
The Effect of Movement on the Early Phase of an Epidemic

by

Jason Rose

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Mathematics

University of Manitoba

Winnipeg

Copyright c© 2016 by Jason Rose



Abstract

A Markov chain model for the early stochastic phase of the transmission of an in-

fectious pathogen is studied, investigating its properties in the case of an isolated

population and of two coupled populations with explicit movement of infectious in-

dividuals. Travel was found to play a role in the early development and spread of an

infectious disease, particularly in the case of differing basic reproduction numbers in

the connected locations.
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Introduction

Motivation

The movement of infectious diseases has been occurring and studied for millennia.

Rasmussen et al. in 2015 [34] found traces of Yersinia Pestis (the bacterium which

causes plague) in the teeth of seven skeletons - the oldest of which dating over 5000

years old. In [39], Thucydides, a historian and political philosopher (460 - 400 BC)

described a “plague” descending upon Athens. In slightly more recent times (1347-

1351 AD) the Black Death, one of the most devastating plagues ever to hit humanity,

arrived in Europe following trade routes from the far east and was responsible for

the deaths of an estimated 30-50% of European populations [16].

The 20th century saw the emergence of a number of newer diseases including

Lyme disease (1975), Legionnaire’s disease (1976), the human immunodeficiency

virus (HIV), hepatitis C (1989), hepatitis E (1990), and hantavirus (1993) [20].

In 2003, Severe Acute Respiratory Syndrome (SARS) surfaced for the first time

in China, becoming the first pandemic threat of the 21st century. Through mea-

sures invoked by the World Health Organization which included heightening public

awareness, screening of international travellers, isolation of infected individuals and

quarantining of close contacts with infected individuals, the spread of the disease

was successfully arrested [36].

Aside from the threat to human life, many infectious diseases carry a severe
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monetary cost as well. For example, in 2010, Thompson et al showed that the

monetary cost of eradication of poliomyelitis (polio) is smaller in the long run than

control measures (i.e., less intense vaccination programs) [38]. In US dollars, they

estimate the worldwide net benefits of global eradication of polio to be $40-$50 billion

between 1988 and 2035. Between 1967 and 1980, a global effort was made to achieve

the eradication of smallpox. The World Health Organisation (WHO) approximates

the cost of the scheme to be $300 million US dollars, but since then, the annual

worldwide benefit of the eradication of smallpox is estimated to be over $1 billion

[33].

With the constant emergence and reemergence of infectious diseases along with

increasing interconnectivity of virtually every region of the world due to air travel, it

has become more and more important to study the dynamics of disease transmission

and to build frameworks for studying disease transmission which can be adapted

to different diseases. Consider Figure 1, generated from the data in [12]. From

the figure, we can clearly see a steady upward trend in the number of enplaning

and deplaning passengers in Canada since 2003, except for the small slump in 2009

coinciding with the worldwide economic downturn that started at that time.

With these rising figures in air travel comes an increased danger in worldwide

pandemics. Aside from the increase in air travel, global interconnectedness is in-

creasing in other ways as well. For example, in Canada, the number of vehicles per

1000 members of the population rose from 292 to 581 from 1960 to 2002 [15]. With

increased number of vehicles comes increased interconnectivity between people liv-

ing in cities and those in the rural communities or satellite towns. Every additional

passenger travelling out of a disease-stricken region brings with him or her an addi-

tional risk of the movement of an infectious disease, and with these increased dangers

comes an increased need for disease modelling capable of accounting for these new

dangers.
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Compartmental framework for disease modelling

In order to model disease movement, it is convenient to divide the at-risk population

into distinct compartments representing the affected population’s status with respect

to the disease in question. For example, when a disease is active in a population, some

members of the population have not yet contracted the disease, so those individuals

would be classified as susceptible. Also present in the population are individuals who

have already contracted the disease and are currently infectious, and are classified

as such. Depending on the disease, there can be other compartments; for example,

some diseases leave individuals with immunity to the disease after the infectious

period has ceased. For those particular diseases another compartment is required for

some of the affected individuals; a recovered compartment. We would call a disease

an SIR disease if it causes an individual to undergo the transitions described above

(susceptible → infected → recovered). If there is no recovered class (i.e., the disease

does not grant immunity to future infection), then the individuals who are infected

return to the susceptible class for the possibility of future infection, making it an

SIS-type disease.

Compartmental models may seem simple, but this style of modelling allows us to

find a number of quantities which are useful in assessing the level of threat of an in-

fectious disease. The use of compartmental modelling involves parameters describing

rates of movements between compartments. With the help of these parameters and

others, some very useful information about the expected progression of the disease

in the population can be obtained.

One of these quantities is known as the basic reproduction number and denoted

R0. The basic reproduction number is one of the more popular indicators of the

level of threat of a disease, and is defined as the number of secondary infections

caused by one infectious individual in a completely susceptible population. If R0

is greater than one, then (in general) it can be expected that the disease outbreak
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will be large, while if it is less than one (supposing that the possible disease event

is an epidemic rather than endemic situation) we can conclude that the disease

outbreak will not be a major one (if the disease may become endemic, then in

general, R0 < 1 leads to the disease becoming extinct). The information required

to calculate the basic reproduction number includes the probability that a contact

between an infectious and a susceptible person results in a new infection, the contact

rate between susceptible and infectious individuals and the average duration of the

infection. In many cases, this information may be difficult to find but for certain

disease types, there are other ways of formulating the basic reproduction number, as

we will see in Chapter 2.

Spatial aspects of disease modelling

For the above description of compartmental models we need to assume homogeneity

of the population which in many cases is an unrealistic assumption. Consider a

population in which large groups of people are clustered together in isolated locations

– Canada for instance. It is unrealistic to assume individuals mix homogeneously in

this setting. Two individuals both living in Vancouver are (in general) more likely to

come into contact than one individual living in Vancouver and another in Toronto.

Clearly, the physical contact required for the transmission of an infectious disease

can only take place when individuals are in the same location. Aside from the

probabilities of contact, a given disease is more likely to spread faster in a densely

populated region than in a sparsely populated one [37], requiring different parameters

to be used in the modelling; so different locations with differing population densities

further complicates the situation.

A workaround for this issue might be to model the disease in each city or isolated

location separately. This would allow us to adjust the values of the parameters
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according to each individual location’s needs, but it would not account for travel

between the locations.
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(b) Zoom on first phase.

Figure 2: Estimated prevalence of influenza in two neighbouring regions of France
for the 2011-2012 epidemic season.

In order to better understand the role of space, we now consider the data in

Figure 2, which shows the estimated prevalence (i.e., the number of infected individ-

uals per 100,000 inhabitants) in two regions of France during the 2011-2012 winter

influenza season. The data is obtained from Réseau Sentinelles. The regions under

consideration are in the south west of the country: Aquitaine (blue/darker curve)

and Midi-Pyrénées (red/lighter curve). Here, the epidemic can be decomposed in

roughly three phases shown by the vertical lines in Figure 2a. Focusing on the initial

phase of the outbreak, we observe that there are times when the disease is absent in

one region and present in the other, and vice-versa. Also, during the initial phase

there are periods of time when the prevalence in Aquitaine undergoes wide variations

while that in Midi-Pyrénées increases steadily. Both regions then undergo a sharp

drop in prevalence before actually going into the later phases in which we see a much

larger prevalence. Clearly, if there were no importations of cases into these regions,

the epidemic should have died out in both. More details are given on the work done

in accounting for the movement of disease across separate locations in Chapter 2.
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The early phase of an epidemic

As can be seen in Figure 2, before infectious diseases become full-blown epidemics,

they go through an initial phase during which the number of infected individuals

rises and falls in a manner subject to probabilistic effects. We will refer to this

period as the “stochastic phase” or “initial phase” of the outbreak. For instance,

consider the weekly count of positive influenza tests for the three provinces of the

Canadian Prairies (Alberta, Saskatchewan and Manitoba) as given by the Public

Health Agency of Canada’s Respiratory Virus Detection Surveillance System [32].

Clearly, the epidemic in Figure 3 can be decomposed into several phases. During an
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Figure 3: Positive test results for influenza in the Canadian Prairies from week ending
27-07-2013 to week ending 26-07-2014.

initial phase lasting up to about week 1, the number of laboratory confirmed cases is

very low, with a maximum value of 5. The second phase then begins and although

there are variations, it is clear that the number of cases is increasing sharply until

week 15, at which point the rate of apparition of new cases slows and then starts

diminishing. Figure 3b provides a closer look at the initial phase of the outbreak.

Of course, the data in Figure 3 should be used with caution: these are labora-

tory confirmed cases, which represent but a fraction of the actual cases. Also of

importance is the spatial resolution of the data: the Prairies extend for almost 1,400

kilometres along the border with the USA and there are almost 2,000 kilometres from

the northwestern-most point in Alberta to the southeastern-most point in Manitoba.
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Outline of thesis

In this thesis, I will focus exclusively on the stochastic phase of an epidemic. In

order to do so, it is assumed that there is a prevalence level above which one does

not need to consider stochastic effects anymore: if prevalence exceeds this thresh-

old, the disease becomes epidemic. Many questions will be addressed regarding the

ramifications of movement between two locations affected by a disease outbreak. For

example, does the potential movement of infectious individuals between two coupled

locations render a full-blown epidemic more likely? Does it have an effect on the

expected duration of the stochastic phase? If the two locations in question have

different basic reproduction numbers, does this make an epidemic more likely and if

so, how much more likely? Must travel be halted completely to stop the spread of

disease or can its spread be arrested by reducing travel by some amount? If so, by

how much must it be reduced?

To answer these questions, we set up a stochastic model. Deterministic models

describe what happens “on average” in a population and are therefore more suited

to analysing situations with larger populations [41]. In deterministic models, the

number of individuals in compartments can take non-integer values, and this makes

less sense when dealing with a small number of individuals. Furthermore, stochastic

models allow the number of people who move from susceptible to infected to vary

through chance, rather than at a sort of “predetermined” rate as in a deterministic

model. In examining the flutters mentioned above, it is more practical to allow this

element of randomness into the model, as it is more reflective of the real life situation.

In [3], three models are discussed; an SIS model with constant population size,

variable population size, and an SIR model with constant population size. For each,

the deterministic system is given, followed by a corresponding stochastic model.

We are interested in building on the stochastic SIS model of constant population.

First, we rework the one-location SIS model in [3], then consider the situation of two

8



isolated locations connected by transport. In the one-location stochastic SIS model in

[3], the model is first set up as a Markov chain where transition probabilities follow

a Poisson process and the time between transitions is exponentially distributed.

Next, a closer relationship is shown between the deterministic and stochastic models

when another probability distribution called the quasi-stationary distribution is used.

The mean number of infected individuals is then calculated for both probability

distribution systems and compared with the deterministic system, followed by the

relation of the system to a random walk (when the total number in the population

is high), calculations regarding the expected duration of the epidemic and further

numerical results.

Few works have considered discrete-time metapopulation models. When they

have, a reaction-diffusion process is regularly used to model the inter-location move-

ment [13, 14, 29, 31]. Here, we first use a Markov chain (which will be defined in the

next chapter) to re-formulate the model in an isolated location (with no transport

in or out), then consider distinct locations with their Markov processes coupled to

form one new Markov process.
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1

Mathematical Background

The following material is a summary of the mathematics used in this work. A more

detailed account on any of these topics can be found in [10, 11, 17, 24, 25, 35].

1.1 Stochastic processes

In order to properly define a stochastic process, it is necessary to use the following

definitions.

Definition 1.1. Let Ω 6= ∅ be a set, and let 2Ω represent the power set of Ω (the set

of all subsets of Ω). Then A ⊂ 2Ω is a σ-algebra if:

1. Ω ∈ A.

2. A is closed under complements, i.e., AC := Ω\A ∈ A for any A ∈ A.

3. A is closed under countable unions, i.e., ⋃∞n=1An ∈ A for any choice of count-

ably many sets A1, A2, . . . ∈ A.

Definition 1.2. A pair (Ω,A), with Ω a nonempty set and A ⊂ 2Ω a σ-algebra is a

measurable space with A ∈ A measurable sets.

Definition 1.3. Let µ : A → R. µ is a measure if it satisfies

10



1. For all A ∈ A, µ(A) ≥ 0.

2. µ(∅) = 0.

3. For all countable collections of pairwise disjoint sets {Ai} ∈ A,

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Definition 1.4. For Ω, A and µ defined as above, the triple (Ω,A, µ) defines a

measure space. If, in addition, µ(Ω) = 1, then (Ω,A, µ) defines a probability

space and the sets A ∈ A are events. µ is then denoted by P (for probability).

Definition 1.5. Let (Ω,A, µ) be a probability space, and (S, ξ) be a measurable

space. A random variable is a function X : Ω → S. S is often referred to as the

state space. If S is countable, then the random variable can be called a discrete

random variable.

Definition 1.6. Given a probability space (Ω,A, µ) and a measurable space (S, ξ), a

stochastic process is a collection of random variables indexed by a totally ordered

set T , usually representing time.

Definition 1.7. If X is a finite, discrete random variable which can take the val-

ues x1, . . . , xk with probability p1, . . . , pk respectively, then the expected value or

expectation of X is

E(X) =
k∑
i=1

pixi.

Definition 1.8. If X is a finite, discrete random variable which can take the values

x1, . . . , xk with probability p1, . . . , pk respectively, then the variance is defined as

V ar(X) =
k∑
i=1

pi (xi − E(X))2 .

11



1.2 Finite Markov chains

1.2.1 Introduction to Markov chains

In general, for discrete-time stochastic processes, the value of the random variable

Xn will depend upon the values of the earlier random variables Xn−1, Xn−2, . . . , X0.

Therefore, we are often interested in the conditional probability P[Xn+1 = sn+1|Xn =

sn, Xn−1 = sn−1, . . . , X0 = s0], the probability the random variable Xn takes the

value sn given all the values of the previous random variables.

The possible values of the random variablesXi form a countable set S = {s1, s2, . . . }

which is called the state space.

Definition 1.9. A stochastic process is called a Markov chain if it satisfies the

property that

P[Xn+1 = sn+1|Xn = sn, . . . , X0 = s0] = P[Xn+1 = sn+1|Xn = sn].

The full definition of a Markov chain is much more involved than that given

above, but for the purpose of this thesis, the above definition is sufficient. For the

remainder of this chapter, assume all Markov chains mentioned are finite Markov

chains. i.e., there are a countable and finite set of states for the chain to occupy. For

a Markov chain X = {Xn|n = 0, 1, . . . }, the probability

pij = P[Xk = sj|Xk−1 = si].

is the transition probability from state i to state j.

Given a finite state space {s1, . . . , sn} and transition probabilities pij, we form

12



the one-step transition matrix of the Markov chain

P =



p11 p12 · · · p1n

p21 p22 · · · p2n

... . . .

pn1 pn2 · · · pnn


. (1.1)

This matrix is stochastic (all rows sum to one) since

n∑
j=1

pij =
n∑
j=1

P[X1 = sj|X0 = si]

= P[X1 ∈ S|X0 = si]

= 1,

because S contains si and all other states to which the system can move from si,

and that transition must take place.

Suppose we want to find the probability p(2)
ij that the system is in state j after

two transitions given it started in state i. It is easy to see that the transition from

state i to state j in two steps can be achieved by the system moving from state i,

to any state k in the first step and then from that state k to state j in the second,

with probability pikpkj. Therefore p(2)
ij can be obtained by summing pikpkj for all k,

so that

p
(2)
ij =

n∑
k=1

pikpkj (1.2)

Notice that this computation can be described by multiplying the ith row of the

matrix P by the jth column of P . This will be true for all i and j, so we can see

that the two-step transition matrix, and inductively, the n-step transition

13



matrix are given by P 2 and P n respectively so that

P n =



p
(n)
11 p

(n)
12 · · · p

(n)
1n

p
(n)
21 p

(n)
22 · · · p

(n)
2n

... . . .

p
(n)
n1 p

(n)
n2 · · · p(n)

nn


. (1.3)

It is easy to see that the matrix in (1.3) is stochastic from a similar argument to

that in (1.2). In fact, the product of any two stochastic matrices is also stochastic:

Let A = (aij) and B = (bij) be n × n stochastic matrices. The (i, j)th entry of AB

is ∑n
k=1 aikbkj. Summing over j, we get that the sum of the ith row is

n∑
j=1

n∑
k=1

aikbkj = (ai1b11 + · · ·+ ainbn1) + · · ·+ (ai1b1n + · · ·+ ainbnn)

= ai1(b11 + · · ·+ b1n) + · · ·+ ain(bn1 + · · ·+ bnn)

= ai1 + · · ·+ ain

= 1,

which will be true for every row i of the matrix AB.

Definition 1.10. The following are useful definitions regarding the states of a

Markov chain.

• We say that a state sj is accessible from a state si, and write si → sj, if

there exists a t, such that p(t)
ij 6= 0. That is, si → sj if it is possible to get from

state i to state j in a finite number of steps.

• si and sj are said to communicate if si → sj and sj → si.

• A state si is called essential if for all j such that si → sj, it is also true that

sj → si.
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• A state that is not essential is called inessential, i.e., si is inessential if there

exists a j such that si → sj but sj 9 si. Inessential states are sometimes

called transient.

• All essential states can be grouped into essential classes in which all states

in the class communicate with each other. In each class, there are no transitions

leading out of the class. The same can be done for the inessential states

although there may be transitions from inessential states leading out of the

class.

• An essential state which forms an essential class on its own is called absorbing.

Using the above definitions regarding the relationships between the states of a

Markov chain, we now give some results and definitions in relation to the Markov

chain as a whole.

Definition 1.11.

• A Markov chain is said to be absorbing if

1. There is at least one absorbing state in the Markov chain.

2. The set of absorbing states is accessible from any non-absorbing state.

• A Markov chain is called ergodic if it is possible get from any state i to any

state j in some number of steps.

• A matrix P representing the transition matrix of a Markov chain, is called

regular if there exists some number t such that all entries of P t are positive.

• AMarkov chain is called periodic if every state of the Markov chain is periodic,

i.e., every state i has the property that every return to state i must occur in

multiples of some integer d > 1.
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1.2.2 Some additional terminology from matrix theory

The following results apply only to non-negative matrices. A non-negative matrix

is a matrix containing only non-negative entries. If a matrix M is non-negative, we

write M ≥ 0. Note also that if M is an n× n (square) matrix, we write M ∈Mn.

Definition 1.12. Let M ∈Mn and M ≥ 0.

• M is said to be irreducible if for all i and j, there exists some number t such

that the entry m(t)
ij is positive; i.e., every state is accessible from every other

state. It is reducible if it is not irreducible. (A characterization of the latter

is that with the necessary ordering of states, the matrix can be put in block

lower triangular form.)

• M is said to be primitive if there exists some number t such that all entries

of M t are positive; i.e., there exists some number t such that every state sj is

accessible from every other state si in exactly t steps.

1.2.3 Directed graph representation of a Markov chain

Definition 1.13. A graph is an ordered pair G = (V,E), where V is a set of vertices

and E is a set of edges. A directed graph (digraph) is a graph where each edge

has a direction. In this case, edges are often called arcs.

(a) A graph (b) A directed graph

Before we examine the relationship between graph theory and Markov chains,

let us first go through some basic definitions and concepts in graph theory. For the
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purpose of this discussion, all graphs will be finite (graphs with a finite number of

edges and vertices).

Definition 1.14. Let G be a graph and D be a digraph. Then

• We say two vertices in G are adjacent if there is an edge or arc joining them.

• Suppose there are n vertices in a directed graph D. The adjacency matrix

A of the digraph D is the matrix of zeros and ones, such that the entry (i, j)

of A is 1 if there is an arc from vertex i to vertex j, and 0 if there is no arc

connecting vertex i to vertex j.

• If a vertex v is an initial point or endpoint of an edge or arc e, we say v is

incident to e.

• A walk is an alternating sequence of vertices and edges or arcs, starting and

ending in a vertex, where each vertex in the sequence is adjacent to the next

vertex in the sequence. If the vertices are distinct, we call the walk a path. If

in addition, the edges or arcs are distinct we call the walk a trail. If we have

a path starting and ending on the same vertex, we call it a cycle.

• A digraph is called strongly connected if there is a path between each pair

of vertices in D in each direction.

• A strongly connected component of D is a maximal set of vertices in D

such that for every pair of vertices a and b in the set, there is a path from a to

b. Every digraph can be broken down into its strongly connected components.

Definition 1.15. Let M ∈Mn. The digraph D(M) representing M is the directed

graph on vertices labelled 1, . . . n, with an arc from vertex i to vertex j if and only

if mij 6= 0.
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Figure 1.2: Three graphs representing (a) an absorbing Markov chain, (b) an ergodic
chain, and (c) a regular Markov chain.
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It is easy to visualize a Markov chain using the digraph associated to the transition

matrix representing the Markov chain and there is much we can deduce about the

Markov chain using techniques from graph theory. Consider Figure 1.2.

1. Looking at Figure 1.2a, we can see that states 1 and 2 are absorbing, states

3, 4 and 5 are transient, and there is a path from each transient state to an

absorbing state. Hence, this graph represents an absorbing Markov chain.

2. A glance at Figure 1.2b tells us that this graph represents an ergodic Markov

chain. Using the transitions 1→ 2→ 3→ 4→ 5→ 1, it is clearly possible to

reach any state from any state. However, although the Markov chain is ergodic,

it is not regular. To see this, consider the adjacency matrix A associated to

the graph in Figure 1.2b.

A =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0



A quick check using for instance MATLAB reveals that none of A2, A3, A4 or

A5 have all entries positive. Furthermore, A6 = A, so the process repeats

itself, never giving all-positive entries. In fact, it is easy to see that the graph

is periodic, with each state having period 5.

3. The digraph in Figure 1.2c represents a regular Markov chain. This is a little

more difficult to see, but is quickly checked using MATLAB. Consider the
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adjacency matrix A associated to the graph in Figure 1.2c. We find that

A4 =



6 1 4 4 1

1 6 1 4 4

4 1 6 1 4

4 4 1 6 1

1 4 4 1 6


.

Since each entry of A4 is positive, A is primitive. Note that when we search for

a power k of A such Ak > 0, we need not search through every natural number

in the hopes of finding the appropriate k. From [21, Corollary 8.5.3], we have

that if A ∈Mn is nonnegative, then A is primitive if and only if

An
2−2n+2 > 0.

Since all the relevant background in Markov chains, matrix theory and graph

theory has been given, we now go through the links between each.

Theorem 1.16. The following are equivalent:

1. The digraph representing a Markov chain is strongly connected.

2. The Markov chain is ergodic.

3. The transition matrix representing a Markov is irreducible.

Theorem 1.17. The following are equivalent:

1. The directed graph representing a Markov chain is strongly connected and the

greatest common divisor of the lengths of the cycles is one.

2. The Markov chain is regular.
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3. The transition matrix representing the Markov chain is primitive.

Further to the links between graph theory and Markov chain theory is the con-

nection between essential classes and strongly connected components. The states

of the Markov chain that form an essential class are represented in the digraph as

a strongly connected component. The essential classes can be seen in the matrix

representing the Markov chain as absorbing blocks, which will be discussed later in

this chapter; see Equation (1.4).

1.2.4 Limiting behaviour of an ergodic Markov chain

There are two different cases of limiting behaviour of ergodic Markov chains we must

examine, as the behaviour is different for each. It is proven in [11, Lemma 3.4.1]

that an ergodic Markov chain can only be either periodic or regular so we look at

both of these cases now.

Let π(0) = [π1 π2 . . . πn] denote the initial distribution of the Markov chain,

where πi is the probability that the Markov chain is initially in state i. ∑i πi = 1 since

π is a probability vector. Then π(1) = π(0)P gives the probabilities the Markov

chain is in each state after one time step. Similarly, π(2) = π(1)P = π(0)P 2 gives

the probabilities after two time steps, and inductively, π(0)P k gives the probability

distribution after k steps of the chain.

Definition 1.18. The stationary distribution vector of a finite, ergodic Markov

chain with transition matrix P is the probability distribution vector π, such that

πP = π.

Thus, viewed in terms of dynamical systems, π is a fixed point of the chain. Note

also that the fixed point equation πP = π implies that π is a left eigenvector of P
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associated to the eigenvalue 1, which we know to be an eigenvalue of P since P1 = 1

where 1 = (1, . . . , 1)T .

The stationary vector has a different interpretation depending on whether the

Markov chain is regular or periodic. In the case that the ergodic Markov chain is

regular, we know that

lim
k→∞

π(0)P k = π,

i.e., regardless of the initial distribution π(0), the ith entry of the vector π represents

the long term probability that the system is in state i. If the ergodic Markov chain

is periodic, a weaker result holds [28]:

lim
k→∞

1
k

k−1∑
j=0
π(0)P j = π,

so that we still gain some information about the long-term behaviour of the system.

Informally, the left side of the above equation can be interpreted as a vector contain-

ing the average proportions of time the chain spends in each state, which is another

interpretation of π. Note that in both cases, π is unique.

1.2.5 Limiting behaviour of a non-ergodic Markov chain

When the Markov chain has essential classes, the associated digraph has strong

components, one for each essential class, which are proper subsets of the set of states

of the chain. In other words, the transition matrix is reducible. The canonical

form of the transition matrix of a Markov chain with essential classes is obtained

by rearranging the states (using simultaneous row and column permutations) so that

the essential classes are first grouped together, followed by the inessential classes.
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The resulting n× n matrix will be of the form

P =



P1 O

P2

. . .

O Pk

O

R Q


=


⊕k
i=1 Pi O

R Q

 , (1.4)

where Pi are the essential classes, Q is the block matrix describing the transitions

between inessential states and R contains the transitions from inessential states to

essential states. Each Pi is an ni×ni (square) matrix, Q is an m×m square matrix,

meaning that R is an m× (n−m) rectangular matrix. Here, ∑i ni = n−m.

This rearranging can also be done using the digraph representing the Markov

chain. We first identify the strongly connected components of the digraph. Next we

relabel the vertices, enumerating them so that the strongly connected components

are together, taking care to list the essential classes first, and the inessential classes

after. When the corresponding transition matrix is written, the matrix will be in

the form of (1.4). In fact, we use this method in the algorithm for the numerics in

Chapters 3 and 4.

For the purpose of this thesis, we need not examine the general case of essential

classes, but rather absorbing states (i.e., the case where each essential class consists

of only one state), so from now on, we can simplify our considerations from essential

classes to absorbing states. Thus, (1.4) will become

P =



1 O

1
. . .

O 1

O

R Q


=

 I O

R Q

 . (1.5)
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Definition 1.19. Let P , the transition matrix of an absorbing Markov chain be in

canonical form as above. The fundamental matrix of the chain is the matrix

N = (I−Q)−1, (1.6)

where I represents the identity matrix of the appropriate size, i.e., if Q is an m×m

matrix, then I is also an m×m matrix.

The fundamental matrix is a very useful tool in analysing a Markov chain. We

now show that the inverse given in Definition 1.19 always exists. Once this is es-

tablished, we know we can use the fundamental matrix for any absorbing Markov

chain.

In the proof of the proposition to follow, we will be using the fact that in any

finite, absorbing Markov chain, the probability that the process is in an essential

class after t steps tends to 1 as t→∞ [24, Theorem 3.1.1].

Proposition 1.20. LetQ be the submatrix containing the transient state transitions

of the absorbing Markov chain as written in (1.4). Then (I−Q) is invertible.

Proof. Assume that the n × n transition matrix P is in the form (1.4), with Q

an m × m matrix, with 0 < m < n. Partition the state vector π(t) as π(t) =

[y(t) z(t)], where y(t) and z(t) are (n−m)- and m-vectors representing the essential

and transient states respectively. Then, the evolution of the chain

π(t+ 1) = π(t)P

takes the form

[y(t+ 1) z(t+ 1)] = [y(t) z(t)]P,
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or using (1.4),

[y(t+ 1) z(t+ 1)] = [y(t) z(t)]


⊕k
i=1 Pi O

R Q



Rewriting this,

y(t+ 1) = y(t)
k⊕
i=1

Pi + z(t)R(t) (1.7)

z(t+ 1) = z(t)Q. (1.8)

By the theorem mentioned before Proposition 1.20, for any initial distribution π(0),

the process is in an essential class with probability 1 as t → ∞. Thus, z(t) → 0 as

t→∞ for all possible z(0).

In other words, for all z(0),

0 = lim
t→∞

z(t) = lim
t→∞

z(0)Qt = z(0) lim
t→∞

Qt. (1.9)

As a consequence,

lim
t→∞

Qt = 0.

Assume now that there exists x such that (I−Q)x = 0. We have

(I−Q)x = 0 ⇐⇒ x = Qx

⇐⇒ x = Q2x

⇐⇒ . . .

⇐⇒ x = Qtx,∀t ≥ 0.
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Using (1.9), for all x, it follows that

x = lim
t→∞

Qtx =
(

lim
t→∞

Qt
)
x = 0,

so x = 0, i.e., (I−Q)x = 0 ⇐⇒ x = 0, so (I−Q) is invertible.

Continuing on, notice that

(I−Q)(I +Q+Q2 + · · ·+Qt) = I +Q+Q2 + · · ·+Qt

−Q−Q2 − · · · −Qt −Qt+1

= I−Qt+1.

Since I−Q is invertible,

I +Q+Q2 + · · ·+Qt = (I−Q)−1(I−Qt+1),

and when t → ∞, as established in the proof of Proposition 1.20, Qt+1 → 0, so we

get

(I−Q)−1 = I +Q+Q2 +Q3 + · · · =
∞∑
t=0

Qt.

Recall that

Qn =



q
(n)
11 q

(n)
12 · · · q

(n)
1n

q
(n)
21 q

(n)
22 · · · q

(n)
2n

... . . .

q
(n)
n1 q

(n)
n2 · · · q(n)

nn


, (1.10)

for all n, and q
(n)
ij is the probability that the system is in transient state j after n

steps, given it started in transient state i. With this in mind, it is now easy to see

the following properties:
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1. The (i, j)th entry of (I − Q)−1 gives the expected number of visits to the jth

transient state before absorption given that the system started in the ith tran-

sient state.

2. The ith row sum of (I−Q)−1 gives the expected number of steps until absorption

into an essential class, given that the system started in the ith transient state.

Now consider the matrix (I − Q)−1R. In order to understand the meaning of the

entries of this matrix, consider for instance a Markov chain with two absorbing states

and three transient states, so that

(I−Q)−1 =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 and R =


r11 r12

r21 r22

r31 r32

 . (1.11)

In this case, (I−Q)−1R is a 2×3 matrix. By multiplying the first row of (I−Q)−1 by

the first column of R we find that the (1, 1) entry of (I−Q)−1R is ρ11r11 + ρ12r21 +

ρ13r31. Recall, for example, that ρ12 represents the expected number of visits to

transient state 2 given the system started in transient state 1, so multiplying it by

r21 gives us the probability that given the system started in transient state 1, it ends

up being absorbed in absorbing state 1 directly from transient state 2. The same

idea will hold for each ρij and rji, so that

3. The (i, j)th entry of (I − Q)−1R gives us the probability of the system being

absorbed in absorbing state j given it started in transient state i.

We also have some other useful results coming from the matrix N = (I − Q)−1.

Let Ndg be the matrix obtained by setting all the off-diagonal components of N to

zero, and Nsq be the matrix obtained by squaring each entry of N [24]. Then

4. The variance of the number of visits to transient state j before absorption
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given the system started in transient state i is the (i, j)th entry of the matrix

N2 = N(2Ndg − I)−Nsq.

5. Let s = N1, where 1 denotes all-ones column vector. Given the system started

in transient state i, the variance of the number of steps before absorption is

the ith entry of the vector (2N − I)s− ssq.

Example:

Suppose we have a Markov chain with the transition matrix

P =



1 0 0 0 0

0 1 0 0 0

0.1 0.12 0 0.4 0.38

0 0 0.45 0.3 0.25

0.15 0 0 0.6 0.25


. (1.12)

Notice that the digraph representing the Markov chain is the same as that given in

Figure 1.2a, except that the edges are now given weights representing the transition

probabilities in (1.12).

From both the graph and the transition matrix, we can see that the absorbing

states are the states {1, 2}, and the transient states are {3, 4, 5}. Note that states 3,

4 and 5 will sometimes be referred to as transient states 1, 2 and 3 respectively in

the forthcoming discussion.

Since the transition matrix is already in canonical form, we have

Q =


0 0.4 0.38

0.45 0.3 0.25

0 0.6 0.25

 and R =


0.1 0.12

0 0

0.15 0

 . (1.13)
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Figure 1.3: Weighted directed graph representing the transition matrix (1.12)
.

N is calculated to be

N = (I−Q)−1 =


2.7293 3.8428 2.6638

2.4563 5.4585 3.0640

1.9651 4.3668 3.7846

 (1.14)

and

NR =


0.6725 0.3275

0.7052 0.2948

0.7642 0.2358

 . (1.15)

From (1.14) and (1.15), we have gained new information about the system. For

example,

• The expected number of visits to transient state 2 (state 4), given the system

started in transient state 3 (state 5) is 4.3668.

• Given the system started in transient state 2 (state 4), the expected number

of steps until it becomes absorbed in one of the absorbing states is 2.4563 +
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5.4585 + 3.0640 = 10.9788.

• Given the system started in transient state 3 (state 5), the probability of ab-

sorption into state 1 is 0.7642 and absorption into state 2 is 0.2358.

Then, we find that

N2 = N(2Ndg − I)−Nsq =


4.7196 23.3420 10.4030

4.9180 24.3369 10.7398

4.8998 24.2368 10.5384

 (1.16)

and

(2N − I)s− ssq =


94.1526

95.7089

96.2973

 . (1.17)

From (1.16) and (1.17), we gain some helpful information regarding the standard

deviation (square root of the variance) in the system. For example,

• The standard deviation of the number of visits to transient state 3 (state 5)

given the system started in transient state 1 (state 3) is 3.225.

• Given the system started in transient state 2 (state 4), the standard deviation

of the number of steps until absorption is 9.783.

1.2.6 Absorption probability

Further to the fundamental matrix, there is another way to analyse the limiting

behaviour of a non-ergodic Markov chain which achieves the same results as in the

previous section. Suppose there is more than one essential class in a Markov chain

and we want to find the probability of absorption into each essential class given

we started in some transient state. The absorption probability describes the
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probability of reaching and permanently staying in a particular essential class of the

Markov chain.

Suppose that starting in state i, we want to calculate the long term probability

of the Markov chain ultimately ending up in state j. We will denote this ζij. Note

that X∞ will be used to represent a large enough amount of time so that the system

is absorbed in state j. We have

ζij = P[X∞ = j|X0 = i]

=
n∑
k=1

P[X∞ = j|X1 = k,X0 = i]pik

=
n∑
k=1

P[X∞ = j|X1 = k]pik,

by the Markov property. So we get

ζij =
n∑
k=1

pikζkj.

This must be true for all i, so we can rewrite this in matrix form as



ζ1j

ζ2j

...

ζnj


=



p11 p12 . . . p1n

p21 p22 . . . p2n

... . . . ...

pn1 pn2 . . . pnn





ζ1j

ζ2j

...

ζnj


.

Notice that this is the equation for the right eigenvectors of the matrix P corre-

sponding to the eigenvalue one. Although the fundamental matrix of the Markov

chain already gives us this result, this is nonetheless another way to calculate these

particular absorption probabilities.

For example, going back to (1.12) we get two right eigenvectors associated to the
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eigenvalue 1:

v1 =



0.6282

0

0.4225

0.4431

0.4801


and v2 =



0

0.8945

0.2930

0.2637

0.2109


.

At first glance these vectors do not appear to represent probabilities, but recall

that MATLAB does not automatically scale an eigenvector, so we do so now. The

first entry of v1 represents the probability that given the system begins in absorbing

state 1, it ends up absorbed in state 1. Obviously this number should be 1, so if

we scale our eigenvector v1 by dividing every entry by 0.6282 and by the same logic

divide v2 by 0.8945, we get the altogether more realistic vectors v1 and v2 to be

v1 =



1

0

0.6725

0.7052

0.7642


and v2 =



0

1

0.3275

0.2948

0.2358


,

and as we can see, this gives us the same information as NR from (1.15).

1.2.7 Individual realizations of the Markov chain

For the forthcoming work in Chapters 3 and 4 it will be necessary to implement

individual realizations of the Markov chain, i.e., generate a sequence of states the

Markov chain successively occupies based on the probabilities of transition from

state to state. The following is an algorithm describing how the realizations will be

computed:

1. Pick an initial distribution π(0) so that the probability of being in a specified
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initial state is 1. For instance, to generate a realization where the initial state

is state 2, one would use π(0) = (0, 1, 0, . . . , 0).

2. Apply the transition matrix of the Markov chain to the distribution π(0).

This will give the probability distribution of transitions to the different states

accessible from the initial state π(1) = π(0)P .

3. The nonzero entries in π(1) are the states to which transition from the initial

state is possible. The values in π(1) are the probabilities of such transitions.

A random number between 0 and 1 is generated and used to determine which

transition occurs.

4. Based on the outcome of Step 3, create a new distribution vector with a 1

in the appropriate position (the position representing which state was chosen)

and 0 everywhere else.

5. Repeat Steps 2 - 4 until the chain reaches an absorbing state (or if the chain

is not absorbing, a determined number of steps have been computed) using

the newly computed π(1) to play the role of π(0) in Step 1 and record the

resulting sequence of the π(i).
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2

Epidemiological Background

In this chapter, I will give an outline of the background in mathematical epidemiology

required in this thesis. The following summary is heavily influenced by the papers

in [2].

2.1 Compartmental models

Compartmental models are used in many areas of science to model processes. Al-

though the nature and interpretation of the compartments involved in the model

can vary, they all have one common defining facet: a compartment is a collection

of kinetically homogenous material or content. This implies that a new component

added to the compartment immediately mixes with all of the original contents of the

compartment [23].

In medicine, compartmental models are used to study the flow of chemicals such

as nutrients and hormones in the body - in this case the compartments would be

the organs. In pharmacokinetics, the effect of drugs administered in living organism

is modelled. In this case, the compartments are not the organs in the body, but

rather the stages the drug undergoes as it takes effect in the body – absorption,

distribution, metabolization and excretion.
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2.2 Compartmental models in epidemiology

In this thesis, we will be using compartmental models, but in a different way to those

mentioned above. Most epidemiological models involve grouping the population into

compartments in which the individuals’ status with respect to the disease in question

are assumed to be identical. For example, most compartmental models start by

assuming every member of the population automatically begins in the susceptible

compartment S, and many then assume that once a person is infectious, they enter

a new compartment, I, for infectious. Below is a list of commonly used letters and

terms for different compartments.

• S : Susceptible. Individuals who have no immunity to the disease, and are at

risk of contracting the disease.

• I : Infectious. Individuals currently infected with the disease and can cause

infection to others.

• R : Recovered. Individuals who have recovered from contracting the disease

and are no longer infectious. These individuals sometimes gain immunity from

the disease for a period of time and eventually go back to the susceptible class.

• E : Exposed. Individuals who have been infected by the disease but who are not

yet showing symptoms and are assumed to be unaware they have contracted

the disease. The use of E is historical; this compartment should in fact be

labelled L for “latently infected".

This is not a comprehensive list, but details the most regularly used compartments

for most diseases. Some diseases require a specific set of compartments. For example,

in [5], there were many more compartments required: ST,L,LT, IT,A,AT represent-

ing treated susceptible, latent, treated latent, treated infective, asymptomatic and

treated asymptotic respectively. Note the use of the word “infectious” rather than
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“infected”. An infected individual is someone who has the disease while an infectious

individual is someone who has disease and can transmit it to others. An infectious

compartment is a subset of the infected compartment – one of many possible in-

fected compartments. If there is only one infected compartment then infectious and

infected mean the same thing and are therefore interchangeable.

Different diseases cause individuals to go through compartments in unique ways.

For example, a disease such as gonorrhea might cause an individual to move from

the susceptible compartment, S, to the infectious compartment, I, and then back to

S. Hence, in order to model gonorrhea, we would use an SIS model. Other diseases

such as influenza may cause an individual to undergo a different process through the

compartments: individuals begin as susceptible (S), may spend some time infected

with the disease but without showing symptoms (E), then becoming infectious (I)

for a period of time until moving into the recovered class (R) in which they are no

longer susceptible to that particular strain of influenza. Hence, an SEIR model is

used in order to study the dynamics of the disease. For the remainder of this section,

we will deal with an SIS model, as this will be the type of model under investigation

in this thesis. i.e., the disease in question will cause members of the population to

move from the susceptible class S, to the infected class I, and rather than recover

from the disease and go to a recovered class with immunity, the individual goes

directly back to the susceptible class.

2.2.1 Movement between compartments

Before we proceed, note the distinction between S and S. The former is to denote

the compartment S, while St = S(t) will be used to represent the number of suscep-

tible individuals in that compartment at time t. Obviously the same applies with

I and It = I(t). In order to discuss the rate of movement of individuals between

compartments, then for the SIS model we need to introduce a few more terms:
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βSI

γI

b

dS dI

Figure 2.1: Flow diagram for an SIS model.

• β: The disease transmission coefficient. This is the rate at which infected

individuals transmit the disease to susceptibles when a contact occurs.

• γ: The recovery rate. This is the rate at which individuals recover from the

disease, i.e., the rate of movement from compartment I to compartment S.

Note that since γ is constant per capita and that this is an ODE compartmental

model, 1
γ
gives the average duration of the infection.

Suppose an infectious individual is introduced into a population of N individu-

als. If everyone is initially in the susceptible compartment, i.e. S0 = N , the total

population size, then the rate of infection is βN . As the disease progresses, and not

all of the population is susceptible anymore, the probability that a contact by the

infected individual is with a susceptible person at time t is St

N
, so the infection rate

becomes (βN)
(
St

N

)
= βSt. If we suppose now that there are It infected individu-

als at time t, this becomes βStIt. This type of formulation of the infection rate is

known as mass action incidence and assumes that members of the population

are homogeneously mixed and all individuals are equally likely to come into contact.

Infected individuals leave the compartment I at a per capita rate of γIt. For the

modelling in this thesis, I will be assuming mass-action incidence.

There are also individuals leaving both compartments due to natural death at a

per capita rate of d and entering the susceptible class due to birth at a rate of b; see

Figure 2.1.
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2.2.2 Some common assumptions

When formulating a mathematical model to describe disease transmission dynamics,

we often need to make many assumptions – some to more accurately represent the

nature of the disease in question and some to avoid our model being overly complex

and unusable. What follows is a list of commonly-made assumptions and a brief

description of what that assumption means.

• No deaths due to the disease: Many diseases do not have a high mortality rate

– for example, although influenza may be fatal to an elderly or frail individual,

these deaths usually do not have a high impact on the overall dynamics of the

system and can therefore be ignored.

• No recruitment: The population in question is closed, meaning there are no

individuals entering or leaving the population. This is an allowable assumption

for instance if the period of time considered is small.

• No vertical transmission: Individuals are not born into the infected compart-

ment. True for some diseases, and untrue for others.

• Constant population: Assuming the total population remains constant often

makes it much easier to analyze the dynamics of a disease, especially in stochas-

tic models. This can be done by assuming there are no births or deaths at all,

or by assuming births and deaths occur at an equal, per capita rate, or using

a formulation such that the population is eventually constant.

There are many more assumptions that can be made which may be necessary for

different situations.
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2.3 Spatial aspects in epidemiology

In recent years it has become increasingly important to examine spatial aspects in

epidemiology. Interconnectivity between virtually all areas of the world has rapidly

grown and as a result, contacts between different groups of people has skyrocketed.

Our analysis of the spread of infectious diseases must evolve to meet the demands

of the current situation. In fact, in 2013, Khan et al found that during the earlier

stages of the H1N1 pandemic, most public health benefits could have been attained

by screening at just 8 airports [27]. Results like this indicate that research into the

geographical spread of disease is becoming more and more necessary in the fight

against infectious diseases.

What follows is a short review of some of the work done in order to account

for the geographical spread of disease via movement of individuals between separate

patches. The following review was helped and influenced substantially by [4].

2.3.1 Bartlett, 1956

In 1956, Bartlett [9] gave a model accounting for movement of both susceptible and

infected individuals across two distinct patches for a disease fitting an SI model.

S ′1 = −(β1I1 + β2I2)S1 + b+mS(S2 − S1)

I ′1 = (β1I1 + β2 + I2)S1 − (d+ ρ)I1 +mI(I2 − I1)

S ′2 = −(β1I1 + β2I2)S2 + b+mS(S1 − S2)

I ′2 = (β1I1 + β2 + I2)S2 − (d+ ρ)I2 +mI(I1 − I2).

This model incorporates both movement of infectious and susceptible individuals,

and allows for different values of the disease transmission coefficient β for each loca-

tion. Note that the indices specify the location. In this model, β1 and β2 represent
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the disease transmission coefficient in location 1 and 2, d + ρ together is the rate

at which individuals leave the infected compartment, whether by natural death (d)

or death due to the disease (ρ) and b is the birth rate. mS and mI are the rates of

travel of susceptible and infectious individuals respectively. Note that this is quite a

naïve model; infection occurs both within and between locations.

2.3.2 Baroyan and Rvachev, 1969, 1971

In 1969, Baroyan and Rvachev studied the spatial spread of influenza across cities

in the Soviet Union [7, 8]. The model was formulated by splitting the Soviet Union

into smaller sub-regions representing the cities. Transport between each of the cities

is considered and within each city, influenza was modelled deterministically using an

SIR compartmental model. This framework was used in later studies into the global

spread of influenza.

2.3.3 Kermack-McKendrick style metapopulation models

Consider the Kermack-McKendrick SIR model [26]:

S ′ = −βSI

I ′ = βSI − γI

R′ = γI.

This is an SIR model without demography (notice that natural birth and death

rates are not considered). There has been some work on incorporating metapopula-

tions into the Kermack-McKendrick model above. For example, Faddy in 1986 [18]
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introduced an SI model without demography:

S ′i = −Si
n∑
j=1

βjiIj

I ′i = Si
n∑
j=1

βjiIj − γiIi +
n∑
j 6=i

mijIj −
∑
j 6=i

mjiIi,

where γi represents the sum of all removals from each infected class Ii. Notice

that this model incorporates both movement (mij) of infected individuals and “long

range” infection (βji) allowing infected individuals from location j to infect individ-

uals in location i. Formulating the model this way allows for possible transmission

of infection through contact between individuals coming into contact on the border

of neighbouring locations as well as those moving from location to location for exam-

ple by aeroplane. This is one example of quite a few metapopulation models which

ignore demography.

2.4 The early phase of an epidemic

One of the many benefits of using a stochastic approach to model the spread of disease

is its application in the early stages of an outbreak. In 1980, Longini [30] showed that

deterministic models are inadequate for describing the infection process in groups

of less than 35 individuals - the deterministic model is incapable of recognizing the

stochastic fluctuations when the population is small enough. In this thesis, the same

idea is applied to the early stages of an outbreak, but without imposing limitations on

the size of the population. In the early stages of a new disease outbreak, we frequently

observe “stochastic” effects on the spread of the disease - a stage of initial “flutters”

where the disease has not fully taken hold. See Figure 3 and the corresponding

discussion in the introduction section for more on this.

In this thesis, I will study and make use of this phenomenon to model the early
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stages of a disease outbreak. Using an appropriate (relatively small) number x of

individuals as an upper bound, we will say that once there are more than x infected

individuals in the system, then it is extremely likely that the disease will grow into

an epidemic. In fact, we will set x high enough so that if the system reaches x

individuals infected, we consider an epidemic a certainty. The work of Whittle [42]

(which will be detailed later) will be applied to determine the appropriate value of

x.

2.5 Stochastic models in epidemiology

2.5.1 Chain binomial models [2]

Two well-known discrete-time Markov chain models for the spread of disease are the

Greenwood model and the Reed-Frost model. Both are examples of chain binomial

models and are referred to as such because a binomial distribution is used to de-

termine the number of new infectious individuals after a time step. The argument

behind using a binomial distribution in mathematical epidemiology is as follows:

Suppose we take a time step small enough so that only one contact sufficient for

transmission of an infection may take place during one time step. Let p be the

probability of the successful contact occurring in a time interval, and assume the

probabilities of contact in in each time interval are independent. Then the distribu-

tion for the total number of contacts over all time is the binomial distribution.

As before, St and It represent the number of individuals in the susceptible and

infected compartments at time t respectively. Here however, they are random vari-

ables, taking values st, it ∈ {0, 1, . . . , N} where N is the size of the population. The

models assume that I0 ≥ 1 initially. At time t, the infected individuals are in con-

tact with the susceptible individuals, and the susceptible individuals do not become

infectious until time t+ 1. At time t+ 1, the individuals who were infectious at time
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t, are no longer infectious.

The models differ in the assumption regarding the probability of infection. Let pi

be the probability that a susceptible person is not infected, given there are i infected

individuals in the system. The Greenwood model assumes that the probability of

infection pi = p is constant, while the Reed-Frost model accounts for dependence on

the number of infected individuals, i.e., pi = pi.

Greenwood model [19]

In the Greenwood model, the random variable St+1 is a binomial random variable

that depends on St and p, the probability a susceptible individual does not get in-

fected; i.e., St+1 ∼ b(St, p). The probability of a transition from (st, it) to (st+1, it+1)

is given by

pst+1,st =

 st

st+1

 pst+1(1− p)st−st+1 .

Reed-Frost model [1]

In the Reed-Frost model, the random variable St+1 is binomially distributed and

satisfies St+1 ∼ b(St, pIt). The probability of a transition from (st, it) to (st+1, it+1)

is given by

p(s,i)t+1,(s,i)t =

 st

st+1

 (pit)st+1(1− pit)st−st+1 .

2.6 Methods of measuring the expected effects of

a disease outbreak

In epidemiology, there are many methods employed to “measure” the effects of a

disease outbreak. In this section we detail some of the major quantities used for this

purpose.
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2.6.1 Basic reproduction number

The basic reproduction number R0 is defined as the number of secondary infec-

tions caused by a single infectious individual in a completely susceptible population.

R0 is extremely useful in the analysis of the spread of an infectious disease because

in general,

• If R0 < 1, then the disease will die out;

• If R0 > 1, then the disease outbreak will be a major one (in an epidemic case)

or will become established in the population (in an endemic case).

The case of R0 exactly equal to 1 would be extremely rare, but in theory, if this

happened then the prevalence level of the disease should remain the same. Note

that R0 is a dimensionless number and not a rate, so it does not have units in time

or any other quantity. This is why we call it the basic reproduction number and not

basic reproductive rate as it is sometimes incorrectly labelled.

Intuitively, we can calculate R0 by the formula

R0 = ρck,

where ρ is the probability that a contact between an infectious and susceptible indi-

vidual results in an infection, c is the contact rate between infectious and susceptible

individuals and k is the duration of an infection. We can even see from this formu-

lation of R0 that it is a dimensionless quantity; the units of each quantity cancel,

leaving R0 unit-less:

R0 =
(
infection
contact

)
·
(contact

time

)
·
( time
infection

)
.

Provided one has all the relevant contact information for the disease, it is easy

to calculate R0. However, most of the time not all of this information is readily

44



available. Given a mathematical model for disease spread, how does one compute

R0 in practice? We illustrate this for an ODE SIS model deduced from Figure 2.1.

From the diagram,

S ′ = b− dS − βSI + γI (2.1a)

I ′ = βSI − γI − dI. (2.1b)

Here we have assumed that the birth rate is constant, rather than proportional to

the number of people in the population. This is a reasonable assumption when

the population under consideration is large. It is easy to see that the disease-free

equilibrium is (S?, I?) = ( b
d
, 0). Using this and the method in Chapter 6 of [40]

we can calculate R0. Suppose there are n disease compartments and m non-disease

compartments. We denote Fi the rate at which infections increase the ith disease

compartment and by Vi the rate disease progression, death and recovery decrease

the ith compartment. The model can now be written in the form

x′i = Fi(x, y)− Vi(x, y), i = 1, . . . , n

y′j = gj(x, y) j = 1, . . . ,m.

where x ∈ Rn and y ∈ Rm such that xi and yj represent the net rate of transitions in

and out of the ith disease and jth non-disease compartments respectively. gj(x, y) is

the transitions into non-disease compartment j minus transitions out of non-disease

compartment j.

The square matrices F and V are the Jacobian matrices of F and V evaluated

at the DFE.

F =
[
∂Fi
∂xj

(
b

d
, 0
)]

and V =
[
∂Vi
∂xj

(
b

d
, 0
)]

.
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The matrix K = FV−1 is known as the next generation matrix, and the basic

reproduction numberR0 is obtained by calculating the spectral radius (the eigenvalue

of largest modulus) of K.

For the SIS model (2.1), we only have one disease compartment and one non-

disease compartment, so F and V are scalars. In our case,

F = βSI =⇒ F = βS?

=⇒ F = β
b

d

and

V = dI + γI =⇒ V = d+ γ.

Since F and V are scalars, R0, the spectral radius of K = FV−1, is

R0 = b

d

β

d+ γ
= β

d+ γ
N?, (2.2)

where N? = S? + I? = b/d is the equilibrium population.

2.6.2 Attack rate

Another worthwhile quantity in the analysis of a disease outbreak is the attack rate.

The attack rate is obtained by taking the number of new cases of the infection in

the population in question and dividing it by the number of susceptible individuals

in the population, i.e.,

Attack rate = number of new cases in the population
number of susceptible individuals .
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2.6.3 Final size of an epidemic

The final size of an epidemic can be informally defined as the number of people

experiencing infection during an outbreak [22]. In order to model such a quantity, we

need to take a slightly different approach to the Markov chain model as in Chapter 1

– the fundamental matrix is very useful in determining long-term probabilities, but

will not give information about the total number of infections experienced during an

outbreak.

To calculate the final size of an epidemic, we will be simulating individual real-

izations of the Markov chain and counting the number of times an infection takes

place. Note that since we only examine the early stage of the outbreak, this data can

only be gathered for cases in which the disease becomes extinct. If the Markov chain

reaches an absorbing state which implies an epidemic is forthcoming, the simulation

stops, preventing us from continuing to count the number of infections. Thus, the

analysis of the final size of an outbreak will be conditioned on disease extinction in

this thesis.

The final size of an epidemic is calculated using the algorithm from Section 1.2.7,

but with some minor adjustments:

• In Step 3, when the algorithm chooses the next state for the Markov chain, if

the chosen state represents an infection event, then the final size is increased

by 1.

• In Step 5, if the absorbing state the Markov chain reaches represents an epi-

demic, then this particular realization of the Markov chain is discarded. If the

realization has not been discarded, the number of infection events from Step 3

are counted. The sum of the infection events is the final size of the epidemic.

This process is repeated a large number of times so that an average final size of the

epidemic can be determined.
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3

A Markov chain model for an

SIS-type disease in an isolated

location

In the next chapter, a Markov chain model will be developed to describe the move-

ments of infected individuals across two populations connected by transport. Before

establishing the model for two interconnected locations in Chapter 4, we study the

model for a disease in an isolated location. The model here is heavily influenced by

the work of Allen and Burgin [3].

3.1 The model

Consider an isolated location. In this location, the model is a variation on the SIS

system in [3] and other simple stochastic epidemic models. First, note that we assume

the total population to be asymptotically constant and equal to P ; see Section 3.2.1.

Individuals can be in one of two states: susceptible to the disease or infected (and

infectious) with the disease. The numbers of individuals in each compartment at

time t are denoted S(t) and I(t), respectively. Upon infection, susceptible individuals
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transition to the infectious class. They remain there for some time until they recover.

Upon recovery, infectious individuals immediately are susceptible again to infection.

Because the total population is asymptotically constant, the model can focus on

the number of infectious individuals in the population, with the number of susceptible

individuals given by S(t) = P − I(t). As in [3], we formulate a discrete-time Markov

chain for the number of individuals infected (and infectious) with the disease. The

main variation from [3] comes from the introduction of a threshold N , 0 < N ≤ P ,

above which the epidemic is assumed to go into an exponential growth phase, at

which point it becomes irrelevant to the present study. Thus the states are I =

{0, . . . , N}, with both 0 and N absorbing.

Assume that the time step ∆t is sufficiently small that only one change in state is

possible per unit time. Transition probabilities are then given, for i = 1, . . . , N − 1,

by

P {I(t+ ∆t) = i+ 1|I(t) = i} = β(P − i)i ∆t (3.1a)

P {I(t+ ∆t) = i− 1|I(t) = i} = (γ + d)i ∆t (3.1b)

P {I(t+ ∆t) = i|I(t) = i} = 1− (β(P − i)i+ (γ + d)i) ∆t. (3.1c)

All other transitions have probability 0. To simplify notation, we denote Πi =

β(P − i)i∆t, Γi = (γ + d)i∆t and pi = 1 − (Πi + Γi), representing an infection,

recovery or death and no change in the number of infected, respectively. Note that

0 1 2 · · · N − 1 N

1 p1 p2 pN−1 1
Π1 Π2 ΠN−2 ΠN−1

Γ1 Γ2 Γ3 ΓN−1

Figure 3.1: Random walk used in isolated locations.

we have used mass action incidence in (3.1a), whereas [3] considered several different
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incidence functions.

System (3.1) is a random walk on the number I(t) of infectious individuals in the

population. The transition matrix of the Markov chain takes the form

T =



1 0 0 0 . . . 0

Γ1 p1 Π1 0 . . . 0

0 Γ2 p2 Π2 . . . 0
... . . . . . . . . . ...

ΓN−1 pN−1 ΠN−1

0 0 0 . . . 0 0 1



. (3.2)

Note that we are using T = [tij] with the convention that tij represents the proba-

bility of transition from state i to state j.

3.2 Mathematical analysis

3.2.1 Underlying deterministic model

As in [3], the underlying discrete-time deterministic model describing the evolution

of average numbers in each compartment is first studied. Here, it takes the form:

S(t+ ∆t) = S(t) + {b+ γI(t)− βS(t)I(t)− dS(t)}∆t (3.3a)

I(t+ ∆t) = I(t) + {βS(t)I(t)− (d+ γ)I(t)}∆t, (3.3b)

where ∆t is the (fixed) time step, b is the birth rate, d is the per capita death rate, β

is the infection parameter and γ is the per capita rate of recovery. Initial conditions

are assumed to be S(0) + I(0) = P > 0. We now show that the total population

S(t) + I(t) is asymptotically constant. The total population follows the difference
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equation

P (t+ ∆t) = P (t) + {b− dP (t)}∆t.

Let P ? be such that P ?(t+ ∆t) = P ?(t) (i.e., P ? is a fixed point). Thus,

P ? = P ? + {b− dP ?}∆t =⇒ P ? = b

d
.

Let

f(P ) = P + {b− dP}∆t.

Then

f ′(P ?) = 1− d∆t.

Since both d and ∆t are less than one, |f(P ?)| < 1, so the fixed point P ? is attracting.

Therefore, the total population approaches b/d.

The major difference between the model we have set up and that in [3] is that in

this model, we have two absorbing states; at I(t) = 0 and I(t) = N . In [3], there is

only one absorbing state, I(t) = 0. We also have the following result.

Theorem 3.1. Let

R0 = β

d+ γ

b

d
= β

d+ γ
P ?. (3.4)

If R0 < 1, then (3.3) has only the disease-free fixed point (DFFP)

(SDF , IDF ) =
(
b

d
, 0
)
, (3.5)

which is locally attractive. If R0 > 1, then the DFFP (3.5) is unstable and there is

an endemic fixed point

(SEFP , IEFP ) =
(
d+ γ

β
,
b

d
− d+ γ

β

)
=
(
P ?

R0
,
(

1− 1
R0

)
P ?
)
, (3.6)
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which is locally attractive.

Proof. The values of the fixed points (3.5) and (3.6) are easily found by solving the

fixed point problem. At an arbitrary point (S, I), the Jacobian matrix of (3.3) is

J(S, I) =

1− (βI + d)∆t (γ − βS)∆t

βI∆t 1− (γ + d− βS)∆t

 . (3.7)

Evaluating 3.7 at the disease free fixed point gives

J(SDF , IDF ) =

1− d∆t (γ − βP ?)∆t

0 1− (γ + d− βP ?)∆t

 , (3.8)

and thus, the eigenvalues of J(SDF , IDF ) are 1 − d∆t and 1 − (γ + d − βP ?)∆t.

We have 1 − d∆t < −1 ⇐⇒ ∆t > 2/d, which in practice would be an extremely

large and unrealistic time step, so we assume the eigenvalue is in the unit circle (see

remark after proof). Therefore, the local stability of the DFFP is governed by the

eigenvalue 1− (γ + d− βP ?)∆t. As for 1− d∆t, this value becoming less than -1 is

unlikely, so we focus on conditions such that

1− (γ + d− βP ?)∆t > 1.

This is equivalent to γ + d− βP ? < 0, i.e., R0 > 1. Hence the result for the DFFP.

Evaluating J at the EFP gives the eigenvalues 1− d∆t and 1 + (d+ γ− βP ?)∆t.

Clearly the latter is in the unit disk when 1 + (d+ γ−βP ?)∆t is outside it, and vice

versa. So we have the result.

Remark:

If an average lifetime of 70 years is used and the time units used are days, this

would mean that in order for the eigenvalue 1 − d∆t to be outside the unit circle,
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∆t would have to be greater than

2
d

= 2
1

70×365.25
= 140 years.

Clearly the model here is a model for an endemic disease, so it would not describe

a situation such as that seen in Figure 3.1. However, we will work with values of

IEFP much larger than the absorbing threshold N , so this is not an issue.

3.2.2 Analysis of the Markov chain

We now write the transition matrix T in canonical form as explained in Chapter 1,

reordering states as {0, N, 1, . . . , N − 1}. In this form, the matrix is block lower

triangular,

T =

I2 0

R Q

 ,
where I2 is the 2×2 identity matrix, R is a (N−2)×2-matrix giving the probability

of making a transition into the absorbing states from transient states,

R =



Γ1 0

0 0
... ...

0 0

0 ΠN−1


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and Q is the (N −2)× (N −2)-matrix comprising the transition probabilities within

the transient states,

Q =



p1 Π1 0 . . . 0

Γ2 p2 Π2 . . . 0

. . . . . . . . .

0 ΓN−2 pN−2 ΠN−2

0 ΓN−1 pN−1



.

The fundamental matrix is then defined as N = (IN−2−Q)−1. For i = 1, . . . , N − 1,

we have pi = 1− (Γi + Πi), so the matrix IN−2 −Q takes the form

IN−2 −Q = ∆t



Γ1 + Π1 −Π1 0 . . . 0

−Γ2 Γ2 + Π2 −Π2 . . . 0

. . . . . . . . .

−ΓN−1 ΓN−1 + ΠN−1



.

Finding an explicit form for N is possible as a formula exists for the inverse of

tridiagonal matrices such as IN−2−Q [43]. However, the computation is very involved

and not worth the effort here: the fundamental matrix will be used only in numerical

investigations of the properties of the system.
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3.3 Numerical simulations

3.3.1 Parameters

The model has few parameters. They are chosen here to loosely match those of

influenza, although it is clear that the model is not descriptive of influenza because

it is a little too simple. The average duration 1/γ of the infection is taken to be

7 days. β is chosen according to the values of R0 under investigation according to

Equation (2.2). The death rate d is chosen under the assumption that the average

life expectancy in the population is 70 years. The birth rate b is chosen so that the

population will approach the desired fixed point b/d (although b does not present

explicitly in the model, as we only model the number of infected individuals, while

births only happen in the susceptible compartment).

3.3.2 Effect of N , P and ∆t

Before we begin a short exploration of the numerical properties of the model in the

single location case, let us consider the influence of structural parameters, namely

N , P and ∆t.

The total population, P

The total population P is typically chosen to represent a small (1,000), medium

(50,000) or large (1,000,000) community. Since the model is set up so that the

Markov chain terminates when the number of infected people reaches either 0 or N ,

the only part P plays here is in the choosing of β, via the rearranged formula for the

basic reproduction number

β = R0(d+ γ)
P

.
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The role of the time step, ∆t

The parameter ∆t plays an important role. As usual, the probabilistic argument is

used in that ∆t is chosen small enough so that only one event takes place at each

time step. However, this is of little use in practice and it is better here to consider

the role of ∆t in (3.2). Consider the row sums of off-diagonal entries there. For

i = 1, . . . , N − 1, that sum is

Γi + Πi = (βi(P − i) + (γ + d)i) ∆t =
(
−βi2 + (βP + γ + d)i

)
∆t.

As (3.2) must be a stochastic matrix, this quantity cannot be larger than 1, for

i = 1, . . . , N − 1. The polynomial Q(i) = −βi2 + (βP + γ + d)i is 0 when i = 0 and

increases until it reaches a maximum at i = P + γ+d
β
, which may or may not be an

integer but is larger than i = P . As N ≤ P , this implies that, for the model, Q(i) is

maximum at i = N − 1. It follows that ∆t is constrained by

∆t ≤ 1
(βP + γ + d)(N − 1)− β(N − 1)2 . (3.9)

Note that this is a technical condition: in practice, ∆t is chosen smaller than this

bound in order to satisfy the assumption that only one event can take place during

each time step.

We now check the range of values taken by the upper bound of the time step given

by (3.9) as a function of N to make sure that this does not lead to unrealistically

small values. For P = 1,000,000, and β chosen so that R0 = 1, the results are as

shown in Figure 3.2. Although it is not visible in the graph, the lowest value of ∆t

(0.07142054) is achieved when N reaches 50. In practice, for whatever values of R0,

N and P in question, we will choose ∆t to be half the lowest value we find in the

corresponding simulation.
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Figure 3.2: Value of the upper bound for ∆t given by (3.9) as a function of the
absorption threshold N , when R0 = 1.
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The upper threshold for the Markov chain, N

Before starting the investigations into the probability of disease extinction in earnest,

we now explore the choice of the parameter N . For our first example, consider

Figure 3.3.

In this figure, we are investigating the likelihood of a major outbreak as a func-

tion of the the absorption threshold N of our Markov chain. When N is chosen

relatively small, the probability of a major outbreak changes drastically with the ini-

tial number of infected individuals. Thus, a very small N is not ideal and probably

not representative of reality. However, when N is relatively large, the probability of

a major outbreak is not so sensitively dependent on the initial number of infected

individuals. These graphs help give us a sense for the threshold number to use in

the Markov chain; i.e., the number of individuals N , for which once the number of

infected I exceeds N , an epidemic is likely. Choosing N too small could cause us

to incorrectly predict a major epidemic when that may not be the case, but a quick

look at the graphs show us that we need not take N excessively large to be confident

in our predictions.

From this analysis, we can conclude that after a certain number of individuals in

a population become infected an epidemic is extremely likely, and we will use this

threshold number in later simulations. Hence, rather than running computationally

expensive simulations with hundreds of thousands or even millions of states for the

Markov chain to occupy, we can set the Markov chain to terminate after the number

of infected individuals reaches this threshold quantity with satisfactory certainty that

the disease will indeed become an epidemic.

Consider Figure 3.3b. The upper curve indicates which values of N and I give

rise to a 0.95 probability of a major outbreak, with everything above the curve

representing a probability greater than 0.95. As we can see, there is some value

of N for which the curve noticeably begins to level out. The number of initially
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infected individuals needed so that there is a probablity of 0.95 for an epidemic is

almost the same at N = 12 as at N = 40 (judging from the diagram, about I = 7).

This levelling out of the curve can be seen for any value of R0 > 1. The closer we

take R0 to 1, the longer it takes for the curve to level out, but it does so eventually

nonetheless. As we can see from Figure 3.3a, when R0 = 1, the relationship is linear

for each probability we choose.

(a) When R0 = 1. (b) When R0 = 1.5.

Figure 3.3: Probability of a disease outbreak as a function of the number of cases
required for an outbreak (N) and the initial number of infectious cases.

Figure 3.3b indicates that forR0 > 1, there is some number of infected individuals

I which indicates a high likelihood of an epidemic regardless of the threshold quantity

N for the Markov chain (we can see this from the levelling of the curve). However,

we need not rely solely on numerics to reach this conclusion. In 1955, Whittle [42]

gave a relationship between the number of infected individuals i0 in a population for

a continuous time analog of the present model, the basic reproduction number R0

and the probability p of the disease quickly dying out (so that 1−p is the probability

of a major epidemic). That relationship comes in the form of the equation

1− p =
( 1
R0

)i0
, (3.10)

for R0 > 1. This is a useful formula for setting up the Markov chain model. In
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order to choose the upper bound for high likelihood of a major outbreak, we need

only choose an appropriately high probability p and set R0 according to the disease

in question. For example, setting 1 − p = 0.99 and R0 = 1.5, we get from (3.10)

that i0 = 11.36, so we use 12 infected individuals as the threshold quantity N , above

which we assume the disease outbreak becomes an epidemic.

To run a simulation in which R0 is made to vary between two bounds greater

than 1, we need to slightly modify our use of Whittle’s formula (3.10) in choosing

our upper bound. If we calculate the threshold quantity i0 from the lowest value over

which R0 ranges, then it is easy to see that any larger values of R0 in the formula

will only result in lower probabilities of the disease dying out.

3.3.3 Investigations into the probability of disease extinction

In the simulation shown in Figure 3.4, we vary 1.1 ≤ R0 ≤ 1.5. Using R0 = 1.1

in Whittle’s formula, we find the threshold quantity of infectious individuals to be

49 (for this simulation we use 50 for convenience). Hence, the Markov chain has

two absorbing states at 0 and 50 infected individuals. The graph then ranges for

1.1 ≤ R0 ≤ 1.5 and the initial number of infectious individuals from 1 to 49. The

contour on the graph highlights which values of R0 and I give us a probability of

0.1 of the disease dying out without first becoming an epidemic. As we can see, any

pair of R0 and I to the right of the line represent a probability of less than 0.1 of

the disease dying out, so the likelihood of a major epidemic is high.

In order to perform simulations where R0 is allowed to vary below 1, we must

now abandon Whittle’s formula. In this case, we pick a reasonably high number for

the threshold value to use in the simulation. For example, choosing 100 as the upper

bound, and varying R0 between 0.5 and 2, the situation is as shown in Figure 3.5.

In this case, the curve highlights all the pairs of I and R0 for which the disease has

probability of 0.5 of both dying out and of becoming an epidemic.
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Figure 3.4: Probability of disease extinction due to variations of R0 and the number
of infectious individuals in a population.
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Figure 3.5: Probability of disease extinction due to variations of R0 and the number
of infectious individuals in a population.
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3.3.4 Final size of the epidemic

Suppose now that for a disease with some particular R0, we want to calculate the

final size of the epidemic. Recall from Section 2.6.3 that the final size of an epidemic

is defined to be the total number of individuals who experience infection during an

outbreak. The method of calculating these numbers follows that given there.

Recall also that since the model only investigates the early phase of an outbreak,

we must first condition on the disease becoming extinct.

Suppose the disease in question has basic reproduction number R0 = 1.2. From

Whittle’s formula (3.10), we find that for this choice of R0, the threshold N must be

at least 26 (i.e., to be at least 99% sure an epidemic occurs, the system must reach 26

infectious individuals). For these parameters, and starting the simulation with one

infected individual, after 1000 realizations of the Markov chain, we find the average

final size of the epidemic to be 4.6. Of the 1000 realizations, 820 resulted in disease

extinction while 144 resulted in an epidemic with 36 realizations still not absorbed

after the initial 90 days. These numbers reflect the predictions of the matrix NR

reasonably well; with parameters as above, the matrix NR gives a probability of 0.83

of disease extinction given one initially infected individual while 85% of the absorbed

realizations that ended in disease extinction.

Suppose now that we allow R0 to vary between 0.5 and 2. As before, Whittle’s

formula no longer applies in choosing the upper bound for the Markov chain when

R0 falls below one, so we let N = 50. The results are as shown in Figure 3.6.

Note that as R0 grows larger and larger, the results here become less meaningful.

When R0 > 1 is increasing, we typically expect an outbreak to become more and

more likely. Therefore, conditioning on the disease becoming extinct is essentially

conditioning on unexpected behaviour, and because the vast majority of our simula-

tions will be discarded (the ones that end up absorbed in the upper threshold), the

data we gain from this simulation is representative of fewer realizations.
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Figure 3.6: Average final size of the epidemic for 0.5 ≤ R0 ≤ 2.

The blue (dashed) curve represents the average final size of the outbreak when

there are initially 5 people infected, while the red (continuous) curve is the average

final size when there is just one person initially infected. In both curves we see a

slight increase in final size when R0 is around 1.

We conclude the investigation into the final size of the epidemic by examining

the expected duration of the stochastic phase of the outbreak, i.e., the time until the

chain is absorbed in either of the absorbing states. For this simulation, we allow R0

to vary from 0.3 to 3, and the initial number of infected from 1 to 49 with N = 50.

Figure 3.7 shows that the the average duration of the stochastic phase is longest

when R0 is around 1 and the initial number of infected people is between 6 and 17

with the largest length of time until absorption reaching up to just over 8 weeks.
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Figure 3.7: Average duration of the stochastic phase when the initial number of
infected varies from 1 to 25 and R0 varies from 0.3 to 3.
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4

Two interconnected locations

We now couple two systems of the form defined in Chapter 3 in order to describe

the movement of infectious individuals between two distinct locations and the effect

this has on a nascent epidemic.

4.1 The model

Let A and B be the two locations, SA(t), SB(t), IA(t) and IB(t) be random variables

representing the number of susceptible individuals in locations A and B and infec-

tious individuals in locations A and B, respectively. Let PA and PB be the total

population in A and B, respectively. In principle, one should consider these num-

bers as variables, as the total population in a location changes as individuals move in

and out of it. However, as we are considering the early phase of an epidemic, when

SA ' PA and SB ' PB, we consider PA and PB to be fixed. As a consequence, we

need only track IA(t) and IB(t). For X ∈ {A,B}, denote IXi (t) = {IX(t) = i}, i.e.,

the situation where there are i infectious individuals in location X at time t. We

omit the dependence on t if that does not lead to confusions.

In order to formulate a Markov chain to describe the evolution of both IA and

IB, we must consider the states of the Markov chains in the two locations as pairs
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and thus consider states of the form

IAi I
B
j ,

meaning that there are i infectious people in location A and j infectious people in

location B.

As in the one population case of Chapters 3, we assume that there is a threshold

number of infected individuals above which an epidemic takes place. We assume that

this threshold can be different in the two locations and denote the thresholds NA

in location A and NB in location B. When either location reaches its threshold, it

is assumed that a major outbreak occurs, i.e., the system has reached an absorbing

state. Thus,

IAi I
B
j , i = 0, . . . , NA, j = 0, . . . , NB, 0 ≤ i+ j < NA +NB (4.1)

are all the possible states in the chain. We call such states admissible. A state

that is not admissible is called unreachable. Note that the right inequality is strict:

the state IANAIBNB is indeed unreachable, since prior to reaching this state, the chain

would already have been absorbed in IANA or IBNB .

We call prevalence the total number k of infectious individuals in the system and

denote

Ik = {I iAI
j
B | i+ j = k, i = 0, . . . , NA, j = 0, . . . , NB}

the set of admissible states in the chain achieving prevalence k. From the remark

above, prevalence is such that 0 ≤ k < NA +NB.

As in Chapter 3, we assume that the time step ∆t is small enough that events can

only affect a single individual. As a consequence, only a small number of transitions

are possible, as represented in Figure 4.1, which shows the transition graph of the
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Figure 4.1: The first few states of the chain corresponding to a maximum prevalence
of 3 in the coupled two-locations system, when NA > 3 and NB > 3. The doubly
circled state is absorbing.

system for a prevalence equal to 3 or less. To simplify the graph, we have omitted

a self loop on each state IAi IBj . Each row in this representation shows the states

corresponding to a given prevalence, from 0 at the top to 3 at the bottom. The

Movement between locations.
Recovery of an infectious individual.
New infection.

Table 4.1: Meaning of the symbols used in Figures 4.1 and 4.2.

signification of the arrows used in Figure 4.1 is explained in Table 4.1.

Now consider an arbitrary admissible state IAi IBj , assuming a prevalence k =

i+ j ≥ 2. First, assume that the state is “interior” to the digraph, i.e., 0 < i < NA

and 0 < j < NB. Then the situation is as represented in Figure 4.2, which shows all

the possible transitions to and from any state IAi IBj provided they exist (for example

for a state such as IA1 IB0 , we cannot have recovery of an infectious individual in

location B so there is no transition to IAi IB0−1).
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Figure 4.2: States directly connected to a state with i infectious individuals in loca-
tion A and j individuals in location B.

4.2 Transition probabilities

Transition Probability Meaning
IAi I

B
j → IAi−1I

B
j ΓAi Recovery or death in A

IAi I
B
j → IAi+1I

B
j ΠA

i Infection in A
IAi I

B
j → IAi I

B
j−1 ΓBj Recovery or death in B

IAi I
B
j → IAi I

B
j+1 ΠB

j Infection in B
IAi I

B
j → IAi+1I

B
j−1 MAB

ij Movement of infectious from A to B
IAi I

B
j → IAi−1I

B
j+1 MAB

ij Movement of infectious from B to A
IAi I

B
j → IAi I

B
j pij Nothing happens

Table 4.2: Transitions and corresponding probabilities in the model for two locations
A and B, assuming that the states and transitions are allowable. See the text for
details.

As in Chapter 3, we assume that the probability of a new infection in location

X ∈ {A,B} is

ΠX
i = βX(PX − iX)iX ∆t, (4.2)

respectively, where sX = PX − iA and iX are the numbers of susceptible and infec-

tious individuals in location X ∈ {A,B}, respectively. Similarly, the probability of
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recovery or death in X ∈ {A,B} is given by

ΓXi = (γX + d)iX ∆t. (4.3)

Note that these processes are “localized”: it is required for individuals to be phys-

ically present in their location for the event to take place. In addition to local

processes, we introduce transport events, through which infectious individuals in a

location travel to the other location. We define the probability of movement of an

infectious individual from location A to location B and vice versa in the time interval

∆t as

MAB
ij = mABiA ∆t (4.4)

MBA
ij = mBAiB ∆t (4.5)

where mAB and mBA are the probabilities that a member of population A travels to

population B and vice versa in a time step.

Adding a second location and taking into account that both locations have ab-

sorbing states greatly complicates the situation compared to what it is in Chapter 3.

The discussion on values of probabilities that precedes assumes that all states in-

volved are admissible; the situation is in fact a little more complicated. Take for

instance (4.4). While correct in general, it should be noted that the precise form of

the equation is as follows:

MAB
ij = mABiA 1{1,...,NA−1}(iA)1{1,...,NB−1}(iB) ∆t,

where 1A(x) is the indicator function of set A. Indeed, if, for example, iB has been

absorbed into NB, then the chain has reached an absorbing state and no further

transition is possible. See Table 4.2 for a summary of transitions in the model.
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4.3 States with a given prevalence

Before detailing the transition matrix, it is useful to consider the sets of states

achieving a given prevalence, as they play a major role in determining factors such

as the size, shape and structure (zero/nonzero pattern) of the transition matrix.

Let us illustrate the role of prevalence by considering the situation for NA = 2 and

NB = 3, shown in Figure 4.3. Consider prevalences 0 < k < 2 = min(NA, NB).

Then as in Figure 4.2, the system can transition from any state with prevalence k

to any other state with prevalence k + 1 via an infection in either location. When

k = min(NA, NB) = 2, the possible transitions depend on whether all infectious

are in A (in which case, the chain has reached an absorbing state and no further

transitions are possible) or if iA < NA (in which case, infections are possible in both

locations).

IA0 I
B
0

IA1 I
B
0 IA0 I

B
1

IA2 I
B
0 IA1 I

B
1 IA0 I

B
2

IA2 I
B
1 IA1 I

B
2 IA0 I

B
3

IA1 I
B
3IA2 I

B
2

Figure 4.3: States of the chain when NA = 2 and NB = 3. Doubly circled states are
absorbing.

Let us now detail the number of states associated to each prevalence level.
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1. First, suppose that the prevalence k = 0. Then there is one admissible state,

IA0 I
B
0 which is absorbing.

2. Second, let prevalence k be such that 0 < k < min(NA, NB). Then there are

k + 1 admissible states, which are ordered as

Ik = {IAk IB0 , IAk−1I
B
1 , . . . , I

A
0 I

B
k }. (4.6a)

All states in (4.6a) are transient.

3. Third, suppose that prevalence k is such that min(NA, NB) ≤ k < max(NA, NB).

Note that if NA = NB, this case does not arise. If NA 6= NB, assume without

loss of generality that NA < NB. Keeping the same ordering for states of

prevalence k as in (4.6a), it is clear that states IAk−`IB` , for ` = 0, . . . , k −NA,

are either unreachable (when ` < k − NA) or absorbing (when ` = k − NA).

The former are not considered, so the ordered list of states takes the form

Ik = {IANAIBk−NA , IANA−1I
B
k−NA+1, . . . , I

A
0 I

B
k }. (4.6b)

For each k in this range, Ik has NA + 1 states regardless of the value of k. The

state IANAIBk−NA is absorbing while all other states are transient.

4. Fourth, suppose that prevalence k is such that max(NA, NB) ≤ k < NA+NB.

Assuming again that NA < NB, the ordered list of states of prevalence k is

Ik = {IANAIBk−NA , IANA−1I
B
k−NA+1, . . . , I

A
k−NBIBNB}. (4.6c)

There are NA+NB+1−k states in (4.6c). Among these states, both IANAIBk−NA

and IAk−NBIBNB are absorbing; the remainder are transient.

5. Finally, as remarked earlier, it is impossible to reach state IANAIBNB . Indeed, to
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reach it, the process would have to leave one of the absorbing states IANA−1I
B
NB

or IANAIBNB−1.

Lemma 4.1. If NA < NB, then the Markov chain has (NA + 1)(NB + 2) − 1

admissible states. If NA = NB, then the Markov chain has (NA + 1)2− 1 admissible

states. In both cases, NA +NB + 1 of these states are absorbing.

Proof. In order to obtain the result, we examine the cases separately based on the

different prevalence classes detailed above. First, assume that NA < NB.

1. For a given prevalence k ≤ NA − 1, there are k + 1 admissible states, giving

NA(NA + 1)/2 admissible states with prevalence k ≤ NA − 1.

2. Now consider prevalence in the range NA ≤ k ≤ NB − 1. There are NA + 1

admissible states for each k in this range giving a total of ((NB−1)−NA)(NA+

1) admissible states.

3. Finally, for prevalences from NB ≤ k ≤ NA + NB − 1, the number of states

decreases from NA + 1 to 2, giving (NA + 1)(NA + 2)/2− 1 admissible states.

Taking the sum of the results from the three cases above, the number of states is

NA(NA + 1)
2 + (NB −NA − 1)(NA + 1) + (NA + 1)(NA + 2)

2 − 1 = (NA + 1)
(
NA + (NB −NA + 1) + 1

)
− 1

= (NA + 1)(NB + 2)− 1.

In the case that NA = NB, we do not include the states for NA ≤ k ≤ NB − 1,

so we get that the number of states is

NA(NA + 1)
2 + (NA + 1)(NA + 2)

2 − 1 = (NA + 1)
(
NA

2 + NA + 2
2

)
− 1

= (NA + 1)(NA + 1)− 1

= (NA + 1)2 − 1.

Let us now count the number of absorbing states. Consider the same prevalence

ranges as those in the analysis of admissible states above. If NA < NB, then each
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prevalence level Ik for NA ≤ k ≤ NB − 1 has one absorbing state and there are

NB − NA such states. Prevalences from k = NB to k = NA + NB − 1 have two

absorbing states, giving 2NA such states. Adding the zero absorbing state gives the

result.

In the case NA = NB, intermediate prevalences do not come into play and there

are thus there are a total of 2NA + 1 = NA +NB + 1 absorbing states.

4.4 Transition matrix

In the transition matrix associated to this system, states are grouped first by preva-

lence. When doing so, the transition matrix is a block tridiagonal matrix,

T =



1 I0

R1 M1 I1

R2 M2 I2

. . . . . . . . .

INA+NB−2

RNA+NB−1 MNA+NB−1



. (4.7)

Blocks in T have varying sizes and structures depending on the prevalence k and

represent the following transitions:

• Ik represent transitions from prevalence class Ik to prevalence class Ik+1, i.e.,

new infections,

• Rk describe transitions from prevalence class Ik+1 to prevalence class Ik, i.e.,

recoveries and deaths,

• Mk describe transitions within the prevalence class Ik, i.e., movement between
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locations as well as absence of transition. These are square matrices that sit

along the main diagonal of blocks.

Prevalence level plays an important role in the size, shape and structure of the

submatrices making up the transition matrix T. The specific role of prevalence

differs depending on the type of transition encoded by the matrices, so we now

investigate each matrix type separately. From now on, without loss of generality

we assume that NA ≤ NB, so that min(NA, NB) = NA and max(NA, NB) = NB.

For context on how any of the upcoming submatrices fit into the overall transition

matrix, see the sample matrix in (4.18) with NA = 3 and NB = 5.

4.4.1 Infection submatrices

Infection takes the system from states in set Ik to states in set Ik+1. Thus, the shape

(and size) of Ik depends on the prevalence of the disease. The situation is as follows:

1. I0 and I1

If k = 0, the infection matrix is the 1× 2 zero vector, i.e.,

I0 = [0 0] ,

while if k = 1, it becomes

I1 =

ΠA
1 0 0

0 0 ΠB
1

 .

2. Ik for 2 ≤ k < NA

If 2 ≤ k < NA, the infection matrices take the form of the (k + 1) × (k + 2)-
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matrix

Ik =



IA
k+1I

B
0 IA

k I
B
1 ··· IA

1 I
B
k IA

0 I
B
k+1

IA
k I

B
0 ΠA

k 0 0 · · · 0 0 0

IA
k−1I

B
1 0 ΠA

k−1 ΠB
1 0 0 0

... ... . . . ...

IA
1 I

B
k−1 0 0 0 ΠA

1 ΠB
k−1 0

IA
0 I

B
k 0 0 0 · · · 0 0 ΠB

k



. (4.8)

Note that for convenience, the states from which the system starts (row) and

the state to which the system proceeds (column) have been indicated on the

borders of Ik. This will be done throughout this section wherever necessary.

3. Ik for NA ≤ k < NB

When the overall prevalence reaches NA, we see a change in both the shape and

the structure of the infection matrices. When the prevalence NA ≤ k < NB,

the general form of infection matrices is similar to (4.8), except that the top

row of Ik is zero, since it corresponds to a transition from state IANAIBk−NA ,

which is impossible since it is absorbing. For each NA ≤ k < NB, the infection
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matrices Ik are square and of constant size (NA + 1)× (NA + 1).

Ik =



IA
NAI

B
k−NA+1

IA
NA−1

IB
k−NA+2

··· IA
1 I

B
k IA

0 I
B
k+1

IA
NAI

B
k−NA 0 0 · · · 0

IA
NA−1

IB
k−NA+1

ΠA
NA−1 ΠB

k−NA+1 0

... ... . . . ...

IA
1 I

B
k−1 0 ΠA

1 ΠB
k−1 0

IA
0 I

B
k 0 · · · 0 ΠB

k



. (4.9)

Recall that if NA = NB, these matrices do not occur.

4. Ik for NB ≤ k < NA + NB − 1

Consider finally sets Ik for prevalence NB ≤ k < NA + NB − 1. The general

form of the infection matrices is again similar to (4.8). In addition to the row of

zeros as seen in (4.9), we also have a row of zeros at the bottom of the matrix,

corresponding to an impossible transition from the absorbing state IAk−NBIBNB .

For prevalence in this range, the matrices are no longer square, but have size
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(NA +NB + 1− k)× (NA +NB − k) and take the form

Ik =



IA
NA+1

IB
k−NA IA

NAI
B
k−NA+1

··· IA
k−NB I

B
NB−1

IA
k−NB+1

IB
NB

IA
NAI

B
k−NA 0 0 · · · 0

IA
NA−1

IB
k−NA+1

ΠA
NA−1 ΠB

k−NA+1 0

... ... . . . ...

IA
k−NB+1

IB
NB−1

0 ΠA
1 ΠB

k−1

IA
k−NB I

B
NB 0 · · · 0 0



.

(4.10)

4.4.2 Recovery (and death) submatrices

Before detailing the specifics of the recovery and matrices, some terminology is

needed. We use the word shape of a matrix, to specify whether the matrix is square

or rectangular. The word structure refers to the zero-nonzero pattern of entries

within the matrix. Note that even though these submatrices include transitions due

to recovery and death, we refer to them as “recovery matrices” from now on.

When a recovery occurs, the system transitions from prevalence states Ik to

prevalence states Ik−1. Similar to infection matrices, prevalence plays a role in the

size and structure of the recovery matrices.

1. I0

When the prevalence is zero there is no recovery matrix R0.

2. Ik for 1 ≤ k < NA
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For 1 ≤ k < NA, R is a (k + 1)× k-matrix and takes the form

Rk =



Ik−1
A I0

B Ik−1
A I1

B I1
AI

k−2
B I0

AI
k−1
B

Ik
AI

0
B ΓAk 0 0 0

Ik−1
A I1

B ΓB1 ΓAk−1 0 0

. . .

I1
AI

k−1
B 0 0 Γk−1

B Γ1
A

I0
AI

k
B 0 0 0 ΓkB



. (4.11)

3. INA

When the prevalence reaches NA, we see a change in the structure of the

matrix. The recovery matrix is similar to that in (4.11) except that all entries

of the first row become zero because that row now represents transitions from

the absorbing state INA

A I0
B, which are impossible. When the system reaches

this prevalence level, the recovery matrix is an (NA + 1)×NA-matrix.

RNA =



INA−1
A I0

B INA−2
A I1

B ··· I1
AI

NA−2
B I0

AI
NA−1
B

INA

A I0
B 0 0 0 0

INA−1
A I1

B ΓB1 ΓANA−1 0 0

... . . .

I1
AI

NA−1
B 0 0 ΓNA−1

B Γ1
A

I0
AI

NA

B 0 0 0 ΓNA

B



. (4.12)

4. Ik for NA < k < NB
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Suppose now that NA < k < NB. Then recovery matrices Rk are similar to

those in (4.12) except that the dimension is (NA+1)×(NA+1). The transition

matrix looks the same as that in (4.12) but with a column of zeros attached

on the left.

Rk =



IA
NAI

B
k−NA−1

IA
NA−1

IB
k−NA ··· IA

0 I
B
k−1

IA
NAI

B
k−NA 0 0 0 · · · 0 0

IA
NA−1

IB
k−NA+1

0 ΓBNA−1 ΓAk−NA+1 0 0

... ... . . . ...

IA
1 I

B
k−1 0 0 Γk−1

B Γ1
A

IA
0 I

B
k 0 0 · · · 0 ΓkB



. (4.13)

5. Ik for NB ≤ k ≤ NA + NB − 1

When the prevalence reaches NB, the size of the matrix remains the same as

in (4.13), but the last row is now also a row of zeros. This is because in this

prevalence range, the last row of Rk contains transitions from IAk−NAIBNB , which

is an absorbing state.

Rk =



IA
NAI

B
k−NA−1

IA
NA−1

IB
k−NA ··· IA

k−NAI
B
NB−1

IA
NAI

B
k−NA 0 0 0 · · · 0 0

IA
NA−1

IB
k−NA+1

0 ΓBNA−1 ΓANB−NA+1 0 0

... ... . . . ...

IA
k−NA+1I

B
NB−1

0 0 ΓNB−1
B Γ1

A

IA
k−NAI

B
NB 0 0 · · · 0 0



. (4.14)

6. INA+NB−1
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For the prevalence level NA + NB − 1, the recovery matrix takes the form of

the 2× 3 zero matrix

RNA+NB−1 =

0 0 0

0 0 0


4.4.3 Movement (and absence of transition)

Movement and absence of transition does not change prevalence; movement only

affects the current location of infectious individuals. As with the infection and re-

covery matrices, although the movement matrices are always square, the prevalence

determines the size and structure of the matrices.

1. I0

When the prevalence is zero, we do not have a movement and absence of tran-

sition matrix because we have just one (absorbing) state. This is represented

in our overall transition matrix as a 1 in the (1, 1) position.

2. Ik for 1 ≤ k < NA

When prevalence is in this range, all movement transitions are possible – since

prevalence is between 1 and NA, there are no absorbing states. The movement
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matrices are k × k matrices of the form

Mk =



IA
k I

B
0 IA

k−1I
B
1 IA

k−2I
B
2 ··· IA

2 I
B
k−2 IA

1 I
B
k−1 IA

0 I
B
k

IA
k I

B
0 pk,0 MAB

k,0 0 · · · 0 0 0

IA
k−1I

B
1 MBA

k−1,1 pk−1,1 MAB
k−1,1 0 0 0

IA
k−2I

B
2 0 MBA

k−2,2 pk−2,2 0 0 0

... . . .

IA
2 I

B
k−2 0 0 0 p2,k−2 MAB

2,k−2 0

IA
1 I

B
k−1 0 0 0 MBA

1,k−1 p1,k−1 MAB
1,k−1

IA
0 I

B
k 0 0 0 · · · 0 MBA

0,k p0,k



. (4.15)

3. Ik for NA ≤ k < NB

Suppose now that NA ≤ k < NB. In this range, the first row of the movement

matrices represent transitions from the absorbing state IANAIBk−NA , so the tran-

sition matrix is similar to that in (4.15), except that the first row is adjusted

to account for this absorbing state:

Mk =



IA
NAI

B
k−NA IA

NA−1
IB

k−NA+1
IA

NA−2
IB

k−NA+2
··· IA

2 I
B
k−2 IA

1 I
B
k−1 IA

0 I
B
k

IA
NAI

B
k−NA 1 0 0 · · · 0 0 0

IA
NA−1

IB
k−NA+1

MBA
NA−1,k−NA+1 pNA−1,k−NA+1 MAB

NA−1,k−NA+1 0 0 0

IA
NA−2

IB
k−NA+2

0 MBA
NA−2,k−NA+2 pNA−2,k−NA+2 0 0 0

... . . .

IA
2 I

B
k−2 0 0 0 p2,k−2 MAB

2,k−2 0

IA
1 I

B
k−1 0 0 0 MBA

1,k−1 p1,k−1 MAB
1,k−1

IA
0 I

B
k 0 0 0 · · · 0 MBA

0,k p0,k



. (4.16)
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4. Ik for NB ≤ k < NA + NB − 1 Similar to how (4.16) was adjusted to ac-

count for the absorbing state in the first row, the final row of the movement

matrices now represents a transition from another absorbing state IAk−NBIBNB ,

so movement matrices change as shown below.

Mk =



IA
NAI

B
k−NA IA

NA−1
IB

k−NA+1
IA

NA−2
IB

k−NA+2
··· IA

k−NB+2
IB

NB−2
IA

k−NB+1
IB

NB−1
IA

k−NB I
B
NB

IA
NAI

B
k−NA 1 0 0 · · · 0 0 0

IA
NA−1

IB
k−NA+1

MBA
NA−1,k−NA+1 pNA−1,k−NA+1 MAB

NA−1,k−NA+1 0 0 0

IA
NA−2

IB
k−NA+2

0 MBA
NA−2,k−NA+2 pNA−2,k−NA+2 0 0 0

... . . .

IA
k−NB+2

IB
NB−2

0 0 0 p2,k−2 MAB
2,k−2 0

IA
k−NB+1

IB
NB−1

0 0 0 MBA
k−NB+1,NB−1 pk−NB+1,NB−1 M

AB
k−NB+1,NB−1

IA
k−NB I

B
NB 0 0 0 · · · 0 0 1



. (4.17)

5. INA+NB−1

Finally, when prevalence reaches NA +NB − 1, there are no movements possi-

ble since each of the remaining states IANAIBNB−1 and IANA−1I
B
NB are absorbing.

Thus, we are left with the 2× 2 identity matrix

MNA+NB−1 =

1 0

0 1

 .

4.5 Mathematical analysis

An analysis similar to the one carried out in Chapter 3 could be performed, but

this is outside of the scope of this thesis. In order to keep the focus of this work on

the stochastic phase of disease outbreaks, we instead move straight to the numerical

simulations.
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4.6 Numerical simulations

4.6.1 Algorithm for two-location numerics

The following is an outline of the process that was used in creating the transition

matrix and its decomposition into canonical form as in Chapter 1, page 23.

1. In a first pass, given NA and NB, an ordered list is created containing all

admissible states. The states are ordered as in the sample matrix (4.18).

2. A graph of states is then created with arcs describing transitions as strings.

3. Given parameter values, the strings are evaluated, giving numerical weights to

the arcs. These weights correspond to entries in the transition matrix. For

example, a weight of 0.01 from vertex i to vertex j represents a transition

probability of 0.01 from state i to state j of the Markov chain.

4. A graph decomposition algorithm is then run to identify the transient states

and strong components with one vertex (absorbing states). This allows us to

easily compute the canonical form of the matrix.

4.6.2 Terminology

Before proceeding with the simulations, we need to introduce some new terminology

and recall some of the terminology from earlier in this chapter. In the case that

we need to consider different basic reproduction numbers in each location, we will

refer to the basic reproduction number in locations A and B as R0(A) and R0(B),

respectively.

Recall that we assume there is a threshold number of infected individuals above

which an epidemic takes place and that these thresholds are denoted NA and NB in

locations A and B, respectively. For the numerics in Chapter 3, we used Whittle’s

84



formula (3.10) to deduce these threshold values. Where possible (i.e., when R0(A)

and R0(B) are greater than 1), we will use this formula for each location. If we

require R0(A) or R0(B) less than 1 for a simulation, we will then set NA and NB

to 50.

4.6.3 Travel rates

In order to choose accurate travel rates, we used data from Bluedot [6], taking the

example of Thompson and Winnipeg in Manitoba. Counting the number of travellers

to Thompson (location A) from Winnipeg (location B) in 2013 (and vice versa) and

dividing by 365, we found out the average number of travellers per day between

Thompson and Winnipeg. Dividing these numbers by the population of Thompson

gives

mAB = 0.006748909, (4.19)

mBA = 0.007425633,

which we will use as sample travel rates for the numerics. These will be the travel

rates used throughout unless otherwise stated.

4.6.4 Time step for connected populations, ∆t

As in Chapter 3, ∆t must be chosen small enough so that only one event happens

per time step. However, because of the extra terms in the transition matrix for two

locations, the upper bound for ∆t must must be recalculated. This time, the row

sums of the off-diagonal entries in the transition matrix are given by

ΓAj + ΓAi +MBA
i,j +MAB

i,j + ΠA
i + ΠB

j .
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As before, we require the sums of the off-diagonal entries in each row to be less than

one, so using (4.2), (4.3) and (4.4), we get

(
γAiA + γBiB +mBAiB +mABiA + βA(PA − iA)iA + βB(PB − iB)iB

)
∆t ≤ 1,

so

∆t ≤ 1
γAiA + γBiB +mBAiB +mABiA + βA(PA − iA)iA + βB(PB − iB)iB .

4.6.5 Investigating the impact of travel

Consider Figure 4.4, which shows the probability of extinction of the disease with

R0(A) = R0(B) varying together in the case where travel is included (continuous

line) and no travel (dashed line). We assume there is initially one infected person in

location A. For this simulation, the threshold numbers were NA = NB = 50. As we

would expect, the graph indicates that travel does not cause significant unexpected

behaviour in the system as the basic reproduction number varies. However, from a

very careful inspection, it would appear that as R0 approaches 1, the probability of

disease extinction begins to reduce a little sooner in the case with no travel than

when travel is included. Figure 4.5 confirms this suspicion, though the difference is

minor.

It is often possible for the same disease to have different basic reproduction

numbers in different locations. This can be caused by a number of factors such as the

differing population densities (causing β to be different [37]), slightly different death

rates and life expectancy, or even factors such as different climates. It is therefore

natural to investigate the probability of overall disease extinction with respect to

different or varying reproductions numbers in each location when the model does

and does not incorporate travel. One would expect that imposing different basic
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Figure 4.4: Probability of disease extinction as a function of R0 in the absence
(dashed curve) and presence (continuous curve) of travel between locations.
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Figure 4.5: Difference in Figure 4.4 (travel minus no travel) between the probabilities
of disease extinction.
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reproduction numbers on each location should amplify the effects of travel, so for the

upcoming simulation, we will allow the disease to have different basic reproduction

numbers in each location.

We now examine the effect of travel more directly on the system by varying the

travel rates and plotting the probability of disease extinction. For this simulation, we

vary the travel rates from 0 to mAB and mBA. Suppose again that NA = NB = 50,

and the system starts in state IA1
2N

AI
B
0 ; i.e., the number of infected individuals in the

system is 25 in location A and 0 in location B. Setting R0(A) = 1 and R0(B) = 2, we

can see from Figure 4.6 that the role of travel in this model in certainly non-negligible.

The figure clearly shows that as travel to and from the population with the higher

reproduction number increases, the likelihood of disease extinction is reduced.
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Figure 4.6: Effect of variation of travel on the probability of disease extinction when
R0(A) = 1 and R0(B) = 2.

From Figure 4.6, we can see that travel plays a role in the outcome of an infectious
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disease when the reproduction numbers are different in each location. Obviously

the effect of travel is likely to be augmented when there is a large disparity in

reproduction numbers, so we now investigate this. Suppose again that R0(A) = 1,

travel is fixed at the usual rates in (4.19). We now vary the values of R0(B) and

observe the probability of disease extinction. Again NA = NB = 50 and the system

starts in state IA25I
B
0 . The results are show in Figure 4.7.
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Figure 4.7: Change in probability of disease extinction due to variation of R0(B)
with R0(A) = 1 and travel rates fixed.

As we can see, the probability of disease extinction decreases sharply as R0(B)

increases. When R0(B) is around 1, the probability of extinction is greater than

0.5, but as R0(B) increases to around 1.1, the probability of extinction has already

decreased to below 0.4.

4.6.6 Direct comparison to the single location case

Let us now compare the system with transport more directly to the system for

isolated locations in Chapter 3. First, assume that there are zero individuals infected
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in location B. As we vary R0 and the initial number of infected in location A,

Figure 4.8 shows similar behaviour to Figure 3.5 in Chapter 3. With travel taken into

account, we see roughly the same probabilities of disease extinction for 0.5 ≤ R0 ≤ 2

and the number of individuals initially infected with the disease in location A ranging

from 1 to 49 (i.e., NA = 50).
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Figure 4.8: Probability of disease extinction with varying values of R0 and initial
number of infected individuals in location A. The number of initially infected indi-
viduals in location B is assumed to be zero.

Suppose again thatNA = NB = 50, and the system starts off in the state IA1
2N

AI
B
0 .

Figure 4.9 shows how the probability of overall disease extinction changes with the

basic reproduction number varying in each location. As we can see, transport plays

an important role when the reproduction numbers are allowed to vary. From Fig-

ure 4.9a, we can see that a relatively low R0(A) does not ensure that the disease will

die out even when the all infected are initially based in location A. If R0(B) > 1,

it becomes more likely that the disease will not die out, but rather evolve into an
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epidemic. On the other hand, if travel is reduced tenfold, provided the reproduction

number is lower than 1 in location A (the location with the outbreak), then the

threat of a major epidemic is significantly reduced.
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(b) Travel rates reduced tenfold.

Figure 4.9: Effect of travel on the probability of extinction when R0 is allowed to
vary in each location.

Figure 4.9 shows that travel can play a major role in the development of an

infectious disease when the basic reproduction numbers are allowed to vary from

location to location. In particular, when there is an outbreak in location A, travel

plays a significant role when the reproduction number in location A is approximately

one.

Let us explore the role of a travel a little further in this aspect. Consider Fig-

ure 4.10. For this plot, we assume that R0(A) = 1, R0(B) varies and travel rates

vary from ten times lower than the standard travel rates to ten times higher. In this

plot we can see the role of travel very clearly. When travel is reduced, we do not see

much change as R0(B) varies from 0.5 to 2, but as travel is increased, the change is

much more pronounced. From the graph, we can see that any combination of R0(B)

and travel rates above the rightmost line indicate a probability of less than 0.2 of

disease extinction, meaning that for this range of values an epidemic is the more

91



likely outcome. In the same way, any combination of R0(B) and travel rates above

the leftmost line imply a probability of disease extinction is greater than 0.8, so in

this range of R0(B) and travel rates, extinction becomes the more likely outcome.

The region between the curves represents the values of travel rates and R0(B) for

which the outcome of the outbreak is uncertain; each pair of values in this region

gives a probability of disease extinction between 0.2 and 0.8.
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Figure 4.10: Probability of overall disease extinction given that R0(A) is 1, with
varying R0(B) and travel rates.

4.6.7 Final size of the epidemic

As in Section 3.3.4, we investigate the final size of the epidemic. For the same reasons

as before, we condition on disease extinction.

First, in order to compare directly with the findings in Section 3.3.4, consider the

case where R0 = 1.2 in each location. Using (3.10), we find the threshold value for a
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full-blown epidemic to be 26 for each location. Starting with one infected individual

in location A and zero in location B (i.e., state IA1 IB0 ), after 1000 realizations of the

Markov chain, we find the average final size of the epidemic to be 4.7. Recall that

this number was 4.6 when the corresponding simulation was run in Chapter 3.

In keeping with the investigations in Chapter 3, suppose now that R0 is varied

from 0.5 to 2. As before, we cannot use Whittle’s formula (3.10) in choosing NA

and NB when R0 varies below 1, so let NA = NB = 50. Figure 4.11 shows how

the final size of the epidemic changes with R0 for the travel rates as in (4.19) when

the initial number of infected individuals in location A is 1, and in location B is

zero. The red (continuous) curve represents the result for the two location case,

while the blue (dashed) is the corresponding result from Figure 3.6 in Chapter 3

overlaid. Figure 4.12 is the same simulation for 5 initially infected individuals in

location A and zero in location B, again with red (continuous) curve representing

the two location case with the blue (dashed) curve from Figure 3.6 in Chapter 3.

As we can see, travel does not play a major role in the average final size of

the epidemic. In both simulations for one and five initially infected individuals in

location A, the numbers for the two location case closely follow those of the one

location case for every R0 in the given range.

4.6.8 Further investigations into the final size of the epi-

demic for the two locations case

Finally, we look at the average duration of the stochastic phase for two locations.

Figure 4.13 shows the expected time until the chain is absorbed for 0.3 ≤ R0(A) =

R0(B) ≤ 3 and the initial number of infected ranging from 1 to 49. As before,

NA = NB = 50. The red (continuous) lines show the different lengths of time in two

locations while dashed lines are the results from one location superimposed onto the

graph. As we can see, the addition of travel causes the average duration to increase
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Figure 4.11: Final size of the epidemic withR0 varying from 0.5 to 2 starting with one
infected individual in location A with the corresponding result for the one location
case overlaid.
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very slightly.
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Figure 4.13: Average duration of the stochastic phase for two locations (continuous
curve) compared with one location (dashed curve)
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5

Conclusion

The primary goal of this work was to investigate the effect of travel on the charac-

teristics of the stochastic phase of disease spread in populations. After building a

Markov chain model for both one isolated location and two distinct but connected

locations, many numerical simulations were run.

First, the probability of disease extinction was measured for varying values of R0

and numbers of infected individuals in the population. The addition of travel to and

from another location did not appear to have a major effect on the simulations in

this regard – in each case, probability of extinction was heavily dependent on R0

and the number of individuals initially infected in the population.

Some of the simulations did reveal more dependence on travel rates. For example,

Figure 4.9 investigates the situation of an outbreak in progress in location A (where

there are 25 currently infected) and location B disease free. The figure shows the

change in the probability of disease extinction due to variations ofR0(A) andR0(B).

Figure 4.9a shows the behaviour for normal travel rates, while Figure 4.9b shows the

situation for travel rates reduced significantly (tenfold). The results imply that if

the disease has different reproduction numbers in each location, then travel between

the locations may result in the overall likelihood of disease extinction reducing quite
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a lot, while if travel rates are reduced, the probability of disease extinction remains

in line with R0(A). This implies that if a disease is prevalent in one location but

not another, and it may have different basic reproduction numbers in each location,

it is best to limit travel in order to lower the probability of a major outbreak.

The versatility of a Markov chain model makes it an attractive method for mod-

elling disease movement. With a Markov chain model we can calculate probabilities

of extinction, absorption into various absorbing states and durations of time spent

in individual or all transient states. Although this model revealed a lot of informa-

tion about the dynamics of the disease, there are still quite a few ways it could be

furthered and improved upon.

First, an obvious extension to the model would be to add a third connected

location, and then to generalize it to n connected locations. The difficulty here is

that the size of the Markov chain would soon become enormous, as the number of

possible states for the Markov chain to access increases (almost) exponentially. For

example, in one location, an absorbing threshold of 50 infected individuals means

51 states, while in two locations, by Lemma 4.1, absorbing thresholds of 50 in each

location leads to 2600 states (101 of which are absorbing). For 3 and n locations,

the transition matrix representing the Markov chain has dimension 513 × 513 and

51n × 51n, respectively, making numerics increasingly difficult.

Another extension would be to apply a Markov chain model to a more complex

disease type. In this work, the model was applied to a disease that follows an SIS

progression. Because we had only two compartments and a constant population, we

could model the disease solely based on the number of infected individuals at a given

time. With more compartments this would become more difficult but still possible

– perhaps using more complex functions describing the entries in the Markov chain

to account for the changes in overall structure of the population. It may not be

possible, but is nonetheless worthwhile investigating.
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