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Abstract 
 
   The magnetic and transport properties of various doped manganites from the series 

(La,Pr)1-x(Ca,Ba)xMnO3, and of the magnetic semiconductors Fe0.8Co0.2Si and 

Ga0.98Mn0.02As, have been investigated. 

In the manganites, the influence of doping on; (i) the evolution of the 

metal-insulator transition (MIT) with composition; (ii) the universality class of the 

magnetic critical behavior accompanying colossal magnetoresistance (CMR) in the 

vicinity of the MIT; (iii) the mechanisms underlying ferromagnetism across the MIT; 

and (iv) the correlation between a Griffiths-like phase and colossal magnetoresistance 

(CMR) has been investigated. Four different systems have been studied: La1-xCaxMnO3 

(0.18 ≤ x ≤ 0.27), La1-xBaxMnO3 (x ≤ 0.33), (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), and 

Pr1-xCaxMnO3 (x = 0.27, 0.29). In La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27), (magneto)resistance 

measurements narrow the compositionally modulated MIT to lie between 0.19 ≤ xc ≤ 

0.20 in the series studied. Comparisons between the latter and magnetic data provide the 

first unequivocal demonstration that (a) the presence of a Griffiths-like phase does not 

guarantee CMR, while (b) nor are the appearance of such features a prerequisite for 

CMR. These data also reveal that (c) whereas continuous magnetic transitions occur for 

0.18 ≤ x ≤ 0.25, the universality class of these transitions belong to that of nearest 

neighbor 3-D Heisenberg model only for x ≤ 0.20; beyond this composition, 

complications due to the emergence of a Griffiths-like phase occurs. In addition, (d) the 
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evolution of the MIT with composition supports the assertion that the dominant 

mechanism underlying ferromagnetism across the MIT changes from the ferromagnetic 

Super Exchange stabilized by orbital ordering in the insulating phase to Double 

Exchange in the orbitally disordered metallic regime. In La1-xBaxMnO3 (x ≤ 0.33), a 

phase diagram is constructed to include the occurrence of a Griffiths-like phase, and 

comparisons with the random bond diluted ferromagnetic J Ising model are presented. 

In (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), the origin of a Griffiths-like phase has been 

discussed in combination with previous neutron diffraction measurements, yielding a 

correlation between the emergence of such a phase and the relative volume fractions of 

the phase separated antiferromagnetic and ferromagnetic components. This correlation 

persists even when the recently estimated Double Exchange linked percolation threshold 

for manganites is exceeded. Finally in Pr1-xCaxMnO3 (x = 0.27, 0.29) the coexistence of 

ferromagnetism and insulating phases is discussed, and provides indirect support for the 

suggestion that the origin of ferromagnetism in the insulating regime is Super Exchange 

induced when Double Exchange is not dominant. 

In the magnetic semiconductors Fe0.8Co0.2Si and Ga0.98Mn0.02As, the scaling 

between magnetization and conductivity has been the subject of ongoing debate. In bulk 

polycrystalline Fe0.8Co0.2Si, a novel scaling between the anomalous Hall effect and the 

magnetization enables the anomalous Hall coefficient RS to be accurately determined. In 

turn, this enables the universality class for the transition to ferromagnetism to be 

established independently from the anomalous Hall conductivity. In an epitaxial 
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(metallic) Ga0.98Mn0.02As microstructure, the magnetization has been indirectly 

determined from the anomalous Hall effect. Subsequent analysis yields magnetic critical 

exponents consistent with the Mean-Field model, direct support for which had 

previously been lacking; the underlying interactions can indeed be treated within the 

framework of Landau Mean-Field theory. This in turn, validates the frequently adopted 

theoretical approach which predicts an intrinsic origin for the anomalous Hall effect in 

this system. 
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Chapter 1 
 
Introduction 
 
    Transition metal and related compounds have been extensively studied over the 

past several decades, particularly their structural, thermal, magnetic and transport 

properties. Such investigations revealed a range of responses, encompassing high-TC 

superconductivity [1], colossal magnetoresistance (CMR) [2-4], multiferroicity [5], and 

magnetic semiconductivity [6, 7], all of which continue to present fundamental 

challenges to the understanding of these complex materials. Figure 1.1 summarizes 

transport measurements on a number of these compounds, and serves to demonstrate not 

only the unusual response of these systems, but also their complexity.  

 

 

 

 

 

 

 
 
 
 
 
Figure 1.1 Temperature-dependent zero-field resistivity of various magnetic systems. 
The superconductor, YBa2Cu3O7-Δ, was prepared by Dr. X. Zhou.  
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    Nevertheless, there is a close correlation between such resistive characteristics and 

the ordered state that emerges at low temperature, particularly magnetic order. This 

correlation underlies the present study, which focuses on the magnetic and transport 

behavior of various Manganese (Mn), Iron (Fe) and Cobalt (Co) containing materials, 

with particular emphasis on the nature of the magnetic order they display and the critical 

exponents that characterize the accompanying phase transition. The two specific topics 

that will be covered include: first, CMR in manganese oxides, and second, the effects of 

doping semiconductors such as GaAs and Si with magnetic elements Mn, Fe, and Co.  

 

1.1 Colossal Magnetoresistance Manganites 

      

    In 1856, Lord Kelvin (William Thomson) discovered the magnetoresistance effect 

(MR) in Fe and Ni, viz., a resistance change induced by the application of an external 

magnetic field. This observation was qualitatively explained as follows: the application 

of a magnetic field in ferromagnets (partially) confines the magnetic moments in the 

direction of the field, consequently decreasing the scattering probability. This leads to 

the suppression of resistivity; hence the associated MR, Δρ = [ρ(H) – ρ(0)]/ρ(H), is 

negative [7]. More recently, considerable effort has been devoted to searching for 

systems which exhibit a large MR, as such materials would have a tremendous impact 

on modern electronics, particularly to the magnetic recording industry [8]. 
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    In conventional (magnetic) metals (Mn, Fe, Ni, Co, rare-earths, etc.), the MR is 

relatively small (typically < 5%) even at room temperature, which is far below the 

magnetic ordering temperature for the ferromagnetic transition elements. Consequently 

there are two areas of contemporary interest, the so-called giant and colossal MR 

materials; the MR in both of these systems has been interpreted using spin related 

mechanisms. “Giant” magnetoresistive structures are usually fabricated from alternating 

ferromagnetic and nonmagnetic layers, termed heterostructures, and their MR arises 

from a field-induced change of magnetization/spin direction of adjacent layers from 

parallel (low resistance) to antiparallel (high resistance) [9]. The pioneering work by 

Grünberg and Fert in this area led to them being awarded the 2007 Nobel Prize in 

Physics [10]. In contrast, CMR materials display a very large change in resistance 

induced by the application of a magnetic field in the vicinity of a metal-insulator 

transition (MIT), the temperature of which displays a marked field dependence as a 

consequence of the accompanying ferromagnetic to paramagnetic (FM-PM) phase 

transition [2-4]. A complete picture of CMR may also be important for the 

understanding of high temperature superconductivity, as CMR materials share 

considerable structural similarities (viz., a perovskites structure) with the high 

temperature superconducting cuprates (for instance the YBa2Cu3O7-Δ system), and both 

classes of materials often display semiconducting behavior at higher temperatures [11]. 

However, the superconductivity of the cuprates is replaced, typically, by a magnetically 

ordered ground state in the manganites [3, 4].  
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   An illustration of CMR behavior is reproduced in Figure 1.2 for a sample which 

forms part of the present study. 

 

 
Figure 1.2 Observation of CMR in single crystal La0.79Ca0.21MnO3. (a) The temperature 
dependent resistivity measured in various static magnetic fields indicates the occurrence 
of CMR. (b) The corresponding MR Δρ=[ρ(H)–ρ(0)]/ρ(H). (c) The measured 
temperature dependent magnetization under various magnetic fields, indicating the 
appearance of a FM-PM phase transition in close proximity to the occurrence of CMR. 
(d) The magnetization difference ΔM between the various measuring fields. Such peaks 
are essentially coincidental with the corresponding peaks in resistivity and MR. 
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CMR has been widely studied in manganese based oxides, particularly  

perovskite manganites characterized by the general formula A1-xBxMnO3, A being a 

trivalent rare-earth ion (i.e., La, Nd, Pr…) and B a divalent alkaline earth cation (i.e., Ba, 

Ca, Sr…) which substitutes randomly at the trivalent rare-earth ion “A” sites; x 

represents the substitution/doping level [3, 4]. Changes in doping level modulates some 

of  the Mn valence states form 3+ to 4+ (to maintain charge neutrality), leading to 

various interesting physical phenomena, CMR especially, an explanation of which 

remains contentious.  

    A qualitative explanation of CMR in the manganites was originally provided some 

50 years ago by Zener based on a spin-dependent transfer picture for charge carriers, the 

so-called Double Exchange mechanism (DE) [12], illustrated in Figure 1.3. In this 

introductory section a brief summary of this approach is given, the detailed physics of 

the manganites will be discussed in Chapter 4.  

    The physics underlying this mechanism is based on a picture of charge carriers (in 

essence, an eg electrons) hopping from Mn3+ ions to neighboring Mn4+ ions through the 

intervening O2- ion. This process is thus envisioned as the jump of an electron from a 

Mn3+ ion to an intervening O2- ion, accompanied by the simultaneous transition of an 

electron hopping from the O2- ion to the adjacent Mn4+ ion. There is, however, no 

mechanism through which the participating spin(s) can change orientation. In 

consequence, if the Mn spins are aligned parallel (as in a FM state), the transfer of 

conduction electrons occurs with a higher probability than in a disordered PM state, as 
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depicted below. As electron hopping underlies conductivity, the onset of ferromagnetism 

and metallicity are linked in this model [13].  

 

 

 

 

 

 

 

 

 

 
 
Figure 1.3 Schematic picture of the spin-dependent Double Exchange mechanism in 
Mn3+ – O2- – Mn4+ chains. 

 

    The disordered (PM) state, in which such electron hopping occurs with low 

probability, corresponds to the insulating/semiconducting state. As a corollary, the 

“brute force” alignment of spins by an applied field close to the FM ordering/MIT 

temperature, enhances the hopping probability considerably, thus the resistivity 

decreases dramatically with field in this regime, leading to the occurrence of a 

large/colossal MR. Thus one of, if not the most important predictions of the DE 

mechanism, is the coincident emergence of ferromagnetism and metallicity. 

site j - Mn4+    O2-  site i - Mn3+ 

  Time = t

  Time = t + Δt

site k – Mn4+    O2-  

site j – Mn3+ site i – Mn4+    O2-  site k – Mn4+    O2-  
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   While DE thus provides a qualitative explanation of CMR, more recent experiments 

indicate that this model fails at a quantitative level. In particular, DE alone has been 

shown to be unable to reproduce the large resistivity/low conductivity that characterizes 

the high temperature, disordered PM phase [14]. Moreover, it certainly does not provide 

an explanation of the coexistence of ferromagnetism and insulating behavior that is 

observed in some doped Mn perovskites [15]. Subsequently, explanations of CMR 

behavior have invoked spin-lattice coupling [16], spontaneous nanoscale electronic 

phase separation [3, 17], the emergence of a Griffiths-like phase [18-20], amongst 

others [3, 4], as physical mechanisms that contribute, if not underlie, this phenomenon. 

Nevertheless, while there appears to be current agreement that this is a percolation 

controlled effect, with much current attention, both theoretical (based on Monte Carlo 

simulations) [17] and experimental (using the optical or spectroscopic investigations, 

illustrated in Figures 1.4 and 1.5) [21-23], being focused on inhomogeneous, competing 

antiferromagnetic (AFM) and FM states, the precise mechanism responsible for CMR 

remains controversial. What is clear, however, is that manganese perovskite oxides 

possess strong electron-phonon interactions [24] and this has led to the conclusion that 

such materials represent an important class of strongly correlated electronic system, 

displaying a fascinating combination of coupling between charge, spin, orbital and 

vibrational degree of freedom [3, 4]. Correspondingly, there is a close connection 

between magnetic order and transport behavior, summarized in Figures 1.2, 1.4 and 1.5, 

a connection on which a substantial part of the present work focuses.  
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D 

 

 

 

 

 

 

 
 
Figure 1.4 Experimental and theoretical proposals for nanoscale phase separation. 
Figures (a) – (c) for La0.33Pr0.34Ca0.33MnO3 [21]. (a) The magnetic force microscopy 
images for cooling while (c) is for warming. (b) The resistivity measured on warming 
and cooling. (d) Proposed theoretical state for manganites in the CMR regime. FM 
clusters are locally formed, but with the random orientation of the order parameter. The 
insulator forms walls between the FM metallic regions.  
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(d) 

0 3 kOe

10 kOe 

50 kOe 90 kOe

30 kOe 

 
 

 
 
 
Figure 1.5 Application of imaging techniques to CMR compounds. Figures (a) – (c) are 
the dark-field images for (La1-yPry)1-xCaxMnO3, from [22]. (a) The coexistence of 
insulating and metallic regions at 20 K for y = 0.375. Figure (b) corresponds to y = 0.4 
at T = 17 K while (c) for y = 0.4 at 120 K. The latter shows the development of 
nanoscale charged-ordering (CO) domains at T > TC. (d) The Scanning Tunneling 
Spectroscopy images of the local electronic structure of La0.67Ca0.33MnO3 thin film from 
[23], obtained just below TC in magnetic fields of 0, 3, 10, 30, 50, 90 kOe from left to 
right and top to bottom.   
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1.2 Magnetic Semiconductors 

 

   A second topic, less extensively covered in this thesis, concerns magnetic 

semiconductors. Traditional Si, GaAs, Ge, or InAs based integrated 

circuit/semiconductor electronic devices function via the manipulation of the charge of 

the electron, whereas, in storage technology (magnetic tapes, hard disks, etc.) the 

relevant degree of freedom is the electron spin. Attempts to combine both the charge 

and spin of electrons have led to the emergence of the so-called field of “spintronics” 

[25]. Such a combination could have the important advantage of enabling the storage 

and processing of information to be performed simultaneously. The prototypical 

example is the use of electric current/field to control magnetization [26]. In this context, 

the effects of doping the magnetic elements Mn into GaAs [27] and Fe, Co into Si [28] 

have been the subject of numerous studies. The focus of the present work is on the 

physical (magnetic and magneto-transport) properties of materials, rather than specific 

devices such as diodes, transistors, etc. 

One of the materials that has been investigated is formed by the doping of the 

magnetic elements Fe and Co into Si, i.e., Fe1-xCoxSi. This family of compounds is not 

only interesting from the point of view of understanding complex materials, but it also 

has the potential for applications. Of the parent compounds, FeSi is a non-magnetic, 

narrow-gap (30 meV) semiconductor, with the latter term being adopted in the present 

work based simple on the criterion used by Faraday, viz., a negative temperature 
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derivative of the resistivity (dρ/dT < 0); CoSi is a diamagnetic semimetal with a 

temperature independent susceptibility [29]; however, the combined substitution of Fe 

and Co into Si leads to various types of magnetic order [29]. These ternary compounds 

also exhibit a large anomalous Hall effect, suggesting their use as magnetic field sensors. 

They also display a positive MR, Δρ = [ρ(H) – ρ(0)]/ρ(H) > 0, over a broad temperature 

range around the magnetic ordering temperature. The origin of this positive MR is 

controversial as it does not appear to be explained by current theories. Initially its origin 

was attributed to quantum interference effects rather than simple scattering [28]. This 

was based on the fact that Fe1-xCoxSi is a highly disordered ferromagnet with a low 

carrier density, so that the same electrons were responsible for both electrical 

conduction and magnetism. This was challenged subsequently by consideration of the 

Zeeman modification of exchange-split spin-up and spin-down bands [30]. The issue 

remains open.  

 

 

 

 

 

 

 
Figure 1.6 Observation of positive MR in Fe1-xCoxSi with x = 0.2. Zero field 
temperature dependent resistivity of Fe0.8Co0.2Si for both poly- (Manyala, et.al., [28]) 
and single-crystals (Onose, et.al., [30]). These data clearly confirm the presence of 
positive MR. 



 

12

A second, sub-category of materials considered here is formed by doping Mn into 

GaAs, so-called dilute magnetic semiconductors [6, 31]. This particular system is 

probably one of the most well studied magnetic semiconductors. Initial work in this 

field was performed by Ohno and co-workers at Tohoku University using Molecular 

Beam Epitaxy (MBE) techniques for introducing relatively small concentrations of 

magnetic elements into nonmagnetic semiconducting hosts [26, 27, 31, 32]. This led to 

dramatic modifications of the magnetic, transport, and optical properties in the presence 

of magnetic fields. Figure 1.7 (a) summarizes some of the structural changes 

accompanying doping in (Ga1-xMnx)As. On substitution, the spin S = 5/2 Mn ions 

provide both a magnetic moment and act as acceptor levels, providing holes in the 

valence band. These holes, in turn, facilitate Mn-Mn interactions, leading to the 

presence of carrier mediated ferromagnetism [6, 27, 33]. The phase diagram 

characterizing the relationship between carrier density and ordering temperature for 

various doping levels [31] is given in Figure 1.7 (b).  

Following the work by Ohno, numerous papers were published on this topic, 

including, for example, the idea of using electric fields to control ferromagnetism in 

(Ga1-xMnx)As [26]. Such experiments demonstrated conclusively that the application of 

a biasing voltage can change FM properties (specifically, the magnetic ordering 

temperature). From a technological standpoint, however, the widespread use of such 

materials in spintronic circuits/devices can only be achieved through the realization of 

room temperature ferromagnetism in them. A promising direction currently being 
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pursued is fabricating Fe/(Ga1-xMnx)As heterostructures, experiments on which have 

demonstrated the existence of a room temperature magnetization [34].  

 

 

Figure 1.7 Crystal structure and phase diagram for (Ga1-xMnx)As. Figure (a) shows Mn 
ions substitute directly into Ga ion sites. Figure (b) reproduces the phase diagram that 
characterizes the correlation between the ordering temperature TC and the charge 
carrier density, indicating carrier mediated ferromagnetism. 
 
 

The onset of ferromagnetism in (Ga1-xMnx)As, particularly at low Mn doping 

levels, has been treated traditionally within the framework of a long range interaction 

model, i.e., the Landau Mean-Field model [6, 33]; such interactions arise from the 

itinerant nature of the charge carriers, discussed in more detail in Chapter 5. However, 

prior to the present study, there has been no direct confirmation of the Mean-Field 

nature of the prevailing interactions; specifically, measured critical exponents that 

conform with the corresponding model predictions. This thesis will, in part, address this 

issue, in particular for a photo-lithographically prepared microstructure, using detailed 

magneto-transport measurements.     

(a) 
(b) 
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    In summary, this thesis focuses principally on the subject of CMR in manganites, 

and to a lesser extent, magnetic semiconductors, with emphasis on their magnetic and 

transport properties, and correlations between them. Following this introduction, a 

second chapter reviews the theoretical background, concentrating on magnetic phase 

transition theory and its prediction for measured parameters such as the dc 

magnetization and ac susceptibility; this is complemented by a discussion of a proposal 

for an “unconventional” approach to scaling behavior based on magneto-transport 

measurements, specifically, the anomalous Hall effect (AHE). The third chapter surveys 

the use of a Quantum Design Physical Property Measurement System (PPMS) Model 

7000 Magnetometer in measuring dc/ac magnetic properties, along with the longitudinal 

resistivity and the Hall effect. This is followed by a fourth chapter which presents the 

main results obtained on CMR manganites La1-xCaxMnO3, La1-xBaxMnO3, 

(La1-yPry)0.7Ca0.3Mn16/18O3 and Pr1-xCaxMnO3. These include the influence of the doping 

level (x) on the MIT, the emergence of a Griffiths-like phase, and the critical 

exponents/universality class accompanying ferromagnetism. The next chapter presents 

work on the magnetic semiconductors Fe0.8Co0.2Si and Ga0.98Mn0.02As, where emphasis 

is placed on establishing the correlation between magnetism and transport behavior and 

the acquisition of critical exponents from magneto-transport measurements. The thesis 

concludes with a summary of the principal conclusions and the outlook for future work.  
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Chapter 2 
 
Phase Transition Theory 
 
    Given the close proximity of the magnetic transition temperature with characteristic 

features in the transport properties (the first order derivative resistivity d/dT, for 

example) in a wide range of magnetic systems, including doped manganese perovskites 

and magnetic semiconductors, the influence of the nature of the former on the latter – 

particularly its field dependence – has emerged as an important topic of study. 

 

2.1 Conventional Approaches for the Determination of Critical 

Exponents and Universality Class 

 

    A phase transition, the transformation of a system from one phase to another, is 

often accompanied by an abrupt change in one or more physical parameters, such as the 

specific heat, magnetization, susceptibility, resistivity, etc. Generally, two phases will 

coexist if the free energies (F) of the phases are equal; however the derivative(s) of this 

free energy will not in general be equal in the two phases. Early characterization of 

phase transitions by Ehrenfest was based on which derivative of F inherited a 

discontinuity at the transition; current approaches classify transitions as discontinuous 

(if a first derivative of F exhibits a discontinuity), otherwise as continuous [35].  
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2.1.1 Landau Mean-Field Theory 

 

    Based on the assumptions that the free energy of a system is analytic and displays 

the symmetry of the Hamiltonian, Landau argued [36] that the free energy, )m,T(F , as 

a function of temperature (T) and (reduced) magnetization (m) (where 

)0(M/)T(Mm SponSpon , )T(MSpon  being the spontaneous magnetization at different 

temperatures) near a continuous/second order magnetic phase transition could be 

expressed as a Taylor-like series expansion in m. The latter (m) assumes the role of the 

order parameter near such a transition (a convenient property of the system, being zero 

above the ordering temperature, TC, and non-zero below it). The presence of inversion 

symmetry dictates that this power series is even, so that the free energy – the Helmholtz 

free energy in this case – reads: 

.......m)T(am)T(am)T(a)T(F)m,T(F 6
6

4
4

2
20   2-1 

Since m is small in the “critical” region near TC, this series can be truncated to: 

4
4

2
2 m)T(am)T(a)m,T(F   2-2 

The equilibrium condition then yielding: 

2
42

3
42

T

m)T(a2)T(a0m)T(a4m)T(a2
m

F




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The condition for stability (correspondingly) reads: 

0m)T(a6)T(a
m

F 2
42

T

2

2





 2-4 

At temperatures below the ordering temperature TC, hence m > 0, a simple 
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resubstitution of equation (2-3) into equation (2-4) yields:    

0)T(a0m)T(a0m)T(a6m)T(a2 4
2

4
2

4
2

4   2-5 

Resubstitution back to equation (2-3) then indicates 0)T(a2   for T < TC (m > 0). 

Immediately above TC, where the random alignment of moments yields m = 0, the 

stability condition reads:  

0)T(a0m)T(a6)T(a
m

F
2

2
42

T

2

2



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 2-6 

These arguments then indicate that )T(a 2  changes sign at TC, hence, in the spirit of a 

Taylor-like expansion, it can be written as: 

),TT()T(a C02   00   2-7 

With the application of an external magnetic field H, the corresponding (Gibbs) free 

energy becomes:  

Hm.......m)T(am)T(am)T(a)T(F)m,T(G 6
6

4
4

2
20   2-8 

in which the last term represents the energy of interaction of the magnetization M with 

the applied field H. Following the same procedure indicated above, the so-called 

equation of state becomes:  

2
4C0 m)T(a4)TT(2m/H   2-9 

Thus plots of H/M versus M2 – referred to as Arrott plots [37] – should display a 

positive slope to ensure the stability condition ( 0)T(a 4  ), viz., the stability of the 

continuous (second order) transition. Failing to satisfy this criterion results in the 

occurrence of a first order/discontinuous transition. The Arrott plot criterion thus 

enables the order of the transition to be established directly from magnetization data. 
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This latter criterion, also referred to as the Banerjee Criterion [38], has seen wide use. 

Other criteria used to confirm the presence of a first order/discontinuous transition 

include the observation of hysteresis in the transition itself (which can be seen in both 

the magnetic and transport data), and the appearance of “S”-shaped magnetization 

curves near the transition [38, 39]. The above discussion, incidentally, is also applicable 

to ferroelectric systems, in which the relevant experimental variable in free energy is the 

electrical polarization (P) [40]. The application of the above – or some suitable 

modification – might generate new insights into the recently discovered multiferroic 

materials (materials that simultaneously exhibit ferromagnetism and ferroelectricity). 

    Another key use of Arrott-plots is in establishing the appropriate equation of state, 

specifically by the observation that plots of H/M versus M2 result in a series of parallel 

straight lines in some systems, the itinerant ferromagnet ZrZn2 [41], for example, Figure 

2.1 (a). Further, in such plots, the intercepts on the vertical axis yield the spontaneous 

magnetization at the appropriate temperature, while those on the horizontal axis the 

inverse initial susceptibility; the isotherm passing through origin, the critical isotherm, 

corresponds to TC, The latter can be used subsequently to confirm the applicability of a 

Mean-Field approach, as follows. Below TC, in zero applied field (H = 0), the left side 

of equation (2-9) vanishes, so: 

2/1,)TT(m)TT(m CC
2    2-10 

i.e., the temperature dependence of the spontaneous magnetization.  

At the ordering temperature T = TC, where 0)TT(2 C0  : 
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3,HmmH /13    2-11 

yielding the field-dependence of the magnetization along the critical isotherm. 

Finally, above the ordering temperature in small applied fields, so m2 ≈ 0: 

1,)TT()T(/1m/H Ci    2-12 

predicting a linear dependence of the inverse initial susceptibility on temperature 

immediately above TC in the disordered PM phase. Equations (2-10) – (2-12) yield 

various power-law exponents, more generally termed critical exponents, with β = 1/2, δ 

= 3, γ = 1 in the Mean-Field approach. ZrZn2 is a ferromagnet that has been shown to 

display such Mean-Field characteristics [41].  

    It is possible to express all three of the above results in a single equation [42], viz.,    














  2/3

m

i2/1
mmi

t

H
Ft)t,H(M  2-13 

However, the general behavior of the function F(x) – referred to as the scaling function 

– cannot be determined, simply its asymptotic behavior in the limits tm → 0 (where tm = 

(T–TC)/TC is the reduced temperature) and Hi → 0 (Hi = Ha–NDM being the internal 

field, Ha the applied field and ND the demagnetization factor). Specifically, for T < TC 

and Hi = 0, the argument of the function F_ is a constant (albeit zero), thus the function 

itself is a constant, yielding: 

2/1,tM 2/1
m   2-14 

as in equation (2-10). Immediately above TC in small applied fields, a linear response of 

the magnetization to field is expected, i.e., the leading term in F+ is linear in its 

argument, so that 
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in agreement with equation (2-12) for the temperature dependence of the inverse initial 

susceptibility (1/χi). Finally at TC, i.e., along the critical isotherm, where tm = 0, for the 

magnetization M to assume a definite form (i.e., to be measurable), the dependence on 

tm must vanish, leading to: 

3,H
t

H
t)0t,H(M 3/1

i

3/1

2/3
m

i2/1
mmi 








  2-17 

as deduced earlier (equation (2-11)) for the dependence of magnetization on field along 

the critical isotherm. 

    While the general dependence of the function F(x) on its argument cannot be 

found theoretically, it can be deduced experimentally by plotting 2/1
mt/M  against the 

argument 2/3
mi t/H  of the scaling function. Such plots, reproduced in Figure 2.1 (b) 

for ZrZn2 [41], are not only regarded as a final, comprehensive test of the applicability 

of the chosen exponents, but the form of the two “branches” (one for data acquired 

above TC (+) and the other below (-)) yield the general form of this scaling function. 

Note that, in general, these critical exponents β, γ and δ are related using the so-called 

Widom relation  )1(   [35], clearly satisfied for Mean-Field exponents. This 

relationship, essentially ensuring thermodynamic stability (actually  )1(   ) is 

satisfied as an equality if the scaling hypothesis assumptions are satisfied. 
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Figure 2.1 Arrott plot and scaling testing of the magnetic isotherms near TC for ZrZn2. 
(a) The isotherms are measured in 0.4 K intervals and 0.2 K near TC. The bond line 
passing through the origin yields TC ≈ 27.5 K. (b) Scaling test using TC and Mean-Field 
exponents. The region H < 50 Oe has been excluded to avoid systematic errors due to 
multiple FM domains inside the sample. The correct choice of TC, β, and δ causes the 
data to collapse onto single curves for T < TC and T > TC. 

(a) 

(b) 
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2.1.2 Modification to Mean-Field Theory 

 

The Mean-Field model, however, frequently fails to quantify the onset of 

ferromagnetism, hence magnetic critical behavior in many systems, pure Ni and Fe, for 

example. This failure is usually attributed to the fact that the relevant interaction are of a 

finite range, rather than being infinite range as underlies the Mean-Field approach. In 

attempt to modify equation (2-9) to account for such differences, Arrott and Noakes 

suggested a modified equation of state of the form [43]:  
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where M1 is a material specific constant. The appropriate choice of the “modified” 

exponents β and γ are those that result in plots of (M/M1)
1/β versus (Hi/M)1/γ being linear, 

enabling estimates of the spontaneous magnetization, the inverse initial susceptibility 

and the Curie/ordering temperature TC to be estimated in an analogous manner to that 

outlined earlier. These are subsequently utilized in the following way. 

    In a more comprehensive approach to the problem of the magnetic response near a 

continuous PM-FM transitions, Kadanoff [42], Widom [44] and amongst others [45], 

proposed a general scaling equation of state – a generalization of equation [35, 42] – 

relating the (reduced) magnetization m to the linear scaling fields tm and hi ~ Hi/TC: 


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As previous, the general behavior of function F(x) remains unspecified, although, using 
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the corresponding arguments to those presented earlier, its asymptotic behavior for 

small values of the scaling fields tm and hi predict the following power-law 

dependences: 

For the spontaneous magnetization MS(T) = MS(Hi=0, T), and reduced m in the ordering 

temperature range: 

)0t,TT(tB)t,0(m;
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Along the critical isotherm (T = TC, tm = 0), by using the Widom equality (+ = :    
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While for the dependence of the initial susceptibility 0Hii i
)H/M()T(   on the 

reduced temperature (tm): 

)TT(Ct
h

m
)t(;1

T

T
)T( Cmmi

C
0i 











  


 2-22 

These power laws also follow from the corresponding limits of the modified 

Arrott-Noakes equation of state. The estimates of MS(T), M(Hi,T) and χi(T) deduced 

above are then tested against these power-laws predictions, enabling “refined” estimates 

for the exponents to be made. This whole process is repeated, with small adjustments in 

TC, until self consistency is achieved [46]. A final comprehensive test of both exponent 

values and ordering temperature TC estimates is provided by plotting 
mt/M  against 

the argument of the scaling function, 
mt/M , with good data collapse onto two 

branches (one for data acquired above TC (+) and the other below (-)), providing final 

confirmation. While it is well recognized that the scaling law behavior is asymptotic in 
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nature, viz., hi→0, tm→0, experimental data in this region is usually excluded from 

analyses. There are two specific reasons for doing this. First, scaling law behavior is 

based on the contributions from critical fluctuations, while the measured response 

includes contributions from both critical and regular/technical contributions. The former 

– designated the singular contribution – underlies equations (2-19) – (2-22) – with 

which the relevant data should be compared; the latter, which arise from technical 

processes such as domain wall motion and coherent rotation, thus need to be excluded. 

This is accomplished by applying fields which drive the system to technical saturation 

(as might be anticipated), extrapolations from which eliminate the corresponding 

contribution. The necessity of this procedure notwithstanding, there is no quantitative 

criterion that can be utilized in this context that ensures that such conditions have been 

achieved (at least for magnetization data; the corresponding problem in ac susceptibility 

data is discussed later). Second, for samples of non-uniform shape (not ellipsoids of 

revolution, for example), uncertainties related to inaccurate demagnetization 

factors/fields arise, which impact primarily data at low field. Again no quantitative 

criterion has been articulated, but typically data for which the demagnetization field 

exceeds between 25 to 40% of the applied field are excluded. 

    An independent appraisal of scaling behavior near a continuous/second order 

PM-FM transitions can also be obtained through measurements of the ac susceptibility 

in various superimposed static magnetic fields (Ha) [46-48]. The application of such 

fields enables a series of critical susceptibility maxima to be resolved, the temperature 
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(Tm) of which increases while the amplitude ((Ha,Tm)) decreases as Ha is increased. 

Such behavior agrees with the general predictions of the fluctuation-dissipation theorem 

[35], while the specific field/temperature-dependence of these susceptibility maxima 

can be deduced from equation (2-19). The latter, used in conjunction with the Widom 

equality, yields:  
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Here G(x) is the derivative of F(x) with respect to its argument, and 
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i .  Equation (2-23) predicts that the locus of 

these susceptibility maxima (maxima emerging when the susceptibility is measured as a 

function of temperature in fixed applied field, so Hi/hi = constant) in the (H-T) plane is 

given by: 
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This condition is satisfied if the argument of the function – and hence the function itself 

– is a constant, leading to:  

1/1
imi h)t,h(   2-25 

This power-law dependence of the susceptibility peak amplitude on internal field Hi/hi 

enables the critical exponent δ to be estimated direct, i.e., it is independent of the choice 

of TC. Such a result represents a distinct advantage over conventional 

magnetization-based approaches, for which the determination of TC is a prerequisite 

prior to extracting estimate for δ from the data take along critical isotherm. This result 
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also plays a pivotal role in assessing the behavior of systems displaying a Griffiths-like 

phase, as discussed in Chapter 4. 

    It also follows from equation (2-24) and the subsequent discussion that 


mi t/h  

is a constant at the susceptibility peak, thus the field dependence of the (reduced) peak 

temperature is given by:  

)/(1
iCCmm )h(T/)TT(t   2-26 

This power-law prediction enables the “cross-over” exponent (γ + β) to be estimated, 

although here a value for TC is obviously needed. As mentioned earlier, in the context of 

the fluctuation-dissipation theorem, the response is thermally dominated above the 

temperature of the susceptibility maximum, as opposed to being field dominated below 

it. Finally for Hi/hi = 0, )0(G   is a constant, thus equation (2-23) lead to the 

temperature dependence of the peak susceptibility being given by:  

 mm t  2-27 

providing a third power-law prediction from which the exponent γ can be estimated, 

again once a value for TC has been made.  

    A comprehensive assessment of both the critical exponents and ordering 

temperature TC acquired from ac susceptibility data can be made in an analogous 

manner to that carried out for magnetization data. Here, the scaling form summarized in 

equation (2-23) predicts that such data, when normalized to its peak value (χ(hi,Tm)), 

should fall on a universal curve when plotted against the argument (


mi t/h ) of the 

scaling function (actually, its inverse, )/(1
im )h/(t  , which preserves the peak structure 
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[46, 47]).  
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These exponent estimates can also be assessed in terms of the Widom equality = 

(-1). 

    The types of measurements described above, and their subsequent analysis, are 

used extensively in later chapters. For the present, Figure 2.2 (b) illustrates the use of 

equation (2-28) to the corresponding data acquired on the colossal magnetoresistive 

pyrochlore Tl2Mn2O7 [47]. Here the inclusion of data for which the critical peak 

structure is well resolved (specifically for applied fields exceeding about 500 Oe in this 

material) ensures that the critical contribution dominates the measured response. 

In summary, the above discussion details the manner in which self consistent 

estimates for both critical exponents and ordering temperatures can be extracted from 

conventional magnetization data, and less widely exploited temperature and 

field-dependent ac susceptibility measurements. Similar ideas can also be applied to 

ferroelectric systems, where the appropriate variables are electrical polarization and 

susceptibility/dielectric constant. 
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Figure 2.2 Scaling behavior from magnetization and ac susceptibility in two selected 
magnetic systems. (a) Magnetization scaling in Ni with TC = 626 K, δ = 4.4, γ = 1.31, β 
= 0.39, the curve on the left-hand side is for T < TC while the right-hand side is for T > 
TC [37]. (b) Ac susceptibility scaling in the CMR Tl2Mn2O7 pyrochlore compound with 
TC = 120 K, δ = 4.7, γ = 1.31, β = 0.38 [47].   

(a), Ni 

(b),  

TC = 120 K, δ = 4.7 

γ = 1.31, β = 0.38 

TC = 626 K  
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2.1.3 The Specific Heat and the Correlation Length 

 

    While not the principal focus of the present work, for completeness it should also 

be mentioned that specific heat and correlation function measurements are also 

important techniques, frequently used to characterize magnetic phase transitions with an 

accompanying set of critical exponents.  

    Specific heat measured at a constant pressure, CP(T), typically displays what is 

termed a λ-shaped anomaly near a phase transition [40]. The most well-known example 

probably is the 4He system, in which the term “λ” transition was used to characterize the 

normal fluid 4He-I to superfluid 4He-II transition [49]. Similar characteristics also 

appear in magnetic systems. Near the ordering temperature TC, CP(T) varies essentially  

logarithmically with temperature away from the critical temperature, TC, viz., 

CP TTln)T(C  . Specifically:  


















)TT(TTA

)TT(TTA
)T(C

CC

CC

P  2-29 

Here α is the associated critical exponent (again characteristic of the predominant 

interactions in different magnetic systems). It should be noted, within the context of the 

present work, that the critical exponent deduced from resistive anomalies (d/dT) near 

the magnetic critical point, viz., CTTln)dT/dln(   [50], has been 

demonstrated to be consistent with the heat capacity exponent [35, 49]. 

    The correlation between spins located at different lattice sites in magnetic systems 

is characterized by the so-called spin-spin correlation length ξ. The correlation length  
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provides a measure of the range of spin order in a magnetic system at a given 

temperature, i.e., if the distance r between two spins is smaller than the scale set by ξ, 

the motion of these spins be correlated. Clearly as the temperature is lowered towards 

Tc from above, the correlation length ξ becomes larger, as confirmed indirectly from the 

neutron scattering experiment [35]. Near a continuous/second order magnetic phase 

transition, the spin-spin correlation length ξ(T) exhibits – as do other characterisitc 

quantities – a power-law dependence on reduced temperature tm, diverges at TC:  

 mt)T(  2-30 

    In summary, the critical exponent values predicted by various model approached – 

Mean-Field, nearest-neighbor isotropic 3-Dimensional Heisenberg model, etc., are listed 

in Table 2.1 [51-53]. Magnetic systems which display the same exponents are said to lie 

in the same universality class, a situation that occurs despite such systems having quite 

different structural properties and ordering temperatures. The latter illustrates the 

unifying nature of the scaling concept outlined above. 
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Table 2.1 Critical exponents predicted for various models. 

  

Critical Exponents Β γ δ 

Acquisition Method mS tlogMlog 

T < TC   

mtloglog 

T > TC   

iHlog1Mlog 

T = TC   

Mean-Field 0.5 1 3 

3D Heisenberg 0.367 1.388 4.783 

3D Ising 0.326 1.238 4.789 

3D XY 0.349 1.318 4.780 

Experimental value 0.3-0.4 1.2-1.4 4.2-5.0 
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2.2 Existence of a Griffiths-like Phase and its Influence on the 

Universality Class 

 

    For “uniform” ferromagnets, the power-law predictions described earlier have been 

tested extensively, and a range of values estimated for the corresponding critical 

exponents, as summarized in Table 2.1. However, there are a growing number of 

examples of FM system which display continuous PM-FM transitions accompanied by 

pseudo-critical behavior for which the accompanying “exponents” do not following any 

specific model predictions [18, 19, 54, 55]: the universality class is unknown. Such is 

the response of systems displaying a so-called Griffiths-like phase (GP) [56], a behavior 

linked with the presence of disorder. 

    In Griffiths’ original treatment of a diluted two/three dimensional Ising 

ferromagnet [56], nearest neighbor exchange bonds of strength J occurred with 

probability p, with disorder being introduced via bonds of zero strength and probability 

(1-p). Below the percolation threshold, pc, of the relevant lattice there is zero probability 

of establishing an infinite percolating “backbone” (in the language of continuous 

transitions, the correlation length does not diverge), correspondingly cooperative 

ferromagnetism is not established. However, for p > pc, FM order is established, but not 

unexpectedly at a temperature TC(p) below that of the undiluted system [TC(p=1) = TG]. 

The temperature interval TC(p) < T < TG defines a so-called Griffiths regime, a regime 

in which the system response is neither simply PM/Curie-Weiss (CW)-like nor is an 
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infinite percolating chain (the equivalent of a divergent correlation length) established; 

here the response is dominated by the largest cluster/correlated volume, leading to a 

temperature-dependence for the inverse susceptibility regarded as characteristic of such 

a phase [57], viz.: 

  1Rand
C

1 )TT( , 10   2-31 

Here Rand
CT  is the associated random transition temperature, and λ is an exponent 

characterizing the strength of the Griffiths-like phase. Experimentally, the inverse dc/ac 

susceptibilities (1/χ(T)) (measured in both zero field and in various small static biasing 

fields) are frequently employed to identify such a behavior via a characteristic 

depression evident for some of these data below the higher temperature CW line; an 

example of such behavior is shown in Figure 2.3 [58, 59]. However, as there is an 

ongoing debate as to whether such characteristics originate from magnetic disorder of 

the type originally envisaged by Griffiths, rather than from, or example, a polaron liquid 

[18 -20, 58], the term Griffiths-like has been adopted in related discussion.   

This figure also shows the suppression of this Griffiths-like phase character by 

external fields of various strengths, a result can be understood in the following way. As 

the external field in the conjugate field for uniform ferromagnetism, increasing its 

magnitude promotes the growth of the latter at the expense of its disordered Griffiths 

counterpart. Increasing the external applied field thus causes the response to eventually 

revert to a conventional CW form. Another feature of Griffiths’ original (nearest 

neighbor) model is that the growth of the correlation length necessarily terminates at a 
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missing bond. The application of external fields near the ordering temperature can, on 

the basis of the same conjugate field argument presented above, facilitate “frustrated” 

correlations to hop over the missing/unoccupied site, viz., the uniform applied field 

causes the magnetization in two regions adjacent to the site of a missing bond to 

become aligned/correlated. This effect is manifested by a sharp increase in 

magnetization in low applied magnetic fields along the critical isotherm. Experimentally, 

this low field regime is usually excluded from critical analysis for technical reasons 

(uncertainties in demagnetization corrections, domain wall effects, etc.,) [46], and the 

slower increasing of the magnetization with field (once technical saturation has been 

achieved beyond this low field region) translates into significantly increased estimates 

for the “exponent” δ (for example, δ = 28 has been reported in a La0.7Ca0.3MnO3 single 

crystal displaying GP-like features [18]). 

 While the disorder relevant to the formation of a Griffiths-like phase in Tb5Si2Ge2 

[58] (Figure 2.3 (a) summarizes its response) has been linked to the presence of FM 

clusters embedded into the PM background in the relevant (Griffiths) region, its origin 

in other systems such as doped manganites perovskites [55, 59-61], remains a subject of 

discussion. This issue is returned to later. 
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Figure 2.3 The observation of Griffiths-like phase in different systems. (a) In 

magnetocaloric compound Tb5Si2Ge2 [58], temperature dependent inverse 

susceptibilities measured under various static fields, as indicated in the figure, 

measured on warming. The inset shows the fitting to the Griffiths-like phase and PM 

states respectively at 1 Oe. (b) The inverse ac susceptibility, measured on warming 

following zero-field cooling under various (nominal) applied fields in La0.73Ba0.27MnO3 

[59]. The insert reproduces the zero field data on a log-log scale, with 
Rand

C
Rand

Ck T/)TT(t   and Rand
CT  = 261 K; this form tests the power-law, equation 

(2-31), and yields  ~ 0.17. 

(a) 

(b) 

tk 
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2.3 Scaling the Anomalous Hall Effect  

 

Thus far discussions regarding the nature of the phase transition and its 

universality class have focused on conventional approaches based on measurements of 

the magnetization and ac susceptibility, heat capacity and correlation length. As an 

intriguing corollary, the question arises as to whether magnetic critical behavior – 

specifically the universality class – can be deduced from magneto-transport data. In this 

context, following initial work by Craig, et.al., [50], numerous attempts have been made 

to establish such links in a variety of systems, including Ni [50] and (GaMn)As [62], 

amongst others [63]. Such studies, however, have focused almost exclusively on the 

temperature dependent of the zero-field resistivity, from which estimates of a single 

exponent – that describing the behavior of the heat capacity, mentioned earlier – have 

been deduced [50]. However, no comprehensive appraisal of the universality class of a 

magnetic phase transition, i.e., one comparable to that provided by the techniques 

mentioned earlier, has been made to date based solely on magneto-transport data.  

 This question is a fundamental one in the characterizing of correlations between 

magnetism and transport in the magnetic materials. Microscopically, such a correlation 

can be understood by introducing a coupling between, typically, itinerant s electrons 

(responsible for electrical conduction) and localized d electrons (responsible for the 

magnetization), viz., the s-d exchange interaction [64].  
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Such issues are timely, indeed controversial, as recent debate centered on scaling 

between magnetization and resistivity/conductivity [28, 30, 65] confirms. The latter 

frequently focus on the occurrence of the Hall effect in magnets as it reflects 

contributions from the magnetization, as, for example, in discussions on manganites 

[65]. A concern central in this debate is whether the Hall resistivity/conductivity or the 

anomalous Hall conductivity is the parameter linked directly with the magnetization, 

and, subsequently, how to best characterize this link/proportionality. These topics play a 

key role in any discussion of the correlation between magnetism and transport in 

magnetic materials, and form the basis of part of this thesis. 

    The Hall effect continues to be an important topic in condensed matter physics 

(two Nobel Prizes have been awarded for research on the topic of the Integer/Fractional 

Quantum Hall Effect [10]), and also plays an important role in modern electronics. It 

was discovered by Edwin Hall in 1879 at Johns Hopkins University [66]; Hall 

demonstrated the appearance of a transverse voltage or electric field in a metal in 

response to a longitudinal electric current and a perpendicular magnetic field. In 1880 

Lord Kelvin [67] stated that “this is by far the greatest discovery that has been made to 

the electrical properties of metal since the time of Faraday – a discovery comparable 

with the greatest made by Faraday.”  

    Such a transverse voltage arises in all materials – at least in part – from the 

deflection of charge carriers by the Lorentz force [40, 49, 64]: 

)(q BvEF d   2-32 
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Here q is the carrier charge, frequently the electronic charge, E is the electric field, vd is 

the drift velocity, and B is the magnetic induction. This deflection leads to the 

accumulation of charge carriers on edges of the sample, which generates an electric 

field EHall. When charge carriers experience a force from this latter electric field that 

balances the Lorentz force, the system is in a quasistatic equilibrium state.  

 

 

 

 

 

 

 

 

 
Figure 2.4 Schematic illustration of magneto-transport measurements. VHall(H) 
represents the Hall voltage, Vxx(H) is the longitudinal voltage which yields the 
corresponding longitudinal resistivity ρxx, as mentioned in the text. 
 
 

    In a semi-microscopic approach, the electric current I can be can be expressed as  

I = nqAvd, where n is the carrier density, A = wd is the cross sectional area of a sample 

with width w and thickness d; with q = -e for electron conduction. With 
nqAd

I
v  , the 

Lorentz force q1 dF v B  in the above geometry can be rewritten as: 
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nwdnqA

e BIBI
F1   2-33 

The presence of the Hall electric field, EHall, and the accompanying Hall voltage 

VHall(H), due to carrier accumulation, results in a force F2: 

Hall
Hall

qV ( )
q

w2

H
F E   2-34 

In equilibrium F1 = F2, so: 

HallqV ( )

nwd w1 2

HBI
F F    2-35 

Thus Hall voltage VHall(H) reads: 

HallV ( )
nqd

BI
H   2-36 

This yields the Hall resistivity ρxy: 

Hall
xy 0

V ( )
d R

nq

H B
B

I
     2-37 

Here the Hall coefficient 
nq

1
R 0   yields information on both the carrier type (R0 will 

be negative (n-type) when q = -e and conduction by electrons dominate; in contrast, 

hole conduction (q = +e) yields a positive R0 (p-type)), and density, n, from the 

magnitude of R0 [40, 49, 64]. Its measurement thus plays an important role in the 

modern materials analysis.   

    Subsequently to the initial discovery, Hall (1881) found that the “Hall” resistivity 

(ρxy) in FM metals (Ni and Co) acquired an extra term which depended on the magnetic 

moments/magnetization of the samples; this extra term contribution is referred to as the 

anomalous Hall effect (AHE) [66]. The precise nature of this latter contribution, 
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however, remains controversial, as recent reports confirm [68]. Nevertheless, the 

evolution of AHE with temperature/field can be linked empirically – but directly – with 

the behavior of magnetization, M, via [69]: 

MR4BR S0xy    2-38 

In this equation, B = [H + 4π(1−ND)M], and with the applied field H oriented 

perpendicular to the current flow, the demagnetization factor ND ≈ 1 for the typical Hall 

sample geometry measurement, when B ≈ H. RS is the anomalous Hall coefficient; it 

exhibits strongly temperature/field-dependent features, reflecting various types of 

magnetic order [68-70]. As the parameter central to the later analysis, its’ accurate 

evaluation is imperative; this, in turn, implies a careful subtraction of the contribution 

from R0, a procedure outlined in detail below. Certainly, estimates for R0 can be made 

with reasonable accuracy using a simple extrapolation technique in systems where the 

magnetization can be saturated by available field over the region of interest. However, 

when such a situation is not realized, a modified approach has to be adopted, as 

discussed in detail later for the Fe0.8Co0.2Si system. 

Using Ohm’s law based expressions for the components of the conductivity tensor 

relevant for the Hall/longitudinal conductivity measurements [49, 70], viz., 
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then in situations where ρxy << ρxx, these equation can be simplified: for the Hall 
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conductivity to 
2
xx

xy
xy 


 , and longitudinal conductivity to 

xx
2
xx

xx
xx

1







 , 

suggesting the Hall conductivity ( xy ) in magnetic systems can be expressed as: 

2
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(Note that in the case where ρxy is comparable to ρxx, a higher order Taylor-like 

expansion has to be employed). Thus in ferromagnets, the total Hall conductivity xy  

can be written as [70, 71]: 

A
xy

O
xyxy   2-41 

Here 2
xx

0O
xy

HR


  is the ordinary Hall conductivity, so that the following expression 

for anomalous Hall conductivity A
xy  ensues:  

2
xx
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xyxy

A
xy

MR4


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As is clear from this equation, an accurate determination of the anomalous component 

A
xy  – and hence an evaluation of its dependence on the magnetization M – relies on a 

careful subtraction of the ordinary component,
2
xx

0O
xy

HR


 , an issue discussed below. 

Two additional – and important – points also emerge for this equation.  

    First, once the system’s magnetization is measured, it provides a means of 

identifying the dependence of RS on ρxx, a result can be used to establish the dominant 

mechanism underlying the AHE in the system [72]. This will be demonstrated for the 

magnetic semiconductor Fe0.8Co0.2Si later in this thesis. To proceed further, the issue of 

the dependence (or lack thereof) of RS on the longitudinal resistivity, ρxx, also needs to 
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be addressed. This concern has been raised repeatedly since the initial reports of AHE; 

RS has various been taken as constant [73], or to display either a linear [74] or a 

quadratic [75, 76] dependence on ρxx, reflecting the dominant mechanism involved. As 

demonstrated below, this issue can be addressed in a manner analogous to that used in 

scaling approaches for the magnetization, viz., by introducing a function: 

2

xxSxxS /R4),R(G   2-43 

then equation (2-42) can be rewritten as ),R(GM xxS
A
xy  . Correspondingly, a plot 

of A
xy  versus M will not only yields the functional form of ),R(G xxS   directly, but 

will also indicate the appropriate dependence (if any) of RS on ρxx (i.e., if RS varies as 

Q

xx
 , a plot of )M/log( A

xy  versus )log( xx  will yield the index Q, and hence the 

required dependence of RS). The detailed application of this approach is demonstrated 

for Fe0.8Co0.2Si in the first section of Chapter 5. 

Second, essentially the converse of the above, if the dependence of RS on ρxx can 

be, or has been, established by other means [77], then it is possible to determine the 

behavior of the magnetization M from measurements of A
xy . The latter has important 

consequences in systems with reduced dimensions/dimensionality for which the 

associated magnetic signal is weak. This approach will be applied to an epitaxial 

Ga0.98Mn0.02As microstructure (with approximate thickness 50 nm, width 240 µm and 

length 1600 µm) in the second section of Chapter 5; in this material theoretical 

predictions (based on a Mean-Field model) yield a quadratic dependence RS on ρxx 

arising from an intrinsic AHE. The objective here is to use the above idea to link the 
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anomalous Hall conductivity directly to the magnetization; such a link facilitates the use 

of a novel modification of the conventional form critical analysis outlined earlier in this 

chapter.  

Specifically, such proportionality would lead to the usual Arrott-Noakes/scaling 

equation of state equation (2-18) being expressed in terms of the anomalous Hall 

conductivity A
xy , viz.,  
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in which 1 , as M1 in equation (2-18), is a material specific constant. The critical 

exponents appropriate for the corresponding transition will then be those which 

linearize the anomalous Hall conductivity – field data plotted in the above form. 

Correspondingly, the intercepts of such linearized plots on the perpendicular axis 

(  /1
1

A
xy )/( ), i.e., at Hi = 0, should then provide estimates of the “spontaneous” 

anomalous Hall conductivity A
Sponxy , equivalent to the spontaneous magnetization, 

while those on the ordinate axis (  /1A
xyi )/H( ) will yield a quantity analogous to the 

(inverse) initial susceptibility 0iHii )M/H()T(/1  . The isotherm that passing 

through the origin (the “critical” anomalous Hall conductivity isotherm, )T( C
A
xy ), 

enables an estimate of the ordering temperature TC to be made (the temperature at which 

a spontaneous Hall conductivity A
Sponxy  first emerges). Self-consistency can then be 

achieved using a similar procedure to that discussed in relation to the “conventional” 

analysis of the magnetization. Specifically, the replacement of M by A
xy  in the usual 

scaling law equation of state equation (2-19) will lead to the following expression for 
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the anomalous Hall conductivity:   
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F being an (unspecified) scaling function. Equation (2-45) then yields a set of 

power-law dependences for A
xy  on field and (reduced) temperature close to TC, 

analogous to those deduced earlier for the magnetization. Here such power-laws become 

– for the spontaneous anomalous Hall conductivity A
Sponxy (Hi = 0, tm = |T-TC|/TC) as a 

function of (reduced) temperature –  

)TT(t)t,0( Cmm
A

Sponxy  
  2-46 

Along the critical isotherm TC (T = TC, tm = 0), the field dependence of the anomalous 

Hall conductivity reads: 

 /1
iCi

A
xy H)TT,H(  2-47 

While for the quantity A
xyi /H  , proportional/analogous to the inverse initial 

susceptibility, one obtains: 

)TT(t/H Cm
A
xyi    2-48 

Equations (2-46) – (2-48) can then be applied to the appropriate intercept values so 

estimated, and the ensuing exponents values deduced from them substituted back into 

the “linearized” plots, and repeating this process – with small adjustments to TC (< 0.1 

K here) – until the (modified) Arrott plots and the ensuing power-laws yield the same 

exponent values. A final, comprehensive assessment of both exponent values and the TC 

estimate would be provided by plotting the anomalous Hall conductivity against the 

argument of the scaling function in equation (2-45), i.e., 
 mmi

A
xy t/)t,H(  versus 
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
mi t/H , with the anticipation that a scaling plot analogous to Figure 2.2 (a) ensues. 

The detailed application of this process will be presented in Chapter 5.  

    In summary, this approach provides a novel pathway for establishing the 

universality class from the anomalous Hall conductivity, a clear reflection of the 

fundamental coupling between magnetic and transport properties. 
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Chapter 3 
 
Experimental Apparatus and Sample 
Preparation 
 
    The magnetic and transport measurements on CMR manganites and magnetic 

semiconductors were carried out using a commercial Quantum Design Physical 

Property Measurement System (PPMS Model 6000) [78, 79]. Below a summary of 

features of this commercial product is first offered, complemented by a brief description 

of sample preparation. 

 

3.1 Quantum Design Physical Property Measurement System   

 

    The PPMS (Model 6000) magnetometer/susceptometer consists principally of a 

dewar containing liquid helium, and a measurement probe immersed in the helium bath, 

a pump to control pressure, and a magnet power supply. These parts together enable the 

magnetic field, temperature, time dependent magnetization, ac susceptibility, resistivity, 

and Hall resistivity data to be acquired. These measurements can be performed in the 

temperature range 1.8 K – 350 K in fields from -90 kOe to +90 kOe. The discussion 

starts with a description of the PPMS measurement probe, Figure 3.1, followed by 

magnetization measurements, then ac susceptibility measurements, and finally transport 
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measurements. 

 

3.1.1 PPMS Measurement Probe 

     

   The first important feature of the PPMS probe is its temperature control, which is 

realized by using a cooling annulus. Around the boiling point of 4He at 4.2 K under 1 

atmosphere pressure, two different operational modes have been adopted to produce 

temperatures in the range 1.8-350 K. Above 4.2 K, temperatures are controlled using the 

helium vapor pressure. Specifically, for cooling, helium gas is drawn into the cooling 

annulus through the so-called impendence tube (which plays a pivotal role in the control 

process) by a vacuum pump, and this cools the sample space. For warming, a block 

heater, set in the base of sample space, heats the sample space to the predetermined 

temperature. In contrast, temperatures below 4.2 K are achieved by pumping the helium 

in the cooling annulus, thus decreasing the pressure of the liquid helium and hence its 

temperature. Temperature down to 1.8 K can be achieved using this method. 

    The second important feature of the PPMS probe is the control of dc/ac magnetic 

fields. This is accomplished using a superconducting solenoid (made from NbSn) 

immersed in liquid helium, thus maintaining the solenoid in its superconducting state 

(below TC). The solenoid is fed from a unipolar power supply, the current from which 

controls the strength of dc magnetic field (H) (the latter can be approximated, using 

Ampère’s law, by z/INH  , where I is the charging current, N is numbers of turns, 
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and z is the length of the solenoid [64, 80]).  

Ac measurements require the application of an driving field Hacsin(ωt), generated 

by a second, non-superconducting coil, which is part of the ac measurement system 

(ACMS), Figure 3.2. The response of the sample to this ac field is picked up by the 

detection coil. In particular, the ACMS provides a platform to perform both dc and ac 

magnetic measurements without changing the hardware configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.1 Schematic illustrations for the PPMS probe and the enlarged cross section. 
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Figure 3.2 Diagram of the ACMS inert and coil set.   
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3.1.2 DC Magnetization Measurements 

 

    Numerous methods have been utilized to detect the magnetization of materials, 

these include extraction techniques, torque methods, superconducting quantum 

interference devices (SQUID), and anomalous Hall effect magnetometry. The principal 

approach used in the present work is the extraction method. Here, an external static 

magnetic field (H) magnetizes the sample, after which the induced magnetization is 

measured. The mechanism underlying the extraction method is simply the rapid motion 

(over a time interval (te)) of a sample between two sets of detection coils which induces 

a voltage ε governed by Faraday’s law [64, 80], viz.,  

e

B

t


  3-1 

where ФB is the magnetic flux through the circuit. The signal in the detection system is 

then determined by both the extraction speed (te) and the total magnetic flux (which is 

proportional to the magnetization of sample). A dc servo motor in the PPMS provides a 

scanning speed of approximately 100 cm/sec. This enables many repeated scans to be 

made in a short period, and by averaging these scans, random measurement errors can 

be dramatically reduced. The sensitivity for dc magnetization measurement in the 

present PPMS is about 2.5× 10-5 emu, and, typically, a 5 scan method was employed in 

this thesis. The PPMS thus offers a comprehensive platform for studying the dc 

magnetic response under conditions of varying temperature, magnetic field, and, where 

appropriate, time. 
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3.1.3 Ac Susceptibility Measurements 

 

    Ac susceptibility measurements also provide an important characterization of 

magnetic properties, especially magnetization “dynamics”. In the present system this is 

accomplished by the application of a small ac driving field Hacsin(ωt), (superimposed 

on the static field generated by superconducting coil), which induces a frequency/time 

dependent magnetization )tsin(H)dH
dM(M acac  . At low frequencies, and in the 

absence of hysteresis, ac measurements are similar to their dc counterpart, viz., from the 

definition of susceptibility as dH
dM , the latter reflects the slope of the M(H) curve. 

At high frequencies however, ac measurements do not simply the slope of the (static) 

M(H) curve, significant differences occur. These are generally parameterized through 

the use of two components: the magnitude of the susceptibility (χ) and its phase shift 

angle, (Φ). Equivalently, the ac susceptibility can be expressed in terms of its real and 

imaginary parts, as follows:  






















 )'/"(tan

)"()'(

)sin("

)cos('

1

22

               3-2 

The imaginary part, " , reflects dissipative processes in the system. In particular, both 

the real and imaginary parts are sensitive to the presence of magnetic phase transitions, 

as has been extensively discussed [64]. Although the PPMS enables a wide range of 

parameters to be recorded, including ' , " , Φ, temperature (T), driving field 

amplitude and frequency (Hacsin(ωt)), as well as the superimposed magnetic field H, for 
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the purpose of studying magnetic phase transitions (the principal focus of the present 

work) the evolution of '  as a function of superimposed dc fields H and temperatures 

(T) will suffice. 

Since ac measurements are essentially sensitive to the slope of the M(H) curve, viz., 

dH
dM , and not the absolute value of magnetic moment, an extremely small change 

in magnetization can be detected even when the absolute magnetization is large. 

Consequently, ac magnetometry is very useful for studying magnetic phase transitions. 

In particular, the PPMS offers an extremely high sensitivity for the susceptibility 

measurements, 1×10-8 emu, with the facility for varying the amplitude of the ac driving 

field over the range 0.2 mOe ≤ Hac ≤ 10 Oe rms, at frequencies from 10 Hz to 10 kHz.  

    These advantages are partially offset by the fact that measurements performed in 

low static fields (typically, H < 20 Oe in the present PPMS) can be somewhat uncertain 

due to trapped flux (i.e., a residual magnetic field) in the superconducting solenoid. 

Some caution thus needs to be exercised in studying the magnetic response – especially 

the dc response – in low fields.  

Demagnetization effect corrections are also important for finite magnetic systems. 

These originate from the establishment of “free magnetic poles” induced at either end of 

a sample by the application of magnetic fields. The effect of the latter can be treated as a 

demagnetizing field Hd = NDM, where ND is a shape-dependent demagnetization factor 

and M the magnetization. The resultant internal magnetic field Hi reads [64]: 

MNHH Dai   3-3 
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where Ha is the applied field. In principle, ND can only be accurately calculated for the 

sample of ellipsoidal shape. For non-ellipsoidal samples, a theoretical approximation for 

the average internal field can be made [64]. Experimental estimates for the 

demagnetization factor ND can be made as follows: with the real/true susceptibility 

defined as 
i

t dH
dM  while the measured susceptibility is given by 

a
m dH

dM , 

then equation (3-3) can be rewritten as: 
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Consequently, following the theoretical prediction of an infinite susceptibility (
t

1
  = 

0) in the zero field at FM phase transition in the thermodynamic limit, then the 

measured susceptibility is limited to 
D

m N
1 . Experimentally, the maximum of 

measured susceptibility (T = TC) can thus be used to estimate the demagnetization factor 

ND. In the present studies these latter estimates have been found to be consistent (within 

experimental uncertainty) with those found from magnetization data, viz., M(H) – H 

curves measured in low fields close to TC, where the slopes of these (shearing) curves 

also approximate to the demagnetization factor [46-48]. 
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3.1.4 Transport Measurements 

 

    Transport measurements, specifically longitudinal and Hall resistivities, were also 

carried out in the PPMS using a Model 7000 AC Transport Controller (ACT). This ACT 

incorporates a precision current source and voltage meter. The precision current source 

has a resolution 2 × 10-8 A and maximum current of 2 A. Its variable frequency (in the 

range 1 Hz to 1 kHz) provides a greater sensitivity resulting from the application of 

signal filtering techniques. 

    Transport measurements were made using a conventional four-probe technique to 

minimize the effects of contact resistance. The ACT probe was inserted into PPMS in 

the configuration shown in Figure 3.3 (a). The head of this probe incorporates a 

horizontal rotator with the angle resolution of 0.02°, which enables the out-of plane 

anisotropic magnetoresistance (AMR) to be measured (Figure 3.3 (b)). A homemade 

modification to this probe enables in-plane AMR measurements to be made in our lab 

(again, with the angle resolution of 0.02°), Figure 3.3 (c). 

    Hall measurements are well known to be very difficult perform experimentally; 

this arises due to unwanted contributions from the longitudinal voltage originating from 

a possible mismatch in the location of two Hall leads. This can cause marked difficulties 

when the Hall voltage is extremely small. This difficulty can be overcome by an 

experimental strategy based on varying the direction of the applied magnetic field. As 

indicated in equation (2-31), the Hall voltage can be written as HallV ( )
ned

BI
H   ; thus  
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Figure 3.3 Images of the transport measurement probe and sample holders. (a) The 
transport measurement probe. The sample holders for AMR measurements are given in 
(b) for out-of plane rotation and (c) for in-plane rotation. 
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changing the direction of magnetic field leads to a change in sign for VHall(H) as VHall(H) 

= -VHall(-H). However, under the same conditions the longitudinal voltage, Vxx, retains 

the same value (Vxx(H) = Vxx(-H)). This latter can then be used to cancel any possible 

contribution from the longitudinal voltage by scanning the field from positive to 

negative and calculating the “real” Hall voltage, Hall-RealV ( )H , as:   

 Hall-Real Hall Hall

1
V ( ) V ( ) V ( )

2
H H H    3-5 

This technique was used to estimate the real Hall voltage throughout this thesis. 

 

3.2 Sample Preparation 

     

   Single crystals for three series of manganites, La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27), 

La1-xBaxMnO3 (x ≤ 0.33), Pr1-xCaxMnO3 (x = 0.27, 0.29), were supplied by Dr. Yakov 

Mukovskii at the Moscow State Steel and Alloys Institute, Moscow, Russia. They were 

made using a floating zone technique [81], and had a typical size, before cutting, shown 

in Figure 3.4. Electron probe microanalysis [81] revealed a variation of some 2% in the 

Mn content through the middle portions of such rod-shaped specimens, while the 

variation in general of the Ca level can approach 10%. The samples used in this thesis 

were cut from such central regions – which were all revealed to be single phased by 

powder X-ray diffraction data – and displayed a significantly lower Ca variation, as 

discussed in relation to the data summarized in Table 4.1 below.  

 



 

57

 

 

 

 
 
 
Figure 3.4 The image of a typically sized single crystal. Here, La0.75Ca0.25MnO3 on top 
of standard (1 cm) graph paper. 

    

   Ac susceptibility and dc magnetization measurements were performed on the same 

piece of each sample (with typical size 411 mm3). For transport measurements, 

contacts to samples of typical dimensions 511 mm3 were made by compressing 

indium “pads” over current/voltage gold conducting wires embedded in grooves cut into 

the sample by a diamond wire saw (and contact resistance was typically less than 1 Ω).    

    The (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85) series were polycrystalline specimens 

made using standard solid state reaction techniques [82]. These samples were calcined 

at temperatures between 1270 – 1570 K for 120 hours from La2O3, Pr6O11, MnO2 and 

CaCO3; the oxygen exchange was made by annealing the samples in quartz tubes under 

an 18O atmosphere at 1270 K for 40 hours. The compositions of all the samples were 

checked at various temperatures using a powder neutron diffraction technique [82]. A 

comprehensive investigation on the evolution of the magnetic properties of this system 

has been published by Dr. Pomjakushin and colleagues (Paul Sherrer Institute at 

Switzerland). We acknowledge their generosity in sending us the raw zero field ac 

susceptibility data of this system. 
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    The polycrystalline magnetic semiconductor of nominal composition Fe0.8Co0.2Si 

was made in our laboratory using standard argon arc melting techniques. In an attempt 

to improve homogeneity, it was inverted and remelted several times, followed by 

annealing at 1300 K for four days in an evacuated quartz tube. Powder X-ray diffraction 

data revealed a single phase structure. Electric contacts to this Fe0.8Co0.2Si specimen 

(310.15 mm3) were made using silver epoxy (EPO-TEK H20E, Epoxy Technology, 

INC.), and were done with the aid of a high resolution optical microscope to minimize 

possible Hall bar mismatch effects: the current and voltage leads were made from 35 

μm gold (bonding) wire. 

A Ga0.98Mn0.02As layer (50 nm in thickness) was grown on a semiconducting GaAs 

substrate using a molecular beam epitaxy (MBE) technique, by Dr. Werner 

Wegscheider’s group at the University of Regensburg, Germany. A 10 nm GaAs layer 

was grown on top of the Ga0.98Mn0.02As to avoid oxidization. The sample was 

subsequently etched into a microstructural form approximately 240 µm wide and 2 mm 

long, using the standard optical lithography by Dr. Can-Ming Hu’s group at the 

University of Manitoba. Electrical contacts were made using a commercial electrical 

wire bonder in the Electrical and Computer Engineering Department at the University of 

Manitoba. 
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Figure 3.5 The optical image of the lithographically-made Ga0.98Mn0.02A sample. This 
structure includes 2 sets of Hall bars used to make transport measurements. 
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Chapter 4 
 
Magnetic and Transport Properties of 
Colossal Magnetoresistance Manganites 
 
  Transition metal oxides exhibit fascinating properties; these include multiferroicity, 

superconductivity, and CMR [2-4]. Many of these appear to be critically sensitive to 

differing types/levels of ion substitutions; for example, varying the Sr substitution level 

in the La1-xSrxCuO4 cuprate system can induce a superconducting, AFM or a non-Fermi 

liquid state [3]. Other striking examples occur in CMR perovskites manganites [2-4], 

where the earliest studies were initiated more than half a century ago [83] 
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4.1 Manganites Physics 

 

    An appropriate discussion of CMR Mn perovskites begins with the undoped parent 

compound, LaMnO3. The latter exhibits a nearly cubic structure [2-4, 83], with the 

following valence states for the constituent ions, La3+Mn3+(O2-)3; the latter are 

consistent with charge neutrality and result in a magnetic moment on the Mn3+ (3d4 ) 

site alone, La3+ and O2- containing no unpaired electrons. This configuration is 

illustrated in Figure 4.1, and consists of a larger La ion situated in the centre of the 

essentially cubic structure, surrounded by Mn and O ions. At each cubic corner, there is 

an oxygen octahedron with a Mn ion at its center, which gives rise to a cubic crystal 

field potential at the central Mn site.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Sketch of the structure of the undoped parent LaMnO3 [4]. The FM in-plane 
coupling and the inter-plane AFM coupling result from a slight departure from cubic 
symmetry: the lattice constants are: a = 5.747 Å, b = 5.537 Å and c = 7.693 Å. 
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    The 3d4 electronic state on the Mn3+ ions displays 5-fold orbital degenerate (2l + 1 

= 5) in free space, a degeneracy that is lifted by the crystal field, Figure 4.2 (a). The 

resulting splitting, which depends on the Coulomb repulsion with neighboring oxygen 

2p orbitals, produces a higher energy orbital doublet eg state described by so-called 

2y2x
d


 and 2r2z3

d


 wave functions, the lobes of which are directed towards the six 

oxygen ions located at the corners of octahedron, and a lower lying, and hence localized, 

orbital triplet t2g state. This latter state is characterized by dxy, dyz, and dzx – like wave 

functions, which point between the oxygen ions, Figure 4.2 (b). The energy splitting 

between these states approaches 1 eV [3, 4]. A strong Hund’s exchange coupling (JH ≈ 

3eV), ensures the expected FM coupling between these four Mn 3d electrons – the 

“spin-down” states being much higher in energy – leading to a “core spin” of S =
2

3
 

being associated with the lower lying t2g triplet, to which the single eg electron aligns 

parallel, leading to a total spin S = 4
2

1
  = 2 (resulting in a corresponding moment of 

2 μB), Figure 4.2 (a).  

    A further complication arises due to a Jahn-Teller (JT) splitting of the upper eg 

doublet – a splitting resulting from a distortion in the oxygen octahedron surrounding 

each Mn ion – of some EJT ≈ 0.25 eV, Figure 4.2 (a). With thermal energies at room 

temperature amounting to some kBT ≈ 0.026 eV << EJT, these eg electrons remains 

immobile due to the Pauli Exclusion Principle. Undoped LaMnO3 is thus a “Mott” 

insulator. In addition, such a JT distortion is co-operative, leading to the presence of 

orbital ordering, viz., orbitals that are aligned along specific directions, Figure 4.2 (c).  
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Figure 4.2 Splitting of Mn 3d-states under a cubic crystal field [4]. (a) The 5-fold 
orbitally degenerate Mn d-states are split into an eg doublet and a lower lying t2g triplet 
under this field. The subsequent Jahn-Teller effect splits the eg resulting in an energy 
gap EJT ≈ 0.25 eV. (b) The eg and t2g orbital distributions. (c) The three dimensional 
network of orbital ordering in LaMnO3. 
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As can also be seen from the structural diagram, Figure 4.1, moment bearing Mn 

ions are too well separated to interact via Direct Exchange – direct overlap of the Mn 3d 

wave functions – but couple via intermediate O ions via the so-called Super Exchange 

(SE) interaction [84]. An understanding of the latter is not as well established as for 

Direct Exchange, with the magnitude and sign of such SE interactions being determined 

by the semi-empirical Kanamori-Goodenough-Anderson (KGA) rules [84]. The rules 

indicate that the sign of this coupling (i.e., FM or AFM) is determined by the Mn-O-Mn 

bond length and bond angle. In the specific case illustrated in Figure 4.2 (c), the SE 

between an empty and a half-occupied orbital gives rise to a FM nearest-neighbor 

interaction within the ab-plane, whereas the corresponding interaction between two 

half-filled orbitals along the c-direction is AFM [85]. The undoped parent compound is 

thus an AFM insulator.  

    In the present context, doping of the parent LaMnO3 compound is usually 

represented by (A3+)1-x(B
2+)x(Mn4+)x(Mn3+)1-x(O

2-)3. Here A is a trivalent rare-earth ion 

(i.e., La, Pr…) and B a divalent alkaline earth cation (i.e., Ba, Ca…) which substitutes 

randomly at the trivalent rare-earth ion “A” sites. To ensure charge neutrality under the 

above form of substitution requires a corresponding (x) fraction of Mn ions be 

converted from a 3+ to a 4+ valence state. Such doping produces a range of fascinating 

phenomena, including CMR, an MIT, AFM and FM insulating states, charge ordering 

(CO), amongst others [3, 4]. Typical examples are given in Figure 4.3 – (a) resistivity 

for La1-xSrxMnO3 [86] and (b) phase diagram for La1-xCaxMnO3 [16]. 
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Figure 4.3 Temperature dependent resistivity for La1-xSrxMnO3 and the phase diagram 
for La1-xCaxMnO3. (a) Resistivity as a function of temperature in the La1-xSrxMnO3 
system [86]. Arrow indicates TC and  indicates the structural phase transition 
temperatures. (b) Phase diagram of La1-xCaxMnO3 showing magnetic and structural 
phase boundaries [16]. The horizontal axis represents the doping level x. Phases 
include CO, AF, canted AFM, FM metal and FM insulator. The unlabelled region of the 
phase diagram has neither magnetic nor charge ordering. 

La1-xCaxMnO3, (b) 

, (a) 
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  A simple picture for spin-dependent DE was given earlier in the introduction [3, 4, 

12], here a more detailed discussion is provided. The underlying mechanism, as 

depicted in Figure 1.3, is based on the result that eg electrons are no longer prevented by 

the Pauli Exchange Principle from hopping from a Mn3+ ion to neighboring Mn4+ ion, 

since this latter state is now unoccupied. Nevertheless due to the Mn ions’ separation 

mentioned above, this hopping must still proceed via an intervening O2- ion. This 

process is thus envisioned as the jump of an eg electron from a Mn3+ site into an O2- 2p 

state, accompanied simultaneously by a second 2p electron hopping into an empty eg 

electronic state on the adjacent Mn4+ ion: hence the term DE.    

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4 Detailed illustration of spin-dependent Double Exchange. The time/location 
variation of eg electrons in Mn3+-O2--Mn4+ chains, leading to a alternating Mn3+/Mn4+ 
distribution in real space. 
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    There is, however, no mechanism through which the participating electronic spin(s) 

can change orientation. Thus, given the strong Hund’s rule coupling discussed above, 

this hopping channel is only fully open when the corresponding Mn spins are parallel. 

The transfer of non-aligned spins is a much higher energy process. Consequently, the 

establishment of ferromagnetism (parallel alignment of Mn spins) occurs coincidentally 

with metallicity (high hopping probability/conductivity). Thus if the spins of 

neighboring Mn3+ and Mn4+ ions are not aligned, namely, in the spin disordered, high 

temperature PM state, eg electron hopping between them will be blocked, leading to an 

insulating/semiconducting state. Correspondingly, the hopping probability between such 

sites (i and j) can be described by hopping or transfer integrals of the form [3, 4, 12, 13]: 








 


2
costt ij

0ij  4-1 

where 1800 ij   is the angle between adjacent core (t2g) spins at sites i and j. Thus 

as 0ij  , the relevant core spins are parallel, resulting in a maximum hopping 

probability 0ij tt  ; by contrast, when 180ij  , the core spin are anti-parallel and 

hopping is blocked, 0t ij  ; the latter provides an explanation of the onset of metallicity 

with FM ordering, as depicted in Figure 4.4. Furthermore, the application of magnetic 

field close to the FM ordering temperature, aligns the Mn spins and enhances the 

conductivity considerably, hence the occurrence of CMR. 

    While DE thus provides a qualitative explanation of CMR, more recent 

experiments indicate that this model fails: (a) to reproduce the large resistivity/low 

conductivity of disordered PM phase [14]. This latter result, coupled with evidence of 
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strong electron-phonon coupling revealed through experiments such as a giant oxygen 

isotope effect [24], has led to the specific concept of polaron mediated transport 

(discussed in more detail below) and the general idea that CMR systems exhibit 

coupling not only between charge and spin, but also orbital and vibronic degrees of 

freedom. (b) The occurrence of a FM insulating state conflicts with such a DE picture 

with coincidental ferromagnetism and metallicity [15]. Ferromagnetism in insulating 

manganites requires some other mechanism – such as SE – to be dominant, a point 

returned in detail below. These latter two features illustrate the considerable complexity 

exhibited by these manganites, aspects which are the focus of the present study. 

    The substitution/doping level (x) has an important influence on the magnetic, 

transport, and structural properties of these systems. First, as mentioned earlier, it 

modulates the Mn ion valence state to ensure charge neutrality; the ratio of Mn3+/Mn4+ 

is proportional to x/(1-x), and such a coexistence of Mn3+ and Mn4+ gives rise to the 

term mixed-valence manganite. Doping also changes the total magnetic moment, 

leading to a saturation magnetization MSAT: 

x4)x1(3x4MSAT   4-2 

Second, doping produces vacancies in the eg electron states at a rate of x per Mn site, 

often referred to as hole-doping, with a filling factor nhole of the eg electron conduction 

band given as: x1n hole   [3, 4]. Third, the accompanying mismatch in the size of 

ions occupying the “A” site leads to a distortion in the crystal structure, frequently 

characterized by the average “A”-site radius, <rA>. The various ionic radii relevant for 
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the ions utilized in the present work are: Mn3+ = 0.70 Å; Mn4+ = 0.53 Å; O2- = 1.32 Å; 

La3+ =1.22 Å; Pr3+ = 1.18 Å; Ca2+ = 1.18 Å; Ba2+ = 1.47 Å; Sr2+ = 1.31 Å [87]. The 

corresponding variance, φ, in the A-site radii is;  

)rr( 2
A

2
A

2   4-3 

and the “tolerance factor”: 

)rr(2

rr
t

OMn

OA
f 


  4-4 

Here <rMn> and rO are the average radii of the Mn and O sites, respectively [3, 4]. 

Different doping levels change the Mn3+/Mn4+ ratio, and with the varying ionic radii 

accompanying substitution, distortions occur, with the crystal structure transforming 

from being initially nearly cubic perovskite (tf ≈ 1), through rhombohedral (0.96 < tf < 

1), to an orthorhombic (tf < 0.96) structure [3, 4]. This is accompanied by reductions in 

the Mn-O-Mn bond angle below the “ideal” value of 180º, thus changing the hopping 

probability of conduction electron, a process that can lead to charge-localization, and 

hence an insulating state [88]. Thus, while doping creates a wide variety of physical 

features in manganites, here only a brief description of two such features – charge and 

orbital ordering – will be given. Other relevant characteristics such as a MIT, a 

Griffiths-like phase, and FM insulating behavior, will be discussed in sections 4.2 – 4.5. 

In analogy with magnetite (Fe3O4), the concept of CO was initially applied to the 

mixed valence manganite La0.5Ca0.5MnO3 by Goodenough [89]; here the periodic 

arrangement of Mn4+ and Mn3+ ions – for which strong Coulomb repulsion reduces the 

hopping probability – is shown Figure 4.5. La0.5Ca0.5MnO3 actually undergoes two 
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transitions, to a FM conducting state at TC = 220 K, and subsequently to an AFM 

insulating state at TN = 150 K (AFM insulating) [90]. Between these two transitions the 

magnetization and resistivity exhibit hysteresis. Such effects are not prevalent in the 

samples studied here, as they are far removed from this half-doping regime. 

 

 

  

 

 

 

 

Figure 4.5 Illustration for the simultaneous charge/orbital ordering in La0.5Ca0.5MnO3. 
This is reproduced from [91].  

 

    In this thesis four different systems have been studied; La1-xCaxMnO3 (0.18 ≤ x ≤ 

0.27), La1-xBaxMnO3 (x ≤ 0.33), (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), Pr1-xCaxMnO3 (x 

= 0.27, 0.29). 
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4.2 Phase Diagram for La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27) 

 

Regarded as a prototypical CMR system, La1-xCaxMnO3 exhibits a complex phase 

diagram as a function of temperature and chemical substitution levels (x) [3, 4, 16, 92]. 

Below x = 0.125, it displays a canted-AFM insulating ground state, which evolves into a 

FM insulating state as the doping level is increased to 0.125 ≤ x ≤ 0.18. Increasing the 

doping levels to 0.22 ≤ x ≤ 0.50 result in the emergence of a FM metallic state 

accompanied by CMR. For 0.50 ≤ x ≤ 0.85, the so-called hole-doped regime, CO, AFM 

insulating states predominates, terminating in a canted-AFM insulating ground state in 

the doping range 0.85 ≤ x ≤ 1. The present study focuses on the doping range where 

both ferromagnetism and metallicity first emerge, viz., 0.18 ≤ x ≤ 0.27, although these 

detailed measurements confirm they do not emerge coincidentally.   

 

4.2.1 Evolution of Metal - Insulator Transition and Griffiths-like Phase 

     

Estimates for the saturation magnetization MSAT were obtained from extrapolations 

of M versus H-1 plots from magnetic isotherm measured at 2 K; these estimates are 

consistent (within experimental uncertainty of ~ 1–4%, considerably smaller than the 

general composition variation throughout an entire typical boule, referred to earlier) 

with the theoretical, spin-only values and the nominal compositions (Table 4.1). Thus, 

no evidence supporting appreciable spin canting was found.  
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Composition x=0.18 x=0.19 x=0.20 x=0.21 x=0.23 x=0.25 x=0.27 x=0.30 

Structural Properties 

<rA> (Å) 1.2096 1.2092 1.2088 1.2084 1.2078 1.2072 1.2063 1.2051

Tolerance 
Factor (tf) 

0.9361 0.9297 0.9234 0.9174 0.9172 0.9169 0.9167 0.9163

φ (Å) 0.0138 0.0141 0.0144 0.0147 0.0151 0.0156 0.0159 0.0165

Transport Properties 

ρ (T = 2K) 
(Ω cm) 

120 4 
1.72 
×10-4 

1.85 
×10-4 

1.79 
×10-4 

1.77 
×10-4 

1.82 
×10-4 

1.6 
×10-4 

Ea (mev) 161.2 160.8 135.8 135.3 132.7 126.9 119.2 -- 

ρ0 (10-8 
Ω cm T-3/2) 

20.5 13.7 8.3 6.8 5.6 4.2 3.1 -- 

Magnetic Properties 

β 0.37 0.38 0.37 0.10 0.41 0.51 0.12 0.12 

γ 1.38 1.34 1.38 1.65 1.35 1.15 1.63 1.63 

δ 4.8 4.8 4.8 20 5.2 18 ~28 28 

E 
(emu/g Oe) 

5.4 ± 
0.1 

5.3 ± 
0.1 

5.2 ± 
0.1 

     

TC (K) 171 173 179 182 185 189 232 212 

TG (K) No 256 No 252 232 224 275 232 

GP No Yes No Yes Yes Yes Yes Yes 

MS(0) 
(emu/g) 

94.45 90.92 91.87 90.71 91.24 92.75 89.05 -- 

MSAT(0) 
(emu/g) 

95.23 91.44 91.93 91.25 91.73 92.93 89.62 -- 

HC (Oe) 35 36 12 10 9 7 6 -- 

D 
(meV Å2 ) 

65 62 65 120 118 123 126 160 

 
 
Table 4.1 Parameters characterize La1-xCaxMnO3 (0.18 ≤ x ≤ 0.30) single crystals. Data 
of x = 0.30 are taken from [18], “--” stands for no data available. 
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Figure 4.6 Temperature dependent (magneto)resistivities for La1-xCaxMnO3 (0.18 ≤ x ≤ 
0.27). Main body, ρ(T,H), measured on warming following zero field cooling (ZFC), in 
static magnetic fields of 0 (top), 30 k Oe, and 90 k Oe (bottom). The insets show the 
magnetoresistivities, Δρ = [ρ(0) – ρ(H)]/ρ(H). Figures (a) – (g) correspond to x = 0. 18, 
x = 0.19, x = 0.20, x = 0.21, x = 0.23, x = 0.25 and x = 0.27, respectively. 
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    The temperature dependent resistivities ρ(T,H) measured in static magnetic fields 

of 0, 30 kOe, and 90 kOe are reproduced in Figure 4.6; the insets display the 

accompanying magnetoresistance (Δρ = [ρ(0) – ρ(H)]/ρ(H)). The narrow composition 

steps intentionally chosen in the present study suggest that with but a 1% change in the 

Ca substitution/doping level, in particular, from x = 0.19 to x = 0.20, the ground state 

resistivities exhibit a dramatic decrease exceeding 104 [93]. As a consequence of this 

suppression, at x = 0.20 and above, this system displays a temperature dependent MIT, 

the temperature of which increases with increasing Ca substitution, with an attendant 

reduction in the associated peak resistivity and the accompanying 

magnetoresistance/CMR, Δρ. Over the composition range studied here, the ratio of ρ(10 

K,0) between metallic and insulating ground state approaches 10-6, consistent with a 

range of previous reported results [93]. As discussed in more detail later, the nature of 

this insulating ground state remains controversial.    

    Before discussing the implications of the magnetization/susceptibility data, a 

detailed examination of the (temperature dependent) transport properties is appropriate. 

This is performed via a quantitative fits to these data of various model predictions. In 

particular, the temperature dependence of the resistivity in the high temperature/PM 

insulating phase (empirically characterized by dρ/dT < 0) above TC in many doped Mn 

perovskites has been fit to a modified Arrhenius law of the form [94, 95]:  

)Tk/Eexp(T)T( Ba
z

0  4-5 

Here Ea is related to the polaron formation energy, while the exponent z can assume 
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values of 0, 1, or 3/2 depending on the physical model invoked - 0 for simple thermally 

activated hopping, 1 for adiabatic and 3/2 for non-adiabatic small polaron hopping. The 

prefactor ρ0 contains a carrier density factor characterized by 4x(1–x)/V, where the term 

x(1-x) accounts for site occupation effects, with V being the double-cell volume. For the 

present single crystals, the non-adiabatic small polaron hopping model (z = 3/2) 

provides the most convincing fit to available data in the high temperature regime (as 

judged by the associated standard deviation). Such fits to zero-field data are shown in 

Figure 4.7 using the linearized form of equation (4-5), namely, ln(ρ(T)/T3/2) versus T-1, 

simultaneously yield estimates for Ea and ρ0. These Ea estimates (listed in Table 4.1) fall 

within the general range reported for a variety of manganites [95]. Figure 4.7 (h) 

reproduce these Ea and ρ0 estimates as a function of doping level x. Here a sharp 

decrease in the activation energy, Ea, is clearly evident on crossing the compositionally 

modulated MIT boundary, a precursor effect appearing in the PM regime prior to the 

establishment of insulating ground state properties below x = 0.20. This observation 

appears to be consistent with the results of small angle neutron scattering [96], and 

recent high temperature inverse ac susceptibility/transport data [20]. While the prefactor 

ρ0 also decreases with increasing doping level, it does so less abruptly, providing a 

weaker indication from the PM regime regarding the disappearance of metallicity. 

    Note that in the x = 0.18 single crystal, apart from the principal maximum in MR 

near TC (Δρ = [ρ(0) – ρ(H)]/ρ(H)), two additional transitions are evident via secondary 

peaks in MR, shown in the inset in Figure 4.6 (a). Such peaks corresponds to a low 
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temperature, structurally driven transition near TB ≈ 70 K accompanying a decrease in 

orthorhombicity, and a higher temperature Jahn-Teller transition around TJT ≈ 270 K (a 

pseudo-cubic to orthorhombic structural change [97]); the latter is also evident in the 

inverse ac susceptibility. Such additional features are not evident at higher doping levels, 

0.19 ≤ x ≤ 0.27, where the magnetoresistance/CMR, Δρ, displays no systematic trend as 

a function of doping level (x).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 Estimates of the excitation energy using small polaron hopping model. Zero 
field resistivity reproduced in the linearized form of equation (4-5), namely ln(ρ/T3/2) vs. 
T-1, Figures (a) – (g) correspond to x = 0. 18; x = 0.19; x = 0.20; x = 0.21; x = 0.23; x 
= 0.25 and x = 0.27, respectively. The linear fits yield the corresponding excitation 
energy Ea and also the prefactor ρ0, both of which are plotted as a function of doping 
level x in (h) and (i). 
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    Subsequently, the correlation of the general transport behavior with the magnetic 

response (in particular, magnetization and ac susceptibility) is investigated. The results 

of zero-field ac susceptibility measurements are summarized in Figure 4.8 – the real part 

(χ) in Figures 4.8 (a)-1 to (g)-1, and the imaginary component (χ") in Figures 4.8 (a)-2 to 

(g)-2. These data, from all samples, enable two initial estimates to be made. First, the 

maximum susceptibility, often referred as the Hopkinson/principal maximum [46-48], 

provides an experimental estimate for the demagnetization factor, ND, (values 

unexpectedly close to theoretical estimates given the non-ellipsoidal sample shape) and 

used subsequently to make demagnetization corrections. Second, the inflection point in 

ac susceptibilities (first derivative, dχ/dT, is a minimum) yields a preliminary estimates 

for ordering temperatures (TC). The imaginary component peaks close to TC and the 

Hopkinson/principal maximum, confirming the onset of irreversible magnetization 

processes in the ordered phase. 

Despite the closeness in composition of these samples, the ac susceptibilities 

exhibit marked differences, the most relevant of which – in terms of current study – can 

be seen in Figure 4.9, in which the inverse ac susceptibilities (1/) (measured in both 

zero-field and in various static biasing fields up to 1 kOe) are plotted as a function of 

temperature. The characteristic depression evident for some of these data below the 

higher temperature CW line is symptomatic of a so-called Griffiths-like phase, as 

mentioned in the second Chapter [57-60], namely, an inverse susceptibility of the form 

  1Rand
C

1 )TT( .  
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Figure 4.8 Zero field ac susceptibilities of La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27). Figures 
(a)-1 to (g)-1 are in-phase components to x = 0. 18, x = 0.19, x = 0.20, x = 0.21, x = 
0.23, x = 0.25 and x = 0.27 respectively, measured on warming following ZFC. Figures 
(a)-2 to (g)-2 are the corresponding imaginary components of the ac susceptibility. 



 

79

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Occurrence of Griffiths-like phases in La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27). The 
inverse ac susceptibilities measured under various static fields, with zero always at the 
bottom, figures (a) – (g) correspond to x = 0.18 (0), x = 0.19 (0, 50, 100, 200, 500 Oe), 
x = 0.20 (0), x = 0.21 (0, 100, 200, 500 Oe), x = 0.23 (0, 30, 70, 200, 500, 1000 Oe), x 
= 0.25 (0, 50, 100, 500, 1000 Oe), x = 0.27 (0, 20, 50, 100, 200, 350, 500, 1000 Oe). 
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    Again, here Rand
CT  is the random transition temperature and  is the exponent 

quantifying the Griffiths-like phase. Currently, a precise definition for Rand
CT  has not 

been provided. Rather it remains a parameter to be obtained from fitting, using the 

constraint that in the higher temperature regime above TG, the “exponent”  ~ 0, an 

anticipated result as the Griffiths-like phase evolves into a conventionally disordered 

PM state. Following Magen et.al., [58], a working definition for TG has been taken as 

the temperature of the onset of a depression below high-temperature CW behavior. 

These TG estimates are marked by vertical arrows in Figure 4.9. Further, the rapid 

suppression of the Griffiths-like phase with field evident in Figure 4.9 is also expected, 

as the applied field is the conjugate field for uniform ferromagnetism rather than its 

disordered Griffiths counterpart. While the fitting approach outlined above is physically 

reasonable, it does result in a degree of uncertainty in Rand
CT  and hence , and will be 

returned to in discussions of the (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85) [60] system later 

in this chapter.  

The occurrences of a Griffiths-like phase have been reported in range of doped 

perovskites based on a various physical measurements [18-20, 54, 55, 59-61, 98-100], 

their presence has been attributed to the influence of disorder on the phase complexity 

in the manganites and related systems, such as magnetocaloric compound [58, 101]. 

Whereas Griffiths-like phase have been shown to correlate closely with CMR in 

La1-xCaxMnO3 near optimal doping (x ≈ 0.33) [18, 20], a comparison of the data in 

Figures 4.6 and 4.9 enable the following conclusions to be drawn (i) that a Griffiths-like 
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phase is clearly not a prerequisite for CMR – the x = 0.20 and 0.21 samples both exhibit 

CMR, whereas only the latter displays a Griffiths-like phase [19], and (ii) allows the 

further important new caveat that indeed the appearance of a Griffiths-like phase does 

not guarantee the emergence of CMR – the x = 0.19 specimen exhibits a Griffiths-like 

phase but has an insulating ground state and hence no appreciable MR [55]. These 

conclusions raise ongoing questions regarding our current understanding of the 

fundamental mechanism(s) underlying CMR [3, 4, 18-20]. 

    While the current data allow these two specific conclusions to be drawn, they also 

raise further questions about the “disorder” [98, 100] relevant for establishing 

Griffiths-like phase characteristics in La1-xCaxMnO3. Unlike the linking of such 

characteristics with phase competition discussed later in this chapter for optimally 

doped (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85) [60], no such definitive results exist 

currently for La1-xCaxMnO3. In particular, Rodriguez-Martinez and Attfield [102] have 

proposed a semiquantitative model which provides a considerable degree of unification 

in discussing the behavior of doped Mn perovskites (with a more recent extension 

covering cuprate superconductors [103]) in the form of a comprehensive TC(<rA>,0) 

versus <rA> phase diagram. This encompasses the use of a disorder-corrected ordering 

temperature TC(<rA>,0) estimates using:  

2
AAACAC )rr()0,r(T)0,r(T   4-6 

In this expression, rA represents the ideal radius of the undistorted cubic perovskite 

structure (taken as 1.30 Å near optimal doping), so that the last term in equation (4-6) 
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measures the departure of the actual structure from “ideal”, i.e., a measure of the strain 

field. )0,r(T AC   and  were proposed as universal constants for these optimally 

doped perovskites, assuming values of 530 K and 29 103 KÅ-2 respectively from fitting 

available data. As can be seen from Table 4.1, there is no clear correlation between the 

occurrence of Griffiths-like phase behavior and the tabulated structural parameters (or 

indeed the combinations such as <rA>/)), viz., the parameters that are central to the 

Rodriguez-Martinez and Attfield approach. This lack of correlation indicates that the 

disorder underlying the tendency to nucleate a Griffiths-like phase is not simply 

structural in origin, and hence needs further study. Such data emphasize the continued 

subtleties displayed by CMR manganites. 

    It should be conceded here, however, that it does not seem unlikely that oxygen 

stoichiometry may play some role in this issue through changes necessary to maintain 

charge neutrality, as summarized by [104, 105]: 













2
3

4
2x

3
2x1

2
x

3
x1 OMnMnCaLa  4-7 

One consequence of oxygen deficiency (represented by Δ) would be changes in the ratio 

of DE linked Mn3+-Mn4+ sites and the numbers of Mn3+-Mn3+ and Mn4+-Mn4+ SE 

interactions [105], influencing principally the distribution/disorder of exchange 

couplings. Unfortunately, no means of measuring the oxygen stoichiometry with 

sufficient precision to comment with the necessary degree of certainty on this issue in 

the present series of samples is currently available to us. 
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4.2.2 Evolution of Magnetic Critical Behavior 

 

4.2.2 (A) x = 0.18 and 0.20  

 

Magnetization. As these two single crystals display no Griffiths-like phase features, their 

behavior is the simplest to analyze. Arrott plots (M2 ~ Hi/M) for the corresponding data 

display a positive slope (i.e., no term of the form – a(T)M4 in the free energy [35, 37, 

38]) throughout the transition region, confirming the continuous/second-order nature of 

the FM-PM transition. 

Based on the modified Arrott-Noakes equation of state [43], these data were 

subsequently plotted using a range of model exponents, which iterate towards values 

consistent with Heisenberg model predictions [51] (= 1.387, = 0.365, and = 4.783), 

namely, (Hi/M)1/1.387 versus M1/0.365, as shown in Figures 4.10 (a) for x =0.18 and 4.10 

(b) for x = 0.20. Self-consistency is ensured by taking the intercepts from these latter 

two figures (that on the vertical axis giving the spontaneous magnetization, MS and 

horizontal axis, the inverse initial susceptibility, 1/χi) and testing them against the 

corresponding power-law predictions, equations (2-20) and (2-22), as shown in Figures 

4.10 (c) and (d), and Figures 4.10 (e) and (f), the slopes of the inserts in these figures 

yield the marginally refined exponent estimates. This process is then iterated until 

minimal changes in exponent values result [46, 47, 106]. The critical isotherms yield 

values for TC, with the associated magnetizations (Figures 4.10 (g) and (h)) being tested  
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Figure 4.10 Magnetic critical analysis for x = 0.18 and x = 0.20. Figures (a) and (b) 
reproduce selected magnetic isotherms (from 150 K to 190 K in 2 K steps for x = 0.18, 
from 175 K to 190 K in 1 K steps for x = 0.20) in the form (Hi/M)1/1.387 vs. M1/0.365. (c) 
and (d) MS(T) plotted against T: inset; MS vs. tm on a log-log scale, yielding = 0.36 ± 
0.01 in x = 0.18, and = 0.37 ± 0.01 in x = 0.20. (e) and (f) The inverse initial 
susceptibility, 1/χi, plotted against T: inset; 1/χi vs. tm on a log-log scale, yielding = 
1.36 ± 0.01 in x =0.18, and = 1.34 ± 0.01 in x =0.20. The critical isotherms passing 
through the origins yield TC. (g) and (h) Plots of M vs. Hi at TC, the insets are the 
corresponding double-logarithmic plots, the slopes of the straight lines drawn yielding 
= 4.77 ± 0.01 for 4 kOe < H < 90 kOe in x = 0.18, and = 4.79 ± 0.01 for 4 kOe < H 
< 90 kOe in x = 0.20.  
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against the prediction of equation (2-21), as shown in the inserts in these latter figures. 

This procedure yields values of TC = 170 ± 1 K, = 1.36 ± 0.01, = 0.36 ± 0.01 

and = 4.77 ± 0.01 (3 kOe < H < 90 kOe) for x = 0.18, with TC = 179 ± 1 K, = 1.34 ± 

0.01, = 0.37 ± 0.01 and = 4.79 ± 0.01 (4 kOe < H < 90 kOe) for x = 0.20. Both sets 

of estimates agree with Heisenberg model predictions within experimental uncertainty, 

and satisfy the Widom equality = (-1) [35]). The  estimate, incidentally, confirms – 

albeit directly – the absence of Griffiths-like phase behavior, as the latter is frequently 

characterized by large  values [18, 19], an issue addressed in more detail below.                    

Ac Susceptibility. The evolution of the ac susceptibility peak structure with field and 

temperature, typified by the data in Figures 4.11 (a) for the x = 0.18 and (b) for the x = 

0.20 single crystals, provides confirmatory evidence of the continuous nature of the 

accompanying phase transition, and provides independent estimates of both the critical 

exponents and ordering temperatures. Figures 4.11 (c) – 4.11 (i) summarize the analysis 

of such ac susceptibility peak data for both x = 0.18 and 0.20, in terms of power-law 

predictions, equations (2-25) – (2-27). Figures 4.11 (b) and (c) reproduce plots of the 

critical peak amplitudes χm (corrected for background and demagnetizing effects) – 

taken from Figure 4.11 (a) for x = 0.18 (and its equivalent for x = 0.20) – against the 

internal field Hi on a double-logarithmic scale; these not only confirming the power law 

dependence of equation (2-25), but their slopes also yield estimates of = 4.78 ± 0.01 

(x = 0.18) and 4.78 ± 0.01 (x = 0.20). These estimates are clearly independent of any 

choice for TC, indicating that ac susceptibility measurements provide a distinct  
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Figure 4.11 Susceptibility critical analysis for x = 0.18 and x = 0.20. (H, T) (corrected 
for background and demagnetization effects) measured on warming following ZFC in 
various static fields, (a) x = 0.18 from 3 kOe (top) to 6.5 kOe (bottom) in 250 Oe steps, 
(b) x = 0.20 from 1.4 kOe (top) to 4.2 kOe (bottom) in 200 Oe steps. (c) Plot of log (χm) 
vs. log (Hi), yielding the exponent . (d) Plot of Tm against Hi

0.57 yielding an estimate for 
TC. (e) Plot of log (χm) vs. log (tm), yielding the exponent . (f) Plot of log (tm) vs. log 
(Hi), yielding the exponent sum + and hence . Susceptibility scaling plots for (g) x 
= 0.18 and (f) x = 0.20 using the data in (a) and (b). 
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advantage over conventional magnetization-based approaches, for which the 

determination of the ordering temperature (TC) is a prerequisite prior to extracting 

estimates for  from data taken by attempting to stabilize along the critical isotherm.  

    The remaining exponent values, however, require a choice for TC to be made; this 

is done – based on equation (2-26) – by plotting the measured peak temperatures, Tm, 

against the internal field Hi
0.57 (i.e., assuming the applicability of Heisenberg model 

exponents, namely, (+)-1 = 0.57 [35, 46-48], as suggested by the  estimate, above), 

and extrapolating to Hi = 0, as shown in Figures 4.11 (d) and (e). This yields TC = 170 ± 

1 K for x = 0.18 and TC = 179 ± 1 K for x = 0.20 respectively. These initial TC estimates 

are then used to construct the double-logarithmic plots of the reduced temperatures tm 

against the internal fields Hi (equation (2-26)) shown in Figures 4.11 (f) and 4.11 (g), 

and of the peak amplitude χm against the reduced temperature, tm (equation (2-27)), 

Figures 4.11 (h) and 5 (i). The slopes of such plots yield initial estimates for (+)-1 and 

 respectively. Subsequently, this process is iterated, accompanied by small 

adjustments in TC, until self-consistency is achieved. Thus values of = 0.37 ± 0.03, = 

1.38 ± 0.01, and TC = 170 ± 1 K (x = 0.18) and = 0.37 ± 0.03, = 1.38 ± 0.01, and TC 

= 179 ± 1 K (x = 0.20) were obtained, both parameter estimates being in excellent 

agreement with the analysis of the magnetization data. 

    A final test of ordering temperatures (TC) and these exponent value estimates for – 

and hence the applicability of 3-D Heisenberg model exponents – to these samples is 

provided in Figure 4.12, using the magnetic isotherms reproduced in Figures 4.10 (a) 
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and (b), and ac susceptibility data shown in Figures 11 (a) and (b), for x = 0.18 and x = 

0.20, respectively. The magnetization scaling using the above listed TC’s and exponent 

estimates, based on equation (2-19) [35, 43, 107], is carried out in Figure 4.12 (a); both 

demonstrates good data collapse. Susceptibility scaling is based on equation (2-28); 

specifically, such data, when normalized to its peak value (χ(h,Tm)), should collapse 

onto a universal curve when plotted against the argument (h/tm
(+)) of the scaling 

function (actually, its inverse, tm/h1/(+), to preserve the peak structure [46, 47]), as 

confirmed in Figures 4.11 (a) and (b). In summary, the above analysis provides 

consistent estimates for the ordering temperatures TC, and demonstrates convincingly 

that the exponent estimate agree, within experimental uncertainty, with those of the 3-D 

Heisenberg model and thus satisfying the Widom equality.  

 

 
Figure 4.12 Conventional magnetization and susceptibility scaling analyses. (a) Double 
logarithmic magnetization scaling plots of data from Figure 4.10 (a) and (b) using the 
critical exponents and TC listed above. The upper branch corresponds to data below TC 
and the lower branch to data above TC. (b) Susceptibility scaling plots for the data in 
Figure 4.11 (a) and (b). 
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4.2.2 (B) x = 0.19 

    

    As can be seen from Figure 4.9 (b), this single crystal displays features 

characteristic of Griffiths-like phase, what is also evident from this figure is that such 

features are rapidly suppressed by an applied field. Such a result is expected since a 

uniform applied field is the conjugate field for collinear ferromagnetism, enhancing the 

latter at the expense of its non-uniform Griffiths counterpart [59]; what is not 

understood at present are the parameters that determine the rate at which such a 

suppression occurs with applied field [59]. At x = 0.19 this suppression is rapid, as the 

following demonstrates.     

    Arrott plots again confirm the continuous nature of the PM-FM transition. 

Following the procedure outlined earlier, these data could be linearized initially using 

the same exponent values as those deduced above, namely, (Hi/M)1/1.387 versus M1/0.365, 

Figure 4.13 (a). Subsequent analysis, summarized in Figure 4.13 (b) – (d), yields TC = 

173 ± 1 K= 4.78 ± 0.01 (3 kOe < H < 90 kOe), = 1.36 ± 0.01, and = 0.37 ± 0.01. 

As mentioned earlier, Griffiths-like phase features are often accompanied by large  

values [18, 19]; such behavior is not, however, observed in x = 0.19 sample, first 

because the Griffiths-like phase features are rapidly suppressed by field and second, 

because low-field data (those typically below 0.5 – 1 kOe, where such features are 

present) are seldom included in scaling analysis to avoid both technical contribution and 

the relatively large uncertainties associated with demagnetization corrections prevalent  

 



 

90

 
Figure 4.13 Magnetic critical analysis for x = 0.19. Figure (a) reproduces selected 
magnetic isotherms (from 160 K to 190 K in 2 K steps), in the form (Hi/M)1/1.387 vs. 
M1/0.365. The isotherm passing through the origin yields TC. (b) Plot of M vs. Hi along 
critical isotherm TC = 172 K, the log (M) vs. log (Hi) plot in the inset yields = 4.78 ± 
0.01 for 4 kOe < H < 90 kOe. (c) 1/χi, plotted against T: the log (1/χi) vs. log (t) plot in 
the inset yields = 1.36 ± 0.01. (d) MS(T) plotted against T: the log (MS) vs. log (t) plot 
in the inset yields = 0.37 ± 0.01. (e) (H,T) (corrected for background and 
demagnetizing effects) measured on warming following ZFC in fixed static fields of 1.5 
kOe (top) to 5.5 kOe (bottom) in 250 Oe steps. (f) Estimate of critical temperature, TC = 
172 ± 1 K, from extrapolation of Tm against (Hi

0.57). (g) The slope of log (χm) vs. log (Hi) 
plot yields  = 4.79 ± 0.02. (h) The slope of log (tm) vs. log (Hi) plot yields + = 1.76 
± 0.02; (i) the slope of log (χm) vs. log (tm) plot yields = 1.38 ± 0.01, and hence = 
0.37 ± 0.02. (j) Conventional magnetic scaling plot of data in (a). (k) Susceptibility 
scaling plot for the isokaps in (e). 
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in that field range. A similar situation occurs in the analysis of ac susceptibility data on 

this single crystal, summarized in Figures 4.13 (e) to (i). Here a critical peak structure 

similar to that shown in Figure 4.13 (e) emerges, but as fields in excess of 1.5 kOe have 

to be applied to first resolve this structure, such fields completely suppress Griffiths-like 

phase characteristics in this sample. The analysis of these ac susceptibility data in 

manner outlined earlier yields = 4.79 ± 0.01, = 0.37 ± 0.01, and = 1.38 ± 0.01, 

with TC = 172 ± 1 K, in close agreement with the analysis of magnetization data and, 

again, with model predictions for the 3-D Heisenberg model. The magnetization and ac 

susceptibility data collapses can be seen to be accompanied using with the parameters 

listed above in Figures 4.13 (j) and (k). 

    This x = 0.19 Ca substituted single crystal thus displays properties very similar to 

single crystal La0.73Ba0.27MnO3 [59]; both show signatures of Griffiths-like phase 

behavior but with an insulating ground state, and values close to those of the 

Heisenberg model due to the rapid field-induced suppression of Griffiths-like phase 

features. This point is discussed in more detail below. Given the near Heisenberg model 

behavior of the three single crystals with x = 0.18, 0.19 and 0.20, their critical 

amplitudes, E in equation (2-16), were estimated from power-law plots, and listed in 

Table 4.1. Since this table contains a comprehensive survey of parameters obtained by 

fitting magnetization, susceptibility and transport data, further discussion of its content 

is deferred at this point.  
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4.2.2 (C) x = 0.21, 0.23 and 0.25 

     

As might be anticipated, the presence of Griffiths-like phase characteristics 

complicates the analysis of the magnetic critical behavior in these three single crystals 

in varying degrees, for example, Figure 4.14 for x = 0.21. While Arrott plots (Figure 

4-14 (a)) exhibit positive slopes throughout the transition region, confirming the 

occurrence of a continuous PM-FM transition, modified Arrott-Noakes plots using a 

range of model parameters fail to linearize the magnetization-field data at these 

compositions. Figure 4.14 (b) illustrates this point for the x = 0.21 single crystal using 

Heisenberg exponent values. Such a result is often linked with the presence of 

Griffiths-like phase behavior [19]. As a consequence critical analysis, based on the 

temperature/field dependent magnetization of the type performed above for 0.18 ≤ x ≤ 

0.20, is precluded at these higher substitution levels. 

Figure 4.14 Arrott and Modified Arrott plots for x = 0.21. (a) Hi/M vs. M2 for selected 
magnetic isotherms measured at 2 K, from 100 K to 175 K in 25 K steps, at 185 K, and 
form 195 K to 250 K in 5 K steps. (b) Plot of (Hi/M)1/1.387 vs. M1/0.365 for data in (a). 
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The field-dependent ac susceptibility, in contrast, does not suffer from this limitation; in 

all three of these samples a peak structure similar to that shown in Figure 4.11 (a) for x 

= 0.18 and (b) for x = 0.20, emerges and can be analyzed in the manner described above. 

The emergence of this peak structure, incidentally, supports the conclusion that the 

magnetic transition is second order/continuous. Figure 4.15 provide estimates for 

exponentsdirectly, prior to the identification of TC, as described above, these 

estimates are: = 19 ± 1 (x = 0.21), = 5 ± 0.3 (x = 0.23), and = 15 ± 1 (x = 0.25). 

Such estimates far exceed that for the 3-D Heisenberg model, at least for x = 0.21 and x 

= 0.25, a result typically accompanying Griffiths-like phase characteristics in some 

doped CMR perovskites [18, 19, 54, 55], at x = 0.23 the  estimates marginally exceed 

the model values – as in La0.7Ba0.3MnO3 [54] which also exhibits a Griffiths-like phase 

– an issue addressed in more detail later in this chapter.  

Furthermore, since estimates for the critical amplitude E (equation (2-21)) depend 

crucially on the value for [15, 106], no such estimates are listed for these three single 

crystals. To extract other exponent estimates, a value for TC must be established 

quantitatively. Despite the non-standard values for , plots of Tm against the internal 

field Hi
1/(+) using Heisenberg model exponents provides an excellent representation of 

the data between x = 0.21 and x = 0.25 [54]. This is a fortuitous result, but one enabling 

a quantitative estimate for TC to be made, as confirmed in Figures 4.15 (a)-2, (b)-2 and 

(c)-2. Nevertheless, while the sum of these two exponents combine to the Heisenberg 

model value, the remaining two scaling plots – Figures 4.15 (a)-3/(a)-4, (b)-3/(b)-4, and 
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(c)-3/(c)-4 indicate that individual exponent values differ from model predictions. The 

results emerging from these latter two sets of figures yield: = 19 ± 1, = 0.09 ± 0.02, 

= 1.65 ± 0.01, with TC = 182 ± 1 K for x = 0.21 (in excellent agreement with the initial 

report [19]), = 5.0 ± 0.3, = 0.43 ± 0.02, = 1.35 ± 0.01, with TC = 185 ± 1 K for x = 

0.23, and = 15 ± 1, = 0.51 ± 0.02, = 1.15 ± 0.04, with TC = 188 ± 1 K for x = 0.25. 

The field ranges covered in, for example, the various plots are determined by the field 

range over which the critical peak structure is well resolved. This, in turn, is controlled 

by the ease, or difficulty, with which the regular/technical contributions to the measured 

response are suppressed. In dilute alloy systems such as PdMn and PdFe this is 

controlled by the coercive field, HC, which in the latter enable critical peak structure – 

and hence critical analysis – to be carried out in fields as low as 4 and 0.1 gauss 

respectively (such measurements are truly asymptotic in nature). In the first alloy 

system mentioned, the Mn ion is in an S-state, whereas in contrast, Mn3+ ions in the 

systems studied here are not – they are Jahn-Teller ions subject therefore to spin-orbit 

coupling and these systems are thus technically harder. While this observation provides 

a qualitative explanation of the higher fields needed to first resolve critical peak 

structure in these doped perovskites, quantitative differences between the two types of 

systems being discussed exist. Specifically the coercive fields measured in these 

manganites, typically 5 – 50 Oe [46], do not provide an appropriate measure of the 

technical hardness in the context of the present discussion; fields far in excess of HC 

need to be applied before well resolved susceptibility peaks emerge. This difference is 
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the subject of ongoing investigation; it exhibits a distinct variation with sample doping 

level, and thus underlies the differing field ranges over which critical behaviour can be 

assessed, as in the figure below.  

 

 
Figure 4.15 Susceptibility critical analyses for x = 0.21, x = 0.23, and x = 0.25. (a) The 
slope of log (χm) vs. log (Hi) plot yields . (b) Estimate of critical temperatures, from 
extrapolation of Tm against (Hi

0.57). (c) The slope of log (tm) vs. log (Hi) plot yields + . 
(i) The slope of log (χm) vs. log (tm) plot yields , and hence . These estimates are = 
19 ± 1, = 0.09 ± 0.02, = 1.65 ± 0.01, with TC = 182 ± 1 K for x = 0.2; = 5.0 ± 0.3, 
= 0.43 ± 0.02, = 1.35 ± 0.01, with TC = 185 ± 1 K for x = 0.23, and = 15 ± 1, = 
0.51 ± 0.02, = 1.15 ± 0.04, with TC = 188 ± 1 K for x = 0.25. 
 



 

96

    These non-standard estimates satisfy the Widom equality, within experimental 

uncertainty, for the x = 0.21 single crystal, but not its x = 0.23 and 0.25 counterparts; 

nevertheless, they also provide good data collapse for both the ac susceptibility and 

magnetization data for all of these samples, as Figure 4.16 confirms. 

Figure 4.16 Conventional magnetization and susceptibility scaling analyses. Figures 
(a)-1, (b)-1, and (c)-1 are magnetization scaling plots for x = 0.21, x= 0.23, and x = 
0.25 on a double-logarithmic scale using the critical exponents and TC listed above. The 
upper branch corresponds to data below TC and the lower branch to data above TC. 
Figures (a)-2, (b)-2, and (c)-2 the corresponding ac susceptibilities. 
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4.2.2 (D) x = 0.27 

 

    As aspects of the unusual magnetic response at this composition have been 

reported previously [108], here we focus on issues related to the continued presence of 

Griffiths-like phase features at this composition. Briefly, therefore, Figure 4.17(a) 

summarizes magnetization data in fields up to 15 kOe in the vicinity of 240 K, which 

confirms both the metamagnetic/“S”-like character of the response near this temperature 

and the occurrence of weak hysteresis. Both features are consistent with the presence of 

a discontinuous/first-order PM-FM transition [38, 109], a conclusion is supported by 

Arrott plots for the corresponding data, Figure 4.17 (b), which can be seen to exhibit 

negative slopes over part of the (H-T) plane encompassing these data. 

 Nevertheless, field-dependent ac susceptibilities display a peak structure 

reminiscent of Figures 4.11(a) and (b), features normally associated with 

continuous/second-order transitions. As reported earlier [108], the usual tests of the 

evolution of these “pseudo-critical” peaks with field and temperature fail to confirm 

power-law behavior, they display continuous curvature, precluding estimates for critical 

exponents. Specifically, the Heisenberg model exponents do not describe these data is 

confirmed by the corresponding modified Arrott-Noakes plots, Figure 4.17(c). 

  It is important to (i) reiterate that the response summarized above is 

fundamentally different from cross-over effects accompanying a sequential second order 

to first order transition as the temperature is lowered towards TC. In such a situation the 



 

98

first order transition line would lie below that for the continuous transition, here it does 

not. A plot of the peak temperatures in the ac susceptibility against field combined with 

those for the metamagnetic field [38, 109] (the inflection points in Figure 4.17 (b) – a 

signature of the first-order transition line [38, 108, 109]) against temperature are 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.17 Coexistence of first/second order phase transitions in x = 0.27. (a) Selected 
magnetic isotherms measured on increasing temperature from 234 K to 238 K in 1 K 
steps for fields up to 15 kOe. The existence of hysteresis demonstrates that the transition 
is first order. (b) Arrott plots – Hi/M vs. M2 – for magnetic isotherms from 210 K to 220 
K in 5 K steps, and from 222 K to 260 K in 2 K steps. (c) Plot of (Hi/M)1/1.387 vs. M1/0.365 
as data in (b).   
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contiguous. This plot exhibits curvature at low field [108], but nevertheless admits a 

reasonable extrapolation yielding TC = 228 ± 3 K (close to the inflection point in the 

zero-field ac susceptibility, Figure 4.8 (g)). This behavior supports the assertion that in 

this x = 0.27 single crystal, the characteristics of both first-order and second-order 

transitions are essentially coincident.    

    And (ii) to note that above this transition line the present data demonstrate the 

continuing presence of Griffiths-like phase behavior, although measurements at still 

higher Ca substitution (approaching optimal doping, x = 0.33) indicate the termination 

of such behavior with the existence of a first-order transition alone [18, 20]. 

 

4.2.3 Evolution of Ferromagnetism 

 

    The present investigations provide a careful delineation of the compositionally 

driven MIT boundary as lying between 19 and 20% Ca substitution in this series of 

single crystals, thereby supplying incontrovertible evidence that the emergence of 

metallicity and ferromagnetism is not coincidental in La1-xCaxMnO3. The latter emerges 

prior to the former, prompting the question of what are the principal mechanisms 

underlying ferromagnetism in this composition range? As suggested recently [18,110], 

whereas FM-DE, stabilized by hole delocalization, dominates in the metallic regime 

immediately above the compositionally controlled MIT boundary [111], the relevant 

interaction below this boundary is ferromagnetic SE [112].  
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This proposal [18] is based on the evolution of SE with composition (x) in 

La1-xCaxMnO3. The SE-dominated, undoped parent LaMnO3, exhibits in-plane FM 

interactions (the corresponding exchange coupling Jab > 0), whereas intra/out-of-plane 

interactions are AFM ((Jc < 0), leading to a quite different magnetic ground state from 

that prevalent at x = 0.18 and beyond. In the undoped parent the magnetic structure is 

induced/stabilized by the orbital ordering [85] (viewed alternatively, it is a consequence 

of the semi-empirical KGA rules in which the sign of SE coupling is modulated by the 

Mn-O-Mn bond angles and bond lengths [84]). Neutron scattering measurements [111] 

has provided evidence at the microscopic level regarding the evolution of SE coupling 

with doping level in this system, showing that while the magnitude of FM-SE in-plane 

coupling, Jab(x), increase monotonically with increasing doping level in the region of 

interest here, the evolution of Jc(x), the c-axis coupling is more complex [111], Figure 

4.16. Specifically, Jc(x < 0.125) < 0 (as in the undoped parent), Jc(x = 0.125) = 0, while 

Jc(0.125 < x < 0.22) > 0, increasing roughly linearly with doping for x > 0.125. Thus 

both in-plane Jab(x) and intra-plane Jc(x) couplings are positive/FM across the 

compositionally modulated MIT boundary and this is where ferromagnetism first 

emerges in La1-xCaxMnO3.  

Two issues emerge immediately: the first concerns the universality class for the 

PM-FM transition between x = 0.18 and x = 0.20, which the above analysis 

demonstrates conclusively is that of the nearest neighbor 3-D Heisenberg model: the 

second relates to the critical amplitude, E of equation (2-21). The latter shows little 
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Figure 4.18 Variation of magnetic coupling constants J, as a function of doping level (x). 
Data are reproduced from [111]. 

    

across the compositionally modulated MIT between x = 0.18 and 0.20 (Table 4.1). To 

address the second question first, since this critical amplitude is a direct measure of the 

number of spins involved in the transition [113], then once the ferromagnetism is 

established (more appropriately in the present context, an infinite/percolating FM 

“backbones”), minor increases in the number of spins coupled to this backbone 

accompany further, additional increases in hole doping in this regime. Thus E should 

exhibit little variation with x across the MIT boundary, as observed. It is the dominant 

mechanism that changes from insulating to metallic phase. To estimate a critical 

amplitude such as E, the scaling behavior of the transition in question must fall into a 

specific universality class (i.e., exhibit a specific power-law dependence) – here that of 
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the isotropic 3-D Heisenberg model. Comparisons with samples exhibiting Griffiths-like 

phase characteristics, for the power-law along the critical isotherm is radically different, 

are thus inappropriate. For the universality class, Monte Carlo simulations for the DE 

model [114] without anisotropy do indeed predict that it should fall into 3-D Heisenberg 

system, as the analysis of the above data confirm.  

    However, DE coupling in systems with a non-cubic structure should acquire some 

anisotropy/directional dependence. That this is not observed in the current experiments 

likely reflects the scale of such anisotropy compared with thermal energies, kBTC, in the 

vicinity of the ordering temperature TC. Similar comments apply in insulating samples 

where FM-SE is the principal interaction mechanism; here neutron data indicate that 

Jab(x) and Jc(x) differ by only some 0.5 meV near x = 0.19 [111]. 

    The current data indicate that exponent values characterizing this latter interaction 

also lie in the universality class of the 3-D Heisenberg model. While we are not aware 

of any theoretical prediction that confirms this result, data on the CMR pyrochlore 

Tl2Mn2O7 in which FM-SE dominates, confirms such an assignment [47], as does the 

data on Pr1-xCaxMnO3 presented later. Indirect evidence supporting the above assertion 

is also provided by the use of the same model exponents in reproducing the dispersion 

relation for magnetic excitations measured at x < xc [111].  

    Such similarities notwithstanding, the data presented above indicate that the 

percolation threshold for these two interaction mechanisms are unequivocally different 

in La1-xCaxMnO3, despite the near-neighbor interaction range frequently assumed to 
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characterize them. The relative coupling strengths must, however, be comparable. The 

present data - acquired from samples with closely spaced compositions – indicate that 

dTC/dx is unchanged (within experimental uncertainty) for compositions spanning the 

MIT boundary (dTC/dx = 3 ± 1.4 K for both the two insulating and the two metallic 

samples immediately adjacent to this boundary, with the actual “best fit” TCs yielding 

identical values for this slope across the boundary in question).  

  Support for the comparability of these two interaction strengths is also provided by 

estimates of the acoustic spin-wave stiffness, D [93], and the coercive field, HC, 

respectively. To investigate the spin-wave stiffness in the present samples, 

measurements of the magnetization were carried out starting from 2 K in 2 – 5 K steps 

up to approximately half the ordering temperature (TC/2), and estimates made of the 

spontaneous magnetization (MS(T)) using extrapolations based on a modified 

Arrott-Noakes equation of state [43]. These estimates are reproduced in Figure 4.19 and 

have been fit to the well-known Bloch T3/2 law [40], a temperature dependence 

originating from the assumption of gapless acoustic spin-wave excitations described in 

the usual notation by the dispersion relation 2
ac Dq , leading to the following 

expression for the temperature dependent spontaneous magnetization, MS(T), [40, 115]:  
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ζ(3/2) = 2.612 being the Riemann zeta function. A least square fit of these data to 

equation (4-8) yields the spin-wave stiffness, D and the zero temperature spontaneous 

magnetizations, MS(0) (Table 4.1). The former are plotted a function of doping level (x) 
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in Figure 4.19, from which it can be seen that D varies smoothly across the 

compositional MIT boundary [116]. This behavior of D thus correlates with the critical 

behavior, with lower D values (~ 65 meV A2) appearing in both insulating and metallic 

samples exhibiting Heisenberg model exponent values. Quantitatively, D = 2JSa2 [115, 

117] for interacting near-neighbor spins (S) with separation a (at least, in cubic 

symmetry), J being the associated SE or DE interaction strength. Comparable values for 

D on either side of the MIT boundary thus imply comparable magnitudes for the 

prevailing dominant interactions. Figure 4.19 also shows that D increases sharply 

deeper into the metallic phase, but only at compositions at which a Griffiths-like phase 

occurs [19].  

This result supports the initial suggestion, based on a study at x = 0.20 and 0.21 

alone [19], that differences in behavior accompanying the latter in metallic samples are 

not simply manifested in a modified critical response appearing in the vicinity of TC, but 

extend throughout the magnetically ordered regime. Furthermore, these values for D 

estimated for the insulating regime of La1-xCaxMnO3 agree with those in ferromagnetic 

Pr1-xCaxMnO3 (x = 0.27, 0.29) [118], discussed subsequently, where the ground state is 

not only insulating, but the critical exponents also fall into the universality class of the 

3-D Heisenberg model, a point returned below. It is clear that the insulating character of 

this latter system precludes DE as a dominant coupling mechanism [15, 119], 

supporting the assertion made above regarding the universality class appropriate for 

La1-xCaxMnO3 in its the insulating regime.  
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Figure 4.19 Coercivity and Spin-wave stiffness as a function of doping level (x). 
Coercivity HC at 10 K (left scale) acquired from both the magnetization hysteresis and 
susceptibility butterfly loops. Spin wave stiffness constant D (right scale) found from the 
low temperature spontaneous magnetization MS. Data for x = 0.15, 0.225 and 0.33 are 
taken from [116]. 
 
 

    Finally, the coercivity, HC, estimated from both magnetization isotherms and 

susceptibility butterfly loops at 10 K, increases sharply in those single crystals with an 

insulating ground state. As discussed previously, FM-SE emerges just below the 

(insulating) orbital ordering (OO) to (metallic) orbital disordering (OO*) boundary, thus 

ferromagnetism in this region is stabilized by orbital ordering [112]. As the coercivity is 

determined from the response of the magnetization/spin to applied fields, then the onset 

of orbital order would be expected to lead an increase in HC. The presence of spin-orbit 

coupling combined with the specific orientational structure reflecting orbital ordering 

characteristics is equivalent to anisotropy, thus impeding any magnetization/spin 

rotation, leading to increased coercivity, as indeed is observed (Figure 4.19) (domain 

wall effects notwithstanding). 
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    Furthermore, temperature dependent (magneto)transport measurements 

demonstrate that the compositionally modulated MIT lies between 0.19 ≤ xc ≤ 0.20 for 

La1-xCaxMnO3 [120]. A number of previous reports have been interpreted that an 

insulating ground state in this system can be linked to local structural changes – which 

control carrier (eg electron) (de)localization [16, 110] – changes characterized 

quantitatively by the absence/presence of the so-called Jahn-Teller (JT) long-bond 

accompanying an OO insulating to OO* metallic transition [16, 110, 112].  

    Summarizing the results on the La1-xCaxMnO3 system, the evolution of this system 

from the OO toward the OO* metallic state accompanying increasing levels of Ca 

substitution underlies the emergence of FM-SE (as seen in neutron scattering data [110, 

111]). This latter interaction, it is argued, dominates the magnetic ordering process in 

the insulating phase immediately adjacent to the compositionally modulated MIT; on 

crossing the latter, DE becomes the dominant interaction as metallicity emerges. The 

compositional variations of both the acoustic spin-wave stiffness (D) and the coercive 

field (HC) support this assertion.  

The universality class of the transition accompanying both FM-SE and DE 

dominated ordering is shown to be that of the isotropic, near-neighbor 3D Heisenberg 

model; nevertheless, the percolation thresholds for these two interactions are manifestly 

different. Evidence of Griffiths-like phase appears in the low-field ac susceptibility for 

samples exhibiting both the insulating and metallic ground states, although such 

features are rapidly suppressed by small applied fields (the fields conjugate to uniform 
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ferromagnetism) for x < 0.21, leading to a Heisenberg model-like critical response. 

Combined with the magneto-transport measurements, the latter not only confirms that 

Griffiths-like phase features are not a prerequisite for CMR [19], but also impose the 

important caveat that Griffiths-like phase features do not guarantee the appearance of 

CMR.  

 With the adoption of a working definition of the Griffiths temperature, TG, given 

earlier, viz., as the temperature marking the onset of a depression in the inverse 

zero-field ac susceptibility below its high-temperature CW form first [58] (marked by 

vertical arrows in Figure 4.9), a phase diagram for La1-xCaxMnO3 (x < 0.33) can be 

constructed, Figure 4.20. This affords comparisons with that reported previously for 

La1-xSrxMnO3 (0.075 ≤ x ≤ 0.175) [98] and later in this chapter for La1-xBaxMnO3 (0.10 

≤ x ≤ 0.33) [54, 99].  

In La1-xCaxMnO3, the Griffiths-like phase regime terminates in close proximity to 

the MIT boundary, but, as mentioned above, the emergence of such features near this 

boundary may be particularly sensitive to various aspects of the underlying “disorder”, 

possibly including the oxygen stoichiometry [104, 105] (the latter, mentioned earlier, 

may also play a role in the variation evident in TC and TG estimates in this Ca doped 

system, Figure 4.20, rather than differences between nominal and actual Ca substitution 

levels, as the discussion of Table 4.1 suggests). The termination of this region is 

consequently marked as hatched, the latter also delineating – likely non-coincidentally – 

the MIT boundary at 0.19 ≤ xc ≤ 0.20 in the series studied. 
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Figure 4.20 The bond-diluted FM Ising model and phase diagram for La1-xCaxMnO3 
(0.18 ≤ x ≤ 0.33). (a) The TG –TC – p diagram for the bond-diluted FM Ising model [98], 
and (b) its conjectured ±J random bond Ising model counterpart. (c) Phase diagram for 
La1-xCaxMnO3 (0.18 ≤ x ≤ 0.33).   
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    The remaining lines – drawn as guides for the eye – join the TG (upper) and TC 

(lower) estimates, and initially appear somewhat different from the essentially triangular 

structure predicted by both Griffiths’ original diluted FM Ising model and the ±J random 

bond approach, unlike the behavior for La1-xBaxMnO3 discussed later. While these data 

exhibit scatter around these model predicted boundaries, what is consistent with such 

predictions is the narrowing gap between TC and TG as the Ca doping is increased 

toward “optimal” levels, x = 0.33. Evidence supporting the narrowing gap between TC 

and TG around x = 0.25 can be seen in data reported in [121].  

    Elements of such scattering will also evident in La1-xBaxMnO3 near x = 0.27 [54, 

99], while in Sm1-xCaxMnO3 [122] the reported TG values are neither constant – they 

decline by some 6% between x = 0.85 and 0.92 – nor is the corresponding phase 

diagram reminiscent of the model-predicted forms mentioned above. All of the latter 

attest to the yet unresolved subtleties displayed by Griffiths-like phases in the 

manganites.   

At compositions above the compositionally modulated MIT boundary, the 

emergence of metallicity is accompanied by CMR which, in model descriptions 

invoking phase separation, is based on the presence of FM conducting regions 

embedded in an AFM insulating background [3-4, 17, 21-23, 123]. It should be noted 

that the presence of a FM insulating phase at compositions below the MIT boundary is 

not in conflict with such a phase separation scenario. Ferromagnetism in insulating 

samples immediately below the MIT boundary results from FM-SE, stabilized by OO. 
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The emergence of metallicity is essentially coincident with a transition to an OO* state 

in which such FM-SE becomes destabilized, being replaced by AFM-SE characteristic 

of the parent compound, LaMnO3. 
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4.3 Phase Diagram for La1-xBaxMnO3 

   

    Following the discussion on the La1-xCaxMnO3 system, a summary of magnetic 

and transport data an optimal doped La0.7Ba0.3MnO3 single crystal is presented, with 

particular emphasis on the influence of disorder which nucleates a Griffiths-like phase 

in this and other La1-xBaxMnO3 single crystals [54].   

    Field and temperature dependent ac susceptibility measurements provide a 

powerful technique for investigating continuous magnetic phase transitions, as detailed 

previously, complementing conventional techniques. The corresponding data on the 

present single crystal are reproduced in Figure 4.21. The insert in Figure 4.21 (a) shows 

the zero field ac susceptibility, (0, T), measured on warming and cooling. While there 

is no measurable thermal hysteresis (on a scale of typically 0.5 K) associated with the 

magnetic transition near 310 K, hysteresis is evident in the temperature region 157 K < 

T < 187 K surrounding the rhomboheral c3R  to orthorhombic Pbmn structural phase 

transition [124] (not the focus of the present study). 

The maximum susceptibility value – evident in this insert – yields an estimate for 

the demagnetization factor 2119.0/1/1N maxD   = 4.72 g Oe/emu. The main body 

of Figure 4.21 (a) summarizes the field-dependence of the ac susceptibility, which 

displays a series of peaks which decrease in amplitude (χ(H, tm), and increase in 

temperature ( mT ) as the applied field increases. Standard critical theory, presented 

earlier, indicates that the locus in temperature, tm, and amplitude of these peaks are 
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governed by the power laws contained in equations (2-25) – (2-27).    

Given the success of the Heisenberg model [51] in describing the critical behavior 

in many manganites [15, 48, 106, 107], an attempt was made to find a quantitative 

estimate for TC using the above data in conjunction with equation (2-26), i.e., by 

plotting the measured peak temperatures, Tm, against the internal field, Hi
0.57, using the 

Heisenberg model prediction of (+)-1 = 0.57 [13]. The data are well represented by 

this form, and an extrapolation to Hi = 0 yields an initial estimate for TC. Typically this 

estimate is then used to construct double logarithmic plots of the reduced temperature  

 

 
Figure 4.21 Susceptibility analyses for La0.7Ba0.3MnO3. Insert: zero field ac 
susceptibility, measured on warming and cooling. (a) The main body reproduces the 
variation of the critical maxima with increasing static fields from 1 kOe (top) to 4 kOe 
(bottom) in 0.2 kOe steps. (b), (c), (d), (e) are tests of the associated power-law 
predictions on log-log scales, corrected for background and demagnetization effects. (b) 
Estimate of critical temperature TC, using susceptibility peak temperatures (Tm) against 
(Hi

0.57). (c) The reduced temperature (tm), against the internal field (Hi). (d) The peak 
susceptibility (χm) against reduced temperature (tm). (e) The peak susceptibility (χm) 
against internal field (Hi). 
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tm, against internal field (retesting equation (2-26)) and of the peak amplitude against tm 

(equation (2-27)), with small adjustments to TC until a consistent set of plots are 

obtained. In Figure 4.21 (e) the peak amplitudes from Figure 4.21 (a) (corrected for 

background and demagnetizing effects) are plotted against the internal field on a double 

logarithmic scale; this figure tests the remaining power law prediction, equation (2-25), 

and yields  = 5.5 ± 0.3 (an estimate which does not depend on choice for TC). Such an 

approach confirms the corresponding power predictions and in the present sample yields 

 = 1.41 ± 0.02,  = 0.35 ± 0.04, with TC = 310 ± 0.5 K (i.e., here the initial TC is 

essentially unchanged). Notice that while the individual exponent values differ from 

Heisenberg model predictions, their sum (coincidentally) does not, thus validating the 

approach used to construct Figure 4.21 (c). These estimates for , and  particularly, are 

slightly higher than Heisenberg model values ( = 1.387,  = 0.365,  = 4.783) [51], 

however, the exponent values quoted obey the Widom relation )1(  [35] within 

experimental uncertainty.  

     Confirmation of these exponent estimates is provided by the magnetization data. 

Figure 4.22 (a) shows such data collected along the critical isotherm (TC = 310 K), with 

the insert in this figure evaluating  independently using equation (2-21), viz., 

 /1
0C HM)TT,H(M . A double logarithmic plot will then yields the exponent . For 

fields comparable to those used in Figure 4.21 (b), this double logarithmic plot yields 

 = 5.5 ± 0.3. Figure 4.22 (b), demonstrates good collapse of magnetic isotherms near 

TC = 310 K based on the usual scaling representation, equation (2-19), incorporating the 
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above exponent estimates; the latter demonstrates the convincing consistency with the 

ac susceptibility data. 

Values of the exponent  far in excess of the Heisenberg value have been linked 

with the onset of a Griffiths-like phase [18-20]. The characteristics of such a phase have 

been used successfully to reproduce CMR behavior in the La1-xCaxMnO3 system near 

optimal doping [18], as well as its variation with dopant species. Despite the result that 

the  value in the present Ba-doped single crystal exceeds the model predicted value to 

a far lesser extent than values reported in its Ca-doped counterparts [18-20, 55], Figures 

4.23 (a) and (b), which reproduce the low field dc and ac susceptibilities immediately 

above TC, demonstrate clearly the depression of the inverse initial susceptibility in this 

temperature regime below its CW value, a result consistent with the formation of large  

 

 
Figure 4.22 Magnetization scaling analysis for La0.7Ba0.3MnO3. (a) Magnetic data 
measured along the critical isotherm (TC = 310 K), the insert estimates δ by repotting 
these data on a double logarithmic scale. (b) Conventional magnetization scaling plot 
using the critical exponents and TC listed above. 
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Figure 4.23 Occurrence of a Griffiths-like phase in La0.7Ba0.3MnO3. (a) The inverse dc 
susceptibilities plotted against temperature immediately above TC in various static fields 
shown; the insert, a double logarithmic plot testing equation (2-31), yields a value of λ 
= 0.62 (H = 20 Oe) with Rand

CT  = 310 K. (b) The corresponding inverse ac 
susceptibility measured in various static fields, the insert yields λ = 0.67. All data were 
collected on warming following zero field cooling. 

 

correlated regions/clusters. The insert in these figures verify the power-law prediction of 

equation (2-31); specifically Figures 4.23 (a) utilizes a Rand
CT  of 310 K (a value which 

is consistent in this system with the Curie temperature TC deduced from scaling analysis) 

with the associated fit to the 20 Oe dc data yielding λ = 0.62 ± 0.05 (310 K < T < 318 

K). The insert in Figures 4.23 (b) yields a consistent result, with λ = 0.67 ± 0.05 from 

the zero-field ac data over the same temperature range. In the PM region (T > TG = 342 

K, with TG chosen using the same criterion as Magen et.al., [58], viz., the onset of the 

departure of the inverse susceptibility from a CW dependence (as higher temperature 
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measurements – and fits to them – are not possible in our present magnetometer)), the 

corresponding exponent λ is close to zero (0.011), an anticipated result mentioned 

earlier, as the Griffiths-like phase evolves into a conventionally disordered PM state. 

The rapid suppression of the Griffiths-like phase with field evident in Figure 4.23 (the 

applied field being the conjugate field for uniform ferromagnetism rather than its 

disordered Griffiths counterpart, also mentioned above) is consistent with that reported 

earlier for an x = 0.27 Ba single crystal [59]; however, the λ value deduced here, being 

comparable to that found in a variety of doped manganites and other systems [18-20, 58, 

60], is larger than that found at the lower composition. The latter likely reflects the 

result that at x = 0.27 the exponent values are considerably closer to Heisenberg model 

values. This point is returned to below.  

     Despite the differences in exponent values with the “regular” Griffiths-like phase 

systems [59], transport measurements on the present system reveal it displays standard 

CMR behavior, as Figure 4.24 demonstrates. The insert reproduces the associated 

magnetoresistance, [ρ(0) – ρ(H)]/ρ(H), which, as expected, exhibits a peak near the 

MIT.  
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Figure 4.24 Magneto-transport measurements on La0.7Ba0.3MnO3. Resistivity in 0 (top), 
10 kOe, 30 kOe, 50 kOe, 70 kOe, 90 kOe (bottom) measured on warming following zero 
field cooling; the insert shows the associated magnetoresistance. 

 

Combining the present data with an investigation of Griffiths-like behavior at a lower 

composition of x = 0.27, summarized in Figure 4.25 (the critical behavior of this single 

crystal was published earlier [106], and yielded exponents estimates γ = 1.39, β = 0.38, 

δ = 4.83 with TC = 245 K), with the recent interpretation of electron spin resonance 

measurements by Yatsky et.al., [99], and a range of previous measurements, enables a 

modified phase diagram for the La1-xBaxMnO3 system in the vicinity of the Griffiths 

regime (x ≤ 0.33) to be constructed. In particular, the present measurements demonstrate 

unequivocally that the conjectured termination of the Griffiths-like phase between x = 

0.2 and x = 0.3 needs to be corrected, as Figure 4.26 indicates; it extends to somewhat 

beyond x = 0.3, likely to optimal doping [125]. Differences in the absolute values for  
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Figure 4.25 Occurrence of a Griffiths-like Phase in La0.73Ba0.27MnO3. The inverse ac 
susceptibility (1/χ) plotted against temperature immediately above TC in various static 
fields shown; the insert, a double logarithmic plot testing equation (2-31) with Rand

CT = 
261 K) yields the “exponent”  = 0.17. These data demonstrate the extreme sensitivity 
of the Griffiths-like phase in this system to field; this phase is completely suppressed by 
applied fields of 150 Oe.  
 
 

TG, TC and x notwithstanding (with the possible influence of oxygen stoichiometry, 

mentioned earlier), Figure 4.26 is strikingly similar to corresponding phase diagram 

determined for the La1-xSrxMnO3 system [98], which, in turn, was compared with the 

(T–p) diagrams for Griffiths’ original diluted FM Ising model [56, 98] and that 

conjectured for its ±J random bond counterpart (Figures 4.18 (a) and (b)). Despite the 

overall agreement in mapping the compositional boundaries of the Griffiths-like phase 

in this Ba-substituted system using data from several experimental techniques, some 

fundamental questions remain. These include both the origin of the rapid suppression of 

Griffiths characteristics by field in this system and the associated variation of the 

exponent λ with composition. Suggestions [59, 100] that this might reflect the fact that  
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Figure 4.26 Phase diagram for La1-xBaxMnO3. A summary of the current and prior 
observation of Griffiths-like phase boundaries for La1-xBaxMnO3 system (x ≤ 0.33, see 
text). Data in the range of doping levels are cited from Ref [125]. 

 

the average A-site, <rA>, in this Ba-substituted system near optimal doping is closest to 

that of the undistorted cubic perovskite structure ( O
Ar ) [100], appears to reproduce 

general trends at this doping level. Specifically that the disorder-corrected TC – and by 

inference, TG – is highest for optimally doped Ba compared to its Ca or Sr doped 

counterparts. However the broader assertion that O
Ar  – <rA> provides the appropriate 

criterion for measuring the “disorder” that underlies the tendency to nucleate a 

Griffiths-like phase, and the parameters that characterize it, is ruled out by detailed 

comparisons of the present data with that at x = 0.27 Ba doping [59], with the data on 

the Ca-doped system near the FM-metal to FM-insulator boundary discussed earlier in 

this chapter (and in [55]), and with the La1-xSrxMnO3 system [98]. Indeed, an inspection 

of the various structurally based parameters for these systems reproduced in Table 4.2 
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re-emphasizes the previous conclusion that not a single such parameter reflects the 

detailed variations in these temperatures, the exponent λ and the accompanying field 

dependence of Griffiths-like phase behavior, outlined above, away from optimal doping.    

 

 

 x <rA> 

(Å) 

Tolerance 

Factor (tf) 

φ 

(Å) 

TC 

(K) 

GP 

 

 

Ba 

(TG≈340K) 

0.1 

0.12 

0.15 

0.2 

0.27 

0.3 

1.241 

1.247 

1.254 

1.267 

1.285 

1.292 

0.9290 

0.9308 

0.9335 

0.9379 

0.9442 

0.9469 

0.0762 

0.0825 

0.0907 

0.1016 

0.1128 

0.2997 

200 

200 

215 

251 

245 

310 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

 

 

Sr 

(TG≈270K) 

0.05 

0.08 

0.1 

0.12 

0.15 

0.2 

0.3 

1.221 

1.224 

1.225 

1.227  

1.230 

1.235 

1.244 

0.9217  

0.9227 

0.9234 

0.9240 

0.9250 

0.9267 

0.9299 

0.0205 

0.0255 

0.0282 

0.0306 

0.0336 

0.0376 

0.0485 

120 

140 

160 

180 

210 

310 

351 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

 
 
 
Table 4.2 Parameters characterize some Mn perovskites, La1-xBxMnO3. 
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    The earlier discussion of Ca-doped single crystals also revealed an anomalous 

behavior of the acoustic spin-wave stiffness, D, one that might be a precursor signal for 

the onset of a Griffiths-like phase, at least near the FM metal-FM insulator boundary at 

x = 0.19 in that system. The corresponding results for Ba-doped samples provide an 

interesting comparison. Using the well-known Bloch T3/2 expression for the temperature 

dependence of the spontaneous magnetization below 80 K in the x = 0.3 single crystal 

(the spontaneous magnetization MS(T) being estimated from extrapolation of both 

Arrott-Noakes and conventional Arrott plots, either being equally applicable well away 

from the critical region) yields a value of the acoustic spin-wave stiffness D(0) = 147 ± 

2 meV Å2. This value is in excellent agreement with that reported for a Ba doped x = 

0.3 polycrystalline sample (D(0) = 152 ± 3 meV Å2) [126]. More importantly this value 

for D is well above that reported at x = 0.27 (D(0) = 66 ± 3 meV Å2 [115] (the unusual 

behavior of the gap parameter at that composition notwithstanding). A rapid decline in 

the value of D in the Ca-based system coincided with the termination of Griffiths-like 

phase characteristics and the occurrence of critical behavior described by Heisenberg 

model exponents [59, 106, 115]. The parallels with Ba-doping are striking; as D 

declines sharply as x is reduced from 0.3 to 0.27, so do the critical exponents approach 

very closely to Heisenberg model values.  

    Nevertheless, vestiges of Griffiths-like phase behavior persist, although they 

display an extreme sensitivity to field and a much reduced value of the exponent λ = 

0.17, correspondingly, the phase regime immediately above TC at x = 0.27 exhibits but 
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minor departures from PM CW behavior. However, whereas in the Ca-doped system TC 

and TG converge as x is lowered to 0.2, immediately prior to the onset of the 

FM-insulator (with antiferromagnetism being established at still lower x values), in this 

Ba-doped system, Griffiths-like phase characteristics do not terminate when the 

composition x = 0.27 is approached from either above or below, but can be seen to 

persist well below x = 0.2 and likely up to optimal doping, x = 0.33, exhibiting (TG –TC 

– x) boundaries generally similar to La1-xSrxMnO3 [98]. 

    In summary, analysis of magnetic data on single crystal La0.7Ba0.3MnO3 yield 

values for the critical exponents  = 5.5 ± 0.3,  = 1.41 ± 0.02 and  = 0.35 ± 0.04 

slightly larger than those of the three dimensional Heisenberg model. Subsequent 

measurements of the low field dc and ac susceptibilities reveal features consistent with 

the presence of a Griffiths-like phase. These data, combined with previous results, 

enable a phase diagram of the Griffiths regime for the La1-xBaxMnO3 system in the 

temperature-composition plane to be constructed, and in connection with the latter, the 

possible importance of the variation of the acoustic spin-wave stiffness with 

composition is outlined. Nevertheless, the evolution of Griffiths-like phase behavior 

accompanying compositional doping with any specific alkaline-earth cation, as well as 

the differences displayed using different dopant species, still present considerable 

challenges to our current understanding of these strongly correlated systems. 
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4.4 Phase Competition in (La1-yPry)0.7Ca0.3Mn16/18O3  

 

    The occurrence of a Griffiths-like phase in number of La1-xBaxMnO3 and 

La1-xCaxMnO3 single crystals has been discussed earlier in this chapter. While the 

relationship between the presence of this and related phases and the onset of CMR is the 

subject of ongoing discussion [18-20], the nucleation of this phase is linked 

unequivocally to the presence of disorder [56, 57]. In the context of the manganites, one 

pivotal question outstanding is whether there is one particular “measure” of disorder 

(magnetic disorder or structural disorder) which characterizes the appearance of a 

Griffiths-like phase [54, 59, 100]. While much previous effort, both present and by other 

authors, has focused on this issue in the La1-xBaxMnO3 and La1-xCaxMnO3 systems, 

amongst others, no definitive conclusion has been reached. In an attempt to address this 

issue, an analysis of systematic measurements of zero-field ac susceptibility on a series 

of fixed, “optimally” hole doped (La1-yPry)0.7Ca0.3Mn16/18O3 (0 ≤ y ≤ 1) polycrystalline 

compounds is presented. These, and the neutron data referred to below [82], were kindly 

provided by Dr. V. Pomjakushin and colleagues at the Paul Scherrer Institute.  

    The use of these specific samples importantly maintains not only a fixed number of 

DE linked Mn3+-Mn4+ sites, but also a fixed number of Mn3+-Mn3+ and Mn4+-Mn4+ SE 

interactions (the possible influence of substitution on the magnitude and sign of these 

interactions notwithstanding), and in this sense the disorder is categorized as quenched 

disorder. Such an analysis, used in conjunction with previous neutron powder 
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diffraction data [82], indicates first that there is a close correlation between phase 

competition as measured by the relative volume fractions of the phase separated AFM 

and FM components, and the nucleation of a Griffiths-like phase, and second, the 

Griffiths-like phase in this system resembles that conjectured for the J random bond 

Ising model [56], in that it is confined to a restricted regime of the temperature 

(T)-probability (p) plane [98], p here being related to the relative FM/AFM volume 

ratio. 

    This analysis is based - following the Griffiths original idea of a diluted FM Ising 

ferromagnets [56] – on the characteristic temperature dependence for the susceptibility 

(χ), mentioned earlier in equation (2-31), viz.,   1Rand
C

1 )TT( , with 1 <  < 0. 

This power law has been shown to reproduce the low field ac and dc susceptibilities 

immediately above TC in the systems discussed earlier in this chapter and in a variety of 

other candidate Griffiths-like phase systems [18, 58, 101], its form demonstrating 

clearly the depression of χ-1 in this temperature regime below its CW value, as a result 

of the formation of large correlated regions/clusters [58]. Here Rand
CT , and the transition 

or Griffiths temperature, TG, of the undiluted system are determined from such data, as 

outlined below.      

    The main body of Figures 4.27 (a)-(e) present a selection of inverse zero field ac 

susceptibility data, which clearly monitors the nucleation and evolution of a 

Griffiths-like phase with composition in this optimally doped system. Data from 16O 

doped samples are presented on the left and for 18O doping on the right.  
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Figure 4.27 Analysis of Griffiths-like phase in (La1-yPry)0.7Ca0.3Mn16/18O3. Main body: 
the inverse zero-field ac susceptibility against T, measured on warming; 16O and 18O 
data are shown on the left and right, respectively. The Pr substitution levels, y, are 
marked. The (red) straight lines (drawn immediately above TG) represent a CW law. The 
vertical dash lines drawn through figures a1 – d1 (green) and a2 – d2 (gray) represent 
the corresponding estimates for TG. The inserts replot these data on a 
double-logarithmic scale, testing the power-law equation (2-31) with tm, the (orange) 
slope at low tm yields the exponent λ quoted. The requirement that λ = 0 in the CW 
regime provides the estimate for Rand

CT  (the (cyan) line at higher tm in the insert).  
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Double-logarithmic plots of χ-1 against reduced temperature, Rand
C

Rand
Ck T/)TT(t  , 

reproduced in the inserts in these figures, confirm the power-law prediction of equation 

(2-31) and yield estimates for the exponent λ (notwithstanding both the difficulties 

surrounding such estimates at small λ values and a precise theoretical interpretation for 

Rand
CT  currently. Viz., it lies above the actual ordering temperature (TC) of the system, 

but below the highest ordering temperature admitted by the exchange bond distribution 

(TG) [57, 58]). In addition, while estimates for λ at small values of tm have proved 

difficult to obtain in some cases, the trend evident in Figures 4.27 (a) – (e) is 

unequivocal, a point returned to below. Further, while specific criteria exist for 

determining the PM to FM ordering temperature, TC, and the Griffiths temperature, TG, 

experimentally, viz., the inflection point in the zero-field ac susceptibility and the onset 

of marked departures from CW behavior [58-61], respectively, the choice of Rand
CT  has 

been less precise [58, 59]. Here a specific criterion is reiterated, one based on several 

previous reports [18, 19, 58] that fitting data in the PM regime above TG to equation 

(2-31) yields a value for λ of zero when Rand
CT  is correctly identified. Such a criterion is 

based on the physically reasonable expectation that the Griffiths-like phase evolves into 

a conventionally disordered PM phase at high temperature.  

This criterion translates into essentially estimating the CW temperature, θ, as done 

recently for the La1-xCaxMnO3 system [19], applied here to data immediately above TG; 

its accuracy is correspondingly comparable (Table 4.3), as are the results reported for 

the isotope induced shifts in TC [24]. The use of this criterion not only enables 
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experimental estimates for Rand
CT  to be acquired consistently, but it also avoids the 

unacceptable occurrence of both negative values for λ when choices of Rand
CT  below its 

correct value are adopted, and increasingly positive estimates for λ which emerge when 

too high a Rand
CT  is used in equation (2-31) (trends that are exacerbated in 

self-consistent approaches). Table 4.3 also lists the corresponding values for TG (TG ≈ 

265 K for 16O, and ≈ 260 K for 18O, essentially constant for all samples exhibiting a 

Griffiths-like phase, except close to the critical composition, yc = 0.85 in 16O; this shift 

in TG is somewhat smaller than the isotope induced shift in TC), λ and TC, parameters 

used subsequently to construct Figures 4.29 (c), and (d).  

    Irrespective of any detailed analysis based on equation (2-31), the clear observation 

of a depression of 1/χ below its projected high-temperature CW form in Figures 4.27 

(a1) – (d1) provides unequivocal evidence for the formation of large clusters/correlated 

regions [58-61], consistent with the formation of a Griffiths-like phase. Also clearly 

evident from Figure 4.27 (1e) is that higher levels of Pr substitution (y = 0.9) suppresses 

the nucleation of such clusters, and correspondingly, the Griffiths-like phase. The 

immediate implication is that yc = 0.85 represents the compositional critical point below 

which a Griffiths-like phase is nucleated in this system (comparable results occur with 

18O substitution, Figures 4.27 (a2) – (e2), a point returned to below).  
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Table 4.3 Static structural parameters characterizing (La1-yPry)0.7Ca0.3Mn16/18O3 (0 ≤ y 
≤ 1). The ionic radii are from [87], the y = 0 data cited from [18]. “--” indicates no 
data available at that composition.  

 

y 0 0.2 0.5 0.7 0.75 

 

0.8 0.85 0.9 1 

<rA> 

(Å) 

1.205 1.200 1.192 1.187 1.186 1.185 1.183 1.182 1.179 

φ 

(10-4 Å) 

180 178 174 149 135 127 118 94 4.6 

tf 

(tolerance 

factor) 

0.916 0.915 0.912 0.910 0.909 0.908 0.907 0.906 0.905 

TC (K) 

-16O 

212 232 180 138 122 120 116 99 120 

TC (K) 

-18O 

-- 219 155 122 116 107 -- 94 115 

Rand
CT  

(K) -16O 

216 232 200 182 178 175 178 0 0 

Rand
CT  

(K) -18O 

-- 219 188 171 167 166 -- 0 0 

TG (K) 

16O 

245 265 264 265 265 267 228 0 0 

TG(K) 

18O 

-- 260 258 259 256 255 -- 0 0 

λ-16O 0.33 0.15 0.13 0.09 0.08 0.07 0.05 0 0 

λ-18O -- 0.12 0.09 0.08 0.07 0.05 -- 0 0 
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The idea of a critical ratio in a phase-separated view of the manganites has been 

discussed recently [123], focusing principally on the thermal, not compositional, 

variation of this ratio. By contrast, and of immediate relevance to the present conclusion, 

is that analysis of previous neutron diffraction experiments [82], Figure 4.28 concluded 

that at this same composition the role of quenched disorder was pivotal in establishing a 

long-ranged phase separated state. The significance of this correlation is emphasized by 

an inspection of Figures 4.29 (c) – (f). The first of these reproduce the three 

characteristic temperatures TC, Rand
CT  and TG as a function of La replacement by Pr (y) 

(while maintaining optimal doping) in both 16O (Figure 4.29 (c)) and 18O systems 

(Figure 4.29 (d)); these phase diagrams exhibit a trapezoidal shape, similar to that first 

reported in La1-xSrxMnO3 [98], (and also La1-xBaxMnO3 discussed above and in [54]), 

which replicates aspects of the conjectured phase diagram for the FM regime of the J 

random bond Ising model.  

These figures also emphasize the precipitous drop in TG beyond yc = 0.85 where a 

Griffiths-like phase fails to nucleate, again inviting comparison with the AFM region of 

the J random bond Ising model. Before proceeding to the evolution of FM/AFM 

volume fraction, it is necessary to point out the main result from powder neutron 

diffraction in the present system, as outlined below. The effective FM moment (a) and 

AFM moment (b) is the product of the real moment and square root of the volume 

occupied by the corresponding ordered phase, and is obtained from data measured at 

temperature T = 15 K, Figure 4.28, see [82] for measurement and other details.  
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Figure 4.28 Estimates of the effective FM/AFM moments. FM moment mF (a) and AFM 
moment mAF (b) at T =15 K, (c) Néel (TN) and Curie (TC) temperatures determined from 
the Neutron Diffraction data as a function of y in (La1-yPry)0.7Ca0.3Mn16/18O3. The lines 
are guides for the eyes. 16O and 18O samples are shown by closed and open symbols, 
respectively. TN for the samples with different oxygen isotopes are the same. 
 
 

    The current analysis utilizes the above neutron diffraction data [82]. These data not 

only demonstrate the presence of competing phases, but also confirm that an AFM 

component can be detected at all compositions down to y = 0.2 (at this latter 

composition the AFM volume fraction is, not unexpectedly, very small, viz., the 

effective AFM moment mAFM = 0.24 μB [82]). The important result demonstrated here is 

that as the AFM phase fraction increases with the Pr substitution level, y, so the 

nucleation of a Griffiths-like phase is suppressed.  

    Utilizing a modified protocol based on Table 4.3 and Figures 11/12 of reference 

[82], along with the detailed technique given in the same reference, the FM/AFM 

volume fractions, mFM(FM) and mAFM(AFM) were estimated from the measured low 
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temperature (15 K) moments. This approach, assuming a pure AFM state moment of 

MAFM = 2.26 μB and its FM counterpart MFM = 3.57 μB, taken to be constant for the 

whole Pr (y) doping range and over the relevant temperature range, used in conjunction 

with the relationship: 2
FMFM

2
AFMAFM )M/m(1)M/m(  , yields the FM (AFM) volume 

fraction, 2
FMFM )M/m(  (and vice-versa). The resulting FM and AFM volume fractions 

are reproduced in Figures 4.29 (e) (16O) and (f) (18O) as a function of y, enabling direct 

comparisons with Figures 4.29 (c) and (d) to be made.  

    This comparison demonstrates a marked correlation linking directly the nucleation 

of a Griffiths-like phase in this system – undoubtedly reflecting the presence of 

quenched disorder – but disorder quantified by the relative volume fractions of the 

phase separated FM and AFM components. In particular, the critical Pr composition, yc 

= 0.85, above which λ vanishes and below which a Griffiths-like phase first forms, 

coincides with the emerging dominance of the FM phase fraction. These figures also 

demonstrate that in the presence of competition between phase separated AFM and FM 

regions/clusters, the occurrence of a Griffiths-like phase is indeed confined to a 

restricted region of the temperature-probability (T-p) phase diagram, again showing 

similarities with predictions for the J random bond Ising model [56, 98], Figures 4.29 

(a) and (b). Here however, the relevant probability (p) parameter is not simply the A-site 

occupation, per se [56, 98], but the relative AFM/FM volume fraction modulated by Pr 

doping, with the experimentally determined compositional threshold at yc = 0.85 

(equivalent to pc = 0.5 in the J random bond Ising model [56, 98]).  
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   The consensus of current work is that a Griffiths-like phase in the manganites 

originates from quenched disorder; here an attempt is made to isolate one principal 

characteristic of this disorder which can be linked to the nucleation of a Griffiths-like 

phase. The advantages accrued by using a system maintained at optimal doping have 

been discussed earlier; nevertheless, it should be reiterated that a consequence of 

changing the La-Pr ratio even at fixed (total) doping is that the Mn-O-Mn bond lengths 

and angles are inevitably modified [127]. 

The prior attempts to provide a unified description of the properties of 

doped-manganites [102] (and cuprates [103]), mentioned earlier, have been based on the 

use of predominantly static structural factors, specifically <rA>, and φ as discussed 

earlier (although changes in both the Mn-O and O-O bonds occur on passing through TC 

[127]). Such discussions, however, made no quantitative predictions relevant to the 

present topic, viz., a comparison between the extent of structural disorder (<rA>, and φ) 

and the magnitude of TG and/or Rand
CT  or the existence of a critical composition in this 

context.  

The compendium of structural parameters collected in Table 4.3 simply facilitates 

the reiteration of the previous conclusion [54, 59, 100] that no such parameter – or 

indeed a combination of them-maps onto the behavior summarized in Figures 4.29 (c) – 

(d). In contrast, the present analysis offers a quantitative measure of phase competition 

and its correlation with the nucleation of a Griffiths-like phase. Specifically it 

demonstrates that the replacement of La by Pr (y) results in progressively decreasing 
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Figure 4.29 Comparisons between the Ising model predictions and the estimated phase 

separated fractions. (a) The TG –TC – p diagram for the bond-diluted FM Ising model 

[98]; (b) its conjectured ±J random bond Ising model counterpart. Plots of TG, TC, and 
Rand

CT  vs. the Pr doping level, y, for the 16O (c) and the18O substituted series (d). The 

associated AFM and FM volume fractions, calculated as described in the text, in the 16O 

(e) and the 18O series (f).  
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values for the susceptibility “exponent” λ in the Griffiths-like phase regime, from a 

maximum value of λ = 0.33 at y = 0 to λ = 0 above the critical composition, yc > 0.85.  

It is particularly important to note that by maintaining optimal doping with x = 0.3, 

the lower bound of 0.04 < xc < 0.1 for the appearance of a Griffiths-like phase, 

estimated recently by Deisenhofer et.al., [98] based on the number of DE linked sites, is 

deliberately exceeded throughout the present system; nevertheless, a Griffiths-like phase 

is not ubiquitous, it nucleates only below a Pr probability compositional threshold (yc) 

where the FM volume fraction dominates. The additional correlation between λ 

estimates in the Griffiths-like phase (once established) and the FM/AMF volume ratio 

adds support to this assertion, viz., these λ estimates fall monotonically as the Pr 

concentration approaches yc and the dominance of the FM component diminishes.  

Of course, there is a compositional upper bound beyond which a Griffiths-like 

phase fails to form, around x = 0.3 in the La1-xCaxMnO3 [18] series, as the present data 

confirm, but for which numerical estimates do not exist at present. The current analysis 

similarly shows that beyond this supposed upper bound a Griffiths-like phase can still 

be nucleated, with a constant number of DE linked sites, by manipulating the relative 

FM/AFM volume fraction. 

    At this point it should be recalled that phase separation underlies explanations of 

CMR based on models of carrier density collapse [128]. While such an approach can 

account for the transport behavior and various other observed properties of doped Mn 

perovskites and pyrochlores [128] – including marked disorder-induced effects [129] – 
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its predictions regarding a Griffiths-like phase in the vicinity of TC have yet to be 

investigated in any detail. Indeed, in such an approach the magnetic transition is 

primarily first order, although, depending on the polaron density – which in turn reflects 

the relative magnitudes of the exchange coupling and the electron-phonon interaction – 

second order/continuous transitions are possible. 

    That a Jahn-Teller mediated electron-phonon coupling plays an important role in 

manganites is confirmed by isotope effects accompanying 18O replacement of 16O 

(Figures 4.27 (e1) and (e2) and Table 4.3). Such effects are, however, not dominant here; 

there is a small depression of some 5 K in TG (likely due to a decrease in the Mn-O-Mn 

mode frequencies accompanying the oxygen mass increase [130]), and both Rand
CT  and 

λ are both slightly lower in 18O doped specimens. This appears to reflect a similar 

reduction in the critical composition below yc = 0.85, where, as with its 16O counterpart, 

it again correlates closely with the emerging dominance of the FM phase fraction; the 

present data indicate that this phase competition is modulated, but certainly not 

suppressed, by the electron-phonon coupling, as is the accompanying establishment of a 

Griffiths-like phase. 

    In summary, systematic analysis of the ac susceptibility of a series of 

(La1-yPry)0.7Ca0.3Mn16/18O3 (0 ≤ y ≤ 1) indicates a compositional critical point yc = 0.85 

(16O) above which a Griffiths-like phase does not nucleate and λ vanishes. Below this 

critical composition, the characteristic depression of the χ-1 below its high-temperature 

CW behavior, summarized by the power law   1Rand
C

1 )TT( , 0.05 ≤ λ ≤ 0.33, is 
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clearly evident. The reanalysis of previous neutron diffraction data [82] demonstrates 

that for Pr concentrations yc > 0.85, the AFM component in this phase separated 

manganite dominates; in contrast, the FM component is prevalent below this critical 

composition, and it is in this latter regime that a Griffiths-like phase first appears, 

despite the fact that all these optimally doped samples exceed the lower bound 

established for the emergence of a Griffiths-like phase in DE linked systems.  

The result that the trend in the “exponent” λ also tracks this FM component 

suggests that the relative FM-AFM phase fraction in this phase separated system 

provides the appropriate measure of the disorder from which a Griffiths-like phase 

originates. That there is significant competition between states with differing magnetic 

characteristics (as opposed to disorder measured solely by structurally based parameters) 

is confirmed, for example, by the observation of a TC  TN near y = 0.5; in particular, 

the latter demonstrate the presence of two energy scales, the existence of which 

underlies the appearance of CMR in several computational approaches [3-4, 17] which 

rely on such competition to establish intrinsically inhomogeneous ground states. In 

these strongly correlated systems in which charge, spin, orbital and phononic degrees of 

freedom are believed to play competing roles, phononic effects, while not dominant, can 

be seen through oxygen isotope effects.    

At present, detailed measurements of the type utilized in this analysis are not 

widely available; this precludes the further testing of the link between the nucleation of 

a Griffiths-like phase with the phase separated volume fractions in other systems. 
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4.5 Ferromagnetic Insulator Pr1-xCaxMnO3 

 

    In contrast with the behavior of the doped manganites discussed above, 

Pr1-xCaxMnO3 is somewhat atypical in that the application of magnetic fields [131], 

X-ray irradiation [132], high electric fields [133], or laser radiation [134], have 

reportedly induced “unconventional” responses, making this system one of the more 

interesting perovskite manganites. 

    In Pr1-xCaxMnO3 compounds, while complications result for the presence of a Pr 

moment, the mismatch in cationic size is minimized, generating a pronounced 

orthorhombic distortion which favors the occurrence of charge-localization; 

Pr1-xCaxMnO3, unlike many of its counterparts doped with non-magnetic rare-earth ions, 

thus exhibits insulating behavior over an extended temperature range and all doping 

level in zero field [3, 4, 131]. Nevertheless, in all such materials, disorder plays a 

pivotal role reflecting the occurrence of nearly degenerate (and hence competing) 

ground states of very different character. In particular, disorder drives first 

order/discontinuous transitions towards second order/continuous in these systems; 

Pr1-xCaxMnO3, as discussed below, exhibits both types of transitions with changing 

compositions, x, and the disorder referred to above underlies spontaneous electronic 

phase separation, a central component in some theories of CMR [3-4].  

Given the insulating ground state characteristics of Pr1-xCaxMnO3, phase separation 

scenarios are most frequently discussed in this system in relation to the MIT 
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accompanying the onset of a CO state, specifically in the higher hole doping range, x  

0.3 [3-4]. The simplest representation of phase separation envisages “domains” with CO 

AFM/insulating and FM/metallic characteristics, with the latter being enhanced by 

applied fields (the conjugate field for ferromagnetism), hence CMR. The onset of CO 

would also play a role in this context. Guided by the boundaries delineated most 

recently by the measurements of Lopes et.al., [135], to study the magnetic phase 

transition, the composition of the present samples was chosen to specifically avoid 

possible complications arising from a CO AFM contribution. 

    While at x = 0.3 the observation of marked hysteresis in both the magnetization, 

M(T,H) and the magnetoresistance, ρ(T,H), has led to the associated phase transitions 

being classified as first order, reflecting the importance of AFM interactions [131], for x 

< 0.3 FM coupling dominates; nevertheless insulating behavior persists even in high 

magnetic fields. Previous studies of magnetization and ac susceptibility in this doping 

range were aimed primarily at establishing the relation between ordering/Curie 

temperatures and doping levels [136], thus the universality class describing such 

ordering – best found from single crystals samples – has not been widely studied.  

    The focus of this section is to address this deficiency, and attempt to resolve the 

interesting question of whether the lack of metallicity in this system influences 

magnetic critical behavior, a topic that also arose in the La1-xCaxMnO3 system discussed 

earlier in this thesis. To reiterate, in the conventional DE picture, the onset of metallicity 

is linked with the establishment of an infinite (percolating) pathway of DE metallic 
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bonds, the same bonds that establish an infinite FM “backbone”, so that the emergence 

of metallicity and ferromagnetism are essentially coincident [3, 4]. This is clearly not 

the situation encountered in Pr-doped systems; indeed, the insulating ground state 

characteristics of the specimens investigated here means that any influences of dynamic 

Mn3+/Mn4+ charge fluctuation is more severely curtailed in them compared than even in 

their La1-xCaxMnO3 counterparts. 

    A summary of analyses of critical behavior in both the ac susceptibility and dc 

magnetization in single-crystal Pr1-xCaxMnO3 (x = 0.27; 0.29) is presented, 

supplemented by magneto-transport data. The zero field ac susceptibility measurement, 

Figures 4.30 (a) and (b) enable an estimate for ND and a preliminary determination of 

TC to be made. Theses measurements also indicate the absence of a Griffiths-like phase 

in both specimens (viz., no characteristic downturn in the inverse susceptibility). The 

magnetic data indicate that both single crystals exhibit a continuous/second-order PM to 

FM phase transition (Arrott plots show only positive curvature), with more detailed 

analysis indicating they display marginally different critical exponents, Figure 4.30. 

Estimates of the latter for the x = 0.27 sample yield = 4.81 ± 0.02, = 1.36 ± 0.02, = 

0.36 ± 0.02 (consistent with both the predictions for the nearest-neighbor 3-D 

Heisenberg model and with those reported for its DE dominated metallic counterparts) 

with TC = 127 ± 0.5 K, whereas at x = 0.29, = 4.62 ± 0.05, = 1.38 ± 0.01, = 0.37 ±  

0.02, with TC = 114 ± 0.5 K. The absence of metallicity – and by inference, the 

suppression of extensive charge fluctuations – does not, therefore, appear to influence 
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Figure 4.30 Magnetic critical behavior of single-crystal Pr1-xCaxMnO3 (x = 0.27; 0.29). 
Zero field ac susceptibilities (a) for x = 0.27 and (b) for x = 0.29. Insets are the inverse 
susceptibilities. Magnetization scaling plots using the critical exponents and TC values 
indicated above following equation (2-13). Plots (c) for x = 0.27 and (d) for x = 0.29. 
Plots (e) and (f) are the ac susceptibility scaling plot using equation (2-23). The good 
data collapse confirms the reliability of exponents and ordering temperature estimates. 
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the universality class of the transition, a result consistent with the earlier data presented 

on Ca-doped single crystals. The Pr-doped single crystals also display comparable 

values for the acoustic spin-wave stiffness D ~ 70 meV Å2 (from the Bloch T3/2 law), 

well below that found in the CO, field-induced metallic regime of the same system. 

    For completeness, the transport behavior of these samples was also investigated. In 

the strictest sense of CO, no hopping contribution to the conductivity would occur, at 

least in the conventional DE scenario where uncorrelated hopping via a single 

intermediate oxygen atom alone is considered. The present specimens lie outside such a 

regime. Figures 4.31 (a) (x = 0.27) and (b) (x = 0.29) confirm that below the CO regime 

(x > 0.3) of this system, available field are unable to melt the FM insulating ground 

state [3, 4, 131]; conversely the retention of insulating characteristics in high applied 

fields provided indirect evidence against the occurrence of CO.  

    The continuous, semi-conductor like increase in the samples’ resistance with 

decreasing temperature precluded measurements being carried out below 90 K. 

Nevertheless, the emergence of a small cusp near T = 125 K (x = 0.27), the previously 

determined ordering temperature, for H = 0 indicates that magnetic ordering influences 

the conduction process (albeit not nearly as dramatically as in “conventional” DE 

systems), an assertion confirmed by the associated magnetoresistance (insert in Figure 

4.31).  
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Figure 4.31 Magneto-transport measurements of single-crystal Pr1-xCaxMnO3 (x = 0.27; 
0.29). (a) Resistivities for x = 0.27 in zero field (top), 90 kOe (bottom) measured on 
warming following ZFC; insert, the magnetoresistance [(0)–(H)]/(0), which exhibits 
a peak near TC, (b) as in (a) for x = 0.2 

 

    In summary, the detailed magnetic and transport investigations in single-crystal 

Pr1-xCaxMnO3, reveal: (i) the establishment of ferromagnetism with the near-Heisenberg 

model exponents; (ii) the insulating features are prevailing in the present systems (x = 

0.27; 0.29). The combination of these two features again demonstrates that metallicity 

and ferromagnetism are not coincident; hence confirming that the understanding of 

CMR in doped Mn perovskites demands a fundamental extension of the conventional 

DE model. In these Pr-doped specimens, the lack of detailed neutron data of the type 

discussed in relation to the La1-xCaxMnO3 system preclude a definitive identification of 

the underlying interaction mechanism as being ferromagnetic SE (which appears most 

likely) in the doping range of interest.  
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Chapter 5 
 
Correlation Between Magnetism and 
Transport in Fe0.8Co0.2Si (Ga0.98Mn0.02)As 
 

Identifying the universality class of magnetic critical behavior is fundamentally 

important as it reflects principally the range of the underlying interactions [35], from 

which inferences regarding the likely interaction mechanism(s) can be drawn. Typical 

experimental techniques used to address this problem involve, as discussed earlier in 

this thesis, measurements of magnetic isotherms, field-dependent ac susceptibility, heat 

capacity, etc., in the vicinity of the ordering temperature.  

    In this chapter, the universality class of magnetic phase transition will be 

established via scaling the anomalous Hall conductivity. Such a result establishes an 

AHE based methodology for systematically investigating critical behavior, particularly 

useful for potential spintronics devices, viz., systems with low 

dimensionalities/extremely weak magnetic signals. 
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5.1 Scaling of the Anomalous Hall Effect in Fe0.8Co0.2Si 

  

    The ferromagnet Fe0.8Co0.2Si was studied in order to investigate this issue in 

general, and to demonstrate, in particular, the consistency of exponent estimates found 

using conventional methods with those deduced by scaling the AHE. Several motives 

underlie this choice. Specifically the large Hall resistivity exhibited by this system [30, 

72] together with a transition temperature (TC ≈ 36 K) which enables the temperature 

regime both above and below TC to be accessed with relative ease. Further, this system 

is topical, indeed controversial, due to its displaying an extraordinary positive MR (Δρ = 

[ρ(H) – ρ(0)]/ρ(0) > 0) [28, 30] around TC in both PM and FM phases, the origin of 

which is a subject of ongoing debate [28, 30]. Equally important, both the 

magnetization and magneto-transport of this system remain unsaturated in available 

fields, thus complicating subsequent analysis, a difficulty that the approach outlined 

below comprehensively addresses.  

    Figure 5.1 reproduces a selection of the temperature/field dependent magnetic and 

transport measurements. Figure 5.1 (a) displays the zero field ac susceptibility, 

measured on warming following zero field cooling; the peak evident around 36 K is 

consistent with previously reported results [28, 30], enabling subsequent measurements 

to focus on the transition region. Figure 5.1 (b) exhibits the temperature dependent 

transport data, which again agree overall with previous data reported on both poly- and 

single-crystal specimens. In particular, the positive MR evident in the inset attests to the  
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Figure 5.1 Summary of magnetic and transport measurements on Fe0.8Co0.2Si. (a) The 
zero field ac susceptibility measured on warming following zero field cooling, the peak 
near 36 K is consistent with previous reports. (b) The temperature dependent transport 
data, with a positive MR evident in the insert. Figure (c) reproduces magnetization 
isotherm data close to TC (i.e., 26 K to 44 K in 2 K steps and 50 K), in the from 
suggested by a modified Arrott-Noakes equation of state ((Hi/M)1/1.387 vs. M1/0.365), using 
Heisenberg model exponent values of = 1.387, = 0.365, and = 4.783. Figure (d) 
reproduces the critical isotherm, fitting to which yields δ = 4.78 ± 0.01.    
 
 
 

(c) 

 = 4.78  0.01 
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high quality of the present specimen. Figure 5.1 (c) reproduces the magnetization as a 

function of field at various fixed temperatures close to TC in the form suggested by the 

modified Arrott-Noakes equation of state [43], viz., (Hi/M)1/1.387 versus M1/0.365, 

equation (2-18). The ensuing series of parallel straight lines indicate the applicability of 

essentially Heisenberg model exponents (= 1.387, = 0.365, and = 4.783) [51]. The 

equation-of state exponent determination is presented in Figure 5.1 (d), i.e., from data 

along the critical isotherm, yielding an experimental estimate for the exponent δ of 4.78 

± 0.01. The remaining individual exponent estimates are presented in Figure 5.2, 

yielding exponent values of = 1.38 ± 0.02 from the inverse initial susceptibility, and 

= 0.37 ± 0.01 from the spontaneous magnetization.  

 

  

Figure 5.2 Remaining magnetic critical analyses for Fe0.8Co0.2Si. (a) The spontaneous 
magnetization MS(T) plotted against temperature T: inset; MS vs. tm = (TC – T)/TC on a 
log-log scale, yielding = 0.37 ± 0.01. (b) The inverse initial susceptibility, 1/χi, plotted 
against T: inset; 1/χi vs. tm on a log-log scale, yielding = 1.38 ± 0.02. 
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    Figures 5.3 (a) and (b) reproduce the field-dependence of the Hall resistivity, ρxy, 

and of the longitudinal resistivity, ρxx. The issue of reliable estimates for the ordinary 

Hall coefficient, R0, in this system needs to be addressed first. This can be done with 

reasonable accuracy in systems where the magnetization can be saturated in available 

fields. Here, however, such a situation is not realized, as the magnetization does not 

reach saturation even at 2 K in fields of 90 kOe [28, 30]; it thus needs to be emphasized 

that conventional approaches are not appropriate for this system. For example, dividing 

equation (2-38) by H yields  S0xy R4 RH/  (where the susceptibility here is 

given by H/M ), so that plots of H/xy  versus χ extrapolated from high field 

(low susceptibility) onto the H/xy  axis yield R0 [69].  

However, under the conditions mentioned above, the values of R0 so obtained, are 

overestimated (the carrier density n is underestimated), leading to uncertainties in RS. 

Values for R0 of the appropriate accuracy can be obtained – actually in conjunction with 

the establishment of the functional dependence for ),R(G xxS   – by using the result 

that irrespective of the precise form of the latter, plots of A
xy  versus M must 

extrapolate to A
xy  = 0 (as inferred directly from the relationship 

2
xx

SA
xy

MR4 




 ). 

This is demonstrated in Figures 5.3 (c) in which plots of O
xyxy

A
xy   versus M in 

which the above constraint on the intercept have been implemented are reproduced 

(notice that this procedure cannot change any functional dependence of O
xyxy

A
xy   

on M or ρxx). This procedure has broad potential application in other systems which 

remain unsaturated in high field. 
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Figure 5.3 Compilation of magnetization and magneto-transport data in Fe0.8Co0.2Si. (a) 
Selected field dependent isotherms of the Hall resistivity ρxy and (b) the longitudinal 
resistivity ρxx at 2, 10, 15, 20, 26-44 (in 2 K steps), 50, 60, 80, and 100 K in fields up to 
90 kOe. (c) Plots of the anomalous Hall conductivity O

xyxy
A
xy    vs. M, the linear 

dependences of which (at each measuring temperature) yields 2
xxSxxS /ρR4π )ρ,G(R  , 

with the accompanying temperature-dependent proportionality constant, K(T), see text. 
(d) Plots A 2

xy s xx/ ( 4 M ) R /    vs. H demonstrate that 2
s xxR /   is indeed a constant 

at each temperature, and hence validates the relation 2
s xxR   at specific 

temperatures.    
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Figure 5.4 Various parameters related to magnetism/transport scaling. Modified 
ordinary Hall coefficient R0 (a), the corresponding carrier density n (b), and the 
proportionality between anomalous Hall coefficient RS and magnetization M, K(T). (d) 
Scaling plot of the normalized anomalous Hall conductivity )T(K/A

xy  vs. M, 
incorporating the measured values of ρxx, ρxy, and M. 
 
 

The first consequence of this procedure are improved values for the modified 

ordinary Hall coefficient, R0, and correspondingly the hole/carrier density 
eR

1
n

0

  ≈ 

(3.75 ± 0.04) × 1022 cm-3, corresponding to approximately 0.5 carriers per atom (Figures 

5.4 (a) and (b) respectively; note the expanded scale in these figures; the actual 

estimates vary by only some 2% below 100 K). The carrier density, combined with a 

finite resistivity at zero temperature indicates semi-metallic behavior, as opposed to the 

narrow gap semiconducting behavior of the undoped host. The above results indicate 

that across the FM-PM transition, the ordinary Hall coefficient (R0) – and hence carrier 

density (n) – does not exhibit any measurable critical characteristics, at least in the 
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system studied. The technique utilized above can thus be used to address the question of 

whether R0 and n exhibit critical behavior across the essentially coincident FM-PM and 

Metal-Insulator phase transitions, an issue of importance in the understanding of 

carrier-mediated ferromagnetism. 

The second result, one of fundamental importance, is that Figure 5.3 (c) establishes 

the functional dependence of A
xy  on M as being linear with considerable accuracy. 

The function ),R(G xxS   is thus a constant at any given temperature, an immediate 

corollary to which is that 2
xxS  R  ( 2

S )T(KR xx  ), Figure 5.3 (d) a functional 

dependence that cannot be modified by the intercept constrain discussed above.    

     Prior to a discussion of the physical implications of this result, the linear 

dependence of A
xy  on M ( M)T(KA

xy  ) for this system, established above, enables 

the scaling behavior of the AHE to be established, and from it the universality class of 

the transition. Specifically, the above results indicate that the normalized anomalous 

Hall conductivity )T(K/A
xy  is simply a linear function of the magnetization M, a 

relation confirmed in Figure 5.4 (d), which incorporates data between 2 K and 100 K in 

field up to 90 kOe (further, such scaling incorporates measurements of ρxx, M and ρxy, a 

form more comprehensive than those advocated previously which involve just ρxx and 

M [28, 30]). Of particular importance in the present context is that the A
xy  versus M 

relationship in the critical regime assumes a particularly simple form; here, as Figure 

5.4 (c) demonstrates, K(T) is essentially constant in the present system (Since the AHE 

is proportional to λE×M, E being the electrical field and M the magnetization tensors  
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[137], the parameter K(T) coupling transport/AHE and magnetism, should reflect the 

spin-orbit parameter λ, as well as the carrier-local moment or “s-d” coupling constant, 

depending on the model adopted).  

   This leads to a direct modification of the conventional Arrott-Noakes equation of 

state [43] by simply replacing the magnetization, M, by the anomalous Hall 

conductivity (equation (2-44)), viz., 


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A
xy H

T

TT
. This prediction is 

tested in Figure 5.5 (a). Here the ensuing series of parallel straight lines resulting from 

the adoption of 3-D Heisenberg model exponents, together with an ordering temperature 

TC = 36 ± 0.5 K (found from the critical anomalous Hall conductivity isotherm, 

A
xy (TC), which passes through the origin), confirm the applicability of both equation 

(2-44) and the exponents mentioned, in describing the AHE data across the critical 

region. The intercepts of such linearized plots on the perpendicular axis, ( A
xy / 1 )1/β at 

H = 0, yield the spontaneous anomalous Hall conductivity A
Sponxy . While the intercepts 

on the ordinate axis ((H/ A
xy )1/γ) yield a quantity analogous to the (inverse) initial 

susceptibility [1/χi(T) = (H/M)H=0]. As in conventional scaling, self-consistency is 

assured by taking these intercepts and (re)testing them against the analogous power-law 

relationships based on reduced temperature or field, making small adjustments 

(typically 0.1 K in TC) until self-consistency is achieved. The final choices are shown in 

Figures 5.5 (b), 5.5 (c), and 5.5 (d), and their inserts. These yield = 4.78 ± 0.01, = 

0.37 ± 0.01, and = 1.38 ± 0.01 with TC = 36 ± 0.5 K (with the latter error arising  
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Figure 5.5 Critical analysis based on the anomalous Hall conductivity A
xy  in 

Fe0.8Co0.2Si. A
xy  measured between 26 K and 44 K (in 1 K step). (a) A

xy  vs. H data 

reproduced in the form A
xy 1/0.365 vs. (Hi/

A
xy )1/1.387; the resulting series of parallel 

straight lines confirm the exponent assignments, with the line passing through the origin 

yielding TC = 36 ± 0.5 K. (b) The critical anomalous Hall conductivity )T( C
A
xy  vs. H; 

the inset shows the same data replotted on a double logarithmic scale, the slope of 

which yields = 4.78 ± 0.01 for 2 kOe < H < 90 kOe. (c) The spontaneous anomalous 

Hall conductivity A
Sponxy  plotted against T; inset, A

Sponxy  vs. tm (reduced 

temperature) on a log-log scale, the slope of the straight line drawn yielding = 0.37 ± 

0.01. (d) The quantity H/ A
xy , plotted against T; inset, H/ A

xy  against tm, similarly 

yielding = 1.38 ± 0.01.  
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principally from uncertainties in the absolute – not relative – temperature). These values 

not only demonstrate consistency with those found from the magnetization and ac 

susceptibility data, but are also very close to 3-D Heisenberg model predictions.       

    Finally these anomalous Hall conductivity data, A
xy , have been scaled using the 

corresponding modification of equation (2-45), i.e., A
xy (Hi, tm) = |tm|β·F±[Hi/(|tm|βδ)]. 

Figure 5.6 (a) demonstrates conclusively that the data in Figure 5.5 (a) can be scaled 

onto the two expected branches resulting from data acquired below, F−, and above, F+, 

TC. This figure confirms the unequivocal reliability of estimates of the critical 

exponents and the ordering temperature in this system using anomalous Hall 

conductivity data. The latter show that this system falls into the universality class of the 

isotropic, near-neighbor 3D Heisenberg model. Confirmation of this conclusion is 

provided by the more conventional scaling of the corresponding magnetization in Figure 

5.6 (b).  

   The individual power-law dependences from the ac susceptibility data, equations 

(2-25)-(2-27), support the above assertion, yielding = 4.78 ± 0.02, = 0.38 ± 0.01, = 

1.37 ± 0.02, and TC = 35.9 ± 0.2 K, as can be seen from Figure 5.7.   
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Figure 5.6 Magnetic and transport scaling in Fe0.8Co0.2Si. (a) Novel scaling plot for 
A
xy , using the critical exponents and TC value listed in the figure. Plot of log( A

xy /tm
β) 

vs. log(Hi/tm
βδ) demonstrates convincingly the self-consistent determination of TC and 

the critical exponents , , . (b) Conventional scaling plot of magnetization M using 

the same exponent and TC value. Upper/lower branches in (a) and (b) correspond to 

data below TC (F-)/above TC (F+) respectively.  

 
Figure 5.7 Susceptibility critical analysis for Fe0.8Co0.2Si. (a) The critical maxima with 
increasing static fields from 1 kOe (top) to 4 kOe (bottom) in 0.2 kOe steps, corrected 
for background and demagnetization effects. Plots (b), (c), (d), (e) are tests of the 
power-law predictions on a log-log scale. (b) Estimate of critical temperature TC, using 
susceptibility peak temperatures (Tm) against (Hi

0.57). (c) The peak susceptibility (χm) 
against internal field (Hi). (d) The reduced temperature (tm), against the internal field 
(Hi). (e) The peak susceptibility (χm) against reduced temperature (tm).  
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    Note that the field range (> 2 kOe) over which the magnetization and transport data 

were acquired is one in which the helical phase, present in this system at low 

temperature, is completely suppressed (HC < 1.5 kOe at 2 K at this composition, a field 

that decreases as the temperature is increased towards TC). Thus no 

complications/contributions from this phase appear [28, 30] in the field/temperature 

regime covered in the present experiments; the properties measured are indeed those of 

the ferromagnetic phase. This conclusion is reinforced by the fact that even in zero field 

the mean-free path below 100 K is much shorter than the helical period, so that the 

transport data reflect essentially short range – and hence effectively ferromagnetic – 

correlations. 

The present data also provide information on the specific mechanism responsible 

for the AHE in Fe0.8Co0.2Si. That 2
xxS  R   excludes the possible of any significant 

asymmetric skew scattering [74] (for which 
xxS  R  ), leaving side-jump scattering 

[75] and/or intrinsic contributions [76] as the underlying sources (both yield 2
xxS R  , 

a result of relaxation time τ (hence impurity density) independence [77]). To 

differentiate between these two possibilities requires the use of previous results acquired 

at various doping levels in Fe1-xCoxSi (0 ≤ x ≤ 1); the analysis of the latter concluded 

that the Hall conductivity xy  is indeed a measure of the effective spin-orbit 

interaction, viz., the dominant mechanism is most likely intrinsic (originating as an 

electronic band structure effect), a result valid for 0 ≤ x ≤ 0.7 [30].  

Furthermore, the observation that M)T(KA
xy   in the current system is also 
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consistent with a recent theoretical calculation based on the sum of Berry phase 

curvature, a key prediction of which is that the intrinsic anomalous Hall conductivity 

MIAH  [138]. Indeed, the approach summarized above enables the normalized 

anomalous Hall conductivity )T(K/A
xy  to be directly correlated with the 

magnetization, M, over wide temperature (2 K – 100 K) and field (90 kOe) ranges. 

 In summary, the present results demonstrate unequivocally that scaling behavior 

can be accurately deduced from measurements of the AHE. The data presented above 

also raise the possibility of systematically investigating the magnetic behavior of 

systems with low dimensionality/extremely weak magnetic signals via this technique. 

The latter could prove pivotal in improving our current understanding of the correlation 

between magnetism and transport in magnetic metals/semiconductors, particularly 

future generations of recording materials and spintronic devices. Finally, the present 

results ( 2
S )T(KR xx  ) offer support for the emerging consensus that the AHE in this 

system arises most probably from intrinsic/electronic band structure effects [77]. 
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5.2 Universality Class from the Anomalous Hall 

Effect for (GaMn)As  

 

Magnetic semiconductors are regarded currently as an important class of materials 

due, for example, to their potential application as injectors for spintronic devices [6, 27, 

31]. In this context, GaAs has been the object of considerable recent interest since the 

discovery that it becomes ferromagnetic when Ga is replaced by Mn [6, 27, 31]. The 

study of critical behavior in ferromagnets such as (GaMn)As plays a pivotal role in 

understanding the physical basis of such behavior [6, 27, 31].  

Establishing the universality class of any material provides insight into the range of 

the underlying interactions [35], from which the dominant interaction can often be 

inferred, for example, long/infinite range interaction in the case of Mean-Field 

exponents, as opposed to short range/near neighbor in the case of Heisenberg model 

values. The present study demonstrates conclusively that an epitaxial (metallic) 

Ga0.98Mn0.02As microstructure is a Mean-Field ferromagnet by utilizing an 

unconventional scaling approach based on the AHE presented above. 

     The occurrence of the AHE in ferromagnetic (III, Mn)V semiconductors has not 

only been investigated extensively [6, 26, 27, 31, 77, 138-142], but theories for it in the 

metallic regime have also been proposed recently based on a Mean-Field prescription. 

In particular, the latter concludes the presence of an impurity scattering-independent 

intrinsic AHE in this regime [77], which yields 2
xxS  R  [77, 138, 139]. This 
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dependence is confirmed indirectly by the analysis presented below; subsequent scaling 

behavior based on the anomalous Hall conductivity demonstrates unequivocally the 

applicability of a Mean-Field approach. Specifically, inserting the predicted dependence 

of RS into equation (2-42) leads to the result that the magnetization is directly 

proportional to the anomalous Hall conductivity, MA
xy  , enabling the field and 

temperature variation of M to be extracted form magneto-transport data in a manner 

similar to that discussed above for Fe0.8Co0.2Si. 

The onset of ferromagnetism in the low-doped Ga1-xMnxAs has been recently 

confirmed using a SQUID magnetometer [143], revealing the presence of a MIT  

accompanying the FM-PM phase transition. Figure 5.8 presents the temperature (T) 

dependent magnetization M(T) (measured at 50 Oe) and resistivity (ρ(T, H)) measured 

in different static magnetic fields (H). The first order temperature derivative in M(T) 

exhibits a minimum at T ≈ 56 K, providing a preliminary estimate of the ordering 

temperature, thus enabling the subsequent measurements to be focused in the critical 

regime. Following the application of a magnetic field, the peak resistivity decreases in 

amplitude while the peak temperature increases, a behavior quite similar to that of CMR 

manganites; here this behavior has been interpreted on the basis of exchange coupled 

scattering of carriers by magnetic spin fluctuations [27, 62].    

The maximum in ρ(T, 0) yields an MIT temperature of TMI = 76 K, In the metallic 

regime (T < TMI), the resistivity can be characterized by the power-law combination: 

4
2

2
10 TT)H,T(  , which can be dominated by either electron-electron (ρ1T

2) 
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or electron-phonon scattering (ρ2T
4) [144]; ρ0 is the residual resistivity arising from 

impurity scattering. The presence of a resistivity minima near 10 K, evident in Figure 

5.8 (b), is intriguing, and was initially explained on the basis of the Kondo effect, which 

produces a ln(T) increase in the low-temperature resistivity [145, 146]. While the 

present single crystal sample displays an anisotropy in its low-temperature transport 

behavior not unlike that reported in other Kondo-like metallic alloys [147], its evolution 

with field is inconsistent with conventional Kondo behavior. Its origin has been 

discussed in terms of strong electron-electron interactions [148], reminiscent of the 

behavior of amorphous alloys [149]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Temperature dependent magnetization and resistivity of Ga0.98Mn0.02As. (a) 
M(T) measured at 50 Oe in a SQUID magnetometer. (b) ρ(T) measured at magnetic 
fields 0, 2.5, 10, 30, 50, 70 kOe.    
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    A summary of these magneto-transport data (as a function of field in various static 

temperatures) in the critical regime is presented in Figures 5.9 (a) and (b). The variation 

of ρxy with temperature and field is strongly suggestive of a link with the  

magnetization, and indeed, far above the ordering temperature (and hence not 

reproduced here), it exhibits the same linear dependence on field as is well established 

for M in a wide range of system which also exhibit magnetic ordering. As discussed 

above in relation to the Fe0.8Co0.2Si system, the first issue that needs to be addressed in 

evaluating the anomalous Hall conductivity A
xy  as accurately as possible is the 

accurate determination of the contribution arising from the ordinary Hall conductivity 

2
xx

0O
xy

HR


 .  

   This was done using the technique advocated in the previous section [69], i.e., the 

intercept of 0xy RdH/d   extrapolated from high fields (50 kOe < H < 70 kOe) 

where the susceptibility is expected to vanish. This yields a weakly temperature 

dependent hole density n ≈ (5.0 ± 0.3) × 1020 cm-3, consistent with previous estimates 

[6]; this result also indicates that in this system the anomalous Hall term is dominant 

over the entire temperature range studied. Figure 5.9 (c) displays the resulting estimates 

for O
xyxy

A
xy  . 

    These latter results were again used in the modification of conventional critical 

analysis [43] discussed in the preceding section using the direct proportionality between 

A
xy  and M established above. As in Fe0.8Co0.2Si, such proportionality again enables the 

usual Arrott-Noakes/scaling equation of state to be expressed in terms of the anomalous  
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Figure 5.9 Field dependent magneto-transport measurements on Ga0.98Mn0.02As. (a) 

Hall resistivity ρxy and (b) longitudinal resistivity ρxx measured at various fixed 

temperatures (46 K − 78 K in 2 K steps) in the fields up to 70 kOe. Insert; the 

corresponding zero field, temperature dependent ρxx. (c) The corresponding anomalous 

Hall conductivity A
xy  derived from ρxy and ρxx as discussed in the text.  
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Hall conductivity A
xy  equation (2-44), viz., 











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
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



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A
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1

A
xy H

T

TT
. The critical 

exponents appropriate for the corresponding transition are those which linearize the 

anomalous Hall conductivity – field data plotted in the above form. As Figure 5.10 (a) 

shows, “conventional” Arrott plots of these data, i.e., H/ A
xy  versus ( A

xy )2, are indeed 

linear, a result demonstrating the applicability of Mean-Field model exponents (= 0.5, 

= 3, = 1 [35]), with the estimate for the ordering temperature being TC = 61.5 ± 0.5 

K (from the critical anomalous Hall conductivity )T( C
A
xy ; the quoted error in the 

ordering temperature arises from uncertainties in the absolute temperature, relative 

temperatures can be determined with much higher precision). This value for TC 

confirms indirectly (through a comparison with TC/x versus n (x being the Mn doping 

level) phase diagram [6]) that the nominal and actual compositions are very close.  

The “spontaneous” anomalous Hall conductivity, A
Sponxy , is found from the 

intercepts of the linearized plots of Figure 5.10 (a) on the perpendicular axis, i.e., at H = 

0.  Those on the horizontal axis yield a quantity proportional to the (inverse) initial 

susceptibility [1/χi(T)= (H/M)H=0]. The isotherm that passes through the origin (the 

“critical” anomalous Hall conductivity isotherm, )T( C
A
xy ), yields the ordering 

temperature TC. Self-consistency is then achieved by applying equations (2-46) – (2-48) 

to the appropriate intercept values so estimated, and substituting the exponent values 

deduced from them back into equation (2-44); this process is repeated – with small 

adjustments to TC ( typically 0.1 K) – until the Arrott plots and the ensuing power-laws 

yield the same exponent values. The detailed confirmation of these exponent  
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Figure 5.10 Novel critical analysis based on the anomalous Hall conductivity A
xy  for 

Ga0.98Mn0.02As. (a) The “Arrott plot” equivalents – H/ A
xy  vs. ( A

xy )2; the straight line 

passing through the origin yields the critical temperature TC = 61.5 ± 0.5 K. (b) A
xy  

vs. H along the critical isotherm (TC): insert; these same data replotted on a 

double-logarithmic scale, the slope of the resulting straight line yielding = 2.98 ± 

0.02. (c) The “spontaneous” anomalous Hall conductivity A
Sponxy  plotted against 

temperature: insert; A
Sponxy  vs. tm on a double-logarithmic scale, the slope of the 

straight line drawn yielding = 0.49 ± 0.02. (d) H/ A
xy  plotted against temperature: 

insert; H/ A
xy  vs. tm on a double-logarithmic scale, the slope of the straight line drawn 

yields = 1.02 ± 0.03. 
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assignments are provided in Figures 5.10 (b) – (d), particularly their double-logarithmic 

inserts testing the power-law predictions and yielding = 0.49 ± 0.02, = 1.02 ± 0.03 

and the equation of state critical exponent = 2.98 ± 0.02 (for 2 kOe < H < 70 kOe).    

These exponent estimates are consistent with Mean-Field model values, within 

experimental uncertainty, and thus satisfy the Widom relation  A final, 

comprehensive assessment of the applicability of Mean-Field exponents to the 

anomalous Hall conductivity ( A
xy ) data estimates so obtained for Ga0.98Mn0.02As is 

provided by Figure 5.11. This figure demonstrates unequivocally that the data in Figure 

5.10 (a) can be scaled onto two branches, one for data below (F−) and the other for data 

above TC(F+), using the choice of variables suggested by equation (2-45) and 

Mean-Field exponents; these branches merge as the temperature approaches TC (i.e., tm 

approaching zero). 

Such a result has interesting consequences. Whereas the critical behavior for 

localized spins coupled via short-ranged (Heisenberg) interactions in insulators is 

determined by the space/lattice dimensionality, d, and the order parameter/spin 

dimensionality, k, the corresponding behavior in metallic systems is markedly different. 

For the latter, renormalization group calculations [150] predict that for long-ranged 

attractive spin-spin interactions (J(r)) decaying with distance r as J(r) ≈ r−(d+k), 

Mean-Field behavior occurs for d/2 ≤ k ≤ 3/2 (i.e., if, in three dimensions (d = 3), J(r)   

decreases with r more slowly than r−4.5, then k = 1.5). In contrast, for k > 2 short-ranged 

critical behavior ensues, while in the intermediate regime, d/2 ≤ k ≤ 2, the critical  
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Figure 5.11 Comprehensive scaling plot for A
xy  in Ga0.98Mn0.02As. The plot uses the 

critical exponents and TC listed in this figure. The data collapse on this log( A
xy /tm

β) vs. 

log(H/tm
βδ) plot provides confirmation of the validity of the TC and critical exponent( , 

,  ) estimates. The upper branch corresponds to data below TC and the lower branch 

to data above TC. 

 

exponents depend upon the value for k. The immediate inference drawn from the 

present data is that, in Ga0.98Mn0.02As, (d + k) < 4.5.  

   That this result may not hold at all Mn doping levels is not surprising; in particular, 

at higher doping levels, at which the hole-mediated exchange is weaker, and the 

probability of near-neighbor AFM Super Exchange Mn-Mn interactions is increased [6]. 

Thus Mean-Field exponents do not linearize the equivalent plots (indirectly confirmed 

by the suppression of TC due to the correlated Mn-moment fluctuations based on the 

Mean-Field model), i.e., the so-called Arrott plots at x = 0.053 [27] and x = 0.06 [141], 
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unlike those displayed here, exhibit curvature, indicating a cross-over to a different 

universality class. 

    While a more extensive series of experiments covering a wider range of Mn doping 

would enable such cross-over effects to be investigated in more detail, the importance of 

the present study is that it demonstrates: first, that accurate exponent values can be 

extracted from magneto-transport measurements (specifically the anomalous Hall 

conductivity), admitting its use in a range of other situations, including, as demonstrated 

here, in low-dimensional spintronic devices where conventional techniques are 

compromised; and second, in the case of low Mn doped metallic Ga0.98Mn0.02As, these 

exponents are Mean-Field [151], thus validating directly the frequently adopted 

theoretical approach to ferromagnetic (III, Mn)V semiconductors which predicts the 

intrinsic origin of the occurrence of AHE in this compound. 
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Chapter 6 
 
Conclusions and Future Work 
 

In summary, this thesis focuses principally on the magnetic and transport properties 

of doped CMR manganites and magnetic semiconductors, investigating specifically 

magnetic phase transitions and related phenomena. A summary of the results of these 

investigations, followed by proposals for the future work, are presented below.  

 

6.1 Summary and Conclusions 

 

6.1.1 Doped Manganites 

    

    The purpose of the present study was to investigate the influence of various doping 

levels (x) and different doping elements (specifically Pr, Ca and Ba) on the transition 

from paramagnetism to ferromagnetism, and the attendant metal-insulator phase change, 

in manganites. Specifically, magnetic and transport measurements on four manganites 

systems have been performed, namely, La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27), La1-xBaxMnO3 

(x ≤ 0.33), (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), and Pr1-xCaxMnO3 (x = 0.27, 0.29).  

In La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27) [15, 19, 55], temperature dependent 

(magneto)resistance measurements indicate that the compositionally modulated MIT  
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lies between 0.19 ≤ xc ≤ 0.20 in the single crystal series studied, consistent with  

numerously reported values in the range 0.18 ≤ xc ≤ 0.22. Magnetization and ac 

susceptibility measurements were also performed across this MIT in the same single 

crystal specimens. Subsequent comparisons between these transport and magnetic data 

enabled several important conclusions to be drawn. 

First, regarding the correlation between a Griffiths-like phase and CMR, the 

experimental data in the vicinity of this MIT boundary indicate that while the x = 0.19 

sample exhibits features consistent with the presence of such a phase, CMR is absent; in 

contrast, data on the x = 0.20 single crystal show no Griffiths-like phase features, but a 

CMR is present; at x = 0.21, however, both Griffiths-like phase features and CMR are 

observed. Such data enable the following specific conclusions to be drawn for the 

La1-xCaxMnO3 system: viz., the presence of a Griffiths-like phase does not guarantee 

CMR, nor are the appearance of such features a prerequisite for CMR [18-20].  

Second, on the universality class of magnetic phase transition in the same system, 

the present investigation reveals that whereas continuous magnetic transitions occur for 

0.18 ≤ x ≤ 0.25, at x = 0.27, features consistent with the simultaneous appearance of 

both a second order (continuous) and a first order (discontinuous) transition are present. 

The universality class of these continuous transitions belongs to that of nearest neighbor 

3-D Heisenberg model only for x ≤ 0.20. Beyond x = 0.20, complications due to the 

emergence of a Griffiths-like phase occur, specifically, the critical exponents these 

samples do not fall into the universality class of any known model. 
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Third, the evolution of the MIT with composition supports the assertion that the 

dominant mechanism underlying ferromagnetism across the MIT boundary changes 

from FM Super Exchange stabilized by orbital ordering in the insulating phase to 

Double Exchange in the orbitally disordered metallic regime [15].  

In La1-xBaxMnO3 (x ≤ 0.33) [54, 59], detailed magnetic and transport 

measurements yield critical exponents  = 5.5 ± 0.3,  = 1.41 ± 0.02,  = 0.35 ± 0.04, 

with TC = 310 ± 0.5 K, complemented by the coexistence of a Griffiths-like phase and 

CMR. The latter, used in combination with previous data, enables a temperature-doping 

level phase diagram to be constructed delineating specifically the occurrence of a 

Griffiths-like phase, and facilitating comparisons with the random bond Ising and the J 

models. Finally, a compilation of various structurally based parameters for both these 

Ca and Ba-doped systems is presented, and this reveals that not a single such parameter 

reflects the detailed variations evident in such phase diagrams. The specific disorder 

from which a Griffiths-like phase originates in these compounds thus remains 

unidentified, thus requiring further study. 

    In contrast to the systems discussed above, in (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85) 

[60], the correlation between phase competition and nucleation of a Griffiths-like phase 

has been discussed in combination with previously acquired neutron diffraction data 

[82]. Using the latter, it was possible to demonstrate that an emergence of a 

Griffiths-like phase correlates directly with the relative volume fractions of the phase 

separated AFM and FM components, even when the recently estimated Double 
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Exchange linked percolation threshold for manganites is exceeded [98]. In this system, 

a Griffiths-like phase emerges when the relative volume fraction of the FM component 

is larger than 50%, i.e., when y ≤ yc = 0.85. Correspondingly, when y > yc, no 

Griffiths-like phase is nucleated as the accompanying AFM volume fraction is larger 

than 50%. In addition, the influence of the electron-phonon coupling on the 

Griffiths-like phase can also be seen through oxygen isotope effects. Various structural 

parameters are again shown to display no direct link to Griffiths-like phase behavior in 

this system.  

    Finally, in Pr1-xCaxMnO3 (x = 0.27, 0.29) [118], the coexistence of ferromagnetism 

and insulating behavior was investigated. Here magnetic data yield critical exponent 

estimates consistent with predictions for the nearest-neighbor 3-D Heisenberg model, as 

in La1-xCaxMnO3 for x ≤ 0.19 [15, 55]; such a result suggests – albeit indirectly, as the 

corresponding neutron data is currently lacking – that the origin of ferromagnetism in 

these insulating manganites is again FM Super Exchange, as here Double Exchange 

cannot be the dominant interaction as metallicity is manifestly absent. 

 

6.1.2 Magnetic Semiconductors 

   

    In Fe0.8Co0.2Si and Ga0.98Mn0.02As, the relation between magnetization and 

conductivity has been the subject of ongoing discussion [28, 30], reflecting the broader 

debate regarding the correlation between magnetism and transport in magnetic materials. 
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The present study, on the two systems mentioned above, contribute to this debate by 

demonstrating that the universality class of the magnetic transition in them can be 

directly established from the anomalous Hall conductivity. The latter result could prove 

pivotal in improving our current understanding of magnetism, transport, and their 

correlation in magnetic metals/semiconductors, particularly for the low-dimensional 

spintronic devices with an extreme weak magnetic response. 

In particular, in bulk polycrystalline Fe0.8Co0.2Si, this novel scaling between the 

AHE and magnetization enables the quadratic dependence of the anomalous Hall 

coefficient RS on longitudinal resistivity ρxx ( 2
xxS R  ) to be demonstrated 

conclusively. Furthermore, it shows that the anomalous Hall conductivity is the intrinsic 

parameter linked linearly with the magnetization, rather than the Hall/longitudinal 

resistivity/conductivity. As a corollary, the universality class can then be established 

from magneto-transport measurements, specifically, from the anomalous Hall 

conductivity. The resulting 3-D Heisenberg universality class assignment is confirmed 

by the analysis of detailed magnetization and ac susceptibility data.  

In an epitaxial (metallic) Ga0.98Mn0.02As microstructure [151], using the theoretical 

prediction (based on a Mean-field approach) of 2
xxS R  , the magnetization has been 

extracted indirectly from the AHE. Subsequent analysis yields magnetic critical 

exponents of = 0.49 ± 0.02, = 1.02 ± 0.03, = 2.98 ± 0.02, with TC = 61.5 ± 0.5 K, 

consistent with the Mean-Field model predictions. Direct support for the applicability of 

the latter had previously been lacking. This in turn, validates the frequently adopted 
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theoretical approach, specifically, the intrinsic origin of the AHE in ferromagnetic (III, 

Mn)V semiconductors. 

 

6.2 Future Work 

 

   Although several decades of extensive effort have been devoted to CMR manganites 

and magnetic semiconductors, many open questions remain [152], the answers to which 

require further study. 

 

6.2.1 Doped Manganites 

 

I: The Physical Origin of Griffiths-like Phase in La1-xCaxMnO3 and La1-xBaxMnO3. 

   The nucleation of a Griffiths-like phase in (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85) has 

been successfully discussed using the idea of phase competition between the phase 

separated AFM and FM components [60], a result that draws heavily on neutron 

scattering data. In contrast, the underlying reasons for the occurrence of a Griffiths-like 

phase in La1-xCaxMnO3 and La1-xBaxMnO3 systems are still unclear. What has been 

established by the present work on these latter systems is that the “disorder” underlying 

the emergence of a Griffiths-like phase in these two systems is not linked in any direct 

way to structural disorder (as represented, for example, by the A-site radius and/or its 

variance). Such a phase most likely results from inhomogeneous competing/phase 
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separated states in these two systems. However, the current lack of definitive data – 

particularly those resulting from the application of detailed imaging techniques – makes 

it difficult to address this issue in a self-consistent manner.     

II: On the Random Transition Temperature, Rand
CT , the Griffiths Temperature, TG, and 

the ‘Exponent’ λ. 

    Experimentally, the Griffiths temperature TG is often estimated as the onset 

temperature of deviations in the inverse susceptibility from the conventional CW law, 

viz., above TG the system is purely PM while below TG a downturn consistent with the 

formation of large clusters/correlated regions occurs. Following this prescription, the 

inverse susceptibility above TG obeys a CW law (
C

1

TT

1


 ) which, correspondingly, 

yields the exponent λ = 0 (T > TG) when Rand
CT  is correctly identified. However, recent 

experiments in the temperature range TG < T < 700 K [20, 96] indicate that such a 

criterion can be problematic; in the La1-xCaxMnO3 system above TG, the linear behavior 

expected from a simple CW law in this PM regime is not observed. Instead, the inverse 

susceptibility exhibits curvature; the latter, possibly arising from polaron formation [20, 

96], results in the exponent λ not necessarily being equal to zero above TG. While the 

origin of this curvature needs to be confirmed, its presence underlies the reluctance to 

initiate a systematic discussion of exponent λ in this thesis.  

III: Imaging Investigation on the Manganites.  

    While the strong correlation between charge, spin, orbital and vibrational degree of 

freedoms is an important component in understanding CMR, increasing attention has 
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been focused on the percolative nature of inhomogeneous competing states [3, 4, 21-23]. 

Theories based on such states indeed seem to capture the essential physics of CMR. In 

this context, a series of imaging studies might be contemplated in an attempt to unravel 

the unconventional temperature/field response of manganites, in general, and the origin 

and evolution of a Griffiths-like phase in particular. Specifically, (1) Magnetic Force 

Microscopy, with its high spatial resolution, might be used to image this magnetically 

inhomogeneous competitive state, in both spatial and temporal modes. Such imaging 

could likely track the effects of the itinerancy of eg electrons in alternating the valence 

states of adjacent Mn3+ and Mn4+ ions. (2) Regarding the origin of a Griffiths-like phase, 

the application of the same technique might yield direct evidence supporting the 

existence of so-called correlated magnetic clusters/volumes below TG, and, further, 

could lead to a detailed study of their evolution with field and temperature. (3) Spin 

polarized Scanning Tunneling Microscopy has also been applied to manganites, and has 

been demonstrated to be sensitive to electronic phase separated states (phase separated 

regions with high/low resistances) [23]. In this context, the application of both Magnetic 

Force Microscopy and Scanning Tunneling Microscopy in the same system could 

resolve issues surrounding the magnetic and electronic nature of these phase 

separated/correlated states. (4) Tunneling Electron Microscopy experiments have also 

been performed on manganites, however, such an imaging technique only appears to 

work with structural phase changes (not magnetic phase changes) at higher doping 

levels, for example, in the charge ordering phase with superlattice reflections [153].  
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IV: Anomalous Hall Effect in La1-xCaxMnO3 (x = 0.18 and 0.20). 

    The motivation for choosing these two samples for further study is two fold: (1) 

the magnetic critical behavior can be characterized using 3-D Heisenberg model 

exponents, with essentially no complications arising from the presence of a 

Griffiths-like phase; (2) x = 0.18 and 0.20 lie on the either sides of the MIT boundary; 

Hall effect measurements could, in principle, yield some insights into the different 

origins of ferromagnetism in these two samples (a project planned for the near future).   

    In canonical CMR manganites, the hopping of eg electrons in, for example, 

La0.8Ca0.2MnO3, plays a fundamental role in the conduction process, leading to the 

applicability of the spin-dependent DE model. The purpose of performing Hall 

measurements would be to try to ascertain whether the Hall coefficients (R0 and RS) 

exhibit any kind of critical behavior across the coincidental FM-PM/metal-insulator 

phase transition regimes, which, in turn might reflect the underlying role of DE in 

CMR.     

 

6.2.2 Magnetic Semiconductors 

 

I: Origin of the Positive Magnetoresistance in Fe1-xCoxSi  

   The positive MR in Fe1-xCoxSi was explained initially using the idea of quantum 

interference, rather than simple scattering. This was based on the fact that Fe1-xCoxSi is 

a highly disordered ferromagnet with low carrier density, with the same electrons being 
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responsible for both electric conduction and magnetic behavior [28]. However, this was 

later challenged using the concept of Zeeman splitting of exchange split spin up/down 

bands [30]. The origin of the positive MR in this compound might elucidated through 

substituting the non-magnetic elements Si by Al, Ge, Ga etc., keeping both the atomic 

radius of the non-magnetic component and the fraction of magnetic elements constant. 

For example, by changing the non-magnetic doping level, 0 ≤ y ≤ 1, in 

Fe0.8Co0.2(Si1-yAly), should the MR change from positive to negative, some possible 

sources yielding a positive MR could be ruled out. In addition, Fe1-xCoxSi exhibits a 

large AHE, and modulating the non-magnetic element substitution level might also yield 

useful information on the origin of this large AHE.  

II: Evolution of the Universality Class in (Ga1-xMnx)As.  

    Although Mean-Field behavior has been reported above at x = 0.02, this result may 

not hold at all Mn doping levels. At higher doping levels, the hole-mediated exchange 

coupling is weaker (due to modification of the RKKY mechanism [6, 27]), and the 

probability of near-neighbor Mn-Mn AFM Super Exchange interactions is increased. 

Such effects suggest a more extensive series of experiments covering a wider range of 

Mn doping levels (from the insulating (x < 0.02) to the metallic regime (0.02 < x < 

0.10)), which might enable cross-over effects to be investigated via changes in the 

asymptotic critical behavior through measurements of the magnetization in bulk 

samples. 
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III: Evolution of the Anomalous Hall Coefficients, RS/R0, in (Ga1-xMnx)As.  

    Using a similar approach to that proposed for Fe0.8Co0.2Si, future experiments 

focusing on the AHE could be performed on a series of (Ga1-xMnx)As specimens. First, 

the scaling between AHE and magnetization could be established, focusing on the 

evolution of the anomalous Hall coefficient RS as a function of both temperature and 

Mn doping level. Second, the critical behavior across the FM-PM/Metal-Insulator 

transition in the (Ga1-xMnx)As system might be investigated, focusing particularly on 

the possibility of observing critical behavior in the temperature dependence of the 

carrier density n(T). Such a critical response might provide evidence indicating the 

importance of the role played by carrier-mediated ferromagnetism in (Ga1-xMnx)As.  
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