THE DESIGN AND IMPLEMENTATION

OF A REMOTE TERMINAL MONITOR

A thesis
Presented to

the Department of Computer Science

University of Manitoba

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

o T T T v

T WRIVE o
‘< ,éﬁi»l\ \‘/ A Yoo C) 1///\‘::‘7"
$ON 20N
£ / N
F . e
i £t A Lt N
§ U AN U LA
[} e e
‘VQ\(\“ :\\‘\\
) / > ™ _/,‘“{
NS T T
by CUEETH ppege Ve
ey 2 s T

William Reid

December 1971

ABSTRACT

This thesis describes the design and the implementation
of a monitor for low-speed remote terminals. The basic
features of the monitor are:

- terminal users have access to a library of programs,

= all communication with the terminals is handled by the
monitor,

- any program executing in the computer can communicate
with a terminal via the monitor,

- programs which are communicating with the terminals are
transferred to backing storage when ‘they are not
active. This allows different programs to use the

same memory area during their execution.

TABLE OF CONTENTS
CHEAPTER PAGE
I. INTRODUCTION . 4+ & v & v o o o o o o o « o o« 1
On-line, Real Time, Time-sharing 2
IT. DESIGN CRITERIA . . ¢ ¢ & o « o o o o o o o = i
IIT. EXTERNAL IMPLEMENTATION OF MUM « « .« . 6

Signing On or Off « ¢ « « o 4 . 6

User Attributes . . . + + ¢ « « ¢ « 4 o o« 7
Monitor Requests . + + + & & &« « &« & o o & . 7
Example of Terminal Session.« . . 8

Iv. INTERNAL IMPLEMENTATION OF MUM , « .+ 12
Control and Service Routines 14
MUM Control Blocks . « « +« & o« & & o « « o 14
Dispatcher + ¢ v « o« « o v o « o o 17
Request Servicer . « .« « ¢« « & & « « & « + 18
Zpplication Program Manager. . . « « « « . 18
Swapping ProgramsS. .« « « « o« o o o« « o o o 21
Miscellaneous Service Routines 26
Request Handlers ¢ ¢« « « « &« « « . 26
Teleprocessing I/0 Request Handler 27
Send Request Handler « .« ¢« « « . . 31

Passing Control Request Handler. 31

Termination Request Handler. 33

Pause Request Handler. 33

ii

CHAPTER

Miscellaneous Request Handlers

Application Programs

Roll Programs. . .

Monitor Roll Programs.

Resident Programs.

Flow of Data and Control Through

Maintenance.

Development Aids . .

V. EXPERIENCE GAINED FROM IMPLEMENTATION.

Communication with the Terminal User

Command Language . .

Synchronous Processing .

Buffer Pool.

Abnormal Program Termination

PasswordS. + « + o .
Statistics
Modularity
Passing Control. . .
VI. CONCLUSIONS
APPENDIX A. Current Status .
APPENDIX B. MUM Control Block
APPENDIX C. MUM Macros; .o

APPENDIX D.

Layouts

iii

Sample Application Program.

PAGE
34
34
34
36
38
40
42
43
45
45
b6
46
47
48
49
4o
50
50
51
53
56
62

67

GLOSSARY AND ABBREVIATIONS . v &4 4 o o « o o o o o« « o 713

BIBLIOGRAPHY & v 4 v ¢ 4 v 4 ¢« o o o s o a o o o« o« « « 186

LIST OF FIGURES
FIGURE PAGE
1. Sample terminal session. . . « ¢ ¢ ¢ o o & o« o . 9
2. MUM program structure. . . ¢« « & + o « o o « « « 13
3. MUM control blocks .+ « ¢ ¢ &+ ¢ & o« o o o « o« o« o 15
4., Flowchart of swapping algorithm. « . . 22
5. Locating translation tables and

device interface routines . . .« v v « o« « « o . 28

iy

CHAPTER I

INTRODUCTION

The aim of this thesis is to describe +the design and
implementation of an on-line monitor for remote terminals.
The University of Manitoba was committed to supporting
remote terminals for a variety of on-line applications. Two
on-line systems were considered: the Conversational Remote
Batch Entry (CRBE) and the Administrative Terminal System
(ATS) . CRBE allows the user to edit disk data sets and
submit card image data sets for batch execution. BATS
provides text editing facilities. Together they required too
much of the computer's resources to justify their use. Also,
whenever more than one terminal system is used there is
always some duplication of resources. No existing system
could support all the various applications proposed for the
terminals. Therefore, it was decided that the University
should develop a flexible terminal monitor which would
support the applications Dbut would not make excessive
demands on the computer resources. The monitor was named the
Manitoba University Monitor (MUM).

The program development was done in close consultation
with Dr. C. Abraham who provided the basic design and

motivation of the MUM project and who was also working

simultaneously on parts of MUM such as: File handling, EDIT
program, and other programs which required continuous
changes in design and implementation of other parts of

MUM. (1)

On-line, Real Time, Time-sharing

An on-line system is one in which a direct path is
provided Dbetween the user and the computer. The path
commonly consists of a telephone line and a cathode ray tube
or typewriter which allows the wuser to send or receive
information to or from the computer.,

An on-line system can be passive or interactive with
the terminal environment. A data acquistion system is
passive with respect to the terminal environment. An
interactive system produces feedback to control or change
the environment. An example is a process control system. An
interactive system which communicates with people may also
be called a conversational system.

A real time system is an on-line system which reacts to
input sufficiently quickly to affect the functioning of the
environment at that time. A criterion for differentiating

between real +time and on-line, is how quickly does the

system "respond" to the input. For example, the response
time for a man-machine interaction may be defined as the
time when the last character was entered to the time when
the computer types the first character of the answer. For
conversational systems, this response time should be in the
order of a few seconds to be considered real time. (2) The
response time may vary from milliseconds in a missile
guidance system to hours in a process control environment.

Any on-line system for which more than one terminal can
be active simultaneously can be called a time-sharing
system. Since most on-line systems have this capability, the
term should not be used in this general way. It is used more
commonly to refer +to systems where the user's terminal
appears to be connected to a dedicated computer and the user
can enter, test, and execute programs.(3) The wuser of a
time—sharing system may have access to only one programming
language, or to the extreme of loading his own operating
systemn.

MUM was designed primarily to meet the needs of a real

time conversational system.

CHAPTER II

DESIGN CRITERIA

The following points were the main features felt
necessary for the implementation of the MUM system.

1. The terminal user must have access to a library of
application oriented programs. These programs should
be able to be easily written and added to the
system.

2. All communication with the terminals should be handled
by the monitor. The monitor should provide a device
independent interface for the application programs.

3. Any program executing under the operating system but
not under the control of the monitor should be able
to communicate with the terminals through the
monitor.

4. Programs which are under the control of the monitor
should share the same core storage. Since many
terminals can be operating simultaneously, many
application programs may be in use at the same time.
It would require excessive core storage 1if each
program was resident during the terminal session.
Therefore, while data is being transmitted to or

received from the terminal, the program can be

transferred from core storage to disk storage. This
allows another program to use the same core area. To
improve performance, more than one core area should
be available.

5. Programs should be able to pass control to other
programs.,

6. The implementation should be designed to aid
debugging, maintenance, support of new terminal

types, and the addition of new monitor facilities.

CHAPTER III

EXTERNAL IMPLEMENTATION OF MUM

To use MUM, the user must first identify himself with
an account number. If the account number is wvalid, he can
then request to communicate with a particular application
program. When the desired results are obtained, he indicates
to the program that he is finished. The program then returns
control of the terminal to MUM; the user can now request to

communicate with another program.

Signing On or Off

The user signs on by giving his account number and an
optional password. The password is to prevent unauthorized
use of the account number. One can sign on implicitly or
explicitly. With the implicit signon the user gives only the
account number. He is signed on only for the duration of the
requested program. When the program terminates, he must sign
on again. To explicitly sign on the user precedes the
account number with "signon". When the program terminates,
he has the option of either requesting another program

without the need of entering his account number or signing

off. To sign off the user enters "signoff" or another signon
(either implicit or explicit).

When the wuser requests a program he has the option of
passing initial data to the program. This saves time since

the program can dispense with the first prompting message.

User Attributes

Data, describing a user's attributes, are associated
with each account number. Data such as tab positions at
previous signoff, whether accounting information should be
displayed at signoff, whether signon messages may be
abbreviated, and the current password are kept and can be
modified by the user. The accumulated signon time, which can

be displayed by the user, is also kept.

Monitor Requests

Monitor requests are commands which are serviced
directly by MUM and are transparent +to the application
program. These requests are functions which are required by

the user, but are independent of the application program

with which communication has been established. The reguests
permit the user to:
- obtain the time and the date.
- test the terminal by displaying a fixed pattern of
characters or by echoing input data.
- obtain the terminal identification.
- obtain the number of signed on users.
- obtain or change the current tab positions.
- send messages to the computer operator.
- LINK or SWAP (pass control) to another application
program.,
To differentiate these requests from input to an
application program, the user precedes the request with two

question marks.

A Sample Terminal Session

Figure 1 1is the script for a typical terminal session.

Text in lower case was entered by the user and text in upper

case was typed by the computer. The points below refer to
the numbers on the left hand margin of Figure 1.

1. A user whose account number 1s U4 requests to

communicate with the application program LIST. This

U=

10

11

12
13
14

15

16
17
18

19

ENTER ACCT #,PRG NAME

4 list

LIST PROGRAM, ENTER COMMAND
end

OK

6S

ENTER ACCT #,PRG NAME

4 ?change,p123

ENTER ACCT #,PRG NAME
signon 4.p123 edit old demo

00150 $$1ist 30 3

00030 $JOB WATFIV REID
00040 READ 1,X,Y
00050 1 FORMT (F5.2/F5.2)
00150 ??2time

TIME IS 21.32.30

$$submit

FILE SUBMITTED

™ 10s

ENTER PRG NAME

?minimum

PRG

?no—account

PRG

print inguire demo
864 AWAITING PRINT
??2ti
TIME IS 21.33.15
find 864 prtl 2 20
1 READ 1,X,Y
2 1 FORMT (F5.2/F5.2)
¥*FERROR* TINVALID ELEMENT IN INPUT LIST OR DATA LIST

abandon
??1link edit o demo
00150 $$a 50
00050 1 FORMT (FF5.2/F5.2)
00050 ##mat
00150 $$1 50
00050 1 FORMAT (F5.2/F5.2)
00150 $%s
FILE SUBMITTED
i demo
868 AWAITING PRINT
release
end
PRG
off
#,P

FIGURE 1
Sample terminal session

is an implicit signon.

2. After ending the LIST program (see appendix A) MUM
prints the time spent communicating with the
program.

3. The password is changed to "P123".

4. wWith an explicit signon, using the new password, the
user passes a request to EDIT (see appendix A) to
load an old file called DEMO.

5. EDIT responds with the next available sequence number
for input. The wuser requests to list three lines
starting at line 30.

6. After listing the requested lines, EDIT again prompts
the user for input. At this point the time of day is
requested.

7. The file is submitted to the batch job queue.

8. The wuser requests that all signon messages be of
minimum length. As can be seen by the next line
"ENTER PRG NAME" has been shortened to "PRG".

9. The displaying of signon time is turned off.

10. The PRINT program (see appendix A) is called up and
passed an inquiry about the status of the submitted
job. Since an explicit signon was used no account
number was required.

11. After requesting the time, using the abbreviated

10

12.

13.

4.

15.

16.

17.

18.

19.

form, part of a print data set for the job is
listed.

Noticing the error, the output is abandoned.

Control is transferred to EDIT with a request for the
file DEMO.

A request is made to edit line 50.

MT is replaced by MAT.

After checking the correction the file is submitted
again.

Control is returned to PRINT and an inquiry is made
on the status of DEMO.

The output from the job is released to be printed on
the system line printer.

The user signs off.

11

CHAPTER IV

INTERNAL IMPLEMENTATION OF MUM

MUM was designed to operate on an IBM 360/65 computer
under the control of the Operating System (0S), with the
options multiprogramming with a fixed number of tasks (MFT)
or multiprogramming with a varialbe number of tasks (MVT).
The functions of job input, job scheduling, and collection
and printing of job output is performed by the Houston
Automatic Spooling and Priority System (HASP). HASP is not
required for the execution of MUM, but certain MUM
épplication programs interface with it. The monitor was
written in 360 Assembler and supports a variety of
terminals,

The basic purpose of a terminal monitor is to control
the flow of data between the terminal and the program which
processes the input data. With this in mind, the structure
of MUM can be represented by three sections (see Figure 2).

1. Control and service routines - This section contains
the monitoring routines which control the flow of
data between the various routines of MUM. It also
contains service routines which are used by the
other MUM routines.

2. Request handlers - These routines service the

12

Application Control and Request
Programs Service Routines Handlers
Roll Area Reguest TP Device
Monitor ___—3¥Servicer I/0 Routines

/”

ROll/

o

!
Progra@s

L

h g

U]
i

Eg/

b
H

e]

Resident

Programs ¢

=R

Passing

Service ’Dlspatcheré% Control
Routine

MUM program structure

13

Termination
Application
Program
Manager Misc.
. ‘Request
_—Post s Handlers
Rollout € %
Rollin
External
Request
Control
Blocks
FIGURE 2

application programs' requests. For example, an
application program can request to communicate with
a terminal.

3. Application programs - These programs, whether under
the control of MUM or the operating system, process
the input data and produce output data which is sent
to a terminal or another program, via the monitor.
The input data may also come from a terminal or
another program.

The remainder of this chapter discusses the internal
implementation of MUM under the three sections outlined

above.

Control and Service Routines

MUM Control Blocks

A control block is a block of consecutive memory in
which control information is kept for the purpose of
efficient communication among the modules of a system. The
control blocks in MUM serve similar purposes to control

blocks in other systems. In particular, control blocks

14

MUM _CVT

FCE chaining

X
7

3 RAPT

— | , -
,_- [—]BAPT f
1 displacement ’L

["7LRAT

e displacemeﬁt RAT

........ . }
[
h"“ﬁ——_—.-
i. Last FCB
| ROLL
AREA

.
et ettt e ot

FIGURE 3
MUM control blocks

15

provide a means of organizing the structure of a system in
an orderly manner. The main control blocks in MUM, as shown
in Figure 3, are described below.

The main control block is the MUM Communication Vector
Table (MCVT). As the term vector implies, it is a table
consisting mostly of pointers to other control blocks. The
advantage of the MCVT is that an external routine requires
only one address to access all of MUM's control blocks.

The Function Control Block (FCB) was designed to
maintain the information required to service a terminal
transaction. One FCB exists for each terminal.

The Roll Area Table (RAT) and the Resident Application
Program Table (RAPT) contain information about programs
currently in core storage. The RAT is made up of one entry
for each roll area in MUM. Likewise the RAPT contains an
entry for each resident program-terminal association. The
entries in the tables have the same displacements for common
fields. This allows most routines to access the information
without regard to the fact of whether the program is
resident or rollable.

For a detail description of the control blocks' fields

see appendix B.

16

Dispatcher

The dispatcher passes control of the CPU to the various
components of MUM. In OS synchronization is achieved by the
event control block (ECB). The program WAITs for an event to
complete wvia the ECB. When The event completes, the ECB is

POSTed with a completion code and the waiting task receives

control.
If each routine in MUM were allowed to wait
individually, MUM would be able to process only one

terminal. To prevent this problem, a MUM routine gives
control to the dispatcher with the address of the ECB when
it must wait for an event to complete. The dispatcher puts
the address 1in an ECB 1list and waits on all non-posted
events. When an event completes the operating system passes
control to the dispatcher which in turn decides which event
completed. The dispatcher gives control to the MUM routine
whose address 1is stored immediately preceding the posted
ECB. The ECB list consists of a dynamic and a permanent
section. In the dynamic section, the ECB addresses are
deleted before control is passed to the waiting routine
while in the permanent section they are left. ECBs in the
permanent section are used by routines which always require

an outstanding ECB.

17

Request Servicer

All program requests to MUM are first handled by the
request servicer. Since requests can come from any program
(task) in the system, the supervisor call (SVC) is wused. A
SVC 1is a CPU instruction which allows control to be passed
to a resident routine in the operating system's nucleus. The
instruction operand is wused to determine which routine
should receive control. Upon receiving control the MUM SVC
routine saves register zero, register one, and the address
of the task control block. Register zero contains the
reguest code and request modifier. Certain request codes are
handled immediately by the SVC routine and control is
returned to the calling program. If the request is a valid
MUM request, the ECB for the reguest servicer is posted
before returning to the caller.

For test versions of MUM the SVC can be replaced by
branching internally to the SVC routine in MUM. This of
course prevents communication between MUM and other resident
programs in the 0OS system.

When the request servicer receives control from the
dispatcher it checks its gueue for a new request. The saved
contents of register one point to the communication block.
Depending on the request type, the contents of +the

communication block are wvalidated. If +the contents are

18

valid, the request modifier is moved into the function
control block and a branch is taken to the reguested

routine.

Application Program Manager

Before discussing the functions of the program manager,
we should define the states in which a program can be:
active - has control of the CPU,
waiting - waiting for one or more events to complete,
ready - requires the CPU but is held pending for some
reason.
From the point of view of MUM these states can be
redefined to read:
active - a MUM request has been completed and MUM has
posted the program,
waiting - a MUM request has been received and the program
is waiting either in core storage or on backing
storage (disk or drum),
ready - the request has been completed but the program is
held pending because there is no free roll area.
A roll program is defined as a program which executes
under the control of MUM and which may be transferred £from
or to backing storage whenever it is inactive.

A resident program is defined as a program which

19

resides 1in core storage for the duration of its execution.
It will usually be a program which was submitted for batch
execution.

The program manager keeps the status of the programs
associated with MUM. For resident programs it verifies if
the program is still available. For roll programs the
following decisions must be made. When a roll program 1is
required, a check must be made to determine if it is in a
roll area or on backing storage. If it is in a roll area, is
it active or waiting? If it is on backing storage, is there
a free 1roll area? The decisions involved in swapping
programs will be discussed in the following section.

The request handlers interface with the program manager
through the following routines.

POST - the request 1is complete and the ECB in the
communication block is posted with a completion
code.

ROLLOUT - when a request can not be completed immediately
the request handler indicates that the program may
be rolled out. Of course for a resident program
nothing happens.

ROLLIN - when a request has been completed, the request
handler informs the program manager to bring the

program back into core storage. For a resident

20

program the program manager verifies that the
program is still in core. For a roll program the
request is inserted in a queue until the the program
is rolled into a roll area. When the program is in
core the program manager passes control back to the
request handler.

HOLD and FREE - for certain requests some events may
occur in parallel instead of sequentially. To
prevent the program from being rolled in before all
events have been completed, the request handler will
issue a hold for each event. When each event has
completed, the request handler will issue a free.
When the frees equal the holds, the program will be
rolled in.

The use of these interface routines removes the

distinction between a resident program and a roll program.

Swapping Programs

The current version of MUM has only one roll area so
the swapping algorithm does not support more than one roll
area, but the structure of MUM supports multiple roll areas.

A roll area can be in one of four states: free, active,
waiting, or swapping. In the free state the area can contain

a program which has been rolled out, but is still usable, or

- 21

o3oT1dwod 03
0/I I03F 3TeM
03 Ixsyuop3rdsTg

wyltaxobte butddems Jo 3axeyYOMOTJ

i HINOIA e s
. Soqo4edsSTa\
Mwo 03 uInilsy
@3 N
SEPN
uraboxd be1y dems ¢o3eas
UT TTOY uo uxnyg, ON NFFEM U

3sonbsx buraTe

beT3y oaT30O®
A9Tpuey / Uo uang-—
A'.I‘lcl.l‘\-l

‘

o3aTdwoo 013
O/I X0J 3Tem
03 I9ydjzedstq

eax

OZ_ OZW
s
P /
¥ LYd+€0d 309UUOD-] \mmsmsw ut eTqesn
\ _ ueIborg- Sox \Weiboxd -
©3 youeld/ urexboxd msmﬁwmmléllmmwf/////\\\

ON

: betz uﬂmmg
wexboxd W FF0 UINT =g
no oy bety dems

Jutodioayn
JJo uang

uo uInJ-

o

Iayd3edsTg

~Zbutddem

03 09 : sox IO SATID
oIy

ey TTO1

JI0 uIng

JoyojedsTd woxF Ax3zudg

22

Return frorm Dispatcher
after I/0 has completed

-Turn off
swap flag
-Turn on

roll flag

:

Reset RAT
entry

Return to
Dispatcher

FIGURE 4 (continued)
Flowchart of swapping algorithm

23

a copy of an unusable program. An example of an unusable
program is one that has terminated abnormally. The area must
be in the free state before another program can be rolled
into it. The area is active when the program, residng in it,
is executing. The waiting state implies that the program has
made a MUM request and can be rolled out. The area is in the
swapping state when a program is being rolled in or out.
Whenever a roll area changes states or has the
possibility of changing states, a roll possible flag is set.
Before the dispatcher waits on its ECB list, it checks this
flag. If set, control is passed to the program manager.
Figure 4 gives a flowchart of the decisions to be made. As
can be seen this algorithm is for one roll area. All gueued
requests for a ©program which is curently in the roll area
will be given priority over requests for other programs.
This 1is efficient, but there is the possibility of blocking
the roll area to other programs, if there is always a
request in the queue for the current program. Factors which
will increase this possibility are a large number of
terminals using a common program, the time required to
proccess the transaction, and the time +to transmit the
information to the terminal. This situation is not handled
in the current implementation, but with the current number

of terminals and types of application programs the situation

24

could not occur.

Besides the above problem, multiple roll areas
introduce other problems. As will be described later some
programs can be rolled into any area while others have to be
rolled into a particular area. To compensate for the fact
that some programs will have a better chance of finding a
free roll area, the algorithm could give preference to the
programs which must be rolled into a particular free area.
Similarly as above, this could prevent programs from being
rolled in. Both problems can be solved by having a
pre-emption count or time in queue limit which when exceeded
would force the program manager to service the roll reqguest.
One other modification would be to give swapping in
priority over swapping out. This is important when one roll
area requires its program to be swapped out while another
requires its program to be swapped in. If the swap in 1is
done first, the execution of this program can then be
overlapped with the swapping out of the other program. A
pre-emption count would guarantee that a program would be
rolled out within a certain time interval.

An attempt should always be made to keep -freguently
used programs in core. Also, the algorithm should attempt to
keep in core at the same time programs that are linked

together.

25

Miscellaneous Service Routines

Common service routine used by control routines and
request handlers perform the following tasks.
- changing the program status word.
- relocation of addresses in the roll area.
- loading registers.
- moving data between buffers.
- locating a particular function control block.

- enqueuing and dequeuing function control blocks.

REQUEST HANDLERS

Request handlers receive control from the request
servicer. They have the option of having the request
servicer locad registers with the current function control
block address, the address of the entry in the application
program table, and the communication block address or with
the contents of the request registers zero and one and the
address of the TCB of the requesting task. MUM distinguishes
bewteen internal and external requests. External request
handlers are external +to the main MUM module. This is for
ease of implementing new requests. All internal requests are

implemented in the same module so they can easily share

26

common routines and constants. This section will only deal

with internal requests.

Teleprocessing I/0 Request Handler

The teleprocessing (TP) I/O request handler consists of
a main independent routine and many terminal dependent
routines. The main routine interprets the request, formats
the message, translates it to the proper code, retries
errors, interfaces with the program manager, and edits the
input data. The terminal routines insert the necessary
control characters, interface with the operating system,
handle error conditions, and calculate message lengths. The
connection between the main routine and the terminal
routines is via a device interface table. It consists of a
base address and half word displacementstfor each entry
point of the routine. The function control block for a
terminal contains an index into a list of device interface
table addresses. The advantage of this method is that new
terminals can be supported very easily by simply adding a
small device interface routine and modifing the FCB to point
to the correct address in the list of Device Interface Table
addresses. No changes are required in the main MUM module.

Output to the terminal can be requested 1in two ways.

The program may supply data which i1s translated and sent

27

MUM CVT 'CB

{:TDINT
Trans® +1displacement
DINT$e

- Trans .
Gisplacemgnt

Translate DINT
table aq
wﬁggﬁmw adaresses ’\
' “i::‘“--—J
| .
[S RS
i DINT
— _
g .

NN = :
L . v ,
fEBCDICi - xXMIT | XMIT = '
L !

[XMIT ; P Mixed . Upper
i e o Device
Translation tables Tnterface
Routine

FIGURE 5
Locating translation tables and
device interface routines

28

directly to the terminal. In this mode the data must include
all necessary control characters. The second way is for the
program to supply a message with instructions for

formatting. The message is in the form:

data |{format data |[format
length|control data ~llength {control

data .o

The format control character indicates if the data
should begin at the beginning of the line, the number of
line feeds or carriage returns that should be inserted
before or after the data, and whether this data is the end
of the message. In this way the program can send more than
one line of output with each request. The length of the
message depends on the size of the buffer assigned to the
terminal.

Input from the terminal can be requested with a normal
read or an interrupt read. With the interrupt read the user
must first generate an interrupt before he can input data.
For some terminals a read once issued can not be terminated
by the computer, but with an interrupt read it can. This
allows the monitor to terminate a read if there is output
waiting to be sent to the terminal.

For the sake of terminal independence all data

processed by the application program is in Extended Binary

29

Coded Decimal Interchange Code (EBCDIC). This implies that
before data is sent to a terminal it must be translated to
the proper transmission code. Likewise data received from a
terminal must be translated to EBCDIC. Most programs require
the input to be in wuppercase only, therefore the main
routine wunless otherwise requested will translate all input
to uppercase EBCDIC. To obtain the address of the reguired
translate table the function control block contains an index
into a list of table addresses. The three addresses pointed
to by the index are for the tables to translate EBCDIC to
transmission code, transmission code to EBCDIC, and
transmission code to upper case EBCDIC. If the index is zero
the transmission code is upper case EBCDIC and need not be
translated. If any of the table addresses are zero the
translation is not done. For infrequently used terminal
types only two tables need be supplied. For upper case only
the lower case table will be used and after the final
editing the data will be converted from lower to upper case
by logically oring the data with blanks.

The main routine will also edit the input data unless
the program requests no editing. The editing consists first
of checking the last significant character for a delete
character. If found the read will be re-issued. A backspace

character will delete the preceding character unless the

30

first non-backspace character after the backspace is an
underline character. Characters, which are translated to a
hexadecimal =zero, and control characters will be deleted. 2
tab character will generate blanks to the next specified tab
position. The editing routine attempts to estimate the
location of the terminal carriage. This enables the terminal
routines to insert the proper number of control characters
in the output data.

The program can with the same request ask that the
write be immediately followed by a read or that the program

be terminated following the write.

Send Request Handler

Programs can send messages to terminals other than the
one with which they are currently communicating. The program
is not allowed to proceed until the message has been sent to

the other terminal.

Passing Control Request Handler

The three methods of passing control of the CPU to
another program are LINK, transfer control (XCTL), and
SWAPping. The LINK request allows a program to pass control
to another program and when that program ends control is

passed back to the program which issued the LINK. XCTL

31

bPasses control to another program but control is not
returned to the program which issued the XCTL. In effect,
the program transferred to, replaces the program which
issued the XCTL. SWAP passes control from the current
program to the program which LINKed or SWAPped to it and
allows control +to be returned. In other words the programs
exchange places.

A program can LINK or XCTL directly or by name. In the
direct mode a program supplies the requested program's disk
location and the program's attributes. Usually these are not
known so a program can LINK or XCTL by suppling the name of
the desired program.

Along with passing control of the CPU, a program can
pass data. While the transfer is taking place the data is
stored in the buffer assigned to the terminal.

In passing control the requested program's name may be
invalid or there may be no temporary disk space available.
The requesting program will be returned control with an
error indication, but it has the option to also have the
monitor send an error message to the terminal.

Another feature is the ability of the program to pass
control of the CPU, yet remain in control of the terminal.
This is done by allowing the program to intercept all TP I/0

requests of the program to which control has been passed. It

32

can also intercept only read requests. This means that input
data is first passed to it instead of the program which

issued the read request.

Termination Request Handler

A program may end normally or abnormally. For a normal
end, it may pass data back to the program which LINKed or
XCTLed to it. An abnormal end causes the monitor to discard
the program copy in core. That is, it will not roll it back
to the disk or allow other terminals to use it.

After all application programs have terminated, control
is passed to the monitor signon/signoff program. This is a
roll program which handles the user signon and signoff. This
program will prompt the user for a new program name or a new

signon.

Pause Request Handler

Since MUM has no automatic time slicing, programs which
may reside in the roll area for long intervals must regulate
themselves. The PAUSE request allows MUM to decide if it is
necessary to roll the program out to give other programs a

chance at the roll area.

- 33

Miscellaneous Request Handlers

Some other functions not mentioned yet are
checkpointing a program, informing the monitor of a waiting

resident program, and enabling or disabling a terminal.

Application Programs

Roll Programs

Roll programs must be written in IBM/360 Assembler,
with the following restrictions:
- the program must be no larger than 7294 bytes,
- address constants can not be used,

- certain system macros can not be used,

the program should consist of only one control section.
The program should be written so that it can be relocated
during MUM requests. If this is not possible then MUM will
always roll the program back into the same roll area.

Roll areas consist of a resident area followed by a
7294 byte area into and from which programs are rolled. The
resident area contains a register save area, control block

pointers, and the start of the parameter list which is

34

passed to the roll program. The parameter list consists of
the address of the MUM communication vector table, the
address of the routine for making MUM requests, and the ECB
for posting MUM requests. The ECB is the beginning of the
communication block for the roll program. The rollable area
begins with the remaindér of the communication block,
register save area, program interruption indicators, and
program status word, followed by the program coding.

The roll areas interface with MUM through the roll area
monitor, a common re-entrant routine. To make a MUM request
the program loads register zero with the request code and
register one with the parameter list address, then branches
to the address specified in the parameter list. The roll
area monitor gets control, saves registers, adjusts register
one to point to the communication block, and then issues the
MUM SVC. It then waits on the ECB. When the ECB is posted
the roll area monitor returns control to the roll program.
It is important to realize that when the ECB is posted
another program may have been rolled into the roll area.
This makes no difference since all program dependent
information is in the rollable area.

Most roll programs can only communicate with one
terminal at a time. This is because the status of the

program 1is altered by each transaction. For these pPrograms,

35

MUM will assign a temporary disk location for the program to
which it will be rolled. In other words, as each terminal
requests the program, a new copy will be created.

Programs which require no information of previous
transactions need not be rolled out. Therefore, no tempoaray
copy is required. Programs, which are only zrolled in, can
indicate that they are not reusable. The monitor will then
roll in a fresh copy whenever a new request for the program
is received.

Certain programs may be rolled back onto the master
COopYy. They must keep the status of each terminal
communicating with them. Programs of this nature usually
want to keep the program copy on the disk current with the
copy in core, so that in the event of an abnormal
termination of MUM the c¢opy is current. This would not
happen if the program was being used frequently and was
never required to be rolled out. To prevent this, the
program indicates that it should be checkpointed whenever

the roll area goes into the wait state.

Monitor Roll Programs

To decrease the monitor's core requirements certain
functions are implemented as roll programs. These programs

are not requested by name but are invoked by the monitor

36

when required. The disk locations and attributes of these
programs are stored in the MUM communication vector table.
Three functions currently handled by monitor roll programs
are signing users on and off, associating a program name

with a disk location and attributes, and servicing monitor

requests.
The signon/off program consists of four parts: program
code, wuser's attributes, user accounting information, and

program directory which consists of a list of program names
followed by their disk locations and attributes. When all
the application programs associated with a prarticular
terminal have ended their communication with that terminal,
the monitor re-associates that terminal with the signon/off
program. The signon/off program -updates the accounting
information, saves the current tab positions, and displays
the operator's broadcast message if this user has not yet
received it. It then prompts the user for a new program name
or signs the user off depending on whether the previous
signon was explicit or implicit. When a program is
requested, the program directory is searched to determine if
the program name is an entry in the directory. If found, it
then XCTLs directly to the program. The signon/off program
has the attribute of rollin only (no need to roll it out).

Of course when any of the user information changes, the

37

program overrides the rollin only attribute.

As was previously mentioned, control can be passed
indirectly to another program by specifying only the
requested program's name. The request handler must associate
this name with a disk location and attributes. Since the
program directory is in the signon/off program the request
handler rolls in the signon/off program and requests it to
provide the required information.

Monitor requests are serviced by another roll program.
To make a request transparent to the application program MUM
checks the input data before it issues the 1rollin reguest
for the application program. If the input data begins with
two gquestion marks, the monitor request program is rolled in
instead of the application program. The monitor request
program services the request, writes a message to the
terminal, and issues a read request with the same attributes

as the application program.

Resident Programs

Applications, which do not meet the requirements for
the roll programs, can be run as separate resident programs.
MUM will still handle all terminal communication. The
programs will be able to make the same MUM reguests as a

roll program but of course it will not be swapped. This

- 38

facility 1is also useful for debugging MUM roll application
programs, developing and demonstrating on-line applications,
and monitoring long running programs.

An interface was developed to allow resident programs
to communicate with a terminal as if it were standard unit
record equipment. In this way only the job control language
needs to be changed to permit any program to communicate
with a terminal. This was done by substituting the dummy
data set module (IGGO019AV) with the interface routine. (1)
All references to DD DUMMY would be directed to the
terminal.

A resident program, similiar to a roll program, makes
MUM requests via the MUM SVC. It first makes an initial
request to supply the communication block address. MUM
determines the Jjob's name and waits for a terminal user to
request a resident program with that name. MUM then
associates the terminal with the resident program and posts
the ECB in the communication block. From this point the
resident program can communicate with the terminal in a
manner similar to the roll program. The resident program can
communicate with more than one terminal by repeating the

initial request with different communication blocks.

-39

Flow of Data and Control Through MUM

The purpose of this section is to trace the flow of

data and control through MUM. First we will describe in
detail the steps involved 1in processing a terminal
transaction.

1. The terminal inputs a line of data.

2. The TP I/0 request handler translates the input and
requests the program manager to roll in the required
program.

3. When it is possible the dispatcher gives the program
manager control to initiate the rolling in of the
desired program into a free roll area.

b. The TP I/0 request handler receives control when the
program is in core. It edits and moves the input
data into the program's buffer and then posts the
ECB in the communication block.

5. The roll area monitor, which was waiting on this ECB,
receives control and passes control to the
application program.

6. The application program processes the input data,
forms the output message, and makes a terminal
write-read request via the roll area monitor.

7. The request servicer gets control, validates the

40

request, and passes control to the TP I/0 request
handler.

8. The TP I/O request handler edits the output data and
transmits it to the terminal.

9. The TP I/0 request handler issues a read to the

terminal and waits for another input message.

Now in a less detailed manner, let us follow the flow
of data and control between a signon and a signoff.

1. The terminal user enters his account number, program
name, and initial input data for the program.

2. The input data is passed to the current program which
will be the monitor signon/off roll program.

3. After validating the account number the signon/off
program searches the program directory for the
requested program. When the program entry is found
the signon/off program XCTLs to the requested
program specifying the disk location and passing the
intial input data.

b. The Passing Control request handler terminates the
signon/off program and requests the rolling in of
the requested application program.

5. The application program is passed the input data and

from this point on can communicate with the terminal

41

as detailed above.

6. When the application program wishes to end it makes a
termination request. The Termination request handler
terminates the application program and XCTLs to
signon/off program.

7. The signon/off program receives control, updates the
user accounting information, and requests the user

to enter a new account number and program name.

Maintenance

Since an on-line system wusually is required to be
operational for extended reriods, most maintenance
procedures should be performed while the system is on-line.
While on-line, MUM allows account numbers to be added or
deleted and roll programs to be modified.

The system configuration can not be dynamically altered
except for the case of omitting terminals when MUM is
initiated. Changes to the configuration are accomplished by
modifying one module which requires a reassembly and link
edit. Assembler macros make the generation of additional

control blocks relatively easy.

Development Aids

Although not an integral part of a system, the ease
with which modifications can be made and tested is an
important consideration in the implementation of a system.

With MUM, new monitor facilities may be added as
separate modules. This still enables them to share common
routines that reside in the main MUM module but does not
require modification to the main module.

DSECTs describing MUM's control blocks and 0S Assembler
macros are provided to aid in the writing of MUM programs.
The use of DSECTs is very important when a modification to a
control block is required. Providing that a program accesses
a control block via a DSECT a reassembly of the program is
all that is required to maintain its integrity.

To test a modification or develop a -new application
program a system can be generated which allows the card
reader and line printer to simulate a terminal. This 1is
particularly valuable when a long script is required to
fully test the program. More than one terminal can be
simulated if required.

A program, which resides in the MUM program library,
can be added, modified, renamed, or deleted while the system

is on-line. A utility program, given the program's name,

43

will load it onto the proper disk location.

MUM attempts to +trap all abends of a roll program. A
core dump is produced and control of the terminal is
returned to the monitor.

A program was developed which allows the user to
display or modify the contents of core storage. This has
proved to be a very useful debugging tool and should have

been the first application program written.

by

CHAPTER V

EXPERIENCE GAINED FROM IMPLEMENTATION

As a system 1is developed and used its good and bad

features become apparent; MUM is no exception.

Communication with the Terminal User

The first thing that was noticed was the time required
for a user to achieve his results. This of course depends on
response time but also on the amount of information that is
required to be entered by the user. On low-speed terminals
the amount typed out will also affect this time. Response
time was minimized in designing MUM but not enough attention
was paid to the dialogue with the user. The experienced user
wishes to type as 1little as possible and requires very
little information to determine an error. On the other hand
the novice wishes to enter requests using common words and
requires self-explanatory messages. A well designed system
should meet the requirements of both users. This could be
accomplished by allowing the program to provide short and
long informative messages. The monitor would display one of

the messages depending on a user defined attribute. The

45

experienced user would still be able to receive the long
message if he could not understand the short one. This
method was partially implemented to decrease the time
between program termination and program initiation, but was

not provided as a general facility.

Command Language

The second problem was the command language implemented
by the various application programs. Rules for command
abbreviation, syntax, and valid delimiters varied from one
program to another. This provided much freedom to the
programmer but was confusing to the user. This problem could
be lessened if a common command parsing routine were used by

all of the application programs.

Synchronous Processing

Although individual requests to MUM are processed in an
asynchronous manner, the processing of the requests involved
in one terminal transaction is basically synchronous. For

example the program makes a terminal I/0 request, it is

1)

rolled out, the terminal I/0 is initiated, and so on. This
synchronization is carried over to the function control
block which is used to store information about the terminal
and the program. Difficulty was encountered when the
terminal was allowed to be active at the same time as the
program since a number of the fields in the FCB were then
used for both operations. This problem was corrected so that
output operations, but not input -operations, could occur
asynchronously with the execution of the program. The
terminal buffer is also used to keep the input data until a
program is rolled in. This problem of course could be solved

by having two buffers.

Buffer Pool

MUM requires buffers to be unsegmented. As the number of
buffers increases, the efficient wuse of the buffer space
decreases. This is because a large number of messages are
short and unsegmented buffers must be the size of the
maximum message. If the buffers were segmented a buffer pool
could be maintained and requirements for a large buffer
could be fulfilled with a number of small buffers.

A buffer pool would alsoc permit the output of

47z

continuous lines of data to be made more efficient. To
accomplish this the application program would be allowed to
fill additional buffers while the current buffer is being
sent to the terminal. When the current buffer has been
transmitted there would be another buffer waiting to be
transmitted. Besides improving output efficiency, the roll
program would not have to be rolled into core as frequently

since it could fill more than one buffer with each rollin.

Abnormal Program Termination

Another improvement would be the handling of abnormal
program termination. As MUM developed, the number of causes
of abnormal termination increased. No standard method of
passing an abend code was used, which of course proved a
problem to the user when a program abended. Also, if MUM is
required to terminate a program there should be a method of
passing control to a termination routine if special

termination action is required.

48

Passwords

As was stated earlier, the signon password can be
changed by the user. Since the password is entered at each
signon, there is a high probability that an unauthorized
person may see the password; therefore has access not only
to the use of the account number, but also the ability to
change the password thus barring a valid user from signing
on. This could be prevented by not allowing the user to
change his password, but have him request some authorized
person to change it. A more flexible method would be to
require that a second password be specified whenever the
signon password is changed. Since the second password would
be specified infrequently, there is a smaller probability of

its discovery.

Statistics

Run time statistics, which are not currently available,
would also be very useful in determining system utilization.
These statistics should indicate response times, utilization
of terminals, error rates, activity maximums, and queue

occupancy times.

49

Modularity

On the positive side the modular design of MUM made the
addition of new facilities and terminal +types very easy.
This along with the ease of writing and adding application
programs reduced the development time required for new

applications.

Passing Control

The method of passing control was useful externally and
internally. Externally it is very convenient for the user to
temporarily suspend communication with one program, call
another program then return and continue with the first
program. Internally the ability to intercept the terminal
I/0 was important since modifications to the input or output

formats could be done without modifing developed programs.

50

CHAPTER VI

CONCLUSIONS

MUM has been used successfully at the university for
the past two and a half years. The current maximum number of
simultaneous wusers is twenty-five, but the average maximum
is around seventeen. The current implementation does not
support more than one roll area. This is the probable cause
for an observed degradation in response time when the number
of signed on users approaches fifteen. The observed response
time for less than ten users averages from instantaneous to
2 seconds. When response time is greater than expected, it
is usually because of interference by some other task in the
operating system.

User response to MUM has been good. An example of this
is the fact that one out of four jobs submitted for batch
execution come from MUM terminals.

The efficiency of MUM is also good. A basic system will
execute in 40K bytes. The CPU overhead is approximately 1-2%
for ten to fifteen active terminals.

Appendix A gives more details on the terminals
supported, core requirements, and application programs.

The current status and the growth of MUM are

indications that the design and implementation of +the MUM

51

system are basically sound.

52

APPENDIX A: Current Status

MUM has currently been used at the university for the
past two and one half years. The number and types of

terminals supported are:

Operator console e e e e e e e e e e e e 1
IBM 2260 cathode ray tube (CRT) 5
IBM 2741 typewriter - leased line. 8
IBM 2741 typewriter - dial line. 8
IBM 1030 card and badge reader 2
Teletypewriter Exchange Service (TWX). . . 3

Total 26

The core requirements in units of 1024 bytes are:

MONItOr o v v v & ¢ o o« o o o o o« o o o 1.1
One roll area@ . « « o o o o o o o o o o 1.1
CRT suppOrt & v & ¢ ¢ o o« o o o o o o o ° &5
Graphic access method for CRT 4.2
Operator console support2
TWX and 2741 support . . . « « « « « . 1.0
1030 support . & & ¢ ¢ ¢ ¢ e 4 e e o e .8

Control blocks and buffers . . « « . o 11.7

53

File handler(5) . . « ¢« ¢« ¢ ¢« « « « . . 10.0
Library circulation system(9) 8.2
Access methods and buffers for library. 26.0

Total 84,0

Some of the application programs which have been
developed and are in current use provide the user with the
following facilities.

1. EDIT - Card image files, which are stored on disk, can
be created, retrieved, and updated on-line. The
files can then be submitted +to HASP for batch
execution. (5)

2. PRINT - The SYSOUT data sets for a batch job can be
listed and then deleted or released to be printed on
the system line printer. (6)

3. STAT - The batch execution gueues and individual Jjob
information can be displayed. (7)

4, DSUTIL and LIST - 0S data sets can be listed, deleted,
renamed, cataloged, and uncataloged. Data set label
information and member names in a partitioned data
set directory can also be displayed. (6,8)

5. DUMP - System control blocks and core locations can be
displayed or modified. (7,8)

6. ETEXT and TEXT - By suppling additional format

54

commands with the card image file, a formatted typed
output is possible. (5) ETEXT was used to type this
thesis,

7. MSG - Messages can be sent to one Oor more users. They
are saved on disk and are displayed at the wuser's
request. (7)

8. TABLE - Mathematical table look up and a desk
calculator. (5)

9. TEACH - Computer aided instruction. (5)

10. CIRC - A roll program along with a resident module
handles all the daily 1loans, returns, holds,
inquiries, and renewals for the book circulation at
the main campus library. (9)

A resident file handler provides access to the card
image files used in applications 1, 6, and 9. (5)

The above description of the application programs is
included for completeness and should not be considered as

part of the requirements for this thesis.

55

APPENDIX B. MUM Control Block Layouts

The line describing each field in the control block

consists of four parts:

(hexadecimal) displacements of
control Dblock. If

1. Displacement - decimal
each field from the beginning of

blank then same as previous field. This is used where
the second field 1is not aligned to a full word
boundary.

2. Length - decimal number of bytes in field.
3. Name - name of field used in the Assembler DSECT.
4. Description - description of field.

MUM Communication Vector Table

24 (18)
26 (14)
28 (1C)
32(20)
44 (2C)

48(30)

60 (3C)
72 (48)

76 (LC)
80 (50)
84 (54)
88 (58)
92 (5C)

96 (60)
108 (6C)

L S S i g el

MCVTCB
MCVTSTIM
MCVTDCB
MCVTEDIT
MCVTHPLA
MCVTRESQ

MCVTHEXT
MCVTEXTR
MCVTREQU
MCVTRINQ
MCVTRAPT

MCVTRAT
MCVTTIP

MCVTMREQ
MCVTRSL

MCVTDINT
MCVTFCB1

MCVTECBL
MCVTDECB

Address of MUM TCB
Time of day when MUM was loaded
Address of DCR open list

of buffer edit routine

Address of HASP parameter list

Head of rollin gqueue for resident
programs

Reserved for future use

Highest external request code

Address of external request table

Pointers for request gueue

Head of rollin qgueue for relocatable
roll programs

Pointers for the Resident Application
Program Table

Pointers for the Roll Areas Table

Disk location and program attributes
for the signon/off program

Disk location and program attributes
for the monitor reguest program

Reserved for future use

Address of Translate Vector Table -1

Address of Device Interface Vector
Table

Address
Block

Pointers for ECB list

Address of start of dynamic part of
ECB list

Address

of first Function Control

56

112 (70) 4 MCVTECBE
116 (74) 8
124 (7C) I MCVTMAP
128 (80) 2 MCVTDISP
130(82) 2 MCVTMAPL
132 (84) 4 MCVTMDCB
136 (88) 4 MCVTHASP
138 (8C) 2 MCVTSVC
Function Control Block
0 b FCBNME
4 2 FCBLNK
6 2 FCBCHAIN
8 2 FCBSTAT
10 (A) 1 FCBTYPE
11 (B) 1 FCBMOD
12 {C) 4 FCBQ
16 (10) 4 FCBRTN
20(14) 4 FCBECB
2 FCBCOMST
22 (16) 2 FCBCOMPA
24 (18) 1 FCBCOMRA
25(19) 1 FCBHOLD
26 (1A) 1 FCBPRTY
27 (1B) 1 FCBDINT
28 (1C) 2 FCBSTOR
30 (1E) 2 FCBPATR
32(20) 1 FCBRAT
33(21) 1 FCBMOD?2
34(22) 2 FCBSDQ
36 (24) i) FCBCPU
40(28) 2 FCBMSGL

Address of last wvalid entry in

ECB list

Reserved for future use

Address of map indicating disk swap
areas in use

Beginning disk location for swap

areas

Number of available disk swap areas
Address of DCB for MSG program
Number and address of HASP DCBs
MUM 8VC instruction, NOP if SVC not

available

FCB name
Can be used to link associated FCBs
Displacement from this FCB to the

next FCB, last FCB points to the

first

Status bytes

Code for FCB type

Modifier byte of a MUM request
Used to insert FCB in a queue
Location to save a return address
Can be used as an ECB

Save area for disk location during
a common function

Save area for program attributes
during a common function

Save area for RAT or RAPT index
during a common function

Hold count, when zero can be rolled in
Priority of FCB

Index into Device Interface Vector

Table

Disk location of current program,
is negative for resident programs

Program attributes

Index into RAT or RAPT

Save area for FCBMOD during ??2LINK

Displacement to next FCB in send

queue for this terminal

CPU time used by user (currently

not used)

Message length for current write or

57

42 (1n)

44 (2cC)
60 (3C)
64 (40)
68 (44)

72 (48)
74 (4A)

76 (4C)
78 (4E)

80(50)
82 (52)

83(53)
84 (54)

85 (55)

86 (56)
87 (57)
88 (58)
92 (5C)

[SCRN ORI g N = g |

NS

-

FCBACCT

FCBFHAN
FCBTAB
FCBSIGON
FCBTRSL
FCBUFF
FCBUFSZ
FCBPOS

FCBLNSZ
FCBSTOR2

FCBPATR2

FCBRAT2

FCBTPST
FCBER

FCBRLN

FCBDEV

FCBDEVST
FCBIORTN
FCBIOECB

Roll Area Table

completed read

Account number of current user,
if no user has signed on

Used by the file handler

Current tab settings

Time of day current user signed on

Index into Translation Vector Table

Address of terminal buffer

Buffer size

Postion of carriage on line,
negative if unknown

Terminal line size

Save area for disk location during
a LINK request

Save area for program attributes
during a LINK request

Save area for RAT or RAPT index
during a LINK request

Status for TP I/0O

Error code to be posted to program
when it is rolled in

Releative line number for DEB (not
currently used)

Terminal characteristics

Terminal status

Return address when TP I/0 completes

ECB to be posted when TP I/0 completes

Z2ero

of one entry for each roll area. Each

Entry id

TCB address of task controlling
this roll area

Communication Block address

Address of FCB currently associated
with this area

Status of this roll area

Address of roll area

Head of rollin queue for
non-relocatable programs for
this area

The RAT consists
entry contains the following fields.
0 1 RATID
4 RATCB
4 4 RATCBA
8 4 RATFCBA
12 {C) 1 RATSTAT
4 RATAD
16 (10) 4 RATQUE
20(14) 2 RATSTOR

Disk location of current program,
negative if program not usable

58

Resident Application Program Table

The RAPT
asscciation.
0 1
4
4 4
8 1
4
12 (C) 8
20(14) 4
24 (18) 4

consists
Each entry

RAPTID
RAPTCB
RAPTCBA
RAPTSTAT
RAPTFCBA

RAPTNME
RAPTRTN
RAPTECB

Device Interface Table

0

The following

)

DINTBASE

of one entry for each terminal-program
contains the following fields.

Entry id

Address of TCB for resident program

Comunication Block address

Status of entry

Address of FCB associated with
program

Job name of resident program

Address of cancel routine

ECB to post when cancel request is
received

Content of base register for routines

fields contain displacements from the DINT

address to the routine which does the indicated function.

N ENO OO &

PR SV N PUL W §
—~ T~~~

A)

C)

E)

10)
18(12)
20(14)
22 (16)
24 (18)
26 (14)
28 (1C)
30 (1E)
32(20)
34(22)

NN DD N

DINTNEWL
DINTLF
DINTPAGE
DINTSETW
DINTWLW
DINTWLR
DINTSETR
DINTRLW
DINTRLR
DINTINTR
DINTMSGL
DINTHLTW
DINTHLTR
DINTERW
DINTERR
DINTAFTR

New line

Line feed

Begin new page

Setup write

Issue write when last I/0 was write
Issue write when last I/0 was read
Setup read

Issue read when last I/0 was write
Issue read when last I/0 was read
Setup interrupt read

Determine input message length

Halt write

Halt read

Analyse a write error

Analyse a read error

Exit after input has been translated

The following fields contain the character which will
perform the indicated function.

36 (24)
37(5)

1
1

DINTDELL
DINTDEL

Delete input line
Delete character from input

59

38(26) 1 DINTNL New line
39(27) 1 DINTBS Backspace
Communication Block
0 4 CBECB Event Control Block
4 4 CBFCBN Name of FCB associated with program
8 4 CBFCBA Address of FCB
12 (C) 20 CBPARM Parameter area
4 CBPARM1 Pararmeter one
16 (10) 4 CBPARM2 Parameter two
20(14) 4 CBPARM3 Parameter three
24 (18) 4 CBPARMY Parameter four
28(1C) 4 CBPARMS Parameter five
Parameter List Passed to Roll Programs
0 4 PLMCVT 2ddrres of MUM CVT
i 4 PLMUMREQ Address of routine for making MUM
requests
8 4 PLECB Event Control Block
12 (C) 4 PLNME FCB name
16 (10) 1 PLDEV Terminal characteristics
) 4 PLFCBA Address of FCR
20(14) 4 PLPARMI Parameter one, usually output buffer
address
24 (18) 4 PLPARM2 Parameter two, usually output length
28 (1C)y 4 PLPARM3 Parameter three, usually input buffer
address
32(20) 4 PLPARMU Parameter four, usually input buffer
length
36(24) 4 PLPARMS Parameter five
Roll Area
0 b4 AREARAT Address of entry in RAT
4 72 AREASAV Save area pointed to by register 13
when program is first entered
76 (4C) 40 AREAPARM Parameter list
84 (54) 32 AREACB Communication Block
88 (58) 7224 AREASIO Rollable area
116 (74) 64 AREAREG Register save area when program is

60

swapped out

180 (B4) 4 AREASPIE Spie mask and displacement from
AREACB of exit routine

184 (B8) 8 AREAPSW Resume PSW for program

192 (C0) 7290 AREAPRG Program area

61

APPENDIX C: MUM Macros

MUM macros can be divided into the following groups:
- macros which can be used in the writing of any MUM
program,
- macros which are wused specifically in an application
roll program,

- macros which generate and initialize control blocks.

General MUM Macros

$COMMENT - is used to place a comment card in front of
the program's object deck. Besides a comment, the
card contains the time and date of the assembly.
Whenever the object decks are 1link edited the
contents of the card are printed.

$DSECT - is wused to give a selection or all of the
available DSECTs for MUM.

$EQU - 1is used to give a selection or all of the groups
of EQUs commonly used in MUM.

$LPSW - makes a request to MUM to modify the current
program status word to give key zero, problem
program key, supervisor state, or problem program
state.

$PARM - contains installation specified parameters which

62

may be used in assembling MUM programs. An example
would be to specify the MUM SVC number.
$TRUP - generates a routine which will capitalize a

character string by logically oring it with blanks.

Roll Program Macros

$BEGIN - defines and initializes the data area reguired
at the beginning of the roll program. The user can
also specify the establishing of a base register,
the loading of the address of the FCB and/or MUM
CVT, and the saving of the address of the parameter
list passed to the roll program from the roll area
monitor.

$DELINK - loads register zero with the request code and
modifier for a DELINK request.

$EDIT - sets up the linkage and branches to a resident
buffer edit routine. This macro can be used by a
roll program which wants to look at the input data
before the monitor edits it.

$IF -~ has the effect of the following statement:
IF ... THEN GO TO The wuser can check the
return code from a monitor request, the device type
of the terminal currently associated with the

program, and the status of a LINK or SWAP request.

63

$LINK - loads register zero with the reguest code and
modifier for a LINK request.

$MSG ~ generates a formatted message. The user can
specify more than one line or part of a message.

$MUMREQ - sets wup the linkage for making a monitor
request. The user can also specify the registers
that should be relocated in the event of resuming
execution in another roll area.

$PAUSE - load register zero with the request code for a
pause request.

$RSTORE1 - 1loads register one with the address of the
parameter list passed by the roll area monitor. It
loads the address from the area where the macro
$BEGIN saved it.

$SEND - loads register zero with the reguest code to send
a message to a terminal other than the one that is
currently associated with the program.

$SPIE - allows the user to change the program
interruptions that should be trapped and the address
of the routine which will handle the interruption.

$SWAP - loads register zero with the request code and
modifier for a SWAP request.

$TPIO - 1loads register zero with the request code and

modifier to communicate with the terminal currently

6l

associated with the program.
$XCTL - loads register zero with reguest code and

modifier for an XCTL request.

Macros for Generating Control Blocks

The following macros with the exception of $DINT are
all located within one module. This simplifies modifing the
system configuration.

$ADDMCVT - generates an extension to the MUM
Communication Vector Table. Installation dependent
additions would be included in this macro. These
additions are inserted at the end of the normal CVT
by the $CVT macro.

$CVT - generates the MUM Communication Vector Table.

$DINT - generates the Device Interface Table and will
also establish addressibility for the interface
routine.

$ECBL - generates the ECB list. The addresses of the ECBs
which will be in the permanent section are specified
along with the size of the dynamic section.

$EXTR - generates the list of addresses of the external
request handlers. The user also specifies if the
request servicer should load the registers with the

FCB address, RAT or RAPT entry address, and the CB

65

address.

$FCB - generates the basic function control Dblock. 2ll
macros which generate FCBs use this macro to
generate the basic section.

$OPER - generates a FCB which is used to communicate with
the computer operator's console.

$RAPT - generates a resident application program table
with the specified number of entries.

$RAT - generates a roll area table with the specified
numnber of entries.

$REQU - generates the request server queue. There must be
one additicnal entry for every task, which makes a
MUM request, with a higher CPU dispatching priority
than MUM.

$TEST - generates a FCB for simulating a terminal with a

card reader and printer.

$2260 - generates a FCB for communicating with an IBM
2260 (CRT).
$2741 - generates a FCB for communicating with an IBM

2741 (typewriter).

66

APPENDIX D. Sample Application Roll Program

Below is an Assembler 1listing of a sample program.
Following the listing is the output of the test system which
simulates a terminal via the card reader and line printer.

The sample program demonstrates the use of the $BEGIN
and $MUMREQ macro which are required for every application
program.

The program also shows the ease of writing to the
terminal as well as intercepting terminal I/O via the LINK

request.

67

LCC OBJECT CODE. . ADDR1 ADDRZ STMT . SOURCE STATEMENT
12l sle 3 e e i S s 3 s ool sl S S sl o st s sl sl sie sk ks e ate o e e e sl s st ol ole s 3k ok ok ek e sk ok stesjeok
2k *
3% TEIS IS A SAMPLE MUM APPLICATION ROLL PRCGRAM . %
4 % *
5 % GIVEN A CHARACTER STRING [T WILL DO THE FOLLOWING: *
& % 1. REPEAT THE CHARACTER STRING *
7 % 2, LINK T0 ITSELF PASSING REPEATED STRING *
8 % 3, THE LINKED PROGRAM WILL REPEAT STRING AND ISSUE *
G ke ‘;A WRITE END R
10 * 4, THE WRITE IS INTERCEPTED AND THE INITIALLY %
11 * CALLED PROGRAM WILL END WITH A WRITE REQUEST*
12 * " ¥
13 sekolksloioskokaol skl skololo ok ko sioiiol ikl ok sojoioiolosioksolokok Soloksioksokokaior
15 ~$DSECT PL -~
17+% MUM PARAMETER LIST PASSED TO APPLICATION RCLL PROGRAMS
200000 18+MUNPL GSECT
o000 19+PLMCYT CS F MUM CVT ADDRESS
000004 20+PLMUMREQ TS F MONITOR REQUEST ADDRESS
000008 21+PLECR DS F ECR ,
00000C 22+PLNME DS CL4 FCB NAME
000010 23+PLOEY DS . 0C DEVICE CHAR
000010 24+PLFCBA DS F FCB ADODRESS
000014 25+PLPARMYI DS F %
DOCO1R 26+PLPARM2 S F %
S 00001C 27+PLPARM3 DS F *PARAMETERS
000020 28+PLPARM4 DS F %
000024 29+PLPARM5 DS F *
00000 30 REPEAT = CSECT
31 , $BEGIN BASE=12, INPUT=BUFFER,LENGTH=L'BUFFER
21 RBEGLE $QFLL§IF”W
000COC GDCCHOCC0000N0N0 _33+$RCLLSIC BC 4F'0°
000C10 C00G0124 34+ oC A{BUFFER-$ROLLSIO+12) INPUT AREA DISPLACEMENT
000014 00000064 35+ e A{L'BUFFER) ARFA LENGTH
000018 “90L0“CC 26+ pC F101 PARMS
_00ge1cC ‘ 80 37+ LC 15F*0' REGO-14
000058 oawa&oef 38+ nC F1108¢
00005¢ O 39+ CC B*CO0CCO0COCCCCOCO0 INTERUPTICON MASK
00005F 40+ £C AL2{0) o
000C6T NN0CCAN000 41+ CC F1C0?,B1000G000CY ,AL3{0)
000068 42+ £s OH
000C0e8 05C0 424+ CBALR 12,0
0000HA 444 USING %,12
. 0C0C6A 50iC CO0A 00074 45+ ST L1, SMUMPARM
00006F 47F0 TOOF 00078 46+] EMUMPARM+4
000072 0000 :
000074 0CCCQ000 LT+ EMUMPARM LC FiQr
gogoon e 48 USING MUMPL,1 ESTABLISH ADDRESSIBILITY
000078 9823 101C 0001C 49 LM R2,R3 PLPADNB """ INPUT ADDRESS AND LENGTH
- Q0007C¢ 1253 , 50 LTR R5,R3 IS LENGTH ZERD?
QC0D7E 4780 CQ8C OUCF6 51 Bz NOINPUT YES RRANCH
00D082 4162 3000 00000 52 LA RA6,0{R2;R3) END OF INPUT STRING

LCC CRJUECT CODE - ADDRL ADDR2 STHT SOURCE STATEMENT
000086 1A33 . o B3 » AR RB4R3 REPEATED LENGTH
000083 4930 (116 £0180 54 CH R3,=AL2{L"BUFFER) FIT IN BUFFER?
0000BC 4700 CO32 ; 00090 55 BN H 0K YES BRANCH o
000090 4130 0062 20062 56 LA R3I,L'BUFFER-2 MOVE TO END OF BUFFER-2
o 57 * T R LEAVE ROOM FOR FORMATTELC MSG
000094 1155 58 LNR R5,4R5 N
000096 1433 R s T 59 AR RB,R3 . # OF CHARACTERS TO MOVE
0000398 47D0 £038 DCOA? 60 BRNP NOMOVE ~IF NOTHING TC MOVE BRANCH
00009C 0650 , ; 81 X - BCTR R5,6 -1 FOR EX
00009E 4450 £09%4 O00CFE 62 F X R5,MOVE REPEAT STRING
RS , . ; o 63 NOMODVE $IF LINK,ENDMSG BEEN LINKED TC?
00O0A2 58F1 001¢C 00010 A4+NONMOVE L 15,16{(1) FCR ADDRESS
_0000As 9102 F0O08 000G A5+ M 8(15),2
CO00AA 4750 £0380 OCOEA 66+ RC 54 ENDMSG
O0COAE 4140 COAE N 00118 67 LA R4,RUFFER ~ RETURN BUFFER ADDRESS
0000B2 4150 0OCbH4 00064 68 LA RS,L*RBUFFER BUFFER LENGTH
00C0R4 4160 COSA 00104 69 LA RESNAME NAME OF PROGRAM
N 70 SLINK INTER=WR [OAD LINK REQUEST CODE
~ ODOOBA 4100 0682 00682 71+ LA 0s1666
DOOOhE 2 RE Eaae e T = “ AT TR HOFRES 8o ANG 5011
0000C2 4120 COAE 00118 73 LA R2 ,BUFFER INTERCEPTED WRITE MSG
‘ T R T 74 WRTEND $TPIO {WsF,FE) LCAD TPIO REQUEST CODE
. £0000CC6 4800 C118 00182 T5+WRTENC Ltk 0,=H'9601° S
: 76 MUMREQ $MUMREQ PARM=R2,REL={LINK,12) RELOCATE LINK, BASE
0000CA 5810 COODA 00074 TT+MUMREQ L 1y $MUMPARM
O0D00CE 9026 1014 20014 78+ STM R2,R2+4,20(1)
0000D2 58F1 CCO04 00004 f9+ L 1594(13
Q000D6 41E0 €076 CCOED 80+ LA T4k +{2%2)+
0000DA 1FCE B 81+ o SLR 12,14
0000DC 1FAE 82+ SLR LINKy14
- DOO0CDE OT7FF } , 83+ BR 15
00DOED 1ECE 84+ ALR 12,14
_0000E2 1kAE .85+ - CALR - LINK,14 R ,
00COE4 5010 COOA DO0T4 86+ ST 1: $MUMPARM UPDATE ONE SAVE AREA
BO0CEB OT7FA 8T oo BR O LINK
000CEA 4230 COAC 0C116 89 ENCMSG STC R3,MSG STORE LENGTH FOR FORMATTED WRITE
DODOEE 4120 COAC 00116 90 LA R2 4 MSG "MESSAGE ADDRESS
0000F2 47FC COSC ~~ ~~ 000C6 91 B WRTEND
0000F6 4120 COA2 ~ 0C10C 93 NOINPUT LA R2,NOINMSG
0000FA 47F0 CO5C ‘ 000ce 94 R WRTEND
0000FE D200 6000 2030 COQCC CONGO 96 MOVE My C D{%=%,R6),0(R2)
000104 D9YC5DTCECIE34040 98 NAME £C CL8YREPEAT?
e R .99 NCINMSG $MSG {ST,'NC INPUT!,NL)
CO010C 08D1DSDE4CCSNSNT 100+NCINMSG 0OC AL.16({$M0C101—(*+2))%25642C9),CINC INPUT!
000116 - ; 101+$¥00101 EOU;N *
102 MSG ¢MSG {ST,ssNL)
Lool1s 0oBL o 103+MS6 _..BC AL.16(2C9)
000113 104 RUFFER £S cLice
000002 106 R2 EQU 2 REGISTER 2
000003 107 R3 FQU 3 REGISTER 3

L0C OBJECT CODE. . ADDRL ADDR2 . STMT SOURCE STATEMENT

000004 . ik LB R G EQML 4 Lo REGISTER 4

cno0ons 1¢9 Rt EQU 5 REGISTER 5
. co0pos O R 116 Ré6. CEQUL 6 e REGISTER 6 ,
~ C0000A 111 LINK £QU 10 RETURN REGISTER FOR BAL

b M2 END - SR
NNO0L8N N4 113 =AL2(L*BUFFER)

000182 2531 N 114 . . =H'G6011!

CROSS-REEERENCE

SYMBOL. LENGTH,VALUE,DEFINITICN REFERENCES

$MUMPARM 4,745,417 45 46 77 86 BMODI101 1,116,101 1CC $ROLLSIC 4,0,33 32 34

SUFFER 100,118,104 34 35 54 55 67 48 72 113 ENDMSG 4,EA,89 66 LINK 14A,111 72 82 85 87

MOVE 6,FE496 62 MSG. 251165103 85 9C MUMPL 1,0,18 48 MUMREG 4,CA,77 72 NAME 8,104,998 69
NOINMSG 2,10C,10C 93 NOINPUT 4,F6,93 51 NOMOVE 4,A2,64 60 gk 2:9C,61 55 PLDEV 1,10,23
PLECB 4,842, PLECBA 4,10524 PLMCVYT 440,19 ~ PLMUMREQ 4,4,20 PLNME 449Cy22
PLPARML 4,14,25 PLPARM? 4,18,26 PLPARM3 44,10,27 49 PLPARMSG 4420,28 PLPARMS 44924429
REPEAT 1,0,30 R2 1,2,106 45 52 73 78 78 90 93 S6 R3 1,3,107 49 50 52 53 53 54 55 59 89

D oA

R4 1,4,108 67 R5 1,5,109 50 58 58 59 61 62 68 R&6 1369110 52 49 96 WRTEND 4,C6,75 91 94

N0 STATEMENTS FLAGGED IN THIS ASSEMBLY

CENTER ACCT 4,PRG AAME
1 REPEAT
PUT

NC

05

EMTER PRG NAME

#*INAREPEAT ABCD

CABCCABCDABRCDABCD
15

ENTER PRG NAME

L

'*Iﬁ CREPEAT 11111222223333344444555556666677777
11111222223333344444555556666677777111

cS
CENTER PRG ONANME

112222233333444445555566666777771111122222333334444455555666

X INHREPEAT ABCDEFCHIJKLMNOPORSTUVWXYZABCDEFGHIJKLMNOPGRSTUVWXYZ

ABCDEFGHIJKLMNOPOQRSTUVWXYZABCOEFGHIJKLMNOPQRSTU
s
ENTER PRG _NAME

VW XYZABCDEFGHIJKLMNOPORSTUVWXYZABCDEFGHI JKLMNOPQRST

GLOSSARY AND ABBREVIATIONS

Abend - abnormal termination.

Buffer - An area of core storage that is used to
temporarily store information during a transfer of
information to or from an input/output device. It is
used to compensate for a difference in the rate of
flow of information, or the time of occurence of
events.

CB - Communication Block.

Checkpointing - To record the status of a program so that
it can be restarted later.

Control block - A block of consecutive memory in which
control information is kept for the purpose of
efficient communication among the modules of a
system.

CPU - central processing unit.

CRT - cathode ray tube.

Data set - The major unit of data storage and retrieval
in the operating system.

DCB - Data Control Block.

DINT - Device Interface Table.

EBCDIC - Extended Binary Coded Decimal Interchange Code.

ECB - Event Control Block.

73

FCB - Function Control Block.

HASP - Houston Automatic Spooling and Priority System.

I/0 - Input/Output.

MCVT - MUM Communication Vector Table.

MPT - Multiprogramming with a fixed number of tasks.

Multiprogramming - A technigue for handling numerous
routines or programs seemingly simultaneously by
overlapping or interleaving their execution, that
is, by permitting more than one program to
time~-share machine compcnents.

MUM - Manitoba University Monitor.

MVT - Multiprogramming with a variable number of tasks.

On-line system - A system in which there is a direct path
between the user and the computer.

0S - IBM/360 Operating System.

RAPT - Resident Application Program Table.

RAT - Roll Area Table.

Real Time system - A system which will respond to input
sufficiently quickly to affect the functioning of
the environment at that time.

Re-entrant - The attribute of a program which allows the
same copy of the program to be used concurrently by
two or more tasks.

Resident program - A program which resides in core

74

storage for the duration of its execution.

Response Time - The time the system takes to react to a
given input. The interval between an event and the
system's response to that event.

Roll program - A program which executes under the control
of MUM and which may be transferred from or to
backing storage whenever it is inactive.

Time-sharing - A system where the user's terminal appears
to be connected to a dedicated computer and the user
can enter, test, and execute programs.

TCB - Task Control Block.

TP - teleprocessing.

XCTL - transfer control.

75

BIBLIOGRAPHY

A, References

1. Abraham, C. Manitoba University Monitor. Scientific
Reports No. 1, University of Manitoba, Winnipeg,
Canada, September 1970.

2. Martin, James. Design of Real-Time Computer Sytems.
Prentice-Hall, 1Inc., Englewood Cliffs, New Jersy,
1967. p. b.

3. Ibid., p. 46.

4, IBM/360 Operating System Seguential Access Methods.
No. Y28-6604-1. IBM Corp. Programming Systems
Publications, Poughkeepsie, N. Y. p. 78

5. Program implemented by Dr. C. Abraham.
6. Program implemented by P. A. Macdonald.
7. Program implemented by G. Neufeld.

8. Program implemented by W. Reid.

9. System implemented by the Computer Centre under the
direction of W. Doran.

B. General References

Margopoulas, W. P., and others. "On Teleprocessing
System Design,™ IBM Systems Journal, Vol. 5, No. 3,
1966, IBM Corp., Armonk, N. Y.

Martin, James. " Teleprocessing Network Organization.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1970.

Thomas, Dennis V. "Teleprocessing Control Program
Standard Interface.” Preliminary Specifications

TPS68-1, IBM Winnipeg, 1968.

76

van Dam, Anries and David E. Rice. "On-line Text
Editing: A Survey," ACM Computing Surveys, Vol. 3,
No. 3, September 1971, Association for Computing
Machinery, Baltimore.

C. MUM Manuals
Collens, R. J. (ed.). MUM User's Guide. University of
Manitoba, Winnipeg, Canada, February 1971.
Reid, W. "MUM Application Programmer's Manual," 1Ibid.,
1971.

Rugger, K., MUM Implementation Guide. Ibid., February
1971.

D. Other On~line Systems

Administrative Terminal System - 0OS: Program Description
Manual. No. H20-0582, IBM Corp. Technical
Publications Department, White Plains, N. Y.

APL/360 -Operating System- User's Manual. No. GH20-0683,
IBM Corp. Technical Publications Department, White
Plains, N.Y.

Cocchi, H., and others. Conversational Remote Batch Entry
(CRBE) . No. 360D-05.1.016, IBM Corp. Program
Information Department, Hawthorne, N. Y.

IBM System/360 Operating System: Time Sharing Option
Guide. No, GC28-6698-3, IBM Corp. Programming
Systems Publication, Poughkeepsie, N. Y.

Morrison D. T., J. Griffin, and A. M. Thurston. HOMBRE.
Central Data Processing Service Bureau, Government
of Canada, Ottawa, 1968.

Schroeter, Steve, WITS Users Guide. Third Edition.
University of Waterloo, Canada, March 1969.

Smith, Kenneth. "Remote Visual Displays," 7Use of ‘the
IBM-360, University of Nebraska, Lincoln, Nebraska,
1968.

77

Wood, John R., and others. Interactive Applications
Supervisor. No. 360d4-05.2.0710, 1IBM Corp. Program
Information Department, Hawthorne, N. Y., January
1969.

78

