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PREiFACE

This thesis is divided into three main sections;

the first section being an old t,echnique in mathemaùics,

rewri.tten with some applications to quantum mechanícs.

The non-uniform difference met,hod in Chapter IfI

$/as developed entirely by the author, but the iteratíve
method in Chapter TV was mainly developed by Dr. R. lVallace.
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ABSTRACT

The finite-difference r¡ethod and some improved

versions of the method are described. Their applications

to quantum mechanics both in the solution of the Time

Independent and the Tirne Dependent Schrödinger's equations

are illustrated, by examples such as the Harmonic Oscillator'

the Hydrogen Atom, the calculations of Phase shifts in

Electron Scatteritg, and .:, Transition Probability

Calculat.ions.
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Foralongtime,atomiccollisiontheoryhasbeen

amajorinterestofboththephysicistsandthechemists.

Theinf}uenceofRutherford'sexperimentonscienceisa

crassicar exampre demonstrating the importance of this

f ield..

Afterthebirthofquantummechanics,thepursuit'

formethodsofcalculat'ingtheabsolutereactionrates

theoreticallywasunderwayforanumberof,years.However'

sincethepublicationof.,TheTheoryofRateProcesses''(1)'

].ittleprogress\'rasachieveduntiltheautomat'ichigh-speed

electronic digital computer became avail ab1e'

Numerouspapershavebeenpublished'sinceth.en,but'

itisnotthepurposeofthísthesistodiscussthemhere.

However,the,,amplitudedensityfunctions''ofsecrest'and

,o6n=sn(2) r the "ô-function of Locker(3) ' t'he "distorted-

wave method,, of Trindle and tllinger(4), and Gordon's(5)

method.forconstructingwavefunctionsforbound.states

and scattering are illustrative examples' Some of the

methodsusedappearinthereviewofRappandKassal(6).
Thefinite-differencemethodhasbeenextensively

emptoyed by many authors to solve various problems; most

oftheseareconcerned'withtheSchrödinger'sequation.

rt has been used to compute the dipore moment of iodine

chloridebyGlazerandReiss(7).Usingl,iebmanniteration

l:or the three-dinensional equation' Bartlett(8) gave a

finite.d'ifferencesolutionforHelium.I.Ior.¡ever,.the

accuracyofthemethodwaslowatthattime.Thepartial-



3

wave expansion of the solution of the two-electron

Schrödinger's equation was first employed by Luke,

Meyrerot.t, and Clendenin(9) for the 35 state of l,i+. The

method. has been recently improved by Wi-nter, Laferriére, and

McKoy(10). The finite-difference method. has also been

applied to the quantum mechanical treatment of inelastic

collisions (11) .

lve are interested in the finite-difference method

for the same reasons as those set out by these authors. It

is straightforward in principle, adaptable to computer-

prograrnmirg, and applicable to many interesting problems.

Despite the fact that no analytical expression can be

obtained, it does not have the difficulties encountered in

the infinite-series approach. Since only a few terms of

the series can be included in practice, very often these

terms are inad.equate and erroneous results may arise. Many

approximate methods or solutions in terms of basis functions

have been proposed. It is increasingly more difficult to

choose and apply them. For examPle, just for the anharmonic

oscillator, there are Raleigh-Schrödinger perturbation

method. (L2) , J6KB method. (13) , elliptic functions (14) , Gaussian

basis functions (15) , and many others

Both the applications and the improvements of the

method have been presented in this thesis. Since we cannot

afford the time to calculate everything that interests üsr

we have to select a few well-known problems involving :
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Schrödingerrs equat.ion. A one-dimensional harmonic

oscillator is interesting as a starting example because

it can illustrate the basic features of the finite-

difference method. It has been used to represent a diatomic

molecule in the theoretical study of energy transfer in the

co}Iísion between an atom and a diatomic molecule(16). The

interest in the harmonic oscillator also arises from t'he

fact that it is possible to extend the method to treat the

anharmonie oscillator, which has been used as a mathematical

model in collision theory (17) as well as in field theory (18) .

The second example chosen is the hydrogen atom.

The obvious reason is that the solution of the Schrödinger's

equation for the hydrogen atom(]9) plays a very important

role in modern chemistry. The original plan was to solve

the three-dimensional equation explicitly. Even though it

appears easy in principle, the MATLAN language programs did

not turn out to be efficient, and the tremendous amount of

computer time required discourages further calculations in

that respect. At present, the partial-wave exPansion method

appears to demand less computer time.

Our interest in the three-dimensional problem

brought us to the partial wave method. Instead of using it

to calculate the hydrogen atomr wê turned to the more

interesting elestron scattering problem. After Holtznrark(2Q),

Robinson (21) has recently recalculated Èhe phase shifts and

the scattering cross-sections for the electron scatt'ering



of rare gases by the method of numerical integration- The

difference method has been used by Robertson(22) to calculate

the phase shift.s of sorne other systems, but his method has

' lit,tle improvement over the standard one. In this thesis | 
"-",,;.;:;tt:'

the method has been improved to tackle both the problems of

the rapidly changing potential near the origin and the

s1ow1yvanishingpotentia1ata1argedistance.Thedetai1s .. ,t,

will be found in Chapter III. 
,,t,,,,.,..i.

In order to treat the subject more thoroughly, a

chapter on the solution of some problems ín finite-difference

form without the conventional finite-difference notations

has been included. in this thesis, although the author \¡ras

primarily concerned with the calculations'

Theultimategoalofalltheseeffortsisto

understand the mechanism of chemical reactions in terms

of mathematics. It is not the purpose of this thesis to

create models and calculate trajectories and energy transfer 
,,.,.,i:r.tr,:

from themr ês will be found in the works of Pettitt and "'jr'::

corrigall (23) . ït tries to improve the numerical techniques :'t "

of the finite-difference method in its application to the

Schrödinger' s equation-



CHAPTER TÏ

REVIEW OF THE

FINITE.DIFFERENCE METHOD



A.. INTERPOLATÏON FORMULA

To a certain degree' one can always have a

numerical representation of a wave function at each

co-ordinate point. The gradient at these point's can be

obtained by means of some interpolation formula. For

example, the eigenvalues can be easily calculated by

expressing the second derivative term in the Time Independent

Schrödinger's equation of the Harmonic Oscillator in the

form of the Backward Interpolation Formula of Gauss.

All the interpolation formula with divided

differences are based on the mean-value theorem for the

derivative, wh-ich states that if f (x) is continuous for

a 5 x 5 b and f' (x). is continuous for a < x q br then

f (b) f (a) = (U a) f '(E) for at least one { such that

a < E < b.

An extension of this theorem leads to the following

blsic definitions:

f (x) = f (x ) + (x - x )f (x ,x),
000

f (x ,x) = f (x ,N ) + f (x - x )f (x tx ,x),
001 101

f(x ,x , ... ,x ) = f(x , ... ,x ) +
01n-l0n

(x - x )f (x , ... ,x ,x)n0n

. (r-1)



Y¡f¡ere
f (xr) t (xo)

f (xú, .. ' ,*k) = xk-xo

By substituting these relations successively,

st,arting from the last equation into the seconcl last and,

working upr.rarcls, the Nev,'tonrs Interpolation formula with

divided differences can be shown equal to :

f (x) = Í(x ) + (x - x )f (x ,x )
000r

+ (x - x ) (x - x )f(x ¡x ¡x )
01012

, + ... + (x - x )....(; - x )f (x , ... rx )

0n-10n
r (x) (L-2')

l¡here E(x)= (x - *0r....(x - *rrrt,*0, ...,xrrrx)

To simptify the calculation, the technique of

finite-difference interpoLation is employed where

x =x +h and
k{-1 k

ôf (x ) = f (x ) - f (x )
kk+lk

.= (x - x )f (x ¡x )
k+I k k k+l

and

= þ f(x ¡x )
k k+I (.r-3)



a2f (x )
k

=

Carrying this
r

ô f (x ) -
k

= þ f(x rx ) - h f(x ¡x
k+l k+2 k

h f(x 1)1 tx )(x
k I*1 k+2 k+2

2 hf(x tx ¡x )

)
k+I

x)
k

(r-4 )

t)r )
k+r)

¡x )
k+r-1

-x )f (x , ... tx

k

to the r
(r - 1)l

k+I k+2

th term, $¡e get
r-1

h f (x , ...
k+1

r-l

r-1
= (r 1)! h (x

rk
=rthf(xr...tx)

k+r

(r-s)

subsrilurins t,his into n.l.on', .r:l:.. d'Írerence

forrnula vre can ob'tain
Áf ,",

'f(x)=f.+ (x x)+
t2#

. 0 0 llh
'- {-(x-x)(x-x) ^'o

+ aa.aotaaa.!a..oo.o

. + (x - xO) (x - *r) . .... (x *r, 1)

n
ÁÍo
n!hn

v¡here

0 n (n+1) !

ancl rrhere t is in the intcrval occupied by x r ... ,x .
'0n

(r-6)
(n+1)

f,o ( E)
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To familiariz,e v¡i-Lh the dif f erence for¡nu] a, it -i's

advantageous to se-L up a diÍference table and to unierstand

the ShePPard I s Zígzag R'ule.

x.f
nn

a

"a
a

x

x

x

3 3---t -)^f -

Âf

^fxf, 1

11
- ¿\f

x. f, ¿'-r o
00

:.

Âf is equal
0

^2f 
is equal

0

- -v o'Í

a2f

ô2Í

2- \\ )Á3f
I --ô"fl-ào

-4 
tr3 f--0

0

to f.
I

to Lf
I

0

Âf
0

.aoaaaaaaaa,n (n-1)
ô f. is equal to 

^0

(n-L)

0

'The direction of the solid arrow is in

direction and, therefore, the interpolation

the Newton's forward formula.

If we want a better approximation for

the forward

formula is called

a particuLar
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point¡ sâY

dif f e::ence

In¡tcad oÍ

call them

different

n

a
,..

a

x

x , it woulC be rnore desirable to ta];e a zígzag
3

pátr, in t,he direction of tÌre doLtecl arrc'+ls.
.i

^^'t 1ì:r¡r {-hcn Civj-clcd d'iÍf c:cnccs 1'"c prcÍcr !o
vg*¿ 4¿¡:'

ceniral dif.fe::ences and' v¿e have a slightly

¡rotation for thenro "

f
n

j+2 )+2

xfj+l j+l
xtj j---s-
xf.j-l j-l

j+t k

,1-i*t-)
¿

ô'j-t
6 j-rk

i+1- ¡3

J __ _i_6,

j-r

ô2

6z

6z

xf
- j-2

a

a

a

fnterpolatj.ons f oI'l-owing

and that of the dotteC arrows

fort¿ard and backward formula

of Gauss may Ì:e v¡ritten as

the path of the solid arrov/s

are known respectivelY as the

of C1lss. The forward formula

j-2



L2

ôf
f (x) : f + (x x ) j+å

0j (r-7 )

lth
ô2f

+(x-x)(x-x ) j
i i+lJ J'-

2!h'
ô3f

+ (x - x )(x - x )(x - x t i+4
i j+l j-I

3l ¡r
64f

+ (x - x )(x x )(x x )(x x ) 
-jì ì+l i-I ì+2J J'- J

4!h"

Nolr $¡e can find the first, second or higher order

derivative from this formula.

ôf ô2f
e 'ix) ?' i+t + (x. - x- -) j +

h j j+t 
zlhz

ô3f
(x -x )(x x ) - j+t-+

j j+l j j-l
3!h'

ô 
tof

(x - x )(x. i i+1 i i-] ; )+2J J r r ¿ 
4!h"

(r-8)

For a uniform net, (*., nr*r) = h, ,*., - *r_r.) = * h,

and (x -.x ) - --2 h.
j j+2
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EquatÍon (f-A) can then be simplified to

hf¡(x) =ôf -62f /z 63f /ø +ô4f /L2 (r-9) ,,.,,.'.,,:

l+k I i+à ) ::::'r '

Similarly the second derivative can be simplified to

h2 f ,'(x ) = 62f - 6rf /L2 (r-10)
130
These approximations will now be appl-ied to calculate

some simple examples in quantum mechanicsÕ



1. H^;i4o:-rrc osc'LLAToR

The partial differential equatíon for the harmonic

oscilLator is

2 dx2 2 (r-11)

-rr
The wave function n ExP þx2 /21 is a normalized

solution of equation (I-11). Therefore t,he eigenvalue

associated with this wavefunction can be found by

integrat,ion,

" =_j-t(x) (h) d2 r(x)u* *_] L x2 r(x) 2åx

dxz

. = 0.5 (I-12) 
l

Howeverr onê can do a numerically equivalent

calculation of equation (I-12) by means of the backward

ínterpolat,ion forrnula of Gauss and then int,egrate
_..: ...:.... ..

t.:.,.-,.4,,,'4,,nturrerically

The first derivative for the point x can be written .,' 
'

3
as

f'(x ) = (f(x l/ø f(x ) + f(x')/2 + f(x l/31/h
3 1 2 3 4 

:...:.:..(r-13) -''
where h is the separation between x r x t x and so on"

123

The second derlvative can be ea'sily calculated, once tlre

first, derivatives of more than four points have been found.

L4
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I n orcler to so I ve equat i on ( t-L 1) vri th bot¡nCa ry

condïtions: f(-A) = 0 and f (A) = 0; one Pray em!'¡loy the

uniform net xj = -A + j h . J = 0, l, .r' rj+l

vrhere the separation h ls eqr'ral to 2^l (j*t) and A ancl -A

are the upper ancl lovrer bouncl for X. Then the di{'ferential

equation can be replacecl by some ftnite-difference equatlons

of the form

Lhuj+e,rj=4,

with bounclary. condìtions ug = $

a tt cl¡ f f erence apprcx imat i onrr of

j = !, 2, ..t , j il-19)

and u?+1 = 0. Here LL is
J'L tl

operator L, which for the Present

the I Tnear clifferential

wi I I be taken to be

L¡ uj = - Qlzntf 6jt uj - (1/12)ð: uj) + (l/?')x?'j

where

6: u. = u- 2 uj j j*i j
ô: u. ¡3 --j +Qlz)

¡-
"j*(3/2)

= ,j*t -4ujr.1

The r efor e

Lh uj = + (1/21+h2)u¡+2 - (2/3h2)u¡+1

+ (1/h2) (1.25 + 0.5x2 h2) uj

Ql3h2) uj-1 + Q/24h2) u;+2

+tl j-1

tj-t r/z)
,tj + oj-,

3ô;+ 0/Ð+ 'oj- (tlz) - oj-c3/Ð 
.

uuj u'j -t u i-z ( | -21 )

( t-20)

( | -22'
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It fs rnore convenlent to put Lh into matriy. form

and u lnto vector form. The resul t vri I I be of the form

A'g'¡zA'g=o (l-23)

vrhere { is a symrnetrlc pentadiaqonal rnatrix r'rith elements

derived from a series of LL values. Â can be eesily
.t I

obtained slmply l¡y cliagonal izlng the matrix A , rvhich is

taa

aa

a

a

aa

a

a

a

(0)
' . (l/24) (0) (0) (0) ..

a

o ( -2/3) (L/24) (0) (0) ..

.. (0) Q/24) (-2/;) (!.25+0.5xîht) (-2/3) (t/24) (0) ...
J

. ¡ (0) (0) Gl24) (-2/3) il..25+0.Sx3h2) (-2/3) (L/ 24)..
Jc

..o...cr....o...(C) Q/?.h) (-2/3) .
a.'a

. (0) (1 124) o

aa
aa
aa
aa

(0)
a

a

(0) (0) (0) ..

( t-25)uJ,j = !.25 + 0.5 xj ¡z

I and
u1

:2

:
u.

:,
un

.r =
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For a boundary limit of 5.0, that is, .A = 5.0, and

a matrix of order 90, the eigenvalues were calculated using

both the linear interpolation (second order) and the fourth

order Gauss interpolation. The first four eigenvalues are

compared.

Table 1.1

THE FIRST FOUR EIGENVALUES OF

TIÍE HARMONTC OSCÏT.,IATOR

SECOND ORDER FOURTH ORDER

0.49962

1. 4981r

2.49508

3. 490s4

0.499998

1.499989

2.499962

3.499907

, The diaqonalization method used, here to calculate

the eigerrt.rrr"= i"" originated by Jacobi and, adapted, by

Von Neumann(24) for large computers. There are many other

methods (25-28) , but only the Jacobi method wiII be illust,rated

in the appendix.

The eigenvalues for other boundary limits and

different matrix orders are also compared. They were all

calculated. using fourth order Gauss interpolation. The

results are listed in the following page
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Table L.2

ETGENVALUES FOR

BOUNDARY LIMIT 10.O

Table 1.3

EIGENVALUES FOR

BOUNDARY LTMIT 5.0

ORDER OF

4L

MATRIX

8I

ORDER

2L

OF MATRTX

41

0.49939

1.49580

2.48525

3. 46339

4.42600

5.36880

0.49996

L. 49972

2.49901

3. 497 53

4.49498

5.49107

Table I.4

ETGENVALUES FOR

BOUNDARY LIMTT 2.5

Tab1e 1.5

ETGENVALUES FOR

BOUNDARY LIMIT L.25

0. 49939

1. 49580

2.48525

3.46339

4.4260r

5.36886

0.49996

r.49972

2.4990L

3.49753

4.49498

5.49L12

ORDER

11

MATRIXOF

2T 41

ORDER OF MATRTX

2L

0.50243

L.52427

2.59925

3.75256

4.99882

6.33835

0.50288

L.5297 8

2.63663

3.90465

5. 41361

7.2086L

0.50336

1.53610

2 .67 239

4.01910

5.66378

7.64867

0.78605

2.9L44s

6.24872

10. 87199

L6.78042

23 .9 4203



Figure 
.1 

.

WA.VEFUNGTTONS OF THE I{ARI-,ÍONTC OSCTLI.ATOR.

T4TÎH ÐIFF'ERÉNî BOU}IDAR.Y CONDTTIOÑE ''

'r'lhê fBM ScÍentific Sub:rolrt.ine Paekage has a

program which caLcul-ates both t.he. e-ìgenvalues :

arrd the eìgenfunctions. ?he prograrrr is based-

on Reference,24. fo swpport, Èhe argurnents in
the discussjon of this ehapter, f,or¡.-r of the,

eígenfunctions computed by the progratn v,lere

seleote4 and âxawa on the opposite yage.
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A= t .25

A=l .25

A=5.0

0;5

0.ll

0.3

n1

0. 'l

ñli

0.

0.

0.

1

lì



2. TÌIE HSDROGEN .ã,TOM

It ís essentially the same as the harmonic

oscíl}ator except it is Èhree dimensionaL rvith a slightly

different wave functior:. The Schrödinger Equation is

-- V2g (Ilr)rt, .- B q/ (I-14)

where g is a function of x¡ y and z only. Thereiore

q2 q2 .r2
(- o - J . - o )ú(:<,y,2) + e//(x2 + y'+ zz)þ(x,y,z)

âxz èy" àzz

= E Vlx,y,z) (I-15)

The total energy is equal to

* tZ ¡2 a2
E ='! -ú-(x,!,2,,- þ 

- 
þ 

- \lú(x,y,z)dx d-y cz

*+ !,I)-' (x,l',2)(t//(xz + y2 + z2))ú(x,y,zl dx dy dz
, 

(r_16 )

The integral j.s sunmed over all space and. is equal to k

for the ground state wave funct.ion

(r-17 )n-ã pxp (-/(xz + ,!2 + z2r)

Since it, is symmet.rical in all cli rections, one

can replace (I-16) by

-' E = (3/¡r\ (Í EXp( -/(:<2+ y2+ z2) ) (- " )EXp(- /(x2+ y2+ 22))
âx2

+ (L/3t ,I x2Exp í-2/ (x2+ y2+ z2'tl) (dx) 3 (r-18)

Then the rest-of t.he calculations will be the same as in

the case of the harmonic oscillator. except that one has

20
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to eal-culate d,E for each (yrz) pair and t,hen sum them up.

The author wrote a progran in MATLAN computer

language, which is supposed to be able t,o handle large

matrices with many built-in matrix operations. However,

the language is really inefficient because it, occupies

80K storage units just by itself. Vühen the matrix is

large, the Input-Output Èime required to transfer information

back and fort,h from the díscs (accessory memory unit linked

t,o the computer) is even more than the actual computation

time. It took the computer three hours to calculaËe

equation (T-18) for a three dimensional matrix abouÈ the

size of 100x100xI00. The Çalculated ground state energy

differs from the theoretical value by one per cent. A

nuçh faster program can be writt,en in FORTRAN and, therefore,

the MATLAN program will not be given here

tg solve the eigenvalue problem of the hydrogen atom,

alL that is required is to t.ransform equation (f-fS) into

finite-difference equations, Vüith a second order Gauss

ínterpolation, there will be seven t,erms ínstead of three'

as there are six neighbouring points instead of two. The

erder of the matrix to be diagonalized is equal to n3,

where n is the number of separations in one direction. A

crude model of the hydrogen atom may be represented by

twenty points in each direction, that is, sj-xteen thousand

points altogether. To diagonalize a matrix of the order

16r000 is simply not feasible at present.
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B. DISCUSSION

The results of the harmonic oscílIator clearJ-y

demonstrat.e two facts. First, the wave function ís quite

well localized. The first few eigenvalues for a boundary

limit of 5.0 are exactly the same as Èhose for a boundary

Iimit of 10.0; and differ from the theoreticaL value for

infinite domain only in the fífth or síxth figure after the

decimal. Secondly, the eigenvalues increase sharply as th-e

boundary limit becomes too small. There is only an increase

of 0.003 when the boundary Iímit decreases from 5.0 to 2.5n

but an increase of 0.28 from 2.5,t'o L.25"

The spherically symmetric wave functions of the

hydrogen atom behave similarty to the harmonic v/ave

functions. Since the hydrogen $rave functions have been

used in a number of standard text,s(29) to explain the

chemical properties of other atoms r \¡rê may re}aLe these

two properties to some commonly known plrenomena, such as

the localizability of many everyday objects and the

incompressibility of many solíds and liquÍds.

It was mentioned, earlier that the finite-diffe.rence

method has been applied to the solution of t'he three-

dimensional Schrödinger's equation by many authors. In

reference 10, they improved the technique by a square-root

grid along wiÈh a transformation of the co-ordinates in the

Schrödinger's equation. By íncluding more partial h/aves'
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they. improved the S-limit result and obtained the G-limit.

ground state energy of helium at,om to be -2.90351 a.u.

as compared to the exact vaLue of -2.90372 a.u.

Thus far, their calculations are limited to (ts2)ls ..,,',,;,.'
.2)'tand (1s2s)'S states of helium and the (1s-)'S state of

hydride ion.
' Although we did not go too far in the calculation 

" 
' ,'

of the hydrogen atom, it is very rikely that the method 
:::,,:,,:,,

suggested can be used in the future when a large enough

computer will be available.
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A. THE THEORY OF THE SCATTERTNG OF A BEAT4 OF

PARTICLES BY A CET'TTRU OF FORCE

A stream of electrons moving from left to r!ght

r,lith velocity ¡¿ along the z-dírection may be represented

by the plane vrave EXP( ikù, where k is equal to Znmulh.

whi ch corresponds to a f I orv of v el ectrons across un i t

area .pur un i t t ime " The wave wÍ I I be scattered by the atom

situated at the origIn, the asymptotic wave function at the

point (r,8,0) being

y = "ikz 
+ r-1 "ikr 

f(9) (tl-l)

rvhere f(Ð22¡ sin0d0 ¡s the number of particles scattered

between angles ê and 0 + dO.

The problen nol. is to solve the schrödïnger equêtion

v2Y+(k2-u(r))Y=[ (tl-2)

where k = mv/â and U(r) = 2 m V(r)/ñ2. The equation can be

solved ln spherìcal polar co-ordinates. The genera'l solution

having axial synrnetry is I

ff =;-A¿P.c(cosg)Lr(r) (ll-3)
r 9=0

where 
^L 

are arbitrary constants, PU(cos0) is the 1,th

Legendre coeff icient, and Lg is â,': solutlon of

1 d (r'{fs) * (k2 u(r) - LlfÐll* = Q (ll-r+)
rzdr dr rz - k

lf we assume U(r) has a pole not of hÎeher order

than r-I, the equation has tr¿ro independent solutions, one

flnite at the orígin and the other Infl ni te. In order that

( | l-l) shal I have the asymptot lc form ( | l-1), the vrave

25
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functlon must be everyrvhere f Inite. lf vre set L¿ = r-!Gr(r)t

equatîon (ll-l+) reduces to

d2co g.(r,+L)

-*- 
+ (k2 U(r) --)Gg = 0

dr2 12

( | r-5)

The solution for iarge r must be of the form

Ge=Asin(kr+e)

vrhe¡¡'e e is a small angle.

The part icular solution þre want i;
Lr(r) = C¡<r)-1 sin(kr - (llÐe.¡ *,lg) (tl-6)

whích is finite at the origin" ng is the phase shift. To

find A, we have to take advantage of the fact that fo'r all
9, and large r,

AgLg(r) (29. + 1) i9rg{r) = Cxr-L"ikr {ll-7)

where Cg is sonle constant, fg. = (kr)-1s¡í{itr - (!/2)ln)

for large r. Since sin(x) = ttizi)(eix - u-l*), the lel't-
harcd side of equation (ll-7) becomes

¡1tZ)(ikrl-1fA¿eí(kr Ql2)e.¡r + ng)

Ag"-i (kr Ql2)9'tt + ng) (29. + 1) ¡g"i(kr'(Ll2)9.t)

. +(.29. + 1) ¡s "-i(kr 
(I/z)ln) ) (ll-S)

Since the wave (r)-1"-ikri, a wave moving towards

the centre and hence the scattered t{ave should not contain

any term of this type of v/ave function. Therefore,
-îng (29. + j.)¡g =.Iâ?o "t1, (29. + L) ¡" =' I

Af,= (29. +1)lg"lrg (ll-9)



SubstitutÍng this Into equation (ll-3), vre get

y= itzg*rl iL "ln¿Lr(r)Ps(cosg) 
(tt-10)

9=0

¡vhich is the sum of the incident wave and scattered l{ave

at large ¡.. From equation (t l-1), the scattered wave is

therefore obtained by substractlng the incident r¿rave

; (2g+1) lg P- (cosg) f^ ( r) from equat ion ( ¡ I -10) .
9=O Y' L

r-I uikr f(o) = (2 Ikr¡-1 ui kr x

i 
"- 

(L/2)¡i,irí (29.+1) is ("2 Irl¿ - 1) pu (ccs9)
9=0 

..

since e-(Ll2)9'níi9' = iI" cos( (t/2)øn) ¡g+1 sin( (7/2)1,ir) =

1 for al I L, therefore

f (0) = (2ik)-1 i çr+1) ( ulins 1)Ps(cos0) ( ll-11)
9=0

The total elastic cross-section

ît
Q = 2tt t lf(g)12 sinO ciO beco¡ne-.

0

^@e=k-¿htr t(29" +1)sin2n* (ll-12)
, g,=0

This nethod vras first used by Rayieigh (30). lt 
.,:.i..

was first applied to the problem of Lhe scatterlng of '' 
'

electrons by atoms by Faxén and Hol tsmark ( 20) .

The next three sections are concerned with the

numerical solution of the phase shifts and the r^,rave functions

by the difference and the non-uniform difference methods,

using only a three point approximation for the second

27
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derivative with a refinement.in the diagonal term adjusted

from the knowledge of t,he approximate solution. This

method, the author believes, is more sophisticated, faster,
and more accurate than the d^ifference method involving
more than three point,sr âs the number of storage requírements,

together with the number of operations involved, increases

many times in the latter. When .Q, is greater than zeror or
the potential term changes quite rapidly near the origin,
the non-uniform difference method is highly favoured.
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B. SOLUTÏON OF THE DIFFERENCE EQUATÏONS

As we have seen from the last chapter, the

difference equations are essentially a set of linear

simultaneous equations derived from the differential

equation. This method has been 4pplied by Robertson(22)

to calculate phase shifts without much modification to

improve the accuracy and the speed of, computation.

. For a three points approximationr .wê notice that

we only get (n-Z¡ equations from n points and therefore

two constants are necessary t,o determine a particular

solution. These are sometimes referred to as boundary

conditions. If we let the point by point ,representation

of Gg in equation (II-5) be fO, fl, , fir ... , fn+I,

we can find the particular solution for the bound.ary

conditions: fO equal to zero âsr according to Huygens'

Principle, the atom inay be regarded as the source of a

secondary wave. The other condiÈion is, that the maximum

amplitude al a large distance be equal to one.

Since the second boundary condition is very

inconvenient for the calculat,ion of the wave functionr âs

the asympotic amplitude can only be found at the end of the

computation, this means we must store up all the necessary

information. Then we must return to the very beginning

or proceed in the reverse direction, all of which involves

a series of divisions whj-ch are too time consuming. For
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exámpler wê have a hundred thousand points on the curvet

therefore, we need at least 800K bytes for storage in

double precision mode. This is three or four.times greater

than the capacity of most computers. To avoid this

difficulty, vte take advantage of the approximate solution

of equation (II-5) when r is smalI. If we differentiate
0J.1A r-'- twicer wê get

ål¿+1) _ 1,+1
-¿-at

and therefore A r [+1 is a solution of equation (]r-5)

when r is small. From some of the calculations done, A is

within a few ord.er of magnitude greater or less than one,

which, of course, also depends on the potential term. The

magnitude of A can be most conveniently found by using the

SCALTNG ROUTTNE iN thE CALCOMP PLOTTING SYSTEM Of IBM 360.

That is, f, is set equal ¡s ¡l'*1 ini-tially, and we have to
I

catculate the scaling factor of the plot of this funct,ion

section by section because of storage problem. The scaling

factor for.a large distance is used to calculate the value

of, A. The vtave function can then be plotted nicely.

The following will be a brief description of the

method used to calculate the phase shifts and, a numerical

representation of the wave function. Vüe have

fi*t fi fi fi-r

d2

- 
f . =

dx2 
L

f, i¡;2f i+ f i- t

h2

(rr-14)
h
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Equation ( I l-5) is therefore approximately equaì to a set

of n equatlons of the form

t¡-t + (-2 + k2h2 - u(r)h2 # ) f¡ + f¡*r. = 0

ill-15)
vrhere i runs f rom 1 to Iì. fO and f t are given as above.

0f ccurse the amplitude of the asymptotic v¡ave l'rill not be

exactly equal to one; but if rve vrant it to be exactly one,

the whole function can al¡ays be multiplíed bV a constant.

Equätion ( ll-15) can be rewri tten in matrïx forrn

Cr d'¿ lr

dt c^ '
3a

a
a

a
a

lo

a

a

a
a ¡

a' . cn-l dn-t

'dn-l cn

0

0

t

-¡.
a

;

-dn_1fn¡.1

f.
I

'2
a

a

a

f.n-r

n

il ¡-16)

v¡here d = 1 and .¡ = -2 + (k2 u(r) l,(g+1)/r?, )hz .

One method used to find. the phase shifts is to adjust

h until the determinant goes to zero which then implies that
fn+I also becomes zero. Therefore h(n+l) is ttre point where 

,

the wave funciion intercepts the axis and hence sin n¿ can

be found. Act,ually the determinant changes sign at that
point. rn practice this procedure is too time consuming

and we cannot find the sign nor the absolut,e magnitude of
the phase shifts



32

Instead of f inding the det,erminant r vrê proceed

directly to solve the linear equations by the Gauss

Elimination method, which is particularly easy in the

case of a tridiagonal symmetric matrix. After the

elimination process the diagonal terms usually become a

series of negative numbers ínterposed by a few positive

nurnbers. If .i is positive, that means fi and fi+t have

a different sign and, therefore, ind,icates the point, whe.re

the wave intercepts the axis. A better approximation is

that the wave intercepts t,he x-axis at the point
(i + 1,/(1+ci) )h. It, can be proved, therefore, by

considering the following diagram.

fi+I

Figure 2. DIAGRAM TO DETERMTNE THE POINT OF INTERSECTION.

We have

Therefore s =

s = l/(t + ci).

fi+t) from the díagram.

Since cifi = fi+I,
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From the number of positive diagonal terms we can

calculate the sign and the absolute magnitude of the phase

shifts without any doubt. Due to the fact that the

difference method is an approximate method., if h is not

small enough, there is occasionally a sudden "spur" of the

values of the phase shifts. This can be recognised by

plotting the values of t,he phase shifts against the values

of k and the curve should be smooth and should also tend t,o

zero for large k. However, this problem does not occur

in the non-uniform approach.

:.,1 ,.:'. j:,'':1
' .:-.. -.-::'::



C. NON-UNIFORM DTFFERENCE METHOD

In solvi-ng equation (II-5), we can see that L/r2

changes very rapidly near the origin but tapers off very

slowly. It would only be nat,ural to use a finer net near

the origin and widen the separation as we move away from

that point. Actually, the method. the author developed,

can be used. to shorten or widen any region as desired.

Although it might be used, for general matrices, the

calculations might, be too tedious to allow for fast

computation, even by the computer. For the same reason'

the change of the separation from one region to the next

should be either double or ha1f. The example shown is a

tridiagonal matrix. At each increment junction, we are

in effect having a fourth diagonal element. The problem

is to change it back to a t,ridiagonaf matrix.

The outline is as follows:

In equation (II-16), instead. of having a tridiagonal
matrixr wê have the following matrix:

34

s (1) M(2) s (2)

.a

a

s (i-1) M (i )
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To understand the difference method. thoroughly,
one must master the technique of transforming a differential
equations like (ïï-5) into a set, of difference equatíons

similar to (Ir-15). The size of h is chosen arbit,rarily.
As long as h is consÈant within a set of equat,íons, the

solut,ions can be calculated easily by Gauss Elimination
Process. T\nro sets of eguations from the same different,ial
equatíon with multíples of h can be related to each other

through the " junction t,echnique" developed by the auttror;

it is actually very simple. There is nothing unusual

about the first i equations, as the (i+1)'th equation is
just one of those equations of the form (ïI-15), except

h is double.

It, may be rewritten as

ri-r + ?z +k2 ( zÐ2 -u (r) (,2û2 
? 

) fi+r + fi+3 = o

Once we relate one block of equat,ion to the oÈher,

the others faII in line, and, it is then Just a maÈter of
performing the Gauss ELimínation Process afLer we set up

the matrix.

To save storage spâcê,r certain s1-mbo1s are used to

store enough information for the followÍ-::lg steps of
calculation. Once these steps are completed, their values

are replaced by new informati-on, usually the newly calculated

results. A simple matrix can illust,rate how tLris ís done.
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1

1D

r2o
t3o

1 0 M'

1

1D
21D

aj.

I

3o

¡q' (L) / )
-oD

I

t/
ivl I

-2o
(21 I

.3
1D

I L/ @' 11¡ *2o3o)

L M'(2) ,

The symbol D i-s used in bhe cornputer and only one

storage space is allocat,ed for alL these of f -diagonal terms,

as old values are not needed once a ne\^¡ D has been calcula-L,ed.

The same condítions appty La C2, which also lîepresents a:11

the Mt, M" and so on"



The formula for iD is therefore equal to

irl-)= -1-¡:1- =-1-a;5- L,.

C2 D M- D

37

i-1^ ioit,t - I
u:T- tD (rr.-27)

From the result, obtained after Gauss Eliminat.ion, the

effective D in the uniform difference method becomes

þ= i-lDiD=1 ioi¡¿ (rr-28)

One way of choosing how many int,ervals should be

allocated to each region is to dôub1e the separation when

the first derivative of the function decreases approximatety

by a half" A simple function such as

0.4 ExP(0.23262 x) (rr-29 )

v'ras found to be quite sat,isfactory. One restriction is
that at least three íntervals must be in each region.

For a clearer understanding of the process, one

should refer to the program given in the appendix.
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D. REFTNEMENT OF THE METHOD

If the method r¡rere exact, t,he phase shift should be

zero in tlre case where there is no potential term. Instead

it was found that there is a positive þhase shift roughly

equal to n (nl<)2/r where n is the number of half-waves from

the origin. In order to check the calculation, we set

fi_t = sin (k (x-h) )

fi = sin (kx)

fi*I = sin (k (x+h) )

( rr-17 )

sl_n kx-kh)
Therefore,

-2 2

L

sin (kx+kh) sin (kx) ) - sin (kx

= 2sin (kx) cos (kh) - 2sin (kx)
2

h

= (4sin2 (kln/z') ) /h2

As hk t,ends to zer.o, (4sin2 (kjn/z) /nZ)

(rr-18 )

tends to

¡2y2¡¡2 = k2" Since the sine of an angle is always smaller

than the angle itself, therefore a positive phase shift

will result tt *2n2 is used insÈead of 4sin2 (kjn/2) ín

equation (II-15) because the smaller the k, the bigger

the wave length is.
After that substitut,ion, another error is due to the

precision of the computer. In the case where 9" - 0, hk =

I x 1O-4, the phase shift st,arts from 0.936 x 19-10

increasing steadily and the value at 200 waves from the
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origin becomes 0.38 x 1O-7. This may be explained by the

fact that IBM 360 double precision numbers have fift'een to

sixteen significant figures, but ùhe number of effective

significant figures of n2l<2 after adding.-2 will be reduced

to seven or eight, and hence the estimated error in the

phase shift will be of the order of L0-7 to 10-8. However,

for hk ten times bigger r wê have a stat,istical error of
+ 10-9 and sometimes even t 10-10. This error is probably

due to the straight line approximation in finding the

intercept on the x-axis as described previously. Anyway'

the non-uniform difference meÈhod described in the last

section can get around this problem because only a very

small region will have a very small hk value.

. For .C not equal to zero, the phase shift tends to

zero extremely slow1y. For example, for 9" - 1, the phase

shift at 200 wavelengths from the origin is still in the

order of 10-4. Even the non-uniform method is ineffecti-ve 
,

in this case. However, there are three \^Iays to solve the

problem, namely by graphical extrapolation is one vlay, and

a power fit caLculation ís another. Finally, it is considered

that by finding the theoretical correct,ion by integration

is superior to both.

When k2 .r

where r is the distance from the origin,



40

because

il r-20)

, Sínce the first order correction of the phase shíft
g _lf1.. L

¿'6- = -5--å x-L 7Í r radians
E

r.rhere k'= k 9,(9¡Ð/(2kr2).

( I t-21)

Therefore o'ô, = l( g+1) n/ (2k2rz) radt ans ( I l-22)

'( | l -23)

v¡here N is the number of half-waves from the origin plus

l.l2 9". The sum of the the f irst order correct ions

t A,ô-= I g(¿+11 a* = - ¿.I-Lll-l- "'.,:;.,'.,,.;:.,;'e. 
N 2rN2 2¡rt{ (lt-24)

':.: : .:..

The sum of the second order corrections can be :::

obtained similarly in noticlng that

k"=k -#-foc #r' (rr-zs)
, ' ,'t.,r.¡t.

f, Â,,ô^ = 
ti (t(t+Ð)2 = - (r,(¿+t))2 (l l-26)

' N 8n3Na 24¡3Na

Similarly, for a polarization term of s/rarthe sum of

the first order corrections is kzsl (6n3N3). ( l l-26)

bk2
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E. ELECTRON SCATTERING OF KRYPTON

Holtzmark (20) used a Hartree potential with
polarization to carculate the phase shifts in the electron
scattering of krypton. He used the method of numerical

integration without a comput,er; therefore we cannot expect

the calculation to be very accurate. Instead of just a

forty point representation used by Holtzmark, the potential
used here is a polynomial funct,ion. A polynomial regression

program was used, but it, was found that it had to be applied

to at least four sections of t,he pot,ential function in order

to have a curve fitting reasonably well with atl the points.

The effect of a small change (108) in the

polarization on the calculat,ion of the phase shifts and

hence the total cross-sections was studied. The results
!{ere plotted on Page 43. It was found that the greater

polarizat.ion had a better result near the point of maximum

total cross-section, and the smaller polarizat,ion at higher

energy. This suggests that, if the asymptotic potential
decreases faster than a constant times t-4, there may be

results closer to the experiment,al values.

The angular dist,ributions of electrons scattered.

elastically by krypton atoms were calcuLat,ed for elecÈrons

of energy between 0.1 a.u. and 1.5 a.u. The method. used

will be found in the following page.



1. ÂIIGULAR D ISTR I 3UT ION

From equat ion ( I | -Ll) , the scatter i ng cross-sect ion

@

ds(9) = 3I ¡ (2e. + 1) sin2ôo (p*(cos0))2 stn0 do ilt-30)
k2g =0

The Legendre polynomials Pr(cos0) can be calculated by the

recursive formuJa (26)

(n+L) Pn*1(x) = (2n+1.) Pn(x) x nPn-r(x) (lt-51)

The total cross-section o(g) = i do(o) ( ll-t:¿)
0

For large 9,, sintôg is very smalì. For example,

the total cross-section does not increase more than LZ

i n summi ng over f rom .C=0 to l,=9 i ns teacl of to g.=4 
u

The scattered intensity per unit sol id angle can

be obtained by dlviding equation ( I l-30) by 0,5sin0d0.

The resul ts vrere plotte,C"
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Figure 3.

TOTAL CALCULATED ELASTIC CROSS-SECTTONS

FOR ELECTRON-KRYPTON SCATTERING AND THE

EXPERTMENTALLY OBSERVED TOTAL CROSS-SECTTONS.

O greater potarizat,ion = 22.0 r-4
x smaller polarization = 20.O r-4

- 
experimental
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Fígure 4.

SCATTERED ELAST I.CALLY BY KRYP .
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F" DISCUSSTON

l{ith a computer t,hat, can handle double precision

numbers, seven to ten significant figures for the phase

shift may be obtained through this improved version of

the finite-difference method. It was found that the

values of the phase shifts calculated by this method

agree very well with those that appear on a standard

text (31) " Only in two cases did the values show a

difference equal to fi. If the crit,erion is that the

phase shift should tend to zero as the velocity, and hence

k, tends to infinity, t,he result,s calculated by this method

are justified.

If the potential ís simple enough, a program can

be written for the Hewlett-Packard desk computer, which is

capable of performing about one thousand cycles per minute

in the Gauss Eliminat,ion Process for a spherical potential

well "

A ten per cents change in the polarization potential

results in a remarkable change in the calculated total

scattering cross-sections of krypton. Therefore, if the

potential is not exactly known, it is not easy to make a

direct comparison with other methods. However, Holtzmark

did not expect more than three significant figures in his

results while Robinson claimed to have three to fíve

sígnificant figures. It is believed that thís method should

be superior in both respects of computer time and accuracy"
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The problem we have solved is the determinatíon of

the phase shifts from a gíven differential- equation, such

as a Schrödinger's equation, with a given known v(r) in

our scattering problem. The inverse of .the'problem is

commonly encountered in the field of nuclear colLisions

where the interaction law V(r1-r2) between two colliding

particles is not known from first principles. Although a

method was described by lrlu and Ohmura (ZZ¡ , î-s lzet 'the

usefulness of the method as a criterion for ascertaining

rtg and V(r), they said, is rather limited. The obvious

procedure to check the V(r) is to calculate the phase shifts

from the potential found by their method

Of course, one can resort to the numerical

integration of the Schrödinger's equationr or some

,approximate methods, such as tLre Born approximation or the

Variational methods. However, the difference method is

very attractive because it is straightforward in principle

and the accuracy can be increased readily by a finer mesh-

SIZE.

Recently, some work has been done to find a better

polarization potential through the calculation of phase

shifts (33). Therefore, this method ís also useful in this

area.



CHAPTER IV

TRAT'IS IT IO¡I PIIOBAB I t ITY AND THE

T II',IE .DEPENDEI'IT SCHRöD I ITGER EOUAT I OI.¡. 
*

* The i-deas in this chapter are cssentíally thosc ot

I^7a11ace(34). Tire autÌror vras primariry concerned rvíth

the calcutat,ions.
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A. S-I'IATR IX THEORY

¡ña x lV (r)><V ctllv (t))
âtj i j e

¡10 x l,r,(t)><ú:(t)lY;(t))+ t-."J 'J Jjj

(lll-4)

vlú¡ (t)><úi (r) I Ye(r)>'JJ

i.r':.:.'. - i:a-.: 1..:

48

The time dependent Schrödinger equation,

^H y(r) = ¡ñ 3_ y(r)
ar

ln ? lYe(r)> = (Ho + v) lYe(ri>
at

C..-^-J!-- t- !-',--^ -,Ê l^r- -¡! ^C -¡q--nl^+!¡te\yclltL¡rt¡è; tr¡ LEtirr> (r¡ u u\rlr¡PIELE >c! \.rl c¡>y¡lúPLvg¡r-

1= [ l,p,><V;l
JJ

(r¡r-1)

iltt-?)

( | il-5)

( | | l:'6)

r,¡l th appropr iate Hanri I ton ian operator H can be appl i eci to

electrons, atoms and many other systems, where relativistic
effectsarenot signif icant. One v¡ay of solving it is to

break up the l'lanil tonÎan operator into an asymptotic part,

Ho, whose eigenstates are rveì I knoln and a ttperturbai iontl

part, V, r¡¡hich is usualìy the potential. Therefore,

-å^5^ê:i çU 9çJ

il il-5)

<P¡

H0

. . lh a r c
ar i j

Putting

we have

¡n.r å,t.)lüi(t)>
JJj

(t)lYe(t)> = c;(t) ,

; 
c., (t) új(t)=,r 6o cr(t)uj(t)

(t)lrl.(r)> = [ Eo",(t)lU,(r)>+'J i J 'J

= f, V lr¡.(t)> c,(t)
. .'J 

J
J

vlU;(t)c.(t);

ilil-7)
il ¡l-8)
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a

¡n c, (t) =K
c,(t) <ìr',(t)
Jr\
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(ill-9)

( | | r-r.0)

dt

dt

(|il-11)

dt

il l l-12)

i ntegra I ,

illr-13)

illl-1h)

by apply¡ng the

L

J

lvlu.¡ (t))

cO(t)=co(to)+(¡ñ)-1
t

t I c, (t)(rP,,(t)
j rt '' --- r\

tn+L

{ c,(t)(rfO(t)
Ln

lvlü;(t))dr

The evaluation of cO(t) by the flnite difference

method is easily derived by partltioning the tinre

integrat íon i nto sect ions ,

"k( 
tn*L) = (¡ñ)-1

; i:", 
(t) (üo(tr I v | ú.¡ (t))

cr(traük(t)lvlUrC.l>_1+ (iñ) * r
j

lvlü¡(t))

+ co(to)

"¡(tn*1) = co(to)
tn*1
t
to

Employi ng the fi rst approximation to the

we obta i n

tç \ - ^ (t )tkttn+L' - "k n

In matrix form, this reads
-1c(t + ôt) = c(t) + (¡n) ^ ôt D(t)

(¡h)-1 ôr q(r))

+ (¡ñ)-1 ôr x cr(rn)<{,k(tnllvlU.¡ (tn)>
j

c(t + 6t) = ( I +

c(t)

c(t)

A better approximation can be made

Simpson Three Point Rule

a(tn*r) = a(tn) + (a(rn) + ka(tn*r) + a(tn+2))6trt, 
ll_15)



after the first two ïnitial points.

Normal i zat ion at each cycl e i s actual I y not

necessary because the process of norrnal izat ion is a

multiplication of a constant to a vector and the product

of ê series of ccnstants is still a constant, and hence

normal ization can be done wherever chosen.

50
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B. TRANS IT IOII PROBAB I L ITY

The ,runrition probabil ity from a given initial
state li> of the system to a g¡v_en'final state lf> per

unit tinle can be def ined as

w,.-(t) = l<flu(r,r )l¡>12 (il¡-16)
l')r 0

vrhere U(t, t^) is the evolution operator def lned by the
U

rel at i on
¡Y(t)) = U(t,t0)lY(tO)> (lll-17)

Therefore the transition probabi I ity can be calculated ¡f
we can solve the time dependent Schrödinger equation ïn

the chosen re.presentation.

The conventicnal perturbation series approach to

the problern can be found in a number of texts (35r36,32).

U(trt,.,) is expanded as an infinite series.-U

u(t, ro) = uo ( r, ao) *nl, un( r, ro) ( r | | -18)

u¡here ñ
un{t,tn) = (¡n)-1 f d1n.... drr { (tll-19)

t)Tn)"... )to ¿

U0 (tr.n) V(tn) UO ( tnr rn-1)r o c c UO (r, t0) ]

The trans i t Ion ampl i tude then becomes

(flu(t,to)l¡> = i <f¡un(r,r0)l¡> ilil-20)

In practîce, only the first feyr terms may be

retained, resul ting in an approxinrate formula r.¡hich ls only

val id for short tlmes" Even ¡f one retalns only the fi rst
nonvanishing term, the resultlne expression is not necessarily

slmple since it mai- involve second and hlgher order terms
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surnnri ng over compl ete states of operator products .

Horvever, the f inite difference method approach eì iminates

inuch of thls ci¡ff iculty.
I

As usual, lY(t)> may be expanded in terms of some

complete set of orthonormal basis functions:-

The Schrödinger equation reduces to the following well known

equation for the coeff icients a(t),

lY(r)) = -E 
ar(t) loj(r)>

da. (t)
tH ãE* = i 

a-(t) vk.(r)

where Unj(.) = a*k(t) lVl0j(t)>

(0r(t) | V(t)> = (Õr(t) lU(t, tO)

<or( r.) lu(t, tol I oi (ro))

( il r-21)

( I ll-22)

(¡il-23)

lv(t0)> (l¡l-21+)

il il-25)
ar(t)

then ar( t)
if the initial state l¡> = lV(t0)> = 10.(t0)> .

Evaluation of the time dependent coefficients, i.e. solution

of the set of equations (lll-22), is therefore completeìy

equ'ivalent to calculating the complete transition anplitude.

The method of solving this set of equations was

already given in the last sect¡on on S-matrix theory. By

considerins the perturbatlon series approach to the two-

level system, 'the two methods can be compared. In this case

equatlons (l | | -22) become

(¡ñ) +tt] = u1(t)vl1(t) * az(t)v12(t)
dr

da2(t)(¡n) ãf- = ar(t)V21(r) + a2(t)V22(t)

(|il-26)
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lf the initlal states

da., ( t)
( ¡ñ) dr

(¡ñ) 
da'(t) 

-
dr

are ar(tO) = l, ar(tO) =0,

v11(r)

v (r)
2L

After rearranging and integrating,

ill t-27)

( lr r-28)

il il -28b)

a1(r) = 1 + (¡ñ)-1 Ïvrr(t)dtr0

t
r
t

Vr, (r) dr¡h)-1ar(t) = (

These are

which is only vel

a- (t). H6r¡-rsr-rg¡,-L'-"
any value of uZ(

the first order perturbation êXptession

id vrhen a^(t) is negl ieible as compared to
¿

the f inite d!ffc:'encc nethcd is val id fc:"

t).
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1. RA|'IAN SCATTER lltG

The second order expression for the transition
probabi I ity for raman scatterlng was glven by l¡lal lace (se)

( 39) as fo I I or.rs:

wz (r) = R-tt I

l+Í

Vf,(or) Vv¡(r,rr)x{
(¡) + üJ¿ --vi

Vtu(o, ) Vu¡ (rr)
(¡il-29)

) lf(t,or)(¡) I 0., iI "r

where'in this case ol = (dcr + û). + ora oII L ¿"

For the sake of comparison, only one ter¡n will be,

retained in the summatíon over intermediate states, thus the

process might be represented diaerarìlnatlcal Iy as fol lo,,^rs,

= 200

= 50f

E¡ = o

Fleure5. W

the energy levels shorvn being conveniently chosen. Puttlng

V.^. = V.-, = ß, ll = lr. then we haverv vl

V

f
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w(2, (r) = 8,,i*f

D=
E

11 +-
200+oz 200 +urr

f ( t, o') (lll-50a)

ln order to have energy conservet lon, (rrrr- t:, ) shoul d be

equal to (Ef -E¡). ttf th $ = 0.2, û)¡ = -195, and o2 = L\5,

*l2l (r) = 0.00006612 (¡ll-3ob)"l*f

The plot of thi s funct ion rvi I I be compared vrith the

transition probabi I ity calculated by the difference nnethod

vlhe r e
v(t) = ya"ior,t + yß"lorrt (tll-3L)

The p-matrix is then

: o vTu"Í(tur-t':u¡)t

. o vlu"l (or-ou¡) t

vTl ulttu¡ *4t 
"'uTr"i 

("'rut+art ) t 
0

0 0 Vl 
"l(to2-uru¡)tiv

VB "i("rz-ou¡)toofv

Vß el (tru¡ +r,¡z ) t Vß -"i 
(uru¡+urz) t 

0vi vf

+

il il-32)

where, as before, we have assumed that h = 1. etc" lfhen we used

the same data as the perturbation treatment, the transition
probability r{as found to be smaller and the difference lvidened

as tlme proceeded"

If ur, * ,.r. = 0, resonance raman scattering(aZ\
a

occurs. The program for the resonance raman scattering is

given in tl" appendix

'::.._-.-:-
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FIGURE 6.

ïRANS tT l0ri PR0BAB I U T I ES F0R 0Rp I NARY

RAI'{AN SCÁTTER I¡.IG
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FIGURE 7

TIÍ\{E DEPENDEI.ICE OF OCCUPATIOi'! PROBABILITIES FOR STATES

¡NVOLVED IN RESONANCE RA¡lAN SCATTER ING.
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C. DISCUSSION

The calculation of transition probabilities in a

finite_difference form has an advantage over its alternative 
,.,.,,,.,::.

perturbation-series approach" The formal expression has to ',.',' 
'

be truncated at the first relevant non-vanishing term of

the series in order to apply it in practice. It is fairly 
:.., .

satisfactory.for some simple cases but it cannot adequately'. ,,,' ',i

describe important cases such as Lhe amplitude for a low- 
,:.,,...,,;;,,,,;,,,,_,

energy collision, single and multiple resonances. A'further

disadvantage is that the calculated transition amplitudes

are not ordinarily unitary

The method described does not have these disadriantages.

One of advantages is that the corresponding equations are

equivalent to the corresponding perturbation-series

expressions, but sums rather than products of operators are

involvedo and thereby, the computation time required is

greatly reduced. Ho\nrever, analytic expressions cannot be :, ' :

written for the transiti-on amplitudes. .,',
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We have seen in the last few chapters that the

finite-d.ifference method has been successfully applied

to solve some interesting problems'involving i

Schrödingeros equat,ion. Almost, alwaysr.whenever the

solution of differential equat,ions is required, this
method can be used with certain mod.ifications. It has

been used quite often in the past, and, it, will be even

more frequently used in the future, if the comput,er

becomes more efficient and less expensive.

It should be very interesting to calculate the

eigenvalues and eigenfunctions of t,he hydrogen atom and

other systems and plot the electron density out on a

three-dimensional net by the method described in Chapter II"
It would be more st,raightforward, than the welL-known method

of separation of the Schrödinger's equation in spherical
polar co-ordinates, involving spherical harmonic functions"

Dynamic potentials obtained by method.s similar to

that of Corrigall, Kupperu and Wallace(40) may be used in
phaseshifÈ calculations. The validity of their method may

be checked or improved by comparing t,he total cross-sections

calculated and the experimental values"

It should be relat,ively simple to apply the

nonperturbati¡¡e approach t,o more complicated systems " It
is a matter of evaluating more terms in the matrix.

Much of the work has been done in the direct,ion

of reducing storage requirements and manipulat,ion steps.
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The three-dimensional problem may be solved through the

guide-Iine of Gordon(5) or the use ,of eikonal approximat,ion

of Chen and Vtat,son(41). However, these method.s t,end to

destroy the simplicity of the finite-dífference approach"
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& = Bk Ar-r

of

8T

^ (k-r.)
coso * uii sino =

sino + a(k-1) cosg =rq

coszo*za(k-L)cosopq

sin2e-2a(k-l)cos0
-Pq

"(k-1)).oro sinopp

{l-26)
the three matrices ¿

( t-27)

) ¡ f Þre (l-28)

a(k-1) sin20qq

a(k-1) cost0qg

(cos2o - sin2e)

i:;..]¡1lri:::i:i:it;:i:;-1:::::r:r,:ij:+i:Liiiii
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The ..iacobl rnethod (1846) can only be appì iecl to reaì

symmetrlc matrices. The process is sirnpty doing a series of

matrix multipl lcations try ä certain matrix on one sïde and

Its transpose on the other side until the off-diagonal

elements become negl iglbly smal l. The rnatrix is slrnply

aa .
¡

a
o.. 0

.. n

0
a

I
0

0
o

0

0

p

0
a

0

cos 0

q.

9?
00
0 sin 0

Qo r
a

Qo.

tr.

k= aa

oo

to

aa

000
000

0 -sin
000
aao

aaa

aaa

100
a

a

^trur0
0 0 0 cosO

000
o1 aa

aaa

aaa

(k)
api

u(l)ql

sin0 +

sin0 +

* u(k-1)pq

Qr.

$r.

Qo.

1
.¡

a

After multipl Ication

k (k-1)
ô¡p = "ip

"l =-" Í k-1 )
rq tp

^k ^(k-1)øctpp pp

ak = a(k-1)qq pp

uk = (a(k-1)pq qq

k
u ttP

( r-2e)
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cer to set "55' equal to zera. the fot lorri ns

relatlonshlp must hold

rane o -(l'.-L) tra!r-l) - "!f-t) ) il-30)opq ''"pp "qq
Ît _L) _where tel nrust be less than or equal to 1114. lf .;;

a(k-l) , 0 must be equal to !¡/4 aceordlng to the sign of
qq

a(k-l) , R. matr¡x and its transpose can therefore be
pq

determ i ned o

By squaring both sicles of equation ( l-28), one can

eas i I y prove that the su¡n of the squares of the of f -cl i agonal

el ements excl ud i ng the ( p, q ) and (q, p) el enents rena t" ns

constant ":5' = uå5' = 0 ancl therefore there is a net

decrease in the sun of the ssuares of all the off-dìaconal

el enlents. Af ter many cycl es the off-d i agona I terms rvi ì 1 be

be very smal ì.
The ei genf u.nct ion can be found by subtract i ng E h2

to each of the diagonal ternns in ( t-25) anC then rjo a Gauss

elimination.r+ith u1 equal to an'arbitrary constant.
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PROGRÀM TI-i

ENERGY OF ÎITE HAzu"fOÌ{IC OSCTLLITTOR
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c
C THIS PROGP¿,M CATCULATES THE KINETIC A}iD POTENTIAL
C ENERGY OF AN HARI'ÍONIC OSCTLLATOR T.THEN THE WAVE
C FUNCTTON Ts GI\rEN. THE ¡,IETHOD IS GAUSS BACKWARD
C INTERPOLATION ÀND THEN SUI4¡,IATTON OVER ALL THE POINTS.
c

IMPLICIT REAL*8 (A-H,O-Z)
DrliENSroN x(803) ,s (803) ,FDrn(803) ,SDER(e03)
GAUSS (H,A,B, C r D) = ( 0.16 66666666666667D+0 0*.4, -B

1 -¡'0.5D*00*c +0. 3333333333333333D+00*Ð) -H
L FORMAT(15,Fl5.10)
? FORMAT (10X, r5, 6Fl5. 10)

A =0.31415926535897gD+Ol** (_0.25D+00)
READ(5,1) N,DELTAD
DO 40 M=i,3
DH=O . 5Ð+00 *ÐELTAD' 
D=_DELTÀD* (N+1) /0.2D+OL
DI=0. 1D+01,/DELTAD
SUIIKE=0.0D+00
SUTYPE=0.0D+00
DO 10 I=1,3
D=D*DELTAD
x (l) =o

Ì"Ð Í (I) =A*oEXP ( -D*D*O';EÐ+€0)
W2=y ( 1)
I.¡3=y ( 2 )
hr4=T(3) :

DO 20 Í.=4,6
D=D+DELTAD
X(I) =P
tùl=!{2
I{2=W3
lil3=W4
!{4=A*DEXP ( -D*D* 0 . 5D+0 0 )' r(I) =W4

20 FDER(I-1) =GAUSS (DI,t{1 ,W2,lvt3,y¡4¡
U2=FDER ( 3)
U3=FDER ( 4 )
U4=FDER ( 5 )
DO 30 I=7,N
D=D*DEI,TAD
X(I) =P
W1=l{2
W2=W3
W3=W4
W4=A*DEXP ( -D:f D* 0 . 5D+0 0 )
f ( I) =144
FDER (I-1) =GAUSS (DI,WI ,W2 ,W3 ,9147
il=T-2
Ul=U2
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U3=U4
U4=FDER( I-1)
HOLD=GAUSS ( DI , Ul ,[JZ ,tJ3 ,tJ4l
SDER (¡) =gOf,O
SUl,lKE= S UlfK E -W 2 * HOLD * Dif
sUMPE=SUÌ'4"P8+X ( J ) *X ( J ) *I^i2 *W2 *DH
t{RITE (6,2) J,X (J} , y (J) ,FDER(J) ,SDER(J) ,SUMKE,SUMPE

30 CONTINUE
DELTAD=DELTAD* 0 . 5D+0 0

40 CONTII.¡UE
C¡\LL EXIT
END
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PHASESHIFTS AND IIAVEFUNCTION I,IITH PLOT



c
c
c

.. r ,: ::t :-:, ::

68

PROGRAM TO CALCULATE PHAS ESH I FTS AND I'JAVEFUNCT I ON

REAL*8 K,ÐK,H, P,R,cL,C2,D, DlAG, P|, LS,c,H0LD, LSCR,SINcL
REAL*8 DSQRT, DFL0/1.T, DS lN, DS lGN, NHFI'J, HK, LS0P, HFL, HAFP lL
REAL*8 POT,IJAVEFN
DII.lENSION DATAD(7)
D¡MENSION IBUF(1OOO)
COI',IMON P I , HFL, LSOP, HAFP I L, C, D, LS, H, P, K, WAVEFN,

1 XARRAY( 1002), YARRAY (1002), L, NR

1 FORI'îAT( | 1, F9.4, Fl0.6 ,l|2,tL8.10, 110, Fl0 .2tF!0.5 )

2 F0RIîAT(r0,r/r!'Xrt l- = 
"l2rt 

R = rrF9.l+r/rlsx,
1r tNcREt,iENT oF Kt,F1o.6,/,!5x,
2 ¡ t¡uMgER 0F lNcREt,lENÏ 0F K ' ,12, / ,15X,
, I INCREI4ENT 0F DTSTANCE H = ,,D19.10,/,!SX,
T} t NUI¿BER OF IIITERVAL 1N LAST REGIOI'¡ =I,I1O,/,
5l5X, IAPPROXIIIATE NUi'iBER OF HALF-}IAVES DESIRED IN 

"6rFlRST REGI0¡ =¡,F10.2)
3 FORI{AT (/,L5X,t K =t ,F10.5, I SEPARAT l0l'l H =t ,Ð20.10)
¡r F0R14AT ( t1"7(/),i5X, I SEPARATt0l''l =t,DZC.!2, /,!5X.

1 | t¡ut¡gER 0F NoNUN I F0Rf'r INTERVALS = r, I L0 . / ,!5x,
2t ( L* L+L ) *H*H/ ( R* R) =t ,D20 .L2, / ,LsX,
3r fl*fi*(*( =t ,020.1 2 )

5 FORI,IAT( t0 t, / /,20X, I Dl srAi'¡cEt, 10x, r!'JAVENUI4BËRr, 8X,
1I PHASESH I FT I )

FoRI4AT ( t 1 t, 7 ( / ), LsX.,7 A4)
P | =0 .3LUL59 26555 89 7 95 D+0 1
cALL PLoTS ( | BUF, 1000 )
CALL PL0T (0.0, 3.0, -3)
READ (5 rL, El'lD=60 ) L, K, DK, I'lKrf{' N, l'¡HFl^lrt''lAVEFN
CALL $DATE( DATAD)
LtRITE(6,6) DATAD
bJR I T E(6-, 2) L, K, DK, NK, H, N, NH FI^'

Lg=!*!+!
HFL=0.50+00* L
LS0P=0.5D+00* LS/ P I

HAFPIL=0.50+00*Pl*L
HK=H
D0 k0 l'1=1, NK
CALL $DATE(DATAD)
}IRITE(6,6) DATAD
¡tRlTE(6,5) K,H
¡{RITE(6,5)
P=0 . 0D+0 0
C=0.00+00
D=0.00+00
N2=10
WAVEFN=-I.JAVtFN* ( H* K) * * ( L +l) /

I ( -0. 2!+Q!+þl*H* K*K-LS+PoT (H) *H*H)
NR= I
XARRAY(1)=0.0

10
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YARRAY ( I ) =SNGL ( I'JAV EFN )
cALL PLoT(9.o,o.o,-5)
XARRAY ( 100 1) =0. 0

XARRAY(1002)=L.5
YARRAY(1001)=-1.ü
YARRAY ( 10 0 2) =0 .25
t,.lRf T E(6, 7 ) XARRAY ( 10 0 1 ), XARRAY ( 10 0?),YARR¡\Y ( 10 0 i ), Y11.l{RAY ( 100 2 )

7 F0Rþ1AT ( t SCAL ING FACT0Rt , 4Ei 7 .!0 )

cALL AXIS(0.0,0.0, f DISTANCE lN ¿\T0tllc UNITSI,
)
8.0r90.0,

LYARRAY ( 1oo 1 ), YARRAY ( 1002 ) )
CALL AX lS( 0.b, k.0, lH,-!,9. 0, 0. 0,XA.RRAY(1001),XARRAY(1002) i
CALL AX I S( 0. 0, 8. 0,1H,rL,6.0, 0'0,XARRAY(1001),XARIìAY(1002) )

cALL GAUSSE ( N2, &5 0 )
D0 20 l=8,1000
IF ( P .GT. NHFW) GO TO 30
S I NCL=DS I N ( 0 . 5D*.00"H* K)
S tNCL=0. 4D+û 1*S I NCL*S I t'lCL
D=0. 1D+01-D* ( -0 . 2Ct+01+S I NCL-LS/ ( C'tC) )
H=0 . 2D+0 1*H
C= ( C-0 . 1D+01 ) / 0 . 2D+01
N2= ! NT( 0. 4* EXP( 0 . 23262* | ) ) +L
CALL GAUSSE(N2,¿{50)

^ ^ ^^il+¿U t,Ul\ ¡ | l\U Ë

3O CONT ¡ NU E

D IAG=H*ll*- K* K

N2= t D tNT( 0. ID+00*DEX p(0 .2326ZD+00* | ) / 0.232620+00 )
LS0R= LS/ ( C* C)
l'IRITE(6, l¡) H, f{2, LS0R, Dl AG
K=K+DK
H=HK

l$0 CONT INUE
5û G0 T0 iû
60 cALL PLoT ( 20 . 0, 0. 0, 999 )

CALL EX IT
END

WHEN THE l,ÍAVE FUNCT l0N CR0SS
ELEþ1ENT CHANGES S IGN AND THE
CALCU LAT ED .

SUBROUT I NE GAUSSE (14, * ¡
REAL* 8 C,D, H, D lAG, LS ,P rR, SH I FT "P | , 

C2 rY,., LS0R, HS, HAFP I L
REAL*8 S INCL, C0RVA.L, HFL, DFL0AT, DSQRT, DS ¡l'!, P0T,l''lAVEFll
COI,4I4OI.I P I, HFL, LSOR, HAFP I L, C,D,LS, H, P, K,þI¡\VEFN,

1. XARRAY( lOO 2),Y ARRAY( 1OO2), L, NR
1 FoRI'1AT ( 15X ,D20.1 0, 8X , F5 .A,D20 . 10 )
2 FORI"IAT( t 1 

" 
7 (/ ),20X, I Dl STAI,¡CEr,1 0X, tt{AVEI'IUMBERr, 8X,

L-2t+,6. 0, 0. 0, XARRAY ( 1001), XARRAY ( 1002 )

cALL AXIS(0.0, 0.0, ¡I'IAVE FUNCTl0N"tSn

c
c
c
c
c
c

THE AX¡S, THE DIAGONAL
SH IFT CAI'¡ THUS BE
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lIPHASESH¡FTI)
7 FORT4AT ( ' SCAL I llG FACT0R 

" 
k E17 . L0 )

HS=H-l-l
S I NCL=DS I N ( 0.5 D+00 *H* K)
s INCL=0.,r0+01*S INCL*S ¡NCL
D0 50 l=1rl'1 -::'..;ì:

C=C+Q.! D+01 ::::::,:

R=C*H
C2=-0 . 2D+0 1 -D+S I llCL-LS/ ( Ct C) + POT ( R ) *l'iS
D=0.[ Ð+01/ Cz
l{AVEFN=-C2*IJAVEFN
NR=NR+ I . .- .:
XARRAY ( llR) =SNGL ( R) :r"1":'

..:::: I

YARRAY ( l'l R) =SNGL ( rrJAV EFN )
lF (NR .LT. 1000) G0 T0 10 1--, ,

'F(R.GT. 
10.0) RETURN 1 't"":.'''.

cALL SCALE(YARRAY,8. o,1000, L)
tlr,Rl TE ( 6, 7 ) YARRAY ( 1C01) , \'ARRAY ( 100 2 )
cALL L il..lE(XARRAY, YARRAY, 10C0, 1, 0, 0 }
NR= L
XARRAY ( 1 ) =XARRAY ( 1000 )
YARRAY ( I ) =YARRA.Y ( 100 0 )

10 f F(c2) 50,29,Ç)0
60 P=P+0. LD+01

ñ-lÀr^ tñrô1 lf 
^ 

tn.^t.^ô\1.lr
ri=\\r?Ú o ÀtrtU¿/ \ U o J.¡.lrV¡ì'{¿¿ I t't-I
SH I FT=p | *P+IJAFP I L-K*' R

CORVAL= LS OR/ ( P+HF L )
CORVAL=CORVAL+COiìVAL* CORVA.L/ ( O . 6D+O 1* P I * ( P+HFL ) )
SHIFT=SHIFT-C0RVAL
lF (P .Eq. 1.2D+01) RETURN 1
t¡lRlTE(6, 1) R, P,SH I FT

50 CONT I NUE
:-' ..:.:.:.: -.,2A RETURN ¡1;.:;:¡,

EI'¡D
REAL FUNCT I 0N P0T*8( R) : ; :

REAL*8 R 
Yt't' 

t'"'t''"'.
'.: - lP0T=0. 0D+00

RETUR,N
END
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c
C MAIN PROGRÀ*\'Î TO CALCULÄTE PH¡\SESIIIFTS 0F f.RYPT0N

c
REAL*B C,D.H, NIIFVI, LS,P, R' SHIFT,PT,Cz,K,LSOR'I]S, H¡\FPTL
REAL*8 SI.\CL, IIFL, POT'HK, DK
DIì.{ENSION DATAD (7)
CO¡1[lON PI, HFL, LSOP., HAFPIL, C, D, LS, H n P, K, Ì']HFI\Î' R, HS, SII¡CL, L

l- FORI'IAT(FI0.4,f-2,Ð18.10,F10.5) '.r':-"':
2 FOR¡I¡-T(r1,FI0.5)

3 FORIU.ÀT (/,J-5]l1.,' K =t,F10.5, I SEPARATTON H =t ,D20.IC)
4 FOR¡"ÍÂT (/ ,TsX,' LAST SEPAPG,TION =, ,D20.L2, / ,!5X,

1 I NUMBER OF NO}¡LT]IF'OR}.1 INTERVALS =I,T'IO)
5 F'ORMAT (/ ,20X, t DISTÀNCE t ,10X, rVJÀI¿'XNUI:IBERr ,8X,

lIPHASESHTFTI )

6 FORMÀT('l', 5(/) ,l-5)i, 7A4,10X, rL = ' ,:':2) ""''''
CALL ERRSET ( 2OB, 999, -1, 1)
PI=0.31 4I592653589793D+01 .: ..

10,PSAD(5,1,8ND=60) K,NK,I{ -'"'.
HK=H
CATL $DATE(DATAD)
DO 40 M=I,NK
READ (5,2) L,NHFtr.T
LS=L*L*L
HFL=o.5D+00*L
LSOR=O.5D+0 O*LS/PI
HAFPIL=O .5D+00*'PI*L
ï{RITE ($,f') }.LTÀD,L :

rfP-rT:(6,3) K,H :

rdRrrE(6,5)
P=0.0D+CC
C=0.0D+00
D=0.0Ð+C0
N2=I0
cALt GAüSSE (lT2 , &3 0)
DO 20 I=8,1000 i't'"'.¡"."',
D=0.1D+01-D* (-0. 2D+0I+SINCL-LS,/ (C*C) +pOT (R.) *HS) 

,

H=0.2D+01*H :,i:.,:'. ..

c= (c-0 .1D+01 ) /a .2D+0I :::' ' 
'' ''

N2=IllT (0. 4*E::P (0. 2 3 2t 2*T) ) +1
CALL GAtiSSE (lr2 , &3 0)

20 CO},ITINUE
30 N2=IDI¡¡T (0 .4D+0O*DE:.P ( 0. 23 2í,2D+00*I) /0.23262D+0C)

vtRrrE (6 ,4) H, N2
t..--- . ...-,'_'. -H=HK i'.-..,.,,.-,','

40 CONTINUE
50 co ro 10
60 CaIl EiiIT

END
c
c
C IVHEN TI{E tr^¡A\.'5 FÏ])]CTIOI'I CROSS THE A:{IS, THE DIÀGONAL
C ELIIT"IENT CHANGES SIG}J Aì'lD T}iE SIITFT CA}T TTIUS 3E
C CATCULÀTED. .

7t
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sutsRourrNE GAtissE (1.1, * )

REAI* I C n f), H, l'IIIf tI, LS, P, R, SIIT FT, P Í., C2, K, LSOF.' iIS' HAFPÏL. REAI,*8 SII.:CL'COFI\'¿.L,HFL,POT
CO}U.ION PI . HFL, LS OP., IJP,i F I L, C, D . LS, i{, P,T., }'JTJF!.1, R' iIS' S TNCL, L

1 FOPj'?T (15X,D2A.10, 3X,P5. 0,D20.10)
2 FOR¡'ÀT ( 'l' , 7 (/) , 20;i, 'DISTÄ)¡CE t ,10X, t I{AVEI'IU}íRER¡ ,8X,

IIPH¡TSESIIIFT¡ ) i;i:-:: :t ..--.

HS=ä*II :::::":': ..

SIÌ,]CL=DSII.I ( 0.5D+0 0*ÌI*K)
SINCL=0 . 4 D+01*SIIJCL* SIÌ\¡CL
DO 50 I=1,I'Í
C=C*0.1D+0I
R=C*H
c2=-0.2D+01-D+SINCL-L S/ (C*C) +pOT (R) *äS ",, '

D=0 .LD+CL/C?-

,åo Ë:Jî3lJîô10'u ,,,,i:',
ft= (c+0 . 1D+0 L/' (0. 1D=0 1+C2 ) ) *tt
SHIFT=P I *P+IíAFP I L-I( * P.

CORVAL=LS Otr.,/ ( P +LiF L )
CORVÀL=CCP.VAL+COììV¡iL*CORV¡'L,1 ( 0 . 6D+01:tPT 1': (tr+fiFL) )
SHïFT=SHIFT-COP.VAL
I.IRITE (6, 1) R,P,SiilFT
rF (p .GE. I.ilIFi.¡) RETURN i-

50 CONTIT{UE
20 RElttP.¡¡

END
REAL FUilCTICN POT*B (R)
REAL*B R, R.2 , R3 , R4 , R.5 , R6
R2=R*R
R3=R2*q
R4=R2 * iì2
R5=R3*R2
R6=R3 *R3 

..'.,.r:..,

.'rF (n.L8.0.1D+00j -'1"r-

lpoT=O . 7 2¡.:+0 2 t R-0. 35 3 3 I I IB 9 9D+0 3 -0 . 11 4 6 3 5 0 5 37D+0 4 *R
2+0. 194 1 318 8 34D+06 *tì2-C, 52.1 e525¡"62Ð+07*F.3+0 .7 5L4265787D+0e *R4 ..
3-o.539774L491D+09*R5+o.15510'j5"197I-l+1c*Iltj
IF (l .Gf'. r.1D;-t^:n.l'.1:¡. R..LE. C.50D+00)

IpoT=o .7 6 25 47 930 7D+0 2 t' A- 0 . 4 5 7 2 0 ALi 9 2D+03+0 . 2 63555 3 9 2 6 Ð+ 04 f R
2-O .l_1213 227L3D+05*p.2+0 .2BB 313 922LD+0 5*R3
3-0 . 394 3 3 I B B 9 9D+0 5 * iÌ4+0 . 2L93 6 0 t,4 14D+0 5 * R5
rF (n .GT. 0.5D+00 .AND. R .LEn 0.22D+01) :

IPOT=0.7554322115D+02/F.-0.2689478423D+03+0.5I38835010D+03*R.'','
2-0 .57 I 6 36 6 I 4 4 n+ 0 3 * R2+0 . 3 9 19 5 C 2 0 9 7D+0 3 * p.3

3-0 . 15 67 437 2¿i 2 D+ 0 3 * R4+ 0 . 3 4 0 3 S 4 2 9 I 5D+0 2 * R5 - 0 . 3 0 9 C 0 5 5 4 27 D+ 0l * F.6

IF (r,..GT.0.22D+01 .AliD. R.LE. C.7CD+01)
lpoT=-o . 3 9 54 82 454 D+0 2 /'R+0. I 6 C 6 6 3 B 2 9 1D+0 2-0 . 5 92 45 0 2 g 7 4D+02 *R
2+A . 287 45 9 3 II8D+0 2 * R2-0 . 6 B 1 5 I 5 9 7 25D+01*p.3+0. 9 33 49 8 67 26D+00 *R4
3-0. 6 BB 2 0'7 86 I9D- 0 1*R5+0 . 2 1 15 9 3 4 3 I 2D- 0 2 *R6
IF (p. .GT. 0.7D+CI) POT=0.20D+02/R4
RETURN .

END
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C PROGP.AM TO CAI,CULATE THE ANGULAR DISTRTBUTION OF
C ELECTRON SCATTERTNG I,IHEN THE PHASESHIFTS A}.¡D THE
C ENERGT ARE GTVEN
c

IMPLICTT REAL*8 (A-H ,K,O-Z'
REAL* 4 SARRAY, .YARR.A,Y , ENERGY
DI¡4ENSION yARRAy(182) ,XARRAY(182) ,C (10) ,ANG(10)
DI¡{ENSION IBUF (2000),SINSQ (10),LABEL (10)

1 FORMAT(r5,F20.10)
2 FORMAT(BFt0.5)
3 FOR¡íAT (15X, r10, 10X,F20. 10)
4 FOR¡rÍAT(tlt,/,L}X,t \J = t,Í5rr K = r,F20.IOr/,
1r PHASESHIFT =r , (/,20X,F20.L0) )5 FOR¡{AT (20X, I TOTAL CROSS-SECTTON r , D20.10)
PI=O. 314 L5926535 B 9793D+01
RADTAN=Pf/O .1BD+03
CALL PLOTS (IBUF,2OOO)
CALL PLOT(0.0,1.5,-3)
CALL PLOT(5.0,0.0,-21
CALL PLOT(0.0"8.5,-2)
cArL PLOT (-5. 0,0.0,-2)
CALL PLOT (0. 0,-9. 5,-2)
XARRAf(181)=0.0
XARRAf (182) =36,0
YARRAY (181) =0.0
YARRAY (18 2) =8. 0
NRUN=0

20 READ (5,1,8ND=40) N"K
NRUN=NRUI{+L
READ (5 ,2) (e¡¡c ( r ) 

" 
I-1 ,N)

vtRrTE t6 "4, N,Ko (aWC(r) ,r=1,N)
KK=K*K
ENEP.GÍ=I 3 . 5 9 5*SNGL (KK)
THETA=-RADIAN
DO 50 J=l,180

, XARRAj| (J) =FLOAT (,1)
50 CONTTNUE

SUM=0.0D+00
DO 30 J=l"180
THETA=THETA+RADTAN
X=DCOS (THI'TA)
DO 10 I=I,N
SINP=DSIN(At{c(I) )
SINSQ (I) =SINP*SINP
C (I) = ( (2:tf-1) **2) *SINSo (I),/KK

10 CONTTNUE
Z=0 " 1D+01
CALL LEPSS (T,X, Z,C,N)
YARRAI (.r) =Sna", t,
Z=DSIN (THETA)
CALL LEPSS (g,X,Z,C,N)
SUM=SUl4+f

30 CONTTNUFì
SUM=SUM* R;\DIAN* 0 . 5D+ 0 0
tfRrrE(6,5) suM
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WRITE (6,3) (I, YARRÀY(I),I=1'IB0)
IF (NRUN ,LT. 7) cO TO 60
CALL PLOT(0.0,1.0,-3)

60 cÀrI, PLOT(0. 0,0.5,-3)
CALL LINE (XARRAS, YARRAy, 190, 1, 0, 0)
GO TO 20

40 CALL PLOT(20.0,0.0,999,
CALL EXTT
END

c
c
C COMPUTES THE VATUE OF AN N-TERI.I EXPANSION TN LEGENDRE
C POLTNO}IIAIS SQUA.RE .Tï'EITÍ C'oEPFTCIENT VECTOR C FOR
C ARGUMENT VALUE. Z IS A FIX CONSTANT COEFFTCTENT.
c
c

SUBROUTTNE LEPSS (f ,X, Z,C,N)
IMPLICIT REAL*8 (A-H,O-Z)
DIT"IENSTON C (1)
Y=C ( L) *z
rF (N-2) 1,3 ,3

c
C INTTIALTZATTON

3 H0=0. ID+01
H1=X
DO 4 I=2,N
H2=X*Hl
H2=H2-HO+ÍT2 - ( H2 -HO ),/DFLOAT ( I }
H0=Hl
Hl=H2

4 Y=Y*C (I) *ttO*H0*Z
1 RBTURN

END
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c
C PROGRÀM TO CALCUL.ATE OCCUPÀTTON PROBABTLITS .

C IN A RAHAN SCATTERING TRANSITION
c

TMPLICIT REAT,*8 (À-H,O-Z)
COMpLEX*I6 A,V(3) ,C (3) ,IMAGIN
REAT,*4 DATAD(7)
COIvIMON À(3, 3),IMAGIN,T,R

I FORI'îAT ( 4F10.7 )
2 roRt"".A.Î ( 10x, FI5 . 5, 3F15 . 10 )
3 FORMAT (2r5,F20.10)
4 FORì4AT ( IOX,' DELTAT"î20. 10)

14 FOPJ,ÍÄT ( '1 '. ,4 (/) ,lox,744 )

IùtAGIltr= ( 0. 0O+0 0,i0. 1O+01)
50 CÀTL SDATE(DATAÐ)

T{RITE(6,14) DATAD
30 READ (5,3,END=999 ) N'I{'DELTAT

WRIÎE(6,4) DELTAT
R=-O . 2D+O O *DELTAT
DO 40 I=1,3

40 V(I) =0.0D+00
V(1)=0.1D+01
A(1,1)=0.ID+OI
A(2,2 ) =0 .ID+01
A(3,3)=0'lD+01
A(1'2)=0.0D+00
A(2 ,1) =0 ' 0D+0 0

T=-DELTAT
DO 10 I=l,N
DO 20 J=l'M
T=T+DELTAT
CAÍ,L CGEN
CAIL MULT(3,V,C)
CALL NORM{VT3)

2O CONTINUE, zI=SQUARE (V(1) )
Z2=SQUARE(V(2))
Z3=SOUAP€ (v(3) )
wRrrE (6 ,2) T, ZL,7'2 ,23
vfRrrE (7 ,L) T,ZL,22 ,23

10 CONTINUE
GO TO 30

999 CALL EXIT
END
SUBROUTTNE CGEN
I},IPLTCIT RE.êJ,*8 (A-ií,O-2,)
CO¡,IPLEX* l6 A, IlfAGf i'¡

COMMON A(3, 3), IMAGIÌ{,T,R
R1=0.5D+02 *T
R2=0.30D+03*T
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R3=0.35D+03*T
R4=0.40D+03*T
A(1,3)=
À(2,3) =
À(3,2) =

(DCCS (R4) +DCOS (Rl) ) *rUeCrN+DSrN (R4 ) +ÐSrlr (Rl) ) *n
(ocos (R3)+0.1D+0i) *IMAGIN+DSIll(R3) ) *R
(DCOS (R2) +DCO5 (Rl) ) *rMAGrN+ÐSrl¡ (Rl) -DSIN (nZ) ) *n

A(3,I)=( (ÐCCS (R3)+0.1D+01) *IMAGIN-DSIN(R3) ) *R '., ,-

RETURN :

END
SUBROUTINE MULT (N, B,C)

C MULTIPLY A VECTOR B BY A MATRTX A RESULTING VECTOR C
COMPLEX*16 A,B,C,SUM
COM¡4ON ¡.(3,3)
DII'TENSION B (N) ,C (lI) , "'', "
DO 10 I=I,N
suM =(+0.0D+00,+0.cD+00i :,"",'..,'' ._.. .:'
DO 20 J=l,N : '

20 SUM = SUll + A (I,J) *B (J )
10 C(I) = SUM

DO 30 1=!,lI
30 B (I) =C (I)

RETU.RI'I
ENÐ
REAT FUNCTTON SQUARE*B (ARG)

C CÀLCULATE lHE SQUARE OF THE NORM
COT"ÍPLEX*15 .¡\RG, N II4AG
REAL*8 A,B
A=ARG
NI!,IAG= ( 0.0D+00,-0.1D+01) *eRe
B=NI-YAG
SQUARE=A*A+B*B
RETURN
END :j ;. : .:,
SUBROUTINE NOR¡Í (V, N) ',,.,,,',,'.,.'

C NORMALTZE CO}IPLEX VECTOR V _.-..: .- .

CoMPLEX*16 V,FACT,VAR '.'., i,,',

REAL*8 FACTOR,SUMTSOUARE '"'' 
'

DIMENSTON V(N)
SUM = +0.0D+00
DO 10 I=l,N

10 SUM=SUM+SQUARE (V(I) )
FACTOR=SUÞI** (-0 

" 5D+00) ::., ,

DO 20 I=lrN '¡,.-,-.,r,.'',

20 V(I) = FACTOR * v(I)
RETURN
END
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