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Abstract

The Surface-Volume-Surface Electric Field Integral Equation (SVS-EFIE) is appli-

cable to the solution of the scattering problems on both lossless dielectric and highly

conducting metal objects. When the solution of scattering and radiation problems on

metal objects is sought the rapidly attenuating field behaviour due to skin-effect can

be exploited to reduce the complexity of the Method of Moments (MoM) discretized

SVS-EFIE. Among these strategies is the removal of the volume mesh correspond-

ing to the part of the scatterer in which field is expected to attenuate below certain

threshold and truncation of the range in MoM interactions due to their attenuation

governed by the metal medium Green’s function. In this work, the qualitative de-

scription of these techniques is provided as well as numerical results demonstrating

their validity.
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Note on Acronyms and Symbols

The common acronyms that will be frequently encountered in this thesis are given

in table 0.1.

Table 0.1: Frequently Used Acronyms

Acronym Meaning

EM Electromagnetic

CEM Computational Electromagnetic

FEM Finite Element Method

FD Finite Difference

IE Integral Equation

DE Differential Equation

MoM Method of Moments

PDE Partial Differential Equation

SVS-IE Surface Volume Surface Integral Equation

Continued on next page
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Acronym Meaning

SIE Surface Integral Equation

SSIE Single Source Surface Integral Equation

VIE Volume Integral Equation

V-EFIE Volume Electric Field Integral Equation

S-EFIE Surface Electric Field Integral Equation

PEC Perfect Electric Conductor

EFIE Electric Field Integral Equation

SVS-EFIE Surface Volume Surface Electric Field Integral Equation

MFIE Magnetic Field Integral Equation

CFIE Combined Field Integral Equation

ACA Adaptive Cross Appoximation

SVD Singular Value Decomposition

LU Lower and Upper

RWG Rao-Wilton-Glisson

SLAE System of Linear Algebra Equation

H−Matrices Hierarchical Matrices

H−Matrix Hierarchical Matrix

SE Skin Effect

Continued on next page
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Acronym Meaning

SD Skin Depth

2-D Two Dimensional

3-D Three Dimensional

SAR Specific Absorption Rate

CPU Central Processing Unit

Another important portion of this thesis that needs additional notice are the use

of symbols and notations. While the choice of font-type and font-face are itemized

below, the list of symbols frequently used are presented in table 0.2.

• Spatial-vectors: bold face letters are used for vectors and matrices, such as

E, H , and J .

• Scalar integral operators: are denoted by upper-case calligraphic letters such

as T .

• Vector integral operators: are denoted by upper-case bold calligraphic let-

ters such as TTT .

• Vector matrices: are denoted by upper-case bold letters such as ZZZ.

• Scalar matrices: are denoted by upper-case letters such as Z.



• Dyads: are denoted with upper-case letters with two overhead lines such as ¯̄I

and Geε.

• Spatial derivative operators: spatial gradient, divergence, and curl opera-

tors are given as (∇),(∇·) and (∇×).

• Integration differentials: dl is the differential element for line integrals, while

dS stands for differential operation on surface patches of boundary elements and

dV means the differential operation on volumetric elements .

Table 0.2: Frequently Used Symbols

Symbol Meaning

x̂, ŷ, ẑ Unit vectors in the x, y and z directions.

n̂ Normal unit vector outward to the boundary.

t̂ Tangential unit vector to the boundary.

r, r′ Position vectors in the 3-D Cartesian coordinate system.

ε0 Permittivity of free-space.

ε Relative complex permittivity of the scatterer.

σ Conductivity of the scatterer.

µ0 Permeability of free-space.

µr Relative permeability of the scatterer.

Continued on next page
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Symbol Meaning

k0 Wave number of free-space.

kε Wave number inside the scatterer.

ω Radial frequency.

f Frequency of operation.

t Time variable.

λ Wavelength.

Γ Gram matrix.

Einc Time-harmonic incident electric-field for a transmitter.

H inc Time-harmonic incident magnetic-field for a transmitter.

Escat Time-harmonic scattered electric-field.

E Time-harmonic total electric-field.

Jk Polarization current density.

J Fictitious SVS-EFIE surface source density.

Ge0 Dyadic electric field Green’s function of free space.

Geε Dyadic electric field Green’s function of homogeneous space with

permittivity ε.

∂V Boundary of the 3-D object.

V Volume of the 3-D object.

Continued on next page
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Symbol Meaning

` Length variable.

∇ Gradient operator.

∇· Divergence operator.

∇× Curl operator.

∇×∇× Curl curl operator.

∇2 The Laplacian.

(·)−1 Inverse operator.

‖·‖ L2− norm or Euclidean norm.

〈· , ·〉 Inner product.
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Chapter 1

Introduction

1.1 Background Information

T
he Surface-Volume-Surface Electric Field Integral Equation (SVS-EFIE) for-

mulation is used for solving scattering and radiation problems on both dielec-

tric and highly conducting metal objects [20, 21, 23–25]. SVS-EFIE takes advantage

of the relationship between the surface and volumetric currents. It reduces radiation

or scattering problems on penetrable object to the problem of determining a single

unknown surface current density on the boundary of the object [20,21,23–25].

Solving a scattering or radiation problem may involve the use of methods such

as finite difference (FD) and finite element method (FEM) that directly discretize

pertinent partial differential equations (PDEs). Alternatively, the problem can be

converted into the form of a surface integral equation (SIE) or a volume integral
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E-dipolez

x
y
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Figure 1.1: Magnitude of the total electric field inside Lead (Pb) sphere produced by
a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 30 GHz

equation (VIE). When the solution is sought via the SIEs, it can be formulated into

Electric Field Integral Equation (EFIE), Combined Field Integral Equation (CFIE),

Magnetic Field Integral Equation (MFIE), and other types of SIEs [29].

EFIE can be categorized further based on the problem domain containing the

unknown field quantities under consideration. The Surface - Electric Field Integral

Equation (S-EFIE) localizes the unknown fields to the surface of the object and,

hence, requires only the surface discretization. Alternatively, Volume - Electric Field

Integral Equation (V-EFIE) formulated with respect to the unknown field quantities

localized to the volume requires discretization of the object’s volume [15,29]. In each

of these cases, both the electric field and magnetic field Green’s functions are featured.
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Figure 1.2: Cross-Section: Magnitude of the total electric field inside Lead (Pb) sphere
produced by a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m
obtained by the H-matrix accelerated SVS-EFIE solver at 30 GHz
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However, when the solution is sought through SVS-EFIE, its method of moment

(MoM) discretization involves the creation of both the surface and volume meshes

because of the presence of Surface-to-Volume and Volume-to-Surface operators [20,

24]. Interestingly, it features only the electric field Green’s function, its unknown

field quantities are localized to the surface of the analysed scatterer in-place of its

volume, and it is derivative free when compared to traditional Integral Equations

(IEs) [20–22,24,25].

Usually, MoM discretization of a scattering or radiation problem yields dense ma-

trices which are expensive to solve and also memory-wise costly. The concept of

Hierarchical Matrices (H−Matrices) is introduced as fast direct approach for the for-

mation of the MoM matrix obtained from the discretization of SVS-EFIE − which

has an inherent product of non-square matrices from Surface-to-Volume and Volume-

to-Surface operators. The technique of H−Matrices facilitates rank based compres-

sion of the SVS-EFIE operators and it also efficiently handles matrix operations like

matrix-vector multiplication, matrix - matrix multiplications, matrix addition and

inversion [5, 12–14].

There are several applications of solutions of scattering and radiation problems on

penetrable conducting objects, viz., antenna design, high speed interconnects, analysis

of plasmonic structures and so on [1, 8, 18, 32]. The field calculation throughout the

volume of the lossy body tissues are required in the biomedical EM applications

for determining the specific absorption rate (SAR) or field penetration depth [1, 9],
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SVS-EFIE is applicable for solution of such problems.

1.2 Purpose of the study

When the solution of the scattering problem is sought for penetrable metal objects

(at high frequency), the solution of SVS-EFIE becomes extremely large in terms of

the memory and time requirements. It then becomes seemingly impractical to achieve

within a reasonable time frame [28, 39] because of the presence of a large amount of

volumetric mesh elements.

In this work, a certain portion of the volume mesh corresponding to region in

which the field is expected to have attenuated is removed as shown in Figure (1.3).

The field attenuates very fast (Figures (1.1) and (1.2)) due to the skin-effect below

a certain threshold and the truncation of the range, governed by the metal medium

Green’s function, can be exploited to reduce the complexity of the MoM discretization

of SVS-EFIE. In short, these applied techniques involve the reduction in the memory

requirement and the computational cost of the problem through: (1) the extraction

of the portion of the volumetric mesh elements a few skin depths away where the field

is believed to have vanished and (2) truncation of the range of interactions between

the sources and observers.
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Figure 1.3: Cross-Section: Magnitude of the total electric field inside Lead (Pb) sphere
produced by a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m
obtained by theH-matrix accelerated SVS-EFIE solver at 30 GHz showing the portion
to be extracted
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1.3 Statement of the Hypothesis

In this research work, it is hypothesized that:

1. Exploitation of the metal object’s skin-effect and truncation of the range of

interaction does not significantly affect the accuracy of the solution.

2. There is a reduction in the time to solution and/or the complexity of the solu-

tion of MoM discretization of SVS-EFIE for penetrable well-conducting metal

objects (at high frequency) with skin-effect exploitation and interaction range

truncation.

3. These techniques facilitate partial meshing of the volumetric portion of the

scatterer in question so that meshing is done only at few skin-depths into the

volume.

4. At high frequency, the MoM discretization of SVS-EFIE for well-conducting

metal object is comparable to the MoM discretization of S-EFIE in terms of its

combined surface and volume degrees of freedom.

1.4 Research Questions

Applying the volumetric element extraction and interaction range truncation strate-

gies would, undoubtedly, influence the accuracy of the solution. Hence, the questions

whose answers are desired are:
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1. “Can the effect of the volumetric mesh elements extraction be measured?”

2. “Does the application of the volumetric mesh elements extraction and the trun-

cation of range of interaction introduce additional computational overheads?”

The answers to these questions are the justifications for the importance of the

application of the volumetric mesh element extraction and interaction range trun-

cation techniques when solving a scattering problem on a conducting metal object.

This implies that without additional computational overheads, solving a scattering

problem with the application of these techniques is better off than the one without it.

Similarly, being able to measure the effect of the volumetric mesh elements extrac-

tion avails the user of these strategies to foresee the likely effect of choosing a certain

extraction width.

1.5 Significance of the study

For a given scattering or radiation problem involving a penetrable metal object,

the volumetric elements which introduce additional computational complexity to the

solution of MoM discretization of SVS-EFIE are reduced by extracting other parts of

the mesh a few skin-depths away. Employing the said extraction technique followed

by the truncation of the range of interaction greatly influence the complexity of the

problem in-terms of the time to solution and memory/storage requirements to obtain

a solution.
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1.6 Thesis Structure

Chapter (2) discusses the main foundational theories used in this research work.

Here, the review of existing literatures are done. Mathematical formulations of the

volume equivalence principle and SVS-EFIE are presented.

Chapter (3) briefly enumerates the basic features ofH−Matrices. It discusses each

of the features with appropriate examples, figures and illustrations where necessary.

Chapter (4) elaborates the volumetric mesh extraction technique, range of in-

teraction truncation procedures, and H−Matrices implementation of SVS-EFIE. It

discusses the validity checks and introduces a parameter for validating the extent of

the extraction effect. Various test cases conducted are also presented in this chapter.

Chapter (5) contains the results obtained from the application of the new tech-

niques introduced in Chapter 3. The results of the validity checks are also presented

and discussed. Similarly, there is discussion on the hypothesis.

Chapter (6) is the panorama of the entire research work. This chapter also sum-

marizes the theoretical and practical implications of using the new techniques. It also

contains suggestions for future research on this topic.
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Chapter 2

Overview of Equivalence Principle

and SVS-EFIE

2.1 Introduction

A
s briefly mentioned in Chapter (1), the focus of this research work lies in the

improvement of the solution of MoM discretized SVS-EFIE formulation of

a scattering problem on a conducting metal object. Henceforth, the core theoretical

foundations of this research work lie in the SVS-EFIE formulation and itsH−Matrices

based MoM discretization.

The SVS-EFIE formulation combines the ideas of the Single-Source Surface Inte-

gral Equation (SSIE) [30,36] with the traditional volume equivalence principle [17,29].

It was first presented in [21, 23–25] for the analysis of 2-D scattering problems on
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homogeneous, piece-wise homogeneous dielectric and well-conducting objects. The

detailed description of MoM discretization of the 2-D SVS-EFIE formulation was

introduced in [22]. Furthermore, the application of SVS-EFIE is not limited to solv-

ing problems on homogeneous objects but can also be applied to the analysis of

scattering problems on the multi-layered media [40]. While 2-D scattering problem

analysis [21–25] provides insights into the correctness of the formulation itself, its

full wave analysis is much more desired and sought for. Therefore, the 3-D scattering

problem analysis on homogeneous dielectric objects using MoM discretized SVS-EFIE

formulation has been done [20].

The advantages of the SVS-EFIE include the presence of one product of electric

field type integral operators, provision for a mixed potential formulation free of hyper-

singular integral and other advantages related to the solution of practical problems

as well as MoM implementation [20, 21, 23–25, 40]. In contrast to the advantages of

the SVS-EFIE, sit the bottlenecks created by the cost of computing field translations

from the scatterer surface to its volume (Surface-to-Volume operator computation)

and then from its volume back to the surface (Volume-to-Surface operator computa-

tion). The result of these translations in SVS-EFIE is that both the surface and the

volume of the scatterer have to be discretized. Therefore, considering the number of

volumetric mesh elements that will be generated at high frequency, [28, 39] argued

that SVS-EFIE formulation is not applicable for solving scattering problems at high

frequency.
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The following sections detail the derivation of SVS-EFIE as presented in [20, 34]

for the interested reader. The final equations used in this thesis can be found in

Section (2.5).

2.2 Time – Harmonic Fields

In a region illuminated by time-harmonic electromagnetic field (ejωt) having elec-

tric current J and magnetic current M , the Maxwell’s equations are given by

∇×E(r) = −jωµH(r)−M , (2.1)

∇×H(r) = jωεE(r) + J , (2.2)

∇ · (εE(r)) = ρe, (2.3)

∇ · (µH(r)) = ρm, (2.4)

where, E andH are the electric and magnetic fields respectively. The cyclic frequency

is denoted by ω, ρ is the volume charge density, J is the electric current density, ε is

the dielectric permittivity, µ is the permittivity of free space. The position vector is

given by r, j =
√
−1, ρe is the electric charge density due to electric current source,

and ρm is the magnetic charge density due to magnetic current source. Note that

magnetic charges have not been shown to exist, but it is often used as a mathematical

convention.

The electric and magnetic fields in the Maxwell’s equations, for simplicity, can
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be broken down into one due to the electric current source and the other due to the

magnetic current source [17] thus:

E = Ee +Em, (2.5)

H = He +Hm, (2.6)

where Ee is the electric field due to electric current source, Em is the electric field

due to the magnetic current source, He and Hm are the magnetic field due to the

electric and magnetic current sources respectively, E and H denote the total electric

and magnetic fields respectively.

Electric field Ee as used in equation (2.5) satisfies

∇×Ee = −jωµHe, (2.7)

∇×He = jωεEe + J , (2.8)

∇ · (εEe) = ρe, (2.9)

∇ · (µHe) = 0, (2.10)

where the position-vector r has been expunged for the sake of clarity and conciseness.
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Again, Em and Hm are governed by

∇×Em = −jωµHm −M , (2.11)

∇×Hm = jωεEm, (2.12)

∇ · (εEm) = 0, (2.13)

∇ · (µHm) = ρm. (2.14)

The magnetic field due to the electric current source Be = µHe, which is a vec-

tor function in a solenoidal form, can be represented as a curl of another vector −

magnetic vector potential A− as in

Be = ∇×A, (2.15)

He =
1

µ
∇×A. (2.16)

Inserting equation (2.15) into equation (2.7), results in

∇×Ee + jω∇×A = 0, therefore, (2.17)

∇× (Ee + jωA) = 0. (2.18)

Equation (2.18) can be satisfied by introducing the scalar potential as in E = −∇φ,
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such that

Ee + jωA = −∇φ, (2.19)

then substituting into equation (2.8), equations (2.16) and (2.19) yields

∇×
(

1

µ
∇×A

)
= −jωε∇φ+ ω2εA+ J , (2.20)

hence, in a homogeneous media, equation (2.20) becomes

∇ (∇ ·A)−∇2A = −jωµε∇φ+ k2A+ µJ , (2.21)

where k is the free-space wave number defined as k = ω
√
µε.

As established in equation (2.15), equation (2.21) can be simplified by setting the

divergence of vector potential A as

∇ ·A = −jωµεφ, (2.22)

thus, plugging equation (2.22) into equation (2.21) gives

∇ (∇ ·A)−∇2A = ∇ (∇ ·A) + k2A+ µJ , (2.23)

∇2A+ k2A = −µJ , (2.24)
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notice that re-arranging equation (2.23) produces the equation (2.24) which is in the

form of inhomogeneous Helmholtz equation.

Assuming that the value of the vector potential A has been found, the electric

field due to the electric current source Ee can be expressed from equation (2.19) as

Ee = −jωA−∇φ, (2.25)

Ee = −jωA+
1

jωµε
∇ (∇ ·A) , (2.26)

where equation (2.26) is obtained from equations (2.25) and (2.22).

Following the same approach used to obtain (2.26) from equation (2.7), the electric

field Em due to the magnetic current source can be derived in the same manner using

(2.8) as:

Em = −1

ε
∇× F , (2.27)

where F is the electric vector potential.

Conclusively, inserting equations (2.26) and (2.27) into equation (2.5) gives

E = −jωA+
1

jωµε
∇ (∇ ·A)− 1

ε
∇× F . (2.28)
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2.3 Field – Source Relationship

In equation (2.28) derived in section (2.2), the magnetic and electric vector po-

tentials respectively are defined as follow [17,29]

A(r) =
µ

4π

ˆ

V

J (r′)
e−jk|r−r

′|

|r − r′|
dV ′, (2.29)

F (r) =
ε

4π

ˆ

V

M (r′)
e−jk|r−r

′|

|r − r′|
dV ′. (2.30)

Equations (2.29) and (2.30) can be re-written by introducing

G0(r, r′) =
e−jk|r−r

′|

4π |r − r′|
, (2.31)

where G0(r, r′) is known as the 3-D free-space scalar Green’s function [17]. Substi-

tuting equation (2.31) into equations (2.29) and (2.30) yield

A(r) =
µ

4π

ˆ

V

G0(r, r′)J (r′) dV ′, (2.32)

F (r) =
ε

4π

ˆ

V

G0(r, r′)M (r′) dV ′. (2.33)
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Therefore, plugging equations (2.32) and (2.33) into equation (2.28) produces

−jωµ
ˆ

V

(
G0(r, r′)J (r′) +

1

k 2
∇∇G0(r, r′)J (r′)

)
dV ′−

ˆ

V

∇G0(r, r′)M (r′) dV ′

= E (r) . (2.34)

Introducing a new mathematical quantity in the form of identity matrix I = x̂x̂ +

ŷŷ + ẑẑ, then equation (2.34) can be re-written as

E (r) = −jωµ
ˆ

V

Ge0(r, r′) · J(r′)dV ′ −
ˆ

V

Gm0(r, r′) ·M (r′) dV ′, (2.35)

where

Ge0(r, r′) =

(
∇∇
k 2

+ I

)
G0(r, r′), (2.36)

Gm0(r, r′) = ∇G0(r, r′)× I, (2.37)

Ge0(r, r′) and Gm0(r, r′) are the dyadic Green’s functions of the electric and mag-

netic types respectively.
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Figure 2.1: Scattering problem showing incident field generated by the source im-
pinging on the surface of the scatterer So, the scatterer in turn produces a scatter
field such that the superposition of the two fields can be observed by the observer .

2.4 Volume Equivalence Principle

Consider a time-harmonic electromagnetic field, with sources J i and M i, imping-

ing on a well-conducting penetrable scatterer (Figure (2.1)) in time-harmonic form

with the cyclic frequency ω and time convention ejωt. If V is the volume of the scat-

terer and t is the time variable, then ejωt is assumed and j =
√
−1. The volumetric

equivalence principle [29] can be written, for the total electric field E at an arbitrary

observation point r in space and position vector r′ inside the scatterer. The radiated
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field which can be observed in the vicinity of the scatterer must satisfy

∇×E(r) = −jωµ(r)H(r)−M i, (2.38)

∇×H(r) = jωεE(r) + J i. (2.39)

Obtaining the direct solution of (2.38) requires a lot of effort, however, the equivalent

sources which exist only in the volume of the scatterer can be used to replace the

scatterer (Figure (2.1)) [29] as

∇×E(r) = −jωµ(r)H(r)−M i −M o, (2.40)

∇×H(r) = jωε(r)E(r) + J i + Jo, (2.41)

where Jo and M o are the equivalent electric and magnetic sources respectively. The

equivalent sources as used in equations (2.40) and (2.41) are expressed as

M o = jωµ0 (µr − 1)H , (2.42)

Jo = jωε0 (εr − 1)E, (2.43)

where ε0 is the permittivity of the free-space, εr is the relative permittivity of the

scatterer’s media, µ0 is the free-space permeability, and µr is the relative permeability

of the media.

From the field-source relationship detailed in section (2.3), equation (2.40) can be
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expressed in terms of equation (2.35) thus

E (r) =− jωµ
ˆ

Vs

Ge0(r, r′) · J i(r′)dV ′ −
ˆ

Vs

Gm0(r, r′) ·M i(r
′)dV ′

− jωµ
ˆ

Vo

Ge0(r, r′) · Jo(r′)dV ′ −
ˆ

Vo

Gm0(r, r′) ·M o(r
′)dV ′,

(2.44)

where Vs and Vo denote the volumes of the source and the object respectively (as

shown in Figure (2.1)). The first-two terms with integral over Vs denote the incident

field [17], while the remaining two integrals represent the scattered field. Therefore,

equation (2.44) can be re-written in a more concise form as

E (r) = Einc(r)− jωµ
ˆ

Vo

Ge0(r, r′) · Jo(r′)dV ′ −
ˆ

Vo

Gm0(r, r′) ·M o(r
′)dV ′, (2.45)

where Einc denotes the incident electric field.

Substituting equations (2.42) and (2.43) into equation (2.45) gives

E (r) = Einc(r) + ω2µ0ε0µr(εr − 1)

ˆ

Vo

Ge0(r, r′) ·E(r′)dV ′

− jωµ0(µr − 1)

ˆ

Vo

Gm0(r, r′) ·H(r′)dV ′, (2.46)
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while putting k = ω
√
µ0ε0 in equation (2.46) results in

E (r) = Einc(r) + k2µr(εr − 1)

ˆ

Vo

Ge0(r, r′) ·E(r′)dV ′

− jωµ0(µr − 1)

ˆ

Vo

Gm0(r, r′) ·H(r′)dV ′. (2.47)

2.5 3-D Surface-Volume-Surface EFIE Formulation

Consider the scattering problem in Figure (2.1) for a homogeneous and non-

magnetic well-conducting penetrable metal object. The volume equivalence principle

can be obtained for the problem from equation (2.47) thus:

E (r) = Einc(r) + k2(εr − 1)

ˆ

Vo

Ge0(r, r′) ·E(r′)dV ′, (2.48)

where µr = 1, r is an arbitrary observation point in space, r′ denotes the position-

vector inside the scatterer, and εr is the complex relative permittivity of the media

defined as

εr = εr +
σ

jωε0

, (2.49)

where σ represents the conductivity of the media. The field inside the object satisfies

homogeneous curl-curl Helmholtz equation

∇×∇×E(r′)− k2
εE(r′) = 0, r′ ∈ V \ ∂V, (2.50)
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where kε =
√
εrk0 is the wave number of the media.

To arrive at the SVS-EFIE formulation, the total electric field inside the scatterer

is expressed as the superposition of the primary waves originating from the scatterer’s

boundary [20,23–25] as

−jωµ0

˛

∂V

Geε(r
′, r′′) · J(r′′) dS ′′ = E(r′) (2.51)

where the tangential current density J(r′′) is the weighting for the waves Geε(r
′, r′′)

and it is defined on surface ∂V of the object. The electric type dyadic Green’s function

of the media, Geε(r
′, r′′) is define as follows

Geε(r
′, r′′) =

(
∇′∇′

k 2
ε

+ I

)
Gε(r

′, r′′) (2.52)

where, Gε(r
′, r′′) =

e−jkε|r
′−r′′|

4π |r′ − r′′|
. (2.53)

The waves Geε satisfies the homogeneous equation

∇×∇×Geε − k2
εGε = 0. (2.54)

Finally, substituting equations (2.36), (2.51) and, (2.52) into the (2.48) and localizing

the observation domain to the surface of the object produces the SVS-EFIE equation
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[20,34]

− jωµ0t̂ ·
˛

∂V

Geε(r, r
′′) · J(r′′)dS ′′

+ jωµ0k
2 (εr − 1) t̂ ·

ˆ

V

Ge0(r, r′) ·
˛

∂V

Geε(r
′, r′′) · J(r′′)dS ′′dV ′

= t̂ ·Einc(r), r ∈ ∂V. (2.55)

where the tangential vector to the boundary ∂V is denoted by t̂. However, since the

observation points are limited to the boundary of the scatterer, the primary waves

Geε is weighted by the auxiliary tangential current density J . Geε(r, r
′′) is expressed

in-terms of 3-D scalar Green’s function as

Geε(r, r
′′) =

(
∇∇
k 2
ε

+ I

)
Gε(r, r

′′) (2.56)

where, Gε(r, r
′′) =

e−jkε|r−r
′′|

4π |r − r′′|
. (2.57)

2.6 Operator Form of SVS-EFIE Equation

Dealing with the equation (2.55) directly is error prone because of the length of

the equation. Therefore, for the sake of convenience, the equation can be expressed

in operator forms [20,34].
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Equation (2.55) can be written with note thus:

−jωµ0t̂ ·
˛

∂V

Geε(r, r
′′) · J(r′′)dS ′′

︸ ︷︷ ︸
Part I

+ jωµ0k
2 (εr − 1) t̂ ·

ˆ

V

Ge0(r, r′) ·
˛

∂V

Geε(r
′, r′′) · J(r′′)dS ′′dV ′

︸ ︷︷ ︸
Part II

= t̂ ·Einc(r), r ∈ ∂V. (2.58)

2.6.1 Surface-to-Surface Operator

Consider the part labelled “Part I” in equation (2.58)

jωµ0t̂ ·
˛

∂V

Geε(r, r
′′) · J(r′′)dS ′′, (2.59)

substituting equation (2.56) into equation (2.59) gives

jωµ0t̂ ·
˛

∂V

[(
∇∇
k 2
ε

+ I

)
Gε(r, r

′′)

]
· J(r′′)dS ′′ (2.60)

this implies

jωµ0t̂ ·
˛

∂V

∇∇
k 2
ε

Gε(r, r
′′) · J(r′′)dS ′′ + jωµ0t̂ ·

˛

∂V

Gε(r, r
′′)J(r′′)dS ′′. (2.61)
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By using vector identity

A(r′′) ·∇φ(r) = ∇ ·A(r′′)φ(r)− (∇ ·A(r′′))φ(r), (2.62)

and the applying surface divergence theorem

˛

∂V

φ(r)J(r′′) · ûdl = 0, (2.63)

equation (2.61) becomes

t̂ · −∇jωµ0

k 2
ε

˛

∂V

Gε(r, r
′′)∇′′s · J(r′′)dS ′′

︸ ︷︷ ︸
∇T ∂V,∂Vε,Φ

+ jωµ0t̂ ·
˛

∂V

Gε(r, r
′′)J(r′′)dS ′′

︸ ︷︷ ︸
TTT ∂V,∂Vε,A︸ ︷︷ ︸

T ∂V,∂Vε

, (2.64)

where T ∂V,∂Vε,Φ and TTT ∂V,∂Vε,A are known as the scalar potential operator and vector poten-

tial operator respectively as a breakdown of the Surface-to-Surface operator T ∂V,∂Vε

and surface divergence is given by ∇s·.

2.6.2 Volume-to-Surface Operator

Consider the sub-equation labelled “Part II” in equation (2.58)

jωµ0k
2 (εr − 1) t̂ ·

ˆ

V

Ge0(r, r′) ·
˛

∂V

Geε(r
′, r′′) · J(r′′)dS ′′dV ′. (2.65)
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Inserting equation (2.51) into equation (2.65) yields

k2 (εr − 1) t̂ ·
ˆ

V

Ge0(r, r′) ·E(r′)dV ′, (2.66)

substituting Jk(r
′) = k2 (εr − 1)E(r′) into equation (2.66) gives

t̂ ·
ˆ

V

Ge0(r, r′) · Jk(r′)dV ′. (2.67)

Then, plugging equation (2.36) into equation (2.67) results in

t̂ · ∇
k 2

ˆ

V

∇G0(r, r′) · Jk(r′)dV ′︸ ︷︷ ︸
∇T ∂V,V0,ϕ

+ t̂ ·
ˆ

V

G0(r, r′)Jk(r
′)dV ′

︸ ︷︷ ︸
TTT ∂V,V0,a︸ ︷︷ ︸

T ∂V,V0

, (2.68)

where T ∂V,V0,∇ϕ and TTT ∂V,V0,a are the scalar potential operator and vector potential operator

respectively as sub-divisions of Volume-to-Surface operator T ∂V,V0 .

2.6.3 Surface-to-Volume Operator

Consider the portion of equation (2.51) substituted into equation (2.65) in the

preceding section (2.6.2)

jωµ0

˛

∂V

Geε(r
′, r′′) · J(r′′) dS ′′. (2.69)



2.6. Operator Form of SVS-EFIE Equation 28

Inserting equation (2.52) into equation (2.69) and shifting the first gradient operator

to the unknown current density J(r′′) as it is done in section (2.6.1) yield

∇′ jωµ0

k2
ε

˛

∂V

Gε(r
′, r′′)∇′′s · J(r′′)dS ′′

︸ ︷︷ ︸
∇T V,∂Vε,Φ

+ jωµ0

˛

∂V

Gε(r
′, r′′)J(r′′)dS ′′

︸ ︷︷ ︸
T V,∂Vε,A︸ ︷︷ ︸

T V,∂Vε

, (2.70)

where T V,∂Vε,Φ and T V,∂Vε,A are the scalar potential operator and vector potential operator

of the Surface-to-Volume operator T V,∂Vε .

V

∂V

RWG basis function βm′′

RWG test function βm

v−
m′′

v+
m′′

ρ−
m′′

s−
m′′

s+
m′′

ρ+
m′′

v−m

v+
m

m′′

s+
m

ρ+
m

m

s−m
ρ−m

Figure 2.2: Tetrahedral volume mesh and triangle surface mesh utilized in the
MoM solution of the SVS-EFIE (2.55) and RWG basis functions on ∂V obtained
from Gmsh software [10].
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2.7 Discretization of SVS-EFIE Operators

In order to solve the SVS-EFIE with MoM, the volume of the scatterer V is

discretized with 3-D mesh consisting of N tetrahedral elements while the boundary

of the scatterer ∂V is discretized with 2-D mesh consisting of M triangle elements.

The RWG [31] basis functions are used on the surface triangle elements and pulse

basis functions are used at the centroids of tetrahedral volume elements [20,34]. The

meshing obtained from Gmsh software [10] is shown in Figure (2.2).

Consider the pair of triangles s−m′′ and s+
m′′ in Figure (2.2), RWG basis func-

tion βm′′ defined on the common edge between these triangle elements is given by

βm′′(r
′′) =



r′′ ∈ s−m′′ :
ρ−m′′

2As−
m′′

`m′′ ,

r′′ ∈ s+
m′′ :

ρ+
m′′

2As+
m′′

`m′′ ,

Otherwise : 0

(2.71)

where ρ−m′′ = v−m′′−r′′, v
−
m′′ being the non-common vertex on triangle s−m′′ , ρ

+
m′′ = r′′−

v+
m′′ , v

+
m′′ is the non-common vertex on triangle s+

m′′ , `m′′ is the length of the common

edge m′′, As−
m′′

and As+
m′′

represent the areas of triangles s−m′′ and s+
m′′ respectively.

Next, expand the unknown current density J in-terms of the RWG basis function

expressed in equation (2.71). The unknown J can be expanded thus

J(r′′) ≈
P∑

m′′=1

Im′′βm′′(r
′′), (2.72)
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where m′′ denotes a given common edge and ranges from 1 to P , P is the total number

of common edges - RWG basis functions, and Im′′ is the weight of a given RWG basis

function m′′.

The presence of surface divergence operators in the scalar potential part of Surface-

to-Surface operator (2.64) and Surface-to-Volume operator (2.70) demand for the

definition of surface divergence whilst using RWG basis function. Therefore, surface

divergence is defined as

∇′′s · βm′′(r′′) =



r′′ ∈ s−m′′ : − `m′′

As−
m′′

,

r′′ ∈ s+
m′′ :

`m′′

As+
m′′

Otherwise : 0.

(2.73)

The pulse basis function defined at the centroids of the tetrahedral volume ele-

ments is given by

pn′(r
′) =


r′ ∈ Vn′ : 1,

r′ /∈ Vn′ : 0,

(2.74)

where Vn′ is the volume of the n′th tetrahedron, n′ = 1, . . . , N and N is the total

number of tetrahedral elements.

Furthermore, the SVS-EFIE equation is tested using Galerkin’s method. Then,

MoM matrix element corresponding to Surface-to-Surface operator T ∂V,∂Vε is Z∂V,∂V
ε

matrix. Hence, testing the scalar potential operator T ∂V,∂Vε,Φ and vector potential
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operator TTT ∂V,∂Vε,A of the Surface-to-Surface operator with weighting function βm gives

ZZZ∂V,∂V
ε,∇Φ mm′′ =

〈
βm,∇T

∂V,∂V
ε,Φ ◦ βm′′

〉
, (2.75)

ZZZ∂V,∂V
ε,A mm′′ =

〈
βm,TTT

∂V,∂V
ε,A ◦ βm′′

〉
, (2.76)

where m′′ = 1, . . . , P and m = 1, . . . , P . Consequently, testing the scalar poten-

tial and vector potential operators of Volume-to-Surface operator T ∂V,V0 with both

the RWG basis function βm and pulse basis function pn′ result in matrix elements

corresponding to Z∂V,V
0 thus

ZZZ∂V,V
0,∇ϕ mn′ =

〈
βm,∇T

∂V,V
0,ϕ ◦ pn′

〉
, (2.77)

ZZZ∂V,V
0,a mn′ =

〈
βm,TTT

∂V,V
0,a ◦ pn′

〉
, (2.78)

where m = 1, . . . , P and n′ = 1, . . . , N . Similarly, to obtain the MoM matrix ele-

ment ZV,∂V
ε corresponding to Surface-to-Volume operator T V,∂Vε , the scalar potential

and vector potential operators are weighted with both the pulse basis function pn′

and RWG basis function βm as follows

ZZZV,∂V
ε,∇Φ n′m′′ =

〈
pn′ ,∇T V,∂Vε,Φ ◦ βm′′

〉
, (2.79)

ZZZV,∂V
ε,A n′m′′ = 〈pn′ , T V,∂Vε,A ◦ βm′′〉, (2.80)

where m′′ = 1, . . . , P and n′ = 1, . . . , N . Likewise, the right hand side of the SVS-
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EFIE equation is tested with RWG basis function βm as

Vm =
〈
βm,E

inc
〉
, (2.81)

where m = 1, . . . , P .

Finally, assembling the components of MoM matrix Z produces

−

([
Z∂V,∂V
ε,A

]
+
[
Z∂V,∂V
ε,∇Φ

])
· [I]

+
3∑

c =1

(([
Z∂V,V

0,a

]
c

+
[
Z∂V,V

0,∇ϕ

]
c

)
· Γ−1 ·

( [
ZV,∂V
ε,A

]
c

+
[
ZV,∂V
ε,∇Φ

]
c

))
· [I] = [V ] , (2.82)

where c = 1, . . . 3. The counter 1, 2 and 3 correspond to x, y and z components

respectively, and Γ is the Gramian matrix defined in [20,34].

From the foregoing, it can be seen that the SVS-EFIE equation has three different

matrices namely, Surface-to-Surface matrix, Volume-to-Surface matrix, and Surface-

to-Volume matrix. Surface-to-Volume matrix being P × P dimension, Volume-to-

Surface is P ×N , and Surface-to-Volume is N ×P - without considering the x, y and

z components separately. However, with those components taken into consideration,

the Volume-to-Surface matrix is of P × 3N dimension and Surface-to-Volume matrix

is of 3N × P dimension. Therefore, the resultant Z matrix is P × P dimension.

This clearly shows that, both Surface-to-Volume and Volume-to-Surface matrices are

rectangular matrices while the resultant matrix and Surface-to-Surface matrix are
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square matrices.

The näıve implementation of SVS-EFIE equation can be found in [20, 34]. The

computational cost and memory requirements needed for matrix operations and the

storage of the resultant and intermediate MoM matrices make the näıve implementa-

tion of SVS-EFIE seemingly impractical for solving large scale scattering problems.

To leverage this misnomer, H−Matrices [5, 12–14] is often times employed to reduce

the computational cost in matrix operations and the storage requirements. Therefore,

H−Matrices based MoM discretization of SVS-EFIE equation is presented in sec-

tion (4.3) of Chapter (4). However, some of the features of H−Matrices that would

be referred to in Chapter (4) are discussed in Chapter (3).
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Chapter 3

Overview of Hierarchical Matrices

3.1 Introduction

The main ideas behind H−Matrices are the rank-based compression and data-

sparse representation of a matrix in a tree-like manner where there exist two binary

trees resulting in a quad-form structure. At the leaf node of each of these trees lies

either a full− rank matrix or a low− rank matrix block known as the rkmatrix or

Rk-block.

A full− rank or fullmatrix block is a dense matrix which cannot be compressed

and all of its entries are stored. In contrast, a low − rank block is a matrix which

can be compressed and stored in a factorized form as ABT through compression

via Adaptive Cross Approximation (ACA) [2–4, 37], Singular Value Decomposition

(SVD) [3], Lanczos Algorithm [35] or their variants.
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Hierarchical matrices as the name suggests are built on hierarchical tree structure

called block cluster tree. A block cluster tree is constructed from cluster tree. A

cluster tree is a product of hierarchical partitioning of an index set which represents

sub-blocks.

Termination of hierarchical partitioning depends largely on the admissibility crite-

rion. Both admissibility criterion and the leaf size (nmin) tell whether a block should

be divided/partitioned further or should be a leaf node.

In order to use H−Matrices, the H−Matrix library (HLib) is used. Each of the

features previously mentioned are already implemented in the library in C program-

ming language. However, C being the precursor to C++, the library can be used in

the same way in C++ programming language. The full reference on this topic can

be found in [5, 12–14,16].

3.2 Basic Features of H−Matrices

Definition 3.2.1 (Index Set). An index set is a set of finite indices/labels whose

members index/label members of another set.

Remark. In this thesis, index set I represents a set of RWG basis functions and index

set J denotes a set of centroids of tetrahedral elements.

I = {0, . . . , n− 1} and J = {0, . . . ,m− 1}, where n = |I| and m = |J |.

http://www.hlib.org/
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Definition 3.2.2 (Tree T ). Given a non-empty set of nodes V and edges E being

a binary mapping on V , T = (V,E) is a tree if there is no duplicate reference, the

unique node v ∈ V is the root, and none points to the root.

Definition 3.2.3 (Cluster Tree TI). A tree TI is a cluster tree if it is defined over an

index set I with root labelled I such that t ∈ TI has children and it is represented

as the union of its sons’ disjointed labels or indices. Thus,

t̂ =
⋃

t′∈sons(t)

t̂′,

and ∀ t1, t2, t3 ∈ sons(t) then

t1 6= t2, t1 6= t3, t2 6= t3,

t1 ∩ t2 = ∅, t1 ∩ t3 = ∅ t2 ∩ t3 = ∅.

Remark. There are other properties of a cluster tree. Given t, s ∈ TI at the same

level of partitioning, level(t) = level(s), then, t 6= s and t̂ ∩ ŝ = ∅ is known as the

level-wise disjointness. Likewise, ∀ i ∈ t̂ ∃ t ∈ TI with i ∈ t̂. Similarly, the indices of

the leaf level clusters are disjoint partitions of I.

For instance, consider an index set I = {4, 10, 2, 8, 3, 6, 7, 5}, the cluster tree TI

can be obtained by partitioning the index set with nmin = 1 as shown in Figure (3.1).

Figure (3.1) shows a cluster tree TI . The leaf nodes are coloured red and these are the
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I =

{4, 10, 2, 8, 3, 6, 7, 5}

I(0)
1

{4, 10, 2, 8}

I(1)
1

{4, 10}

I(2)
1

{4}

I(3)
1

{10}

I(3)
2

{2, 8}

I(2)
2

{2}

I(3)
3

{8}

I(3)
4

{3, 6, 7, 5}

I(1)
2

{3, 6}

I(2)
3

{3}

I(3)
5

{6}

I(3)
6

{7, 5}

I(2)
4

{7}

I(3)
7

{5}

I(3)
8

Figure 3.1: Cardinality balanced binary cluster tree TI of index set I =
{4, 10, 2, 8, 3, 6, 7, 5} with leaf size, nmin = 1 and tree depth p = 3.

points at which the partitioning is terminated. The tree depth p is 3 and the leaf size

nmin is set to 1. It is important to state that parameter nmin determines the tree depth

p. The maximum possible tree depth is obtained by setting nmin to 1. Similarly, nmin

should be in the powers of 2, such that nmin = 1, 2, 4, 8, 16, 32, 64, . . . [16]. Further

partitioning stops normally when there exists exactly only one element.

The cluster tree in Figure (3.1) uses binary splitting and it is said to be cardinality
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balanced binary tree [13, 16]. However, others forms of partitioning techniques are

also possible [13,16]. The signature of the routine for creating cluster tree in HLib is

given by [13]

1 p c l u s t e r t r e e

2 c r e a t e s u b c l u s t e r t r e e ( p c l u s t e r f a c t o r y fac tory ,

3 const i n t ∗ index , i n t n , C lu s t e rS t ra t egy s t rategy , i n t l e a f s i z e ) ;

Definition 3.2.4 (Admissibility Condition/Criterion). Admissibility condition is used

during the construction of block cluster trees to check whether a block needs to be

further partitioned/divided into sub-blocks or not (that is, make it a leaf block). It

also specifies if a block is to be represented as Rk-block approximation.

The admissibility condition is given by

min(diam(τ), diam(σ)) ≤ ηdist(τ, σ), (3.1)

where sub-domains τ and σ are defined over domains TI and TJ respectively. This

type of admissibility condition is known as the standard admissibilty condition [13,

16]. Thence, replacing the min to max as in

max(diam(τ), diam(σ)) ≤ ηdist(τ, σ), (3.2)

results in what is known as the strong admissibility condition [13, 16]. Where the

symbol η is a user chosen number, usually 2, which either relaxes the admissibility

http://www.hlib.org/
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condition or makes it more stringent.

Remark. There are other forms of admissibility conditions [13,16]. To efficiently check

the admissibility condition, the sub-domains τ and σ are replaced with larger domains

or are enclosed in the so-called bounding boxes Bτ and Bσ respectively as shown in

Figure (3.2). Therefore, the admissibility condition (3.1) can be re-written thus

dist(Bτ , Bσ)

Bτ

Bτmin

Bτmax

Bσ

Bσmin

Bσmax

Figure 3.2: Domains τ and σ enclosed in bounding boxes Bτ and Bσ respectively.

min(diam(τ), diam(σ)) ≤ ηdist(τ, σ) ≈

min(diam(Bτ ), diam(Bσ)) ≤ ηdist(Bτ ,Bσ), (3.3)
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where

diam(τ) := max
xi,xj∈τ

‖xi − xj‖ , (3.4)

diam(σ) := max
xi,xj∈σ

‖xi − xj‖ , (3.5)

dist(τ, σ) := min
xi∈τ,xj∈σ

‖xi − xj‖ , (3.6)

are the Euclidean diameters and distance respectively. The parameters xi and xj are

double variables of d-dimensional arrays corresponding to the minimal and maximal

coordinates of the bounding boxes.

Definition 3.2.5 (Block Cluster Tree). In definition (3.2.3), cluster tree is defined

as a partition of index set I, however, the partition over index sets I × I or I × J

is known as the block cluster tree − TI×I or TI×J .

Remark. Given a block cluster tree TI×J , the following properties hold

� The root of TI×J is I × J ,

� A given node a ∈ TI×J is a pair a = (τ, σ) where τ ∈ TI and σ ∈ TJ ,

� The notation a = (τ, σ) ∈ TI×J is the Cartesian product of τ and σ,
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� The sons of a = (τ, σ) ∈ TI×J are given as

sons(a) =



sons(σ) = {}, {(τ ′, σ) : τ ′ ∈ sons(τ)} ,

sons(τ) = {}, {(τ, σ′) : σ′ ∈ sons(σ)} ,

Otherwise, {(τ ′, σ′) : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} .

(3.7)

For instance, given a pair of index sets I = {0, 1, 2, 3} and J = {0, 1, 2, 3, 4, 5, 6, 7},

the root I × J is {0, 1, 2, 3} × {0, 1, 2, 3, 4, 5, 6, 7}. The level-wise partitioning is

done using the interval {0, 1, 2, 3} as [0, 1] and interval {0, 1, 2, 3, 4, 5, 6, 7} as [0, 1] as

follow

Level 0: The block is inadmissible based on the admissibility condition defined

in definition (3.2.4). That is, comparing the block with itself yields diam ([0, 1]) =

1 � 0 = dist ([0, 1], [0, 1]) as shown in Figure (3.3(a)).

Level 1: Since the block is not admissible in Level 0, then it is partitioned thus

{0, 1} × {0, 1, 2, 3}, {0, 1} × {4, 5, 6, 7},

{2, 3} × {0, 1, 2, 3}, {2, 3} × {4, 5, 6, 7},

where these partition are shown in Figure (3.3(b)). Again, using the admissibility

condition, none of the blocks are admissible thus the blocks are further partitioned

in level 2.
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Level 2: Individual sub-blocks obtained in level 1 are further partitioned as

{0} × {0, 1}, {0} × {2, 3}, {0} × {4, 5}, {0} × {6, 7},

{1} × {0, 1}, {1} × {2, 3}, {1} × {4, 5}, {1} × {6, 7},

{2} × {0, 1}, {2} × {2, 3}, {2} × {4, 5}, {2} × {6, 7},

{3} × {0, 1}, {3} × {2, 3}, {3} × {4, 5}, {3} × {6, 7},

these highlighted partitions are shown in Figure (3.3(c)).

The blocks painted red are the inadmissible blocks while the admissible blocks are

painted green. Taking the row 0 into consideration, it can be shown that blocks

{0} × {4, 5} : diam

([
0,

1

4

])
=

1

4
= dist

([
0,

1

4

]
,

[
2

4
,
3

4

])
,

{0} × {6, 7} : diam

([
0,

1

4

])
=

1

4
< dist

([
0,

1

4

]
,

[
3

4
,
4

4

])
,

are both admissible blocks. The same procedure can be followed for the remaining

blocks. The signature of the routine for creating block cluster tree is [13]

1 p b l o c k c l u s t e r

2 b u i l d b l o c k c l u s t e r ( p c c l u s t e r row , p c c l u s t e r co l ,

3 BlockAdmi s s i b l i t yCr i t e r i on adm,

4 BlockHomogeneity hom, double eta , i n t l e a f s i z e ) ;

Definition 3.2.6 (Rk-approximation of a matrix). A matrix block of dimension τ×σ
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and rank of at most k is said to be in a low-rank format if it is stored in a factorized

form Rk = ABT , A ∈ Cτ×k, B ∈ Cσ×k, where the matrices A and B are of rank k

and are full matrices.

The storage requirement of an rkmatrix is O (k (τ + σ)) while its corresponding

full block is of O (τ × σ).

Remark. This low-rank approximation of a matrix block can be represented diagram-

matically as shown in Figure (3.4). The routine provided for the construction of an

rkmatrix is [13]

1 prkmatrix

2 new rkmatrix ( i n t k , i n t rows , i n t c o l s ) ;

Definition 3.2.7 (Hierarchical Matrix, H−Matrix). A matrix A ∈ H(TI×J , k) is

stored in H−Matrix format if all its admissible blocks are represented as compressible

rkmatrix blocks and all its inadmissible blocks are stored as full matrices as shown

in Figure (3.3(c)).

Remark. Individual block, says τ × σ, in a block cluster tree (for instance Fig-

ure (3.3(c))) is given by

τ×σ =



leaf ∈ admissible, rkmatrix,

leaf /∈ admissible, fullmatrix,

Otherwise, supermatrix {sons(τ ′, σ′) : τ ′ ∈ sons(τ), σ′ ∈ sons(σ)} ,
(3.8)
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where the structure of a supermatrix is given in Figure (3.5). By implementation, if

a block is a rkmatrix then both the fullmatrix and supermatrix nodes of the block

are set to nullptr. Similarly, if a block is a fullmatrix then both the rkmatrix and

supermatrix nodes of the block are nullptrs. Finally, if a block is a supermatrix,

both the rkmatrix and fullmatrix nodes are nullptrs.

Examining the structure of a supermatrix and a block cluster tree shows that

both structures closely resemble. Hence, obtaining a supermatrix from a block cluster tree

can be done directly using the HLib method [13]

1 psupermatrix

2 b u i l d s u p e r m a t r i x f r o m b l o c k c l u s t e r ( p b l o c k c l u s t e r bc , i n t k )

http://www.hlib.org/
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0 1 2 3 4 5 6 7

0

1

2

3

(a) Block cluster tree TI×J at level 0 of partitioning.

0 1 2 3 4 5 6 7

0

1

2

3

(b) Block cluster tree TI×J at level 1 of partitioning.

0 1 2 3 4 5 6 7

0

1

2

3

(c) Block cluster tree TI×J at level 2 of partitioning.

Figure 3.3: Hierarchical partitioning of index set I = {0, 1, 2, 3} and J =
{0, 1, 2, 3, 4, 5, 6, 7} to form the block-cluster tree TI×J
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Full Matrix ≈ A

· BT

︸ ︷︷ ︸
Rk approximation

Figure 3.4: Low-rank (Rk) approximation of an admissible block in a compressed
form ABT .

(τ ′ × σ′)1 (τ ′ × σ′)2

(τ ′ × σ′)3 (τ ′ × σ′)4

τ

σ

Figure 3.5: Supermatrix structure of τ × σ with sons(τ ′, σ′) : τ ′ ∈ sons(τ), σ′ ∈
sons(σ).
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Chapter 4

Memory and Computational Costs

Reduction Strategies

4.1 Introduction

T
his chapter introduces the step-by-step procedure involved in the proposed

complexity reduction techniques of a scattering problem on a conducting metal

object. Therefore, the focus of this chapter is the introduction of new strategies which

are applicable for reducing the size of the problem.

Two (2) new techniques are introduced in this research work for reducing the

complexity of the problem. Each of these techniques relies on the exploitation of the

skin effect of the object’s medium. These techniques are:

1. Model Based Technique: It involves the extraction of the volumetric mesh ele-
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ments where the size of the extraction depends on a chosen value.

2. Interaction Range Truncation: This requires zeroing out the values of the matrix

entries where the distance between the sources and observers exceed a certain

value.

4.2 Model Design

In order to implement Item 1 of Section (4.1) − that is, the volume elements

extraction, the object model is created in such a way that the volumetric section of

the model can be extracted. Therefore, the sphere model is designed to have:

• Exterior Radius (R): It determines the size of the sphere object being modelled.

• Interior Radius (r): It serves as the probe used to set the extraction width. It

depends on R, skin depth δ and a chosen factor as depicted in equation (4.2).

Skin Depth, δ =

√
1

πfµ0µrσ
(4.1)

Interior Radius, r = R− (δ ∗ factor) (4.2)

Characteristics Length, s =
δ

Number
(4.3)

Figure (4.1) shows the ordering of the interior and the exterior radii during the

design. This layout allows for extraction of the volumetric mesh elements by varying

the factor.
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factor × δ

Figure 4.1: Object model showing the layout of the interior and exterior radii as a
function of the skin depth (factor × δ) of the conducting object

The object model depends on:

• Skin Depth (δ): The skin depth of the material medium can be obtained by

using the equation (4.1), where f is the frequency, µ0 is the permeability of

the free space, µr is the the relative permeability of the object and σ is the

conductivity of the object.

• Factor (factor): A user chosen scalar number which determines the extent of

the extraction width.

• Number of elements per skin depth (Number): It determines the mesh element’s

characteristics length (s) as shown in equation (4.3).
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Figure 4.2: Model object screen-shot obtained from Gmsh software [10] showing the
model when option for volumetric element extraction is set to ‘No’. Notice the input
parameters on the left menu section.

In this work, the model object is designed with Gmsh software [10]. The com-

parison between the solutions obtained from the conducting object before and after

the extraction is needed. In order to cater for this in the object model, there is an

option for selecting whether the object model should be extracted or not as shown

in Figures (4.2) and (4.3). Appendix (A) contains the Gmsh [10] code used for the

creation of the sphere model.

Alternatively, this model designed section can be avoided by meshing the object

in its entirety and manually skipping the volumetric elements that do not fall within

the region of interest. However, this kind of technique has been found to increase the
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Figure 4.3: Model object screen-shot obtained from Gmsh software [10] showing the
model when option for volumetric element extraction is set to ‘Yes’. Notice the input
parameters on the left menu section.

time taken to read the mesh file of the object model.
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4.3 SVS-EFIE H−Matrices Based Discretization

As shown in Section (2.7), SVS-EFIE has three (3) matrices, namely Surface-

to-Surface, Volume-to-Surface and Surface-to-Volume matrices. Each of Surface-to-

Volume and Volume-to-Surface matrices has x, y, and z components. Considering

these components coupled with the Surface-to-Surface matrix results in a total of

seven (7) matrices.

In order to employ H−Matrices concepts, each of these matrices is represented

in H−Matrix form. Below are the procedural steps needed to apply H−Matrices to

SVS-EFIE:

(1.) Set the index set I to be the indices of the RWG basis functions on the sur-

face triangular patches. The total number of RWG basis functions being P ,

therefore, the size of I is P .

(2.) Set the index set J to be the indices of the centroids of the tetrahedral elements.

N is the total number of all the tetrahedral elements and the length of J is N .

(3.) Construct the cluster tree, cts, from the index set I to represent the cluster tree

of the triangle elements.

(4.) Construct the cluster tree, ctv, from the index set J which denotes the cluster tree

of the volumetric tetrahedral elements.

(5.) Create block cluster tree TI×I from cluster trees TI and TI representing row and
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column trees respectively. This block cluster tree corresponds to the Surface-

to-Surface matrix Z∂V,∂V
ε .

(6.) Convert the block cluster tree TI×I in Item (5.) to supermatrix Z∂V,∂V
ε . The

size of this supermatrix is P × P .

(7.) Create block cluster tree TI×J from cluster trees TI and TJ representing row

and column trees respectively. This block cluster tree corresponds to the

Volume-to-Surface matrix Z∂V,V
0 .

(8.) Convert the block cluster tree TI×J in Item (7.) to supermatrix Z∂V,V
0 . The

size of this supermatrix being P ×N .

(9.) Since Z∂V,V
0 has x, y, and z−components, hence repeat Items (7.) and (8.)

for each of these components such that there exist supermatrices
[
Z∂V,V

0

]
x
,[

Z∂V,V
0

]
y

and
[
Z∂V,V

0

]
z
.

(10.) Create block cluster tree TJ×I from cluster trees TJ and TI representing row

and column trees respectively. This block cluster tree corresponds to the

Surface-to-Volume matrix ZV,∂V
ε .

(11.) Convert the block cluster tree TJ×I in Item (10.) to supermatrix ZV,∂V
ε . The

dimension of this supermatrix is N × P .

(12.) Since ZV,∂V
ε has x, y, and z−components, hence repeat Items (10.) and (11.) for

each of these components such that there exist supermatrices
[
ZV,∂V
ε

]
x
,
[
ZV,∂V
ε

]
y
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and
[
ZV,∂V
ε

]
z
.

(13.) For each supermatrix created in Items (6.), (8.) and (11.), traverse the blocks

of the supermatrix by creating a loop through the sons of the column tree and

sons of the row tree. Within these loops, compute the interactions between

a given pair of clusters or sons, denoted as row and column, and check if the

block is a leaf block and if it is admissible or not. If it it inadmissible then

compute all the matrix entries and store it as a fullmatrix block. Otherwise,

compute the entries of the block and compress with either ACA or SVD and

store it as a rkmatrix block.

(14.) Having computed and filled the blocks of the supermatrices, the final matrix

ZSV S can be obtained by computing the product of the rectangular superma-

trices
[
Z∂V,V

0

]
·
[
ZV,∂V
ε

]
and adding the results to the

[
Z∂V,∂V
ε

]
using the HLib

routine [13]

1 void

2 muladd supermatrix ( psupermatrix c , psupermatrix a , psupermatrix b) ;

so that the supermatrix
[
Z∂V,∂V
ε

]
becomes the [ZSV S] matrix as shown in Fig-

ure (4.4).

(15.) Finally, the SLAE [ZSV S] [I] = [V ] obtained is solved using LU decomposition.

However, the system of equation can also be solved iteratively. Solving the

system iteratively does not necessarily require the explicit creation of ZSV S

http://www.hlib.org/
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( [
Z∂V,∂Vε

]
P

P

Z∂V,∂V
ε Z∂V,V

0

ZV,∂V
ε

+=+=P
[
Z∂V,V0

]
x
Γ−1

N

[
Z∂V,V0

]
y
Γ−1

N

[
Z∂V,V0

]
z

Γ−1

N ·
[Z

V
,∂
V

ε ]
x

N

P

[Z
V
,∂
V

ε ]
yN

[Z
V
,∂
V

ε ]
y

N

)·

I == V

[ZSV S] [I] [V ]=

Figure 4.4: H−Matrices based method of moment discretization of Surface-Volume-
Surface Electric Field Integral Equation.

supermatrix.

4.4 Interactions Range Truncation

Following the steps highlighted in Section (4.3) produces H−Matrices based SVS-

EFIE solver. In order to achieve interaction range truncation stated in Item 2 of

Section (4.1), the procedural steps in Section (4.3) have to be modified or updated.

The steps are modified for supermatrices
[
ZV,∂V
ε

]
and

[
Z∂V,∂V
ε

]
, the steps in Sec-

tion (4.3) remain intact for
[
Z∂V,V

0

]
supermatrix computation. This implies that,

interaction range truncation will only be applicable to the supermatrices
[
ZV,∂V
ε

]
x
,
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[
ZV,∂V
ε

]
y
,
[
ZV,∂V
ε

]
z

and
[
Z∂V,∂V
ε

]
.

The range truncation depends on the exploitation of the skin-effect of the metal

object. It is expected that the interaction between a pair of sons or clusters, says

τ × σ : τ ∈ sons(TJ ), σ ∈ sons(TI) of a block cluster tree or a supermatrix TJ×I ,

stops after the distance between these sons or clusters exceed a given value called the

truncation distance DT . The parameter DT is defined thus

Truncation distance,DT = (δ ∗ factor) , (4.4)

where parameter δ is the skin-depth defined in equation (4.1) and factor is another

user chosen scalar number just like the one defined in Section (4.2).

4.4.1 Distance between two clusters

As shown in Definition (3.2.4), the distance between a pair of clusters can be

computed efficiently by introducing bounding boxes. Therefore, HLib library is pro-

grammed in such way that those clusters are enclosed in the so-called bounding boxes.

Calculating distance between a pair of clusters is equivalent to computing the dis-

tance between their bounding boxes as shown in Figure (3.2) using the equation (3.6).

While the computation of the distance between a pair of clusters or sons is not really

the challenge, the position of a given cluster relative to the other requires adequate

consideration in order to obtain accurate distance. All the possible combinations

http://www.hlib.org/
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have to be considered. As depicted in Figure (3.2), the details about a given bound-

ing box are known. The relative positions of a pair of bounding boxes are presented

in Figure (4.5).

Coding up all of the possibilities illustrated in Figure (4.5) with the equation (3.6)

requires the following pseudo-code steps:

(1.) Set procedure name as getDistance

(2.) Get input clusters A and B

(3.) Initialize variable sigma:=0 to hold the sum of squares of the distances

(4.) Set variable d to be the spatial dimension of one of the bounding boxes, d:=A->d

(5.) For counter:=1,...,d

(a) Get the minimum value of the bounding box of A and store it in variable

aMin, such that aMin:=A->bmin[counter]

(b) Get the maximum value of the bounding box of A and store it in variable

aMax, such that aMax:=A->bmax[counter]

(c) Get the minimum value of the bounding box of B and store it in variable

bMin, such that bMin:=B->bmin[counter]

(d) Get the maximum value of the bounding box of B and store it in variable

bMax, such that bMax:=B->bmax[counter]

(e) Set variable abMax := |aMax - bMax|
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(a)

Bτmin BτmaxBσmin Bσmax

Bτ
Bσ

(b)

Bτmin Bτmax = Bσmin Bσmax

Bτ
Bσ

(c)

Bτmin BτmaxBσmin Bσmax

Bτ
Bσ

(d)

Bτmin BτmaxBσmin Bσmax

Bτ

Bσ

(a)

Bσmin BσmaxBτmin Bτmax

Bσ
Bτ

(b)

Bσmin Bσmax = Bτmin Bτmax

Bσ
Bτ

(c)

Bσmin BσmaxBτmin Bτmax

Bσ

Bτ

(d)

Bσmin BσmaxBτmin Bτmax

Bσ

Bτ

Figure 4.5: All possible relative positions of a pair of bounding boxes Bτ and Bσ
enclosing the clusters τ and σ respectively.

(f) If aMin > bMin set

sigma:= sigma + (if(bMax>aMin) then min(abMax,bMax-aMin) else
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aMin-bMax)2

(g) Else set

sigma:= sigma + (if(aMax>bMin) then min(abMax,aMax-bMin) else

bMin-aMax)2

(6.) Computer the square root of sigma

(7.) Return the the computed square root value

The C++ programming language implementation of the pseudo-code is given in the

Appendix (B).

4.4.2 Modifications to H−Matrices Steps

All the necessary modifications are done prior to filling the supermatrices. The

filling of a supermatrix requires the computation of the interactions between the

sources and observers − basically row and column clusters. The results of these

computations are stored in a fullmatrix form or in compressed rkmatrix format.

The filling procedure of a supermatrix is described in the Item (13.) of Section (4.3).

Therefore, the modifications are applied only to the Item (13.) of Section (4.3), where

the remaining steps are left intact. The applied changes are given thus:

(13.)* When traversing the supermatrix, given a leaf block S = (τ, σ) ∈ TI×I , the

distance between τ and σ is first computed by making use of the routine

getDistance(S->τ, S->σ) coded in Section (4.4.1).
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The HLib routine [13]

1 void

2 r e a l l o c s t r u c t u r e r k m a t r i x ( prkmatrix r , i n t rank ) ;

can be used to resize a given rkmatrix from rank k to 0 - literally converting an

rkmatrix block to an empty block. It is desired that interactions are truncated

for some blocks exceeding the truncation distance DT , meaning, those blocks

beyond DT are basically empty blocks. If the distance between the two clusters

is less than DT the unmodified step in Item (13.) of Section (4.3) is followed

otherwise this modified Item (13.)* is followed. In order to take advantage of

this routine, the block S is checked if it a fullmatrix or an rkmatrix block.

If the block is a fullmatrix block, then S->f is deleted and set to nullptr. Then,

the node S->r, which normally is a nullptr if a leaf block is a fullmatrix, is then

set to a newly created rkmatrix block of rank 1. Thereafter, the node S->r is

resized to size 0 using the reallocstructure rkmatrix() routine. This finally

makes the block an empty block.

However, if the block is an rkmatrix block, ACA or SVD compression stage is

totally eliminated. The only operation here is to convert the block to an empty

block using reallocstructure rkmatrix() routine.

It should be noted that, in both cases, fullmatrix and rkmatrix cases, all the

operations are done prior to the computations of the interactions - or simply

before the matrix fill. The stepwise structure of these operations as explained

http://www.hlib.org/
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above is depicted in equation (4.5), where the method del fullmatrix() is

the routine for deleting a fullmatrix, new() is actually new rkmatrix() rou-

tine for creating a new rkmatrix block and the routine realloc() is actually

reallocstructure rkmatrix() method for resizing an rkmatrix - it is used

here to create an empty block.

S =



dist (S->τ, S->σ) > DT :



S->f 6= nullptr :

del fullmatrix(S->f),

S->f = nullptr,

S->r = new(1, rows, cols),

realloc(S->r, 0),

S->r 6= nullptr : realloc(S->r, 0),

otherwise : Fill the matrix block as appropriate,

(4.5)

4.5 Validity

In order to validate the results, the solution obtained is compared against the Mie

series solution [20, 34]. However, to be able to track the extent of the effect of the

extraction and/or range truncation on the final solution a new parameter is needed.

This quest leads to the computation of the Specific Absorption Rate (SAR). Since

only the volumetric mesh elements are extracted, the SAR is then computed at the

centroids of the tetrahedral elements. This implies that the SAR is computed for
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both full sphere model and for the extracted model in order to be able to calculate

the extent of the extraction effect on the solution.

The formula for obtaining the SAR is given by [11]

SAR =
σ

mass

N∑
i =1

[(
|Jix|2 + |Jiy|2 + |Jiz|2

)
·∆Vi

]
, (4.6)

where N is the total number of tetrahedral elements, mass is the mass of the scatterer

in kg, σ is the conductivity of the scatterer, ∆Vi is the volume of ith tetrahedral, while

Jix,Jiy and Jiz are the electric field components in the ith tetrahedral for x, y, and

z−components respectively.

4.6 Test Cases Analysis

Having completed the architectural design of the techniques and implementation

of the procedures in C++ programming language, a certain test case at different

frequencies has to be conducted using the developed C++ program.

The so-called test cases are tailored in such a way as to addressed the set objec-

tives and also to proffer answers to the research questions highlight in Sections (1.3)

and (1.4) of Chapter (1).

The set-up details of the test cases are presented in Table 4.1. From the table,

it can be observed that both the extraction width and interaction range truncation

are fixed with respect to the electrical size of the problem. This is desired so as to
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have a nearly perfect comparisons which are based solely on the frequency - since the

frequency varies.

Table 4.1: Set-up information of the test-cases.

Set-up Item Details

Object Models (.msh files) Full sphere and Extracted Sphere

Frequencies (GHz) 10, 15, 20, 25, 30

Incident Electric Field Electric dipole with electric dipole moment 1(A.m)

located at z = 0.00003m

Scatterer Properties R = 10µm, εr = 1.5, σ = 4.5e+06

Model Extraction Extraction Factor, factor = 2

Interaction Range Truncation Truncation Factor, factor =
R

δ
, then DT = R

SAR Computation Full Sphere SAR (from C++ code), Extracted

Sphere SAR (from C++ code), Full Sphere SAR

(from Analytical Mie series solution)

Machine Specifications CPU model = Intel Xeon X5650, Clock Frequency

= 2.66GHz

Continued on next page
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Table 4.1 – continued from previous page

Set-up Item Details

H−Matrices Parameters nmin = 64, Maximum H−Matrices Level = 20,

Clustering Strategy: Geometrically Balanced, Ad-

missibility Condition: Standard, η = 2, Block

Compression Algorithm: SVD, H−Arithmetic Tol-

erance: 10−3, Compression Tolerance: 10−5

It can be noted from Table 4.1 that SVD was chosen in-place of ACA as the

compression algorithm. Although, both the ACA and SVD was implemented in this

research work. The choice of SVD over ACA was as a result of the inability of the

ACA to compress the majority of the admissible blocks owing to the nature of the

ACA algorithm.
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Chapter 5

Results

5.1 Brief Overview

A
ll the test cases presented in Section (4.6) of Chapter (3) are conducted with

respect to the stated parametric inputs. These results are presented in this

chapter in ascending order of the chosen frequency range.

Moreover, while Table 4.1 in Section (4.6) of Chapter (3) highlighted some of

the input parameters that are general to all the test cases, however, there are other

input parameters that are not included in the table. The missing parameters are, the

number of triangle and tetrahedral mesh elements and the degree of freedom of each

problem. These parameters are frequency dependent thus, they are included as part

of the results for each frequency. Special emphasis is placed on the CPU time (time

complexity) and memory usage (memory complexity) at each frequency.
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Furthermore, visual images of the supermatrices are included so as to showcase

the effect of the range of interaction truncation on the structure of the supermatrices.

However, only the Surface-to-Surface supermatrix structures are presented in order to

save space. The volumetric current distribution, and relative error distribution with

respect to the Mie series solution are included at each frequency so as to be able to

visualize the accuracy or otherwise of the proposed techniques in this research work.

Conclusively, the descriptive analysis of the results obtained is done in order to

verify the validity and/or correctness of the proposed techniques in-line with the

statements of the hypothesis.

5.2 Results of the Test Cases

In the developed C++ code the parameters were set based on the given input

values (Table 4.1), additionally, the frequency was set based on the cases presented −

that is, 10−30 GHz. Hence, after computing the skin-depth δ and meshing the sphere

model, the additional set-up values obtained are given in Tables 5.1, 5.4, 5.7, 5.10

and 5.13. Having obtained all the set-up parameters needed, the simulation is started

and after the end of the simulation, the results relating to the time and memory us-

ages are tabulated in Tables 5.3, 5.6, 5.9, 5.12 and 5.15. Moreover, the results relating

to the computed SAR are presented in Tables 5.2, 5.5, 5.8, 5.11 and 5.14. The super-

matrix structures are compared in Figures (5.1), (5.5), (5.9), (5.13) and (5.17) where

the red blocks represent the fullmatrix blocks, the green blocks denote the rkmatrix
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blocks and white blocks are the empty blocks representing the skipped blocks that

fall beyond the truncation distant DT . Figures (5.3), (5.7), (5.11), (5.15) and (5.19)

show the magnitude of electric field in the volume of the scatterer. Figures (5.4),

(5.8), (5.12), (5.16) and (5.20) show the relative error distribution of the solutions of

the full sphere and the extracted sphere relative to the Mie series analytical solution.

Lastly, the magnitude of the electric field as a function of the polar angle θ at the

centroids of the tetrahedral elements nearest the exterior radius R of the extracted

sphere and nearest the interior radius r are plotted against the Mie series counterpart

as shown in Figures (5.2), (5.6), (5.10), (5.14) and (5.18).

5.2.1 Case 1: 10 GHz

Table 5.1: Set-up parameteric values for 10 GHz.

ADDITIONAL SET-UP PARAMETERS

Skin Depth 2.36µm

Full Sphere Extracted Sphere

No of 2-D Elements 2, 312 2, 312

No of 3-D Elements 11, 496 9, 953

No of RWG Basis Functions 3, 468 3, 468

No of Degree of Freedom 37, 956 33, 327
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Table 5.2: SAR results obtained at 10 GHz.

Specific Absorption Rate (SAR) Results

SAR of the Mie serie solution SARMie 9.12e−09

SAR of the full sphere, SARFullSphere 8.82e−09

SAR of the extracted sphere, SARExtractedSphere 8.43e−09

|SARMie − SARFullSphere|
|SARMie|

03%

|SARMie − SARExtractedSphere|
|SARMie|

08%

|SARFullSphere − SARExtractedSphere|
|SARFullSphere|

04%

Table 5.3: Time and memory usages at 10 GHz.

RESULTS (Time: hrs, Memory: GB)

Full Sphere Extracted Sphere

Z∂V,∂V
ε ZV,∂V

ε Z∂V,V
0 Z∂V,∂V

ε ZV,∂V
ε Z∂V,V

0

Filling Time 0.03 0.10 0.16 0.03 0.08 0.13

Memory 0.15 1.25 1.13 0.14 1.05 0.93

Time to Form ZSV S 0.42 0.40

LU Time 0.03 0.04

Solution Time 2.21e−05 5.92e−05

Total Time 0.75 0.68
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H-matrix SVS-EFIE (10 GHz)

Original H−Matrix H−Matrix after range truncation

Figure 5.1: Surface-to-Surface H−Matrix structures before and after the range trun-
cation due to the skin-effect of the Lead sphere produced by a z-directed electric
dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained by the H-matrix accel-
erated SVS-EFIE solver at 10 GHz, radius of the sphere R = 10µm, and truncation
distance DT = R.
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Mie Series vs. H-Matrix SVS-EFIE (10 GHz)

|E
|,

(V
/m

)

R

R− 2δ

Mie Series ◦
SVS-EFIE +

θ, radian

Figure 5.2: Magnitude of the electric field in Lead sphere of radius 10µm obtained
via H−Matrices accelerated SVS-EFIE due to radial electric dipole at 10 GHz as a
function of the polar angle θ at the centroids of the tetrahedral elements nearest to the
outer radius R of the extracted sphere (figure (5.3)) and nearest to the inner radius
r = R− 2δ of the volume removed from the sphere due to skin-effect attenuation.
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H-matrix SVS-EFIE (10 GHz)
Full Sphere Extracted Sphere

z

x
y

|E| (V/m)

Figure 5.3: Magnitude of the total electric field inside Lead (Pb) sphere produced by
a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 10 GHz

Mie Series vs. H-Matrix SVS-EFIE (10 GHz)
Full Sphere Extracted Sphere |EMie −ESV S−EFIE|

|EMie|
20%

15%

10%

5%

0%

z

x
y

Figure 5.4: The relative error distribution of the total electric field inside extracted
Lead (Pb) sphere, produced by a z-directed electric dipole situated at x′ = 0 m,
y′ = 0 m, z′ = 0.00003 m at 10 GHz, in Mie series solution against SVS-EFIE.
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5.2.2 Case 2: 15 GHz

Table 5.4: Set-up parameteric values for 15 GHz.

ADDITIONAL SET-UP PARAMETERS

Skin Depth 1.93µm

Full Sphere Extracted Sphere

No of 2-D Elements 4, 078 4, 078

No of 3-D Elements 24, 305 15, 609

No of RWG Basis Functions 6, 117 6, 117

No of Degree of Freedom 79, 032 52, 944

Table 5.5: SAR results obtained at 15 GHz.

Specific Absorption Rate (SAR) Results

SAR of the Mie serie solution SARMie 9.68e−10

SAR of the full sphere, SARFullSphere 9.41e−10

SAR of the extracted sphere, SARExtractedSphere 8.77e−10

|SARMie − SARFullSphere|
|SARMie|

03%

|SARMie − SARExtractedSphere|
|SARMie|

09%

|SARFullSphere − SARExtractedSphere|
|SARFullSphere|

07%
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Table 5.6: Time and memory usages at 15 GHz.

RESULTS (Time: hrs, Memory: GB)

Full Sphere Extracted Sphere

Z∂V,∂V
ε ZV,∂V

ε Z∂V,V
0 Z∂V,∂V

ε ZV,∂V
ε Z∂V,V

0

Filling Time 0.08 0.39 0.59 0.06 0.21 0.31

Memory 0.35 3.45 2.99 0.26 1.95 1.68

Time to Form ZSV S 1.91 1.02

LU Time 0.20 0.12

Solution Time 1.59e−04 1.02e−04

Total Time 3.18 1.72
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H-matrix SVS-EFIE (15 GHz)

Original H−Matrix H−Matrix after range truncation

Figure 5.5: Surface-to-Surface H−Matrix structures before and after the range trun-
cation due to the skin-effect of the Lead sphere produced by a z-directed electric
dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained by the H-matrix accel-
erated SVS-EFIE solver at 15 GHz, radius of the sphere R = 10µm, and truncation
distance DT = R.
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Mie Series vs. H-Matrix SVS-EFIE (15 GHz)
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Figure 5.6: Magnitude of the electric field in Lead sphere of radius 10µm obtained
via H−Matrices accelerated SVS-EFIE due to radial electric dipole at 15 GHz as a
function of the polar angle θ at the centroids of the tetrahedral elements nearest to the
outer radius R of the extracted sphere (figure (5.7)) and nearest to the inner radius
r = R− 2δ of the volume removed from the sphere due to skin-effect attenuation.
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H-matrix SVS-EFIE (15 GHz)
Full Sphere Extracted Sphere
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Figure 5.7: Magnitude of the total electric field inside Lead (Pb) sphere produced by
a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 15 GHz

Mie Series vs. H-Matrix SVS-EFIE (15 GHz)
Full Sphere Extracted Sphere |EMie −ESV S−EFIE|

|EMie|
20%

15%

10%

5%

0%

z

x
y

Figure 5.8: The relative error distribution of the total electric field inside extracted
Lead (Pb) sphere, produced by a z-directed electric dipole situated at x′ = 0 m,
y′ = 0 m, z′ = 0.00003 m at 15 GHz, in Mie series solution against SVS-EFIE.
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5.2.3 Case 3: 20 GHz

Table 5.7: Set-up parameteric values for 20 GHz.

ADDITIONAL SET-UP PARAMETERS

Skin Depth 1.67µm

Full Sphere Extracted Sphere

No of 2-D Elements 4, 220 4, 220

No of 3-D Elements 28, 431 21, 664

No of RWG Basis Functions 6, 330 6, 330

No of Degree of Freedom 91, 623 71, 322

Table 5.8: SAR results obtained at 20 GHz.

Specific Absorption Rate (SAR) Results

SAR of the Mie serie solution SARMie 1.98e−10

SAR of the full sphere, SARFullSphere 1.91e−10

SAR of the extracted sphere, SARExtractedSphere 1.77e−10

|SARMie − SARFullSphere|
|SARMie|

03%

|SARMie − SARExtractedSphere|
|SARMie|

10%

|SARFullSphere − SARExtractedSphere|
|SARFullSphere|

07%



5.2. Results of the Test Cases 78

Table 5.9: Time and memory usages at 20 GHz.

RESULTS (Time: hrs, Memory: GB)

Full Sphere Extracted Sphere

Z∂V,∂V
ε ZV,∂V

ε Z∂V,V
0 Z∂V,∂V

ε ZV,∂V
ε Z∂V,V

0

Filling Time 0.09 0.49 0.75 0.07 0.27 0.57

Memory 0.37 4.14 3.54 0.32 2.64 2.46

Time to Form ZSV S 2.31 1.52

LU Time 0.24 0.26

Solution Time 2.41e−04 1.75e−04

Total Time 3.38 2.70
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H-matrix SVS-EFIE (20 GHz)

Original H−Matrix H−Matrix after range truncation

Figure 5.9: Surface-to-Surface H−Matrix structures before and after the range trun-
cation due to the skin-effect of the Lead sphere produced by a z-directed electric
dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained by the H-matrix accel-
erated SVS-EFIE solver at 20 GHz, radius of the sphere R = 10µm, and truncation
distance DT = R.
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Mie Series vs. H-Matrix SVS-EFIE (20 GHz)
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Figure 5.10: Magnitude of the electric field in Lead sphere of radius 10µm obtained
via H−Matrices accelerated SVS-EFIE due to radial electric dipole at 20 GHz as a
function of the polar angle θ at the centroids of the tetrahedral elements nearest to the
outer radius R of the extracted sphere (figure (5.11)) and nearest to the inner radius
r = R− 2δ of the volume removed from the sphere due to skin-effect attenuation.
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H-matrix SVS-EFIE (20 GHz)
Full Sphere Extracted Sphere
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Figure 5.11: Magnitude of the total electric field inside Lead (Pb) sphere produced
by a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 20 GHz

Mie Series vs. H-Matrix SVS-EFIE (20 GHz)
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Figure 5.12: The relative error distribution of the total electric field inside extracted
Lead (Pb) sphere, produced by a z-directed electric dipole situated at x′ = 0 m,
y′ = 0 m, z′ = 0.00003 m at 20 GHz, in Mie series solution against SVS-EFIE.
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5.2.4 Case 4: 25 GHz

Table 5.10: Set-up parameteric values for 25 GHz.

ADDITIONAL SET-UP PARAMETERS

Skin Depth 1.49µm

Full Sphere Extracted Sphere

No of 2-D Elements 5, 754 5, 754

No of 3-D Elements 46, 084 29, 278

No of RWG Basis Functions 8, 631 8, 631

No of Degree of Freedom 146, 883 96, 465

Table 5.11: SAR results obtained at 25 GHz.

Specific Absorption Rate (SAR) Results

SAR of the Mie serie solution SARMie 5.78e−11

SAR of the full sphere, SARFullSphere 5.60e−11

SAR of the extracted sphere, SARExtractedSphere 5.15e−11

|SARMie − SARFullSphere|
|SARMie|

03%

|SARMie − SARExtractedSphere|
|SARMie|

11%

|SARFullSphere − SARExtractedSphere|
|SARFullSphere|

08%
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Table 5.12: Time and memory usages at 25 GHz.

RESULTS (Time: hrs, Memory: GB)

Full Sphere Extracted Sphere

Z∂V,∂V
ε ZV,∂V

ε Z∂V,V
0 Z∂V,∂V

ε ZV,∂V
ε Z∂V,V

0

Filling Time 0.16 1.33 2.07 0.17 0.78 1.16

Memory 0.57 7.51 6.55 0.56 4.26 3.72

Time to Form ZSV S 5.33 3.33

LU Time 0.60 0.70

Solution Time 3.25e−04 3.50e−04

Total Time 9.51 6.15
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H-matrix SVS-EFIE (25 GHz)

Original H−Matrix H−Matrix after range truncation

Figure 5.13: Surface-to-Surface H−Matrix structures before and after the range trun-
cation due to the skin-effect of the Lead sphere produced by a z-directed electric dipole
situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained by the H-matrix accelerated
SVS-EFIE solver at 25 GHz, radius of the sphere R = 10µm, and truncation distance
DT = R.
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Mie Series vs. H-Matrix SVS-EFIE (25 GHz)
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Figure 5.14: Magnitude of the electric field in Lead sphere of radius 10µm obtained
via H−Matrices accelerated SVS-EFIE due to radial electric dipole at 25 GHz as a
function of the polar angle θ at the centroids of the tetrahedral elements nearest to the
outer radius R of the extracted sphere (figure (5.15)) and nearest to the inner radius
r = R− 2δ of the volume removed from the sphere due to skin-effect attenuation.
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H-matrix SVS-EFIE (25 GHz)
Full Sphere Extracted Sphere
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Figure 5.15: Magnitude of the total electric field inside Lead (Pb) sphere produced
by a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 25 GHz

Mie Series vs. H-Matrix SVS-EFIE (25 GHz)
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Figure 5.16: The relative error distribution of the total electric field inside extracted
Lead (Pb) sphere, produced by a z-directed electric dipole situated at x′ = 0 m,
y′ = 0 m, z′ = 0.00003 m at 25 GHz, in Mie series solution against SVS-EFIE.
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5.2.5 Case 5: 30 GHz

Table 5.13: Set-up parameteric values for 30 GHz.

ADDITIONAL SET-UP PARAMETERS

Skin Depth 1.36µm

Full Sphere Extracted Sphere

No of 2-D Elements 6, 884 6, 884

No of 3-D Elements 56, 279 35, 731

No of RWG Basis Functions 10, 326 10, 326

No of Degree of Freedom 179, 163 117, 519

Table 5.14: SAR results obtained at 30 GHz.

Specific Absorption Rate (SAR) Results

SAR of the Mie serie solution SARMie 2.11e−11

SAR of the full sphere, SARFullSphere 2.05e−11

SAR of the extracted sphere, SARExtractedSphere 1.87e−11

|SARMie − SARFullSphere|
|SARMie|

03%

|SARMie − SARExtractedSphere|
|SARMie|

11%

|SARFullSphere − SARExtractedSphere|
|SARFullSphere|

09%
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Table 5.15: Time and memory usages at 30 GHz.

RESULTS (Time: hrs, Memory: GB)

Full Sphere Extracted Sphere

Z∂V,∂V
ε ZV,∂V

ε Z∂V,V
0 Z∂V,∂V

ε ZV,∂V
ε Z∂V,V

0

Filling Time 0.24 2.06 2.92 0.24 1.21 1.80

Memory 0.72 9.94 8.97 0.71 5.46 4.99

Time to Form ZSV S 8.25 5.19

LU Time 1.11 1.06

Solution Time 5.22e−04 4.89e−04

Total Time 14.60 9.51
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H-matrix SVS-EFIE (30 GHz)

Original H−Matrix H−Matrix after range truncation

Figure 5.17: Surface-to-Surface H−Matrix structures before and after the range trun-
cation due to the skin-effect of the Lead sphere produced by a z-directed electric dipole
situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained by the H-matrix accelerated
SVS-EFIE solver at 30 GHz, radius of the sphere R = 10µm, and truncation distance
DT = R.
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Mie Series vs. H-Matrix SVS-EFIE (30 GHz)

|E
|,

(V
/m

)

R

R− 2δ

Mie Series ◦
SVS-EFIE +

θ, radian

Figure 5.18: Magnitude of the electric field in Lead sphere of radius 10µm obtained
via H−Matrices accelerated SVS-EFIE due to radial electric dipole at 30 GHz as a
function of the polar angle θ at the centroids of the tetrahedral elements nearest to the
outer radius R of the extracted sphere (figure (5.19)) and nearest to the inner radius
r = R− 2δ of the volume removed from the sphere due to skin-effect attenuation.
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H-matrix SVS-EFIE (30 GHz)
Full Sphere Extracted Sphere
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Figure 5.19: Magnitude of the total electric field inside Lead (Pb) sphere produced
by a z-directed electric dipole situated at x′ = 0 m, y′ = 0 m, z′ = 0.00003 m obtained
by the H-matrix accelerated SVS-EFIE solver at 30 GHz
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Figure 5.20: The relative error distribution of the total electric field inside extracted
Lead (Pb) sphere, produced by a z-directed electric dipole situated at x′ = 0 m,
y′ = 0 m, z′ = 0.00003 m at 30 GHz, in Mie series solution against SVS-EFIE.
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5.2.6 Time and Memory Complexities

The time and memory requirements for the frequency range are plotted in order

to obtain the big “O” complexity behaviour of the introduced techniques. Therefore,

the memory requirement for storing Surface-to-Surface supermatrix is plotted against

the number of RWG basis functions P (which is also the number of the unknowns)

as shown in Figure (5.21)(a), while Figure (5.21)(b) shows the time complexity as a

plot of time taken to fill the Surface-to-Surface supermatrix against the number of

unknowns (RWG basis functions P ).
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Figure 5.21: Complexity plot of Z∂V,∂V
ε supermatrix (a) Memory complexity (b) Time

complexity.

Similarly, Figure (5.22)(a) contains the plot of the memory requirement for stor-

ing the Surface-to-Volume supermatrix versus the number of RWG basis functions

P . This, however, shows the memory complexity of Surface-to-Volume supermatrix.

The time complexity of filling the Surface-to-Volume supermatrix is depicted in Fig-
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ure (5.22)(b) as a plot of the time taken to fill the supermatrix against the number

of RWG basis functions P .
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Figure 5.22: Complexity plot of ZV,∂V
ε supermatrix (a) Memory complexity (b) Time

complexity.

Additionally, Figure (5.23)(a) is the plot of the memory used in storing the

Volume-to-Surface supermatrix versus the number of unknowns P . This, however,

shows the memory complexity of the Volume-to-Surface supermatrix. The time com-

plexity of filling the Volume-to-Surface supermatrix is depicted in Figure (5.23)(b) as

a plot of the time taken to fill the supermatrix versus the number of unknowns P .

Finally, the time complexity behaviour of forming the ZSV S supermatrix is shown

in Figure (5.24)(a) as a plot of time taken to form the supermatrix against the number

of RWG basis functions P , while in Figure (5.24)(b) the overall time required to obtain

a solution is plotted against the number of RWG basis functions P .
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Figure 5.23: Complexity plot of Z∂V,V
0 supermatrix (a) Memory complexity (b) Time

complexity.
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Figure 5.24: Time complexity plot for (a) forming the ZSV S supermatrix (b) total
time taken to obtain a solution.

5.3 Descriptive Analysis and Tests of Hypothesis

It is observed from Tables 5.1, 5.4, 5.7, 5.10 and 5.13 that the skin-depth δ de-

creases with increase in frequency. The skin-depth δ then dictates the density of
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the mesh elements. These tables also show that the extraction greatly reduces the

number of volumetric elements (tetrahedral) generated with increase in frequency -

courtesy of the skin-depth δ.

Similarly, from Tables 5.2, 5.5, 5.8, 5.11 and 5.14, it can be observed that the rela-

tive error in the Mie series computed SAR for full sphere with respect to the SVS-EFIE

computed SAR for the same full sphere stays roughly at 3%. The relative error in the

Mie series computed SAR for the full sphere with respect to the SVS-EFIE computed

SAR for the extracted sphere stays roughly at 10%. However, considering SVS-EFIE

computed SAR for extracted sphere relative to that of SVS-EFIE computed SAR for

the full sphere reveal relative error of roughly 7%.

Furthermore, Figures (5.1), (5.5), (5.9), (5.13) and (5.17) depict the effect of

the range truncation on the structure of the supermatrices where the red blocks

represent the fullmatrix blocks, the green blocks denote the rkmatrix blocks and

white blocks are the empty blocks representing the skipped blocks that fall beyond

the truncation distant DT . The effect of the white blocks is the reduction in the

amount of computational tasks and time because those blocks are never computed in

the first place.

On the same note, Figures (5.3), (5.7), (5.11), (5.15) and (5.19) show that the

volumetric current distribution of the extracted spheres match the corresponding full

spheres. Figures (5.4), (5.8), (5.12), (5.16) and (5.20) indicate that the solutions

obtained with the new techniques on the extracted sphere compared to that of the
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full sphere have the same range of relative error when these two results are compared

with the Mie series solution. The maximum relative error in the solutions remains

roughly at 20%. Likewise, Figures (5.2), (5.6), (5.10), (5.14) and (5.18) also confirm

the accuracy of the solution because, the electric current computed from the extracted

spheres match the equivalent Mie series counterparts.

Moreover, Tables 5.3, 5.6, 5.9, 5.12 and 5.15 show that the memory and time

requirements in the cases involving the extracted sphere is much less compared to the

corresponding full sphere. However, the time complexities of each of the supermatrices

are shown in Figures (5.21) to (5.23). Figure (5.21)(a) clearly shows that the mem-

ory complexity of Surface-to-Surface supermatrix scales as O(kP logP ) for full sphere

while it scales as O(qP logP ) for the extracted sphere where constant q < k. Fig-

ure (5.21)(b) shows that the time complexity for filling Surface-to-Surface supermatrix

scales as O(kP 2) for full sphere while for the extracted sphere it scales as O(qP 2)

where constant q < k. Figure (5.22)(a) clearly shows that the memory complexity of

Surface-to-Volume supermatrix scales as O(kP 1.5logP ) for full sphere while it scales

as O(qP 1.5logP ) for the extracted sphere where constant q < k. Figure (5.22)(b)

shows that the time complexity for filling Surface-to-Volume supermatrix scales as

O(kP 2.5) for full sphere while for the extracted sphere it scales as O(qP 2.5) where

constant q < k. Consequently, the same behaviour in memory and time complexity

can be observed for Volume-to-Surface supermatrix as plotted in Figure (5.23). Ob-

serving Figure (5.24) reveals the time complexity scaling for forming ZSV S and the
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total time to obtain a solution as kP 2.5 for the full sphere and qP 2.5 for the extracted

sphere where q < k. It is important to note that the choice of SVD compression

is responsible for the time complexities obtained in the presented cases. However,

it is expected that the time complexities for filling the Surface-Surface supermatrix,

Surface-Volume supermatrix, Volume-Surface supermatrix, time to form the ZSV S

supermatrix, and the total time to obtain a solution scale as PlogP (if the ACA

compression algorithm is used) as illustrated in Figures 5.21(b), 5.22(b), 5.23(b), and

5.24.

From the foregoing, it can be observed that the average relative error in the

computed SAR for the test case showed that only 7% of the volumetric field has been

affected as a result of volumetric mesh elements extraction. This answers the research

question 1. The number of the computational steps involved in obtaining a solution

have been shown to reduce due to the fact that some of the computational steps are

skipped and a certain portion of the mesh volume was removed. The reduction in

the number of computational tasks and memory requirements answers the research

question 2. Despite the application of the interaction range truncation and volumetric

extraction the maximum relative error in the solution remain the same for both the

full sphere case and the extracted sphere equivalent.
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Chapter 6

Conclusions

6.1 Overview and Summary

This research work proposed reduction techniques that could be employed to re-

duce the computational complexities associated with obtaining the solution of a scat-

tering problem on 3-D metal object via the SVS-EFIE formulation. It, explicitly,

demonstrates new techniques that could be employed in dealing with the bottlenecks

associated with the computation of the SVS-EFIE operators. It also validates the

solutions obtained with Mie series analytical solutions. The new techniques exploit

the skin-effect of PECs to reduce the complexity through volumetric mesh elements

extraction and interactions range truncation governed by the metal’s Green’s function

while the results obtained remained within a given error range. In this regard, the

memory and time complexity has been shown to be greatly reduced with these new
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methods.

6.2 Conclusions

This work has demonstrated the time and the memory reductions in solution

of scattering problem obtained from H−Matrices accelerated SVS-EFIE formula-

tion. The time complexity of filling Surface-to-Surface has been shown to scale at

O(P 2) (because of the choice of SVD over ACA) and memory complexity scales as

O(PlogP ) in line with the suggested theoretical estimate. Time and memory com-

plexity of Surface-to-Volume scale as O(P 2.5) and O(P 1.5logP ) respectively. The

same behaviour in time and memory complexities hold for the Volume-to-Surface op-

erator. The error estimates also show that error level is the same for the solutions

obtained from the application of these new methods and the ones without the new

techniques.

6.3 Implications

The new techniques, employed in this work, reduce both the time and the memory

requirements of the whole scattering problem. However, the effects of these new

methods are the introduction of additional parameters which must be considered in

order to obtain accurate solution. Ordinarily, in order to change the accuracy of the

solution of H−Matrices based solver, only the (ACA or SVD) compression tolerance
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need to be adjusted. In contrast, these new methods introduce two (2) additional

dependants - the truncation distance DT and the interior radius r which dictates the

extent of the extraction. This then implies that, keeping the ACA or SVD tolerance

constant, the accuracy of the solution still depends on the DT and r.

6.4 Suggestions for Future Research

All the test cases presented in this research work use SVD compression, though

both the ACA and SVD compressions were implemented. ACA algorithm being a

heuristic method is not guaranteed to compress all kind of matrices. This drawback

of ACA manifests in this work as the ACA failed to compressed the majority of the

admissible blocks and this facilitated the choice of SVD in this work. As a result of

this, it is suggested that further research should be conducted on this in order to be

able to obtain almost linear complexity in filling times of the supermatrices.
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[18] Barışcan Karaosmanoğlu and Özgür Ergül. Modified combined tangential for-
mulation for stable and accurate analysis of plasmonic structures. In Applied
Computational Electromagnetics Society Symposium-Italy (ACES), 2017 Inter-
national, pages 1–2. IEEE, 2017.

[19] A Kishk and Lotfollah Shafai. Different formulations for numerical solution
of single or multibodies of revolution with mixed boundary conditions. IEEE
Transactions on Antennas and Propagation, 34(5):666–673, 1986.

[20] Farhad Sheikh Hosseini Lori, Anton Menshov, Reza Gholami, Jamiu Babatunde
Mojolagbe, and Vladimir I Okhmatovski. Novel single-source surface integral
equation for scattering problems by 3-d dielectric objects. IEEE Transactions
on Antennas and Propagation, 66(2):797–807, 2018.

[21] Farhad Sheikh Hosseini Lori, Anton Menshov, and Vladimir I Okhmatovski. New
vector single-source surface integral equation for scattering problems on dielectric
objects in 2-d. IEEE Transactions on Antennas and Propagation, 65(7):3794–
3799, 2017.



Bibliography 103

[22] Anton Menshov and Vladimir Okhmatovski. Method of moment solution of
surface-volume-surface electric field integral equation for two-dimensional trans-
mission lines of complex cross-sections. In Signal and Power Integrity (SPI),
2012 IEEE 16th Workshop on, pages 31–34. IEEE, 2012.

[23] Anton Menshov and Vladimir Okhmatovski. Novel surface integral equation
formulation for accurate broadband rl extraction in transmission lines of arbi-
trary cross-section. In Microwave Symposium Digest (MTT), 2012 IEEE MTT-S
International, pages 1–3. IEEE, 2012.

[24] Anton Menshov and Vladimir Okhmatovski. New single-source surface inte-
gral equations for scattering on penetrable cylinders and current flow modeling
in 2-d conductors. IEEE Transactions on Microwave Theory and Techniques,
61(1):341–350, 2013.

[25] Anton Menshov and Vladimir I Okhmatovski. Surface–volume–surface electric
field integral equation for magneto-quasi-static analysis of complex 3-d intercon-
nects. IEEE Transactions on Microwave Theory and Techniques, 62(11):2563–
2573, 2014.

[26] Eric Michielssen and Amir Boag. A multilevel matrix decomposition algorithm
for analyzing scattering from large structures. IEEE Transactions on Antennas
and Propagation, 44(8):1086–1093, 1996.

[27] Carl Müller. Foundations of the mathematical theory of electromagnetic waves,
volume 155. Springer Science & Business Media, 2013.

[28] Utkarsh R Patel, Sean V Hum, and Piero Triverio. A magneto-quasi-static
surface formulation to calculate the impedance of 3d interconnects with arbitrary
cross-section. In Signal and Power Integrity (SPI), 2017 IEEE 21st Workshop
on, pages 1–4. IEEE, 2017.

[29] Andrew F Peterson, Scott L Ray, and Raj Mittra. Computational methods for
electromagnetics, volume 2. 1998.

[30] Zhi Guo Qian, Weng Cho Chew, and Roberto Suaya. Generalized impedance
boundary condition for conductor modeling in surface integral equation. IEEE
Transactions on Microwave Theory and Techniques, 55(11):2354–2364, 2007.

[31] Sadasiva Rao, D Wilton, and Allen Glisson. Electromagnetic scattering by
surfaces of arbitrary shape. IEEE Transactions on antennas and propagation,
30(3):409–418, 1982.

[32] Amr ME Safwat, Islam A Eshrah, Tamer M Abuelfadl, and Hadia El-Hennawy.
University research on antenna design and scattering problems in egypt. In



Bibliography 104

Microwave Conference (EuMC), 2014 44th European, pages 1924–1927. IEEE,
2014.

[33] John Shaeffer. Direct solve of electrically large integral equations for prob-
lem sizes to 1 m unknowns. IEEE Transactions on Antennas and Propagation,
56(8):2306–2313, 2008.

[34] Farhad Sheikh Hosseini Lori. Novel single source integral equation for analysis
of electromagnetic scattering by penetrable objects. PhD thesis, University of
Manitoba, 2017.

[35] Horst D Simon and Hongyuan Zha. Low-rank matrix approximation using the
lanczos bidiagonalization process with applications. SIAM Journal on Scientific
Computing, 21(6):2257–2274, 2000.

[36] David R Swatek. Investigation of single-source surface integral equations for
electromagnetic wave scattering by dielectric bodies. 1999.

[37] Kezhong Zhao, Marinos N Vouvakis, and Jin-Fa Lee. The adaptive cross ap-
proximation algorithm for accelerated method of moments computations of emc
problems. IEEE transactions on electromagnetic compatibility, 47(4):763–773,
2005.

[38] Yu Zhao and Junfa Mao. Equivalent surface impedance-based mixed potential
integral equation accelerated by optimized h-matrix for 3-d interconnects. IEEE
Transactions on Microwave Theory and Techniques, 2017.

[39] Yu Zhao, Min Tang, Shang Xiang, and Junfa Mao. H-matrix accelerated contour
integral method for modeling multiconductor transmission lines. IEEE Transac-
tions on Electromagnetic Compatibility, 60(2):552–555, 2018.

[40] Shucheng Zheng, Anton Menshov, and Vladimir I Okhmatovski. New single-
source surface integral equation for magneto-quasi-static characterization of
transmission lines situated in multilayered media. IEEE Transactions on Mi-
crowave Theory and Techniques, 64(12):4341–4351, 2016.



105

A

Sphere Model

1 /∗ Sphere with opt ion f o r vo lumetr i c e lements e x t r a c t i o n
2 Parameters :
3 sd => sk in depth o f the mate r i a l
4 s => c h a r a c t e r i s t i c s l ength o f the outer sphere ;
5 f => f a c t o r ∗ sd determines where the removal w i l l s t a r t , that i s ,

i nne r rad iu s
6 rad => rad iu s o f the sphere
7 e x t r a c t => 0 | 1 value ; I t means 0 => No and 1 => Yes
8 Author :
9 Jamiu Babatunde Mojolagbe

10 E l e c t r i c a l and Computer Engineer ing
11 Unive r s i ty o f Manitoba , Winnipeg , MB, Canada
12 ∗/
13

14 DefineConstant [
15 rad = {10 .0 e−06, Name ” Sphere Parameters / Bas ic /Radius”}
16 sd = {2 .4 e−06, Name ” Sphere Parameters / Bas ic / Skin Depth (SD) ”}
17 num = {2 , Name ” Sphere Parameters /Meshing/Elements per SD”}
18 f = {2 . 0 , Name ” Sphere Parameters / Extract ion / Factor ( Factor ∗SD Away)

”}
19 e x t r a c t = {0 , Choices{0=”No” , 1=”Yes” } , Name ” Sphere Parameters /

Extract ion / Extract ” , H igh l i gh t ”Blue”}
20 v name = {6 , Name ” Sphere Parameters /Meshing/ Phys i ca l Volume Name”}
21 s name = {1 , Name ” Sphere Parameters /Meshing/ Phys i ca l Sur face Name”}
22 ] ;
23

24

25 Mesh . Character i st icLengthFromCurvature =0.009;
26 s = sd/num;
27 s s = s ;
28 I f ( e x t r a c t )
29 r ad in = rad − ( sd∗ f ) ; // c a l c u l a t e inner rad iu s
30 Else
31 r ad in = 0 . ;
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32 EndIf
33

34 Point (1 ) = {0 , 0 , 0 , s } ;
35 Point (2 ) = {−rad , 0 , 0 , s } ;
36 Point (3 ) = { rad , 0 , 0 , s } ;
37 Point (4 ) = {0 , −rad , 0 , s } ;
38 Point (5 ) = {0 , rad , 0 , s } ;
39 Point (6 ) = {0 , 0 , −rad , s } ;
40 Point (7 ) = {0 , 0 , rad , s } ;
41

42 C i r c l e (1 ) = {3 , 1 , 5} ;
43 C i r c l e (2 ) = {5 , 1 , 2} ;
44 C i r c l e (3 ) = {2 , 1 , 4} ;
45 C i r c l e (4 ) = {4 , 1 , 3} ;
46 C i r c l e (5 ) = {6 , 1 , 5} ;
47 C i r c l e (6 ) = {5 , 1 , 7} ;
48 C i r c l e (7 ) = {7 , 1 , 4} ;
49 C i r c l e (8 ) = {4 , 1 , 6} ;
50 C i r c l e (9 ) = {6 , 1 , 2} ;
51 C i r c l e (10) = {2 , 1 , 7} ;
52 C i r c l e (11) = {7 , 1 , 3} ;
53 C i r c l e (12) = {3 , 1 , 6} ;
54

55 Line Loop (25) = {11 , 1 , 6} ;
56 Ruled Sur face (26) = {25} ;
57 Line Loop (27) = {10 , −6, 2} ;
58 Ruled Sur face (28) = {27} ;
59 Line Loop (29) = {3 , −7, −10};
60 Ruled Sur face (30) = {29} ;
61 Line Loop (31) = {7 , 4 , −11};
62 Ruled Sur face (32) = {31} ;
63 Line Loop (33) = {12 , 5 , −1};
64 Ruled Sur face (34) = {33} ;
65 Line Loop (35) = {−5, −2, 9} ;
66 Ruled Sur face (36) = {35} ;
67 Line Loop (37) = {−9, −3, −8};
68 Ruled Sur face (38) = {37} ;
69 Line Loop (39) = {8 , −12, −4};
70 Ruled Sur face (40) = {39} ;
71

72

73 I f ( r ad in > 0)
74 Point (8 ) = {− r ad in , 0 , 0 , s s } ;
75 Point (9 ) = { r ad in , 0 , 0 , s s } ;
76 Point (10) = {0 , −r ad in , 0 , s s } ;
77 Point (11) = {0 , r ad in , 0 , s s } ;
78 Point (12) = {0 , 0 , −r ad in , s s } ;
79 Point (13) = {0 , 0 , r ad in , s s } ;
80

81 C i r c l e (13) = {9 , 1 , 11} ;
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82 C i r c l e (14) = {11 , 1 , 8} ;
83 C i r c l e (15) = {8 , 1 , 10} ;
84 C i r c l e (16) = {10 , 1 , 9} ;
85 C i r c l e (17) = {12 , 1 , 11} ;
86 C i r c l e (18) = {11 , 1 , 13} ;
87 C i r c l e (19) = {13 , 1 , 10} ;
88 C i r c l e (20) = {10 , 1 , 12} ;
89 C i r c l e (21) = {12 , 1 , 8} ;
90 C i r c l e (22) = {8 , 1 , 13} ;
91 C i r c l e (23) = {13 , 1 , 9} ;
92 C i r c l e (24) = {9 , 1 , 12} ;
93

94 Line Loop (41) = {23 , 13 , 18} ;
95 Ruled Sur face (42) = {41} ;
96 Line Loop (43) = {22 , −18, 14} ;
97 Ruled Sur face (44) = {43} ;
98 Line Loop (45) = {15 , −19, −22};
99 Ruled Sur face (46) = {45} ;

100 Line Loop (47) = {19 , 16 , −23};
101 Ruled Sur face (48) = {47} ;
102 Line Loop (49) = {24 , 17 , −13};
103 Ruled Sur face (50) = {49} ;
104 Line Loop (51) = {−17, −14, 21} ;
105 Ruled Sur face (52) = {51} ;
106 Line Loop (53) = {−21, −15, −20};
107 Ruled Sur face (54) = {53} ;
108 Line Loop (55) = {20 , −24, −16};
109 Ruled Sur face (56) = {55} ;
110

111 Sur face Loop (57)= {26 ,28 ,30 ,32 ,34 ,36 ,38 ,40 , 42 ,44 ,46 ,48 ,50 ,52 ,54 ,56} ;
112 Else
113 Sur face Loop (57)= {26 ,28 ,30 ,32 ,34 ,36 ,38 ,40} ;
114 EndIf
115

116 Phys i ca l Sur face ( s name ) = {28 , 26 , 34 , 36 , 30 , 38 , 40 , 32} ;
117 Volume (58) = {57} ;
118 Phys i ca l Volume ( v name ) = {58} ;
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B

Method getDistance()

1 /∗∗
2 getDi s tance − Computes the d i s t anc e between two c l u s t e r s or sons o f a

supermatr ix
3

4 @param A Clus te r o f p c l u s t e r data type
5 @param B Clus te r o f p c l u s t e r data type
6

7 @return d i s t anc e Distance between the bounding boxes o f A and B
8 ∗/
9 double getDi s tance ( const p c l u s t e r &A, const p c l u s t e r &B) {

10 double sigma = 0 . ; // i n i t i a l i z e sigma to hold sums
11 unsigned d = A−>d ; // Dimension o f the bounding boxes
12

13 f o r ( unsigned i = 0 ; i < d ; i++) {
14 const double& aMin = A−>bmin [ i ] ; // A ’ s bounding box minimum
15 const double& aMax = A−>bmax [ i ] ; // A ’ s bounding box maximum
16 const double& bMin = B−>bmin [ i ] ; // B ’ s bounding box minimum
17 const double& bMax = B−>bmax [ i ] ; // B ’ s bounding box maximum
18

19 double abMax = std : : abs (aMax − bMax) ;
20

21 // check the s p a t i a l l o c a t i o n s o f the bounding box
22 // and compute the d i f f e r e n c e
23 i f ( aMin > bMin) {
24 sigma += pow ( (bMax > aMin) ? std : : min (abMax , bMax − aMin) : aMin −

bMax , 2) ;
25 }
26 e l s e {
27 sigma += pow ( (aMax > bMin) ? std : : min (abMax , aMax − bMin) : bMin −

aMax , 2) ;
28 }
29 }
30 re turn s q r t ( sigma ) ;
31 }
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