
VtSI Implementation of a Ðigital l{eural
iVetwork with Cn-Chip Learnitrg

Darrell Gates

A thesis
presented to the University of Manitoba
in partial fulfillment of the requirements

for the degree of

Master of Science

Department of
Electrical and Computer Engineering

University of Manitoba
Winnipeg, Canada 1990

@Darrell Gates 1990

by

ffi*rffi Natíonaf Library
ffi "r æ of Canada

Canadian Theses Service

Otlawa. C¿n¿da
KI A ON4

Bibliothèque nationale
du Canada

Service des thèses canadiennes

The author has granted an ¡nevocable non-
exclusfue licence allowing the NationalLibrary
of Canada to reproduce, koan, distribute orsell
coË)¡es of his/her thesis by any means and in
any fo{m or format, making this thesis availaHe
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

ISBhi ú*315-71Ê31-5

L'auteur a accordé une l¡cence inévocable et
non exclusive permettant à la Bibliothèque
nationale du Canada.de reproduire, prêter,
distribuer ou vendre des copies de sa thèse
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thèse à la disposition des personnes
intéressées.

L auteur conserve la propriété du droit d'auteur
qui prot{¡e sa thèse. Nila thèse nides extraits
substantiels de celle-ci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

Canada

VSLI IMPLEI"ßNTATION OF A DIGITAL NEURAL

NETWORK W]TH ON-CHTP LEARNING

by

Darrell Gates

A tlresis subnrined to thc Faculty of Craduate Studies of
the University of Manitoba in partiar fulfìllment of the requirenrents

of the degree of

Master of Science

o 1990

Permission has been granred ro rhe LIBRARY OF THE UNIVER-
S¡TY OF MANITOBA to lend or selt copies of rhis rhesis. to

the NAT¡ONAL LIBRARY OF CANADA ro rnicrofilm ttris

thesis and to lend or æll copies oí rhe film, and UNIVERS¡TY

MICROFILMS to publisir an absrracr of rhis thesis.

The author res€rves other publication rights, and neither thc

thesis nor extensive extracts from it may be pnnteC or other-

wise reproduced without the author's writ,ten permission.

Abstract

This thesis explores the VLSI implementation of a neu¡al network with on-chip

learning capabilities. This digital ASIC is intended to be used as the basis for a

high-speed neural accelerator board. A unique digital neural network architecture

is presented and analyzed. A novel VLSI design style is introduced and developed.

Implementation details and design issues are also presented. Fundamental issues

of neural networks are introduced and major learning paradigms are discussed. A

thorough examination of digital ANNs is presented.

1V

Acknowledgements

With the encouragement and support of Dr. Howard Card, this thesis has finally

become a reality. Many thanks to the'boys' in the VLSI lab.

A special thanks to DB.

This work was partially supported through funding from the Natural Sciences

and Engineering Research Council of Canada and through equipment loans from the

Canadian N{icroelectronics Corporation.

CosaÉeaaËs

List of Tables

List of Figures

lntroduction
1.1 Purpose

I.2 The Problem

1.3 Scope

Background
2.L Neural Networks

2.IJ Chronology

2.I.2 Model of a

2.7.3 Topologies

Learning Paradigms

Artificial Neural Networks

3 fmplementation and Results
3.1 Considerations

3.2 A VLSI Design Strategy

3.3 Implementation in Silicon

4 Conclusions and Recommendations

A. Generalized Delta Rule

vttt

of Events

ix

1

8

I
10

L2

T2

I4
16

19

2T

32

46

47

50

61

82

B4

Neuron

2.2

2.3

vl

ä,ås& ofl F ågnxres

2.7

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.r2

Difficult Perceptron Convergence Task

Simplified Neuron Models

Typical Activation Functions

Multi-layer Feedforward Network
Single-layer Feedback Network (Hopfield)

Overview of Backpropagation Learning Applied to a B-layer
Network

Sigmoid Function (and derivative)

Error Surface with Local Minima

Simple Static DFF''

Overlapping in a 2-bit Shift Register

CMOS Latchup

Stacked (overlapped) DFF Cells

Overview of Backpropagation Layer

Á,rchitecture for Backpropagation Neural Network
Bit-Serial Pipelined Muttiplier Cell

Bit-Serial Pipelined Multiplier
Bit-Serial Pipelined Adder
Sigmoid Function

P\ML Activation Function

2-Input Active Multiplexor

15

t7

18

19

20

28

29

30

2.7

2.8

55

ðf

59

60

62

63

65

66

67

68

69

70

vll

3.13 Synaptic Weight Register

3.14 Reconfiguration to Support Backpropagation T,earning

3.15 Neural Network with Backpropagation Paradigm ASIC
3.16 Block-level Diagram of the ASIC Layout

3.17 Typical use of the VLSI Äsrc in a Neural Network Simulation
System

73

l5

78

79

81

vlt1

F,åsË ofl ?-ahåes

2.7 Comparison of the Brain and Neural Network Computing

70

72

80

13

3.1

3.2

.f..)

PWL Activation Truth Table for Fositive

Comparison of Multiplier Architectures
General ASIC Description

Input

IX

Chapôer k

åsatnod axc6åoxa

Artificial Intelligence (AI) is a broad term which encompasses all computer systems

that can exhibit some form of human intelligence. These human-lilce computers are

capable of performing operations that are analogous to the human capacities of iearn-

ing and decision-making.

Computers that can exhibit some form of human-like intelligence based upon cer-

tain rules or statistical inferences have been the mainstream of traditional AI expert

systems. These expert systems have traditionally been of assistance in situations

involving the laborious task of making sense out of large amounts of data (such as

the databases currently being used in the medical profession for making preliminary

diagnoses) or in performing tasks that any human would consider to be too tedious

(such as a robotic arm used in manufacturing) or too dangerous (such as a robotic

arm used in a nuciear energy plant). However, all of these traditional AI systems

suffer from serious flaws. These expert systems require permanent operators and

preprogrammed sets of rules for their operation-all of which have a dramatic effect

on the overall ability of the system to perform well in new environments and under

CHAPTER 1. INTRODUCTION

different circumstances.

A leiatively new area of Ai has emerged in

order to distance themselves from traditional AI

field contains new approaches to AI, have coined

n eu discipiine.

the last few years. Researchers, in

and to emphasize the fact that the

the term neural networks for this

In the 1950s, researchers discovered that alchitectures of simple processing ele-

ments configured in a specific order and performing simple calculations could exhibit

brain-like properties. That is, a netlvolk of interconnected processing elementsl could

make semi-intelligent decisions based upon experience alone, and could easily adapt

to new situations without having to be reprogrammed. This discovery was in sharp

contrast to traditional AI theories, wherein large rule-based systems that had been

painstakingly programmed with responses to a certain situation could be outper-

formed by a simple neural network that had been trained to respond to the same

situation. A neural network, like a human, could be taught to recognize and recall

without the use of any a priori knowledge of a pariicular problem-only a training

set of typical input/output data was required.

These two branches of AI, i.e. neural networks and traditional AI, were now com-

peting for research supremacy. In the 1960s, a book on Perceptronsfl] dealt a harsh

blow to the field of neural networks. The basic premise of this book was that a neural

network could not perform even the simplest of tasks, such as the XOR problem,2

and that the expert systems developed by the traditional AI theorists were the only
lThese interconnected processing elements lvere called'neurons'and'synapses'to stress the fact

that the algorithms being implemented came from brain theories in psychology and biology.
?The XOR problem can be stated as follows: The XOR (exclusive OR) of two inputs is TRUE if

either (but not both) of the inputs are TRUE.

CHAPTER 1. INTRODUCTION

systems that couid mimic true human-like behavior. For almost the next two decades,

most AI resealch would be guided by traditionai rule-based expert systems. Neural

network researchers (connectionists) were relegated to the backroom-it appeared as

though neural networks had experienced their demise.

Howevet, true and dedicated connectionists were quietly working in their under-

ground laboratories applying discoveries that biologists and psychologists had made

about the brain. The neurai network revolution rvas slowly maturing; and, with

the publication of Parallel Distributed Processing [2, 3] in the eighties, there was a

resurgence of interest in neural networks.

Connectionists were stressing the fact that neural networks possessed 'natural

intelligence' as opposed to 'artificial intelligence' - that neural networks contained

implementations of the naturalwa,y in which the brain functions. The notion of a com-

puter that could mimic the human mind, and actually think, had researchers from

all disciplines jumping on the proverbial 'bandrvagon'. Imagine-a computer that

could actually think, reason, make judgements, and make the same decisions that

we, as humans, might also make! This excitement was also fueled by the multitude

of science fiction writers who envisioned worlds run by computers, and Hollywood

movie moguls who instilled in us the visions of futuristic computer technology with

human-like qualities-little did they know that they were just 'fueling the fire' for

connectionists to showcase their novel ideas and present an enhanced discipline that

seemed far superior to traditional AI. Neural networks was once again being consid-

ered as a credible research field.

Traditional AI systems have failed when it comes to being able to make inteliigent

CHAPTER 1. INTRODUCTION

choices in unanticipated situations; this is where neural networks can excel and should

be used to take over from where a traditional AI system leaves off.

Picture the following scenarios:

. . . You are commìssioned with the responsibility for the safety of all passengers
on a major commercial airline. You are aware that the latest threat to airlines
is plastic explosives concealed in luggage and you know that an x-ray machine
to discover weapons being smuggled aboard has been 'pushed to the ümit'. A
trained dog could be used to sniff all baggage before it is loaded onto the plane;
howevet, most passengers would not appreciate the delays and a trained nose
of a dog could be tricked with other overpowering scents. You, yourself, could
examine every piece of luggage that is checked, but this wouid be a very slow
and expensive process. Imagine if you could employ a computer (something
Iike a robotic dog) that was trained to 'sniff' every piece of luggage and make
an intelligent decision as to the possibility of a concealed bomb, without the
use of any type of human operator (which an x-ray machine requires).

. . . You are driving to the restaurant and you notice that your dinner reserva-
tions are not for another hour. You pick up the phone and advise the ümousine
driver to drive around the city so that you can impress the lady that you are
with and get to know her a little better. The car speeds up and takes you past
all the hot spots-so that you can impress your friends too. You finally arrive
at the restaurant, on time, and you're a big hit with the lady. Out of the kind-
ness of your heart you decide to tip the ljmousine driver $50 before you go. As
you lean into the front seat, you discover, to your amazement, that the driver
is actually a computer that has been trained to drive the car (and all along you
thought he was just short). You can't believe the skill with which this machine
has negotiated all the hazards of the road. Since you are an educated engineer,
you marvel at the reaJity of such afuturistic machine, pocket the $50, and enter
the restaurant.

. . . You are engaged in some type of intelligent conversation with a machine
that makes human-[ke decisions and responds through verbaf communication,
and accepts and executes verbal orders in a quasi-intelligent manner. Imagine
the possibilities . . . a computer that could actually think and talk.

Does this sound like science fiction? Or does it touch on reality? All of these

stories were once in the minds of people with (\¡vild' imaginations; however, with

current advancements in neural network technology, these futuristic idealities have

almost become a present-day reality.

CHAPTER 1. INTRODUCTION

In fact, a system that can detect bombs concealed in baggage is already operating

at several major international airports in the world. This system, called SNOOPE

(System for Nuclear On-line Observation of Fotential Explosives), developed by

Science Appiications International Corp. (SAIC), uses a neural network that makes

decisions about baggages that may contain a bomb. SNOOPE is mainly hardware-

based with an expert system and a neural network that complement each other in

the decision-making process. The neural network takes over from the point where

the rule-based system tends to fail. According to an SAIC sales brochure, the system

works by exposing the luggage to "low energy (thermal) neutrons and analyzing the

gamma rays resulting from neutron absorption by atomic elements in the luggage.

The computer softlvare searches for specific combinations of atomic elements that

characterize explosives." The expert system follows rules that are preprogrammed

for known explosive compositions while the neural network has been trained to rec-

ognize these specific compositions. The neural network can also generalize to other

combinations of atomic elements that may characterize explosives-compositions that

have not been specified in the expert system. The system does not requile a human

operator to interpret the data; rather, the system makes an intelligent decision based

on its current knowledge.

Real-world problems require neural networks that can generalize in situations

not previously encountered. Being able to properly generalize is important for an

unmanned vehicle to navigate a territory ihat is unfamiliar. This is exactly the

case with ALVIIIN (,4.utonomous f,,and Vehicle Xn a Neural Network), developed

at Carnegie-Mellon University (CMU) by D.A. Pomerleau et al., where the goal is

to allow the vehicle to navigate along a winding road. Sensor inputs to the neural

CHAPTER 1. INTRODUCTTON

network are through video cameras that act as a "video retina" [4]. The neural

network embedded in the computer system of the vehicle is trained to recognize

certain features of a typical roadway, such as trees and road edges, and is released

on a previously uncharted roadway. The neulal network has also been trainecl to

steer the vehicie and to accelerate and decelerate. In order for the vehicle to make a

completely autonomous navigation of the roadway, the training set is very important.

If not enough information has been provided during training, the vehicle may not

respond correctly. If it is given too much information, the vehicle may not be able to

adapt to new situations. Presently, the vehicle can accurately drive at 3| mph along

a short path, under various conditions of weather and lighting. This is double the

speed of that achieved by ALVINN using a non-neural network system in attempting

to drive the same pathway. While'unmanned driving' has not yet progressed to the

same level of confidence as that of the limousine driver pictured in our scenario, it is
definitely a step in the same direction.

One of the classic examples of a neural network that demonstrates impressive

potential is NETtalk; a computer program developed by Terence Sejnowski and

Charles Rosenberg. The program configures a neural network that learns to read

English text aloud without having to use linguistic rules. The neural network is

shown a textual conversation that had been transcribed by a linguist into the correct

phonemes. The diference between the network's response and the correct response

is 'how' the neural network is trained to read the text. Jusi like children who learn

to speak by listening, trying and being corrected, the neural network will 'pick up

on' all the regularities and exceptions in the pronunciation of the English text. This

flexible learning process is in stark contrast to the rigid requirements of an expert

CHAPTER 1. INTRODUCTION

system, which must have a large database of linguistic rules, words and pronuncia-

tion examples stored in memory. The Engiish language is very confusing-we don't

always follow the rules or say words as they are noted in the dictionary. It rvould

take an expert system just to program all the rules into another expert system that

could handie English speech as well as NETtalk does. However, neural networks, in

this extraordinary example of their power, have gotten us a step closer to the talking

computer.

The three systems presented are excellent examples of neural networks currently

operating in the 'real world'. Granted, they exhibit only some resemblance to the

scenarios pictured previously, but the use of neural networks is currently in its infancy.

However, the fine line between science fiction and reality is becoming thinner with

each new advancement in neural networks.

Although these systems exhibit three very different approaches to neural network

implementations, they all utilize the same learning paradigm. A learning paradigm

is a rule (or law or algorithm) that a neural network uses to modify its internal

structure so that it may exhibit learning characteristics. There are many neural

network architectures and many associated learning paradigms that are optimized

for certain applications. One of these paradigms is the backpropagation of error

learning rule (sometimes referred to as backpropagation, or simply backprop) that

is used in each of the above examples to train the network to respond in a human-

like manner. Both SNOOPE and ALVINN use dedicated hardware to implement the

various equations that are inherent in the backpropagation algorithm. This algorithm

requires many multiplications and additions that are performed in parallel---current

Von Neumann-style serial computers do not have the power to efficiently execute

CHAPTER 1. INTRODUCTION

this algorithm. Therefore, SAIC and the researchers at CMU have each developed a

general purpose digital signal processing hardware board that is used to accelerate

most of the calculations required by the backpropagation algorithm. These systems

operate mainly in a sequential fashion, and are optimized to do multiplication and

addition in much the same way as today's Digital Signal Processing (DSP) integrated

circuits. Thus, these systems are deficient of the inherent parallelism which gives

neural networks their strength. Software couid be partitioned into a parallel structure

and run on a parallel computer', such as the Connection Machine; however, parallel

computers are not that accessible.

Although these implementation strategies offer flexibility and short-term ade-

quacy, we feel that the ultimate solution to making a computer that mimics the

human mind is the implementation of a neural network in silicon. The advancement

of Very Large Scale Integration (VLSI) technology has made the implementation

of neural network paradigms3 in a Application Specific Integrated Circuit (ASIC) a

reality.

L.3- Furpose

The purpose of this thesis is the direct implementation of a neural network that is

capable of performing on-chip learning utilizing the Backpropagation Learning Algo-

rithm in a fully-digital VLSI ASIC. This chip is intended to be used as the basis for

a neural hardware accelerator board for the purpose of increasing simulation speeds

of feedforward neural network models.
3A neural network paradigm refers to a neural network architecture and its underlying learning

paradigm.

CHAPTER 1. INTRODUCTION

Since the current trend in artificial neural network research focuses on analog

devices, we also want to look at the role thai electronic digital hardware will play in

future implementations of neural network models.

L"2 ?'he Problert.

Artificial l{eural Networks (ANNs) are still in their infancy and until parallel com-

puting architectures become the norn1,) connectionists will have to simulate neural

network paradigms on traditional Von Neumann-style serial computers that are con-

ventionally slow for massively parallel problems such as neural networks. The alter-

native, in the meantime, is to build electronic architectures that emulate neuronal

behavior with the hope that these structures will form the basis for a parallel com-

puting architecture based on neural networks.

DSP based hardware accelerator boards are the current 'hot topic' of digital neu-

ral network designs. These ANNs rely on the DSP to perform learning algorithms

in essentially a sequential manner. l,leural networks are inherently parallei by nature

and attribute their speed to this massive parallelism. Designing parallel architectures

using DSPs is not very practical; costs of optimized signal processing chips can be

horrendous. Siiicon implementations of neural networks can be very cost effective

in modelling massive parallelism. IIowever, most neural network ASICs do not in-

clude the learning algorithm on-chip; they usually depend on a host computer that

is typically serial.

Learning paradigms can be very slow on traditional serial computers. Performing

the backpropagation learning algorithm for large networks on a serial computer is just

CHAPTER 1. INTRODUCTIOI{

not practical; the learning time increases tremendously with the number of neurons,

the probiem size, and the training set. The short-term aiternative is to implement

the algorithm in silicon as an integrated cilcuit. This rvill relieve the host computer

of the tedious task of arithmetic calculations. If we can optimize hardware to perform

this, or any other, learning paradigm, we can obtain results much faster and increase

productivity.

The necessity for an ASIC that will perform a neural network paradigm is to create

circuits that are direct implementations of biological neurons that will eventually be

used to form a human-likebrai,n structure; DSP accelerator boards are nothing more

than enhancements to current computing power and will eventually become engulfed

by advancements in computer technology. A VLSI implementation will allow the

neural network researcher to optimize the algorithm being implemented.

1- "S Scope

We begin this thesis with a study of the background of neural networks. A brief history

of neural network development is presented - including some major events that

shaped the field. A typical neural network model is described and various typologies

of neural networks are reviewed. We state some of the more interesting learning

paradigms with a major emphasis on Backpropagation learning. We conclude the

Background chapter with a thorough examination of ANN implementations.

The next chapter describes a VLSI implementation of the Backpropagation algo-

rithm. We begin this chapter with a discussion on implementation issues regarding

the design of the major components within the neural network structure. A section

l0

CHAPTER 1. INTRODUCTION 11

on a novel VLSI design technique is presented. We also present our implementation of

the algorithm in a VLSI ASiC - describing the major components within the design

and how they ale linked to form the network.

Finally, we present our conclusions and recommendations for further study.

Appendix A offers a mathematical derivation of the Backpropagation algorithm

from its roots in the Perceptron Convergence Theory to its current generalization of

the Delta Rule.

Ð&aapåer m

ffiaaå<gtrc>å-xsad

2.L Neural Networks

Neural networks can be described as an attempt to create a machine that mimics the

thought processes of the human mind; a machine that can, by intuition and inference,

make sense out of incomplete, confusing or fuzzy information. Neural networks exhibit

characterisiics of biological models of brain-like behavior. An artificial human brain?

Well, maybe. But current neural network models come no where near the complexity

of the human brain. Table 2.1 shows the relationship between biological processes in

the brain and current digital computer architectures of neural network models. The

human brain contains about 100 billion neurons, each of which connects to about

10,000 other neurons in a massively parallel structure. The brain can perform most

cognitive processes in less than 500 rns even though the neuron's speed has been

estimated at around only 1 ms, simply by this inherent parallelism. A human can

perform simple vision tasks that thousands of super computers can't. But a simple

pocket calculator can outperform a human 10-to-1 on explicit arithmetic problems.

As you can see, brains and computers do not compute the same.

L2

CHAPTER 2. BACKGROUND

Table 2.1: Comparison of the Brain and Neural Network Computing
[20]

Neural networks spread the problem into smaller tasks and distribute the pro-

cessing to its simple parallel processors. The brain uses this parallel distributed pro-

cessing to perform cognitive tasks such as natural language understanding, abstract

reasoning, concept generalization, knowledge processing, pattern classification, com-

puter vision, association and evaluation. Conventional computers are outstanding at

arithmetic processing, sorting and logic; all processes that the human brain has the

potential to do, but cannot do with any efficiency.

Neural networks are simple systems that are capable of complex behavior. By

simplifying the processes of biological neurons, a system that reasor¿s can be devel-

oped. This development is an indirect reaction to the failure of traditional artificial

intelligence (AI) research into the laws and rules governing cognition. Decades of AI

research has not resulted in substantial progress, hence the rebirth of neural networks

and natural intelligence (NI).

13

ELEMENT BR,AIN NEURAL NETWORK
Organization
Architecture
Hardware
Structure
Technology
Processing
Speed

Network of l',leurons
1011 neurons
Neurons
10{ connections/neuron
Biological
Analog
10-3 sec

Network of Processing Elements (PEs)
< 100 PEs
Switching device (transistor)
< 100 connections/PE
Silicon
Digital or analog
10-e sec

CHAPTER 2. BACI(GROUND

2.L"L Chronol"gy of Ðvents

Modern neural network theories can be traced back io ideas first introduced in the

1940s and i950s. In 1943, McCulloch and Pitts were developing mathematical theories

on the nervotls system and how neulons might work. [15] A few years later, Hebb

introduced a learning rule whereby netrvorks would reinforce response patterns that

occurred most often, as though they were learning by experience. [i6] This rule stated

that a connecting synapse between trvo simultaneously active neurons should become

tstronger', while inactive neurons would cause a synapse to 'weaken'.

In the late 1950s, Rosenblatt developed networks that could learn to recognize

simple patterns. [17] The perceptron, as it was called, could decide whether an input

belonged to one of two classes. A single node would compute the weighted sum of

binary-type inputs, subtract a threshold, and pass the result through a non-linear harcl

limiting threshoid that classified the input. The perceptron formed a two decision

region separated by a hyperplane. The Perceptron Conaergence Theory was deveioped

by Rosenblatt as a means for adjusting the weighted connections until a stable state

was reached. Rosenblatt proved that if the inputs form two separabie classes, then

the output of the network will converge to one of these two classes. At around the

same time, Widrow and Hoff were developing a theory to reduce the error between

the actual output and the desired output of a perceptron-like network, in a least

mean squared (LMS) sense. [tA] The LMS algorithm is similar to the Perceptron

Convergence Theory except for the fact that Widrow and Hoff's LMS algorithm uses

a threshold-logic nonlinearity for the transfer function, so that more than two classes

of output are formed. These two theories have formed the basis for most learning

l4

CHAPTER 2, BACKGROUND

Figure 2.1: Difficult Perceptron Convergence Task [1]

algorithms to date. Recently, though, modifications to the Hebbian rule have been

successful in the formation of other new learning algorithms.

In what mainstream connectionists might call a catastrophic event, Minsky and

Papert 'slashed' the Perceptron Convergence Theory in their book on perceptrons [1].

In fact, though, Minsky and Papert showed that only a 'small' class of perceptrons

could not perform certain tasks in pattern recognition. It turns out that some of

the tasks the perceptrons could not perform are also extremely difficult for human

vision-like discerning which "one of the two spirals [on the cover of their book]

is made with a single line...land which] is actually two lines nested within each

other," (shown in Figure 2.1)1 [56]. Nevertheless, the 1960s and 1970s proved fatai

for neural networks. While traditional AI theories of symbolic processing flourished,

NI theories vanished into relative obscurity. True connectionists, however, were not

discouraged. Pioneers in the field, such as Grossberg and Kohonen, were producing

networks and ideas throughout the 1970s [tS].
1It is easy for one to trace the lines by hand, but there are no visionary clues that teìl us that

the spiral on the right is a fully-connected single line.

15

CHAPTER 2. BACKGROUND

In 1982, Hopfield discussed the application of analog non-linear interactions in

neural networks and introduced ideas on electronic circuits for these networks [81]. It
wasn't until1986, when Rumelhart and McClelland introduced the concept of. Parallel

Distributed Processing (PDP) [2, 3], that neural networks regained their popularity.

The PDP group of researchers introduced models based on nodes and connections, and

the laws that changed the activities in them. The current flood of activity in neural

networks is in relation to the concepts of subnetworks and connections analogous to

the nature of brain parts. Engineers are currently learning and applying connectionist

principles in the design of specific implementations of these subnetworks.

We have presented what we feel are the most influential events of the past five

decades. Who knows what the next five decades mighi bring?

2"L.2 Model of a Neuron

It is important to understand how a biological neuron works in the human brain

before attempting to design neural network models. Figure 2.2(a) is a simplified

model of the structure of a neuron in the human brain. Basically, the neuron consists

of a cell body (sorna) whose physical shape seems to partially determine the function

ihat it will perform in the brain. A complex set of interconnections add to this

determination. The neuron's input connections (dendrites) accept electrical signals,

that are either excitatory (positive) or inhibitory (negative), from other neurons'

output connections (arons) through links, called sAno,pses,, that modify the axon's

potential. It is theorized that the neuron performs a weighted sum of input signals

and emits an output signal proportional to some threshold function. Recently, it has

been suggested that computation also takes place outside the soma [20].

i6

CHAPTER 2, BACKGROUND

Dendrites

from
other

neurons

outputs
from
other

neurons

(b)

Figure 2.2: Simplified Neuron Models [20]:

Threshold

neuron
output

(a) biological (b) artificial

L7

napses

\

Sy

synapses

CHAPTER 2. BACKGROUND

(a) Hard Limiter lb) Piece-wise Linear (c,) Sigmoid

Figure 2.3: Typical Activation Functions

An artificiai neuron, or processing element, is shown in Figure 2.2(b). The

simplified modei consists of weighted input connections (analogous to synapses and

dendrites), the summation and activation units (the soma), and the output connection

(the axon). The input signals, usually positive, can become either excitatory or

inhibitory, by using bipolar weights. The model performs a weighted summation

of its inputs, passes this summation through a transfer function (the threshold) and

produces an output activation that is sent to other neurons in a network. The transfer

function defines the output state of a neuron. Typical transfer functions, of which

the sigmoid is the most popular, are shown in I'igure 2.3. In this simplified model

of an artificial neuron, most of the biology is omitted. Models of neural networks are

usuaily characterized by the topology of the network and its learning rules.

In the next few sections we will shorv some basic neural network topologies and

state some important learning rules.

18

netj

CHAPTER 2. BACI(GROUND

lnput Layer Output Layer

Figure 2.4: Multi-layer Feedforward Network

2"L.3 Topoiogies

Neural network behavior is usually characterized by the way in which neurons are

interconnected. There are two major classes of neural network topologies.

The feedforward network usually consists of layers of neurons that are connected

such that neurons in one layer can only connect to other neurons in a higher layer

(connections to lower layers are forbidden). This type of network, usually called a

multi-layer feedforward networlc, is shown in Figure 2.4. Input signals propagate

forward through the network until they reach the output layer. Layers that are

neither input nor output are referred to as hidden layers because they contain abstract

representations of user-defined input/output values.

19

i'iHidden Layer

!:

CHAPTER 2. BACI(GROUT{D

INPUTiOUTPUT
LAYER

Figure 2.5: Single-layer Feedback Network (Hopfield)

The second class of topologies is the feedback network. Feedback networks can

take many forms, such as a multi-layer feedforward network with the output layer

connected to the input (sometimes called sequential networks) or neurons connected.

to each other on the same layer (usually called lateral inhibition or comparative

networks). However, the most basic form of a feedback network (and one of the most

useful) is the Hopf,eld neural network, shown in Figure 2.5.

The Hopfield network is used mainly as an associative memory, and is referred

to as seff- organi,zing. In this topology, all neurons are connected to each other in

a grid-like structure and the layer of neurons functions as both an input and an

output. It is interesting to note that although feedback networks are typicaily used

for associative memories, there is no reason that a feedforward network could not also

be used. In fact, it can be shown mathematically that a feedback network has an

equivalent feedforward network that can perform an identical task [2i].

A typical neural network model has been summarized in [2, 3]. The model includes

20

CHAPTER 2. BACI(GROUND

processing units, states of activation, an output function, a network pattern of con-

nectivity (topology), propagation rules for propagating patterns of activity through

the network, activation rules for combining inputs and current state to create new

activities, a learning rule for modification of connection strengths between units, and

an environment in which the neural network can operate.

A neural network in its most general form looks like any other parallel processing

architecture. In fact, the neural netwolk model consists of processing elements (neu-

rons), connections between processors (synapses) and information that passes passing

along these connections. Just as a parallel processing architecture is defined by the

topology of its interconnections, so too is the neural model.

2"2 l,earning Faradigms

Without a program of instructions, a computer is a 'useless' machine. The program

usually instructs the computer to perform specific tasks on a set of input data to

create some sort of output. Therefore, the program is an essential part in a computer

environment. We have seen how a typical neural network is constructed. If these types

of networks are to be useful, we must be able to programthem as well. Neural networks

are not programmed in the conventional sense (it would be virtually impossible), they

arc taught.

Teaching a neural network cognitive knowledge is basically a modification of the

synaptic weights according to some learning algorithm or rule. Therefore, we often

say that the 'knowledge of a neural netwolk is in the weights'. The analogy to human

behavior modification is no coincidence, as neural networks try to mimic the human

21

CHAPTER 2. BACI{GROUND

thought process. Learning rules are usually called paradigms, which simply means ,,an

outstanding, clear and typicai example, model or prototyp e" 1221. Learning paradigms

are Senerally associated with a particular neural network structure. Just as there

ale many neural network topologies, there are equally as many learning para<|igms.

This section does not attempt to cover the myriad of approaches to teaching neural

networks; rather, it is intended to introduce a few of the more interesting and popular

learning paradigms, and to state the Backpropagation of Error learning paracligm or

Generalized Delta Rule. Refer io Appendix A for a mathematical derivation of this

learning paradigm.

Learning paradigms can be broken down into three classes [23]: (1) supervised

learning, whele a teacher provides an input and output training pair of vectors to

the network; (Z) reinforcement learning, which requires a single scalar evaluation of

the output; and, (3) unsupervised learning, where only an input vector is supplied.

Within each of these classes, learning takes place by modifying the synaptic weights

after some type of error measure is performed.

In the case of supervised learning, an a priori knowledge of input/output responses

is necessary (for example, the XOR logic problem), and the error between the actual

response and the target response is used to correct the network. Reinforcement learn-

ing utilizes a global reward strategy whereby credit is assigned to a local decision by

measuring the correlation between it and the global reinforcement signal (an example

could be ihe 'Hot & Cold game' where someone is guided by'hot' and 'cold' verbal

signals). Unsupervised learning requires only that an input signal be presented to the

network. After a set of trials are presented, a grade or performance measure is taken

at the output and a score that tells how well the network is doing is created. lVithin

22

CHAPTER 2, BACKGROUND

each class there are various learning procedures (sub-classes) that are distinguished

only by how they treat the error signal; as usual, there are some exceptions. Learning

in a neural network occurs as the weights are changed to reduce the errors - in effect,

the network gains experience [21]. The learning procedure is usually stopped after a

set of training patterns are successfully learnedby the network. The final pattern of

synaptic weights represents the knowledge of the system and is generally fixed afte¡

training.2

Unsupervised learning discovers the underlying structure of variables and asso-

ciates a correct response. A popular unsupervised learning procedure is the Kohonen

self-organizing feature maps, as described in [2a]. A two-dimensional array of output

units approximates the probability density function of a set of input vectors. The

output units form an ordered set of clusters of vector centers that sample the input

space. The units compete in a modified winner-takes-all manner, such that the unit

whose weight vector generates the largest dot-product with the input vector wins.

Competitive learning is also an unsupervised learning procedure. A set of hidden

units compete with each other to become active, such that disjoint clusters of similar

input vectors are formed [23]. As input vectors are presented, the hidden unit with

the greatest total input wins and turns 'on' fully while all other units turn 'off'. It

then increases its weight vector by a small fraction so that in future trials it will

continually win the competition for the same input vector. Constraints are placed on

weight vectors such that the sum of its components are kept constant so that the same

unit can't keep winning. Competitive learning can be modified io perform Kohonen
zThere are times when a certain task requires conùinuous adaptation of the network, such as a

system that changes wiih time.

23

CHAPTER 2. BACKGROUND 24

feature maps simply by updating the rveights of neighboring clusters.

Another unsupervised learning procedure based on competitive learning is called

the Adaptive Resonance Theory (ART). This theory, developed by Grossberg and

Carpenter [25], is a complex set of training rules for a feedback network; training

a feedback network is difficult because adjusting weights affects signals in both the

forward and backward paths. ART networks self-organize to stable recognition codes

in response to inputs of arbitrary sequences. Suffice it to say that ART uses a complex

modification of the competitive learning model; the technical details are beyond the

scope of this section.

Modifications to the Hebbian learning rule are resulting in new learning paradigms

that are becoming quite popular. Hebbian learning can be described as 'learning by

experience' whereby neighboring units strengthen or weaken connections between

themselves. The basic equation in this type of learning is Ato;¡ : noioj, where o¿

and or' are the outputs of the irå and jtà units, respective\y, A,w¿¡ is the connection

strength between these two units, and 4 is the learning rate.

A Linsker network [26] is a self-organizing, unsupervised learning paradigm that

uses modified Hebbian learning in a linear layered network. This type of learning

maximizes the variance at each unit's output such that maximum information is

preserved at a layer of units, subject to certain constraints.

By combining both Kohonen's and Grossberg's learning rules, Hecht-Nielsen has

come up with what he calls Counterpropagation 1271. It is not a learning rule in the

strict sense, but rather it is a self-organizing network of combined rules. The network

functions as a statistically optimal self-programming lookup table.

CHAPTER 2. BACT(GROUND

Reinforcement learning procedures are not as common as (un)supervised learning

procedures; we are, therefore, only considering one type of reinforcement procedure

here. The Associative Reward-Penalty (An-p) is an attempi to map automaton

theory onto connectionist networks. Each stochastic unit (see Boltzmann below) is

treated as an automaton and the state each unii adopts is treated as the automaton's

action. If linearly independent input vectors are presented, and the network contains

only one unit, A¿-p finds the optimal weight values. A network of these units will

develop useful state representations 123].

Supervised learning requires that a teacher present a set of training examples

such that the network can learn to recall these examples and make inferences about

incomplete or unanticipated examples. A Boltzmann learning procedure, which uses

a generalized Hopfield network, utilizes a stochastic decision rule to update the states

of units. A probability distribution is 'learned' by adjusting the weights betrveen

units. Each unit has an associated probability that it will be in one of two states.

Repeated applications of this rule to each unit will cause the network to reach 'thermal

equilibrium'. At this point, the probability of a global state is constant and follows a

Boltzmann distribution. The network first receives an input/output training pair and

simulated annealing (a gradual change from one state to another to reach a global

minimum) is used to reach equilibrium. Weights are incrernentedby Hebbian learning

at this stage. This is repeated for the entire training set. A second phase is run with

no output values and is again annealed to equilibrium. This time, however, weights

are decremented by Hebbian learning (a form of. unlearning). Learning halts when the

probability distributions of the two phases are the same. A special case of Boltzmann

learning, used in an unsupervised capacity, is when no i,nput units are used. The

CHAPTER 2. BACKGROUND

network learns to model a probabiiity distribution that is specified in the output

units' The advantage with this type of network is that it will perform completion

of a partial vector that is clamped at the output. Learning in a Boltzmann machine

is very slow since reaching thermal equilibrium by simulated annealing is a time-

consuming process. An approximation to the Boltzmann statistics, by estimating the

network's n'¿eo'n behavior, is a solution. Mean Field Theory (from Physics) replaces

each unit's binary state by a deterministic real-value that represents its expected

value. Deterministic relaxation is used in place of simulated annealing, to obtain a

representation of the equilibrium distribution [23].

We have been necessarily brief in our discussion of learning procedures ihus far.

Much of the mathematics have been omitted in favor of presenting conceptual ideas.

We will now discuss, in more detail, the Generalized Delta Rule or Backpropagation

Learning Rule.3 Refer to Appendix A for a complete derivation of this Backprop-

agation Learning Algorithm. This supervised learning paradigm is, by far, the most

common in its class. Backpropagation is the workhorse of all neural network learn-

ing paradigms. Backpropagation seems to be the best general-purpose model for

generalization in a feedforward network that uses the Generalized Delta Rule [21].

The history of backpropagation is quite amazing. Although McClelland and,

Rumelhart et al. [2, 3, 85] have been credited with the inception of the backpropaga-

tion learning rule in 1986, they cited Parker's work on learning logic [28] from 1g85.

Later, Parker discovered the 1974 work of Werbos on regression analysis [2g]. It
turns out that backpropagation is a special case of traditional statistical regression

sThe Generalized Delta Rule is a generalization of the Delta Rule which happens to be similar
to the Least-Mean Square (LMS) Learning Rule [1S] . Backpropagation seems to be a term coined
by the PDP Group [2,3]. Nevertheless, the trvo terms are'used interchangeably.

26

CHAPTER 2. BACI(GROUND

techniques [30]. In 1988, LeCun 131] discovered the i969 work of Bryson and Ho on

applied optimal control [32], where similar techniques to backpropagation were âp-

parentiy introduced. lVho knows, "even earlier incarnations may yet emerge." [83].

Nevertheless, IvlcCleiland and Rumelhart can be crediied with introducing backprop-

agation into a usable form for neural network learning.

Backpropagaiion learning requires the propagation of error deltas (differences be-

tween target and actual output values) backwards through the network. The applica-

tion of the backpropagation learning rule to neural netwolks thus forms an apparent

paradox. Real neurons cannot run backwards (evidence suggests this), so this learn-

ing rule is not biologically plausible. Also, backpropagation learning is generally used

by feedforward neural networks-the ultimate contradiction. However, it is only the

eï'ror signals that are propagated backwards through the network during learning;

and those signals propagate down the same connections (synapses) as the forward

mode.

The three-layer feedforward network of Figure 2.6 shows an overview of the

backpropagation learning rule. The rule is, however, generalized to operate on any

multi-layer network. We will assume the convention that oj refers to the output of the

jtå neuron and w;¡ refers to the connection strength from the ith to the jth neuron [a

superscript in the equation indicates the associated layer: I (input), H (hidden) and

O (output)]. A set of training patterns is presented to the network one at a time. The

input vector propagates through the network to form the normal sum of products,

net¡ - D;1Ls¿jo¡, where netj tepresents the total input to neuron j. The output of

neuron j is a function of its total input, oj : f(net¡). This function must be non-

linear with a bounded derivative. The most useful transfer function is the sigmoid,

27

CHAPTER 2, BACI{GROU¡'/D 28

@

@

@

@

@

@

Hidden Layer

H

n neurons

Output Layer

o
n neurons

lnput Layer

I

n neurons

Figure 2.6: Overview
Network

of tsackpropagation Í,earning Applied to a 3-layer

CHAPTER 2. BACI(GROUND

Figure 2.7: Sigmoid Function (and derivative)

o¡ : *jq, shown in Figure 2.7, along with iis derivative. The derivative of the

sigmoid function is simply f'(net¡): o¡(7 - o¡).

The goal of the backpropagation learning algorithm is to reduce the total error,

E : TÐrÐtçtrt - opj)2, by adjusting the weights tr.'¿¡; where úo¡ represents the target

value of the jtå neuron with respect to training pattern p. Usually E is estimated

by taking the error after each pattern and is averaged over the enti¡e set of patterns.

Presentation of an entire set of training patterns is called an epoch. Error derivatives

are propagated back through the network from the output layer. An error vector is

created at the output layer by taking the difference between the actual and target

outputvectots, #:(t¡_ o¡),whereújrepÌesentsthetargetvalueforthej¿åneuron.

Thus, the error delta of an output neuron is specified as 6l : ffif,@etj) : (tj -
o¡)o¡(I - oj).The error delta traverses the network in reverse through the synapses

to lower layers. We recursively define the error delta of a hidden layer neuron ûo be

$lt : f
t(net;)

D¡ 6? r,,. This definition can be used for any number of hidden layers in

)q

oi oi

t----z- _r
1+eneti

ol= or(t
,)

j

CHAPTER 2. BACI(GROUND

poor local m¡n¡mum good
local

mtntma
(global)

Figure 2.8: Error Surface with Local Minima

a multi-layer network. Learning is accomplished by modifying the weights according

to A'ro;¡ : T6 jo¿, in the direction to decrease ,Ð. The process is repeated for the next

training pattern and so on. After a number of epochs, a performance measure is taken

and training halts when the error is no longer significant; i.e. when the patterns can

be recalled adequately. The backpropagation rule is performing a gradient-descent

heuristic as it tries to minimize the error function. As long as the training vectors are

appropriate for a solution to exist, backpropagation will always find a set of weights

that will minimize the error function, E. If the network has hidden layers, however,

this might not always be a global minimum. Gradient-descent follows the negative

slope of the error derivative. The error surface may contain many locaL minima; a

2-dimensional cross-section of an error surface is shown in Figure 2.8. If the set of

weights finds one of the local minima, it does not mean that the solution is wrong

- there could be many solutions to a single problem and the algorithm has just

found one of them. Backpropagation learning rarely encounters poor local minima,

provided there are more neurons and synapses than the problem requires.

30

E

w..

'J

CHAPTER 2. BACKGROUND

Generally, the most serious problem with the backpropagation learning algorithm

is that it takes many epochs, sometimes thousands, to converge. But backpropagation

is great at training a neural netlvork to generalize, therefore, much research has

been directed into backpropagation speedup techniques. Since the conventional means

of executing the backpropagation paradigm has been on sequential compgters, the

obvious way to speed up learning is to distribute the processing of each neuron (or

even each connection) on a separate processing element. It has been shown [23] thai

the learning time for the backpropagation algorithm is approximately O(tV3) where N

is the number of weights in the network. A parallel distributed processing structure

of weights would decrease the learning to approximately O(N'). The improvements

will be significant for networks with a small amount of neurons, but not for larger

networks. AlternateiY, w€ could implement a dedicated array of hardware neurons

and synapses that would execute the learning algorithm directly.

By including a term as suggested in 12, 3], such that A,r.r:;¡(n+1) : 116¡o;+a\u¿j(rr)

(where n indexes the presentation number and a is a constant), 'momentum' is built

up as the weight changes step along short regions of constant gradient in the error

surface. This acceleration is cancelled-out as the error derivative increases.

Gradient-descent methods (first derivatives) only give the derivative of the error

surface at a point. Knowing the curvature of the surface at that point gives us a

better sense of direction. The second derivative (#) would give us an estimate of the

curvature and with this we may estimate the cost of removing some connections [Ba].

Some training vectors can pull the weights in opposite directions at each cycle

thereby cancelling weight updates. In this case, we may speed convergence by con-

31

CHAPTER 2. BACI(GROUND

straining weight changes such that nerv vectors only minimally degrade the response

of a previous vector [35]. Alternately, we may preprocess the training data to remove

any correlation in the input vectors. i.e. orthogonalize the inputs.

Backpropagation learning specifies that a weight update is proportional to the

forward propagated output and the backpropagated error, i.e. a,w;¡ -- n6¡o;. But in

hidden layers, the modification of weights to lower layers will cause an error in the

actual neuron output, o;. If we use the expectedvalue of the output, we get a more

accurate weight update given by A,w;¡ : r¡6¡(o¿ + ó;) [36].

As you can see, there is no shortage of ways to improve the backpropagation

learning paradigm; however, each of the ideas suggested here are limited with respect

to the class of problems that they improve performance on.

2"3 Artïficïal Neural l{etworks

There are currently many neural network hardware designs that use traditional elec-

tronic circuit components and the more technologically advanced use of VLSI design.

Most of these designs simply implement a specific neural network architecture with

no real power to execute the learning paradigm that they were destined for. In these

circuits, the designer has opted for an easier approach to neural network systems,

and has allowed a computer to do off-line processing of the data.

Designing a circuit for VLSI implementation requires many decisions that are not

necessary in discrete component circuit design. The critical issues are area constraints,

speed, and processing technology. Some minor issues are CAD tools and standard

cell libraries.

32

CHAPTER 2. BACKGROU¡.¡D

The use of analog processing components in VLSi, in respect to neural networks,

has many advantages and disadvantages. A fully analog neural network can closely

model the biological processes that are taking place [S7] ancl can exhibit tremendous

speed and capabilities in area efficient designs. However, analog VLSI suffers from

some major problems. Analog integrated circuits suffer from what can be termecl

'processing imperfections', which are due to manufacturing variations. These imper-

fections can manifest themselves into poor quaiity integrated circuits with unmatched

characteristics not only from different processing runs on completely different pieces

of silicon, but all the way down to separate circuits on the same wafer or even i¡rcli-

vidual devices in the same circuit. It is true that large companies with huge budgets

can afford to pay for higher accuracy in processing technology and can command

special fabrication techniques, but the average researcher does not have access to, or

the guarantee of, these kinds of facilities.

Most analog neural networks utilize storage capacitors (analog memories) to im-

plement synaptic weight connections. Recent designs, like [38], that rely on capacitors

for weight storage also use the leakage current to emulate the synaptic weight change

in training and therefore require highly accurate devices. Similar analog networks,

such as [39] and [+0], aiso use capacitors for synaptic weights and require constant

refreshing of voltage levels unless the chips are cooled to ridiculous temperatures

like that of liquid nitrogen (77K) - even then the storage would only last a few

days. Using capacitors is only one possibility for weight storage in analog neural net-

works. The use of custom programmable resistor chips [+t] for the analog synaptic

weights can also suffer from variations in device physics. Many other designs are

using EEPROM technology [a2] with much success; in fact, INTEL Corp. has just

33

CHAPTER 2. BACI(GROUND

released an analog IC that uses EEPRON4s for synapses. In atl analog networks the

devices must operate in the subthreshold region of the device transfer characteris-

tics and, therefore, with limiied supply voltage ranges in certain technologies, the

available levels for weight vaiues can diminish to the equivalent of a-bit digital res-

olution (i.e. 16 levels) [+3]. There are many other analog implementations of neural

network paradigms along with hybrid designs that use the accuracy of digital storage

with the speed and efficiency of analog arithmetic [++] as well as pulse-stream arith-

metic processing fa\, a6l; but these usually require fast, accurate, and area-consuming

digital-to-analog and analog-to-digital converters.

On the other hand, digital electronics in VLSI is a mature technology that offers

high accuracy (more precision), better reliability in functionality, noise immunit¡ and

is easily manufactured. There are many realizations of digital weight storage, includ-

ing RAM, ROM, EPROM and EEPROM, and shift register/latches. However, digital

designs require significant silicon area to implement arithmetic processes, especially

in fully parallel designs. Also, the speed with which these processes can be executed

can be many orders of magnitude greater than similar analog implementations. Since

almost every neural model contains neurons that compute weighted sums, it is advan-

tageous to select an architecture that will reduce the area-time metric to a reasonable

level. Ultimately, the architecture chosen will reflect a suitable solution to this metric.

There are no shortages of possible digital architectures for neural netrvork pa.radigm

implementations. We will now concentrate mainly on digital VLSI neural network

research architectures as reported in the literature. Some interesting digital systems

will be mentioned for completeness; however, these architectures are well beyond the

scope of this thesis. We also examine some current commercial digital neural network

34

CHAPTER 2. BACKGROUND

integrated circuit chips because they contain some interesting architectural ideas.

Digital systems for A¡tificial Neural Networks (ANNs)a can be broken into three

broad categories 120, a7l: (1) General-Purpose Parallel Computers for Neural Net-

work Simulations; (2) Special Purpose Plocessors for Neural Network Simulations

(Neurocomputers); and, (3) Dedicated Digital ANN VLSI Circuits. All three cate-

gories present some interesting and valid ideas; however, we have set out to design a

digital VLSI ASIC, and comparison to current VLSI research is a must. The general-

purpose and special-purpose structures can be hierarchically analyzed to gain insight

as to their inherent structure, and possibly present us with some ideas for ou.î ovrn

design.

General-purpose parallel computers consist of programmable processor arrays for

simulating a wide range of neural network paradigms in a framework that is anal-

ogous to conventional computers. The parallel processing computers optimize the

neural processing by distributing the problem to a large number of simple processors.

These types of architectures, although very flexibie, can be very difficult to efficiently

program and partition a neural network paradigm onto the parallel processors. The

consummate pioneer of general-purpose parallel computers is the Connection Ma-

chine (CM) [48]. With its simple processing elements (PEs) and local memory, thou-

sands of independent PEs operate concurrently on different segments of the same

problem. The architectural concepts for the CM originally came from the connec-

tionist theories, but the CM was destined as a general purpose alternatiue computing
aWe tend to use the phrases "artificial neural network" and "neural network" interchangeably

throughout this thesis even though an ørtificial network implies a man-made electronic architecture
and neural network implies the biological representation of same. Suffice it to say that the context
these terms are used in will make the representation clear.

CHAPTER 2. BACKGROUND

structure to traditional serial Von Neumann-style architectures. The CM requires

a specially designed programming language to distribute the processing power. A

relatively similar architecture to the CiVf, the AAP-2, described in [49], is a massively

parailel cellular array processor based on VLSI technology. It contains 65,536 one-bit

processors that, like the CM, offer high-speed data processing in a Single Instruction

Multiple-Data path (SIMD) architecture. A somewhat different approach to massive

parallelism in a general parallel processor can be found in the Warp Mactrine f5D, 51j.

Warp's architecture incorporates a systolic alray of 10 processing cells. Each cell

consists of an adder, multiplier, and ALU, and communicates with its immediate

neighbors only. A programming language was also developed to partition the prob-

lems that the Warp Machine was to simulate. The NCUBE microprocessor-based

supercomputer [52] is also a massively parallel computer with processors configured

in a 1O-dimensional hypercube;5 the CM uses a l6-dimensional hypercube. Both the

NCUBB and the CM contain the same architecture; however, the NCUBE processes

data in a Multiple-Instruction Nf ultiple-Data (MIMD) fashion. There are many other

general-purpose parallel computing architectures 120]; we have only mentioned a few

for the sake of completeness and because of their inherent similarity to basic neural

network structures. These machines are all characteriz"d by a large number of simple

processors that are connected in various topologies in a massively parallel fashion.

Architectures such as these are well beyond the scope of this thesis but are worth

discussing because the basic concepts used in performing massive parallelism are rel-

evant to any neural network structure. However, these structures suffer from the

sAn n-dimensional hypercube connects a single processor to æ of its neighbors and has the
advantage that the links of the hypercube provide alnrost the same communication capabiliiies as a
fully connected network that forms a compleie graph.

CHAPTER 2, BACKGROUND

difficulty required in scheduling processors for the high interconnection needs of neu-

ral networks. In our opinion, these hardware specific programming languages are

an essential and critical part of general purpose parallel computers and unless a de-

sign can develop an optimum data partitioning scheme for multiple paradigms, these

computers will not be a major neural network hardware influence.

In contrast to general-purpose parallel computers, we present the special-purpose

processors designed especially for neural network simulations. These neurocom.put-

ers usually consist of special hardware boards optimized to perform neural network

paradigms that interface to traditional sequential computers. The hardware in-

volved can tange from simple modular processing elements to Digital Signal Proces-

sors (DSPs) integrated into serial or parallel structures either dedicated to executing

specific paradigms or, more commonly, generally programmable to execute multiple

paradigms. There is a vast array of both commercial and research projects that can

offer tremendous speed increases for neural network simulation; but these boards are

mainly DSP boards optimized to perform the weighted summations inherent in most

neural. network paradigms. Most of these coprocessor boards are designed to interface

to IBM-PCs or Sun workstations through the VMEbus. Also, most of the boards dis-

cussed here use industry standard microprocessors such as the MC68020 (Motorola),

or DSPs like TMS32020 (Texas Instruments). The virtual processing elements and

interconnections established during run-time to implement a paradigm require huge

amounts of memory, and the usual multiplexing of processors takes a\¡/ay the pro-

cessing power inherent in the parallel structure of neural networks. The systems that

offer some novel structures or that stray from the norrn will be presented in more

detail; however, we will mention many systems for the readers who are interested in

JI

CHAPTER 2, BACKGROUND

simulations of neural network paradigms because some of these are readily avaiiable,

easily attainable, most adaptable, and highly affordable.

Some commercially available neurocomputers are systems by Hecht-Nielsen Neu-

rocomputers (HNC), Science Applications International Corporation (SAIC), and

TRW-to name a few. The Anza Plus/DP from HNC [53] is a neurocomputing

co-processor board available for the IBM-PC or Sun. The architecture is based on

a 4-stage pipelined Harvard architecture employing separate data and instruction

paths. ANZA uses a specialized floating point DSP to achieve speeds of 3 Million in-

terconnections Per Second (MiPS)6 during training and approaching 12.5 MiPS peak

performance with 64 bit accuracy. Softlvare is also available to be used in conjunc-

tion with the board to provide a user interface to the extensive set of neural network

paradigms that HNC provides. SAIC has developed a set of neural network process-

ing boards, Delta Floating Point Processor, described in [54, 55], that use fast static

column mode memory and an ECL (Emitter Coupled Logic) floating-point proces-

sor chip (from BIT) that implements a Reduced Instruction Set Computer (RISC)

architecture. The Delta also uses a mulli-stage pipelined Harvard architecture that

claims simulation speeds upwards of 3 MiPS during learning and 11 MiPS without

learning. A third commercial neural proces:jor board has been designed by TRW and

is called the Mark IV neurocomputer [47]. TRW designers used a Motorola G8020 mi-

croprocessor and 68881 floating-point co-processor configured such that virtual PEs

are 'swapped in' in the neural processing phase-much the same as the concept of

physical memory in virtual memory computers. Large neural networks with many

interconnections and speeds approaching 5 MiPS are obtained by this architecture.
6Not to be confused with Million Instructions per Second (MIPS).

CHAPTER 2, BACI(GROUND

It is interesting to note that these alchitectures all use a single, fast special processor

with no true parallel processing power.

We now turn our attention to systems developed for research purposes. One of

the most interesting and daring projects is Netsim by Garth [SZ]. The system was de-

signed to accelerate learning in neural network paradigms by using a small instruction

set, pipelined operations and large amounts of memory. The computatíonal speed is

gained by the use of two custom-designed, specialized co-processors. A communi-

cation coprocessor handles all interfacing of Netsim 'cards' into a nearest neighbor

set, while the 'solution engine' (basically a vector coprocessor or an optimized DSp)

performs mathematical computations optimized to neural network requirements. The

network of cards which form a neurocomputer require a host computer acting as a

system controller. This system exhibits speeds of nearly 90 MiPS during learning.

Another parallel neurocomputer is described in [Sa]. A parallel array of processing

elements simulate a column of neurons in a multi-layer neural network. Each processor

contains a TMS32030 DSP, memory and control. The processors are configured in a

1-dimensional systolic ring architecture that executes vector-matrix multiplication in

a SIMD fashion. Again, this system connects to a host computer, such as Sun, via

VMEbus, and obtains speeds in excess of 500 MiPS.

A neurocomputer along the lines of Netsim has been developed by Pacheco et al.

[SS], in which a custom coprocessing element has been designed to ultimately form a

parallel MIMD computing structure. The coprocessor is designed under the RISC ar-

chitecture and is basically a microprocessor (ALU, registers and memory).

In a more abstract design philosophy, the principle of communicating concurrent

CHAPTER 2. BACI(GROUND

processors has been developed into a neurocomputing architecture of multiprocessors

by Kraft and Frostrom [60]. The idea here is that processing resources are shared

between processing elements, through something called actors, with distributed com-

munication. The system acts analogous to a post office in that interprocessor commu-

nication guarantees nothing other than mail deliuery; timing and order of processing

is not guaranteed.

The systems developed thus far, are all attempts to increase neural network sim-

ulation processing speed by implemeniing current technology as a traditional co-

processor or by custom designs of optimized DSPs configured as neural network sys-

tems. We have presented only a few such systems, but more can be found in the

Iiterature ,20,
471.

A wide and diverse range of digital VLSI neural network ASICs have been de-

veloped - from simple logic gates to wafer-scale integration. The main goal in all

implementations is to form a massively parallel set of basic electronic neurons and

synapses (the biological representations) in a highly efficient structure and, place as

many of these elements on the silicon as is physically possible. There aïe no shortages

of design strategies in digital neural processing as designers strive to develop the 'mi-

croprocessor of neurocomputing'. Although most of these designs have no facility for

on-chip learning (a11 learning is usually done off-line by a host computer), these de-

signs show innovative architectures using state-of-the-art technology in an approach

that can rival the speed and cost of analog devices. In reviewing these arch!leclurrs,

we hope to gain knowledge that we can build on and appl-v to our own design.

The architecture of a neurocomputer microprocessor is described in [61]. The

40

CHAPTER 2. BACI(GROUTVD

chip consists of a number of simpie processor nodes (similar to DSPs) connected in

an SIMD configuration. Each node is a simple arithmetic processor that performs

vector-matrix multiplications. Multiple nodes form connection layers that emulate a

neural structure. The communication between nodes is via "broadcast" structures to

cut down on interconnection area. The processor nodes are 16-bit two's complement

multipliers with associated registers, logic-shifters, memory for weights, and an adder.

A general purpose digital architecture for neural networks has been developed

by Duranion and Mauduit [62]. The "neuromimetic chip" is a fully parallel design

wherein multiplications are serialized by replacing multipliers by AND gates and

accumulating the results to form a weighted summation. The designers intended for

this chip to be used in a Transputer array for general purpose netwo¡k simulations.

Hirai et al. [63] designed a digiial neuro-chip for large scale neural networks. The

chip contains six neurons and 84 synapses with 64 levels of modifiable weight. The

designers opted to use impulse density encoding of digital data to obtain signals with

the flaaor of analog (continuous) values.

This encoding scheme is similar to the "pulse stream" arithmetic described by

Murray et al. [5, 6, 45]. In this scheme, neural activities are represented by a stream

of digital pulses (similar to natural neurons) on excitatory and inhibitory data lines.

The data is decoded by using "chopping clocks" that basically integrate the signal to

form smooth activation potentials similar to a "ring oscillator".

Murray et al. also describe another architecture for neural networks involving bit-

serial arithmetic. The bit-serial design involves simple processors communicating with

each other via single-bit data lines. This structure exhibits computational efficiency

4T

CHAPTER 2. BACKGROUND

as well as tightly pipelined ariihmetic processing. A simplified 5-state activation

function allows shifting and adding in place of the silicon-åogging multipliers. Bit-

serial addition can be utilized to create highl)r efficient pipelined multipliers. This

type of arithmetic processing is desirable in neural network structures of massively

parallel processors, since the data is communicated between processors on a single-bit

data bus. We rvill expand more on bit-serial architectures in the development of our

own neurai network design.

Along the lines of impulse density, there are many VLSI neural network designs

that employ stochastic processing. This type of processing involves the use of sta-

tistical data structures using probabilities. Basically, the circuits represent digital

values as analog probabilities of pulse densities - the number of pulses in a par-

ticular time interval. These designs differ in the way in which the probabilities of

pulses are summed together to form the mathematical computations of neural pro-

cessing. All stochastic processing requires the use of random numbers to generate

these probabilities and would benefit greatly from the use of pseudo-random number

generators such as Hybrid Cellular Automata (HCA); although none use HCAs (atl

pseudo-random number generation in stochastic processing is currently done by com-

puter). Van den Bout and Mi1ler, along with other colleagues, have developed many

stochastic implementations 164, 65, 66,67,68], which all use the same basic technol-

ogy. Synaptic weight shift registers cycle through their values which are compared

to a random number to create a stochastic pulse stream with a probability of being

'on' proportional to the digital weight stored. Multiplication is simply performed by

AND-ing this stochastic pulse stream with a stream representing the neuron activa-

tion, and summation is done by digital counters. Off-line computers are utilized for

42

CHAPTER 2, BACI{GROUND

neural transfer function processing. \¡arious stages of pipelining are introduced to

create bit-level processing.

A very unique approach to stochastic processing has been implemented by Tom-

linson et al. of Neural Semiconductor, Inc., and a proprietary architecture is described

in [69]. Tomlinson has analyzed the stochastic structure and found that a simple OR-

ing of excitatory and inhibitory pulse trains can simultaneously provide the weighted

summation and the non-linear activation function required by some neural network

paradigms. The system offers a very high density of digital neurons and synapses

with an analog-type performance. However, probabilities that are statistically inde-

pendent are required for all types of stochastic processing; therefore, good random

number generators are required, with long iteration cycles and these systems can

be very slow. Another proprietary design of a digital neural network is the neural

bit-slice computing element developed by Micro Devices [71]. This bit-slice design

uiilizes serial adders and multipliers in a highly multiplexed configuration.

A set of digital neuron-type circuit elements has been developed by Habib and

Akel [70] that are based on simple logic gates. A neuron-type processor is constructed

by cascading a'cell body', an'axon base' and an 'axon circuit'. Each of these elements

are constructed from simple AND or OR logic gates. Processing is done by spatial

and temporal processing of pulsed data values.

Another simple VLSI structure is a connectionist architecture designed by Cleary [72].

This design uses single-bit data and heavy multiplexing to obtain 1000 input lines

(synapses) distributed over 100 output lines (neurons). A host computer cycles the

massive array of single-bit weight shift registers (which take up the bulk of the chip)

43

and

itg

CHAPTER 2. BACKGROI]ND

processing is accomplished by AND-ing inputs with a mask of weights and count-

the resulting number of ones.

A multi-iayer perceptron using discrete rveights is described in [73]. Multiplication

is performed via shifting and adding and weight values are confined to powers-of-two.

Learning is performed off-line and activations use a lookup table. Binary logic is

also used in a programmable logic approach to neural networks [74]. Dynamically

Programmable Logic Modules (DPLM), as opposed to field Programmable Logic Ar-

rays (PLA), allow the dynamic reconfiguration of functions in a PLA structure. A

"tree of DPLIVIs" are used to implement a multi-layer perceptron.

Systolic architectures are very promising in implementing large networks because

of their high regularity, local communications, and inherently parallel processing

structures. A ring systolic design for artificial neural networks [75] proposes a systolic

communicating array of processors that can efficiently execute many neural network

paradigms. A second systolic architecture [76] implements the backpropagation algo-

rithm in an array of regular, nearest-neighbor processors. A complicated systolic cell

of a digital multiplier, adders, and many muitiplexors form the basic element that

completes a single layer array of a multi-layer backpropagation network on an ASIC.

External multiplexing and multiplication is necessary to complete a multi-layer net-

work.

In a design a little closer to home, Diamond et al. [77] have developed a neural net-

work architecture imbedded in a fuzzy cognitive system. The neural network contains

a simplified multiplication scheme using logic gates and utilizes external weighting,

along with recursive pipelining of addition, to perform a weighted summation. The

CHAPTER 2. BACI(GROUND

overall accuracy seems to be 4-bits; however, internal processing is

resolution. Huge shift registers cycle their data to accompiish the

inputs to create a neural network layer.

45

done at lO-bits

multipiexing of

Finally, on a larger scale, Wafer-Scale Integration (WSI) is presented. A WSI

system optimized for neural networks using completely digital circuits is described

in [78, 79]. The architecture employs a time-shared bus which implies that only one

'synapse' is needed per 'neuron'. The 'neuron' is a standard microprocessor design in

a custom ASIC while each'synapse' is a simple interconnection-the synaptic weights

are stored in a high-speed memory structure within the 'synapse'. A fully connected

network is realized by a tree structure of 'neurons' combined into a neuron ASIC.

Each of the neurons are interconnected on the silicon wafer to form a larger network.

There are many other digital VLSI ASIC designs for artificial neural networks [80].

We have presented a large sampling of what we consider to be the most interesting

from both a VLSI design standpoint and a connectionist viewpoint. There are many

ideas for ANN designs and it may take awhile for one to digest the ideas presented

herein. However, one can see that the field of neural networks has progressed tremen-

dously, and that there is a sea of ideas that a connectionist can dive into-and. if

he/she doesn't keep his/her head up, he/she could easily drown.

C&aapËer ffi

ä*rpLesm.eNaËaË iosa asad ffi,esaaåÉ s

We have seen how artificial neural networks have been used in real-world applications

and the power that they possess to do many problems that are viewed as difficult

by traditional means. We have also seen how other researchers have implemented

neural networks in both hardware and software. Similarly, we have shown examples

of hardware implementations from a system level to silicon. In this chapter we will

concentrate on the development of a neural network in a VLSI ASIC that will perform

the backpropagation learning paradigm. The inclusion of on-chip learning capabilities

enhances the novelty of the device from a neural network perspective.

The development of an ASIC provides the designer with total freedom in regard

to a multitude of implementation strategies, and can be considered more of an art

than a science. 'We don't mean to suggest that VLSI does not require any scientific

skill, but we do want to stress the idea that an ASIC design requires somewhat of

an artistic approach-something like a painter who can take a blank canvass and

produce a beautiful landscape.

The time required to produce a design is proportional to the complexity of the

46

CHAPTER 3. IMPLEMENTATION AND RESULTS

problem and can grow to unwieldy limits; this is also true for hardware (space) re-

quirements in VLSI. After an algorithm has been decided on, we must then consider

all possibilities of implementing it. Design choices include available technology, Com-

puter Aided Design (CAD) tools, simulation tools, digitat or analog cells, and math-

ematical techniques. In this thesis we have decided to implement a neural netlvork

with backpropagation learning in a VLSI ASIC. The design uses bit-serial arithmetic

techniques in a fully digital implementation with some unconventional VLSI layout

techniques to obtain a highly efficient and functional network.

Area constraints in VLSI are a major dilemma that the complexity of a prob-

lem tends to overshadow. The backpropagation algorithm used in a neural network

is fairly complex and thus a major VLSI design effort was undertaken to obtain a

network with a relatively small number of neurons, that could execute a fairly com-

plex set of events. We now present the VLSI ASIC design from its inception to its

implementation. lVe showcase some architectural considerations along with a unique

VLSI design strategy in the sections that foilow. We conclude this chapter with a

section on the actual design implementation.

S.L Consïderatíons

The previous chapter offered a sampling of current implementations of ANN systems.

From a VLSI perspective, these examples have displayed a vast array of techniques

and strategies in ANN design, and have given us a very diversified look at digital ar-

chitectures. Of these architectures, stochastic, systolic, bit-serial and -parallel designs

offer the most interesting and novel approaches.

47

CHAPTER 3. IMPLEMENTATION A¡'/D RESULTS

Since the backpropagation learning paradigm requires the use of many multiply-

and-accumulate functions, we will concentrate on the previously stated architectures

only as they apply to the design of digital multipliers. This is a justifiable considera-

tion, given the fact that the most area-consuming part (besides storage) of any digital

VLSI design is the multiplier. We will thus concentrate on the design of multipliers

and this will dictate the architecture for the remaining modules.

There are many multiplier design policies for digital signal processing [83]. Systolic

multipliers act in a manner similar to the beating of a heart. A systolic implemen-

tation of the backpropagation algorithm was done by Kwan et al. [76]. The major

disadvantage of this technique is that data is usualiy pipelined at different speeds

and requires a multi-clock strategy. Systolic architectures, however, have a distinct

advantage in that communication betlveen processors is through nearest-neighbor in-

terconnections.

Stochastic architectures [68] offer novel ideas by integrating probabilities over time.

This has the advantage of analog-like computation but requires integration over long

intervals of time. Good random number generators are also required for increased

accuracy [69]. Pulse stream arithmetic is an alternative, however, elegant clocking

schemes are necessary [+s].

Parallel multipliers offer speed at the expense of area. However, the large area

required by parallel bus structures and the clock speed degradation due to propaga-

tion delays make this alternative generally unappealing. Bit-serial architectures) on

the other hand, offer high-throughput digiial multiplication by pipelining operations.

Since data is communicated between processors on a bit-wide bus, communication

CHAPTER 3. IMPLEMENTATION AND RESULTS

and routing overheads are minimized.

We must also consider the use of parallel and serial multiply structures. The use

of a single parallel multipiier that is multiplexed throughout an ASIC, or the use

of many serial multipliers working in parallel, are issues that must be addressed. A

single multiplier can save considerable amounts of silicon this is an attractive

possibility. However, we would like to keep the parallelism that is inherent in neural

networks within our design. Utilizing many multipliers operating in parallel has the

advantage of increased speed and will offer an architecture that more closely resembles

an artificial neural network. These issues will be addressed further in the section on

VLSI Implementation.

Parallel multiply structures can be considered the norm in current multiplier de-

signs. Therefore, to test the ideas behind bit-serial architectures, we implemented a

Hopfield-type neural network as described by Murray et al. [5, 6]. The bit-serial na-

ture of our design was analyzed and the results were very encouraging. The multiply

and accumulate structure of a bit-serial pipeline rvere thoroughly analyzed.

Implementation of the backpropagation algorithm in silicon requires high accu-

racy [40, 47]. For this reason alone, we have been concentrating on digital implemen-

tations as opposed to analog. Advantages of both technologies have been previously

discussed. Further, we have decided that 8-bit accuracy wili offer a good compromise

between silicon area usage and dynamic range. The use of two's complement data

representation is essential such that positive (excitatory) and negative (inhibitory)

connection strengths may be realized.

Finally, the issue of on-chip learning is considered. On-chip learning requires the

49

CHAPTER 3. IMPLEMENTATIOIV AND RESULTS

use of large amounts of memory and can consume valuable amounts of silicon area.

The use of many storage devices is analyzed in the Implementation section. An on-

chip activation function will add to the novelty of the design and should also be

considered. A truly autonomous architecture will only be realized if learning occurs

on-chip.

The next sections discuss the design and implementation. We have decided that

the design of the individual modules will dictate our final implementation. Therefore,

we will not state any specific design requirements other than what has been discussed

above. We hope io obtain a network of neurons that will perform the backpropagation

learning paradigm. How many neurons we can squeeze onto a chip will be discovered

as the design progresses.

&.2 ,& Vf,Sl Ðesïgn Strategy

Just as there are many ways to execute a specific algorithm in silicon, there are equally

as many techniques (coupled with specific technologies) that can be employed to

implement physical devices in VLSI. The first thing to do after deciding that an ASIC

is a necessity, is to take inventory of the available processing facilities and technologies,

and CAD simulation and testing tools. The second step in any VLSI design is to

partition the algorithm into functional modules that can be easily put together in

a hierarchical structure. Of course, we are assuming here that the computational

modules have aiready been finalized; that is, the way in which computations are

to be executed (eg. parallel, systolic, serial, etc.). Usually, the ASIC designer tries

to minimize the area of all structures in the design hierarchy so that the absolute

50

CHAPTER 3. I]VTPLEMENTATION AND RESULTS

minimum amount of silicon is used; silicon and processing costs are considerable, so

this is highly desirable. However, there are often times when functional blocks of

a design cannot be compacted or may not need to be; examples of these are: (1)

if all blocks in a lower level are already compacted, âDy higher level compaction

may be impossible; and, (2) if a design is relatively small, the extra effort involved

in compaction time may not be justifiable. Therefore, there are two strategies to

developing an ASIC design: (t) Iet the circuit design dictate the chip size (small

designs); or, (2) lei the chip size dictate the circuit design. By this we mean that a

small design can usually fit on a minimum size silicon die, but larger designs have

to be carefulìy planned at every stage in the design process so that they may fit

on the maximum size die offered by the processing facilities. This is exactly what

we must perform in our implementation of a neural network paradigm. We want

to pack as many modules (i.e. neurons and synapses) onto a die that is physically

possible, so we must constantly strive for compactness. The usual .4? metric that is

associated with VLSI design [84] must also be conformed to in order that the algorithm

performs in an efficient manner in a reasonable amount of physical space. However,

we encounter a second AT metric that equates physical design implementation time

to the compactness of circuits; i.e. you can't spend all of your design time compacting

layouts. It turns out, as you will see in the section on VLSI Implementation in Silicon,

that our design implementation required large amounts of silicon area - therefore,

special VLSI design strategies had to be employed. We feel that the design techniques

discussed in this section are quite novel (although similar design styles have been used

in CMOS3 Cell Library [10]) and could form the basis for a standard cell library of

'overlapping cells'. Of course, implementing a whole library of cells is beyond the

51

CHAPTER 3. IMPLEMENTATION A¡'/D RESULTS

scope of this thesis, so we present only the technique.

Our implementation of the backpropagation neural netrvork paradigm originaliy

began as one in which we were to use a schematic capture tool (such as Edge, by

Cadence Design Systems) so that we could concentrate our efforts on the computa-

tional aspects of the algorithm, rather than on the physicat VLSI layout of blocks

within the entire structure. The Universiiy of Manitoba Electrical and Computer

Engineering Department has a large library of standard cells that can be used and

the CAD tools available would let us concentrate on obtaining an efficient design from

a schematic level. A preliminary design of a Hopfield neural netwo¡k using a simi-

lar design philosophy indicated good results. However, it became evident during the

course of this design that we must either investigate different ways of implementing

the mathematical calculations (eg. stochastic, multiplexed paraliel processor, etc.) or

come up with some unique device layout strategies. Since we felt that our design

offered a novel approach to ANNs, we opted to investigate alternative design styles

in the chosen technology.

Complementary Metal Oxide Semiconductor (CMOS) technolog¡ which fuses

NMOS and PMOS, was the design style of choice. CMOS offers the advantage of

low power consumption with a disadvantage that approximately double the area is

required as compared to simiiar NMOS and PMOS designs. However, since CMOS

technology is offered by the Canadian Microelectronics Corporation (CMC) (where

most Canadian universities get their designs implemented), and the University of

Manitoba standard cell library contained an abundance of CMOS devices, we chose

this technology. All of these standard cells are fairly well compacted and efforts on our

part proved that there is no advantage in trying to further compact them. Therefore,

52

CHAPTER 3. IMPLEMENTATION AND RESULTS

we investigated the possibility of many alternative static and dynamic CMOS tech-

niques such as pseudo-NMOS, clocked CIUOS (C'?MOS) and CMOS domino logic [tt].
Because a major part of our design area was going to be consumed by the storage

of synaptic rveights, we concentrated our efforts on the CMOS alternatives as they

applied to storage devices. In many cases it was found that these CMOS alternatives

didn't offer any area savings as they were applied to flip-flopsl. Also, we feìt it was

not worth the extra effort that would be required to experiment with the ratioed de-

vice structures of these alternative schemes. These devices usually contain some type

of precharge-discharge logic structure that requires elegant clocking strategies ItZ] or

are plagued by a charge-redistribution problem that impairs their usability [13].

Again, since our design required major storage facilities (for example, a backprop-

agation network with ¡/ neurons would require 1y'2 synapses-with m-bit accuracy

we would require r¿ll2 bits of storage for synaptic weights alone), we also investi-

gated the use of Random Access Memory (RAN,I) in both static and dynamic modes.

Dynamic RAM is very difficult to design and equally as difficult to process, so we

only attempted Static RAM (SRAx,f). We produced layouts of SRAMs, from [11],

and obtained only slightly better area advantages over a static CMOS D-type flip-

flop (DFF) (with no set or reset) available in our standard cell library.2 SRAM would

require the use of extra control circuitry for precharge and address generation, as well

as facilities for multi-port access (since our design is to operate in parallel and access

to more than one value at a time is essential), and offered no real gain in area savings.

External storage in commercial RAM and investigation of a custom VLSI storage

1A flip-flop is a simple storage device.
2Note that commercial RAM manufacturers have special processing facilities to get high densities.

CHAPTER 3, IMPLEMENTATION AND RESULTS

integrated circuit (IC) were considered, holvever, the communication overhead rvould

have been tremendous. AIso, the autonomous nature of the design would have been

lost because on-chip learning wouid not have taken place. Therefore, we decided to

concentrate on the use of static CMOS shift registers built from DFFs. The use of

shift registers in our design also provided a 'natural' progression of data because of

their inherent bit-serial architecture.

Because memory devices, such as RAM, exhibit a highly regular structure, the

packing densities of these devices can be tremendous. Shift registers are also highly

regular and it was felt that high density structures could also be achieved. A library

of CMOS standard cells that can be 'stacked' side by side to form long dense arrays is

described in [tO]. The shift register cells are designed such that power (rdù, ground

(grd), and clocks run horizontally through the cell. The input and output are such

that a large shift register can be realized simply by matching the output pin of one

stage to the input pin of the next stage. Since our library of cells already had a similar

layout style to these cells, we attempted to modify our shift register cells (DFFs) so

that we could "stack" them to form the necessary data-holding shift registers in our

design. we ultimately modified many cells in the library (for example, AND, XoR,

and FADD), but we will only describe the design style for the modified DFF, as all

strategies can easily be applied to other devices.

In order to obtain long shift registers, /f DFFs can be cascaded to form an N-bit

shift register. A simple static DFF is shorvn in Figure 3.1-. Notice that the input

to the device is on the diffusion layer; actually, it is the connection between n-type

diffusion of the lower transistor and p-type diffusion of the upper transistor of the

input transmission gate. Also notice that the output is on the diffusion layer of ihe

54

CHAPTER 3. IMPLEMENTATION A¡úD RESULTS

õ transmission gates

o
(output)

inverters

ó= clock

(b)

Figure 3.1: Simple Static DFF: (a) schematic level (b) transistor level

oÐ

CHAPTER 3. IMPLEMENTATION AND RESULTS

output inverter. Both n-type and p-type transistor pairs on these two devices are of

similar ratios and, therefore, instead of using this cell as a standard cell,3 we proposed

the overlapping of input and output diffusion layers, as shown in Figure 8.2. when

implementing a shift register. This ailorvs maximum area utilization such that long

shift registers can be formed. Careful placement of the input and output transistors

are necessary such that the cells that overlap can share the diffusion layer. An area

savings of I0% is achieved by this overlapping structure.

Using the above idea, we can create area efficient shift registers. Since an ASIC is

limited in usable silicon area, we cannot make arbitrarily long registers. In our design

we require a large amount of 8-bit shift registers that are shifting into each other in

parallel; i.e. one 8-bit register feeds another and so on, and there are multiple devices

as such' We therefore extended the overlapping idea into the sharing of power and

ground rails, as they run horizontally across a cell, to even further increase the density

of devices. Nlany problems occur when sharing polver rails because a split-contact is

usually placed on the p-well, near or at an n-transistor, to make sure that the well

stays at ground potential, and another split-contact is used in the p-transistor area,

such that the n-type substrate can be pulled-up to the power potential. This helps

to prevent a detrimental effect, inherent in all CMOS processes, known as latchup.

Latchup is a temporary shorting of the well and substrate (usually clamped at add.

and gnd, respectively) due to a pair of parasitic bipolar transistors formed when the

sources of n-type transistors are connected to ground, and p-type transistors to udd.

The split-contacts, shown in Figure 3.3, reduce the effects of the bipolar transistors
3A standard cell usually has a non-overlapping boundary such that devices are abutted side-by-

side in a layout.

56

CHAPTER 3. IMPLEMENTATIO¡{ AND RESULTS ðt

D

(input)

ó= clock

(b)

Figure 3.2: Overlapping in a 2-bit Shift Register: (a) schematic level
transistor level

o
(output)

ö

.t

(a)

@

À

(b)

CHAPTER 3. IMPLEMEN?ATION A¡úD RESULTS

and are always placed at regular intervals in a CN{OS structure. If we try to overlap

supply rails, we run into a dangerous situation when these contacts are overlapping;

there is even more danger when trying to overlap cells of diferent logic as contacts

can overlap ín unusuøl places. Design rules must be followed such that when contacts

overlap they don't become too big and ion-implantation regions don't come too close

to each other. Careful planning of contacts can produce a clean layout rvith no design

rule violations in cells of overlapping structures.a

A set of overlapping cells that are stacked vertically such that supply rails are

shared is shown in Figure 3.4. An area savings of 15% is realized with such a

structure, as compared with minimum separation standard cell placements. We have

opted to route signals within (and through) cells to further increase the density by

alleviating the need for routing channels. These stackable DFF cells are used in

abundance throughout our design and the extra effort involved in laying out these

ceils has proven useful-as will be evidenced in the next section.

Using Edge, the Cadence CAD tool, for VLSI layout of these cells was accom-

plished via a simple array command that replicated the cell as needed. Edge was also

used to hierarchically place lower levels of the design, and to modify the standard

ceils to make them stackable. The CAD tool is not intended for full-custom layouts,

but with a little patience, a lot of practice and the use of manuals [t+], a complete

full custom design can be accomplished.

We previously stated that there is a danger in overlapping different types of cells;

overlapping of different cells could create many unpredictable design rule violations.

aNote that a cell that has a design rule violation (but the overlapping of cells eliminates it) is
legal as long as the cell isn't used alone.

58

CHAPTER 3. IMPLEMENTATION AND RESULTS

Rv¡e11

b)

Figure 3.3: CMOS Latchup

59

a)

CHAPTER 3. IMPLEMENTA?IO¡\r A.\iD RESULTS

Reglons of
Overlap

(Sharlng ol Vdd
and Gnd rails)

Figure 3.4: Stacked (overlapped) DFF Cells

In response to 'good' results achieved for DFFs, a major design effort was undertaken

so that many other cells could also be overlapped. Logic gates (such as AND, XOR

and OR) as well as the full-adder (FADD) were completely modified so that they,

too, could be used in this novel fashion. Another advantage of this type of structure

is that all routing between cells can take place inside the cell boundaries so that no

routing channels are required; routing is a major design constraint in VLSI. However,

a disadvantage is that only highly regular structures are implemented easily; irregular

structures, such as boolean logic functions, require greater attention. Fortunately, our

design contains some regular structures and we may utilize this technique. It turns

out that the backpropagation neural network paradigm, as rtre had implemented it,

required the use of many stacked modules. In fact, the adder, multiplier, sigmoid

generator, and weight register all used this technique and constituted a major portion

of the design effort. The implementation of these cells is described in the next section.

60

CHAPTER 3. IMPLEMENTATION A¡\rD RESULTS

S.S lrnplementation ira Sinicol-r

The backpropagation neural network paradigm requires a network design that can

actuaiiy run in relerse. That is, after the forward propagation of the input vector

to the output layer, the error between the actual output and the target vector is

propagated backwards through the network. The complexity of calculations is no

greater in the backward mode as it is in the forward mode; there are just more

equations to implement. The backpropagation equations can be found in Section 2.2

and Appendix Ä.. An overvierv of the ASIC that will perform backpropagation is

shown in Figure 3.5. There are ly' neurons and /y'2 synapses which implement the

basic concept of the algorithm by forming a single layer of a multi-layer feedforward

neural network. This figure shows how input activations from lower layers are fed into

the network through synaptic weights and how neurons create weighted summations

of this vector and send an output activation to the next highest layer. Error signals

are backpropagated in much the same way as forward signals, as is indicated in the

figure. Each neuron (cell) functions as an independent module that can operate in

parallel with all other neurons. This simplifies the design in that we can optimize

a single cell and then configure this cell within the required structure. Each neuron

is to be an autonomous entity that will execute weighted summations, thresholding

and weight updates in loclced-step. The detailed neuron architecture is shown in

Figure 3.6, along with the labeiling of a few backpropagation equations as the

architecture formulates them. Each neuron contains only a single multiplier and

a single adder unit; the figure indicates multiple units for clarity. All signals are

multiplexed into the adder and multiplier at specific times so that these devices may

61

CHAPTER 3. IMPLEMENTATIO¡{ A¡úD RESULTS

N neurons per layer
perform weighted summat¡on

in parallel

62

N
2

e-bit digital synapric weighrs
(not all are shown)

updated by backprop learning rule

Figure 3.5: Overview of Backpropagation Í,ayer

neuron output activations
to higher layer

backpropagated error
from higher layer

neuron input activations
from lower layer

backpropagated error
to lower layer

CHAPTER 3. IMPLEMENTATION A¡'/D RESULTS 63

o
ü,'õ,
o

.9oì
o.E
o
(ú
c
U'

E
o

o

Ouþut
f .ayer

adapted from a
pres€ntat¡on by

F.J. Kub

Naval Ræ€arch Lab6
WæhinOlon, D.C

Figure 3.6: ,{rchitecture for Backpropagation Neural l.{etwork

CHAPTER 3. IMPLEIVTENTATION AND RESULTS

be shared. This is not a disadvantage, since the backpropagation algorithm requires

that calculations be performed in sequence. The major devices within the network

rvill be explained in detail in the next few pages.

Examination of the backpropagation equations shows that the most efficient way

to implement them is to broadcast a single input to all neurons. In the forward mode,

each neuron accumulates the contribution to its total input by multiplication \Mith its

local weight matrix. The inputs coming from each neuron in a lower layer are cycled

in sequence. The backward mode requires this same type of multiply and accumulate

function. In the backward mode, however, a single error delta is broadcast to all

neurons in the previous layer-much the same way as an input is in the forlvard

mode. (Think of the network as operating in reverse). This accumulation requires

the distribution of weights orthogonal to the forward mode requirements; hence, local

weight storage at each neuron is not possible. We now describe the major components

that will perfolm the multiply-and-accumulate function. That is, the multiplier,

adder, sigmoid thresholding and weight storage. We make no attempt to describe

the remaining additions and subtractions needed to form the weight updates, etc., as

these tasks are trivial and can be accomplished by multiplexing signals into and out

of these components as required.

The multiplier module conforms to the bit-serial mode of operation for calcula-

tions. Figure 3.7 shows a basic cell used in the multiplier, while n'igure 3.8 shorvs

how these cells are connected to form an 8-bit two's complement serial multiplier.

This pipelined multiplier takes two 8-bit two's complement numbers and produces an

8-bit two's complement result - least significant bit first. As the multiplicand and

multiplier bits are piped into a multiplier cell. the cell captures the proper multiplier

64

CHAPTER 3. IMPLEIIIENTATIO¡{ A¡,iD RESULTS bð

to
next

stage

sum OUT

Figure 3.7: Bit-Serial Pipelined Multiplier Cell

bit in each stage; i.e. stage 1 captures the least significant multiplier bit, while stage 8

captures the most significant bit. As the multiplicand is piped through two deiays

to the next stage, and the bit-wise multiplication is formed by the AND gate, the

full adder creates the partial sum and pipes it into the next stage. A control signal

(not shown) truncates the least significant 8-bits of a 16-bit product to produce the

final 8-bit result; this is normal for bit-serial pipelined multipliers. The control sig-

nal also resets or sets the carry flip-flop in the full adder section as required by the

two's complement algorithm; i.e. the first seven stages are full adders that require

a '0' carry bit, while the last stage is a full subtracter that is implemented by us-

ing a normal cell with an inverted input and the initial carry bit set to a'1'. Note

that we have alleviated the need for sign extension capture logic (a requirement of

two's complement arithmetic), as described in [7j, by including an XOR gate in the

output, described in [8]. This multiplier cell was completely laid out by hand in a

CHAPTER 3. IMPLEMENTA?ION,AND RESULTS

3-'nputXOR rO
,

bf)

011
x 001

1 0'1
001

0 0

multip¡icand

multiplier

adder 10<-

0
0

0

1

0

multiplier cell

A=multiplicand X multiplier

msb

xx

lsb

Figure 3.8: Bit-Serial Pipelined Multiplier [8]

Kx

ffiþ'10*3
re\) s

adder 4

F5 '¡ltime

adder 5
+

adder 6
<_-

adder 7Ê

subtracteÍ
#

B-bit shift register

12-bit sum-olproducts

CHAPTER 3. IMPLEMENTATION AIVD RESULTS

Figure 3.9: Bit-Serial Pipelined Adder

custom design using the novel techniques described in the previous section. The total

area required by the multiplier is l458p.m x699¡;m, and the time to perform eight

8-bit multiplications is 80 clock cycles; a 16 clock latency is inherent in the multiplier.

Once the latency has passed, new multiplication results come every 8 clock cycles,

as new multiplicand and multiplier bits follow their predecessors into the multiplier

cells. An example of a bit-serial multiplication using 8-bit two's complement data is

also shown in Figure 3.8.

The bìt-serial adder is also pipelined so that as the 8-bit data from the multiplier is

being pumped into it, a single full adder cell can be used to implement a summation

of products function, as shown in Figure S.9. The adder cell is an 8-bit two's

complement implementation with multiplexed inputs and a 4-bit expansion facility;

this facility is necessary to allow the 8-bit summation of products to expand as needed.

The expansion is implement"d by using a standard up/down counter modified slightty

so that the two's complement representation of numbers is calculated on the fl,y and

no extra clock cycles are required. Over- and under-flow of data is handled by a

circuit that clamps the stored value to the limits of two's complement 12-bit accuracy

67

A+B
or

In

CHAPTER 3. IMPLEMENTATION A¡D RESULTS

oj

1.0

real-valued sigmoid

0.9375

(not shown to scale)
o-25 .-

0...125 .

0.0625

Figure 3.10: sigmoid Function: continous and pwl approximation

(-204810 to *2047rc) during the weighted summation function. The adder is also used

for the execution of general addition as required by the algorithm. For this purpose,

the expansion circuitry is disabled and 8-bit accuracy is realized (-25610 to *2b5i6).

The adder module layout was also 'hand-crafted' using the novel VLSI design strategy

of the previous section and required approximately l466p,m x375p,m of silicon area.

The time to perform eight 8-bit additions is 64 clock cycles.

Neural netrvorks require an activation function to limit their outputs to some

arbitrary set of values. The backpropagation algorithm uses the sigmoid function, as

shown in Figure 3.10. The sigmoid maps continuous input values into output values

in the space defined by 10,1]16. Digital implementations require that the input/output

states be quantized to some specific level of accuracy. Our design uses 12-bit accuracy

and therefore \ve introduce a piece-wise-linear (p*l) approximation to the sigmoid,

68

net¡

select most sign¡ficant '1'

CHAPTER 3. IMPLEMENTATION AND RESULTS

x10 xg

'1'-+ y6

y5

y4

69

y3

y2

y1

y0

x7

x6

x5

x4

net.
J

'O'+Y7

7

y0-y6

o.
l

(a)

Figure 3.11: PWL Activation Function: (a) Circuit to Implement Table 8.1
(b) Circuit to Implement Full PWL Activation Functions

modelled after Myers and Hutchinso" [9], and shown in Figure 3.10; breakpoints

of the curve are also indicated in the figure. The approximation is based on A-law

companding for pulse code modulation (PCM) used in digital transmission systems.

The sigmoid is implemented by a large array of multiplexors that map the 12-bit

input between [-8, *8]ro, defined by assuming a radix point within the binary data,

into an 8-bit output in the range [0,1]ro . Figure 3.1L(a) shows the circuit that

is used to implement Table 3.1 (the truth table for positive values of inputs) and

Figure 3.I-1-(b) shows how the complete sigmoid curve is implemented.

Unlike the pwl sigmoid function desclibed in [9], we have opted to approximate

the two's complementing required to realize tbe duality of the positive input values

(b)

CHAPTER 3. IMPLEMEN?ATION A¡\TD RESULTS

IX=don'tcare

Table 3.1: PWL ,A.ctivation Truth Table for Positive Input [20]

70

A

B

sel

@

@¡
Z= A if sel=O

B if sel=1

sel

Figure 3.72: Z-Tnput Active Multiplexor

by using the one's complement instead; a one's complement is simply an array of

inverters, while a two's complement requiles the use of an adder circuit. The error

introduced by this approximation is negligible and offers us an area savings of t0%.

Also, since many 2-input multiplexors are required by this design, we have opted to

use an actiue multiplexor that requires no power or ground supplies; a pair of cross-

coupled transmission gates as shown in Figure 3.12. Since these devices have very

little fan out capabilities, drivers were placed on outputs as required. Normal 2-input

multiplexors require 3 NAND gates ancl an invertor; therefore, the active multiplexor

saves 70% in silicon area. Again, the VLSI ideas presented in the previous section were

used to implement the pwl sigmoid approximation and an area of 422p,m x602¡trr-

was obtained. The delay time for signals to propagate from input to output fall in

the range [10,50]",.

net o;
ø11 ø10 ø9 :C8 Í7 iC6 ÍS 14 13 12 î1 Io 97g6E5u4A3g2Ugo
0 0 0 o 0 a b c ¿ X|--T----T
0OO0labcdXXX
0o0labcdXXXX
00labcXXXXXX
0labcXXXXXXX

0100ab.d
0101abcd
O11Oabcd
01110abc
01111abc

CHAPTER 3. IMPLEMENTATIO¡\T AND REST]LTS

Each neuron utilizes a single multiplier, adder and sigmoid generator within its

own autonomous architecture. This offers the advantage of neuron parallelism and

offsets the time required to perform the bit-serial computations of the entire neural

network structure.

A single parallel multipìier/adder combination ihat is multiplexed to update each

of the 64 synapiic connections in an eight neuron network would require approxi-

mately 192 clock cycles to complete backpropagation learning, whereas eight serial

multipliers would need approximately 240 clock cycles for the same computation.

However, since bit-serial designs can opelate at a much higher clock speed, because

of data pipelining, the overall computational speed (expressed as interconnections

per second) can be greater. A reasonable assumption would be that the parallel ver-

sion could work well at 10 MHz while a bit-serial design could operate comfortably

at 20 MHz.s This implies that the parallel version would operate at approximately

3.3 MiPS (Millions of interconnections Per Second) while the serial version operates

at approximately 5 MiPS-an increase in speed of around iI times. A fully parallel

multiplier that offers similar data resolution to a bit-serial multiplier design would

require approximately 3 x 106¡rm2 of silicon area.

A parallel pipeiined structure, whereby parallel additions are latched at each cycle,

would allow for clock rates near 20 NIHz within an area of I of our bit-serial design.

However, our bit-serial design has the potential to run at speeds near 40 MHz. This

translates into an equivalent throughput of.7.2 MiPS/neuron for both a chip that con-

tains eight serial multipliers and one with 16 parallel pipelined multipliers. Table 3.2
sThe reason for a slower speed in parallel structures is that signals are delayed as lhey ripple

ihrough adder stages, while bit-serial pipelining latches signals such that gate delays are minimized.

n1¡t

CHAPTER 3, IMPLEMENTATION A¡\ID RESULTS

r ar 1o -"; i'i,i,iJfi
tT at 10 MHz, 8 multipliers

Ìlt ¿¿ 29 MIIz, 8 multipliers
lI11 gate delays dictate the speed of operation

Table 3.2: Comparison of Multiplier Architectures

summarizes these results. These values are, however, all empirical and based solely

upon typical performance approximations; physical experimentation and observation

will provide more qualitative results. The table illustrates the viability of a bit-serial

design architecture.

Single-bit data bus structures are attractive in VLSI architectures. A parallel data

bus creates a bottleneck for routing strategies. A structure of parallel communicating

processors (like a neural network) via parallel data buses further complicates routing.

Since we can obtain the same computational throughput wiih a serial or parallel

design structure, serial processing is justifiably attractive. A parallel structure of

bit-serial devices with allow for better communication which implies higher densities

per chip.

Each neuron aiso requires the use of shift registers to hold synaptic weight infor-

mation. This is where the previous section on VLSI design strategies really shines.

Usually, designs requiring many DFFs consume huge amounts of silicon area. A

16 x 17x8-bit shift register was laid out using the stackable cells described previously

and, along with some small multiplexing, required less than 112 the area of an oversize

72

COMPARISON OF MULTIPLIER, AR,CHITECTTIR.E5
fully parallel parallel-pipelined bit-serial

multiplier area* (x 106¡-rm2 3 0.85 1.7
speed, (X,IiPS) .).J' 3.3rT 5Tf1

throughput, (NIiPS/neuron) 3.3rTï1 L.211 1,2

ô
a

8-bit register 8-bit register

8-bit register 8-bit tegister

8-bit rêg¡ster 8-bit register

8-bit register 8-bit register

Figure 3.13: Synaptic 'Weight Register

die available from CMC. The area was approximately 6000 x 3000p,m and the density

was approximately 70,000 transistors-a major breakthrough in shift register layout.

This translates into a density on the order of.250 ¡L,mzf transistor. This doesn't seem

too impressive when you consider that a minimum size p-type transistor alone only

requires about 80 p,rn2. In comparison, though, the inverter in our standard cell li-

brary requires 7620 p,rn2 (or 810 ¡.r,mzf transistor), therefore, our noveldesign strategy

has given us an equivalent area savings of nearly 70T0.

The synaptic weight register can be configured to operate in two modes as sug-

gested by Figure 3.13. In one mode, the shift register shifts data in parallel rows

between 8-bit registers. The data is wrapped around so that the last register's output

is directed into the first register's input of the same row. Similarly, for the second

CHAPTER 3. IMPLEMEATTATIOÀI AND RESULTS 73

Jt"v @
@
@

;
c)x
0)
õ_
5

@@@

9@ø

&bit reg¡ster 8-b¡t rêgister

8-bit register 8-b¡t register

@

@
@

8-bit register 8-bit register

8-bit rêgister 8-bit register

CHAPTER 3. IMPLEMENTA?ION AND RESULTS

mode of operation, the column mode, data is shifted in a columnar manner such that

the last 8-bit register feeds the fir'st 8-bit register of the same column. Each row

(column) shifts in stepped-sequence to every other row (column) such that a parallel

data structure is accomplished. The column mode of operation is used in the forward

pass of ihe backpropagation algorithm, rvhile the row mode is used for the backward

pass and pre-loading of the weight registers. The reconfigurability is essential because

upon examination of the backpropagation equations we see that the order of weights

that are required in the forward summation of the backpropagation algorithm (to

create the weighted sum) is different from thai required by the backward error com-

putations (in the calculation of error deltas, ó); in fact, the weights are orthogonal to

each other. The diagram in Figure 3.L4 will make the reconfiguring concept a little

clea¡er. For clarity, we assume a 4-neuron structure; the forward summation requires

netl : oo'u)r\ * ouwzt and net2 : oølrl2 * obtxzz, while the backward summation is

6o u. 61w¡ I 6zwn and ó¡ x 61w21 * 6zwzz. From these equations, it is obvious that

broadcasting each input (in sequence) to the neural network in the forward pass of

the algorithm, and broadcasting each error derivative in the backward pass requires

the use of orthogonal synaptic weights.

The design also includes registers to latch the input data (activations from a

previous layer or input vectors), learning rate (r7), momentum (a), and the back-

propagation error terms (6). Other modules, such as the multiplier control unit and

instruction decoder, are mentioned but not described. An 1l-bit hybrid cellular au-

tomata (HCA) is included to seed the synaptic weight registers with pseudo-random

weights.

74

CHAPTER 3. IMPLEMEAiTATIO¡./ AND RESULTS

COLUMN SHIFTING OPERATION ROW SHIFTING OPERATION

Figure 3.14: Reconfiguration to Support Backpropagation Learning

fÐ

oþo

o
(ú
ct)
(ú
ó-o
o
-9.o(õ
ro

Forward À¡lode

CHAPTER 3. IMPLEMENTATION A¡/D RESULTS

Although the parallel structure of our ANN design offers the same fault tol-

erance (hardware redundancy) capabilities of a real neural network, i.e. gracefui

degradation,6 we have conformed to a bit-serial testing strategy similar to one de-

scribed by Denyer [82]. The HCA outputs are muitiplexed throughout the design to

provide testing patterns to most parts of the ASiC. An external tester would have to

provide the necessary computations for signature analysis of the resultant patterns

to test for faults.

The ASIC implements eight neurons in a single layer of a multi-layer neural net-

work. Weights are stored on-chip and updated by backpropagation. Learning rate and

momentum terms are included in the calculations. The neurons operate in a parallel

fashion using bit-serial calculations. Each single neuron contains a multiplier, adder,

and threshold unit. A single clock is distributed throughout the entire ASIC. An

8 x 9 x 8-bit synaptic weight register is implemented using our 'overlapping' cells for

storage of the 64 synaptic and eight bias weights. All data is in 8-bit two's complement

form. The architecture is tightly pipelined so that high clock rates are achievable. An

on-chip piece-wise-linear approximation to the sigmoid function provides the neuron

activation transfer function. The chip can be cascaded so that multi-layered neural

networks can be formed.An HCA is used to initially place random weight values into

the synaptic registers and also to provide testing patterns to the circuit. The im-

plementation is in fully-digital 3¡;m double-level-metal CMOS technology. The total

die size is 8200pmx7600¡rm with approximately 38,000 transistors and 66 pins, and

will fit perfectly in an oversize die available from CMC. The power consumption is

approximately 1 Watt at 20 MHz.

76

6 Graceful degradation refers to the ability of a system to recover from a fault in a graceful manner.

CHAPTER 3. IMPLEMENTATION A¡'iD RESULTS

The chip has not been fabricated but is complete and ready for submission, if one

so desires. A complete simulation of this ASIC is virtually impossible because of the

vast amounts of data that must be processed in a parallel manner on a serial com-

puter; along with tremendous storage capacity requirements. However, simulations

have been performed on each module within the ASIC, and all models perform as

expected. Simulation of a single neuron indicated that the design was operational.

Comparison to speeds of similar architectures was not performed as most research-

oriented VLSI neural network designs do not report these findings. The commercial

designs described in Section 2.3 utilize fast DSP chips. These chips have been

optimized over years of research and, therefore, comparisons are not included.

Figure 3.15 shows the ASIC design layout in metal-l only, while Figure 3.16

shows a breakdown of the chip's structure.

The follolving is a general sequence of events that the ASIC follows when it is

performing learning as controlled by an off-line computer:

Initialize weights.

Latch inputs, r¡ and a.

Forward propagate inputs (multiply and accumulate).

Send sigmoid activation off-chip (neuron output).

Calculate derivative of output and wait for error input.

Calculate error deltas (multiply and accumulate) and send off-chip (backprop-

agation error).

Update weights on-chip.

Wait for new input (goto 2 upon receipt of new input).

77

1.

2.

3.

4.

5.

6.

7.

8.

CHAPTER s. IMPLEIIIENTATIO¡\r A¡{D RESLILTS

Figure 3.15: Neural Network with Backpropagation Faradigm ,{SIC

78

CHAPTER 3. IXTPLEMENTATION A¡,/D RESULTS

Figure 3.16: Elock-level Diagram of the ASIC Layout

79

CHAPTER 3. IMPLEME¡{TATIO¡{ AND RESULTS

Technology 3¡zm CMOS (digital)
Total die size
Neuron size
Weight storage

62.32 x 106 p,mz

2.8 x 106 p,mz

4.8 x 106 ¡,rm2

of neurons 8

of pins:
input
output
test

66

54

10

4

Power LW @ 20 NIHz
of transistors 38,000
Arithmetic 8-bit bit-serial

2's complement

Table 3.3: General ,{SIC Description

During recall, weight updating and backward error propagation modes are disabled

by instructions from the host computer.

Table 3.3 summarizes the implementation of the ASIC. The ASIC layout was

accomplished by a hierarchical place and route of the major cells, along with a full

custom layout of several modules, as \Mas previously discussed in this section. Edge

was used for the complete design, including full- and semi-custom design, as well as

schematic capture.

The ASIC is a single layer of a multi-layer backpropagation neural network and

can be used as the major component in a hardware accelerator board for simulating

this paradigm. The chip can be cascaded to construct a multi-layer network with

little additional circuitry. The chip can be controlled by an off-line computer that

can act as a user interface to the network, providing control, input and result feedback

functions. A typical configuration could be a neural hardware board interfaced to a

Sun Microsystems Workstation via VMEbus or SBus, as shown in Figure 3.LT.

80

CHAPTER 3. IMPLEMENTATION AIVD RESULTS

Sun 4 or Sparcstation Neural Network Accelerator Board

anay of
Neural Network

VLSI ASICs

Figure 3.17: Typical use of the VLSI ASIC in a Neural Network Simulation
System

81

ChapÉer 4

üosaaåa-asåoffis affid
ffi,e a o ffiß ffi¡.e xa d aÉ å o xas

We have succeeded in implementing the backpropagation learning paradigm in a VLSI

ASIC. The digital architecture in our neural network displayed high computational

throughput. The density of neurons that could be placed on the chip was very dis-

appointing. The inclusion of on-chip learning did not affect the neuron density; the

multiplier was the major consumer of silicon area.

We recommend the use of a neriv multiplier policy. The bit-serial approach seemed

like a good design choice throughout this project's development. However, large

amounts of silicon were still consumed by the multiplier. The use of single multiplexed

multipliers should be investigated further, as should parallel multiplier structures.

This implementation of a neural network proved that digital designs of neural

networks should continue to be investigated. The viability of digital neural network

designs is evidenced by the tremendous amount of architectures reported on herein.

We recommend that the use of stochastic processing be further analyzed; especially

the work of Tomlinson et al. [69]. These processes are good candidates for the use of

82

CHAPTER 4. CONCLUSTO¡{S AÀ¡D RECOMMENDATIONS

HCAs. Further, the densities achieved by these designs are very impressive.

A software environment was attempted, but was not seriously considered. The

ASIC is intended for use by a serial computer as a hardware neural accelerator. The

task of developing a neural board and the development of a software interface should

also be attempted.

The ASIC can be cascaded to form any number of layers of a multi-layer feed-

forward network. We recommend the extension of this design to sequential networks

and single layer feedback networks. An extension to allow chips to be placed side-

by-side to form arbitrarily long layers of neurons should be investigated. The chip

as it stands now, cannot be configuled for larger numbers of neurons per layer and

therefore would have to be redesigned.

Alternative forms of storage should also be considered. The storage of weights can

escalate tremendously as larger designs are established. Our design was small enough

that storage was not a problem. Static and dynamic RAM structures with multiport

access capabilities should be considered.

Backpropagation learning can be very slow, even with an accelerator chip as

we have developed. An exploration into the many possibilities of backpropagation

speedup techniques would be beneficial.

We have also created a novel VLSI design layout strategy that could form the

basis for a unique library of standard cells. These cells could be used to create high

density layouts of regular structures.

83

Appesadåx ,&

Gesse wwliøed å)eåËa ffi,a-ååe

This appendix rvill attempt to summarize the inception of the backpropagation of

errors, or backprop learning paradigm from its roots in the Perceptron Convergence

Theorem, through the least mean square association, to its most basic form in the

Generalized Delta Rule. We do not include any backprop speedup techniques here

(references to these are made elsewhere)-we simply want to show, from a purely

mathematical perspective, how the original version of the backpropagation learning

paradigm (sometimes referred to as vanilla backpropagation) was developed. The

derivative is a summary of McClelland and Rumelharts Exploration in PDP Hand-

book (Chapter 5) [86], along with Rumelhart, Hinton, and Williams'Learning internal

representations by error propagation, PDP vol. 1, pp. 318-362 [2]. There are several

ways to develop the actual algorithm, but we will only present one possible way-as

described in the references stated. Other possible derivations can be found in Rumel-

hart, Hinton, and Williams' Learning internal representations by backpropagating

errors, Nature 323: 533-536 (1986) [86], and an interesting statistical comparison

in Neural Network Learning and Statistics by' llalbert White, AI Expert Magazine,

84

APPENDIX A. GENERALIZED DELTA RULE

Dec. 89, pp. 48-52 [30]. From this it is interesting to note that backpropagation

is actually an application of neural network learning of statistical methods proposed

by Herbert Robbins and Sutton N{unro in 1951. Nevertheless, what follows is a

strictly mathematical derivation of the backpropagation rule for those interested in

the mathematics behind those infamous hidden units.

We start off by stating that the backpropagation learning rule is a complete gen-

eralization of the Widrow-Hoff error correction rule, sometimes referred to as the

Ieast-mean-square (LMS) learning rule or the delta rule (in reference to the differ-

ences in target and output values that create error derivatives). It can also be shown

that the delta rule is essentially the same r-ule used in the perceptron.

The perceptron neural network used a simple linear threshold activation func-

tion. The networks were usually confined to single layers of neurons and binary

input/output values. That is, the neuron summation was given by

(A.1)

if. net > 0

otherwise,
(A.2)

where i¿ is the input to the neuron, r.r-,1 is the corresponding synaptic weight, o is the

neuron output, and 0 is the threshold over which the activation function becomes

active. The change in the threshold, Ad, is given by

L.0:-(to-oo):-6p (A.3)

where p is the presentation pattern index, úo is the target value for a specific pattern,

oo is the output generated by the net for pattern p, and óo symbolizes the difference

ð¿)

net : Ð.0i,
i

and the activation was given by

(t
O:1-

L0

APPENDIX A. GENERALIZED DELTA RULE

between desired and actual output. Finally, the change in the weights, Ar.l¿, are given

by

Lw¿-(tr-or)io;-6oie; (4.4)

where io; indicates the input to the neuron for pattern p. If. net is greater than d, the

unit is turned on: otherwise it is tulned off. The output vector is compared with the

desired result (a similar vector if classification is performed or a more complex vector

for mapping) and the threshold is either incremented or decremented by '1'. This

is similar for the change in weight, i.e. binary changes only. The relative simplicity

of this procedure is contrasted by the guarantee that a set of weights that correctly

classifies the input vector will be found if such a set of weights exists-the so-called

perception convergence theory. Also, an appropriate mapping of input to output

vectors will be found if such a mapping exists. Unfortunately, this mapping does

not always exist and the perceptron algorithm is thus flawed. Minsky and Papert, in

Perceptrons (tS6S) stated a simple example of the limitations of the perceptron by

showing that it cannot compute the exclusive-or (XOR) function. The XOR problem

is found in many examples when the problem is reduced to lower classification levels.

The class of problems that can be solved by a perceptron happens to be linearly

separable functions. The perceptron can be made to solve the XOR problem in one

of two ways: (t) bV adding a third dimension (variable) to the problem; and, (2) by

allowing a second layer (multi-layer) of perceptron units. This new form of multi-layer

perceptrons defined the classes input, hidden, and output units. The input units

receive input patterns, while the output units have corresponding target patterns-

these are the external connections to the outside world. The hidden units receive their

inputs from units in lower layers (in the case of feed forward nets), or from lower,

86

APPENDIX A. GENERALIZED DELTA RT]LE

similar and/or higher layers (in feedback netwo-r-ks). The original perceptron learning

algorithm did not account for multiple layers and therefore could not be applied to

teach these networks.

Another major single-layer learning algorithm being developed was the LMS learn-

ing procedure. This procedure makes use of the delta rule for adjusting connection

strengthsl. The term LMS is used to stress the fact that the learning rule tries to

minimize an error measure in its performance. In this learning procedure, purely

linear output activations are used such that the output of units is given by

o¡:Tw4i¿ (4.5)

where i and j are unit indices, o¡ is th" o,,,tp,rt of the j¿A unit, i; is the input from

i¿ä unit, and. u¿¡ is the connection strength from unit i to unit j. The error function

is the summed square error defined to be

n:ÐEr:ÐÐ(¿0, -op¡)z (A 6)
PPJ

where p is the input pattern index for the tlaining set, j is the output unit index,

and E, is the er-ror for pattern p. The target value, tp¡, is the desired output for

the jth output unit during the presentation of pattern p, and oo¡ is the actual output

of unit j during this same pattern input. The basic algorithm is to find a set of

weights, w¡¡, Lhat will minimize the function E. The LMS procedure finds these

weights by a method called gradient descent. The idea of gradient descent is to

change the weight matrix such that a change in weight proportional to the negative

of the derivative of the error for the current pattern for each weight will decrease the

lNote that the only diffe¡ence between LMS and perceptrons is that LNIS uses outputs with
continuous values.

APPENDIX A. GENERALIZED DELTA RULE

overâll error to a global minimum, by the equation

6uíi -kþowii

and substituting for the derivative in E we get

88

(A.7)

6wii q6r¡ip; (A.8)

where z7 is a constant of proportionality, 6pj : tpj - opj is the difference between

target and actual output values for unit j during pattern p, and io; is the input from

unit i during this same pattern. Notice that this learning rule is exactly like that of

the perceptron as was previously stated-the only difference is the perceptron's use

of binary (i.e. '1' and '0') values. This LMS learning rule was developed completely

independent of another rule, the delta rule; however, it turns out that it is the identical

result-hence the constant interchanging of terminology for this particular rule.

Although the LMS procedure is useful in certain respects, it turns out that any

linear system of activation functions cannot compute more in multiple layers than

they can in a single layer. Therefore, like the perceptron, LMS still cannot solve the

XOR problem. The backpropagation of error algorithm was developed to overcome

this limitation by combining non-linear perceptron-like units with the LMS error

function and gradient descent. We start off our derivation of backpropagation, or

the generalized delta rule, by presenting the rule for changing connection weights

following an input/output training pair p

Lpw¿j : T(tpj - or¡)ie; : 6r¡ip; (A.e)

where

unit j,

tr¡ is

ir; is

the target output, or¡ is the actual output during pattern p for output

the input value from unit i during this same pattern presentation, ry is

APPENDIX A, GENERALIZED DELTA RULE

a constant of proportionality, 6pj : tpj - opj, and Lpu;j is the change made to the

connection weight from the ith tojúå unit following training pattern p. This is exactly

the same as the LN{S (delta) training rule and in fact it is just restated. A formal

proof of the generalized delta rule r,vill now follow.

If the error function for a neural network upon presentation of a training in-

put/output pair, p, is

",
:

r\l(¿o¡ -
J

89

and E-

where all variables are the same as before. The delta rule states

the derivative of the error function with respect to ihe weight. By

rule we get

)Ep : 08, 0or¡
6u;i 0or¡ 0w¿¡

The first part of the equation tells us how the error changes with the output of the

j¿A neuron and the second part tells how much changingT.r¿, will change that outpui.

These partial derivatives are easy to compute and the first half of Equation A.Lz,

from Equation ,4..10, is given by

2t' : -(tp¡ - opj) : -6pj (A.13)
Ðooi

that is, the contribution of the j¿à unit to the error is proportional to 6r¡. Since we

are rrow only considering linear output activations,

or¡)'

Ð8,
p

oni : lu;¡ip;
i

from which we get the second half of Equation A.l2 to be

(4.10)

(A.11)

that we must take

applying the chain

(A.12)

(A.14)

oori
n

-
lDlgw;i (A.15)

APPENDIX A. GENERALIZED DELTA RIJLE

Thus, substituting Equation ,{.15 and Equation ,4.18 into Equation .{.12 we

get

90

(A.16)

that is proportional to A'rtn¿-i as prescribed by the delta rule in Equation 4.9 where

z7 would be the constant of proportionality.2 Now if we combine Equation 4.16

with the observation that
aE - Ð8,

-:
)

-
U.u;i ? 0*,¡ (A.17)

we get that ihe net change in w¿¡ after one complete cycle of training pattern pre-

sentations is proportional to this derivative and hence this delta rule implements a

gradient descent in E. By changing the weights after each pattern is presented, we

depart from a true gradient descent in .8, but provided that the constant of pro-

portionality, 17 (further referred to as the learning rate), is relatively small, the error

introduced by this departure will be negligible and thus the delta rule will implement

a very close approximation to the error derivative. In fact, with a small learning rate,

this rule wili find a set of weights minimizing this error function.

We have just shown how the standard delta rule implements gradient descent for

linear activations. So far, we have considered networks with no hidden units and

the delta rule guarantees an optimum solution set of weights. If we now add hidden

units to the network, the derivatives are not so obvious and there is the possibility

of several local minima. This derivation will be confined to multi-layered feedfor-

ward networks only, configured such that units on a lower layer can send outputs

to higher layers only and must receive inputs from lower layers-notice that the out-

zNote that we have used a different error function here as compared to LMS; however, it can be
shown that the two funct,ions offer the same mean-squared error derivative.

APPENDIX A. GENERALIZED DELTA RULE

puts may also skip layers. We will also generalize our derivation by assuming units

with semi-linear activation functions only, since linear activation functions provide

no advantages for multi-layer networks. A semi-linear function is one in which the

activation function is a nondecreasing and differentiable function such that

netr¡:l u;¡opt (4.18)

where opi :io; if the ith unitis an inpu, ""ir. A semi-linear activation function is

given by

opj : f ¡(neto¡) (A.1e)

To obtain the generalized delta rule we again take the derivative of the error function

with respect to the connection weight, Equation 4.12, but this time using the

semi-linear activation function of Equation A.1g and we find

91

?Ep _ }Eo ?netoj
6wii)netr¡ 0w¿¡

\.a
Lukjopk: opi

t-

ÐEo

ônetr¡

(A.20)

(A.21)

(A.22)

(A.23)

in Equa-

From Equation ,4..18 we get

)netr¡ _
6wii 670;i

If we define

copj: -

we can now rewrite Equation Á..20 as

aE^
-

ú:
ö'¡oPi

This is the simiiar result as we obtained for the standard

tion ,4'.16, that states that

delta rule, as

Lw;¡: r¡6r¡oe; (A.24)

APPENDIX A, GENERALIZED DELTA RULE

To compute the 6r¡ in Equation
^.22

we can write

, Ð8, }Eo ?orj
òpi : -a;írr,: -ú a"ã (4.25)

The second factor of Equation 4.25 is simply the derivative of the semi-linear

activation function /¡ for the jth unit evaluated at the net input netr¡ to that unit,

and is given by

oooi

92

Assuming that the jtå

which is the exact result obtained for the standard delta rule as seen in Equa-

tion A.I-3. Substituting Equation .A'.26 and Equation 4.27 into Equation y'r.25

we get

6p¡ -- (tr¡ - or¡)f j(netr¡) (4.28)

for the jtä output unit. If the jth unit is not an output unit, we can use the chain

rule to write

0netr¡

unit is an output

oE, -oooi

: fj(tzeto¡) (4.26)

unit, we get, from the definition of Er, that

-(tp¡ - op¡) (A.27)

(A.2e)

(A.30)

r 08,)netr* --: ð8, A .-r
+ñ"trr-d".

:
+ anetrka%+w;¡oPi

:
T

%-*: -Ð 6'*ut*¡

Again, substituting into Equation
^.25

we get

6o¡ : fj(netr¡)Ð 6rrew *¡
k

whenever the jth unit is not an output unit. This is a recursive procedure for comput-

ing the á's for all units in a network. Weight changes are then computed according

to Equation ,A..24.

APPENDIX A. GENERALIZED DELTA RULE

We can now summarize from the results just obtained and formally state the

generalized delta rule for a feedforwald layered neural network with a semi-linear

activation function. During the first phase of the rule, the input pattern is presented

and propagated forward through the network to compute the output value oo¡ for

each unit. The target pattern is then presented to these output units and an error

signal 6r¡ is produced for each outpui unit. The second phase involves a backward

propagation of the calculated error signal ihrough the network and the appropriate

weight changes are executed. The second phase allows the recursive computation of

the á's as shown below. The following three equations summarize the generalized

delta rule:

93

Lpw¿j - r¡6r¡oet

6p¡ : (tp¡ - or¡)f j(netr¡), output unit

6o¡: fj(netòÐ6.p¡çux¡t non-output unit
k

Deciding on a semi-linear activation function specifies the exact form of the above

equations. A useful activation function for which the derivative exists (a semi-linear

function) is the logistic, or sigmoid, activation function given by

oPi:l+;g,-;",ãi (A'34)

where 0¡ is a bias input similar to the threshold in a perceptron. We have that the

total input netr¡ : l;w;¡op; ! 0 ¡ can give us the derivative

ðnetr¡
: opj(I - op¡) (A.35)

(4.31)

(A.32)

(A.33)

oor¡

and therefore, the following three equations for the generalized delta rule for a multi-

APPENDIX A, GENERALIZED DELTA RULE

iayered feedforward neural network with a sigmoid activation function are:

AT.o;¡(nf 1) - r¡6r¡oe; * aAtr;¡(n)

6p¡ : (tp¡ - or¡)or¡(I - opj), output unit

6r¡ : oo¡(7 - op¡)l6r,tu¡r,, non-output unit

where, in Equation ,{.36, a momentutn term, a, has been added to increase the

learning rate and n indexes the training step. Notice that the bias term, 0¡,innetr¡

can simply be regarded as another connection weight with a constant input value of '1'

and can be modified similar to the other weights. Careful examination of the equations

is necessary since the layer indexes are very important; we have applied the convention

that letters of the alphabet that occur sooner are considered as indexes for lower

layers. That is, layer i is lower than layer 7 and therefore a unit in layer i will feed

signals forward to layer j. In the backward mode, error signals are sent from higher

to lower layers. Notice also that the calculation of errors derivatives, á's, require the

availability of the outputs from units in a lower layer and the corresponding weighted

connection strengths. Finall¡ note that the weights are not modified until after the

error derivatives have been calculated for all of the layers. Also note that initial

weights must be randomized to break the problem of symmetry.

94

(A.36)

(A.37)

(A.38)

ffiåbåå@grephy

[1] Minsky, M., and S. Papert. Perceptrons: An Introduction to Computational Ge-

ornetry. Cambridge, MA: The NÍIT Press, 1969.

[2] Rumelhart, D.E., and J.L. McClelland. Parallel Distributed Processing: Explo-

rations in the Microstructures of Cognition. Vol. 1, Foundations. Cambridge,

MA: The MIT Press, 1986.

[3] McClelland, J.L., and D.E. Rumelhart. Parallel Distributed Processing: Erplo-

rations in the Microstructures of Cognition. Vol. 2, Psychological €i Biological

Models. Cambridge, MA: The MIT Press, 1986.

14] Touretzky, David S., and Dean A. Pomerleau. "What's Hidden in the Hidden

Layers?" BYTE, August 1989, pp. 227-233.

[5] Butler, zoeF.; Murray, Alan F.; and Anthony v.w. smith. "VLSI Bit-serial

Neural Networks." VLSI for Artifi,cial Intelligence, eds. J. Delgado-Frias and

W.R. IVIoore, 1989, Kluwer Academic, pp. FzlI-F2110.

[6] Murray, Alan F.; Smith, Anthony V.W.; and Zoe F. Butler. "Bit Serial Neu-

ral Networks." IEEE Conference on Neural Information Processing Systems-

Natural and Synthetic, Denver, 1987, pp. 573-583.

95

lel

BIBLIOGRAPHY 96

IEEE Transactions on[7] Lyon, R.F. "Two's Complement Pipeline N{ultipliers."

Cornmunications, (April 1976): pp. 418-425.

[8] Murray, Alan F., and Peter B. Denyer. *A cMoS Design Strategy for Bit-

Serial Signal Processing." IEEE Journal of Solid-State Circuiús, Vol. sc-20 No. 3

(June 1985): pp. 746-753.

Myers, D.J., and R.A. Hutchinson. "Efficient Implementation of Piecewise Lin-

ear Activation Function for Digital VLSI Neural Netrvorks." Electronics Letters,

Vol. 25 No. 24 (November 23, 1989): pp. 1662-1663.

Heinbuch, Dennis V., ed. CMOSS Cell Librarg. Reading, NIA: Addison-Wesley

Pubiishing Compan¡ 1988.

Weste, Neil, and Kamran Eshraghian. Principles of CMOS VLil Design: A

Systems Perspectiue. Reading, IVIA: Addison-Wesley Publishing Compan¡ 1g85.

Myers, David J., and Peter A. Ivey. "A Design Style for VLSI CMOS." Journal

of Solid-State Circuiús, Vol. sc-20 No. 3 (June 1985): pp. 747-745.

[13] Oklobdzija, Vojin G., and Robert K. Montoye. "Design Performance Trade-Offs

in CMOS Domino Logic." IEEE 1985 Custom Integrated Circuits Conference,

pp. 334-337.

[t+] Cadence Design Systems, Inc., Edge Design Manuals, version 2.1, USA, 1989.

[15] McCuiloch, W.S. and W. Pitts. "A Logical Calculus of the ldeas Immanent in

Nervous Activity." Bulletin of fuIathematical Biophysics 5, (1943): pp. 115-133.

[16] Hebb, D.O. The Organization of Belt.auior. New York: John Wiley & Sons, 1949.

[10]

[11]

[121

BIBLIOGRAPHY

[17] Rosenblatt, F. Principles of Neurodynarnics.]{ew York: Spartan Books, 1g59.

[t8] widrow, 8., and M.E. Hoff. "Adaptive switching circuits." 1960 IRE wESCoN

Conuention Records, Part l, August 1960, pp. 96-104.

[19] Levine, Daniel S. "the Third Wave in Neural Networks." AI EXPER?, December

1989, pp. 27-33.

[20] Treleaven, Phillip; Pacheco, IVIarco; and Marley Vellasco. "VLSI Architectures

for Neural Networks." IEEE I\,IICRO, December 1989, pp. 8-27.

[21] Lawrence, Jeannette. "IJntangling llleural Networks." Dr. Dobb's Journal, April

1990, pp. 38-44.

[22] Illingworth, William T. "Beginners Guide to Neural Networks." IEEE AES Mag-

azine, September 1989, pp. 44-49.

[23] Hinton, Geoffrey E. "Connectionist Learnìng Procedures." Journat of Artif,ciat

Intelligence, Vol.40, No.1-3, September 1989, pp. 785-234.

[2a] Lippmann, Richard P. "An Introduction to Computing with Neural Nets." IEEE

ASSP Magazine, April 1987, pp. 4-22.

125] Carpenter, Gail 4., and Stephen Grossberg. "The ART of Adaptive Pattern

Recognition by a Self-Organizing Neural Network." Computer, March 1988,

pp. 77-88.

[26] Linsker, Ralph. "Self-Organization in a Perceptual Network." Computer, March

1988, pp. 105-117.

97

BIBLIOGRAPHY

[27] Hecht-Nielsen, Robert. "Counterpr-opagation Networks." IEEE First Interna-

tional Conference on Neural Networks, San Diego, June 2r-24, lggz. vol. II

[28] Parker, David B. Learning-Logic. Center for Computational Research in Eco-

nomics and lvlanagement Science, MIT, Aplil, 1985. Technical Report TR-42.

[29] lVerbos, Paul J. "Beyond Regression: I'lew Tools for Prediction and Analysis in

the Behavioral Sciences." Ph.D. Thesis, Applied lVlathematics, Harvard Univer-

sity, November 1974.

[30] White, Halbert. "Neural Network Learning and Statistics." .41 EXPERT, De-

cember 1989, pp. 48-52.

[31] LeCun, Yann. A Theoretical Framework for Back-Propagation. Toronto: Con-

nectionist Research Group, University of Toronto, September 1988. Technical

Report CRG-TR-88-6.

Bryson, 4.8., and Yu-chi Ho. Applied opti,mal control. Blaisdell, Ny, 1969.

Hecht-Nielsen, Robert. "Theory of the Backpropagation Neural Network." 1z-

ternational Joì,nt Conference on Neural Networks, Washington, DC, June 1g-22,

1989. Vol. I, pp. 593-605.

Parker, D. "Optimal Algorithms for Adaptive Networks: Second Order Back

Propagation, Second order Direct Propagation, and Second order Hebbian

Learning." Proceedings of the IEEE First Annual Conference on Neural Net-

works, June 1987. Vol. II, pp.593-600.

[32]

[33]

[34]

BIBLIOGRAPHY

[35] cailton, J.G.; Angéniol, B.; and E. N,farkade. "constrained Back-propagation,',

Abstracts of the 1st Annual IÌ{NS X,Ieeting, (Special Supplernent Issue), Boston,

Sept. 6-10, 1988. Pergamon Press, NY. p. b39.

[36] Samad, Tariq. "Back Propagation is Significantly Faster if the Expected Value

of the Source Unit is Used for lJpdate." Abstracts of the lst Annual INNS L[eet-

i'ng, (special supplement Issue), Boston, sept. 6-10, 1988. Pergamon press, Ny.

p. 216.

[37] Mead, C.A. Analog vLil and Neural Systems, Reading, MA: Addison-wesley

Publishing Compan¡ 1989.

[38] Lee, Bang w.; Lee, Ji-chien; and Bing J. Sheu. "VLSI Image Processors Using

Analog Programmable Synapses and Neurons." 1990 International Joint Con-

ference on Neural Networks, san Diego, June 18-21, 1gg0. vol. II, pp. 525-580

[39] schwartz, Daniel B.; Howard, Richard E.; and wayne E. Hubbard. "A pro-

grammable Analog Neural Network Chip." IEEE Journal of Solid-State Circuits,

YoI.24 No. 2, (April 1989): pp. 313-319.

[+o] Furman, B.; white, J.; and A.A. Abidi. "clvlos Analog IC Implementing the

Back Propagation Algorithm." First Ann. INNS Mtg.,, September 6-10, 1988,

Boston, MA. Abstract also publ. in Neural Networlcs 1, Supp. 1 (1988), p. 381.

[41] Fisher, !V.4.; Fujimoto, R.J.; and N{.N,I. Okamura. "The Lockheed Pro-

grammable Analog Neural Network Processor," 1990 International Joint Con-

ference on Neural Networks, San Diego, June 18-21, 1gg0. Vol. II, pp.568-568.

99

BIBLIOGRAPHY

Goser, Karl; Hilleringmann, Uirich; Rueckert, IJlrich; and Iilaus Sch¡macher.

"VLSI Technologies for Artificial Neural Networks." IEEE MICR7, December

1989, pp. 28-44.

Caviglia, Daniele D.; Valle, IVfaurizio; and Giacomo lVf. Bisio. "Effects of Weight

Discretization on the Back Propagation Learning Nlethod: Algorithm Design

and Hardware Realization," 1990 International Joint Conference on Neural Net-

works,, San Diego, June 18-21, 1990. Vol. II, pp. 631-687.

Kub, F.J.; Ancona, M.G.; Mack, I.A.; lvloon, K.; and C.T. Yao. ,,Architecture

for Large Microeiectronic Supervised Learning Artificial Neural Networks Using

a Hybrid Digital-Analog Approach." Abstracts of the lst Annual l¡/¡/S Meeting,

(Special Supplernent Issue), Boston, sept. 6-10, 1988. Pergamon Press, NY. p.

389.

[45] Murray, Alan F. "Pulse Arithmetic in vLSI Neural Netwo¡ks." IEEE MICR},

December 1989, pp. 64-74.

[46] Beerhold, J.R.; Jansen, M.; and R. Eckmiller. "Pulse-Processing Neural Net

Hardware With Selectable Topology and Adaptive Weights and Delays." 1gg0

International Joint Conference on Neural Netuorks, San Diego, June 18-21, 1990.

Vol. II, pp. 569-574.

Atlas, Les 8., and Yoshitake Suzuki. "Digital Systems for Artificial Neural Net-

works." IEEE Circuits and Deuices Magazine, November 1989, pp.20-24.

Hillis, w. Daniel. The Connection fuIachine. Cambridge, MA: The MIT Press,

1985.

100

l42l

[43]

144l

[47]

[48]

[4e]

[50]

[51]

BIBLIOGRAPHY i01

watanabe, Takumi; Sugiyama, Yoshi; Iiondo, Toshio; and yoshihiro Kitamura.

"Neural Network Simulations on a N'iassively Parallel Cellular Array Processor:

AAP-2." IEEE /N¡/S International Joint Conference on Neural Networks, IgBg.

Vol. II, pp. 155-16i.

Pomerleau, Dean A.; Gusciora, George L.; Touretzky, David S.; and H.T. Iiung.

"Neural Network Simulation at Warp Speed: How We Got 17 Million Connec-

tions Per Second." 1988 IEEE International Conference on Neural Networks,

San Diego, July 24-27,1988. Vol. II, pp. 143-150.

Annaratone, Marco; Arnouid, Emmanuel; Gross, Thomas; Kung, H.T.; Lam,

Monica; Menzilcioglu, Onat; and Jon A. Webb. "The Warp Computer: Archi-

tecture, Implementation, and Pelformance." IEEE Transactions on Computers,

Vol. C-36 No. 12 (December 1989): pp. 1523-1538.

[52] Hayes, John P.; Mudge, Trevor; and Quentin F. Stout. "A Microprocessor-based

Hypercube Supercomputer." IEEE IVIICRO, October 1986, pp. 6-17.

Hecht-Nielsen, Robert. "Neurocomputing: picking the human brain." IEEE

SPECTRUM,MaTch 1988, pp. 36-41.

Deiss, S.; Hicks, W.; Kasbo, R.; Ìl'Iorse, K.i Muenchau, E.; and G. Works. "The

SAIC Delta Neurocomputer Archiiecture." Abstracts of the lst Annual /¡/¡/S

Meeting, (Special Supplement Issue), Boston, Sept. 6-10, 1988. Pergamon Press,

NY. p. 543.

[53]

[54]

BIBLIOGRAPHY

[55] Works, George A. "The Creation of Delta: A New Concept in

1988 IEEE International Conference on Neural Networks, San

1988. Vol. II, pp. 159-164.

r02

ANS Processing,"

Diego, July 24-27,

[58]

[5e]

160l

[56] Allman, WilliamF. Apprentices of Wonder: Inside the Neural Network Reuolu-

úion. New York: Bantam Books, 1989, p. 112.

[57] Garth, Simon C.J. uA Chipset for High Speed Simulation of Neural Network

Systems." IEEE First International Conference on Neural Networks, San Diego,

June 21-24, 1987. Vol. III, pp. 443-452.

Kato, Hideki; Yoshizawa, Hideki; iciki, Hiroki; and Kazuo Asakawa. "A Parallel

Neurocomputer Architecture towards Billion Connection Updates Per Second."

Vol. iI Applications Track. 1990 Internati,onal Joint Conference on Neural Net-

worlcs, Washington, DC, January 15-19, 1990. pp. 47-50.

Pacheco, M.; Bavan, S.; Lee, M.; and P. Treleaven. "A Simple VLSI Architec-

ture for Neurocomputing." Abstro,cts of the lst Annual INNS Meeting, (Special

Supplement Issue), Boston, Sept. 6-10, 1988. Pergamon Press, NY. p. 398.

Kraft, Timothy T., and Stephen A. Frostrom. "Concurrent ANS Architectures

using Communicating Processes," Vol. II Applications Track. 1990 International

Joint Conference on Neurøl Networks, Washington, DC, January 15-19, i990. p.

51-54.

[61] Hammerstrom, Dan. "A VLSI Architecture for High-Performance, Low-Cost,

On-chip Learning." 1990 International Joint Conference on Neural Networks,

San Diego, June 18-21, 1990. Vol. II, pp. 537-544.

BIBLIOGRAPHY

[62] Duranton, 1v1., and N. Mauduit. "A General Purpose Digital Architecture for

Neural Network Simulations." First IEE Internati,onal Conference on Artif,cial

Neural Netuorlcs, London, Engiand, October 16-18, 1989. pp. 62-66.

103

[63] Hirai, Yrzo; Kamada, Katsuhiro;

Digital Neuro-chip with Unlimited

works." IEEE I¡f¡/S International

Vol. II, pp. 163-169.

Yamada, lVlinoru; and Mitsuo Ooyama. "A

Connectability for Large Scale Neural l{et-

Joint Conference on Neural Networks, 7989.

[65]

[66]

[64] Van den Bout, David 8., and Thomas K. IWiller III. "TInMANN: The Integer

Markovian Artificial Neural Network." IEEE INNS International Joint Confer-

ence on Neural Networlcs,1989. Vol. II, pp. 205-211.

Symon, Jim; Rajgopal, Suresh; Vliller, Thomas K. III; and David E. Van den

Bout. "STONN: A Neural Network IC Using Stochastic Techniques." Abstracts

of the lst Annual INNS Meeti.ng, (Speci,al Supplement Issue), Boston, Sept. 6-10,

1988. Pergamon Press, NY. p. a12.

Wike, William; Van den Bout, David; and Thomas Miller III. "The VLSI Imple-

mentation of STONN." 1990 International Joint Conference on Neural Networks,

San Diego, June 18-21, 1990. Vol. II, pp. 593-598.

[67] Van den Bout, David E., and Thomas K. Miller, III. "A Digital Architecture

Employing Stochasticism for the Simulation of Hopfield Neural Nets." IEEE

Transactions on Circuits and Systems, Vol. 36, No. 5 (May 1989): pp. 732-738.

BIBLIOGRAPHY

Van den Bout, David E., and T.K. N,Iiller. "A Stochastic Architecture for Neural

Nets." 1988 IEEE International Conference on Neural Netuorks, San Diego, July

24-27,1988. Vol. I, pp. 481-488.

Tomlinson, IVIax Stanford Jr.; Walker, Dennis J.; and Massimo A. Sivilotti. ,,4

Digital Neural Network Architecture for VLSL" 1990 International Joint Con-

ference on Neural Networks, San Diego, June 18-21, 1g90. Vol. II, pp.b45-bb0.

[70] Habib, Mahmoud K., and H. Akel. "A Digital Neuron-Type Processor and Its

VLSI Design." IEEE Transactions on Circuits and Systerns, Vol. 36, No. 5 (lvIay

1989): pp. 739-746.

Yestrebsky, Joe; Basehorn, Paul; and Jerry Reed. Neural Bi,t-Stice Cornputing El-

ement. Lake Mary, FL: Micro Devices, n.d., pp. 1-6. Internal Report, TP i02600.

Cleary, John G. "A Simple VLSI Connectionist Architecture." IEEE First Inter-

national Conference on Neural Networks, San Diego, June 2r-24,1987. Vol. III,

pp. 419-426.

Marchesi, l\[.; Orlandi, G.; Piazza, F.; Pollonara, L.; and A. Uncini. "Multi-

Layer Perceptrons with Discrete Weights." 1990 International Joint Conference

on Neural Networks,, San Diego, June L8-21,1990. Vol. II, pp. 623-680.

Vidal, Jacques J.; Pemberton, Joseph C.; and James M. Goodwin. "Implement-

ing Neural Nets with Programmable Logic." IEEE First International Confer-

ence on Neural Networks, San Diego, June 2I-24, 1987. Vol. III, pp. 539-545.

\04

[68]

[6e]

[73]

[74]

[71]

172l

BIBLIOGRAPHY

[75] Kung, S.Y., and

Abstracts of the

Sept. 6-10, 1988.

105

J.N. Hwang. "Ring Systolic Designs for Artificial Neural Nets."

Ist Annual INI\'|S ll,[eeting, (Special Supplernent Issue), Boston,

Pergamon Press, NY. p. 390.

[76] Kwan, Hon Keung, and Pang Chung Tsang. "systolic Implementation of X¡fulti-

layer Feed-forward Neural Network with Back-propagation Learning Scheme."

Vol. II Applications Track. 1990 International Joint Conference on Neural Net-

worlcs, Washington, DC, January 15-19, 1990. pp. 155-158.

[77] Diamond, J.; Mcleod, R.; and W. Pedrycz. "AFuzzy Cognitive System: Exam-

ination of a Referential Neural Architecture." 1990 International Joint Confer-

ence on Neural Networks, San Diego, June 18-21, 1990. Vol. II, pp. 617-622.

Yasunaga, lVloritoshi; Masuda, Noboru; Asai, Mitsuo; Yamada, Minoru; Masaki,

Akira; and Yuzo Hirai. "A Wafer Scale Integration Neural Network Utiiizing

Completely Digital Circuits." IEEE /¡/¡/S International Joint Conference on

Neural Networks, 1989. Vol. II, pp. 2I3-2I7.

Yasunaga, Moritoshi; Masuda, Noboru; Yagyu, Masayoshi; Asai, Mitsuo; Ya-

mada, Minoru; and Akira Masaki. "Design, Fabrication and Evaluation of a 5-

inch Wafer Scale Neural Network LSI Composed of 576 Digital Neurons." 1gg0

[nternational Joint Conference on Neural Networles, San Diego, June 18-21, 1990.

Vol. II, pp. 527-535.

Various authors. IEEE /¡/NS International Joi,nt Conference on Neural Net-

works,, 1989. Vol. II, pp. 575-635.

[78]

[7e]

180l

BIBLIOGRAPHY

[81] Hopfield, J.J. "Neural Networks and Physical Systems with Emergent Collective

Computational Abilities." Proceedings of the Nati,onal Academy of Sciences, USA

79, 1982, pp. 2554-2558.

[82] Denyer, PeterB. vLil Signal Processing: A Bit-Serial Approøcå,. Reading, MA:

Addison-Wesiey Publishing Company, 1985.

[83] Ma, Gin-Kou, and Fred Taylor. "lMultiplier Policies For Digital Signal Process-

ing." IEEE ASSP Magazine, January 1990. pp. 6-20.

Ullmann, Jeffrey D. Computational Aspects of VLSL Rockville, MD: Computer

Science Press, 1984.

Rumelhart, David E.; Hinton, Geoffrey E.; and Ronald J. Williams. "Learning

Representations By Back-propagating Errors." Nature 323, (1986)' pp. 538-536.

[a0] UcClelland, James L., and David E. Rumelhart. Erplorations in Parallel Dis-

tributed Processing: A Handbook of hlodels, Programs, and Erercises. Cam-

bridge, MA: The MIT Press, 1988.

106

[84]

[85]

