE LI{\IKFÐ PRI'.]GiìÅI{ ìi ILL RÊPËAT STRING A¡JD ISSUF *
+

T o, rHr l-iiåtiauT.R'r-*cÈÞrcn Ai\D rHE ir\rrrÁaiv ' +
>:< CALLËD PRiJGJì,Aq hJiLL El\¡!] 1,{IT¡"I A'dRTTE RESUEST*
**
J ú.I. -I.-L $

'LJ,
* \L J, JJ, * -! J J.

STI¡T

.1

2

.+

.5
h
7
c
f¡

1

10
11
t2
13

t) $IISECT PL

P AR,A ll E TER r- r- S I ! A.S S Eù T,ì A P P.!-,1 Ç A -1
Ì fj_. .R,ç!. !. . Pßr.j GR Âr!1 S

ÜSECT
DS F ,qU14 CVT AÐDRËSS
TS F MLTIlI TIR" REOUEST Ai]DRËSS
DS F ECR

llL¿+ FCB l\AME
QC ÐEVIÇ,F.C-H.AR
F FCI ADDRESS

D5 F*
LrS F {,

t,i) F -j,PAR.Af'lf,IE!ìS

ûc*ùüil
ûtL-l{)i,lt
û0ûtü¡4
üilf1ilü,3
û*ü*'.ilC
flilû1,) t il
t 0il{i 1i)
.û0*ff t 4
0il*í118
0cü-û tc
û0iltlzû
0.it,Q.ü?4
ûür:'ûÐü

ilCIficût
üÐtct il
rJû,*.Ç r+
0üct1È
r0,cç1c
toû 05 il
aìr\a^(/'vvL il .ru

fl')ûC5'r:
Cr'lCC{'C
û{lo il6 3
ctüü6s
{]OC iló A

Ð0ûró{
û 0t*$ {:

oÐË*72
ûüfJ û ?4
tûì]til'J
ññ1¡l?12
{, v'l (/ : LJ

üilet7ç
00OLr7E
o0ù08 2

*C*C*,tttilCt0*'ltfl
0 riil i,'tl l2 4
Ctlr)CrlfÌó¿+
fltûtû*cû
CTiCCiCC]CCCiJ,:ìCC
0ûiìütû6c
û0.)c

.û C C u"-i,i t Q ü ¡l C C Ð il,l C C

C5CC

50ìt cr)ûA
4TF* {ìCûE
r'l nnn
r-r.;iÕ1^^nULIJU'JçìJ\J

qâ¿ 3 1Ct-l
1251
47 8ìl C C8C
4L62 3flÐil

LJI-L I+

ûct78

0û'itc

fì¡'nEÁ

ü{j,t0û

1l+-1 SUl.r
I 8+¡4Li tv P L

I 9+PLNCVT
?N+PIIJ¡;IJRFO
21+PLËC,3
?-2+?1ft,$1E
2.,3+F-L üËV
24+PLFCB,4
25+pLP/\Rf'it
2á+PLPAFMZ
77+PLPAíìM3
28+? L PÂR U4
2c+P-1-?.¡'Rt"15 ,

3C REPFAT
31
32+
33+$RIt.LSXC
34+
35.+...

3l+
38+
?9.+
4û+
4I+
42+
43+
44+
45+
4ó+

47+$l{UllPARÞ1

EA

51
q2

üS
1ls
ÐS

DS F 1.
ña r J,,J r 'È

CSECT
$B EG Il"l BASE =I2 ¡ l.írlPrJT=BUFF ER r LEil'IGTH=¡ t gIJFFÈR
Fi\TRY $R{:LLS I {..

DC 4i--r0!
CC A{IIIIÈTTR_STiI-LSiC*12¡ TÑ]PUT ARËA DTSPLAC[T4ENT

DC Fr0r PARi\4S
DC l5F t,l I REC0-14
DC F r 1C8:
DC B r C00CC-C00C CCq-0C00 ' I r'iTËRUPTI_ ûN f1ål K

DC AL2{Û)
DC F.rC.'.rBr.C0CCCC-0C: ?Â13{Ol
I]S OH

B^L.R L29C
tiSING *rl2
ST 1r $i1l.Jl'{PAl{f4
B S¡/LilpÅ¡lM+4

[c Frct
l,S if'lG l'lul;ìPL

' 1 ESTATL iSH ADDRESS IBILITY
Lr+ R2 rR3? pLPAp.ü3 INpUT ¡DDRËSS. Ai\,tD L-ËNGTtt
LTfì R5 O R3 IS LEI."]GTH ZERÐ?
tZ \f_ì ltiirur yES BRÁ\CH
LA R6I C { R2 r R-] I E\iD NF INPUT STR I¡.IG

L.r.lc i:'n.t[cr cIDi: ¡Dil!I i\i_ili.Ì2 stirT SnURCE STATE¡lEli-i

rlc0c.ì6
0 ci,\íl ß3
cÜùc.Ìc
Lì0ÙüIü

Û00t.J4
S0Crl!.ó
00 001¡l
üûüOec
ûc il*ç t
nnÍìn^)
0ûr)iiÅå
0 CI tlíì S¡i
ûÐC*,A Ë

û00c ù ?
ciJûùlìå

toût ÛA
ûûOrl3F
COCOC 2

0tûcc6

0rilÐc À

tü00c E

0,3ÐilD 2

ùûüti)á
OTJÛ OD A

üûû*ilt
0tûluE
ûc{)û [t
Llü00E2
0 ûû0F4
ûüû ûF I

tA,ì 3
49lJ C I ló
!+7]) Cl)17-
4L3ij {.rû62

lr55
1A 5-l
47ilù f,c38
1*'o ? L
LL\î Cne¿

5ûr'I tnLç
ç1t.2. Fû-ü.._q

4?5C C tsil
414C CQ{Ë
4l 5û 0 Cfr*
4t6C C0ç.ù

4 L,lt ilá82
45AT CûáO
412* CfiAÈ

480il C118

581û C0.îA
9t26 lC14
58F1 0Cû4
4L[û c07r:
I FCE
IFAE
n7trtr
I[CÈ
IIAÊ
5tt 0 ünflA
û?F.A

ci,ì 18{.}
1a1()a

Ccrlaz

i] CÜ A2

CCÛ{.F

'.lilfi l{l
ütùtE

0C*8.-t
i.)c11fl
û ût64
ü i1tr 04

ûûó82
û trlC'À
tûtts
OüIB2

ù Cù 7¿r

CCC 14
íl;l * t4
nn.l-.1

53
54
qG

56
5?)k

58
5c
otJ
ó1 t(
/_ ')

63 l"icl{üvE
'54+Nn YûV E
á5+
éó+
{:7
oÕ

69
70
7l+
7?
73
?4 l..JRT Ef¡Ð
75+¡,{RTÊNl,l
7 6 jYUt4REç

l7+frUvfìEç
7 Él+

19+
Bt+
8l+
82+
Q ?¿

84+
85+
86+
B7

Bç Eí\DMSG
9C

?r

e3 ¡lü INPLIT
94

96 fIIVE

IK
R3,L¡ BiJf-FE.E.-à

1514{il
l4r*+{2{.2}+6
L2rL4
LIi\lKrl,i
t5
12tL4

RELCICATE LÏI{KT SASE

/\ iì
Ctr
Blltr
LA

R3 r R3 F.EPi*AI ÈD L El'iGTH
R31=AL2(1.'fìUFFER) FIT Ii'l BUFFE'R?

Li.,iR R5,R5
AR R5rR3
Bi'tP i!il¡.,]üvE
BCTP. ß5r0
ÊX
$IF
L
Tf{..
RT

LA
LA
t_Â

$LINK ii\iT{:R=r,{R
L,A C r l_óói>
BAL LIl,Kr"lìJV¡ìËQ
t- r\ R2rilLJFFËfì
.$TPIC {t!r[-rE]
L l-) tr=l-it9601t
$lrU¡4R88 P.ARl'4=R2 r RliL= { L INiKr l2 }

L 1r .Si"1il)1PÄR!1

STtr lì2rR?-+1+¡2llLl

YES IIIìANCH
¡4ÜVE TN ËI.]D CF ÈUTTER-2
LEAVE Rfl!M FüR FCR14,4TTËD ¡4SG

#.rjF. c-.H4RACTERS T-t. r4ûVE
IF;\NTHIT.JG Tf i'4ÜVE BR.AI.{CH

-1 ËIR EX

RET{JRi..I BUFFER ADDR,ESS
BUFF ER L Ei\rc Tt_.

I!AI'IË ÐF PRûGRÄ14
LCAD LI\JK REQUEST CNDE

G{l Ai\D IJl IT
fI'ìTFRCEPTEÛ !CRTTE MSC
LIAI] TPTi REQUEST C'DË

fì5,,qJvE REp E.qT srR ING
LI\K?i:l.lillrSG BEE\ LIi'IKED :ft?
I5rI6{I) FCE ADDRESS
B{15)?2
5 r Fl'ìDf'¡ SG

iì4,BUFFE.q
{ì5rLriluFFEiì
Ró

'
tlÂ14 E

0 ü{i74

ilü11Þ
0û116
OÜCCó

0cL0c
rccc6

üc*ût

L

LA
SLR
SLR
q-R

ALR

ST
ßR

src
LA
ll

ALR LINK, I4
Is$r.'iUyPAlq14 UPi)ATE iiNiE S.AVE AREA
L INK

R3 r. i{SG
P2 r l,rSG

h R T Ei'.ID

R2 r.i\ir_l I',\V5G
KR T Eì\.iD

!vc

STÜRF t. ENGTH FCR FÜR¡4AT TED I¡IR ITE
"lESS^GE ADi}RESS

0î0û84 4?,3.il
û'?CI,rËE 412,]
tûû0F2 47FC

û0ûcFó 4I20
*0il0{-Å 47Fû

*ntior=È uàCri

c t,åc
[(,.l AC
an¿ia

CCA?
CO5C

6*tfi 2ûÌù

L,A
tr

CÛICC 0{r,.-,1.¡R6) rc{R.2}

CL.qrR=,)EATt
{ ST, I r''1¡ INiPUTt T i\¡L}
AL " ló((5,40CIC1 1*,+2)) ìk25 6+2C9) rC f NC Il',lPUTr

{sTreìil-)
AL,ló(2CS)
CLICC

REG I S TER
i?.EG I S TER

ûcütil4

r0ù i Úr
0ü-LjIL{:

tCi) I t i¡
0ûû1111

Ü0 0 il il2
tc0ûû3

ûçc 5n 7c 5c t F34,t 4C

ù Íì D ì D 5lf ó1+ C C.i D 5',' 7

0',1Ð 1

9B NASË DC
99 I\C T NI{ SG $14 SG

lC0+Nt I\i'4SG IC
1!1+$Vqtl-ci ÊQlJ
1C2 fu1SC $YSG
i T3+}¡SG DC
IC1+ BUFFE,Q. DS

1t6 R2
t07 R3

EiìU
EfiU

2
3

\1,!!l Sr-ìURCE STÂTElvEiliT

*ilCilLrr+
c*c{}Lr5
c$üü'.16
¡'."1â;\,ì ÀLVt'¡ìj -t

flilt l_ Bù
ni'ìrl I u ?
g v i¡ ¡ 1, +

fl C l:1+

258L

t0B. P.4

1Cç R5
i lû R6
rIi LiNK
t12
113
114

l+

5
6
lo

=AL2(I-'BUFFER
-H'96CI'

E8U
E8U
Ë8 ìJ

FfìU
Ë l\l ll

,REG I STE,C +
REGI STËR 5
REG i STFR 6
RËTU1ìi\i REG I STER FNR BAL

CRtS S.'lìFFEIìE\:ûF

SYr;iil,ljt- L Ei\ì{iT H r V{L.UË r D[tr IN I Ti Ct'i REFER E\Ci S

SUFFËR l.*r0rli.8r1il4 3+ 35 5/+ 55 61 á8 77 113 EIiDvSG /rrf:Ar39 66 'll¡¡r lrArlll" 72 82 85 87

Nr-"lIi'Ji'4SG 2rl-CCrltC 93 t'JiIllPUT ¿+tF6¡93 5t ¡ltl¡qiVE 4rA?r6+ 60 $K 2tgcì6L 55 PLDËV ItLût?3

PLP¡\¡lr4L 4tL4s?5 PLF¡\Rla2 4r l8r Zó PLPARti3 4tl'çì?1 4ç PLPARM4 4t?û¡28 PLPARl"l5 4¡24¡29

R.¿i l'4'1'f,'8 61 R5 Lr5si09 5ù 58 58 5'S ó1 5?.68 Ró Irór110 5? 69 96 i"JRTENll 4rCâ¡75 9l s+

î'{IJ STÅTË14EXJiS FLÂEGEÐ 1i'i TIiTS ASSE}'ITLY

GLOSSARY AND ABBP.EVIATIONS

Abend abnormal termination.

Buffer An area of core storagie that is used to
temporarily store informatj_on during a transfer of
information to or from an input/output device. It is
used to compensate for a difference in the rate of
flow of information, or the t,ime of occurence of
evenÈs.

CB Communication Block.

checkpointing To record the status of a program so that
it can be restarted later.

contror block - A block of consecutive memory in which

control information is kept for the purpose of
efficient communication among the modules of a

system.

CPU - central- processing unit.
CRT cathode ray tube.

Data set The major unit of data storage and retrj-eval-

in the operating system.

DCB Data ConÈrol- B1ock.

DINT Device Interface Tabl-e.

EBCDTC Extend.ed Binary coded Decimal rnterchange code.

ECB Event Control Bl-ock.

73

FCB Function Control Block.

HASP Houston Automatic Spooling and Priority System.

VO - Input/Output.

MCVT I{UM Communication Vector Tabl-e.

I\mT Multiprogramming with a f ixed number of tasks.

Mult,iprogramming - A technique for handling numerous

routines or programs seemingly simul-taneously by

overlapping or interleaving their execution, that
is, by permitting more than one program to
time-share machine components.

MUM - Manitoba University Monitor.

¡{VT Multiprogramming with a variable number of tasks.

On-line system - A system in which there is a direct path

between the user and the computer.

OS IBM/360 Operating System.

RAPT Resident Àpplication Program Table.

RAT RoI1 Area Table.

Real Time system - A system which wil-l respond to input

sufficiently quickly t,o affect the functioning of

the environment at that time.

Re-entrant The attribute of a program which allows the

same copy of the program to be used concurrently by

two or more tasks.

Resident program A program rvhich resides in core

74

storage for the duration of its execution.

Response Time The time the system takes to react to a

given input. The interval- between an event and the

system's response to that event.

Rol-l program - A program which executes under the control

of MUM and rvhich may be transferred from or to

backíng storage whenever it is inactive.

Time-sharing - A slzstem where the User's terminal appears

to be connected to a dedícatecL computer and the user

can enter, test, and execute programs.

TCB Task Control Block.

TP teleprocessing.

XCTL transfer control.

7s

BIBLTOGRÀPHY

A. References

1. Abraham, C. Manitoba University Monitor. Scientific
Reports No ba, WinniPeg,
Canada, September 1 97 0.

2. Martj-n, James. Design of Real-Time Computer Sytems.
Prentice-Hal1r ,
1967. p.5.

3. Ibid., p. 46.

4. rBM,/360 operati+g System Sequential- Access Methods.
lr]o. Y2B-6604-1. IBM Corp. Programming Systems
Publications, Poughkeepsie, N. Y. p. 78

5. Progiram implemented by Dr. C. Abraham.

6. Program implemented by P. A. Macdonald.

7. Program implemented by G. Neufeld.

B. Program implemented by VJ. Reid.

9. System implemented by Èhe Computer Centre under the
direction of W. Doran.

B. General References

Margopoulas, l^7. P. , and others. "On Teleprocessing
System Design,'i TBM Systems Journal, Vo1. 5, No. 3,
1966, IBM Corp., Armonk, N. Y.

Martin, James Teleprocessing Network Organization.
Prentice-Ha11 ,
1970.

Thomas, Dennis V. "Teleprocessing Control- Program
Standard Interface. " Preliminary Specifications
TPS68-1 , fBM hrinnipeg, 1968.

76

van Dam, .Anries and David E. Rice. "On-line Text
Editing: A Survêyr" AÇM Computing Surveys, Vol. 3,
No. 3, September Computing
Machinery, Bal-timore.

C. MUM Manuals

Collens , R. J. (ed.) . MIJM User's Guide. University of
Manitoba, Winnipeg@y 1971 .

Reid, Vü. "MUITI Application Programmer r s Manual, " Ibid. ,
1971.

Rugger, K. MUM Tmpl-ementalion Guide. Ibid. , Februarlz
1971.

D. Other On-line Systems

Administrative Terminal System - OS: Program Description
Manual. No. H20-0582, IBM Corp. Technical
zuËIÏ-catj-ons Department, Whit,e plains, N. y.

APL/360 -Operating System- User's Manual. No. cH20-0683,
IBM Corp. Technical PublicaÈions Department, I^lhiÈe
Plains, N.Y.

Cocchi, lI., and others. Conversational Remote BaÈch Ent,ry
(CRBE). No. 360
lnformation Department, Hawthorne, N. y.

IBM Systgm/360_ Ope.rati+g- -$yslem: Time Sharing Option
Guide. No. cC2B-669 8-3, I
$ffims Publ-ication, Poughkeepsie, Ii. y.

Morrison D. T., J. Griffin, and A. M. ThursLon. HOMBRE.
Central Data Processing Service Bureau, GovêEnment
of Canada, Ottawa, 1968.

Schroeter, Steve. I¡IITS Users Guide. Third Edition.
University of vtaffich 1969.

Smith, Kenneth. "Remote Visual Displays," Use of the
IBM-360, University of Nebraska, f,incolñlñëEraskal
1968.

77

Wood, John R., and others. fnteractive Applications
Supervisor. No. 360d-05.2.
Information Department, Hawthorne, N. Y., January
1969.

7B

