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ABSTRACT

A Locally Synchronous Globally Asynchronous
Vertex—8 Processing Element
for Image Reconstruction on a Mesh

Abstract. Image or field reconstruction problems from non—invasive measurements are a
class of signal processing applications that demand parallel processing to achieve real—time
operation. Image reconstruction from parallel beam projections, an example of which is the
CAT (Computerized Axial Tomography) scan, falls within this class. This thesis considers
a novel architecture suitable for WSI (Wafer Scale Integration) on which algorithms for
image reconstruction from parallel beam projections or other cyclic image processing algo-
rithms could be embedded, namely the mesh of vertex—8 processors. We will show how to
map iterative reconstruction algorithms onto a fine—grained mesh of custom processors and
allow the reader to infer mappings for other image transform (such as the Hough transform)
and pattern recognition problems. The focus is on the hardware design of a locally synchro-
nous globally asynchronous vertex—8 processing element (PE) that is suitable for implemen-
tation in a WSI array with one PE per pixel. The PE has several unique features, including
self—timed handshaking elements for inter—processor communications and a novel asynch-

ronous scan test structure. Test chips have been sent for fabrication.
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CHAPTER 1

Introduction

Multi—processor application specific integrated circuits (ASIC’s) that make use of an entire
silicon or gallium-arsenide wafer are an area of much current research because of their po-
tential to speed up computationally intensive algorithms to real time. Real time operation
is often needed in signal and image processing applications, applications where the amount
of data per unit time to be processed may be too large for a conventional Von Neumann ma-
chine. One such application is image reconstruction. In particular, image reconstruction
from parallel beam projections is an application that has important uses in medicine, biology,
and astronomy. One example in medicine is the CAT (Computerized Axial Tomography)
scan. Iterative algebraic reconstruction techniques have been shown to give superior recon-
structions to the common commercial technique of Fourier filtered back projection[6], but
commercial implementation of improved algorithms has been limited because of computa-
tional cost. The processing power needed and the large number of nearest—neighbor com-
munications in the iterative algorithms make them likely candidates for parallel computing
multi-processor ASIC arrays; this thesis studies an architecture suitable for image recon-
struction from parallel beam projections, namely the mesh of vertex—8 processors. The focus
ison the hardware implementation of a globally asynchronous locally synchronous process-
ing element (PE) for such an array, which has several unique features that make it suitable
for WSI (Wafer Scale Integration) including the locally synchronous globally asynchronous
architecture, self-timed handshake components for inter—processor communications, and

asynchronous scan test. These features would be useful for a fault tolerant WSI array. A
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processing element for the proposed array was designed in VLSI (Very Large Scale Integra-

tion) and sent for fabrication.

In the reconstruction from parallel beams problem, parallel rays are projected
thought an unknown image plane and their intensities detected on the other side, as in Figure
1. The difference between the transmitted and received intensities is the ray integral, the sum

projection

detectors  Pi+2 ...
Pi+1

ray of width

shaded area

wy for cell f; =
i f 5 pixel area

transmitters

FIGURE 1 Parallel rays projected through an unknown image.[30]

of the image densities that it has passed through. By rotating the image plane or the transmit-
ter and detector arrays, enough projection data can be obtained to reconstruct the image. Var-
ious techniques have been proposed to accomplish the reconstruction, the most popular of
which is a Fourier method known as Filtered Back Projection (FBP). Other techniques such
as direct matrix inversion, constraint optimization, and iterative algebraic methods can give

better results but are more computationally expensive. The iterative techniques we will
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study are called ART (Algebraic Reconstruction Techniques).[12][13] We have performed
simulated reconstructions for small images on a personal computer that have taken hours to
converge using a basic ART method. A typical acquisition time for a CAT Scan machine
is 1 milli-second per 1000 element projection vector, which means we must reconstruct a
1000x1000 pixel image in 1 second to do it in real time. Robotic vision applications will
required even faster speeds. The reconstruction problem clearly is a candidate for applica-

tion specific and/or parallel computing, such as in our proposed array.

Our array is a square mesh with one processor per pixel. The array is able to handle
the bulk of the calculations in parallel, using pipelining to acheive a high degree of concur-
rency. Each processing element (PE) has vertex—8 connections and programmable routing
tables. It is able to communicate with each of its 8 nearest neighbors and is controlled by
a global command, in an SIMD (single instruction multiple data) arrangement. The large
number of fine—grained processors required make it unlikely that the entire array could be
manufactured on a single chip in VLSI. There are mahy VLSI micro—chips on the original
silicon or gallium-arsenide wafer, of which a percentage are faulty; the process of trying
to make use of the entire wafer is called WSI or Wafer Scale Integration. For our array, the
yield of a WSI process with current technology would be unacceptable, implying that fault
tolerance would have to be incorporated. Implementing a fault tolerant scheme is a synchro-
nous WSI system would be very difficult, given that clock distribution alone in large syn-
chronous systems is a formidable problem that has not been overcome. A globally asynchro-
nous locally synchronous array rather than a clocked systolic one would therefore have
greater potential for practical use ina WSIimplementation, and that is the design philosophy

we follow.

The sequential form of the iterative solutions that we wish to embed on the array will

be described in the remainder of Chapter 1. In Chapter 2, Array Architecture and Algorithm
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Simulations, we describe how the algorithms can be parallelized on our proposed vertex—8
mesh of processors. We discuss the time complexity implications for the case of one PE per
pixel. Parallel simulations were done on a transputer array to verify the validity of the pro-
posed architecture. The transputer simulations were made to closely model the envisioned
hardware to provide a functional test of the PE before implementing it in VLSI. Chapter 3,
Processing Element Hardware Design, contains details of the hardware design of the PE in-
cluding a description of self-timed building blocks and major integrated components. Con-

clusions and recommendations for future work will be discussed in Chapter 4.

Although the array architecture we will propose can have very general uses depend-
ing on the design of the ALU (Arithmetic Logic Unit) within the PE, we have chosen to con-
centrate on a particular set of algorithms for reasons of succinctness and clarity. These are
the iterative algorithms for image reconstruction from parallel beam projections. The reader
can infer many other applications that could be embedded into our proposed array that retain
the communications infrastructure used by our PE and would require only simple, if any,
modifications of the PE’s ALU. Our implementation differs from those in the literature[20].
Our array is fine grained and globally asynchronous with locally synchronous computing.
Other implementations have used complex off the shelf processors or transputers. Our de-
sign has programmable routes, making it useful for non—-algorithmic path mappings and thus
suitable for many other applications such as pattern recognition. The use of programmable
routing tables is a reasonable approach for cyclic algorithms. Other implementations calcu-
late the routes dynamically, which places limits on flexibility of the paths through the array

and the speed with which the array can operate.

Image and field reconstruction problems on a digital computer are currently becom-
ing as common as they are computationally expensive. In this thesis we will examine a paral-

lel algorithm and WSI architecture for a particular reconstruction problem, reconstruction
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of 2—dimensional images from parallel beam projections. The architecture could find appli-

cation in other reconstruction problems as well.

1.1 THEORY

After a model for the image space is described, an iterative technique based on theory devel-
oped by Kaczmarz[30] will be developed and then approximated in a form more suitable for
implementation in a digital computer. The approximated form, devised by Gordon et
al.,[12][13] is called ART for Algebraic Reconstruction Technique. A modification to the
algorithm proposed by Gilbert[11] called SIRT (Simultaneous Iterative Reconstruction

Technique) that will improve noise performance will be explained.

1.1.1 The Problem

Image space is represented as in Figure 1. Here f{x,y), the unknown image in region R, is
split into a grid of N square elements denoted f;. Parallel rays of width 7 pass through the
image resulting in M measured rays sums p;. Both Jj and p; have one—index representations.
The weighting factor w;; represents the intersection of the j* cell with the i*ray, or the contri-

bution of the j* cell to the i* ray sum. This geometry gives M equations in N unknowns:

N
Dwyfi=pii=1,23,. . .M
j=1

or

witfi+wifa+. . winfv =P

wafi+wofo+. . . wonfn=Do

wuifi+wimfa+. . . Wunfv =pu (1
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Gordon[13] points out some interesting features of equations (1), some of which must be

noted if we are to optimize a solution process, i.e.:
1. The matrix {wj;} is sparse, which will ease calculations.

2. The matrix {w;} can be huge.

3. Elements wy, f;, pj are always positive.
4. The data is often inconsistent. It can contain noise or errors.

Before we can begin developing the technique, we must determine how to best choose M and
N in the computer’s representation of the problem. M and N are dependent on the size of the
projection elements and the desired resolution of the reconstructed image. The fineness of
the discreté projection elements is limited by the resolution of the measured projection data,
which depends on the physics of the radiation and measurement devices used. If we wish
to get the maximum possible resolution in the reconstructed image with the minimum of cal-
culations, we want the projection elements to be as large as possible without degrading the
reconstructed image. Typically the projection element spacing is chosen to be half of the
presumed resolution to fulfill the Nyquist criteria. A coarser choice for projection element
width is limited only by the desired degree of resolution in the reconstructed image. One
may want the division of R to be as fine as possible, but finer elements in the division of R
(orin the projection elements) will increase calculations. One the other hand, the coarseness
of the division of R is limited by the size of the projection elements. This is especially true
when certain approximations to equations (1) are used; more will be said about the coarse-
ness limitation on R after the approximations are developed in Section 1.1.3 on Gordon’s

appoximation.
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1.1.2 The Kaczmarz method

The Kaczmarz method is an iterative procedure that can be used to solve simulaneous equa-
tions. References [30] and [12] give excellent descriptions of the development and imple-
mentation of the algorithm. The approach taken here is similar to that in [30], with a few

refinements.

To begin, one must realize that the N unknown grid elements in equations (1) give
an image N degrees of freedom. Animage can therefore be represented as a single point in
an N—dimensional space. Each individual equation in (1) would represent a hyperplane in
sucha space. If aunique solution exists, the intersection of these hyperplanes s a single point
representing the solution. The Kaczmarz method uses successive projections of a proposed
solution onto adjacent hyperplanes to iterate closer and closer to the solution. This is best

illustrated by a simple 2 variable example with unknowns f; and 5, written:

witfi + wiofa = p1, waift + waofs = pa 2)
Figure 2 gives a conceptual view of how the iteration process evolves. It can be shown via
vector analysis (see [30]) that an iterative equation for a projection from the (j~)*to the j**
hypeplane can be written

W FED_p
fO=f 0D~ €)

f=thf. - W
Wj = {le,sz,. .. WJ'N} s

and jranges from 1 to M. We will forgo the derivation. Equation (3) will iteratively move

the initial estimate f(o) towards the solution at the intersection of the hyperplanes. After

acomplete pass thru all M projections the process can be repeated starting from the first pro-
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solution

woifi + woofy = py DRI

_— 7o

1 -~
f M initial
= guess
f )

> 1
Allfl +wiofy = pg

FIGURE 2 The Kaczmarz method of solving algebraic equations for 2 unknowns.
From the initial guess, perpendicular projections onto adjacent hyperplanes
(lines for the 2—d case) for each equation iterate closer and closer to the solu-
tion.[30]

jection using the new estimate of the solution f(M) , then again starting with f(ZM ), f(3M) ,

.. f(kM) where k can be at convergence or as large as required to get the desired results.

But does the process converge? Itis obvious for the 2—d example but not for systems
with many more equations. Tanabe[34] has proved for the general case of equation (3) that
if a unique solution to (1) exists,

lim f 0 =7, @

k—» o

This is true if equations (1) are overdetermined and consistent, i.e. M>N with no noise or
distortions in the data. If they underdetermined, then (3) will converge to a solution (one of

the many possible solutions) that is closest to the initial estimate.
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lim ]—;(kM) =]_C;' such that Ij_;(o) —]—”; | is minimized (5)

n—»

If the data in equations (1) is noisy or distorted, then (3) will oscillate in the neighborhood
of the actual solution. This attribute makes the Kaczmarz method somewhat, but not com-

pletely, noise tolerant.

1.1.3 Gordon’s Approximation

Equation (3), being iterative, is reasonably easy to implement in a computer program. How-
ever, the storage of and floating point calculations on what could be an enormous number
of weights wj; makes it cumbersome for digital computers. For example, for a 16 projection

64x64, the size of the w;j matrix would be:

(64x64) x (16x128) = 4096 x 2048 = 4,2x10° elements 6)

Even a small image with a limited number of projections is too big for matrix inversion meth-
ods. About 1/100 of these elements will be non—zero, which still leaves a large amount of

numbers considering the many floating point calculations that must be performed.

Many methods to overcome these difficulties have been proposed; one efficient
method is Gordon’s approximation, which drastically reduces the number of non—zero
weights and eliminates much floating point calculation and storage. The approach is simply
that the weight is assigned a one if the centroid of the grid element is within the ray and a
zero if itis not. Using this approximation, we can develop a form of (3) that can be run more
easily and faster on a digital computer. Applying the approximation and again forgoing the
details of the derivation, we arrive at the simple and intuitive equation below for the update

of the m* cell from the j* ray sum.

A =P .
\f N, (7

where’
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Dj is the measured projection for a ray,
N
- (2 VI o
qgi= ) f¥ ‘Wit is the calculated projection, and
k=1
N;= wjzk is the number of pixels in the ray.
k=1

Recall that the weight wj, or w;, will be 1if the cell centroid is in the ray and zero elsewhere

if we apply Gordon’s approximation. One iteration for the m®™ cell would be
=50+ ArY @®)

Equations (7) and (8) were the equations implemented in our simulations, with some of the
enhancements forthcoming. An intuitive interpretation of them is that the average error for
each pixelin aray is calculated by taking the difference between the measured and calculated
pseudo projections and dividing by the number of pixels in the ray. This ‘average error’ is
then backprojected to each pixel in theray. We will dub this implementation of the Kaczmarz
method combined with Gordon’s approximation as ART, for Algebraic Reconstruction

Technique.! This solution has been shown to be a good approximation[30] to the constrained

least squares approach.

For our application, an improvement to ART would be to use a priori knowledge

about the image to speed convergence. For example, we know that the image intensities are

greater than zero so we can apply that to the f 9 s before proceeding to the next iteration.

1. Now that equations (7) and (8) and Gordon’s approximation have been developed, it is more appropri-
ate to discuss the limits in coarseness on the representation of space. If a calculated ray sum is to provide
any representation of the image, number of cell centroid Nj must be non—zero. This limits the coarseness
of the grid. Further restrictions on coarseness are required to provide an accurate representation of the
density along the ray. The centroids should be evenly distributed along the ray’s length. Gordon has esti-
mated that this requirement will be sufficiently met if N;>n//d for rays that are about the diameter of R, for
a grid on n elements in d-dimensional space. Here n!/4is the average ray length in units the same size as
the cell width. A grid element size of no greater than the width of the projection elements will guarantee
this condition. For this reason, we chose the pixel width equal to the ray width.

10
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We can do the same thing with the upper limit. This has been dubbed fully constrained ART

by Gordon.

f P = min[MAXPIX, max[0, f Dy Af 0y ©)

For the purposes of this paper we will call the algorithm described thus far ART, although
the term can have generic connotations in the literature. This form of ART is the most basic

in a family of ART algorithms.

1.1.4 Initialization Value

Since the Kaczmarz/ART method will converge to the solution closest to /1% for underdeter-
mined equations, the starting value should be a best guess of the solution. The better a start-
ing value chosen, the faster the algorithm will converge and the smaller unwanted artifacts

will be. The mean density of fis one possibility, which is approximately

Z pj such that p; belongs to a single projection

_ : ‘ 10
Fimean area of R normalized to p; widths )
or even better
LS
fmgan = kamean (1 1)
K3

where K is the number of projections. A projection is the set of ray sums taken over one dis-
crete projection angle. These equations are true since the parallel rays fully partition the

scanned space.

Usually the initial value is chosen as zero since the result after iterating through the
first projection is roughly the same as f,..q,. Another alternativeisto use a SBP (Simple Back

Projection) result as an initialization value. The problem with this is that distortions intro-

11
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duced by the initial estimate may be retained as ghosts. For these reasons, zero was chosen
as the initialization value in our implementation.

1.1.5 Convergence criteria

Gordon, Bender, and Herman([13] suggested 3 possible measures for convergence.

1. The difference between the measured and calculated projection val-
ues: (goes to zero)

(t) B \/ Z (p] t))2

(12)
where ¢ is the iteration number.

2. The non—uniformity or variance: (goes to a minimum)

N
VO = " (1 ~ frnean)® (13)
i=1

3. The entropy: (goes to a minimum)

SO = -1 i fgt) - fl(t)

InN i=1 Jmean  Smean

(14)

One could suggest that a form of method 1 would be the most efficient since most of these
calculations must be done anyway. If noise is present there will be a problem with detecting
convergence since the algorithm will oscillate near the solution. Thresholding must be used
appropriately in the programming to watch for divergence and terminate execution at a satis-
factory time. Another important measurement of convergence when an original test image

f; 1s used for simulations is the Euclidean distance:

N
50 = \/ .]%/. Z(ﬁ’) — £ (15)
i=1

The Euclidean distance from the original image is a measure of the degree of accuracy of

the reconstruction.

12



Chapter 1

In our programs, a minimum{maximum Af } was chosen for a convergence criteria.
This is a factor in calculating most of the above values, and is accurate enough for our pur-
poses since only clean projection data was used. As an option, we can stop the simulation
after a certain number of iterations and calculate the Euclidean distance to check the degree

of convergence.

1.1.6 Variations

The ART technique developed so far has been s.hown to perform poorly when compared to
Fourier techniques when the projection data is noisy and/or inconsistent. This is mainly be-
cause it only looks at one projection at a time before performing an iteration. A plethora of
variations have been proposed to reduce the effects of bad projection data and to eliminate

artifacts inherent in the algorithm.

To reduce artifacts from geometric distortions caused by the discrepancy between the

actual ray integral and the centriod technique, Gilbert[11] replaced equation (7) with

- p. q
AR =514 16
Vi LN, (16)

where L is the length of the j™ray through the reconstruction region, normalized to the cell

width. Gordon et al. have applied similar modifications to ART.

Another modification proposed by Gilbert is SIRT, or Simultaneous Iterative Recon-
struction Technique, which makes the algorithm more noise tolerant. In this technique, an
iteration is performed using the data from all projections simultaneously rather than one by

one. Only at the end of each complete pass through all projection elements for the K projec-
tion angles are cell values changed, by the average value of the K Af”’s belonging to a pixel.

The SIRT variation will average out bad projections:

13
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nkK )
> AR
Af ,(’]1=nK) _ S=n-DK

v

wheren=1,2,3.... a7

FB = ¢ (=DE) | Af KD (18)

With ART some pre—filtering of projection data must be done or modifications to the algo-
rithm must be incorporated to enhance noise pefformance. The drawback with SIRT is that
it would require more memory; with the improvements that have been made to ART, the per-
formance of ART and SIRT would be comparable. In algorithm tests of Chapter 2, the PC
simulations implement ART and the parallel transputer simulations implement a form of

SIRT.

In [12] Gordon reviews numerous other improvements to the basic ART technique
which include:

1. ART2, which uses an intermediate unconstrained estimator to calcu-
late the next iteration in constrained ART. This speeds convergence.

2. ARTS3, which uses a preset error threshold that makes the iterative
procedure more tolerant to noise and inconsistent data.

3. ART with a damping factor. This slows convergence but improves
noise performance.

Some of these improvements must be applied if algebraic techniques are to compete with
Fourier techniques, especially with real rather than simulated data. One must carefully select
those to be implemented since they all have some computational cost. Although our simula-
tions were done using the basic constrained ART algorithm and the SIRT modification, the
architecture that we will propose can accommodate many of the aforementioned improve-

ments since they can be performed by the host or a complementary chip set. The ASIC array

14
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performs the ray summing and update, or projection and backprojection, portions of the al-

gorithms. These are the most computationally intense parts of the algorithms.

15
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Array Architecture
and
Algorithm Simulations

Before committing to a hardware architecture, simulations were done with the sequential re-
construction algorithms and with a parallel implementation of an ART. The serial simula-
tions were necessary to ensure that the ART or SIRT algorithms could out-perform the other
techniques in reconstruction quality, to show the need for parallelization of the iterative algo-
rithms, and to gain an understanding of the image reconstruction algorithms. Our results
confirm the first two items. The parallel simulations were done on a transputer array to test
a novel parallel version of the ART algorithm, including improvements and modifications
such as SIRT, and to verify that the algorithms could be mapped onto our proposed array ar-
chitecture. The proposed architecture and mapping will be discussed after the results of the
sequential simulations are presented, followed by a description of the parallel simulation re-

sults at the end of the chapter.

2.1 SEQUENTIAL SIMULATIONS

For the sequential simulations, three reconstruction algorithms were programmed and tested

using pseudo—projections generated artificially from a test image. They include:

1. Simple Back Projection (SBP). The ray sums for each projection
angles are backprojected, summed, and scaled with no further correc-
tion. This is a very crude reconstruction technique.

16
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2. Filtered Back Projection (FBP). A Fourier technique. A filters is
applied to the 1-D Fourier transforms of each of the projections to
create a ‘slice’ of the 2-D transform of the original image. The 2-D
transform is then used to reconstruct the image; see [30] for details.
FBP or Fourier reconstruction is a common technique because of its
computational efficiency and noise tolerance. Our implementation of
of FBP could be improved,but literature[5] supports the overall reslts.

3. Algebraic Reconstruction Technique (ART). The constrained ART
algorithm was implemented as described in Chapter 1. The ART sim-
ulations used equations (7), (8), and (9).

The sequential programs were written in C and compiled and run on a 286 personal computer
without a co—processor. The programs for SBP and FBP were based on previous work[21].
The program listing for ART is in the Technical Reference Addendum; input to the ART pro-

gram for a simulation would be as follows:

1. A measured/simulated projection data file. For our simulations this
file contained artificially generated tomographic projection data
from a black and white test image with 256 gray levels. The format
of the file is:

SIZE OF PROJECTION

NUMBER OF PROJECTIONS

ANGLE

PROJECTION ELEMENT/RAY SUM 1
PROJECTION ELEMENT 2

ETC.

NEXT ANGLE
PROJECTION ELEMENT 1
PROJECTION ELEMENT 2

K" ANGLE
PROJECTION ELEMENT 1
PROJECTION ELEMENT 2

M™ PROJECTION ELEMENT
2. Number of desired iterations.

3. The dimensions of the reconstructed image.

17



Chapter 2

The output of the program is the reconstructed image. Support programs not shown in the
Technical Reference Addendum include a program to generate projection data and one to cal-
culate the Euclidean distance between the original and the reconstructed image per equation

(15).

The sequential ART algorithm is very slow, since for each sub~iteration every pixel
must be visited once to calculate the pseudo projection g; and pixel count N; and once to per-
form the update. Here we define a ‘sub—iteration’ as one pass of the update equation (8)
through all grid elements, equivalent to one pass through rays sum belonging to a particular
projection angle. A complete iteration would be one pass through all rays sum data for the

K projection angles. Ray membership is determined using the formula:
ray number = [@] = |xcosBysinf| (19)

The transformation from x and y to @ and 6 required in each project phase is equivalent
to the Hough transform([8], an image transform commonly used in industry for edge and line
detection. The cos and sin functions are calculated by slow iterative means [35] on most
computers. Even for a small test image of 64x64 pixels the ART algorithms took hours to
converge on our PC programs. The degree of convergence was measured by calculating the
Euclidean distance between the reconstructed image and the original testimage, after a cho-

sen number of iterations.

The main storage requirements of the sequential program were N integers for the re-
constructed image and arrays of size Y2v for Af, g; and N;. The image was initialized to

a guess of 255/2=127 rather that zero. In retrospect, this choice sped convergence (as op-

posed to a zero initialization value, but contributed to unwanted artifacts.

18
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2.1.1 Sequential Results

The sequential ART reconstruction program was run many times for a varied number of iter-
ations from sets of projections generated from several test images. The results were analyzed
pictorially by looking at the images and numerically by plotting combinations of the number
of iterations, the mean squared error and the convergence time against each other. We will
present 4 examples of simulated reconstructions from 64x64 pixel images:

Saturn, 4 projections. _ (Figure 3)

U of M Administration Building, 16 projections. (Figures 4 & 5)

1
2
3. U of M Administration Building, 32 projections. (Figure 6)
4. Saturn, 64 projections. (Figure 7)

Pictorial Analysis

Some heuristic judgements are necessary when analyzing visual data; we will later confirm
our observations with numerical results. The original test images are shown for comparison
in the last plate of each of Figures 3, 4, 5, 6, and 7. By examining combinations of pictures

in the figures, we can make observations about the performance of ART, SBP, and FBP:

ART improves with increasing iterations or time. Sequentially examining image sets by iter-
ation number shows the reconstructed image appearing more and more like the original
image with each iteration. This can be seen particularly in Figures 4 and 5, where each sub—

iteration for the first iteration is shown as well as subsequent full iterations.

ART improves withincreasing projections. Comparing the converged reconstructions in fig-
ures 3 and 7 and figures 5 and 6 demonstrates improvement in the reconstruction quality with

| increasing projections. This is true when the data is not noisy.

19
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1 iteration 30 iterations

Convergence, 54 iterations Original image

FIGURE 3 Saturn reconstructed from 4 projections using the ART algorithm.
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Initial value ‘ 1 sub-iteration 2 sub-iterations

6 sub-iterations 8 sub-iterations

14 sub-iterations 1 iteration, 16 sub-iterations

10 iterations, 1/3 done Convergence, 27 iterations o Orginal image
FIGURE 4 The U of M Adm. Bldg. from 16 projections, showing the first 16 sub—iterations of ART,
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Sple back projetion Filtered back projection

Covergence, 27 iterations Original image

FIGURE 5 The U of M Administration Building reconstructed from 16 projections,
showing the ART algorithm at convergence and SBP and FBP reconstructions.
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1 iteration 5 iterations Convergence, 9 iterations

Sirnlebac projection "~ Filtered back projection T Original ime

FIGURE 6 The U of M Administration Building reconstructed from 32 projections,
showing the ART algorithm converging and SBP and FBP reconstructions.
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1 iteration 5 iterations

Convergence, 10 iterations Original image

FIGURE 7 Saturn reconstructed from 64 projections using the ART algorithm.
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Numerical Analysis

Numerical analysis verifies our visual observations. Charts 1,2,3,4, 5 plot the mean squared
error (MSE), number of iterations, and execution time against each other in different combi-

nations and scenarios for the reconstructions of Figures 3 to 7.

Chart 1 is aplot of the MSE versus time. It shows that ART can take a large amount of com-
puting time and that ART can out-perform the FBP algorithm in reconstruction accuracy.
Note that the MSE for ART decreased monotonically with time; this would not be true if

noisy data was used.

Chart 2 is MSE versus iterations. This plot does not add much information to the observa-
tions on Chart 1, except to compare it with Chart 1 and note that more projection data re-
quired more time per iteration so that the relationship between time and iterations is non—li-

near. The relationship between time and sub-iterations would have been linear.

Chart 3, the MSE at convergence versus the number of projections, shows that for ART the
MSE at convergence monotonically decreased with increasing projections and that ART at

convergence had a lower MSE that the FBP and SBP examples.

Chart4 shows the time to convergence versus the number of projections. The time to con-
vergence generally increases with an increased number of projections, but not necessarily
monotonically. The time to convergence for ART was greater than the FBP or SBP run—

times in all cases.

Chart 5, the time needed for ART to achieve a lower MSE than either the FBP or SBP algo-
rithms, shows that the time required for ART to outperform FBP or SBP is comparable (less
than a factor of 2) to the FBP and SBP executions times. The time for complete convergence

is much longer.
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CHART 1 The mean squared error versus time for the ART, FBP, and SBP algorithms.
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CHART 2 The mean squared error versus the number of iterations for ART.
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CHART 3 The mean squared error at convergence versus the number of projections
used to reconstruct the image for the ART, FBP, and SBP algorithms.
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CHART 5 The time required for the ART algorithm to give a better reconstruction
than the FBP or SBP algorithms. For our test images, only one iteration was needed;
the time shown is for the complete iteration.

Overall Analysis of the Sequential Algorithm

The pictorial and numeric results correspond, indicating that ART can provide reconstruc-
tions superior to FBP and SBP with a penalty in computing time. The time to convergence
of the ART algorithm can be quite large, too large for unspecialized hardware and much larg-
er than commercially common algorithms. Although our results show that the time required
for ART to out—perform the FBP algorithm is less than an order of magnitude, this result
would be much worse for larger images and if actual ray integrals[11] or noisy data had been
used. Our sequential simulations verified that a parallel architecture is needed for algebraic
reconstruction algorithms; the vertex-8 array of processing elements is the architecture we

propose.
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2.2 ARRAY ARCHITECTURE

Chapter 2

Our proposed vertex—8 mesh is shown in Figure 8 and the processing element (PE) in Figure

9. The array is a fine—grained SIMD data—flow machine, with one processing element (PE)

per pixel. There are horizontal, vertical and diagonal connections between PE’s so that each

PE is connected to its 8 nearest neighbors. Each PE contains an ALU with summing func-

tions and pixel storage and input/output routers with programmable pre—calculated routing

tables. In addition to the 8 I/O routes,

ol/0 buffer| 11 [ 10 | 9
to/from host | ]
- PE || 2 |
— I I ] ] —
1 1,042k a3mE s
— ] I ] ] —
2 CoOeHARHYHACIHH7
— I [ ] | —
GoOoGHHR G2 G
I I
3 A 5 | 6

initiate and terminate route codes were added to the

FIGURE 8 The proposed array, shown for a 4x4 image. The array can be con-
trolled by a host or complementary on or off-wafer chip set.
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FIGURE 9 The processing element for the proposed array, with vertex 8
asynchronous communications. The PE’s components are locally synchronous.
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PE to make the array more flexible. Equations (7), (8), (17) and (18) for the ART and modi-
fied SIRT algorithm form the premise for our parallel mapping; recall that the modified

SIRT algorithms are similar to ART except that the average Af is applied to a pixel after a

setof K Af’s (one for each of K discrete projection angles) have been calculated. The algo-

rithms have in common a project mode, a backproject mode, and an update mode. Conver-
gence detection will not be addressed in detail here; in our proposed array convergence

would be detected by the host or the machine would be left in a continually iterating mode.
The parallel SIRT algorithm for one iteration would proceed as follows:

1. Pipeline one set of ray sums after another through the array in the
project mode. Paths for the rays are already stored at the PE’s. The
input and output routing tables are calculated according to the ray

membership function ray number = || = [xcos@ysin@] .

2. Astheray sums exit, the host calculates and stores the change in pixel
value Af ,, foreachray per equation (7). Inplace of the host, a linear

array of custom processors of size Y2V could be used to calculate the
updates.

3. Pipeline one set of pixel changes after another through the array in the
backproject mode. For SIRT, the pixel change for a ray is scaled
down by K to produce an average at the PE. The scaling means only
summing need be performed locally. This will resultin equation (17),
Af 1, , being stored in each m* PE.

4. Update each pixel value in parallel as in equation (18), using the aver-
age pixel change which is stored in the PE’s to calculate the new pixel
value £, .

5. Read out the image if done. A clear command is needed prior to a
read to place the pixel in the pipeline buffers. In the read/write mode,
an image can be shifted in or out of the array horizontally much faster
than could be done by scan mode register shifts.

Only 5 commands, project, backproject, update, read/write, and clear, are needed for ART,
SIRT and a large number of other algorithms. For the reasons of resolution of the recon-
structed image discussed in Chapter 1 we constrained the ray width = to be less than or equal

to the pixel width, which has important hardware implications since in the approximated al-
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gorithms it ensures that the next PE or pixel in a ray path will always be one of the 8 nearest
neighbors of the current PE. Hence the choice of a vertex—8 PE. The result is that only a
simple routing strategy is needed; the incoming and outgoing routes are pre-calculated and

no queuing is needed for intra-mesh communications.

The mesh is a natural choice for image processing applications because the conceptu-
al similarities between the physical and computational problem make this architecture effi-
cient and make programming of the parallel machine easier. Many image processing algo-
rithms, and especially reconstruction algorithms, require a large number of nearest neighbor
computations. The reconstruction problem is a difficult one because it requires both local
and global knowledge. The best time complexity that has been shown for the Hough trans-
form on a vertex 4 mesh of size YN x/N [8] has been O(JJTJ') . We can achieve a similar
time complexity for the SIRT algorithm described above, assuming the host (or associated
V2N linear array) can calculate the updates in O(]) time. The time complexity for the SIRT

algorithm on our vertex—8 VN x /N array is also:

OGN 20)

where K is the number of projections. The sequential algorithm would have at least

O(N) complexity. The processors in the mesh of vertex 8 processors must be simple and

inexpensive since only O(/N +K) time complexity is achieved with O(N) processors.

2.3 PARALLEL SIMULATIONS

Simulations to verify that the parallel ART or SIRT algorithms could be mapped onto our
proposed hardware were performed on a 4x4 array of Inmos 4 port T805-30 transputers,

mounted in a box made by Transtech Inc. and running under the Ohio State Trollius C operat-
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ing environment[27] and hosted by a unix workstation. Each transputer had 4 megabytes
of memory. The box, called the MPC1000, allowed for a user configurable connection pat-
tern. For our simulations the most efficient connection pattern is a mesh. The simulation
programs were designed to closely model the intended hardware to provide a functional test

of the PE’s,

Lattard and Mazare [19] have performed image reconstruction on a transputer array.
Our purpose is not to implement the reconstruction algorithm for permanent use on a general
purpose transputer array, but rather to use that array for simulations that verify the functional-

ity of our proposed custom hardware.

2.3.1 Program Implementation

Sixteen transputers with 4 physical ports each were available; thus the goal was to embed
our proposed architecture onto the fixed number of transputers. Each software process run-
ning on a transputer represents in hardware a PE with programmable routing , with each PE
process being able to receive and transmit data from or to its 8 nearest neighbors. Up to 32
processes can run on a transputer. The software processes were programmed to communi-
cate in a4 phase asynchronous software protocol by using a particular communications com-
mand set (fsend and frecv) provided by the Trollius operating system, which is important
since this is the protocol we wish to implement in hardware. Routing tables for the PE’s and
1/O request and acknowledge patterns for the buffer were pre—calculated using the ray mem-

bership function ray# = [xcos6 +ysin6] and loaded into the parallel programs before execu-

tion. The asynchronus nature of the receiving and sending processes combined with knowl-

edge of pre~calculated routes guarantees that collisions cannot occur.

Figure 10 shows how the embedding was done, with an example of a 4x4 array of

processes embedded on a 2x2 transputer array. We were not overly concerned with the effi-

32



Chapter 2

host 1/0 butfer
%bufm.c, pbufout.c 11 10 9
“transputern0 [ 1 T | al T
| || |
de(0,0)_ L1 n
I ggoge.c OL o O ©.3) I
l | | I | I
| N I
1 I (L,O) H a,n I l (1,2) H 4,3 I 8
L =—= — T —T - _l
r —= — —1 —T— 7]
2 I 20 H @n I I 22y H @3 I 7
| | | |
l | | | | I
| | o H e H 62 H 63 | |
| | | |
—_——n2_ b _J__n3
3 4 5 6

FIGURE 10 Typical software embedding of the processing elements in the
transputer array.

ciency of the implementation on the transputer array, but in fact the mesh of transputers is
the most efficient structure on which our 8 connected mesh could be embedded. Several pro-
cesses had to be run on each transputer because of the limited number available. The pro-
grams pnode.c, pbufin.c and pbufout.c were written to accommodate a square image of size
up to 128x128 on a square transputer array of size up to 4x4. Complimenting the node pro-
gram pnode.c, the programs pbufin.c and pbufout.c perform the input and output buffering
and also operate as a pseudo host for the algorithm. Our proposed hardware includes the
node portion and the buffering, but not the host functions. In the planned hardware imple-

mentation, the host could be a general purpose computer or another dedicated chip set. The
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functions of the three programs and how they relate to the planned hardware implementation

are described in the following.

2.3.2 Node

Each node process represents a processing element (PE) with 5 commands. The commands
are PE functions that must be implemented in hardware. In hardware, the PE’s would consist
of asimple ALU containing registers to store fand Af (pixel and delta pixel) and routers with
local RAM to store the routes. The routes are loaded from a pre—calculated file and control
a local multiplexer and demultiplexer. The pnode.c program takes x and y co—ordinates as
its input, and must be loaded on the transputer node number that represents the quadrant (or
more generally the tile) containing x and y. The prode.c program was not designed to run
‘outside the box’ on the workstation with the other programs, but rather only on the transput-

ers. The modes of the node process are:

INIT

Scan in mode. Loads in the processors registers and pseudo—-RAM. The RAM contains the
route programming. Global values such as the size of the PE array and the size of the trans-

puter array are also read in; these would not be required in hardware.

PROJECT

Step through each of the processor routes and perform the project function, i.e. add the pixel
value to the ray sum passing through the node. The data is passed according to the pre—calcu-

lated routes.

BACKPROJECT

Step through each of the processor routes and perform the backproject function, i.e. add the
ray delta value passing through the node to the local delta value. The ray delta value has
already been divided by the number of projections so that it will contribute only a portion

to the local delta value and no division has to be performed locally to find the average.
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UPDATE
Add the local delta pixel value to local pixel value.

STOP
Stop iterating. Received a DONE message from host. Otherwise repeat PROJECT, BACK-

PROIJECT, and UPDATE.

WRITE

Scan out mode. Write the final pixel value to a file.

2.3.3 Input Buffer

The input buffer program pinbuf.c performs both input buffering and host functions. Itpipe-
lines data into the mesh by initiating messages containing the ray sums and delta pixel values
to the edge nodes of the arrays. Its pre—calculated input pattern is read from bufin.pat. The
pinbuf.c program must also correctly reorder the stored delta pixel values before backpro-
jecting them to the array. The modes are the same as for the pnode.c program. Pbufin.c is

is STOPPED by a message from the pbufout.c program.

2.3.4 Output Buffer

Pbufout.c also has a pre—calculated output pattern. Besides acting as an output buffer for
the ray sum, it acts as a host in calculating and storing equation (7). The Af’s are divided
by the number of projection angles before they are stored for the pbufout.c program’s use.
This will result in an average update at the local PE’s, as required by the SIRT algorithm.
For our simulation, only rounded integer values were passed back to the PE’s. The pbufout.c
program also checks for convergence and sends a DONE message to all other running pro-

cesses to tell them to stop iterating.

2.3.5 Needed Additions
Each of the three programs prode.c, pbufin.c, pbufout.c require pattern files to control their

routing. For the SIRT algorithm, these patterns are deterministic and programs can be writ-
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ten to calculate them. For our simulations, they were calculated by hand because only a 4X4
image was being tested. However, for larger images this would not be practical. External
calculation of the routes is not as cumbersome as it seems. This is an application specific
array that would likely be loaded only once, and externally calculating the routing gives you

great flexibility in the number and type of algorithms that could be implemented on the array.

2.3.6 Parallel Simulation Results

Numerous simulations were done to prove the concept. Reconstructions of a 4x4 image from
2 and 4 projection angles using the SIRT algorithm are shown in Figures 11 and 12. The sam-
ples shown are for a 4x4 vertex 8 computational mesh, run on the 1x4 linear array of transput-
ers. Recall that the 4x4 vertex-8 computational mesh is what we are interested in, not the
underlying transputer hardware, since we plan an application specific VLSI implementation
of a vertex 8 mesh. For the 4x4 simulations 16 software processes of prode.c were running
on the transputer array and one process each of pbufin.c and pbufout.c on the host worksta-
tion, all simultaneously. Undocumented compiler differences and hardware or operating

system faults on the transputer machine were uncovered during programming.

For these simulations, only rounded integers were backprojected to contribute to the

Af ,, update values at each PE. This presented a problem since scaled fractional contribu-

tions of less than .5 would not contribute to the average update, making convergence not as
accurate as it would be if the division required to calculate the average update value were
done locally. To correct this, fixed point data could be backprojected in the backproject
mode. This can be done in our proposed architecture because we have a 16 bit data buses.
The 16 bit bus would provide enough resolution to backproject contributions resultin g from
a difference in 1 between the measured and calculated ray sums for a 256x256 image; for

a larger image one would have to choose between a larger bus or less convergence accuracy.
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Convergence, 10 iterations Original image

FIGURE 11 A parallel reconstruction of the image on the left using SIRT
from simulated projection data from 2 angles.

1 iteration

Original image

FIGURE 12 A parallel reconstruction from projection data from 4 angles.
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The simulations showed the concept to be feasible and delineated the commands that would
be required in hardware. Future simulation plans include reconstructing larger images (at
least 32x32) from realistic projection data; the drawback is the limited size of the transputer
array available. The parallel simulations identified improvements to our proposed hardware
and were sufficient to provide confidence that mappings of the ART and SIRT algorithms

onto the vertex—8 mesh of custom processors could be done.
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Processing Element
Hardware Design

A processing element with the commands described in Chapter 2 was designed in a VSLI
CMOS 3 micron technology and prototype chips have been sent for fabrication. The PE has
several unique features that make it suitable for WSI, including a locally synchronous glob-
ally asynchronous communications protocol and a scan test pipeline overlay that connects
an asynchronous scan chain to all registers for testing. As designed it would be suitable for

use in an SIMD array, where the instruction can be changed when the array is in a steady state.

A globally asynchronous locally synchronous architecture was chosen because of
well-known hardware limitations for WSI circuits[26]. The limitations are mainly due to
clock distribution problems in synchronous design. Clock skew can result in data transfer
errors and make fault tolerance, a necessity in WSI, difficult to implement. For example,
in the the sketch on the following page (Figure 13) the data could be latched before it is valid
due to the skewed clock between the distant spare and the local processing elements. The
amount of skew and thus the locality of the spare elements must be taken into accountin WSI
reconfiguration architectures and algorithms. Other problems with large globally synchro-
nous integrated circuits are the power spikes caused by simultaneous computation and that
the entire chip may only operate as fast as the slowest part on it. As well, data is usually

asynchronous in nature.

The globally asynchronous locally synchronous architecture is a compromise be-

tween the two design styles. It consists of clocked computation blocks with asynchronous
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FIGURE 13 Problems with clock skew and fault tolerance. If the
clock at the distant spare is leading the clock at the local PE’s by too
much, data will be latched too soon at the distant spare and be invalid.
Similar problems will occur if the distant clock is lagging more than a
threshold.

communication between them. The clock itself can be distributed without concern for clock
skew since them synchronous islands can be made to approximate equipotential regions[31].
Global clock distribution is not necessarily required; internal clocks within the synchronous
regions could be used, with the benefit of elimination of the power peak problem. Synchro-
nous design procedures can still be used to a large extent, making the design process faster
because of the existing knowledge base. Hybrid asynchronous/synchronous circuits require
much less overhead than totally self-timed asynchronous designs. Such a system would
have greater throughput since each part could operate as fast as possible (assuming local in-
ternal clocks), and would be easier to upgrade since a new faster part could be clocked at a

different rate. This upgradability is important for integrated circuits as well as board level
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designs since with modern CAD tools upgrading a single component or unit on an integrated

circuit for subsequent fabrication is commonplace.

For these reasons, the PE we designed was made to operate in a globally asynchro-
nous locally synchronous environment. The drawback is in circuit overhead and the cost is
in silicon area. As well, the much touted performance gain of self-timed circuits may be
negligible because of the overhead; we will discuss these issues furtherin Section 3.12, Area

and Performance Considerations, when we analyze the chip being manufactured.

The micro—chips were constructed out of a standard cell library, namely the
cmos3dlm standard cell library supplied by CMC? for the Northern Telecom 3 micron dou-
ble-level metal CMOS process{3]. A standard cell library is a set of primitive logic ele-
ments that contain physical, electrical, and behavioral descriptions suitable for simulation
and layout of integrated circuits. The particular standard cells used here belong to the static
CMOS logic family and contain SILOS and hspice descriptions. SILOS and hspice are two
circuit simulators. Most of the simulations were done with SILOS using gates level models,
and a few smaller parts with Aspice at the transistor level. The design and simulation was
done within the Cadence 2.1™ design framework, which uses a schematic capture design
methodology. From a circuit schematic, one can generate a layout via semi—automatic place-
ment and routing or a program listing suitable for simulation by software that has been inte-

grated into the Cadence framework.

Asynchronous handshaking circuits were taken from Meng et al.[24] and modified
to provide building blocks for communications circuits between the synchronous computa-
tion blocks. The synthesis procedure used by Meng guarantees hazard—free components, if

one ensures that the modifications do not introduce any. We ensured this by design and veri-

2. CMC is the Canadian Microelectronics Corporations, established by the Natural Sciences and Engi-
neering Research Council of Canada to promote and support microelectronics research in Canada.
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fied it in simulations. The building blocks were cascaded and combined with rendezvous
or C elements to produce more complex handshaking circuits without the need to repeat the
synthesis process. The most efficient implementation does not result, but a more structured
framework of asynchronous design is allowed than is presently available. Meng’s synthesis
procedure and original parts will be reviewed in the preamble, as well as the modifications

to them.

Chips submitted for fabrication include an input router, output router, a 16 bit ALU
with serial-to—parallel/parallel-to—serial converters, and a miscellaneous test chip. Serial
operation was necessary here due to pin—out constraints of the prototype, this problem would
not existin WSI. One additional chip, the processing element shown in Figure 49, was de-
signed but not submitted for fabrication. Each of the chips will be described in detail. The
PE is an amalgamation of the aforementioned parts into one chip, and is capable of perform-
ing nearly all of the functions described in Chapter 2. In its present form, the PE would be
suitable for calculating the Hough transform and for pattern recognition problems. Minor
modifications to the ALU would be needed to perform image reconstruction, i.e. the addition
of a temporary register delta pixel and logic to perform the backproject and update com-
mands. This would not be difficult, as it involves only well-known synchronous design pro-
cedures. An additional needed part, the /O buffer, was designed but not entered or simu-

lated.

During design, a number of fundamental concerns arose that affect the potential of
the PE to be used in a commercially acceptable WSI array. These are performance issues
that fall into two categories, namely speed and area usage. The wafer must perform fast
enough to achieve real-time reconstruction of images and must take only a reasonable

amount of silicon. It will be shown that these are attainable goals for this architecture.
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3.1 PREAMBLE: ASYNCHRONOUS BUILDING BLOCKS

The asynchronous building blocks were modified from circuit designs synthesized by Meng
et al.[24] They use the common 4—phase communications protocol. Here we will briefly
review the 4—phase protocol, review Meng’s synthesis procedure to show that the circuits
provide hazard-free operation and maximum concurrent computation, and explain modifi-
cations we have made to her circuits . The modifications added reset, completion detection
and test capabilities to the building blocks. The building blocks include a pipeline handshake
element, a multiplexer, and a demultiplexer. Many variations of the basic building blocks

were used in our design.

The 4-phase signalling protocol can be best understood by examining the pipeline

in Figure 14. Rin, request in, represents a completion signal from the previous computation

. L3 T

COMPUTATION
BLOCK C

COMPUTATION
BLOCK A

COMPUTATION
BLOCK B

A

FIGURE 14 A pipeline.

block and Rout a request to the next computation block. Ain and Aout are the acknowledge
signals. A typical handshaking cycle for an empty pipeline would look as in Figure 15. Tran-
sition 1, Rin™, is arequest form the previous computation block. Transition 2, Aout*, means
the handshake state has latched in data and the requesting computation block can continue
with another computation. Transition 3 indicates that the previous handshaking block has

received the acknowledgement and that the computation block is prepared to begin the next
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FIGURE 15 Typical 4-phase handshaking cycle.

computation. Transition 4 completes the cycle, dropping Aout to indicate that the handshake

block is again empty and ready to latch in new data.

The 4-phase protocol is level-sensitive, in contrast to 2—phase signalling which is

transition triggered. For example, for the 4—phase protocol

Ra=___ [ \___

and for the 2-phase

RIA=____J = S

The 4-phase protocol was chosen over the 2-phase because it has less circuit overhead. Al-
though itrequires an “extra trip” for the return to zero portion of the protocol, this time could
be used to reset the clock counter in the computation blocks. Our design was not optimized
to this extent. Two—phase signalling is more appropriate for long distant communications
[31] than for the local communication our PE’s will be performing.

3.1.1 Synthesis

In [24], Meng and her colleagues synthesize several handshake circuits using the 4-phase
protocol with standard logic gates and RS latches. Their synthesis methodology is shown

in Figure 16. This synthesis procedure is very effective for small systems but can become
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cumbersome for larger ones because of the difficulty in specifying the guarded commands,

whose accuracy greatly affects circuit performance.

GUARDED COMMANDS

7

Signal Transition Graph (S.T.G.)

-

Semi—modular S.T.G. with weakest conditions

<

Synthesis

Program State Diagram

K-Map or other means —>Boolean function

"4

Minimization tool

<J

\

LOGIC CIRCUIT

FIGURE 16 Meng et al.’s synthesis methodology.

Guarded Commands

Guarded commands[9] are the input the the synthesis process. Their syntax is as follows:

Basic [C—>S] C is a pre—condition of S, TIF
And [C1 N CG—»S5]

Or (€1 U ;5]

Sequential [C/—» 5, C—» 5]

Parallel [Cr—»S; | Cr—S;]

Alternative  [C—3S; | C;—5;] Only I of C; & C; true at a time
Repeat *C—»=5]

A set of guarded command specifications for the handshake block in Figure 14 is:

LH.S.
Rin*=—»Aout*—»Rin=—Aout™

Relate input to output
*[Rin*—®Rout*] OR *[Aout ™ Rout*]

R.H.S.
Rout = Ain 3 Rout—»Ain~

Two possible specifications relating the input signal to the output signal of the handshake
block are given, both of which satisfy the 4-phase signalling protocol.
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Signal Transition Graph

Signal transition graphs (STG’s) can be generated from the guarded command specifica-
tions. Examples from [24] of signal transition graphs from the above specifications are
shown in Figure 17; many other STG’s can satisfy them. The difficulty is in finding the STG
with the ‘weakest conditions’ that will make the circuit hazard free while allowing for maxi-
mum concurrency. The optimum STG for a set of guarded commands can be found by deter-
ministic means, and Meng has written a program to do this in polynomial time. Before and
after STG’s are shown in Figure 17. The ‘after’ STG will give a hazard—free circuit imple-
mentation, and is known as a semi~modular STG. Examining the ‘before’ STG’s , you can
see that the signal transitions on the left loops could happen many times before those on the
right happen once; this indicates that the STG is not semi—modular and that a hazard could

exist in a circuit implementation for the STG.

In the ‘after’ STG’s, the computation cycles are shown in black. The STG on the left
generated from the input specification *[Rin*—3Rout*] has only 50% concurrency, while
that on the right generated from *[Aout*—3®Rout*] has 100% concurrency. The hand-

shake blocks in our design have 100% concurrency.
State Diagram, Karnaugh Map, & Logic Minimization

After the STG is obtained, the synthesis process is straight forward. A signal state diagram

can be derived from the STG, and standard boolean minimization is used from there.

The logic circuit resulting from this particular synthesis procedure is shown in Figure
18, as implemented in our design. Muller C elements resulted from the synthesis, and appear
as RS latch and NAND gate combinations as in Figure 19. As Meng notes, an RS latch can-
not be a hazard—free implementation of a Muller C element in any circuit with unbounded

delays, but only in circuits with unbounded delay derived as above from a semi-modular
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FIGURE 17 Signal transition graphs for two different guarded com-
mands specifications, before and after conversion to a semi-modular
form. The dark lines are computation cycles.[24]
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FIGURE 18 Handshake circuit for a pipeline. The circuit was modified
to include initialization and test signals. Delay elements were added to

this circuit to provide register latch completion signals.
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NOTE: R=S=1invalid.
FIGURE 19 C element implemented with SR latches.

STG. This implementation of the Muller C element is usually okay in circuits with realistic
delays. Signals that have been added for initialization and testing do not effect the circuits

dynamic behavior and thus have no effect on the validity of the synthesis.

SIGNALS

Rin Request in.

Aout Acknowledge out.

Rout Request out.

Ain Acknowledge in

F Full. Initializes the pipeline to full on reset when set,
i.e. Aout=1, Rout=0. Empty is Aout=0, Rour=0.

R Reset.

™ Test mode. Disables R and S of the RS latches.
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Register Addition

The handshake circuit thus far would suffice as a pipeline element, that is, it would propagate
the correct states, but it would not be very useful without valid data to pass to and from com-
putation blocks. Pipeline registers must be added to the handshake elements. Aout* is the
only signal (in concurrently operating pipelines) that can be used to latch the data without

corrupting the input or output data of the computation blocks.

Heuristically, one can see this could be done without adding hazards by naming the
original Aout a sub—signal, Lout, and using a latch completion signal as the new Aout. Meng
has done this formally by adding Lout as a latch signal and Lin as a completion signal and
repeating the synthesis process. We have included Lout in our design to trigger positive edge
trigger flip—flops, Lin as areturn signal, and used a delay element to provide the completion
signal for a single register latch operation as shown in Figure 20. The separation of Lin and
Lout in our design allows registers to be chained together. The trigger from the last flip flop
or set of flip flops to be triggered becomes Lin, so that any number of registers can be trig-
gered from the same Lout™ transition without upsetting the handshake signalling and without
the need for various sized delay elements. The delay element should be roughly equal to the
clock hold time for the register in question, 18 ns for the cmos3dlm D flip flop. This concept
is the same as getting a completion signal from the last register to be latched in the chain and
is important for operation of the unique asynchronous scan chain in our design, which will

be discussed in Section 3.4 Asynchronous Scan Test.

Building Blocks

Asynchronous parts that were synthesized by Meng and modified for use as building blocks
in the same manner include a pipeline handshake element, a 2—input multiplexer, and a

2—-output demultiplexer. Block diagrams and circuit implementations of the most basic im-
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FIGURE 20 The handshake element with latch signals and a delay ele-

ment to provide a completion signal.
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plementations of the multiplexer and demultiplexer are shown in Figures 21 and 22, and a
typical simulation in Figure 23. The mux and demux each have an additional asynchronous
signal interface, consisting of Cin, T, and Cout, that interconnects with a controller. T selects
the input or output port and must remain valid through the handshake with the controller, i.e.
from Cin*~> Cout* —> Cin—. Data can be latched via Aout as was done for the handshake

element, or occasionally by Cout in certain portions of our design that are sequential.

The handshake, multiplexer, and demultiplexer and variations of them were used ex-

51

tensively in our design. They are self-timed asynchronous parts that are hazard free. By



Chapter 3
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FIGURE 21 The multiplexer. The block diagram is from [24]; the cir-
cuit has been modified to add reset, enable, and test mode controls. Vari-
ations allow data to be latched by either Aoutl, Aout2, or Cout.
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FIGURE 22 The demultiplexer. The block diagram is again from [24];
the circuit has been modified to add reset, enable, and test mode con-
trols. Variations allow data to be latched by either Aout or Cout.

53



Chapter 3

Togic Simulalion (x In Ume_unitsl
[Cin
A
1
i
—— ZLout
I L
i
— /Routx?
I T 1 T T T !
! ! ! I ! [ ! ! {
H H i ! i H H i H
— /Ain - -
T T T T T
i ! ! [ !
H i i H 1
— /Rinixg
7 T T T T T T T T
[ | I I I ! ! !
| | } H § 1 i H H
—— /Acut)
T 1 1 T I T T 1
H H H H H H H H H
| ! , i .‘ ! ! ! ] | i
! i i i i i i i i
——— /Rin2x2
1 T T T T T I I T
! I { i ! [ i i
i i | i i i i i i
—— /Aoyt?
I I T T T T T T T 1
i | | i ! : { i i i i
! ! ; | | ' | ! ' '
g.3u 240 B.6u B.8u u 1.2y 1.4u 1.6u 1.8u

FIGURE 23 A simulation for the 2 input multiplexer handshake circuit.
The request/acknowledge cycle follows the 4-phase protocol. Cin and
Cout are the controller handshake signals and ¢ selects input 1 or 2.

cascading and combining them, communications links suitable for a processing element in

an 8—connected mesh can be constructed.

3.2 C & DELAY ELEMENTS

Although these are relatively small components, the C element and delay (or completion)
circuitry bear further discussion since they are used so frequently in the design and thus have
a big effect on area usage. They were implemented inefficiently in our design and alterna-

tives must be consider for future work. There are many alternatives.

54



Chapter 3

C Element

The C element is a common component in self-timed designs. Its truth table is shown in

Table 1. The building blocks use RS latches and standard boolean logic gates to make C

A B ouT

0 0 0 A B

0 1 |OoUT@-1) C e our
1 0 OUT(-1) B & Element

1 1 1

TABLE 1 C element truth table.

elements. In these circuits, a true integrated C element could be substituted for the RS latch
version.> Our implementations used only the standard logic cells available in the cmos3dlm
library. A much more area efficient and faster C element could be made at the transistor lev-
el; there are many suggested implementations in the literature. The C element should be

added to the standard cell library.
Delay Element

The delay element was chosen to be 20ns after extensive simulations of an pipeline with Rout
and Ain shorted to mimic a external pipeline stage that would run as fast as physically possi-
ble. The size of the delay is a limitation in itself, but for now we will only consider its imple-
mentation. For our design , the delay element was constructed from buffers and inverters
for the standard cell library. Thisis a very inefficient means since the standard cells are opti-
mized for speed, but was done because the specifications for the standard cells are more ac-
curate than what could be assumed for a newly designed delay element that has not been veri-
fied by fabrication run tests. The amount of the delay using standard cells will still vary
somewhat with each fab run, but the delay variation be relatively equal with respect to other

3. Although the reverse is not necessarily true in a circuit with unbounded delays. See Section 3.1. As
well, the C element for these circuits must be an atomic C element; see [24] page 1197 for further refer-
ences on integrated C element designs.
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gates. Guard time was allowed to account for fabrication run variations and other factors

relating to the automatic place and route tools.

A better way to implement the delay element could certainly be found. One simple
way to increase the accuracy of the delay would be to use a fixed sized metal capacitor at
the output of each buffer, but this also would not be area efficient. We propose that clock
stealing be used. The concept is shown in Figure 24. Clock stealing would require 2 D flip
flops, or could be integrated into a new standard cell. The delay would be of varying lengths,
with a minimum of 1/, clock cycle and a maximum of 1!/, clock cycles assuming a 50% duty

cycle. Clock skew would not be a concern. The fact that the amount of minimum delay could

CLOCK STEALING

IN »» ol i por OUT

— cx

FIGURE 24 Clock stealing circuit. If the clock has a 50% duty cycle
the minimum delay would be 1/, cycle and the maximum 1 1/,.
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be varied would eliminate dependence on fabrication process parameters. If clock stealing
is used, one would want to minimize the number of asynchronous communications links or

use a separate faster clock for the delay elements since there would be a loss in performance.
Completion Signal

One must remember that the purpose of the delay element is solely to provide a completion
signal for register latching. Other methods could be used to provide a completion signal for
static CMOS registers, such as quiescent current monitoring. If the overhead penalty is not
large, this could be a promising technique. Another alternative would be to use another type

of register logic that provides a completion signal. This is an area of active research.

3.3 PIPELINE

Construction of a pipeline from the handshake element may appear straightforward, but
there are some concerns for an integrated circuit implementation. These are the selection

of the delay element and data/request bundling.

To decide on how large of a delay element should be used, the test pipeline shown
in Figure 25 was entered for simulation, with Rout and Ain essentially shorted. The hand-
shake circuit used in the pipeline is shown in Figure 26, and Figure 27 shows a simulation
with the pipeline running at 5 MHz; successful operation was observed up to nearly 10
MHz.# The pipeline appears infinitely long to the input, with the buffer at the outputlooking
like a very fast handshake element. To find the correct amount of delay, an initial value was
estimated from the standard cell timing parameters. Only the cells in one handshake block
were taken into account and not those in adjoining blocks since our goal was to make each

4. Note that in simulation illustrations, some signal transitions may appear to fire before others when
they actually do not because they are not shown ‘zoomed in’. Accurate timing measurements can be tak-
ing within the Cadence waveform window by zooming in on the desired signal transitions.
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PIPELINE
(3 STAGE, 1 BIT)
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FIGURE 25 A 3 stage by 1 bit test pipeline.

stage independent of timing variations outside of its own domain. The delay element was
then adjusted, and the simulation re—run. Finally, a minimal delay value was chosen such
that Rout™ occurred 5 ns after the data the data was valid. Only one fixed size delay element
is needed for all the handshake circuits regardless of the number of registers chained together

due to the use of a latch trigger return signal, Lin.

A distinction between a self~timed asynchronous circuit and just an asynchronous
circuit is necessary. At first glance a guard time of 5 ns seems rather small for an integrated
circuit where process parameters can cause variations in timing specifications, but this is in
fact a conservative figure. That amount of delay was chosen do make the handshake block
self-timed, that is its correct operation is not affected by the timing parameters of adjoining
circuit elements. Surrounding pipeline stages could be infinitely fast and not cause a failure.
In reality surrounding stages are not infinitely fast so their delays and wire delays could be

taken into account to optimize performance. The delay element could be made considerably
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FIGURE 26 The handshake block for the 3x1 bit pipeline.

added to the latency.
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smaller and the pipeline would still be a valid asynchronous circuit; simulations indicate that
the delay value of 20 ns is a least 1 1/, times the required value. The delay value in our design
was not optimized further out of concern for fabrication process parameter variations. The

delay value greatly affects performance since for each handshake, double the delay value is

Another potential problem, akin to clock skew, is with data and request bundling and

59

the automatic place and route tools used to generate the layout. The data out and request
out signals of pipeline stages or computation blocks should be treated as a bundle; that is
the delay of Dout in reaching the next block must be less than or equal to the delay of Rout

plus the guard time.b Wire capacitance will affect signal delays, and with automatic place
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FIGURE 27 A simulation of the 3x1 pipeline with 20ns delay elements.
Alternating data was applied to the input and passed to each successive
stage. The signal Din, I81 Dout, 182.Dout, and Dout show the data
rippling through the pipeline.

and route tools there can be no guarantee that the wire lengths for Dout and Rout will be ap-

proximately the same. Wire capacitances were not take into account in in the SILOS simula-

tions, but calculations using timing parameters from the standard cell specifications indicate

that with the guard times used, there is not likely to be a problem. From the specifications

for a standard cell RS latch the added delay due to wire length for Rout**Dout™*, and Dout~

would be:

Atgoyr = 20.11IC,, o

Atpour = 20.17(1 + ADC,, (22)
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Atpour = 22.56(1+ ADC,, (23)

where /is the length of the wire, A/ is the additional wire length on Dout, and C,, is the capac-
itance per unit length. G, is 2.7x10- pF/um? for the metal 1 layer, making C,, 2.7x107
pF/um for the 3 micron process. Taking a nominal value of 3000 microns for the length /
of the shorter wire, Rout, and setting Atp,, — Atgout and Atpour — Atpour €qual to the tight
guard time of 5ns gives Al = 3000 and 2400 microns respectively. This means the Dout
wire would have to be 2400 microns longer than the Rout wire for the circuit to be unreliable.
Since the maximum chip dimensions are 10000x10000 microns this is unlikely to happen,

but more attention would have to be given to the routing in a WSI environment.

To further reduce the probability that wire length between Rout and Dout will differ
greatly, macros were used in our design and the Dout and Rout pin were placed near each
other on the macros. Macros are just chunks of standard cells that are placed and routed sepa-
rately before the whole design is done. This localizes the placement and routing for logical
blocks and makes major differences in the wire lengths less likely, as well as allowing the
various parts to be physically identified on the layout. The use of macros also makes circuit

overhead calculations easier.

More study is needed to see how much the delay element can be reduced or if some
other completion detection method is more appropriate. Our design was very conservative,
with each handshake component being self-timed. The 3 stage 1 bit pipeline was sent for

fabrication to verify the simulations and analysis.
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3.4 ASYNCHRONOUS SCAN TEST

All components in our design include control and data lines for asynchronous scan test. Fig-

ure 28 shows a 3 stage by 16 bit pipeline with scan test, and Figure 29 shows a simplified

view of its internal scannable registers in run mode and scan mode. The addition of another

handshaking element, hshake_sc, creates a second pipeline overlay that takes control of all

register latching when scan mode is entered. This can include registers in clocked computa-

tion blocks. Figure 30 shows a test configuration for the circuit and Figures 31 shows simula-

tion results.

Din<15:0> orons> Dammmmm— F
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FIGURE 28 A 3 stage 16 bit pipeline with scan test. The kshake sc
block is a pipeline handshake block that shifts the register chain right
with each request acknowledge cycle. The signalling in the scan pipe-
line flows to the left.
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RUN MODE
Three run pipeline stages, parallel registers.
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FIGURE 29 The internal registers of a 3 stage 16 bit pipeline in run mode and in scan
mode. In run mode, data flow is controlled by signalling in the hshake pipeline and the
registers are in a parallel mode. In scan mode, data flow is controlled by signalling in
the hshake_sc pipeline and the registers are in a serial mode. The solid lines are data
flow and the dotted lines handshake signal flow.
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FIGURE 30 The test setup for the 3 stage by 16 bit scannable pipeline.
The scan handshake element looks like it is in an infinite pipeline con-
nected to very fast adjacent stages when scan mode is entered.

Scan test signals in Figures 28 and 30 are defined as follows:

SIGNALS

SI Scan data in.

SO Scan data out.

Routs, Ains,

Rins, Aouts  Scan pipeline handshake signals.
R Reset.

SM Scan mode.

RM Run mode.

SCout Shift trigger signal to registers.
SCin Shift trigger signal return.
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FIGURE 31 Waveforms from a simulation run performing scan test on
a 3 stage 16 bit pipeline. Stages 1,2, and 3 (registers 171 .Dout, 173 .Dout,
and Dour) are filled will FOFO hex and then serially scanned out at SO
with the scan input S7 set to 0. The lower chart is a zoomed view of the
upper one, showing the stage 3 register Dout shift its data out.
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The hshake_sc component in Figures 28 and 30 is identical to the previous pipeline hand-
shake element, it is just used in a slightly different way. When the registers are in scan mode,
they form a shift register triggered by SCout*. The SCin signal ensures that only after the
most significant bit in the shift register chain has been shifted will the scan pipeline hand-
shake initiate a request to the next scan stage. The operation is identical to that of Lout and
Lin except that for Lout and Lin the registers would usually be in parallel with only a slight
delay between Lout™ and Lin*, while there is usually a large delay between SCout* and

SCin™. In either case this delay is unbounded.

The scan pipeline overlay has been shown in the opposite direction, i.e. right to left,
to indicate that handshake signal flow in the scan pipe should be visualized as right to left
with data flow left toright. This perception is necessary because it prevents overwriting data
in adjacent scan stages, and allows for trigger signal consistency when switching from run
mode to scan mode. In this perceptual framework the scan pipeline must be empty when
switching to scan mode. Another way to approach the problem would be to initialize the scan
pipeline to full, use the complementary signal levels, and pull data off of the end of the pipe-
line. Data flow would then be in the same direction as scan signal flow, and the end result
is the same. Note that this ‘scan pipe overlay’ can be used for both the asynchronous and
synchronous blocks. The concept is the same as clocked scan test, except that instead of us-
ing a clock to shift the data the SCout handshake signal is used. The SCin return ensures in-

tegrity of the scan shift.
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A typical scannable positive edge triggered D flip flop from our design is in Figure 32. The
sequence of events to enter and exit scan mode must be carefully orchestrated to prevent un-
wanted positive edge transitions on the D flip flop trigger inputs. The following describes

signals in the D flip flop schematic:

SIGNALS

D Data in

SI Scan data in.

0 Data out. Connects to S/ out of the next stage.
CK Asynchronous or synchronous trigger.

SC Scan trigger.

RM Run mode.

SM Scan mode.

R Reset.

S Set.

SCANABLE DFFRS

S — « R
Sl =————
SM s S «~ RM

FIGURE 32 A asynchronously scannable D flip flop.
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The sequence of events to enter and exit scan mode is as follows:

1. Before entering scan mode, the clock signal can be either in a high
or low state, but it must be in a steady state. this means an asynchro-
nous pipeline stage can be scanned in a full or empty state, as long as
the pipeline has been allowed to settle. For computation blocks, the
clock must be stopped or the computation allowed to complete. The
scan pipe must be initially empty. (SCout = 0)

2. Enter scan mode as follows to prevent transient spikes in the D flip

flop trigger:
RM | SM
1 0
1 1
0 1

TABLE 2 Control signal sequence to enter scan mode.

3. Scan.
4. Finish scan with the scan pipe full.

5. Switch back to run mode as follows:

RM | SM
0 1
1 1
1 0

TABLE 3 Control signal sequence to exit scan mode.

6. Now empty the scan pipe. This will have no effect on the registers,
but will prepare the scan pipe for the next scan mode. This can be
done concurrently with normal computations in the run mode.

Following this sequence of events exactly will prevent accidental latching of data. During
scan mode, all asynchronous sets or resets of latches, such as those in Muller C elements,
are disabled just as in fully synchronous scan test systems. Figure 33 shows how the scanna-
ble D flop flop, dffsc, could be used in a 4 bit register. An alternative would be to use only

one set of control circuitry (the nand and mux2 cells) for the 4 D flip flops.
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The final processor array would have one (or more if desired) scan handshake blocks for each

processing element, as in Figure 46. The array would have one or more scan pipe overlays

to test for faulty processors so that other fault tolerant techniques could be employed, such

as switching in a spare PE for a bad PE.

3.5 ASYNCHRONOUS CLOCK

The title of this component seems to be a contradiction in terms, but its function is relatively

simple. The circuit, modified from [7], produces a selectable number of clock pulses upon

receiving a request and then puts out a request. It would be used to provide clock pulses for
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the clocked computation blocks between asynchronous handshaking blocks. The modifica-
tions we applied allowed the number of pulses to be selectable. Modules with ranges from
1to 15and 1to 255 pulses were built. AnRout™ transition will occur only after the final clock
period is completely over. Glitch prevention was added to prevent an Rout glitch when ad-
justing the number of clock cycles during the inactive phase. Figure 34 shows the asynchro-

nous clock circuit and Figure 35 shows how it would be used in a 3 by 16 bit pipeline.

ASYNCHRONOUS CLOCK
(MAXIMUM 16 CYCLES)

CK=B C*<3:0>

Rout

ait for CK® to finish complete
cycle before Rout—

nor2

but4

TR e~ RM

iny
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k8 5
] D
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buf

R CK SC SC* C<3:8>
NOTE: C must be valid throughout the handshoke, and 5@ ns before. C=8 invalid.

FIGURE 34 An asynchronous clock circuit. The number of clock
pulses is selectable from 1 to 15.
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FIGURE 35 A pipeline with clocked computation blocks using the
asynchronous clock units.

3.6 I/0 ROUTERS

The input and output routers are the heart of the processing element’s design. Most of the

computational power of the PE for the target algorithms is contained not in the ALU but in

the routers. The I/O routers consist of 3 macro blocks each as shown in Figures 36. The rout-

ers each have a controller to calculate the next route, handshaking logic to implement the

asynchronous 4—phase signalling protocol, and multiplex or demultiplex logic to multiplex

or demultiplex the data.

The routers were designed to make the PE’s non—algorithmic and escapement ma-

chines, as opposed to algorithmic and unsynchronous. Both of these choices make the PE’s
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FIGURE 36 The input and output routers for a processing element in an
8 connected mesh. The routers have self-timed asynchronous communi-

cations and use locally synchronous controllers.
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flexible and powerful but have hardware consequences, and so we will discuss them before

describing the hardware.

By non-algorithmic we simply mean that the incoming and outgoing routes are
stored in a pre—calculated look—up tables rather than calculated by some deterministic means
based on the incoming data. Lattard and Mazare [19][20], for example, pass the ray projec-
tion angle and input point with the data and use a deterministic algorithm within a transputer
to calculate the next route. Iterative register logic techniques such as the Cordic [35][36]
implementation are used to calculate the sir and cos functions with a minimal of area. The
advantage of the Cordic implementation is in silicon area at the expense of speed. The ad-
vantage of a look—up table technique such as ours is that it is very fast and can be used with
many different algorithms, especially those which repeat the routing pattern over and over
again so that only a small routing table is needed. Image reconstruction, pattern recognition,
and neural network problems fall into this category. The disadvantages is in increased area
usage and in the time it would take to load the routing tables for a large WSI array. Once
loaded, the array would be expected to run with the same table for a considerable amount
of time. A few simple calculations show that our approach is not unreasonable for a wafer
scale implementation. As designed, our PE contains a 256x4 bit input routing table and a
256x4bit output routing table, which would be sufficient to calculate the Hough transform
or perform image reconstruction on a 256x256 image. This would amount to 16 megabytes
of storage with one processing element per pixel, which is far from an unreasonable amount
for a wafer when already micro—chips alone have approached this number. A more area effi-
cient means of implementing routing could certainly be found, depending on how applica-
tion specific and how fast you want the array to be. The method of route calculation in our
design could be changed to some standard deterministic means with little difficulty since the

controller is a synchronous component.
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The other important feature of the routing structure is that the PE is an escapement ma-
chine[4]. An escapement machine knows where the next request is coming from, but not
when. Since the unsynchronous machine does not know where or when the next event is
coming, it can have trouble with metastability[31]. For an unsynchronous machine, addi-
tional circuitry is required to perform synchronization arbitration and queuing. The disad-
vantage of our escapement machine is that both input and output route calculation must be

performed.
Multiplex and Demultiplex Controller

The mux/demux controller performs route calculation and controls the handshaking blocks
for the input and output router. A routing scheme for the PE is shown in Figure 37, and the
mux/demux controller itself in Figure 38. Itis a clocked component with 5 valid commands,
sufficient to perform image reconstruction, the Hough transform, or pattern recognition
problems that use line integrals. The three major groups of circuits shown in the figure per-
form clocking, address calculation, and route storage functions. The asynchronous clock
unit interfaces with the handshake circuit and provides clock pulses to drive the controller.
If dictated to do so by the current command, the route calculation circuitry increments the
RAM address once every 16 requests, which make the routers 16 bit serial. The routes are
stored in a RAM table of variable size, up to 256 (default) in our design. The table repeats
itself over and over, which is very suitable for the image reconstruction and pattern recogni-

tion problems we wish to solve.
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2 OUTPUT ROUTE

1 6 INPUT ROUTE 3
5 7
PE
8 INITIATE ROUTE CODES
8 TERMINATE
3 1
6

E.G. 4=INLFT
6 = OUT DWN

(in write/read mode)

FIGURE 37 Processing element routing scheme. There are 9 route
codes including those for initiate and terminate.
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MULTIPLEX/DEMULTIPLEX CONTROLLER
(FOR 18 BIT SERIAL COMMUNICATION)

(=3
1

_l‘.‘<}l_¢.g
.-:..33

E T

FIGURE 38 The multiplex and demultiplex controller.

The following describes the commands, registers, and important signals in the controller:

COMMANDS
(Decoded, e.g. 00001 = Project).

CMD<4> Clear command. Routing set as in CMD<3>.
CMD<3> Writelread. Set the route to IN LEFT and OUT RIGHT.
This makes a linear array out of each row for reading and
writing the image data.
CMD<2> Update. Not applicable to the controller, since the multiplexer or
demultiplexer will not receive a request in this command mode.
CMD<1> Backproject. Step through routing table.
CMD<0> Project. Step through routing table.
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REGISTER

:nrt Tells the controller how many routes are in the table.
addr The address of the current route.

rt The route code, 0 to 8 hex.

SIGNALS

:CMD Decoded command, 5 bits.

RD Ram read (from ram).

WR Ram write (to ram).

Cin Request out, controller completion signal.
Cout Acknowledge in, from handshake circuit.
E Mux/demux enable byte.

T Mux/demux select nibble.

The asynchronous clock unit is used to generate the clock pulses, generating the first set of
pulses immediately after reset and a new set of pulses after receiving the Cin~transition from
the handshake circuitry. The controller looks like a clocked computation block in a pipeline
flowing from top to bottomn, with Cout being its completion signal. This ‘controller pipeline’
was made to have a continuous request, beginning to calculate the next route as soon as the
handshake block has received the current route. It must have a fixed number of clock
cycles(5), since it is never latent and thus there is no opportunity to change the clock cycles
for the next instruction. This will not affect performance since only the instructions project
and backproject use the clock and each require the same number of clock cycles. Referring

to Figure 38, a typical instruction sequence for the project mode would be as follows:

1. Toggle the count8 reset latch to 1 if the number of routes nrt equals
counts.

2. Toggle the count8 reset latch and increment the 8 bit counter if the 4
bit counter is done.

3. Increment the 4 bit counter.
4. Load the address from the 8 bit counter.

5. Load the route, and put out a request.
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The backproject command would execute identically. The write/read and clear commands
do not step through the routing table since the asynchronous clock is bypassed in these
modes. The update command is a don’t care state for the mux/demux controller since the

controller will never receive handshaking signals from the handshaking blocks in this mode.

The RAM for the mux/demux controller must be loaded via the scan chain. The
RAM used in our design was generated using the University of British Columbia’s Module
Maker tool[10], which is integrated into the Cadence design framework. The tool generated
a static RAM of the desired size and used transistor—level Aspice simulation on a delay model
to provide gate—level delay parameters for the SILOS representation. Because of minor
problems with the module maker tool, the Aspice simulations had to be re—run manually and
the delay parameters extracted from the resulting waveform. The delay parameters were
scaled up before they were entered into the SILOS model of the ram to provide a safety mar-
gin, since the accuracy of the transistor—level delay model automatically generated by the

tool is limited.

Multiplex and Demultiplex Handshake

The multiplex handshake circuitis shown in Figure 39 and the demultiplex handshake circuit
in Figure 40. We will describe only the mux handshake in detail, since the demux is nearly

a mirror image.

The multiplexer handshake has 4 stages, 3 to select one of the 8 inputs and one to
allow for an initiate command. A 4 input C elements collects Cout events from each of the
stages and acknowledges the controller when all the stages are done. The 4 input C element
event and forces the stages to operate as a unit; only after Cout* or Cout— has occurred for
all the stages will it occur for the entire unit. The stages do not operate concurrently. Each

of the 2 input multiplexer elements is controlled by one bit of the enable byte E<7:0> and
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MULTIPLEXER HANDSHAKE
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FIGURE 39 The multiplex handshake circuit. It has four stages and
one interface to the controller.

E<7:0> | T<3:0> Selected Input
=80 =8 8 (initiate or terminate)
45 7 7
45 6 6
25 5 5
25 4 4
13 3 3
13 2 2
0B 1 1
0B 0 0

TABLE 4 Enable and select patterns for each route code. Values are in
hexadecimal.
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DEMULTIPLEXER HANDSHAKE
(8 OUTPUT)
NOTE: € and T must remain vakid throughout hondshake.

Cn Cout E<r:e> TncX:s>

78>

Ain<7:8>

FIGURE 40 The demultiplex handshake circuit.

a one bit of the select nibble T<3:0>, both of which must stay valid throughout the hand-
shake. The enable bit enables the controller handshake for the particular 2 input mux and
the select bit selects either input. For each route code, the multiplexer handshake circuit re-
quires a specific enable and select nibble to control each 2 input multiplexer appropriately,

as in Table 4. The demultiplexer uses an identical pattern.

Data is latched into the multiplexers in the first stage before a controller handshake.
Thus although there is no queue perse, there is a high degree of concurrency since incoming

data from any port can be accepted before being serviced by the controller. This would be
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even better if the routers were operating with parallel rather than serial data. The multiplexer
handshake circuit passes the select nibble Tout<3:0> and the data Dout<7:0> to the multi-
plexer logic. Itis not necessary to pass the select code for the demultiplexer. The registers
in the last stage for Tout and Dout are not required, since only when Ain * has occurred (mean-
ing the next stage has latched the data) can the controller start another handshake, but were

left in for test purposes.
Multiplex and Demultiplex Logic

The multiplex and demultiplex logic performs the actual mux and demux functions on the
data. These logic blocks used delay rather than an asynchronous clock for synchronization;
other than that they are standard gate implementations. The mux and demux logic could be
integrated with the AL U to avoid using delay to provide the completion signal, but this would
mean more registers. The mutliplex and demultiplex circuit can be found in the Technical

Reference Addendum for this thesis.
Simulation

Simulations for the input and output router are shown in Figures 41 and 42. The ram was
initialized to contain each of the 9 route codes, the first being the initiate or terminate route.
An alternating pattern was placed on the input. Examining the simulations, you can see 16
handshakes for each route, showing the 16 bit serial operation. For the input router Dout
alternates as each successive complemented input is selected, and for the output router Dout
follows the input pattern and a request in placed on the selected output. Simulations were

also performed loading the RAM manually via the scan chain.
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FIGURE 41 Inputrouter simulation. There are 8 serial inputs and 1 serial
output. The input data Din<7:0> is fixed at 10101010 or AA in hexadeci-
mal, 1.e. Din<7> =1 for the duration of the simulation. Each of the 8 inputs
ischosen according to the routing table and passed to Dout. The route codes
from the table are shown as mux8ctrl.T<3:0>. There are 16 request/ack-
nowledge cycles before a new route code is loaded from the table since the
operation of the routers is 16 bit serial. Route code 8 is a is an initiate com-
mand and requires no request.
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FIGURE 42 Output router simulation, dual of the input router. There is
1 serial input and 8 serial outputs. The input data Din is fixed at either 1
or O throughout a routing cycle. The input is passed to one of the outputs
Dout<7:0> according to the routing table. Again the route codes are
shown as mux8ctrl. T<3:0> and again there are 16 request/acknowledge
cycles for each route code. For the output router, route code 8 is a termi-
nate command and thus does not put out a request.

3.7 SERIAL TO PARALLEL/PARALLEL TO SERIAL

The parallel to serial/serial to parallel converters do not require much explanation, since they
are just less complicated versions of the routers that contain shift registers instead of parallel
registers. The serial to parallel circuit puts out one request for each 16 input requests and
requires one 2 input demux in the handshake circuitry to do this. The parallel to serial circuit
puts out 16 requests for each single input request and requires one 2 input multiplexer in the
handshake circuitry . Datais shifted by the handshake signals of the mux or demux in a man-
ner similar to scan mode operation. Detailed circuit schematics are in the Technical Refer-

ence Document. Parallel to serial conversion had to be done because of pin—out constraints.
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FIGURE 43 The serial to parallel and parallel to serial converter.
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3.8 ALU

The ALU in Figure 44 was was designed with a 16 bit wide bus, large enough to pass ray
sums for a 256x256 pixel black and white image with a 256 level gray scale. Enough com-
mands were implemented to allow a PE array to calculate the Hough transform. Its major
components are an 8 bit register to store the pixel, an adder, multiplexer logic, and the
asynchronous clock element. Most of the signals are self explanatory, except for OF which
indicates adder overflow. The decoded commands are the same as for the input and output
router, excluding the update and backproject commands which were not implemented. It

would be a simple matter to add these commands.

ALU
(FOR HOUGH TRANSFORM)

CMD<4:8> CK OF
.

buf
buf
but4
buf
[ 2

buf
Din<15:0>  mrew k{80010, Dout<15:8>

2.0

inv
nor3

clocking

async_clké = Rout

sI - »- S0

FIGURE 44 The ALU. Itis a synchronous computation block with
enough commands to allow an array of PE’s to compute the Hough
transform.
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ALU COMMANDS
(Decoded, e.g. 00001 = Project),

CMD<4> Clear command. Places the pixel on the data out bus..

CMD<3> Write/read. The Din bus is loaded into the pixel register and placed
on the Dout bus.

CMD<2> Update. N/A. Not implemented, defaults to clear.

CMD<1> Backproject. N/A. Not implemented, defaults to clear.

CMD<0> Project. The pixel is added to the incoming data and the total is
placed on the output bus, to calculate the ray sum.

REGISTERS
pix The 8 bit pixel register.
SIGNALS

:OF Adder overflow.

Reading an image from the array must be done in conjunction with the clear command in
a specific sequence to ensure the image data is not overwritten by previous pipeline stages.
The clear command does not perform a computation, but is used to copy pixel data out of
the ALU and into the next pipeline stage. The name of the commands is somewhat of a mis-
nomer since the command actually has a purpose. Reading and writing image data to the
array would be performed as follows; recall that in the write/read command mode, rows of

PE’s are arranged as linear arrays left to right by the input and output routers.
READ (Read an image from the array)

1. Set the command to nothing and fill the row pipelines in the array.
This will move the pixel into the next pipeline register.

2. Switch to write/read mode and pull the pixel data off of the pipeline.
WRITE (Write an image to the array)

1. Start with the pipeline empty, and give no acknowledgements. Finish
with the pipeline full.

2. Switch to another mode and continue.

86



Chapter 3

This method of reading and writing image data is much faster that using a scan chain. It

would be practical to process many different images in a short time after the routing tables

were loaded.

The ALU we implemented was very simple; most of the computation power of the
processing element is in the I/O routers. This particular implementation of the ALU showed
use of a different number of instruction cycles for different commands, an important demon-
stration for the operation of the asynchronous clock unit. For fabrication, the serial to paral-

lel converter, ALU, and parallel to serial converters were placed on one chip.

SERIAL ALU
FOR
HOUGH TRANSFORM

CMD<4:2> CK OF

.

Din  =p——o # S ﬂ = Dout
| - - ead ] 0<15:9>! -

buf4
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Rin sp1 alul w2 p-s16 = . ®=  Rout
Acut  we ~t §é ke L~ Ain
) S — v b— % 50
Routs e !_-;ih.._i:r - Rins

Ains  wp——— - e Aputs

buf4
buf4
buf4

2 e

SM RM

FIGURE 45 The ALU and serial to parallel converters as implemented

on the test chip. A scan handshake element for the PE was also included
on this chip.
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3.9 PROCESSING ELEMENT

The processing element is a combinations of the input router, ALU, and output router operat-
ing bit—serially. Asimplemented, an array of the vertex 8 PE’s would be capable of reading
image data, bperformin g (in parallel) some ray summing algorithm on it in such as the Hough
transform, and writing image data. It can be programmed with up to 256 input and output
selections from the 9 routes, which include the 8 I/0 directions and an initiate or terminate
route code. The commands nothing, write/read, update, backproject, and project are all val-

id, but update and backproject were not implemented in the ALU at this time.
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FIGURE 46 The processing element or PE.
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A simulation testing the commands is shown in Figure 47. The simulations were run as fast
as possible to the nearest 100us interval, so that a rough estimate of performance could be

made. An explanation of what is occurring is given below:

0-50us, WRITE. The PE is in write/read mode, as can be seen be the 08

command code. Data FF is read into the pixel register.

50-125us, PROJECT. Two project operations are performed, input initiate
to output 0 and input 7 to output 1. Itis important to note the concurrent ‘pipe-
line’ operation from time 70us to 100us, where the data from the initiate input

is being read out at the same time as data from input 7 is being read in.

125-200us, NOTHING. The pixel value is being putinto the outgoing pipe-

line registers, and the pipeline is being filled for a read pass.
200-250us, READ. The pixel is read out.

The PE functions as desired; performance considerations must be addressed, to see if the
PE can provide a reasonable degree of performance for reconstruction of images and if the
area it take is small enough for a WSI implementation. This will be done in Section 3.12

after we describe the proposed I/O buffer and the micro—chips submitted for fabrication.
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lation, from input initiate to output 0 and from input 7 to output 1. Refer

project, clear, and read. Two project cycles were executed in this simu-
to the text for more explanation.

FIGURE 47 A simulation showing operation of the commands write,
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3.10 VO BUFFER

A part that we did not design that would be required for host data communications with the
array is the /O buffer, introduced in the Chapter 2. In hardware, the 1/O buffer is a depth
K bi—directional pipeline with no processing that rings the PE array and transmit or receive
data from the outermost processors. The outer ring of the I/O buffer is special. The outer
ring of the input buffer, for example, receives or transmits serial 16 bit wide data from the
host until it is full and then initiates a parallel request to the next innermost ring of the pipe-
line. The outer ring or the output buffer would receive data in parallel from the next most
inner ring and transmit it serially to the host. For our reconstruction algorithms, not every
boundary PE will need a request/acknowledge pattern for a particular projection angle; the
particular request/acknowledge pattern could be pre—calculated and loaded with the data as
was done in the transputer simulations. An important consideration for the performance of
the array would be the depth of the elastic I/O buffer, which could be calculated to try to opti-

mize the usage of the host and PE array with an area trade—off.

3.11 CHIP SPECIFICATIONS

Four chips were submitted for fabrication, which will be returned in 3 months for testing.
These include:

1, INPUT ROUTER (schematic in Figure 36)

2. OUTPUT ROUTER (schematic in Figure 36)

3. ALU (SER. VERSION) (schematic in Figure 45)

4. MISC. TEST CHIP (schematic in Figure 48 )
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The miscellaneous test chip schematic, shown in Figure 48, contains some critical parts to
verify their operation for the current fabrication run parameters. Its These parts are a 3x1

bit pipeline, a delay element, a pipeline handshake element, and an asynchronous clock unit.

A fifth chip consolidating the components into a complete PE was not sent for fabri-
cation because it was not reasonable to do so without first testing fabricated parts of its com-
ponents. The PE consists of an input router, serial to parallel converter, ALU, parallel to
serial converter, and an output router. An initial layout for the chip was slightly too large
too be fabricated in the Northern Telecom CMOS3 process, but indications are that with
some additional work the current design could be made to fit. A non—prototype with a more
efficient RAM, new delay elements, and a standard cell C element would certainly fit on a
single CMOS3 chip, and size would not be a concern in CMOS 4 technology, we will show
in Section 3.12 that the PE size would reasonable in WSIimplementation of our array. Table
5 gives specifications for each of the chips. Figures 49, 50, 51, 52, and 53 show the layouts
for the processing element, input router, output router, ALU, and miscellaneous chip respec-

tively.
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MISCELLANEOUS TEST CHIP
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FIGURE 48 The miscellaneous test chip schematic.
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NAME SIZE (um) | TRANSISTORS I/O PINS

w h N P pwr sig total
INPUT ROUTER 5886 | 7274 | 8589 6405 10 35 45
OUTPUT ROUTER | 5206 | 7261 7918 5287 10 39 49
ALU (SERIAL) 4704 | 4645 | 3313 3279 8 22 30
MISC. 3653 | 3860 887 1020 10 40 50
PROCESSING 10265 | 7826 | 19810 | 15491 16 60 76
ELEMENT"

* All chips are 64 Pin Grid Array (PGA) packages, excluding the PE
which would be an 84 PGA package. The maximum size that can be
manufactured through the CMC is 7500x7500 microns.

TABLE 5 Chip specifications. The chips are being manufactured by
Northern Telecom Electronics Ltd. in a 3 micron CMOS P-well process.
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FIGURE 52 ALU layout, with serial to parallel/parallel to serial conversion.
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FIGURE 53 Miscellaneous chip layout. This chip includes a pipeline,
handshake and asynchronous clock elements, and delay test circuitry.
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3.12 AREA AND PERFORMANCE CONSIDERATIONS

The following analysis will show that our PE hardware provides sufficient speed for the
image reconstruction application. Area usage is of greater concern in our prototype, but the

area usage problem is not unreasonable within current technological constraints.

3.12.1 Speed

We will use the acquisition time for a 1000—element projection element for a typical CAT
scan, 1 millisecond, as a benchmark for reconstruction of a 1000x1000 pixel image. This
would require 1000 projections of projections data, or about 1 second of acquisition time in
which to reconstruct the image to achieve near real-time operation. From the PE simulation
for our bit serial PE shown in Figure 47, we estimate that it takes less that 20,000 ns (through-
put) for the first bit of the 16 bit ray sum to travel from the input to the output (throughput)
of the PE and that the next bit can follow in less that 1500 ns (latency). The time for one

iteration, that is one pass through each projection angle, can be calculated as follows,

Tproj = time for first bit to get through array + time until last bit of last ray sum follows

= (/N x PE throughput ) + ( wordsize xK x PE latency) 24)

where K is the number of projection angles and N is the number of pixels in the image. For

a 1000x1000 pixel image:

Tproj = 1000(20000) + 16(1000)(1500) = .044seconds (25)

Equation (25) is approximately the time for 1 project phase of a SIRT, or the time it would
take to perform the Hough transform for 1000 discrete angles. Doubling that to allow for
the backproject phase and allowing a short time for the local update phase gives an iteration
time of .1 seconds, or a reconstruction time of about 3 seconds for a 1000x1000 pixel image
for the maximum iterations it took to achieve convergence in our simulations. This is quite

good, considering that the PE’s are serial and that the standard cells used are not the fastest
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available. Parallel communications would be used between PE’s without the pin—out con-
straints of VLSI, and this would result in greater than 16 times speed—up. Lattard, Faure,
and Mazare[19] achieved faster times; they found one transputer per pixel to be too fast for

the projection acquisition equipment of a CAT scan.

3.12.2 Area
The P.E. we designed was approximately .75x1 centimeters in CMOS 3 micron technology.

Given that a wafer is at least 10 in diameter, approximately a 10x10 array of the prototype
PE could be fabricated in the same technology. This is too small, so many improvements
would have to be made in another design iteration. Most of the area efficiency improvements
have been discussed, and theirimplementation would resultin great area savings. The proto-

type was designed as a “concept proof”. A summary of the improvements is listed below.

1. Anareaefficient delay element or register latch completion detection
mechanism. Clock stealing is an example that would result in very
large area savings.

2. A more area efficient RAM.,
A standard cell C element.

4. A more application specific route calculation method. We do not fa-
vor this since it will limit the functionality of the array. In our current
architecture, a routing table of size 1k, sufficient for reconstruction
of a 1000x1000 image, would mean RAM total of less that 1 gigabyte
for the entire wafer. We do not consider this unreasonable for future
technologies. The RAM is our design consumes the most space, and
would be by far the largest consumer of area if the other improve-
ments were done.

5. The synthesis process could be repeated for the large asynchronous
parts. This would take considerable effort, since the difficulty in cal-
culating the semi-modular STG with weakest conditions grows rap-
idly as more signal are introduced.[24] However, this would certain-
ly be worthwhile for the WSI array.

6. The hierarchical schematic capture method used is the design creates
unnecessary redundancy not easily seen by the designer. Much of the
redundancy could be removed by minimization tools.

7. Elimination of the parallel to serial and serial to parallel circuitry the
design, which would not be needed in WSI.
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The locally synchronous globally synchronous design also had an area penalty. We estimate
an area overhead of 40% for the self-timed asynchronous communications links above an
entirely synchronous design. We believe that the area could be reduced by at least a factor
of 4 by items 1, 2, and 3. Using the already available 1.2 micron CMOS twin~tub process
would reduce it by a factor of 2 again. The array size is approaching the size required for
high speed commercial applications without considering future fabrication process im-

provements.
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Conclusions

Reconstruction of images from their parallel beam projections is a difficult topic on which
much research has been done, and only recently have attempts been made to parallelize the
process. To date there is no commercial massively parallel implementation. This thesis stu-
died a novel architecture suitable for WSI (Wafer Scale Integration) on which algorithms for
image reconstruction from parallel beam projections or other cyclic image processing algo-
rithms could be embedded, namely the mesh of vertex—8 processors with one processing ele-
ment per pixel. The main resultis that this architecture would be a practical one for the image
reconstruction from parallel beam projections problem. To prove this point, the focus of the
thesis was on the hardware design of a locally synchronous globally asynchronous vertex—8
processing element suitable for implementation in WSI. The process of the hardware design

gave results and insights important to more general parallel processing WSI applications.

Before beginning the hardware implementation, simulations of the sequential and
parallel algorithms were done that justified the need to parallelize the iterative reconstruc-
tion algorithms and verified that the algorithms could be mapped onto our proposed architec-
ture. Iterative reconstruction techniques dubbed ART and a modification of ART called
SIRT were tested for their suitability for a parallel embedding on the mesh, and the custom
processing element for the mesh was designed according to the test results. The § connected
mesh was shown to be advantageous for the image reconstruction algorithms we used. Se-

quential simulations were done on a PC and parallel simulations on a transputer array. The
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sequential simulations showed that the iterative algorithms could provide a more accurate
reconstruction than commercially common algorithms but with a large time penalty, while
the parallel simulations provided a functional hardware test that aided in the formal hardware
specification. Improvements to our proposed hardware such as backprojecting fixed point

update data were suggested by the simulations, and applied to our hardware design.

Asynchronous circuits are likely to play increasingly important role in large scale
VLSI systems, and this was emphasized in our hardware design. The architecture is a fine—
grained mesh of custom processors (vertex—8) that is locally synchronous and globally
asynchronous, an architecture which we purport to be suitable for WSI. The mixed synchro-
nous/asynchronous architecture has a cost in silicon area, estimated to be at least 40% above
that of a corresponding synchronous design, but we conclude that the overhead costis neces-
sary and worthwhile to allow a parallel processing WSI implementation. The PE we de-
signed has several other unique hardware features for WSI, including self-timed handshak-
ing elements for inter—processor communications and a novel asynchronous scan test
structure. The asynchronous scan test structure is an important contribution, since it allows
testing of asynchronous and synchronous parts that would exist in a WSI environment. We
chose to make the PE an escapement machine so that the parallel design is less complex and
reliable; no queuing strategy is needed and there are no metastability problems. The design
techniques and methodologies presented are also directly relevant to any excessively large

fully synchronous design.

A performance analysis done on our prototype PE shows that in its present form an
array of the PE’s would perform at a sufficient speed to be competitive with the Fourier tech-
niques. The assumptions made in the performance analysis were cautious and reasonable.
Area usage of our prototype was inefficient, but this could be corrected in future designs

and even ‘as—is’ the PE is a reasonable size for more recent smaller IC technologies. Per-
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formance of the PE will be verified when the test chips that have been sent for fabrication
return. The detailed analysis we have done indicates that both speed and area parameters

are reasonable for a WSI implementation.

4.1 FUTURE WORK

Much other work has been done on the algorithms themselves, and our purpose was not to
develop or change the algorithms. However, more parallel simulations of the algorithms
would lead to more insight on hardware requirements. Simulations with larger images (at
least 32x32) from realistic projection data could be done. Simulations with the actual ray
integral, with noisy data and with real data should be done before another hardware submis-
sion. We chose to focus on a particular set of algorithms; it should be clear that many other
algorithms could be embedded onto our proposed array by loading in different routing pat-
terns. These other algorithms, which include image transform and pattern recognition prob-

lems, can be investigated in more detail.

The hardware itself could be made much more area efficient by some of the sugges-
tions made in the performance analysis. In particular, the delay element can be improved
by using clock stealing. Research on quiescent current monitoring to detect latch completion
inplace of adelay element is another option. Thisis a difficulty associated with static CMOS
design, which we chose as our implementation technology because of the tools available.
It would be interesting to pursue other logic families, such as DVCSL, on which work on
self-timed synthesized asynchronous circuit has been done. Besides the delay element, im-

mediate work that could be done is to customize the Muller C element.

‘The prototype chips must be physically tested when they return from fabrication to
verify our design. The next step would be to implement and test a small array of the PE’s

with bit parallel communications and an I/O buffer in 1.2 micron CMOS, leading finally to
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a WSI implementation. The WSI implementation would require much additional work
since a fault tolerant scheme would have to be devised, consisting of testing the PE’s and

switching in spares.

4.2 CLOSING COMMENTS

Itis the author’s opinion that the rewards of asynchronous design will be worth the penalties
in a massively parallel WSI designs of the future. We believe the major contribution of the
thesis was in the design of the asynchronous scan test structure, which would allow scan test-
ing on mixed synchronous/asynchronous circuits. Image processing problems such asimage
or field reconstruction will be some of the first algorithms to be customized in WSI. Much
future work will be done in area of parallelization of image or field reconstruction algo-

rithms, as it is a problem that demands parallelization.
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APPENDIX A

Acronyms and Abbreviations

Arithmetic Logic Unit

Algebraic reconstruction technique
Application specific integrated circuit
Complimentary metal-oxide semiconductor
Canadian Micro—electronics Corporation
Demultiplexer

Fabrication

Filtered Back Projection

Integrated circuit

Multiple instruction multiple device
Mean squared error

Multiplexer

Northern Telecom

Processing element

Pin grid array

Random access memory

Simple Back Projection
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SIMD Single instruction multiple data
SIRT Simultaneous Iterative Reconstruction Technique
VLSI Very large scale integration

WSI Wafer scale integration
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Technical Reference Addendum Contents

The Technical Reference Addendum contents are shown on the following pages. The Techni-

cal Reference Addendum can be obtained from:

Address: J.W. Fitchett or Dr. R.D. McLeod
Dept. of Computer & Electrical Eng.
University of Manitoba
15 Gillson Street
Winnipeg, MB.
Canada R3T 5V6

Phone: (204) 474-9603
Fax: (204) 2614639

Email: fitch@ee.umanitoba.ca or mcleod@ee.umanitoba.ca
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32 ALU (Serial) ....ovvuniiii 66
Serial ALU
ALU

Parallel to serial
Parallel to serial controller
Parallel to serial handshake
8 bit parallel/serial register
Serial to Parallel
Serial to parallel controller
Serial to parallel handshake
8 bit shift register

33 InmputRouter ... 77
Input Router
Mux/demux controller
Mux handshake
Mux logic

34 Output Router .. .......oouiiiiinn i 82
Demux handshake
Demux logic

3.5 Miscellaneous Test Chip ........oovivinn .. 86
Handshake 1 bit
Delay (20 ns)
Asynchronous clock

More contents on following page...
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3.6 Plece Parts ... 01

Adder, 16 bit

C Element

Clock stealing

Comparator, 4 bit

Comparator, 8 bit

Counter, 4 bit

Counter, 8 bit

Demux, 2 outputs

Demux, 2 outputs 1 bit

Demux, 2 outputs with data latch signal
Demux, 2 outputs with control latch signal
Dffrs, scannable

Dffrs with mux

Handshake, full

Handshake, full with latch signal
Handshake, 16 bit

Handshake, scan chain

Mux, 2 input

Mux, 2 input with data latch signal
Mux, 2 input with control latch signal
Mux, 2 inputs 1 bit each

Mux, 2 inputs 12 bits

Pipeline, 3 stage 1 bit

Pipeline, 3 stage 1 bit test schematic
Pipeline, 3 stage 16 bit

Pipeline, 3 stage 16 bit with clocked computation
Pipeline, 3 stage 16 bit with scan test
Pipeline, 3 stage 16 bit scan test schematic
RAM with bi—directional bus

RAM test schematic

Register, 4 bit scannable

Register, 8 bit scannable

Register control decoder

Route decoder
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