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ABSTRACT

In the present thesis we first review some of the major
aspects of double sampling for stratification and two-stage
sampling. We propose a simple method of three-phase sampling
for stratification which is an extension to double sampling
for stratification. Using mathematical programming, an
algorithm is developed for the determination of optimum allo-
cation of available resources. The suhsampling of non-
respondents with three attempts is obtained as a special case
of our three-phase sampling scheme for stratification. An
alternative method of double sampling for two-stage sampling
is proposed and our method leads to soclutions for the

determination of optimal design.
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CHAPTER T

INTRODUCTION AND REVIEW

The purpose of statistical surveys is to obtain information
about populations. By 'population' we understand a group of units
defined according to the aims of a survey. A sampling method is a
scientific and objective procedure of selecting units from the
population and provides a sample that is expected to be represen-
tative of the population as a whole. A random sampling method
makes it possible to estimate the population totals, averages or
proportions while reducing at the same time the size of survey
operations. Survey sampling literature describes several methods
of using certain auxiliary information to attain more efficient
sampling and estimation procedures.

If auxiliary information is not available but can be collected
rather inexpensively on a somewhat large scale, it may pay to collect
such information in the first instance and then take a sample for the
measurement of y. This method of sampling is known as Double Sampling
and the theory was first given by Neyman (1938). In doﬁble sam-—
pling for stratification the first sample is used in grouping the
selected units into a temporary sampling frame divided into strata.

A preliminary simple random sample s(n') of size n' is selected
without replacement from N units of the population and the auxiliary

character x alone is observed. The selected units are classified



into L strata according to x. Let nﬁ denote the number of units
L

in s(n') falling into stratum h (h = 1, 2,...,0; < n}'1 =n').
h=1

A sub-sample s(nh) of size n, is drawn from s(nﬂ) by simple

h

random sampling (srs) without replacement for each h, and the
character of interest, y, is observed.
In the literature (e.g., Cochran, 1963, pp.328-3k4), n, is

often implicitly assumed to be a constant and optimal n' and ny

are determined. This assumption, however, is inconsistent with
the sampling procedure because, as pointed out by Singh and

Singh (1965), n. is bounded above by the random variable n!

h h

), where N is the total number

which varies from O to min(n', N N

h
of units in stratum h. Singh and Singh proposed three procedures
which are free of inconsistency:

(i) the s(nh) are selected with replacement and all units

used in the estimator;
(ii) as (i), but with only distinct units used;
(iii) sub-sampling is without replacement, the size being
min(nﬂ, nh).

Procedures (i) and (ii), however, lead to loss in efficiency
and (iii) results in an unwieldy variance formula which is not
sultable for the determination of optimal n' ang n, . Rao (1973)
proposed a method which is simple, free from the inconsistency
and leads to a simple variance formula. Essentially, Rao's
method employs without replacement sampling with n, = v _n' where

h h"h

vh is a constant such that 0 < vh <1, and with determination of



optimal n' and v This method leads to simple solutions for

e
the optimal design of analytical surveys involving comparison
of group means, when the groups are not identifiable in advance.
A possible extension of double sampling for stratification
would be Three-Phase sampling for aouble stratification. Robson
and King (1952) proposed such a scheme and utilized it in the
estimation of magazine readership. The scheme can be summarized
as follows. The elements of a finite population of size N are
characterized by three variables X, Z and Y. It is supposed
that the character Y is more difficult to measure than 7 which,
in turn, is more difficult to measure than X. We take a large
sample s(n') of size n' by simple random sampling without re-
placement and observe x alone. The selected units are classified
into L strata according to x. Let nﬂ denote the nEmber of units
in s{n') falling into stratum h (h = 1, SNPUS PR X nﬁ =n').
A subsample of size nh is drawn from s(nﬁ) by simgii random
sampling without replacement independently for each h and the

character z is observed. The selected units are then sub-classi-

fied into k, strata according to z. Let n . denote the number of

h hi
. . . . .th th .
units in s(nh) falling into the i substraﬁum of the h primary
h
stratum (i = 1, 2yevask s =1, 2,001, In. =n,
L i=1
b n = n). A subsample s(mhi) of size m , is drawn

h=1
from s(nhi) by simple random sampling without replacement inde-

pendently for each (h, i) and the character of interest vy is

observed.



Our method in Chapter 2 is essentially an extension of
Rac's method with

= 1
By T Yty n =
m o= ALD 0 <Ay <1,1=1,2,..,k, h=1,2,...,L

where N and Xhi are constants, with the determination of optimal

n', Vh and Ahi' The method of Robson and King employs
n, =n/ ET- h=1, 2,...,L
and
m .
mo T . o i=1, 2,...,kh, h=1, 2,...,L

which clearly is a special case of our general scheme by putting

m
v. = — and Ahi =

jn
B

Hansen and Hurwitz (1946) were the first to deal with the
problem of incomplete samples in mail surveys. In many of these
surveys the response rate is very low and many doubts are normally
associated with estimates resulting therefrom. In the classical
non-response theory, a sample of size n', selected by simple
random sampling without replacement, is contacted by ordinary
field methods. A sub-sample of size

n, = nl/k (k > 1),
from the n} (= n' - nl) nonrespondents, again selected by simple
random sampling without replacement, is enumerated by more inten-
sive efforts. Rao (1973) has shown that the procedure is a special

case of double sampling method for stratification with L = 2,

v, = 1 and v, = 1/k.
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The subsampling of nonrespondents with three attempts is a
special case of our 3-phase sampling scheme for stratification.
A sample of size n' is selected by simple random sampling without

replacement. A subsample of size n2 = né/k (k > 1) from the né

(= n' - ni) nonrespondents again selected by simple random sampling

without replacement, is contacted by more intensive efforts.

(2 > 1) from the n

Once again a subsample of size My, = ngg/z > oo

(= n, - n21) nonrespondents, selected by simple random sampling

2

without replacement, is enumerated with serious efforts. This

procedure is clearly a special case of our three-phase sampling

. . ) 2 —_— = - -—l = =
method for stratification with L = 2, vl =1, Vo T All AlE =
— acd .—l
AQl = 1 and X22 =7

A difficulty often encountered in cluster or two-stage sampling
- 1s an inadequate knowledge of the composition of the clusters or
primary units. Dalenius (1957) describes a situation of this

kind that occurred in a Swedish survey of cer-owners carried out

by the Central Bureau of Statistics in 1954, The car registers

on which the selection was to be based were not arranged by community
but by licence number, and for reasons of economy, it was con-
sidered highly desirable to use two-stage sampling. Among the
procedures considered was double sampling for two-stage sampling,
the basic idea of which was to form a temporary sampling frame

based on a relatively large preliminary sample in which car owners
were identified as to community. The second sampling phase con-

sisted of two stage sampling with communities as primary sampling units.
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We take a large sample s(n') of size n' by simple random
sampling without replacement and observe x alone. The selected

units are classified into L' clusters according to x. Let n'

h
denote the number of units in s(n') falling into cluster h
LY
(h=1, 2,...,L', =& nﬁ = n'). TFrom the L' clusters, we select
h=1 n!'

a sample s(k) of size k with probability proportional to —+

(with replacement). A sub-sample s(n, ) of size n, is drawn from

h

s(nﬂ) by srs independently each time a primary unit h is drawn

in sample. Berg (1972) proposed the selection of ny units from
s(ng) by simple random sampling with replacement. To avoid the
loss in efficiency due to sampling with replacement, we consider

n, =mnlv, (0 < vy < 1), h=1,.2,...,L

and select s(nh) by srs without replacement. The optimal n',

k and v, are obtained in Chapter 3.



CHAPTER II

2.1 THREE-PHASE SAMPLING FOR STRATIFICATION

l2.

We make the customary assumption that n' is so large that

Pr(n' = 0) = 0 for all h. In the second-phase sampling similarly

h

we assume that n (h =1, 2,..

(i =1, 2,...5k, b

to stratum h: W

w =

h~ n Yh

.,L) is so large that Pr(n .

§h is the mean for s

:O):

The following symbols refer

Yh is

the population mean, SE is the population variance, Sﬂg is the

unbiased estimator of S2 based on s

h

refer to the ith secondary stratum of the hth

_ M ¥ ni
ni = W hi T Tn

W

based on s(n, .), Yhi is the population mean, 82

hi

variance, sﬁi is the unbiased estimator of Sii based on s{n

2

Shi

units.
THEOREM 1

The estimator

_ L kh ng nyo_
Na = X I ==y .
3p h=] i= n, hi
L .
R N

is the unbiased estimator of 82i based on the n'i

The following symbols
primary stratum:
R ghi is the mean for s(mhi), iii is the mean

is the population

hi)’

non-observable

(2.1.1)
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with variance

2
L S
- 1 1,.2 h /1
Viy, )= (F-=)8"+ s W — (= -1)
3p n N h=1 h n N
k
L h W S
R U (2.1.2)
h=1 i=1 h hi

where '3p' denotes 'three-phase'.
Proof: For a given n' = (ni, né,...,ni) and s(n'), s(nh) is a simple

random sample from s(n') in stratum h. Let E_ and V

n . 5 o respectively denote

the expectation and variance operators for a give n' and s(n'). Simi-

. - . th
larly, for a given n, = (nhl,...,nhkh) and s(nh) in h™" stratum, s(mhi)

is a simple random sample from s(n .) in the ith

hi secondary stratum of
the hth primary stratum. Consequently, we denote E3 and V3 respectively
as the expectation and variance operators for a given n' and n, - Let

El and Vl be the unconditional expectation and variance operators for

s(n'). We have

E(y3p) ElEQES( 3)
- =%
Ey(yypg) = ps
L n'! L n'
- h - h - -1
EE(y, ) =E, I =¥y = —=3' =73
273"3p 2, 2,8 n T 2o h
and
— =1 - v
ElEQEB( ) = E (y') = Y.
Similarly,
V(y3p) = V1E2E3( 3p) + E1V2E3( 3p )+ ElE2V3( 3p ) (2.1.3)
- 1 1 2
Vo(y, .) = (= - —)s*<
3" hi m . nhi hi

we get



_ L nﬁ L nﬁ
V(iy, ) =V.E{ I ¥y )+EV{(1 =7
3p 172 h=1 h 12 h=1 h
k
L h
tEEN 2L i §f< — - 2 )S;f
h=1 i=1 i Mpi
Now using the relationship
My = MaiPhi
- 1 1. 2
V,(y, ) = (5 - =)s!
2Vh n, ny h
and simplifying, (2.1.4) becomes
k
L h
- -1 2,1 1 2
Vys,) =v,G) + B I ow (S~ =)
3’ T 1 1,2 4o Bmn T mh' %h
k
L h n',
TE 2 Wi n?; Sﬁi(xl - 1.
h=1 i=1 h hi

Finally, letting

"n T Vn™h
and simplifying (2.1.5) leads to (2.1.2).
Corollary 1

For Double Sampling for stratification

Mg =1 i=1, 2,000k, 0= 1, 2,.0,L
and (2.1.2) reduces to Rao's (1973) formula.
Corollary 2

For porportional allocation

o

(2.1.2) reduces to

1k,

(2.1.L4)

(2.1.5)
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L
- 1 1,.2 (n'-n) 2
V(y,.) = (& - =)8° + T WS
3p n N n h=1 h™h
(n-m) L kh 2
+ — b3 by whish.. (2.1.6)
h=1 i=1 *

CorollarX 3

For estimating the population proportion P possessing charac-—

teristic Y (that is, y = 0 or 1) with proportional allocation,
= o = I
Yp T oo ‘i =
Y =P, Yh = Ph, Yhi = Phi
(i =1, 2, ks b= 1,02, ,L), and (2.1.2) reduces to
L N
- _ Nen' (n'-n) h
pWsp) = wry POWP) £ S W gy B (1R
h=1 h
k
+ {o-m) g zhw Tnt P_.(1-P_.) (2.1.7)
. T CAL-P Y
‘nm b=l ie1 hi (Nhi_l) hi hi’ -

which agrees with the formula of Robson and King (1952).

Optimum Allocation

We turn now to the determination of optimal n', v =

Vs ve,...,vL)

and A = (xll,...,xlk peeeshp . ). The cost function is taken as
1 1 Kk L
L L h
¢ =n'e' + hilnhch + hil iElmhichi (2.1.8)
where c¢' is smaller than Ch which in turn is smaller than Chi'
Since C in (2.1.8) is random, we take the expected cost
L L kh
C¥ = n'e' + hElE(nh)ch + hil iElE(mhi)chi
L L kh
=n'e' + n'hglwhchvh + n'hfl .Elwhichivhxhi’ (2.1.9)
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Rao (1973) has shown that the the coefficient of variation (C.V.)

of C would be very small for large n'. (2.1.2) may be written as
k 2
2 L W L h W .S,
V(373 ) = - §ﬁ_+ ET + T n'n + 3 3 —9%—25 (2.1.10)
P h=1 ™ n=1 i=1 Yni
where
m = n'vh 0 < m <n', h =1, 2,...,L
Ppoo=mo 0<%, sm,i=1,2,...,k,h=1,2,..,0
- !
B Vg
L
B = 82 - I WhSE
h=] .
and
h W
.2 hi 2 _
Ay =S, - & =Rs h=1, 2,...,L
i=1 h

B and Ah are > O except possibly in pathological situations. Also

L L h

C¥ =n'e' + I Wem + I L Wo.c % ..
h=1 h™h™h n=l i=1 hi hi"hi

(2.1.11)

We need to minimize (2.1.10) subject to (2.1.11) and the ine-
quality constraints 0 < m < n', 0 < Rhi <m (i =1, 2,...,kh,

h =1, 2,...,L) and n' > 0. Minimization of a non-linear function
subject to inequality constraints is called Mathematical Pro-
gramming. A relative minimum would be a global minimum if the
function to be minimized is a convex function and the Kuhn-
Thucker (1951) necessary conditions are satisfied.

Using the results of Kuhn and Tucker, Thompson (1962)

obtained the following theorem.
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THEOREM 2
Minimization of a differentiable, strictly convex function

g(y) subject to A_ly > 0 leads to the solution @ where

AW >0

b=
[op!
g >
v
o

blw =0 and a'G(w) = 0
<17 <i
or
pi@ >0 and a.,G(y') =0 1=1, 2,...,p
where w = (Wl, wg,...,wp).
G(y) is the vector of derivatives 251213 i=1, 2,...,p; b, is

ow

the ith row of A“l and ai is the ith row of A' and A is a non-
singular pxp matrix.

Thompson's algorithm applies to our problem by noting

and letting

W'=(n',m,2 92 3"'32 s ,m,fL s :*Q )
11° “12 1k, L> "L, Lk,
k 2
L WA L h W .SC.
g=-t+ioe p By g b
h=1 ™  h=1 i=1 hi
L L .
*ule’n’ + c¥ 1.
u(e'n IWoem + I % Wi s ) (2.1.12)



Also
.
Ty Ty oees Ty
A"l_= Tor Top Tor
Tnn T - T
Where-Tij (i =1, 2,...,L, §j =1, 2,
matrices defined by
1 Otveienennnnnn 0)
1 -1 Ovevennnn. 0
W=l 1 -1 0....0
0 1 0 =-1....0
0 leviiiiininnnum 1
S SO o)
R 0
Tii =1 0 -1.....0
1 o )
1 0....0
0 0....0
T.. =
L Oevnnn. 0
Ovevunnn. 0
(k1) x (k +2)
Tij = O(k,+2)x(k.+l)
i J
T.. =0 .
ij (ki+l)(kj+l) otherwise

where O is a zero matrix of the appropriate order.

(kl+2) x (k. +2)

1

i=2, 3,.

(ki+1) x (ki+l)

.,L) are partitioned

18.




Similarly,
R, Ryprees Ry
. Ryy Rogeer s Rorp
Rrp Rro Rrp,
where Rij (i =1, 2,...,L, §
defined by
(1 I 0
o J 0
Bip =

19.

1, 2,...,L) are partitioned matrices

0 Ovennnnnnn. -1
+ +
(kl 2) x (kl 2)
B 0 1 1 1....1
0 ~Luvunuunn... 0 _ {0 0 O0....0 ~
Rig = Rig = J =23
0 0 -1 o ol T e
................. 0 0.......0 (k.+2) x (k,+1)
0 Ouevinnnn.. 1
(ki+l) X (ki+l)
U1 T O rx(gre)r T T2 Sk
R =0 otherwise

1] (ki+l)(kj+l)

where O is a zero matrix of the appropriate order.

Details of the various cases with the necessary conditions

to be satisfied are given in the Appendix.

Here we outline the

algorithm for the allocation of Ahi and vh. Let us denote the
S, . S, /.
jth largest of —Ei-in a stratum h as —Eiil~; that is,
C, . c, /.
hi h(j)
S
S S h(k, )
ch( ) > Ch(2) > > - h h=1,2,... .5
h(1) (2) h(x, )
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S A
h(1) éh-(h =1, 2,...,L), then arrange Eg-in decreasing order
h h

=4

From the conditions worked out in the Appendix for getting
the optimum values of Ay and V(1) (h # j); we see that the allo-
cations are independent of each other as we normally expect. The

optimum values of X . and v, are given for different regions in
hi h

Sps
which —= and — 1lie.

c, . c

hi
1. 0 < i=1, 2, ,kh; h=1, 2, s L
(2.1.13)

N i= l,v2,...,kh; h=121, 2,...,L

hi

In this region, it is clear that the allocations of v, are
independent from the allocations of xhi' Here we have four possible
cases.

A
1.(a) 0 < C(l) < E,—
(1) = ¢
(2.1.1k)
h=1, 2, y L
A
(1)
Y =1
(1)
A '+
] MRCONIEN) ) (2.1.15)
v = | == h=1, 2, s L
(h) ch o o2
(1)7(1)
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A
This means that if (1) > ET
c c
(1)
A
nd C(Q) > %T
(2)
then v(l) = 1 and v(g) = 1 if and only if
A B+W, (A
2) ) 1) (2.1.16)
“(2) (1)7(1)
By intuition we would try to push both v(l> = V(2) = 1 without

testing (2.1.16) and if (2.1.16) is not satisfied, this does
not give the optimum solution as shown in the example at the

end of this chapter.

A(r+l) B+w(l)A(l)+"’+w(r)A(r) A(L)
L. (c) A +o.o W, c )
“(er1) T TS TN )Y S
V(a) T T V) B 1
(2.1.17)
S ) A c'+W( )C(1) + + W(r)c(r\ (
(h) Crp) BYW Ayt WA J
h = r+l1, , L
e Mwbay T P @A) A
- c'+W,_yc. + + W, ¢ ¢
(1)7(2) (L)~ (1) (L)
V(1) T V(g) T e = vy = L (2.1.18)
2.  When one or more Ahi in one or more substratums are pushed

to 1, then corresponding allocation for vh are affected.

2 2 >
si(2) _ Aot (1)8s1(1) . Sei(1)
ST c >
si(1)

S

Csi(2) si "si(1) si(1) ¢
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\ (2.1.19)

1, 2,...,L: h # 815 SpseeesS

h’ )
Now the v, are no longer independent of Ah.. Let us define
YA s W, \8°
" M (1) (1) )
X o rewW c =12, L
a "h hn(1) n(1)
where
§ =1 if h =8,y S.,...,8
b e a (2.1.20)
=0 otherwise
A¥
h . . .
Order the —¢ in decreasing order of magnitude and repeat the allo-
c
h
cation we discussed earlier in 1.(a), 1.(b), 1l.(c) and 1.(d) by
replacing Ah by A; and h by c;.
a4 5
52 Vsifai® T Voi(5)%1(5) 82
. si(j+ j=1 5t Yl Tsi(d)
= ¢, u, C L.
si(J i si(J)
.c .+ T W .,.\Cc .,
sisi j=1 si(j) si(3)



J =1, 2, 3q1:1=152’ ’rfL’lfSlf fsl"fL’
Sl#‘ ¢Sr;lfqifksl’
2
S
h(l) _ éﬁ h =1, 2,...,L; h # S15 SpaeeesSy
“h(1) h
\
Asl(j)zl J =1, 2, ’qi’ 1=1, 2, ,I‘_<L,
< <
129 Sk
u.
i
2 .c .+ T W . c ..
\ ) 831(k) si si 3=1 Sl(J) Sl(J)
. = 2.1.21
si(k) Cs1 (k) u, , ( )
W.c .+ LW S .,.
J si'si . O si(3)7si(3)
k= q.+1, "ksi’ i=1, 2, » 1
——
2
S c
B h(i) "h - X
*n(i) = “n(1) *n B2 Boenls A sy, 808,

Once again define

i
2

WA+ T W ,. .8°,
A; nin h, 2, h(3)7h(5)
-5 = ! h=1, 2,...,L,
c q.
h i

+
"nCh 6hj§lwh(j)ch(j)

where Gh is defined by (2.1.20). The allocation of Vi would be

on the same lines as in 1.(a), 1.(b), 1.(c) and 1.(d) by replacing

Ah by A; and L by c;.

If the strata weights W, , W

ni are not accurately known, we

propose a different subsampling procedure which guarantees

desired precision at a slightly higher cost than the optimum.
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Following Srinath (1971), we choose

nl
- h _
oy = uhn'+n£ (h =1, 2, L)
n2 (2.1.22)
m = hi i=1,2,...530=1,2,..,L
B .n (1- 2E)+n .
hi h nﬁ hi

where ah, Bhi are constants > 0, fixed in advance; noting that
n . v
the subsampling fractions E$-’ E—i respectively, vary according
h hi
to the observed values of nﬂ and 0 s unlike the previous procedure.

The variance of §3p is given by

L o 8°

~ 1 1,,2 h™h
= = - = +

V(y3p) (= - $)s hil =
k 2
L h ahiBhSh
+ p p A (2.1.23)
h=1 i=1

which is independent of the weights W, and W T The expected

h h

cost under subsampling rule (2.1.22) is

E(C) =n'e' + I B|l—2—q| &

+ ¥ 3 (2.1.2kh)
h=1l i=1 o i
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for sufficiently large n' and -

The optimal o and Bhi can be calculated in the usual way

and is omitted here.
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2.2 NON-RESPONSE THEORY

Rao (1973) has shown that the classical non-response theory
is a special case of Double Sampling for stratification. The
subsampling of non-respondents with three attempts is a special
case of our three-phase sampling for stratification. A sample
of size n' is selected by simple random sampling without replace-

ment. A subsample of size n, = né/k (x > 1) from the né

(= n' - ni) non-respondents, again selected by simple random

sampling without replacement, is contacted by more intensive

efforts. Once again a subsample of size my, = ngz/z (2 > 1)

from the n =0, - n21) non-respondents, selected by simple

22 (

random sampling without replacement, is enumerated with serious
efforts. This procedure is clearly g special case of our three-

Phase sampling for stratification with

1

L=2, v =1, v, = A = A = A =1, and X

Il

o |

1 2 k> " 12 21 22
The variance formula reduces to
2 2
W.S S
- - (L 1..2 22 22
V(y3p) = (n, N)s * (k-1) + Wop —or k(e-1). (2.2.1)
The expected cost is
W..c
2121
C% = 1 1 ———
n' (e +chl+Wllcll+W12c12+ T )
n' n'
+"£'WEC2 +HW22C22 (2.2.2)

vhere ¢' is the unit cost of making the first attempt, cy is

unit cost of processing the data in stratum 1, 5 is the unit cost

of processing the data in stratum 2, Cll’ 012, 021,1022 being the
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unit cost of processing the data in the respective substratums.

1
The choice v(l) = 1, is not optimal if the cost ratio %-is small

c c c
may be < 1. Similary, if 11 s L2 N fl
€1 €1 2

are small, then All’ kl2’ Agl may not be optimal since the optimal

since the optimal vl

. _1 1,
All’ A12’ A21 may be < 1. The optimal k = Vg and ¢ = X;; is
obtained from (2.1.13) to (2.1.21) as
i
2 2 :
) Copf85 = W,087,)
9 = (2.2.3)
opt 82 (c"+W_.c. )
o2 2101
and !
c 52 _ y.s2
R 2 (2.2.4)
= , .2.
opt sg R R R AT AP L

Srinath's (1971) method for subsampling of non-respondents, when
the rate of non-response is not accurately known, is a special

case of our procedure with L = 2, kh =2, h=1, 2.
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2.3 EMPIRICAL ILLUSTRATION

We shall demonstrate by an artificial example that intui-
tional approach to allocation when inequality constraints are
involved, may not always give the optimal solution. To simplify

the discussion we consider only the case of Double Sampling for

stratification.
_ - _ _ 2 _ 2 _
Let wl = .1, W, = .2, w3 = .A, W) = .3, sl = 150, 8, = 1ko,
2 2 2
S, = 50, 8) = Lo, 8% = 125, W = 2000, ¢' = $5, c. = $10, c. = $12,
3 b 1 2
ey = $25, ¢, = $40, and C* = $2000. Now
2 2 2 2
S S S S
]
c(1) - 15, C<2) - 11.7, C<3) 2, C(+> -1, %_z 10,
(1) (2) (3) (L)
2 2 2
P Ma)Sa) P V)S() F Me)Sie)
T =10.8, —— T T = 11.
(1) (1) (1)~ (1) (2)(2)
. s . S%e) B
By intuition, we may push v(l) = v(g) = 1 since c(g) > o In

this case our intuitional approach does give the optimal solution

and this is because

2 2 2
"@) gy s 2 P P ey
c ) - c' + W, ,c + W, \c

(2) (1)7(1) (2)7(2)

Suppose Crpy Was $14 instead of $12. We see that

.82

(2) (= 10) > B (= 10)
C<2) - C

By intuition we push v(l> = 1 and v(g) = 1 and re-allocate
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v(3) = , L33, Viyy = .306 and n' = 120. The optimal variance

would be V. = 1.416. Using our algorithm we see that

1
2 2 2
@) (10 oW T T2 g
°(2) L) T )%
The optimal values are v?l) =1, V?g) = .962, v?B) = .L30,
v?h) = .304 and n' = 121. Our optimal variance is Vi = 1.400.

Clearly, Vi <V,
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2.4 ILLUSTRATION THROUGH CAUCHY INEQUALITY

For simplicity let us take Double Sampling for stratification
with three stratums. Using Rao's (1973) formula, we get, after

omitting the term SE/N,

2 2 2
2 W.S W_S< W.S
¥ = -g._ 4 n%vl + n?\f b o (2.4.1)
1 2 V3
¥ = .t (At
C n'(c' + chlvl + W202v2>+ w303v3) (2.4.2)

where 0 < v, , Vos V3 < 1. Minimizing (2.4.1) subject to (2.4,2)

is the same as minimizing

o = VC*. (2.4.3)
Suppose
o 2 2
3 22 2 V)S) t Ye)Be) (2.4.4)
e I SO LI GBS PP

Our intuitional approach gives optimal solution as

Su>j“+wufu>+Wm%m

B aye ) T )8 )

v(l) = “(2) = 1 and v< =

and the minimum ¢ would be

2 2
o o o + W(Q)S(g)
o, = o + W S + W S 14¢ X
1 (2)7(2) (3)7(3) 3/62 R W(2>c(

2)
i 2
B+ W c
2 (2) (2)
BT + W, ..c + W,_.S /c] (2.k.5)
(2)"(2) (3)7(3)" 73 2 2
o + W(Q)S(g)
where
2 2



and

2 1
Bo= el *eryWiny:

Now using our algorithm, we get

b = (@B + W58 oy/e ) + Wigy8(5)7e (5

31.

(2.4.6)

From (2.4.5) and (2.4.6) and using Cauchy inequality, we conclude

-©-
s
Iv

¢2'
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CHAPTER III

DOUBLE SAMPLING FOR TWO-STAGE SAMPLING

The situation considered here is characterized by a deficient
knowledge of the composition of the clusters in the population.
It is assumed, however, that it is possible to select a preliminary
sample of small units or elements, and determine by some inex-
pensive method to which cluster a particular unit of the initial
sample belongs. The first sampling phase is thus used to group
the units of the population in order to form a provisional sampling
frame for the selection of the final sample in the form of a
two-stage sample. This method of sampling, of course, does not
differ in principle from Double sampling for stratification; in
both cases the preliminary sample is used to determine a group
identification not known in advance.

The following symbols all refer to the population with L
" By
primary units. For the primary unit h: Wh =Ty e VT s AN

is the mean based on the nﬁ units of s(n') and sﬁg is the un-

biased estimator of Si based on the nﬁ units of s(n') and k is

the number of (pre-assigned) primary units subsampled from the L'
primary units s(L') by pps sampling with replacement, probability
n'

proportional to E$~. Let s(k) denote the set of primary units

in the sample.
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THEOREM 1

The estimator

L
- 1.,.2 1,.2 2
V(ydg) (n, N)S + k(s z whsh)
h=1
2
L S
Tiv L “h;b'- s (3.2)
h=1 h
where
N - N
hy, N
Hh—l"( nv )/(ny)

and 'd2' denotes double sampling for two-stage sampling.

Proof: For a given n' = (ni, né,...,ni,), s(k) is a pps (probability
proportional sampling) sample from s(L'). Let E, and V, respectively
denote the expectation and variance operators for a given n' and s(n').
Similarly, s(nh) is drawn from s(nﬁ) by srs independently, each time,
primary unit h is drawn in sample. Consequently, we denote E3 and
V3 as the expectation and variance operators for a given n' and s(k).

Let El and Vl be the unconditional expectation and variance operators

for s(n'). We have

E(ygp) = BB E5(y )
- -t
E3(yh) =¥,
k L' n! '
- 1 -1 h - =1
EE(V.) =B (5 Ty )= 1 27 =5.
e3rde 2k y'h h=1 h

Similarly




) = V.E.E_(

1EoE, ) + E.V.E_( ) + E.E.V (§d2)

Yao 1'2"3 a2 1°2"3

-t

]
<
bt

=

Now using the relationship
= '
"n T "

and simplifying, we get

V(7g,) =V (F') + BAE - F

Yaz

Now

where 82 is the population variance.

3k,

L!
1 ~ -7 1 - - - =\ 2
EC= Tw (y' -y)) =8 = zw (¥ -F) - (3" - 7)]
1\ k pey 07D Lk, Z2,'h h
L L' N B R
1 —~ = \2 1 = =\ 2 1= =2
=E, |= 1w (y Y )T+ E|= s w (Y, -Y)-E (y' - Y)
1|k ., h7h h Lik ,2,'h'h ‘F
L L
1 2 n' 1 - =2 1 -
== S (I -=)+= W (¥ -%)°-=v (¥); (3.6)
t b
kn'  C.°h'h N k- hh k 1
2
L' n' 8! L
1 h 1 1 2,1
El X L nl"l n' (v - 1) = kn' 2 hsh(v - 1) (3.7)
h=1 h h h=1 h
Also
L L
~1y.2 - =2 ~1,.2
(1 - N 7)s° = ¢ wh(yh - ¥)° + E (wh - N )sh. (3.8)
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(3.4), (3.5), (3.6), (3.7) and (3.8) lead to (3.2)

Berg (1972) proposed the selection of n (fixed number),

h

of units from s(nﬁ) by srs with replacement. His variance for-

mila reduces to

2
- 1,2 e _hzlwhsh) 1 Do)
V(ydg) = (n. - —1\;)8 + A * E W, Sy
h=1
L
+ -k—i—,— b Hhsi(l - %——) - 52 . (3.9)
h=1 , h

When n' is large it is reasonable that

i > n!
I 1l and nh n whv

N (3.10)

h

and from (3.2), (3.9) and (3.10), we get

—-%

V(y(j12

) = V() = =

Yaz
> 0

which clearly shows (as may be expected) the loss in efficiency is

due to sampling with replacement.

We turn now to the optimal determination of n', k and

v o= (vl, v2,...,vL).

The cost function is taken as
k
¢' + ke, + ¥ nc (3.11)

t h=1 h™h

where ¢' is the unit cost of enumerating preliminary sampling,
Ct being the unit travel cost between primary units and <y is the

unit cost of enumerating the secondary units. Since C in (3.11) is

random, we again use the expected cost;
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L

C¥ = n'e' + kct + kn' I whchvh. (3.12)
h=1

Rao (1973) has given a simple procedure for finding the

optimal values of n' and v which minimize

_ L ai
v=_1z n'W v
h=1 h'h
' subjeét to
L
¥ = tat i
C n'e' + hfl(n chvhwh) and 0O < vy S 1,

where a, are known constants. To find the optimal n' and N,
he first determined the optimal v for a given n' and then the
optimal n'. His procedure may be extended to our case for de-
termining the optimal n', k and v which minimize (3.2) subject
to (3.12) and 0 < v, < 1.

To find the optimal n', k and Vv we determine first the op-
timal k and v for a given n', and then the optimal n'. Using the

Cauchy inequality in conjunction with (3.2) and (3.12), it imme-

diately follows that the optimal k and v for a given n' are given

by
2
I.S. ¢
h™h't
n'v, = 5 (h =1, 2,...,L) (3.13)
S
whch(B - ny)
g c, I W 82
i h=1 h"h h™h
k=c c¥ - ¢'n' - (3.1k)

provided n’vh < n' for all h; that is,
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I 5 c
s” + Sh + LB (i) (1) ¢
(1) (1)
[N = !
n. > 3 my (say)
| N
where (1) denotes the group with the largest value of Woa -
h™h

The minimum value of (3.2) for n' > mi, after substituting the

optimal k and v, is given by

- 41 1,.2
Vi (7gp) = (7 - )8
L
- n' hi /ch"hwhsh
(CF — n'ol (3.15)
so that the minimum occurs at the value ml = mi. Note that
= ' o=
v<l) 1 when n ml.
We consider next the values of n' < ml. Since v(l) > 1

for these values, we set v( ) = 1 and re-allocate the remaining

1
vh and k again by Cauchy's inequality. This gives

n'v( = (h = 2, 3,...,L) (3.16)

k = [ct + n'w(l)c(l)]—l 0% - e'n' -
L c W [c +n'W ]
. ()" ()" (k(z)z(h) S ()) (1) (3.17)
=2 ST - I S
[B - i%) (1) ]

where (h) denotes the group with the hth largest value of
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(nhsi/whch) and provided n’\)(h) < n' for all h; that is
2 2 2
187 = T8y * T2)8(2)¥ (1) (1) Y(2) (o)) +
2
n S
2 ) 2 (2)7(2
%) @) ) M) T,
n' >
~ 2B
= m22) (say). (3.18)

" The minimum value of (3.2) for n' > m) after substituting the

2
optimal v and k from (3.17) and (3.18) is given by

Volygp) = (&

(3.19)

dv2(§d2)
We examine the derivative gt over the range mé <n' < m,

to find the optimal n'. The derivative vanishes at n' = ﬁe

(say), and the derivative is § 0 for n' § m,. Consequently,

e - ) o
if m(2) > ml, Vg(yd2) monotonically decreases as n' increases

so that the minimum occurs at the value m, = m. If, however,

é, ml), the true optimum will be given by m, = i

M, lies in (m 5 5

2

and the procedure may be terminated here since, in practice,
V(n') will have a unique minimum.

The general procedure is now clear. If m. # f

5 , we set

2

v = v = 1 and re-allocate the remaining v.. All in all
(1) 7 (@) d g v, :
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L steps will be involved if the derivative is non-vanishing

over the (L-1) ranges n' > mi, mﬁ <n' < m s b= 2,000, (L=1)

where N
2
S—ZH(.)S(.)'*‘W o ZW( )C( )
j= ) () =1 M
2 e 2
h-1 I S h-1 i1 S
+ 8% 1 n(.)s%_>+ w(h)c(h) W yeq | +hB w(h>c(h)
. j=1 T m)(n) g=1 ’ (1) (n)
My 2B
(3.20)
th Hhs%h)
(j) denotes the group with the j = largest value of e
¥
h™h
The derivative of Vh(§d2) in the range
mposolsm
vanishes at
n' = mh (say).
Denoting the optimal n' in the range
1 1 1
T IR I M
et K3 3 '
by m , We compare the values Vh(de) to find the true optimal n
and then the corresponding v and k Where
Sy L2 2
Vo (¥qo) = (&7 - §)s° + (P + R) (3.21)
and where
, bl ,
P:{B—'(S - Z'IT()S( ))/n']z
j=1 7
h-1 s
= [c, +n' T W, , . c ¢
V7 log r et 2o )]

and
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L
SN /C<j>w<j>”<j>s<j>

1

If the optimum occurs in the range mﬁ <n' < mqs the optimal v

and k is given by

(3.22)

k= (c* -~ ¢'n' - =2)/Q. 3.23)

The determination of optimal n' might involve scanning of the

minimum variance in the neighbourhood of n' obtained from (3.21).




APPENDIX

L1.

The following conditions are used in computing the algorithm

given in Chapter II for the optimal determination of A

and v, .

h

Thougﬁ we analyzed both boundary as well as non-boundary conditions,

we do not present the boundary conditions here in order to sim-

plify our discussion.
the following cases.

L. Q/h(l)<m}1, hzl, 2,.-.,L

m <n'

(1)
3 9
—a-rng o,;}i—h—=o, h=1, 2,
9
-a—%—-—=o, i=1,2,....k; h
hi

The conditions are

2
S A
n(1) <—9-, h=1, 2, ,L
(6] C
h(1) - "n
A(1) B
< =5
C(l) C

>

w0

=

[
A

[e]

Using Thompson's Lemma, we distinguish
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2_ lh(l) < mha‘ h = ls 2; aL
= ' '
1) TR M) °F
Sg_ . _ 38 _ TSR
oan am(l) Bm(l)

) .
5—[—5——= 0, i=1,2,...,53h=1,2,...,L
h(i)
The conditions are

2

S

ch<l) < gh— , h=1, 2,...,L.

h(1) h

A B+ W, \A A B+ W, \A
(1) (1)7(1) (2) B (1) (1)

¢1)y ¢ T W) T ce) ¢t Wig)eq)

or equivalently,

(1) . B_
C(l) ¢!
A(2) B + W<1)A(l)

¢2)y ¢ T Wiq)e(y

Optimal Solution:

V(l) =1

j ﬁﬁ_<C' + (W(l)c(l))
1))

s h=2, 3,...,L

cy (B + w(l)A(




§... ’Q'h(l) < mh’ h = 1, 2, s L
m(r) =n' r =2, 3, s L
My <A, b= ortl,L
_og - C o=
T =0, i=1,2,...0k5 h=1,2,...,L
. hi
_8_3&_ <0, r=2,3,...,L
m
(r)
—aﬁg———o, h=3, b4...,.; h # L
(h)
3 o
Loy 3 2B -9, r=2,3,...,L.
on . om,
J=1 (3)
The conditions are
2
s A
h(l B =1, 2,0
“h(1 “h
B
S E NG G e I CO e CO N
1 b
ey ¢ PO T T )
A B+ W
m 2R T T ey
°m) ¢ PO T T )
i=1,2,...,05 0 =1,
Vipy =1 T =1, 2,...,T
2
oS S Tty o VO

= 2, 3,...,L
=r+l,...,L
2yeea sl

» h = r+l,

L3,



3251(1)
d
%8  _ 0, j =2, 3,
Y
si(J)
3 )
e— =0, =1, 2,
h(j) ©
g - g -0 ;=
2
mgs  %5i(1)

5
& -0, h=1,2,...,1, h # s

amh -

E_- o,

on'
The conditions are

2

L.

2 Sr(l) Sr
# 5, # . # s
, L, h # S13 SpaecesS,
,T
c ST

+
Ssi(l) siAsi w51(l)ssi(l)
¢ c .+ W c N o
si(1) sisi si{1) si(1)
or equivalently,
2
Ssi(2) sisi wsi(l)Ssi(l) 3
- - c , 1 =1, 2, ,T
si{2) sisi si{1) si(1)
2
S A
h(l
. (1) < EE-, h=1, 2,...,L; h # Sqs SpseeesS,
h(1) h




Ls,

82
si si si(l) si(l B
- ()c()<gl—,1*l,2, T
sisi si(1) si(1)

h B
E;<E—,',h=l, 2,...,L;h#sl, S5 ’SI‘
Optimal Solution:
Asi(l) =1, 1=1, 2,...,r
82 W .c + W c
A _ si(j) "sisi si(1) si(1) 5
b

l\n
=
|
fl
)
g

i si
1< 815 SpaecesS < L, 5, # S, ... 0% 5.
251(j) < Mgy J = 412 ’k51
Qh(l) <m, h=1, 2,...,L; h # 81, Spav-esS,
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9
EQ,——%_—<O’ k=1, 2, :qi3L=la s T
si(k)
0
.a_;.g___ = O, J = qi+l,. ,k
si(j)
35
nis) 0, 3 =1, 2k B= L, 250003 B F sy, sy,
h(J
45
9 )
—a—m—&—-’r 2—87_5———=O’ i=1, 2, s T
si =1 si(qi)
P
3%; =0, h=1,2,...,L, h# 8, 55s.-+,55,
%g _
on' 0
The conditions are
qi 5
2 A LW .,.\S".
8-, sisi . si(3) 7 si(3)
si(k) J=1
- > 5 k=1, 2, 'sqi5
si(k) 4
+ =
si%i T 2 Wsi(g)Csi(y) P T 2eeeem
e
2 A+ W, 82. .
8., sisi ZoTsi(3) si(y)
si(j) . j= = X .
s1(3) 9 P e
2
+ I
silsi =lw31(3)ssi(j) i=1, 2, , T
2
S
h(i) Ah
) ST, 1= 1,2, 350k, B E S, S5,ea,8)
hii h
qi 5
A+ LW . ST.,.
sisi _,si(3) si(y)
J=1 B
<=, i=1, 2, ,T
a, c
i
%
si%i T " Ysi(5)%1(3)

.S



S
C

P h=1, 2,...,L; h # S5 SpsecesS
h
Optimal Solution:
Asi(j) =1, j=1, 2,...,qi; i=1, 2, ,T
45
52 si%si Ms1(3)%4(3)
AL = 51 (k) L , k=1, 2,
si(k) S (x) ay ,
A LW ., .S, . i=1, 2,
si“si 521 si(j)"si(3)

h(i) %
h ;é Sla 523' ’Sl”
43
2
VsiASi z wSi( )Ssi(')
— j=l J J 1 . i = l’ 2’ ,h
Vi =
45
. . W . c ...
sisi j=1 si(3) si(y)
\)h= s, h =1, 2,...,L; h#sl, 52’_ ’Sr
& 2si(l) B - 251(qi) T Mgy
t: 4 = ksi’ k=1, 2, o
1 f Sl, 52, ’Sr f L
gsi(j) Shggs J T atl,eenk o

Qh(l) <m,h=1,2,...,L; h # S5 SpseeesS

L.
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mgo=n', =1, 2,000,k 1< b, Bseeenty, <L
i
tl # t2 #F ... # tk
m < n', h=121, 2,...,L; h # tl, tg" ,tk

3 )
5§~g—~— <0, k=1, 2, 2455 1= 1, 2,...,r
si(k)
3
5‘2—/—&_—_‘ = 0, J = qtl, ’kSi
si(j)
3
5375L-= 0, J=1,2,...0k 3 h=1,2,...,1; h # 5, Sy,000,8
n(j) ’
9
3 d
555— + 3 Eﬁfﬁi—-< 0, i=1, 2,0.0,k; By = 5, Sp5ee058
b, 351 i) '
d .
555— <0, 1i=1, 2,...,k; ti # 15 SpsevesS,
i
9y
dg _9%8
b I 0 =0, h=1, 2,000,L5 B # by byeenstys
J=1 ""h{y
h = S15 SpseeesS,
3
5§; =0, h=1, 2,005 B #F sy, ShseeesS, bys Thseeesty
’g ko x4 3
oy + I o + I X Y = 0
j=1 tj i=1 j=1 "~Tui(3)
where (ul, ug,...,ux) = (Sl’ S5» ,5.) 0 (tl, tose ,tk).
The conditions are
a ,
g2 1A W 05)8si(5)
Si(k) J.=l S1\g S14]
> k=1, 2
c q bl 2 3 9q19
si(k) i
+ —
wsicsi b} wsi(j)csi(j) i 1, 2, , T
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94
2
2 A L+ W L., 8., .
ST, . sisi osi() si(g)
si(d) o J=1 _
c ( ) a ] k= 13 25 ’ql’
si(J i
si si Jflw51(3)csi(3) L=1, 2,000
2
S
n(i) _ M
C()<E—’ i=1, 2, :kh§h#slasga ’SI‘
h(i h
Qi 5
sifen T2 i (5)%ea ()
% > R, ti = 8 8,5 1 = 1, 2, »K
Peifen T E Tei(5)%1(s)
where
k X ql 5
B+ ZW . A L+ I z LS L.
. i1 tiTtd 121 5=1 ui(j) wi(y)
k X ql
¢+ IW, .,c , + X I W c
(o thtd 21 5.1 1(5) ui(y)
Ati
Ct >R, t1 S5 sg, 8.3 1= 1, 2, sk
i
1 2
WA + T W ,..S
h'h oy h(3)™n(3)
qi <R, h Sl, 82, ,sr; h # tl, tg,. ’tk
We + LW , . .\cC
h'h ~. h(3) ()
J=1
Ah
-;-< R, h # 15 SpreersSos tl, tg" ,tk; h =1, 2, S, L
Optimal Solution:
A =1, J=1, 2,....,q,5 1 =1, 2, s
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