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ABSTRACT 

Wait times and availability of care are major issues within Manitoba’s healthcare system and 

to improve in these areas a new method for improvement is needed. The purpose of this research 

is to prove the efficacy of using Lean Six Sigma in healthcare to generate improvements and to 

promote the usage of continuous improvement methodologies in the healthcare environment.  

To demonstrate the effectiveness of using Lean Six Sigma, a project was completed at St. 

Boniface Hospital to reduce overtime in operating rooms. Lean Six Sigma was used to assess the 

entire system and identify multiple areas for improvement, with case duration estimates being 

found to have the most potential for reducing overtime. This resulted in predictive models being 

created and tested against the current method of surgeon estimates. All models improved on the 

surgeon estimates (45-63% increase in on-time cases, reduction in overtime error by 49-59%, 

and 71-89% improvement in overtime to undertime error ratio) and it is recommended that a 

predictive modeling approach be used in the future.  

The Lean Six Sigma project was successful and also resulted in multiple additional beneficial 

outcomes: identification of other areas needing improvement, ranked by potential impact; 

process analysis and mapping which can be used in future projects; and identification of other 

causes for error in scheduling.  In addition, if Lean Six Sigma had not been used, the project 

would have focused on a less impactful area—first case on-time starts. As Lean Six Sigma is a 

data-driven process, the impact of bias was removed and thus it was found that first case on-time 

starts were not as influential to overtime as assumed. From this research, it can be concluded that 

Lean Six Sigma can be effectively applied in even the most complex of hospital environments. It 

is recommended that hospitals consider implementing experienced teams to lead and train 

hospital employees in Lean Six Sigma or other continuous improvement methods.   
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GLOSSARY OF TERMS/ABBREVIATIONS 

Improvement Methods 

 Lean: continuous improvement process focusing on reducing and eliminating waste 

 Six Sigma: continuous improvement process focusing on reducing cycle time and variation 

 OpEx:  operational excellence; company-wide mindset of continuous improvement 

 VMPS:  Virginia Mason Production System 

 MCQC:  Mayo Clinic Quality Construct 

 CCIM:  Cleveland Clinic Improvement Model 

 TIS:  ThedaCare Improvement System 

 

Lean Six Sigma Terminology 

 CTQ:  customer critical-to-quality characteristics 

 SIPOC:  supplier/inputs/process/outputs/customer 

 DMAIC:  define/measure/analyse/improve/control 

 PDC(S)A:  plan/do/check(study)/act 

 VSM:  value stream mapping 

 RIE:  rapid improvement event 

 DPMO:  defects per million opportunities 

 DPU:  defects per unit 

 

Operating Room Terminology 

 OR:  operating room 

 L2PO:  pre-operative areas 

 Slating:  scheduling method for surgeries 

 HCA:  health care aide 

 ASA:  American Society of Anesthesia 

 Overtime: running greater than 15 minutes over schedule 

 On-time: finishing within 15 minutes of the scheduled time/duration 

 Undertime:  running greater than 15 minutes under schedule 
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Surgical Procedures 

 CABG:  coronary artery bypass graft 

 AVR:  atrial valve replacement/repair 

 MVR:  mitral valve replacement/repair 

 END: carotid endarterectomy 

 HAT:  total abdominal hysterectomy 

 HYSD:  diagnostic hysteroscopy 

 

Predictive Models 

 SMA:  simple moving average 

 LME:  linear mixed effects 

 RF:  random forest 

 

Surgery Parts/Durations 

 Preparation (PREP):  duration from patient entering the OR to anesthesia being induced 

 Anesthesia (ANES):  duration from anesthesia being induced to incision 

 Procedure (PROC):  duration from incision to dressing (“cut to close”) 

 Wrap-up (WRAP):  duration from dressing to the patient exiting the OR 

 Case (CASE):  duration from the patient entering to exiting the OR (“toes in to toes out”) 

  (preparation + anesthesia + procedure + wrap-up) 

 Turnover time:  time between one patient exiting the OR and the next patient entering 

 Turnaround time:  time between patient dressing to next patient incision 

  (wrap-up + turnover + preparation + anesthesia) 

 Room duration:  duration from first patient entering to last patient exiting the OR 
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1. INTRODUCTION 

This thesis follows the application of Lean Six Sigma at St. Boniface Hospital in a project to 

assess, prioritize, and improve areas for efficiency in the operating rooms (OR). With this work, 

the benefits of applying Lean Six Sigma in hospital and healthcare settings will be shown in 

order to aid in promoting the usage of continuous improvement philosophies throughout the 

healthcare sector in Manitoba. Along with the outcomes of the project, an assessment of barriers 

and complications with implementing this methodology in the hospital was completed.  

1.1. Organization of Thesis 

This thesis is separated into seven chapters, along with appendices. Chapter 1 introduces the 

research problem, as well as the importance and scope of the project. It also provides a 

background on Lean Six Sigma and outlines the steps used to implement the methodology. This 

is followed by a literature review in Chapter 2, which outlines variables that have been used to 

measure OR efficiency and methods used to improve healthcare efficiency. It also covers the 

shift in healthcare towards engineering and data-driven methods of improvement and how Lean 

Six Sigma fits into this role, along with challenges faced with implementation.  

Chapter 3 outlines the project completed using the Lean Six Sigma methodology—reducing 

end-of-day late cases causing overtime by improving surgery duration estimates—and is broken 

into four sections: (3.1) define the initiative, (3.2) characterize the process, (3.3) improve, (3.4) 

monitor the outcomes. These are then further broken down into subsections based on the steps 

taken to complete each section. At the end of each of the first three chapters is a summary of key 

information covered. 

Chapter 4 covers the results of applying Lean Six Sigma in the hospital. This includes a 

summary of outcomes generated by using Lean Six Sigma and how they may impact the 
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completion of future projects. This is then followed by a discussion in Chapter 5 on the 

effectiveness of using Lean Six Sigma to dissect and solve the problem and an overview of the 

challenges faced in implementing this methodology in the environment of St. Boniface Hospital. 

The final two chapters cover the conclusions from the project (Chapter 6) and recommendations 

moving forward (Chapter 7).  

The appendices included in this thesis are used to explain elements used within the Lean Six 

Sigma project more thoroughly, including tools used for mapping the OR, details on the process 

used to select surgeries for further assessment, and data manipulation. The steps and coding used 

to create models for surgery duration predictions are also available for reference.  

1.2. Research Problem and Scope 

It is a fact of life in Canada that when a trip to the hospital is required, one does not get asked 

about if they have medical insurance to pay for what are often very expensive services; instead, 

they are provided the care that is needed. Indeed, many believe Canada to have one of the top 

healthcare systems in the world. However, in a comprehensive study which compared the 

healthcare systems of 11 high-income, developed countries [1], Canada ranked third-to-last, only 

achieving above France and the United States overall. The study groups the ranking metrics into 

five categories: care process, access, administrative efficiency, equity, and health care outcomes. 

Canada ranks in the bottom three in the areas of access, equity, and health care outcomes, and 

only sixth in care process and administrative efficiency. Some of the key areas where Canada fell 

short were in regard to wait-times for specialists and emergency room (ER) visits, poor after-

hours availability for care, prevalence of common chronic conditions in the adult population, and 

the lack of coverage for dental work and prescription drugs.  
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Some may think that increasing the funding toward healthcare and reducing healthcare cuts 

would aid in reducing these problems. However, according to the Organization for Economic 

Co-operation and Development (OECD) [2], the health spending of Canada is higher per capita 

than some of the higher-ranking countries such as Australia and the United Kingdom, which 

were the two top ranked countries overall. In addition, the United States has the highest per 

capita spending and is ranked as the lowest performing healthcare system, thus showing that 

money alone will not provide results. A study done by the Fraser Institute [3] comparing only 

countries with universal healthcare systems corroborated Canada’s issues with spending and 

shortfalls; it concluded that although Canada’s healthcare is one of the most expensive universal 

healthcare systems in the OECD, availability and access to resources are below the average 

OECD country and there is room for improvement in the areas of resource usage and quality and 

clinical performance. It also stated that Canada ranked last on four of the five indicators of 

timeliness of care, proving once more the major issue that Canada has with wait times in 

healthcare.  

Beyond the disappointment of comparing Canada’s healthcare system with others in the 

world and having it fall short, there are the concerns for how these failings impact Canadians. As 

of 2019, the average waiting time for medically necessary elective surgery in Canada is 20.9 

weeks, with Manitoba being above the average with a waiting time of 32.4 weeks from meeting 

with a general practitioner (GP) to treatment [4]. These wait times are of vast importance as it 

has been proven that longer wait times can have serious consequences, including loss of wages 

and economic costs [5] [6], undermining patient trust, extended pain and suffering, and in some 

cases poorer medical outcomes [7] [8]. However, as poignantly stated by André Picard from The 

Globe and Mail [9] on the issue of wait times for healthcare in Canada: 
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“… the real challenge we have is not waiting times. It is more 

fundamental: To provide the right care at the right place at the right time at an 

affordable price (to individuals and society).” 

This thought perfectly describes the philosophy behind Lean Six Sigma, which is about getting 

the right parts (or in this case, care) to the right place, at the right time, in the right quantities 

while also reducing waste and error.  

While these issues plague the Canadian healthcare system as a whole, Manitoba has waiting 

times longer than average within Canada. Thus, in order to reduce costs and improve the quality 

and timeliness of care, a structured method for improvement needs to be applied within our 

healthcare systems. That is why the objective of this research is to demonstrate the efficacy of 

using Lean Six Sigma to improve efficiency in healthcare and promote the application of Lean 

Six Sigma (and other continuous improvement methods) in healthcare services across Canada.  

Changes in how we assess and improve efficiency need to be made on a national level, 

however they can start at a smaller scale such as within individual hospitals. Fortunately, the 

director of surgery at St. Boniface Hospital was interested in assessing and improving the 

efficiency of their OR and was open to the use of Lean Six Sigma to do so. The problem posed 

was the issue of operating rooms running overtime at end-of-day, resulting in uncoordinated 

patient flow and resource utilization, increased overtime hours and cancelled end-of-day cases, 

other staffing issues, and poor patient experience. As such, the Lean Six Sigma project objective 

was to establish recommendations on how to reduce the number of rooms running overtime from 

125/month to 30/month.  

In order to assess OR efficiency and recommend improvements, all processes required to run 

the OR for elective surgeries were considered, including, but not limited to, L2PO (pre-operative 
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area), OR room preparation, room turnover, start and end of day tasks, slating, and staffing or 

starting times. Areas that were outside the scope of this project included the elements or steps 

involved in the surgery or preparation itself, total work time for staff, and emergency surgeries. 

Project preparation began in February 2018, work and observation at the hospital began in April 

2018, and on-site work was completed in October 2019. All data used complied with the Public 

Health and Information Act. This project did not require Research Ethics Board approval as the 

records were from past surgical procedures and could not be traced back to patients.  

1.3. Intro to Lean Six Sigma 

1.3.1. Quality Control, Continuous Improvement, and Operational Excellence 

When it comes to process improvement, there are a few key terms used to define different 

types of improvement initiatives, namely: quality control, continuous improvement, and 

Operational Excellence (OpEx). The area of quality control revolves around ensuring a quality 

product which conforms to specification. If there are defects or faulty products, quality control is 

used to detect and prevent the errors. Continuous improvement deals with product quality as 

well, but also includes assessing and making improvements to all areas of production in order to 

reduce waste, cycle time, and costs. Any philosophy, concept, or methodology used to 

continually create improvements, either through incremental or breakthrough changes, is a 

continuous improvement method. OpEx goes a level above continuous improvement; it 

encompasses the mindset and ingrained culture of the company to being dedicated to creating 

constant and sustainable improvement through a continuous improvement system that utilizes 

problem-solving and management with set goals for the operational performance of the 

company. Depending on the goals set, a good OpEx method may also be a driving force for 

innovation and change within a company.  
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Many companies create their own unique methods for improvement from elements of 

existing methodologies in order to meet their own needs; these may also qualify as continuous 

improvement or OpEx methods. Lean Six Sigma is one example of a continuous improvement 

methodology that can be used within an OpEx management system.  

1.3.2. Lean Six Sigma Development Timeline 

The principles behind Lean Six Sigma are the combined elements of two different 

improvement methodologies: Lean manufacturing and Six Sigma. The important individuals and 

concepts which contributed to the development of these two methodologies are outlined briefly 

in the timelines below (Figure 1-1, Figure 1-2). For more information on the background of Lean 

Six Sigma, see APPENDIX A.  
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Figure 1-2 Lean Six Sigma Timeline 
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is constantly being improved. For the purposes of this project, the Lean Six Sigma methods and 

steps used in the University of Manitoba engineering course ENG7510 Operational Excellence 

were followed. Figure 1-3 shows the steps undertaken when completing an improvement project. 

Each step is briefly explained within this section. The methodology will also follow this process.  

 

Figure 1-3 Lean Six Sigma Improvement Project [10] 
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1.3.3.1. Define the Initiative 

To begin a Lean Six Sigma improvement project, one must first define the initiative. This 

involves writing a Project Charter and forming the project team. These elements ensure that the 

project has a clear, unified purpose and provides a framework for the team moving forward.  

A Project Charter outlines many aspects of the project prior to work beginning and is a living 

document, so it may be updated and changed as necessary. It should clearly outline background, 

business case, objective, scope, schedule, roles and responsibilities, resources, and risks.  

There are many roles and responsibilities associated with Lean Six Sigma projects. 

Identifying roles and responsibilities early ensures better communication and accountability of 

team members. The various roles often outlined in such projects can be seen in Table 1-1.  

Table 1-1 Roles and Responsibilities [10] 
Role Responsibilities 

Champion 
Work with LSS expert and team leader to develop the Charter; attain 
resources and remove barriers to project; link between team and 
executives; advise/guide expert and leader; review progress 

Lean Six Sigma Expert 
(Master/Black Belt) 

Work with Champion and team leader to develop the Charter; 
educate/guide team on LSS methods; work with the team leader to lead the 
team; help with documentation/data analysis 

Team Leader 
(Green Belt) 

Work with Champion and LSS expert to develop the Charter; lead 
meetings; guide the team through the process; work as a team member, 
providing subject content and sharing the workload 

Executive Management Team Manage project portfolio; identify improvement initiatives; assign 
roles/responsibilities; connect team to financials/organization 

Quality Department Own improvement process and roll-out strategy; provide expertise, 
training, and support to organization 

Process Owner 
Accountable for processes, including making improvement and monitoring 
results; provides knowledge on how the process works (capabilities, 
outputs, connections) 

Team Members Follow leader/LSS expert direction; attend meetings; contribute subject 
content and share the project workload 

 
For this project, the team roles and responsibilities are different from a normal Lean Six 

Sigma project in that the work was completed by only the team leader, with the other project 

members contributing feedback, guidance, and process knowledge. In addition, a Lean Six 

Sigma expert was not a part of the project. This was due to the project being completed in an 
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environment that was not currently applying Lean Six Sigma as a methodology for improvement. 

Instead, this project was done to prove the applicability and capability of the methodology 

through a test project.  

1.3.3.2. Characterize/Understand the Process 

This step in the Lean Six Sigma methodology is critical, especially for those who are new to 

a process or for a process which has not been assessed or improved using Lean Six Sigma 

previously. Characterizing the process allows the team to become familiar with the processes 

they plan to improve as well as the people who will be affected by the changes. It also provides a 

baseline to which changes can be measured. It is inadvisable to make changes to a system that 

one does not fully understand for it is unlikely to result in a positive change for all affected. In 

addition, this step provides a baseline for the current performance of a process. This step is 

broken into three sections to accomplish these requirements of understanding: 

I. Identify process linkages (i.e., see how the process fits into the overall system) 

II. Define how the process works (i.e., view the current workings and baseline performance) 

III. Identify the performance issues (i.e., find areas for improvement) 

In order to define the process, the customer critical to quality (CTQ) characteristics need to 

be identified and a SIPOC (supplier, input, process, output, customer) analysis completed. Once 

the performance issues have been identified, the next step is to improve.  

1.3.3.3. Improve 

Before beginning an improvement project, there must be adequate evidence to move ahead 

and garner support for the project. If a process is running at maximum capabilities and does not 

require improvement, skip to monitoring outcomes to ensure it sustains these values. Where 

possible, determine impact and prioritize potential projects. A budget and timeline may be 
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proposed for the potential projects at this time as well, to aid in determining which projects will 

be funded. Once one project has been agreed upon, the improvement process can begin. For this 

project, the DMAIC cycle (shown as the center ring in Figure 1-3) was used.  

I. Define (Establish the Focus) 

During this stage, the problem must be assessed in detail. The performance gap and proof of 

the problem (where the system is and where it should be performing) should be recorded and 

verified. Depending on the type of data, various different methods of data analysis may be 

utilized. At this time, a clear objective for the project and an improvement plan are also put in 

place. If needed, additional narrowing of the focus also occurs in this stage.  

II. Measure (Examine the current situation) 

In this stage of the improvement cycle, the process is assessed in greater detail specific to the 

area for improvement. This can be done using process maps, cause-and-effects matrix, capability 

analysis, or failure mode and effect analysis (FMEA). Not all of these tools are necessary for all 

projects; for this project, only process mapping and FMEA was completed. Any CTQs specific 

to the process should be given operational definitions and have baseline measurements taken. 

Control charts for the baseline measurements are used to assess sources of variation and to 

determine if the processes are stable. Once the baseline measurements are completed, strategies 

for meeting the project objective are determined, along with how to measure improvements.  

III. Analyze (Analyze the causes) 

In this stage, the goal is to determine the root causes of the current issues. To initially 

brainstorm these root causes, it may be beneficial to use fishbone diagrams, process knowledge 

and experience, and information from previous observation. After this, the link between the root 
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causes is discussed and verified (where possible) using data. Some tools which may be used to 

accomplish this include scatter plots, run charts, control charts, and pareto diagrams. Then, the 

key root causes must be selected for eliminating and the methods of measuring progress set. If 

there are multiple important issues which need to be addressed, a cost/benefit analysis on acting 

on each root causes may be completed to determine where to act first.  

IV. Improve (Act on the causes, Study the results) 

With the root cause for action chosen, brainstorming is done to create a list of possible 

actions. These are then assessed to determine which action will be taken forward. Depending on 

the constraints and requirements of the project, variables which may influence the action plan 

selection include cost, time, difficulty, impact, inter-connectivity issues with the rest of the 

process, and the level of authority needed to implement the chosen action. An action plan is then 

created and implemented on a smaller scale to test the improvement capabilities of the action.  

The results of the small-scale action should be assessed using the previously set project 

measures. If the desired level of improvement is not achieved or if there are negative side effects 

to the action taken, then changes may be made to the plan and the outcome reassessed until the 

desired outcome is reached. Once the desired level of improvement has been accomplished, it is 

time to move to the next stage for full-scale implementation and standardization.  

V. Control (Standardize the changes, Draw conclusions) 

To standardize the successful changes from the small-scale implementation, a plan needs to 

be put in place on in order to ensure a smooth transition. This includes employee training as 

required (as well as changes to new employee training procedures), communication to all 

affected by the changes, and instigating methods for control and monitoring of the changes. 

Control and monitoring measures are particularly crucial in this step to ensure that the changes 
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are successful and sustained over the long-term; without them, the process may revert to its 

former state. Due to this project’s timeframe and limited scope, the standardization of changes 

was not completed for this project. However, this may be completed in the future with additional 

resources focused on fitting the solution on a larger scale.  

This is also the stage in which to reflect on and document the project. Reflection involves 

documenting any issues, lessons learned, and benefits from completing the project. The purpose 

of reflecting on the project in this way is to solidify knowledge on what was done during the 

improvement process in order to learn from mistakes and improve the process for future projects. 

Another element of this stage is to plan for the future—what future projects need to be 

completed and what needs to be done to get them started? This is where the cyclical nature of 

Lean Six Sigma comes into play as there should always be a next step, whether it is continuing 

with the current issue and tackling another of the root causes or moving to a new process and 

problem. Finally, the means of spreading the information and documenting the project must be 

decided. This is key to ensure that the information and analysis completed will be available for 

future works and also for spreading the knowledge of the changes throughout the organization.  

1.3.3.4. Monitor the Outcomes 

With the improvement portion of the Lean Six Sigma project completed, monitoring the 

outcomes as outlined under the “Control” step is a continuing necessity. This ensures that the 

project outcomes are reaching expectations and that there are no unexpected effects in the long-

term. In addition, successful application of monitoring measures can allow for changes in the 

process to be picked up as time goes on and can inform when new improvements are needed. 

This step was not covered for this project as the changes were not fully implemented, they were 

only tested and thus do not require monitoring. 
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1.3.3.5. Repeat Cycle 

Lean Six Sigma is a cyclical process, meaning that it will always be repeating and finding 

new areas for improvement. It is at this time that additional root causes may be identified for 

action within the same area, or a new project may be proposed.  

1.4. Chapter Summary 

In this introduction, the organization of the thesis was outlined (Section 1.1), along with 

details on the reasons for completing this work (Section 1.2). The research problem identified 

was the issue of efficiency in healthcare and the goal of this thesis is to promote the usage of 

continuous improvement methodologies such as Lean Six Sigma in the healthcare sector in 

Canada and prove they are effective. This is being accomplished through completing an 

improvement project using the Lean Six Sigma methodology to assess the OR at St. Boniface 

Hospital. As part of the introduction to the Lean Six Sigma methodology (Section 1.3), a 

timeline on how Lean Six Sigma was developed was included, along with a brief description of 

what each step in the improvement project entails. Additional information on the background of 

Lean Six Sigma is available in APPENDIX A. 
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2. LITERATURE REVIEW 

No matter the venture, efficiency holds a vital role. In business, efficiency means 

profitability. In one’s personal life, efficiency means having more time for whatever is important 

to them, be it work, family, fun, or rest. In healthcare, efficiency is especially important because 

it can save lives. A hospital that runs efficiently is able to optimize their resources—money, 

time, staff, medications, space—in order to treat the maximum number of patients possible. The 

more efficient our healthcare system is, the more value can be seen for the money input and with 

less effort.  

The value for improving efficiency in healthcare may overarchingly be with the increase in 

productivity and thus the number of patients cared for and lives saved, however the benefits can 

be realized in many areas. For a hospital, the improvement in efficiency could result in more 

money being available to improve technology, hire staff, and maintain or update infrastructure. 

For staff, an improvement in efficiency may mean fewer steps taken in a day, more accurate 

work schedules, or less time spent waiting, for example, for equipment to become available. On 

scheduling, especially, the gains from efficiency may be seen as it could impact how many 

individuals would be willing to apply for certain positions; positions which traditionally require 

overtime would not be appealing for many (particularly those with young families or who are 

caregivers), thus resulting in fewer being interested in the positions and leaving even more of a 

requirement for overtime from those who are able. For patients, efficiency would reduce their 

wait times for surgery, consultation, and results as well as possibly improving their recovery rate 

and quality of care while in the hospital. Even for a patient’s family, healthcare efficiency is 

important because it would allow for more accurate estimates of surgery durations, improve the 

ease of navigation through the hospital, and result in an overall improved experience.  
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While the benefits of an efficient healthcare system are clear, measuring and improving 

efficiency is more complex. For what makes a system efficient? In a complex system such as 

operating rooms, there are many areas and ways in which efficiency has been measured and 

improved, and the methods of improvement continue to evolve.  

2.1. Measuring OR Efficiency 

Depending on the area to which you look in the OR, efficiency may mean something 

different. As described by Vig et. al. [11], the measure of efficiency may be budgeting and 

throughput for administrative services, cancellation rate and first case on time starts for surgeons, 

patient injury rate for risk management, and still other measures for different departments such 

as nursing or anesthesia. Due to these differences in view on what makes an OR efficient, there 

are many variables against which efficiency may be measured.  

This is only one of the issues faced when trying to measure efficiency in ORs. Other issues 

include lack of standard definitions for various OR processes, differences in methods used 

between studies, a lack of validation completed for indices used as OR performance indicators, 

and the difficulty of setting universal benchmarks between different hospitals due to variability 

in multiple areas. Hospitals may differ in patient population, type of hospital (teaching/for 

profit/not for profit), and type of surgery or anesthesia offered [12]. With these issues in place, it 

can be difficult to accurately portray the current efficiency of an OR comparative to others, even 

within similar hospital systems. It is key, therefore, to clearly define and establish variables 

which are relevant across all systems.  

A simple method of calculating OR efficiency is to use overutilization and underutilization 

times per OR day [11]. Underutilized time is calculated as a percentage of the scheduled time 

(i.e., one hour underutilized in an 8-hour day = 12.5%) and overutilized time is calculated at 
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double that rate due to monetary and morale costs associated with unexpected overtime (i.e., one 

hour overutilized in an 8-hour day = 25%). However, this method only gives a value for 

inefficiency in the OR without accounting for key measurables which contribute to creating 

efficiency and which could potentially be improved.  

One proposed scoring system, established by Macario [13], included eight (8) metrics for 

measuring OR efficiency in which each scored from 0-2 points, with higher scores indicating 

more efficient performance. The eight metrics, along with the highest ranking requirement, are: 

(1) excess staffing costs (less than 5%); (2) mean start-time tardiness per OR per day (less than 

45 min); (3) case cancellation rate (less than 5%); (4) percent of workday with at least one 

PACU admission delay (less than 10%); (5) mean contribution margin per OR hour (more than 

$2,000); (6) mean turnover times (less than 25 min); (7) prediction bias per 8 hours of OR time 

(less than 5 min); (8) percentage of turnovers greater than 60 minutes (less than 10%). 

Measurables relating to turnover times, first case on-time starts, and case duration estimates were 

also noted as key performance indicators by Kurtz [14] and Foster [15]. Foster also used other 

surgery specific measurables including subsequent case on-time starts, preadmission screening 

for anesthesia, patient-in-to-incision and patient-close-to-out times, surgical checklist 

compliance, and prime time utilization. Alternatively, the other variables noted by Kurtz 

included percentage of locations used and times they are used, surgical complications, value-

based purchasing, consistency of service, and surgical outcomes—all of which could be 

influenced by factors outside of surgery, such as administrative decisions, patient factors, or 

circumstances beyond control. It is preferable, therefore, to refrain from using such measurables 

to ensure that the outside factors will not influence end results, an outlook echoed by Divatia & 

Ranganathan [12] about using such outcomes to assess OR efficiency.  
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2.2. Methods to Improve OR Efficiency 

With the key variables in place for measuring OR efficiency, the next step is to find methods 

of improvement. There have been many reports completed regarding methods of improving OR 

workings, with many different approaches taken. First, two articles which reviewed groups of 

other studies will be covered, then individual studies.  

Fong et al [16] reviewed 39 previous studies and found a natural separation in the methods 

used based on the size of interventions undertaken: small (single-operative team), medium (floor 

or group), or large (institution). Based on their review, they further broke down the interventions 

taken at each level. Small-scale interventions included redesign of surgical workflow, 

standardization of instruments and supplies, and the implementation of team huddles before and 

after each case; medium-scale interventions centred around widespread use of checklists, 

increase in teaming (use of the same surgical team members), data tracking, and improving 

surgeons’ awareness of costs for disposable instruments; large-scale interventions involved 

changes and improvements in supply chain management, implementation of specialized 

personnel and services where volume allows, and space redesign and parallel processing. 

Methods of measuring hospital supply chain management performance and improvement may be 

reviewed in a literature study completed by Moons et al [17]. 

Saleh et al [18] took a different approach by assessing and grouping studies based on their 

relevance to the operation as either preoperative, intraoperative, or postoperative. In this way, the 

interventions were separated primarily by the teams affected in each stage of operation. For 

preoperative, the studies assessed used methods of improvement that focused on communication, 

staffing, changes to patient flow, and generating earlier patient evaluations and documentation. 

In the grouping of intraoperative improvements, the methods used included reducing variability 
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by implementing clinical pathways, modifying staffing for short-procedure rooms, and by 

utilizing surgeon profiles to maximize throughput. The postoperative improvement studies 

analyzed utilized methods of improvement such as parallel processing with a dedicated PACU 

room, improving communication, and implementing a 60-minute standard for turnovers.  

An article regarding improvements undertaken at University of Alabama at Birmingham 

University Hospital from 2004 to 2006 to improve staff retention and increase efficiency after 

transitioning to an expanded replacement hospital provides examples of how a single facility 

may undertake multiple projects to meet specific problems [19]. To combat issues of mandatory 

overtime, unpredictable work hours, and poor staff morale there were a number of improvement 

initiatives completed, including first case on-time starts, turnover time efficiencies, prime time 

block use, nursing staff issues, central sterile service issues, and patient safety. Through these 

initiatives, they were able to “retain critical human resources and restore a supportive 

environment for the patients, the doctors, and the staff.”  

Other actions taken to improve OR efficiency coincide with some of the measures mentioned 

previously, namely turnover time, on-time starts, and scheduling. The reduction of anesthesia 

turnover time from 65 to 52 minutes was completed for the Clinic for Gynaecology at the 

University Hospital, Zurich, Switzerland through increased staffing to allow for parallel 

processing (beginning induction of the next case before the prior one had ended) [20]. At a 

Veterans Affairs Medical Center in Salt Lake City, Utah, the rate of on-time surgical starts was 

improved by implementing pre-OR timeouts with a safety checklist alongside a modest 

performance pay incentive for attending surgeons, resulting in an improvement from a rate of 

15% of cases starting on-time to over 72% [21]. Finally, the method taken by the University of 

Louisville School of Medicine was to improve scheduling of surgeries, as well as preadmission 
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testing, which had a positive impact on first case on-time starts, OR time utilization, and case 

volume during peak OR time [22].  

These are only a few of the methods that may be taken to improve OR efficiency. In such a 

complex process as the operating room and associated areas, the opportunities for improvement 

are endless. In the end, regardless of the method taken the end goal is to provide an improvement 

on an OR efficiency measurable, such as those described in the previous section.  

2.3. Data Driven Improvements and Systems Engineering 

In many hospitals, including St. Boniface Hospital, planning and managerial practices are 

completed by a human planner even though advanced techniques and algorithms from the field 

of operations research could provide better results [23]. Indeed, when it comes to tackling issues 

that arise within a system as complex as the OR, the strategy for directing improvements is often 

determined by “common sense”. However, this can be an issue precisely due to the complex 

nature of the system. Without a properly guided analytical and mathematical approach, it is 

possible that key issues may be missed or misdiagnosed. In addition, it is possible that an 

environment of passing blame may arise because different parties involved in the system will 

have bias regarding what is causing issues.  

Although improvements may still be seen without the use of data-driven methods, they may 

not be the most effective or efficient. One problem faced with implementing these advanced 

analytical methods for decision making is that although many OR managers are skilled leaders 

with a healthcare background, they are unlikely to possess the necessary skillset to utilize such 

mathematical methods [24]. For this reason, it is highly beneficial to have an engineer or 

similarly mathematically oriented professional as a part of the OR team.  
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Traditionally, engineers have been involved in healthcare in the form of clinical engineers. In 

this role, the engineers are responsible primarily for maintenance, training, operation, and safety 

of instruments, design of procedures or components as required, and optimization of information 

handling and analysis (though an information technology professional or business may be used 

for information handling and associated services) [25] [26]. More recently the roles of engineers 

have shifted to include industrial and systems engineering approaches, though this application of 

engineering knowledge is not as widespread in healthcare services. From the 2001 report 

completed by the Committee on the Quality of Health Care in America [27]: 

“Other world-class businesses, notably those that have received the 

prestigious Malcolm Baldrige National Quality Award, have embraced many 

of the tenets of quality improvement described by Deming, Juran, and others, 

which include the need to improve constantly the system of production and 

services. Yet few health care organizations have developed successful models 

of production that reliably deliver basic effective services, much less today’s 

increasingly advanced and complex technologies.” 

The lack of reliable production and improvement models designed specifically for healthcare 

services appears to be due to the inherent complexity and variability that comes from systems 

steeped in human factors. Indeed, there is some skepticism that methods that were developed for 

manufacturing and industrial setting could be applicable in such a different setting. However, the 

application of data-driven and engineering-based improvement methods can be successfully 

applied in healthcare so long as it reaches a deeper level than simply individual projects; it must 

become a part of the healthcare culture or else these methods will have only as much success as 

any other methods that came before and were eventually discarded [28].  
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In addition, the benefits of using data-driven approaches for tackling problems with 

efficiency outweigh the challenges to implementing these new methods. From a report on an 

initiative taken by the UC Davis Medical Center in 2010 to improve OR capacity and 

patient/staff satisfaction, it was determined that the optimization project resulted in more than 

simply improvements to efficiency, it “transformed a culture” [29], which—as addressed 

previously—is key to sustaining changes. The additional benefits that were seen from this shift 

in culture included strengthened personal relationships, reinforced teamwork and 

communication, investment of OR staff in process and quality improvement, and a change from 

blaming others for problems to looking for root causes using data and metrics, which further 

encouraged staff to feel open to making suggestions and calling for improvements where they 

were most needed.  

Even without completely changing the culture in healthcare, improvements may be seen 

through the use of data. By posting the percentage of daily on-time starts publicly, LeAnn 

Northam of the Riley Hospital for Children Indianapolis brought attention to the issue and 

generated discussion within the various associated departments (anesthesia, nursing, surgeons), 

which resulted in marked improvements (21% to 60% high, and average of 47.25%) [30].  

Data-driven approaches are also useful for reducing and planning for variability. Currently, 

most OR systems operate on a reactive basis to problems—for example, rescheduling or 

cancelling surgeries as changes occur and scheduling staff to cover rooms that will run overtime 

in the middle of the day. This is largely due to an inability of the system to adequately plan for 

variability in advance. By applying variability theory to account for both common-cause 

variability (artificial or controlled, i.e., variation in elective surgeries and scheduled cases) and 

special-cause variability (natural or uncontrolled, i.e., emergency case or unexpected surgical 
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complications), improvements can be made to all planning and scheduling endeavors. A project 

undertaken by the Mayo Clinic Florida to apply operational management and variability theory 

produced significantly positive results in the form of increased throughput without added 

expense, reduced overtime, improved staff satisfaction, decreased same day changes to the 

schedule, and overall improved financial performance [31].  

2.4. Lean Six Sigma in Healthcare: Outcomes and Challenges 

As explained in Section 1.3, Lean Six Sigma is a continuous improvement methodology 

which has origins in manufacturing, and which utilizes data-driven methods. A focus on 

improving quality in healthcare at a national level began in the 1990s [32] [33] [34] [35], around 

the same time that Lean and Six Sigma were developed and began gaining traction in 

manufacturing. As business began to apply Six Sigma techniques to their customer service 

sectors—alongside their original manufacturing applications—it became clear that such a 

technique for improvement is highly applicable to the service industry sectors. Thus, the 

implementation of manufacturing improvement methods in healthcare was considered.  

Some of the earliest articles regarding Six Sigma and Lean in healthcare were in the 1998 

article, “Is Health Care Ready for Six Sigma Quality?” [36] and in the 2001 profile piece, 

“Physician Strives to Create Lean, Clean Health Care Machine” [37]. A compelling article by 

Chip Caldwell [38] and the associated book [39] from 2005 provide a compelling case for the 

use of Lean Six Sigma in healthcare and direction for upper management on its application. 

Although these methods are now more widely used in healthcare and have many successful 

applications worldwide, there are still many healthcare systems that stand to learn from these 

methodologies. As well, though some hospitals may apply Lean Six Sigma to individual 

projects, the cultural shift which provides the sustainability for such improvements is still to 
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come. Even though there have been great successes with Lean Six Sigma in healthcare, there are 

also challenges which are faced and which provide pushback against changing to such a system 

of improvement.  

Projects using Lean, Six Sigma, or a combination of both are plentiful in the literature. A 

strength of Lean Six Sigma is that it can be applied to any and all elements of the OR; this also 

makes it more difficult to review because the literature and case studies available are extremely 

varied. Thus, the focus here will be on outcomes assessed based on primary Lean Six Sigma 

project articles and from summary information for reviews of literature currently available, on 

information about hospitals and health services which have achieved a complete cultural shift 

toward quality and continuous improvement, and the key challenges faced in implementing these 

improvement methodologies.  

2.4.1. Primary Studies 

From research published in the last fifteen years, 32 cases which utilized Lean, Six Sigma, or 

Lean Six Sigma in an OR environment were reviewed for the outcomes associated with the 

project implementation. In all cases, significant improvements were realized. A breakdown of 

the outcomes which were seen in multiple studies is given in Table 2-1 (outcomes seen in two or 

less cases were not included). Reduction in patient length of stay was the most prevalent 

improvement measured, with improvements to costs, turnover times, wait times, and first case 

on-time starts as outcomes for improvement also appearing in five or more studies. Three to four 

cases measured improvement to infection rate, throughput, process flow, staff morale, and 

turnaround time. Each outcome was then separated into one of the following categories: health & 

safety, quality & satisfaction, process efficiency, and cost. Overall, it seems that all OR 
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improvements could be assigned as one of these categories, although some measures could fall 

into multiple (i.e., reduction in overtime could be associated with cost or quality & satisfaction).  

Table 2-1 Recorded Outcomes of Lean Six Sigma in Healthcare 
Outcome Reference Count Category Description 
length of stay [40] [41] [42] 

[43] [44] [45] 
[46] [47] [48] 

[49] 

10 health & safety Decrease in patient length of stay 

cost [41] [44] [45] 
[47] [50] [51] 

[52] 

7 cost Decrease in operational costs 

turnover time [49] [50] [53] 
[54] [55] [56] 

6 process efficiency Decrease the time between last patient 
out and next patient in 

wait times [51] [57] [58] 
[59] [60] [61] 

6 quality & satisfaction Decrease wait-times for patients to 
receive care 

first case on-
time start 

[53] [62] [63] 
[64] [65] 

5 process efficiency Improve rate at which first surgical 
cases start on-time 

infection rate [45] [66] [67] 
[68] 

4 health & safety Decrease the risk of infections post-
surgery 

throughput [59] [60] [69] 
[70] 

4 process efficiency Increase in the number of cases which 
can be accommodated per room 

process flow [48] [51] [64] 
[71] 

4 process efficiency Rework the process to improve flow 

morale [50] [51] [56] 3 quality & satisfaction Improve staff morale and satisfaction 

turnaround 
time 

[50] [55] [61] 3 process efficiency Decrease time between surgical 
dressing end and surgical incision for 
the subsequent patient 

 

2.4.2. Reviews of Studies 

An article by Deblois and Lepanto provided a methodological review of reviews [72]. After 

searching articles published between 1999 and 2015, seven reviews published between 2009 and 

2012 were included in their assessment. From their breakdown, four key effects were repeated 

throughout the Lean Six Sigma project reviews: health outcomes, processes, quality, and costs. 

This categorization of outcomes is comparable to those given to the review of primary studies 

above, and also to those discussed in the review completed by D’Andreamatteo et al [73], which 
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reviewed 109 empirical studies and separated the impacts as primarily relating to safety, 

productivity, clinical quality, and cost. In both reviews, it was determined that Lean Six Sigma is 

a promising approach to generating improvements in healthcare, however there are challenges to 

implementation and more research is needed to further explore the limits of this methodology in 

healthcare.  

2.4.3. Organizational Implementation 

Although reviews and individual successes indicate the usefulness of Lean Six Sigma and 

continuous improvement methodologies in healthcare, the real proof of success comes from 

places where a cultural shift has occurred and there is universal acceptance and application of the 

improvement methodology within the organization. Four hospital systems within the United 

States which have had success at this level are assessed below: Virginia Mason Medical Centre, 

Mayo Clinic, Cleveland Clinic, and ThedaCare.  

The Virginia Mason Medical Centre in Seattle, Washington began their OpEx journey in 

2001 with a visit to Japan, after which they began to form their own continuous quality 

improvement program called the Virginia Mason Production System (VMPS) based on the 

Toyota Production System/Lean principles (Figure 2-1 shows a simplified version of VMPS in a 

diagram). They now have hundreds of staff trained in their system, with 20 full-time employees 

dedicated to implementing VMPS projects and training. One element which allows VMPS to 

thrive is their “no-layoff rule”—any staff which have their role eliminated by efficiency 

improvements are guaranteed to be redeployed in another area. They have had many positive 

results from VMPS projects including decreasing staff walking distances by 38%, reducing parts 

travel by 77%, reducing inventory and lead time by half, increasing productivity from 44-93% in 

various areas, reducing patient waits for lab results by 85%, and improvements in cost in the 
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amounts of $500,000 overtime savings, $1 million in lowered operating costs, and a cost savings 

in budgeted capital between $12-15 million [74].  

 
Figure 2-1 Simplified Virginia Mason Production System House [75] 

The Mayo Clinic in Rochester, Minnesota also developed their own OpEx system which they 

call the Mayo Clinic Quality Construct (MCQC). The MCQC consists of four fundamental 

elements—culture, infrastructure, engineering, and execution—with the overarching mission 

being to provide the best care possible to their patients [75]. Figure 2-2 gives a simplified 

diagram of the interactions between the elements of their quality construct. In 2006, the Mayo 

Clinic Quality Academy was established in order to support the quality improvement efforts. The 

MCQC incorporates a combination of improvement approaches, including “Just Do It”, Plan-Do-

Study-Act (PDSA), Lean, and Six Sigma [76]. The quality and efficiency of the Mayo Clinic is 

evident from holding the title of top hospital in the United States, as ranked in the 2020-2021 

U.S. News & World Report. The Cleveland Clinic, in Cleveland, Ohio, holds the second rank in 

the same list [77] and is also known for their quality improvement efforts.  

The Cleveland Clinic Improvement Model (CCIM), similar to the MCQC, uses tools from 

various improvement methodologies including huddles, visual management, Plan-Do-Check-Act 

(PDCA), Kaizen, “Just Do It”, standardization, and 5S. The CCIM is broken down into four 

elements: organizational alignment, visual management, problem solving, and standardization 
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[78]. The application of this improvement model at the Cleveland Clinic is assisted by their 

continuous improvement department, which is made up of professionals from Lean, Six Sigma, 

and project management backgrounds [79].  

 

Figure 2-2 Simplified Mayo Clinic Quality Construct [76] 

The final organizational application of Lean to be assessed is ThedaCare, which is a 

Wisconsin health system comprised of seven hospitals and numerous clinics and services. Their 

Lean journey began in 2003, at which time they developed the ThedaCare Improvement System 

(TIS) which utilize value stream mapping (VSM), rapid improvement events (RIE), and process 

projects. Similar to Virginia Mason’s system, ThedaCare has a “no-layoff” rule incorporated in 

the TIS [80]. While the TIS produced improvements—they achieved bottom-line savings of $25 

million by 2009—they did not reach all the goals which had been set. It was determined that the 

main issue was a lack of change in management to accompany the changes that had been 

implemented with TIS. This led to the creation of the ThedaCare Business Performance System, 

a system of management implemented to reduce variability among managers, generate daily 

improvements, and prioritize improvement projects [81].  
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The thing that each of these systems has in common is that they were able to combine aspects 

of different improvement systems and personalize it to the needs of their organization. This 

personalization, along with the involvement of front-line workers and all levels of management 

is what has helped each of these organizations to be successful in their continuous quality 

improvement initiatives.  

2.4.4. Challenges with Lean Six Sigma Implementation 

Regardless of the potential, healthcare holds unique barriers in successful implementation of 

Lean Six Sigma and other continuous improvement initiatives. Firstly, Lean and Six Sigma were 

created for a manufacturing environment, so there is often pushback against these methodologies 

due to the belief that healthcare is too different from manufacturing for the same methods to be 

applicable to both. Indeed, it is easier to apply such techniques to manufacturing due to the linear 

nature of product development and healthcare does present challenges in the way of being highly 

complex and dependent on human variables. Therefore, the first challenge faced in implementing 

Lean Six Sigma is in the perception of those being asked to adopt the new method. At Virginia 

Mason, some physicians and management personnel even quit when the new VMPS was 

implemented. Others resisted the initial implementation but were swayed as the gains became 

evident; this caused some of the initial nay-sayers to become vocal advocates of the system after 

time [82]. Resistance to change—both in management and on the front lines—is a common 

barrier due in part to perception, as discussed, but also due to fear of job loss [53] [54] [65] [72].  

Another issue is the training and terminology needed to apply Lean Six Sigma. There are 

many definitions which have Japanese origins and require additional training to understand. 

Much as a layperson would not readily understand the medical terminology of sphenopalatine 

ganglioneuralgia (brain freeze), neither would a medical professional understand terms such as 
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muda (waste), gemba (workplace), kaizen (improvement), DPMO (defects per million 

opportunities), or kanban (signboard). As well, referring to the patient as both the “customer” 

and “product”, and viewing a hospital as a business can be concepts which are not readily 

accepted in the healthcare setting. Thus, the training of staff, both in terminologies and 

methodologies, is another key challenge of implementation which has been documented [43] 

[72] [76].  

Other challenges assessed in the literature include lack of resources [53] [82], lack of experts 

in healthcare [71], failure to commit to the change and involve all levels of the organization [71] 

[76] [83], issues with healthcare hierarchal and organizational design [71] [83], and problems 

due to the complexity of the system and differing goals between departments [71] [76] [83].  

2.5. Lean at St. Boniface Hospital 

In 2008, Lean was introduced to St. Boniface Hospital and the Transformation Team was 

created with Dr. Michel Tétreault, former St. Boniface President and CEO, as its champion. 

Mentors with Lean experience from Standard Aero, ThedaCare, and Simpler Consulting aided 

the Transformation Team at the start of their journey. The first actions of the Transformation 

Team were hiring initiatives and creating value streams for ER acute coronary syndrome [84] 

and acute care surgical service, after which two additional front-line staff were added and more 

VSM and RIE were completed in areas such as resuscitation room organization [85], surgical 

flow, medicine flow, and supply chain. Through these projects, positive results were achieved in 

improving ER results, direct admittance to acute care surgical service, checklists and 

documentation, and fall prevention, among other improvements.  

Following the initial momentum of these improvements, came resistance from the front-line 

staff to changes and a loss of some of the improvements applied. One of the reasons for losses in 
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the early improvements was due to the fact that, after the Transformation Team withdrew from 

areas where improvements were made following completion of the projects, the staff remaining 

were not trained to sustain and continue the improvements. From 2012 to 2015, there was a 

change in the Transformation Team in terms of stabilization and shifting their focus toward 

training and developing skills in St. Boniface Hospital staff, rather than in direct participation in 

transformation projects. In 2015, ThedaCare consulting centre Catalysis aided with defining the 

management system for Lean at St. Boniface and ensuring that the Transformation Team could 

give the front line the ability to solve problems and send information higher up as needed. Since 

that time, the focus has remained on training of staff and also on generating continuous 

improvements of the systems and processes involved in pilot areas of pharmacy and cardiac 

surgery. As of 2019, approximately 60% of staff have participated in training initiatives and the 

Transformation Team continues to evolve and grow, with new staff and directorship.  

Next steps for St. Boniface Hospital in its Lean journey include continuing to promote 

engagement at all staff levels in improvement projects, and training and creating a lasting culture 

of improvement throughout the hospital. This is the most difficult stage of the journey as it 

requires a level of acceptance and commitment from all areas that has not been required before.  

2.6. Chapter Summary 

Within this chapter, many different and viable ways of measuring OR efficiency were 

assessed (Section 2.1). It is important to consider what is most relevant for the project at hand 

and define the measurables prior to the start of any improvement project. This allows for clarity 

during the project and also ease in tracking improvements. In addition, remaining consistent 

between projects can allow for improved communication between teams and better 
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comparability of results, both within the hospital and when comparing results to outside sources 

and other studies.  

When it comes to methods for improvement, as stated by Saleh et al [18]:  

“There seems to be no clear single answer to the question of how to 

improve operating-room processing and throughput. Rather, there are a 

number of individual strategies directed at improving particular aspects of 

operating-room processing.”  

And indeed, many documented strategies for making improvements in the OR were found and 

reviewed (Section 2.2). This is why it is particularly important to determine which areas should 

be addressed first in order to provide the greatest benefit. A summary of OR efficiency measures 

and methods of improvement reviewed are shown in Table 2-2.  

Table 2-2 Operating Room Efficiency Measures and Improvement Methods 
Efficiency Measures Methods of Improvement 
OR utilization time 
Staffing costs 
First case on-time starts 
Case start-time tardiness 
Cancellation rate 
PACU admission delay 
Contribution margin 
Turnover time 
Prediction bias 
Percent long turnovers 
Pre-admission screening rate 
Patient in – incision time 
Patient close – out time 
Surgical checklist compliance 

Workflow redesign 
Standardization 
Huddles 
Checklists 
Teaming 
Data tracking 
Cost awareness 
Supply chain 
Specialized services 
Space redesign 
Parallel processing 
Communication 
Staffing 
Patient flow 
Patient evaluations 
Reducing variability 
Maximize throughput 
Scheduling 

 

The benefits of a data-driven or engineering approach were also discussed (Section 2.3). 

Data-driven methods and systems engineering are tools which can be leveraged to greatly 
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improve efficiency within healthcare and the OR in particular can benefit due to the many 

complex interactions involved. Data can help to determine true root causes that may otherwise be 

obscured by bias. Having a team member that is an engineer, or in a similar field, is key to 

ensuring that such methods can be properly applied. The use of Lean Six Sigma (or other 

continuous improvement methodologies) is a prime example for how such data-driven 

techniques can be applied in a systematic and proven manner for success.  

Also reviewed were many case studies and articles which cover the successes and challenges 

in applying Lean Six Sigma in healthcare (Section 2.4). Positive outcomes realized fell under the 

categories of health & safety, quality & satisfaction, process efficiency, and cost. The true 

success of continuous quality improvement in healthcare, though, comes from places like 

Virginia Mason Medical Centre, Mayo Clinic, Cleveland Clinic, and ThedaCare, all of whom 

have managed to create and cultivate their own culture of improvement within their organization.  

Creating a change in healthcare culture is a big challenge, and it is only one of many 

challenges which were covered. Perception, training, resources, commitment, organizational 

hierarchy, and complexity are all challenges that are faced when attempting to apply a new 

continuous improvement methodology to healthcare, particularly one such as Lean Six Sigma 

which is so strongly descended from manufacturing backgrounds.  

The use of Lean and Six Sigma methods within St. Boniface Hospital was the final 

information covered in this chapter (Section 2.5). Within St. Boniface, the implementation of 

Lean and Six Sigma methods is in an earlier stage and the hospital has yet to reach the stage of 

complete cultural immersion. However, great strides are being made with the Transformation 

Team within the hospital and, hopefully, in time the entirety of the organization will be well- 

versed and able to participate actively in continuous improvement initiatives.   
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3. IMPROVEMENT METHOD: LEAN SIX SIGMA PROJECT 

The Lean Six Sigma improvement project completed as a part of this thesis took place at St. 

Boniface Hospital. The improvement area was the OR and all associated processes.  

3.1. Define the Initiative—Project Charter 

Generating a Project Charter to define the project goals, team, and other elements was the 

first step taken. The full Project Charter can be found in Error! Reference source not found.. It 

was broken into the following sections: background, business case, project objective, 

scope/boundaries, schedule/milestones, team/resources, risk, and risk mitigation/action plans.  

The project background gave a brief introduction to Lean Six Sigma and identified 

consistently being on-time at end-of-day in the OR as the end goal. The business case supporting 

this goal was established in the next section, noting that 51.5% of end-of-day cases ended more 

that 15 minutes late and resulted in 2152 hours of overtime. Late cases and high levels of 

overtime result not only in increased costs but also poor patient flow, cancelled cases, issues with 

resource utilization, and poor patient experience, proving that this is a crucial area for 

improvement. Thus, the project objective was set at reducing the number of late end-of-day 

surgeries from 125 per month to an average of 30 per month.  

The scope of the project was established next, with elective surgeries, slating procedures, 

staff roles, and all associated processes within scope and emergency cases, surgical processes, 

and staff hours being out of scope. The timeline for Lean Six Sigma milestones was also set, 

though adjustments were made throughout the course of the project to account for delays.  

Roles of the project team members were clarified at this time as well. As stated previously in 

Section 1.3.3.1, the team roles for this project were different from a normal Lean Six Sigma 

project. A normal Lean Six Sigma project includes a Lean Six Sigma Green or Black Belt 
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certified leader, team members from the process being improved with Lean Six Sigma training, 

and an executive team to support the process. This project was completed entirely by the team 

leader (myself), with leaders in the OR environment acting as the executive team. Therefore, all 

planning, analysis, and work was completed by the team leader, with the executive team giving 

approval and input as required as well as directing the team leader to staff members with 

knowledge of the OR processes.  

Four risks were identified at the start of the project and mitigation measures were outlined. 

The first risk identified was delays due to staff being on vacation, which was mitigated by 

allocating enough time within each section that such delays were accounted for and requiring 

alternative contact information be provided if necessary. The second risk identified was falling 

behind schedule. The mitigation measures in place to correct for this risk were implementing 

weekly team meetings, increasing communication with the process owners, and allocating tasks 

to OR/L2PO staff members.  

The third risk assessed was that the data consultant was taking a leave of absence. Due to this 

being a planned leave, an alternate contact was able to be identified and additional time was 

allotted when requesting data during that period. The final risk identified was that of staff being 

resistant to change. To ensure acceptance of changes, a plan was made to include affected staff in 

the problem-solving process, create a compelling argument for all changes, and provide support 

and coaching to staff if necessary. A report detailing all findings and data would also be made 

available, providing additional justification for any changes implemented.  

After creating the Project Charter, it was reviewed and approved by the executive team. Each 

revision of the Project Charter was also approved by the executive team, aside from the final 

revision which could not be approved due to complications caused by COVID-19.   
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3.2. Characterize the Process 

With the OR efficiency under analysis and reducing overtime as the improvement goal, all 

OR processes and associated processes required assessment to improve understanding of the 

improvement team. To achieve this on-site observation, interviews, and process mapping were 

completed. Data from April 2017 to April 2018 were also analyzed after being filtered and 

edited, the steps of which are detailed in APPENDIX C. Images of the original spaghetti diagram 

maps and associated interview notes, and sticky-note mapping are included in APPENDIX D.  

3.2.1. Process Characterization and Linkages 

The first step taken in this section involved understanding how the processes and steps within 

the hospital and OR fit together. To accomplish this, first the process tiers were identified, as 

shown in Figure 3-1, to give an overview of the system for the purposes of this project.  

 
Figure 3-1 OR Process Tiers 

Surgery (the second step of Tier 1) was identified as the principal area for improvement, 

primarily within steps 2.1-2.4. These are the areas directly related to the operating rooms on the 
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day of operation: scheduling, admitting, pre-op, and surgery. Recovery, aside from the 

transportation of the patient from the OR into recovery, was not more closely assessed, as the 

project goal of reducing overtime and late end-of-day surgeries is more highly influenced by pre-

operative and operation areas. Slating (a.k.a. surgery scheduling) was also assessed as it impacts 

the flow of surgeries.  

Next, the different clinical programs, supporting departments, and administrative 

departments were considered for how they work together to keep the specified surgical areas 

running (Figure 3-2). These connections were used to aide in defining how the process works.  

 
Figure 3-2 Connections between hospital departments to OR  
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3.2.2. Process Workings and Performance Issues 

With the tiers and focus areas identified, a SIPOC Analysis was completed, beginning with 

customer Critical to Quality characteristics (CTQs), which were identified in CTQ trees (Figure 

3-3) to clarify the customer requirements in measurable terms. Three primary requirements were 

chosen with relation to OR overtime and efficiency: information and paperwork, resources, and 

surgery.  

 
Figure 3-3 CTQ Trees 
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The CTQs with time oriented measurables were identified as key lagging measures of OR 

efficiency, including cancellations, overtime, start times, case duration estimates, and turnovers. 

The defects per unit (DPU) associated with each measurable were compiled in Table 3-1. This 

covers the process function with the product or service given and the associated CTQ, defect, 

unit, and DPU values. This gives a current view of errors within the OR processes.  

Table 3-1 Defects Per Unit (DPU) Matrix 

Function Product/ 
Service 

Customer 
Expectations Defect Unit DPU 

Surgical 
Department 

Management/ 
Finance 

No OR  
overtime 

Overtime  
(> 0 min) 

Each room  
(for each day) 

1522 defects 
2515 units 

= 0.605 DPU 

L2PO/OR Surgery First case  
on time start 

Late  
(> 0 min) 

First elective 
cases 

1793 defects 
2501 units 

= 0.717 DPU 

L2PO/OR Surgery Elective case  
on time start 

Late  
(> 0 min) 

Completed 
elective case 

4269 defects 
6235 units 

= 0.685 DPU 

OR Surgery Accurate daily 
duration 

Over/under time 
(> 15 min) 

Each room  
(for each day) 

2042 defects 
2515 units 

= 0.812 DPU 

Turnover Clean-up Timely Extended time 
(>25 min) 

Primetime room 
turnover 

1279 defects 
3711 units 

= 0.345 DPU 

OR Surgery Completed Case cancelled Scheduled 
elective case 

1004 defects 
7239 units 

= 0.139 DPU 

 

The SIPOC Analysis was compiled to bring together all aspects of the process understanding 

that were undertaken, shown in Figure 3-4. The lagging measures and customer needs for the 

SIPOC Analysis were pulled from the previous DPU Matrix. The customer expectations from 

the defect matrix are the performance issues to be pursued for improvement.  

From the SIPOC flowchart, an integrated flowchart (Figure 3-5) was created to develop a 

more detailed view of the process steps. This visualizes the many tasks that the staff must 

complete within the OR to contribute to the process success. A specific completion time for each 

task could not be included as they may vary depending on the patient, procedure, or workload for 

number of staff available. 
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Figure 3-4 SIPOC Analysis 
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Figure 3-5 OR Integrated Flowchart 
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3.3. Improve 

This improvement project focused on improving OR efficiency so that overtime work—

identified as a CTQ characteristic and the goal for improvement—would be reduced. The current 

level of rooms running overtime is unacceptable, with over 60% of rooms running elective 

surgeries going overtime (of those, 85% ran overtime by greater than 15 minutes). There are 

many current process problems needing improvement to close this gap, shown in Figure 3-6. 

These areas were assessed for impact and prioritization (Table 3-2) as potential projects, with 

approval from the executive team.  

 
Figure 3-6 Performance Gap 

Table 3-2 Prioritization Matrix 
OBJECTIVES POTENTIAL PROJECTS (see Figure 3-6) 

Objective Weight (1) (2) (3) (4) (5) (6) 

On-time end of day 0.4 7 9 9 3 5 9 
Patient satisfaction 0.1 3 7 5 5 1 7 
Staff satisfaction 0.1 5 5 7 9 9 5 

Increase case throughput 0.1 9 3 7 3 3 5 
Improve quality 0.1 1 3 3 9 3 1 
Improve safety 0.1 1 3 3 9 1 1 
Data collection 0.1 7 1 3 1 3 1 

Weighted average (benefits) 5.4 5.8 6.4 4.8 4.0 5.6 
Expected timeline  2 years 2 years 2 years 1 year 6 months 1 year 

*Note: cost was not considered as a factor as the work was being completed on a volunteer basis as part of a master’s thesis 

(1) Turnover time 

(3) Accurate case estimate 

(2) First case start time  

(5) Surgeon preferences 

(6) Staff timeliness 

(4) Communication/info 

Proc
ess

 Prob
lem

s 

Current Situation (end of day): 
Overtime rooms: 60% 

Target Situation (end of day): 
Overtime rooms: 15% 
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To calculate the weighted average, the relationships between the potential project and 

hospital objectives were assessed on a scale from 0 to 9, with 0 indicating no relationship and 9 

indicating a strong relationship. Of the objectives, having an on-time end of day was weighted 

heavily while the other objectives were evenly weighted.  

At the start of the project, first case start times were recommended by the executive team as 

the focus for improvement. However, to properly apply the Lean Six Sigma methodology all 

other process areas also needed to be considered for improvement, resulting in the six potential 

projects given above. Of the potential projects, two were prime for improvement: first case on-

time starts and accurate case duration estimation. Both had high DPU values (Table 3-1), high 

prioritization based on the weighted averages (Table 3-2), and high interest within the hospital 

for improving these measures. After assessing these two areas further, it was determined that the 

accurate case estimation would be pursued, for two reasons.  

Firstly, improvement in case estimates would have a higher impact on reducing overtime. 

This conclusion was based on the knowledge that inaccurate case duration estimates impact 

cases throughout the day and could negatively impact other areas of interest such as turnover 

times and staff timeliness; with cases not ending on time, staff may have difficulty adequately 

preparing for turnovers or starting on the next cases.  

Secondly, it was determined that first case start times do not have as large an impact on end 

of day lateness as expected. The correlation of room start time and end time error was assessed 

using a scatter plot and Pearson correlation test (Figure 3-7). The correlation coefficient is 0.251 

with a p-value of 2.2e-16, thus start time does have a slight positive correlation to end time error. 

However, it is also clear based on the spread of the points in the scatter plot off of the linear band 

that the majority of rooms do not have a direct linear correlation between start and end times.  
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Figure 3-7 Correlation between room start and end difference from schedule 

In addition, as shown in Table 3-3, 49% of rooms which begin late also end late, however, on 

average the rooms with a late start will end 39 minutes later than they started (shown in Figure 

3-8), thus the late beginning only accounts for only 26% of the total lateness for these rooms. As 

well, over half of the rooms that start on-time will also finish late, by an average of 14 minutes. 

With on-time rooms starting an average of 6 minutes early, this is a 20-minute delay which 

accrues over the course of the day due to other factors. Overall, while the first case start time 

does impact the room end time, the case slating and estimates of case duration were deemed to 

have more room for improvement and greater impact on overtime reduction than improving first 

case start times.  

 
Figure 3-8 Rooms start and end differences from schedule grouped by on-time/late start 
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Table 3-3 On-Time vs Late Room Start and End times  
LATE START ON-TIME START  TOTAL 

LATE END 1240 (49.4%) 375 (15.0%) 1615 
ON TIME END 560 (22.3%) 333 (13.3%) 893 

TOTAL 1800 708 2508 
 

Improving turnover time was also considered as a focus. However, it was deemed to be a 

future endeavour as current methods of record keeping did not directly note turnover times, nor 

were causes for extended turnovers consistently documented. Instead, turnover times were 

extrapolated from “patient out” to “next patient in” time values. This calculated value could be 

affected by many different processes, as can be seen by the many different roles and steps which 

encompass the task of moving from one patient to another, shown in the integrated flow chart 

(Figure 3-5) previously. With so many varied possibilities for error, additional data tracking is 

needed to determine which turnover tasks would most benefit from improvement.  

3.3.1. Define (Establish the Focus) 

From the previous section, it was determined that improving the accuracy of case and room 

duration estimates would be the focus for the improvement project. In order to reduce OR 

overtime, the overall daily room durations and case durations must be properly estimated.  

3.3.1.1. Describe and Verify the Performance Gap 

Currently, the daily room duration estimates are at unacceptable levels as only 18.8% of 

rooms finish within 15 minutes of the expected end time. Both over- and under-utilization of the 

OR is an error that should be improved upon, though only over-utilization counts towards the 

over-time hours accrued by the OR. For individual cases, 32.8% of case durations were within 

15 minutes of the estimated durations. For this calculation, the average turnover time of 28 
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minutes was assumed and added to the case duration as the scheduled time includes turnovers 

while the actual case durations did not.  

The Short-Term Process Sigma was calculated using defects per million opportunities 

(DPMO) in Table 3-4. These values were calculated for the room duration error as well as for the 

case duration error as a baseline for performance. A shift of 1.5 was assumed for calculating the 

short-term capability due to the use of long-term data. An ideal process would be within 6 

Sigma, meaning only 3.4 DPMO. The current process is far out of this range, at 0.61 Sigma and 

1.05 Sigma for room duration error and case duration error, respectively.  

Table 3-4 Process Sigma Data and Calculations 
Unit Room Case 
Defect Error > ±15 min Error > ±15 min 

Defect opportunity [O] 1 1 

Units [N] 2515 6235 

Errors [D] 2042 4192 

Yield [(N*O – D)/(N*O)] 18.8% 32.8% 

DPMO [(1-Yield)*1,000,000] 811,928 672,334 

Short term process sigma (1.5 shift) 0.61 1.05 

 

3.3.1.2. Develop the Project Objective and Improvement Plan 

Moving forward, the objective is to improve the accuracy of case duration estimates used to 

create the daily room slates in order to allow the rooms to end on-schedule, thus reducing the 

amount of underutilized OR time and reducing the amount of required overtime. In addition, the 

improved case estimates may allow for more accurate preparation of staff and patients through 

the course of the day. The plan is to assess the current process used to create the daily room 

slates (Section 3.3.2: Measure) and determine what root causes are affecting the case estimate 

accuracy (Section 3.3.3: Analyze). Action will then be taken to improve the case estimates 

(Section 3.3.4: Improve). 
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As there are many surgical departments and procedures included within the OR, it was 

determined that the project scope would be narrowed to surgeries which occur frequently enough 

to give statistically significant values and have a high likelihood of occurring during the project 

timeline to allow for new data to be tested following improvement. This allows for a more in-

depth look at the data and processes involved in specific cases and surgical departments. The 

process used for choosing the surgeries can be found in detail in APPENDIX E. Three factors 

were considered when choosing cases: 1) frequency of procedure, 2) room for improvement, and 

3) surgical departments and surgeons affected. The six procedures chosen are from cardiac 

(coronary artery bypass graft (CABG), mitral valve replacement/repair (MVR), aortic valve 

replacement/repair (AVR)), vascular (carotid endarterectomy (END)), and obstetrics-

gynecology/OB-GYN (total abdominal hysterectomy (HAT), diagnostic hysteroscopy (HYSD)). 

The baseline process sigma was calculated to reflect the starting point for each of these six 

procedures (Table 3-5). The average turnover time for each procedure was added to each case 

duration to account for the turnover time that is included within the scheduled value and not in 

the actual case durations.  

Table 3-5 Process Sigma Data and Calculations for Chosen Procedures 
Unit CABG AVR MVR END HAT HYSD 
Defect Error > ±15 min 

Defect opportunity [O] 1 

Units [N] 477 164 82 73 159 182 

Errors [D] 417 140 73 53 126 81 

Yield [(N*O – D)/(N*O)*100] 12.6% 14.6% 11.0% 27.4% 20.8% 55.5% 

DPMO [DPO*1,000,000] 874,214 853,659 890,244 726,027 792,453 445,055 

Short term process sigma (1.5 shift) 0.35 0.45 0.27 0.90 0.69 1.64 

 

After action has been taken, the progress will be measured by assessing improvements to the 

baseline values. Due to the limited timeline and resources, improvements will not be 
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standardized and implemented throughout the OR. However, based on the tested level of 

improvement, recommendations will be made for future actions and conclusions, and reflection 

on the success and challenges of the project will be completed (Section 3.3.5: Control).  

3.3.2. Measure (Examine the Current Situation) 

In this section, the current process for slating and generating case estimates is assessed 

through the use of a process map and baseline data analysis, relevant CTQs are defined, and a 

failure mode and effects analysis is used to assess ways in which the estimates could fail. A 

cause-and-effects matrix was deemed unnecessary at this time due to there being only a single 

input and output requirement (input: surgeon estimate; output requirement: estimate accuracy). A 

capability analysis was also not completed due to the high likelihood of variability due to special 

causes (i.e., surgeon thoughts/decisions, surgical complications) impacting outcomes.  

The process used to slate surgeries varies between cardiac cases and other elective cases. All 

elective cases (minus cardiac, C-sections, and electroconvulsive therapy (ECT)) are scheduled 

using PART, which is an electronic version of paper booking cards. Cardiac cases are scheduled 

using slate management and are often not given a duration; the cardiac rooms have a ten-hour 

day and one-to-two cases to complete, so the surgeries are simply assigned a time slot by the 

scheduler, commonly at 5 hours per case. For all slated cases, certain information must be 

included: visit number, medical record number, patient demographic, procedure, surgeon, and 

patient status (day surgery, same day admit, inpatient admit).  

The operating rooms and dates are scheduled based on surgeon and service department. If a 

timeslot is not filled it will be given to another surgeon or department, so it is important for the 

surgeons to fill the timeslots allotted to them. The steps of the slating process for elective and 

cardiac cases are shown in Figure 3-9.  
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Figure 3-9 Slating process map, elective and cardiac streams 

The CTQ associated with this project which requires an operational definition is “accurate 

duration estimate”. In the current process, the duration estimate includes both the case duration, 

which is the time that the patient enters the OR to the time they exit the OR, and turnover time, 

which is the time between one patient exiting and the next entering the OR. To measure the 

duration accuracy, the estimate is compared to data recorded during surgery. If the actual 

duration is within 15 minutes of the estimate it is considered accurate, as initially shown in 

Figure 3-3. It does not have to be on-time to have an accurate duration. An overtime duration 

occurs when the case runs more than 15 minutes past the estimate, while an undertime duration 

occurs when the case finishes more than 15 minutes early. Due to the estimates containing both 

case duration and turnover time, when comparing the duration estimate with actual case duration, 

turnover time must be either removed from the estimate or added to the actual duration.  

Baseline data for each of the chosen surgeries were initially assessed during their selection 

using X̄-R control charts, histograms, and boxplots (available in APPENDIX E). Initial values 

for each of the six surgeries are given in Table 3-6, both without and with the extrapolated 

turnover times added. The three cardiac surgeries have a high positive mean error between their 

scheduled and actual durations indicating that they often run overtime, and they also have large 

standard deviations. On the other hand, the single vascular surgery and two OB-GYN surgeries 
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have negative average error between the scheduled and actual durations, indicating that they 

often end earlier than scheduled. By choosing surgeries with such varied baselines and issues, we 

will be able to observe how well the solutions proposed work for surgeries of different types.  

 
Table 3-6 Baseline values of selected procedures without and (with turnovers) 

Surgical 
Dept. 

Primary Procedure 
Description Cases 

Mean 
Error 
(min) 

SD of 
Error 
(min) 

Max. 
Error 
(min) 

Min. 
Error 
(min) 

Sum of 
Error 
(min) 

Cardiac Bypass graft, coronary artery 
(CABG) 

477 66.0 
(76.3) 

91.0 
(87.2) 

438 
(438) 

-110    
(-98) 

31477 
(36413) 

Cardiac Replacement/repair valve, mitral 
(MVR)  

82 86.0 
(94.7) 

118.2 
(116.8) 

458 
(458) 

-212    
(-212) 

7056 
(7772) 

Cardiac Replacement/repair valve, aortic 
(AVR) 

164 35.9 
(45.1) 

95.3 
(92.7) 

395 
(395) 

-101    
(-85) 

5889 
(7402) 

Vascular Endarterectomy, carotid        
(END) 

73 -40.6      
(-25.2) 

37.7 
(44.3) 

54   
(75) 

-117    
(-117) 

-2967     
(-1843) 

OB-GYN Hysterectomy, abdominal total 
(HAT) 

159 -4.9 
(16.6) 

50.1 
(49.2) 

264 
(264) 

-127    
(-107) 

-785 
(2645) 

OB-GYN Hysteroscopy (diagnostic)  
(HYSD) 

182 -24.4      
(-7.2) 

17.1 
(27.7) 

17 
(162) 

-70      
(-70) 

-4432     
(-1312) 

 

There are only two ways for the surgery duration estimate to fail: by being too long or too 

short. These modes of failure are assessed in the FMEA (Table 3-7). Although there are many 

possible causes for the case duration being incorrect (complications, delays, tardiness of staff, 

procedure cut short), an inaccurate method for estimating durations is a possible cause for both 

types of failure, thus is a prime place to start in assessing and improving function. In addition, 

there is not currently a process in place to control for error in duration estimates—the estimates 

submitted by the surgeon are simply entered into the slate as given. Building in a control process 

could also aide in reducing errors in case duration estimates. Although short and long estimates 

are both sources of error, controlling for short estimates (resulting in overtime) is of more 

importance than preventing long estimates (resulting in undertime), because the effects and costs 

of overtime are greater than those of undertime.  
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Table 3-7 Failure Mode and Effects Analysis 
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Therefore, the objective is to improve the accuracy of case duration estimates used to create 

the daily room slates in order to allow the rooms to end on-schedule. There are a number of 

possible strategies for improvement that may be considered to accomplish this goal, shown in 

Table 3-8.  

Table 3-8 Strategies and Measures 
# Strategy Measure 
1 Breakdown estimates into each part: 

    Improve/include separate turnover time estimate Turnover time accuracy 

     Improve/include separate anesthesia time estimate Anesthesia time accuracy 

     Improve/include procedure duration estimate Procedure duration accuracy 

     Improve/include wrap-up time estimate Wrap-up time accuracy 

2 Breakdown estimates into surgery and turnover: 

    Improve/include separate turnover time estimate Turnover time accuracy 

     Improve case duration estimate (patient in to out) Case duration accuracy 

3 Improve total surgery estimate (patient in to next in) Case duration + Turnover time accuracy 

4 Improve daily room duration estimate First case start – Last case end duration accuracy 

  

3.3.3. Analyze (Analyze the Causes) 

In this section, the current process is analyzed to determine the root cause of the problems so 

that action may be taken. For this project, this involved the use of a cause-and-effect (AKA 

fishbone) diagram to brainstorm the causes behind errors for case duration estimates.  

Due to the high variability of patient conditions and surgery elements, it is expected that 

some error will be present. However, minimizing the amount of error for individual cases and 

creating a slate in which the error over- and under-time balances out is key to ensuring rooms 

will end on time, with the highest degree of effective OR usage. Based on information gathered 

from staff involved in scheduling surgeries, a cause-and-effect diagram was created (Figure 

3-10) with the causes for error in case duration split into six categories: slating methods, surgeon, 

surgery, materials/equipment, patient, and day-of causes.  
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Figure 3-10 Cause-and-Effect (AKA Fishbone) Diagram 

The day-of causes increase the actual duration past what would be expected, such as with late 

staff or patients, surgery complications, set-up errors, and changes to the slate. These would also 

all be classified as special cases/causes, meaning that their occurrence should be controlled and 

minimized when possible but that they are not the leading cause of consistent error. These could 

be looked into during future projects to further improve the efficiency of the OR.  

The surgery and patient categories both include variables which impact the surgery duration 

but cannot be changed, only used to aid in creating the estimate. More secondary procedures, 

high likelihood of complications, high American Society of Anesthesia (ASA) score, or older 

patients are all likely to increase surgery duration whereas as a highly skilled surgical team 

which often works together, low risk surgeries, and patients with a low ASA score may result in 

a shorter duration. Some of these variables are interrelated; the ASA score is based on patient 

age, health, and other patient factors while the likelihood of complications is dependent on the 

type of surgery, number of procedures, surgical team, and patient health. As the current method 

for creating the estimates rests solely with the surgeons responsible for the surgery, it is up to 

each surgeon how they choose to use this information to generate their estimates.  
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The causes under the categories of surgeon and materials/equipment also relate to the slating 

method category because the current slating method relies on surgeon knowledge and choices—

to purposely over/under-book durations or otherwise adjust case duration estimates—which are 

then entered into either PART or slate management. As such, the root cause behind the high rate 

of error in duration estimates is due to the current methods in place for slating. Relying only on 

the surgeon’s estimate is a flawed system. Surgeons may be unaware of data trends for past 

cases, as well as values for turnover and anesthesia times. They also may adjust their schedules 

with different goals in place than scheduling accuracy: increasing number of patients seen for 

surgery, having extra time between cases, or adding time to one surgery to provide a buffer in 

case another runs late. This reasoning is known only by the surgeon and cannot be anticipated by 

other staff, therefore, by building it into the slate it can negatively affect efficiency on a case-by-

case basis even if the total room duration is accurately estimated.  

To test the current slating method, scatter plots depicting the scheduled durations against the 

actual durations were assessed (Figure 3-11) along with a count of how many cases ran on-time, 

over-time, and under-time for each procedure (Table 3-9) both without and with turnover times 

included. Bands ±15 minutes from the scheduled duration are included in the scatter plots to 

show the on-time window. Based on the analysis, the current slating method is inaccurate; with 

actual turnover times included, the most accurate procedure was HYSD with 48% of cases 

finishing on-time and cardiac cases ranking as the least accurate at 12.8%, 8.5%, and 12.8% of 

cases finishing on-time for CAGB, MVR, and AVR respectively.  

A new slating method which can take into account issues such as surgeon bias, utilize 

information on patient and case variability, and provide more accurate estimates per case and 

thus per room is needed.  
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Figure 3-11 Scatter plots with 15-minute bands 

Table 3-9 Count of cases which were on-time, overtime, and undertime 

  Case vs Prediction Case + Turnover vs 
Prediction 

Primary Procedure Description Cases On-
time 

Over Under Ontime Over Under 

Bypass graft coronary artery 477 68 322 87 61 352 64 

Replacement/repair valve mitral 82 8 58 16 7 61 14 

Replacement/repair valve aortic 164 24 80 60 21 92 51 

Endarterectomy carotid 73 11 6 56 20 13 40 

Hysteroscopy (diagnostic) 182 46 2 134 88 22 72 

Hysterectomy abdominal total 159 50 44 65 43 77 49 
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3.3.4. Improve (Act on the Causes, Study the Results) 

This section of the improvement process is broken into two parts: acting on the causes (on a 

small scale) and studying the results.  

3.3.4.1. Act on the Causes 

Improvements to the slating method are needed to rectify the current error rate of the case 

duration estimates. For this project, the focus is on improving estimate accuracy for the six 

surgeries identified, which are across three surgical departments. Actions which were determined 

to be options for improve slating accuracy are given in Table 3-10, along with the advantages 

and disadvantages associated with each. The two actions of changing from surgeon estimates to a 

data-driven slating method using either historical averages or predictive modeling were ranked 

as the top choices for action. Updating surgeons with historical data for their most common 

procedures was ranked as the second choice and adding separate duration estimates from 

anesthesiology staff and health care aides (HCAs) for anesthesia and turnovers, respectively, was 

ranked as the last choice. These rankings were approved by the executive team.  

Table 3-10 Possible actions 
Action Advantages Disadvantages Rank 
Provide updates to surgeons of data for 
their most common surgeries to 
improve their estimate accuracy 

• Minimal changes 
• Easy to implement 
• No cost 

• Still relying on human estimate 
• No anesthesia/turnover  
• Surgeons may disregard 
• Still no process control 

 
2 

Add separate estimates for anesthesia, 
procedure, and turnover from 
anesthesiologist, surgeon, and HCAs 

• Includes anesthesia/turnover 
• Doesn’t impact surgeons 
• Each area responsible 

• Even more human estimates 
• More info from more sources  
• Work to combine all info 
• Still no process control 

 
3 

Switch to a data-driven method of 
estimate generation using historical 
averages 

• Uses past data to ↑ accuracy 
• One system to make estimate 
• Eliminate human error 
• Built in process control 

• Surgeons lose control 
• Big change 
• Wouldn’t include all factors 

 
1 

Switch to a data-driven method of 
estimate generation using predictive 
modeling 

• Uses past data to ↑ accuracy 
• Includes many factors 
• Eliminate human error  
• Built in process control 

• Surgeons lose control 
• Big change 
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Adding estimates from anesthesiology and HCAs may sound reasonable to ensure that times 

for anesthesia and turnovers are included in the estimate, but it would make the process more 

complicated as multiple groups would need to be consulted to create the slate and it increases the 

opportunity for human error and bias to be introduced, which is why this is the least desirable 

action. Changing to a data-driven method is the best choice because it is a method which is not 

susceptible to human error or bias, as the surgeon-based estimates are. However, it is a more 

complex solution and may require more input from the hospital before it can be implemented 

properly.  

Giving surgeons updates on—or easy access to—their historical data is an easy solution, but 

still relies on the surgeon to make the estimate. Providing surgeons updates on their historical 

data does not require any additional changes to the system aside from the compilation and 

distribution of data. This is a suitable solution for the interim while testing is done for data-

driven methods. After discussion, it was decided that this short-term solution would be 

implemented outside of the project scope (details provided in APPENDIX F).  

For this project, the action to be taken is to implement data-driven methods for case duration 

estimates and assess improvements to accuracy. The plan is to create new models for slating 

estimates and test them against the current method of surgeon estimates.  

Difficulties with generating accurate surgical case duration estimates is not a new problem 

and many methods and studies on improving estimates have been documented. Some of the 

methods that have been tested and compared include both traditional (surgeon estimates, 

historical data) and modern approaches (predictive modeling, machine learning). Variables to be 

considered for improving accuracy include the various parts of surgery (preparation, anesthesia, 

procedure, wrap-up, turnover), patient health factors, surgical factors, and surgeon estimates and 
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insights. Additional details in regard to research on surgical duration models and variables are 

included in Appendix G.1, along with more information on the three types of predictive methods 

chosen for use in this project: simple moving average (SMA), linear mixed effects (LME), and 

random forest (RF). The following sections of APPENDIX G document the data editing 

(Appendix G.2) and exploration (Appendix G.3) completed prior to creating the models, steps 

taken to generate the models (Appendix G.4), results of testing the models (Appendix G.5), and 

R code and functions created for the models (Appendix G.6). 

The SMA model was built using the historical data of the previous 19 cases of the same 

procedure. The only variable used to separate the cases for prediction was the primary procedure. 

The average of the previous 19 case durations was used to generate the next case duration 

estimate. Therefore, once 19 cases had been completed an estimate could be created for all future 

occurrences.  

Two LME models were created: LME-case and LME-part. Approximately 80% of the 

available data were used to create these models. LME-case used a single LME model to predict 

the case duration, while LME-part was a compilation of two LME models (anesthesia and 

procedure duration) and two constant values (preparation and wrap-up duration). The LME 

models utilized all 13 available variables and log-transformed duration data, and the constant 

values were calculated as the average duration for each primary procedure.  

The random forest model also utilized all 13 variables to generate predictions and was 

created using the same 80% of cases as the LME models. However, due to the type of RF model 

used, a maximum of 32 factor levels was allowed for each variable, therefore three of the 

variables (surgeon, anesthesiologist, anesthesia type) had to be altered such that least common 

factors were grouped together. This was also done for the variable “rooms” to account for the 
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very infrequent use of certain rooms. A summary of the details for each of the four models is 

provided in Table 3-11. With the models created, the next step is to generate predictions, 

compare them to the current method, and study the results.  

Table 3-11 Model details 
 SMA LME-case LME-parts Random Forest 

Cases used to create 
model/estimate 19 / 1071 861 / 1071 861 / 1071 861 / 1071 

Outputs Case duration Case duration Preparation duration 
Anesthesia duration 
Procedure duration 
Wrap-up duration 

Case duration 

Duration data transform None Log PREP/WRAP:  Log 
ANES/PROC:  None 

None 

Number of variables 1 13 PREP/WRAP:  1 
ANES/PROC:  13 

13 

Variable information Primary procedure: 
• CABG 
• AVR 
• MVR 
• END 
• HAT 
• HYSD 

Fixed: 
Scheduled duration 
Num. of procedures 
Day of the week 
ASA Score 
Sex 
Patient status 
Age 
 
Random: 
Case service 
Room 
Anesthesia 
Anesthesia type 
 
Nested: (case service) 
Primary procedure 
Surgeon 

PREP: 
Constant value, 
primary procedure 
 
ANES: 
Same as LME-case 
 
PROC: 
Same as LME-case 
 
WRAP: 
Constant value, 
primary procedure 

Constants: 
Scheduled duration 
Num. of procedures 
Age 
 
Categorical: (factors) 
Primary procedure (6) 
Case service (3) 
Day of the week (5) 
ASA Score (5) 
Sex (2) 
Patient status (3) 
 
Altered: (factors) 
Room (7) 
Surgeon (29) 
Anesthesiologist (29) 
Anesthesia type (17) 

 

3.3.4.2. Study the Results 

Two rounds of testing were completed, the first which used the 20% of data remaining after 

creating the models (after filtering out the first 19 cases of each procedure which had no SMA 

predictions) and the second which used new data from April 2018 to July 2019. A total of 210 

cases were used in the first round of testing and 1314 in the second round. The values used to 

compare the estimation methods are percent of cases which finished on-time, percent of cases 
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improved from the surgeon estimate, process sigma value, error distribution values (mean, 

standard deviation, minimum, maximum), and error sums (overtime, undertime, sum of absolute 

error, sum of error). All values can be found in Appendix G.5.  

The primary goals were to maximize the number of on-time cases and reduce overtime (or 

undertime for END and HYSD procedures, which had a greater issue with undertime cases). For 

most procedures where overtime was reduced by the use of a model instead of the surgeon 

estimate, the undertime value increased and vice-versa. This is to be expected and is acceptable 

so long as the model does not cause extreme error in the opposite direction.  

A low sum of error indicates that the error is evenly distributed (an equal amount of over- 

and under-time). This is especially useful for procedures which are not the only case of the day, 

as an even distribution of error is more likely to cancel out over the course of several surgeries. 

An equal distribution of error is also preferrable to having extremely large overtime error, as 

overtime is can be costly, stressful for staff, and result in cancelled cases.  

When comparing predictions for all of the procedures combined, the four new models all 

performed better than the surgeon estimates. Overtime minutes were reduced by 50% or more 

from surgeon estimates, and the rise in undertime minutes was less than the overtime saved—

only 14-50% of the overtime error was added back as undertime error. In addition, the error 

distribution drastically improved using the models, with even the model which showed the least 

improvement resulting in a 65% improvement in the sum of error. The rate of cases which 

finished on-time also improved 27-63% from surgeon estimated values. When comparing the 

procedures separately, some variation was seen in performance of the models versus surgeon 

estimates. Table 3-12 shows which method of prediction performed best and worst in the areas 

of on-time cases, over/under-time minutes, and sum of error.  
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Table 3-12 Model results, best and worst 
  Models – Initial Data Models – New data 

Procedure Value Best Worst Best Worst 

All cases 
On-time cases LME-case Surgeon LME-case Surgeon 
Overtime error RF Surgeon SMA Surgeon 
Sum of error RF Surgeon SMA Surgeon 

CABG 
On-time cases RF Surgeon RF Surgeon 
Overtime error RF Surgeon SMA Surgeon 
Sum of error RF Surgeon SMA Surgeon 

AVR 
On-time cases Surgeon RF LME-part, RF Surgeon 
Overtime error RF Surgeon SMA Surgeon 
Sum of error RF Surgeon SMA Surgeon 

MVR 
On-time cases (All models) Surgeon RF LME-part 
Overtime error LME-part Surgeon LME-case Surgeon 
Sum of error LME-part Surgeon LME-case Surgeon 

END 
On-time cases (All but RF) RF RF Surgeon 
Undertime error LME-case Surgeon LME-part Surgeon 
Sum of error RF Surgeon RF Surgeon 

HAT 
On-time cases LME-case SMA, RF RF SMA 
Overtime error RF SMA RF Surgeon 
Sum of error Surgeon RF SMA Surgeon 

HYSD 
On-time cases RF Surgeon LME-case Surgeon 
Undertime error LME-case Surgeon LME-part Surgeon 
Sum of error RF Surgeon SMA Surgeon 

 

Based on the results of the two rounds of testing, analysis of the model performance was 

completed for each procedure. However, due to some of the procedures having few cases for 

comparison in the first round of testing, the interpretations and findings discussed here for each 

procedure will be based only on the second round of testing.  

The CABG procedure showed a drastic improvement in both on-time cases and overtime 

reduction. On-time cases increased 225-270% from the surgeon estimates (though only 5% of 

cases were on-time with surgeon estimates to begin with). The SMA model showed the lowest 

sum of error and the greatest reduction in overtime by almost 70% from surgeon estimates, but 

also the greatest increase in undertime, which was equal to 42% of the total overtime minutes 
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saved and 16.5 times the amount of surgeon estimated undertime. The LME and RF models—

though they showed only 50-55% reduction in overtime minutes—had a far lower increase in 

undertime, equal to only 15% of the overtime minutes saved or 5 times the surgeon estimated 

amount. Although this resulted in the LME-case, LME-part, and RF models having a larger sum 

of error due to greater overtime values, this may be preferrable for this procedure as it is often 

the only case of the day—or only one of two—and therefore the equal distribution of error is of 

less importance (this also applies to the other two cardiac procedures, AVR and MVR).  

The AVR procedure showed an improvement for all models with 15-58% increase in on-time 

cases. As with the CABG procedure, the SMA model showed the greatest reduction in overtime 

error (52% reduction from surgeon estimate), but the greatest increase in undertime error (5 

times the surgeon error). Alternatively, LME and RF models resulted in only slightly less 

overtime improvement (43-48%) and a significantly lower increase in undertime (1.7-2 times the 

surgeon error).  

For the MVR procedure, only the SMA and RF models produced an improvement in on-time 

cases over the surgeon estimate (50% and 75%, respectively). The LME-case and LME-part 

models actually had 13% and 38% fewer on-time cases than the surgeon estimate. However, all 

models showed an improvement over the surgeon estimate for overtime error and sum of error, 

with the two LME models performing best overall with a 66-68% decrease in overtime (better 

than the SMA model) and with very low sums of error.  

The only vascular procedure included in this study, END, had all models show an 

improvement over the surgeon estimates. As previously stated, this procedure had a greater issue 

with undertime error than with overtime. The LME and RF models improved the number of on-

time cases by 70% , and SMA by 60%. The undertime error was improved between 55-72% 
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across the models, with the SMA and RF models also showing a 28% reduction in overtime and 

the LME models showing only a slight (<5%) increase in overtime. The surgeon sum of error for 

this procedure was 1108 minutes of undertime, which the SMA and RF models were able to 

reduce by 83-90%. The two LME models also reduced the sum of error in minutes by over half, 

however, the sum of error for these models were in overtime minutes, which is more costly than 

undertime and thus not an ideal outcome.  

For the HAT procedure, only three of the models outperformed the surgeon estimates. A 10-

15% improvement of on-time cases compared to the surgeon estimate was seen for the LME and 

RF models. The SMA model did not improve on the surgeon estimates for this procedure as it 

had an 18% decrease in on-time cases and the only reason it showed an improvement in sum of 

error was because it produced only a very slight (<5%) reduction in overtime error while more 

than doubling the undertime error such that it was nearly equal to the overtime error. Although 

the LME and RF models also increased the undertime error by nearly double, this was less than 

that added by the SMA model, and the LME and RF models were able to reduce overtime error 

by 42-51% from the surgeon estimates.  

The HYSD procedure, as with the END procedure, had an issue with undertime error rather 

than overtime. This procedure began with the highest rate of on-time cases (59% with surgeon 

estimate) and the models were able to improve it by 38-55%, such that over 90% of cases 

finished on time for the best performing models in this area (LME-case and LME-part). This 

shows that an accurate surgeon estimate can greatly benefit the function of a predictive model so 

that an even more accurate estimate can be reached. All the models reduced the undertime error 

for this procedure. The LME models reduced undertime error the most (75-81% improvement) 

with only a slight (6%) increase in overtime. Although the RF model showed the most 
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improvement in reducing overtime error, it was less successful than the LME models at reducing 

undertime error (improved only 36%) which was the primary issue for this procedure. The SMA 

showed the same issue as with previous procedures in that the sum of error was very low due to 

over- and under-time errors being nearly equal, not by greatly reducing error (though it was still 

an improvement over surgeon estimates).  

For all models, the process sigma was calculated. During the first stage of the improvement 

process the short-term process sigma was calculated as a baseline measure (Table 3-5) based on 

surgeon estimates from April 2018-April 2019. Normally, comparing to the baseline is necessary 

after implementing a change in order to assess improvements in the process’s ability, because the 

old system is no longer in use. However, for this project the models were not implemented and 

the current process was still in use thus comparing the performance of the models to the surgeon 

estimates for the same data is more telling because they have the same source, rather than 

comparing it to the initial baseline data. Both original baseline sigma and new surgeon estimate 

sigma values are compared with the sigma values for the four models in Table 3-13, with the 

models which performed better than both the baseline and current surgeon estimates shaded 

green, the best performance shaded a darker green, no shading given to values which were better 

than the current surgeon estimates but not the baseline, and the values which were worse than 

both the current and baseline surgeon values shaded red.  

Table 3-13 Short-Term Process Sigma (1.5 Shift) Data: Baseline and After Improvement 
Model  CABG AVR MVR END HAT HYSD Data 
Baseline surgeon estimate 0.35 0.45 0.27 0.90 0.69 1.64 Apr17-Apr18 

Current surgeon estimate -0.14 0.22 0.07 0.81 0.88 1.73 Apr18-Jul19 

Simple moving average 0.52 0.30 0.30 1.22 0.73 2.47 Apr18-Jul19 

Linear mixed effect, case 0.58 0.44 0.00 1.28 0.99 2.89 Apr18-Jul19 

Linear mixed effect, part 0.57 0.50 -0.16 1.28 0.96 2.79 Apr18-Jul19 

Random forest 0.59 0.50 0.40 1.28 1.00 2.41 Apr18-Jul19 
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For the surgeon estimates, the process sigma decreased during the second stage of testing for 

the three cardiac cases (CABG, AVR, MVR) and the vascular case (END), while it improved 

slightly for the two OB-GYN cases (HAT, HYSD). The new models performed better than the 

surgeon estimates in nearly all instances, with the exception of the LME-case and LME-part 

models for the MVR procedure, which had lower values than both the baseline and current 

surgeon estimate, and the SMA and LME-case models for the AVR procedure, which had lower 

process sigma values than the baseline but better than the current surgeon estimate values.  

Overall, it is clear that the models are more accurate than the surgeon estimates for all six 

procedures. This is especially clear when looking at the estimate versus actual duration scatter 

plots for the procedures in Figure 3-12 (from Figure F-13 in the appendices) as the models more 

closely follow and are more evenly distributed about the slope (slope = 1). When it comes to 

determining which model to use there is some difficulty because no single model is the best in 

every area, so the choice depends on the type of improvement wanted and the format of the 

model itself. In this case, I recommend using the LME-case model or the SMA model.  

The LME-case model is simpler than LME-part, thus would require less editing for errors 

when adding new cases to the model to improve its performance, and it is not limited by the 

factors used in training as the RF model is. This limiting of factors could be especially 

burdensome for the RF model as surgical staff change but is not an issue with the LME model. In 

addition, the LME-case model performs better than the SMA model in most areas. Although the 

SMA model often has a lower sum of error, when looking at the scatter plots (Figure 3-12) it is 

clear that the cause for this is not more accurate predictions but a more even distribution around 

the slope. Even so, the SMA model would still be a decent replacement for the surgeon estimates 

because it is extremely easy to implement and could be easily applied to all procedures.  
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Figure 3-12 Round 2, Model/Procedure: Estimated duration vs actual duration scatter plots 
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3.3.5. Control (Standardize the Changes, Draw Conclusions) 

The next stage would normally be to standardize the changes across all processes, however, 

due to the limited timeframe and scope in this project this step was not completed. Therefore, 

additional work would be needed to generate predictive models for all surgical departments and 

procedures, as well as to create monitoring protocols to ensure the predictions remain accurate 

and within control measures. It would also be beneficial at this stage to include personnel from 

all surgical departments to aid in setting control parameters that would be acceptable for each 

department. This is also the stage where training protocols for those using the new system would 

be put in place and where details of the new system could be made available to all staff.  

Although the changes were not standardized, there are still some plans for standardization 

and conclusions that can be drawn based on the smaller scale tests. Conclusions include 

reflections on benefits and challenges faced, as well as future plans.  

3.3.5.1. Standardize the Changes 

A new method of surgery duration estimation which utilizes past performance data is able to 

greatly improve accuracy. However, the surgeon estimate is able to further improve the model 

accuracy, so it should not be eliminated after implementation of a new system. The SMA model 

or LME-case model could be standardized to work for all surgeries and case services within the 

OR, provided that at least 19 or more procedures of that type have been completed in the past.  

If the SMA model is chosen for implementation, the standardization across procedures for all 

case services will be quite simple—the same method can be used for them all. Also, there is no 

need for training a model, only pulling recent surgeries of the same procedure.  

If the LME-case model is chosen for implementation, the standardization process may take 

slightly longer. Multiple models may work better for different case services as they could have 
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different records and information available. In addition, steps would need to be put in place to 

ensure that the training data for the model are updated regularly (automatically or based on a 

specific timeline). Although this process could be more intensive than the SMA model 

standardization, it is likely to provide more accurate estimates.  

To aide in reducing the overtime values associated with the SMA model and to help in 

controlling for errors in the estimates in both LME-case and SMA models, an adjusted model 

could be implemented in which surgeons have the ability to override the model estimate if they 

believe the case will go longer than predicted. Having this ability to override an estimate is a 

method of control which is currently lacking in the process. In addition, if a model is 

implemented there is also the option to adjust the model such that the outcomes are shifted. This 

could be done by adding to or adjusting the estimate in some manner. For example, the SMA 

model could take 15th highest value of the 19 previous cases—75th percentile—or average plus 

standard deviation instead of just the average as the next estimate, or the LME-case model could 

add a constant or standard deviation value to the estimates; this shift would reduce overtime error 

but would increase the undertime error or vice versa, as desired.  

Training in the new method of duration estimates would be needed for anyone using the 

model. This may include surgeons, surgeon’s assistants, and the OR slating clerk. The method of 

implementing the model also should be done in such a way that it can be easily utilized by any of 

these individuals and updated as needed. An update of the slating process map would also be 

needed. Although the duration estimates affect the work of other OR staff (nurses, HCAs, 

managers), they would not be directly impacted by the change in system and so would not 

require any additional training, though informing them of the new system could make them 

better prepared for the change and better able to adapt.  
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3.3.5.2. Draw Conclusions 

The benefits and challenges faced in applying Lean Six Sigma during this project are 

discussed in detail in Chapter 5. The benefits and challenges specific to assessing and improving 

the surgery duration estimates is discussed here, along with future plans and areas of interest 

identified over the course of this project.  

The biggest benefit of this project was in recognizing the need for a change in how surgery 

durations are estimated. Although surgeon estimates are useful in planning slates, studies have 

shown that they are prone to error and overbooking [86] [87]. Reasons for surgeons to purposely 

adjust their estimates include the need reduce waiting lists, overestimation of their ability to 

perform faster than their peers, and pressure to utilize all of their scheduled time in the OR (if 

time is not used, it may be given to another surgeon). Updating the method used to create these 

estimates to a data-driven approach removes these biases.  

Other benefits of this project—should it be followed through to completion—include the 

improved accuracy of case and room durations, the ability to standardize how estimates are 

created across all case services, and improved ability of staff outside of the OR suites to plan for 

tasks which occur at the start and end of cases. With these benefits in place, significant 

improvements in other related areas may also be realized due to indirect effects of the improved 

case estimates. For more details on why it is recommended to complete this project by 

implementing a new slating method, see Chapter 7.  

One challenge lay in determining how the slate and case estimates are currently created. 

Multiple methods are used between different case services and each surgeon could have a 

different means of calculating their estimates which could not be tracked at this time. By creating 

a model, there is now a standardized way in which these surgical durations can be predicted. Not 
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only does this benefit the process by improving the accuracy of predictions, but it also makes a 

system that can be more easily monitored, compared, and understood.  

Another challenge faced while creating the models was determining which variables to 

include. Due to predictive models not requiring a rational for inclusion as in explanatory models, 

all variables could be included. However, there were some variables which could have been 

useful which were not available. This is an area in which the models may be improved upon in 

the future. Some potentially beneficial variables which are not currently documented include 

patient information such as BMI, basic medical history, and a count or severity level of previous 

surgeries, and staff variables such as team familiarity, surgeon skill and experience, and whether 

a resident is to be included in the surgery. Another variable that could be useful—similar to 

surgeon estimate—is a surgeon-based assessment of likelihood for complications to occur.  

Once the surgery duration estimates have been improved, there are other areas in which 

improvements are needed. Turnover times, first case on-time starts, and staff timeliness are all 

prime areas for improvement. They are areas which directly impact the need for overtime and 

could greatly benefit from a deep look into the root causes behind inefficiencies. However, after 

implementing the new duration estimate model, some time may be needed before developing a 

new baseline in these areas and choosing which to use for the next improvement project as some 

improvements could already be realized once the slate is more accurately portrayed.  

Other areas to consider for improvement in the future are communication and information 

passing within the OR and updating surgeon preferences. Though these areas are unlikely to 

provide as much improvement in reducing OR overtime as the prime areas mentioned 

previously, they do still impact the efficiency and overall functioning of the OR and should be 

considered once the other projects have completed. Missing or incorrect information could be 
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affecting turnover times and first case on-time starts, thus may be addressed while implementing 

improvements in these areas, which is why improving these other areas first would be best.  

Updating surgeon preferences is a slow and time intensive task which requires a high level of 

input from many people (potentially every surgeon) and is unlikely to greatly improve overtime. 

However, the surgeon preferences should be updated when possible, in order to reduce the need 

to reset the OR when incorrect. This may be a task that could be assigned to each surgeon to 

complete over a certain timeframe, though monitoring improvement in this area would require 

data collection methods to be implemented to track errors due to incorrect surgeon preferences.  

Before implementing any of these new projects, thought is needed for how to document 

errors in these areas. In order to properly improve them, data need to be gathered in such a way 

that conclusions can be drawn; this means ensuring that every error is tracked and recorded in a 

standardized way. Employing such data tracking measures and training individuals to use them 

correctly should occur before starting each new project and may constitute a project of its own.  

3.4. Monitor the Outcomes 

As with the standardization step of the control stage, this stage was not completed for this 

project. Once the standardization steps have been completed—including implementing the new 

estimation process across all departments and creating monitoring and control protocols—

protocols must then be followed to ensure that the improvements to estimates are maintained at 

acceptable levels and within control.  

There is already statistical data collected regarding the OR which are compiled and reviewed 

on a regular basis. The accuracy of duration estimates and rates for over/under-time cases could 

be included in these reviews in order to monitor the model’s performance. This would be the 

easiest method to monitor and ensure the improvement in duration estimates is maintained.  
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3.5. Chapter Summary 

Within this chapter, the Lean Six Sigma process was used to analyze and improve efficiency 

within the OR. The project charter was completed (Section 3.1), providing a guideline as to the 

goals and timeline for the project. The goal for improvement was to reduce the number of late 

end-of-day cases from 125/month to 30/month. After completing an assessment of the OR 

workings (Section 3.2) including a breakdown of the different processes within the OR, related 

departments, and flow of work and materials, the improvement project began (Section 3.3).  

Although various areas and projects were considered, improving the accuracy of case 

duration estimates was determined to provide the best opportunity for improvement. Six 

procedures were chosen for closer analysis and it was decided that a new data-based method of 

estimating durations was needed in order to improve on the currently slating method, which used 

only surgeon estimates. Four models were created—a simple moving average (SMA) model, 

linear mixed effects models by case duration (LME-case) and by part durations (LME-part), and 

a random forest (RF) model—and accuracy of the predictions were compared against surgeon 

estimates. All models performed better than the surgeon estimates, but it was recommended that 

the SMA model or LME-case model be implemented due to model simplicity and ease of 

implementation. Due to limitations in the project timeline and scope, the improvement was not 

standardized across all case services and procedures. At this point, challenges associated with 

completing the improvement project were assessed and future projects were also discussed.  

The final part of the Lean Six Sigma method and this chapter was monitoring the outcomes 

(Section 3.4). As with standardization of the models across departments and procedures, this step 

was not completed. However, once implemented, including data about model performance in 

reviews which are already performed is recommended.   
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4. RESULTS 

The results of the models created for surgery duration prediction were previously assessed 

(Section 3.3.4.2). In this chapter, the results to be covered are in regard to the Lean Six Sigma 

process and implementation within the OR environment. By using the Lean Six Sigma method to 

implement and document this project, many outcomes were produced which will be beneficial 

for future projects. This includes making it easier to determine what the next steps should be in 

improving the OR and reducing the amount of work needed when starting new projects as some 

elements of the OR process analysis are already documented, such as defining CTQs and 

mapping workflow. 

The first outcome of this project was in clarifying the complexity of OR performance and its 

importance to the hospital, and why Lean Six Sigma and other operational excellence approaches 

can be useful for implementing lasting improvements. Within the OR environment, some of the 

outcomes which were achieved include defining the critical to quality (CTQ) requirements and 

measurables (Figure 3-3), developing a baseline of relevant CTQ measures for this project 

(Table 3-1), and creating a detailed integrated flowchart portraying OR functions (Figure 3-5). 

These outputs can be used in future projects to aide in guiding change.  

Another outcome of this project which can be used in the future are the recommendations in 

regard to areas for improvement (Figure 3-6, Table 3-2). With the general assessment of causes, 

impact, and prioritization levels, it is possible that the analysis could aide in directing efforts to 

areas that are most likely to generate significant improvements.  

Within the process of improving the surgery duration estimates, a key outcome—aside from 

the models (Table 3-11) and recommendations on which to use and how to standardize (Section 

3.3.5.1)—is the identification of other possible root cause problems which could be affecting the 
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case duration (FMEA, Table 3-7; cause-and-effect diagram, Figure 3-10). Even with the 

improvement of using a data-driven model to create the duration estimates, it is likely that more 

work would be needed to meet the goal of reducing late end-of-day surgeries from 125/month to 

30/month. Having additional root cause variables already identified will help in establishing the 

next issue to be tackled in order to meet the goal. An additional benefit of the project was that a 

short-term solution was applied, which will hopefully have improved surgeon predictions to 

some degree until a more accurate modeling method can be implemented.  
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5. DISCUSSION 

Based on the results of the project, the use of Lean Six Sigma to assess and improve 

efficiency in the OR and hospital environment was successful. Although some challenges were 

faced, the use of the Lean Six Sigma methodology allowed the root problem to be determined 

and beneficial outcomes to be produced. Along with discussing successes and challenges of this 

project, this chapter also covers the unique contributions made through this thesis.  

5.1. Successes and Challenges 

One way in which the Lean Six Sigma methodology was particularly useful was in 

determining the root problem to be solved. When this project was first proposed, the proposed 

focus was on first case on-time starts. During the initial stages of defining the initiative (Section 

3.1) and characterizing the process (Section 3.2), it was determined that the interest in improving 

first case on-time starts arose from the belief that it would be a good way to reduce the number 

of rooms running overtime. However, after analyzing the data it was determined that the first 

case start times had a limited impact on whether or not the room would end on time. Only 13% 

of rooms started more than 15 minutes late, while 59% of rooms ended late—and this was 

without even accounting for cancelled cases. Therefore, the project objective shifted to a broader 

goal: rather than improving first case on-time starts, the goal was to reduce the number of rooms 

running overtime at the end of the day, through whatever method was deemed likely to provide 

the most opportunity for improvement.  

Even though the goal was not met by the end of this project, the changes recommended are a 

good start to ensuring that such a goal can be met in the future. In addition, the analysis of areas 

in the OR needing improvement provides a solid understanding of the performance gap currently 

in place, where to work in order to reduce it, and what sort of data need to be collected to do so. 
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Lean Six Sigma is a cyclical process which allows for continuous improvement, so by continuing 

to use this method the goal will eventually be met.  

As stated previously, the project was not without challenges. The first challenge met was one 

commonly seen in the OR, which is that hospitals and the OR are a very challenging 

environment in which to apply Lean Six Sigma due to the complexity of issues and the high level 

of human factors involved. In fact, the work performed in the OR seems to be almost entirely 

dependent on human factors: there is no automation, human patients are the “product” being 

worked on, and variability in surgeries is vast due to variations in both the patients being 

performed on and the teams which are performing. However, after speaking with individuals 

from many areas within the OR, it became clear that the complexities which make a Lean Six 

Sigma project seem difficult also create a great amount of bias in how efficiency is viewed by 

those within the system. A high-level view of the processes using a data-driven approach is 

especially useful in order to ensure that the utmost level of improvement can be gained with any 

negative impacts mitigated for all affected.  

Another challenge was working as a newcomer in this environment. Being new to the OR 

meant that a lot more work was needed to gain a full understanding and appreciation of the 

system than if staff from within the OR were to complete such a project. A benefit of this 

though, was that with fresh eyes comes a fresh perspective which is unbiased by years of 

experience with common problems. Luckily, the team at St. Boniface Hospital was extremely 

helpful and encouraging, so the learning that was needed was readily provided.  

Regardless of the help provided, the experience of the team with Lean Six Sigma and the 

roles of the team members was another challenge to overcome. Lean Six Sigma projects are 

normally implemented by a team which includes members with experience both in the area being 
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improved and with Lean Six Sigma methods (often with training at the Green Belt level), as well 

as a leader with extensive experience in Lean Six Sigma (most often a certified Lean Six Sigma 

Black Belt or Master Black Belt). This case was completed as a solo project by a student new to 

the OR environment and with limited experience implementing Lean Six Sigma projects 

(training at the Green Belt level but requiring additional experience to become certified). 

Although the executive team for this project was made up of high-level staff members, they were 

not directly involved in the assessment or improvement processes undertaken and primarily 

contributed to the project by giving guidance, answering questions, and providing access to OR 

staff and data as needed. The results of the project were positive, but it is likely that with a more 

experienced team greater results could have been achieved, and in less time.  

One final challenge which was faced in implementing Lean Six Sigma was with the data. 

Much of the OR is inter-related, so an error in one area could cause a domino effect which would 

result in an error in another area. This type of linkage can be difficult to trace and is part of the 

reason why the tracking of delays, late starts, and long cases were difficult to use; they often had 

multiple possible root causes for the issue that was listed. Identifying that incorrect case duration 

estimates were negatively affecting many areas, and that improvements in accuracy could create 

a more accurately planned approach for staff in the OR, greatly influenced the decision to tackle 

this problem as the first project. If estimates can be improved and planning of the OR more 

easily completed, then errors will become more easily tracked and traced to their source. This 

will be beneficial for future projects.  

Regardless of the challenges faced, the Lean Six Sigma project was successful. It is 

recommended that the Lean Six Sigma cycle be continued with additional projects until the goal 

is met. The best means of implementing future projects would be to utilize a highly skilled Lean 
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Six Sigma leader and utilize individuals from within the OR processes, though they will require 

some training in Lean Six Sigma prior to completing any projects.  

5.2. Unique Contributions 

The contributions of this thesis to the current body of knowledge can be broken into four 

categories: (1) acts as a single, comprehensive resource on Lean Six Sigma in healthcare 

environments, (2) includes extensive detail on the data, tools, and decision-making completed 

within each step of a Lean Six Sigma improvement project, (3) completed by a unique team 

compilation compared to common Lean Six Sigma projects, and (4) contributes as a Canada-

based study.  

This thesis acts as a single resource with a comprehensive background of Lean Six Sigma 

specific to healthcare, a review of Lean Six Sigma applications in individual OR projects and 

institutional healthcare environments, and detailed steps for completing a Lean Six Sigma project 

alongside a sample project completed in one of the most complex hospital environments with 

data, tools, and decision-making demonstrated. This encompasses all elements needed to aide in 

educating and influencing doctors, healthcare managers, and hospital operators to endorse a 

change to using Lean Six Sigma or other continuous improvement methodology for 

improvement.  

In addition, this thesis provides a more robust review of the Lean Six Sigma steps taken over 

the course of the project than commonly available. While the journal articles reviewed within 

this work [40]-[73]	[84] [85] often stated the type of continuous improvement method (Lean, Six 

Sigma, Lean Six Sigma, TPS, Kaizen) and steps used (i.e., DMAIC, VSM, RIE, PDSA), they did 

not provide the same level of detail as to the tools, data, and methods used within those steps. In 

addition, of the studies reviewed only two [53] [56] assessed the OR in its entirety before 
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establishing the improvement area, as done in this project; all other studies viewed specific 

surgeries or tasks. While these narrow interest studies demonstrate how Lean Six Sigma can 

create a positive change and the approaches used may be generalized for use in other areas, they 

do not adequately demonstrate how to apply it across an entire system, nor do they show the 

added benefit gained by using Lean Six Sigma to assess and cyclically continue generating 

change across a whole institution.  

Another area in which this project stands apart from previous research and traditional Lean 

Six Sigma application is in the makeup of the team. As stated in the previous section, this was a 

challenge for the project since only the team leader was directly involved in completing the 

improvement project. In most studies reviewed, multidisciplinary teams were utilized to 

complete the project, which often included Lean Six Sigma professionals, staff from the area 

being improved (surgeons, anesthesiologists, nurses, HCAs), engineers, and process owners 

alongside executive teams for support. The only study with a team remotely similar to this 

project was completed by Sunder et. al. [71], in which the team did not directly include front-line 

staff but was rather comprised of a post-graduate student, a professor of Total Quality 

Management, and a Lean Six Sigma Master Black Belt. Although the inexperience and small 

size of the team for this project was a challenge, it also demonstrates that—even with minimal 

active experience and guidance—when trained in its use, Lean Six Sigma is an effective tool for 

change that can be implemented by anyone willing to learn.  

Finally, Canada is not a leader in applying Lean Six Sigma to healthcare. The primary studies 

assessed within the literature review (Section 2.4.1) took place in the USA (19), Europe (10), 

India (2), and Brazil (1). The reviews which were assessed (Section 2.4.2) also categorized the 

locations of studies as primarily being in the USA, Australia, Europe, and Asia, with only 2 of 
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195 [72] and 2 of 109 [73] empirical articles being Canada-based. Even within the review of 

Lean and Six Sigma methods in radiology completed by Amaratunga and Dobranowski [88] who 

were both Canadian-based authors, none of the 23 articles reviewed were based in Canada. 

Within Manitoba, only three studies were found in which Lean principles were applied in the OR 

environment; two were related to work done at St. Boniface [84] [85] (as previously noted in 

Section 2.5) and the other did not fully implement Lean but rather used the Lean tool of VSM to 

assess patient flow in conjunction with agent-based simulation to improve decision making and 

efficiency [89]. Therefore, this thesis and the case study project completed contributes to the 

body of knowledge by being a study completed in a location without extensive publication on or 

application of the subject.  

  



 81 

6. CONCLUSIONS 

Although the healthcare sector—and the OR in particular—is a complex environment with 

copious variation, Lean Six Sigma can be implemented very successfully. In fact, it has already 

been implemented in many places and shown to generate substantial improvements and savings. 

The greatest benefit can be seen in places where Lean Six Sigma or other operational excellence 

mindsets have been implemented across the entire institution, but success has also been found 

within individual projects such as the one completed here.  

One of the reasons that Lean Six Sigma is so successful is that it can be used to see to the 

root of a problem. In complex environments especially, people from different areas will see 

different issues, but they may not be able to see how they connect or be able to follow them to 

their source. The use of data-driven methods to determine root causes can help in finding these 

connections and differentiating between superficial issues and root causes. In addition, Lean Six 

Sigma provides a framework which is used not only to identify and improve problem areas, but 

also to sustain changes and continue improving. This is key to staying efficient in a fast-paced 

and ever-changing environment, such as in the OR and healthcare as a whole.  

For this project, the primary goal identified was to reduce the number of rooms running 

overtime. All OR processes were assessed for inefficiency and error which would causes rooms 

to run overtime and six prime areas for improvement were identified. Based on the impact and 

effort needed to complete projects in these areas, priority was given first to improving case 

duration estimates, to eventually be followed by projects to improve first case on-time starts, 

staff timeliness, and turnover times. Communication/information dispersal and updates to 

surgeon preferences were also identified as needing improvement but were deemed to be of less 

importance than the other areas.  
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Within this project, data were used not only to determine what the primary inefficiencies 

were and which to pursue first, but also as part of the solution. Duration data from past 

procedures were used to create predictive models which can generate duration estimates for six 

procedures based on patient and surgical variables. These models do not have the bias that is 

inherent in surgeon estimates and were found to greatly improve accuracy. More work is needed 

to implement these models on a wide scale and once the models are implemented, more projects 

will need to be completed in order to continue reducing overtime rooms until the goal is met. In 

the end, although there were challenges to completing this project using Lean Six Sigma all were 

overcome and positive results were realized.  

It is hoped that the results of this project will encourage St. Boniface and other hospitals to 

continue pursuing continuous improvement methodologies such as Lean Six Sigma and expand 

their use to all areas of the hospital. It has been said that, 

“If you’re not getting better, you’re getting worse.” 

It is best for everyone that our healthcare continues to get better, and continuous improvement 

can accomplish this. Improving efficiency in healthcare allows for more people to receive care, 

reduces wait times, and reduces cost. The possible savings and impact to the quality of life and 

care for Canadians (or any place that can implement these methods successfully) is great—so 

what are we waiting for?  
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7. RECOMMENDATIONS 

It is recommended that this project be continued with full implementation of a new predictive 

slating method. While the changes shown by comparing actual surgical outcomes to the 

predictive models indicated some of the benefits that could have been achieved (50% reduction 

in overtime minutes, 65% improvement in sum of error, 27-63% increase in on-time cases), there 

are some possible impacts from implementing a predictive model and continuing with Lean Six 

Sigma improvements which—while not quantifiable without wide scale implementation—can be 

theorized.  

Changes in end-of-day late cases could not be assessed, because the benefit of the more 

accurate estimates were not used when creating the slates for that period and so the schedule was 

not adjusted to prevent overtime. However, if the models had been in use, then the improvements 

in estimates would have allowed for staff to be better able to predict not only which rooms would 

run overtime, but also when each surgery would start and end, thus allowing them to be prepared 

for completing turnovers, getting the next patient prepped to be ready to go as soon as the room 

was available, and for the surgical team to be in suite and ready to begin surgery (instead of 

possibly needing to be called for once the room is prepared).  

In addition, morale is likely to improve for a number of reasons. Staff would be able to plan 

their breaks more easily without worrying that they will be missed because they would be able to 

predict when they could be spared. The patient and patient’s family would be happier because 

they would have a better idea of duration; family would worry less because there would be fewer 

cases running overtime, which can be viewed as a bad sign. Fewer cases would need to be 

cancelled, which would also improve patient satisfaction. Management would be able to plan for 

rooms which were likely to run overtime, eliminating the stress of having to scramble to find 
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staff partway through the day when it becomes clear that too many rooms will go overtime to be 

covered by the change in staff at the end of regularly scheduled surgeries. And finally, staff 

would be prepared to stay late because they would be informed early and so could adjust plans if 

needed, ensuring that no one is surprised by unexpected or unwanted overtime. 

As well, individuals new to the OR would be better able to understand and succeed in their 

new environment. Currently, the staff that are best able to successfully plan and manage the OR 

operations are those who have been there for some time and are very knowledgeable about the 

inner workings of processes (for example, which rooms are likely to end late due to the surgical 

team involved or which OR nurses will always have rooms ready on time and their team 

prepared). This becomes a problem when those individuals retire or leave from their position and 

new employees enter the workforce as it takes time and experience to develop that level of 

implicit knowledge. Improving the slate and case duration estimates to match the actual 

durations is one way in which this learning curve could be mitigated, at least partially.  

Another benefit to having accurate duration estimates is in determining how much funding, 

time, and staff are needed to get through the workload. Proposals to increase time, the number of 

rooms open, or to hire new staff would benefit from the duration estimates being accurate 

because they can then be used to show the necessity of such changes and calculate savings that 

could be realized if such changes were implemented.  

If Lean Six Sigma were to be continued, the biggest benefit and impact would come from the 

cyclical nature of the continuous improvement method. Regardless of how many projects are 

completed, there is always a next step which can be found and pursued for improvement. In an 

area such as the OR this is very important because things are constantly changing—new 

procedures and methods are developed, new technology becomes available, and new people join 
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the department. Having a methodology in place to ensure that the efficiency of the environment 

continuously improves along with these changes could greatly benefit the hospital, its staff, and 

its patients. In addition, if all staff were aware of the basics of Lean Six Sigma and encouraged to 

contribute, even more improvements could be realized.  

In summary, it is highly recommended that this project be completed by implementing a 

predictive model for slating surgeries and that the use of Lean Six Sigma (or another operational 

excellence method) be continued. By using such methods, the improvement process is data-

driven with quantifiable improvements, standardized solutions, and a plan to ensure that the 

changes are both sustainable and continuously improved upon. Overall, improving the duration 

estimates and continuing to improve other areas within the OR will help to reduce costs while 

also running more smoothly, allowing for more surgeries to be completed while maintaining a 

positive environment for the staff, patients, and their families.  
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 LEAN SIX SIGMA BACKGROUND 

Quality in product manufacturing has a simple beginning; with guilds and craftsmen honing 

their trades to provide products that met their clients’ standards. However, with the industrial 

revolution in the 1800s came a change in focus to relying on the skill of the workers and product 

inspection for quality, as well as a push for improvement in efficiency. Quality control and 

management became a major focus during World War II as it was key for supplying the war 

effort and ensuring safety. The quality revolution began in Japan as they needed to rebuild after 

the war, after which the concepts were adapted and widely used in the Americas in response to 

Japan’s success. The individuals who were key to the development of quality control and the 

principles behind their philosophies are discussed below, along with how they turned into the 

current methodologies of Lean and Six Sigma. 

A.1 Background 

One of the foundations of quality control began with development of key statistical analysis 

principles in the early 1800s by Charles Gauss, namely the concept of normal distributions which 

is also known by the shape it creates as a bell-shaped curve.  

With the transition to factories and the need for inspection, came a new approach to 

management which was developed by Frederick W. Taylor in the late 1800s [1]. He believed that 

how hard the employees worked was less important than optimizing the process used to 

complete the work and that all workers were motivated by money, so those who were more 

productive should be rewarded with increased pay. Based on his studies on efficiency in the 

workplace, Taylor developed the philosophy of Scientific Management, which has four 

principles: (1) use the scientific method to study work and determine the most efficient method 

for completing tasks, (2) match workers to jobs based on their capabilities and motivation, and 
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train them in efficient practices, (3) monitor performance to ensure that the efficient methods are 

used, and (4) allocate work such that managers plan and train, and workers perform their tasks 

efficiently. 

This focus on efficiency was continued by Henry Ford in the manufacturing of the Model T 

cars in 1913 [2]. He managed to create a process which was efficient by eliminating waste and 

producing flow using an assembly line (which had been implemented for the first time by E.B. 

Whitney in 1798, in his uniformity system). This was the first system to accomplish mass 

production of a standardized product. Some of Ford’s innovations which are used in the current 

Lean Six Sigma methodology include standardization, waste minimization, just-in-time 

manufacturing, and customer service. However, the system implemented by Ford was limited in 

that it was unable to allow for variation and had demeaning job structures which were not 

sustainable long-term.  

Following this in the 1920s, Walter A. Shewhart developed statistical methods to improve 

quality control, including control charts to identify different classes of variation, and was the first 

to show that a process is in need of correction when it deviates three-sigma from the mean—a 

key component of the current Six Sigma philosophy [3]. He also created the PDCA improvement 

cycle, which stands for Plan, Do, Check, Act (or Adjust). Shewhart acted as mentor for the 

following two individuals who contributed to the development of Six Sigma into the 1950s, W. 

Edwards Deming and Joseph M. Juran.  

Deming was a disciple of Shewhart’s teachings on quality control and known for spreading 

the teachings of his mentor and promoting the concept of continuous improvement and the 

PDCA cycle for assessing process problems [4]. From there, Deming also built on the concepts 

of his mentor to create his own philosophy called the “System of Profound Knowledge”, which 
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takes the approach of viewing organizations as interdependent systems [4] [5]. The four key 

parts to this philosophy are: (1) appreciation for a system, (2) knowledge of variation, (3) theory 

of knowledge (PDCA), and (4) psychology of change. He is also known for his “14 Points for 

the Transformation of Management”, “The Seven Deadly Diseases of Management”, and the 

“Deming Chain Reaction”. After WWII, Deming went to Japan where he lectured and trained 

thousands of managers and engineers for many years and is widely credited for helping Japan to 

transform to a powerhouse of manufacturing after the devastation of the war, which is also when 

America began to take note of Deming’s teachings.  

 Juran’s contributions came in promoting the impact of top and middle management on 

quality control and improvement, and the human relations as they contribute to quality [6]. He 

created the “Juran Trilogy” of three managerial processes: quality planning, quality control, and 

quality improvement. He also brought to light the appropriateness of the Pareto principle, also 

known as the 80:20 principle, being applied to quality issues; for example, that 80% of a 

problem is caused by 20% of the causes or that 20% of workers make up 80% of all results. 

Juran led seminars in Japan for years before founding the Juran Institute to continue spreading 

the concepts of quality control and improvement.  

Another key contributor to the quality control movement was Armand V. Feigenbaum, who 

was first to coin the term Total Quality Control, now more widely known as Total Quality 

Management [7]. His contributions focused on the relationship of financial performance to 

quality and the extension of quality control practices from product manufacturing into all areas 

of business. He introduced the concept of the “hidden plant”; the idea that up to 40% of a 

manufacturing plant’s capacity was used to fix errors.  Feigenbaum wrote a book, originally 

published in 1951, which was re-released on its third edition under the title “Total Quality 
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Control” around the same time that Deming’s work in Japan was gaining traction in America in 

the 1980s. These coinciding events caused new interest to be given to his work and principles.  

After these influencers on quality, came Kaoru Ishikawa’s contributions in the 1980s [7]. 

Ishikawa aided strongly in developing quality initiatives in Japan—using the base provided by 

the teachings of Juran and Deming—and is known for creating the fishbone diagram (also 

known as the cause-and-effect or Ishikawa diagram) and quality circles which are groups within 

companies which meet regularly to tackle quality issues. Ishikawa called the Japanese method of 

quality management Companywide Quality Control in order to differentiate it from the 

American approaches to quality control, such as Total Quality Control.  

The philosophies of Genichi Taguchi of Japan became well-known in American businesses 

in the 1980s as well [8] [9]. Taguchi created the Taguchi Loss Function and Taguchi Robust 

Design, both which deal with the issue of variability and customer satisfaction. Traditionally, 

upper and lower tolerances were used to ensure that products stayed within a specified range of 

values, with an ideal value being between the two, and any product within the tolerances would 

be considered acceptable. However, the Taguchi Loss Function improves on the traditional 

tolerance-based approach and essentially states that any deviation from the ideal will result in 

some level of dissatisfaction; the larger the deviation, the greater the dissatisfaction until the 

product surpasses the tolerance levels, at which point the product is no longer viable (reaching a 

plateaued level of dissatisfaction). Taguchi Robust Design focuses on ensuring that a product can 

be produced with minimal variation by adjusting control factors such that the system is less 

sensitive to variability due to uncontrollable factors, or “noise”.  

Philip B. Crosby is well-known for creating the concept of “zero-defects” in the 1960s and 

wrote multiple books on quality in the 1980s and 1990s which were easily consumable and thus 
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made quality control more accessible to the average population [10]. His “zero-defects” concept 

focused on prevention, rather than inspection or correction, of errors. He believed that 

conformance to requirements was the measure of quality rather than the ambiguous labels of 

“good/bad” or “high/low”. All of his philosophies centred around his Four Absolutes of Quality 

Management, which are: (1) quality means conformance to requirements, not goodness; (2) 

quality is achieved by prevention, not appraisal; (3) quality has a performance standard of zero 

defects, not acceptable quality levels; and (4) quality is measured by the price of 

nonconformance, not indexes. Crosby’s philosophies also included “14 Steps to Quality 

Improvement” and “Five Characteristics of an Eternally Successful Organization”.  

A.2 Lean Manufacturing 

Lean manufacturing was created by Taiichi Ohno and Shigeo Shingo at the Toyota Motor 

Company between 1949-1975, who called their process improvement system the Toyota 

Production System (TPS). The coining of the term “Lean” came from John Krafcik in 1987, who 

was a researcher at MIT at the time. Elements of the teachings and philosophies from Ford, 

Juran, Deming, and Ishikawa were all used to create Lean manufacturing. Fujio Cho, Toyota’s 

former president, created “the Toyota Way” in 2001, which detailed the organizational culture in 

order to compensate for inconsistencies in understanding of daily management principles among 

Toyota managers [11]. Simplified versions of the TPS and Toyota Way models are shown in 

Figure A-1, showing the pillars and foundation which hold up each. Although TPS continues to 

evolve as the needs of the company change, these core pillars and foundations remain constant.  
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Figure A-1 The TPS house and the Toyota Way model [12] 

The element of Kaizen in Lean was popularized by Masaaki Imai in 1985 [13]. Kaizen, in 

modern usage, is used for quick, focused improvement projects, usually taking place over the 

course of a week. Kaizens follow 10 principles and produce significant, fast results which can be 

used to promote continued growth and improvement by increasing the enthusiasm and support of 

the workers.  

Although Lean was initially introduced as synonymous with TPS in 1991, with the book 

“The Machine That Changed the World” by James P. Womack, Daniel T. Jones, and Daniel 

Roos [14], the concepts behind Lean have varied since. Lean thinking, as defined by Womack 

and Jones in their 1996 book “Lean Thinking: Banish Waste and Create Wealth in Your 

Corporation” [15], consisted of five principles: (1) specify value, (2) identify/map the value 

stream, (3) create flow, (4) use a pull system, and (5) pursue perfection. The key concepts behind 

Lean work to improve flow and reduce the 8 types of waste in processes: defects, 

overproduction, waiting, unused talent, transportation, inventory, motion, and excess processing. 
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This varies from TPS in that Lean is not reliant on certain elements which are integral to TPS, 

such as Jidoka, Kaizen, and human/employee relations [16].  

A.3 Six Sigma 

Six Sigma began in Motorola in 1987 with the coining of the term “Six Sigma” by Motorola 

engineer William Smith, with the support of Robert Galvin, who was Motorola’s CEO at the 

time, and Mikel Harry, who was a key architect behind the Six Sigma methods. The name comes 

from the standard deviation needed to reduce variation in the process to 6 standard deviations 

from the ideal (99.9996% accuracy or 3.4 defects per million). Many of the Six Sigma principles 

and tools are taken from those whose quality control philosophies came before (Gauss, Ford, 

Shewhart, Juran, Deming, Ishikawa, Taguchi, Crosby, TPS/Kaizen). The key concepts which 

drive Six Sigma are defect elimination, reduction in variability, and root cause analysis [17] [18]. 

A variation on Shewhart’s PDCA model is the foundation for Six Sigma, called DMAIC 

(Define, Measure, Analyze, Improve, Control). After Motorola achieved success using their Six 

Sigma method, other businesses in America began to use the improvement methodology 

themselves, including Texas Instruments, ABB, and Kodak. General Electric and Allied Signal 

brought Six Sigma to the forefront in the mid-1990s by crediting Six Sigma with their increase in 

market capitalization.  

A.4 Lean Six Sigma 

Today, most companies concerned with quality control and improvement have at least one of 

the methods discussed above currently in place or a variation of them. Lean and Six Sigma 

methodologies, when used together, have a complementary effect and were first incorporated 

into a single philosophy in the early 2000s, with the first instance being credited to “Leaning into 

Six Sigma” by Barbara Wheat, Chuck Mills, and Mike Carnell [19]. Alone, Six Sigma will miss 



 XIII 

improving process flow, while the Lean principles are lacking the statistical tools needed to fully 

assess the process capabilities; together, these two methodologies provide a much more 

comprehensive improvement philosophy. Thus, by first implementing the Lean concepts to 

reduce waste and improve cycle time, then applying Six Sigma to reduce process variation and 

eliminate the root causes of defects, a system can be made to be the most robust and efficient as 

possible. Including elements such as Kaizen (quick improvements) can further improve the 

effectiveness of the methodology [20]. Another change to Lean Six Sigma was the shift from use 

primarily in manufacturing to widespread use in other industries as well, such as healthcare, 

supply chain, administration, and customer service.  
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 PROJECT CHARTER 

 
Team: St. Boniface Hospital 
Date: 05/16/2018 
Project name: OR On-Time End-of-Day 

 

Project Background:  
Operational Excellence is a mindset of continuous improvement by set methods. Two types of 
methodologies used are Lean manufacturing and Six Sigma. These methods were originally 
developed in manufacturing settings; Lean manufacturing in Toyota Motor Company and Six 
Sigma in Motorola. The focus of Lean is to produce the most value for the customer with fewer 
resources while Six Sigma focuses on the elimination of defects and reduction in cycle time. 
Both methods strive to eliminate waste in order to reach these outcomes.  

Although these methods originated in manufacturing, they have expanded into all types of 
service industries with great success. Even highly variable processes, such as those in a hospital 
operating room (OR), still have elements which can be standardized and improved. For this 
project the St. Boniface OR efficiency is to be assessed, with an end goal being to consistently 
have on-time end-of-day in the OR.  

 

Business Case:  
From April 2017 to April 2018, 35% of elective surgeries began more than 15 minutes late and 
38% ended more than 15 minutes late. In addition, an average of 110 end-of-day cases per month 
finished over 15 minutes late, accounting for 51.5% of all last cases. This resulted in 2152 hours 
of overtime.  

Aside from the monetary cost of overtime, additional negative effects of late cases and end-
of-day in the OR include poor patient flow, cancelled end-of-day cases, resource utilization 
issues, and poor patient experience. These are problems not only in terms of cost for the hospital, 
but also for the health and safety of patients.  

Improving OR end-of-day times will reduce the number of cancelled cases and overtime 
required, thus improving patient care and reducing costs.  

 

Project Objective: 
The primary objective of this project is to develop and implement a strategy to improve the 
consistency with which the rooms for elective slated surgeries finish on time. The goal is to 
provide recommendation to reduce the number of late end-of-day surgeries (finishing past the 
scheduled end time) from 125/month to an average of 30/month.  
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Scope/Boundaries: 
The scope of this project includes all processes required to run the OR, including, but not limited 
to, L2PO, OR room preparation, room turnover, start and end of day tasks, and slating. 
 
In scope: 

• Elective surgeries 
• Emergency surgeries as they impact elective surgeries and staffing 
• Slating times and procedures 
• Start time for staff 
• Staff (surgeons, anesthetists, CRNs, nurses, HCA, etc.) 
• All processes (L2PO, turnovers, OR communication, OR prep, case cart prep, labs, etc.) 

o Implementation 
o Standardization 
o Task allocation 

 
Out of scope 

• Surgery procedure 
• Total work time for staff 
• Required components for processes (i.e., steps involved in turning over a room) 
• Emergency surgery cases 
• Cases which are no longer done at St. Boniface Hospital (cystoscopy flexible, primarily) 

 

Schedule and Milestones:  
Start End Duration Milestone 
Apr 23, 2018 Apr 27, 2018 5 days Gemba – OR walkthrough 
May 11, 2018 May 18, 2018 1 week Complete project charter 
Apr 27, 2018 May 25, 2018 4 weeks Understanding the Process (mapping, etc.) 
May 25, 2018 Jun 1, 2018 1 week 1. Establish the focus 
Jun 1, 2018 Sep 1, 2018 3 months 2. Examine the current situation 
Sep 1, 2018 Dec 1, 2018 3 months 3. Analyze the causes 
Dec 1, 2018 Sep 1, 2019 9 months 4. Act on the causes 
Jul 16, 2019 Aug 20, 2019 5 weeks Write mid-project report 
Sep 1, 2019 Dec 31, 2019 4 months 5. Study the results 
Jan 1, 2020 Aug 1, 2020 7 months 6. Standardize the changes 
Aug 1, 2020 Aug 31, 2020 1 month 7. Draw conclusions 
Aug 10, 2020 Aug 31, 2020 3 weeks Write final project report 

 
Note: milestones numbered 1-7 are the steps involved in a Lean Six Sigma improvement project 
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Team/Resources: 
Team:  

Name, title Role Responsibilities 
Lance Barber 
Director of Surgery Project champion/sponsor Guidance, executive 

team 

Essi Shams 
Quality Improvement and Patient Safety Quality and Productivity Guidance 

Kurt Shaw 
Director of Transformation Op Ex expert Guidance 

Sarah Slagerman* 
UofM MSc. in Engineering student Team leader Organize team/project, 

data analysis 

Dawn Affleck 
Program Team Manager, OR Process Owner Process knowledge, 

executive team 

Lorena Thiesson 
Program Team Manager, PAC/B2/L2/NFA Process Owner Process knowledge, 

executive team 
Tamara Miller 
Site Leader, Department of Anesthesia, 
Perioperative and Pain Medicine 

Process Owner Process knowledge, 
executive team 

Mohamed Yusuf/Scott Vandale 
Projects and Systems Coordinator Data consultant Data acquisition, 

executive team 

Tracy Ptak 
Business Improvement Finance Officer Data consultant Data acquisition 

Kathy Ott 
Improvement Coach, Transformation Quality and Productivity Guidance, resources 

  *Note: Unlike a project conducted in a well-developed Lean Six Sigma environment, this project was completed as 
a trial and therefore did not include the participation of a Lean Six Sigma Green/Black Belt team member. 
Sarah Slagerman, as the team leader and completing this project as a component of her Master of Science in 
Engineering, acted as the primary source of Lean Six Sigma knowledge and driving force of the project. 

 
Other resources: 
• CMO, Chief Medical Officer 
• CNO, Chief Nursing Officer 

 
Budget and expenses: 
• There is currently no allocation of funds budgeted for this project.  
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Risks:  
There are a number of risks identified in moving forward with this project:  

1. Vacations 
2. Running over schedule 
3. Mohamed’s absence, beginning Jun. 1; Scott’s replacement, beginning Dec. 2018 
4. Reaction of staff to changes and methods 

 

Risk Mitigation/Action Plans:  
1. Vacations 

Sufficient time has been allocated to each section of the project that a week of vacation 
would not be an issue in moving forward with any step of the project. In addition, if any 
individuals on the project team are taking vacation time, they will leave an alternative 
contact that may speak/attend meetings/take on their responsibilities in their absence.  

 
2. Falling behind schedule 

If the project is deemed to be falling behind schedule, a number of possible actions may be 
taken to bring the project back on track. This includes implementing weekly team meetings, 
increasing communication with the Op Ex Expert and Process Owners, and seeking 
additional team members from the OR and L2PO teams for aid in tasks.  

 
3. Mohamed’s leave of absence, beginning June 1; Scott’s replacement, beginning Dec. 2018 

As Mohamed’s primary role in this project is as the data consultant, in preparation for his 
leave of absence the majority of data required for the project have already been provided to 
the team leader. While he is away, if additional access to data is required Tracy Ptak will be 
the primary contact. Additional time will be given when requesting data during this time to 
allow for any delays in data acquisition due to the alternate contact.  
*Note: once Scott was hired, he was able to take over Mohamed’s role in the project.  

 
4. Reaction of staff to changes and methods 

To ensure staff will be receptive to the project and resulting changes implemented, there are 
a number of action plans in place to ensure acceptance and successful implementation. 
Firstly, a report detailing the project findings and data will be made available. Secondly, a 
change management process will be incorporated into the implementation plan so that all 
individuals affected by the changes will make successful transitions. This will involve 
including affected individuals in the problem-solving process, creating a compelling 
argument supporting the changes, and providing support and coaching as necessary.  
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Document Revision Control:  
1. Changes to the terms of reference document that materially affect the intent shall be 

approved by the Committee and be issued with a revision number.  
2. An administrative change, such as grammar change or an update that does not materially 

change this document may be revised without a revision number. The project leader/owner 
will have the discretion whether the minor revision requires to be issued.  

 
Revision Date Revision Number Description 
May 16, 2018 1 First draft 
July 10, 2018 2 Added cystoscopy flexible cases to out-of-scope 
July 25, 2019 3 Added Scott Vandale to the project 
Mar 15, 2020 4 Adjusted schedule due to COVID-19 

   

 

Project Sign-off:  
 
 
 
_______________________________________ 
Lance Barber, Director of Surgery 
 
 
_______________________________________ 
Sarah Slagerman, Team Leader 
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 DATA SORTING 

Table C-1 St. Boniface Hospital surgical data headings from April 2017 to April 2018 
Variable Data type Calculation 

CaseNum Case info  
Case Date Case info  

Room Description Case info  
DOW Case info  

Case Service Case info  
Primary Procedure Description Case info  

Scheduled Main Surgeon Case info  
Scheduled Anesthesiologist Case info  

Patient Status Patient info  
Anesthesia Type Case info  

ASA Score Patient info  
Age – Surgery Date Patient info  

Sex Patient info  
Scheduled Start Value Time value (estimate)  
Scheduled Stop Value Time value (estimate)  

Patient In Value Time value (actual)  
Anesthesia Value Time value (actual)  
Proc Start Value Time value (actual)  
Proc Stop Value Time value (actual)  

Patient Out Value Time value (actual)  
Sched Duration Duration value (estimate) Sched. stop – Sched. start value 

Prep dur Duration value (actual) Anesthesia – Patient in value 
Anes dur Duration value (actual) Proc start – Anesthesia value 

Proc Duration Duration value (actual) Proc stop – Proc start value 
Wrapup dur Duration value (actual) Patient out – Proc stop value 

Case Duration Duration value (actual) Patient out – Patient in value 
Planned order Daily schedule info Sorted based on Scheduled Start Value, Date, Room 

Actual order Daily schedule info Sorted based on Patient In Value, Date, Room 
Prev Sched Stop Time value (estimate) Found based on previous case Scheduled Stop Value, 

Date, and Room 
Prev Patient Out Time Time value (actual) Found based on previous case Patient Out Value, Date, 

and Room 
Next Patient In Time Time value (actual) Found based on next case Patient In Value, Date, and 

Room 
Turnover dur Duration value (actual) Patient Out Value – Next Patient In Time 

First Scheduled Start Daily schedule info Found based on Planned Order, Date, Room 
Last Scheduled Start Daily schedule info Found based on Planned Order, Date, Room 

isFirst Daily schedule info True/False based on First Sched Start, Sched Start Value 
isLast Daily schedule info True/False based on Last Sched Start, Sched Stop Value 

Num of Procedures Case info Calculated based on Secondary Procedures with same 
CaseNum 
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In order to use the data, they first had to be filtered and sorted. The steps taken to do so are 

shown in Table C-2. After determining which surgeries were to be included for more in-depth 

assessment (for which the process for choosing is detailed in APPENDIX E) the data were 

filtered for those six surgeries as well.  

Table C-2 Data filtering steps 
Action Remove Remaining 
Start   9805 

Filter for elective cases 2279 7526 

Filter out duplicates (multiple secondary procedures completed at same time) 497 7029 

Filter out surgeries “cystoscopy stent removal”, “cystoscopy flexible” & room 
“SBH ER”  

791 6238 

Eliminate additional duplicate cases of “328417”, “386867” 3 6235 

Filter for the six chosen surgeries: 

Bypass graft coronary artery (CABG) 

Replacement/repair valve aortic (AVR) 

Replacement/repair valve mitral (MVR) 

Endarterectomy carotid (END) 

Hysterectomy abdominal total (HAT) 

Hysteroscopy, diagnostic (HYSD) 

5098 

 

 

 

 

 

 

1137 

477 

164 

82 

73 

159 

182 

Eliminate cases with duration errors (details in Appendix G.2): 

Bypass graft coronary artery (CABG) 

Replacement/repair valve aortic (AVR) 

Replacement/repair valve mitral (MVR) 

Endarterectomy carotid (END) 

Hysterectomy abdominal total (HAT) 

Hysteroscopy, diagnostic (HYSD) 

17 

8 

5 

1 

2 

0 

1 

1120 

469 

159 

81 

71 

159 

181 

Eliminate cases that are outliers (details in Appendix G.2): 

Bypass graft coronary artery (CABG) 

Replacement/repair valve aortic (AVR) 

Replacement/repair valve mitral (MVR) 

Endarterectomy carotid (END) 

Hysterectomy abdominal total (HAT) 

Hysteroscopy, diagnostic (HYSD) 

15+5+27 

20 

7 

3 

1 

4 

12 

1073 

462 

156 

81 

71 

157 

178 
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  ORIGINAL NOTES AND MAPPING 

 

Figure D-1 Cardiac room spaghetti map 
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Figure D-2 Operating room spaghetti map 
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Figure D-3 L2PO/OR spaghetti map 
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Figure D-4 Spaghetti mapping notes pg. 1 
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Figure D-5 Spaghetti mapping notes pg. 2 
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Figure D-6 Spaghetti mapping notes pg. 3 
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Figure D-7 Spaghetti mapping notes pg. 4 
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Figure D-8 Spaghetti mapping notes pg. 5 



 XXIX 

 

Figure D-9 Spaghetti mapping notes pg. 6 
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Figure D-10 Sticky note process mapping 
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  SURGERY INCLUSION SELECTION PROCESS 

Three factors were used for choosing surgeries: (1) number of cases, (2) room for 

improvement, and (3) which surgeons or surgical departments would be affected. Procedures 

which did not meet the criteria for each factor were eliminated until only six procedures 

remained.  

E.1 Number of Cases 

To be included in this project, surgeries must occur frequently enough to have a sufficient 

proportion occur over a three-month period. To calculate what constitutes a sufficient proportion, 

Cochran’s formula with finite population correction was used (95% confidence level, 50% 

sample proportion) to calculate the required sample size needed to generate an accurate 

representation of outcomes for each surgery at three different margins of error (10%, 15%, 20%) 

To qualify, the average number of surgeries completed in 3 months had to be greater than the 

calculated sample size for a 20% margin of error, at minimum. This reduced the possible 

surgeries from 119 to 16 procedures (Table E-1). 

Table E-1 Primary procedures for focus consideration 
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E.2 Room for Improvement 

Looking only at the 16 procedures remaining, an assessment of which procedures should be 

included was completed based on baseline data (Figures E1-E16, below). The graphs and data 

assessed include:  

• Mean-Range (X̄-R) charts 

o Values: monitor average and control of variability for duration difference 

o Room for improvement, X̄: many red/yellow points, high control limits 

o Room for improvement, R: many red/yellow points, centre line further from zero 

• Histograms/Boxplots 

o Values: compare frequency distributions and quartile distributions 

o Room for improvement: scheduled vs actual duration distribution very different 

• Values on difference between scheduled and actual duration 

o Values: average, standard deviation, maximum, minimum, sum of differences  

o Room for improvement: average further off zero, high standard deviation, large 

max/min, large positive/negative sum of difference 

The primary procedures found to have the least room for improvement were tonsillectomy 

(Figure E-10), laparoscopic colectomy hemi right (Figure E-5), and hysterectomy abdominal 

total (Figure E-7). The most room for improvement was found within the 3 cardiac surgeries 

(CABG, Figure E-1; AVR, Figure E-2; MVR, Figure E-3) which consistently run overtime and 

within the primary procedures hysteroscopy – diagnostic (Figure E-8), fistula AV (Figure E-15), 

and endarterectomy carotid (Figure E-16) which consistently run undertime.  
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Figure E-1 Cardiac: Bypass graft coronary artery (CABG), baseline data 

  

Figure E-2 Cardiac: Replacement/repair valve aortic (AVR), baseline data 

## [1] "Control Charts for BYPASS GRAFT CORONARY ARTERY (CABG)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Cardio Vascular Thoracic 477 66.0 91.0 438 -110 31477 

## [1] "Control Charts for REPLACEMENT/REPAIR VALVE AORTIC (AVR)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Cardio Vascular Thoracic 164 35.9 95.3 395 -101 5889 
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Figure E-3 Cardiac: Replacement/repair valve mitral (MVR), baseline data 

  

Figure E-4 General/Acute: Laparoscopic cholecystectomy, baseline data 

## [1] "Control Charts for REPLACEMENT/REPAIR VALVE MITRAL (MVR)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Cardio Vascular Thoracic 82 86.0 118.2 458 -212 7056 

## [1] "Control Charts for LAPAROSCOPIC CHOLECYSTECTOMY" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Acute Care Trauma/General (20:130) 150 -10.8 47.1 192 -108 -1627 
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Figure E-5 General/Acute: Laparoscopic colectomy hemi right, baseline data  

 

Figure E-6 Head & Neck/Otolaryngology: Thyroidectomy, baseline data 

## [1] "Control Charts for LAPAROSCOPIC COLECTOMY HEMI RIGHT" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

General 76 5.9 63.0 162 -162 447 

## [1] "Control Charts for THYROIDECTOMY" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Head & Neck/Otolaryngology (54:39) 93 -20.6 38.3 107 -104 -1918 
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Figure E-7 OB-GYN: Hysterectomy abdominal total, baseline data  

 

Figure E-8 OB-GYN: Hysteroscopy (diagnostic), baseline data  

## [1] "Control Charts for HYSTERECTOMY ABDOMINAL TOTAL" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Obstetrics and Gynecology 159 -4.9 50.1 264 -127 -785 

## [1] "Control Charts for HYSTEROSCOPY (DIAGNOSTIC)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Obstetrics and Gynecology 182 -24.4 17.1 17 -70 -4432 
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Figure E-9 Otolaryngology: Septoplasty, baseline data  

 

Figure E-10 Otolaryngology: Tonsillectomy, baseline data  

## [1] "Control Charts for SEPTOPLASTY" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Otolaryngology 210 -8.4 20.1 87 -73 -1762 

## [1] "Control Charts for TONSILLECTOMY" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Otolaryngology 83 -1.4 18.2 63 -38 -116 
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Figure E-11 Plastics: Endoscopic release contracture carpal tunnel decomp, baseline data  

 

Figure E-12 Plastics: Mammoplasty reduction, baseline data  

## [1] "Control Charts for ENDOSCOPIC RELEASE CONTRACTURE CARPAL TUNNEL DECOMPRESSION" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Plastics 77 -15.9 11.5 11 -45 -1224 

## [1] "Control Charts for MAMMOPLASTY REDUCTION" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Plastics 139 -13.1 28.6 72 -85 -1821 
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Figure E-13 Psychiatry: Stimulation brain (ECT), baseline data  

 

Figure E-14 Urology: Cysto. transur. resection bladder tumor cautery mono, baseline data 

## [1] "Control Charts for STIMULATION BRAIN (ECT)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Psychiatry 173 -7.7 6.3 20 -45 -1333 

## [1] "Control Charts for CYSTOSCOPY TRANSURETHRAL RESECTION BLADDER TUMOR CAUTERY MONOPOLAR (TUR)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Urology 151 -18.7 23.7 88 -110 -2831 
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Figure E-15 Vascular: Fistula arterial venous (AV), baseline data  

 

Figure E-16 Vascular: Endarterectomy carotid, baseline data 

## [1] "Control Charts for FISTULA ARTERIAL VENOUS (AV)" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Vascular 186 -26.7 17.8 43 -74 -4968 

## [1] "Control Charts for ENDARTERECTOMY CAROTID" 

 

 

 

Values for Difference between Scheduled and Actual Deviation: 
Case Service Total cases Average StdDev Max Min Sum 

Vascular 73 -40.6 37.7 54 -117 -2967 
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E.3 Surgeons Affected 

Based on the guidance and recommendations of the executive team, the 16 procedures were 

further narrowed down based on the surgeons and teams that would be affected. We chose to 

eliminate all surgeries relating to the case services of plastics, otolaryngology, psychiatry, head 

& neck, urology, and general surgery. The remaining case services are cardiac, obstetrics and 

gynecology (OB-GYN), and vascular. Within the vascular procedures, we also chose to 

eliminate the fistula arterial venous procedure. This left us with only six procedures remaining.  

E.4 Chosen Surgeries for Inclusion 

The six procedures and related case services which were chosen to be included for testing 

and improvement are:  

• Cardiac: Bypass graft coronary artery (CABG) (Figure E-1) 

• Cardiac: Replacement/repair valve aortic (AVR) (Figure E-2) 

• Cardiac: Replacement/repair valve mitral (MVR) (Figure E-3) 

• OB-GYN: Hysterectomy abdominal total (HAT) (Figure E-7) 

• OB-GYN: Hysteroscopy – diagnostic (HYSD) (Figure E-8) 

• Vascular: Endarterectomy carotid (END) (Figure E-16) 
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  SHORT-TERM DATA SOLUTION 

As a short-term attempt to improve case duration estimate accuracy, historical data were 

compiled and summarized for each surgeon in St. Boniface Hospital. The data provided to the 

executive team were grouped by case service, main surgeon, primary procedure description, and 

number of secondary procedures, for which the number of outputs provided is shown in Table 

F-1. Values for the number of times a surgery was performed by a specific surgeon were 

calculated, along with time data. The data were also filtered for surgeries which were performed 

a minimum of ten times by a surgeon. The time data calculated included averages and trimmed 

averages (top and bottom 10% removed) of the estimated duration, actual procedure duration, 

actual case duration, and error in minutes between the estimate and actual case duration.  

Table F-1 Surgeon-Primary procedure data 
Grouped by Filter Number of Outputs 
Primary Procedure Description 
Main Surgeon 

NA 1898 

Primary Procedure Description 
Main Surgeon 

10+ occurrences 310 

Primary Procedure Description 
Main Surgeon 
Number of Secondary Procedures 

NA 3151 

Primary Procedure Description 
Main Surgeon 
Number of Secondary Procedures 

10+ occurrences 261 

 

A summary of the error rate in minutes was also provided to the executive team for each 

surgeon in each case service, regardless of procedure. The data were grouped based on the case 

classification (overtime cases, undertime cases, cases which were on-time/within 15 minutes, 

and total cases) and the number of cases associated with each classification were calculated, as 

well as the average error of the actual case duration from the estimate in minutes. The data for 

each surgeon in each case service were organized as shown in Table F-2. 
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 Table F-2 Surgeon error data layout 
Case Service Main Surgeon Classification # of Cases Avg Error 
  Over   

  Under   

  Within 15 min   

  Total   
 

The executive team distributed the data as they saw fit. This was completed outside of the 

scope of this project, so the outcomes of this implementation of data were not observed or 

recorded. Due to the scope of this thesis and related Lean Six Sigma project being limited to 

small scale implementation, it was decided that this could have a beneficial effect on case 

duration estimate accuracy while more research and testing is still needed toward implementing 

predictive modeling or historical average methods.  
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  PREDICTIVE MODELS 

First, research was done on the past and current methods for surgical duration estimates. 

Once the research was completed, the process of creating the predictive models was undertaken. 

The process used to create the predictive models consisted of four parts: editing for errors and 

outliers, data exploration, model generation, and model testing. Only the data for the six chosen 

procedures were used in this process. The core coding used to create the models is also provided.  

G.1 Surgical Duration Estimates Research 

G.1.1 Predictive Models for Surgery Duration 

Previous research on surgical duration estimates has shown that surgeon estimates can be 

improved through the use of historical data, such as with moving or trimmed averages [21] [22] 

[23] [24] [25]. Depending on the variables included in the historical averages, the estimates may 

be more accurate; calculating based on surgeon and case complexity can improve the estimate 

[25], as can adding the standard deviation to the mean to predict possible over-booking [23]. 

However, the historical averages can be improved even further through the use of predictive 

modeling and machine learning methods. There are many types of machine learning and 

predictive modeling methods that have been tested, such as ANOVA [26], Bayesian models [27] 

[28] [29], Mixture Density Network [29], Neural Networks [30] [31], Support Vector Regression 

[32], Multivariate Adaptive Regression [21], Lognormal models [33] [34], and Random Forests 

[21] [35]. Linear models (regression [21] [22] [36] [37] [38] [39] [40] [41], generalized [35], 

mixed [42]) are some of the more commonly tested approaches to modeling surgical durations.  

For this project, I’ve chosen to look further into three different types of models: simple 

moving average (SMA), linear mixed effects (LME), and random forest (RF).  
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A SMA model is one of the easiest and simplest ways to predict future surgery durations. It 

only requires that a certain number of cases be completed in order to use the historical data to 

create an estimate. A drawback of this method is that it does not account for the effects of any 

other variables and cannot be used for procedures which occur rarely.  

A linear regression model is more complex than a SMA model as it includes more input 

variables, however this also may allow it to provide a more accurate prediction. The LME model 

is a type of linear regression model. While a standard linear model has only fixed effects, the 

LME model also includes random effects which is particularly useful when dealing with non-

independence or hierarchical data [43]. Interpreting fixed and random effects can vary depending 

on viewpoint, so there is not a definitively correct or incorrect assignment [44] [45]. However, 

there are some general guidelines that should be followed. Firstly, continuous variables are 

always fixed while categorical variables may be either fixed or random [45] [46]. For categorical 

variables to be considered a fixed effect, the data should be gathered from all levels of interest or 

be taken from specific levels of interest as set beforehand [44] [46] [47]. For example, from this 

data set the day of the week could be considered as a fixed effect because procedures from all 

weekdays are included and weekends were not included on purpose because elective surgeries 

are not performed on weekends. Alternatively, random effects may either be used to control for 

the effect of grouping factors [45] or have many factor levels for which all levels are of interest 

but not all are included in the data [45] [46]. In addition, random factors may be considered as 

nested if the factor levels seen for a variable are specific to a certain group and have no cross-

over to other groups [45]. For example, from this data set the case service is a random effect 

because the procedures are grouped within the factor levels and surgeons are a nested variable 

within case service because they only work within one case service (no cardiac surgeons are 
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working on OB/GYN procedures or vice-versa); also, not every surgeon which could perform 

the surgery may be represented in the data. Essentially, for a fixed effect we are interested in the 

specific differences between all levels, while for random effects only the general impact of the 

levels is required. One more requirement for random effects is that they should have at least 5 

factor levels or else should be considered as fixed [45] [46]. Random effects estimate variance 

between factor levels and if there are less than five levels then the estimates will be imprecise 

and unlikely to benefit the model.  

The RF model is an ensemble learning method which uses bootstrap aggregation (or 

bagging) in order to utilize a “forest” of decision trees running in parallel [48]. A decision tree 

splits at multiple points based on the input variables until the reaching the output or the “leaves” 

on the tree. In a random forest, each tree is built using a different random sample of rows from 

the training data and splits based on different random selections of the input variables available. 

The output value is then calculated as the mode from all the trees if a categorical value, while for 

a regression the output is calculated as the mean of the results obtained from each tree. This 

improves on linear regression methods because it can better account for nonlinear relations 

between input and output variables, particularly for categorical variables. One drawback of this 

method is in extrapolation—it fails if a new factor for a categorical variable is used which was 

not in the training data and it cannot identify trends which extend past the training data [49]. For 

new factor levels, a possible solution is to create a factor level which combines uncommon or 

rare levels so that a new factor can be grouped in with other new or rare values, though it may 

result in a slightly less accurate output. As for extrapolation of trends, it is not an issue in this 

case as the duration estimates are expected to fall within the range of the data used.  
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G.1.2 Surgery Duration Variables 

Another area to consider when modeling is which explanatory variables to include. The most 

influential and commonly included variables were case service/specialty, procedure type, and 

surgeon, of which some combination of these variables was included in all surgical modeling 

articles referenced [21] - [42] and all are available in the current data. The surgeon’s estimate 

was also included in multiple models [29] [33] [38] [42] and was found to be highly influential 

to the prediction, so will also be considered for inclusion. Patient information was another 

commonly included variable, such as age, sex, and patient status [35] [38] [39] [40] [42], though 

they were not always found to be significant [38] [42]. These three patient variables are also 

available in the current data and will be assessed for inclusion in the model. Other variables that 

are available in the current data set and found in literature include anesthesia information (ASA 

score, anesthesiologist, anesthesia type) [29] [34] [38], number of secondary procedures [33] 

[40] [42], and OR information (room number [35], day of the week [29] [39]).  

There are also variables that were used in references which are not available in the current 

data set. Patient information that was sometimes used but not available for this project includes 

body mass index (BMI) and medical history [40] [42]. Additional information that could be 

relevant to the surgery duration but which was not provided for this project includes the 

familiarity of the surgical staff with each other [50] [51] and—as this project is occurring in a 

teaching hospital—whether a resident or young surgeon (< age 30) will be participating in the 

surgery, as additional time may be needed to accommodate teaching during the surgery [42]. 

These variables may be relevant to the duration, therefore additional research is needed to 

determine impact and whether effort should be made to include these variables in future record-

keeping. Daily workload is another variable that has been used [37] [39] and could be 
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extrapolated from the data. However, the number of cases completed in a day is dependent on 

how long the scheduled surgeries take, thus the variable is actually dependent on the outcome. A 

summary of the possible variables to include is given in Table G-1.  

Table G-1 Surgical duration variables (italics = variable not available in current data) 
Patient Variables Surgery Variables Anesthesia Variables Room/Staff Variables 
Age 
Sex 
Patient status 
BMI 
Medical history 

Case service 
Procedure 
# of procedures 
Surgeon estimate 
Resident included 

ASA score 
Anesthesia type 
Anesthesiologist 

Room number 
Day of the week 
Primary surgeon 
Staff familiarity 
Daily cases 

 

G.2 Data Editing 

Before analysis, the data needed to be checked for errors and outliers. Only outliers which 

are caused by special causes or errors were eliminated—not all outliers—since outliers due to 

common causes are still an expected part of the data distribution. However, extreme outliers due 

to special causes could skew the model, so should be removed. Any durations less than zero 

were eliminated as they would be caused due to errors in data collection; if the times between the 

case elements are not properly recorded, it may result in a duration being in the negative. This 

resulted in 17 cases being removed. The elimination of these cases and how many were 

eliminated from each procedure is shown in Table C-2, along with the previous data filtering 

steps.  

No other errors were found in the data. For the 1120 remaining cases, all individuals were 

between the ages of 20 and 91. The case start times were all within range; though some cases 

began after end-of-day and went even further over-time, the duration values associated with 

these cases did not show any error. Late or over-time cases were not considered as errors.  

Outliers were identified as cases with both procedure duration and case duration being above 

an upper control limit (UCL), which is calculated as the mean value plus three standard 
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deviations. Both duration values had to be above the associated UCL in order for the surgery to 

be removed. By only removing the cases which are outliers in both areas it ensures that the 

actual procedure time is significantly higher than normal, and that time is not recovered by being 

faster in other areas (preparation, anesthesia, wrap-up). This resulted in a total of 15 cases being 

removed, less than 2% of the total number of cases for each procedure (Table G-2). X̄ plots were 

used to visualize and identify these outliers (Figure G-1). 

Table G-2 Procedure/Case duration outliers 
Procedure Procedure duration (UCL) Case duration (UCL) Both outliers (% total) 

CABG 9 (> 507.6) 7 (> 600.9) 7 (1.5%) 
AVR 5 (> 506.2) 3 (> 599.2) 3 (1.9%) 
MVR 0 (> 631.3) 1 (> 735.8) 0 (0.0%) 
END 1 (> 150.1) 2 (> 226.0) 0 (0.0%) 
HAT 3 (> 243.9) 2 (> 337.3) 2 (1.3%) 

HYSD 4 (>   33.6) 5 (>   69.2) 3 (1.7%) 
 

      

      

Figure G-1 X̄ plots for procedure and case durations to identify common outliers 

Anesthesia durations were found to have outliers both above the UCL and below the lower 

control limit (LCL). These outliers were identified based on whether they were past the control 

limit and also more than a full standard deviation above the next closest value. This resulted in a 

total of 5 cases being removed and was visualized using X̄ plots (Table G-3, Figure G-2). 

Table G-3 Anesthesia duration outliers 
Procedure Anesthesia duration (LCL) Anesthesia duration (UCL) Total outliers (%) 

CABG 1 (< 16) 0 (> 147) 1 (0.2%) 
AVR 1 (< 22) 1 (> 121) 2 (1.3%) 
MVR 1 (< 12) 0 (> 135) 1 (1.2%) 
END 0 (< 15) 0 (>   76) 0 (0.0%) 
HAT 0 (<   0) 0 (> 103) 0 (0.0%) 

HYSD 0 (<   0) 1 (>   44) 1 (0.6%) 
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Figure G-2 X̄ plots for anesthesia durations 

Finally, outliers were identified within the other parts of surgery: preparation, wrap-up, and 

turnover. To remove the case as an outlier based on these values, as with the anesthesia outliers, 

the duration had to be both above the UCL and more than a full standard deviation above the 

next closest value. This resulted in a total of 27 cases being removed (Table G-4). X̄ plots were 

used to visualize and identify these outliers (Figure G-3).  

Table G-4 Preparation, wrap-up and turnover duration outliers 
Procedure Prep duration Wrap-up duration Turnover duration Total outliers (%) 

CABG 4 (> 16) 4 (> 45) 4 (> 122) 12 (2.6%) 
AVR 1 (> 15 ) 0 (> 51) 1 (> 154) 2 (1.3%) 
MVR 0 (> 16) 1 (> 48) 1 (> 145) 2 (2.5%) 
END 0 (> 12) 0 (> 54) 1 (>   49) 1 (1.4%) 
HAT 0 (> 21) 1 (> 60) 1 (>   90) 2 (1.3%) 

HYSD 0 (> 15) 3 (> 21) 5 (>   88) 8 (4.4%) 
 

      

      

      

Figure G-3 X̄ plots for preparation, wrap-up, and turnover durations 

A summary of the cases that were removed due to being outliers caused by special conditions 

is shown in Table C-2. It sums all cases that were eliminated from each of the difference 

procedures. In total, 17 cases were eliminated due to errors and 47 due to outliers.  
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G.3 Data Exploration 

Data exploration was needed prior to creating the models in order to determine how different 

variables interact and impact the outcome. In this instance, the variables to consider include the 

surgery, room, anesthesia, and patient variables (Table G-1). A breakdown of the variables is 

shown in Table G-5.  

Table G-5 Surgical duration variables breakdown 
Variable Factors Values 

ASA Score 5 1, 2, 3, 4, 5 

Patient Status 3 Day surgery (DS), Inpatient (INPT), Same day admittance (SDA) 

Age (min-max) -- 20-91 

Sex 2 Female, Male 

Room Description 11 01, 02, 03, 04, 07, 08, 09, 11, 12, 14, 15 

Day of the Week 5 Monday—Friday 

Case Service 3 Cardiac Vascular OBGYN 

Primary Procedure Description 6 CABG AVR MVR END HAT HYSD 

Scheduled Main Surgeon 37 8 8 8 2 23 21 

Scheduled Anesthesiologist 55 21 19 16 32 37 38 

Anesthesia Type 22 6 6 4 3 14 9 

# of Procedures (min-max) -- 1-3 1-3 1-3 1-2 1-7 1-4 

Surgeon Estimate (min-max  
 mean 
 median, mode) 

-- 60-345 
299 

300, 300 

240-390 
301 

300, 300 

240-465 
301 

300, 300 

120-270 
205 

195, 195 

60-375 
170 

165, 120 

45-105 
62 

60, 60 

 

Also, it may be beneficial to break the case duration into the separate parts of surgery 

(preparation, anesthesia, procedure, wrap-up, turnover) as the variables may affect each section 

differently and the durations may be more accurately predicted separately. Analysis was done to 

assess (1) correlation of the surgery parts to the overall case duration, (2) shape and spread of the 

duration distributions for each procedure, and (3) which variables to include in the model.  
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G.3.1 Correlation 

The correlation between the case parts and total case duration was assessed using a 

correlation matrix for all cases together (Figure G-4) and separated by procedure (Figure G-5).  

 
Figure G-4 Correlation matrix for all cases 

 
Figure G-5 Correlation matrix for each procedure 
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The correlation matrix includes three elements in total: a scatter plot with locally weighted 

smoothing (LOESS) (lower panel), histograms (diagonal panel), and Spearman correlation with 

p-values (upper panel). The upper panel is coloured based on significance—blue indicates a 

positive correlation, white for no correlation, and red for a negative correlation—and if the p-

value is greater than 0.05 it shows as “insignificant”. The LOESS method of fitting a smooth 

curve and Spearman correlation method were used to account for possibly non-parametric data.  

With cases separated by procedure, there are three parts of surgery which consistently have 

correlation to the full case duration (and to each other): anesthesia, procedure, and wrap-up 

durations. Procedure duration has the highest positive correlation to case duration (0.75-0.98) 

with anesthesia duration being the next highest (0.45-0.67) for all procedures. With both these 

parts of surgery having a positive correlation to the total case duration, it is unsurprising that 

procedure and anesthesia also have a positive correlation to each other (0.21-0.43) for all 

procedures but END. The wrap-up duration is only significant for non-cardiac surgeries (END, 

HAT, HYSD) and is positively correlated to case duration (0.29, 0.46, 0.39) and anesthesia 

duration (0.33, 0.39, 0.09). All other interactions have only a single procedure for which the 

correlation is significant.  

When all the cases are assessed together there is significant positive correlation between all 

surgery parts including total case duration, with the exception of preparation duration which has 

no significant correlation to any other section. There was no correlation for preparation when 

separated by procedure either, so preparation duration has no relation to any other part of surgery 

or dependence on procedure type. Alternatively, as turnover time did not have significant 

correlation for most cases when separated by procedure but did correlate when assessed with all 

cases, it shows that the procedure type does have a significant impact on turnover duration.  
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G.3.2 Duration Distributions 

With correlation assessed, the next step was to assess the shape of each duration distribution. 

Based on the literature [34], it was expected that a lognormal distribution would best suit the 

duration values. This was visualized using histogram/density plots and lognormal-transformed 

quantile-quantile (QQ) plots—both for the case duration as a whole (Figure G-6) and for 

different surgical parts (Figure G-7)—and tested using a Shapiro-Wilk test (Table G-6).  

Based on the QQ plots, the case duration distribution for each procedure fit well to 

lognormal, though outliers on the high end of the durations tend to skew from the trend. A 

similar spread is seen for some of the surgical parts: procedure, anesthesia, and wrap-up 

durations. The procedure and anesthesia durations match the curve for the lognormal distribution 

even more closely than the full case duration, with only mild deviations in the upper outliers. 

The wrap-up duration, though it mostly fits well to the lognormal distribution, shows more 

deviation at both ends and often a steeper slope than expected in the QQ plots such as with the 

CABG, END, and HYSD procedures. The preparation durations do not fit well to a normal or 

lognormal distribution.  

 
Figure G-6 Case duration distributions 
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Figure G-7 Surgery parts duration distributions 
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The Shapiro-Wilk test was used to further justify the distribution shapes. The test was 

completed for each duration with the original data and after being lognormally transformed. The 

results are shown in Table G-6. A p-value of greater than 0.05 indicates that the assumption of a 

normal distribution (or lognormal, for the transformed data) could not be dismissed. With the 

original data, the assumption that the distribution was normal was rejected for all but one 

duration (END, anesthesia). After transforming the data, the lognormal distribution was still 

rejected for all preparation duration and all but one wrap-up duration (HAT) but was not rejected 

for the majority of anesthesia and procedure durations.  

Table G-6 Normal vs Lognormal Shapiro-Wilk Test 
Procedure Duration Normal p-value Lognormal p-value 

 CABG Preparation 3.65E-21 5.39E-14 
 Anesthesia 6.19E-12 0.051505 
 Procedure 6.41E-10 0.069601 
 Wrap-up 1.01E-15 0.000476 
 Case 1.4E-08 0.032119 

AVR Preparation 2.89E-11 3.53E-07 
 Anesthesia 0.014565 0.91197 
 Procedure 1.61E-08 0.003839 
 Wrap-up 3.47E-11 0.045742 
 Case 8.38E-08 0.001854 

MVR Preparation 4.75E-05 3.57E-05 
 Anesthesia 0.000191 0.089918 
 Procedure 0.002164 0.439039 
 Wrap-up 0.000209 0.005584 
 Case 0.001966 0.419931 

END Preparation 8.62E-12 4.57E-09 
 Anesthesia 0.072982 0.80006 
 Procedure 0.009995 0.550684 
 Wrap-up 1.87E-07 0.041524 
 Case 0.000315 0.017599 

HAT Preparation 5.09E-15 1.72E-08 
 Anesthesia 1.88E-07 0.027585 
 Procedure 5.5E-08 0.499293 
 Wrap-up 1.38E-10 0.33584 
 Case 8.38E-06 0.06378 

HYSD Preparation 1.72E-13 6.44E-08 
 Anesthesia 1.32E-10 0.046536 
 Procedure 1.38E-10 0.000835 
 Wrap-up 6.92E-08 2.8E-06 
 Case 6.81E-08 0.023581 

•  p-value > 0.01 

•   
•  p-value > 0.05 



 LVII 

Based on the results of the Shapiro-Wilk tests and the analysis of the visual tests, a lognormal 

transformation of the data is likely to create more accurate predictions for anesthesia and 

procedure durations in a linear model. The same is true for predicting the full case durations and 

wrap-up durations, but to a lesser extent as they did not fit the lognormal distribution as well as 

the anesthesia and procedure durations did. However, due to the wrap-up durations having a 

smaller range and accounting for a smaller proportion of the total case duration, a constant value 

specific to each procedure may also by a viable option for prediction. As the preparation 

durations did not fit a normal or lognormal distribution, have the smallest range, and account for 

the smallest proportion of the total duration, they would be best represented by constant values 

specific to each procedure.  

G.3.3 Variables to Include in the Model 

When it comes to variable selection, the type of model being generated is very important. For 

an explanatory model, the goal is to identify variables with a statistically significant impact on 

the outcome. However, for a predictive model it is not necessary for the variables to have a 

theoretically or statistically important impact that can be proven—the main goal is to produce 

accurate predictions, not to explain why or how it works. For predictive modeling, the main 

obstruction to including a variable lies in when the data are available. For example, including a 

variable about whether a surgery starts on time could aide in predicting duration but cannot be 

known until the surgery starts and so cannot be included in the model. Since availability and 

association are the main reasons for including variables in a predictive model, all of the variables 

discussed previously can be included. Therefore, a total of 13 variables are included, of which 

ten are categorical variables and three are continuous (see again Table G-5 for details on the 

factor levels for each variable).  
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When creating the models, the variables of anesthesia type, anesthesiologist, surgeon, and 

room number need to be given extra consideration as they have some values which occur very 

rarely and may have new values added that do not occur in the test data used to create the models 

(i.e., if a new surgeon begins working at the hospital). Therefore, we must ensure that these 

factors will not cause overfitting and that the model will not fail if a new value is added.  

G.4 Model Generation 

Three models were created to be compared against the current slating method of surgeon 

estimates. The three types of models created were (1) a simple moving average (SMA) model, 

(2) a linear mixed effects (LME) model for which two variations were completed, and (3) a 

random forest (RF) model. For the models which required training (LME and RF), the data were 

randomly separated using R [52] such that approximately 80% of the data were assigned for 

training and the remaining data for testing the models.  

G.4.1 Simple Moving Average Model 

Using the R “dplyr” package [53], the surgeries were grouped by procedure and arranged by 

date. The “zoo” package [54] was then used to calculate a moving average using the previous 19 

cases as the predicted duration for the next case. As 19 values were required to create the moving 

average, the first 19 cases for each procedure had no prediction; estimates were created for all 

other cases.  

G.4.2 Linear Mixed Effects Model 

Before creating the LME model, the input variables were defined as either fixed or random 

effects. Fixed variables include the continuous variables of surgeon estimate, number of 

procedures, and age, as well as the categorical variables of sex, patient status, ASA score, and 
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day of the week. The random variables are case service, room number, anesthesiologist, and 

anesthesia type, while primary procedure and surgeon are random nested variables within case 

service. No interactions between variables were included and, for the random effects, only 

random intercepts were included, not random slopes.  

Two different models were created using this method, one which used only a single LME 

model with the total case duration as the output (LME-case) and another which used a sum of 

LME models and constant values with the durations of each part of the surgery as outputs (LME-

part). These two variations were created to determine if splitting the case into its parts would 

improve the estimate accuracy or if the less complex method of only using the case duration is 

adequate. Based on the data exploration completed, the preparation and wrap-up durations were 

calculated as constant values for each procedure while the anesthesia, procedure, and total case 

durations were found using LME models with log-transformed duration data.  

The training data were used to create the models. To calculate the constant values, the 

“dplyr” package [53] was used to group surgeries by procedure and calculate the mean 

preparation and wrap-up durations for each procedure. The LME models for anesthesia, 

procedure, and case durations were created using the “lme4” package [55]. The “dplyr” package 

was again used to assign the appropriate constant values to the test data for both preparation and 

wrap-up durations. Core R code from the “stats” package [52] was used to predict the anesthesia, 

procedure, and case durations for the test data using the LME models and then the results were 

back-transformed. The predicted case durations constitute the first variation of LME model 

results (LME-case) to be compared against the surgeon estimate, while the sum of the 

predictions for preparation, anesthesia, procedure, and wrap-up durations constitute the second 

(LME-part).  
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G.4.3 Random Forest Model 

The first step in creating the RF model was to group the uncommon factors into a new factor 

named “other” in order to prevent failure in the event of a new factor level being used that was 

not in the training data. The “dplyr” [53] and “forcats” packages [56] were used to form these 

new groups. Four of the thirteen variables required the new level to be added: room number (11 

levels, 3 with <20 occurrences), surgeons (37 levels, 8 with <3 occurrences), anesthesiologist (51 

levels, 23 with <12 occurrences), and anesthesia type (22 levels, 4 with <2 occurrences).  

The RF model was created with the training data using the “randomForest” package [57], 

with case duration as the output and all 13 variables included. The “randomForest” package was 

also used to determine the optimal number of variables randomly sampled for splitting at each 

tree node which was found to be four (mtry, Figure G-8), as well as to measure and graph variable 

importance (Figure G-9). As with the LME models, core R code from the “stats” package [52] 

was then used to predict the case durations for the test data using the RF model and then the 

results were back-transformed.  

 
Figure G-8 Optimal value of mtry for randomForest 

     
Figure G-9 Variable importance dot-chart 
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G.5 Model Testing 

Two rounds of testing were completed for the models. The first was done using the 20% of 

remaining cases which had been separated from the model training data, after filtering for only 

cases which also had a SMA prediction (eliminating any predictions which were provided for the 

first 19 cases of each procedure). The second round of testing used new data for cases occurring 

from Apr’18 to Jul’19 to test how well the models perform on new, unfiltered data over an 

extended period of time. The new data were edited for errors but not for outliers. The number of 

cases compared for each procedure in the two rounds of testing is shown in Table G-7. 

Table G-7 Cases included in each round of testing 
Values Total CABG AVR MVR END HAT HYSD 

Round 1 210 88 31 7 12 28 44 

Round 2 1314 498 209 104 82 227 194 

Total 1524 586 240 111 94 255 238 

 

In each round of testing the prediction errors were compiled and compared against the 

surgeon errors. To account for the surgeon estimates including turnover times while the new 

models did not, the average turnover time for each procedure from the associated data set was 

subtracted from the surgeon estimate for cases which were not the only or last case of the day.  

Each of the models were compared against the surgeon estimate for all cases combined and 

for each procedure individually. The values used to compare the estimation methods are percent 

of cases which finished on-time, percent of cases improved from the surgeon estimate, process 

sigma value, error distribution values (mean, standard deviation, minimum, maximum), and error 

sums (overtime, undertime, sum of absolute error, sum of error). Values which showed an 

improvement from the surgeon estimate are filled green and the best result for each value is 

coloured more darkly. Scatterplots of the estimates vs. actual durations were also assessed for all 

cases combined and for each procedure. 
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G.5.1 Model Testing – Round 1, original data 

The values used to compare the models based on the predictions generated in the first round 

of testing are shown in Table G-8 for all cases combined and Table G-9 to Table G-14 for each 

procedure (CABG, AVR, MVR, END, HAT, HYSD). The predictions are visualized against the 

actual durations using scatter plots for all cases/models combined (Figure G-10) and separated 

by model and procedure (Figure G-11). Due to some procedures having few cases (MVR, END) 

the majority of analysis completed in Section 3.3.4.2 is not based on this round of testing.  

Table G-8 Round 1, All Cases: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 210 210 210 210 210 
Improved cases (%) -- 63.3 68.1 66.7 66.7 
On-time cases, yield (%) 25.2 31.9 36.7 33.8 32.9 
Short term process sigma (1.5 shift) 0.83 1.03 1.16 1.08 1.06 
Mean error -38.4 -0.9 -4.7 -5.5 0.0 
Standard deviation error 76.3 68.0 55.1 55.1 53.8 
Minimum error -343 -265 -219 -226 -219 
Maximum error 94 160 159 159 163 
Sum of undertime (+ error) 2136 4931 3504 3439 3924 
Sum of overtime (- error) -10203 -5112 -4486 -4587 -3915 
Sum of |error| 12339 10043 7990 8026 7839 
Sum of error -8066 -180 -982 -1148 9 

 

 
Figure G-10 Round 1, All Cases: Estimated duration vs actual duration scatter plot 
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Table G-9 Round 1, CABG: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 88 88 88 88 88 
Improved cases (%) -- 63.6 70.5 70.5 70.5 
On-time cases, yield (%) 13.6 17.0 19.3 21.6 21.6 
Short term process sigma (1.5 shift) 0.40 0.55 0.63 0.71 0.71 
Mean error -69.0 6.3 1.2 0.5 0.3 
Standard deviation error 76.8 75.5 62.2 62.0 59.0 
Minimum error -343 -216 -208 -198 -206 
Maximum error 71 154 159 159 163 
Sum of undertime (+ error) 457 2876 2139 2097 1952 
Sum of overtime (- error) -6532 -2323 -2034 -2057 -1921 
Sum of |error| 6989 5199 4174 4154 3873 
Sum of error -6076 552 105 41 31 

 

Table G-10 Round 1, AVR: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 31 31 31 31 31 
Improved cases (%) -- 61.3 61.3 61.3 54.8 
On-time cases, yield (%) 29.0 22.6 22.6 16.1 12.9 
Short term process sigma (1.5 shift) 0.95 0.75 0.75 0.51 0.37 
Mean error -57.9 -13.8 -21.4 -22.5 -9.8 
Standard deviation error 87.5 92.8 65.2 66.6 65.4 
Minimum error -296 -265 -219 -226 -219 
Maximum error 53 91 71 73 73 
Sum of undertime (+ error) 186 836 422 433 584 
Sum of overtime (- error) -1981 -1265 -1086 -1130 -889 
Sum of |error| 2167 2101 1508 1563 1474 
Sum of error -1796 -429 -664 -697 -305 

 

Table G-11 Round 1, MVR: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 7 7 7 7 7 
Improved cases (%) -- 85.7 85.7 85.7 85.7 
On-time cases, yield (%) 0.0 14.3 14.3 14.3 14.3 
Short term process sigma (1.5 shift) -4.50 0.43 0.43 0.43 0.43 
Mean error -117.7 -35.7 -34.8 -31.9 -43.2 
Standard deviation error 100.3 105.8 91.1 89.4 94.5 
Minimum error -242 -154 -170 -165 -193 
Maximum error 74 160 100 99 95 
Sum of undertime (+ error) 74 170 148 143 130 
Sum of overtime (- error) -898 -420 -391 -366 -433 
Sum of |error| 972 590 539 509 563 
Sum of error -824 -250 -243 -223 -302 
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Table G-12 Round 1, END: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 12 12 12 12 12 
Improved cases (%) -- 50.0 58.3 58.3 50.0 
On-time cases, yield (%) 50.0 50.0 50.0 50.0 33.3 
Short term process sigma (1.5 shift) 1.50 1.50 1.50 1.50 1.07 
Mean error 22.5 -7.2 -7.7 -7.1 3.5 
Standard deviation error 34.2 30.8 29.5 30.0 31.4 
Minimum error -26 -76 -67 -64 -53 
Maximum error 94 27 30 31 50 
Sum of undertime (+ error) 302 91 82 89 176 
Sum of overtime (- error) -31 -178 -174 -175 -134 
Sum of |error| 333 269 256 264 309 
Sum of error 270 -86 -92 -86 42 

 

Table G-13 Round 1, HAT: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 28 28 28 28 28 
Improved cases (%) -- 42.9 50.0 46.4 46.4 
On-time cases, yield (%) 14.3 10.7 32.1 21.4 10.7 
Short term process sigma (1.5 shift) 0.43 0.26 1.04 0.71 0.26 
Mean error -1.3 6.4 5.2 2.0 20.1 
Standard deviation error 48.5 62.7 56.7 56.3 53.4 
Minimum error -102 -149 -132 -134 -116 
Maximum error 90 72 104 85 100 
Sum of undertime (+ error) 542 810 662 623 939 
Sum of overtime (- error) -579 -629 -517 -567 -375 
Sum of |error| 1121 1439 1179 1190 1314 
Sum of error -37 181 145 56 564 

 

Table G-14 Round 1, HYSD: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 44 44 44 44 44 
Improved cases (%) -- 77.3 79.5 75.0 81.8 
On-time cases, yield (%) 50.0 79.5 84.1 79.5 86.4 
Short term process sigma (1.5 shift) 1.50 2.33 2.50 2.33 2.60 
Mean error 9.0 -3.4 -5.3 -5.4 -0.5 
Standard deviation error 19.6 12.1 9.4 9.7 9.1 
Minimum error -39 -32 -30 -30 -23 
Maximum error 62 12 13 9 19 
Sum of undertime (+ error) 577 149 51 54 143 
Sum of overtime (- error) -181 -296 -284 -292 -163 
Sum of |error| 758 445 335 345 306 
Sum of error 396 -148 -233 -238 -20 
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Figure G-11 Round 1, Model/Procedure: Estimated duration vs actual duration scatter plots 
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G.5.2 Model Testing – Round 2, new data 

The values used to compare the models based on the predictions generated in the second 

round of testing are shown in Table G-15 for all cases combined and Table G-16 to Table G-21 

for each of the procedures (CABG, AVR, MVR, END, HAT, HYSD). The predictions are 

visualized against the actual durations using scatter plots for all cases/models combined (Figure 

G-12) and separated by model and procedure (Figure G-13). A summary and analysis of the 

results is completed in Section 3.3.4.2.  

Table G-15 Round 2, All Cases: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 1314 1314 1314 1314 1314 
Improved cases (%) -- 63.4 74.7 74.3 70.2 
On-time cases, yield (%) 19.0 27.5 31.0 30.6 30.5 
Short term process sigma (1.5 shift) 0.62 0.90 1.00 0.99 0.99 
Mean error -65.0 -0.9 -21.5 -22.5 -23.1 
Standard deviation error 95.1 83.7 70.6 70.3 72.8 
Minimum error -528 -444 -409 -418 -439 
Maximum error 206 276 253 245 239 
Sum of undertime (+ error) 10245 38293 18079 17269 18048 
Sum of overtime (- error) -95643 -39447 -46280 -46844 -48444 
Sum of |error| 105888 77740 64360 64113 66492 
Sum of error -85398  -1154  -28201  -29574  -30396 

 

 
Figure G-12 Round 2, All Cases: Estimated duration vs actual duration scatter plot 
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Table G-16 Round 2, CABG: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 498 498 498 498 498 
Improved cases (%) -- 73.1 85.7 85.9 79.3 
On-time cases, yield (%) 5.0 16.3 17.9 17.7 18.3 
Short term process sigma (1.5 shift) -0.14 0.52 0.58 0.57 0.59 
Mean error -110.3 -0.2 -39.5 -40.8 -47.0 
Standard deviation error 88.3 89.3 76.0 76.0 77.5 
Minimum error -453 -337 -343 -349 -363 
Maximum error 206 276 253 245 239 
Sum of undertime (+ error) 993 17266 5703 5489 4866 
Sum of overtime (- error) -55918 -17355 -25389 -25791 -28255 
Sum of |error| 56911 34621 31092 31281 33121 
Sum of error -54925 -89 -19686 -20302 -23389 

 

Table G-17 Round 2, AVR: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 209 209 209 209 209 
Improved cases (%) -- 60.8 73.7 72.7 68.4 
On-time cases, yield (%) 10.0 11.5 14.4 15.8 15.8 
Short term process sigma (1.5 shift) 0.22 0.30 0.44 0.50 0.50 
Mean error -88.1 -5.7 -41.3 -41.6 -34.9 
Standard deviation error 110.3 111.9 88.3 87.6 86.2 
Minimum error -528 -444 -372 -373 -390 
Maximum error 108 222 145 146 117 
Sum of undertime (+ error) 1675 8520 2924 2838 3252 
Sum of overtime (- error) -20089 -9717 -11559 -11525 -10551 
Sum of |error| 21763 18236 14483 14363 13802 
Sum of error -18414 -1197 -8635 -8687 -7299 

 

Table G-18 Round 2, MVR: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 104 104 104 104 104 
Improved cases (%) -- 62.5 65.4 64.4 69.2 
On-time cases, yield (%) 7.7 11.5 6.7 4.8 13.5 
Short term process sigma (1.5 shift) 0.07 0.30 0.00 -0.16 0.40 
Mean error -104.5 -0.1 0.0 -3.2 -26.7 
Standard deviation error 116.3 121.4 92.0 91.9 101.2 
Minimum error -462 -353 -409 -418 -439 
Maximum error 82 205 162 158 162 
Sum of undertime (+ error) 763 5004 3747 3586 2628 
Sum of overtime (- error) -11633 -5016 -3750 -3918 -5407 
Sum of |error| 12397 10020 7497 7505 8035 
Sum of error -10870 -13 -4 -332 -2779 
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Table G-19 Round 2, END: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 82 82 82 82 82 
Improved cases (%) -- 69.5 70.7 72.0 72.0 
On-time cases, yield (%) 24.4 39.0 41.5 41.5 41.5 
Short term process sigma (1.5 shift) 0.81 1.22 1.28 1.28 1.28 
Mean error 13.5 2.2 -6.9 -6.6 1.3 
Standard deviation error 50.8 26.7 28.0 27.6 26.5 
Minimum error -109 -62 -80 -84 -72 
Maximum error 107 45 52 49 48 
Sum of undertime (+ error) 2259 1010 639 627 934 
Sum of overtime (- error) -1151 -827 -1208 -1170 -826 
Sum of |error| 3410 1838 1848 1797 1761 
Sum of error 1108 183 -569 -543 108 

 

Table G-20 Round 2, HAT: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 227 227 227 227 227 
Improved cases (%) -- 44.5 57.3 54.6 53.3 
On-time cases, yield (%) 26.9 22.0 30.4 29.5 30.8 
Short term process sigma (1.5 shift) 0.88 0.73 0.99 0.96 1.00 
Mean error -15.3 -0.2 4.8 4.0 9.0 
Standard deviation error 44.7 67.0 49.1 48.2 48.9 
Minimum error -169 -361 -308 -316 -321 
Maximum error 128 109 151 139 119 
Sum of undertime (+ error) 2402 5512 4524 4310 4980 
Sum of overtime (- error) -5880 -5567 -3431 -3411 -2946 
Sum of |error| 8281 11079 7955 7721 7926 
Sum of error -3478 -55 1093 899 2033 

 

Table G-21 Round 2, HYSD: Comparison of surgery duration estimate methods 
Values Surgeon SMA LME-case LME-part RF 
Total cases 194 194 194 194 194 
Improved cases (%) -- 61.3 74.7 75.3 68.6 
On-time cases, yield (%) 59.3 83.5 91.8 90.2 82.0 
Short term process sigma (1.5 shift) 1.73 2.47 2.89 2.79 2.41 
Mean error 6.1 0.1 -2.1 -3.1 4.8 
Standard deviation error 20.1 15.0 12.6 12.5 12.2 
Minimum error -60 -104 -94 -96 -45 
Maximum error 71 28 27 12 60 
Sum of undertime (+ error) 2154 982 543 419 1388 
Sum of overtime (- error) -973 -964 -942 -1028 -459 
Sum of |error| 3127 1945 1485 1447 1847 
Sum of error 1181 18 -399 -609 930 
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Figure G-13 Round 2, Model/Procedure: Estimated duration vs actual duration scatter plots 
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G.6 Model Code/Functions 

To generate predictions, three steps were taken. First, functions were created which include 

all data needed to generate predictions. Second, data were manipulated as needed. And finally, 

the data and functions were used to generate predictions that were combined to one data-frame, 

which could then be used to compare the results from each method against the surgeon estimates.  

G.6.1 Functions 

Functions were created so that they could be used multiple times and generate predictions for 

different data, dependent on the data read into it. Within each function is the information needed 

to create the model and the code to generate predictions; the predictions are returned. The 

models and associated functions used to create them are: SMA (SMAmodel function), LME-case 

(LMEmodel function), LME-part (2 LMEmodel functions + 2 constantModel functions), and RF 

(RFmodel function). Figure G-14 to Figure G-17 show the coding used to create these functions.  

 
Figure G-14 SMAmodel Function 
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Figure G-15 LMEmodel Function 
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Figure G-16 ConstantModel Function 

 
Figure G-17 RFmodel Function 

G.6.2 Round 1: Data and Predictions 

For round 1 of testing the models, the data from April 2017 to April 2018 which had been 

filtered and edited for errors were used. It was separated into two sets of data: training and 

testing (Figure G-18).  
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Figure G-18 Round 1: Data 

The data required additional manipulation before being used in the RF model (Figure G-19). 

This was due to some categorical variables (variableDesc) having too many or very rare factor 

levels. After determining the maximum number of factors that should be keep, a minimum 

number of occurrences was determined for each variable (variableMin), such that any factors 

with fewer occurrences would be grouped together in a new category called “Other”. After this, 

the data were separated into training and testing data in the same manner as the original data.  

 
Figure G-19 Round 1: RF Data, additional editing 
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Predictions were generated for each of the four models using the functions and data 

described. The results from each model—along with variables from the original data (date, 

procedure, actual duration, and surgeon estimate)—were then combined into a single data-frame 

(Figure G-20).  

 
Figure G-20 Round 1: Predictions 

G.6.3 Round 2: Data and Predictions 

Data for the second round of model testing were from April 2018 to July 2019. These data 

had already been filtered in the same way as the data for the first round of testing. In order to 

properly use the data for the models, however, some additional work had to be done (Figure 

G-21). There were three variations on the new data produced: the new data alone (newcasedata), 

round one and round two data joined (alldata), and the new data and round one test data joined 
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(alltestdata). By joining the data with the round one data first, all original factor levels were 

maintained and any new factor levels from the round two data were added on after them.  

 
Figure G-21 Round 2: Data 

As in the first round of testing, the data required additional manipulation before they could 

be used for the RF model (Figure G-22). Unlike the LME model which allows for new factor 

levels, the RF model requires all factor levels for the data-frame returning predictions to be 

exactly the same as those available in the training data. Therefore, all factor-based variables in 

the data were edited such that the original factors were available (even if not in the new data) and 

any factors which were not present in the round one data were renamed as “Other”.  Once the 

factors were cleaned up, the new data were joined to the old to ensure that the factor levels were 

maintained.  
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Figure G-22 Round 2: RF Data, additional editing 

Predictions were generated for the second round of testing in a similar way to the first 

(Figure G-23). The training data remained the same, but the testing data varied. For the SMA 

predictions, all of the combined data were used so that the same first 19 cases would have no 

prediction, but all other cases would—including every value in the new data set. For the LME 

models, the new and original test data combined were used as the new test data. This was done to 

ensure that the factor levels were maintained with the new factors being added to the end, as 

already discussed. The data which had been edited and added to the original RF data were used 

to generate predictions for the RF model. These data included all cases from both data sets (the 

same as the data used for the SMA model, but with different factor levels). Once all predictions 

were generated and combined, the data-frame was filtered so that only cases from the new data 

(Apr’18-Jul’19) remained.  
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Figure G-23 Round 2: Predictions  



 LXXVIII 

APPENDIX REFERENCES 

[1]  Mind Tools, "Frederick Taylor and Scientific Management," 2016. [Online]. Available: 

https://www.mindtools.com/pages/article/newTMM_Taylor.htm. 

[2]  Six Sigma Daily, "Henry Ford and the Roots of Lean Manufacturing," December 2017. 

[Online]. Available: https://www.sixsigmadaily.com/henry-ford-lean-

manufacturing/. 

[3]  T. Hessing, "Walter A. Shewhart," SixSigmaStudyGuide.com, 2019. [Online]. 

Available: https://sixsigmastudyguide.com/shewhart/. 

[4]  Naomi, "W. Edwards Deming," SixSigmaStudyGuide.com, 2016. [Online]. Available: 

https://sixsigmastudyguide.com/william-edwards-deming/. 

[5]  E. Swan, "Grand-Daddy of Quality: Dr. W. Edwards Deming," Go Lean Six Sigma, 

October 2019. [Online]. Available: https://goleansixsigma.com/dr-w-edwards-

deming-grand-daddy-quality/. 

[6]  T. Hessing, "Juran, Joseph M.," SixSigmaStudyGuide.com, 2017. [Online]. Available: 

https://sixsigmastudyguide.com/juran/. 

[7]  J. L. Smith, "Management: The Lasting Legacy of the Modern Quality Giants," Quality 

Magazine, October 2011. [Online]. Available: 

https://www.qualitymag.com/articles/88493-management--the-lasting-legacy-of-the-

modern-quality-giants. 

[8]  Naomi, "Genichi Taguchi," SixSigmaStudyGuide.com, 2017. [Online]. Available: 

https://sixsigmastudyguide.com/genichi-taguchi/. 



 LXXIX 

[9]  ReliaSoft Corporation, "Taguchi Robust Design for Product Improvement," Reliability 

HotWire, April 2011. [Online]. Available: 

https://www.weibull.com/hotwire/issue122/hottopics122.htm. 

[10]  British Library, "Philip Crosby: A Zero Defects Thinker," 2015. [Online]. Available: 

https://www.bl.uk/people/philip-crosby. 

[11]  Strategos, "A History of Lean Manufacturing," February 2016. [Online]. Available: 

http://www.strategosinc.com/just_in_time.htm. 

[12]  R. Coetzee, K. van der Merwe and L. van Dyk, "Lean Implementation Strategies: How 

Are the Toyota Way Principles Addressed?," South African Journal of Industrial 

Engineering, vol. 27, no. 3, p. 

https://pdfs.semanticscholar.org/bdc7/6c915465a5cc0b21d4bc4a18943decd961c3.pd

f, November 2016.  

[13]  Kanbanchi + G Suite, "What is Kaizen?," May 2015. [Online]. Available: 

https://www.kanbanchi.com/what-is-kaizen. 

[14]  J. P. Womack, D. T. Jones and D. Roos, The Machine That Changed the World, New 

York, NY: Simon & Schuster, 2007.  

[15]  J. P. Womack and D. T. Jones, Lean Thinking: Banish Waste and Create Wealth in 

Your Corporation, New York, NY: Simon & Schuster, 1996.  

[16]  B. Emiliani, "Is Lean the Same as TPS?," April 2016. [Online]. Available: 

https://bobemiliani.com/is-lean-the-same-as-tps/. 

[17]  Shmula.com, "Six Sigma DMAIC Training Table of Contents," 2020. [Online]. 

Available: https://www.shmula.com/six-sigma-dmaic-training-table-of-contents/. 



 LXXX 

[18]  H. S. Gitlow and D. M. Levine, Six Sigma for Green Belts and Champions : 

Foundations, DMAIC, Tools, Cases, and Certification, Pearson Education, Inc. , 

2005.  

[19]  B. Wheat, C. Mills and M. Carnell, Leaning into Six Sigma: The Path to Integration of 

Lean Enterprise and Six Sigma, Boulder City, Nev.: Pub. Partners, 2001.  

[20]  C. Intrieri, "What is Lean Six Sigma: A Combined Management Approach," Cerasis, 

October 2013. [Online]. Available: https://cerasis.com/what-is-lean-six-sigma/. 

[21]  Z. ShahabiKargar, S. Khanna, N. Good, A. Sattar, J. Lind and J. O'Dwyer, "Predicting 

Procedure Duration to Improve Scheduling of Elective Surgery," PRICAI: Trends in 

Artificial Intelligence, Lecture Notes in Computer Science, vol. LNCS vol 8862, pp. 

998-1009, 2014.  

[22]  N. Hosseini, C. Jankowski and K. Pasupathy, "Surgical Duration Estimation via Data 

Mining and Predictive Modeling: A Case Study," AMIA Annual Symposium 

Proceedings, vol. 2015, pp. 640-648, 2015.  

[23]  J. J. Pandit, "Rational planning of operating lists: a prospective comparison of ‘booking 

to the mean’ vs. ‘probabilistic case scheduling’ in urology," Anesthesia, vol. 75, pp. 

642-647, 2020.  

[24]  A. Larsson, "The accuracy of surgery time estimations," Production Planning & 

Control, vol. 24, pp. 891-902, 2013.  

[25]  R. K. Shukla, J. S. Ketcham and Y. A. Ozcan, "Comparison of Subjective versus Data 

Base Approaches for Improving Efficiency of Operating Room Scheduling," Health 

Services Management Research, vol. 3, no. 2, pp. 74-81, 1990.  



 LXXXI 

[26]  P. Stepaniak, C. Heij and G. De Vries, "Modeling and prediction of surgical procedure 

times," Statistica Neerlandica, vol. 64, no. 1, p. 1–18, 2010.  

[27]  F. Dexter and J. Ledolter, "Bayesian prediction bounds and comparisons of operating 

room times even for procedures with few or no historic data," Anesthesiology, vol. 

103, no. 6, p. 1259–1267, 2005.  

[28]  F. Dexter, J. Ledolter, V. Tiwari and R. Epstein, "Value of a scheduled duration 

quantified in terms of equivalent numbers of historical cases," Anesthesia & 

Analgesia, vol. 117, no. 1, p. 205– 210, 2013.  

[29]  Y. Jiao, A. Sharma, A. B. Abdallah, T. M. Maddox and T. Kannampallil, "Probabilistic 

forecasting of surgical case duration using machine learning: model development and 

validation," Journal of the American Medical Informatics Association, vol. 27, no. 

12, p. 1885–1893, 2020.  

[30]  C. Combes, N. Meskens, C. Rivat and J. Vandamme, "Using a KDD process to forecast 

the duration of surgery," International Journal of Production Economics, vol. 112, 

no. 1, p. 279–293, 2008.  

[31]  S. Devi, K. Rao and S. Sangeetha, "Prediction of surgery times and scheduling of 

operation theaters in optholmology department," Journal of Medical Systems, vol. 

36, no. 2, p. 415–430, 2012.  

[32]  M. P. Davila, "A Methodology for Scheduling Operating Rooms Under Uncertainty," 

Scholar Commons: Graduate Theses and Dissertations, University of South Florida, 

2013. 



 LXXXII 

[33]  P. Joustra, R. Meester and H. van Ophem, "Can statisticians beat surgeons at the 

planning of operations?," Empir Econ, vol. 44, pp. 1697-1718, 2013.  

[34]  J. H. May, D. P. Strum and L. G. Vargas, "Fitting the Lognormal Distribution to 

Surgical Procedure Times," Decision Sciences, vol. 31, no. 1, pp. 129-148, 2000.  

[35]  Z. Shahabikargar, S. Khanna, A. Sattar and J. Lind, "Improved Prediction of Procedure 

Duration for Elective Surgery," Integrating and Connecting Care, vol. 2, pp. 133-

138, 2017.  

[36]  I. Wright, C. Kooperberg, B. Bonar and G. Bashein, "Statistical modeling to predict 

elective surgery time: Comparison with a computer scheduling system and surgeon- 

provided estimates," Anesthesiology, vol. 85, no. 6, p. 1235–1245, 1996.  

[37]  E. Kayıs, T. T. Khaniyev, J. Suermondt and K. Sylvester, "A robust estimation model 

for surgery durations with temporal, operational, and surgery team effects," Health 

Care Management Science, vol. 18, pp. 222-233, 2015.  

[38]  E. Edelman, S. van Kuijk, A. Hamaekers, M. de Korte, G. van Merode and W. Buhre, 

"Improving the Prediction of Total Surgical Procedure Time Using Linear 

Regression Modeling," Frontiers in Medicine, vol. 4, no. 85, pp. 1-5, 2017.  

[39]  J. Wang, J. Cabrera, K.-L. Tsui, H. Guo, M. Bakker and J. B. Kostis, "Predicting 

Surgery Duration from a New Perspective: Evaluation from a Database on Thoracic 

Surgery," 2017. [Online]. Available: http://arxiv.org/abs/1712.07809. 

[40]  M. A. Bartek, R. C. Saxena, S. Solomon, C. T. Fong, L. D. Behara, R. Venigandla, K. 

Velagapudi, J. D. Lang and B. G. Nair, "Improving Operating Room Efficiency: 



 LXXXIII 

Machine Learning Approach to Predict Case-Time Duration," Efficient Operating 

Room and Machine Learning, vol. 229, no. 4, pp. 346-354, 2019.  

[41]  K. W. Soh, J. Wallace, M. O'Sullivan, C. Walker and D. Grayson, "Case study of the 

prediction of elective surgery durations in a New Zealand teaching hospital," Int J 

Health Plann Mgmt, vol. 35, pp. 1593-1605, 2020.  

[42]  M. J. C. Eijkemans, M. van Houdenhoven, T. Nguyen, E. Boersma, E. W. Steyerberg 

and G. Kazemier, "Predicting the Unpredictable: A New Prediction Model for 

Operating Room Times Using Individual Characteristics and the Surgeon’s 

Estimate," Anesthesiology, vol. 112, pp. 41-49, 2010.  

[43]  UCLA Statistical Consulting Group, "Introduction to Linear Mixed Models," UCLA 

Institute for Digital Research & Education, [Online]. Available: 

http://stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/. 

[Accessed 2021]. 

[44]  G. Olbricht, "Lecture 34: Fixed vs. Random Effects," Purdue University, 04 2011. 

[Online]. Available: 

https://www.stat.purdue.edu/~ghobbs/STAT_512/Lecture_Notes/ANOVA/Topic_34.

pdf. [Accessed 2021]. 

[45]  G. K. Hajduk, "Introduction to Linear Mixed Models," Coding Club, 10 09 2019. 

[Online]. Available: http://ourcodingclub.github.io/tutorials/mixed-models/. 

[Accessed 2021]. 



 LXXXIV 

[46]  B. McGill, "Is it a fixed or random effect?," Dynamic Ecology, 04 11 2015. [Online]. 

Available: https://dynamicecology.wordpress.com/2015/11/04/is-it-a-fixed-or-

random-effect/. [Accessed 2021]. 

[47]  B. Winter, "A Very Basic Tutorial for Performing Linear Mixed Effects Analyses: 

Tutorial 2," University of California, Merced, Cognitive and Information Sciences, 

19 05 2014. [Online]. Available: 

http://www.bodowinter.com/uploads/1/2/9/3/129362560/bw_lme_tutorial2.pdf. 

[Accessed 2021]. 

[48]  A. Chakure, "Random Forest Regression," Medium, 29 06 2019. [Online]. Available: 

https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f. 

[Accessed 2021]. 

[49]  D. Mwiti, "Random Forest Regression: When Does It Fail and Why," neptune.ai, 05 

2020. [Online]. Available: https://neptune.ai/blog/random-forest-regression-when-

does-it-fail-and-why. [Accessed 2021]. 

[50]  K. Powezka, P. Normahani, N. J. Standfield and U. Jaffer, "A novel team Familiarity 

Score for operating teams is a predictor of length of a procedure: A retrospective 

Bayesian analysis," Journal of Vascular Surgery, vol. 71, no. 3, pp. 959-966, 2020.  

[51]  S. Henrickson Parker, X. Lei, S. Fitzgibbons, T. Metzger, S. Safford and S. Kaplan, 

"The Impact of Surgical Team Familiarity on Length of Procedure and Length of 

Stay: Inconsistent Relationships Across Procedures, Team Members, and Sites," 

World Journal of Surgery, vol. 4, pp. 3658-3667, 2020.  

[52]  {R Core Team}, "R: A Language and Environment for Statistical Computing," 2021. 



 LXXXV 

[53]  H. Wickham, R. François, L. Henry and K. Müller, "dplyr: A Grammar of Data 

Manipulation," 2021.  

[54]  A. Zeileis and G. Grothendieck, "zoo: S3 Infrastructure for Regular and Irregular Time 

Series," Journal of Statistical Software, vol. 14, no. 6, pp. 1-27, 2005.  

[55]  D. Bates, M. Maechler, B. Bolker and S. Walker, "Fitting Linear Mixed-Effects Models 

Using {lme4}," Journal of Statistical Software, vol. 67, no. 1, pp. 1-48, 2015.  

[56]  H. Wickham, "forcats: Tools for Working with Categorical Variables (Factors)," R 

package version 0.5.1, 2021. [Online]. Available: https://CRAN.R-

project.org/package=forcats. 

[57]  M. W. Andy Liaw, "Classification and Regression by randomForest," R News, vol. 2, 

no. 3, pp. 18-22, 2002.  

 

 

 


