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ii | Abstract 

 

Abstract 

Infrastructure failure causes the loss of human lives and high socio-financial costs. Due to the 

continuous aging of infrastructure, a proper structural health monitoring (SHM) system is required 

to ensure the safety of structures and reduce repair costs through the early detection of structural 

damage. Existing visual inspection methods are not reliable due to the low frequency of inspection, 

subjective evaluation of structural damage, and vulnerability of inspectors’ safety, along with high 

costs. Traditional damage detection methods have similar limitations, since they require a large 

number of sensors to monitor large-scale infrastructure and involve high levels of uncertainty due 

to environmental noises and sensor malfunctions.  

 Computer vison techniques have been implemented to overcome the limitations mentioned 

above, relying on image processing algorithms to extract damage-sensitive features. However, it 

is very difficult to extract a robust damage-sensitive feature. To resolve this limitation, I developed 

two deep learning-based damage detection methods using computer vision. The first method is a 

hybrid pixel-level crack segmentation and quantification method for complex cracks on rough 

scenes. The developed hybrid method provides robust damage detection for images, which 

addresses the uncertainties of traditional approaches. The second method is a real-time semantic 

transformer representation network (STRNet) for crack segmentation. The proposed STRNet can 

process 49 images per second with a mean intersection over union score of 92.6, which represents 

state-of-the-art performance in this area when it comes to accuracy. 

 Using advanced deep learning methods and computer vision for damage detection still 

requires a great number of cameras to monitor large-scale infrastructure, which can be expensive. 

Consequently, another achievement of this thesis is that I developed an autonomous flight method 

using unmanned aerial vehicles (UAVs) for SHM purposes. Some critical parts of the bridge 

system, which should be monitored, are located beneath the bridge deck where global positioning 

system (GPS) signals are very weak or not available. Therefore, a three-dimensional pseudo map 

was developed using an inexpensive ultrasonic beacon system to replace the GPS signals for the 

autonomous flight of the UAVs. 
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Chapter 1 Introduction 

 

This chapter discusses the background on structural damage identification using computer 

vision, deep learning and UAVs, specifies the scope of this thesis, and describes the object of 

research, contribution of the studies, and overall outline of the thesis. 
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1.1 Background 

The American Society of Civil Engineers (ASCE) reports that school facilities and dams in North 

America require continuous monitoring to prevent any sudden failures since many of the structures 

are nearing the end of their usual lifespan. However, there is a lack of information about the actual 

status of the structures (ASCE, 2021). The failure of infrastructure is disastrous due to the 

possibility of fatal consequences for human lives as well as high financial losses. For example, in 

Italy in 2018, the Morandi Bridge collapsed and caused the death of 43 people. Replacing old and 

deteriorated infrastructure comes at a significant expense in terms of time and financial cost. 

Therefore, early detection of structural damage through proper structural health monitoring (SHM) 

systems is needed to prevent the fatal collapse of structures and reduce overall repair and 

rehabilitation costs.  

There are many different approaches for detecting structural damage, but they are usually 

classified as either physics model-driven or data-driven approaches. Physics model-driven 

approaches assess structural status based on multi-physics models and measured sensor data. Data-

driven approaches use sensor networks deployed on structures of interest, and machine learning or 

deep learning algorithms are applied to identify damage in the sensor network data. These two 

approaches are vulnerable to environmental noises and sensor malfunctions, which can mask small 

cracks in critical components of structural systems (Feng et al., 2015). It is difficult to validate the 

causes of abnormal signals, whether they are due to actual damage or uncertainties, including 

noises (Cha et al., 2016). Engineers must conduct on-site visits to identify the causes of abnormal 

signals, which have very high frequencies. Therefore, these approaches are not reliable overall.  

To overcome the limitations of the two approaches mentioned above, visual inspection 

conducted by trained engineers is still the main approach for monitoring and detecting structural 

damage (Abdel-Qader et al., 2003). However, there are two major problems. First, the accuracy of 

this method largely depends on the skills and experience of engineers. Highly-skilled engineers 

are limited in number and cannot inspect numerous structures. Additionally, personnel bias affects 

the interpretation of structural damage status. Second, some aspects of infrastructure are difficult 

to access, such as beneath a bridge deck, which calls for the use of special vehicles to access 

various critical components (e.g., expansion joints, bearings, connections). Therefore, bridge 

should be closed for inspection, which leads to low frequency inspections. Most countries 
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worldwide perform biannual inspections, which are not sufficient to prevent the sudden failure of 

bridge systems (Darby et al., 2019; Owen, 2007).  

Computer vision-based structural damage detection methods have been suggested to 

overcome the limitations of visual inspections conducted by trained engineers (Abdel-Qader et al., 

2003). Early stage computer vision-based damage detection methods were developed using simple 

image processing techniques. Specifically, computer vison data (e.g., RGB images) are processed 

using various image processing algorithms to extract damage-sensitive features. The extracted 

damage sensitive-features are then classified by trained machine learning algorithms. For example, 

in order to detect loosened bolts, the horizontal and vertical lengths of bolt heads can be calculated 

using image processing. Those dimensions can then be extracted as a damage-sensitive feature to 

train a linear support vector machine algorithm (Cha et al., 2016; Ramana et al., 2019). As damage-

sensitive features, hue saturation and intensity that have been modified from a color space value 

can be used to train a decision tree algorithm and detect steel corrosion (Son et al., 2014). The 

characteristics of concrete crack shapes have also been used as damage-sensitive features that were 

then classified by a support vector machine and neural network (Jahanshahi et al., 2013).  

However, these early stages of computer vison-based damage detection methods showed 

poor performances under the influence of uncontrolled environmental factors, such as lighting, 

shadows, and blurry images (Cha et al., 2017). In particular, it is difficult to select or extract 

damage-sensitive features that are robust to changing-light conditions. Traditional computer vision 

and machine learning-based damage detection methods require an engineer’s careful intervention 

to choose or extract proper damage-sensitive features, since they mostly fail to identify features 

that are robust to changing-light conditions, and only work for a single type of damage (Cha et al., 

2017).  

Recently, Cha et al. (2017) suggested a deep convolutional neural network (CNN) (LeCun, 

1998) method for structural concrete crack detection that yielded 97% accuracy under various 

lighting intensities and conditions. Compared to the traditional machine learning approaches, a 

deep CNN is able to extract a robust damage-sensitive feature through training processes. 

Specifically, a deep CNN can be trained with a great number of images that have been subjected 

to various lighting conditions, such as spot lightening, shadows, and blurriness. As a result, a well-

trained CNN yields a very robust performance compared to existing algorithm-based image 
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processing and machine learning methods. Through comparative studies, a well-trained CNN 

showed superior performances compared to the Canny and Sobel edge detection algorithms, which 

are traditional image processing methods (Cha et al., 2017). Interest in the CNN approach within 

SHM research has increased due to its accuracy and robustness.  

 

1.2 Problem definition 

The CNN-based damage detection method (Cha et al., 2017) is an innovative method to overcome 

the limitations of the traditional computer vision and machine learning-based methods. It uses a 

sliding window technique to localize detected damage within an input image. The sliding window 

technique uses a sliding window with a fixed size, but there are various shapes and sizes of damage, 

such as cracks, corrosion and loosened bolts, and the sizes are always different within the input 

RGB images, dependent on the distance between the camera and the object, as well as the 

properties of the camera, such as the type of lens and image sensors. Another limitation is that the 

CNN-based damage detection method was only applied on a pure monotonous concrete surface, 

and not on complex scenes. Usually, structures and facilities are located in scenes with complex 

backgrounds. Damage detection in complex scenes is a very challenging problem; it is not easy to 

extract damage-sensitive features, since there are many damage-like (i.e., crack-like) features, such 

as electric wires and expansion joints. Therefore, a new way of damage detection using CNN is 

required to accurately quantify detected damage in complex scenes. Accurate quantification of 

detected damage is essential to evaluate the status of a structural system in terms of safety. 

Another critical problem of computer vision-based damage detection is that although the 

approaches can detect structural damage, they require a large number of image sensors (i.e., 

cameras) to monitor large-scale civil infrastructure, which is expensive and computationally 

intensive. Recently, UAVs have been applied in the field of SHM to reduce time and costs (Metni 

and Hamel, 2007; Eschmann et al., 2012; Hallermann et al., 2013; Sankarasrinivasan et al., 2015). 

UAVs allow data to be obtained easily and remotely for SHM (Metni and Hamel, 2007; 

Hallermann et al., 2013). Nevertheless, well-trained pilots are required to operate the UAVs, which 

is also expensive and limited as far as the time it takes to cover numerous bridges and building 

systems. Another limitation is that all manual flights of UAVs rely on global positioning system 

(GPS) technology to localize detected damage. However, some critical parts of bridge systems that 
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are vulnerable to structural damage and can cause sudden collapses are located beneath the bridge 

deck. GPS signals become weak and unreliable beneath bridge decks for the autonomous flight of 

UAVs. Therefore, a more efficient, inexpensive and reliable method for UAV flight is required to 

autonomously navigate GPS-denied areas for SHM purposes. 

 

1.3 Research objectives 

As discussed above, there are limitations to using traditional damage detection approaches for an 

actual large-scale bridge system. There are also limitations to using computer vision-based damage 

detection due to the flight mode of UAVs. Specifically, the traditional manual flight of UAVs is 

limited when it comes to inspecting numerous bridge systems, since it requires on-site visits and 

careful, skillful manipulation, which are cumbersome. The CNN-based damage detection method 

showed robust performance under various lighting conditions, but its capacity for localization and 

quantification needs to be improved significantly.  

 In this thesis, an autonomous damage detection system has been developed by integrating 

advanced CNN methods and the autonomous flight of UAVs. To realize this goal, the three 

objectives below have been defined. 

1. Develop an autonomous UAV flight method for the GPS-denied regions of bridge systems. 

2. Develop a hybrid computer vision-based crack segmentation method that can detect concrete 

cracks at the pixel level in complex scenes by integrating image processing and region-based 

CNN methods. 

3. Develop a real-time crack segmentation method using an encoder and decoder-based end-to-

end CNN method to reduce the inspection costs of autonomous UAVs. 

As the result, the autonomous damage inspection UAV is developed in this research. 

1.4 Scope of work 

The thesis is composed of six chapters. This chapter (i.e., Chapter 1) provides background 

information on the research topics related to computer vision-based damage detection and UAV 

application in the field of SHM. Chapter 1 also defines the problems that this thesis will investigate, 

and describes the goals, objectives and contributions of the thesis. Chapter 2 provides an extensive 
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literature review and offers an overview of the mathematical backgrounds of UAV flight control 

and encoder-decoder-based deep learning algorithms. Chapter 3 describes autonomous flight UAV 

methods and deep learning-based crack damage detection. Chapter 4 describes the limitations of 

existing deep learning-based damage detection methods and suggests a hybrid crack segmentation 

algorithm for complex scenes with an improved crack quantification method. Chapter 5 proposes 

a real-time crack segmentation method using an advanced deep end-to-end CNN network and 

shows its state-of-the-art performance in crack segmentation. Chapter 6 provides a summary of 

this study and makes proposals for future research. Table 1-1 shows the objectives and scope of 

this thesis.  

 

Table 1-1. Scope of the thesis  

 Scope Validation 

Chapter 2 Mathematical backgrounds of 

autonomous UAV flight and deep 

learning-based damage (crack) 

detection 

 

Chapter 3 

Kang & Cha, (2018) 

Develop an ultrasonic beacon system 

(UBS)-based autonomous flight 

algorithm and fabricate physical 

UAVs for SHM in GPS-denied areas. 

Present a deep learning-based crack 

detection method from the UAV 

images. 

Real flight experiments in an 

indoor GPS-denied 

environment. 

 

Test the deep learning algorithm 

using images of scenes with 

cracks that were taken by UAVs. 

Chapter 4 

Kang et al., (2020) 

Suggest a hybrid algorithm to reduce 

the cost of data acquisition for crack 

segmentation. 

Develop a crack quantification 

algorithm.  

Perform a comparison test 

between existing published 

methods and the developed 

algorithm using approximately 

100 crack images. 

Chapter 5 

Kang & Cha, (2021) 

Explore the attention-based encoder 

and decoder for crack segmentation. 

Suggest an efficient ground truth 

data acquisition method and build a 

large and high-quality dataset. 

Build an extensive and real-

world image database. 

Perform a comparison between 

the suggested algorithm and a 

well-known algorithm.  
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Suggest a synthetic image technique 

for extra augmentation. 

 

1.5 Research contributions 

I have achieved three major technical contributions related to the automation of SHM systems. 1) 

For the first time, I developed an autonomous flight method for UAVs to monitor structures in 

GPS-denied environments. 2) I developed a hybrid method of crack segmentation by integrating 

image processing methods with faster region-based CNN (Faster R-CNN), and developed a crack 

quantification method to calculate the width and length of cracks. 3) I developed a new deep CNN 

method for the real-time crack segmentation of complex scenes. The details of the scientific 

contributions of this thesis are described below. 

Even though there are some existing applications of UAVs for SHM purposes, all of those 

implementations rely on skilled pilots. However, we cannot rely on skilled pilots to monitor 

numerous bridge systems, since they must conduct on-site visits for every inspection. This makes 

the work costly and cumbersome, which reduces the frequency of inspections. Therefore, I 

developed an autonomous flight method for UAVs, which is described for the first time in Chapter 

3. Further, while most existing autonomous flight methods for UAVs are based on GPS, some 

critical structural components that are vulnerable to damage are located in GPS-denied areas, such 

as beneath a bridge deck. Therefore, another contribution of this thesis is that I introduced a UBS 

system to replace the GPS system to localize UAVs and eventually localize detected damage with 

a geo-tagging method. 

The autonomous UAV system was developed for GPS-denied areas, and the collected 

videos from the UAV were processed using traditional CNN with the sliding window method 

described in Chapter 3. However, the sliding window technique is not sufficient for evaluating 

detected damage since it depends on fixed-size bounding boxes to localize detected cracks. 

Detected damage must be quantified to evaluate the status of structures. Therefore, a hybrid pixel-

level crack segmentation method was developed for complex scenes (see Chapter 4). The hybrid 

method was developed by carefully integrating image processing methods (i.e., a modified 

tubularity flow field (TuFF)) (Mukherjee et al., 2015) and Faster R-CNN (Ren et al., 2015). 

Compared to the traditional CNN-based method using the sliding window technique, the hybrid 



8 | Chapter 1 Introduction 

 

method can segment cracks in complex scenes at the pixel level. The output of the hybrid method 

is also processed using a damage quantification method that I developed for the calculation of 

crack width and length.  

The limitation of the hybrid method that is introduced in Chapter 4 is that it is not a real-

time method. When the autonomous UAV system collects video of structures, the hybrid method 

depends on post-processing the videos to segment cracks. This entails high computational costs 

and delays the inspection process. Therefore, I developed a real-time crack segmentation method 

to process videos taken by autonomous UAVs by designing a new deep learning architecture and 

implementing various advanced deep learning operators, such as an attention-based encoder and 

decoder model and focal Tversky loss function (Abraham & Khan, 2019). The new architecture 

(i.e., semantic transformer representation network (STRNet)) achieved high accuracy with a mean 

intersection over union (mIoU) score of 92.5% for 47 frames per second (FPS), which is the fastest 

speed that has been achieved by pixel-level crack segmentation methods.  
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Chapter 2. Mathematical backgrounds  

 

The UAV and the encoder-decoder based CNNs have various operations. This thesis follows 

the grouped paper format, with most methodologies explained in Chapters 3, 4, and 5. This 

chapter is intended to offer further explanation of the mathematical background of this thesis. 

The proportional–integral–derivative control for UAV and the components of CNN for damage 

detection are explained in this chapter. 
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UAVs and deep CNNs for crack or damage detection have been actively researched in recent years. 

The UAV based structural damage detection system had two major problems. First, most of the 

UAV research rely on the trained human pilot or GPS-based system (Metni & Hamel, 2007; 

Eschmann et al., 2012; Morgenthal & Hallermann, 2014; Gillins et al., 2016). Metni & Hamel, 

(2007) applied the UAV for bridge inspection as the cost-efficient approach. Eschmann et al., 

(2012) applied the building inspection using GPS-based waypoint navigation flight. However, 

Morgenthal & Hallermann, (2014) pointed out the limitation of UAV based SHM, such as camera 

performance, weather conditions, and GPS signal interference. Gillins et al., (2016) also pointed 

out the GPS signal problem, especially the bridge inspection. During the bridge inspection, the 

girder of the bridge is hard to inspect because the concreted structure blocks the GPS signal. Most 

of the UAVs is calculated the current position using by GPS signal. This data is applied to the 

feedback control loop to fix the error of UAV movement. If the GPS data is not accurate, the 

autonomous flight would fail during the flight.  

In the robotics field, overcoming GPS denied environment has been one of the big topics 

for autonomous flight UAV. There were various approaches to replace the GPS. However, one of 

the most stable solutions is the beacon system (Seki et al., 2000; Silvagni et al., 2017; Díaz et al., 

2017). A beacon system is composed of multiple stationary beacons and a mobile beacon. 

Stationary beacons have become the benchmark for distance measurement. This beacon system is 

applied to various environments. Silvagni et al., (2017) applied the beacon system to calculate the 

distance between UAVs and victims. Seki et al., (2000) applied the autonomous driving 

wheelchair-using by the beacon. Also, the current beacon system achieves the cm accuracy (Díaz 

et al., 2017). The beacon system can be applicable for autonomous structural damage detection 

systems in the GPS denied environment based on previous research.  

Even if the UAV successfully flight autonomously, the structure damage should be 

detected automatically for the autonomous damage detection system. Structural damage detection 

with UAV is majorly applied to the image processing technique (Metni & Hamel, 2007; Eschmann 

et al., 2012; Sankarasrinivasan et al., 2015). However, the UAV application for structural damage 

detection is the outside environment, and it is hard to control the lighting condition. Metni & Hamel, 

(2007) applied the color-based threshold approach. The color-based threshold is dependent on the 

environment, and especially the decolorization is affected by the structure type and lighting 
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condition. The engineer needs to find and change the specific value of color each time, and they 

apply the different structures and times. Eschmann et al., (2012) applied edge detection to detect 

the concrete crack. However, before the edge detection is performed, engineers need to check 

which image has the concrete damage. Sankarasrinivasan et al., (2015) suggested the ensemble 

algorithms which combined the multiple algorithms to increase the performance. The two different 

algorithms, which were hat transform and HSV thresholding were combined to make the crack 

segmentation map. The image processing software was processed by a telemetry-equipped ground 

station. The system performed the real time structural damage detection system. However, the 

engineers need to select the threshold value based on the environment and the pilot need to zoom 

the structure damage area during the flight.  

The image processing technique has the possibility of parts of automated damage detection, 

but it is affected by environmental changes. Especially the UAV based SHM research is the 

outdoor environment, and it is difficult to constrain the lighting conditions (Morgenthal & 

Hallermann, 2014). To overcome this problem, CNN which is one of the deep learning 

methodologies, is applied for damage detection (Cha et al., 2017). Unlikely human selected feature 

or threshold, the deep learning-based damage detection shows the robust result about the various 

lighting conditions without human intervention. Not only the concrete crack damage, but the 

multiple types of structure damage can also be detected such as concrete crack, steel corrosion, 

delamination, and bolt corrosion (Cha et al., 2018). For this reason, the deep learning-based 

damage detection can be applicable for autonomous structural damage detection system.  

As a result, the two problems, which are GPS limitation and lighting conditions, could be 

solved by suggesting two possible approaches, which are UBS and CNN. To develop the 

autonomous damage inspection system, Kang & Cha, (2018) integrated the two independent 

solutions and proved the idea. It is successfully overcome the GPS limitation and structure damage 

detection in various lighting conditions. This section provides fundamental theoretical and 

mathematical explanations of flight control algorithms and the deep learning method, including its 

operators. 
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2.1 Feedback control theory  

In this thesis, the UAV uses a proportional–integral–derivative (PID) control, which is a feedback 

control algorithm (Minorsky, 1922). A fundamental concept of feedback control is to generate a 

control signal to reduce the discrepancy (i.e., error) between measured output responses and 

desired output responses of the controlled system. The error is defined at time (𝑡) as, 

 

𝑒(𝑡) = 𝑅𝑚(𝑡) − 𝑅𝑑(𝑡), (2-1) 

 

where 𝑅(𝑡) is the selected response of the controlled system at time (𝑡), and subscript 𝑚 and 𝑑 are 

measured and designed responses of the system. The PID control signal 𝑢(𝑡) is calculated with the 

help of the following equation: 

 

 𝑢(𝑡) = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
 + 𝐾𝑑 

𝑑𝑒(𝑡)

𝑑𝑡
, (2-2) 

 

where subscripts 𝑝, 𝑖, and 𝑑 stand for proportional, integral, and derivative control, respectively. 

Therefore, the PID control is composed of proportional (P) control, Integral (I) control, and 

Differential (D) control. The 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are coefficients that should be determined by trial and 

error by considering specific control system properties.  

 

2.2 Deep learning operators 

Most deep learning networks for classification, object detection, and segmentation purposes 

consist of several deep learning operators to extract feature maps and eventually improve the 

efficacy of the network. Since I developed and used my own deep learning networks for structural 

damage detection, some key deep learning operators are explained in this section.  

 

2.2.1 Convolution filter 
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The mathematical meaning of the convolution operator is a dot product which is the multiplication 

and summation of the input vector (𝑥(𝑐,𝑖+𝑓ℎ−1,𝑗+𝑓𝑤−1)) with a learnable filter (𝑤(𝑐,𝑓ℎ,𝑓𝑤)). The 

convolution filter calculation can be expressed as follows: 

 

𝑧𝑖𝑗 = ∑ ∑ ∑ 𝑥(𝑐,𝑖+𝑓ℎ−1,𝑗+𝑓𝑤−1)𝑤(𝑐,𝑓ℎ,𝑓𝑤)
𝑚
𝑓𝑤=1

𝑛
𝑓ℎ=1

𝑐
𝑐=1 + 𝑏, (2-3) 

 

where 𝑏 is the bias, c is the channel size of the filter, 𝑓ℎ is the height of the filter, 𝑓𝑤 is the width 

of the filter, i is the height of the input, and 𝑗 is the width of the input. Figure 2-1 shows an example 

of convolution calculation. 

 

Figure 2-1. Example of convolution operation 

 

 

The first calculation for the convolution filter is an element-wise multiplication. The size 

of the filter is a 2 × 2 matrix. The first input matrix is [1, 2; 3, 2], which is also a 2 × 2 matrix. The 

output of the first multiplication is [2, 2; -3, 2] as shown in Figure 2-1. Following that, all the 

values are summed up and result in 3. Then the filter slides to the left side with one column of 

vector and does the same calculations. Stride is the value of how many pixels (i.e., column vectors) 

need to be skipped for the next same calculation. If the number of input channels is more than one, 

the same number of filter channels is required. The desired size of the feature map channels is 

defined by the number of convolution filters.  
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2.2.2 Pooling operation 

The pooling operator is an important deep CNN operator. Pooling operation helps a network 

extract the important feature while reducing the spatial dimension of the output feature map.   

 

Figure 2-2. Pooling operations (a)Max pooling, (b) Average pooling 

  

 

Even though there are different pooling operations, some common and representative 

functions are introduced in this section. The max pooling (Nagi et al., 2011) is expressed in 

Equation (2-4), 

 

𝑀𝑎𝑥_𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = 𝑚𝑎𝑥(𝑝𝑖,𝑗 , … , 𝑝𝑖+𝑓𝑤,𝑗+𝑓ℎ
), (2-4) 

 

where 𝑝 is the input, 𝑓ℎ is the height dimension of the filter, 𝑓𝑤 is the width dimension of the filter, 

i is the height dimension of the input, and 𝑗 is the width dimension of the input. Figure 2-2 (a) 

shows an example of max pooling. As shown in Figure 2-2 (a), the size of the filter is a 2 × 2 

matrix. The input of the matrix is [3, 1; 0, -1], which is also a 2 × 2 matrix. The max pooling picks 

the maximum value among the input values and results in 3. The pooling operations reduce the 

width and height of the feature map size to reduce the computational cost.  

Average pooling calculates the average value from the input values, and it is expressed as 

follows: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑜𝑜𝑙𝑖𝑛𝑔 =
1

𝑓ℎ𝑓𝑤
∑ 𝑝(𝑖+𝑓𝑤−1,𝑗+𝑓ℎ−1)

𝑓ℎ,𝑓𝑤
1,1 , (2-5) 

 

where 𝑓ℎ is the height of the filter, 𝑓𝑤 is the width of the filter, i is the height of the input, and 𝑗 is 

the width of the input. Figure 2-2 (b) shows an example of average pooling. The size of the filter 

is a 2 × 2 matrix. Input of matrix is [3, 1; 0, -1], which is also the same size as a 2 × 2 matrix. 

Following Equation (2-5), the average value is the output of average pooling and results in 0.75. 

 

2.2.3 Transposed convolution and upsampling 

In the encoder, the network is composed of convolutional filters to extract feature maps. Due to 

these convolution operations through the deep hidden layers of the network, there is often a 

reduction in the extracted feature map size. For the semantic segmentation, the reduced size of the 

feature map should be restored by application of transposed convolution and/or upsampling to 

present only the detected objects at pixel level on the original input scene (Dumoulin and Visin, 

2016). The process of restoring the size of the feature map, which is the result of encoding to the 

original input size, is decoding. 

Figure 2-3 shows an example of transposed convolution. When the input feature map and 

filter sizes are a [2 × 2] matrix with stride 1, transposed convolution restores the input feature map 

to a [3 × 3] matrix. Each element of the filter multiplies each element of the input feature map. 

The target unassigned [3 × 3] matrix is prepared, which simply adds the elements of the 

overlapping positions. 

Figure 2-3. Example of transposed convolution 

 

 

Although transposed convolution is applied to the decoder, the upsampling operation has 

been used in deep learning networks for semantic segmentation. Various upsampling techniques, 

including bilinear (Smith, 1981), nearest neighborhood (Rukundo and Cao, 2012), bicubic 
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interpolation (Keys, 1981), and Lanczos interpolation (Lanczos, 1958), have been developed. 

Based on the literature review, most other crack segmentation algorithms used bilinear upsampling.  

Bilinear upsampling is based on linear interpolation. If 𝑥1, 𝑥𝑖 , and 𝑥2 are locations in the 

linear function 𝑓() and follow (𝑥1 < 𝑥𝑖 <  𝑥2) condition, the value of 𝑥𝑖 can be calculated based 

on the distance between (𝑥1, 𝑥𝑖) and (𝑥𝑖, 𝑥2). The 𝑥𝑖 value is calculated using Equation (2-10),  

 

𝑑1 = 𝑥2 − 𝑥𝑖 , (2-6) 

𝑑2 = 𝑥𝑖 − 𝑥1, (2-7) 

𝛼 =
𝑑1

𝑑1+𝑑2
, (2-8) 

𝛽 =
𝑑2

𝑑1+𝑑2
, and (2-9) 

𝑥𝑖 = 𝛽𝑥1 + 𝛼𝑥2, (2-10) 

 

where 𝑑  stands for the distance between the arrayed points (𝑥1, 𝑥𝑖, and 𝑥2 ) and 𝛼  and β  are 

interpolation rates. In Figure 2-4, this concept is applied to the two-dimensional vector. Bilinear 

interpolation can be applied to a 2 × 2 input matrix to build a 4 × 4 output matrix, which requires 

a two-time interpolation process. To determine 𝑏2,2, 𝑏0,2 and 𝑏3,2 should be determined first. The 

“1/3=
𝑑1

𝑑1+𝑑2
=

1

1+2
” and “2/3” in Figure 2-4 are interpolation rates that were calculated as 𝛼 and 𝛽 

in Equation 2-6. Based on 𝑏0,2 and 𝑏3,2, we perform another linear interpolation to determine the 

value of 𝑏2,2.  

 

Figure 2-4. Calculation of bilinear interpolation 
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2.2.4 Batch normalization 

The initial filter weights of a neural network are important in deep learning. If some of the weights 

are too large and others are too small in value, it is difficult to train the network. For this reason, 

the output of the convolution operation in each layer must be normalized (Nair & Hinton, 2010; 

Ioffe & Szegedy, 2015). To normalize the output, the average (𝜇𝐵) of the output and its variance 

(𝜎𝐵
2) are calculated as expressed in Equation (2-11) and (2-12), where 𝑚 is the batch (𝐵) size and 

𝜀 is a small value to prevent an error if 𝜎𝐵
2 is 0. Then, the trainable parameter scaling (𝑐) and shift 

(𝑠) values are applied for the movement of the center of distribution. This process increases the 

stability of network training. The batch normalization follows Equation (2-14). 

 

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 , (2-11) 

𝜎𝐵
2 =

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1 , (2-12) 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 (2-13) 

𝑦𝑖 = 𝑐𝑥̂𝑖 + 𝑠, (2-14) 

 

2.2.5 Activation function 

One of the important operators of deep CNN is the activation function. Activation function helps 

a network have non-linearity. Activation functions are required to introduce non-linearity between 
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input and output. They should simultaneously facilitate the training of the deep neural network 

(Nair & Hinton, 2010). Therefore, activation function should have non-linearity and be simple 

enough for the training process. An activation function is usually implemented after the 

convolution filter and batch normalization.  

Even though there are many different activation functions, some common and 

representative functions are introduced in this section. The rectified linear unit (ReLU) (Nair & 

Hinton, 2010) is expressed in Equation (2-15). 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑀𝑎𝑥(0, 𝑥), (2-15) 

 

where 𝑥 is the input value. If the input value is lower than 0, the output becomes 0. Otherwise, the 

output follows the input value as shown in Figure 2-6 (a). The ReLU is a commonly used activation 

function in CNN architectures because the value of the image is positive.  

 

Figure 2-5. Activation functions (a)ReLU, (b) Swish, (c) Sigmoid, and H-sigmoid 

   

 

 The Swish activation function (Ramachandran et al., 2017) is composed of the sigmoid 

activation function as expressed in Equation (2-17),  

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
, and (2-16) 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛾𝑥), (2-17) 
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where 𝛾 is a trainable parameter. The influence of 𝛾 is shown in Figure 2-5. If 𝛾 is close to 0, the 

activation function becomes a linear function. If 𝛾 is 1, it has a small curve when the value is close 

to 0. Finally, when 𝛾  is a very big number (i.e., ∞), it becomes ReLU. Applying the Swish 

activation function allows the network to find the best activation function.  

 H-sigmoid (Howard et al., 2019) operates similarly to a sigmoid as presented by Equations 

(2-19). H-sigmoid is based on ReLU6. ReLU6 is similar to ReLU, but the maximum value in the 

former is limited to 6. The computational cost of ReLU6 is considerably smaller than the sigmoid 

function; thus, it helps accelerate the network inference speed. 

 

𝑅𝑒𝐿𝑈6 = 𝑚𝑖𝑛(𝑀𝑎𝑥(0, 𝑥), 6), and (2-18) 

𝐻 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
𝑅𝑒𝐿𝑈6(𝑥 + 3)

6
 (2-19) 

 

2.2.6 Loss function 

The loss function defines the error between the ground truth and the network output. Some 

common and representative functions are introduced in this section. 

The dice coefficient (DC) loss (Milletari et al., 2016) is commonly applied for binary 

classification or binary segmentation. Equation (2-20) expresses the DC loss.  

 

𝐷𝐶_𝑙𝑜𝑠𝑠 = 1 −
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
, (2-20) 

 

where 𝑋 is an output of deep neural network, 𝑌 is a ground truth, and ∩ is the calculation of the 

intersection between the two groups.  

 Intersection of union (IoU) is a popular evaluation metric used to measure the performance 

of semantic segmentation algorithms. The IoU loss directly applies the usage of evaluation metrics 

as the loss function (Rahman & Wang, 2016). IoU loss is calculated by following equation:  
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𝐼𝑜𝑈_𝑙𝑜𝑠𝑠 = 1 −
|𝑋 ∩ 𝑌|

|𝑋| + |𝑌| − |𝑋 ∩ 𝑌|
. (2-21) 

 

The IoU loss calculates the ratio between the output of deep CNN and the ground truth and their 

combined values. IoU loss usually achieves good performance in the segmentation task, but it does 

not consider dataset imbalance. Dataset imbalance occurs when the target object has a small 

portion in the images. The image background strongly influences the training process. To solve 

this problem, Tversky loss is suggested. Equation (2-22) represents the Tversky loss (Salehi et al., 

2017).  

 

𝑇𝑣𝑒𝑟𝑠𝑘𝑒𝑦_𝑙𝑜𝑠𝑠 = 1 −
|𝑋 ∩ 𝑌|

𝛼|𝑋 − 𝑌| + 𝛽|𝑌 − 𝑋| + |𝑋 ∩ 𝑌|
, (2-22) 

 

where 𝛼 is the hyperparameter to enhance the false positive (𝑋 − 𝑌) and 𝛽 is the hyperparameter 

to enhance the false negative (𝑌 − 𝑋). 𝛼 and 𝛽 are coefficients that should be determined by trial 

and error after considering the specific domain and dataset. 

 

2.2.7 Training neural network 

Sections 2.2.1 to 2.2.6 described the partial derivative of each operation. To train any designed 

deep learning network using these operators, backpropagation should be done using the gradient 

descent method. As a simple example, a fully connected artificial neural network is used to explain 

the training process as shown in Figure 2-7. 

 

Figure 2-6. Fully connected artificial neural network 
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In the Figure 2-6, 𝑖𝑛 and 𝑤𝑛 are the input value and the weight value, respectively. Each 

hidden layer includes a summation of the multiplied input, weight, and sigmoid function as shown 

in Figure 2-6 and Table 2-1. The detailed calculation result of each node is described in Table 2-

1. 

 

Table 2-1. Forward calculation of fully connected artificial neural network 

Eq. 𝑁𝑒𝑡ℎ1 

=𝑖1𝑤1 + 𝑖1𝑤2 

𝑂𝑢𝑡ℎ1 

=
1

1 + 𝑒−𝑁𝑒𝑡ℎ1
 

𝑁𝑒𝑡𝑜1

= 𝑂𝑢𝑡ℎ1𝑤5

+ 𝑂𝑢𝑡ℎ2𝑤6 

𝑂𝑢𝑡𝑜1

=
1

1 + 𝑒−𝑁𝑒𝑡𝑜1
 

Result 0.0275 0.5069 0.3817 0.5943 

Eq. 𝑁𝑒𝑡ℎ2

= 𝑖1𝑤3 + 𝑖2𝑤4 

𝑂𝑢𝑡ℎ2

=
1

1 + 𝑒−𝑂𝑢𝑡ℎ2
 

𝑁𝑒𝑡𝑜2

= 𝑂𝑢𝑡ℎ1𝑤7

+ 𝑂𝑢𝑡ℎ2𝑤8 

𝑂𝑢𝑡𝑜2

=
1

1 + 𝑒−𝑁𝑒𝑡𝑜2
 

Result 0.0425 0.5106 0.4834 0.6186 

  

As shown in Figure 2-7, the ground truth values (𝐺𝑇𝑜1, 𝐺𝑇𝑜2) are 1 and 2, respectively, 

but the actual output values are 0.5943 and 0.6185, respectively. Through the backpropagation 

process, the weight values in each layer should be updated to reduce the error between the actual 

output values and their ground truth values. The error is calculated by a loss function, and based 

on the error, the gradient descent mechanism is used to find the optimal values of the updated 

amount of each weight value. Equation (2-20) expresses a common L2 loss function. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑜1 + 𝐸𝑜2 

=
1

2
(1 − 0.5943)2 +

1

2
(2 − 0.6186)2 = 1.0364, 

(2-23) 
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where 𝐸𝑜1 and 𝐸𝑜2 are the error in each output node of the last layer in Figure 2-6. The calculated 

total error, 𝐸𝑡𝑜𝑡𝑎𝑙, is 1.0364. To determine the increment, 𝑤̇, of each weight value, 𝑤, Equation 

(2-22) is used. 

 

𝑤̇ = 𝑤 − 𝑟
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤
, (2-21) 

 

where r is learning rate, defined as 0.5 in this example. To minimize the 𝐸𝑡𝑜𝑡𝑎𝑙 , weight 𝑤5̇ is 

updated as an example by adding the gradient value 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
. 

This gradient calculation is a backward calculation to accomplish the chain rule. To 

calculate the 𝑤5 with respect to 𝐸𝑡𝑜𝑡𝑎𝑙, we want to know to what extent 𝑤5 affects the 𝐸𝑡𝑜𝑡𝑎𝑙 and 

accordingly update the 𝑤5  to minimize the 𝐸𝑡𝑜𝑡𝑎𝑙 . The 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
 is difficult to calculate directly. 

Therefore, Equation (2-24) is derived for 𝑤5. The 𝐸𝑡𝑜𝑡𝑎𝑙 with respect to 𝑂𝑢𝑡𝑜1 is calculated with 

the help of multiple connected steps. The 𝑂𝑢𝑡𝑜1 with respect to 𝑁𝑒𝑡𝑜1 is the next step. As shown 

in Figure 2-7, the sigmoid activation function is expressed as 𝑂𝑢𝑡𝑜𝑛. The derivation of sigmoid 

activation function follows Equation (2-26). Equation (2-27) is used to calculate the 𝑁𝑒𝑡𝑜1 with 

respect to 𝑤5. The -0.0495 is the result of the gradient value. Equation (2-29) shows the update of 

𝑤5: 

 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑤5
 (2-24) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1
= −(𝐺𝑇𝑜1 − 𝑂𝑢𝑡𝑜1) 

= −(1 − 0.5943) =−0.4057 

(2-25) 

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1
= 𝑂𝑢𝑡𝑜1(1 − 𝑂𝑢𝑡𝑜1) 

= 0.5943(1 − 0.5943) =0.2411 

(2-26) 

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑤5
=

𝜕( 𝑂𝑢𝑡ℎ1𝑤5+𝑂𝑢𝑡ℎ2𝑤6)

𝜕𝑤5
= 𝑂𝑢𝑡ℎ1=0.5069 (2-27) 
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𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
= −0.4057 × 0.2411 × 0.5069 = −0.0495 (2-28) 

𝑤5̇ = 0.35 − (0.5)(−0.0490) = 0.3747 (2-29) 

 

The gradients from 𝑤5 to 𝑤8 are updated similarly as shown in Table 2-2. The weights of 

the first hidden layer are also updated the same way. As shown in Figure 2-7, the 𝑤1is updated by 

two different errors and two different hidden layers.  

 

Table 2-2. The updated weights of fully connected artificial neural network from 𝑤5̇ to 𝑤8̇ 

𝑤5̇ = 0.3747 𝑤6̇ = 0.4249 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑤5
 

= (−0.4057)(0.2411)(0.5069) 

=−0.04958 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤6
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1𝑙

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑤6
 

= (−0.4057)(0.2411)(0.5106) 

=−0.04994 

𝑤7̇ = 0.4825 𝑤8̇ = 0.5350 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤7
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑤7
 

= (−1.3814)(0.2359)(0.5069) 

= −0.1651 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤8
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑂𝑢𝑡𝑜2𝑙

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑤8
 

= (−1.3814)(0.2359)(0.5106) 

= −0.1700 

 

Figure 2-7. Backpropagation process about 𝑤1 

 
 

Equation (2-30) provides the details of the calculations. The 𝐸𝑡𝑜𝑡𝑎𝑙 with respect to 𝑤1 can 

be calculated using the chain rule based on ( 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1
, 

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1
, 

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤1
). The gradient value, 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1
, 

comes from two values (
𝜕𝐸𝑜1

𝜕𝑂𝑢𝑡ℎ1
 and 

𝜕𝐸𝑜2

𝜕𝑂𝑢𝑡ℎ1
) as shown in Figure 2-9 and Equation (2-31). The two 

values are calculated by Equation (2-32) and (2-35). 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑁𝑒𝑡𝑜1
 has been already calculated when 𝑤5 
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is updated, and it is represented in Equation (2-33). Equation (3-34) represents 
𝜕𝑁𝑒𝑡𝑜1

𝜕𝑂𝑢𝑡ℎ1
. Based on 

partial differential equations, 𝑤5 is the 
𝜕𝑁𝑒𝑡𝑜1

𝜕𝑂𝑢𝑡ℎ1
. As a result, the 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1
 is calculated. Equation (2-35) 

can be calculated the same way followed by Equations (2-33) to (2-34). The 
𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1
 is the 

derivative of sigmoid. Thus, Equation (2-38) describe the detailed calculation of  
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
. After that, 

the 𝑤1 is updated with Equation (2-39) 

 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤1
, (2-30) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1
=

𝜕𝐸𝑜1

𝜕𝑂𝑢𝑡ℎ1
+

𝜕𝐸𝑜2

𝜕𝑂𝑢𝑡ℎ1
, (2-31) 

𝜕𝐸𝑜1

𝜕𝑂𝑢𝑡ℎ1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑂𝑢𝑡ℎ1
 (2-32) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑁𝑒𝑡𝑜1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1
= −0.4057 × 0.2411 (2-33) 

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑂𝑢𝑡ℎ1
=> 𝑤5𝑂𝑢𝑡ℎ1 + 𝑤6𝑂𝑢𝑡ℎ2 => 0.35 (2-34) 

𝜕𝐸𝑜2

𝜕𝑂𝑢𝑡ℎ1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑂𝑢𝑡ℎ1
 (2-35) 

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1
= 𝑂𝑢𝑡ℎ1(1 − 𝑂𝑢𝑡ℎ1) 

=0.5069(1−0.5069) = 0.25 

(2-36) 

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤1
=> 𝑤1 ∗ 𝑖1 => 𝑖1 = 0.05 (2-37) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
= [

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑂𝑢𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑁𝑒𝑡𝑜1

𝜕𝑂𝑢𝑡ℎ1
+

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑂𝑢𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑁𝑒𝑡𝑜2

𝜕𝑂𝑢𝑡ℎ1
]

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤1
, 

= [(−0.4057 × 0.2411 × 0.35) + (−1.3814 × 0.2359 × 0.45)] × 0.25 × 0.05, 

= −0.02034 

(2-38) 

𝑤1̇ = 0.15 − 0.5(−0.02034). (2-39) 

The weights 𝑤2̇ to 𝑤4̇ can be updated in the same way followed by Equations (2-30) to (2-

39). The results from 𝑤1̇ to 𝑤4̇ are calculated in Table 2-3. Based on the updated weights, the new 

𝑂𝑢𝑡𝑜1 and 𝑂𝑢𝑡𝑜2  are 0.6004 and 0.6267, respectively. The previous outputs were 0.5943 and 

0.6186. Since the ground truth outputs are 1 and 2, there is an improvement of approximately 0.006 
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and 0.008 in the ground truth values after this one-time training process. If the number of training 

loops is increased, it will reduce the loss and meet the target output.  

 

Table 2-3. The updated weights of fully connected artificial neural network from 𝑤1̇ to 𝑤4̇ 

𝑤1̇ = 0.1511 𝑤2̇ = 0.2189 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤1
 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤2
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑂𝑢𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑁𝑒𝑡ℎ1

𝜕𝑤2
 

𝑤3̇=0.2512 𝑤4̇=0.3025 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤3
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ2

𝜕𝑂𝑢𝑡ℎ2

𝜕𝑁𝑒𝑡ℎ2

𝜕𝑁𝑒𝑡ℎ2

𝜕𝑤3
 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤4
=

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑂𝑢𝑡ℎ2

𝜕𝑂𝑢𝑡ℎ2

𝜕𝑁𝑒𝑡ℎ2

𝜕𝑁𝑒𝑡ℎ2

𝜕𝑤4
 

 

 To apply this backpropagation concept to deep neural networks that have convolution, 

transposed convolution, activation function, batch normalization, etc., all these operators should 

be derived on the basis of partial differential equations as shown in the previous paragraphs. As an 

example, a backpropagation of convolution is shown in Figure 2-8.  

 

Figure 2-8. Backpropagation of convolution filter and max pooling 

 

 The input 3 × 3 𝒙 matrix is composed of 𝑥0,0 and 𝑥2,2 in Figure 2-8. The weight matrix is 

composed of 𝑤0,0 to 𝑤1,1 as shown in Figure 2-8. The results of max pooling are presented as a 2 

× 2 matrix consisting of 𝑠0,0 to 𝑠1,1. The “×,” “+,” and "𝑀𝑎𝑥" are the mathematical operations. 
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In this example, the gradient of 𝑤0,0 is calculated based on the chain rule expressed as 

follows: 

 

𝜕𝑧

𝜕𝑤0,0
=

𝜕𝑧

𝜕𝑚

𝜕𝑚

𝜕𝑠0,0

𝜕𝑠0,0

𝜕𝑞0,0,0

𝜕𝑞0,0,0

𝜕𝑤0,0
+

𝜕𝑧

𝜕𝑚

𝜕𝑚

𝜕𝑠0,1

𝜕𝑠0,1

𝜕𝑞1,0,0

𝜕𝑞1,0,0

𝜕𝑤0,0
+

𝜕𝑧

𝜕𝑚

𝜕𝑚

𝜕𝑠1,0

𝜕𝑠1,0

𝜕𝑞2,0,0

𝜕𝑞2,0,0

𝜕𝑤0,0
+

 
𝜕𝑧

𝜕𝑚

𝜕𝑚

𝜕𝑠1,1

𝜕𝑠1,1

𝜕𝑞3,0,0

𝜕𝑞3,0,0

𝜕𝑤0,0
, 

(2-40) 

 

where 𝑧 is the previous layer of operation, 𝑞 is the result of multiplication of each convolution 

filter weight and input matrix component value, 𝑠 is the summation of the 𝑞 components, and 𝑚 

is the result of the “Max” pooling operation. 
𝜕𝑧

𝜕𝑚
 is assumed to be 1 as we do not know the exact 

value that is backwarded from the previous layer of operation in this example. Each component of 

Equation (2-40) is also determined in the same way presented in Equations (2-24) to (2-28).  

 

2.3 Chapter 2 conclusion 

This chapter explained the mathematical elements of the UAV control algorithm and the damage 

detection algorithm. Although the UAV control algorithm and the CNN algorithm are being 

continuously improved and researchers frequently suggest new operations, most of these 

algorithms follow the math in this chapter. The application of these mathematical operations is 

demonstrated in Chapters 3, 4, and 5.  
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Chapter 3. Autonomous UAVs for SHM using deep learning and an ultrasonic beacon 

system with geo-tagging 

 

Chapter 3 has been reprinted from Kang, D. and Cha, Y.J., 2018. Autonomous UAVs for structural 

health monitoring using deep learning and an ultrasonic beacon system with geo‐tagging. 

Computer‐Aided Civil and Infrastructure Engineering, 33(10), pp.885-902. Impact factor: 11.775. 

This chapter has been reproduced with permission from the copyright holder John Wiley and Sons 

and the Copyright Clearance Center. 

 

Abstract: Visual inspection has traditionally been used for structural health monitoring. 

However, assessments conducted by trained inspectors or using contact sensors on structures 

for monitoring are costly and inefficient because of the number of inspectors and sensors 

required. To date, data acquisition using unmanned aerial vehicles (UAVs) equipped with 

cameras has become popular, but UAVs require skilled pilots or a global positioning system 

(GPS) for autonomous flight. Unfortunately, GPS cannot be used by a UAV for autonomous 

flight near some parts of certain structures (e.g., beneath a bridge), but these are the critical 

locations that should be inspected to monitor and maintain structural health. To address this 

difficulty, this article proposes an autonomous UAV method using ultrasonic beacons to replace 

the role of GPS, a deep convolutional neural network (CNN) for damage detection, and a geo-

tagging method for the localization of damage. Concrete cracks, as an example of structural 

damage, were successfully detected with 97.7% specificity and 91.9% sensitivity, by processing 

video data collected from an autonomous UAV. 
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3.1 Introduction 

Traditional structural health monitoring (SHM) approaches usually require a dense array of contact 

sensors to measure vibrations of the structures or human inspector assessments. This makes it 

expensive to install and maintain a monitoring system. To overcome these issues, many computer 

vision-based noncontact sensing techniques have been developed (Abdel-Qader et al., 2003; Lee 

and Shinozuka, 2006; Chen et al., 2015; Cha et al., 2016). 

 Recently, Cha et al. (2017a) proposed a deep learning-based crack damage detection 

method with automatic feature extraction and the ability to learn damage-sensitive features with 

robustness to various types of environmental noise. The convolutional neural network (CNN)-

based method effectively extracts and learns damage-sensitive features from input image data. 

Unlike a standard artificial neural network, it does not require definition of specific damage-

sensitive features. Interest in the SHM discipline has been increasing in the application of the 

powerful CNN approach (Soukup and Huber- Mörk, 2014; Lin et al., 2017; Rafiei et al., 2017). 

And other recent engineering applications of deep learning have been researched for SHM 

(Koziarski and Cyganek, 2017; Ortega-Zamorano et al., 2017; Rafiei and Adeli, 2017). Moreover, 

the faster region-based CNN (Faster R-CNN) method (Ren et al., 2015) has been applied to the 

detection and localization of multiple damage types for a steel girder bridge (Cha et al., 2017b). 

 To maximize the use of computer vision sensors, unmanned aerial vehicles (UAVs) have 

been applied to SHM problems (Metni and Hamel, 2007; Chen et al., 2011; Eschmann et al., 2012; 

Zhang and Elaksher, 2012; Hallermann and Morgenthal, 2013; Sankarasrinivasan et al., 2015; 

Gillins et al., 2016). UAVs offer costefficient risk reduction even if the location monitored is 

isolated or hazardous (Metni and Hamel, 2007). They also provide a time-saving solution (Gillins 

et al., 2016) for data acquisition (Eschmann et al., 2012; Hallermann and Morgenthal, 2013; 

Sankarasrinivasan et al., 2015). However, skilled pilots are typically required to run UAVs on-site, 

even though some techniques have been developed for remote control (Eschmann et al., 2012; 

Gillins et al., 2016). Autonomous navigation methods of UAVs have been studied to address this 

drawback. 

 To the best of our knowledge, there is no clear definition or established concept and theory 

for the levels of autonomous UAV navigation in the robotics discipline. However, six levels of 

autonomous vehicle navigation have been defined by the National Highway Traffic Safety 
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Administration (NHTSA and SAE International, 2014), which is a part of the U.S. Department of 

Transportation. The six levels of autonomous vehicle navigation are also applicable to autonomous 

UAV navigation. Level 0 is completely manual control of navigation by pilots. Level 1 is UAV 

navigation performed by pilots but with some automation applied to specific flight modes, such as 

holding altitude and hovering. In Level 2 automation, users can define multiple flight modes for 

automation, and the UAV then navigates based on the scheduled flight modes if there is no 

unexpected change in the flying environment. In Level 3, a UAV understands changing flying 

environments and controls flight modes itself to navigate the new environments. In Level 4 

navigation, a UAV can adaptively react when there is any system anomaly or a sudden accident, 

such as a collision with other objects. In Level 5, a UAV can autonomously navigate in all 

environments and situations. In this article, we focus on realizing Level 2 automation of UAV 

navigation for SHM in GPS-denied areas or complex geometric navigation environments. 

 Mapping and localization are critical to realization of Level 2 autonomous navigation. 

Planning and control of UAV navigation can be accomplished using an existing commercial 

mission planner and flight controller (i.e., Pixhawk). Multiple types of sensors are available for a 

UAV to determine its position. These sensors provide vehicle position data for the UAV to conduct 

its scheduled mission. For example, GPS is the most popular option for position sensors, as GPS 

sensors are cheaper and easier to use than other types of position sensors. A simple autonomous 

outdoor navigation by waypoints has been demonstrated using the GPS for localization of the UAV 

(Carvalho et al., 2017). However, there are several reasons why other localization sensor systems 

are required. First, the usage of a UAV is often limited to outdoor environments because a GPS 

signal is not reliable in certain locations like beneath bridge decks. Second, dynamic and complex 

topographic environments of the navigation space for SHM require higher accuracy in UAV 

localization than commercial GPS can provide. For example, dynamic water levels under bridge 

systems and complex indoor geometries of civil infrastructures require localization accuracy 

exceeding that of GPS systems. 

 To overcome these problems, a distance sensor and optical flow (Honegger et al., 2013) 

can be used with the simultaneous localization and mapping (SLAM) technique. However, the 

performance of SLAM and optical flow are dependent on the environment. For example, if the 

vision sensors cannot obtain features adequate to identify a UAV’s location, they incur a high 
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computational cost and accumulate localization errors (Hess et al., 2016). The real-time kinematic 

global positioning system (RTK GPS) was developed to address this issue (Stempfhuber and 

Buchholz, 2011). RTK GPS is highly accurate, but it is still not available in GPS-denied 

environments. As another approach, motion capture-based localization provides inspiration to 

extensive research in aerial robotics, allowing for complex and high-precision navigation that does 

not require any satellite signal (Orsag et al., 2013). However, its implementation requires a 

complex and expensive motion capture system (Deutscher et al., 2000). 

 An ultra-wideband beacon system was developed to provide high precision positioning to 

enable a new range of applications in GPS-denied environments (Vossiek et al., 2003; Zwirello et 

al., 2012; Sung et al., 2016). However, some experiments have shown millimeter-level accuracy 

of ultra-wideband beacon positioning systems, but the direct application is not practical in UAV 

systems due to high cost and a lack of integration (Zhang et al., 2006). However, an ultrasonic 

beacon system (UBS) can be an alternative for a practical mapping and localization system using 

low-cost hardware. The UBS offers a similar concept and mechanism to the ultra-wideband beacon, 

but it is cheaper and easier to integrate into UAVs than the ultra-wideband beacon. The UBS 

provides centimeter-level accuracy with proper parameter tuning (Díaz et al., 2017). For this 

reason, we chose UBS as the local mapping and localization sensor for Level 2 autonomous 

navigation of a UAV equipped with a camera for structural damage detection. 

 In the present study, we propose an autonomous UAV based SHM method using UBS. We 

used CNN with a sliding window technique (Cha et al., 2017a) as an example damage detection 

method. The detected damage is localized by geo-tagging method. Section 2 describes the UBS-

based autonomous UAV system and CNN layers that we used for concrete crack detection. In 

Section 3, experimental tools, including UAV fabrication and UBS are described and test scenarios 

and the results of UAV autonomous navigation experiments are discussed. Section 4 provides 

conclusions, discusses study limitations, and suggests future improvements. 

 

3.2 Methodology 

To develop autonomous navigation for a UAV, UBS was used for local mapping and localization 

positioning sensors, a ground station including a mission planner was used to assign a navigation 
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plan, and two UAVs were fabricated and equipped with a flight controller and an action camera. 

Figure 3-1 depicts the architecture of the autonomous UAV using a Pixhawk 2.1 flight controller. 

A commodity computer can serve as a ground station, where the role of mission planner is to assign 

a navigation plan and monitor the UAV. The first system used Pixhawk 2.1, which is commercial 

flight controller hardware (Proficnc, 2017). The Pixhawk 2.1 has Ardupilot 3.5 (Ardupilot, 2017), 

which is open source, installed as firmware. Ardupilot 3.5 has a feedback proportional–integral–

derivative (PID) controller (Minorsky, 1922), (Lim et al., 2012) that was used for this study as a 

default controller to control the speed of motors through the electronic speed controllers (ESCs). 

The position data from a mobile beacon was estimated using an extended Kalman filter 3 (EKF3) 

algorithm as input to the PID control system. The UBS has multiple mobile and stationary beacons. 

The EKF3 is an updated version of the original EKF (Smith et al., 1962) for flight control. Image 

geo-tagging was conducted based on the runtime history of the video footage collected from the 

action camera and the UAV running time. A CNN with a sliding window technique (Cha et al., 

2017) was used for crack detection in concrete as an example of a type of structural damage. A 

geographic information system (GIS) was also used to collect all video data of damage detected in 

the structure, along with location information. The details of autonomous flight, using UBS and 

CNN, are explained in the following sections. 
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Figure 3-1. Overall architecture of an autonomous UAV using a Pixhawk 2.1 flight controller 

(Kang and Cha, 2018) 

 

 

Figure 3-2 depicts the architecture of an autonomous UAV using the commercially 

available drone, Parrot Bebop2 Power (Bebop2). The only difference between this drone and the 

first UAV is that the commercial Bebop2 UAV has an imbedded controller. It was adopted because 

it is capable of more complex autonomous navigation than the previous UAV, and the 

experimental space at the University of Manitoba was limited. The previously described Pixhawk 

UAV is larger than the Bebop2; therefore, only limited missions were possible with this vehicle.  
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Figure 3-2. Overall architecture of autonomous commercial Bebob2 UAV (Kang and Cha, 2018) 

 
  

3.2.1 Programmable UAV fabrication and mapping system 

As the first step for Level 2 autonomous navigation of Pixhawk UAV, a programmable UAV was 

fabricated to enable modification of the flight controller source code. The fabricated programmable 

Pixhawk UAV shown in Figure 2 includes various hardware components: legs and motors, 

telemetry, electronic speed controllers (ESCs), a flight controller, a mobile beacon, an action 

camera with vibration damper, and batteries. A detailed view of the components is presented in 

Figure 3-3.  

 We modified the DJI F550 frame of a multi-rotor Erle copter by installing six propeller 

motors as the UAV frame. It can carry a 2kg payload for 15 minutes of flight time. The six motors 

are brushless motors that require 30A ESCs. For telemetry, a 3DR 915 MHz radio is used to 

communicate between the ground station and UAV. The Pixhawk 2.1 was selected as a flight 

controller due to its improved inertial measurement unit (IMU) (Meier et al., 2011). The Ardupilot 

3.5 open-source code was installed in the Pixhawk. Cube design was applied to the Pixhawk 2.1 

to reduce vibration (Proficnc, 2017).  
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 To monitor a region of interest (ROI), a Sony FDR-X3000 action camera was installed in 

the UAV as shown in Figure 3 (c). Its 60 frames per second (FPS) recording capability ensures 

stable video even if the camera is vibrated by the UAV motors. The camera supports 4K image 

resolution, but the 1080pixel resolution was selected due to shutter speed. Sony’s Playmemories 

application allows the user to remotely check and change the camera setting. The lightweight 

camera (114 g with a battery) is ideal for a UAV application. Anti-vibration foam that serves as a 

gimbal was installed to reduce the jello-effect.  

 

Figure 3-3. Components of the fabricated Pixhawk UAV (Kang and Cha, 2018) 

  

(a) Fabricated UAV system 

 

 
 

 
 

(b) Pixhawk 2.1 (c) Sony action camera (d) Mobile beacon (e) Telemetry 

 

  

As the second UAV used in this study, the Bebop2 has its own camera, but the camera 

angle was modified to a right angle to the ground to collect clear images of the concrete surface 

and detect cracks, as shown in Figure 4. It uses a removable battery (3,350 mAh), which allows 

the UAV to fly up to 30 min. A mobile beacon was installed on top of the Bebop 2 UAV, as 
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depicted in Figure 3-4. The Bebop2 is programmable, and the manufacturer also offers a software 

development kit. 

 

Figure 3-4. Components of the Bebop2 Power (Kang and Cha, 2018) 

 
(a) Bebop2 Power with a mobile beacon 

 
(b) Beacon router 

 

  

A mobile beacon was installed in the UAV frame to provide 3-dimensional (3-D) position 

data (x, y, z) of the two UAVs. The Marvelmind Robotics UBS is composed of a mobile beacon, 

multiple stationary beacons, a router, and the Dashboard beacon software, as shown in Figure 3-5. 

The UBS generates a local pseudo-3-D map, which is depicted by the blue dotted line in Figure 3-

5. The ROI should be located within this pseudo-3-D map. The stationary beacons define the 

border lines of the map and can be installed on the wall or with a tripod.  

 

Figure 3-5. Relationship between stationary beacons and mobile beacon (Kang and Cha, 2018) 
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 Each beacon has five transceivers. The stationary beacons are similar to a GPS, sending 

ultrasonic signals and calculating distances to the mobile beacon installed in the UAV through a 

router.  The position of the mobile beacon can be calculated using Equation (3-1) below: 

 

𝑝(𝑡) = √(𝑥𝑠 − 𝑥𝑚)2 + (𝑦𝑠 − 𝑦𝑚)2 + (𝑧𝑠 − 𝑧𝑚)2 (3-1) 

  

where (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) represents the stationary beacon, and (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) represents the mobile 

beacon’s coordinates. The Marvelmind UBS supports the GPS format of the National Marine 

Electronics Association (NMEA). The mobile beacon should always be within the pseudo-3-D 

beacon map for navigation to work properly. In this study, the mobile beacon was installed on top 

of the UAV to avoid blocking the beacon signal. We used the programmable Ardupilot 3.5 open 

source code in the Pixhawk 2.1 flight controller to program the autonomous navigation of the first 

Pixhawk UAV based on the pseudo-3-D beacon map. The modified source code was developed in 

C++. The open source code was injected through the mission planner in the ground station 

(Carvalho et al., 2017). For the Bebop2 UAV, the firmware provided by the manufacturer was 

used.  

 

3.2.2 Ground station 

A Samsung nt500r5h laptop, a commodity commercial computer, was used as the main ground 

station computer. It has a 2.2 GHz computer processing unit (CPU) and 8 GB memory. For the 

Pixhawk UAV, Mission Planner and beacon software were installed at the ground station. The 

Bebop2 did not require a Mission Planner software but used the same ground station computer. 

The Mission Planner is open source software that provides a graphical user interface (GUI) to 

manage and monitor the navigation of the UAV. The Mission Planner has many roles. It displays 

the status of a UAV through the MAVLink protocol (Meier et al., 2011). The Mission Planner can 

record and replay the log data of a UAV flight. Error messages associated with the status and 

navigation plan, including environmental noise such as magnetic interference, can be reviewed by 

a user.  
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3.2.3 Flight controller 

The role of the flight controller is critical in an autonomous UAV. In the present study, For 

Pixhawk UAV, Pixhawk 2.1 with an embedded Ardupilot 3.5 source code was used for control of 

the autonomous UAV. The Ardupilot 3.5 uses a PID controller with an EKF3 algorithm to remove 

noise and enhance the estimation of UAV position measurement data from UBS, as shown in 

Figure 3-6 (a). A similar controller to that of the Pixhawk UAV was used for the Bebop2, but it 

had a vision positioning system (VPS) in the control system, as shown in Figure 3-6 (b).  

 Figure 3-6. Flight control systems of the two UAVs (Kang and Cha, 2018) 

 

(a) Pixhawk 2.1 UAV 

 

 

(b) Bebop2 UAV 

  

The Pixhawk 2.1 has an embedded inertial measurement unit (IMU) composed of three 

accelerometers, three compasses based on gyroscopes and magnetometers, and two barometers. 

For autonomous flight of the UAV in GPS-denied locations, information from the three 

accelerometers and the compass are used as IMU data. The barometer information was not used 

for indoor flight because the measured data is not accurate due to the nature of indoor operations. 

The PID controller normally uses GPS input for outdoor flight when GPS is reliable. However, 

the mobile beacon data replaced the GPS input data in this study to support operations in indoors 

or GPS-denied areas. The EKF3 algorithm predicts the current location of the UAV based on the 
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mobile beacon position data and IMU data. These parameters can be defined by the Mission 

Planner using MAVLink. 

 For the Bebop2 UAV, the same beacon system was used but without a mission planner. In 

order to develop autonomous navigation for the Bebop2 UAV, vision positioning system, altimeter, 

ultrasound, and beacon data were integrated into the Bebop2’s existing controller using PID and 

EKF, as shown in Figure 3-6 (b). The inertial navigation system of the Bebop2 consisted of a three-

axis gyroscope, an accelerometer, and a magnetometer.  

 

3.2.4 Beacon-based geo-tagging 

To track the location of the UAVs and localize the damage detected during the deep CNN process, 

a geo-tagging method is used in this study. From these autonomous UAV systems, video data and 

GPS coordinates collected from UBS are sent to the base station. Time synchronization is an 

important aspect of geo-tagging. The time steps of the video and beacon systems are synchronized 

based on the servo information of the UAVs, which provides the start and finish times of the UAV 

navigations. For convenience, we have extracted image data by seconds. Since UBS is not an 

actual GPS system, we need to give GPS coordinates as a starting point for UBS settings. The UBS 

system uses degrees based on latitude (north) and longitude (west). Therefore, the beacon 

coordinates x and y can be converted following Equation (3-2) (ArduPilot 2017).  

 

𝐿𝑎𝑡 = 𝐿𝑎𝑡0 − 𝑥 ∙ cos(𝑟𝑎𝑑𝑖𝑎𝑛(𝑅𝑜𝑡)) ∙ 𝐿𝑎𝑡𝑃𝑎 + 𝑦 ∙ sin(𝑟𝑎𝑑𝑖𝑎𝑛(𝑅𝑜𝑡)) ∙ 𝐿𝑎𝑡𝑃𝑎 

𝐿𝑜𝑡 = 𝐿𝑜𝑛0 − 𝑥 ∙ sin(𝑟𝑎𝑑𝑖𝑎𝑛(𝑅𝑜𝑡)) ∙ 𝐿𝑜𝑛𝑃𝑎 + 𝑦 ∙ 𝑐𝑜𝑠(𝑟𝑎𝑑𝑖𝑎𝑛(𝑅𝑜𝑡)) ∙ 𝐿𝑜𝑛𝑃𝑎 
(3-2) 

 

where Lat0 and Lon0 are the first beacon’s latitude and longitude, respectively. Rot is the angle 

difference between the north of the real map and the north of the virtual map. LatPa and LonPa 

are hyperparameters (9.010063270126722e-06, 1.130896616413607e-05).  

 

3.3 Crack detection using deep convolutional neural network 

To detect structural damage, a deep convolutional neural network (CNN) with the sliding window 

technique (Cha et al., 2017) was used to analyze video data collected from the UAV. The sliding 

window technique uses a predefined size of window to localize the detected damage (Cha et al., 
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2017). In the present study, an existing CNN architecture was used. To train the CNN classifier, 

we used a training data set of raw images of concrete surfaces with a broad range of image 

variations, including spot lighting and shadows. A Sony FDR-X3000 camera, shown in Figure 

3(c), was used for the test dataset because the payload of UAV is small and cannot carry a digital 

single lens reflex camera. The prepared training image set fed into a CNN to form a CNN classifier 

to classify intact and cracked concrete areas. The CNN used in this study, shown in Figure 3-7, 

was composed of input, convolution, pooling, activation, and output layers. Auxiliary layers, such 

as dropout and batch normalization layers, were also used. The details of the CNN are presented 

by Cha et al. (2017). 

 

Figure 3-7. CNN architecture (Kang and Cha, 2018) 

 

 

3.3.1 Convolution layer 

A convolution layer performs a dot product between a subarray of an input array and a filter. The 

initial and bias weight values of the filter are randomly generated. Both values are tuned by training 

that uses a stochastic gradient descent algorithm. The multiplied values are summed, and bias is 

added to these values. An additional hyperparameter of the layer is the pixel stride, which indicates 

how many columns and rows (pixels) slide at a time across the input array’s width and height.  

 

3.3.2 Pooling layer 

The CNN’s pooling layer, which reduces the spatial size of an input array to reduce the 

computation costs, is also important. Max pooling takes the maximum value from the subarray of 

the input array, whereas mean pooling takes the mean value. In this thesis, all pooling layers are 
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used as max pooling because the performance of the max pooling operation is better than that of 

the other operation (Scherer et al., 2010).  

 

3.3.3 Auxiliary layers 

Dropout layers were used to solve the overfitting problem (Srivastava et al., 2014). Training a 

network with large numbers of neurons often results in overfitting due to the complex connections. 

The main idea of the dropout technique is to randomly disconnect the connections between neurons 

of connected layers following the dropout rate. Batch normalization is also used after the first, 

third, and fifth layers. The batch normalization algorithm is a technique to improve the 

performance and stability of neural networks (Ioffe and Szegedy, 2015). It normalizes the layer 

inputs; as a result, this technique facilitates a high-learning rate and leads to much faster network 

convergence. 

 

3.3.4 Activation function 

The most typical way to provide nonlinearity in a standard artificial neural network is to use 

sigmoidal functions. In this study, rectified linear units (ReLU) were chosen because they achieve 

better accuracy in the CNN (Nair and Hinton, 2010). Compared to other nonlinear functions, the 

ReLU has no bounded outputs except for its negative input values. Equation (3-3) represents the 

ReLU.  

 

𝑅𝑒𝐿𝑈 = {
(𝑥 < 0) 𝑓 (𝑥) = 0
(𝑥 > 0) 𝑓 (𝑥) = 0

 (3-3) 

 

3.3.5 Softmax layer 

To classify final output data, the softmax layer, represented in Equation (3-4), is the last layer of 

the CNN architecture. It classifies input data as either intact or cracked. For the input data from 

the last layer through the softmax layer, the range of values is 0 to 1.  
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𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
𝑘=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝐾 (3-4) 

 

where K is the number of categories. 

 

3.3.6 Training process 

As the initial values of the filter weights in each layer are randomly assigned, the predicted and 

actual classes do not usually coincide. To calculate the level of deviation between predicted and 

actual classes, a softmax loss function was used. Logarithmically decreasing learning rates were 

used to update the gradient descent. As mentioned earlier, we used the pretrained network 

developed by Cha et al. (2017) to obtain the advantage of its high damage detection accuracy 

(98%). For training and validation, the pretrained network used 40,000 images of cracked and 

intact concrete with 256 × 256 pixel resolution, taken at the Engineering and Information 

Technology Complex at the University of Manitoba. However, these images were not taken in the 

same classrooms (E2-229, E2-399) where the autonomous UAV tests were conducted for this 

thesis. Further details of the CNN are available in Cha et al. (2017). 

 

3.4. Case studies 

To validate the performance of the proposed method, the structural damage detection method using 

autonomous UAVs with UBS and deep learning was applied to a concrete crack detection problem 

in the classrooms at the University of Manitoba. The method, explained in Section 2 can be 

extended to use beneath bridge systems or other indoor environments using the experimental 

procedures described in this section. 

 

3.4.1 Experiment setup 

Due to the nature of a complex, autonomous UAV systems, a significant amount of hardware and 

software had to be designed, configured, and/or integrated. The fundamental procedures for 

experimental settings were: 

Step 1: Preparation of ground station, including installing Mission Planner and beacon 

software 
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Step 2: Installation of flight controller firmware in the UAV 

Step 3: UAV sensor calibrations 

Step 4: Modification of Ardupilot 3.5 reinstallation in the UAV 

Step 5: Installation of beacon software and physical installation of mobile beacon in the UAV 

and stationary beacons on-site, including beacon router to generate a pseudo-3-D 

beacon map through ground station 

Step 6-1: Activation of the Pixhwak UAV, flight path planning using the mission planner 

(for the Pixhawk UAV), and entry of the mission into the flight controller through 

MAVLink 

Step 6-2: Activation of the Bebop2 UAV, flight path planning, and entry of the mission into 

the flight controller through MAVLink 

Step 7: Rebooting the UAV, including camera 

Step 8: Commanding of the start of autonomous flight through the Mission Planner at the 

ground station 

 Since the first three Steps and Steps 7 to 8 in the above procedures are straightforward and 

general steps for any UAV flight using the ground station, this section focuses on explaining Steps 

from 4 to 6 as the key steps for UBS-based autonomous flight for this study. In Step 4, hyper-

parameters in the flight controllers were redefined from the default setting through the Mission 

Planner. For example, to activate the EKF3 function, the parameter “Ahrs_EKF_TYPE” was 

defined as “3” instead of “2,” which represents the EKF2 function. EKF3 has many 

hyperparameters, as shown in Table A1. These parameters should be determined via trial and errors 

based on limitations of the flight controller (Meng et al., 2010). The Step 4 is unnecessary for 

Bebop2. 

 In Step 5, UBS firmware was installed using the Dashboard beacon software through the 

ground station to calibrate the UBS. The calibrated UBS can generate a pseudo-3-D beacon map 

based on stationary beacon locations. For this study, four stationary beacons (0-3) were used, as 

shown in Figure 3-8(a). To generate the pseudo-map, the North and East directions must be defined. 

Default compass 1 in the Ardupilot 3.5 was nullified by deactivating “Tbn_zero_Yaw” from Euler 

function in the EKF3. The line between beacons 0 and 1 defines east; based on this east direction, 

the line between beacons 0 and 2 is automatically determined to be north. The east direction should 

be set first for the Marvelmind beacon system.  
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Figure 3-8. Set North in the map (Kang and Cha, 2018) 

  

(a) 

 

 (b) 

 A data rate of 500 kbps was used in the radio profile of all the beacons for improved 

position data transmission. The mobile beacon was physically installed in the UAV, and the 

universal asynchronous receiver/transmitter (UART) and ground (GND) ports of the mobile 

beacon were connected to the GPS port of the Pixhawk 2.1, as shown in Figure 3-8(b). Next, 

mobile beacon parameters (i.e., $GPRMC, $GPGGA and $GPVTG) were activated through the 

Dashboard. Lastly, the UBS router was connected to the ground station.  

 

3.4.2 Experimental tests using Pixhawk UAV 

Due to flight restrictions by Transport Canada, field testing of the proposed approach was not 

possible. As an alternative, two different experiments are conducted in Room E2-399 of the 

engineering building at the University of Manitoba. There is a concrete crack on the floor visible 

to the human eye, which was good for validation of the proposed method. The first experiment 

consisted of a hovering test to validate autonomous navigation of the UAV. In a hovering test, the 

UAV stays in a virtual circle and attempts to stabilize its position in the area of the circle. The 

Mission Planner in the ground station was used to command a hovering mode for the UAV. In this 

test, a 50cm diameter circle was set as the hovering area based on practices in the UAV discipline 

(Teuliere et al., 2015; Carvalho et al., 2017).  
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Figure 3-9. Hovering tests (Kang and Cha, 2018) 

(a) 

(b) 

 

 The flight parameters and results of two hovering tests are presented in Table 3-1 and 

Figure 3-9. The UAV flight was stable, with small errors in latitude, longitude, and altitude. The 

durations of Tests 1 and 2 were 20 sec. and 35 sec., respectively. The latitude difference did not 

exceed 10 cm. The maximum longitude error was 15 cm. These errors are quite acceptable in the 

UAV discipline, passing our 50cm tolerance (Teuliere et al., 2015; Carvalho et al., 2017). In Figure 

3-9, the three parameters represent altitude, latitude, and longitude, respectively, measured in mm. 

Servo, shown on the right-hand side, is a dimensionless variable for pulse width modulation (PWM) 

control. An ESC determines the proper power to give the motor based on servo which is related to 

PWM. The overall start and end points of the flight can be monitored based on this line. Based on 

these hovering tests, the overall setting and performance of the UAV are validated for the practical 

and complex mission of structural damage detection.  
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Table 3-1. Experiment 1 hovering test results 

 Latitude (y) Longitude (x) Altitude (z mm) Latitude difference Longitude difference 

Test 1 1.37E-05 1.7E-05 1000 
0.0000002 (2.0 cm) 0.000001 (10.0 cm) 

Error 1.39E-05 1.8E-05 900 

Test 2 1.4E-05 1.7E-05 1000 
0.0000005 (5.0 cm) 0.0000015 (15.0 cm) 

Error 1.4E-05 1.9E-05 863 

 

 For structural damage detection using this autonomous UAV system, a mission based flight 

was assigned through the mission planner in the ground station. This mission required the UAV to 

take off within 1 m, fly straight North for 1.9 m, and land with video data collected with the action 

camera installed in the bottom of the UAV, as shown in Figure 3-10 and Table 3-2 The GPS 

coordinates can be converted from 1° to 111 km. Based on this scale, the 3 × 10−7° creates a 

difference in length of approximately 3 cm. The results in Table 2 indicate that the overall mission 

was conducted very accurately. 

 

Figure 3-10. Experiment scenario (Kang and Cha, 2018) 

   
(a) Take off (b) Remote sensing (c) Landing 

 

 

Table 3-2. Experiment 2 test results 

 Latitude Longitude Altitude 
Latitude 

difference 

Longitude 

difference 

Starting point 50.000003 97.0000207 0 

0 
0.0000003 

(2.72cm) 
Waypoint 50.0000173 97.0000238 1 

Arrived point 50.0000173 97.0000241 0.98 

 

 The UAV movements are plotted in Figure 3-11 to validate the overall autonomous flight 

mission of Test 2.  Figure 11 shows the time history of UAV altitude. The raw altitude data 
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measured from UBS is plotted as a solid blue line and predicted altitude data calculated from EKF3 

is plotted as a dotted red line. Figure 3-11 (a) shows the raw latitude time history as a red line and 

predicted time history from EKF3 as a green line. As described above, the unit of latitude and 

longitude is degrees (˚). Figure 3-11 (b) shows the time histories of longitude data. The raw and 

predicted time histories for latitude and longitude data matched well. Using the root mean square 

error, the first experiment resulted in differences of 7 cm for latitude and 3.1 cm for longitude. 

 

Figure 3-11. Beacon latitude and longitude altitude time history (Kang and Cha, 2018) 

 (a) 

 (b) 
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 (c) 

 

Figure 3-12 shows the actual flight of the UAV. The distance from home to the waypoint 

was 1.9 m, based on the latitudes and longitudes in Table 3-2. There was approximately a 3cm 

longitude error in the waypoint (i.e., 97.0000238-97.0000241). This result is quite accurate 

compared to previous research using an ultra-wide band beacon system (Zwirello et al., 2012; 

Tiemann et al., 2015). 

 

Figure 3-12. Test in classroom (E2-399) (Kang and Cha, 2018) 

   
 

 

3.4.3 Experimental tests using the Bebop2 UAV 

To conduct complex missions over a large area, the Pixhawk UAV is not appropriate due to the 

physical size of UAV and safety issues. Therefore, the Bebop2 UAV, which is a small UAV 

suitable for a classroom, can be used for more complex missions. A large conference room (E2-

229) with a wide variety of cracks in the floor was selected, as shown in Figure 3-13. The virtual 

map size is approximately 10 m × 17 m. In each corner of the virtual map, stationary beacons were 
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installed on the ceiling. The idea was to make a rectangular trajectory in the center of the virtual 

map to detect cracks in the concrete floor. The trajectory of the Bebop2 UAV is presented in Figure 

3-14. Two different tests were conducted. The actual flight trajectory is presented in Table 3-3 and 

plotted as solid red lines in Figure 3-14. Based on the planned trajectory, the error is within 20 cm 

at each waypoint.  

 

Figure 3-13. Large conference room (E2-229) for Bebop2 UAV tests (Kang and Cha, 2018) 

 
 

Table 3-3. Three experimental test results 

Unit (cm) starting point waypoint1 waypoint2 waypoint3 end point 

Mission point1 (170,675) (900,675) (900,525) (170,525) (170, 675) 

Arrived point1 (170,675) (900,679) (900,535) (169.4,515) (171.4,665.1) 

Error (0,0) (0,4) (0,10) (0.6,10) (1.4,11.9) 

Mission point2 (220,675) (1200,675) (1200,400) (200,400) (200,675) 

Arrived point2 (220,675) (1200,685) (1217,400) (190,375) (183,670) 

Error (0,0) (0,10) (17,0) (10,15) (7,5) 

 

Figure 3-14. Trajectories of Bebop2 UAV in E2-229 (Kang and Cha, 2018) 

(a) 
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(b) 

 

The targets (concrete cracks) and positions of the Bebop2 UAV are depicted in Figure 3-

15. Figure 3-15 (a) shows the start and end waypoints. Figures 3-15 (b) and (c) show the targets 

of the UAV for structural health monitoring as an example study. 

 

Figure 3-15. Test in conference room (E2-229) (Kang and Cha, 2018) 

   
(a) (b) (c) 

 

3.4.4 Computer vision evaluation 

The sets of video data collected by the action camera and Bebop2 UAV camera during the 

autonomous flight of the missions described in the previous section is presented. Using the 

collected video data, the CNN-based concrete crack detection method (Cha et al., 2017a) was 

applied to detect concrete cracks. The original video data were 2304 × 1296 pixels but was resized 

to 2304 × 1280 pixels for input to the CNN-based detection method. The results of the CNN-based 

method using video data collected from the autonomous UAVs are presented in Figure 16 (a). 

These results from the autonomous UAV navigation are quite similar to results using the video 

from the manual action camera, shown in Figure 3-16 (b). 
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 The dotted yellow box in Figure 3-16 indicates a false positive image. The dashed blue box 

on the image indicates a false negative. To compare the accuracy of the results, we determined the 

sum of true positives (TP) and true negatives (TN) and divided it by the total number of sliding 

windows (Tnsw) tested, as expressed in Equation (3-5). To compare different types of accuracy 

measurements, specificity and sensitivity are used, as shown in Equations (3-6) and (3-7). FN is 

the number of false negatives. FP is the false positives. Here, positive means that the surface is 

damaged (i.e., a concrete crack), and negative means that the surface is intact.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑛𝑠𝑤
 (3-5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑝 + 𝐹𝑁
 (3-6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3-7) 

 

 

Figure 3-16. Concrete crack detection results from E2-399 (Kang and Cha, 2018) 

  
(a) Image from autonomous Pixhawk UAV (b) Image from manual 

 

 Both images exhibited the same accuracy, 97.6%. The accuracy determined by this study 

agrees well with the previous results of Cha et al., (2017). For more extensive testing, we used 

three additional image frames from the video data collected from the autonomous Pixhawk UAV 

based on UBS. As shown in Figure 3-17, the concrete cracks were detected well. These results 

show that autonomous UAV navigation based on UBS is quite promising for structural health 

monitoring. The results also show that autonomous UAV-based monitoring has significant 

potential for future infrastructure health monitoring. 
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Figure 3-17. Concrete crack detection results from E2-299 (Kang and Cha, 2018) 

   
(a) (b) (c) 

 

Based on the above achievements, we carried out more complex missions with longer 

navigation distances in the conference room (E2-229), as shown in Figure 3-14. The detected 

concrete cracks are presented in Figure 3-18. Based on the results obtained from the autonomous 

flight of the Bebop2 UAV, the accuracy was 96.6%, the sensitivity was 91.9%, and the specificity 

was 97.9%. All of these detected cracks were localized by the geo-tagging method described in 

Section 3.2.4. The localized damage information was plotted in Figure 3-19 for the two 

autonomous navigation cases.  

 

Figure 3-18. Concrete crack detection result (Kang and Cha, 2018) 

   
(a) Crack A (b) Crack B (c) Crack C 
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Figure 3-19. Geo-tagging results of the Bebop2 autonomous UAV (Kang and Cha, 2018) 

 

(a) Case 1 

 

(b) Case 2 

 

There are possible limitations in this work. The flight controller (ArduPilot 3.5) works by 

trial and error to tune its parameters. We also used a cheap frame and batter which can reduce the 

flight time of the UAV. The manufacturer suggests that the Pixhawk UAV can fly for 15 min, but 

it does not guarantee the actual flight time. In most cases of normal use, only 70% of this projected 

flight time is achieved. The potential payload is 2 kg, but the actual payload is around 80% of this 

figure. Even though video data can be transferred in real time from a UAV to a base station, we 

did not pursue real-time processing for the CNN analysis because the CNN requires at least 8 
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seconds to analyze a one frame of image with the current pixel resolution. However, deep learning 

is an emerging area of research, and we expect that, in the near future, real-time processing will 

become feasible. The first limitation of UBS is that it requires an installation before data 

acquisition can be performed. However, modern SHM still needs sensors to be installed for data 

acquisition under the bridge. The second limitation of UBS is that the coverage area of a set beacon 

system is 30 m × 30 m, meaning that the beacon system is particularly well suited for short-distance 

applications (Perez-Grau et al., 2017). It is possible to increase this coverage by installing 

additional stationary beacons. The third limitation of UBS is that ultrasonic signals cannot 

penetrate walls or other obstacles, but this is similar to any other GPS, beacon, or Vicon system. 

However, a virtual map can be easily expanded by installing more stationary beacons. 

 

3.5 Conclusion 

This research proposed an autonomous UAV-based damage detection method using an UBS for 

indoor environments and areas in which GPS is denied or unreliable. Based on our extensive 

literature review, there are no published papers that propose autonomous navigation methods in 

GPS-denied infrastructure areas for structural health monitoring. The main contributions of this 

article are as follows: (1) it is the first application of ultrasonic beacon for UAV navigation for a 

GPS-denied environment, such as indoors and beneath a bridge (which is a critical area that  should 

be monitored) or indoors for SHM, (2) we examined the possibility of using the video data 

collected from the UAV for deep learning-based automatic damage detection (Video data collected 

from the UAV has vibration issues, including the jello effect. Until now, little research has been 

done to detect structural damage using video data collected from a UAV with deep learning. Our 

previous deep learning-based damage detection (Cha et al., 2017a) employed only hand-held 

camera data that had no vibration issues.), (3) the detected damage was localized using the geo-

tagging method, and (4) all these advanced technologies were integrated to realize autonomous 

UAV-based damage detection for a GPS-denied environment. 

To realize this proposed method, we conducted the following: (1) fabricated a UAV using 

various parts that are commercially available, such as a frame, a flight controller, a telemeter, and 

an action camera, instead of using a premanufactured UAV, for which it is not generally possible 

to modify the source code for autonomous navigation; (2) modified the source code of the flight 
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controller firmware; (3) integrated an UBS with the autonomous flight controller; (4) replaced the 

GPS coordinates with a UBS signal in the image metadata for geotagging; and (5) adopted a small, 

commercially available Bebop2 UAV for a more complex mission with longer distance navigation, 

integrating the UBS and modifying the source codes to control its flight. 

To demonstrate the proposed approach, three different indoor tests were conducted: (1) a 

hovering test to validate autonomous mission flight, (2) a waypoint based mission test with a 

specific waypoint, and (3) a complex mission with long-distance navigation using the commercial 

Bebop2 UAV with geo-tagging for damage localization. The autonomous flight of the UAV was 

successfully validated based on flight log data from these tests. The overall flight was quite 

accurate, but there were some fluctuations in altitude. As the final objective of this autonomous 

UAV, a concrete crack was detected with high accuracy (96.6%), sensitivity (91.9%), and 

specificity (97.9%) using video data collected from the autonomous UAV. 

This CNN performance was well matched to the author’s previous results using deep CNN-

based damage detection (Cha et al., 2017a). The results of the image collected from the UAV were 

also compared to the results of manual image collection to validate the potential of the autonomous 

UAV-based health monitoring of infrastructure. The results from both images agreed well with 

high accuracy. As a future study, an additional obstacle avoidance sensor will be installed in our 

UAV to avoid the obstacle, and a more complex autonomous mission will be conducted for the 

SHM application. Real-world application will be carried out in the future to examine 

environmental effects, such as temperature and wind. 
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Chapter 4. Hybrid pixel-level concrete crack segmentation and quantification across 

complex backgrounds using deep learning 

 

Chapter 4 is reprinted with permission from Elsevier from Kang, D., Benipal, S.S., Gopal, D.L. 

and Cha, Y.J, 2020. Hybrid pixel-level concrete crack segmentation and quantification across 

complex backgrounds using deep learning. Automation in Construction, 118, p.103291.  

 

Abstract: This paper proposes an automatic crack detection, localization, and quantification 

method using the integration of a faster region proposal convolutional neural network (Faster 

R-CNN) algorithm to detect crack regions. The regions were located using various bounding 

boxes and a modified tubularity flow field (TuFF) algorithm to segment the crack pixels from 

the detected crack regions. A modified distance transform method (DTM) was used to measure 

crack thickness and length in terms of pixel measurement. To validate the proposed method, 100 

images were taken in different places with complex backgrounds containing different angles and 

distances between the camera and the objects. The results obtained from the Faster-R-CNN-

based crack damage detection had a 95% average precision. The pixel-level segmentation 

performance of the modified TuFF algorithm exhibited an authentic outcome, with 83% 

intersection over union. Finally, the modified DTM algorithm provided 93% accuracy with 

respect to crack length and thickness with a 2.6 pixel root mean square error. 
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4.1 Introduction 

Cracks in a concrete surface are a common symptom and precursor of the degradation of concrete 

structures. Civil infrastructure systems are subjected to cyclic loading, fatigue stresses, and 

undesirable long-term environmental conditions, which lead to structural deterioration and, 

ultimately, a reduced lifespan. Maintenance and inspection deficiencies are also key reasons for 

structural deterioration. Early assessment and investigation enable the use of safety measures to 

forestall damage and failure. Periodic and real-time inspection enhances the longevity of structures 

and their service lives (McCrea et al., 2002). There is an indispensable demand to develop 

authentic, reliable, and decisive approaches for the monitoring of these structures. During the last 

three decades, a number of contact- or imbedded-sensor-based methods for detecting cracks have 

been published in the field of structural health monitoring (Kee & Zhu., 2013; Zoidis et al., 2013). 

However, contact-sensor-based approaches have some constraints in terms of data reliability, 

environmental unfavourability, and vulnerability to variations in temperature and humidity (Li et 

al., 2015; Xia et al., 2012). 

 To overcome these shortcomings, some automated vision-based techniques for damage 

detection have been developed (Adhikari et al., 2014; Alam et al., 2015; Cha et al., 2016; 

Hutchinson & Chen 2006; Ramana et al., 2018; Pacheco et al., 2014; Valenca et al., 2013). These 

vision-based techniques detect structural damage, such as cracks, spalling, exposed aggregates, 

and loosened bolts, using bounding boxes. Recently, deep-learning-based methods for detecting 

concrete cracks and different types of damage have been also developed (Ali & Cha, 2019; 

Beckman et al., 2019; Cha et al., 2017; Cha et al., 2018; Kang & Cha, 2018). These deep-learning-

based approaches, which used bounding boxes to detect multiple types of damage simultaneously, 

showed extremely good results in detection and localization. 

 Some pixel-level methods for detecting concrete or pavement cracks using deep 

convolutional neural networks (CNNs) have been proposed (Cheng et al., 2018; Dung & Ahn, 

2019; Escalona et al., 2019; König et al., 2019; Li et al., 2019; Liu et al., 2019b; Yang et al., 2018; 

Zhang et al., 2019a). For crack segmentation, pretrained U-Net (Ronneberger et al., 2015) 

architecture was applied by Cheng et al., (2018) and Escalona et al., (2019), and Li et al., (2019) 

used a pretrained Densenet 121 (Huang et al 2017) for semantic segmentation. The results of this 

study show high performance for the detection of different types of damage (such as cracks, 
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spalling, holes, and efflorescence) in a concrete surface. A fully convolutional neural network was 

applied by Yang et al., (2018) and Zhang et al., (2019a). Dung and Anh, (2019) tested various 

images for semantic segmentation results, and Liu et al., (2019b) suggested new customized 

architecture for crack detection. 

 However, these studies have some limitations, as follows. (1) Most of them have focused 

on crack detection across monotonous backgrounds, such as pure concrete member surfaces and 

pavement surfaces. Moreover, finding the optimal network architecture to segment cracks with 

such complex backgrounds is difficult, resulting in more realistic and practical problems. (2) In 

the traditional deep-learning only- based method for crack segmentation, a tremendous amount of 

time is required to build enough training data, which is a huge obstacle to applying these deep-

learning-based crack segmentation methods. To overcome the aforementioned limitations, we 

propose a new pixel-level method for detecting concrete cracks. This method can determine, 

segment, and quantify cracks across varied and complex backgrounds, including different objects 

such as windows, corrosion, shoes, and wire, except notable dust. The proposed method is 

designed to enable the investigation of more realistic conditions of civil structural damage 

detection problems and reduce the cost of building datasets for deep learning training. 

 To realize this objective, we carefully integrated three independent computer vision 

algorithms: (1) crack detection using a faster region proposal convolutional neural network (Faster 

R-CNN; Ren et al., 2015; Cha et al., 2018) in terms of bounding boxes; (2) pixel-level crack 

segmentation using a modified tubularity flow field (TuFF) from the bounding boxes provided by 

the Faster-R-CNN-based crack detection method; and (3) damage quantification using a modified 

distance transform method (DTM) to calculate crack thickness and length from the segmented 

cracks noted by the modified TuFF. The original DTM (Paglieroni, 2011, Zhu, 2011) and original 

TuFF (Mukherjee et al., 2015) were modified to improve the performance of crack segmentation 

with thickness and length measurement for the proposed method. 

 This paper is organized as follows: Section 4.2 describes the details of the proposed method, 

Section 4.3 discusses related studies and testing results, and the Conclusion summarizes the studies 

and results. 

 



58 | Chapter 4. Hybrid pixel-level concrete crack segmentation and quantification across complex 
backgrounds using deep learning 

 

4.2 Hybrid method of crack segmentation and quantification 

To detect, localize, and quantify concrete cracks across varied and complex input image 

backgrounds, we propose the use of a fully automated method with the careful integration of a 

Faster-R-CNN-based crack detection method, a modified TuFF for crack segmentation from the 

detected cracks, and a modified DTM for measuring the thickness and length of the segmented 

cracks from the modified TuFF. An overall schematic view of the proposed hybrid method is 

presented in Figure 4-1. 

 

Figure 4-1. Overview of proposed hybrid crack detection and quantification method (Kang et 

al., 2020) 
 

 
 

The Faster-R-CNN-based method (Cha et al., 2018) detects concrete crack regions in a 

digital image using bounding boxes. The Faster R-CNN algorithm was initially developed for 

multiclass object detection and verified for structural damage detection (Cha et al., 2018). In this 

paper, Faster R-CNN is used to localize cracks using bounding boxes on an image, as shown in 

Figure 4-1. The second image in Figure 4-1 displays the regions of cracks detected using bounding 

boxes, which are then cropped in order to be fed into the modified TuFF algorithm. The original 

TuFF algorithm (Mukherjee et al., 2015) was modified to segment the cracks at the pixel level 

from the bounding boxes. Lastly, a modified DTM is applied to determine the thickness and length 

of the segmented cracks from the modified TuFF. In this process, the image binarization is 

performed using filters, such as Weiner and Gaussian filters (Das et al., 2015), which help to 

minimize noises and noninterest regions in images. The main advantage of this newly proposed 

method is that it is significantly less costly to build a training dataset for the Faster-R-CNN-based 

approach compared to the deep-learning-only-based crack segmentation method, because drawing 
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bounding boxes on training images to make ground truth is substantially easier than accurately 

marking all pixels of cracks on images. To prepare ground truth data for segmentation, 30–40 min 

per image is needed (Ren et al., 2020). However, the preparation of ground truth data in the 

proposed method only takes 0.5 min per image. The modified TuFF provides segmented cracks 

from the crack regions detected by the Faster R-CNN method. The Faster R-CNN can detect crack 

regions very well even on complex backgrounds (Cha et al., 2018; Beckman et al., 2019). The 

details of each part of the proposed method are explained in the following subsections.  

 

4.2.1 Faster R-CNN for crack detection 

In the first step of the proposed method, a Faster R-CNN is used to detect concrete cracks in images 

of varied and complex backgrounds. The Faster R-CNN is composed of two different networks: a 

region proposal network (RPN) and a fast region-based convolutional network (Fast R-CNN; 

Girshick, 2015). The RPN provides possible object locations using various bounding box sizes, 

and as a classifier, the Fast R-CNN proposes the probability of the object. The Faster R-CNN 

processes input images quickly, because the RPN and Fast R-CNN share the base CNN with the 

help of a graphics processing unit. 

 

Figure 4-2. Schematic representation of Faster R-CNN architecture (Kang et al., 2020) 

 
 

Figure 4-2 illustrates the architecture of the Faster R-CNN used in our proposed method. 

The input can be a target image or video frame. The purpose of the base network (i.e., CNN) is 

targeted feature extraction, which is similar to other object detection methods, whereas a deeper 

network can usually provide more accurate features (Szegedy et al., 2015). Original Faster R-CNN 

uses the VGG 16 (Simonyan and Zisserman, 2014) as a base network. Base networks are improved 
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using various techniques to make deeper networks and improve object detection accuracy. In this 

paper, we applied a pretrained ResNet-50 network (He et al., 2016) with a Microsoft COCO dataset 

(Lin et al., 2014) to the base network. To extract the feature map, images were fed to the base 

network, and the output of the base network was used as the input of the RPN to provide possible 

locations of detected objects.  

To make region proposals, an n × n spatial window was slid across the feature map, and at 

each scanning point, multiple region proposal regressions were performed. For each regression 

part, nine different anchor sizes were generated and selected. Classification layers distinguished 

between objects and backgrounds. Detected objects were the output of the object classifier and the 

refined bounding box regressors. 

To detect concrete cracks across varied backgrounds, the RPN and Fast R-CNN should be 

trained using a labelled image dataset. During the RPN training, classification layers use anchors 

and ground truth boxes, which are manually labelled. If the overlap rate between anchor and 

ground truth box is more than 0.7 (Ren et al., 2015), the anchor box is regarded as an object. 

Otherwise, it is a background. Regression layers provide a bounding box with dimensional 

information, such as center coordinates (x and y) and box size (width and height). As a result, the 

RPN provides the object proposals and scores.  

The Fast R-CNN used a fully connected layer (FCL), in which the detection layer cannot 

handle the differences of input size. Therefore, the Fast R-CNN adopted region of interest pooling 

(ROI pooling), which identifies different proposed region sizes from the RPN and the base network. 

ROI pooling is able to accept different input sizes, and the results of the FCL are class classification 

and bounding box regression. The Faster R-CNN has two different classifiers, the object classifier 

in the RPN and the class classifier in the Fast R-CNN. The object classifier in the RPN is a binary 

classifier; that is, it classifies between objects and backgrounds. The class classifier in the Fast R-

CNN provides detailed classification results from different classes. In this research study, the 

object classifiers distinguished between cracks and backgrounds. 

For the Faster R-CNN training, a four-step alternating training procedure was used (Ren et 

al., 2015). First, the RPN was trained without the Fast R-CNN part for object and background 

classification. Second, the Fast R-CNN part was trained. Third, the RPN was fine-tuned using a 
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second-step network, and the weights of the base network were updated. Fourth, the Fast R-CNN 

was fine-tuned using the base network from the third step. More detailed information about the 

Faster R-CNN is available in the authors’ previous study (Cha et al., 2018). The training image 

dataset for this Faster R-CNN is developed and tabulated in Table 4-1. An image augmentation 

technique was applied to the original set of 400 training images to increase the number of training 

images to 1,200. 

 

Table 4-1. Image dataset for faster R-CNN 

 Training Validation Test 

# of images 1200 100 100 

Resolution 1,920 × 1,080 1,920 × 1,080 3,200 × 4,800, 1,960 × 4,032 

 

The training and validation images were collected from previous studies (Cha et al., 2018; 

Kang & Cha, 2018). The test images were newly collected near the University of Manitoba, the 

Bridgewater Forest area in Winnipeg, and from the Internet. Thirty percent of the test images were 

taken from an indoor site at the EITC in the University of Manitoba, whereas 70% were outdoor 

images. All the datasets for the training, validation, and test were completely different from one 

another and were randomly selected. Most of the cracks are wide cracks, which are more than 2 

mm thick. In 100 images, 126 cracks exist. The number of thin, medium, and wide cracks is 10, 

25, and 91, respectively. Thin cracks are less than 1 mm thick, whereas medium cracks are 1 to 2 

mm thick. The training and validation images were randomly selected, and the training, validation, 

and test image datasets did not use the same images. 

 

4.2.2 Modified TuFF method for pixel-level crack segmentation 

The TuFF method was originally developed for the segmentation of neurons from confocal 

microscopy images (Mukherjee et al., 2015). This method was previously applied to detect vessels, 

but in our paper, it is applied to segment the detected cracks at the pixel level from the Faster-R-

CNN-based crack detection method using bounding boxes, as shown in Figure 4-1. The crack 

regions bounded by the boxes have an uneven contrast of concrete surfaces, which result in poor 

crack segmentation. Therefore, contrast limited adaptive histogram equalization (CLAHE; Reza, 

2004) is integrated to improve the segmentation results of the TuFF, as shown in Figure 4-3 (a). 
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The row input images provided by the Faster R-CNN were processed by CLAHE. The image 

processed by CLAHE is fed into TuFF to perform the semantic detection, as shown in Figure 4-3 

(b). Additional comparative studies of the traditional TuFF and modified TuFF with CLAHE are 

described in Section 4.2.1. 

 This improved TuFF technique with CLAHE performs segmentation through an evolution 

of the level set function. To evolve the level set function, an improved Hessian matrix analysis 

based on a Gaussian filter was used. The directional vectors from the TuFF make the contour active 

towards the boundary of the object. This active contour provides the information about the object 

boundary for the segmentation of crack regions, because it can delineate the object boundaries 

with higher subpixel accuracy (Mukherjee et al., 2015).  

 

Figure 4-3. Details of modified TuFF (Kang et al., 2020) 

 
(a) Procedure of modified TuFF 

  
(b) comparison TuFF and modified TuFF 
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The second-order Gaussian derivative Hessian matrix is applied to input image 𝛺: 

 

𝐻𝜎(𝑥, 𝑦) = [ℎ]𝑖,𝑗  (1 ≤ 𝑖, 𝑗 ≤ 2), (𝑥, 𝑦) ϵ 𝛺, 
(4-1) 

 

[ℎ]𝑖,𝑗 =
𝜕2𝐺(𝜎)

𝜕𝑥𝑖𝜕𝑥𝑗
∗ 𝑓(𝑥, 𝑦), (4-2) 

 

where, G(σ) is the Gaussian kernel. σ refers to standard deviation (zero-mean normalized). f(x,y) 

is the pixel coordinates corresponding to the position (x,y)ϵ Ω. To evaluate the vesselness (i.e., 

crack, in this instance) of a particular pixel f(x,y), the following vesselness equation was used: 

 

                                     𝑣 = {
exp(−

𝑅𝐵
2

2𝛽2)(1−𝑒𝑥𝑝[−
𝑆2

2𝑐2])

0   if λ2 > 0,                                         
(4-3) 

 

where  𝜆1  and 𝜆2  refer to the eigen values from the results of the Hessian analysis. 𝐷  is the 

dimension of the image based on the nature of the eigen value.  𝑅𝐵 =
|𝜆1|

|𝜆2|
 ,  𝑠 = √∑ 𝜆𝑗

2
𝑗≤𝐷 , 𝛽 and 

𝑐 are the thresholds, determined by trial and error, that control the sensitivity of vesselness.  

 If 𝜆1 and 𝜆2 are low value and high positive value, respectively, or low value and high 

negative value, respectively, the pixel is included in the tubular structure (Frangi et al., 1998). The 

norm of the Hessian is calculated to consider that the backgrounds are brighter and their 

eigenvalues are relatively large compared to that of the darker area (crack).  

Figure 4-4. Process after crack indication is achieved using the enhanced TuFF (Kang et al., 

2020) 
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 However, this traditional TuFF is not robust to the detection of complex tubular regions, 

such as vessel bends and junctions in the image, because the Hessian-matrix-based tubular regions 

are constructed as a piecewise rigid template. This drawback results in discontinuities in the tubular 

output. Therefore, vessel evidence filters for the detection of tubular structures were proposed (Hao 

et al., 2017) by integrating two local filters to create an enhanced TuFF method for the 

segmentation of vessel regions. The local filters were generated by steering the mother filter 

Equation (4-1) to improve the connectivity of the detected pixels by considering angles with 

neighbor pixels. Therefore, the enhanced evidence filter, which can consider the local 

neighborhood of the testing pixel, was defined by superimposing the mother filter and two local 

filters. To highlight only the crack regions and normalize any pixel in a non-interested region, 

Otsu’s thresholding method was applied to assist with converting any area with few tubular pixels 

(small, insignificant spots of the white region in Figure 4-4(a)) to background (black) pixels, as 

shown in Figure 4-4 (b).  

4.2.3 Crack quantification using a modified DTM 

The last step of the proposed method is a quantification of the segmented cracks from the improved 

TuFF method. The first step of a traditional DTM is converting an input image to a binary image 

that expresses “0” or “1” for black or white, respectively (as shown in Figure 4-5) using the inbuilt 

MATLAB function “bw” (Mathworks, 2018).  

 

Figure 4-5. Traditional DTM procedure (Kang et al., 2020) 

 
 

To calculate the thickness and length of cracks, the first step is to identify the connected 

pixels in an image and label them with a numeric value. A labeling operator goes through all the 

pixels to find clusters of the same values (i.e., 1 or 0) and assign each cluster a unique value. Figure 

4-5 illustrates the detailed labelling process for a binary image matrix. Every image labelling 
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process starts at the top-left corner. For example, in the third image of Figure 4-5, a yellow pixel 

(1,1) is labelled as 1 and copied at (1,2). The next pixel (1,3) is a region of non-interest and marked 

as 0. Therefore, the labelling operator understands that there is a new cluster and labelling operator 

assign value 2 for this cluster and the operator continues to label the subsequent pixels [(1,5) and 

(1,6)]. After pixel (1,6), there is another background pixel followed by a crack pixel (1,8), which 

should be marked as 3. The first pixel (2,1) of the second row starts with 1 because it is connected 

to the pixel (1,1). In this manner, entire pixels are assigned cluster numbers (1–7). However, some 

crack pixels have different cluster numbers despite being connected with each other. To merge 

these pixels, the same operator (i.e., the second operation shown in Figure 4-5) is processed again, 

and eventually the final matrix of Figure 4-5 is achieved. 

 To calculate the length and thickness of a crack, the center pixels in each row of each 

cluster determined using the previous labeling operator should be identified; this process is called 

thinning. Based on these center pixels, the thickness and length of the cracks are easily calculated 

using the pixel level. Therefore, to identify the center pixels, a thinning process is carried out (Lee 

et al., 1994) to calculate the relative distance between both edges and to find the center pixel in 

each column of the image matrix. However, a thinning algorithm has local branch issue. To remove 

unnecessary local branches, the “bwmorph” imbedded function is used to prune the branch 

(Mathworks, 2018). One of the results of a traditional thinning process is shown in Figure 4-6 (a). 

The red and black pixels of Figure 4-6 represent the center and edge pixels of a crack, respectively. 

This set of processes is the procedure of the traditional DTM method. 

 The length of a crack is generally calculated by considering the center pixels, but the 

traditional thinning process exhibited a number of errors that cannot be neglected, as shown in 

Figure 4-6 (a). Therefore, the end pixel of a thinned line is the starting point for reaching the edge 

of the crack pixels. As modified DTM, in Figure 4-6 (b), the direction of adjoining pixels was 

found from the end point. Subsequently, we added the pixels in the direction opposite to the 

previously identified direction until we reached the edge of crack, as shown in Figure 4-6 (c), 

which is the result of the improved DTM method. In Figure 4-6 (d), we checked the distance 

around the edge pixel and extended the thinned line to the edge pixel. 
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Figure 4-6. Improved thinning process: (a) the result of traditional thinning at the end of a 

crack, (b) checking the direction of adjoining pixels, (c) extending the thinned line to the edge 

of a crack, (d) the improved result (Kang et al., 2020) 

    
(a) (b) (c) (d) 

  

 As shown in Figure 4-7, the result of the improved TuFF was fed into the modified DTM 

and produced counted pixel values for the thickness. However, to calculate the final thickness in 

each row and column, Equation (4-4) is proposed. The 𝑥 value represents the count from the edge 

of the crack to the center pixel of the crack width. The eventual length of the crack is calculated 

using the MATLAB inbuilt function “NNZ” (Mathworks, 2018) and the results of the improved 

thinning method.  

 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  𝑀𝑎𝑥(𝑥) × 2 − 1 
(4-4) 

 

Figure 4-7. Overall process of quantification (Kang et al., 2020) 

 
 

4.3 Case studies and discussion 

The proposed method used a Faster R-CNN technique to detect cracks using bounding boxes, a 

modified TuFF algorithm with CLAHE to segment the region of the cracks at the pixel level, and 
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a newly improved DTM to measure crack thickness and length. To validate this method, various 

backgrounds and real structural cracks were tested. Moreover, two well-known deep learning 

networks, DeepCrack (Liu et al., 2019b) and Mask R-CNN (He et al., 2017), were used for a 

comparative study. 

 

4.3.1 Faster R-CNN and improved TuFF results 

The first experimental tests were conducted in the Engineering and Information Technology 

Complex (EITC) at the University of Manitoba. Figure 4-8 shows examples of concrete cracks and 

the results of the Faster-R-CNN-based method, which detected most indoor and outdoor cracks 

accurately with spot lighting, blurry images, and different backgrounds.  

 

Figure 4-8. Results of Faster-R-CNN-based crack damage detection (Kang et al., 2020) 

 
(a) Outside of EITC: pavement 

 
(b) Indoor corridor I of EITC: lightening 

 
(c) Indoor corridor II of EITC: blurry image 

 
(d) Indoor corridor III of EITC 
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Figure 4-9. Faster R-CNN for crack damage detection (Kang et al., 2020) 

  
(a) (b) 

  

(c) (d) 

 

Figure 4-9 shows outdoor cases at the University of Manitoba to provide more complex 

backgrounds, such as steel beam, markings, shadows, and rods. Images were collected in the 

presence of natural light and the width of cracks varied from few millimeters to centimeters. The 

testing results exhibited 95% average precision (AP) for 100 test images. The images used to test 

the Faster R-CNN, modified TuFF, and modified DTM were collected using a Nikon d7200 

camera (Nikon, 2019) and a Galaxy s9 camera (Samsung, 2019) with resolutions of 3,200 × 4,800 

pixels and 1,960 × 4,032 pixels, respectively. Publicly available crack images from the Internet 

were also used. 

As Figures 4-8 and 4-9 show, the Faster-R-CNN-based method was validated as properly 

detecting cracks under various backgrounds and environmental conditions. However, it is not 

sufficient to quantify the detected cracks; therefore, the results of the Faster-R-CNN-based method 

were cropped with bounding box coordinates. The cropped images were then inputted into the 

modified TuFF with CLAHE to segment the cracks only at the pixel level. A Gaussian-filtering-

based de-noising algorithm embedded in the original TuFF method not only removed the noises, 

but also blurred the gradient of cracks in the images, and the contrast of concrete surfaces varied. 
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Therefore, CLAHE was used to improve the contrast of the cracks (Reza, 2004). Figure 4-10 shows 

the subsequent effectiveness of CLAHE.  

  

Figure 4-10. Comparisons between original and modified TuFF. Images (a)–(d) are original 

TuFF results, and images (e)–(h) are modified TuFF results (Kang et al., 2020) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

The results of the Faster-R-CNN-based method were inputted into the TuFF with and 

without CLAHE, as shown in Figure 4-10. Figure 4-10 (a–d) shows the results of original TuFF, 

and Figure 4-10 (e–h) shows the results of the TuFF with CLAHE. The TuFF with CLAHE 

exhibited significantly improved results compared to those of the original TuFF, increasing the 

total intersection over union (IoU) metric by 10%. To calculate the IoU, the number of pixels with 

the same value and same location from the target and prediction masks was divided by the total 

number of pixels present. To quantify the crack pixels in the original target images, the non-zero 

elements of a test image crack are counted. In the binary labeling, “0” represents the background 

pixels, and “1” represents the crack pixels. The IoU equation is 

 

𝐼𝑜𝑈 =
𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (4-5) 
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 Figure 4-11 shows some examples of the results of the modified TuFF with CLAHE using 

the results of the Faster-R-CNN-based method. The cracks were from indoor and outdoor 

environments across varied complex backgrounds. The cracks were detected and segmented 

accurately under different lighting conditions. To compare the performance of our hybrid method 

to that of existing deep-learning-based crack segmentation methods, we used a DeepCrack network 

(Liu et al., 2019b) and Mask R-CNN (He et al., 2017). In order to compare the performance of 

these methods, we simply used the trained DeepCrack network by using 300 images as described 

in Liu et al., 2019b, and we trained a Mask R-CNN using the publicly available crack segmentation 

datasets (Eisenbach et al., 2017; Liu et al., 2019b; Shi et al., 2016; Zou et al., 2012).  

 

Figure 4-11. Comparative studies using our hybrid method, DeepCrack, and Mask R-CNN1 

(Kang et al., 2020) 

Hybrid method DeepCrack (Liu et al., 2019b) Mask R-CNN (He et al., 2017) 

   
IoU = 0.85 IoU = 0.49 IoU = 0.53 

   

IoU = 0.78 IoU = 0.47 IoU = 0.5 
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IoU = 0.83 IoU = 0.37 IoU = 0.51 

 

 The results of the comparative studies are presented in Figures 4-11, 4-12 and Table 4-2. 

We used 100 testing images for this comparative study. Our hybrid method exhibited an 83% 

average IoU, DeepCrack exhibited a 45% average IoU, and Mask R-CNN exhibited a 61% average 

IoU. Our hybrid method demonstrated much better performance than that of Mask R-CNN and the 

DeepCrack network in the 100 testing images with complex background images. The DeepCrack 

network was not trained to consider complex backgrounds, and its training set did not include 

images with complex backgrounds. Therefore, this network has relatively lower average IoU 

which is reasonable even compared to recently published work having average IoU about 78% 

(Bang et al., 2019). 

 Mask R-CNN was also selected for the comparison. It is not a semantic segmentation 

method but an instance segmentation method. It can detect the boundary of the target object 

independently. Due to the nature of Mask R-CNN, segmenting cracks is a rather challenging task 

for this method, because it is not easy to clearly define the boundary of each crack if the crack line 

is long or complex. Therefore, we modified Mask R-CNN codes to enable the algorithm to perform 

semantic segmentation instead of instance segmentation. As there is no change in network 

structure and any hyperparameter setting, the performance of Mask R-CNN is maintained, and our 

evaluation process is followed. The backbone architecture of this modified Mask R-CNN is the 

ResNet-50 network (He et al., 2016), which is pretrained by ImageNet (Deng et al., 2009). This 

Mask R-CNN is trained by publicly available datasets (Eisenbach et al., 2017; Liu et al., 2019b; 

Shi et al., 2016; Zou et al., 2012).  
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 Although the deep-learning-only-based crack segmentation methods (DeepCrack and 

Mask R-CNN) exhibited good performance in trained environments such as monotonous 

backgrounds, their performance was inferior to that of our proposed hybrid method when the 

networks were tested on untrained complex backgrounds, as shown in Figures 4-11 and 4-12. 

However, our hybrid method uses Faster R-CNN to find the crack region instead of segmentation 

from various complex backgrounds, and the detected crack region is inputted to the modified TuFF, 

which does not require any training data to segment the crack in the image.  

 

Figure 4-12. Comparative studies using our hybrid method, DeepCrack, and Mask R-CNN2 

(Kang et al., 2020) 

Hybrid method DeepCrack (Liu et al., 2019b) Mask R-CNN (He et al., 2017) 

   
IoU = 0.86 IoU = 0.4 IoU = 0.51 

   
IoU = 0.83 IoU = 0.39 IoU = 0.51 
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IoU = 0.74 IoU = 0.41 IoU = 0.51 

 

 The training dataset for Faster R-CNN was easily built by drawing bounding boxes instead 

of using pixel-level marking. The time required to prepare the ground truth for DeepCrack, Mask 

R-CNN, and our algorithm is approximately 30, 30, and 0.5 min, respectively, as shown in Table 

4-2. In order to prepare the mask, Affinity Photo, which is a commercial tool for processing photos, 

was used to draw an accurate mask (Serif, 2020), whereas Labeling was used to draw the bounding 

box (Tzutalin, 2015). Both data were prepared in a laptop that has Intel Core I7-6700HQ CPU, 

and 16 GB memory. Faster R-CNN, Mask R-CNN, and DeepCrack took 9, 9.5, and 14.5 s, 

respectively, when each algorithm was tested using the same image size of about 800 × 800 RGB. 

Our hybrid method used TuFF for segmentation, and it took around 4 s per one bounding box of 

100 × 100 in size.  

 Table 4-2 shows that Mask R-CNN is used to more training data than DeepCrack network 

is, so it achieves better performance. However, DeepCrack and Mask R-CNN do not achieve better 

results than our methods in the same 100 test image set. Therefore, our method significantly 

reduces the cost of dataset building and provides a much better solution than traditional deep-

learning-only approaches do. 
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Table 4-2. Training and testing information and result of average IoU 

 DeepCrack Mask R-CNN Ours 

Training data 300 833 400 

Data augmentation 2400 2819 1200 

Preparation training 

data per image 

Pixel mask 

30 min 

Pixel mask 

30 min 

Bounding box 

0.5 min 

Test data 100 100 100 

Average IoU 45% 61% 83 % 

 

 

4.3.2 Case studies of modified DTM  

The proposed method successfully detected cracks at the pixel level. The detected cracks were 

then processed by a modified DTM to measure the thickness and length of cracks in terms of pixels. 

To verify the modified DTM algorithm, we ran our algorithm with a ground truth dataset. This 

dataset consisted of 100 numbers from binary images. These images were also used to test the 

modified TuFF. However, in this experiment, we did not consider the angle and distance between 

the camera and the objects.  

 The traditional thinning algorithm was still useful in obtaining the average thickness of the 

cracks, but, calculated entire crack lengths were inaccurate due to a local branching issue as 

depicted by the red bounding boxes in Figure 4-13 (b) in the “Original algorithm”. Our modified 

algorithm uses a “bwmorph” to remove unnecessary local branches. The right-side images in 

Figure 4-13 (c) show the results of branch pruning algorithm. 

 

Figure 4-13. Removed local branches (Kang et al., 2020) 

(a) Images (b) Original algorithm (c) Ours 
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 Figure 4-14 shows the detailed results of our DTM algorithms. The images are binary 

images, but we changed their color in order to present the results more clearly. The black dots in 

Figure 4-14 represent the edge extraction results, the red dots represent the thinning algorithm 

results (Mathworks, 2018), and the green dots represent our modified DTM results. The error 

occurred only at the ends of cracks, as illustrated in Figure 4-14.  
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Figure 4-14. Example results of modified DTM for crack quantification (Kang et al., 2020) 

 
 

 Twenty images sampled from 100 test images of the modified DTM results are presented 

in Table 4-3 as examples. The presented values refer to the minimum and maximum numbers of 

the pixels of a crack thickness and the number of pixels of a crack length. Furthermore, crack 

thickness was evaluated by root mean square (RMS) error, and crack length was evaluated by 

accuracy. Table 4-3 shows that the errors of the modified DTM in terms of pixel numbers are very 

small. Our modified DTM algorithm resulted in 99% accuracy in terms of length and 2.6 pixels 

RMS error in terms of thickness using the 100 test image set compared to the ground truth. The 

original thinning algorithm without our modification resulted in 98% accuracy in the 100 testing 

images, but this original DTM cannot calculate crack thickness. The RMS equation is  

 

𝑅𝑀𝑆 𝑒𝑟𝑟𝑜𝑟 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑡𝑎𝑟𝑔𝑒𝑡)2𝑛

𝑖=1

𝑛
 (4-6) 

 

where, 𝑛 is the total number of testing images (i.e., 100), 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 represents the modified DTM 

result, and 𝑡𝑎𝑟𝑔𝑒𝑡 represents the ground truth.” 

 This accuracy is quite high as same as Fast Marching based crack quantification (Tsai et al 

2013). When the modified DTM algorithm is tested on the results of the TuFF, the accuracy is 

reduced to 93%. It is reasonable because our proposed TuFF method has accuracy of 83% in terms 
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of average IoU score which is quite superior to the other existing current state of the art as we 

explained in the previous sections (Table 4-2). 

Table 4-3: Result comparison of manually measured and modified DTM 

Case Manual 

measurement 

Proposed 

method 

Error Case Manual 

measurement 

Proposed 

method 

Error 

C1 (4,9,729) (3,9,729) (1,0,0) C11 (2,11,325) (2,9,326) (0,2,1) 

C2 (4,14,307) (3,13,304) (1,1,3) C12 (2,13,305) (2,13,306) (0,0,1) 

C3 (2,18,484) (2,17,482) (0,1,2) C13 (2,11,322) (2,10,321) (0,0,1) 

C4 (6,19,376) (5,19,374) (1,0,2) C14 (4,11,300) (3,11,300) (2,1,1) 

C5 (2,14,394) (2,12,392) (0,2,2) C15 (3,11,522) (2,12,520) (1,1,2) 

C6 (2,11,408) (2,11,404) (0,0,4) C16 (2,17,1110) (2,18,1113) (0,1,3) 

C7 (4,10,675) (3,9,673) (1,1,2) C17 (2,20,1245) (2,20,1245) (0,0,0) 

C8 (2,10,317) (2,7,313) (0,3,4) C18 (3,26,1083) (2,26,1083) (1,0,0) 

C9 (4,9,301) (2,9,301) (2,0,0) C19 (1,4,105) (2,4,107) (1,0,2) 

C10 (2,6,669) (2,7,670) (0,1,1) C20 (2,18,673) (2,20,675) (0,2,2) 

* The order of number is min, maximum thickness of crack and length of crack. 

 

 

4.3.3 Limitations and future work 

The proposed method performs competently for crack detection, segmentation, and quantification 

for images with a complex background. It also efficiently decreases the time required to prepare 

the ground truth for detection. However, the proposed method also has some limitations; Although 

Faster R-CNN provides cropped crack images with 95% accuracy, the modified TuFF may provide 

poor results for the remaining 5% of images. It requires hyperparameter tuning based on the 

environment of the captured images. As the proposed method takes advantage of image processing 

techniques, the camera should be able to obtain a clear view of the crack. The proposed method is 

useful for concrete cracks only. Therefore, its applicability for the detection of other crack 

materials might be limited. The DTM can properly measure cracks with high accuracy when the 

minimum crack thickness is greater than 1 pixel. The quantification result uses pixel as the unit. 

In future studies, the algorithm can be tested using a real-world unit, such as mm.  
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4.4 Conclusion 

A crack detection, localization, and quantification method were developed by integrating three 

different methods (i.e., a Faster R-CNN, a modified TuFF method, and a modified DTM) for 

application to realistic and practical problems that have various complex backgrounds in different 

environmental conditions. The Faster-R-CNN-based method provided a bounding box level of 

crack detection, and the bounding boxes were inputted into the modified TuFF for crack 

segmentation at the pixel level. The segmented cracks were then processed by the modified DTM 

to measure their thicknesses and lengths. To realize this, the following new technical contributions 

were achieved: 

1) The limitations of the independent approaches (the Faster R-CNN and the TuFF) were 

removed; the Faster R-CNN could not detect cracks at the pixel level, but used bounding 

boxes to enclose the cracked area, whereas the original TuFF could detect cracks at the 

pixel level but was vulnerable to the effects of the light, shadows, and various noises. 

2) The performance of the original TuFF was improved by integrating CLAHE; the original 

TuFF used a smoothing function for neuron tubular detection, but the neuron tubular shapes 

and crack shapes were different. The smoothing function was improved by using CLAHE 

for the proposed method of concrete crack segmentation. 

3) The proposed method segmented the concrete cracks at the pixel level very well across 

varied and complex backgrounds and environmental conditions. The AP of the Faster R-

CNN was 95%, and the mIoU of the modified TuFF with CLAHE was 83%.  

4) The proposed hybrid method overcame the limitations of traditional deep-learning-only-

based crack segmentation methods: (1) it reduced the cost of building a training dataset for 

crack segmentation because the hybrid method uses Faster R-CNN, which requires only 

training data based on bounding boxes on images, and (2) it outperformed DeepCrack and 

Mask R-CNN in segmenting cracks on complex backgrounds. 

5) The original DTM method was improved to measure the thickness and length of the 

segmented cracks. It measured the thickness of the cracks with an RMS error of 2.6 pixels, 

providing a crack length accuracy of 93%. 
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Chapter 5. Efficient Attention-based Deep Encoder and Decoder for Automatic Crack 

Segmentation 

Chapter 5 is reprinted from Kang, D. and Cha, Y.L.  

Chapter 5 has been reprinted from Kang, D. and Cha, Y.J., 2021. Efficient attention-based deep 

encoder and decoder for automatic crack segmentation. Accepted. Structural health monitoring. 

Impact factor: 5.929. This chapter has been reproduced with permission from the copyright 

holder SAGE publishing. 

 

Abstract: Recently, crack segmentation studies have been investigated using deep convolutional 

neural networks. However, significant deficiencies remain in the preparation of ground truth 

data, consideration of complex scenes, development of an object-specific network for crack 

segmentation, and use of an evaluation method, among other issues. In this paper, a novel 

semantic transformer representation network (STRNet) is developed for crack segmentation at 

the pixel level in complex scenes in a real-time manner. STRNet is composed of a squeeze and 

excitation attention-based encoder, a multi head attention-based decoder , coarse upsampling, a 

focal-Tversky loss function, and a learnable swish activation function to design the network 

concisely by keeping its fast-processing speed. A method for evaluating the level of complexity 

of image scenes was also proposed. The proposed network is trained with 1,203 images with 

further extensive synthesis-based augmentation, and it is investigated with 545 testing images 

(1,280 × 720, 1,024 × 512); it achieves 91.7%, 92.7%, 92.2%, and 92.6% in terms of precision, 

recall, F1 score, and mIoU (mean intersection over union), respectively. Its performance is 

compared with those of recently developed advanced networks (Attention U-net, CrackSegNet, 

Deeplab V3+, FPHBN, and Unet++), with STRNet showing the best performance in the 

evaluation metrics-it achieves the fastest processing at 49.2 frames per second. 
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5.1 Introduction 

Deep learning-based approaches were introduced to overcome the limitations of the traditional 

image processing based damage detection approaches in recent years. Cha et al., (2017) proposed 

the detection of structural damage using deep a convolutional neural network (CNN). They 

designed a unique CNN, and it was trained and tested to detect concrete cracks in the various image 

conditions that have real and uncontrolled lighting conditions including blurry and shadowed. For 

practical applications, the network has been examined using the images coming from an unmanned 

aerial vehicle (UAV) for concrete crack detection (Kang & Cha, 2018). The network adopted a 

sliding window technique to localize the detected cracks, but this technique requires heavy 

computational cost, and defining the proper size of the sliding window is another issue by 

considering camera and lens properties, camera and object distance, size of cracks. Instead of the 

sliding window approach, faster region-based convolutional neural network (Faster R-CNN) (Ren 

et al., 2015) were applied for damage detection and localization (Cha et al., 2018; Xue & Li, 2018). 

This Faster R-CNN proposes various sizes of bounding boxes to detect and localize different sizes 

of damage. The network uses the same base network for detection and localization; therefore, it is 

faster than the other types of localization methods (e.g., sliding window technique) and became 

the mainstream in the deep learning-based multiple types of damage detection problems (Maeda 

et al., 2018; Beckman et al., 2019; Xie et al., 2019; Lu et al., 2019; Liu et al., 2019c). 

Localization of structural damage with bounding boxes is not enough for damage 

quantification. Specifically, it is too coarse to use bounding boxes or sliding window to measure 

the thickness and length of detected concrete cracks. U-net (Ronneberger et al., 2015) was applied 

for pixel-level crack segmentation (Zhang et al., 2017). However, this method was only applied to 

pure asphalt surfaces without any complex objects or background scenes. There are numerous 

similar studies in this crack segmentation problem. From extensive literature reviews, we 

recognized four major limitations or disadvantages of existing studies that should be overcome or 

improved: 

1) Although monitoring pavements without considering complex scenes may not constitute 

a serious problem, detecting structural damage such as concrete cracks is a major limitation if the 

network cannot detect only cracks in the complex scenes since many structures are located within 

various different visual scenes. Many researchers worldwide have conducted pixel-level detection 



81 | Chapter 5. Efficient Attention-based Deep Encoder and Decoder for Automatic Crack 
Segmentation 

 

of cracks and reported results as shown in Table 5-1. Only SDDNet (Choi & Cha, 2019), 

HBFasterRCNN (Kang et al., 2020), and Resnet150 (Bang et al., 2019) considered cracks in the 

complex scenes. 

 

Table 5-1. Crack segmentation networks 

Author 
Complex 

scenes 
Network Train Val Test 

F1 

Score 
mIoU 

Test input 

size 
FPS 

Bang et 

al., 2019 
Yes 

Resnet 

150 
427 - 100 - 59.7 1920×1080 0.22 

Benz et 

al., 2019 
No 

Crack 

NausNet 
1303 487 115 82.9 - 512×512 - 

Choi & 

Cha, 2019 
Yes SDDNet 160 - 40 - 84.6 1024×512 36 

Dung & 

Anh, 2019 
No FCN 400 100 100 89.3 - 227×227 13.8 

Ji et al., 

2020 
No 

Deeplab 

v3+ 
300 50 80 - 73.3 512×512 - 

Jiang & 

Zhang, 

2020 

No 

SSDLite

MobileNe

tV2 

1030 - 300 - - 640×480 24 

Kang et 

al., 2020 
Yes 

HBFaster

RCNN 
400 - 100 - 83 512×512 0.3 

König et 

al., 2019 
No 

Attention

_Unet 
95 - 60 92.8 - 48×48 - 

Liu et al., 

2019a 
No Unet 38 19 27 90.0 - 512×512 8 

Liu et al., 

2019b 
No 

Deep 

Crack 
300 - 237 86.5 85.9 544×384 10 

Liu et al., 

2020 
No 

UNet, 

ResNet-

34 

770 257 257 95.75 - 800×600 4 

Mei et al., 

2020 
No DenseNet 700 100 200 75.4 - 256×256 0.25 
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Nayyeri et 

al., 2019 
No RTV 352 - 352 75.0 - 500×400 - 

Ni et al., 

2019 
No 

GoogLeN

et 
65K - 32K - - 224×224 - 

Ren et al., 

2020 
No 

Crack 

SegNet 
307 - 102 74.6 59.1 512×512 11 

Tong et 

al., 2020 
No 

CNN, 

SVM 
5292 - 1764 - 75.8 - 6.1 

Yang et 

al., 2019 
No FPHBN 

200(1

896) 
50 

908 

(1124) 
- - 480×320 - 

Zhang et 

al., 2017 
No CrackNet 1800 - 200 88.8 - 1024×512 0.34 

Zhang et 

al., 2019a 
No SegNet - - 155 79.4 - 256×256 1.42 

Zhang et 

al., 2019b 
No 

CrackNet-

R 
300 - 500 91.84 - 1024×512 1.4 

 

 2) Another limitation is that most existing studies did not use proper evaluation metrics. 

Rather, most used accuracy, precision, recall and F1 score as presented in Table 5-1. However, 

accuracy is not proper for this crack evaluation because the size of the crack is usually too small 

compared to the background scenes; therefore, it usually provides a high score if the size of the 

crack is small. The precision and recall do not properly consider false positive and false negative 

detections and the F1 score can control these with parameter changes. One of the reasonable and 

accurate evaluation metrics at the moment is mean intersection over union (mIoU), which can 

consider false positive and negative accurately. Therefore, many studies in the areas of computer 

vision and deep learning also use mIoU as an evaluation metric and loss function to efficiently 

train their networks. However, for crack segmentation, only seven studies (Choi & Cha, 2019; 

Kang et al., 2020; Bang et al., 2019; Ji et al., 2020; Liu et al., 2019b; Ren et al., 2020; Tong et al., 

2020) used IoU as an evaluation metric. However, most of the claimed IoU performances should 

be improved. 

 3) Most of the existing studies used heavy networks or existing traditional networks that 

were originally developed for the segmentation of many objects; therefore, these networks need 
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inherently and unnecessarily heavy computational cost due to their excessive learnable parameters. 

Therefore, it is impossible for real-time processing with relatively large input images or video 

frames (e.x.,1000 × 500) that have 30 frames per second (FPS). Fast processing is an important 

aspect of civil infrastructure monitoring due to its large scale and is required to process many 

images to inspect large-scale structures. It does not necessarily process in a real-time manner, but 

it reduces overall monitoring costs and provides fast updates of the structural states. For example, 

as presented in Table I, DeepCrack used VGG16 as the backbone network. Liu et al., (2019a) used 

U-net (Ronneberger et al., 2015) architecture for concrete crack detection, Dung et al., (2019) used 

fully convolution network (FCN) (Long et al., 2015), K𝑜̈nig et al., (2019) used Attention network 

(Oktay et al., 2018), Bang et al., (2019) used Resnet (He et al., 2016), Mei et al., (2020) used 

DenseNet (Huang et al., 2017), (Ji et al., 2020) used DeepLabV3+ (Chen et al., 2018), and 

reference (Ren et al., 2020) applied SegNet (Badrinarayanan et al., 2017). Among all these 

networks, only SDDNet could do real-time processing with 36 FPS for 1024 × 512 RGB images.  

 4) Some studies used a too small number of training and testing data sets with small sizes 

of input images. This results in the high possibility of overfitting for the specific types of cracks 

with specific image conditions. For example, reference (Ji et al., 2020) used a total of 84 images 

of relatively small sizes (i.e., 512 × 512), and SDDNet also used only 40 images for testing with 

relatively large input image (1024 × 512). Further, most of the studies used very small testing input 

image sizes which are all below 1000 × 500 except those conducted by reference (Choi & Cha, 

2019; Bang et al., 2019; Zhang et al., 2019a). Testing input image of small sizes also has the 

possibility of overfitting to specific types of cracks. It is also not efficient to monitor large-scale 

civil infrastructure, and it is also very limited in terms of detecting thin cracks in a relatively long 

distance of camera and object. 

 Based on our extensive literature review described above, we propose a new deep encoder 

and decoder based network with an improved/increased data set and performance to resolve the 

four issues mentioned above in this pixel-level crack detection problem in complex scenes. In 

order to realize this, we propose the use of sematic trainable representation network (STRNet) to 

improve performance in terms of mIoU by keeping the real-time network processing speed for a 

relatively large size of testing input image frame (1024 × 512) from Tesla V100 GPU. Also, we 

establish a large ground truth dataset (i.e., 1748 RGB images with sizes of 1024 × 512, 1280 × 
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720) for training and testing purposes to consider complex background scenes for robust detection 

by avoiding overfitting to specific types of cracks and background scenes. We used some publicly 

available datasets - deep crack (Liu et al., 2019b) and concrete crack segmentation datasets 

(Ö zgenel, 2019) - by fixing severe errors. Some ground-truth images of these datasets were 

coarsely labelled. This can cause poor training results, even when an advanced network is designed 

and used. Therefore, the images of these existing datasets were re-annotated to reduce annotation 

errors. To improve the network’s performance, we also used focal-Tversky loss function (Abraham 

& Khan, 2019) and adopted image synthesis techniques to augment the prepared ground truth 

training data to negate and detect crack-like features on complex scenes. 

 

5.2 Proposed STRNet 

An architecture named STRNet of deep convolutional neural network is proposed to segment 

concrete cracks on complex scenes in pixel-level in a real-time manner (i.e., at least 30 FPS) with 

a testing input size of 1024 × 512 RGB images/videos. The STRNet is composed of a new STR 

module-based encoder, an Attention decoder with coarse upsampling block, a traditional 

convolutional (Conv) operator, a learnable Swish nonlinear activation function (Ramachandran et 

al., 2017), and batch normalization (BN) to segment only cracks in complex scenes with real-time 

manner. The schematic view of the STRNet is shown in Figure 5-1. In order to develop this high-

performance network with low computational cost, many advanced networks were investigated to 

figure out their strengths and weaknesses.  

 

Figure 5-1. The overall architecture of STRNet (Kang & Cha, 2021) 
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STRNet processes an input image by 16 Conv filters with a size of 3 × 3 × 3 with stride (S) 

1, BN (Ioffe & Szegedy, 2015) and Hswish (Avenash & Viswanath, 2019; Howard et al., 2019) 

activation function with a skipped connection. The result of these processes in the first block of 

Figure 5-1 is inputted to a newly designed STR module and final ‘Concatenation block’ as shown 

in Figure 5-1. The STR module is repeated 11 times, and afterward, the feature map is fed into 

‘Maxpooling’ operator and is then forwarded to the newly designed ‘Attention decoder’ and 

‘Upsampling’ module. The result of Max pooling goes through the ‘Attention decoder’ two times, 

and the output is fed into ‘Upsampling’ and ‘Coarse upsampling’ modules. The outputs of the final 

upsampling and coarse upsampling modules are concatenated with the output of the first Conv 

block as shown in Figure 5-1. The concatenated features are processed by pointwise convolution 

(PW) to match the output to the input image size for final pixel-level segmentation. The details of 

the developed modules and their roles are described in the following subsections.  

 

5.2.1 STR module 

The STR module is newly developed in this paper to improve the segmentation accuracy by 

reducing the computational cost for real-time processing on the complex scenes. The STR module 

is composed of pointwise convolution (PW), depthwise convolution (DW), BN, Swish activation 

function, squeeze and extension-based attention module as shown in Figure 5-2. STR module has 

three different configurations (i.e., “STR_config 1”, “STR_config 2” and “STR_config 3”) as shown 

in Figure 5-2. STR_config 1 has simple processes of 3rd block, 4th block, and 10th block with PW, 

DW, BN, and rectified linear unit (ReLU) activation function, illustrated as the dark greenish block 

shown in Figure 5-2. STR_config 2 is combined with STR_config 1 and squeeze and excitation-

based attention (SEA) module with ReLU illustrated as the yellowish block shown in Figure 5-2. 

STR_config 3 is the entire network of the STR module with blocks from 1st to 11th. STR module 

is repeated 11 times, and different configuration is operated in each repeat as presented in Table 

5-2. 
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Figure 5-2. The detail structure of STR module (Kang & Cha, 2021) 

 
 

All these arrays of configurations are new and unique with different DW convolution sizes, 

different stride sizes (𝑆1, 𝑆2 ), with/without SEA module, ReLU / Swish activation function, and 

skipped connection. The “Con.” in Table 5-2 indicates the skipped connection with the red arrow 

line as shown in Figure 5-2, which only happens with “US” and “AD” which stand for upsamping 

and attention decoder, respectively. Therefore, the Connector is only used in the repeats in 3 and 

11 to keep multi-level features. Publicly available segmentation networks usually apply stride 16 

or 32 to the feature map in an encoder module, which means that the extracted feature map size is 

reduced to 16 or 32 times smaller than the original input image size. However, these large spatial 

contractions of the extracted feature maps compared to the input size may cause the loss of 

important features. This issue is found throughout our extensive experimental studies to develop 

this unique network, although it might be only applicable to this unique crack segmentation 

problem. Due to the nature of cracks with very long and thin shapes, a network may need a slightly 

larger feature map. Therefore, we applied stride 8 (i.e., 𝑆1
3), since we have three “2” in Table 5-2, 

but this small stride causes the high computational cost through deep hidden layers of the proposed 

network. 

 

Table 5-2. Detailed hyperparameter for STR module 

STR module iteration 

Repeat # DW 𝛼 𝛽 𝑆1 𝑆2 Connector 𝑓(𝑥) config 

1 3×3×1 1D 1D 2 1 no ReLU 2 

2 3×3×1 4.5D 1D 1 1 no ReLU 1 

3 3×3×1 5.5D 1.5D 1 1 yes (US) ReLU 1 

4 5×5×1 6D 2.5D 2 1 no Swish 2 

5 5×5×1 15D 2.5D 1 2 no Swish 3 
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6 5×5×1 15D 2.5D 1 2 no Swish 3 

7 5×5×1 7.5D 3D 1 1 no Swish 2 

8 5×5×1 9D 3D 1 2 no Swish 3 

9 5×5×1 18D 6D 2 1 no Swish 2 

10 5×5×1 36D 6D 1 2 no Swish 3 

11 5×5×1 36D 6D 1 2 yes (AD) Swish 3 

 

 To resolve this issue, and to maintain important features and real-time processing, we use 

different STR_configuration (i.e., configs 1 to 3) in each repeat as presented in Table 5-2. Through 

the STR_configs 1 and 2, we extracted features by keeping its relatively large feature map, but 

these large feature maps require large computational costs compared to small feature maps through 

the deep layers of the network. Therefore, to reduce its feature map by keeping the important 

features, we used STR_config 3 with squeeze and excitation-based attention operation.  

 The role of squeeze and excitation operation is to extract important features. In order to 

squeeze the extracted feature map, global average pooling at the 5th block is applied in 

STR_configs 2 and 3. The global average pooling performs the average pooling operation entire 

W (input width) and H (input height) size in each feature channel, so the output feature map 

becomes 1×1×𝛼D at the 6th block. The physical meaning of this global average pooling is the 

extraction of important (i.e., mean) features from the extracted features. Here, 𝛼 is given in Table 

5-2, and D is 16 since we conducted traditional Conv 16 times, as shown in Figure 5-1. This 

process is called squeeze process, and it extracts important features while compressing information. 

This feature is fed into two linear functions (Linear T) (Paszke et al., 2017). with ReLU and H-

Sigmoid (Courbariaux & David, 2015; Howard et al., 2019). 

 

𝐻 − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑅𝑒𝐿𝑢6(𝑥 + 3)

6
, (5-1) 

 

where ReLu6 is an embedded activation function in Pytorch. ReLu6 has a unique shape with a 

maximum output value 6 for all inputs greater than or equal to 6. The excitation process recovers 

the squeezed feature map to the original size by reproduction of the squeezed feature map (1 × 1 
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× αD). The H-Sigmoid expressed in (5-1) provides the bi-linearity activation function. The output 

of DW from 4th block is multiplied (∎) by the output of excitation at 8th block.  

The role of STRconfig3 restores an important feature map using a skip connection illustrated with 

a thick blue line at the bottom of Figure 5-2. It reduces computational cost compared with the two 

other configurations of the STR module, which can be validated by the following equations. The 

PW and DW are formulated as follows: 

 

𝑃𝑊_𝐶𝑜𝑛𝑣(𝑤, 𝑥)(𝑖, 𝑗) = ∑ 𝑥𝑖,𝑗,𝑐𝑤𝑐,

𝐶

𝑐

 (5-2) 

𝐷𝑊_𝐶𝑜𝑛𝑣(𝑤, 𝑥)(𝑖, 𝑗) = ∑ 𝑥𝑐,𝑖+𝑢,𝑗+𝑣𝑤𝑢,𝑣,

𝑘,𝑘

𝑢,𝑣

 (5-3) 

 

where w and x are weight and input, respectively. i, j, and c are 2D coordinates and the input 

channel number, respectively. u and v are the width dimension and height dimension of the input, 

respectively. The computational costs of DW Conv and PW Conv can be calculated using Equation 

(5-4) and (5-5). 

 

𝑃𝑊_𝐶𝑜𝑛𝑣 = 𝐶𝐻𝑊𝑂, (5-4) 

𝐷𝑊_𝐶𝑜𝑛𝑣 = 𝐶𝐻𝑊𝑘2, (5-5) 

𝐷𝑊_𝐶𝑜𝑛𝑣 + 𝑃𝑊_𝐶𝑜𝑛𝑣 = 𝐶𝐻𝑊(𝑘2 + 𝑂). (5-6) 

 

where C, H, W, k, and O are the number of input channels, the height dimension of input, the 

width dimension of input, the filter size, and the output channel size, respectively. The 

approximate number of calculations of the STRconfig1 is the summation of two PW Conv and 

one DW Conv as expressed in Equation (5-7). 

 

𝑆𝑇𝑅_𝑐𝑜𝑛𝑓𝑖𝑔1 = 𝑃𝑊1 + 𝐷𝑊1 + 𝑃𝑊1, (5-7) 
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= 𝐶1𝐻1𝑊1(𝑘2 + 2𝑂1). 

 

where the subscript number (i.e., 1) stands for the config number (i.e., 1). The STR_config2 has 

considerably a small number of calculations than the others. Therefore, the approximate number 

of calculations of the STR_config3 is expressed as Equation (5-8). 

 

𝑆𝑇R_config3 

= (𝑃𝑊2 + 𝐷𝑊2 + 𝑃𝑊2) + (𝑃𝑊3 + 𝐷𝑊3 + 𝑃𝑊3), 

= 𝐶2𝐻2𝑊2(𝑘2 + 2𝑂2) + 𝐶3𝐻3𝑊3(𝑘2 + 2𝑂3), 

=
𝐶1𝐻1𝑊1(𝑘2 + 2𝑂1 − 1)

6
+

𝐶1𝐻1𝑊1(𝑘2 + 2𝑂1)

4
, 

=
𝐶1𝐻1𝑊1(5𝑘2 + 10𝑂1 − 2)

12
. 

(5-8) 

 

where 𝐶1  = 6𝐶2  = 𝐶3 , 𝐻1  = 𝐻1  = 2𝐻3 , 𝑊1  = 𝑊2  =2𝑊3 , and 𝑂1  = 𝑂2  = 𝑂3 . The discrepancy 

between Equation (5-7) and Equation (5-8) is expressed as Equation (5-9). The Equation (5-9) is 

clearly a positive value, which means that the number of calculation of the STR_config3 is smaller 

than that of the STRconfig1, which contributes the real-time processing of the STRNet. 

 

𝑆𝑇𝑅_𝑐𝑜𝑛𝑓𝑖𝑔1 − 𝑆𝑇𝑅_𝑐𝑜𝑛𝑓𝑖𝑔3 =
7𝑘2 + 14𝑂1 + 2

12
. (5-9) 

  

 Another technical contribution of this STR module is the implementation of a non-linear 

activation function. Most recently, proposed networks in this area typically only use 𝑅𝑒𝐿𝑈 because 

of its simplicity in differential calculation for backpropagation and to reduce computational cost 

and automatic hibernation of unnecessary learnable parameters in the network. However, our 

objective is to develop a concise and efficient network by using a smaller number of hidden layers, 

meaning most of the assigned learnable parameters in each filter in each layer should be fully used 

to extract multiple levels of features for high performance of the pixel-level segmentation. 
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 Therefore, using 𝑅𝑒𝐿𝑈 is no longer a viable option for this concise and light objective 

specific network. We only used this 𝑅𝑒𝐿𝑈 for the first three STR module repetitions for the stable 

training process as presented in Figure 5-2. After that, we used a learnable Swish nonlinear 

activation function Ramachandran et al., 2017 to resolve this issue in the STR module. 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛾𝑥). (5-10) 

 

where 𝛾  is a learnable parameter of the Swish activation function. The major benefit of this 

learnable Swish activation function is that it can be converted from scaled linear ReLU to a non-

linear function by changing the 𝛾 from 0 to ∞. Due to the dynamic shape of the activation function, 

this network is able to extract features more efficiently and precisely. However, it also may cause 

an unstable training process; therefore, as we described, the first three repetitions of the STR 

module use ReLU. The result of PW convolution in the 10th block in Figure 5-2 is upsampled to 

the input feature size (1st block) of W and H. The input of the STR module and the upsampled 

result are densely concatenated to keep the different multi-level levels of features in the 11th block. 

This process recovers the loss of features from the 2 strides 𝑆2 of 𝐷𝑊 convolution in the 2nd block. 

After, the densely piled features are processed by PW convolution to restore the D channel value, 

which serves to facilitate the repetition of the STR module. 

 

5.2.2 Attention decoder 

The role of traditional decoders in this pixel-level segmentation problem is to recover the size of 

the extracted feature map from well-designed encoders. However, the performance of the encoders 

is not usually high enough to achieve a very high level of segmentation as we previously discussed 

in the Introduction section. Therefore, in this paper, we developed a unique attention-based 

decoder to support the role of the STR encoder to screen wrongly extracted features in the encoding 

process. Initially, we used existing attention decoders (Vaswani et al., 2017; Yuan & Wang, 2018), 

but due to their heavy computational cost, real-time processing was impossible. Therefore, we 

designed a unique decoder by configuration of Attention decoder, Upsampling and Coarse 
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upsampling by using the attention operation minimally to reduce the heavy computational cost to 

keep its real-time processing performance as shown in Figure 5-3. 

Figure 5-3. Newly designed attention decoder (Kang & Cha, 2021) 

 
 

 The role of `Attention decoder' shown in Figure 5-3 is to screen wrongly extracted features 

from the STR encoder and to recover the reduced feature spatial size from STR module by keeping 

its unique features from the original input size. Usually, an attention decoder is repeated more than 

4 times in publicly available networks (Oktay et al., 2018; Zeng et al., 2019). However, we only 

repeated it two times to reduce computational cost, and we used Upsampling and Coarse 

upsampling operators to supplement this reduced number of attention decoder repeat as shown in 

Figure 5-3.  

 In Figure 5-3, the first input size ([𝑊′, 𝐻′, 𝐷′] = [64,32,96]) is the final output of the 

encoder with the result of 2 × 2 max pooling. This input is applied to 3 ×  3 convolution and BN. 

This result is processed by 𝑃𝑊  with/without 𝐵𝑁 and produces 𝑄𝑢𝑒𝑟𝑦 [
𝐷′

2
, 𝑊′, 𝐻′] , 

𝐾𝑒𝑦 [
𝐷′

2
, 𝑊′, 𝐻′] and 𝑉𝑎𝑙𝑢𝑒 [

𝐷′

2
, 𝑊′, 𝐻′]. These maps are then reshaped using embedded function 

View (𝑉())of Pytorch from 3-D to 2-D is resulted in [𝑊 ′ × 𝐻′,
𝐷′

2
], [

𝐷′

2
, 𝑊 ′ × 𝐻′], and [𝑊 ′ × 𝐻′,

𝐷′

2
], 

respectively. The 𝑄𝑢𝑒𝑟𝑦 and 𝐾𝑒𝑦 are multiplied (symbolized as ⊗) and result in M1 attention 

map. The M1 attention map is filtered by Equation (5-3) and output M2. The reshaped 𝑉𝑎𝑙𝑢𝑒 is 

multiplied with the M2 attention map which is attention process. 

 

M2 = softmax(
𝑀1

√𝐷′
). (5-11) 
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The object context produced by attention process and the output of first Conv operation from the 

first block of the overall architecture of the STRNet as shown in Figure 5-1 are concatenated as 

shown in Figure 5-3. 𝑃𝑊 𝐶𝑜𝑛𝑣 condenses this concatenated feature map, and dropout is applied 

to prevent overfitting. Finally, the transposed convolution restores the semantic mask (Dumoulin 

and Visin, 2016). 

 

5.2.3 Upsampling and coarse upsampling 

The Upsampling layer is intended to double the dimensions of input, and it is commonly used in 

any segmentation network (Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2018). The 

input feature passes the bilinear upsampling. Bilinear upsampling increases width and height two 

times. After that, the 3×3 convolution, BN, and ReLU activation function are performed to reduce 

the depth of the map. The size of upsampling output follows the size of original input image. 

 

5.2.4 Concatenation block 

𝑆𝑘𝑖𝑝 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 or simple bilinear upsampling has been widely used for encoder and decoder-

based networks (Chen et al., 2018, Oktay et al., 2018) to keep multi-level features. We also use 

the multiple skip connections to obtain better segmentation as shown in Figure 5-1.  

Figure 5-4. Concatenation block (Kang & Cha, 2021) 

 
 

As shown in Figure 5-4. we concatenate the results of the traditional Conv block, Attention decoder 

with Coarse upsampling, and Upsampling. The 𝑊̂, 𝐻̂ and 𝐷̂ are 1024, 512, and 16, respectively. 
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The concatenated feature map is processed by PW convolution to have the same depth size 

compared to a binary ground truth.  

 

5.3 Established Data Bank 

To train the developed STRNet for crack segmentation on various complex scenes, we prepared 

ground truth data from various sources. A total of 1784 images sized 1024 × 512 and 1280 × 720 

were prepared. Some (612) of them came from existing available datasets. The raw images of these 

existing datasets were re-annotated to reduce annotation errors (Liu et al., 2019b; Ö zgenel, 2019). 

Some (300) of them came from our previous studies (Choi & Cha, 2019; Kang et al., 2020), and 

new datasets (836) from various structures and locations was established. The detailed information 

of the developed datasets is presented in Table 5-3. To minimize the time and effort to prepare 

training image data, we took advantage of using our previous SDDNet (Choi & Cha 2020). The 

raw images were initially processed by this network and the output errors such as false positives 

and false negatives were fixed manually.  

 

Table 5-3. Developed datasets for training and testing 

 Training Testing Total 

Size 1,024 × 512 1,280 × 720, 1,024 × 512 1,280 × 720, 1,024 × 512 

Number of images 1,203 545 1,748 

Number of  

augmented images  
12,030   

 

5.3.1 Data augmentation 

The prepared ground truth data presented in Table 5-3 is not enough to achieve high performance 

segmentation which can negate the detection of any crack-like features on the complex scenes. 

Therefore, traditional data augmentation skills such as random rotation and random cropping were 

conducted. Moreover, synthesis techniques of ground truth images to generate cracks on complex 

scenes were also applied by inserting an object of interest into another non-target image with 

complex scenes that would allow us to achieve a robust classifier. Figure 5-5 shows two 

approaches to generating the procedure and synthetic images. 
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Figure 5-5. Two image synthesis approaches for training data generation (Kang & Cha, 2021) 

 
  

The first approach is that the image with cracks is set as a background image, and a non-

target image having complex scenes but without cracks is inserted in the background image as 

shown in Figure 5-5. The second approach is vice versa. After, the synthesized images are further 

processed with random flipping, rotation, and brightness operations, and they are resized to 1024 

× 512. The complex non-target images without cracks are collected from Open Image Dataset v4 

(Kuznetsova et al., 2018). We used 1203 images from 99,999 images. In order to crop the area 

having crack pixels in ground truth images, the “CropNonEmptyMaskIfExists” function from 

Albumentation (Buslaev et al., 2020) was used, and the cropped crack area was patched to a non-

target complex background image as shown in Figure 5-5. The cropped crack image size is 

randomly selected from 300 × 204 to 400 × 512, and the location of insertion is also randomly 

selected. Therefore, the eventual total number of augmented images for training is 12,030 as 

presented in Table 3. 

 

5.3.2 Complexity of the proposed dataset 

Considering complex background scenes of structural damage in the real world is critical, as 

mentioned in the Introduction section. However, the evaluation of these scenes’ complexity levels 
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can be subjective if no quantitative evaluation method is used. For this reason, we put forward an 

algorithm for evaluating the complexity of an image dataset. The fundamental concept of the 

complexity check evaluation algorithm is to count the number of objects in a scene. The higher 

the object number, the greater the complexity level. 

 To count the number of objects in an image, we used Felzenszwalb’s graph segmentation 

method (Felzenszwalb & Huttenlocher, 2004). Felzenszwalb’s algorithm verifies the relationship 

between pixels and edges in an image. For example, if an edge appears between two pixels, these 

two pixels are assumed to be located in different clusters (i.e., objects), 𝐶𝑛 , as expressed in 

Equation (5-12). If no edge appears between pixels, then they are assumed to be located in the 

same object. 

 

𝐺𝑟𝑎𝑝ℎ𝑆𝑒𝑔(𝑝𝑖, 𝑝𝑗) = {
𝑖𝑓 = (𝑝𝑖 ≤ 𝑒𝑛 ≤ 𝑝𝑗)

𝑒𝑙𝑠𝑒 = (𝑝𝑖𝑝𝑗) ⊂  𝐶𝑛

, (5-12) 

 

where 𝑝𝑖 and 𝑝𝑗 are the input pixels, and 𝑒𝑛 is the pre-defined edge value, which should be defined 

by a user. In this study, we defined this value as constituted by color and intensity. 𝐶𝑛 is the object 

cluster, that is, the cluster of pixels, as expressed in Equation (5-13). 

 

𝐶𝑛 = (𝑝0, … , 𝑝𝑛), (5-13) 

 

𝐶𝑛 is too fine a level of object segmentation without consideration of image noise. Therefore, a 

smooth function was adopted, as expressed in Equation (5-14). 

 

𝐹𝑒𝑙𝑧𝑒𝑛𝑠𝑧𝑤𝑎𝑙𝑏(𝐶𝑖, 𝐶𝑗) = {
𝑇𝑟𝑢𝑒 = 𝑖𝑓  𝑀𝑖𝑛(𝐶𝑖 − 𝐶𝑗) < 𝑀𝑎𝑥(𝐶𝑖(𝑝𝑖) − 𝐶𝑖(𝑝𝑗))

𝐹𝑎𝑙𝑠𝑒 = 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (5-14) 

 

where 𝑀𝑖𝑛 (𝐶𝑖 – 𝐶𝑗) expresses the minimum pixel value difference between two clusters via pixel-

to-pixel comparisons of cases. 𝑀𝑎𝑥(𝐶𝑖(𝑝𝑖) – 𝐶𝑖(𝑝𝑗) denotes the maximum pixel value differences 
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within the same cluster that should be tuned. If the calculated minimum value is lower than the 

calculated maximum value, the two clusters are merged. On the basis of this rule, the algorithm 

assigns all pixels and generates an object segmentation map. As shown in Figure 5-6, 

Felzenszwalb’s algorithm produces an object segmentation map and identifies the boundary of 

objects in images obtained from our dataset and existing crack datasets (i.e., Crack 500, 

CrackForest, CrackSegNet, DeepCrack, and FCN). 

 

Figure 5-6. An example of Felzenszwalb’s algorithm results. 

Crack 500 CrackForest CrackSegNet DeepCrack FCN Ours 

      

      

 

 Using the results of Felzenszwalb’s algorithm, we assigned an object number to each object 

within an image. To calculate the complexity score (i.e., the level of complexity), the number of 

unique numbers for each image was determined. To evaluate the level of complexity of the 

available crack datasets, all the images were evaluated, and the average was calculated for each 

dataset. The results are presented in Table 5-4. Crack 500 had a slightly higher complexity score 

than those generated by the other datasets (except ours), even though it comprised only pure 

pavement surface images. This result is attributed to the fact that most of the images were asphalt 

surface images with high asperity due to the ingredients of coarse pavement material. Nevertheless, 

our dataset showed the highest complexity score.  
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Table 5-4. Comparison of complexity scores 

 Author Complexity score # of images 

Crack500 Zhang et al., 2016 27 494 

CrackForest Shi et al., 2016 3.57 118 

CrackSegNet Ren et al., 2020 6.69 813 

DeepCrack Liu et al., 2019b 11.4 527 

FCN Dung, 2019 7.3 776 

Ours  41.23 1748 

 

5.4 Training details 

This section describes the details of the training process and hardware. Python programing 

language (Python, 2020) with Pytorch 1.6 deep learning library (Paszke et al., 2017) was used to 

code the STRNet. The STRNet was trained in a graphic processing unit (GPU) equipped 

workstation. The workstation specifications are Intel Core i7-6850K CPU, Titan XP GPU, and 

128GB RAM. To train our models, we set up the 4 Titan XP GPU using Nvidia Apex distributed 

data parallel (DDP) training library. The input image size is 1024 × 512, which is randomly 

cropped if the image size is bigger than the input size. The use of proper loss function is crucial; 

therefore, we investigated several recently developed functions such as cross entropy loss, dice 

cross entropy loss, and mIoU. Eventually, focal-Tversky loss function was used for training. The 

focal-Tversky loss was used as a combination of the loss function (Abraham & Khan, 2019) as 

follows, 

 

𝑇𝐿 =
𝑇𝑃 + 𝑠

𝑇𝑃 + 𝐹𝑃 ∗ 𝑎 + 𝐹𝑁 ∗ 𝑏 + 𝑠
, 

 

(5-14) 

𝐹𝑜𝑐𝑎𝑙 − 𝑇𝑣𝑒𝑟𝑠𝑘𝑦 𝑙𝑜𝑠𝑠 = (1 − 𝑇𝐿)𝑐, (5-15) 

 

 

where TL is Tversky loss. TP, FP, and FN are true positive, false positive, and false negative, 

respectively. 𝑎, 𝑏, 𝑐, and 𝑠 are all hyperparameters. Based on trial and error, 𝑎, 𝑏, 𝑐, and 𝑠 are 

defined as 0.5, 0.5, 1.3, and 1.0, respectively. Abraham and Khan, (2019) investigated the 

performance of this focal-Tversky loss function in the segmentation problem and showed that it 
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outperformed to get balance between precision (FP) and recall (FN) compared to the dice loss 

function. 

Figure 5-7. Focal Tverskey training loss and score via epoch iteration, (a) Hold-out validation, 

(b) T rain-valid-test splits validation (Kang & Cha, 2021) 
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 In order to do backpropagation for the learnable parameter updating, the Adam optimizer 

was employed (Kingma & Ba 2014). The hyperparameters such as first moment, second moment, 

and dropout rate were defined as 0.9, 0.999 and 0.2, respectively. The initial learning rate was 

0.005, and dropped by 20% when the number of epochs were 30, 70, and 120, to keep a stable 

training process. To reduce the training time, a DDP with batch size 8 was also used for four GPUs. 

The progress of the focal-Tversky loss through training epoch iteration is plotted in Figure 5-7. As 

clearly demonstrated in Figure 5-7, the focal-Tversky loss is successfully minimized, and training 

score also became almost 0.94. As shown in the figure, we conducted two types of training and 
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validation processes: hold-out validation and train-valid-test split validation. For the hold-out 

validation, we divided the total dataset into training and testing sets, as tabulated in Table 5-3, and 

conducted training and testing as the validation, which is plotted in Figure 5-7 (a). For the train-

valid-test split validation, a 10% validation dataset (170 images) of the total images (1,748 images) 

was randomly selected from the training dataset (1,203 images), and training and validation losses 

and scores were plotted during the training iterations, as shown in Figure 5-7 (b). In these two 

validation processes, there was only a small discrepancy between the training score (93.8) and 

validation score (91.0), see Figure 5-7 (b). This means that the training set is not 

developed/determined to achieve a high performance from the specific testing and validation 

datasets, because the training score (93.8) is slightly higher than the va idation score (91.0) and the 

claimed testing score (92.6). 

 

5.5 Case studies 

The developed STRNet was extensively experimentally investigated. In section V-A, some 

parametric studies were carried out to find effective image synthesis technique, loss function, 

activation function, and effective decoder. In section 5.5, the eventual STRNet based on the 

parametric studies was tested on many complex scenes to segment concrete cracks. In section 5, 

extensive comparative studies were conducted in the same training and testing datasets with the 

same conditions of loss function for fair evaluation.  

 

5.5.1 Parametric studies of STRNet 

We conducted parametric studies to find the most effective parameters and architecture of STRNet. 

In order to train and test the developed network, the training and testing data presented in Table 5-

3 were used. All data augmentation techniques described in Section 5.2.1 were also applied. The 

used evaluation metrics are:  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5-16) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5-17) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5-18) 

𝑚𝐼𝑜𝑈 = 𝑚𝑒𝑎𝑛(
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
) (5-19) 

 

 

 The first study was for the method of image synthesis to overcome the limitation of 

prepared ground truth datasets. We compared two different image synthesis techniques described 

in Section 5.3.1 and the second image synthesis method showed better performances as presented 

in Table 5-5. This resulted in a 1.6% improvement. Two different loss functions for effective 

training of the STRNet were tested. The general IoU loss function, which is the most popular loss 

function in this field, and the focal-Tversky loss function were compared. The focal-Tversky loss 

function showed better performance, with a 6.7% improvement of mIoU.  

 

 At this experimental test, the image synthesis was applied for both cases. We used the 

coarse upsampling technique in STRNet and tested the effectiveness. The coarse upsampling 

method improved the mIoU by approximately 1%. Another unique technique in this STRNet was 

the attention decoder. The effectiveness of the attention decoder was also investigated, which 

showed that it improved the mIoU by approximately 2.4%. With these parametric studies, we 

decided the eventual network of the STRNet with training methods such as image augmentation 

and loss function. 

In order to check any possibility of overfitting and underfitting problems, k -fold random 

validations for the fully trained network were conducted. In each validation, the 10% (170) of the 

validation sets were randomly selected from training, testing and total dataset, respectively, and 

conducted experiments to calculate mIoU using the fully trained network. All the mIoU from the 

total 30 number of validation datasets from the training, testing, and total datasets are expressed 

Table 5-5. Parametric studies for STRNet 

 Precision Recall F-1 score mIoU 

Without image synthesis 89.9% 90.8% 90.4% 91.0% 

IoU loss function 81.0% 87.5% 84.1% 85.9% 

𝐹𝑇 𝑙𝑜𝑠𝑠 function 91.7% 92.7% 92.2% 92.6% 

Without coarse upsampling 90.3% 92.0% 91.1% 91.6% 

Without attention in decoder 89.9% 89.0% 89.5% 90.2% 
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as “Train”, “Test”, and “Total”, respectively in Table 5-6. The average mIoUs from the three 

different datatsets are 93.93%, 92.59%, and 93.15%, respectively. Our claimed maximum 

performance of the STRNet was 92.6% as shown in Table 5-5. Therefore, the obtained validation 

results are quite close to the final performance. Through these total 30-fold validation processes 

with total 5,100 images, we assume that our trained STRNet is not underfitted and overfitted. 

Table 5-6. Random validation through 10-fold random selection 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Avg(%) 

Train 93.58 94.27 94.27 93.9 93.8 94.4 94.37 93.5 94.2 92.9 93.93 

Test 92.4 92.41 92.0 92.6 92.6 92.5 93.04 92.7 92.51 93.14 92.59 

Total 93.25 93.2 93.44 93.35 93.15 93.3 93.46 93.0 92.34 92.98 93.15 

 

 

5.5.2 Experimental testing of STRNet 

In this section, the eventual parameters and module from the experimental studies in Section 5.5.1 

was selected as the final STRNet. This STRNet showed a maximum 92.6% mIoU on 545 images 

having complex scenes with 49.2 FPS using single V100 GPU for 1024×512 input images. This is 

much faster than required speed (i.e., 30 FPS) for real-time processing. It provides very stable 

performance without unbalance among false positives and false negatives based on 91.7% 

precision and 92.7% recall evaluation metrics including 92.2% F1 score. The reported mIoU 

92.6% is considered to be a very high level of accuracy since all the ground truth (GT) data has a 

minimum level of annotation error because there are many unclear cases that a pixel is included in 

a crack or intact concrete surface. Therefore, it seems that a maximum of 5% error is unavoidable 

in ground truth data.  

 

Figure 5-8. Examples of STRNet results on various complex scenes (Kang & Cha, 2021) 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

a) 

Raw 

input 

image 
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b) GT 

      

c) 

Result 

          
mIoU 90.7 91.1 84.4 87.1 90.3 91.6 

 

5.5.3 Comparative studies 

Extensive comparative studies were conducted to show the superior performances of the proposed 

STRNet compared to the traditional networks. The selected networks are attention U-net (König 

et al., 2019), Deeplab v3+ (Ji et al., 2020), Unet++ (Zhou et al., 2019), FPHBN (Rent et al., 2020) 

and CrackSegNet (Yang et al., 2019). All these advanced networks are recently developed and 

showed state of the art performances in this segmentation area and applied them to the crack 

segmentation problem.  

 

Table 5-7. Results of experimental comparative studies 

 

Model 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

mIoU 

(%)  

V100 

(FPS) 

# of param 

Attention U-net 85.63 91.22 88.33 89.1 17 34M 

CrackSegNet 86.33 84.89 85.61 87.1 21.4 12.4M 

DeeplabV3+ 77.37 83.6 80.36 83.24 30.2 59M 

FPHBN 86.33 84.89 85.61 87.1 34.0 5.9M 

UNet++ 82.9 85.4 84.13 85.9 30.6 26.9M 

STRNet 91.7 92.7 92.2 92.6 49.2 2M 



104 | Chapter 5. Efficient Attention-based Deep Encoder and Decoder for Automatic Crack 
Segmentation 

 

 Each of these four selected networks were trained using the same training dataset, data 

augmentation techniques, and hyperparameters, including FT loss function for fair comparison. 

All of these well-trained networks were also tested by the same 545 testing images presented in 

Table 5-3. The experimental results are tabulated in Table 5-7. It showed that the proposed STRNet 

still demonstrated the best performances in terms of precision, recall, F1 score, and mIoU with the 

fastest processing with 49.2 FPS using single V100 GPU. The number of learnable parameters of 

the STRNet is smallest, which has the advantage of being operable in embedded microcomputing 

devices. This is beneficial for real structural applications and commercialization. The attention 

Unet, DeeplabV3+ and Unet++ showed unbalanced precision and recall scores, which means that 

these networks involve problems with false positive or false negative detections. In order to 

compare the performances, the complex scene images in different locations and structures with 

different lighting conditions are selected and processed by six networks as shown in Figure. 5-9. 

The proposed STRNet showed superior performance in the selected images. Deeplab V3+ showed 

the worst performance, with an approximately 9% lower mIoU than that of STRNet. Deeplab V3+ 

also showed very weak performance in negating dark areas to be detected as cracks. Attention 

Unet (i.e., AT. U-net) and Unet++ have problems negating shadowed areas. FPHBN achieved 

balanced false positive and false negative detections but still has issues with false positive and 

false negative detections, as shown in Figure. 5-9 (a) and (d). 

Figure 5-9. Example results of the comparative studies (Kang & Cha, 2021) 

 a) b) c) d) e) 

Image 

     

GT 

     

AT. U-net 
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FPHBN 

     

Unet++ 

     

STRNet 

     

 

5.6 Conclusion 

In this paper, a novel STRNet, which is a deep convolutional neural network, is developed for 

concrete crack segmentation in pixel level. The developed network was trained using large training 

data set and tested on 545 images. The performances of the proposed network in terms of precision, 

recall, F1 score and mIoU are 91.7%, 92.7%, 92.2%, 92.6%, respectively, with 49.2 FPS using 

V100 GPU which is able to process relatively large input images (1280 × 720, 1024 × 512) with 

real-time manner. From the extensive comparative studies, this demonstrated the best performance 

in terms of the upper four evaluation criteria. New technical contributions of this paper are: 

1) A new deep convolutional neural network was designed to be able to do real-time 

processing using relatively large input images (1280 × 720, 1024 × 512) with 49.2 FPS. 
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2) The proposed network showed state of the art performance in segmentation of cracks with 

92.6% mIoU.  

3) The STRNet has the lightest network size among the compared networks with a 2M 

memory size, which offers the great benefit of being applicable to real world problems 

using a microcomputer. 

4) The network was able to segment cracks on highly complex scenes including different area, 

structures, and lighting conditions. 

5) An image complexity evaluation method was proposed, and our training and testing 

datasets showed the highest level of complexity among the examined datasets. 

6) The new encoder named as the STR module was developed to extract multi-level features 

effectively.  

7) The new decoder with the attention module was developed to support the STR encoder by 

screening wrongly extracted features from the encoder to improve the segmentation 

accuracy (i.e., 2.4% mIoU).  

8) Coarse upsampling was adopted for this crack segmentation problem. It improved the 1% 

mIoU.  

9) The new loss function (Focal-Tversky loss function) was adopted to train the newly 

designed network to improve the crack segmentation performance (i.e., 6.7% mIoU).  

10) Many training and testing data with large image sizes were established to conduct extensive 

evaluations (see Table 5-3).  

11) The prepared ground truth data were drastically reduced in annotation errors compared to 

the publicly available crack segmentation data.  

12) A new image synthesis technique was adopted to augment the ground truth training data to 

improve the network performance (i.e., 1% mIoU).  

13) A learnable swish activation was adopted to improve the segmentation performance by 

keeping a concise network which enables faster than real-time processing. This may give 

us the possibility to increase the testing input size image. 

The performance of STRNet accomplished outstanding performance on the given testing and 

training datasets, but a larger dataset will be required to monitor the many varying types of 

structures together using a single trained network. However, this problem can be resolved by 

grouping the structures, such as bridges, buildings, dams, etc. Then, depending on the specific 
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group, the user can collect data and train the network. The trained network can be installed beneath 

a reinforced concrete bridge deck or girders with a vision sensor and microcomputer as an example 

of a real structure application. The mixed precision training strategy must test for faster speed. 
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Chapter 6. Conclusion 

 

This chapter summarizes the achievements of this research and its technical contributions and 

discusses possible future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



109 | Chapter 6. Conclusion 

 

6.1 Summary and conclusion 

This thesis explored autonomous UAV applications and computer vision for SHM purposes. I 

initiated autonomous flights of the UAVs to detect structural damage using computer vision to 

overcome existing traditional approaches such as visual inspection and other physics-based models 

and data-driven approaches. The technical and non-technical contributions of this study are as 

follows: 

 

In Chapter 3, I introduced a new autonomous flight method of UAVs for SHM in GPS-denied 

areas: 

• Autonomous flight method of the UAVs was developed using PID controller. 

• A new 3-D pseudo map was proposed using a USB system to replace GPS signals for 

autonomous flight of the UAV in GPS-denied areas. 

• Concrete cracks were detected by deep CNN by processing the video collected by 

autonomous UAV system.  

• The detected cracks were localized by the geo-tagging technique using the location of the 

UAV within the 3-D pseudo map.  

• 96.6% accuracy, 91.9% sensitivity, and 97.9% specificity achieved by the algorithm.  

• The integration of the UBS-based UAV and the CNN-based detection algorithm was 

suggested and tested in the SHM field for the first time. 

 

In Chapter 4, I introduced a new hybrid pixel-level crack segmentation method by integrating 

image processing and deep learning in complex scenes: 

 

• A hybrid pixel-level crack segmentation method was developed by the integration of 

modified TuFF and Faster R-CNN to consider complex background scenes.  

• Original TuFF was modified to be applied to the crack segmentation problem. 

• The issue of the data preparation cost was partially resolved by removing the requirement 

of pixel-level labelling of ground truth data, which is very time-consuming. 
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• Crack quantification method was applied. This can calculate the number of pixels to 

eventually calculate the length and width of segmented cracks by the hybrid method. 

• 2.3 RMSE and 93% accuracy achieved with the help of the modified DTM and the 

skeletonization algorithm. 

In Chapter 5, I introduced an advanced deep learning method to segment cracks on complex 

scenes in a real-time manner: 

• STRNet was developed by carefully designing the entire network with advanced attend 

operator, STR module, attention decoder, and Focal-Tversky loss function. 

• To increase the number of training data, a new data augmentation method was added to 

synthesize ground truth pixel-level labelled image with a complex-scene image.  

• Stride is an important hyperparameter factor in small objects such as concrete cracks. An 

STR module was developed to effectively control this value between speed and accuracy. 

• The STRNet demonstrated superior performance compared to other published algorithms 

with 92.6% mIoU on high resolution images (1024×512) with 49.2 FPS. 

 

6.2 Future work 

There are some unsolved problems in this topic, and these should be investigated in future works. 

The following are some recommendations for future works: 

• The autonomous UAV algorithm should be implemented in large-scale infrastructures to 

consider actual environmental effects such as temperature, wind, and humidity.  

• For the damage detection algorithm, various types of damages should be investigated.  

• Obstacle avoidance method for autonomous flight of the UAV should be developed. 

• The remote charging system and the developed autonomous damage inspection system can 

be applied for the remote SHM task. 

• The automatic 3D damage map should be developed for better visualization and 

understanding of structure status. 
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