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Abstract

We are doing a survey on amenability, weak amenability and generalized notions of
amenability of semigroup algebras £!(S). Based on the characterizations of amenability
of a Banach algebra, F. Ghahramani, R.J. Loy and Y. Zhang have introduced approximate
amenability and pseudo-amenability for Banach algebras. Since they have been introduced,
many results concerning them have been obtained by many researchers. We focus on ‘this
topic regarding semigroup algebras. We give some new characterizations for a Banach alge-
bra to be approximately amenable. For a sémigroup S with a generating set F, we also give
necessary and sufficient conditions so that £!(S) is amenab]e, weakly amenable or bound-
edly approximately amenable.

It is known that if the semigroup algebra ¢!(S) is approximately amenable then S must
be a regular amenable semigroup. We prove that ‘the converse is not true by examining
the bicyclical semigroup S; which is an important semigroup and has been studied by
many researchers from various aspects. Precisely, we show that, although S is a regular
amenable semigroup, £1(S) is not approximately amenable. In the appendix we also give a
direct proof to the fact that £1(.S2) is not approximately amenable, where S is the part@ally

bicyclic semigroup defined by S =< 1,a,b,c|ab=ac=1 >.
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Chapter 1

Preliminaries

1.1 /- semigroup algebra

Terms and concepts of. basic real and functional analysis which we have not defined or
discussed can be found in [8] and [49]. In this section we establish some notations and

definitions.

Definition 1.1.1. A complez algebra is a vector space A over the complex field C in which

a multiplication is defined, called an algebra product, A x A — A; (a,b) — ab, that satisfies:
a(bc) = (ab)e,(a+b)c=ac+be,alb+c) =ab+ac  (a,b,ce A)

(ac)b = a(ab) = a(ab) (e € C,a,be A).

We say that A is commutative if ab = ba for all a,b € A. If in addition, A is a Banach space

with respect to a norm that satisfies the submultiplicative inequality

labl<lallloll  (abeA) (L)



then A is called a Banach algebra. If A contains a unit element e such that ae = ea = a
(a € A) then A is called a Banach algebra with identity. If || e |= 1 then A is a unital
Banach algebra.

Suppose that the algebra A does not have a unit. Then we define the unitization of A to

be A% = C® A. A% is a unital algebra, with unit (1,0), for the product
(a,a)(B,b) = (a3, b + Ba + ab) (a,8€C,a,be A).

If A is a Banach algebra, then so is A% for the norm (e, @) = || + Jla].

A subalgebra of an algebra A is a linear subspace B of A4 such that ab € B for all a,b € B.
A left ideal in an algebra A is a subalgebra I C Avsuch that,ifa € Aand b€ I, then ab € I.
Similarly, we can define a right ideal and a two-sided ideal for A.

The radical of an algebré, A is defined to be the intersection of the ma:zcirﬁal left ideals of

A#; it is denoted by rad A. The algebra A is semisimple if rad{A} = {0} (see [9]).
We recall some definitions. For further details see [38].

Definition 1.1.2. A groupoid (S, 1) is defined as a non-empty set S on which a binary
operation p: § X S — S is defined. We say that (S, 1) is a semigroup if the operation-y is

associative, that is to say, if, for all z,y and z in S,

(i, y),2)) = (e, u(y,z)). (12

We shall follow the usual algebraic practice of writing the binary operation as multiplication.

Thus p(z,y) becomes zy, and formula (1.2) takes the simple form

(zy)z = z(y2),



the familiar associative law of elementary algebra. A non-empty subset T of S is a subsemi-

group if T' is a semigroup for the product in S. For s € S, we set
(s)={s":neN},

the semigroup generated by s; the subsemigroup of S generated by a subset T' is denoted
by (T).

If the semigroup S has the property that, for all z,7 in S,

Y = yz,
we shall say that S is a commutative semigroup. (The term abelian is also used, by analogy
with the group theoretic term). If a semigroup S contains an element 1 with the property
that, for all z in S,

rl =1z,

we say that 1 is an identity element (or just an identity) of S, and that S is a semigroup
with identity or (more usually) a monoid. We now define
{

) S if S has an identity element
St o=

SU{1} otherwise.

We refer to S? as the monoid obtained from S by adjoining an identity if necessary.

If a semigroup S with at least two elements contains an element 0 such that, for all z in S,
0z = 20 =0,

we say that 0 is a zero element (or just a zero) of S, and that S is a semigroup with zero.
By analogy with the case of S, we define
§ if S has a zero element -

SO =
SuU{0} otherwise.



and refer to S° as the semigroup obtained from S by adjoining a zero if necessary.
If a is an element of a semigroup S without identity then Sa need not contain a. The

following notations will be standard:
S'a = Sau{a},aS* = aSU{a},5%aS! = SaSUSaUaS U {a}.

Let S be a semigroup. For subsets A and B of S, weset A-B = {st:s € A,t € B}; we
write S for §- .

S is called simple if it contains no proper (two-sided) ideal.

Definition 1.1.3. Let S be a semigroup, and consider the Banach sbace

GS)={f:85—=C|>_|f(s)]< oo}.

SES

We write 65 for the characteristic function of { s} for s € S, so f € £}(S) has the form :

F=Y asds,

seS

where

1= s I< co.

SES .

Definition 1.1.4. Let S be a semigroup, and let f = " 0,6, and g = 3 805 belong to

21(S). Set

frg= (Zarar)*(zlgsés) = Z(Z arﬁs)é-t

teS rs=t

where )., arfs = 0 when there are no elements r and s in S with 7s = ¢. Let S be
a semigroup, and set A — (€4(S), %, || - ll1). A with the usual pointwise addition, scalar
multiplication, the product (convolution) * and with the norm || f ||; is a Banach algebra
called the discrete semigroup algebra of S.

Moreover if § =G is a'group then £1(S) is the discrete group algebra £1(G).



Definition 1.1.5. Let £*°(S) be the space of all bounded complex-valued functions on S.

The dual space of £!(S) is £°(S) with the duality

(£,0) =D F&As)  (fed(S),xet>(8)).

seS '

Given a function f on S the left (right) translation of f by = € S is a function on S denoted
by Iz f such that Iz f(s) = f(zs) (resp. rzf(s) = f(sz)). A discrete semigroup S is left
amenable if the space £*°(S) admits a functional m, called left invariant mean, such that
m(1l) =1 =|| m || and m(lzf) = m(f), z € S, f € £°(S). Similarly one can defines right

amenable. If S is both left and right amenable, it is amenable.

1.2 More about Banach algebras

Definition 1.2.1. Let A be an algebra. A left A-module is a linear space E over C and a
map

(a,z2) ma-z: AX E — E,
such that :
a-(az+py)=aa-z+pPa-y,(aca+Bb) - z=0a-z+pFb-z

a-(b-z)=ab-z (a,peC,a,be Ajz,y € E).

A right A-module is defined similarly.
An A-bimodule is a space E which is both a left A-module and a right A-module and which
is such that:

a-(z-b)=(a-2)-b (a,b€ A z€E).
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A Banach space F is said to be a Banach left A-module if it is a left A-module and there
exists k > 0 such that ||az |[< k| a |l z],a€ A, z€ E.
Banach right A-modules are defined similarly. F is said to be a Banach A-bimodule if it is
both a Banach left A-module and a Banach right A-module and the module multiplications
are related by a(zb) = (az)b, a,b€ 4, z € E.
For any Banach algebra A, A itself is a Banach A-bimodule with the product of A giving
the module multiplications. If £ is a Banach left(right) A-module, then E*, the conjugate
space of E, is a Banach right (resp.left) A-module with the natural module multiplications
defined by

<xafa>:(a$7f> ( resp.(a:,af)#(a:a,f)), (13)

for f € E*,a € A and z € E. We call this moduie the dual right (resp. left) module of E.
Here, for z € E and f € E*, (z, f) denotes the value f(z). If E is a Banach A-bimodule,
then multiplications giveﬁ by Equation (1.3) make E* into a Banach A-bimodule, cs;lled
the dual module of E.
Since the only bimodules we are concerned with in the following are Banach bimodules we
will refér to them simply as A-bimodules.

Suppose that X and Y are Banach spaces. We denote the projective tensor product of
X and Y by X®Y', and denote the elementary tensor of € X and y € Y by z ® y; we
refer to [51] for the details about this kind of product space.
Suppose that A is a Banach algebra. Then A®A is a Banach A-bimodule with the multi-

plications specified by

a-b®c)=ab®c,(b®c)-a=bRca (a,b,ce A).



~ We use 7 to denote the linear map from A®A into A specified by
ma®b)=ab (a,beA).

A directed set is a partially ordered set A (admitting Reflexivity, Antisymmetry and
Transitivity) such that, given Aj, Ay € A, there exist A € A with A > X (k=1,2).
Let X be a topological space. A net in X is a mapping from a directed set A into X.
A net {z)}rep in X is said to converge to x € X, denoted by }\ienjl\z)\ = gz, if for every
neighborhood U of z, there exist A\g € A such that z, € U for all )\ > Ao

Amenability of Banach algebras has been one of the major themes in the homology
theory of Banach algebrés [34]. The definition of amenability was introduced by B.E.
Johnson in 1972. Amenable Banach algebras have since proved themselves to be widely

applicable in modern analysis (for example see [10] and [50]).

Definition 1.2.2. Suppose that A is a Banach aigebra and let F be a Banach A-bimodule.
A (continuous) derivation from A into E is a (continuous) linear mapping D : 4 — E which

satisfies

D(ab) =a-D(b)+ D(a)-b  (a,b € A).
For any z € E, the mapping ad, : A — E given by
adgz(a)=a-z—1z-a (a € A),

is a continuous derivation, called an inner derivation. z is called the implementing element
for ad;. Denote by Z(A, E) the space of all continuous derivations from A4 into E and by

NY(A, E) the space of all inner derivations from A into E. Then N 1(A, E) is a subspace of



Z'(A, E). The quotient space

Z1(4,E)
N(4,E)

HYAE) =
is called the first cohomology group of A with coefficients in E. For the general theory of
- the Banach cohomology group H™(4, E), where n € N, see [40], [35] and [10].

A Banach algebra A is said to be contractible if H*(A, E) = 0 for all Banach A-bimodules
E, amenable if H'(A,E*) = 0 for all Banach A-bimodules E, and wéakly amenable if
HY(A, A*) = 0, where A* denotes the dual space of A with natural A-bimodule action.
Throughout, unless otherwise stated, by a derivation we mean a continuous derivation.

A Banach algebra A is amenable if for every A-bimodule E every derivation D : 4 — E*
is inner (ie. 3z € E* such that D(a) =a-z-z-aVac 4).
Trivially, an amenable Banach algebra is weakly amenable; however the class of weakly
amenable Banach algebras is considerably larger. See Example 4.1.1 below.
There are many alternative formulations of the notion of amenability, of which we note the
following, for further details see [2, 6, 10, 35, 50].

The Banach algebra A is amenable if and only if any, and hence all, of the follovying
hold, where 7 : A® A — A is the natural extension of the product map a ® b — ab:
(i) (Johnson [41]) A has a bounded approzimate diagonal, that is, a bounded net (m;) C A®A
such that foreachz € A, m; -z —z-m; — 0, 71(m;) -z — =; |
(ii) (Johnson [41]) A has a virtual diagonal, thaf is, an element M € (A® A)** such that
foreachz€ A,z M =M -z, (7**M) -z = z;
(iii) (Gourdeau [24]) any aerivation of A into any Banach A-bimodule is the strong lim-it of

a net of inner derivations which have a bounded net of implementing elements.



Definition 1.2.3. Let A be a normed algebra. A left approzimate identity for A is a net

Right approzimate identities are similarly defined by replacing eyz with zey in Equation
(1.4). A two-sided approzimate identity is a net that is both a left and a right approximate

identity. If {e} is norm bounded, then we have a bounded (left/right) approzimate identity.
B.E. Johnson [40] proved the following general implication:

Theorem 1.2.4. If a Banach algebra A is amenable then A has a bounded approzimate

identity.



Chapter 2
Amenability of £1(9)

2.1 Amenability of semigroup algebras

The notion of .amenability for Banach algebras is well-known as a general principle. The
problem of determining which Banach algebras in certain classes are amenable is often a sub-
stantial problem; there are some major theorems. For example, the amenable C*-algebras,
the amenable group algebras, and the amenable measure algebras have been determined in
famous theorems.

Let S be a semigroup, and let #1(S) be the corresponding semigroup algebra. We classify
the semigroups S for which ¢1(S) is amenable.

Let us first recall the known theory of the amenability of Banach algebras on locally

compact groups GG. This result combines two famous theorems of B. E. Johnson [40, 43, 15].

Theorem 2.1.1. Let G be a locally compact group. Then:
(i) LY(G) is an amenable Banach algebra if and only if G is an amenable group;
(i) LYN(G) is weakly amenable.

10
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In particular, L}(G) is amenable for each locally compact abelian (LCA) group G.
Given a semigroup S the problem of the amenability and weak amenability of £1(5) as a Ba-
nach algebra is rather more complicated. We will present some results regarding amenability
of £1(8) as a Banach algebra and shall determine exactly when £1(S) is amenable as a Ba-
nach algebra. This is due to various authors [16, 12, 32, 31, 44].

We recall some further standard notions from semigroup theory.

Definition 2.1.2. An element » € S is idempotent if uu = u and denote with F the set of
idempotents. If S is commutative and satisfies the condition that each v in § is idempotent

we call S a semilattice.

On E there is a usual order: e,f € E,e < fifef = fe =e. An element p € E is
minimal if ¢ = p whenever ¢ € E with ¢ < p. -
Definition 2.1.3. A semigroup S is called left cancellative if for all r,s,t € S, rs = rt
implies s = ¢t. Similarly, we can define right cancellative.
Definition 2.1.4. A semigroup S is a regular semigroup if for éach s € S there exists
s* € S with ss*s = s and s*ss* = s*. If s* is unique for each s € S, we say that S is an

inverse semigroup.

A group G is a regular semigroup with E = {e¢}, the bicyclic semigroup (defined in 3.3

below) is easily seen to be an elementary inverse semigroup.

Theorem 2.1.5 ([16], Theorem 8). Let S be an inverse semigroup with E finite. Then

£1(S) is amenable if and only if each mazimal subgroup of S is amenable.

Definition 2.1.6. Let S be a semigroup and suppose that there is a semilattice E and

disjoint subsemigroups Ss (s € E) of S such that S = U.cr Ss and oS5 C Sap (o, 8 € E).
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Then S is called a semilattice of the subsemigroups S, (o € E). If E is a finite set, we say

S is a finite semilattice of subsemigroups.

Definition 2.1.7. (a) A semigroup S is left reversible if for all 2,y € S, zSNyS # @.
(b) H C S is a left ideal group if H is a left ideal in S, as well as being a group under the
semigroup operation.

(¢) The minimum ideal K(S) is called the kernel of S in [38, §3.1].

There are several known partial results, which we summarize in the following theorem

and which determine exactly when £!(S) is amenable as a Banach algebra.

Theorem 2.1.8. Let S be a semigroup.

(i) Suppose that S is abelian and E = S. Then £(S) is weakly amenable [12, Proposition
10.5];

(i) Suppose that £(S) z's'an amenable Banach algebra. Then:

S is an amenable semigroup [16, Lemma 3J;

S is (left and right) reversible [25], [52, Lemma 1];

S has only finitely many idempotents and each i.deal I in S is regular and, in particular,
I =171 [17, Theorem 2], S has a minimal idempotent;

¢1(8) has an identity ané K(S) ezists and is an amenable group [12, Corollary 10.6]; '
£4(S) is a semisimple algebra (this follows from [18, Theorem 5.11] );

S contains ezactly one left ideal group Sy, which is also the only right ideal group; fdrther-
more S is amenable [{4, Theorem 4.4].

(iii) Suppose that S is unital anaf left or right cancellative. Then €'(S) is amenable if and

only if S is an amenable 'group [81, Theorem 2.3].
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(iv) Suppose that S is abelian. Then £1(S) is amenable if and only if S is a finite semillatice

of amenable groups [32, Theorem 2.7].

The force of these results seems to be that £1(S) is amenable if and only if S “ is built

”

up from amenable groups ”. It can be shown that £!(S) is “ left-amenable ” if and only
if S is a left-amenable semigroup [46]. In these results it is apparent that the condition of
amenability imposes strong algebraic constraints on the semigroup.

In fact a characterization is given in [12, Theorem 10.12].

We proceed to describe a kind of semigroup which is the utmost importance in the algebraic

theory of semigroups (see [5, §3.1]).

- Definition 2.1.9. Let G be a group, I and A be arbitrary non-empty sets, and G° = GU{0}
be a group with zero adjoined (see Definition 1.1.2). A sandwich matriz P = (py;) isa Ax I
matrix with entries being elements of G° such that each row and column of P has at least

one non-zero entry. The set S = G x I x A with the composition
(aai’j) o (b7l)k) = (G.Pj[b,i,k), (a'aiaj)a(bykal) € S

is a semigroup that we denote by M(G;I,A;P).
Similarly if P is a A x I matrix over G°, then S = G x I x AU {0} is a semigroup under

the following compositioﬁ operation:

(aPjb,i, k) if Py # 0
(a,4,5) 0 (b,1,k) = ! !

0 ifPy=0

(a,i,§)00=00(a,i,j)=000=0.
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This semigroup which is denoted by M°(G; I, A; P) also can be described in the following
way. An I x A matrix A over G° that has at most one nonzero entry a = A(%, 7) is called
a Rees I x A matriz over G° and is denoted by'(a)ij. The set of all Rees I x A matrices
over G° form a semigroup under the binary operation A - B = APB, which is called the
Rees I x A matriz semigroup over G° with the sandwich matriz P and is isomorphic to

MO(G;1,A;P) [37, pp. 61-63].

Definition 2.1.10. A principal series of ideals for S is a chain
S=N20L2.2In12I,=K(S)

where Iy, I,..., I, are ideals in S and there is no ideal of S strictly between I; and I for

each j € Np,—1.

Theorem 2.1.11 ([12], Theorem 10.12). Let S be a semigroup. Then the Banach algebra
¢1(8) is amenable if and only if the minimum ideal K (S) exists, K(S) is an amenable group,
and S has a principal series S=1 2 1o 2 ... 2 Im—1 2 I, = K(S) such that each quotient
I;/I;41 is a regular Rees matriz semz’g}‘oup of the form M°(G,P,n), wheren € N, G zs an

amenable group, and the sandwich matriz P is invertible in M, (£(G)).

Definition 2.1.12. The Brandt semigroup S over a group G with index set I is the semi-
group consisting of all canonical I x I matrix units over G U {0} and a zero matrix ©.
Writing S = {(g);; : g € G,%,7 € I} U{O}, where (g);; is the matrix with (k,)-entry equal

to g if (k,1) = (4,7) and Q if (k,1) # (4, 7) we get

(gh)a fji=k

© j#k

(@i - (W =
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Theorem 2.1.13 ([16], Theorem 7). Let S be the Brandt semigroup over a group G with

finite indez set I. Then £1(S) is amenable if and only if G is amenable.
For the situation in which the index set is infinite the result is false.

Theorem 2.1.14 ([16], Theorem 12). Let S be a Brandt semigroup with an infinite index

set over an arbitrary group. Then £1(S) is not amenable.

2.2 Amenability of /1(S,w)

Definition 2.2.1. A weight (function) w on a semigroup S is a function from S to the
positive reals, satisfying w(st) < w(s)w(t) Vt,s € S. |
Then £1(S,w) is the Banach space of functions f from S to C for which Z [f(8)|w(s) < o0,
this sum being the norm of f, which we denote by || f|l.. =

Its dual can be identified with £%°(S,w™1), the Banach space of functions ¢ : .5 — C for

| ¢(s)

which sup{—sl} < 00, the norm of ¢ being this supremum.
seS w(s)

We define the convolution of two functions g€ (S,w) by fxg(s) = Z flu)g(v). .
uv=3s

With multiplication taken to be convolution, £1(S,w) becomes a Banach algebra.
In [31] N. Gronbaek gives a complete description of amenability of £1(G,w), where G is
an infinite group. £}(G,w) is often called a Beurling algebra. Put
QAg) =wlgwlg™) (9€G).

Theorem 2.2.2 ([31], Theorem 3.2). Let G be a discrete group. Then the following are

equivalent:
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(i) £1(G,w) is amenable;

(i) £(G, Q) is amenable;

(iii) there is a bounded net (Z ,ufyég)ie] in £1(G,Q) satisfying:
g

(a) h{n@: ph) —1;
g
(b) lim [|gpps’ = plla =0 (h€G).

(iv) there is a positive left-invariant mean on £*°(G,Q71);

(v) G is amenable and sup{ Q(g) | g € G} < o0.
Also N. Gronbaek obtained the following generalization of [1, Theorem 2.1].

Corollary 2.2.3 ([31], Corollary 3.3). If G is an abelian group then £}(G,w) is amenable
if and only if

sup{w(g)w(g™") | g€ G} < co.

In Theorem 2.2.2, on the basis of the amenability criterion obtained by A. Ya. Helemskii
(see [34]) it was proved that an algebra ¢!(G,w) is amenable if and only if the group G is
amenable and the associated weight {2 is bounded above. As a consequence of this assertion

R.I. Grigorchuck obtained the following statement.

Theorem 2.2.4 ([27], Theorem 2). The algebra £1(G,w) is amenable if and only if the group

G is amenable and the weight w is equivalent to some multiplicative character x : G — R..

Thus, up to equivalence, the only amenable Beurling algebras are those of the form

£Y(G, ), where G is an amenable group and x : G — R, is a multiplicative character.
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Similar remarks apply for weighted convolution semigroup algebras. In fact, most of the
previous theorems are consequences of the following results due to J. Duncan and A.L.T.
Paterson {17]. We first introduce some notation.

[wul]={z €S :zu=u},
[u™lu] = {z € S : ux = u},

X (u) = uSNuul].

Theorem 2.2.5. Let S be a semigroup that contains an infinite pairwise disjoint sequence

of sets X (un). Then £*(S,w) is not amenable for any weight function w.

Corollary 2.2.6. Let S be an inverse semigroup with E infinite. Then £Y(S,w) is not '

amenaoble for any weight w.

Corollary 2.2.7. Let S be a left cancellative semigroup with identity with £'(S,w) amenable

for some weight w. Then S is a group.

Corollary 2.2.8. Let S be an abelian semigroup with £*(S,w) amenable for some weight

w. Then S is a finite semilattice of abelian groups.

Theorem 2.2.9. Let S be a semigroup with £*(S,w) amenable for some weight w. Then S

is.a regular semigroup with E finite.
G.H. Esslamzadeh introduced in [18] the ['-Munn algebras, defined as follows.

Definition 2.2.10. Let A be a unital Banach algebra, I and vJ be arbitary index sets,.and
P be a J x I nonzero matrix over A such that || P |lee=sup{|| Py |:jeJi€l} <1

Let LM(A, P) be the vector space of all I x J matrices A over A such that

| A= Z | Aij |< . |

iel,jeJ
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Then LM(A, P) with the product Ao B = APB, A,B € LM(A, P), and the ¢!-norm is
a Banach algebra that is called the £*-Munn I x J matriz algebra over A with sandwich

matriz P or, briefly, the £!-Munn algebra.

G.H. Esslamzadeh proved the following results for weighted semigroup algebras but for

simplicity he considered just the unweighted case.

Lemma 2.2.11 ([18], Lemma 5.2). If S is a regular semigroup with E finite, then S has
o principal series S = S1 D S D Sg D .. D 8n D Spy1 = O. Moreover for every
k=1, ,m — 1 there are natural numbers ng,lx, a group Gy, and a regular Iy x ny matriz
Py on G}, such that Si/Sk41 = MGy, Pr). Also Sy = M(Gp, Pn) for some Ly X nim

matriz Py, over a group Go,.

Theorem 2.2.12 ([18], Theorem 5.9). With the notations of Lemma 2.2.10 the following
conditions are equivalent:
(i) £1(S) is amenable.

(i) LM(EY(G}), Pr,) has an identity and £1(Gy,) is amenable, k =1, ..., m.

Definition 2.2.13. For a in a semigroup S, J(a) is the principal ideal of S'aS? and J,
is the set of elements b € J(a) such that J(b) = J(a). The inclusion among the principal
ideals induces the following order among the equivalence classes Jp: J, < Jp if J(a) C J(b)

(Jo < Jp if J(a) & J(b)). Let I(a) denote the ideal {6 € J(a) : Jp < o}, le., I(a) =

J{(a)\Js. The factors J(a)/I(a), a € S are called the principal factors of S.

Proposition 2.2.14. For a semigroup S, £*(S) is amenable if and only if S has a prineipal
series S =51 252D 53D ... D S D St = @ and £1(T) is amenable for every principal

factor T of S.
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G.H. Esslamzadeh also gave a generalization of [16, Theorem §].

Theorem 2.2.15. Let S be a regular semigroup with a finite number of idempotents. "The
following conditions are equivalent:

(i) £1(S) is amenable.

(ii) every mazimal subgroup of S is amenable and £*(T) is semisimple for every principal
factor T of S.

In particular if £1(S) is amenable, then it is semisimple.

2.3 Amenability of /(8S)

In this section we consider the two products O and ¢ on the Stone-Cech compactification 35
of S such that (35,0) and (BS, ¢) are semigroups. They are the topics of the monograph
(36].

Measure algebra M(G): Let G be a locally compact group. The measure algebra
M (G) is the unital Banach algebra of all finite complex regular Borel measures on G, with

the convolution product defined by

(fiwxv) = [o([g Flgh)du(g))dv(h), p,v € M(G) and f € Co(@),

where Co(G) is the space- of all continuous fungtions on G vanishing at infinity.

H. G. Dales, F. Ghahramani and A. Ya. Helemskii proved in [11] that a measure algebra is
amenable if and only if G is a discrete and amenable group.

Recently it was proved.in [12] that amenability and weak amenabﬂity of £1(S) is related to

the amenability and weak amenability of M (35).
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Proposition 2.3.1 ([12], Lemma 11.6). Let S be a semigroup such that M(8S;0) is
amenable. Then £1(S) is amenable, S is amenable, S has a finite group ideal, E is fi-

nite, and each ideal in S is regular. Further £*(3S,00) is amenable.

Theorem 2.3.2 ([12], Theorem 11.9). Let S be a semigroup such that ¢'(8S,0) is an

amenable Banach algebra. Then S is finite.

Definition 2.3.3. A semigroup S is weakly cancellative if for any a,b € S, the sets {z €

S:za=>}, {y € S:ay=>} are finite.

Proposition 2.3.4 ([12], Proposition 11.13). Let S be a weakly cancellative semigroup.

Suppose that M(3S,0) is weakly amenable. Then £*(S) is weakly amenable.



Chapter 3
Weak amenability of 74(S)

3.1 Weak amenability of discrete semigroup algebras

The notion of weak amenability for commutative Banach algebras was introduced by W.
G. Bade, P. C. Curtis, Jr., and H. G. Dales in [1], and in the general case in [43].

Recall that a Banaéh algebra A is weakly amenable if every derivation D : A — A* is
inner (i.e. 3z € A* such that D(a) =a-z—z-aVa € A).
The question whether bounded derivations are necessarily zero has also been considered
in [28] and [29]. As the name of concept suggests, weak amenability is derived from the
stronger concept of amenability and éprincipa,l aim of the paper [1] was to exhibit classes of
weakly amenable Banach algebras which are not amenable. It is noted that a commutative
Banach algebra is weé,kly amenable if and only if H!(4, E) = 0 for each symmetric Banach
A-module E.

From here on, the term weakly amenable will be abbreviated to WA. It is known that

£1(@) is weakly amenable for all groups G (in fact L!(G) is WA for all locally compact groups

21
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G [43]). For the case ¢!(G), Johnson [42] gives an explicit construction for the implementing
element of the inner derivation. Grigorchuk [26, Remark 1.16] provides motivation for the
study of cohomology over semigroups.

Throughout S denotes a (discrete) semigroup.

Definition 3.1.1. A (generalized) inverse of s € S is an element ¢ € S such that sts =
s,tst = t. If s has an inverse it is called regular and if not singular. A completely regular
element is one for which there is t € S, sts = s and ts = st (then ¢st is an inverse for s). A

semigroup is called (completely) regular if each of its elements is (completely) regular.

The completely regular elements of a semigroup are those which lie in a subgroup.
Completely regular semigroups are those which can be regarded as the disjoint unions of
their maximal subgroups.

T.D. Blackmore studied in [4] weak aménability of discrete semigroups algebras where

S is completely regular and commutative.

Theorem 3.1.2 ([4], Theorem 3.6 and [33], Corollary 2.8). If S is completely regular or is

a commutative union of groups then £(S) is WA.

3.2 Weak amenability of /(S,w) where S is commutative

T.D. Blackmore proved that for S commutative, certain conditions ensure that £!($,w) is

not WA for any weight w. We state his results below [4].

Proposition 3.2.1. If S is commutative and £}(S,w) is WA for some weight w then £'(S)

is WA.
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We denote the set of singular elements by Ng.

Theorem 3.2.2. Suppose that S is a commutative semigroup and satisfies one of the fol-
lowing:

i) There is s € Ng such that for all t € Ng\ {s}, s & S'¢;

i) S contains one singular element (only);

iii) There exists non-empty M C Ng such that for all s,t € M, s € S't and for all s € M
andu € Ng\ M, s ¢ S'u; |

iv) There exists non-empty, finite subset M of Ng, such that if s € M and u € Ng\ M then
s ¢ Slu;

v) S has a homomorphic image T such that Ny # @ is finite.

Then £*(S,w) is not WA for any weight w.

Proposition 3.2.3. Let S be a commutative semigroup and T a homomorphic image of S.

Then £1(T) is WA if £2(8) is WA.
Proof. The homomorphic image of a commutative WA Banach algebra is WA. |

Proposition 3.2.4. If S is a commutative, finite semigroup then ¢£1(S) is amenable if (and

only if) it is WA.

Theorem 3.2.5. Let S be a semigroup, possibly with zero 0. If S satisfies the conditions
C1 to C8 given below then €'(S) is WA.

C1. Whenever u,v,w,z € S are such that uv = wz # 0 then there is an a € S with v=az
and w = uq.

C2. Ifu,v,w,z € S\ {0} are such that vu =0 and uv = wz then zw = 0.
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C3. Ifu,v € S\ {0} are such that uv = vu = 0 then there are b and ¢ in S with u = be and

cv =vb=0.
These conditions are satisfied if S is a Rees matrix semigroup. Hence:
Corollary 3.2.6. If S is a Rees matriz semigroup then £(S) is WA.

Also in [33] N. Gronbaek characterized the weak amenability of £!(S,w) for certain
commutative semigroups, in terms of the non-existence of homomorphisms from certain
subsets of these semigroups into the semigroup (C, +) that satisfy a boundedness condition

depending on w.

Definition 3.2.7. On a commutative semigroup S we define the preorder s < t by t € s+8.
We define the following sets:

V(t)={s|s<t}
V(t) = {f €CVO | f(s1+52) = f(s1) + fls2), o1+ 52 € V(D) ).

Proposition 3.2.8 ([33], Proposition 4.2). Suppose that there existt € S and f € V(#)*\(0)
such that

|£(s)|

sup{w———ls+u=t}=a<oo.

(s)w(u)
Then £}(S,w) is not WA.

Theorem 3.2.9 ([33], Theorem 4.7). Suppose that S is a commutative semigroup and
satisfies one of the following:
(a) S is a cancellative semigroup;

(b) Every element of S is divisible by some n € N, n > 2;
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(c) Ifu € S\(0) then (V(u)) = S, where (V(u)) is the subsemigroup generated by V (u).

Then for every weight w: S — R, £(S,w) is. WA if and only if

{fev(t)*Isup{%lsw:t}@o}ﬂo}

forallt e S.

A consequence of these results is that if G is an abelian group then £}(G,w) is WA if

and only if there are no non-zero homomorphisms, ¢, from G into (C,+) for which

sup{ﬂ—)[——:geG}<oo.

w(g)w(g™)
See [33, Corollary 4.8].

In [48] it is shown that if G is an abelian group and the weight w satisfies

n -n
i 2@9™) _
n—0o0 n

for every g € G, then £!(G,w) is WA.

3.3 HY(/£Y(9),£*(S)) and H!(£(S),¢(S)) for some classes of
semigroups

In this section we present the results obtained by S. Bowling and J. Duncan who investigated
in [3] two notions of cohomological triviality for Banach algebras: weak amenability and

cyclic amenability.

Definition 3.3.1. Recall that S is a Clifford semigroup if it is an inverse semigroup with
each idempotent central (i.e. ez = ze for every idempotent e and every z in S), or equiv-

alently, if it is a (strong) semilattice of groups (see {37, Chapter IV]). So we can write the
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Clifford semigroup as § = U{G, : ¢ € E } where E is the semilattice of idempotents and

each G, is a group.

B. E. Johnson and J. R. Ringrose proved in [39] that if G is a group then H! (1G),£1G)) =
{0}. An example given in [3] shows that thisi conclusion fails for Clifford semigroups, in
general.

We recall that a derivation D : £1(S) — €%°(S) is cyclic if Ds[t] + Dt[s] = 0 for all
s,t € £1(S). Every inner derivation is cyclic. We write H1(£1(S),£°(8)) for the bounded
cyclic derivations modulo the inner derivations and we say that ¢1(S) is cyclically amenable

if HJ(£1(5),69(S) ) = {0}.

Theorem 3.3.2 ([3]). H(£1(S),£*(S)) = {0} and H}(£(S),£*(S)) = {0} for any

Clifford semigroup S and for any Rees semigroup S.

Definition 3.3.3. If Ais a non-empty set, let us denote by F)4 the set of all non-empty finite

words a1as...an, in the “alphabet” A. A binary operation is defined on F4 by juxtaposition:
(alag...am)(blbg...bm) = alag...amblbg...bm

With respect to this operation Fy4 is a semigroup, called the free semigroup on A. The set

A is called the generating set of A.
Example 3.3.1. The bicyclic semigroup is the semigroup S; = (e,p,q | pg =e),
S1={d"p"[m=0,n>0}.

Then ¢*(S;) is not weakly amenable [3]. It is proved that H*(£!(51),£°(51)) = ¢°°(N) and

H(£4(51),£°(S1)) = 0.



27

Let FC?2 denote the free commutative semigroup on generators p,q and let F2 denote

the corresponding free semigroup. It is also proved that
HY(LHFC2),£°(FC2)), Hy(£1(FC2),£2°(FC2)) ~ £2°(N).

The result clearly extends to any finite generators. In fact, for a semigroup S of a
countable number of generators, the H!(¢}(S), £°(S)) is always isomorphic to £°(N). The

situation is similar for the non-commutative case but the argument is more difficult.
Theorem 3.3.4. H'({1(F2),(2(F2)) ~ ¢>®(N), Hi(£1(F2),£°(F2)) =0 [30].

Theorem 3.3.5. i) Let S = U{G, : e € E'} be a Clifford semigroup with identity 1-and
suppose that eGy = G for every e € E. Then H(£(S),£1(S)) =0.
i) Let S = U{Ge : e € E'} be a Clifford semigroup with E finite. Then H'(£1(S),01(S)) =

0.

S. Bowling and J. Duncan showed that H*(¢1(9),£!(S)) = 0 for the bicyclic semigroup,
the free commutative semigroup on two generators and the free semigroup on two generators,

ie.

Theorem 3.3.6. H'({}(S1),£(S1)) = HY(LH{(FC2),LY(FC2)) = HY({L(F2),0A(F2)) =

0.



Chapter 4

Approximate amenability of ¢!(S5)

4.1 Approximate amenability of a Banach algebra

Based on the characterizations of amenability of a Banach algebra, F. Ghahramani, R.J.
Loy and Y. Zhang have introduced several new notions of amenability. In particular, by
dropping the requirement that aforementioned nets are bounded, definitions of appro&:imate
and pseudo-amenability were given [20, 22, 21]. The corresponding class of Banach algebras

is larger than that of the amenable algebras.

Definition 4.1.1. Let A be a Banach algebra and let E be a Banach A-bimodule. A

continuous derivation D : A — E is approzimately inner if there is a net £, in E such that
D(a) =limade,(a). (a € A),
21

where the limit is taken with respect to the norm topology on E. When E is a dual module,

Dis weak*—approximatelg} inner if the net converges with respect to the Weak*-topology'.

Definition 4.1.2. Let A be a Banach algebra.

28
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(i) A is approzimately amenable if, for each Banach A-bimodule E, every derivation D :
A — E* is approximately inner.,
(ii) A is approzimately contractible if, for each Banach A-bimodule E, every derivation

D : A — F is approximately inner.

The qualifier sequential prefixed to the above definitions specifies that there is a sequence
of inner derivations approximating each given derivation. Similarly, the qualifier weak*
prefixed to the definition of approximate amenability specifies that the convergence is in
the weak™ topology over E*. Moreover, if the implementing net ade, can be chosen to be
bounded in an approximately amenable (contractible) Banach algebra, we call it boundedly
approzimately amenable (contractible).

Of course, each amenable Banach algebra is approximately amenable. Some approximately

amenable Banach algebras which are not amenable are constructed in [20] and [23].

Definition 4.1.3. Let A be a Banach algebra. A is weakly approzimately amenable if every
derivation D : A — A* is approximately inner, where A* denotes the dual space of A with

natural 4-bimodule action.

Definition 4.1.4. A Banach algebra A is pseudo-amenable if there is a net (uy) € AQ A
called an approzimate diagonal for A, such that lioxzn(a ‘U — Uga) = 0 and lién (ug)a'= a

for each a € A.

All the notions of approximate amenability concern with the question of whether every
derivation D : A — E* is approximately inner.
We know that when G is a locally compact group, amenability, approximate amenability,

and pseudo-amenability coincide for the group algebra L(G) [20, 22].
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The Beurling algebra: Recall that a weight w on a locally compact group G is a
continuous function w : G — (0, 00) satisfying w(zy) < w(z)w(y), (z,y € G). For a locally
compact group G and a weight w on G, L'(w) = L!(G,w) is a Banach algebra under

convolution, called the Beurling algebra corresponding to w. The weight w is symmetric if

w(g)=w(g™) (9€G).

For any weight w, its symmetrization is the weight defined by

Qg) =w(glw(g™) (9€0).
The following is essentially in [31].

Theorem 4.1.5. Let G be a locally compact group, w a weight on G with w(e) = 1. The
following are equivalent:
(i) L}(w) is amenable;

1 . 1
(i) L~ (§2) is amenable;

(ii5) G is amenable and §) is bounded.

Recently F. Ghahramani, R.J. Loy and Y. Zhang proved in [21] that the Theorem 4.1.5
is still true without condition w(e) = 1. They also gave a direct proof of (iii) = (i) by
constructing a diagonal for L!(w).

We can say more in the special case G = Z. Let w be a weight on Z such that w(0) = 1.

Let

.00

fw)={a= (a(n):nEZ):Zla(nHw(n) < oo}

fade e}
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Then £}(w) is a commutative Banach algebra with respect to convolution multiplication

(axb)(n)=> a(n—kp(k) (n€e),

-0

and the norm
lall=Y lam) wn) (acl(w)).

An algebra of this type is a Beurling algebra on Z.

Theorem 4.1.6 ([1], Theorem 2.2). Let w be a weight sequence on Z such that

w(n)w(=n)

n

as n — 0o. Then the Beurling algebra £*(w) is weakly amenable.

Theorem 4.1.7 ([1], Theorem 2.3). Let w be a weight sequence on Z such that

w(m +n)
w(m)w(n)

1+ |n|
I+ |m+n]|

(

sup{ )imneZ}

is finite. Then the Beurling algebra £*(w) is not weakly amenable.

Theorem 4.1.8 ([1]). Let wo(n) = (1+ | n |)* (n€Z),a>0.
(i) If « = 0, then £*(wg) is amenable.

(i) If @ > 0, then £} (wy) is not amenable.

(iii) If 0 < o < 1/2, then £} (w,) is weakly amenable.

(iv) If a > 1/2, then £ (wy) is not weakly amenable.

Theorem 4.1.9 ([21], Corollary 8.5). The Beurling algebras £(Z,w), w(n) = (1+ | n |)®

with o > 0, are not sequéntially approximately amenable.

Proposition 4.1.10 ([21], Proposition 8.1). Suppose the weight w is bounded away from 0,

and that L*(G) is approzimately amenable. Then G is amenable.
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It is conjectured in [21] that L!(w) will fail to be approximately amenable whenever
{} — co and a weaker result is proved. Suppose that G is a locally compact group, w a

continuous weight on G. Define

w(z) = lim in w(rz)
( ) : 7‘—>£O w(?‘)

(z € @G).

Theorem 4.1.11 ([21], Theorem 8.4). Let w be a weight function on G.

(1) Suppose that there is a net (ro) C G such that lién T = 00 and (w(r;w(ry)) is bounded.
Then L(w) is boundedly approzimately contractible if and only if it is amenable;

(2) Suppose that xlingo Oz Hw(z) = . Th¢n LY(w) is not boundedly approzimately

amenable.

M. Lashkarizadeh Bami and H. Samea studied in [47] the approximate amenability of
the discrete semigroup aigebras £1(8S) for left cancellative semigroups S. Tt is shown that
a left cancellative semigroup S ( not necessariiy with identity ) is left amenable whenever
the Banz.ich algebra ¢1(S) is approximately amenable. The converse is not true. As a conse-
quence it is proved that if S is a finite semigroup and ¢!(S) is approximately amenable, then
S is amenable. Also for finite-dimensional Banach algebras A, approximate amenability and
amenability are equivalent. Therefore, for a finite semigroup S, approximate amenability

and amenability of £1(S) are equivalent.

Corollary 4.1.12 ([47], Corollary 1.11). Let S be a Brandt semigroup over an amenable

group G with infinite indez set. Then £1(S) is approzimately amenable but not amenable.

The Corollary 4.1.12 shows that in general the approximate amenability of a semigroup
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algebra is not equivalent to its amenability.

In [7] €*-convolution algebras of totally ordered sets are studied.
Let A be a non-empty, totally ordered set, and regard it as a semigroup by defining the
product of two elements to be their maximum. The resulting semigroup which is denoted
by Ay, is a semilattice. For every ¢ € Ay denote the point mass concentrated at t by e;.

The definition of multiplication in £!(Ay) ensures that eze; = €maz(s,t) for all s and ¢.

Theorem 4.1.13 ([7], Theorem 6.1). Let T be any totally ordered set. Then £(Ty) is

‘ boundedly approzimately contractible.

Theorem 4.1.14 ([7], Theorem 6.4). Let A be an uncountable well-ordered set. Then

LY(Ay) is not sequentially approzimately amenable.

While sequential approximate amenability implies bounded approximate amenability,
the converse is false from the previous two theorems.
Other examples of semigroup algebras of the form £1(S) that are approximately amenable

but not amenable are given in [12].

Example 4.1.1. Let S be the semigroup N with product mn = min{m,n} and take
Ap = £1(S) with convolution product. Because A, is abelian and E(S) = S according
to Theorem 2.1.8 (i), Ax is weakly amenable but not amenable [17, Theorem 2]. It is

sequentially approximately amenable from Theorem 4.1.14. See also [21, Example 4.6].
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4.2 Amenability of bicyclic and partially bicyclic semigroups

It is known that if £!(S) is approximately amenable, then S must be a regular amenable
semigroup [21]. In section 4.4 we will show that the converse is not true by examining the
bicyclical semigroup Si. We prove that ¢1(S;) is not approximately amenable.

In this section, we reveal the class of partially bicyclic semigroups. We have already defined
the bicyclic semigroup in Section 3.3. It is the semigroup generated by a unit e and two

more elements p and q subject to the relation pg = e. We denote it by

S1=(e,p,q|pg=e).

Many of its properties can be found in [5, §2.7].
The semigroup generated by a unit e and three more elements a,b and ¢ subject to the

relations ab = ac = e is denoted by

So = (e,a,b,c|lab=e,ac=ce);

1

and the semigroup generated by a unit e and four elements a, b, ¢, d subject to the relations

ac = bd = e is denoted by
S11=(e,a,b,c,d|ac=e,bd=¢).

Sz and S1 1 will be called partially bicyclic semigroups.

J. Duncan and I. Namioka showed in [16] that S; is an amenable semigroup by studying
the maximal group homomorphic image of S;. In [45] A.T.-M. Lau and Y. Zhang showed
thé same result directly by constructing a left and right invariant mean on £*°(S5;) and also
proved that the partially bicyclic semigroups Ss and Sy ; are not left amenable and Ss is

right amenable.
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Because of the recent interest in approximate amenability, we shall give attention to ‘this

case.

Theorem 4.2.1 ([21], Theorem 9.2). Let S be a semigroup such that £1(S) is approzimately
amenable. Then.:
i) S is regular;

i) S is amenable.

Since the partially bicyclic semigroups Sz and 51 ; are not amenable, the Banach algebras
£1(S3) and £!(S1,1) are not approximately amenable according to the previous theorem. In
this chapter we will also give a direct proof of the fact that £1(Ss) is not approximately

amenable.

4.3 A characterization of approximate amenability of a Ba-

nach algebra

The following theorem contains a list of conditions relating approximate amenability, ap-
proximate contractibility, pseudo-amenability, and the existence of certain diagonal-type

nets.

Theorem 4.3.1. (1) For a Banach algebra A the following statements are equivalent:
(i) A is approzimately amenable;
(i) A is approa:imqtely.contmctz’ble;

(#i) A is weak*-approzimately amenable;
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() the unitization A% of A is pseudo-amenable;
(v) the unitization A% .of A is approximately amenable;
(vi) there are nets (m)) in ARA and (f)),(gx) in A such that for each a € A,

(a) a-my—my-a+fHLr®a—a®g,— 0,
(b) afy — a, gxa — a, and
(c) m(my) = fa—gr— 0.

(2) If A has a bounded approzimate identity, then A is approzimately amenable if and only

if A is pseudo-amenable.

In part (1), the equivalence of statements (i), (ii) and (iii) is [21, Theorem 2.1], the
equivalence of statements (i) and (v) is [20, Proposition 2.4], Whiie the equivalence of con-
ditions (ii), (iv), and (vi).is [20, Proposition 2.6].

Part (2) of Theorem 4.3.1 is [22, Proposition 3.2].

Also there is another characterization for approximate amenability of a Banach algebra:

Proposition 4.3.2 ([13], Proposition 2.1). Let A be a Banach algebra. Then A is approz-
imately amenable if and only if, for each € > 0 and each finite subset S of A, there exist
FeA® A and u,v € A such that n(F) =u+v and, for eacha € S:
(i)|a-F-F-a+u®a—a®u|<e¢;

(it) | a—aulj<e and || a —va ||<e.

We give a characterization for a the Banach algebras A to be approximately amenable.
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Proposition 4.3.3. A Banach algebra A is approzimately amenable if and only if the
mapping D : A — A#®AF defined by D(a) = a®e—e®a (a € A) is approzimately inner

as a derivation into ker(w) where A% is the unitization of A and e is the identity of A™.

Proof.
One implication is straightforward since ker(r) is an A-bimodule, therefore D is approx-
imately inner.
Conversely, suppose that the derivation D : A — ker(7) is approximately inner.
Then 3 £, € ker(n) such that D(a) = lién(a €y —&q - a). Hence
ligla-(e®e-§a)—(e®_e—§a)-a=0. Let up = e®e— &,.
We have that 7(uq) = e. We write uq = iafx ® bl, where i llab 1850 < oo
Let us consider any derivation A : A% —:?é and the mappizn=g1 ¥ : AFRA* —» X where X

is a unital A¥-bimodule and

PY(a®b) = alA(d).

o Plua) = (D ap @b,) =ay  abA(bL)
i=1 i=1
= aah M) =) v(as;, ®b})
i=1 =1

=1(a-uy) = V(@ Uy — Uy a) + P(uq - a).

Y(ua-a) =9()_ e, ®bha) = Y abA(ha)
, i=1 '

i=1.

(anbhA(a) + aaA (L) - a) = m(ua)Ala) +9(ua) - 0

o

1

A(a') + w(ua) - a.
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Combining these identities, we obtain:
a-P(ua) =Y(a-ua — s - a) + Aa) + P(us) - a

and
A(a) =lim(a -1 (xa) — $(ua) -a).

Thus A is approximately inner, therefore A% is approximately contractible and so A is

approximately amenable using the previous theorem. |

We can also give a shorter proof using Theorem 4.3.1. If D is approximately inner then

3 £y C ker(n) such that D(a) = o‘lingo(a éa—&y-a),a € A. Then
'ali_{goa(e@e_fa) —(e®@e~¢&a)a=0.

Take uq = e ® e — &, Then lim(a - uy — uy - @) = 0 and 7(uy) = e. Therefore A% is
o

pseudo-amenable and by Theorem 4.3.1 the Banach algebra A is approximately amenable.

Proposition 4.3.4. Let S be a semigroup with generating set E.
Then €*(S) is amenable{respectively weakly amenable) if and only if for every confinu-
ous derivation D : £1(S) — X* (vrespectz'vely‘D : £1(S) ~ £2(S)) there erists & in X*

( respectively £2°(S) ) such that D(65) = 65+ & — € - 6 for every s € E.

Proof.
“ =" ig trivial.
“ <7 § = (E). For each s € § let I(s)=min{n: s is a product of n elements of E}.

We prove D(6s) = 65 - & — £+ &5 for all s € S by induction on n.
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Suppose that V s € S with I(s) < n, D(§) =8s- & — &£ - 6.

Let t € S, I(t) = n + 1. We can write ¢ = sz where I(s) < n, z € E. Then

D(8) = D(8s82) = D(5) - s + 55 - D(62)
= (53‘5_5'53)'5:1:’*‘55'(51‘5*5'52;)

=y 0g E—E 0y 0y =0,-6E—E- L.

By linearity and continuity of D we then have D(f) = f-£—¢-f V f € £(S), which means

that £!(S) is amenable. 1

Proposition 4.3.5. Let S be a semigroup with generating set E. Then ¢1(S) is boundedly
approzimately amenable if and only if for every continuous derivation D : £}(S) — X*
there is a net (&) in X* such that adg, is bounded and D(8s) = lim(8s-& —&; - ds) for every

seE k.

Proof.
“=" is clear, so we only need to prove “«". Let D; = adg,. From hypothesis || D; ||
is bounded by a constant M > 0. For f € ¢!(S) and € > 0, there exists a finite sum

Sy 4 €nds, such that
Di(z Cnbsy) = D(Z ends,)-
n=1 . n=1

Hence there is ig such that for all i > i,

I D> enbsn) — Z ¢nfs,) < m‘b‘lH—M

n=1 ; n=1
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So for i > i,

I D) = D) | =l DY enbon) + Dilf =3 ) = D(F) |

n=1 n=1

<UD~ eabs) =D I+ U Ds Il £ = enbe, |
n=1 n=1

< Di(d enbs,) = DO enbs,) [+ | D(>_ enbs,) = D(f) |
n=1 n=1 n=1 :
M
1+ D[+ M
S+ | D] —— M—=

< =
STYD+M 1D+ " ir D+ M

=£.

Therefore
imDy(f) = D(f) (£ €£'(9)).
O
4.4 Approximate amenability of /1(S;), where §; is the bi-

cyclic semigroup

We consider the problem of approximate amenability for [*(S) where S is the bicyclic

semigroup. We have the following result:
Theorem 4.4.1. The Banach algebra £1(Sy) is not approzimately amenable.

Proof.  In the proof we will use S to denote S;. Let 7 : £2(S x S) — £1(S) be the product

mapping. Consider the derivation D : £2(S) — ker(r) defined by

D(f)=f®6e—6e®f4 (fef(s))..
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If ¢1(S) is approximately amenable, then by Proposition 4.3.3 there exists a net (&) C ker(w)

such that D(f) = lUim(f - & — & - f), f € £1(S). Let & = Zcin,né.m,n , where ¢, , satisfy
m,n

Z cﬁn,n =0 for each t € S, and Z | cfn’n |< 0.

mn=t mn

Then for every u € S, we have :
Oue = Oeu = HFZ Cinn{Gumn — Omnu) = lign Z( Z Ci,n - Z Cin,k)5m,n-
mn mn uk=m ku=n

The convergence is in the norm topology of £1(S x S).

If u € S,u +# e, the above implies

\

. :
li%n Z c};ﬂ - Z sz,k =1
uk=u ku=e
¢ im Y chy~ Y che=-1) (+)
uk=e ku=u
Y| X g =0
L (mn)#(u,e),(e,u) luk=m ku=n )
Taking u = p we have :
lim ChotCipe=1 (4.1)
lizm ¢, = =-1 (4.2)

Taking u = g we have :

limcg o — cgp =1 (43)
limeg + cegp =1 (4.4)

We prove that lim ¢}, = 1. In the relation (*) take u = ¢ and let
i k)
F={(mn)e€SxS m=q¢d n=p"r>1,reN}L

Then

T C{(mn) €S x8:(mn)+#(ge)(eq)}



So

im Y | Y b= Y g =0

(mn)el’  gk=m kgq=n

If gk = ¢"*! then k = ¢, and if kg = p” then k = p"*1. Hence

o0
. Z i i _
h{l’l | qu’pr - qu+1,pr+1 |— O,
r=1
and therefore

oo
: }: i i —
llzn‘l (qu,pr qu+1’pr+1) =0.
r=1

o
i i . . i sy s .
But E (Cgrpr — Cqrtigri1) = Cgp, ( since the series Z | ¢un | converges which implies
r=1 m,n

. 7 _
i s gz = 0)

i

Therefore, lim ¢
.1 ?

» = 0. So, using relation (4.2) we have that
liim cff:e =1.
In the relation (*) take u = ¢ and let
T={(mn)€SxS:m=¢" ' n=q¢p :r>1,1>1rleN}

Then

T C{(st) €5 x8:(st) # (p,e),(e;0) }

and
hfn Z [ Z c?c,n - Z c'z}n,k |= 0.
(mn)er  gk=m kq=n

If gk = ¢"*t1p” then k = ¢p”, and if kp = ¢"p* then k = ¢"p"*!. Hence

: i i _
hgnz Z | Cotpr grpt = Coprrpr grpin 1= 0,

I>1r>1
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and so
1 i o — 1 Z i
0= hFZ Z(Cq’p",q’p‘ cq’“pr,q’p’“) - h?l Cop g7
1>1 r>1 r>1
Therefore,
liim E Copr.grp = 0- (4.5)
r>1

In the relation (*) take u = gp and let
P={(m,n)ESXS:m:qp’"”"l,n:qr,er,reN}.

Then
I'C{(s,t) € §x 5, (s,%) # (ap, ), (e, qp) }.
If gpk = gp™ ! then k = p" or k= gp™+1, 7 > 1. Also kgp = ¢"

does not have any solutions k for » > 1. Therefore,

. i i _
hlm 5 | Chr g + Coprer gr [= 0

r>1

But since E Crnn =0, Lo+ ZC;Jr’qr =0 and so Hgan;r’qr =-1.So

mn==e r>1 r>1

e X 4 - s 5
llsz C:]pr.(..l’q.,‘ = 1. (4:b)
r>1

In the relation (*) take u = ¢p and let
P={(mn)eSxS:m=p",n=q¢"pr>1,7reN}

Then
I {(s,t) € §x S, (s1) # (gp,e), (e;p) }.
The equation gpk = p",r > 1 does not have any solutions. If kgp = ¢"1p then

k=gq" or k= ¢"t'p. Hence

: i i _
hinz le ram T Cpr greip |=0.

r>1
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So arguing as before, we have

h%n Z Cpr gr+ip = L. (4.7)

r>1

Also we have that Z cﬁn’n = 0, so we get

mn=qp

i i i i i i _
Cape T Cegp T Cqp T Z Caprtt gr T Z Cprgrtip T Z Coprqrp = 0-
r>1 r>1 r>1

i
We have also that hgn Copee -

= lim & o= lim ¢t , =0Dby (4.1), (4.2) and (4.4).
So using relations (4.6) and (4.7),
lim Z Copramp = —2
r>1
which is a contradiction with relation (4.5).

Therefore, £1(S) is not approximately amenable.

a

Since we couldn’t answer to the problem if £1(S;) is or not approximately weakly

amenable we wander this fact.
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Appendix

We know from Theorem 4.2.1 that ¢!(Ss) is not approximately amenable since Sy is not
amenable, but the proof is not strightforward. In this Appendix we will give a direct proof

to this result.

Let Sz be the partially bicyclic semigroup. Sy = (e,p,vo,v1 | pvo = pv; = e) and
consider the free semig‘rdﬁp of three generators F' = (e, vp,v; ). An element of S, has the
form zp”, z € F, r € N. Consider the set A, = {vg,v1}. We make the convention that
every element to the power zero is the identity e.

Denote {(z) the length of the element 2 € F (i.e. example = = v?vdv; has the length 6 and
we write [(z) = 6, [(e) = 0).
The following three claims are true for partially bicyclic semigroup So.

Claim 1 2p" #e,Vr>1,z € F.

Proof. Suppose by contradiction that zp” = e. Multiplying to the right with v" we get

z=v"VuveA,. This implies that vj = v]. If r = 1 we have vy = v; which is a

contradiction.
If r > 2 in the relation vj = o] multiply to the left with p"~! we get vy = v; which is a

contradiction. Therefore, zp™ #e,Vr > 1,z € F. O

Claim 2 Let irreducible o, 3 € S2, a8 =e. Then o =p" for somer € Nand S € F.
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Proof. a,3 € Sy = a=xp",3=yp' for some r,t e Nand 2,y € F
aB=e=zp yp =e

Suppose t > 1. Then
zp"yp' = zp°

for some z € F, s > 1. Therefore, zp® = e which is a contradiction with Claim 1.

Hence
t=0
B=yeF
af=zpy=ce

elfl(y)=r=>z=e=>a=p".

; flly)<r=ap'y= zp™~'¥) = e which is a contradiction with Claim 1 since r — I(y) > 1.
e If [(y) > r in the relation zp"y = e = 2z = é for some z € F, [(z) > 1. In the relation
z = e we multiply to the left with p**) and we get p'(¥) = e which is a contradiction with

Claim 1.

Claim 3 Let z,y € F' such that there exists v € Ap, zv = yv. Then z = .

Proof. For suppose that z £ y. If [(z) # [(y) then for sure we have contradiction with Claim

1 by multiplying with some p™ax{i@):lW}+1 ¢4 the left getting plt@-W) = ¢, Therefore,

Then there exist 0 <n < {(z), n € N such that multiplying zv = yv with p” to the left we
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get vgz = v12 for some z € F.

But v9S3 N8 = O. Hence we have a contradiction. O

The following six results are true for So = (e, p, v, v1 | pvo = pv; =e).

F = (e,v0,v1), Ap = {vo,v1},V o, 6 € Sg, af =e and V v € A,.

Lemma 1 {k | vopk = vopar} C {a} U {vpa|veE 4, }.

Proof. For, suppose that vgpk = vopa has the solution k = zp’ for some z € F and t € N.

From Claim 2, & = p" for some r € N.
vopk = vopar & vopap’ = vep™ & pap’ =p™1 (1)

o If(z) = 0 then pt*! = p™*! = ¢ = r (otherwise multiplying to the right with y™in{r+1t+1}
we get contradiction with Claim 1). So, t=r=k=p =a=k=oq.

e Suppose {(z) = 1. Then pt = p"*l. Therefore by the same argument ¢t = r + 1 which
implies that

k=vp" = vpa

e Suppose {(z) > 2. Then in the relation (1), ypt = p™*L1(y) > 1,y € F,y = pz. In the
relation yp® = p™+! multiply to the left with p“®) and we get p* = p'®+7+! By the same
argument ¢ = [(y) +r + 1. But from (1) prpt = p+! = pap!@+r+l = pr+l o pepl®) = ¢

Therefore yp'®) = e which is a contradiction by Claim 1 since [ (y) > 1. O
Lemma 2 For each k € S, kup # 8 and vpk # a Yv € A,.

Proof. For suppose, that there exists k € Sy such that £k = zp” (z € F and r € N) then

kvp = 3 = zp"vp = 3. We showed in Claim 2 that 8 € F.
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Multiplying to the left with p!#) we get
PPzprvp=eszp=ec

for some z € F'. But this is a contradiction with Claim 1.

Therefore, kup # BV v € Ap.

For the second equation suppose that vpk = o = vpk = p", r € N since a = p" by

Claim 2. Let consider the solution k = zpt, t € F, t € N.
vpzp' =p"  (2)

e If [(z) = O then the relation (2) < vp*™! = p". Multiplying to the left with p we get
pitl = p™! = ¢ = r. So the relation (2) < vpp! = p* = vp = e which is a contradiction
with Claim 1.

e If [(z) = 1 then the relation (2) becomes vpt = p" = pt = p™*1 = t = r + 1 (otherwise

the richt with Umm{t,‘r‘-r-l} W gnt

[¢)

p°® = e for some s > 1). So the relation (2) = vp™! = p” = vp = e which is a contradiction
with Claim 1.

e If {(z) > 2 then the relation (2) = vyp’ = p", [(y) > 1. Multiplying to the left with p'+i(¥)
we get that vyp? = p" & pt = p" W+l & ¢ = r 4 14+ 1(y) (otherwise we have contradiction
by the same argument). So, vyp' = p" & vyp' W = pr o bypl““l(y) = ¢ which is a
contradiction with Claim 1.

Therefore vpk # o Vv € A,. ' ’ O

Lemma 3 {k| kvp=pup} ={3,8vp}
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Proof. For suppose, that & = zp” for some z € F and 7 € N is a solution of the equation
kup = Bup.

zp'vp=Pvp  (3)
If we multiply relation (3) with some v € A, to the right we get
zp"v = fu (4).

e If » = 0 then the relation (4) becomes zv = Bv = z = 8 by Claim 3.

e If r > 1 then (4) & zp"~! = Bv. Multiplying to the right with v"~! we get = = Sov”
Hence zp” = fv"p". So from (3) Bv"p"vp = Bup. Multiplying with p'(® to the left deduce
that v"p" = vp & v~ Ip"~! =e. If r > 2 we have contradiction with Claim 1.

So 7 = 1. Therefore, k = Sup. We proved that {k | kvp = Bvp } = {3, Bup }. O
Lemma 4 For each r € N*, {k | kv =fp"}={Bp"t}.
Proof. For suppose k = zp* for some z € F and t € N is a solution of kv = 8p",
aplv=pp"  (5)

e If [(x) = () then in the relation (5) multiplying to the left with p'(®) we get ptv = p".
If t =0 then v = p” < p**! = ¢ (multiply with p to the left). This is a contradiction with
Claim 1.

Hencet > 1. plv =" « pt~! = p" & t—1 =r & ¢t = r+ 1. Therefore relation (5) becomes
o =pp S ap =B s =F=k=pp" =/ = k=g
o If I(z) > I(B) then we multiply relation (5) to the left with p'®) and we get

yplv=p"  (6)
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for some y € F, I(y) 2.1.

Ift=0thenypv=p" S yv=p @yl =¢ ( the last equality is obtained multiplying
the previous one to the right with v"). So, yv™*! = e which is a contradiction. ( we get
p'®++1 = ¢ which is a contradiction with Claim 1).

Hence ¢ > 1. Therefore, yp'v = p" & yp*~! = p’. Multiplying with p!® to the left we
get pl=p W) ot 1 =r4iy) @ t=1+r+ l(y). So the reiation (6) becomes
yp!tTHWy = pr & YY) = pr yp!®) = e which is a contradiction with Claim 1 since

(y) > 1.

e If [(z) < [(B) then we multiply relation (5) with p!®) to the left and we get
po=yp"  (7)

for some y € F, I(y) > 1.
Multiplying the relation (7) with p'® to the left we get p!®)+ty = pr & pt+HW)-1 = pr o

t+ly)—1=r=1l(y)=r+1—t Butl(y) > 1. Therefore
r+l1—-t>1

In the relation (7) we have that p'v = yp™. If ¢t = 0 from (7) we have that v = yp".
Multiplying with p to the left we get e = 2p" for some z € F. But r > 1 and so we have a
contradiction with Claim 1.

If ¢ > 1 the relation (7) imply that pt~! = ypr.. Multiplying with v*~! to the right we get

e = yp"~**1, This is a contradiction with Claim 1 since we proved that r+1—¢t>1. [

Lemma 5i) {k|pk=p} C{e} U{vp|v e Ap};

it) {k | kv = v} = {e} Ufon}.
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Proof. i) Suppose k = zp*, (z € F,t € N) is a solution of equation pk = p. Then
pzpt =p

oIfl(z)=0thent=0andk=e
elfi(z)=1thent=1and k=wp
o If [(z) > 2 then yp' =p, y € F, I(y) > 1. Then yp*~! = e which is a contradiction with
Claim 1. (If ¢t = 0 we have y = p = p'®)*1 = ¢ which is a contradiction with Claim 1 and
if t = 1 we have y = e = p¥) = ¢ which contradict Claim 1.

ii) we want to prove that {k | kv = v} = {e} U{vp}.

Suppose k = zp’, (z € F,t € N) is a solution of equation kv = v. Then
zptv = v

elft=0and(z) =0thenk =e.

If I(x) = 1 then multiplying with p to the left we get v = e which is a contradiction with
Claim 1.

If I(z) > 2 then multiplying to the left with p!®)*1 we get p!®) = e which is a contradiction
with Claim 1.

elft=1thenz=v=k=up

o If ¢ > 2 then zp'~! = v. Multiplying with p fo the left we get yp'~'=e for some y € F

which is a contradiction with Claim 1 since¢—1>1. O
Lemma 6 {(m,n) € Sy x Sz | mn = vp} C {(vpe, B), (ve, Bp), (e, Bup)}

Proof. We want to show that the only decomposition of vp is vp = vpe = evp = vep.
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For, suppose that
wp=zp" (8)

relF,teN

If [(z) = 0 and ¢t = 0 we have up = e which is a contradiction with Claim 1.

Ifi(z) = 0 and ¢ > 1 then vp = p*. Multiplying with p to the left we have p = p!*! = pt = ¢
which is a contradiction with Claim 1.

If i(z) > 1 and ¢t = 0 we have vp = z. Multiplying with p"® to the left we get p'®) = ¢
which is a contradiction with Claim 1.

Ifl(z) > 1 and ¢ > 1, multiplying relation (8) with v to the right we get

If t =1 we have v = z and hence vp = vp.
If ¢ > 2 multiply the relation (9) with v*~! to the right and we get v* = z.
In the relation (8) from the beginning we have vp = v'p?, t > 2. This imply v*~1pt~1 = ¢

which is a contr. with Claim 1 since t —1 > 1. ' O

We summarize the previous six lemmas in the following Proposition:
Proposition Let Sy be the partially bicyclic semigroup. Denote Ap = {vg,v1}, |4, = 2.
The following six conditions are fulfilled for every o, € So, aff=¢, Vv € Ap
(@) {k | vopk = vopa} C{a}U{vpa|ve 4dp};
(ii) For each k € S? kvp # 8 and vpk # «;
(ili) {k | kvp = Bup} = {B,6vp };
(iv) For each r € N*, {k | kv=Bp" } = {Bp"t' };

(WM {klpk=p}C{etu{vplved};{klkv=v}={e}u{vp};
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For each k € S, kp # e and vk # ¢;
(vi) { (m,n) | mn=vp} C { (vpe, B), (ve, Bp), (o, Bup) | aB = e }.
then the semigroup algebra £1(Ss) is not approximately amenable.
Based on the proof of non-approximate amenability of £}(S) where S is the bicyclic
semigroup we will try to prove similarly that 11(Sy) is not approximately amenable.

Theorem The Banach algebra [(S3) is not approximately amenable.

Proof.

Note: In the proof when we are using conditions (i)-(vi) are in fact conditions from the
above proposition.

Let 7 : £2(S x S) — £1(S) be the product mapping, consider the derivation

D : £1(S) — ker(m) defined by
D(f)=f®%.—6.0Ff (fet(S)).

If £1(S) is approximately amenable, then there exists a net (&;) C ker(n) such that D(f) =
lim(f - & — & - f), f € £1(5)
Let & = Z Cho.nOmym, Where chy . satisty Z cfn)n =0foreacht e §, and Z | chom |< 0.

m,n mn=t m,n

Then for every u € S, we have :

Oue = Oeyu = 1i§nZ Cfn,n(dum,n = Omu) = lilm Z( Z ci:,n - Z Cin,k)‘sm,n

m,n mmn uk=m ku=n

The convergence is in the norm topology of £1(S x S)



Ifu e S,u # e, the above implies

4

Cho.p = 1. We will prove that hmc

=1
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lim Y o= D =1
‘ uk=u ku=e
< im )k~ Y chi=-1 (*)
uk=e ku=u i
lm 3 ) dam D e l=0
L (m,n)#(u,e),(eu) uk=m ku=n

Take u = vo, we have limc} , —
)

. Take u = vp and let
L={(m,n)e8xS:m=vj*, n=p ,r>1,reN}L

where N denotes the set of all positive integers.
Then

I C {(m,n) €S x8:(m,n)+ (vo,e), (e,v0) }

liim Z Z Chn — Z g |=0

(mn)el  vok=m kvo=n
The sequence (vo, p), (v8,p%), ..., (v§,p") is infinite since p and vy have infinite order:
Suppose, by way of contradiction, that p"** = p? for some positive integers h and k. Mul-
tiplying on the right by v§, we obtain p* = e. Then vy = evg = pFuvy = pF~le = pF~! and
vop = p* = e, which is a contradiction with Claim 1.
" o k= p™t by (iv).

the equation vok = vj ™ = k = v} and kvy =

Precisely hm Z ] cv0 o ct ot |= 0 and this implies that hmz Cog 7 ~c W+ +1) =0.

r=1 r=1
But Z(cvr

i
Gyt r+1) = Cuo,p

Note (the series Z | cmn | converges then hm cqrﬂ ~+1 = 0), therefore hmc = 0.
m,n

So we have that limcl , = 1.
' t

vo,p
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In the relation (*) take u = vop , vg is fixed and let
I'={(m,n)€SxS:m=upa,n=_pg:(a,B)#(e,e)}

Then

T C {(s,t) €8x S:(s,t) # (vop, €), (e, vop) }

and

im Y 1Y dam X =0

(mn)el’ vopk=m kvop=n

The function (o, 8) — (m,n) is injective. For suppose vgpa = vgpan and aff = a8 =e. If
ai # o then by (i) a1 = vpa for some v € A,. Therefore vp = vpaf = 13 = e which is a
contradictién. So a1 = a.

the equation vopk = vppa have solutions k = o and k € {vpa | v € A4,} due to (i) and

kvgp = 8 do not have solutions due to (ii).

Therefore,
m Y (gt Y chpas) =0 (4.8)
’ af=e vEAp
(a:B)#(ese)

In the relation (*) take u = vp , v € A, is fixed and let
I"'={(mn)eSxS:m=an=P0up:(,B) # (e,e)}
Then

T - {(S,t) €ESxS: (S,t) # (vp,e),(e,vp)}

and

lign Z ' Z c}.c,n_ Z cfn,k l:O

(mn)el’ wvpk=m kvp=n
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the equation vpk = & do not have solution due (ii) and kvp = Bvp have two solutions k = 3
and k = Bup due to (iii).
The function («,8) — (m,n) is injective. For suppose fup = Bivp and af = af =e. If

B1 # B then by (iii) 8; = Bup. Therefore vp = afvp = af; = e which is a contradiction.

So B = .
Therefore,
m Y (chptChap) =0 (Vo€ 4p) (4.9)
af=e
(0,B)#(e.e)

and we have |Ap| relations.

So, if we are adding relations (4.8) and (4.9) and use the last condition (vi) :

1ign[(lApl +1)( Z cho) + Z( > et Z Chpup)] = 0

af=e VEAp afi=e af=e
(a,B)#(ese) (e, B)#(ese) (c,B8)#(ese)
h{n[(lAPl + 1)( Z c;‘n,n - cfa,e) + Z ( Z cin,n - Z cf,va,ﬁp - cf}p,e - cz:,vp)] =0
mn=e vEA, mn=vp af=e
hfn[(lAPl + 1)( Z cﬁn,‘n - Cf:.,e) + Z Z c;'n,n - Z Z Civa,,@p - z (Ci'p,e + cé,v;;)] =0
mn=e VEAp MN=1p vEAp affi=e vEAp

Taking in the relation (*) u = v we have:
IM={(mmn)eSxS:m=v"ton=70p:af=ercN}
Then
I C {(m,n) € S x S : (m,n) # (v,6), (e,2)}

since v'p" #£ eV r eN.

lim YooY b Y Gy l=0

(mn)er  vk=m kv=n

The equation vk = v"!a has the solution k£ = v"« and the equation kv = (p” has the

solution k = fBp™*! due to (iv). The function (e, ) — (m,n) is also injective and the



a7

sequence (v"a, Sp"), is infinite.

Therefore,

im . (Z(C:vra,ﬁp* ~ Cortiggprer)) =0

affi=e 721

lilm Z Cpa,gp =0

af=e

Taking u = p in the relation (*) we have:

lizm(z Che— Z c;,k) =1

pk=p kp=e

Using condition (v), statement i) from the above Proposition we have that:

. i _
hgn Z Cope =0
vEAp

Taking u = v in the relation (*) we have:

(Y - 3 chy) = 1

vk=e kv=vy

Using condition (v), statement ii) from the above Proposition we have that:
lilm cfi’vp =0 (ve A4
So, we get (| Ap | +1){—1) = 0 which is a contradiction. - O

The result can be generalized at such kind of semigroups:

Sp = (€,D,V0, V1, v, Un—1 | PUO = PUL = ... = PUy_1 =€)



Bibliography

[1] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for

Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), 359-377.

[2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York,

Heidelberg, Berlin, 1973.

[3] S.Bowling and J. Duncan, First order cohomology of Banach semigroup algebras, Semi-

group Forum Vol.56 (1998), 130-145.

[4] T. D. Blackmore, Weak amenability of discrete semigroup algebras, Semigroup Forum

Vol.55 (1997) 196-205.

[5] Clifford A. H. and G. B. Preston, “The Algebraic Theory of Semigroups vol.1 ”, Amer-

ican Math. Soc., 1961.

[6] P. C. Curtis Jr. and R. J. Loy, The structure of amenable Banach algebras, J. London

Math. Soc., 40 (2) (1989) 89-104.

[7] Y. Choi, F. Ghahramani and Y. Zhang, Approzimate and pseudo-amenability of various

algebras, preprint.

58



59
[8] John B. Conway, A course in functional analysis, Springer-Verlag, New-York, 1990.

[9] H. G. Dales, P. Aiena; J. Eschmeier; K. Laursen and G. Willis, Introduction to Banach
Algebras, Operators, and Harmonic Analysis, London Mathematical Society Student

Texts 57, Cambridge University Press, Cambridge (2003).

[10] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society

Monograph 24, Claredon Press, Oxford, 2000.

[11] H. G. Dales, F. Ghahramani and A. Helemskii, The amenability of measure algebras,

J. London Math. Soc. (2) 66 (1) (2002), 213-226.

[12] H. G. Dales, A. T.-M. Lau, and D. Strauss, Banach Algebras on Semigroups and their

Compactifications, To appear in Mem. Amer. Math. Soc.

[13] H. D. Dales, R. J. Loy and Y. Zhang, Approzimate amenability for Banach sequences

algebras, Studia Mathematica 177 (1) (2006), 81-96.
[14] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957) 509-544.

[15] M. Despic and F. Ghahramani, Weak amenability of group algebras of locally coﬁpact

groups, Canad. Math. Bull 37 (1994), 165-167.

[16] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup

algebras, Proc. Royal Soc. Edinburgh 80A (1978), 309-321.

[17] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup al-

gebras, Math. Scand. 66 (1990), 141-146. -



60

(18] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matriz

algebras with applications, J. Functional Analysis, 161 (1999), 364-383.

[19] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of

second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996), 1489-1497.

[20] F. Ghahramani and R. J. Loy, Generalized notions of amenability, J. Funct. Anal. 208

(2004), 229-260.

[21] F. Ghahramani, R. J. Loy, and Y. Zhang, Generalized notions of amenability, II, J.

Funct. Anal. 254 (2008), 1776-1810.

[22] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach alge-

bras, Math. Proc. Cambridge Philos. Soc. 142 (2007), 111-123.

[23] F. Ghahramani and R. Stokke, Approzimate and pseudo-amenability of A(G), Indiana

Univ. Math. J. 56 (2) (2007), 909-930.

[24] F. Gourdeau, Amenability of Lipschitz algebras, Math. Proc. Cambridge Philos. Soc.

112 (1992) 581-588.

[25] E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964),

367-379.

[26] R. 1. Grigorchuk, Some results on bounded cohomology, Combinatorial and geomet-
ric group theory, 111-163, London Math. Soc. Lecture Note Series 204 , Cambridge

University Press, 1995.



61

[27] R. I. Grigorchuck, Weight functions on groups, and criteria for the amenability of

Beurling algebras, Mathematical Notes 60 (1996), no.3-4, 274-282.

[28] N. Gronbaek, Derivations and semigroups, comutative radical Banach algebras, Ph.D.

thesis, University of California, Los Angeles 1980.

[29] N. Gronbaek, Commutative Banach algebras, module derivations and semigroups, J.

London Math. Soc.

[30] N. Gronbaek, Weak and cyclic amenability for non-commautative Banach algebras, Proc.

Edinbourgh Math. Soc. 35 (2) (1992), 315-328.

[31] N. Gronbaek, Amenability of weighted discrete convolution algebras on cancellative

semigroups, Proc. Royal Soc. Edinburgh, Section A, 110 (1988), 351-360.

[32] N. Gronbaek, Amenability of discrete convolution algebras, the commutative case, Pa-

cific J.Math. 143 (2) (1990), 243-249.

[33] N. Gronbaek, A characterization of weakly amenable Banach algebras, Studia Mathe-

matica 94 (1989), 149-162.

[34] A. Ya. Helemskii, Flat Banach modules and amenable algebras, Trudy Moskov. Mat.

Obshch. 47 (1987), 179-218; AMS Translation 1985, 199-244.

[35] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dor-

drecht, 1989.

[36] N. Hindman and D. Strauss, Algebra in the Stone-Cech Compactification, Expositions

in Mathematics 27, de Gruyter, 1998.



62

[37] J. M. Howie, An Introduction to the Theory of Semigroups, London Math.Soc.Monogr.

7 (1976).

[38] J. M. Howie, Fundamentals of semigroup theory, London Math. Society Monographs,

Volume 12, Claredon Press, Oxford, 1995.

[39] B. E. Johnson and J. R. Ringrose, Derivations of operator algebras and discrete group

algebras, Bull. London Math. Soc. 1 (1969), 70-74.
[40] B. E. Johnson, Cohomology in Banach algebras, Mem.Amer.Math.Soc., 127 (1972).

[41] B. E. Johnson, Approzimate diagonals and cohomology of certain annihilator Banach

algebras, Amer. J. Math. 94 (1972), 685-698.

[42] B. E. Johnson, Derivations from L'(G) into L(G) and L*®(G) , Harmonic analysis

conference 1987, Lecture notes in Math. 1359, Springer, 1988, 191-198.

[43] B. E. Johnson, Weak amenability of group algebras, Bull.London Math. Soc. 23 (1991),

281-284.

[44] A. T-M. Lau and R. J. Loy, Amenability of convolution algebras, Math.Scand. 79

(1996), 283-296.

[45] A. T-M. Lau and Y. Zhang, Fized point properties of semigroups of non-ezpansive

mappings, J. Funct. Anal. 254 (2008), 2534-2554.

[46] A. T-M. Lau, Analysis on a class of Banach algebras with applications to harmonic
analysis on locally compact groups and semigroups, Fundamenta Mathematica, 118

(1983), 161-175.



63

[47] M. Lashkarizadeh Bami and H. Samea, Approzimate amenability of certain semigroup

algebras, Semigroup Forum, 71 (2) (2005), 312-322.

(48] A. Pourabbas and M. R. Yegan, Some remarks on weak amenability of weighted group

algebras, Vietnam J. Math., 33 (3) (2005), 349-356.
[49] W. Rudin, Real and complez anlysis, New-York, McGraw-Hill, 1987.

[60] V. Runde, Lectures on Amenability, Lectures Notes in Mathematics, vol.1774, Springer-

Verlag, Berlin-Heidelberg-New-York, 2002.
[51] R. Schatten, A Theory of Cross-spaces; Ann. of Math. Studies 26 Princeton 1950.

[52] C. O. Wilde and L. Argabright, Invariant means and factor semigroups, Proc. Amer.

Math. Soc. 18 (1967), 226-228.



