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Abstract

We consider the problem of localizing objects in weakly labeled images/videos.

An image/video (e.g., Flickr image and YouTube video) is weakly labeled if it is

associated with a tag describing the main object present in the image/video. It is

weakly labeled because the tag only indicates the presence/absence of the object, but

does not provide the detailed spatial location of the object. Given an image/video

with an object tag, our goal is to localize the object in it. In this thesis, we propose two

novel techniques to handle this challenging problem. First, we build a video-specific

object appearance model and then incorporate temporal consistency information to

localize the object. Second, we make use of existing detectors of some other object

classes (which we call “familiar objects”) to build the appearance model of the unseen

object class (i.e., the object of interest). Experimental results show the effectiveness

of the proposed methods.
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Chapter 1

Introduction

Due to the popularity of online image and video sharing websites (e.g., Flickr

and YouTube), an ever-increasing amount of image and video contents are becoming

available nowadays. These online images/videos prove to be both a valuable resource

and a grand challenge for computer vision. Internet images/videos are often weakly

labeled. An image/video is weakly labeled if it is associated with a tag (e.g., YouTube

videos with tags) describing the main object present within it. It is weakly labeled

because the tag only indicates the presence/absence of the object, but does not give

the detailed spatial location of the object in the image/video. For example, many

Flickr images and YouTube videos have some tags associated with them. These tags

are generated by users and provide some information about the contents (e.g., objects)

within them. However, tags do not provide detailed spatial information about where

the objects are. For instance, if a YouTube video is tagged with “dog”, we know

there is probably a dog somewhere in the video. But we cannot localize the dog in

the video. In this thesis, our goal is to localize (i.e., output the bounding box) the

1



2 Chapter 1: Introduction

object in every frame of such weakly labeled videos. Similarly, given a collection of

images labeled with an object category (e.g., “dog”), our aim is to localize this object

in each image.

We propose simple and effective methods to localize object of interest in weakly

labeled images/videos. Figure 1.1 illustrates the goal of our work. Given a collection

of images or a video with a tag, say “car”, we would like to localize the “car” in the

images or the video. In other words, we try to answer the question “where is the

object” in the weakly labeled data? A reliable solution to this problem will provide

better image/video retrieval and browsing experience for users. It will also help us

to solve a wide range of tasks related to to image/video understanding.

How would one detect an object class, say “car”, in images? The de facto answer

in computer vision is to collect a set of labeled training data (e.g., images with

object bounding box annotations) for this object class and apply standard supervised

machine learning to learn the appearance model for this object category. Then this

appearance model can be used to detect cars in any image. The key of this standard

pipeline is that we need to have access to a large amount of manually labeled training

data. In the past few years, the availability of large-scale annotated datasets (e.g.,

PASCAL VOC [6] and ImageNet [30]) has been one of the driving forces of much

progress in visual recognition. The PASCAL dataset [6] has focused only on 20

common objects. ImageNet [30] covers more object classes, but is still limited to the

objects defined in the WordNet hierarchy, and most of the images in ImageNet are

not annotated with object bounding boxes. Collecting labeled training data in the

form of object bounding box annotation is an expensive task. Therefore, it is not



Chapter 1: Introduction 3

a collection of images labeled as “car”

a video labeled as “car”

Figure 1.1: Our goal is to localize objects in weakly labeled data. (Top) Given a
collection of images labeled as “car”, our algorithm will localize the car in each image
of the collection. (Bottom) By applying our algorithm on a single video labeled as
“car”, we can localize the specific instance of “car” in this video. The red bounding
boxes in this figure are outputs of our algorithm.

clear how this straightforward approach would scale up when we need to deal with a

large number of concepts emerging over time, which is common for images/videos on

the Internet.

We propose object localization techniques that do not require labeled (in the

form of bounding boxes) training data. We use cheaply available labels (e.g., user-

generated tags) associated with images/videos as cue to learn the appearance model

of the object of interest. Our work is motivated by previous work on learning localized

concepts [12; 20; 24; 35; 37; 39] in videos. Our work is also inspired by previous work

on transfer learning for object detection [16]. The main advantage of our methods is
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that they can be applied for any object category.

There are three major contributions in this thesis. First, we build a video-specific

object appearance model to localize the object of interest in weakly labeled videos.

Second, we introduce a temporal consistency constraint to our video-specific object

appearance model to improve its efficiency. Third, we incorporate knowledge transfer

into weakly supervised learning (WSL) of object classes.

The remainder of the thesis is organized as follows. In Chapter 2, we briefly

discuss the related work. In Chapter 3, we describe a video-specific object appearance

model to localize objects in weakly labeled videos. We also show that incorporating

a temporal consistency constraint between consecutive frames is useful for localizing

objects in videos. In Chapter 4, we introduce a transfer learning based framework to

learn the appearance model of the object of interest. In Chapter 5, we conclude this

thesis and discuss possible future directions.



Chapter 2

Related Work

In this chapter, we briefly discuss the works most related to our proposed methods.

2.1 Object Localization

We propose the following two ways to localize the objects in weakly labeled im-

ages/videos: i) building video-specific object appearance model and then incorporate

temporal consistency, and ii) leveraging detectors of other related objects to learn

the appearance of the object of interest. In the following, we review previous work

related to each of these two strategies.

2.1.1 Object Localization with Temporal Consistency

For localizing object in a weakly labeled video, we build a video-specific appear-

ance model of the object. This approach is inspired by some works in the domain

of animal [26] and human tracking [25; 27]. The key idea used in these works is

5



6 Chapter 2: Related Work

that they learn the video-specific appearance models for the object. For example,

Ramanan et al. [27] proposed a human kinematic tracking system which first detects

stylized human poses in a given video. Then, they build an appearance model of hu-

man limbs specifically tuned for the person present in that particular video. It then

applies this appearance model to every frame within the video to localize human. We

use the similar logic to localize object in a video by constructing the video-specific

appearance model of the object.

Ideally, in a video, objects in two consecutive frames does not undergo much

change in their position, size and appearance. Tang et al. [15] proposed a tempo-

ral consistency model in their recent work on image and video co-localization. Co-

localization is essentially an unsupervised problem in which common object in a set

of images or videos are localized using bounding boxes [15]. This model incorporates

temporal consistency metric to measure how well the bounding boxes between two

consecutive frames agree in size and position. We use a similar way to incorporate

temporal consistency to improve the performance of video-specific object appearance

model. This consistency constraint ensures that the object localization (i.e., bounding

box selected by our model in every frame of a video) is consistent.

2.1.2 Object Localization with Appearance Transfer

In computer vision, we currently have reasonable good detectors for a handful of

object categories, e.g., the 20 object classes in the PASCAL challenge [8; 10]. We

propose a transfer learning framework to leverage the object detectors from a small

set of known object classes to build detectors for new object classes.
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Lampert et al. [16] introduced an attribute-based classification technique which

enabled information transfer between object classes. The transfer is done using an

intermediate representation consisting of high-level attribute (e.g., shape, color, etc.)

description provided by human. They learn these attributes with training examples.

The learned model is then used to detect object classes for new test images based

on their attribute description. These test images can even contain object classes for

which there are no training example.

Our proposed method is related to a line of research on using linguistic knowledge

to provide the link between the source object classes and target classes for knowledge

transfer [28]. In natural language processing, people have developed techniques for

learning the semantic relatedness of words from large collections of text documents

[13]. For example, linguistic knowledge will tell us that “tiger” and “leopard” are

two similar object classes. We propose to exploit this linguistic knowledge in our

proposed approach.

2.2 Multiple Instance Learning

Our work is also related to a line of research on weakly-supervised learning (in

particular, multiple-instance learning (MIL)) in computer vision. MIL is generally

applied to tackle the problems where there is uncertainty about the labels of training

data. In MIL framework, we have training data as pairs of bags labeled as positive

or negative. A bag is labeled as positive if there is at least one instance of the label

present within it, whereas a bag is labeled as negative if it contains no positive instance

of the label. This setup is equivalent to our object localization problem setup where
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we consider that the object of interest is present in a sub-region of positive examples

(images or video frames), whereas the object of interest is not present in any sub-

regions of negative examples.

MIL has been adopted in many computer vision applications, e.g., scene classifi-

cation [18], object detection [8], object localization [9], image annotation [39], etc.

Maron et al. [18] applied multiple-instance learning for scene classification. Each

image is treated as a bag where sub-regions of the image are the instances. They

learn a classifier of the concept using a collection of positive and negative examples.

This classifier is then used to select images from dataset that contains the concept.

Felzenszwalb et al. [8] proposed a object detection system that relies on partially

labeled data. They reformulate MIL and SVM in terms of latent variables and called

the formalism latent SVM. This method achieved state-of-the-art performance on

detection problem.

MIL-based framework has been used to recognize and localize objects in images.

For example, Galleguillos et al. [9] proposed a object recognition system that combines

image descriptors and segmentations with a MIL algorithm to recognize and localize

objects in images.

Wang and Mori [39] handle the problem of annotating image with unaligned tex-

tual object annotations. They develop a latent SVM framework [8] that captures the

mapping between the annotations and image regions. This learned mapping relates

the image sub-regions to their corresponding textual annotations.



Chapter 3

Object Localization with Temporal

Consistency

In this chapter, we propose a video-specific appearance model for localizing ob-

jects in weakly labeled videos. We also introduce a temporal consistency constraint

between consecutive frames to improve the performance of the model.

Video-specific appearance model construction has proven to be an efficient way

for animal [26] and human tracking [25; 27]. The main idea used in these works is

that they learn the video-specific object appearance models to localize the object.

Ramanan et al. [27] proposed a human kinematic tracking system which first detects

stylized human poses in a given video. Following this, they build an appearance model

of human limbs specifically tuned for the person present in that video. It then uses

this appearance model to localize human in each frame of the video. Motivated by

this approach, we also build a video-specific appearance model to localize the object

in a video tagged with an object name.

9
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The major drawback of the above appearance-based method is that it ignores

the temporal information between consecutive frames of a video. In general, an

object appearance, size and position do not undergo drastic change between two

consecutive frames. Based on this knowledge, we incorporate a temporal consistency

constraint (similar to [15]) to our appearance-based framework to further improve its

performance.

3.1 Our Approach

The type of input processed by our method is a video with an object tag, e.g.,

“cow”. In our work, we focus on videos that are relatively simple. In particular,

we make the following two assumptions about the videos: 1) the tag corresponds to

the main object in the video; 2) there is only one instance of the tagged object in

the video. More concretely, if a video is tagged with “cow”, there should be a cow

somewhere in the video. We assume the cow is the dominant object in the video,

i.e., it is not too small. We also assume there is only one cow in the video. Previous

work (e.g., [37]) in this area makes similar assumptions.

Based on these assumptions, our proposed approach involves four major steps:

1) Generating object proposals: Given a video with an object tag, the first

step of our approach is to generate a collection of object proposals (also called hy-

potheses) on each frame in the video. Each object proposal is a bounding box that

is likely to contain an object. The method we use for generating object proposals is

generic and is not tuned for any specific object classes.

2) Building object appearance model: Many of the object proposals obtained
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from the previous step might not correspond to the object of interest. In the second

step, we use some simple heuristics to choose a few bounding boxes from the collection

of all object proposals. The hope is that these selected bounding boxes are likely to

correspond to the object of interest. We then build an appearance model for the

object based on the selected bounding boxes. Note that the appearance model is

built for a specific video. If the video contains a “black cow”, our appearance model

will try to detect this “black cow”, instead of other generic cows.

3) Object localization: We localize the object by selecting one bounding box in

each frame of a video. We could use the learned appearance model from the previous

step to re-score the object proposals from the first step. After re-scoring, a bounding

box will have a high score only if it is likely to contain an object instance specific to this

video, e.g., a “black cow”. However, this strategy alone may not be efficient enough

to localize the object correctly. In this work, we assume that the object of interest in

a video does not undergo drastic change in their properties such as size, position and

appearance between two consecutive frames. Previous work (e.g., [41; 15]) has also

made similar assumptions. Therefore, we enforce these constraints by incorporating

a temporal consistency model between adjacent video frames. We model the object

localization problem as performing the maximum a posteriori (MAP) inference in an

undirected chain graphical model. Each node in the graphical model corresponds

to a frame and object proposals within a frame are the possible states of the node.

An edge in the model enforces temporal consistency between two consecutive frames.

The object in the video is localized by finding the optimal labeling of nodes in the

graphical model.
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Figure 3.1: Examples of generating object proposals on frames within a video. Given
a frame, the Edge Boxes algorithm [42] is applied. It returns a collection of bounding
boxes in an image that are likely to be any object. For each bounding box, the
algorithm also assigns a score indicating how likely it is to be an object.

4) Segmenting objects: After localizing an object in each frame, the Grab-

Cut [29] algorithm is applied on the selected bounding box to segment the object

from the background.

We describe the details of each step in the following.

3.1.1 Generating Object Proposals

Given an input video, the first step of our approach is to generate a set of candidate

object bounding boxes on each frame. For certain object categories (e.g., people, car,

etc.), one might be able to use state-of-the-art object detectors, e.g., [8]. But the

limitation of this approach is that there are only a handful of object categories (e.g.,

20 object categories in the PASCAL object detection challenge) for which we have

reasonably reliable detectors. Since we are interested in localizing objects in a video

regardless of the object class, we choose not to use object detectors.

Instead, we use the Edge Boxes algorithm [42] to generate object bounding box

proposals. This algorithm works on one simple observation: the number of contours

that are wholly enclosed by a bounding box indicates the presence of an object within

the bounding box. The object proposals are detected using the edge maps. For a
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given bounding box, the algorithm also defines an objectness scoring function which

measures the likelihood of this bounding box containing an object. Since this algo-

rithm returns a collection of bounding boxes that are likely to contain any object, we

choose to use this algorithm to generate the object proposals in our approach.

Given an input video, we apply the Edge Boxes algorithm [42] to generate 10

object proposals (i.e., bounding boxes) for every frame within the video. This gives

us a collection of candidate bounding boxes which are likely to contain an object.

Figure 3.1 shows some examples of applying the Edge Boxes algorithm on frames

within a video.

3.1.2 Building Object Appearance Model

Given a video, the Edge Boxes algorithm approach (see Section 3.1.1) gives us a

collection of bounding boxes. These bounding boxes correspond to image windows

that are likely to contain any object. This algorithm is generic for any object class,

i.e., the algorithm is not specifically tuned for any specific object categories. Figure 3.2

shows some examples of bounding boxes with high objectness scores, but that do not

correspond to the object of interest (aeroplane) in the video. The next step of our

approach is to select a few bounding boxes from all the generated object proposals.

Ideally, the bounding boxes being selected will correspond to the object of interest in

the video.

Our bounding box selection strategy is based on the following two observations.

First, if a video is tagged with an object, say “cow”, the image windows corresponding

to the “cow” in the video tend to have high objectness scores. The reason is that
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Figure 3.2: Example of high scoring bounding boxes on an image that do not corre-
spond to the object of interest (aeroplane).

people are less likely to tag an object if it is not salient (e.g., too small) in the video.

Second, we assume there is only one instance of the object of interest in the video.

I.e., if a video is tagged as “cow”, we only consider segmenting one “cow” in the video.

In this case, the object of interest tends not to change appearance across different

frames in the video. For example, if we know a “cow” is black in one frame, we know

that it must be black in other frames as well. If we can somehow build an appearance

model for this specific “black cow”, we can use this appearance model to find “cow”

bounding boxes in other frames.

Note that since our goal is to build an appearance model for the object of interest,

our bounding box selection strategy does not necessarily have to retrieve all the true

positive examples. As long as most of the bounding boxes being selected are positive

examples of this object, we will be able to build a good appearance model for this
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object. In other words, we would like our bounding box selection to have a precision,

but can tolerate a low recall.

In our work, we use a simple yet effective strategy. We observe that if a video is

tagged as “cow”, most of the bounding boxes with the highest objectness scores tend

to correspond to this object. This suggests that we can simply sort the bounding

boxes in a video according to their objectness scores. Then we select K bounding

boxes with the highest objectness scores. We empirically find the number of frames

within a video to be a good choice for K and use this value in all of our experiments.

Based on the selected K bounding boxes, we build a video-specific appearance

model for the object. We first extract the visual feature from each bounding box. In

our experiments, we have used both the normalized color histogram and the CNN-

based features implemented in Caffe [14]. We define two methods for building the

appearance model. (1) Averaging : in this method, we simply take the average of the

feature vectors extracted from all selected bounding boxes. Let A be the appearance

model obtained by this method and x be the feature vector of an object proposal. We

can use (−||A−x||2) as a measure of how likely it is that x is the object in this video.

(2) SVM-based : in the second method, we learn a model of the object of interest

from the object proposals extracted from the video frames. We consider the selected

K bounding boxes as positive examples of the object present within the video. We

then choose a set of negative examples by randomly selecting object proposals from

videos that do not correspond to the object of interest. Given this set of positive

and negative examples, we train a linear SVM (with either color histogram or CNN

features) to learn the video-specific object appearance model. Let x be the feature
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vector (normalized color histogram or CNN features) of an object proposal in a video

v, the video-specific object appearance model is represented by parameter vector wv.

The dot product w>v x indicates the likelihood of x being the specific object in the

video v.

3.1.3 Object Localization

We have a set of bounding boxes for every frame in a video. In this section, our

goal is to localize the object in the video by selecting one bounding box for each

frame. We could use the learned appearance model from Section 3.1.2 to localize

the object of interest within a given video. I.e., we can use the learned appearance

model to re-score the bounding boxes with the frames of that video. A bounding

box will have a high score only if it is likely to contain an object instance specific to

this video, e.g., a “black cow”. However, this strategy alone may not be sufficient

to localize the object correctly. We know that within a video it is very unlikely

that objects will undergo drastic change in their properties such as size, position and

appearance between two consecutive frames of a video. This prior is often used in

tracking [15; 40; 36; 23; 21; 11; 1; 2] objects in videos. Therefore, we enforce a

temporal consistency model between consecutive video frames.

We model the object localization problem within a video using an undirected chain

graph. Each node in the graph represents a frame within a video. The value assigned

to a node indicates which object proposal is chosen for this frame. Since we have

10 object proposals for each frame, each node can take its value from {1, 2, ..., 10}.

The nodes of two adjacent frames are connected by an edge indicating the temporal
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consistency constraint between these two frames. Let X1, X2, ..., Xk be the frames

in a video with k frames, and P1, P2, ..., Pk be the corresponding object proposals

selected for each frame. We use the following optimization problem to solve the

object localization:

max
P1,P2,...,Pk

∑
i

φ(Pi, Xi) +
∑
i,i+1

ψ(Pi, Pi+1) (3.1)

This optimization problem in Eq. 3.1 involves unary potential functions φ(·) de-

fined on nodes and pairwise potential functions ψ(·) defined on edges in the graph.

In the following, we describe these potential functions in detail.

Unary Potentials

The unary potential φ(·) measures the likelihood that an object proposal belongs

to the object class, i.e., it captures the compatibility between an object proposal and

the appearance model of the object. We use two different ways to define the unary

potential. Firstly, we define the unary potential for each frame as follows:

φ(Pi, Xi) = exp
(
−‖A− fh(Pi, Xi)‖2

)
(3.2)

where A is the appearance model (obtained by averaging) of the object of interest

within the video (see Sec. 3.1.2) and fh(Pi, Xi) is the feature vector (color histogram

or CNN feature) of the image patch corresponding to the bounding box Pi in the

frame Xi.

Secondly, we also use the video-specific object appearance model learned using

SVM to define the unary potential for each frame. In this case, the unary potential
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is computed as follows:

φ(Pi, Xi) =
(
w>v · fh(Pi, Xi)

)
(3.3)

where wv is the learned video-specific object appearance model and fh(Pi, Xi) is the

feature vector from the image patch corresponding to the bounding box Pi in the

frame Xi.

The unary potential in Eq. 3.2 and Eq. 3.3 will encourage each frame to choose

a bounding box whose appearance (i.e., color histogram or CNN feature vector) is

consistent with the video-specific appearance model of the object. We conduct exper-

iments with both the definitions of unary potential with both color histograms and

CNN features.

Pairwise Potentials

The pairwise potential is a term which encourages the temporal consistency be-

tween the bounding boxes selected in two adjacent frames. It ensures that the bound-

ing boxes selected between adjacent frames do not undergo drastic changes in their

properties such as size and position.

Following [15], we define the temporal consistency Ctemporal(Pi, Pj) between two

bounding boxes Pi and Pj) of adjacent video frames as follows:

Ctemporal(Pi, Pj) = α
(
‖fc(Pi)− fc(Pj)‖2

2 + ‖fa(Pi)− fa(Pj)‖2
2

)
(3.4)

where fc(Pi) denotes the coordinates of the center of the bounding box Pi, and fa(Pi)

denotes the area of this bounding box. We normalize fc(Pi) by the height and width
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of the frame, and fa(Pi) by the maximum area between the two object proposals.

Using the above temporal consistency definition, we compute the pairwise poten-

tial between two bounding boxes of adjacent video frames as follows:

ψv(Pi, Pj) = exp
(
−
(
Ctemporal(Pi, Pj)

)2)
(3.5)

The parameter α in Eq. 3.4 control the relative influence of the pairwise potential in

the model.

The pairwise potential is very intuitive because if two object bounding boxes

of adjacent frames contain the same object then they should not be far apart and

their area should not vary either. In summary, the pairwise potential encourages the

algorithm to select bounding boxes that are consistent in terms of positions and sizes

between adjacent video frames.

Decoding

Given the model defined above, the inference problem we need to solve is to

jointly choose the values of P1, P2, ..., Pk to maximize Eq. 3.1. Figure 3.3 illustrates

this inference problem. Each column in Fig. 3.3 corresponds to a frame. In each

column, the rows indicate the object proposals in that frame. The inference problem

can be interpreted as finding the optimal path from the start to end in Fig. 3.3. It

can be efficiently solved by dynamic programming.



20 Chapter 3: Object Localization with Temporal Consistency

Figure 3.3: For the given consecutive frames of a video, the inference problem for
object localization can be represented as finding the optimal path in a graph. Each
frame in the graph represents the node and their object proposals (blue circle) repre-
sent the possible state that node can take. The edges between the object proposals of
two frames indicate the pairwise consistency constraint between the bounding boxes
of two adjacent frames . Our goal is to find the best configuration of object bounding
boxes among the frames of the video. This is equivalent to finding the optimal path
in the graph.

3.1.4 Segmenting Object of Interest

Finally, we apply GrabCut [29] to segment out the object in each frame. Grab-

Cut is an efficient algorithm for foreground segmentation in images. The standard

GrabCut is not fully automatic. It requires the user input in the form of marking a

rectangle around the foreground object. In contrast, our approach does not require

user interaction. We simply consider the one bounding box selected by our localiza-
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(a) (b) (c)

Figure 3.4: An illustration of our approach. (a) A frame in the video with selected
bounding boxes (see Sec. 3.1.2). An appearance model is built based on the selected
bounding boxes from all frames of this video. (b) After applying the appearance
model on this frame, we obtain a single bounding box that is most likely to contain
the object of interest (bird) in this frame. (c) The GrabCut algorithm is applied to
segment the object in this frame. The standard GrabCut algorithm requires users to
draw a rectangle around the foreground object as the part of the input. In our case,
we use the bounding box obtained from (b) as the user input. So our method is fully
automatic and does not require any user interactions.

tion algorithm within each frame as the user input. Figure 3.4 illustrates the pipeline

of our approach.

3.2 Experiments

In this section, we first describe the dataset and evaluation metrics (Sec. 3.2.1).

We then present our experimental results in Sec. 3.2.2.

3.2.1 Dataset and Setup

We evaluate our proposed approach using a subset of the dataset in Tang et al. [37].

This dataset consists of video shots collected for 10 different object classes, including

aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike, and train. Each frame
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of the video shot is annotated with the segmentation of the object of interest in the

video. Table 3.1 shows the summary of this dataset. We use 144 video shots with a

total of 24,723 frames in our experiments.

Class Number of Shots Number of Frames
Aeroplane 9 1423

Bird 6 1206
Boat 17 2779
Car 8 601
Cat 13 3870
Cow 20 2978
Dog 27 3803

Horse 17 3990
Motorbike 10 827

Train 18 3270

Total 144 24723

Table 3.1: Summary of the dataset used in the experiments.

We define a quantitative measurement in order to evaluate our approach. Our

quantitative measurement is inspired by the measurement used in the PASCAL chal-

lenge [6]. Given a video frame, let Pb be the foreground pixels returned by our

method and Pgt be the ground-truth foreground pixels provided by the annotation in

the dataset. We measure the quality of Pb by the ratio of |Pb ∩ Pgt| and |Pb ∪ Pgt|:

r = |Pb ∩ Pgt| / |Pb ∪ Pgt| (3.6)

If this ratio r is greater than 50%, we consider the segmentation on this frame to be

correct. We evaluate the performance of our algorithm by computing the percentage

of frames that are correctly segmented.

We extract 10 object proposals (or bounding boxes) from each frame of a video
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shot. We use normalized color-histograms and state-of-the-art 4096 dimensional fine-

tuned CNN features [14] as our feature representations for an object proposal. We

randomly choose one video shot from every object class for setting the free parameter

α (see Section 3.1.3) in our experiments.

3.2.2 Results

method aeroplane bird car cow mbike
top proposal only 52.54 46.27 42.48 33.25 4.95
appearance only 54.6 37.81 49.73 42.3 9.27

our approach 57.53 38.11 50.27 44.35 10.54

method boat cat dog horse train average
top proposal only 24.75 17.38 34.12 21.04 10.85 28.76
appearance only 25.52 16.06 34.81 21.62 12.28 30.4

our approach 27.08 17.35 36.04 22.88 12.38 31.65

Table 3.2: Quantitative results using the averaging-based appearance model on color
histogram features. For each object class, we compare segmentation accuracy across
the sequence of video frames. A frame is considered to be correctly segmented if
the ratio of intersection over union defined in Eq. 3.6 is greater than 50%. We
compare four different methods: (1st row) bounding box with highest objectness score
selected on each frame; (2nd row) video-specific appearance model generated 3.1.2
using normalized color-histogram feature from top-scored bounding boxes 3.1.2; (3rd
row) incorporating temporal consistency between two consecutive frames with the
color histogram based video-specific object appearance model.

In order to measure the performance of our proposed approach, we perform several

experiments.

We first consider using the averaging-based appearance model based on color

histogram (see Sec. 3.1.2). We compare our method with several baseline approaches.

The first baseline simply chooses the bounding box with the highest objectness score

(from Edge Boxes algorithm [42]) for each frame within a video. We call this baseline
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method aeroplane bird car cow mbike
top proposal only 52.54 46.27 42.48 33.25 4.95
appearance only 58.12 41.59 42.65 34.87 7.51

our approach 58.9 42.39 46.73 37.09 7.67

method boat cat dog horse train average
top proposal only 24.75 17.38 34.12 21.04 10.85 28.76
appearance only 26.53 11.7 34.23 22.85 11.53 29.16

our approach 27.08 12.51 35.9 22.96 11.27 30.25

Table 3.3: Quantitative results using the averaging-based appearance model on CNN
features.

“top proposal only”. The second baseline applies the video-specific object appearance

model (averaging based on color histogram) to re-score the object proposals on each

frame, then selects the proposal with the highest score. Note that this baseline

does not consider the temporal consistency information between the object proposals

selected from adjacent frames of a video. We call this baseline “appearance only”.

Table 3.2 shows the performance of three methods: 1) using first baseline method,

i.e., “top proposal only”; 2) using second baseline method, i.e., “appearance only”;

3) using our method that combines video-specific object appearance with temporal

consistency. Our approach achieves the best performance on most of the object

classes.

Table 3.3 shows the performance of different methods using the averaging-based

appearance model based on CNN features. Similar to Table 3.2, we compare the

performance of three methods: 1) using “top proposal only”; 2) using the averaging-

based appearance model based on CNN feature, i.e., “appearance only”; 3) using

our approach that combines video-specific object appearance model (CNN feature

based) with temporal consistency information. Our final method again outperforms
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the other baseline methods.

method aeroplane bird car cow mbike
appearance only 52.94 36.52 41.59 29.98 10.06

our approach 60.27 38.61 56.28 36.1 9.9

method boat cat dog horse train average
appearance only 15.17 10.23 26.32 21.48 9.84 25.41

our approach 16.29 13.98 30.34 25.05 11.27 29.81

Table 3.4: Quantitative results using the SVM-based appearance model based on color
histogram. We learn a video-specific appearance model using a linear SVM without
the bias term. We select the object proposal with highest objectness score on each
frame of a given video as positive example and select a set of negative examples by
randomly choosing object proposals from videos of different object class. We compare
performance of two methods: (1st row) using only the learned video-specific appear-
ance model; (2nd row) incorporating temporal consistency between two consecutive
frames with the video-specific appearance model.

method aeroplane bird car cow mbike
appearance only 60.76 53.63 56.28 41.07 11.82

our approach 60.76 54.63 57.35 42.13 11.66

method boat cat dog horse train average
appearance only 34.21 19.49 34.73 30.15 11.73 35.39

our approach 34.72 19.23 35.84 30.4 11.37 35.81

Table 3.5: Quantitative results on using SVM-based appearance model based on CNN
features. Similar to Table 3.4, we compare the performance of two methods: (1st row)
using appearance model only; (2nd row) incorporating temporal consistency to the
framework.

We further investigate and evaluate the performance of video-specific object ap-

pearance model learned using SVM 3.1.2. Table 3.4 shows the performance of two

methods: 1) using video-specific object appearance model learned with normalized

color histogram feature from object proposals , i.e., “appearance only”; 2) using tem-

poral information with the SVM-based appearance model. Similar to Table 3.4, we

also compare the two methods when CNN feature is used to learn the video-specific
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object appearance model (see Table 3.5). In both the cases, our final approach out-

perform the other baseline method. Note that, in contrast to Table 3.2 and Table 3.3,

we obtain better performance with CNN feature rather than color histogram for SVM-

based methods. The main reason is that SVM learns a better appearance model using

the high-dimensional discriminative CNN feature representation than the low dimen-

sional color histogram feature. These results are also in agreement with many CNN

feature representation based visual recognition algorithms where the representation

has proved to be one of the state-of-the-art.

Tables 3.2–3.5 show that our final approach (video-specific object appearance

model with temporal consistency) outperforms the baseline methods on most of the

object categories. Firstly, from various results, we observe that building a video-

specific object appearance model (averaging-based or SVM-based) is an effective

strategy to tackle the localization problem in weakly labeled video. Secondly, we

show that incorporating temporal consistency information to the framework further

improves the performance. Qualitative results of our approach are shown in Fig. 3.7.

Figure 3.5 shows two examples demonstrating the benefit of having the pairwise

potential in the model. Without the pairwise potential (1st row and 3rd in Fig. 3.5),

the selected bounding boxes between adjacent frames of a video can vary dramat-

ically in terms of size and position. The pairwise potential alleviates this problem

and enforces the consistency across the selected bounding boxes between consecutive

frames of a video (2nd row and 4th row in Fig. 3.5).
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Figure 3.5: Examples illustrating the benefit of enforcing consistency between adja-
cent frames of videos. (1st and 3rd row) Without the pairwise potential, the selected
bounding boxes can be dramatically different. (2nd and 4th row) With the pairwise
potential, the bounding boxes are more consistent across all frames.

3.2.3 Failure Cases

In Fig. 3.6, we show some representative failure cases of our approach. The failures

are often caused by occlusion, multiple instances of the object of interest and the

object of interest being too small in the scene.
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(a)

(b)

(c)

Figure 3.6: Some typical failure cases of our approach: (a) occlusion; (b) multiple
instances of the object of interest; (c) object of interest is too small in the scene.
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Figure 3.7: Example results on videos tagged as (from top to bottom) “aeroplane”,
“bird”, “car”, “cow”, and “motorbike” respectively. For each video, we show the
original frames (1st row) and the segmentation results obtained after localization
(2nd row).



Chapter 4

Object Localization with

Appearance Transfer

In this chapter, we develop a method for localizing objects in weakly labeled

images/videos by transferring the knowledge from other related objects.

One major weakness of traditional approaches in visual recognition is that even

if we have appearance models for 1000 object classes, we have to start from scratch

when building the appearance model for the 1001-st object class. This is somewhat

unintuitive and unsatisfying – it should be easier to build the appearance model for

a new object class if it is related to other known object categories.

Our work is motivated by the following observations. 1) Large datasets with

bounding box annotations exist for some object categories, e.g., the 20 objects in

PASCAL [6] and a subset of objects in ImageNet [30]. For these object categories (we

will call them “familiar objects”), we have access to detectors with reasonably good

performance. 2) For most of other object categories (we call them “novel objects”),

30
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fully annotated data are scarce. But it is easy to collect weakly labeled images/videos

for them. We use the term “novel objects” to denote objects for which we do not

have fully annotated data. It is different from the “novel object” used in object

discovery (e.g., [17]). 3) Recent work in text analysis has produced valuable resources

on word semantics. For example, a word is represented as a fixed length vector

(called “word embedding”) in [19]. The embedding vectors of words are learned

from large collections of text documents. Semantically related words (e.g., “cat”

and “dog”) are being mapped closer in this embedding space. The word embedding

provides a way for us to infer how two object classes are related. 4) Objects that are

semantically close often have similar visual appearances. We acknowledge that some

people might not agree with the last point – indeed one can find object categories that

are semantically close, but visually very different. But previous work (e.g., [4; 7; 16])

in computer vision has demonstrated that semantic knowledge can still be useful for

solving vision-related tasks, even when it is constructed from non-visual information.

In this work, we show that it is possible to transfer appearance model from one object

class to another based on their semantic relationship in term of the word vectors.

Given a collection of images labeled with an object category (e.g., “car”), our

method will output the bounding box of this object in each image. Our method can

also be applied in videos. In this case, we are given one single video of the novel

object. Our method will treat the frames of the video as the image collection and

localize the object in each frame.
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W 
novel object 
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Figure 4.1: An overview of our approach. (Top left) Given a collection of weakly
labeled images of a novel object (e.g., motorbike), we learn an appearance model wp

from the object proposals (see Sec. 4.1.1). (Bottom left) We also have access to fully
annotated data (or pre-trained models) for a set of familiar objects, e.g., car, bus,
dog, etc. We transfer the knowledge of familiar objects to obtain another appearance
model wt for the novel object (see Sec. 4.1.2). (Middle) The final appearance model
w for the novel object is a combination of wp and wt. (Right) We can then use w to
localize the novel object in the image collection (see Sec. 4.1.3).

4.1 Our Approach

An overview of our approach is illustrated in Fig. 4.1. To localize a novel object

in a collection of weakly labeled images, we build two initial appearance models. The

first appearance model is obtained from the image collection using object propos-

als (Sec. 4.1.1). The second appearance model is obtained by transferring knowledge

from other familiar objects (Sec. 4.1.2). Our final appearance model of the novel

object is a combination of these two initial models. We then use the final appearance

model to localize the novel object in each image of the collection. Our method can

also be applied in videos. In this case, we are given one single video of the novel

object. Our method will treat the frames of the video as the image collection and

localize the object in each frame.
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4.1.1 Appearance model from object proposals

Given a collection of weakly labeled images of a novel object, the first step of our

approach is to generate a set of object proposals in each image. We use the edge boxes

method (see 3.1.1) in [42] for generating bounding boxes as our object proposals.

We assume that the novel object is reasonably salient in most images in the

collection. Admittedly, this assumption does not always hold. But we believe this is

a reasonable assumption in many cases. For example, if we collect images by querying

the name of the novel object from search engines, the novel object tends to be salient

in the images returned by search engines.

Based on this assumption, we train an initial model for the novel object from

the object proposals in the image collection. We select object proposals with high

objectness scores and consider them as positive examples of the novel object. We

then select a set of negative examples by randomly generating bounding boxes from

images that do not correspond to the novel object. Given these positive and negative

examples, we learn an appearance model for this novel object using a linear SVM. Let

x denote the feature vector of an image patch, the appearance model is represented by

a parameter vector wp. The dot product w>p x (without loss of generality, we assume

a linear SVM model without the bias term) indicates the likelihood of x being the

novel object.

4.1.2 Appearance model from familiar objects

The appearance model and the localization of the novel object appear to be a

chicken-and-egg problem. If we have an appearance model of the novel object, we
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can use the appearance model to localize the object in an image. Conversely, if we

know the ground-truth locations of the novel object in some images, we can simply

learn an appearance model of this object. Then we can use the appearance model

to localize the object in other images. Sec. 4.1.1 provides one way of getting the

appearance model wp. In this section, we propose another way of constructing the

appearance model by transferring knowledge from other familiar objects. First, we

use the word vectors associated with the novel object and familiar objects to estab-

lish their semantic relatedness. Then we transfer the appearance models of familiar

objects based on their relatedness to the novel object.

Word vectors: We use the word vectors learned in [13]. These word vectors are

learned in an unsupervised fashion from a large corpus using a neural-network-based

language model. The model learns the semantics of words from their local and global

context in the corpus. As a result, the model produces a vector space representation

for each English word as a D-dimensional vector (D = 200 in our experiments).

These vectors can then be used as features in various applications in text analysis,

e.g., information retrieval, document classification, parsing, etc. In our work, we use

the word vectors as a source of semantic knowledge to bridge the familiar and novel

objects.

Figure 4.2 shows a visualization of the word vectors by projecting them on a 2D

space using t-SNE [38]. We can see that words similar in their semantic meanings

are close in term of their word vectors. For example, words corresponding to various

music instruments are mapped together in the upper left corner in Fig. 4.2.

Novel object as sparse reconstruction: We are given a set of K familiar object
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Figure 4.2: (Best viewed in PDF with magnification) Visualization of the word vectors
in 2D using t-SNE [38]. The t-SNE algorithm finds a 2D embedding of the word
vectors.

classes. We use vi to denote the word vector associated with the i-the object class

and ui to denote the corresponding appearance model. For simplicity, we assume the

appearance model (object detector) has a linear form:

fi(x) = u>i x (4.1)

where x represents the feature vector of an image patch. Given an input image, we

can apply Eq. 4.1 to sub-windows at various positions and scales to detect the i-th

object in the image.

For a novel object class, we denote its word vector as v. Our goal is to obtain

an appearance model (we denote it as wt) for this novel object class. Our approach
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is based on two assumptions. First of all, the word vectors and appearance models

of objects are related – if two objects i and j are similar in terms of their word

vectors vi and vj, they tend to be similar in terms of their appearance models ui and

uj. Secondly, for a novel object, we can approximate its word vector v as a linear

combination of those of familiar objects, i.e.,:

v ≈ θ1v1 + θ2v2 + ...θKvK (4.2)

where the parameters θi (i = 1, 2, ..., K) are the coefficients of the linear combination.

We estimate the coefficient vector Θ = [θ1, θ2, ..., θK ]> by solving the following

optimization problem:

min
Θ>0
||v − (θ1v1 + θ2v2 + ...θKvK)||22 + λ||Θ||1 (4.3)

The first term in Eq. 4.3 minimizes the reconstruction error of the linear approx-

imation, while the second term minimizes the L1 norm of the parameter Θ. The L1

norm will encourage Θ to be sparse, since we prefer to reconstruct the novel object

using a small number of familiar objects.

Transferring appearance model: By solving Eq. 4.3, we get the parameter

vector Θ = [θ1, θ2, ..., θK ]>. If we assume that the semantic relatedness of object

classes (in term of word vectors) is similar to that of appearance models, we can use

the same Θ to represent the appearance model of the novel object as:

wt = θ1u1 + θ2u2 + ...θKuK (4.4)

Note that we do not require any training data of the novel object in order to

get wt. As long as we have the word vectors of object classes (both familiar and
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novel) and pre-trained appearance models for familiar objects, we can use Eq. 4.3

and Eq. 4.4 to compute wt. In other words, we have transferred the appearance

models from familiar objects to the novel object.

4.1.3 Modeling and localizing the novel object

Sec. 4.1.1 and Sec. 4.1.2 provide two different ways of learning the appearance

model of the novel object. Let wp and wt denote the two appearance models learned

in Sec. 4.1.1 and Sec. 4.1.2, respectively. Our final appearance model w for the novel

object is a linear combination of these two:

w = γwp + wt (4.5)

where γ is a parameter that controls the relative importance of wp and wt.

Intuitively, the parameter γ should vary depending on the “transferability” of the

novel object. If a lot of familiar objects are closely related to the novel object, it

should be easier to transfer the appearance model to the novel object. In this case,

we like γ to be small, so wt will have a higher influence. Conversely, if the novel

object is vastly different from all the familiar objects, we like γ to be large. So we do

not rely too much on transferring appearance model from the familiar objects.

One way to define the “transferability” of an novel object is to examine the re-

construction error in Eq. 4.3. Let Θ∗ = [θ∗1, θ
∗
2, ..., θ

∗
K ]> be the solution to Eq. 4.3, the

reconstruction error is:

E(Θ∗) = ||v − (θ∗1v1 + θ∗2v2 + ...θ∗KvK)||22 (4.6)

We then set γ = βE(Θ∗), where β is a free parameter. I.e., our final appearance
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model is computed as:

w = β · E(Θ∗) ·wp + wt (4.7)

Notice that if a novel object can be easily represented as a linear combination

of familiar objects, i.e., it is easy to do the transfer learning, the reconstruction

error E(Θ∗) will be small. In this case, the appearance model wt obtained from the

transferring learning will have a larger effect in Eq. 4.7.

We can then use this appearance model w to re-score the object proposals gen-

erated in Sec. 4.1.1. Let x be the feature vector extracted from the image patch of

a proposal, we use w>x to measure the score of this proposal belonging to the novel

object. The top scored bounding box in each image will be our localization result.

An interesting special case is when the image collection consists of frames from a

single video. This is potentially useful for video retrieval. For example, if we query a

novel object, say “tiger” in YouTube. Instead of just returning the videos containing

tigers, we can also localize the tiger in each video. If we apply our method on a single

video of a novel object, we will get an appearance model for the specific instance of

the object in this particular video. In other words, our approach can automatically

adapt to different videos of the same novel object.

4.2 Experiments

We evaluate our approach on two video datasets ( 4.2.4 and Sec. 4.2.3). Addition-

ally, we also evaluate our method on one image dataset (Sec. 4.2.2).
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4.2.1 Implementation details

We use the 4096 dimensional CNN-feature implemented in Caffe [14] as our feature

representation for an object proposal. This feature has been proved to be one of the

state-of-the-art feature representations in many visual recognition tasks. In order to

construct the set of familiar objects, we use the 200 object classes in [10]. These

object models are trained from a subset of the ImageNet images with bounding box

annotations using the Caffe-based CNN features. Some of the object classes do not

have word vectors associated with them, possibly because they does not appear in

the corpus used for learning the word vectors. We filter out those object classes and

select 142 familiar object classes in the end.

We set the free parameters of our method by validating over a small set of im-

ages/videos. For the images in the PASCAL VOC 2007 dataset, we extract 100 object

proposals on each image and set λ = 1 and β = 0.3. For videos in the YouTube-

Objects dataset, we extract 20 object proposals on each frame and set λ = 1 and

β = 0.1.

4.2.2 PASCAL VOC 2007

The dataset contains images of 20 object classes from the train+val subsets of

PASCAL VOC 2007 dataset. We consider each of them as the novel object and apply

our algorithm on the images that contain at least one instance of this novel object.

Since the object classes in PASCAL overlap with those of the 142 familiar objects,

we remove the novel object class from the set of familiar objects when doing the

appearance transfer. For example, when we consider “dog” as the novel object, we
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method aero bike bird boat bottle bus car cat chair cow
transfer only 48.32 48.97 17.58 55.25 6.15 32.26 15.85 40.36 28.54 70.92
proposal only 77.31 55.55 62.73 40.88 21.31 77.96 72.1 54.9 14.83 68.79

combined 78.57 63.37 66.36 56.35 19.67 82.26 74.75 69.13 22.47 72.34

method table dog horse mbike person plant sheep sofa train tv avg
transfer only 4.5 15.91 43.55 34.69 13.75 3.26 51.04 28.38 46.74 19.92 31.3
proposal only 29.5 56.29 70.38 74.69 43.18 27.35 47.91 26.2 70.88 67.19 53

combined 31 62.95 74.91 78.37 48.61 29.39 64.58 36.24 75.86 69.53 58.84

Table 4.1: CorLoc results on the PASCAL VOC 2007 dataset. We compare three dif-
ferent methods: (1st row) using only the appearance model transferred from familiar
objects wt; (2nd row) using only the appearance model from the object proposals wp

; (3rd row) using the combined appearance model w.

remove the “dog” model from the 142 familiar object classes.

We use the CorLoc defined in [5] to measure the performance. It is defined as the

percentage of images in which a method correctly localizes the novel object according

to the PASCAL criterion area(Bp∩Bgt)
area(Bp∪Bgt)

> 0.5, where Bp is the localized bounding box

and Bgt is a ground-truth bounding box. Table 4.1 shows the CorLoc results of three

methods: 1) using only the transferred appearance wt; 2) using only the appearance

model from the object proposals wp; 3) using the combined appearance model w.

The results of using the combined appearance model achieve the best performance

on 18 out of the 20 object classes.

Table 4.2 shows the comparison with other published results. Our approach sig-

nificantly outperforms others. Some examples of our localization results are shown in

Fig 4.3.

Figure 4.4 visualizes the Θ parameters obtained via Eq. 4.3. For each novel class,

we show the top 10 familiar object classes according to the descending order of their

corresponding θ values.
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aeroplane bicycle bird boat bottle bus

car cat cow dining table dog horse

motorbike person sheep sofa train tv monitor

Figure 4.3: Qualitative examples of our approach on the PASCAL VOC 2007 dataset.

method CorLoc
[15] (image model) 24.6

[32] 30.2
[34] 30.4
[33] 32.0
[31] 36.2
[3] 38.8

ours 58.84

Table 4.2: Comparison with previous work on the PASCAL VOC 2007 dataset in
term of the average CorLoc.

4.2.3 YouTube-Objects

The Youtube-Objects dataset [24] consists of videos of 10 object classes. For each

class, bounding box annotations are provided for one frame per shot for 100-290 shots.

We apply our method on each video in the dataset by considering the frames in this
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aeroplane bicycle bird boat

bottle bus car cat

chair cow dining table dog

horse motorbike person plant

Figure 4.4: (Best viewed in PDF with magnification) Visualization of the Θ parame-
ters for novel object classes. For each novel object class, we show the top 10 familiar
objects with the corresponding θ values.
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video as the image collection. Similarly, we remove the novel object class from the set

of familiar objects when doing the appearance transfer. Only frames with annotations

are considered in the evaluation. In Table 4.3, we compare our results with previous

work that uses the same dataset.

method aero bird boat car cat
[15] (video) 25.12 31.18 27.78 38.46 41.18

[22] 65.4 67.3 38.9 65.2 46.3
transfer only 35.27 10.75 31.75 30.77 19.66
proposal only 51.69 54.84 32.54 85.71 14.53

combined 56.04 30.11 39.68 85.71 24.79

method cow dog horse bike train avg
[15] (video) 28.38 33.91 35.62 23.08 25 30.97

[22] 40.2 65.3 48.4 39 25 50.1
transfer only 83.78 26.96 50.68 50.56 46.43 38.66
proposal only 75.68 55.65 53.42 51.69 39.29 51.5

combined 87.83 55.65 60.27 61.8 51.79 55.37

Table 4.3: CorLoc results on the YouTube-Objects dataset. Similar to the PASCAL
VOC 2007 dataset, we compare three different methods: (3rd row) using only the
appearance model transferred from familiar objects wt; (4th row) using only the
appearance model from the object proposals wp ; (5th row) using the combined
appearance model w. We also compare with previous work [15] (1st row) and [22]
(2nd row) that uses the same dataset.

4.2.4 YouTube-Objects-Subset

We also evaluate our method on the subset of the YouTube-Objects dataset (same

as 3.2.1) collected in [37]. This dataset contains ground-truth segment-level object

annotations on all frames in many video shots. The results on this dataset are shown

in Table 4.4. Fig. 4.5 shows some qualitative results on this dataset.
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method aero bird boat car cat
transfer only 40.34 43.86 40.41 28.42 26.35
proposal only 42.23 51.24 29.54 67.76 14.75

combined 45.74 55.47 39.51 58.75 26.51

method cow dog horse bike train avg
transfer only 47.15 34.37 28.67 26.12 24.28 34
proposal only 50.2 47.02 22.18 16.44 18.84 36.02

combined 55 43.51 33.71 32.76 25.63 41.66

Table 4.4: CorLoc results of different methods on the YouTube-Objects-Subset
dataset.

Figure 4.5: Qualitative examples of localization produced by approach on videos
tagged as (from top to bottom) “cat”, “dog”, “horse”, and “train” respectively.
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Conclusion and Future Work

In this thesis, we have presented novel methods to efficiently localize and segment

the object of interest in weakly labeled images and videos.

We have made a threefold contribution to the research in the area of weakly

supervised object localization. First, we introduce a video-specific appearance model

to localize the object in weakly labeled videos. Second, we improve the performance of

video-specific appearance model framework by incorporating a temporal consistency

constraint between consecutive frames of a video. Third, we propose a method to

transfer the appearance of reliable known object detectors to build the appearance

model of the object of interest. We perform extensive experiments on a video dataset

and a popular image dataset to show the effectiveness of our proposed methods.

There are many possible directions for future work. First, we would like to extend

our methods to handle multiple objects in images/videos. Second, we would like to

use our methods for large-scale incremental learning of object from Internet data.
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