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Abstract

Social network analysis (SNA) is a data analytic field that investigates hid-

den structures using the baseline of networks and graph theory. It helps to

understand the nature of creating connections between the objects. Within a

network, there can be multiple sub-networks which are called as ‘communities’,

and there are various algorithms to find communities within a network. In

this thesis, we analyze an epidemic spread using social network analysis, based

on the data from the COVID-19 outbreak across the world and in Canada.

We assess the nature of the spread of this virus by detecting communities

using different community detection methods which can be applied on directed

networks; Louvain, Label propagation, Infomap, and Spinglass algorithms. We

then evaluate the performance of the community detection algorithms using

simulation studies. We also assess the impact of the density and sparsity of

the network on community detection by introducing a novel random partition

graph generator using a mixture of two Gaussian distributions.

keywords: Social Network Analysis, Community detection, Similarity mea-

sures, Random partition graphs generator, Mixture of Gaussian distributions,

COVID-19
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Chapter 1

Introduction

Social network analysis (SNA) has been used as an essential tool in multi-

disciplinary fields. If we can observe a relationship between two objects, a

network can be created based on those objects. The process of investigating

social structures through the use of these networks is defined as Social Network

Analysis (Otte and Rousseau, 2002). SNA works as a great visualization tool

that helps understand the nature of connections between objects and identify

communities within a network. It also helps to identify factors that significantly

influence a link to be created between two nodes. Within a network, there

can be multiple communities such that nodes inside a community are densely

connected, and there are various algorithms to find communities within a

network. One of the main usages of social network analysis is describing disease

transmission during epidemics. Many empirical studies in humans (Rohani

et al., 2010; Stehlé et al., 2011) and animals (Craft, 2015; White et al., 2018)

have found the importance of social network structure on epidemiology. Eames

1



2 CHAPTER 1. INTRODUCTION

and team (Eames et al., 2012) found that during the 2009 H1N1v influenza

epidemic, changes in contact patterns explain changes in disease incidence.

Around the world, many researchers in research centers are working tire-

lessly to find better ways to understand and stop the spread of COVID-19.

Governments are trying to control the spread by imposing travel restrictions,

and multiple research works are being done to identify the importance of having

travel restrictions. Yilmazkuday (Yilmazkuday, 2020), Jacob Burns (Burns

et al., 2020), Matteo Chinazzi (Chinazzi et al., 2020) and others have done

research related to the travel restriction during the COVID-19 pandemic. But

not many people have considered understanding the spread of COVID-19 among

countries before the travel restrictions. Hence in this thesis, we conducted a

network analysis using COVID-19 mobility data before the travel restrictions.

Identification of sub-networks within a network is essential to understand

the functionality of a network. This process is called as ‘Community detection’.

Communities have different properties than the average properties of the whole

network. Hence Only considering the average properties of a network will

lose many important features of the network. Some processes, such as disease

transmission on a network, considerably affect by existing communities. Hence

it is important to detect communities, and we focus on that area in this thesis.
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1.1 Motivation

Starting from the early 2000, many community detection algorithms have been

introduced and studied in multidisciplinary areas. The main types of applica-

tions of community detection in networks are recommendation systems (Zanin

et al., 2008), link predictions (Tan et al., 2014), and anomaly detection in

online social networks (Savage et al., 2014). However, evaluating the results

of a community detection algorithm is a difficult task when we don’t have

information about the true communities (unsupervised). Different algorithms

can generate significantly different communities based on their own algorithms,

and it is not guaranteed that the output communities are the real sub-groups

of a complex network. In the literature, the most common way to evaluate the

community detection algorithm is comparing the algorithm’s result with the

ground truth communities of that network (Jebabli et al., 2018; Rossetti et al.,

2016; Yang and Leskovec, 2015). The main similarity metrics which generally

use to assess the similarity are Adjusted Rank Index (ARI) (Rand, 1971), and

Normalized Mutual Index (NMI) (Zhang, 2015).

In this thesis, we propose a novel method to evaluate and compare the results

of community detection algorithms using topological features of the community

graphs. In this method, we evaluate the algorithms by generating synthetic

networks with known communities, using the same topological features of the

real world network. Then we assess the similarity between known communities

and the communities produced by the algorithm. We observe the effect of this
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similarity score with the change of different topological features and generate

a heat map to understand the variation of similarity with the change of two

features.

The main challenge in developing the new method is the generation of

synthetic networks with known communities that follow the network structure

of a disease transmission network. The other thing that we had to consider is

generating directed networks. One of the existing methods, Gaussian random

partition (Brandes et al., 2003) was a better option to satisfy our requirements.

This algorithm generates networks based on the number of nodes (n), the mean

number of nodes per community (s), shape parameter (v), the probability of

connecting nodes within a community (Pin), and the probability of connecting

nodes between communities (Pout). The parameter s draws from a normal

distribution. Hence, one of the main drawbacks of this network generator is

the number of nodes that belong to a community is almost similar to all other

communities. To overcome this, we introduce a new random partition graph

generator with a mixture of Gaussians. Instead of drawing parameter s from

a single Gaussian distribution, we draw s from a mixture of two Gaussian

distributions.

1.2 Thesis Overview

In Chapter 2, we explore the theories of social network analysis and random

network generators. The novel random network generator with a mixture of
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two Gaussian distributions is well explained in 2.5.2. We discuss the theory

behind the community detection algorithms and similarity score metrics, which

we used throughout the thesis, in Chapter 3.

We then present our case study using COVID-19 data in Chapter 4. In

Chapter 5, we focus on the simulation study. In section 5.2, and 5.3 we explain

the simulation process for dense and sparse networks respectively. We explain

the creation of a heat map in section 5.4. Finally, we conclude the thesis with

a conclusion of our results.
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Chapter 2

Social Network Analysis

2.1 Introduction

Social Network Analysis (SNA) helps to understand the social structure,

through graph theory and network modeling techniques. SNA is considered

as the application of network science on social networks. Understanding the

basic concepts and terms of SNA would be helpful to investigate the results of

network analysis. Hence, throughout this section, we discuss the basic concepts

and models of Social network analysis.

Gaussian random partition graph is one of the existing synthetic network

generators with known communities (Brandes et al., 2003). This algorithm uses

a single Gaussian distribution to draw the number of nodes per community.

Due to this process, we will typically end up with communities with a similar

number of nodes. To overcome this issue, we have introduced a new random

7



8 CHAPTER 2. SOCIAL NETWORK ANALYSIS

graph generator which uses a mixture of two Gaussian distributions to draw

the number of nodes per community.

2.2 Social Networks

A social network is defined as a set of n social ‘actors’ and a social relationship

between each pair of actors. These actors do not always need to be people. To

build a network graph, two key components are required: actor and relationship.

Hence if we can observe a relationship between two objects, a network can

be created based on those objects such as road networks, country networks,

internet networks, etc...

A social network graph is developed using points and lines which connect

those nodes. The points and lines represent the actors and relationships

respectively. Mathematically, a network can be represented as 2.1, and two

actors are indicated by i and j. By generating Yij values for the whole network

with n actors, a sociomatrix can be developed: Y ≡ bYijcn×n.

Yij =

{
1 if there is a relationship between i and j .
0 otherwise.

(2.1)

2.2.1 Nodes and Edges

Nodes and Edges are a key concept in SNA. In a network, points and lines

indicate actors and relationships. But in network science, those points are

referred to as ‘Nodes’, while the lines are referred to as ‘Edges’.
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Based on the type of network, the node can represent different types of

‘actors’. Nodes in a road network can represent ‘Bus stops’ or ‘Junctions’ while

nodes in a travel network can represent ‘countries’. Edges also can represent

various types of relationships based on the type of network. In a road network,

edges can represent roads that connect ‘Bus stops’ or ‘Junctions’, while in a

travel network, edges can represent passengers’ travel information between

those ‘countries’.

2.2.2 Directed and Undirected Graphs

There are two types of edges, which are called as directed and undirected. When

developing a network graph or network model, it is important to understand

the type of edge based on your data set.

Directed graphs have edges with directions, which indicates by an arrowhead.

These edges have a starting node and an ending node, which indicate a one-way

relationship. In there, each edge can only be traversed in a single direction. In

a travel network, when a passenger traveled from a country to another, that

relationship is directed. The departure country is considered as the starting

node and the arrival country is considered as the ending node. The right graph

of Figure 2.1 shows an example of a directed graph.

Undirected graphs have edges with no direction, which indicates a two-way

relationship. In there, each edge can be traversed in both directions. Edges of

these graphs have no arrowheads. In a road network, when there is a two-way
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road that connects two ‘Bus stops’, it is an undirected relationship because

buses can travel in both directions, from bus stop A to B and from B to A.

The left graph of Figure 2.1 shows an example for an undirected graph.

Figure 2.1: Undirected and directed

2.2.3 Edge Weight

When there are multiple connections between the same two nodes, it can be

represented by the weight of an edge. A network, which has edges with weights

are referred to as weighted networks. For example, per day many people may

travel from one country to another. Hence, if your data set has 100 people who

have traveled from country A to country B, the edge which connects these two

countries will have a weight of 100.

2.3 Centrality Measures

In network analysis, centrality measures help to identify the most important

nodes within a graph. These are the most widely used indices based on network

data. Hence centrality measures play an important role in social network

analysis. There are several measures, but here we will explain degree centrality.
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2.3.1 Degree Centrality

Degree centrality is the most elementary measure of node connectivity. The

degree of a node is the number of edges connected to that node. The most

central node has the highest degree. The degree centrality can be calculated

by the Equation 2.2. For an undirected network, we can measure only the

degree centrality. But in a directed network, there are three different degree

measures: in-degree, out-degree, and degree.

CD(i) =
n∑
j=1

Yij (2.2)

In-degree and Out-degree Centrality

In directed graphs, we can calculate ‘In-degree’ and ‘Out-degree’ measures.

In-degree is the number of connections that point inward at a vertex, and

Out-degree is the number of connections that originate at a vertex and point

outward to other vertices. In the left graph of Figure 2.2, node C has two

edges towards it, while nodes A and B have 0 and 1 inward edges, respectively.

Hence Node C has the highest in-degree. In the graph of the right panel, node

A has two outward edges while B and C have only 1 and 0 outward edges,

respectively. Because of that, Node A has the highest out-degree.
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Figure 2.2: Indegree and outdegree graphs

2.4 Exponential Random Graph Models

Exponential Random Graph Models (ERGM) identify the variables that in-

fluence the link creation between nodes (Hunter et al., 2008). ERGMs are

edge-based models that model the probability or weight of each edge as a

function of network structure and the characteristics of individuals (nodes)

within the network in network analysis (Pol, 2019). In 2018 Goeyvaerts and

others (Goeyvaerts et al., 2018) used ERGM for infectious disease modeling

within household members and found that fathers are less likely to be infected.

The research work of Chris Groendyke and team (Groendyke et al., 2012)

showed that the ERGM network model better fits the epidemic data than a

Bernoulli network model previously used.

The interpretation of an ERGM is similar to the interpretation of a binary

logistic regression model. ERGM predicts the probability of creating a link

between a pair of nodes in a network. The basic ERGM model is fitted using
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edges. This is similar to fitting a regression model with only an intercept.

However, since the links between nodes are not independent, it violates the

basic assumption of independence of regression. The basic principle underlying

the method is the comparison of an observed network to Exponential Random

Graphs. A generic ERGM can be written as:

Pθ,y(Y = y) =
exp(θTg(y))

k(θ)
. (2.3)

Here Y is a n × n matrix, where yij = 1 if nodes i and j have a tie, y is the

space of possible graphs, and θ is a vector of coefficients. Note that g(y) shows

a vector of sufficient statistics, and k(θ) is the normalizing constant. Sufficient

statistics can be node-based or network-based attributes.

2.4.1 Model Selection and Evaluation

Model selection can be done using the Akaike information criterion (AIC) (Akaike,

1973), and Bayesian information criterion (BIC) (Schwarz, 1978) values and

the performance of an ERGM model can be evaluated using Goodness of Fit

and MCMC diagnosis. This section will explain these model selection and

evaluation methods.

For the ERGM model selection, the AIC and BIC values can be used. The

model with the lowest AIC and BIC values is considered as the best model.

The AIC estimates the relative distance between the unknown true likelihood

function of the data and the fitted likelihood function of the model. The BIC
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is an estimate of a function of the posterior probability of a model being true.

The following equations 2.4 and 2.5 are used to estimate the AIC and BIC of a

model:

AIC = −2 ∗ ln(L) + 2 ∗ k (2.4)

BIC = −2 ∗ ln(L) + 2 ∗ ln(N) ∗ k (2.5)

where L is the value of the likelihood, N is the number of recorded measurements,

and k is the number of estimated parameters.

Goodness of Fit

To study the coefficients, and to extract information from the marginal plots,

we need to assess the goodness-of-fit of the model. This step is essential because

we can not determine how as-expected your model is behaving without it.

The goodness-of-fit procedure simulates a large number of networks using

the estimated coefficients (Brandenberger and Mart́ınez, 2019). In every one

of the graphs, the bold lines in the frequency plots represent the values from

the original network, while the box plots are the values from the simulated

networks. Ideally, the mean of the simulated networks should overlap with the

observed value. If they do not, you must return to your model and check which

kinds of endogenous network terms your theory of the world might be missing.
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MCMC Diagnosis

Degeneracy is one of the main problems researchers find when dealing with

ERG models. Degeneracy occurs when the model places disproportionate

mass on only a few of the possible graph configurations. This means that the

methods used to find convergence do not work as intended, and the resulting

simulations are not adequate examples of the observed graph.

Once you assess the degeneracy, all values from your sampling procedure

should form a bell curve. If you observe multiple peaks for a variable, this

variable is not converged, and the variable makes the model degenerate. We

then have to remove it and rerun the model.

2.5 Random Graph Generation

In this section, we discuss two methods to generate random directed graphs with

random partitions. Those methods are Gaussian random partition graph (Bran-

des et al., 2003) and our newly developed method. Gaussian random partition

graph method generates random graphs based on the number of nodes, mean,

and variance of cluster size. Here each community of the generated networks

has a similar number of nodes. It happens because we use single Gaussian dis-

tribution to draw the size of a community. Hence we introduced a new method

that can draw the size of a community using the mixture of two Gaussian

distributions.
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2.5.1 Gaussian Random Partition Graph

A Gaussian random partition graph (Brandes et al., 2003) is created by

creating k clusters each with a size drawn from a normal distribution with

mean (s) and standard deviation (s/v). Here v is the shape parameter. Nodes

are connected within clusters with probability Pin and between clusters with

probability Pout. The number of clusters depends on the number of nodes (n),

mean (s), and standard deviation (s/v) values and the size of the last cluster is

possibly significantly smaller than the others.

Let G = (V,E) is a connected, undirected graph; |V |= n, |E|= m and

C = (C1, ..., Ck) is clustering of G and Cis are clusters. The graph G[Ci] :=

(Ci, E(Ci)), where E(Ci) := {{u,w} ∈ E : u,w ∈ Ci}. Then E(C) :=⋃k
i=1E(Ci) is the set of intra-cluster edges and ¯E(C) := E\E(C) the set of inter-

cluster edges. For a given n,s,v and Pin and Pout a uniformly random clustered

graph (G,C) is generated by inserting intra-cluster edges with probability Pin

and inter-cluster edges with probability Pout. A clustered graph is defined

as (G,C), where G indicates graph and C indicates clusters. The number of

edges in graph G is indicated by m, while the number of intra-cluster edges

and inter-cluster edges are indicated by m(C) and m̄(C) respectively. For a

generated clustered graph, the expected values of m(C), and m̄(C) can be
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obtained as follows

E[m̄(C)] =
Pout

2
(n(n− s)) and E[m(C)] =

Pin
2

(n(s− 1)). (2.6)

We develop a simulation study to obtain the empirical understanding of the

m(C), and m̄(C). As the first step, we generated a graph using the Gaussian

random partition graph and calculated the number intra edges by identifying

the number of edges that connect the nodes in the same cluster. The number

of inter edges was calculated by subtracting the number of intra edges from

the total number of edges of that network. Then the number of inter-edges

and intra-edges in two different vectors were stored and repeated the same

procedure 5000 times. This will end up with a distribution of inter-edges and

intra-edges with 5000 data points for each. The expected value of a variable is

known as the mean of that variable (Papoulis, 1984). Using trace plots and

density plots of inter and intra edges, we can identify the expected values of

m(C) and m̄(C).

We generated random networks by setting n=70, s=10, v=10, Pin = 0.5,

and Pout = 0.2. According to the equation 2.6 the calculated values of E[m(C)]

and E[m̄(C)] should be equal to 157.5 and 420. According to the trace plot in

Figure 2.3, it shows that number of inter edges varies around 420, while the

number of intra edges varies around 150. The mean values of the distributions

of m(C) and m̄(C) are 149.025 and 423.124 respectively. In order to have a
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better understanding we plotted density plots for both m(C) and m̄(C) and

Figure 2.4 shows those plots. Based on the density plots, it is clear that both

distributions are normally distributed and mean values are around the expected

values we calculated from equation 2.6.

Figure 2.3: Trace plot of number of edges over iterations. Red line indicates
the number of inter edges and blue color indicates the number of intra edges.

The expected values of coverage(C) and performance(C) of the graph can

be obtained as equations 2.7 and 2.8. The coverage(C) is the fraction of

intra-cluster edges within the complete set of edges. The larger the value of

coverage(C) the better the quality of a clustering C. The performance(C) of

a clustering C counts the number of ‘correctly interpreted pairs of nodes’ in

a graph. Calculating the performance of clustering according to this formula

would be quadratic in the number of nodes. Hence, it might be more efficient
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(a) (b)

Figure 2.4: (a): Density plot of inter-edges m̄(C), (b): Density plot of intra-
edges m(C). Red color dashed line indicates the mean value.

to find expected ‘errors’ instead (Eq. 2.8). Higher coverage and performance

will generate high quality clusters.

E[coverage(C)] = E[
m(C)

m
] =

E[m(C)]

E[m(C) + m̄(C)]

=
(s− 1)Pin

(s− 1)Pin + (s− 1)Pout

(2.7)

1− E[performance(C)] =
2m(1− 2coverage(C)) +

∑k
i=1|Ci|(|Ci|−1)

n(n− 1)

=
(n− s)Pout + (1− Pin)(s− 1)

n(n− 1)

(2.8)
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2.5.2 Random Partition Graph with Mixture of Gaus-

sians

In order to induce a more general structure with disease transmission commu-

nities, we introduced a new partition algorithm with a mixture of Gaussian

distributions. This method is different from ‘Gaussian Random Partition

Graph’, as this uses a mixture of Gaussian distributions to draw the size of

a community, instead of a single Gaussian distribution. This will generate

network graphs with both bigger and smaller communities.

For a given number of nodes (n), cluster sizes will be drawn from a mixture

of two Gaussian distributions with means s1 and s2, and standard deviations

(s1/v1) and (s2/v2) respectively. Let the probability density function (PDF)

for the ith Gaussian distribution is fi(x). In the mixture of Gaussians, the

probability of drawing from the first distribution is p and from the second

distribution is (1− p), where p is known as the mixing parameter. Then the

probability density function of the mixture of Gaussians can be written as

below:

fM(x) = (p)N

(
s1,

s1
v1

)
+ (1− p)N

(
s2,

s2
v2

)
= (p).f1(x) + (1− p).f2(x).

(2.9)
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The mean of Gaussian mixture can be observed by integrating:

µM =

∫ ∞
−∞

xfM(x)dx

=

∫ ∞
−∞

xp.f1(x)dx+

∫ ∞
−∞

x(1− p).f2(x))dx

= p

∫ ∞
−∞

xf1(x)dx+ (1− p)
∫ ∞
−∞

xf2(x))dx

= p.µ1 + (1− p)µ2.

(2.10)

In order to find the variance, first of all we need to find the second moment.

Then using that we can find the variance of Gaussian mixture.

E[M2] =

∫ ∞
−∞

x2fM(x)dx

=

∫ ∞
−∞

x2p.f1(x)dx+

∫ ∞
−∞

x2(1− p).f2(x))dx

= p

∫ ∞
−∞

x2f1(x)dx+ (1− p)
∫ ∞
−∞

x2f2(x))dx

= p.E(x21) + (1− p).E(x22)

(2.11)

σ2
M = E[M2]− µ2

M (2.12)

As in section 2.5.1, we now do a simulation to assess the behaviour of E[m(C)]

and E[m̄(C)] values. Let n=70, s1 = 10, s2 = 6, σ1 = 1, σ2 = 1, p=0.5,

Pin = 0.5, and Pout = 0.2. Once we calculated Mean and standard deviance
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based on equations 2.10 and 2.12, we got µM = 8 and σ2
M = 5. The probability

of connecting nodes within clusters is Pin and the probability of connecting

nodes among clusters is Pout. We generate 5000 networks using new algorithm

and stored number of intra edges and inter edges in each network.

Figure 2.5: Trace plot of number of edges over iterations. Red line indicates
the number of inter edges and blue color indicates the number of intra edges.

The Trace plot in Figure 2.5 shows that the number of intra edges and inter

edges are varying around 120 and 450 respectively. Based on the density plots

in Figure 2.6, it is clear that distributions of m(C) and m̄(C) are symmetric

around expected values. The calculated mean of m(C) is 122.7, and the mean

of m̄(C) is 433.7. Since we use a mixture of two Gaussian distributions to draw

the size of a cluster, we now derive the formulas for E[m(C)] and E[m̄(C)]

in section 2.5.1 using the mean of the mixture of Gaussians which explained
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(a) (b)

Figure 2.6: (a): Density plot of inter-edges, (b): Density plot of intra-edges.
Both plots are generated using data collected from random partition graphs
with mixture of two Normal distributions.

in equation 2.10. Hence when the mixing parameter is equal to 0.5, the new

mean is:

s = 0.5s1 + (1− 0.5)s2 =
(s1 + s2)

2
. (2.13)

For random partition graph with mixture of Gaussians, the number of

intra-cluster edges and inter-cluster edges are,

E[m̄(C)] =
Pout

2

(
n

(
n− (s1 + s2)

2

))
(2.14)

E[m(C)] =
Pin
2

(
n

(
(s1 + s2)

2
− 1

))
. (2.15)

Then we calculated the expected values of m(C) and m̄(C) using equa-

tions 2.14 and 2.15. We used the same parameters that we used for the network
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creation (n=70, s=(10+6)/2=8, Pin = 0.5, and Pout = 0.2). The values that

we observed are, 122.5 for E[m(C)] and 434 for E[m̄(C)].



Chapter 3

Community Detection

Algorithms

3.1 Introduction

The baseline idea of community detection is similar to clustering in machine

learning (Wilmink and Uytterschaut, 1984). Community detection is also used

to detect groups within a network. The main difference which can be seen

between clustering and community detection is, that clustering uses multiple

attributes to detect groups, while community detection only depends on a

single attribute called edges.

Nowadays, many researchers are interested in understanding the community

structure using community detection (Chakrabort et al., 2016; Li et al., 2018)

as it is important to understand the nature of the spread of a virus, especially

during an epidemic. There are various kinds of community detection techniques,

25
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and some techniques have their own assumptions. Community detection

algorithms can be applied to either directed graphs or undirected graphs. In

this study, we mainly consider community detection algorithms, that can be

applied to directed graphs. Hence in this section, we describe four important

community detection algorithms that can be applied on directed networks.

And also, we are explaining theories of similarity measures that can be found

throughout the thesis.

3.1.1 Modularity

Most of the algorithms are developed based on Modularity. Because of that,

understanding the meaning of modularity is important. It measures the strength

of the division of a network into groups. Modularity is defined as,

Q =
1

4m

∑
i,j in same module

(
Aij −

kikj
2m

)
. (3.1)

Here m is the number of edges of the graph, ki is the degree of node i, and

Aij is the adjacency matrix. The above equation shows modularity for an

undirected graph. (Dugué and Perez, 2015) developed a new modularity for a

directed graph, is given by,

Qd =
1

m

∑
i,j in same module

(
Aij −

kini k
out
j

m

)
. (3.2)



3.2. LOUVAIN ALGORITHM 27

The main difference between these two modularities is when calculating

directed modularity in-degrees and out-degrees were considered, but when

calculating in undirected modularity, only the degree centrality is considered.

3.2 Louvain Algorithm

The Louvain method (Blondel et al., 2008) is an unsupervised algorithm for

detecting communities in networks. This has 2 phases; Modularity Optimization

and Community Aggregation. These two phases are executing until there are no

more changes in the network, and the maximum modularity is achieved. At the

Modularity Optimization phase, each node is assigned to its own community.

Then node i is removing from its own community and moving it into the

neighbor community j. The change in modularity is calculated using,

∆Qd =
dci
m
−

⌊
douti .

∑in
tot +dini .

∑out
tot

m2

⌋
. (3.3)

Here dci is the degree of i in community C and
∑in

tot shows number of incoming

edges of community C, while
∑out

tot shows number of outgoing edges of commu-

nity C. If no positive increase can be seen in modularity, the node i remains

in its current community. This sequence will be repeatedly performed for all

nodes until no increment in modularity can be seen. The 1st phase stops when

a local maximum has been found.
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In the community aggregation step, different communities are considered

as nodes. Then a new network is built by considering the communities from

the previous phase are as nodes. When the new network is created, the second

phase has ended, and the first phase can be re-applied to the new network.

These phases are carried out until there is no more change in the community,

and a maximum of modularity is achieved.

3.3 Infomap Algorithm

This algorithm repeats the two described phases in Louvain until an objective

function is optimized (Fang and Liu, 2015). Instead of modularity, this

algorithm optimizes the ‘Map equation’. Louvain algorithm finds community

structure by minimizing the description length of a random walker’s movements

on a network. This random walker randomly moves between each node of the

network. The random walker would like to move through the highly weighted

edges. Hence, the weights of the connections within the community are greater

than the weights of the connections between nodes of different communities.

The definition of the map equation is based on Shannon’s Source Coding

Theorem, from the field of Information Theory (Rosvall et al., 2009). Here

each module has a ‘module codebook’ and these module codebooks have

‘codewords’ for the nodes within each module, which are derived from the

node visit/exit frequencies of the random walker. The ‘index codebook’ has

codewords for the modules, which are derived from the module switch rates of
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the random walker. The map equation shows that the average length of the

code (a step of the random walker) is equal to the average length of codewords

from the index codebook and the module codebooks weighted by their rates of

use.

L(M) = qxH(Q) +
m∑
i=1

pi � H(ρi) (3.4)

A network with n nodes and m clusters is showed by M, and L(M) shows the

per-step description length for module partition of that. Note that qx and

pi � show the rate of use of index codebook and the rate of use of module

codebook respectively, while the H(Q) and H(ρi) show the frequency-weighted

average length of codewords in the index codebook and module codebook i

respectively.

3.4 Label Propagation Algorithm

The Label Propagation algorithm (LPA) (Raghavan et al., 2007) is one of the

fast semi-supervised algorithms for finding communities in a graph, and the

algorithm is based on the assumption that nodes near each other are expected

to have similar class labels. The algorithm works as follows; Every node is

initialized with a unique community label (an identifier), and these labels

propagate through the network. At the propagation step each node update the

label based on the labels of their neighbor’s. When there are ties, labels are

selected uniformly and randomly. This algorithm converges when each node
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has the majority label of its neighbors. And this stops if either convergence or

the use defined maximum number of iterations is achieved.

In LPA, the influence of a node’s label on other nodes is determined by

their respective closeness and the closeness between nodes is measured by (3.5).

Here the euclidean distance between node i and j is showed by dij and σ2 shows

the parameter to scale proximity. wijs are used to generate weight matrix

and to perform label propagation weight matrix is converted into a transition

matrix T using the tijs by (3.6).

wij = exp

(
−
d2ij
σ2

)
(3.5)

tij =
wij∑
k wkj

. (3.6)

3.5 Spinglass Algorithm

Spinglass method minimizes the Hamiltonian of the network (Reichardt and

Bornholdt, 2006). Spinglass has the following four requirements, and they are

considered to develop communities.

(i) reward internal edges between nodes of the same group (in the same spin

state).

(ii) penalize missing edges between nodes in the same group.
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(iii) penalize existing edges between different groups (nodes in different spin

state).

(iv) reward non-links between different groups.

Hamiltonian for spinglass is given by the following equation. Here Aij is

adjacency matrix of the graph. δ(σi, σj) is known as Kronecker delta function,

δσi,σj = 1 if σi = σj, and 0 otherwise. The spin state (or group index) of

the node i is showed by σiε {1, 2, ..., q}. ai,j, bi,j, bi,j, di,j are the weights of the

individual contributions for the above requirements, respectively.

(3.7)
H(σ) = −

∑
i 6=j

aijAijδ(σi, σj) +
∑
i 6=j

bij(1− Aij)δ(σi, σj)

+
∑
i 6=j

bij(1− Aij)δ(σi, σj)−
∑
i 6=j

dij(1− Aij)(1− δ(σi, σj))

This algorithm tries to minimizes the energy of spinglass with the spin states

being the community indices. Here Modularity is rewritten using Hamiltonian

as (3.8),

Q = − 1

M
H({σ}). (3.8)

It applies the simulated annealing optimization technique on this model to

optimize the modularity.
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3.5.1 Simulated Annealing Optimization Techniques

The simulated annealing (SA) optimization technique is one of the most

preferred methods for optimizing parameters in a model. This technique is

useful in finding global optima in the presence of large numbers of local optima.

The word “Annealing”, is referred to the way that metals cool and anneals.

Hence in 1983, Kirkpatrick introduced this method based on the physical

annealing procedure in real life (Kirkpatrick et al., 1983).

Simulated annealing is a stochastic global search algorithm for function

optimization. This technique aims to bring the system from the initial state to

a state with the minimum possible energy. At each step of the process, the

simulated annealing considers the neighboring state s̄ of the current state s

and decides whether to moving the system to state s̄ or staying in the state

s. These probabilities eventually lead the system to move to states of lower

energy.

The following pseudocode shows the process of simulated annealing. It starts

from a state s1 and continues until zmax steps have been taken. Here neighbor(s)

will randomly pick the neighbor of a given state s, and the random(0, 1) will

return a value from uniform distribution in the range [0, 1]. The temperature(r)

will define the annealing schedule that should allow the temperature to use,

given the fraction r of the time budget that has been expended so far.
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Algorithm 1: Simulated Annealing (SA) Process

Let s = s1;
for For z = 0 through zmax (exclusive) do

T ← temperature((z + 1)/zmax);
Pick a random neighbor, snew ← neighbor(s);
if P(E(s), E(snew), T) ≥ random(0, 1) then

s← snew
end if

end for
return The final state s

3.6 Similarity Measures

Once identified the communities based on different algorithms, a comparison

study can be done using similarity measures. Those indices measure the

similarity between community detection results of two algorithms.

3.6.1 Adjusted Rand Index

The Rand Index computes a similarity measure between two clustering by

considering all pairs of samples and counting pairs that are assigned in the same

or different clusters in the predicted and true clustering. If the number of data

vectors for clustering is n, then there are

(
n
2

)
pairs. For every pair of examples,

there are three possibilities in terms of grouping. The first possibility is that the

paired examples are always placed in the same group, as a result of clustering

(a). The second possibility is that the paired examples are never grouped

together (b). The third possibility is that the paired examples are sometimes
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grouped and sometimes not grouped together. The RI of two groupings is then

calculated by the following formula:

RI =
Count of Pairs in Agreement

Total Number of Pairs
=
a+ b(
n
2

) . (3.9)

RI had one drawback; it yields a high value for pairs of random partitions

of a given set of examples. To overcome this drawback, The Rand Index score

is then ‘adjusted for chance’ into the Adjusted Rand Index (Rand, 1971) score

using the following scheme:

ARI =
RI − Expected RI

max(RI)− Expected RI
. (3.10)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random

labeling independently of the number of clusters and samples and exactly 1.0

when the clusterings are identical (up to a permutation).

3.6.2 Normalized Mutual Information

Mutual Information (MI) is a measure of the similarity between two labels of

the same data. Where |Ui| is the number of the samples in cluster Ui and |Vj|

is the number of the samples in cluster Vj, the Mutual Information between

clustering U and V is given as:

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui||Vj|

. (3.11)
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This metric is independent of the absolute values of the labels: a permutation

of the class or cluster label values won’t change the score value in any way. This

metric is furthermore symmetric and can be useful to measure the agreement

of two independent label assignments strategies on the same data set when

the real ground truth is not known. Normalized Mutual Information (NMI)

(Zhang, 2015) is a normalization of the Mutual Information (MI) score to scale

the results between 0 (no mutual information) and 1 (perfect correlation).

3.6.3 Adjusted Mutual Information

The baseline value of mutual information between two random clusterings

tends to be larger when the two partitions have a larger number of clusters

(with a fixed number of nodes). Hence Adjusted Mutual Information (AMI)

(Vinh et al., 2010) will be able to adjust the Mutual information (MI) score to

account for a chance. The AMI between clustering U and V is given as:

AMI(U, V ) =
MI(U, V )− E {MI(U, V )}

max {H(U), H(V )} − E {MI(U, V )}
. (3.12)

This metric is independent of the absolute values of the labels: a permutation

of the class or cluster label values won’t change the score value in any way.

Here H(U) and H(V) indicate the entropy associated with the partitioning U

and V. The AMI takes a value of 1 when the two partitions are identical and 0

when the MI between two partitions equals the value expected due to chance

alone.
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Chapter 4

Case Study Using COVID-19

Data

4.1 Introduction

On March 11, 2020, the World Health Organization (WHO) declared the

novel coronavirus (COVID-19) outbreak as a global pandemic, which started

to spread from Hubei, China (Liu et al., 2020). Human coronaviruses cause

infections of the nose, throat, and lungs. It is most commonly spread from an

infected person through close contacts, and symptoms may take up to 14 days

to appear after exposure to COVID-19. It started to spread across the world

as the patients who did not start to show any symptoms have traveled across

countries. Finally, countries had to lock down to stop the spread. By the end

of April 2020, the virus has spread in more than 150 countries.

Historically, human behavior was responsible for the spread of many dis-

eases. To stop the spread of bubonic plague, which is called as the black

37
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death, citizens of the Yorkshire village of Eyam in England had to voluntarily

quarantine themselves (Scott Duncan 2001 (Scott and Duncan, 2001)). More

recently, during the influenza pandemic, people stayed away from crowded

places ((Crosby, 2003)). In the early twenty-first century, the usage of face

masks became increased, and traveling behaviors were changed, due to severe

acute respiratory syndrome broke out ((Lau et al., 2005)). Thus, in general,

to control the spread of viruses and to ’flatten the curve’, travel is restricted

during pandemics.

In this Chapter, we explain the epidemic spread using social network analysis,

based on data from the first three months of the COVID-19 outbreak across

the world and in Canada, which has already published in (Wickramasinghe and

Muthukumarana, 2021). A network is defined and graphically visualized to

understand the spread of coronavirus among countries and the impact of other

countries on the spread of coronavirus in Canada. The degree centrality is used

to identify the main influencing countries. Exponential Random Graph Models

(ERGM) are used to identify the processes that influence link creation between

countries. The community detection is done using four different algorithms,

and the performance of those algorithms was assessed using the adjusted rand

index and normalized mutual information score.
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4.2 Data Sets

At the beginning of this study, the main challenge was finding datasets that

contain information about travel history, as it was the main attribute to create

links between countries. The data used in this research were obtained from

two GitHub repositories. The data sets regarding the spread of COVID-19

across the world and in Canada were downloaded from the links given in

(Rajkumar, 2020) and (Berry and Soucy, 2020a). The first data set contains

information about patients across the world starting from 22 Jan 2020 as

multiple updated versions. This dataset, which is a matrix of 13174 (rows)

by 44 (columns), is extracted from the Johns Hopkins University’s dashboard

using the methodology of (Xu et al., 2020) and a sample of the dataset is given

in Table 1. The second dataset contains information about patients in Canada

starting from 25 Jan 2020. The “COVID-19 Canada Open Data Working

Group” (Berry et al., 2020) are collecting these data and all the details about

the sources are included in the technical report in (Berry and Soucy, 2020b).

For this study, we have used January to March and January to April data

points of first and second datasets respectively. Details about these countries

were obtained from the worldometers.info website (Worldometers.info, 2020).

4.2.1 Data Cleaning

Here some patients’ records did not have any travel information, and some

did not report the country they traveled to. So they were considered as



40 CHAPTER 4. CASE STUDY USING COVID-19 DATA

Table 4.1: Sample of world data set

ID age sex city ...
travel history
location

...

1 30 male Chaohu City, Hefei City ... Wuhan ...
2 47 male Baohe District, Hefei City ... Wuhan ...
3 49 male High-Tech Zone, Hefei City ... Wuhan ...
4 47 female High-Tech Zone, Hefei City ... Wuhan ...

locally infected cases. Also, according to travel history, some people had

visited more than one country. So multiple rows were added for the same

patient by splitting the travel history variable. In some records, the values

of “travel history location” were cities, and we had to replace them with the

countries of those cities. Finally, two new data sets were created, where “Travel

location” was considered as the “Source”, “Country” was considered as the

“Target” and the number of patients who traveled between these locations

was considered as “Weight” variable. In the Canada data set, provinces were

considered separately. Hence that “Province” was considered as the “Target”

variable. These new data sets were used to create social networks. Table 4.2

and 4.4 show samples of those newly generated data sets.

Table 4.2: Sample of new data from data set 1 ( Across the world)

Source Target Weight
Australia Australia 1
Canada Canada 4
China Australia 13
China Belgium 1
China Cambodia 1
China Canada 5
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Table 4.3: Sample of new data from data set 2 (Canada)

Source Target Weight
Alberta Alberta 16
Cruise Alberta 4
Netherlands Alberta 1
Turkey Alberta 1
Ukraine Alberta 1
United States Alberta 3

4.3 Analysis of the World Data Set

The spread of the COVID-19 across the world (within the first three months),was

plotted on the world map. Figure 4.1 shows how this virus spread around the

world, through the travel of COVID-19 patients. This plot shows that many

links are connected to China and European countries. China has connections

from all around the world except South America and Africa.

Figure 4.1: Spread of COVID-19 across the world

Based on the cleaned data set world networks were created. In this network,
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nodes represent each country, and a connection (link) between nodes was

created when a person traveled from one location to another. The node size

is indicated by “in-degree” and “out-degree” centralities. Figure 4.2 and 4.3

show indegree and outdegree networks of world network respectively.

Figure 4.2: In-degree network of across the world

Cyan color nodes in Figure 4.2 indicate the countries with higher in-degree,

while yellow color nodes in Figure 4.3 indicate the countries with higher out-

degree. Those countries which have higher out-degree consider as the main

countries where many patients came from. Patients of these countries have

traveled to many countries. So those countries can be considered as the main

hubs of COVID-19. Higher in-degree nodes can be used to identify the main

countries which found many patients who came from different other countries.
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Figure 4.3: Out-degree network of across the world

4.3.1 Models Creation and Validation

After the visualization, ERGM models were fitted to identify the variables

that influence link creation between countries. The models were fitted using

network and node attributes. Even though there were many attributes, only a

few were filtered as significant covariates. Among these models, the model with

the smallest AIC and BIC values is considered as the best model. According

to the Table 4.4, model 4 was considered as the best model.

According to the goodness of fit plots, which are shown in left panel of

Figure 4.4, it is clear that the model 4 is achieving a good fit for key structural

properties of the network with these covariates as the means of the simulated

values of the plot are overlapped with the observed values. The result of MCMC

diagnosis is shown in the right panel of Figure 4.4. Here all the covariates have
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Table 4.4: Model comparison (Across the world)

Model1 Model2 Model3 Model4
edges -3.44 *** -4.68 *** -3.35 *** -4.98 ***

(0.12) (0.23) (0.12) (0.26)
mutual 1.61 **

(0.53)
indegree 0.04 ** 0.05 **

(0.02) (0.02)
outdegree 0.03 *** 0.06 ***

(0.00) (0.00)
recover -2.11 *

(1.01)
death -0.001 ***

(0.00)
AIC 652.70 456.95 645.25 424.84
BIC 658.47 480.00 656.78 447.89
Log Likelihood -325.35 -224.47 -320.63 -208.42

bell-curved density plots. The models appear to have converged to a desired

state for each ERGM because the density is not skewed and is centered over

zero.

Figure 4.4: Goodness-of-fit and MCMC diagnostics for model 4
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4.3.2 Community Detection using the World Data Set

After figuring out the influencing variables on ties creation, the COVID-19

communities across the world were identified using four different algorithms.

The output community labels of Louvain, Infomap, Spinglass, and Label

propagation algorithms are shown in the following Figures, 4.5, 4.6, 4.7 and

4.8.

Figure 4.5: Results of Louvain algorithm for the world dataset

The Figure 4.5 shows eight communities based on the Louvain algorithm

while the Figure 4.6 shows five communities based on the Infomap algorithm.

Spinglass algorithm also shows five communities, which is shown in the Figure

4.7. The Figure 4.8 shows thirteen communities based on label propagation
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Figure 4.6: Results of Infomap algorithm for the world dataset

Figure 4.7: Results of Spinglass algorithm for the world dataset
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Figure 4.8: Results of Label Propagation algorithm for the world dataset

algorithm. Most of the communities are around the countries which have higher

out-degree.

We now pairwise compare the performance of the four algorithms using

two different metrics, namely, Adjusted Rand Index (ARI) (Rand, 1971), and

Normalized Mutual Information (NMI) (Zhang, 2015). Table 4.5 represents

the results of comparing four algorithms (Infomap, Label Propagation, Louvain

and Spinglass) with respect to two topological metrics (ARI and NMI). The

larger (smaller) the value of ARI and NMI, the more (less) similar are the two

algorithms being compared.
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Table 4.5: Comparison of different algorithms with respect ARI and NMI for
the world network.

Infomap Louvain Spinglass Label Propagation
ARI Infomap 1 0.71 0.55 0.64
NMI Infomap 1 0.75 0.64 0.70
ARI Louvain 1 0.67 0.75
NMI Louvain 1 0.74 0.81
ARI Spinglass 1 0.66
NMI Spinglass 1 0.73
ARI Label Prop 1
NMI Label Prop 1

Figure 4.9: Comparing communities of Louvain and Label propagation algo-
rithms

Louvain and Label Propagation algorithms are the most similar to each
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other amongst all pairs of comparisons in Table 4.5. A Sankey plot (Reda

et al., 2011) which is a graphical comparative illustration of the communities

of these two algorithms is given in Figure 4.9. The communities of the Louvain

algorithm, and the Label Propagation algorithm are indicated by green and

red color nodes respectively. Blue color nodes show all the countries of the

world network.

4.4 Analysis of Canada Data Set

Same as the analysis of the world, Figure 4.10 illustrates how Canada has been

affected by other countries. According to this plot, orange color dots, which

indicate countries can be seen in every continent. It means patients from all

over the world have visited Canada. But based on the provinces of Canada the

impact is different. The province of Yukon which is located at the left upper

corner, has only one link, while other states have multiple links.

In this analysis, the in-degree network graph is showed in the left panel of

the Figure 4.11. Same as the above in-degree network graph, cyan color nodes

indicate the higher in-degree provinces. According to this plot, the province

of Ontario has the main effect from other countries. The right panel network

of the Figure 4.12 shows the out-degree network in Canada. Note that yellow

color indicates the nodes with higher out-degree. According to this graph,

Canadian provinces are mainly affected by the United States (USA), the United

Kingdom, and the Carrabian islands.
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Figure 4.10: Impact of other countries on spread of COVID-19 in Canada

Figure 4.11: In-degree network of Canada

4.4.1 Models Creation and Validation

We fit ERGM models and filter out the significant covariates. The model 2

and model 4 have similar covariates. Hence the model 4 was not considered

in this analysis. Finally, according to the AIC, and BIC values, model 2 was
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Figure 4.12: Out-degree network of Canada

considered as the best model. Table 4.6 shows the model comparison. The

models were validated using Goodness of fit and MCMC diagnostics as in

Figure 4.4, and indicated that model 2 is a good fit. That also indicated the

model has converged to a desired state.

Table 4.6: Model comaparison (Canada)

Model1 Model2 Model3
edges -3.70 *** -4.77 *** -3.64 ***

(0.11) (0.18) (0.11)
indegree 0.02 ***

(0.00)
outdegree 0.02 ***

(0.00)
region -1.41 *

(0.72)
AIC 860.13 523.47 855.87
BIC 866.37 542.19 868.34
Log Likelihood -429.07 -258.74 -425.93
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4.4.2 Community Detection using Canada Data Set

The community labels which are based on Louvain and Spinglass algorithms

were plotted as in Figure 4.13 and Figure 4.14 respectively. The Louvain

algorithm shows ten communities, while the Spinglass algorithm shows only

six communities.

Figure 4.13: Results of Louvain algorithm for the Canada data set

The left panel network of Figure 4.15 shows the result of label propagation

community detection for this data set. There are 62 nodes, and this algorithm

shows that all these states and countries belong to 60 communities. All-most

all the nodes have their own communities. The result of the Infomap algorithm
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Figure 4.14: Results of Spinglass algorithm for the Canada data set

Figure 4.15: Results of Label Propagation (left panel) and Infomap (right
panel) algorithms for the Canada data set
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shows in the right panel of Figure 4.15 and it shows that all the countries and

states of Canada belong to one community.

Pairwise comparison of above algorithms was done using ARI and NMI.

Table 4.7 shows the results of comparing 4 algorithms (Infomap, Label Propa-

gation,Louvain and Spinglass) for the Canada network.

Table 4.7: Comparison of different algorithms with respect to ARI and NMI
for the Canada network.

Infomap Louvain Spinglass Label Prop
ARI Infomap 1 0 0 0
NMI Infomap 1 3.19e-17 2.14e-16 0
ARI Louvain 1 0.72 0.01
NMI Louvain 1 0.74 0.60
ARI Spinglass 1 0
NMI Spinglass 1 0.54
ARI Label Prop 1
NMI Label Prop 1

Based on Table 4.7, Louvain and Spinglass are most similar to each other.

The comparison of node-communities from Louvain and Spinglass methods

is compared using sankey plots, where the green nodes correspond to the

communities of Spinglass method and red nodes correspond to the communities

of Louvain method.

4.5 Discussion

Within the first few months of the COVID-19 outbreak, this virus has spread

rapidly over the world. According to this study, China, Iran, and Italy have

appeared as most out-degree countries around the world while the United

Kingdom, South Korea, Sweden, and Spain have appeared as most in-degree
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Figure 4.16: Comparing communities of Louvain and Label propagation algo-
rithms

countries. ERGM models show that mutuality, in-degree, and out-degree have

a significant positive effect on the probability of a tie in the world network,

while the number of deaths have negative effects.

The analysis shows that, United States has the highest out-degree impact

on Canada. This could happen as they are neighboring countries. The states,
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Ontario, British Colombia (BC), and Quebec have highly affected by other

countries. According to the ERGM models, in-degree and out-degree, have

significantly positive effect on the probability of a tie in the network of Canada.

Community detection in the spread of coronavirus across the world shows

significant communities around Italy, China, and Iran which are the coun-

tries with the highest out-degree. But for the Canada data set, the resulted

communities are not significant and clear. But in the results of Louvain and

Spinglass, there is a significant community around Ontario, which has the

highest in-degree. It is clear that all the community detection results depend

on the algorithms.

We assessed the community detection algorithm performance using adjusted

rand score (Rand, 1971) and normalized mutual information score (Zhang,

2015) which are given in Table 4.5 and 4.7. We noticed a fair agreement

between algorithms performances in the world network than in the Canada net-

work. More specifically, there is a good agreement between Louvain and Label

propagation algorithms in community detection of world network, while there

is a good agreement between Louvain and Spinglass algorithms in community

detection of Canada network.



Chapter 5

Simulation Studies of Networks

In the case study, which we explained in Chapter 4, we could identify commu-

nities using different algorithms. But the challenge was determining the best

method for community detection as we had no information about actual com-

munities of countries. Hence in this simulation study, we focus on developing a

process to identify the best community detection result for a network with no

prior knowledge about the actual label.

For that, first of all, we need to create networks with inbuilt partitions. We

could use the Gaussian random partition graph or mixture based Gaussian

Random Partition Graph developed in section 2.5.2. to develop networks. We

will compare those two methods in this Chapter. There are multiple parameters

we should set to generate networks (as discussed in Chapter 2). Therefore we

consider various parameter configurations in this simulation study in order to

understand the hidden truth when changing these parameters and the effect of

these parameters on community detection.

57
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The newly developed method to identify the best community detection

results using two features is explained in section 5.4. We use Infomap, Louvain,

Spinglass, and Label propagation as the community detection algorithms and

use ARI, NMI, and AMI to identify similarities.

5.1 Graphical Comparison of Two Network Gen-

eration Methods

As we discussed in Chapter 3, for this study, we have considered two main

random network graph generators. The first method is the Gaussian random

partition graph, and it generates partitioned graphs, each partition with a size

drawn from a normal distribution. Hence each of the communities will have a

similar number of nodes. Sometimes the last partition can have a considerably

smaller number of nodes, containing all the remaining nodes after grouping.

Figure 5.1 shows four random network graphs which were generated from

Gaussian random network graph. To generate these networks we used same

parameters (number of nodes = 70, mean cluster size = 15, shape parameter =

5, intra-probability = 0.5, inter-probability = 0.02), and ran it for four times.

Since 70/15 = 4.66, we can see that most of the networks have either four

or five communities. In plot (c), we can clearly see a cluster with only three

nodes, and it should be that last partition of this network, based on the theory

we learned.
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(a) (b)

(c) (d)

Figure 5.1: Plots (a) to (b): Some randomly generated graphs from Gaussian
random partition graph. All four were generated using same parameters.
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As we discussed at the beginning, based on Figure 5.1, we can see that

almost all of the communities have a similar number of nodes. But in reality, we

won’t always be able to find this kind of community. There can be communities

with a large number of nodes while some other communities with few nodes.

Hence, to generate more practical networks, we developed our new network

graph generator using the mixture of Gaussians.

In the new method, we have used a mixture of two normal distributions

to pull cluster size. For example, in Figure 5.2 we can see network graphs

that were generated from our new method. The number of nodes is also equal

to 70, inter probability is 0.5, and inter probability is 0.02. For the Gaussian

mixture, we used two normal distributions with mean 20 and 5. Therefore, some

communities should contain nodes around 20, and others have nodes around 5.

Due to that reason, we can observe, in these networks, some communities with

a large number of nodes and a small number of nodes.

We can change inter and intra probabilities to very low values to have more

realistic and sparse networks. The following Figure 5.4 shows a network with

70 nodes but very low inter and intra probabilities (intra-probability = 0.2,

inter-probability = 0.01). Here we can see some nodes which are connected to

the network by only a few edges. So based on different structures, the results

of the community detection algorithm will vary. We can easily check that by

changing these parameters.
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(a) (b)

(c) (d)

Figure 5.2: Plots (a) to (b): Some randomly generated graphs from newly
developed method using mixture of two Gaussians. All four were generated
using same parameters.
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Figure 5.3: Example of a sparse network

5.2 Simulation Process

In this section, we describe our simulation process where we consider various

parameter values. The following flow chart in Figure 5.4 shows the process step

by step. That illustrates the simulation process when changing the number

of nodes while all the other parameters are fixed. Based on this flow chart,

first, we are generating a network with the number of nodes equal to 10. This

network will be developed with community labels for each node, and we consider

those labels as actual labels. Then we use the same generated network to find

communities by applying our four community detection algorithms (Louvain,

Label propagation, Spin glass, and Infomap). After that, we can evaluate

community results based on actual labels using similarity matrices (ARI, NMI,
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and AMI).

Figure 5.4: General simulation process

For each community detection method, we have three different similarity

scores. We store each value in different vectors, and once we repeat the same

process while changing sample size from n=10 to 500, those vectors should

have 490 different scores for each. That will describe the level of accuracy of

community detection when increasing the number of nodes in networks. It will

help us find community detection algorithms that work well for a fewer number

of nodes and a higher number of nodes.

If we describe the process with network plots, Figure 5.5 illustrates a network

that we generated using the Gaussian random partition graph generator. It

shows different communities with different colors. Then plots in Figure 5.6 show
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community results which we got by applying four community detection methods

on the same network which we generated. In this simulation study we generated

all the synthetic networks using ‘Networkx’ package in python (Hagberg et al.,

2008).

Figure 5.5: Generated network from Gaussian Random Partition Graph

By exploring these figures, it is clear that there are differences and similari-

ties between observed communities and true communities. These similarities

were calculated using similarity measures, and it shows which community

detection method has the highest similarity. Once we calculated the similarity

scores for the network communities in Figure 5.6, it showed that the Infomap

method has the highest similarity score to the true communities. Still, to

understand the unknown truth, we needed to generate multiple networks and

check the similarity score. That is why we used a simulation study to create



5.2. SIMULATION PROCESS 65

(a) (b)

(c) (d)

Figure 5.6: Community detection results using (a): Infomap, (b): Louvain. (c):
Spinglass, (d): Label propagation. Each colour indicates a different community.
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various networks by changing different parameters. To calculate similarity

scores we used scikit-learn package in python (Pedregosa et al., 2011).

5.2.1 Changing Number of Nodes

In this simulation, when creating networks, we fixed all other parameters (mean

cluster size, shape parameter, probabilities of inter and intra cluster connection).

We changed the number of nodes from 50 to 300. These networks have inbuilt

partitions, and those are considered as true community labels. Then each

network was clustered using community detection algorithms and compared

true labels with generated labels using similarity matrices. The change of

similarity scores based on each community detection algorithm results are

shown in Figure 5.7 to Figure 5.9.

Figure 5.7: ARI similarity score variation over number of nodes. Each line
shows similarity scores of different community detection algorithms
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Figure 5.8: NMI similarity score variation over number of nodes

Figure 5.9: AMI similarity score variation over number of nodes

Based on these plots, we can see that ARI, NMI, and AMI scores of

communities based on Louvain and Spinglass methods decrease when the

number of nodes increases. ARI, NMI, and AMI scores for Infomap and Label-
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propagation methods are always constant with zero value. It shows that the

number of nodes does not affect the similarity score of those two methods.

5.2.2 Changing Mean Cluster Size

In this simulation, when creating networks, we fixed all other parameters

and changed the mean cluster size from 3 to 50. Mean cluster size is the

average number of nodes within a cluster, and it will be considered when

creating networks from the Gaussian random partition method. The change

of similarity scores based on each community detection algorithm results are

shown in Figure 5.10 to Figure 5.12.

Figure 5.10: ARI similarity score variation over mean cluster size

According to the above plots, it is illustrated that as the mean cluster

size is increasing, all similarity scores are also increasing for the community
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Figure 5.11: NMI similarity score variation over mean cluster size

Figure 5.12: AMI similarity score variation over mean cluster size

detection results of Louvain and Spinglass methods. When the mean cluster

size is equal to 50, similarity scores are almost equal to 1. Similarity scores

equal to one means a perfect match with actual labels. ARI, NMI, and AMI
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scores for Infomap and Label-propagation methods remain in value zero.

5.2.3 Changing Probability of Connecting NodesWithin

a Group

The probability of connecting nodes within a cluster is a parameter that we

have to provide to create a random network. Then the edges which connect

nodes in the same community of the network will be made based on that given

probability. In this section, we have changed that probability from 0.1 to 0.9

with a 0.01 increase. This probability value should be within 0 to 1. While

changing the probability, we fixed other parameters as constants. Then for

each network, we identified the communities based on four different algorithms.

Finally, the change of similarity score on each community detection algorithm

results while changing the intra probability was plotted, and Figure 5.13 to

Figure 5.15 illustrate those plots.

Based on these figures, it is clear that communities found from Louvain

and Spinglass methods show better agreement with the actual labels for the

networks which are created with an intra probability greater than 0.3. For

Infomap and Label propagation communities, it is hard to find a specific intra

probability value that shows a higher similarity score with the actual labels.

But those methods also work well when the intra probability is more elevated.
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Figure 5.13: ARI similarity score variation over probability of intra connection

Figure 5.14: NMI similarity score variation over probability of intra connection
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Figure 5.15: AMI similarity score variation over probability of intra connection

5.2.4 Changing Probability of Connecting Nodes Be-

tween Groups

In this section, we created different networks by changing the inter-cluster

probability. Inter-cluster probability means the probability of connecting nodes

between groups. That helped us figure out the effect of a network’s inter-cluster

probability to identify correct clusters. Same as the intra-cluster probability,

we again used probabilities from 0.1 to 0.9 with 0.01 increment. Communities

of the networks are identified using the four algorithms discussed earlier and

calculated the similarity scores for each network. Figure 5.16 to 5.18 show

the change of similarity scores based on each community detection algorithm

results.

All the above similarity score plots illustrate that Louvain and spinglass
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Figure 5.16: ARI similarity score variation over probability of inter connection

Figure 5.17: NMI similarity score variation over probability of inter connection

algorithms have higher similarity scores with true clusters when the networks

have lower inter-connection probability. The highest similarity score is achieved

when the inter probability is 0.1. After that score drastically drops down and
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Figure 5.18: AMI similarity score variation over probability of inter connection

remains around zero. The results of Infomap and label propagation algorithms

always show zero similarity scores for all three similarity scores.

5.3 Simulation Results for a Sparse Network

In the previous section 5.2 we explained the simulation process and discussed

the results using the networks which are generated from the Gaussian random

partition graph. Those networks used in that section have a node with many

connected links (dense networks). But in real life, we don’t always get dense

networks. For example, in our COVID-19 case study, not all the countries in

those networks had many connections with others. Those types of networks

are called as sparse networks. Sparse networks have much fewer edges than

the possible maximum number of edges.
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In this section, we created sparse networks using our new network generation

method, using a mixture of Gaussians. We conducted the same simulation

process to identify the differences when using dense networks and sparse

networks. To have a sparse network, we used much lower values for intra

probability and inter probability. Figure 5.19 shows the network we generated

from the new method when n = 30, 1st mean = 3, 2nd mean = 9, intra-

probability = 0.3, inter-probability = 0.02 and both standard deviance are

equal to 1. In this network, some nodes connect with this network by only one

edge. That has a similar network structure to the networks that we generated

in the case study.

Figure 5.19: Generated network from newly developed Graph Partition method

The results that we got from community detection algorithms are shown

in Figure 5.20. In the previous section, we saw that the label propagation
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algorithm fail to detect multiple communities in the dense network. But once

we apply label propagation to this sparse network, it could detect at least a few

communities correctly. All the other methods show some acceptable results.

But to understand this correctly, we conducted the same simulation study by

changing the parameters. But here, we did not consider changing the mean

cluster size as we use the mixture of Gaussian, and it has two different mean

values.

5.3.1 Changing Number of Nodes

Similar to the simulation in section 5.2, we fixed all other parameters while

changing the number of nodes from 30 to 300. The behavior of the similarity

scores; ARI, NMI, and AMI for the results of each community detection

algorithms, when increasing the number of nodes, illustrate in Figure 5.21,

Figure 5.22 and Figure 5.23 respectively. When generating random sparse

networks, some networks end up with isolated nodes. Spinglass network does

not work on networks that have isolated nodes. Hence for the simulation study

of sparse networks, we did not use the Spinglass method.

In section 5.2.1, the results of both Label propagation and Infomap al-

gorithms showed zero scores for all the similarity scores when increasing the

number of nodes. But based on the results show in Figure 5.21 to Figure

5.23 it is clear that in the sparse networks when the sample size is small, the

results of all three algorithms show a higher similarity with true labels. Label
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(a) (b)

(c) (d)

Figure 5.20: Community detection results of the sparse network using (a):
Infomap, (b): Louvain. (c): Spinglass, (d): Label propagation. Each colour
indicates a different community.
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Figure 5.21: ARI similarity score variation with the change of number of nodes

Figure 5.22: NMI similarity score variation with the change of number of nodes

propagation shows a rapid decline, while Infomap and Louvain show a gradual

decline with the increase of frequency of nodes.
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Figure 5.23: AMI similarity score variation with the change of number of nodes

5.3.2 Changing Probability of Connecting NodesWithin

a Group

We did this simulation based on section 5.2.3, and intra probability was changed

from 0.1 to 0.9 with a 0.01 increment. We fixed inter probability to 0.02 and

the number of nodes to 50. Figures from 5.24 to 5.26 shows the results of

this simulation.

Figures in section 5.2.3 show that the results of Infomap and Label propaga-

tion have zero similarity score till the intra probability reaches 0.6. But in this

sparse network, all three algorithms show a gradual increase of similarity score

with the rise of intra probability. Here the results of Louvain and Infomap

show better and similar results than the Label propagation algorithm.
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Figure 5.24: ARI similarity score variation with the change of intra probability

Figure 5.25: NMI similarity score variation with the change of intra probability
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Figure 5.26: AMI similarity score variation with the change of intra probability

5.3.3 Changing Probability of Connecting Nodes Be-

tween Groups

In this simulation, we changed the probability of connecting nodes between

groups (inter probability) from 0.01 to 0.9 with a 0.01 increment. We fixed

the intra probability to 0.3 and the number of nodes to 50. The variation

of similarity scores (ARI, NMI, and AMI) for the results of each community

detection algorithm was plotted in the Figures from 5.27 to 5.29.

When the inter probability is lower than 0.1, we can see higher similarity

scores for all the community detection algorithms.
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Figure 5.27: ARI similarity score variation with the change of inter probability

Figure 5.28: NMI similarity score variation with the change of inter probability
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Figure 5.29: AMI similarity score variation with the change of inter probability

5.4 A Comparative Analysis of Community De-

tection Algorithms

In the section 5.2 and 5.3, we discussed how the agreement with actual labels

changes with the change of different parameters which we use to generate

networks. By changing these parameters, we tried to change the structure

of networks and identify the effect of that to detect communities by different

community detection algorithms. But in those sections, we changed one

parameter at a time. In this section, we explain a procedure to consider

two parameters and understand the hidden truth of the results of different

community detection algorithms.
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5.4.1 Matrix Creation Process

This process explains the steps to create a matrix for each community detection

algorithm, which shows the values for the given similarity score measure, with

the change of intra probability (Pin) and inter probability (Pout). Here rows

and columns will indicate Pin and Pout. Through this matrix we can identify a

range of network attributes (Pin and Pout) of the community network that can

identify communities more accurately.

Figure 5.30: The process of creating a similarity score value matrix

Figure 5.30 explains the process step by step. As the first step, we fixed

number of nodes (n), two mean values (s1, s2), two standard deviance (σ1, σ2)

values and changed Pin and Pout values from 0.01 to 0.5 with 0.01 increment.

Here we increased these probability values to 0.5 because we needed to generate
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sparse networks. So the first value that we allocated to both Pin and Pout is 0.01.

Second, we generated a network using a random partition graph with a mixture

of two Gaussians and considered those partitions as true communities. Next,

we applied the community detection algorithm (Louvain, Infomap, or Label

Propagation) to the network and identified the communities. True community

labels and identified community labels were used to find similarity scores using

the given measure (ARI, NMI, or AMI). Then we stored the similarity score in

a vector. We repeated the same procedure 100 times to generate 100 random

networks and filled the vector with 100 similarity scores. We then calculated

the mean of those similarity values to get the average similarity score for the

given Pin and Pout. This average similarity score will be stored in the first cell

of the matrix. Then repeat the same procedure for different Pin and Pout values

and fill the matrix.

After creating the similarity score matrix, we could easily convert it to a

color heat map. Heat maps appeal to the eyes, and visualization is generally

easier to understand than reading the values. Through the heat maps, we

could easily identify the capacity of the given algorithm to identify correct

communities.

5.4.2 Results of Similarity Matrices

According to the steps we described in section 5.4.1 we generated matrices for

each community detection algorithm. Since we are considering three similarity
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measures, ARI, NMI, and AMI, we should get three matrices for each algorithm.

Hence all together, we generated nine matrices to compare the community

detection algorithms.

(a) (b)

(c)

Figure 5.31: ARI similarity score heat maps for (a): Infomap, (b): Label
propagation (c): Louvain. From dark blue color to yellow color indicates low
to high similarity score.

Figure 5.31 shows ARI similarity score heat maps for the results of Infomap,
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Label propagation, and Louvain algorithms. The color range from dark blue

to yellow shows the lowest similarity score to the highest similarity score in

these heat maps. In both section 5.2 and 5.3, we saw that all the community

detection algorithms show higher similarity scores for the networks with lower

inter probability and higher intra probability. Also, in these heat maps, we

can see that left bottom corners, which have higher intra probabilities and

lower inter probabilities, have an area in yellow color, which indicates a high

similarity score. Hence, it is clear that the results of all the community

detection algorithms are perfect if their community networks have work high

intra probabilities and low inter probabilities. For example, let’s consider

the heatmap of the Infomap algorithm. Once we generate the community

detection result for a network using the Infomap algorithm, we can calculate

intra probability (Pin) values and inter probability (Pout) values for the resulted

community network. Then if those values are within the yellow color area of

the heat map, we can evaluate that the community results are perfect.

When comparing these three heat maps, we can observe that plot (b) has

the smallest yellow color area, and plot (c) has the largest yellow color area.

Plot (b) and (c) show the results of the Label propagation algorithm and

Louvain algorithm. Throughout the simulation Chapter, we observed that the

label propagation algorithm failed to detect true communities most of the time,

and this heat map gives the reason for it. Based on plot (a), Infomap is also not

always able to find the communities, but it is better than the Label propagation
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algorithm. Throughout the simulation study, Louvain gave a high similarity

score for most of the networks. Based on plot (c), it is clear that this algorithm

can identify communities of networks with various network structures.

(a) (b)

(c)

Figure 5.32: NMI similarity score heat maps for (a): Infomap, (b): Label
propagation (c): Louvain. From dark blue color to yellow color indicates low
to high similarity score.

Figure 5.32 and 5.33 show NMI and AMI similarity score heat maps,
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(a) (b)

(c)

Figure 5.33: AMI similarity score heat maps for (a): Infomap, (b): Label
propagation (c): Louvain. From dark blue color to yellow color indicates low
to high similarity score.

respectively. We can see yellow color areas (high similarity scores) for higher

intra probabilities and lower inter probabilities in those heat maps as well.

These sets of heatmaps also show that the Louvain algorithm has the highest

capacity to detect communities while Label propagation has the lowest capacity.
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Chapter 6

Conclusion

Since the community detection is specially developed for social network analysis

which depends on edges, it is clear that the results should depend on the network

structure. Our simulation study showed that most of the community detection

algorithms gave better results for sparse networks than dense networks. Even

the community detection algorithms struggling to detect communities in dense

networks could detect communities up to some level in sparse networks. In both

sparse and dense networks, we observed that the ability to detect communities

of algorithms increased with the increment of the probability of having edges

between nodes in the same community and the increment of average community

size. The detection ability decreased with the increment of the probability of

having edges between nodes in different communities and the number of nodes.

Using the heat maps we generated, we could understand the community

detection capacities of different community detection algorithms. Overall, the

results of all the community detection methods are perfect if the community

91
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network has higher intra probabilities and lower inter probabilities. Still,

the Louvain algorithm has the largest range of inter and intra probabilities,

while label propagation has the smallest range. Throughout the study, we

observed that the Louvain algorithm could detect communities better than

other algorithms. Even though both Label propagation and Infomap failed

to detect correct communities in dense networks, we could see a significant

improvement of Infomap in sparse networks.

The Gaussian random partition graph generator is one of the best methods

to generate random networks with partitions. It uses Gaussian distribution to

draw the community size, and because of that, the output networks contain

communities with a similar number of nodes. But in real networks, we see

communities with a different number of nodes; large communities and small

communities. Hence we developed this novel method to generate networks

using a mixture of Gaussians and observed that it could generate networks

similar to the structure of real-world disease transmission networks.

This study can be further expanded by updating the network generator

using a Dirichlet process with Gaussian distribution as the base distribution.

Then we can compare the network structures of the networks generated from

the existing Gaussian random partition graph with the networks generated

from the newly updated method with the Dirichlet process. Furthermore, we

can improve our approach to evaluate temporal community detection in real

world applications.
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