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PREFACE

This theéis is divided into three main seétions;
the first section being an old téchnique in mathématics,
rewritten with some applications td quantum mechanics.

The non-uniform difference method in Chapter III
was developed. entirely by the -author, but the iterative

method in Chépter IV was mainly developed by Dr. R. Wallace.
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ABSTRACT

The finite-difference method and some improved
versions of the method are described. Their applications
to guantum mechanics both in the solution of the Time
Ihdepeﬁdent and the Time Dependent Sch:édinger‘s equations
are illustrated by examples such as the Harmonic Oscillator,
the Hydrogen Atom, the Calculations of Phase Shifts in
Electron Scattering, and .7  Transition Probability

Calculations.
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INTRODUCTION
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'For a long time, atomic coilision theory has been
a major interest of both the physicists and the chemists.
The influence of Rutherford's experiment on science 1is a
cla551cal example demonstrating the importance of this
field.

After the birth of guantum mechanics, the pursuit
for methods of calculating the absolute reaction rates
theoretically was under wey for a number of years. However,
since the publlcatlon of "The Theory of Rate Processes" (1),
little progress was achieved until the automatic high- speed
electronic digital computer became available.

Numerous papers have been published since then} but
it is not the purpose of this thesis to discuss them here.
However, the “amp}itude density functions" of Secrest and
Johnson (2), the "§-function of Locker (3), the "distorted-
wave method“ of Trindle and Illinger (4), and Gordon's (5)
method for constructing wave functions for bound states
and scattering are illustrative examples. Some of the
methods usea appear in the review of Rapp and Kassal(6).

The finite-difference method has been extensively
employed by many authors to solve various problems; most
of these are concerned with the Schrodinger's equation.
1t has been used to compute the dipole moment of iodine
chloride by Glazer and Reiss (7). Using Liebmann iteration
for the three-dimensional equation, Bartlett(8) gave a
finite-difference solution for Helium. However,ethe.

accuracy of the method was low at that time. The partial-
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wave ekpansion of the solution of the two-electron
Schrédinger's equation was first employed by Luke,

35 state of LiT. The

Meyrerott, and Clendenin(9) for the
method has been recently improved by Winter, Laferriére, and
McKoy (10). The finite-difference method has also been
applied to the quantum mechanical treatment of inelastic
collisions(11). |

We are interested in the finite-difference method
for the same reasons as those set out by these authors. It
is straightfo:ward in principle, adaptable to computer-
programming, and applicable to many interesting problems.
Despite the fact that no analytical expression can be
‘obtained, it does not have the difficulties'éncountered in
the infinite-series approach. Since only a few terms of
the series can be included in practice, very often these
terms'are inadequate and erroneous results may arise. Many
approximate methods or solutions in terms of basis functions
have been proposed. It is increasingly more difficult to
choose and apply them. For example, just for the anharmonic
oscillator, there are Raleigh-Schrodinger perturbation
method (12), JWKB method(13), elliptic functions(14), Gaussian
basis functions(15), and many others.

Both the applications and the improvements of the
method have been presented in this thesis. Since we qannot
afford the time to calculate everything that interests us,

we have to select a few well-known problems involving *
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Schrédingér's equation. A one-dimensional harmonic
oscillator is intereéting as a starting example because
it can illustrate the basic features of the finite-
‘difference method. It has been used to represent a diatomic
molecule in the theoretical study of energy transfer in the
collisioﬁ between an atom and a diatomic molecule(l6). The
interest in the harmonic oscillator also arises from the:

fact that it is possible to extend the method to treat the

anharmonic oscillator, which has been used as a mathematical
ﬁodel in collision theory (17) as well as in field theory(18).
The second example-chosen is the hydrogen atom.

The obvious reason is that the solution of the Schrddinger's
equation for the hydrdgen atom(19) plays a very important
role in modern chemistry. Theboriginal plan was to solve
the three-dimensional equation explicitly. Even though it
appears easy in pfinciple, the MATLAN language programs did

not turn out to be efficient, and the tremendous amount of

computer time required discourages further calculations in
that respect. At present, the partial-wave expansion method
appears to demand less computer time.

Our interest in the three-dimensional problem

brought us to the partial wave method. Instead of using it

to calculate the hydrogen atom, we turned to the more

interesting electron scattering problem. After Holtzmark (20),

Robinson (21) has recently recalculated the phase shifts and

the scattering cross-sections for the electron scattering
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of rare gases by the method of numerical integration. The
difference method has been used by Robertson(22) to calculate
the phase shifts of some other systems, but his method has
little improvement over the standard one. In this thesis,
the method has been improved to tackle both the problems of
the rapidly changing potential near the origin and the

slowly vanishing potential at a large distance. The details
will be found in Chapter IIT.

In order to treat the subject more thoroughly, a
chapter on the solution of some problems in finite-difference
form without the conventional finite-difference notations
has been included in this thesis, although the author was
primarily concerned with the calculations.

The ultimate goal of all these efforts is to
understand the mechanism of chemical reactions in terms
of mathematics. It is not the purpose of this thesis to
create models and calculate trajectories and energy transfer
from them, as will be found in the works of Pettitt and
Corrigall(23). It tries to improve the numerical techniques
of the finite-difference method in its application to the

Schrdodinger's equation.




CHAPTER II1

REVIEW OF THE

FINITE-DIFFERENCE METHOD




A. INTERPOLATION FORMULA

To a certain degree, one can always have a
numerical repreéentation of a wave function at each
co-ordinate point. The gradient at these points can be
obtained by means of some interpolation formula. For
example, the eigenvalues can be easily calculated by
expressing the second derivative term in the Time Independent
Schrodinger's equation of the Harmonic Oscillator in the
form of the Backward Interpolation Formula of Gauss.

All the interpolation formula with divided
differences are based on the mean-value theorem for the
derivative, which states that if f(x) is continuous for
a < x <b and £7(x) is continuous for a < x < b, then
f(b) - f(a) = (b - a)f“(g) for at least one & such that
a < & < b.

An extension of this theorem leads to the following
basic definitions:

f£(x) = £(x ) + (x - x )Ef(x ,x),
0 0 0

f(x ,x) = £(x ,x ) + £(x - x )E(x ,x ,x),
0 0 1 1 0 1

® 906 6 0 8 9 @0 0S8 G GGG O LB eo0

f(X ,X r e o o ,x ) = f(x r LA 4 IX ) +
0 1 . n-1 0 n

(X"X )f(X 7 e s ,X ,.X)
n 0 n

(1-1)




where

. £(xy) - £(x,)
f(xo,xl) = 1 0 and
xl-XO

f(x s eee X ) -f(x 2 eee ,X_ )
f(xOI e e e lxk) = l k 0 kl
xk - XO

By substituting these relations successively,
starting from the last equation into the second last and
working upwards, the Newton's Interpolation formula with

divided differences can be shown equal to :

f(x) = £(x ) + (x;-'x')f(x X )
0 0 0 1
+ (X - x )(x - x )E(x ,x ,X )
0 1 0 1 2
4 eee + (x = x )....(# - X YE(X 4 eoe +X )
0 ‘ n-1 0 n
+ E(x) ' (x-2)

where E(X)= (X = X Jeeoo (X = X JE(X , o0e +X »X)
- ' n 0 n

To simplify the calculation, the technique of

finite-difference interpolation is employed where

X =x <+ h and
k+1 k
Af(x ) = £(x ) = £(x )
x k+1 x
= (x - x )YE(x ,x )

k+1l k k k+l

h £f(x ,x ) :
k k+l1 (1I-3)




A2%f (x )
k k+1 k+2 kx  k+1

h £(x ' X ) - h £(x ,x )

=h £(x ,x ,x )(x -x )
k k+1 k+2 k+2 k

2 h f(x ,x ' X ) (I-4)
k k+1 k+2 '

Carrying this to the r th term, we get
r r-1
A £(x ) r=-1th £(x , ... 0x )
k k+1 k+r)
r-1 :
- (r"l)!h f(x s ese X )
’ k k+r-1

: r-1
= (r-1)!h (=X YE(X 4, eee X )
k+r k k k+r

x
' k k+x

i

Substituting this into Newton's divided difierence

formula we can obtain e
" Afo
oo (x) = f + (x - x) :
: - 0 -0 l1th

. A*E
o+ x~-x ) (x=-x)
e ' 0 1 21h?
+ e © 0 6 69 ¢ 0 ¢ 0806 s 00 0o n
- A £,
+ (x=-x){x=-%xX)ieaalx~x - 1) —F
0 1 n nth
+ E(x) , ' (X-6)
- ' (n+1)
vhere : fo (£)
Blx) = (X = X Jeeeox = x)
.0 n (n+1) !

“and where £ is in the interval occupied by X + «ee +X &

0 . 5+



10

To familiarize with the difference formula, it is
. o et n
advantageous to set up a difference table and to understand

the Sheppard's zigzag Rule.

.x. £
: n n
x £
4 4
AL
x £ 3 __A%f -
3 37~ - 2
>&Af - \AA:’f
x f 2 AZE 1 AYE

Af  is equal to £ =~ £
0 1 0

 A2f is equal to Af - Af
o - 1 0

n ‘ (n-1) (n~1)
A £ 1is equal to A £f - A £
-0 1 0

"The direction of the solid arrow is in the forward

direction and, therefore, the interpolation formula is called

the Newton's forward formula.

If we want a better approximation for a parﬁicular
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point, say x , it would be more desirable to take & zigzag
3
difference path in the direction of the dotted arrovs,
' i

Y ES ™" Seves A AI EfAavmnAns
Instoad of calling them Aividcd QIIfcIences

th
0]
t$
+
O

-t

Ao hade}
LA 4 -

T3

call them central differences and we have a slightly

different notatioﬁ for them,

X £
n n
L
| ]
X £
3+2  j+2
6
X £ 41k 62
j+1  j+l 3+l 63
6
3 IT™~o - I T~ - 3
ﬁua - 5"63 -
x £ =% 82 3=%
-1 3-1 Jj-1
6.
X £ - 3=1%
™ 3=2 3J-2

Interpolations following the path of the solid arrows
and that of the dotted arrows are known respectively as the
forward and backward formula of Gauss. The forward formula

of Gauss may be written as
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§f
f(x) = £ + (x - x) j+k
0 J (I-7)
1th
_ 82f
+ (X - x ){(x - x ) 3
3 j+1
2th?.
. ‘ §3f
+ (x-x)(x~-X J(x = % ) j+%
i It j-1 _
: 3! h®
s
+ (x -~ x )(x - X Y(x - x )(x - x ) i
3 -3+l L K j+2
| 4tn"

Now we can find the first, second or higher order

derivative from this formula.

. § £ , | 82¢ o
£r(x) = G4 + (x =-x ) ] +
. o h 3 j+1
o 21n?
§3f
(x - x Y(x - x ) itk +
J j+l 3 j=1
3in?
SYF
(x - x Y(x = x Y (x - x ) 3
j j+1 j j-1 j +2
41h*
(x-8)
" For a uniform net, (x - X ) =-h, (x =-x )v= + h,
‘ j 3+l 3 j-1
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Equation (I-8) can then be simplified to
h £'(x) = 6f - §2£ /2 - 8%F /6 + §“f /12 (I-9)
I+% 3 Its 3
Similarly the second derivative can be simplified to

h2 £%(x ) = 62f = §%F /12 (I-10)
J . J 0 ’ '

These approximations will now be appliéd to calculate

some simple examples in guantum mechanics,
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1, HARMOWIC OSCILLATOR

-

The partial differential equation for the harmonic

oscillator 1is

1 g2 1
- T T f(x) + " x?% f(x) - Ef(x) =0
2 dx? 2 - (I-11)

~%

The wave function 7 EXP(-x?/2) is a normalized
solutibn of equation (I-1l). Therefore the eigenvalue
associated with this wavefunction can be found by

-integration,

<

E = 7-f(x)(%)_§i__ £(x)dx + / % x? £(x)2dx
- | e —co _
= 0.5 | B | (1~12)
However, one can do a numerically equivalent
calculation of equation (I-i2) by means of the backward
interpolation formﬁla of Gauss and then integrate
numerically.
H The first derivative for the point x3 can be written

as

£'(x ) = (£(x )/6 -‘f(x ) + £(x )/2 + £(x )/3)/h
3 1 2 3 4

(1-13)

where h is the separation between x , x , x and so on.
’ 1 2 3

The second derivative can be easily calculated once the

first derivatives of more than four points have been found.
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In order to solve equation (1-11) with boundary
conditions: F(-A) = 0 and f(A) = 0, one may eﬁploy the
uniform net Xj =~A+jh, J=20,1 ... P jtl
where the separation h Is equal to 2A/(j+1) and A and -A

"are the upper and lower bound for x. Then the differential

equation can be replaced by some flnite—diffefence equations

of the form

L toeuy = 0, j=1,2, ««. , J (1-19)

u.
h 7]
with boundary conditions ug = 0 and Uj+1 = 0. Here Lh is

‘a " difference approximation' of the linear differential

operatar L, which for the present will be taken to be

Le us = = (1/2Rh2X82 u, - (1/12)6" u,) + (1/2)x? u,
| h =1 x JJ j ol R
where ' ' | - (1-20)
82 u, =u, _ =-2u_ +u, |
J J*+d J j-1
e - &3 - =2
57 U3 = Sjrary T Sj-q/2d
. = 2 - s 2 - 2 2
SO, 6j+1 Gj GJ + 5]‘1
= S5a3/2) T e/t sy T Sj-cry
= u, . -hLu. + 6u., - by, - u, |
Yjer THY5e1 T 0T T M- T T-2 (r-2D)
Therefore
Lp uj =+ (1/2uh2)uj+2 - (2/3h2)uj+1

+ (1/h2)(1.25 + 0.5x2 h?) uj

- (2/3h?%) Uj-y * (1/24h %) Uj+g (1-22)
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it Is more convenlient to put Lh into matrix form

and u Into‘veétor form. The result will be of the form
Asu=h?pAesu=0 (1-23)

where A is a symmetric pentadiagonal matrfx with elements

derived from a series of Eh values. A can be easily

obtained sfmply by diagonalizing the matrix A, whiéh is

. (0) (0) (0) (0) ..
. E (1/24) (0) (6) (0) ..
. | (-2/3) (1/24)  (0) (0) ..

1o+ @ /28) (-2/3) (1.2540.5x3h%) (-2/3) (1/28) (0) ...
oo (0) (0)  (1/24) (-2/3) (1.25+0.5xFh%) (-2/3) (1/24)..

cvcocqo‘ocooooocoo(O) (1/21{,) (—2/3) .
TN (Y (1/728) .
. . . (0) : . ve
or A = (aiqj), a5,j-1 ° -(2/3) = aj,j+1,
ale 5 = (1/24) = aj,j+2 ’ a;’ =0 if |i -]l > 2,
‘ - 2 2 . ,
aj,j 1.25 + 0.5 xj h o (1-25)
and , \
Y3
Y2
u = :
u.
o
{ un y




17

!

For a boundary limit of 5.0, that is, A = 5.0,‘and
a matrix of order 90, the eigenvalues weie calculated using
"both the linear interpolation (second order) and the fourth
:order Gauss interpolation. The first four eigenvalues are

compared.

Table 1.1

THE FIRST FOUR EIGENVALUES OF

" THE HARMONIC OSCILLATOR

SECOND ORDER FOURTH ORDER
0.49962 0.499998
1.49811 1.499989
2.49508 2.499962
3.49054 3.499907

The diagonalization method used here to éalculate
the eigenvéiﬁés was originated by Jacobi and adapted by
Von Neumann{24) for large computers. There are many other
methods (25-28), but only the Jacobi method will be illustrated
in the'appendix.

The eigenvalues for other boundary limits and
different matrix orders are also compared. They were all
calculated using fourth order Gauss interpolation. The

results are listed in the following page.




Table 1.2

EIGENVALUES FOR

BOUNDARY LIMIT 10.0

ORDER OF MATRIX

41 81
0.49939  0.49996
1.49580  1.49972
2.48525  2.49901
3.46339  3.49753
4.42600 4.49498
5.36880 5.49107
Table 1.4

EIGENVALUES FOR

BOUNDARY LIMIT 2.5

Table 1.3

EIGENVALUES FOR

BOUNDARY LIMIT 5.0

ORDER OF MATRIX

EIGENVALUES FOR

21 41

 0.49939  0.49996
1.49580 1.49972
2.48525  2.49901
3.46339  3.49753
4.42601 4.49498
5.36886 5.49112

Table 1.5

18

BOUNDARY LIMIT 1.25

'ORDER OF MATRIX

11

ORDER OF MATRIX

21 41 21
0.50243 0.50288 0.50336 0.78605
-1.52427 1.52978 1.53610 2.91445
2.59925 2.63663 2.67239 6.24872
3.75256 3.90465 4.01910 10.87199
4,99882 5.41361 5.66378 16.78042
6.33835 7.20861 7.64867 23.94203




Figure 1.

WAVEFUNCTIONS OF THE HARMONIC OSCILLATOR

WITH DIFFERENT BOUNDARY CONDITIONS

*The IBM Scientific Subroutine Package has a

program which calculates both the eigenvalues

and the eigenfunctions. The program is based
on Reference 24. To support the arquments in
the discugsion of this chapter, four of the

eigenfunctions computed by the Prbgram were

seledted and drawn on the opposite page.
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2., THE HYDROGEN ATOM

It is essentially the same as the harmonic
oscillator except it is three dimensional with a slightly

different wave function. The Schrédinger Equation is

V3 - (/)Y = E § ' , (I-14)

where ¢ is a function of x, y and z only. Theretore

32 32 52 ‘ ’
(- - - YO Gteyaz) + (L/V (%2 + v2 + 23)yp(x,y,2)
ox? ay? 0z?

= E y(x,y.2) - - , (1-15)

The total energy is equal to

y 2 2 . 2 ’
2 3 3 z)w(x,y,z)dx dy dz
A .

L
E=J9 (x,v.2) (- - -
: Cax? ay?

+ fh,w*(x.y.z)(l//(x2 % v2 + z2))y(x,y,2z) dx dy dz
| ’ (I-186)
The integral is summed over all Space and is equal to %
”for‘the ground state wave functior
1% BXP(=/(x? + v? + z2)) o (I-17)
Since it is symmetrical in all directions, one
can replace (I-16) by
“ B = (3/71) (f EXP(-/(x%+ y2+.zz))(- éi—)EXP(-/(x=+ v+ z2))
ax?
-+ (1/3) S x2EXP(-2/(x%*+ y2+ z?))) (ax)?® (1-18)
Then the rest.of the calculations will be the same as in

the case of the harmonic oscillator, except that one has




21

to calculate dE. for each (y,z) pair and then sum them up.
The author wrote a program in MATLAN cdmpufer

language, which is supposed to be able to handle large

matrices with many built-in matrix operations. However,
the language is really inefficient because it occupies
80K storage units just by itself. When the matrix is

large, the Input—Output time required to transfer information

back and forth from the discs (accessory memory unit linked

to the computer) is even more than the actual computation
time. It took the computer three hours to calculate
"equation (I-18) for a three dimensional matrix about the
size of 100x100x100. The calculated ground state energy
differs from the theéretical value by one per‘cent. A
much faster program can be written in FORTRAN and, therefore,
the MATLAN program will hot be given here.

To solve the eigenvalue problem of the hydrogen atom,
all that is required is to transform equation (I-15) i?to

finite-difference equations. With a second order Gauss

interpolation, there will be seven terms instead of three,
as there are six neighbouring points instead of two. The

order of the matrix to be diagonalized is equal to n3,

where n is the number of separations in one direction. . A
crude model of the hydrogen atom may be represénted by

. twenty points in each direction, that is, sixteen thousand
points altogether. To diagonalize a matrix of the order

16,000 is simply not feasible at present.
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B. DISCUSSION

The results of the harmonic oscillator clearly
demonstrate two facts. First, the wave function is quite
well localized. The first few eigenvalues for a boundary
limit of 5.0 are exactly the same as those for a boundary'
limit of 10.0; and differ from the theoretical value for
infinite domain only in the fifth or sixth figure after the
decimal. Secondly, the eigenvalues increase sharply as the
bouhdary limit becomes too small. There is only an increase
of 0.003 when the boundary limit decreases from 5.0 to 2.5,
but an increase of 0.28 from 2.5 to 1l.25.

The spherically symmetric wave functions of the
hydrogen atom behave similarly to the harmonic wave
functions. Since the hydrogen wave functions have been
used in a number of standard texts(29) to explain the
chemical properties of other atoms, we may relate these
two properties té some commonly known phenomena, such as
the localizability of many everyday objects and the
incompressibility of many solids and liquids.

It was mentioned earlier that the finite-difference
method has been appiied to the solution of the three-
dimensional Schrddinger's equation by many authors. 1In
reference 10, they improved the technique by a square-root
grid along with a transformation of the co-ordinates in the

Schrddinger's equation. By including more partial waves,
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théy improved the S-limit resulf aﬁd obtained the G~limit
ground state'energy of heiiUmAatom»to bé -2.90351 a.u.
as compared to the exact value of -2.90372 a.u.

Thus far, their calculations are limited to (152)18
and'(152$)3s states of helium and the (152)15 state of
hydride ion. | |

Although we did not go too far in the caléulation
of the hydrogen atom, it is very iikeiy that the method

suggested can be used in the future when a large enough

computer will be available.




CHAPTER IIT

THE PARTIAL WAVE METHOD
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A. THE THEORY OF THE SCATTERING OF A BEAM OF

PARTICLES BY A CENTRE OF FORCE

A stream of electrons moving from left to right
with velocity v along the z-direction may be represented
by the plane wave EXP(ikz), where k is equal to 2ﬁmv/h.
which corresponds to a flow of v electrons across unit
area per unit time. The wave will be scattered by the‘atbﬁ
situated at the origlin, the asymptotic wave function at the
point (r,6,¢) being

v = elkz + p=1 ofkr £(g) -1
where f(é)22w sineédd is the number of particles scattered
between angles 6 and 6 + d6.

The problem now is to solve the Schr&dingef equat}on

V2 ¥ + (k2 = U(r))Y =0 . (ll-z)A
where k = mv/h and U(r) = 2 m V(r)/H?*. The equation can be
sofved in spherical polar co-ordinates. The genéra? sclution

having axial symmetry is : A

y =»g£0 Azﬁg(cose) Lg(r) ’ (11=3)

where Az are arbitrary constants, szcose) is the 2th

Legendre coefficient, and Ly is an solution of
L (redhty oo - uen - ML =0 ey
2dr rZ
If we assume U(r) has a pole not of higher order
than r~1, the eguation has two independent solutions, one
finite at the origin and the other infinite. In order that

(11-3) shall have the asymptotlic form (l11-1), the wave




function must be everywhere flnite. If we set L£ = f'le(r),

equatfon (11-4) reduces to

d?G, 2(2+1)
=+ (k2 - U(r) = ———)Gy = 0 (11-5)
dr? r?

The solution for large r must be of the form

Gz = A sin(kr + €)

where € is a small angle.

The particular solution we want is

L (r) = (ko)™ sinCkr = (/2027 + ny)  (11-6)
which is finite at the origin, ng is the phase shift. .To
finrd Al we have to take advantage of the fact that for all
% and large r, | |

Aglg (r) = (22 + 1) i¥f (r) = Cyrlelkr  (11-7)
where Cy is some constant, fg = (kr)-;siﬁ(kr - (1/2)8%)

for large r. Since sin(x) = (1/23) (eix - e“ix), the left-

hard side of equation (11-7) becomes

(1/72) Cikr)~l(pagelftkr = (1/2)m + ng) -

Azé”i(kr = (L/2)8m + ng) - (29 + 1)itel(kr=(1/2)8w)

Since the wave (r)~le~ikris a wave moving towards

the centre and hence the scattered wave should not contain
any term of this type of wave function. Therefore,

Aze“‘"z - (20 + 1)i%¥ =0

A, = 20+ DitelMy (11-9)
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Substituting this Into equation (!1-3), we get

v = p(2e+1) it ey L, (r)P, (cose) (11-10)

2=0
which is the sum of the incident wave and scattered wave
at large r. From equation (l1-1), the scattered wave is

_ therefore obtained by substracting the incident wave

(20+1) % P, (cos8) f, (r) from equation (I1-10).

'||v184

£=0

rletkr feo) = (21kr) 7L QKT

X

N8

e (1/2)8mi (994714 (e210y - 1) py{cos8)

=0

Since e~ (1/2)2mi ik 2 cos((1/2)em) - i¥*l sinc(172)2m) =

1 for all %, therefore

f£(0) = (2ik)71 1 (20+1)(e?1M - 1)P (cos®)  (11-11)
2=0 n

The total elastic cross=-section

T
Q = 2n : [f(8)]2 sine d8  becomes

Q T (22 + 1) sinznl ' (11-12)

k"2 4
. 0

%
This method was first used by Rayleigh (30). It
was first applied to the problem of the scattering of
electrons by atoms by Faxén and.Holtsmark (20,
The next three sections are concerned with. the
numerical solution of the phase shifts and the wave functions
by the difference and the hon—uniform difference methods,

‘using only a three point approximation for the second
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derivative with a refinement in the diagonal term adjusted
from thé'knowledge of the approximate solution. This

method, the author believes, is more sophisticated, faster,
and more accurate than the difference method involving

more than three points, as the number of storage requirements,
together with the number of operations involved, increases
many times in the latter. When Z-is:greater than zZero, or
the potential term changes quite rapidly near the origin,

the non-uniform difference method is highly favoured.
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B. SOLUTION OF THE DIFFERENCE EQUATIONSA

vAs we have seen from the»last éhaptér, the
difference equations are essentially a set of linear
‘'simultaneous equations derivéd from the differential
equation. This method has been-applied by Robertson(22)
to calculéte phase shifts withoﬁt much modification'to
improve the accuracyvand fhe speed‘of computation.

For é three.points apﬁréximation,,we notice that
wé'only'get (n-2) equations from'n‘points énd'therefore
- two cbnstants are necessary to determine‘a'particular
solution. These are sometimes referred to as boundary
conditions. If we let the point by point representation

Of GQ' in equation (II_S) be fo’ fl, o e ,’ fi' -ouo r fn+l,

we can find the particular solution for the boundary
conditions: f0 equai fd zero as, according to Hujgens'
Principle, the atom may be regaidéd as the source of a
secondary wave. The other condition is; that the maximum
amplitude at a large distance be equal to one.

Since the second boundary condition is very
inconvenient for the calculation of the wave function, as
the asympotic amplitude can only be found at the end of the
computation, this means we must store up all the necessary
information. Then we must return to the very beginning
or proceed in the reverse direction, all of which involves

a series of divisions which are too time consuming. For
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example, wé have a'hundred thousand points on:the curve,
therefore, we need at least 800K bytes for storage in
double precision méde. This is three or four times greater
than the capacity of most computers. To avoid this
difficulty, we také advantage of the approximate solution
of equation (IT-5) when r is small. If we differentiate

2+1

'A‘r twice, we get

2(2+1) 2+1
T

r

2+l is a solution of equation (II-5)

énd therefore A r
when r is small. From some of the caicdlations done, A is
within a few ordef of magnitude Qreater or less than one,

which, of course, also depends on the potential term. The
magnitude of A can be most conveniently found by using the
SCALING ROUTINE in the CALCOMP PLOTTING SYSTEM of IBM 360.

That is, £, is set equal to i+l initially, and we have to

1
~calculate the scaling factor of the plot of this function
section by section because of storage probiem. The scaling
factbr for a large distance is used to calculate the value
of A. The wave function can then be plptted»nicely.

The following will be a brief description of the
method used to calculate the phase shifts and, a numerical

representation of the wave function. We have

S Nl T I F P |

42 | N N £3417285 765

— £, = - -

. i . .

ax? . » h | . h
| |  (II-14)

2
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Equation (11-5) is therefore approximately equal to a set

of n equations of the form

L(2+1)
IZ

) fo0¢ f. = 0

f._, + (=2 +k?h?® - U(r)h? - fel

_ (llflS)
vihere i'runs.from 1 to n. fb and fl are given aé above.
Of ccurse the amplitude of the.asymptotic vave will not be
vexactly equal to one; but if we'want it to be exactly one,
the whole function éanralways be multiplied by a constant.

Equation (!1-15) can be rewritten in matrix form

( . ﬂ r ‘ 3 4

Cl dl. ' fl 1]
dl C2 * o : f2 0
. Sn-1 9n-1 | |fn-1 0
‘dn-l Cn f -dn~1fn+l
{ J o\ ) \ )
(11-16)

where d = 1 and ¢, = =2 + (k% - U(r) = 2(a+1)/r] JR*

One method used to find the phase shifts is to adjust
h until the determinant goes to zero which then implies that

£

n+l also becomes zero. Therefore h(n+l) is the point where

the wave function intercepts the axis and hence sin n, can
be found. Actually the determinant changes sign at that
point. In practice this procedure is too time consuming

and we cannot find the sign nor the absolute magnitude of

the phase shifts.




Instead of finding the determinant, we
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proceed

directly to solve the linear equations by the Gauss

" ‘Elimination method, which is particularly easy
case of a tridiagonal symmetric matrix. After
>elimination process the diagonal terms usually
séries of»négative numbers ihterposed by a few
numbers. If c; is positive, that means fi and

a different sign and, therefore, indicates the

in the
the
become a
positive
f;4+1 have

point where

the wave intercepts the axis. A better approximation is

that the wave intercepts the x-axis at the point

(i + l/(l+ci))h. It can be proved, therefore, by

considering the following diagiam}

Figure 2. DIAGRAM TO DETERMINE THE POINT OF INTERSECTION.

We have s/f; = h/(f, + f;41) from the diagram.

Therefore s = 1/(l+fi+l/fi) - Since c;f; = fi43,

s = 1/(1 + ci).
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From the number of positive diagonal terms we can
- calculate the sign and the absolute magnitude of the phase

shifts without any doubt. Due to the fact that the

difference method is an approximate method, if h is not
small enough, there is occasionally a sudden "spur" of the
values of the phase shifts. This can be recognised by'
plotting the values of the phase shifts against-the values -

6f k and the curve shouldbbe~smooth and should also tend to

zero for large k. However, this problem does not occur

in the non-uniform approach.
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C. NON-UNIFORM. DIFFERENCE METHOD

In solving equation (II-5), we can see that l/r2
changes very rapidly near the origin but tapers off very
slowly. It would only be natural to use a finer net near ;ﬁ
- the origin and widen the separation as we move away from
that point. Actually, the method the author developed,
can be used to shorten or widen any region as desired.

Although it might be used for general matrices, the

calculations might be too tedious to allow for fast
computation}_even by the computer. For the same reason,
the change of the separation from one region to the next
should be either double or half. The examplebshown is a
tridiagonal matrix. At each increment junction, we are
in effect having a fourth diagonal element. The problem
is to éhange it back to a tridiagonal matrix.

The outline is as follows:
In equation (II-16), instead of having a tridiagonal

matrix, we have the following matrix:

M(I) 5D

S(1) M(2) s(2)

.

S(i-1) M(i) | s (i)
570 0, [ (D 5

s . |
s°(3-1) M° ()] $7(3)
S77(0) 0 M7 (1) -
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To understand the difference method thoroughly,
one must master the technidque of transforming a differential

equations like (II-5) into a set of difference equations

similar to (II-15). The size of h is chosen arbitrarily.
As long as h is constant within a set of equations, the
solutions can be calculated easily by Gauss Eliminétion
Process. Two sets of eéuations from the same differential

equation with multiples of h can be related to each other

through the "junction technique" developed by the author;
it is actually very simple. There is nothing unusual
about the first i equations, as the (i+l)'th equation is
just one of those equations of the form (II-15), except
h is double.

It may be rewritten as

R(2+L) g

£5_1 + (=2 +k2(2n)2 -u(z) (2n) 2 - . i4] * Fi43 =0
: |

Once we relate one block of equation to the other,
the others fall in line, and it is then just a matter of
performing the Gauss Elimination Process after we set up

the matrix.

To save storage space, certain symbols are used to
{
store encugh information for the following steps of
calculation. Once these steps are completed, theixr values

are repiaced by new information, usually the newly calculated

results. A simple matrix can illustrate how this is done.



lea 1
1 202 1
1 32 1
1 0 M'(1) 1
1 M'(2) 1
1 o
1 Do, )
3 c2 - 1p
1 “c2 1
1 0 M'(1) 1
1 M'(2) 1
1 Ip
1 % |
1 3
“2p M'(1) 1
1 M'(2) 1
1 3
0 (M'(l)+2D3D)/2 1/,
-“D =-"D
1 M'(2) 1

- 36

1 1o (=1/1¢y)

2

1

c2- *p 1
1 3c2 1
1 0 M'(l) 1
1 M'(2) 1
1
1 D
1 %p
3
1 D (=1/ )
| 3c2 - 2p
1 0o M'(1) 1
1 M'(2) 1
1
1 D
1 %
1 3p
LML/, 1/
2p %
1 M'(2) 1
"1 3%

1 1/(' (1)+°p3p)’

1 M'(2) 1

The symbol D is used in the computer and only one

storage space is allocated for all these off-diagonal terms,

as old values are not needed once a new D has been calculated.

The same conditions apply to C2, which also represents all

the M', M" and so on.
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The formula for iD is therefore equal to

i 1 _ 1.
D=3 =T T i i-1 or
c2- D M- D
1—1D _ ipiy - 1
" (II-27)

From the result obtained after Gauss Elimination, the

effective D in the uniform difference method becomes

p = -+71pip = 3 - ipiy (II-28)

One way of choosing how many intervals should be
allocated to each region is to double the separation when
the first derivative of the function decreases approximately

by a half. A simple function such as
0.4 EXP(0.23262 x) (I1-29)

was found to be quite satisfactory. One restriction is

that at least three intervals must be in each region.
For a clearer understanding of the process, one

should refer to the program given in the appendix.
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D. REFINEMENT OF THE METHOD

If the method Qere exact, the phase shift should be
zZero in the case where there is no potential term. Instead
it was found that there is a positive phase shift roughly
equal to n(nk)z/ﬂ where n is the number of half-waves from

the origin. In order to check the calculation, we set

£f,.1 = sin(k(x~h))
fi = sin (kx) (I1-17)
fi+l = sin(k(x+h))
Therefore,
£4° = (sin (kx+kh) - sin{kx)) - (sin(kx) -~ sin(kx-kh))
. = : 2
1 h

— 2sin(kx)cos(kh) - 2sin(kx)
2
h

. 2
= - (4sin2(kh/2))/h (II-18)
As hk tends to zero, (4sin2(kh/2)/h2) tends to

h2k2/h2 = k2, Since the sine of an anéle is always smaller
than the angle itself, therefore a positive phase shift
will result if k2h? is used instead of 4sin2(kh/2) in
equation (II-15) because the smaller the k, the bigger
the wave length is.

After that substitution, another error is due to the
precision of the computer. In the case where £ = 0, hk =
8 x 10~4, the phase shift starts from 0.936 x 10~10

increasing steadily.and the value at 200 waves from the
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origin becomes 0.38 x 10”7, This may be explained by the
fact that IBM 360 double precision numbers have fifteen to
sixteen significant figures, but the number of effective

2k2 after adding -2 will be reduced

‘significant figures of h
to seven or eight, and hence the estimated error in the
phase shiff will be of the order of 10~/ to 10~8. However,
‘for.hk ten times bigger, we have a statistical error of

* 10_9 énd éometimes even * 10-10. This error is probably
due to the straight line approximation in finding the
intercept on the x-axis as described previously. Anyway,
che non-uniform difference method described in the last
section can get around this problem because only a very
small regioﬁ will have a very small hk.value.

'vFor 2 not equal to zero, the phase shift tends to
zero extremely slowly. For example, for 2-= 1, the phase
shift at 200 wavelengths from the origin is still in the
order of 1074, Even the non-uniform method is ineffective

‘in this case. However, there are three ways to solve the

problen, namély by graphical extrapolation is one way, and

a power fit calculation is another. Finally, it is considered

that‘by finding the theoretical correction by integration

is superior to both.

2 (8+1
When k2 >> A—i—i—l
. r

where r is the distance from the origin,
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R 1025 S LN 1923 SO V2 TS

because
-, L0+l 2
(4&.(___.;__).) v o
r << 1 . . (11-20)

bk2

Since the.first order correction of the phase ghift

Id

r. r
.. . kT k ~
86y &= ———— x 7 radians o (11=21)

vhere k” = k -~ 2(2+1)/(2kr2).

Therefore 47§, = 2(2+1)n/(2k?r2) ' radlans o (h-22)

Since r2 = n2N2/K2 _ v - (11=23)

-where N is the number of half-waves from the origin plus

1/2 2. The sum of the the first order corrections

5 AS = S 2(2+1) 4y - - 202+1) A
L N 2wN2 27N _ (11-24)

The sum of the second order corrections can be

obtained similarly in noticing that

k** = k-f‘.(_z_tl?._.]:_( &..(_:.Q'_f_l_)..)z T {11=25)
2kr?2 2k 2kr? -

g oaces = 7 Leler1))? _ _ (2(2+1))2 (11-26)

N (R 2] 24 3NY

Similarly, for a polarization term of s/r*,the sum of

_the first order corrections is k2s/(673N%). (11-26)
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E. ELECTRON SCATTERING OF KRYPTON

Holtzmark (20) used a Hartree potential with

polarization to calculate the phase shifts in the electron

scattering of krypton. He used the method of numerical
integration without a computer; therefore we cannot expect
the calculation to be very accurate. Instead of just a

forty point representation used by Holtzmark, the pdtential

used here is a polynomial function. A polynomial regression
program was used, but it was found that it had to be applied
to at least four sections of the pptential'function in order
to have a curve fitting reasonably well with all the points.:
The effect of a small change (10%) in the
polarization on the calculation of the phase shifts and
hence the total cross-sections was studied. The results
were plotted on Page 43. It was found that the greater

polarization had a better result near the point of maximum

total cross-section, and the smaller polarization at higher

energy. This suggests that if the asymptotic potential

4, there may be

decreases faster than a constant times r
results closer to the experimental values.

The angular distributions of electrons scattered

elastically by krypton atoms were calculated for electrons
of energy between 0.1 a.u. and 1.5 a.u. The method used

will be found in the following page.
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1. AMGULAR DISTRIBUTION

From equation (11-11), the scattering cross-section

do(8) = 2T 5 (22 + 1) Sinzﬁz (Pz(cose))2 sind de (11-30)
k22=0

The Legendre polynomials Pl(cose) can be calculated by the

recursive formula (26)

(n+1) P, (x) = (2n+#1) P(X) x = nP _j(x)  (11-31)

_ %

The total cross-section o(6) = { do(9) (11-32)
| For large %, sin?8, is very small. For example,

L
the total cross-section does not increase more than 1%

in summing over from 2=0 to 2=9 instead of to %=L,

The scattered intensity per unit solid gngle can
"be obtained by dividing equation (11-30) by 0.5sin6d9.

The results were p]ottéd.




Figure 3.

TOTAL CALCULATED ELASTIC CROSS-SECTIONS

FOR ELECTRON-KRYPTON SCATTERING AND THE

EXPERIMENTALLY OBSERVED TOTAL CROSS-SECTIONS.

@ greater polarization = 22.0 r~4

X smaller polarization = 20.0 r~4

—— experimental
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Figure 4,

CALCULATED ANGULAR DISTRIBUTIONS OF ELECTRONS

SCATTERED ELASTICALLY BY KRYPTON ATOM.
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F. DISCUSSION

With a computer that can handle double precision
numbers, seven to ten significant figures for the phase
shift may be obtained through this imprdVed version of |
the finite-difference method. It was 'found that the
values of the phase shifts calculated by this method
agree very well with those that appear on a standard
text(31l). Only in two cases did the values show a
difference equél to w. If the criterion is that the
phase shift shouid tend to zero as the velocity, and hence
k, tends to infinity, the results calculated by this method
are justified.

If the potential is simple enough, a program can
be written for the Hewlett-Packard desk computer, which is
capable of performing about one thousand cycles per minute
in the Gauss Elimination Process for a spherical potential
well.

A ten per cents change in the polarization potential
results in a remarkable change in the calculated total
scattering cross-sections of krypton. Therefore, if the
potential is not exactly known, it is not easy to make a
direct comparison with other methods. However, Holtzmark
did not expect more than three significant figures in his
results while Robinson claimed to have three to five
significant figures. It is believed that this method should

be superior in both respects of computer time and accuracy.




46

The problem we have sol&ed is the determination of
the phase shifts from a given differential equation, such
as a Schrddinger's equation, with a given known V(r) in
our scattering problem. The inverse of the problem is
commonly encountered in the field of nuclear collisions
where the interaction law V(rl-rz) between two colliding
particles is not known from first principles. Although a
method was aescribed by Wu and Ohmura (32), as vet the
usefulness of the method as a criterion for ascertaining
ng and V(r), they said, is rather limited. The obvious
procedure to check the V(r) is to calculate the phase shifts
from the potential found by their method.

Of course, one can resort to the numerical
integration of the Schrédinger's equation, or some
Japproximate methods, such as the Born approximation or the
Variational méthods. However, the difference method is
very attractive because it isistraightforward in principle
and the accuracy can be increased readily by a finer mesh-
size,

Recently, some work has been done to find a better
polarization potential through the calculation of phase

shifts(33). Therefore, this method is also useful in this

area.




CHAPTER IV

TRANSITION PROBABILITY AND THE

- %
TIME DEPENDENT SCHRODIMNGER EQUATION.

* The ideas in this chapter are cssentially thosc ot

Wallace(34). The author was primarily concerned with

the calculations.

47
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A. S-MATRIX THEORY

The time dependent Schrddinger equation,
How(t) = if & w(t) - (1i1-1)
ot ~ .

with appropriate Hamiltonian operator H can be applied to
electrons, atoms and many other systems, where relativistic
effectsarenot significant. One way of solving it i; to
break up the Hamiltonian operator into an asymptotic part,
H®, whose eigenstates are well known and a "perturbation™

part, V, which is usually the potential. Therefore,

PR 2 [y (£)> = (H® + V) |y (3> (111=2)

at .
Expandaing in terms of & complete set of asymptotic states

1=1 |p.o<yi| (111-3)
) |wJ le - ‘
J

PR3 = [y (£)><uw (t) ]y () (F11-04)

3t 5 J J e -

S = W I Ly Ce)><p () ¥ (e)>s v]wjgt)><wj(t>zwe<t>>

J J
Putting <wj(t)|We(t)> = cj(t) , (111-5)
we have H® ¢ cj(t) wj(t)= T E? cj(t)wj(t) (111-6)
J Jj

IR A T e (D> = T Ee () ]u.Ct)>+ Vv, (t)e. (t)
— 1 IwJ . j NJ le ;480
j
(111-7)
iz ey [y;(0)> = TV [§;(E)> ept) Can-s

.

J
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ifc (t) =3I cj(t) <wk(t)|V|wj(t)> o (jll-g)
j - .
_ . ¢ ‘ v
ck(t) = c (t ) + (iR) = ¢ J c.(r)<wk(1)]V|w.(t)>dT
| 0 jtgd J (111-10)
The evaluation of ck(t) by the finite difference
method is easily derived by partitioning the time

integration into sections,

oy L cwv=1 o Etn | |
e lt 1) = (iR) ; {ocj(T)<wk(T)lvle(1)>_dr ,
. ' tn+1 »
+ (il s ¢ (1)<y (D) [V]p, (1) dt
| j tn J _ J

e (1) . | . (111-11)

' 1 el o
ck(tn*1> = c (t,) + (iR) ? {o cjcr)<¢k(r>iv|wj<;>> d?

_ j |

(111-12)

Employing the first approximation to the integral,
we obtain

] . G Y st '
) = ¢ (t )+ (IR)"" st 2 cj(tn)<wk(tn)[v[wj(tn)>

c (t
+1
keon j
| (1i1-13)
In matrix form, this reads
clt + 6t) = c(t) + (if™1 st D) el
et + 6t) = (1L + (i1 st D)) clt) (111-14)

A better approximation can be made by applying the

Simpson Three Point Rule

a(t_ ) = a(t)) + (alt ) + ua(tn+l) +oalt |

- ,))6t/3

(t11-15)
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after the first two initial points.

Normalization at each cycle is actually not
necessary because the process‘of normalization is a
multiplication of a constant to a vectof and the producf
of a2 series of ccnstants is still a constant, and hence

normalization can be done wherever chosen.
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B. TRANSITION PROBABILITY

°

The transition probability from a given initial
state |i> of the system to a given'final state |f> per
unit time can be defined as

- -~ N 2 . -
wi+f(t) = l<rlU(t,t°)ll>l (ret 16)‘

where U(t,to) is the evolution operator defined by the

relation « ‘ _
jY(t)> = U(t,to)lW(t0)> (111=-17)

Therefore the transition probability can be calculated if
we can solve the time dependent Schrodinger equation in

~ the chosen representation.

The conventional-per;urbation series approach to

the problem can be found in a number of texts (35,36,37).

U(t,to) is expanded as an infinite series.

Ult,tg) = Uy, t) + ¥ Un(t,to) (111-18)

n=1

where n o -1 o '
u (t,to) = (iR) f djn° o e dtl { (111-19)
- ' t>Tn> s e >t°

Uo(t,Tn)V(Tn)Uo(Tn,Tn_l)‘"'UO(T,tO)}

The transitlion amplitude then becomes

CFIUCL,t )]i> = 3 <f|Un(t,t0)li> (111-20)
0 n

in practice, only the first few terms may be
retained, resulting In an approximate formula which is only
valid for short times. Even if one retalns only the first
nonvanishing term, the resulting expression is not necessarily

simple since it may involve second and higher order terms
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summing over complete states of operator products.
However, the finite difference method approach eliminates

_much of this difficulty.

~As usual, |¥(t)> may be expanded in terms of some

complete set of orthonormal basis functions:-

l¥(t)> = Z a.(t) |9.(t)> o (Hri=-21)
j J J

“The SchrBdihger equation reduces to,the following well known

equation for the coefficients a(t),

g 22 (£) V. .(t) O (111-22)
: = Z .(t . -
dt ] aJ Kj t
where V. .(t) = <& (t)|V]e.(t)> ' (111=-23)
‘ kj k J
ag(t) = <®f(t)l¥(t)> = <®f(t)lU(t,te)!W(to)> (1it=-24)

then  a.(t) = <6c(£) UL, tg) [0, (£ )> (111-25)

if the initial state [i> = [¥(t)> = Jo.(t;)> .
“Evaluation of the time dependent coefficlents, i.e. solution

of the set of equations (111-22), is therefore completely

equivalent to calculating the complete transition amplitude.

The method of solving this set of equations was
already given in the last section on S-matrix theory. By

considering the perturbation series approach to the two-

level system, “the two methods can be compared. In this case

~equations(111-22) become
. dal(t)
(if) ;;———— = a1(t)V11(t) + az(t)vlz(t)
daz(t) (111-26)

(if) — ag (£)V, (1) + ay(t)Vyp(t)
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If the initlal states are al(to) =1, azfto) =0,

_ R i
_ | (iR) It Vll(t)
(t1=-27
daz(t) ¢ )
(iR) =V (t)
: 21
After rearranging and integrating,
o _ L | o
al(t) = 1 + (iR) S Vll(T)dT (111-28)
t
o
ot
a2(t) = (iRh) J V21(r) dt (111-28b)
tO _ ‘ v

These are the first order perturbation expression

which is only valid when az(t) is negligible as compared to

a.(t). However, the finite difference me

1
any value of az(t).

ot

hod is valid for
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1. RAMAN SCATTERING

- The second order expression for the transition

probability for raman scattering was glyen by Wallace (38}

(39) as follows:

sz(wz) VVi(ml)

w? (1) = K% ]z ¢ |
i>f w o+ w .,
o2 i (111-29)

Ve (w ) V. . (w )
fv 1 vi 2ty ece,0"

R

w + w, .
T vi

where'jn this case w' = wg; + Wy * oWy .

For the sake of comparison, only one term will be,
retained in the summation over intermediate states, thus the

process might be represented diagrammatically as follows,

vV E = 200

v
'\l’\:’\;’\l’\;’\/\ak’\a’\;’\;’\/b'\:’\a'\/\z’\/\:’\:’\/\a
N
w w
1 2 _
: f E = 50
f .
i E, =0

Figure 5. RAMAN SCATTERING

the energy levels shown being conveniently chosen. Putting

va = Vvi = B8, h =1, then we haye
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(2) L 1 ) 1 »
= - 0
wi £ (t) B 2007w, + 200+, f(t,w’) { | (1t1-30a)

In order to have energy conservation, (w,=- ml) should be

equal to (E -E-). With 8 = 0.2, w; = =195, and w, = 145,

(2) = 2 | -
wi+f (t) 0. QOOOEGt (i11-30b)

The plot of this function will be compared with the

transition probability calculated by the difference method

where : : . ' . '
Vi) = veelt t 4 yBelu,t | (111-31)
The D-matrix is then  ‘
L S - | o iCwi=uyq)t)
0 B . p  Vive vi
D = | : ' a i(w,~w, )t
A 0 .0 va 1 ovf
O i(w AedtoLa Pl tw, )t
va! vi vae vi Tl 0 ‘
(o o VB ol (w2muy ) t,
iv . .
o ' i(wa-w )t
. o.. o vE e e
T lyB ei(le +wy)t V l(w f+wz)t ‘ 0
| vi vES _
(111-32)

where, as before, we have assumed that B = 1. etc. When we used
the same data as the perturbation treatment, the transition
probability was found to be smaller and the difference widened
as time proceeded. |

If wy + w, = 0, resonance raman scattering (42)
i

occurs. . The program for the resonance raman scattering is

given in the appendix.




FIGURE 6.

TRANSITION PROBABILITIES FOR ORDINARY

RAMAN SCATTERING
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FIGURE 7

TIME DEPENDENCE OF OCCUPATION PROBABILITIES FOR STATES

INVOLVED |IN RESOWNANCE RAMAN SCATTERING.
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C. DISCUSSION

The calculation of transition probabilities in a

finite-difference form has an advantage over its alternative

perturbation-series approach. The formal expression has to
be truncated at the first relevant non-vanishing term of
the series in order to apply it in practice. It is fairly

satisfactory for some simple cases but it cannot adequately-

describe important cases such as the amplitude for a low-

energy collision,_singie and multiple resonances. A further
disadvantage is that the calculated transition amplitudes
are not ordinarily unitary.

The method described doés not have these disadvantages.
One of advahtages is thatlﬁhe corresponding equations are
equivalent to the corresponding perturbation?series
expressions, but sums rather than products of operators are
involved, and thereby, the computation time required is
greatly reduced. However, analytic expressions cannot be

written for the transition amplitudes.




CHAPTER V

CONCLUSION
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We have seen in the laét few chapters that the
finite-difference method has been successfully applied
to solve some interesting problems involving
Schrodinger's equation. Almost always,(whenever the
solution of differential equations is required, this
method can be used with certain modifications. It has
been used quite often in the past and, it will be even
more frequenély used in the future, if the computer
becomes more efficient and less expensive.

It should be very interesting to calculate the
eigenvalues and eigenfunctions of the hydrogen atom and
other systems and plot the electron density out on a
three-dimensional net by the method described in Chapter II.
It would be more straightforward than the well-known method
of separation of the.SchrBdinger's equation in spherical
,polarvco—ordinates, involving spherical harmonic functions.

Dynamic botentials obtained by methods similar to
that of Corrigall, Kupper, and Wallace(40) may be used in
phaseshift calculations. The validity of their method may
be checked or improved by comparing the total cross-sections
calculated and the experimental values.

It should be relatively simple to apply the
nonperturbative approach to more coﬁplicated systems. It
is a matter of evaluating more terms in the matrix.

Much of the work has been done in the direction

of reducing storage requirements and manipulation steps.
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The three-dimensional problem may be solved through the
guide-line of Gordon(5) or the use of eikonal approximation
of Chen and Watson(4l). However, these methods tend to

destroy the simplicity of the finite-difference approach.




APPENDIX A

THE JACOBI METHOD
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The Jacobl! method (1846) can only be applied to reai

symmetric matrices. The process is simply doing a series of

matrix multipllications by a certain matrix on one side and
its transpose on the other side until the off-diagonal

elements become nezligibly small, The matrix is simply

p q.
fee < 0 0 0 0 0 0« » ]
e 0 1 0 0 0 0 0 o
- pl** 0 0 cos 8 O 0 sin © g » o
R, =
K c« 0 0 o 1, 0 0 0+ -
.o 0 0 "1 0+
q |+ 0 0 -sin 8 0 0 cos 6 0 ¢ -
ee 0 0 0 0 0 0 1
k [ ] L] [ ] [ ] * l' )
o _ {1-26)
After multiplication of the three matrices, '
_ T ‘
| Ay = Ry Ao By . (1-27)
a?p = agﬁ-l) cosf8 + agg-l) sing = a;?) :
_ i # p,q (1-28)
ak =-alk 1) gipg + agk-l) cosf = a (k)
iqg ip iq al -
ak = alk"1) g2 4 9 a(k"1) ocs sing + atk=1) in2g
pp pD ja]e] . qaq
ak - (k"l) COSze

= alk=1) sin2g - 3 a¢k=1) 550 sine + a
p “pq aq

[s})
1

k (k=-1) _ _(k-1) (k-1) 20 o aipm2
pq (aqq a0h Jcos® sing + 204 .(cos G sin®@)
. . k ’
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(k)

In order to set a
Pq

equal to zero, the following

relationship must hold

- (k=1) (k-1) _ _(k=1) _
tan® 2 apq /(app aqq ) (1-30)
where ]6] must be less than or equal to w/k. If a(k'l) =

pp

ags‘l) , 8 must be equal to tn/h according to the sign of

a(k-l) , 5

bq K matrix and its transpose can therefore be

determined.

| By squaring both sides of equation (1-28), one can
easily prove that the sum of the squares of the off-diagonal
elements excluding the (p,q) anﬂ (q,p) elements remains

constant while a(k) = aéﬁ) = 0 and therefore there is a net
. ole]

decrease in the sum of the squares of all the off—diagonél
’elements. After many cycles thecyﬁ-d?égona1 terms will he
be very small.

The elgenfunction can be found by subtracting E h?
to each of the diagenal terms in‘(l-ZS) and then do a Gauss

eltimination.with uy equal to an arbitrary constant.
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PROGRAM II-~i

ENERGY OF THE HARMONIC OSCILLATOR
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THIS PROGRAM CALCULATES THE KINETIC AND POTENTIAL
ENERGY OF AN HARMONIC OSCILLATOR WHEN THE WAVE
FUNCTION 1Is GIVEN. THE METHOD IS GAUSS BACZKWARD
INTERPOLATION AND THEN SUMMATION OVER ALL THE POINTS.

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION X({803).,Y(803),FDER(803),SDER(803)
GAUSS(H,A,B,C,D)=(0.1666666666666667D+00%*A -B
1l +0,5D+00*C +0.3333333333333333D+00%*D) *H

1 FORMAT(I5,F15.10)

2

10

29

FORMAT(10X,I5,6F15.10)

A =0,314159265358979D+01%** (-0, 25D+OO)
READ(5,1) N,DELTAD

DO 40 M=1,3

_DH=0.5D+OO*DELTAD

=-DELTAD* (N+1)/0,2D+01
DI=0.1D+01/DELTAD
SUMKE=0,.0D+00
SUMPE=0,0D+00
DO 10 I=lr3
D=D+DELTAD

X(I)=D
Y(I)-A*DEXP(-D*D*O ED+00)
W2=Y (1)
W3=Y(2)
W4=Y(3)
DO 20 I=4,6

D=D+DELTAD

X(1I)=D
Wl=W2
W2=W3
W3=W4 _
W4=A*DEXP (-D*D*0.5D+00)
Y(1)=W4
FDER(I-1) GAUSS(DI W1l,W2,W3,wW4)
U2=FDER(3)

U3=FDER(4)

U4=FDER(5)
DO 30 I=7'N

=D+DEILTAD
X(1)=D
Wl=W2
W2=W3
W3=W4
W4=A*DEXP (~-D*D*0,5D+00)
Y{x1)=W4
FDER(I-1)=GAUSS(DI,Wl,W2,W3,W4)
J=I-2 .

Ul=U2
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U2=u3

U3=U4

U4=FDER(I-1)

HOLD= GALSS(JI Ul1i,u2,U03, UA)
SDER (J) =HOLD
SUMKE=SUMKE-W2*HOLD*DH
SUMPE=SUMPE+X (J} *X(J) *W2*W2*DH
WRITE(6,2) J,X(J).,¥(J), FDER(J) SDER(J) SUMKE, SUMPE
CONTINUE

DELTAD=DELTAD*0.5D+00

CONTINUE

CALL EXIT

END




PROGRAM TTI-1

_PHASESHIFTS AND WAVEFUNCTION WITH PLOT
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PROGRAM TO CALCULATE PHASESHIFTS AND WAVEFUNCTION

00O

REAL*8 ¥,DK,H,P,R,C1,C2,D,DIAG,PI!,LS,C, HOLD,LSOR,SINCL
REAL*8 DSQRT,DFLOAT,DSIN,DSIGN,NHFW,HK,LSOP,HFL,HAFPIL
REAL*8 POT,WAVEFN
DIMENSION DATAD(7)
DIMENSION [BUF(1000)
COMMON PI,HFL,LSOP,HAFPIL,C,D,LS,H,P, K, WAVEFN,
1 XARRAY(1002),YARRAY(1002),L,NR
1 FORMAT(11,F9.4,F10.6,12,D018.10,1190,F10.2,F10.5)
2 FORMAT('0',/,15%x,' L = ',12,' K = ', F9.4,/,15X,
1' INCREMENT OF K',F10.6,/,15X%, :
2 ' NUMBER OF INCREMENT OF K ',12,/,15X%,
3 ' INCREMENT OF DISTANCE H = ',D18.10,/,15X,
i * NUMBER OF INTERVAL IN LAST REGION =',110,/,
515X, YAPPROX IMATE NUMBER OF HALF-WAVES DESIRED IN Y,
6'FIRST REGION =',F10.2)
3 FORMAT(/,15X,' K =',6Fl0.5," SEPARATION H =',D20.10)
4 FORMAT ('1',7(/),15X,' SEPARATION =%,D20.12,/,15X%,
1 ' NUMBER OF NONUNIFORM INTERVALS =',110,/,15X,
2' (L+L+L)*H*H/(R*R) =',D20.12,/,15X,
37 HxHxK+K =',D20.12)
5 FORMAT('0',//,20X,'DISTANCE', 10X, 'WAVENUMBER', 8X,
1'PHASESHIFT'")
6 FORMAT('1',7(/),15X,7AL)
PI=0,3141592653589795D+01
CALL PLOTS(IBUF,1000)
CALL PLOT (0.0, 3.0,-3)
10 READ(5,1,END= 60) L, K, DK, NK H,N,NHFW,WAVEFN
CALL $DATE(DATAD)
WRITE(6,6) DATAD
WRITE(G,Z) L,K,DK,NK,H,N,NHFW
LS=LxL+L
HFL=0.5D+00*L
LSOP=0.5D+00*LS/Pl
HAFPIL=0.5D+00*P!*L
HK=H
DO 40 M=1,NK
CALL $DATE(DATAD)
WRITE(6,6) DATAD
WRITE(6,3) K,H
WRITE(6,5)
P=0.0D+00
C=0,.,0D0+00
D=0.0D+00
N2=10
WAVEFN=-WAVEFN* (H*K)**x(L+1)/ .
1 (-0,2D+01+H*H*K*K~LS+POT (H)*HxH)
NR=1 e
XARRAY(1)=0.0 : ' R
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50

7

L0
60

1

2

GO TO 1o
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YARRAY (1)=SNGL(WAVEFN)

CALL PLOT(9.0,0.0,-3)

XARRAY (1001)=0.0

XARRAY(1002)=1.5

YARRAY (1001)=-1.0 |
YARRAY(1002)=0.25 .
WRITE(6,7) XARRAY(1001),XARRAY(1002),YARRAY(1001),YARRAY(1002) ="
FORMAT (! SCALING FACTOR',LE17.10)

CALL AX1S(0.0,0.0, 'DISTANCE IN ATOMIC UNITS',

1-24,6.0,0.0,XARRAY(1001), XARRAY(1002))

CALL AX1S(0.0,0.0, "WAVE FUNCTION', 13,8.0,90.0,

1YARRAY(1001),YARRAY(1002))

CALL AX1S(0.0,4.0,1H ,-1,5.0,0.0,XARRAY{1001),XARRAY(1002))
CALL AXIs(0.0,8.0,1H ,+1,6.0,0.0, XARRAY(lOOl),KARRAY\lODZ))
CALL GAUSSE(N2,&50)

DO 20 1=8,1000 :

IF ( P .GT. NHFW) GO 70 30
SINCL=DSIN(0.5D+00*H*K)

SINCL=0.4D+01*SINCL*SINCL
D=0.1D+01~-D*(=0,2D+01+SINCL-LS/(C*C))

H=0.,2D+01*H

C=(C-0.1D+01)/0.2D+01
N2=INT(O.U*EXP(0,23262%1))+1

CALL GAUSSE(NZ2,&50)

CONTINUE

CONTINUE -

DIAG=H*H* K%K

N2=IDINT(0.4D+00*DEXP(O0. 23262D+00*|)/0 23262D+00)
LSOR=LS/(C*C)

WRITE(6,4) H,N2,LSOR,DIAG

K=K+DK

H=HK

CONTINUE

CALL PLOT(20.0,0.0, 999)
CALL EXIT
END

WHEN THE WAVE FUNCTION CROSS THE AXiS, THE DIAGONAL
ELEMENT CHANGES SIGN AND THE SHIFT CAN THUS Bt
CALCULATED.

SUBROUTINE GAUSSE(M, *)

REAL*8 C,D,H,DIAG,LS,P,R,SHIFT,PI,C2,K,LSOR,HS,HAFPIL
REAL*=8 SINCL,CORVAL,HFL,DFLOAT,DSQRT,DSIM, POT,WAVEFN
COMMON PI,HFL,LSOR,HAFPIL,C, D,Lb H,P,K,HAVEFN,

1 XARRAY(lOOZ) YARHNY(IOOZ) L,

FORMAT(15X,D20.10, 8X,F5.0, D20 10)
EORMAT('l',7(/),20X,'DISTANCE',IOX,'WAVENUMBER',8X,
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10
60

50
20

1'PHASESHIFT')

FORMAT(' SCALING FACTOR',4E17.10)
HS=H*H

SINCL=DSIN(0.5D+00*Hx*K)
SINCL=0.4D+01*SINCL*SINCL

0O 50 I=1,M
C=C+0.1D+01
R=C+H

C2=-0.2D+01-D+SINCL=LS/(C*C)+POT(R)*HS
D=0. D+01/C2

WAVEFN=~C2*WAVEFN

NR=NR+1

XARRAY (NR) =SNGL (R)

YARRAY (NR)=SNGL (WAVEFN)

IF (NR .LT. 10006) GO TO 10

IF(R .GT. 10.0) RETURN 1

CALL SCALE(YARRAY,S8.0,1000,1)
WRITE(6,7) YARRAY(1001),YARRAY(1002)
CALL LINE(XARRAY,YARRAY,1000,1,0C,0)
NR=1
XARRAY (1) =XARRAY(1000)
YARRAY (1)=YARRAY(1000)
IF(C2) 50,20,60 ~
P=P+0,1D+01
R={C+0.10+01/(0.10+01+C2
SHIFT=P[*P+HAFPIL~K*R
CORVAL=LSOR/ (P+HFL)

A NRY)
P Y

CORVAL=CORVAL+CORVAL=CORVAL/ (0. BD+01*PI*(P+HFL))

SHIFT=SHIFT~CORVAL

IF (P ,EQ. 1.2D+01) RETURN 1
WRITE(6,1) R,P,SHIFT
CONTINUE

RETURN

END

REAL FUNCTION POT*38(R)
REAL*8 R

POT=0.0D+00

RETURN

END
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PROGRAM III-2

" CALCULATION OF PHASESHIETS IN THE

ELECTRON SCATTERIMG QF KRYPTON
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MAIN PROGRAM TO CALCULATE PHASESHIFTS OF KRYPTON

- REAL*8 C,D,H,NHFW,LS,P,R,SHIFT,PI,C2,K,LSOR,HS,HAFPIL

REAL*8 SINCL,HFL,POT,HK,DK
DIMENSION DATAD(7)

COMMON PI,HFL,LSOR,HAFPIL,C,D,LS,H,P,K,NHFW,R,HS,SINCL,L

FORMAT (F10.4,12,D18.10, FlO 5)
FORMAT (I1,F10.5)

FORMAT(/,15%,' K =',F10.5,"' SEPARATION H =',D20,10)

FORMAT {(/,15X,' LAST SEPARATION =',D20.,12,/,15%,
1 ' NUMBER OF NONUNIFORM INTvRVALC_—' 110)
FORMAT (/, 20X, 'DISTANCE',10X, 'WAVENUMBER'®, 8X,
1'PHASESHIFT')

FORMAT ('1',5(/),15X%X,7A4, lOX,'L =',12)

CALL ERRSET(208,999,-1,1)
PI=0,3141592653589793D+01

READ(S5,1,END=60) X,NK,H

HK=H

CALL S$DATE (DATAD)

DO 40 M=1,NK

READ (5,2) L,NHFW

LS=L*L+L

HFL=0.5D+00%T,

LSOR=0,5D+00*LS/PI

- HAFPIL=0.5D+00*PI*L

20
30

40
50
60

WRITE(G,6) DATADR,L

WRITR(6,3) K,H

WRITE(6,5)

P=0.0C+00

C=0.0D+00

D=0,0D+C0

N2=10

CALL GAUSSE(N2,&30)

DO 20 I=8,1000

D=0.1D+01-D* (~0. 2D+01+SINCL—LS/(C*C)+POT(A)*HS)
H=0,2D+01*H

C=(C-0,1D+01) /0.2D+01
N2=INT(0.4*EXP(0,23242*1))+1

CALL GAUSSE (N2,&30)

CONTINUE
N2=IDINT(0,.4D+00*DEXP(0.23262D+00*I)/0.23262D+00)
WRITE(6,4) H,N2 ‘
H=HK

CONTINUE

rCG TO 10

call E¥IT

END

WHEN THE WAVE FINICTION CROSS THE AXIS, THE DIAGONAL
ELEMENT CHANGES SIGM AND THE SIHIFT CAN THUS BE

~ CALCULATED.
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SUBRQUTINE GAUSSE(M,*)
REAL*8 C,D,H,NuF¥,LS,P,R,SHIFT,PI,C2,K,LSOR,HS,HAFPIL
REAL*3 SINCL,CORVAL,HFL,POT
COMMON PI,HFL,LSOR,HAFPIL,C,D.LS,H,P,%,NHEFY,R,HS,SINCL,L
1 FORMAT (15X,D2C.10,%%X,F5.0,D20.10)
2 FORMAT(*1',7(/),20%,'DISTANCE',10X, '"WAVENUMBER',8X,
1*PHASESHIFT') , :
HS=E*H
SINCL=DSIN(0.5D+00*I*K)
SINCL=0,4D+01*SINCL*SINCL
DO 50 I=1,M
C=C+0.1D+01
R=C*H :
C2=-0,2D+01-D+SINCL-LS/ (C*C)+POT (R) ¥HES
D=0.1D+C1l/C2
10 IF(C2) 50,20,€0

60 P=P+0.1D+01

R=(C+0,1D+01/(0. l“—Ol+C2))*H
SHIFT=PI*P+HAFPIL~KX*R
CORVAL=LSOR/ (P+HI'L)
CORVAL=CCRVAL+CORVAL*CORVAL/ (0. 6D+01*PI* (P+EFL))
SHIFT=SHIFT-CORVAL
WRITE(6,1) R,P,SHIFT
IF (P .GE. NHFW) RETURN 1
50 CONTINUE
20 RETURN

END .

REAL FUMCTICN POT*8(R)

REAL*8 R,R2,R3,R4,R5,R6

R2=R*R

R3=R2*®

R4A=R2*R2

R5=R3*R2

R6=R3*R3
- “IF (R .LE. 0.1D+00j :
1POT=0 72n+02/R-o 35338818929D+03~0,1146350537D+04*R

2+0,1841818834D+06*R2~0,52795254€2D+07*R3+0,7514265787D+08*R4

3-0.5397741491D+09*R5+0,1551035487D+10%R26

IF ( .GT., G.1D+%™ M, R J,LE. 0.50D+00)
1POT=0.7625479807D+02/R~0,4572041792D+03+0,2635553926D+04*R
2-0.1121322713D+05*%R2+0,2883189221D+05%R3
3-0.3943388899P+05*R4+0,2153604414D+05*R5

IF (R .GT. 0.5D+00 AND. R .LE. 0,22D+01)
1POT=0,7554322115D+02/R~C,2€689478423D+03+0,5138835010D+03*R
2-0,57863661440+03*R2+0,3219502097D+03%R3
3-0.15674372422+03*R4+0.3403842985D+02*R5~0,3090055427D+01*R6
IF (R .GT. 0.22D+01 .,AND. R .LE. 0,78D+01)
1POT=-0,395482454D+02/R+0,8606638291D+02-0,5924502874D+02*R
2+0,2874593118D+02*R2-0,6815859726D+01*%R3+0,9334986726D+00*R4
3-0.€882078619D-01*R5+0,21159234312D-02*R6

IFr (R .GT. 0.7D+01} POT=0.20D+02/R4

RETURN

END




PROGRAM III-3 -~ ——0-

TOTAL SCATTERING _CROSS SECTIOMS AND

THE ANGULAR DISTRIBUTICN




oNoNoNoNe!

73

PROGRAM TO CALCULATE THE ANGULAR DISTRIBUTION OF
ELECTRON SCATTERING WHEN THE PHASESHIFTS AND THE
ENERGY ARE GIVEN :

IMPLICIT REAL*8(A-H,K,0-Z)
REAL*4 YARRAY,XARRAY,ENERGY
DIMENSION YARRAY(182),XARRAY(182),C(10),ANG(10)
DIMENSION IBUF(2000),SINSQ(10),LABEL(10)
1 FORMAT(I5,F20.10)
2 FORMAT (8F10.5) ,
3 FORMAT (15X,I10,10X,F20.10)
4 FORMAT('1l',/,10X,' N = ',I5,' K = ',r20.10,/,
1 PHASESHIFT =',(/,20X,F20.10))
5 FORMAT (20X, 'TOTAL CROSS-SECTION ',D20.10)
PI=0.3141592653589793D+01
RADIAN=PI/0.18D+03
CALL PLOTS (IBUF,2000)
CALL PLOT(0.0,1.5,=3)
© CALL PLOT(5.0,0.0,=2)
CALL PLOT(0.0,8.5,=2)
CALL PLOT(~5.0,0.0,-2)
CALL PLOT(0.0,-8.5,=2)
XARRAY (181)=0.,0 i
XARRAY (182)=36,0 -
YARRAY (181)=0.0
YARRAY (182)=8,0
NRUN=0
20 READ(5,1,END=40) N,K
NRUN=NRUN+1 ,
READ(5'2) (ANG(I) 9I=10N)
WRITE(6,4) N,K.,(ANG(I),I=1,N)
KK=K*K
ENERGY=13.595*SNGL (KK)
THETA=-RADIAN
DO 50 J=1,180
XARRAY (J) =FLOAT(J)

‘50 CONTINUE

SUM=0.0D+00
DO 30 J=1,180
THETA=THETA+RADIAN
X=DCOS (THETA)
DO 10 I=1,N
SINP=DSIN{ANG(I))
SINSQ(I)=SINP*SINP
C(I)=((2*I~1)**2)*SINSQ(I)/KK
10 CONTINUE
2=0.1D+01
CALL LEPSS(Y.X,2Z2,C.N)
YARRAY (J)=SNGL (¥)
Z=DSIN (THETA)
CALL LEPSS(Y,X,2.,C.,N)
SUM=SUM+Y
30 CONTINUE
SUM=SUM*RADIAN*0,5D+00
WRITE(6,5) SUM
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WRITE(6,3) (I,YARRAY(I),I=1,180)
IF (NRUN ,LT. 7) GO TO 60

CALL PLOT(0.001001-3)

CALL PLOT(0.0,0.5,-3)

CALL LINE(XARRAY,YARRAY,180,1,0,0)
GO TO 20

CALL PLOT(20.0,0.0,999)

CALL EXIT

END

COMPUTES THE. VALUE 'OF AN N-TERM EXPANSION IN LEGENDRE
POLYNOMIALS SQUARE WITH -COCEFFICIENT VECTOR C FOR
ARGUMENT VALUE. Z IS A FIX CONSTANT CCEFFICIENT.

SUBROUTINE LEPSS(Y,X,2,C,N)
IMPLICIT REAL*8(A-H,0-2Z)
DIMENSION C(1)

Y=C (1) *2

IF(N"Z) ll3l3

INITIALIZATION
H0=0.1D+01

Hl=X

DO 4 I=2,N
H2=X*H1
H2=H2-H0+H2~-(H2-HO) /DFLOAT (I)
HO=H1

Hl=H2

¥Y=Y+C(X) *HO*HO*Z
RETURN

END




PROGRAM IV-1

RESONANCE RAMAN SCATTERING WITH ONE INTERMEDIATE STATE
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PROGRAM TO CALCULATE OCCUPATION PROBABILITY .
IN A RAMAN SCATTERING TRANSITION

IMPLICIT REAL*8 (A-H,0=2)
COMPLEX*16 2A,V(3),C(3). IMAGIN

REAL*4 DATAD(7) -
COMMON A(3,3),IMAGIN,T,R
FORMAT (4F10.7)
FORMAT(10X,F15.5,3F15.10)
FORMAT (2I5,F20.10)
FORMAT(lOX,YDELTAT',F20.10)

FORMAT('1',4(/),10X,7A4)

IMAGIN={0,0D+00,+0. 1D+01)
CALL S$DATE(DATAD)
WRITE(6,14) DATAD

READ(5,3,END=999) N.M,DELTAT

WRITE(6,4) DELTAT
==0,2D+00*DELTAT
DO 40 I=1,3
vV(1}=0,0D+00
V(1)=0,1D+01
A(l,1)=0.1D+01
A(2,2)=0.1D+01
A(3,3)=0,1D+01

. A(1,2)=0.0D+00

A(2,1)=0,0D+00
T=-DELTAT

bo 10 I=1,N

DO 20 J=1,M
=T+DELTAT

CALL CGEN

CALL MULT(3,V,C)
CALL NORM{V,3)
CONTINUE .  ©
Z21=SQUARE (V (1))
Z2=SQUARE (V(2))

'Z3=SQUARE (V(3))

WRITE(6.,2) T,21,22,23

- WRITE(7,1) T,21,22,23

10
999

CONTINUE

GO TO 30

CALL EXIT

END

SUBROUTINE CGEN

IMPLICIT REAL*8 (A-H,0-2)
COMPLEX*16 A,IMAGIN
COMMON A(3,3),IMAGIN,T,R
R1=0,5D+02*T
R2=0,30D+03*T
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R3=0,35D+03*T

R4=0,40D+03*T

A(1,3)=((DCC5(R4)+DCOS(R1)) *IMAGIN+DSIN(R4)+DSIN(R1l)) *R
A(2,3)=({DCOS(R3)+0.1D+01) *IMAGIN+DSIN(R3)) *R
A(3,2)=((DCOS (R2)+DCOS(R1l) ) *IMAGIN+DSIN(R1)~DSIN (R2)) *R
A(3,1)=((DCOS(R3)+0.1D+01) *IMAGIN-DSIN(R3)) *R

RETURN

END '

SUBROUTINE MULT(N,B.C)

MULTIPLY A VECTOR B BY A MATRIX A RESULTING VECTOR C

"COMPLEX*16 A,B,C,SUM

COMMON A&(3,3)
DIMENSION B (N),C(N)

DO 10 I=1,N :

SUM =(+0.0D+00,+0.9D+00)

po 20 J=1,N

SUM = SUM + A(I,J)*B(J)
C(I) = StM

DO 30 I=1,N

B(I)=C(I)

RETURN
END ‘ ’
REAL, FUNCTION SQUARE*8 (ARG)
CALCULATE THE SQUARE OF THE NORM
COMPLEX*16 ARG,NIMAG
REAL*8 A,B

=ARG -
NIMAG=(0,0D+00,-0.1D+01) *ARG
B=NIMAG '
SQUARE=A*A+B*B

RETURN
END

SUBROUTINE NORM(V,N)
NORMALIZE COMPLEX VECTOR V-
COMPLEX*16 V,FPACT,VAR
REAL*8 FACTOR,SUM, SQUARE
DIMENSION V(N)

SUM = +0,0D+00

DO 10 I=1,N

SUM=SUM+SQUARE (V(I))
FACTOR=SUM** (~0,5D+00)

DO 20 I=1,N

V(I) = FACTOR * V(I)

RETURN
END
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