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Petri nets are an efficient and powerful formal tool for modeling, analysis and syn-

thesis of asynchronous, distributed systems with concurrency. Petri nets combine

convenient modular graphical representation with mathematical formalism and pos-

sess such qualities as generality, simplicity and formality. They have a developed

theory of analysis and synthesis.

Here we consider verification of concurrent system correctness. Correctness qualities

can be classified into two groups: semantical and syntactical. Semantical qualities

rely on specifics of the particular application field. Syntactical qualities are more

generic. They can be defined without knowing the specific purpose of the system.

Here correctness is considered as a syntactical quality. The correctness of the system

can be expressed in terms of the behavioral properties of a Petri net modeling the

system. Two major behavioral properties are commonly used for the definition of

correctness of concurrent systems. They are li,ueness (the absence of partial and global

deadlocks) and boundedness (the absence of overflows in finite stores). The developed

universal methods for analyzing these properties face the state explosion problem.

Actually, the main weakness of Petri nets is the complexity problem. The objectives

of the thesis are the creation of efficient methods and algorithms for verification of

concurrent systems.

We develop a set of simple local reduction rules for Extended Flee Choice Petri

nets. We give a complete reduction method for regular Petri nets and estimate its

complexity as O(lSl x l7l).

We develop an O(l^Sl x l"l)-algorithm to decide if a given Extended Flee Choice Petri

net is live and bounded, which is a reduction by one order of magnitude, compared

to the previous algorithm (O(lSl' " l"l)). We present an O(lSl x l"l)-algorithm to

ii
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decide if a given Petri net is regular.

We prove several Rank Theorems for Extended Fhee Choice and general class of Petri

nets and show that they can be used as an alternative technique for the verification

of workflow procedures.

We propose a cubi,c algorithm for the computation of the concurrency relation of

Live and Bounded Extended Fïee-Choice Petri nets. Prior to this work the problem

was shown to be polynomial only for live Marked Graphs and l-bounded Conflict-

Free Petri nets. We generalize the previous algorithm for Free-Choice Petri nets, to

regular Petri nets. The time complexity of the algorithm is O(na), where n is the

number of nodes in the net.

In [46] we propose polynomial algorithms for performance evaluation of communica-

tion networks using stochastic Petri nets. We used theoretical results and polynomial

algorithms from [13, 19, 20, 57] for quantitative analysis of stochastic Petri nets.
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Chapter 1

Introduction

1.1 Research Subject

The Research subject is Petri nets [89, 83, 84, 22] and their derivatives: Signal Than-

sition Graphs [75, 80, 15], Logic Control Algorithms [101] and stochastic Petri nets

l2]. Petri nets are among the most popular, efficient and powerful tools for model-

ing, analysis and synthesis of concurrent systems. Petri nets were introduced in Carl

Adam Petri's dissertation [85] in 1962 in Germany.

Applications of Petri nets a,re numerous and include: communication networks and

protocols, computer architecture, semantics of programming languages, artificial in-

teliigence, sofbware engineering, complexity theory, distributed software systems, dis-

tributed database systems, concurrent and parallel programs, flexible manufactur-

ing/industrial control systems, discrete event systems, multiprocessor memory sys-

tems, dataflow computing systems, fault tolerant systems, programmable logic and

VLSI arrays, asynchronous circuits and structures, compiler and operating systems,

office information systems, formal languages, logic programs, local area networks,

legai systems, human factors, neural networks, digital filters, and decision models.

Petri nets combine convenient graphical representation with mathematical formalism

and possess such qualities as generality, simplicity and formality. As a graphical tool,

1



Petri nets can be used as visual communication aids similar to flow charts, block

diagrams, and networks. In addition, tokens are used to simulate the dynamic and

concurrent activities of systems. The Petri net is a model of a concurrent system,

in the same way that the finite automaton is a mathematical model of a sequential

system. Simplicity is provided by some elementary concepts and assumptions in Petri

net theory. Basic notions are causality, non-determinism and concurrency. Simplicity

can be considered as a necessary condition for the usefulness of a model. The gener-

ality of Petri nets can be shown in 3 different ways. First, Petri nets can serve as a

formalism in which many specific models can be translated. So Petri nets can serve as

a tool for the comparison of properties of many models. Second, Petri nets allow us

to easily define different behavioral semantics: Interleaving, Step and Partial Order.

Third, many interesting properties can be expressed in a satisfactory way from Petri

net theory.

Other advantages of Petri nets:

o an explicit specification of concurrency, synchronization and communication;

r compact representation of concurrent system with large number of global states;

o modular graphical representation;

availability of strong theoreticai results and efficient techniques for their analysis

and synthesis.

L.2 Motivation, Problems and Research Objectives

Methods based on Petri nets belong to formal methods. Why do we need formal

methods?

Modern engineering systems are so complex that human capabilities are not suffi.cient

to design them by hand. Therefore, system design automation is very important.

2



Automation as a rule, is based on formalization: the development of formal models

and languages of description of design objects, and also formal methods of design.

With increasingly complex systems, the need for new models and languages has also

grov¡n. These new models must allow us to describe concurrent, asynchronous and

discrete processes. In addition, the models should be formal, generic and simple.

Petri nets and their derivatives satisfy these properties.

After model development, verification and/or performance evaluation is usually re-

quired.

Here we consider verification of concurrent system correctness. Correctness is one

of system qualities which may be defined formally and without knowing the specific

purpose of the system. The correctness of the system can be expressed in terms of

the behavioral properties of a Petri net modeling the system. Two major behavioral

properties are commonly used for the definition of correctness of concurrent systems.

They are li,ueness (the absence of partial and global deadlocks) and boundedness (the

absence of overflows in finite stores).

Universal methods developed for these new models face the state explosion problem.

That is why the deveiopment of new efficient methods is very important for the models

to be adopted. The research objectives here are the creation of efficient methods and

algorithms for verification and performance evaluation of concurrent systems using

Petri nets.

1.3 Publications, Personal Contribution and Re-

search Experience

The research work related to the study here has resulted in 30 items included in the

references.

All main results in the thesis were obtained by the author himself.
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The author received his Master of Electronics Degree in 1982. He has been working in

Petri net field since 1985. In 1985-1994 he worked as a researcher at the Academy of

Science in Belarus. In 1994-1996 he did research at Hamburg and Munich Universities

in Germany. Since April 1996 he has worked at the University of Manitoba, Canada.

L.4 Structure of the Thesis

In Chapter 2 we give the definition of Petri nets. Since the verification of systems

is a main topic of our research, we pay special attention to qualitative properties of

Petri nets such as liveness and boundedness. We also define some subclasses of Petri

nets and give a short description of existing analysis and synthesis methods.

In Chapter 3 we describe our results in linear-algebraic methods of Petri net analysis.

In Chapter 4 we analyse Petri nets using reduction.

In Chapter 5 we consider the quadratic algorithm for the liveness and boundedness

analysis of regular Petri nets.

Chapter 6 is devoted to the computation of the concurrency relation for regular Petri

nets.

In Chapter 7 we give the method of unfoldings.

In Chapter 8 we consider an application of Petri nets to hardware design, namely to

the analysis and design of asynchronous circuits.

In Chapter 9 we apply Petri nets to the verification of Logical Control Algorithms

(LCAs). We define LCAs and their correctness, and consider the verification methods.

In Chapter 10 we consider the application of Petri nets to workflow management.

In Chapter 11 we investigate quantitative properties of Petri nets, namely timing

characteristics, and their application to the performance evaluation of communication

networks.

Chapter 12 is devoted to the modular synthesis of Petri nets.

4



Where appropriate each chapter summarizes the research contribution made by the

author.



Chapter 2

Petri Nets, their Properties and

Classes

2.L Petri Nets

A Petri net is a directed graph, together with an initial state called the initial marking,

Mo. The graph is a directed bipartite consisting of two kinds of nodes, called places

and transitions.

Places usually model conditions, stores, channels or queues, and transitions model

events, tasks, jobs or servers.

In Fig. 2.1 a Petri net, modeling a non-deterministic wait process, is shown. Places

are graphically represented by circles and transitions by boxes.

Formally, anetis atriple lú: (S,T,F) with,5 f)T: Ø and l1 ç (S x T) U (7] x.9).

,9 is the set of places, T is the set of transiti,ons.

A marlci,ng of a net l/: (S,T,F) is defined as a mapping M:,S -+ lN. A place is

called marlced, bV M itr M(s) > 0. Let ^9' Ç ^9. Then S' is marked itr 1s e S'ls is

marked. A. Petri, net (or a system) is a pair (N, Mo).

Let X:,SU? be the set of nodes of N. Then for z € X the set of input nodes of

7



response I

response I
received

S5

time
out

u is denoted by'ø and is defined as'r: {y e Xl(A,*) e f'}, and the set of output

nodes of u is denoted by f and is defined as u' : {A e Xl(n,g) e -F}.

From now on we assume that all nets we deal with are fini,te (i.e. X is finite), connected

(i.e. X x X : (f U f-1)-, where -R* denotes the reflexive and transitive closure of a

relation ,R), and have at least one place and one transition. N is strongly connected

iffX x X: F".

Dynamics in Petri nets are introduced with a firing rule. A state (or marking) is

changed according to the following transition (firing) rule:

1) A transition ú is said to be enabied if each input place s of. t is marked with at

least one token.

2) An enabled transition may fire.

response 2

received

Fig. 2.1 A Petri Net.

S6

response 2

3) A firing of an enabled transition ú removes one token from each input place of ú,

and adds one token to each output place of f. So, Firing of f yields a ne\ry marking

8



M' (denoted Mlt)M'), where

A firing rule is illustrated in Fig. 2.2.

Fig. 2.2 A Firing Rule.

The expression M1[ú)M2, where Mt, M2 àîe markings of ¡\r, denotes that Mt enables

transition ¿ (".g. ú is fireable at M1), and that the marking reached by the occurrence

of. t is Mz. The empty sequence e is an occurrence sequence: we have Mle)M for

every marking M.

For a marking M, the set of reachable markings [M) is defined as the least set of

markings which satisfies M e lM) and includes for every marking Mt €. [M) the set

of all successor markings of. M'.

M'(s) :
M(s)+1iffs€ú'\'ú
M(t)-1iffs€'ú\¿'
M(t), otherwise

2.2 Properties of Petri Nets

The most important and common behavioral properties of Petri nets checked at the

verification of systems are liveness and boundedness [22]. Liveness corresponds to

the absence of global or partial deadlocks in a system, boundedness to the absence

I



of overflows in stores. The complexity of the problems of liveness and boundedness

for Petri nets is exponential depending on the size of the net. The liveness and

boundedness are common criteria of correctness or soundness of systems.

A transition ú is li,ae at a marking M ifr.V Mt e lM) =M" 
e lM') M"lt). A system

(N, Mo) is li,ue iff every transition of ? is live. A net ,lú is structurally li,ue iff there

exists a live marking of lú.

Aplace s € S isn-bounded(ne IN) itrVM'elM) M'(t) 1n. A.places €,S is safe

iff s is 1-bounded. A place s e ,9 is bounded ifr 1n € IN such that s is n-bounded. A

system (N,Mo) is bounded iffevery place of ^9 
is bounded. A net N is structurally

bounded iff every marking of /ú is bounded.

A marking M of the net N is dead iff there are no transitions fireable at M. A

transition t is dead at a marking M ifrVM' € lM) ú is not fireable at Mt.

A marking M is called li,ue iff every transition is live. A marking M is boundedifr

Vs€Ssisbounded.

A net N is well-formediff. there exists a live and bounded marking of l/.

Consider the queueing network shown in Fig. 2.3.

In Fig. 2.4 we show the Petri net model of the queueing network from Fig. 2.3.

'We can see that the network is designed with an error and will be in a deadlock. A

10

Fig. 2.3 A Queueing Network.



{- n

deadlock marking is shown by 'X'. Hence the system is not

Now we give an informal definition of liveness. A Petri net

can always occur again.

Now consider the queueing network in Fig. 2.5.

Fig. 2.4 The Petri Net Model of the Queueing Network of Fig. 2.3.

In Fig. 2.6 we show the Petri net model of the queueing network from Fig. 2.5.

We can see that the network is designed with an error and will have an overflow. The

overflow place is shown by two 'X'. Hence the system is not bounded.

Now we give a definition of boundedness. A Petri net is bounded iff there exists a

number b such that no reachable marking puts more than ä tokens in any place. Places

in a Petri net are ofben used to model buffers and registers for the storage of data. If

a Petri net is Unbounded, than overflows can occur in these buffers or registers.

11
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Fig. 2.5 A Queueing Network.

X
X

Fig. 2.6 The Petri Net Model of the Queueing Network of Fig. 2.5.
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2.3 Classes of Petri Nets

The class of Petri nets defined above is called ordi,nary. All Petri nets considered here

are ordinary. However, different applications require their own subclasses, modifica-

tions or extentions of Petri nets which are suitable for these applications.

The concept of time is not explicitly given in the original definition of Petri nets.

However, for performance evaluation and scheduling problems of dynamic systems,

it is necessary and useful to introduce time delays associated with transitions and/or

places in their models. Such a Petri net model is known as a ti.med Petri net [88]

if the delays are deterministically given, or as a stochast'ic Petri net [2] if the delays

are probabilistically specified. Hi,gh-leuel Petri nets include predi,cate/transi,ti,onPetri

nets [33], colored Petri nets [36], object Petri nets [96] and Petri nets with i,ndi,ui,dual

tokens 1901.

By imposing some restrictions on the structure and/or behavior of Petri nets we can

define different subclasses of Petri nets.

There exists a trade-off between modeling power of a Petri net class and its analyz-

ability. The more modeling power the less analyzability. Therefore, in order to reduce

the complexity of analysis, for any application we should strive to choose the most

restricted class which is sufficient for that application not to lose the modeling porver.

Two interesting subclasses of ordinary Petri nets are free-choice Petri nets and regular

Petri nets.

FYee-choice and extended free-choice Petri nets can model conflict and concurrency,

they are easy to analyze, but they are too restricted for some appiications.

Another class of Petri nets is regular Petri nets. They are those Petri nets that satisfy

the conditions of the Rank Theorem, which refers to the linear algebraic represen-

tation of Petri nets. Live and bounded extended free-choice Petri nets are a proper

subset of regular Petri nets.

For the applications considered here, the classes of extended free-choice Petri nets

13



and regular Petri nets are fairly sufficient. These classes are subclasses of ordinary

Petri nets.

Other subclasses of Petri nets we are considering here are for auxiliary purposes only.

A net (S,T,F') is a T-net (or marked graph) iff it satisfies the following two properties:

A net (S,T,F) is a S-net (or state machi,ne) iff it satisfies the following two properties:

Vse .9 ls'n7¡ :1

YteT l'tn^9¡ :1

A net N : (S, T,F) is called an l-out netiff. Vs € ,S ls'l : 1.

Vs€^9 l'sn7l :1

A cluster of a net l/ is a connected component of the relation F, U F;t, where

Fr : f'n(^9 x?). [r] denotesthe cluster containing r e S UT). The set of all

clusters is denoted by A.

A net N : (S, T, F) is called a free-choi,ce net (FC-net for short) [3a] iff Vs e S Vt e T

(s, ú) € f implies t' : {ú} or 'ú : {s}.

A net N: (S,T,F) is called an ertended free-choi,ce net(EFC-net for short) [34] iff

Vs e ,S Vt €T (s,ú) e F implies'ú x s'C .t'.

Let ^9 
and ? be arbitrarily but fixed ordered. Let I ç S(Q q 

"). 
Then we denote

¡(Q) the characteristic vector of the set Q. The i,nci,dence matri,x C : S x T -+

{-1,0, 1} of ,n/ is defined by C(-, t) : ylt'l-Xl'tl.We denote every vector (0,0, ...,0)

by 0 and every vector (1,1,..., 1) by 1. A vector J is called S-i,nuari,ant(T-i.nuari,ant)

itr J. C : 0 (C. J : 0). For two vectors J and J', J ) J' iff for every i-th component

I4

Vt €T lt'n ^91 
: 1

(2.1)

(2.2)

(2.3)

(2.4)



J(i)>J'(i,).Aninvariant Jis semi-positi,ueitr.J ì 0 and J +0.4n invariant "/is
positi,ue itr J > 1. The support (J) of a vector J is the set of elements z satisfying

J(x) I 0. For a set Q Ç T, dim(Q) denotes the dimension of the space of such

T-invariants J which satisfy Vt ø I J(t) : ¡.

A system (N, Mo) (not necessarily EFC) is called regular l22l itr the following four

conditions hold.

there exists a positive S-invariant

there exists a positive T-invariant

Regularity is a sufficient condition for a Petri net to be live and bounded, and can be

efficiently decided [57].

While being wider than the class of live and bounded free-choice Petri nets, the class

of regular Petri nets is still restricted. To show the usefulness of regular Petri nets

in the design flow we propose to identify the correctness property of a model as the

regularity of the Petri net. Then we can use modular design of a correct model similar

to the one for free-choice Petri nets [31].

Regular Petri nets are a subclass of a wider class of state machine decomposable Petri

nets. A state machine decomposable Petri net consists of several state machines. In

practice, the design of systems traditionally uses state machine models which are very

familiar to engineers and designers. Often the system consists of several concurrently

running and communicating state machines. Each subsystem (state machine) can
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be represented in the model autonomously. Then such representations should be

coordinated to describe the whole system. It is modular approach to system design.

2.4 Analysis Methods for Petri Nets

The problem of analysis has been intensely studied since the early seventies. The

results of this research point out a very clear trade-off between expressive power and

analyzability. Even though most interesting properties are decidable for arbitrary

Petri nets, the decision algorithms are extremely inefficient. In this situation it is
important to explore the analyzability border, i.e., to identify a class of Petri nets, as

large as possible, for which strong theoretical results and efficient analysis algorithms

exist.

Analysis methods are classified into 5 groups:

1) Reachability graph [8a]. In this method \¡/e enumerate the global states of the

system. From the initial marking .rve can get new markings, applying enabled transi-

tions. From new markings v/e get more new marking and so on. At the end we get

the Reachability graph. Nodes are marking (globat states) and arcs are transitions.

So every Petri net can be mapped to the corresponding state machine. This method

is universal, but applicable only to small system, because of the state explosion prob-

lem. Other methods are more efficient, but applicable only for subclasses of Petri

nets or particular cases.

2) Model Checking 127) is another approach for the analysis of finite-state concurrent

systems. The problem of deciding if a concurrent system satisfies a logic formula is

called the model checking problem.

3) Linear Algebraic Methods.

One of linear algebraic methods is State equation [83].

Matrix equations govern the dynamic behavior of concurrent systems modeled by

Petri nets. However, the solvability of of these equations is limited because of the
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constraint that solutions must be found as non-negative integers.

State equation gives us a necessary condition of reachability of a marking M from

some other marking Mo.

Mo: M +Co

R
*

F.iE. 2.7 A Reduction Rule.

where o is column vector of nonnegative integers and is called the firing count vector.

The i-th entry of ø denotes the number of times that transition i must fire to transform

Mo to M.

Other linear algebraic methods are invariants [83, 82] and Rank Theorems [13, 20].

4) Reduction and decomposition [10, 11]. To facilitate the analysis of a large system,

we often reduce the system model to a simpler one, while preserving the system

properties to be analyzed.

A reduction rule is shown in Fig. 2.7

5) Structural methods.

One example is siphon - trap method [34]. Behavioral properties of free-choice Sys-

tems and some other subclasses of Petri nets are closely related to the structural

properties. Two basic structural notions are a siphon and a trap. A set D Ç ,9 is

a si,phon (a trap) iff.'D ç D' (D' ç'D). A set of places is called marlcedifr. at

least one of its places has a token. Those sets of places play an important role in the

behavior of Petri nets. 'We 
can notice that unmarked siphons remain unmarked at
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any firing of transitions, and marked traps remain marked. It can be easily shown

that live systems have no unmarked siphons.

Another example is circuit - theoretic analysis [83]. Liveness and boundedness of

marked graphs are closely related to the structural properties, and the basic structural

notion in marked graphs is a circuit.

2.5 Synthesis Methods for Petri Nets

Analysis techniques detect non-correct systems, but in general do not give any hint

about how to proceed in order to improve the design. In practice the designer tries to

synthesize a system, and then to verify it. If the system is not correct in some sense,

the designer redesigns it and so on.

Synthesis methodologies are an interesting alternative to these trial and error methods

based on analysis and modification. In these cases, the designer restricts him/herself

to modifying and developing the model using only some very specific rules of top

down transformation and/or composition, which can be safely applied because they

are known to preserve the properties desired for the system.

The synthesis problem can be stated as follows: given a set of properties of good

behavior, how does one construct systems satisfying them?

There are two basic synthesis methodologies for Petri nets.

1) Stepwise refinement (a kind of topdown approach). In the topdown design

methodology, to which this section is devoted, the synthesis procedure starts from

an elementary system. This elementary system is usually small or simple, and satis-

fies the properties of good behavior. This initial system is then enlarged in a stepwise

way using the synthesis rules kit.

2) Modular synthesis (a kind of bottom-up approach). The second of the two basic

synthesis methodologies is modular synthesis. It deals with the case when modules

(subsystems) are merged (composed) into new systems. The system is divided into

18



modules that can be easily modeled. Then such representations should be coordinated

to describe the whoie system. So, the problem of modular synthesis can be stated as

follows: given a set of well-behaved modules, how does one compose the modules to

yield a well-behaved system. Usually the two centrai properties of Petri nets: liveness

and boundedness are considered when determining the criteria of good behavior.
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Chapter 3

New Rank Theorems

Rank Theorems give us a necessary and/or sufficient conditions of liveness and bound-

edness. These conditions are expressed in linear algebraic terms. Moreover, the

theorems allow us to check the behavioral properties in polynomial time.

There are already some Rank Theorems for different classes of Petri nets [13, 20,24].

In [51, 60, 56] new Rank Theorems for Petri nets are presented. These formula-

tions strengthen the known ones in the sense that the new necessary and sufficient

conditions for a Petri net to be live arrd bounded are less strict than the known ones.

3.1 Subnets

Let l/ : (^9,7,F), ^9' ç ,S, T' ç T. Then (S',T',F') is a subnet of lú iff F' :
.F' n ((^9' x ?') u (?' x ^9')). Since -t'' is completely defined by ,S' andT', we will write

(S',7') instead of (,S', T', F').

Lemma 3.1.1

satisfies

[82] If J is a semi-positive 
^9 - (?-)invariant then the support (J)

(J)' : '(J)
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I

A set T ÇT is a T-component itr (^91 -'TL,?i) is a strongly connected subnet of N

satisfuing 3.1,2.I and 2.2.

Let N: (,S, T,F) be anet. Then ¡¡-a - (T,S,F-1) is reuerse-dualnetof net N. The

notion of an ^9-component is reverse-dual to that of a T-component. I.e. a set ,9r Ç ^9

is a S-component iff (,9r,7r : ,Si) is a strongly connected subnet of N satisfying 3.L,

2.3 and 2.4.

A net is T-couerableifr. every transition of it belongs to some T-component. We call

a cover of T-components by T-coaer.

Lemma 3.L.2 l22l If ft is a T-component of l{ then XQù is a minimal T-

invariant of l/.

Lemma 3.L.3 122]If ,,I is a minimal T-invariant of a well-formed EFC-net l/ then

the support (J) is a T-component of l/.

T

Lemma 3.L.4 [8] If ¡ü is well-formed then it is strongly connected.

The following result is well-known from Linear Algebra.

Lemma 3.1-.5 rank(C): l7l - di,m(T).

In [20] a necessary and sufficient condition of liveness and

systems is given. It is the Rank Theorem.

22
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Theorem 3.L.6 [20] Let N be an EFC-net. Then (N, M0) is live and bounded iff

(N, Mo) is regular.

I

The Rank Theorem does not hold for arbitrary systems, but provides a sufficient

condition for liveness and boundedness.

Let [ø] be a cluster of lü. A, feedback [19] of [r] is an arc (t,s) e F such that

s e [u],t elnl,(t,t) Ø F. A net N is feedbacle-freel22l iffno cluster has feedbacks.

Lemma 3.L.7 [19] Every regular system is live, bounded and feedback-free.

I

Let N be feedback-free. The mapping q is defined bV l(N) : (S,T,FUFUF-t)
where .Ê : {(r, t) € S xT I [r] : [t] n (s,t) ç F]and,Ê-1 : {(ú,s)l(s,ú) € F}.

The net a(N) is called the EFC-representati,on of ,n/ in [19].

Lemma 3.1.8 [19] Let l/ be feedback-free. Then

(a) ri(¡/) is an EFC-net.

(b) C - C', where C' is the incidence matrix of a(,n/) (i.e. both nets have identical

incidence matrices).

(c) If (N, M) is regular then so is (a(N), M).

T

Now we give a necessary and sufficient condition of regularity expressed in terms of

the EFC-representation.

Lemma 3.L.9 Let N be a net.

(a) [SZ] (N, M) is regular itr (a(/ú), M) is live and bounded and N is feedback-free.

(b) If N is strongly connected then so is 4(i/).
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Proof:

(u) +. By Lemma 3.1.7,1/ is feedback-free. By Lemma 3.1.8a, a(N) is an EFC-net.

By Lemma 3.1.8c, (N',M) is regular. Hence by Lemma 3.L.7, (rl(¡/), M) is live and

bounded.

+ By Lemma 3.1.6, (ti(¡ú), M) is regular. Since I/ is feedback-free, by Lemma 3.1.8b,

(N, M) is regular.

(b) The proof is obvious.

t

Now we give a simple algorithm to construct the EFC-representation of l/, which

simultaneously checks whether a net is feedback-free.

Algorithm 3.L.L ÐFC-representation

Input: a net l/.

Output: the EFC-representation -ðy'' : ?(N) of N or the message "ly' is not

feedback-free and hence not regular".

begin

.ôy'/ :: N; At:: ,4 (the set of the clusters of lú)

while hlØdo

choose a e A1; A1 ::,4r\o; So :: S n a; T1 :: T n a;

while S"#Ø do

choose s e ^9"; So:.: ^9"\s; To ::?11

whileT"lØdo

choose t € To; To:: To\t;

if (s, ú) ( F and (ú, s) e F then Stop, Output Message, endif

if (s, ú) Ç F and (t, s) # F' then Ft :: F/ U (s, t) l (t,s) endif

endwhile
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endwhile

endwhile

end

Proposition 3.L.10 [57] The problem to decide if net N is feedback-free and to

construct EFC-representation of N has the complexity O(1.91 x l7l).

Proof:

By definition a cluster is a connected (and also strongly connected) component of

the relation f'l Uf'¡l, where f'r : f'n (.9 x T). Hence the set of all clusters can be

computed with the O(lSl x l"l)-algorithm of [9a]. Since the clusters are a partition

on the set of nodes, the result follows.

T

Lemma 3.1.9a reduces the problem of regularity to the problem of liveness and bound-

edness of EFC-systems.

Lemma 3.1.11 [57] Let N satisfy 2.5, 2.6, 2.7, and N' : a(,rü) be its EFC-

representation.

(u) F' ç F'.

(b) Nodes dom(F'\F) u cod(F'\F) belong to clusters with more than one place

and more than one transition in both N and N'.

(.) 
"r 

is a T-component of N iff fi is a T-component of N'.

(d) St is an S-component of N iff ^91 is a minimal S-invariant of N.

Proof:

(a) and (b) easy to follow from the definition of the EFC-representation.

(") +. Let 7r be a T-component of /ú'. Then by Lemmata 3.1.8b and 3.1.11a, the

subnet ('Tt,Tt) of l/ has the same set of transitions ?r, but (possibly) does not have
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all the self-loops compared to the subnet ('Tt,Tr) of N'. So the subnet ('4, Tr) of ,n/

is strongly connected and satisfies 2.2 and 2.I. By Lemma 3.!.2, x?t) is a minimal

T-invariant of lú'. By Lemma 3.1.8b, the incidence matrices of N and N' are the

same, and hence XQì is a minimal T-invariant of N. By Lemma 3.1.1, 'Tt : Ti in
N. Hence by definition, ?1 is a T-component of l/.

*. Let ?r be a T-component of l/. By Lemma 3.1-.2, XQt) is a minimal T-invariant

of N. By Lemma 3.1.8b, and hence xQù is a minimal T-invariant of lú'. By Lemma

3.1.3, fi is a T-component of N'.

(d) follows from LemmataS.\.2,3.1.3, 3.1.11 and reverse-duality.

t

Let N be a net. The net @(,nf) is defined as the result of performing the following

operations for every cluster [r] of y'/ and every feedback (ú, s) of c:

(i) remove the arc (¿,");

(ii) add a ne\¡¡ place s1 and a nerv transition ú1;

(iii) add arcs (ú,sr), (sr,ú1) and (úr,s).

It is easy to see that this transformation always terminates, and does not depend on

the order in which the feedbacks are treated. The following lemma provides some

properties of the transformation /(N).

Lemma 3.L.LZ Let l/ be a net and .ôy'' : d(¡/).

(a) IZZ] The net l// is feedback-free.

(b) If l/ is T-coverable so is N'.

(c) Let n be the number of feedbacks of N. Then rank(C') : ranlc(C) + n.

Proof:

(b),(") The proof is easy to see.
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3.2 Siphons

In this section we will show that every strongly connected EFC-net is covered by

minimal siphons.

A set D ç S is a siphon (a trap) irff'D ç D'(D' q 'D).

Theorem 3.2.L [3a] An EFC-system (N, M0) is live iff every siphon has a marked

trap.

Theorem 3.2.2 [3a] Let .lú be a well-formed EFC-net. Then every minimal siphon

is an S-component.

t

To simplify the finding of siphons in EFC-nets, we define a simple transformation rule

'y,,i.e.a mapping, which domain is the class of EFC-nets and range 1-out nets.

Let N be an EFC-net. The net 'y(,n/) is defined as the result of transformation of the

transitions of every cluster [r] inio a single transition ú of 7(lü):

't:'trrfi€a;

t' : Utreotl.

In Fig. 3.1 we see a cluster {rr, rr, h,tz} of an EFC-net ,l/ together with output

places, and in Fig. 3.2 the corresponding transition t of L-out net 7(,nú) together with

input and output places.

Lemma 3.2.3 Let lú : (^9, T,F) be an EFC-net. Then

(u) D is a siphon of ,^/ iff D is a siphon of 7(.n/);

(b) , is a minimal siphon of .nf iff D is a minimal siphon of 7(N);

(c) Lei nç,S. D isamaximalsiphonof Nin Ritr D isamaximalsiphonof

7(,nf) in Ã.
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Fig. 3.L A Cluster with Output Places

Fig. 3.2 A Tlansition after 7 tansformation
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Proof:

(u) =+. Let ú € 'D in I/. Since D is a siphon, t €. D'. By the EFC-property, all

transitions of the same cluster have the same set of input places. Hence in 7(l/), the

corresponding transition ú" € D' and 'D ç D'. Hence D is a siphon of 7(ni).

e. Analogously.

(b) and (c) easy follow from (a).

t

A path of N is a nonempty sequence ht...,rk of nodes satisfying (*r,*r), ...,

(**-t,n¡) e F. It is a ci,rcui,tifr. xn - tt. Ãn elementarypath (circuit) is a path

(circuit) which does not contain any node twice (except maybe rr : rt).

A subnet (^9, 

") 
is said to be generated by the set of places 

^9 
iff ',9 : 7.

The following lemma gives some structural properties of minimal siphons in EFC-nets.

Lemma 3.2.4 l22l Let D be a minimal siphon of an EFC-net. Then (D,'D) is

strongly connected and 2.4 holds for (D,'D).

I

We give nor¡/ some structural property of minimal siphons in l-out nets.

Lemma 3.2.5 Let D be aset ofplaces ofan l-out net. Then D is aminimalsiphon

iff (D, 'D) is a maximal strongly connected subnet and 2.4 holds for (D,'D).

Proof:

+. By Lemma 3.2.4, (D,'D) is strongly connected and 2.4 hoids for (D,'D). \Me

continue indirect. Let (D,'D) be not maximal with those properties. Then there

exists a maximal strongly connected subnet (^9t,?1) ) (D,'D) satisfying 2.4. We

have two cases.

(u) D - ,Sr. Then 'D C fi. Hence ?t\'Sr l Ø and (St,7t) is not strongly connected.

A contradiction.
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(b) D C ^91. Since (St,fr) is strongly connected, there exists a path (Sr\D) ) s1ts2 €.

D. Since t € 'D, and (D, 'D) is strongly connected, l'¿ n ^9r l > 2. A contradiction to

2.4.

ê. Lemma 3.2.4.

I

Lemma 3.2.6 [57] Let .lü : (S, ?, F) be a strongly connected 1-out net. Then it

is covered by

(a) elementary circuits;

(b) subnets generated by minimal siphons.

Proof:

(a) trivial.

(b) BV (u), l/ is covered by its elementary circuits. By definition, every elementary

circuit is a strongly connected subnet of l[ with 2.4. By Lemma 3.2.5,.ðy' is covered

by minimal siphons.

t

Theorem 3.2.7 Let N : (S, T, F) be a strongly connected EFC-net. The arcs of

F n (T x ^9) of l/ and hence the nodes S UT are covered by subnets generated by

minimal siphons.

Proof:

follows from Lemmata 3.2.6 and 3.2.3b.

An ,9 - allocati,on is the set a Ç ,S such that for every cluster lrl e A l["] nol : 1.
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Lemma 3.2.8 Let N be a strongly connected EFC-net and D be a minimal siphon

of l/. Then there exists an S-allocation o of N such that (c, o') is connected, D

is only siphon satisfying D Ç a and D is the only source of (o,a').

Proof:

(Constructive).

06 l: Sg:: D;

S¿+r : U{S"l^g" is a minimal siphon and ^9j O Si # Ø};

d¿+r i: a¿l) 6¿, where ô¿ is a maximal set satisfyirg ôn Ç S¿+r\(U"€&[s]) andVa e A

lø n ô¿l < I,i,: 0,1,...

By Theorem 3.2.4,lk e IN such that So Ç Sr _C ... Ç Sr : 
^9.

Clai'm. Let D Ç a be defined as above and D' Ç c be a minimal siphon. Then

D: D'.

Proof of the claim. By induction on k.

Basis. D' Ç S* since ^9¡ 
: $.

Step. if D' Ç S¿+t then D/ ç S¿,i < lc.

Since D' ç S¿+r ñ a, by the definition of S¿+t D'' n Si + Ø and by the definition

of c¿".1 :Ø+ o¿+rñ'(D''aSi) C a¿l)'(Dt' ñSn') çDtìSi. Hence D'aSi+Ø.
Since D' is a minimal siphon, by Lemma 3.2.4, (D' ,'D') is strongly connected. Hence

Vs,s' € D/ there exists a path s : s¡úosr ...sn: s'such that {ss,...,sr} C D',

{¿0, . . . ,t,"-t} c'Dt . Since D' and S¿ are siphons then .(a¿ n.(D. n S;)) C (Dn ^9,)..

Since D is a minimal siphon and by Theorem 3.2.7,,S¿ is covered by minimal siphons,

D ç Si.. Claim.

'We proceed indirectly. Let (o, a') be disconnected. Since a is a siphon, all the

connected components of which are also siphons. This contradicts the claim. Let

(o,o') have more than one source. Then it is easy to see that all they are subnets

(D: D), where D are siphons. Again a contradiction to the claim.

I
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3.3 Linear Algebra in Net Theory

Lemma 3.3.1 (a) [aZ] Let IÍ be a net satisfying

=J>T C.J<O

Then VX if (X .C > 0) then (X .C :0).

(b) [82] N is structurally bounded iff l/ satisfies

=J>7 J.C<0

(c) [AO] If l/ is well-formed then it has a positive T-invariant.

(d) [22] If N has positive S- and T-invariants then it is strongly connected.

(e) [OZ] If N is structurally live and structurally bounded then it is strongly con-

nected and has a positive T-invariant.

t

Lemma3.3.2 (a) LetQçS Vte Q' l'tnç¡ :1. ThenQisatrapiff

x@).c > 0.

(b) Let l/ be a net satisfying 3.2, and Q be a trap such that 2.4 holds then X(Q)

is an ,9-invariant and 3.1, 2.3 hold for Q.

(c) If .n/ is covered by S-components then it has a positive S-invariant and satisfies

3.3.

(d) If N is covered by T-components then it has a positive T-invariant and satisfies

2r)

Proof:

(a) is trivial.

(b) Let Q ç S be a trap such that 2.4 holds. Then by Lemma 3.3.2a, X(8)'C > 0.

By Lemma 3.3.la, X(8) is an,9-invariant. Since 2.4 holds, and ¡(Q) is an S-invariant,

it is easy to see that 2.3 holds. By Lemma 3.1.1, 3.1 holds.
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(c) The sum of characteristic vectors of all S-component of a covering is a positive

S-invariant.

(d) is reverse-dual to (c).

I

Lemma 3.3.3 [20] Let N be an EFC-net, a be an S-allocation of N. Then

(a) If N is well-formed then rank(C) < l"4l - 1.

(b) rank(C) > l"4l - di,m(a).

Lemma 3.3.4 Let N be an EFC-net, o be an S-allocation of N. lf 
=J 

such that

J.C> 0and(J) qathen J+.C>0.

Proof:

Let ú € 7. Then J+ .C(t): Is€¿. J*(r) - Dse.¿ J*(r). Let a o'ú : {p}. Two cases

are possible.

(i) /*(p) : o. Then J+ 'C(t) > o.

(ii) J+(p) > 0. By definition of J+, J*(p): J(p) and Vs € ú' J*(t) > J(t). Since

J .C > 0 we have Ise¿. J*(r) ) Ise¿. J(r) 2 Ise.¿ J(s) : J(p) : J*(p).

Hence Vú J+ .C(¿) > 0.

I

Lemma 3.3.5 Let N be an EFC-net satisfying 3.2. Then

(a) If D is a minimal siphon, and Q Ç D is a trap then D is an,S-component.

(b) If ly' is strongly connected then rank(C) > l"4l - 1.

(c) If N is strongly connected and rank(C) < lAl then N is well-formed.
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Proof:

(a) Since Q ç D, by Lemma 3.2.4, (Q,'Q) satisfies 2.3. By Lemma3.3.2b, Q satisfies

3.1 and 2.3. Hence Q is a siphon. By minimality of D, Q: D. Hence 3.1 and 2.3

hoid for D.

(b) Let D be a minimal siphon. By Lemma 3.2.8, there exists an a such that D Ç a,

and for every other siphon D', D' Ç a. Let J e dim(a). BV Lemma 3.3.4, J+ 'C > 0.

By Lemma 3.3.1a, J+ is also an S-invariant and semi-positive. By Lemma 3.1.1, S(J)

is a siphon. By minimality of D, S(J): D. Hence dim(a) < 1. The result follows

by Lemma 3.3.3b.

(c) Let D be a minimal siphon. By Lemma 3.2.8, there exists an c such that D Ç a,

and for every other siphon D', D' Ç a. Since rank(C) < l.Al, by Lemma 3.3.3b,

dim(o) > 0. Hence there exists an S-invariant J € Jo.By Lemma 3.3.4, J+ 'C > 0.

By Lemma 3.3.la, J+ is an S-invariant. By Lemma 3.1.1, (J+) is a trap. Hence every

minimai siphon has a trap, and by Theorem 3.2.I, N is structurally live. By Lemma

3.3.5a, every siphon is an S-component. By Theorem 3.2.7,.1ú is covered by minimal

siphons and hence by S-components. By Lemma 3.3.2c,1ú satisfies 3.3. By Lemma

3.3.1b, ,fy' is structurally bounded.

T

Lemma 3.3.6 If a net is T-coverable then rank(C) > l.Al - 1

Proof:

Let ,¡{ be T-coverable and n be the number of feedbacks of Iü. Then by Lemma 3.1..12,

/(,nf) is feedback-free and T-coverable. By Lemma 3.1.8a, the net N' : a(/(,nf)) is

an EFC-net. By definition of the EFC-representation, the number of clusters in N

and a(N) is the same. Hence the number of clusters in N': 1'41 : lAl + n. By

Lemma 3.1.8b, rank of the incidence matrices of /(lú) and N' is the same. Hence by

Lemma 3.\.12c, rank(C') : ranle(C) + n. Since /(N) is T-coverable, it is strongly

connected and satisfies 3.2. Hence by Lemma 3.1.9b, N/ is strongly connected, and
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by Lemma 3.1.8b, satisfies 3.2. By Lemma 3.3.5b rank(C') > lÆl - 1. Hence

rank(C) t n ) l-41 + n - I, and rank(C) > lAl - 1.

T

It is known that the theory of regular systems exhibits a nice duality [4], strictly

speaking, reverse.duality, i.e. when a proposition for N : (S,T,F) remains true for

reuerse-dual net N-d : (7, S,F-l).

Theorem 3.3.7 122) Let lú be a net. Then .lf is regular iff the reverse-dual net

l/-d is regular.

T

Lemma 3.3.8 Let N be a net. Then

(a) [Sa] N is well-formed EFC-net ifi N-d is well-formed EFC-net;

(b) N is strongly connected iff N-d is strongly connected;

(") 3.2 holds for /ú iff 3.3 holds for l/-d;

(d) rank(C) : rank(C-d);

(") I"al : lA-dl;

(f) ¡/ satisfies 2.5 itr lf-d satisfies 2.6.

Proof:

(b)-(f) are obvious.
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3.4 A Concise Proof of the Coverability Theorem

for Live and Bounded Extended Free-Choice

Nets

The known proofs of the well-known coverability theorem for free-choice nets consider

system behavior, firing sequences or processes[5,22] and thus tend to be long. Here

a concise proof based only on structural properties of nets is given.

The notions of. T-allocati,on, absorber and generator are reverse-dual to the notions of

S-allocation, siphon and trap respectively. A net is S-(T-)couered iff it is covered by

S-(T-)components.

Lemma 3.4.L A necessary condi,ti.on of li,ueness

Let N be an EFC-net having a live marking. Then every ?-allocation of l/ contains

a generator.

Proof:

Let T1 Ç ? be a T-allocation, and M0 be a live marking of N. Then the system

(S,Tt,f n ((S x 
"r) 

U ("r x ,S), M0) has non-empty set of live transitions ?z ç fl. It

is obvious that Tz is a generator.

t

Theorem 3,4.2 Couerabili.ty Theorem

lS, ZZ1 Let N be an EFC-net having a live and bounded marking. Then it is

S-covered and T-covered.

Proof:

By Lemmata 3.1.4 and 3.3.1c, N is strongly connected and has a positive T-invariant.

Hence l/ satisfies 3.2. Since N has a live marking, by Theorem 3.2.1, every minimal
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siphon D contains a trap Q ç D. Then by Lemma 3.2.4, (Q,'Q) satisfies 2.4. By

Lemma 3.3.2b, Q satisfies 3.1 and 2.3. Hence Q is a siphon. By minimality of D,

Q: D. Hence 3.1 and 2.3 hold for D,and D is an S-component. By Lemma 3.2.7,

N is S-covered.

By Lemma 3.I.4, l/ is strongly connected. Since N is S-covered, the sum of char-

acteristic vectors of all S-components of a cover is a positive S-invariant. Let ,4, be

a minimal absorber of N. By reverse-dual version of Lemma 3.2.8, there exists a

T-allocation o such that ,4 Ç o and for every other absorber A', A' ( a. Since l/
has a live marking, by Lemma 3.4.7, every T-allocation contains a generator. Hence

thereexists agenerator G ç c andVs €'G ls'nGl :1. Byreverse-dualversionof

Lemma 3.3.2b, G satisfies 3.1 and Vs € 'G l's n Gl : 1. Hence G is an absorber.

By minimality of A, A - G. Hence ,4 is a T-component. By reverse-dual version of

Lemma 3.2.7,1/ is T-covered.

T

3.5 New Rank Theorems

Theorem 3.5.L Let N be an EFC-net. Then N is well-formed iff it is strongly

connected and satisfies 3.2 and 2.7.

Proof:

=+. By Lemma 3.3.3a, every well-formed EFC-net satisfies rønk(C) S lAl - 1. By

Lemmata 3.1.4 and 3.3.lc, every well-formed EFC-net l{ is strongly connected and

satisfies 3.1.4. Hence .l/ satisfies 3.2. By Lemma 3.3.5b, rank(C) > 1.,41 - 1

€. By Lemma 3.3.5c, Iü is well-formed.

I

Now we give the reverse-dual version of Theorem 3.5.1.
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Theorem 3.5.2 Let Iú be an EFC-net. Then i/ is well-formed iff it is strongly

connected, and 3.3 and 2.7 hold.

Proof:

By Lemma 3.3.8a, lú weil-formed iff l/-d is well-formed. By Theorem 3.5.1, .ll-d is

well-formed iff N-d is strongly connected, and 3.2 and 2.7 hold for ,^/-d. By Lemma

3.3.8(b-e), .l/ is strongly connected, and 3.3 and 2.7 hold for .f/.

I

By Lemma 3.3.1b, 3.3 is equivalent to structural boundedness, so \rye get a nice

necessary and sufficient condition of structural liveness in structurally bounded EFC-

nets.

Theorem 3.5.3 Let i/ be a structurally bounded EFC-net. Then N is struc-

turally live iff it is strongly connected, and 2.7 holds.

Proof:

+. Let N be well-formed. Then by Theorem 3.5.2, it is strongly connected, and 2.7

holds.

+. Let l[ be a structurally bounded, strongly connected, and 2.7 holds. By Lemma

3.3.1b, l/ satisfies 3.3. By Theorem 3.5.2,1/ is well-formed.

Theorem 3,5.4

and 2.7 hold.

Proof:

I

Let l[ be an EFC-net. Then N is well-formed iff it is T-covered,

=+. By Lemma 3.5.1, 2.7 hold. By Theorem 3.4.2, N is T-covered.

e. Since N is T-covered, it is strongly connected and satisfies 3.2. By Lemma 3.5.1,

l/ is well-formed.

I
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Lemma 3.5.5

Proof:

The proof follows from Lemmata 3.1.1lc and 3.4.2.

If a net satisfies 2.5, 2.6, 2.7 then it is T-coverable.

Lemma 3.5.6

Proof:

The proof is reverse-dual to the Proof of the previous Lemma.

If a net satisfies 2.5, 2.6, 2.7 then it is S-coverable.

Lemma 3.5.7 Let N be a feedback-free net. Then

(a) if ll is strongly connected then a(N) is strongly connected;

(b) if N satisfies 3.2 then 4(l/) satisfies 3.2;

(c) if ,n/ satisfies 2.7 then 4(ll) satisfies 2.7.

Proof:

(a) is obvious. (b) and (c) follow from Lemma 3.1.8b.

I

Lemma 3.5.8 Let lú be strongly connected and satisfy 3.2 and 2.7. Then N is

feedback-free, and q(d(¡/)) is well-formed.

Proof:

By Lemma 3.1.12a, @(N) is feedback-free, strongly connected and satisfies 3.2 and

2.7. By Lemma 3.1.8a, q(ó(N)) is an EFC-net. By Lemma 3.5.7, T(d(N)) is strongly

connected and satisfies 3.2 and 2.7. By Theorem 3.5.1, q(d(¡/)) is well-formed,

and by Theorem 3.4.2, it is covered by S-components. We continue indirect. Let
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N have a feedback (ú,r), and K be an S-component of q(ó(N)) such that s' €. K

(see the definition of /(N) above). By definition of an S-component (condition 3.1),

ls2 € qnK. Sinceúï: {t}, s € K ands2:s. So {t,t'} C Kn¿'. Acontradiction

to 2.3.

t

Theorem 3.5.9 If ,n/ is strongly connected and satisfies 2.7 and 3.2 then N

satisfies 2.7, 2.5, 2.6 and is well-formed and feedback-free.

Proof:

By Lemma 3.5.8, N is feedback-free, and a(/(N)) is well-formed. By Lemma 3.1.9a,

N satisfies 2.7, 2.5 2.6, and by Lemma 3.7.7,1/ is well-formed.

I

Now we give the reverse-dual version of the Theorem 3.5.9.

Theorem 3.5.10 If N is strongly connected, and satisfies 2.7 and 3.3 then l/

satisfies 2.7, 2.5 2.6 and is well-formed.

Proof:

By Lemma 3.3.8(b-e), N-'is strongly connected and satisfies 3.2 and 2.7. By

Theorem 3.5.9, l/-d satisfies 2.7,, 2.5 2.6. By Lemma 3.3.S(d-f),.1/ is satisfies 2.7,

2.5, 2.6. By Theorem 3.7.7,11 is well-formed.

I

Theorem 3.5.LL If N is a structurally bounded net, strongly connected, and 2.7

hoids then lü is structurally live.

Proof:

Let ,^/ be a structuraily bounded, strongly connected and satisfies 2.7. By Lemma

3.3.1b, l{ satisfies 3.3. By Theorem 3.5.10, N is well-formed.
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3.6 Additional Results

In [51, 60, 56] we prove several Rank Theorem for extended free-choice and general

class of Petri nets, and show that they can be used as an alternative technique for

the verification of workflow procedures.

Taking into account the next results from linear algebra, one can find two more

"minimal" formulations of the Rank Theorem.

Lemma 3.6.I- [82] N has both a positive S-invariant and a positive T-invariant

iff any of (a) or (b) hold

(u) N satisfies 3.3 and

(b) ¡/ satisfies 3.2 and

In these new formulations, the conditions 3.3 and 3.4 (correspondingly 3.2 and 3.5)

should be the additional conditions to the rank equation.

Now we prove these new formulations.

=J 
>_T C.J > O

Theorem 3.6.2 A net -l/ is covered by T-components and satisfies 2.7 ifr. it

satisfies 2.5, 2.6 and 2.7.

Proof:

=J>L

€. By Theorem 3.5.5, N is covered by T-components.

+. Covering by T-components implies strong connectedness. By Lemma 3.3.2d, N

satisfies 3.2. By Theorem 3.5.9, v/e are done.

J.C>O

(3.4)

(3.5)
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Theorem 3.6.3 A net .|y' is covered by S-components and satisfies 2.7 itr it sat-

isfies 2.5, 2.6 and 2.7.

Proof:

follows from Theorem 3.6.2 and reverse-duality.

I

Now we show that all the existing Rank Theorems from [51, 60, 56] are simple corol-

laries of the new Rank Theorems and some known results from Petri net theory.

Theorem 3.6.4

Proof:

+. By Theorem 3.4.2, N is covered by S-components and T-components. By Lemma

3.3.2c, N satisfies 2.6 and 2.7. By Theorem 3.5.1, N satisfies 2.5.

+. By definition, the existence of a positive T-invariant implies 3.2. By Lemma

3.3.1d, the existence of both a positive S-invariant and a positive T-invariant implies

strong connectedness. By Theorem 3.5.1, vre are done.

[20] An EFC-net is well-formed iff it satisfies 2.5, 2.6 and 2.7.

Theorem 3.6.5

iff it is covered

T

lzLl An FC-net N is structurally live and structurally bounded

Proof:

by S-components and

rank(C): l.9l + l7l - lr n (^9 x 
")l - 

1

Taking into account that

nets, we can see that the

FC-nets.

the equation 2.7 is equivalent to

present theorem is Theorem 3.6.3,

3.6 for the class of FC-

appiied for the class of

42

(3.6)

I



Theorem 3.6.6 [13] Let l/ be a strongly connected and structurally bounded

FC-net. .ly' is structurally live iff rank(C): lsl + l"l - lF n (S x ?)l - 1.

Proof:

=+. Theorem 3.5.1.

e. Theorem 3.5.3.

3.7 Summary

In [51, 60, 56] we prove several Rank Theorem for extended free-choice and general

class of Petri nets, and show that they can be used as an alternative technique for

the verification of concurrent systems. The Rank Theorems establish a close rela-

tionship between behavioral and linear-algebraic properties of Petri nets. We prove

stronger versions of the Rank Theorems in the sense that existing Rank Theorems

are coroilaries of our theorems.

¡
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Chapter 4

Reduction of Petri Nets

In [a9] we improve the complete reduction method of [25]. We develop the method in

three more aspects. First, we apply the method for a wider class of systems. We give

a reduction rule and prove its strong soundness and completeness for regular systems.

Second, we give more precise evaluation of complexity of this method (O(lSl x l7l)),

comparing to [25] (polynomial in [25] without specifying the degree of polynomial).

Third, in the method of [25] one of the reduction rules (Ã3) checks if all the siphons

are nonempty at every step of its application in order to be strongly sound (original

system is live and bounded iff reduced system is live and bounded). This check is

cumbersome and actually is necessary only once at the first application of .R3 because

at each step of the reduction all the deadlocks are marked. In our method such a

check is not required.

To simplify the reduction process and the corresponding propositions, ïi/e will use

only one reduction rule -R instead of two or more as in [22] and [25]. In this case

\rye are forced to use live and bounded Marked Graphs as atomic systems instead of

strongly connected systems consisting of two nodes. The analysis of Marked Graphs

is very simple [3].
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Fig. 4.1 A Regula.r System and one of its TCP-subnet (dashed nodes).

4.L TCP-subnets in T-coverable Nets

Let N be a T-coverable net. Then non-empty and connected subnet fr: 1,9,'^îu^9'¡

is a TCP-subnet of l/ iff
(i) there exists a T-cover C of N and a T-component N1 e C such that

(ii) F c ¡ú.

(iii) tr : (S,T) : (S\S,"\('^9U,3')) contains some transition, and is strongly

connected.

We denote îo :î n (',9 U 3'), Á, theset of clusters of F which have common nodes

with Ñ in l/.

Theorem 4.L.L 122] Let l[ be a well-formed EFC-net and

of l/. Then (S,7) is well-formed and

lînl : r

The system in Fig. 4.1 is a regular system (a model of a non-deterministic wait process

from [Mu]), and one of its TCP-subnets (dashed nodes) satisfies 4.1.

For the class of T-coverable nets rü¡e may notice that some transitions t¿ e f¿ may

have pre-sets 'ú¿ containing the places of different clusters of F, because \¡/e no longer

have the EFC-property. In other words, after removal of a TCP-subnet, the number

of clusters in the resulting net F may increase. In Fig. 4.2 we show the example,
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l/ be a TCP-subnet

(4.1)
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where a dashed transition represents a TCP-subnet and shares two of its input places

with two clusters of f. So we can have the situation when F satisfies 2.7, but N

does not, or vice versa. To preserve Rank equation we need an additional condition:

Fig. 4.2 Violation of Condition 4.2.

Lemma 4.L.2 [a9] Let Iü be a TCP-subnet of a net Iü. Then

(u) FisaT-net

(b) Rank(Ô¡ :1î¡ - t

(c) Rank(C) > Rank(e) + Rank(Õ)

(d) di.mQ) > dtm(T) + 7

(e) If a TCP-subnet F of a net l/ satisfies 4.1 then lAl : lZl - lÃ.1+ lîl

Proof:

(a) Let fr U" a TCP-net. By definition of a TCP-net, there exists a T-component AIi

of l/ such that that f c ¡fr.

(b) BV definition of a TCP-subnet, fr ir cottected. By Lemma 4.7.2a, fr ir u T-net.

Hence every T-invariant of fr is multiple of the vector T. So dim(î): 1. By Lemma

3.1.5, we get Rank(Õ): lf I - r.

(c) If we assume without loss of generality that the first rows of the matrix C corre

spond to the places of F and its first columns to the transitions of l/, then N can be

decomposed in the following way:
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for some matrix,4..

(d) Every T-component containing I is a T-invariant not belonging to the space of

T-invariants of F.

(e) Claim. Every cluster of N containing one node of F contains exactly one transition

of fr.

By Lemma 4.1.2a, fr ir u T-net. Hence every cluster containing one of fr contains at

least one node of .û.

We continue indirect. Let ú1 I t2 and t1, t2 € ' ,9 U ,9' belong to the same cluster of l/.

By Lemma 4.!.2a, fr : (3,'^î u ,9'¡ is a T-net. Then {h,tz} Ç T¿. A contradiction

to 4.7. ü Claim.

Divide the clusters of N into (1) those contained in F, (2) those contained in F, and

(3) those which contain nodes of both F and 7Í.

The number of clusters of the first kind is lZl -lÁ"1 By Claim, the number of clusters

of the second kind is lf I - t. The number of clusters of the third kind is 1.

I

":(l Ð

4.2 A Reduction Rule, its Strong Soundness

T-coverable Systems and its Completeness

Regular Systems

Now we are ready to give a reduction rule for T-coverable systems.

Rule R. Let (l[, M0) be a feedback-free T-coverable system and not a T-system.

(ñ,w): E(N, Mo) Itr
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Conditions on (l/, Mo).

C1. ¡/ has a TCP-subnet I/ of l/ with 4.L.L, 4.1.2 and

(S,7) is?- couerable

C2. Every loop of f is marked.

Changes in (N, Mo) to produce (Ñ,ff).

R1. Vse f'nS

Fig. 4.3 Reduction Rule R.

/^
4

ø"(,) : ] 
Mo(') iff ] a non-marked path rrom T¿ to s in N

[ ¡¿o(r) * 1, otherwise

R2. Remorr" fr from l/.

Fig. 4.3 illustrates Reduction Rule R.

Theorem 4.2.L (strong soundness oÍ R)

R is strongly sound with respect to the class of regular systems.

Proof:

-JLet (F, W¡ : A(¡/, M0). Using the definition of regular systems, we need to show

the following:

(i) ¡ú satisfies 2.7, 2.5, 2.6ifr.l/ satisfies 2.7, 2.5, 2.6.

(ä) Mo satisfies 2.8 in N ifrff satisfies 2.8 in 7Í.
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(i) Bv Condition C1 of the Rule R, (S,7) is T-coverable. Taking into account Lem-

mata 3.3.6 and 3.6.2, we need only to prove rank(C) < 1.,41- 1 iff rank(e) S lzl- 1.

+. By Lemmata 4.7.2bc, Rank(C) > Rank(e) + Rank(Ô) : Rank(e) + lfl - 1.

So we set Rank(Ø S Rank(C)- lîl+ t : l/l- lf I By Lemma 4.I.2e, Rank(C) <

lzl - 1.

+. By Lemma 4.I.2d, di,m(T) > dim(T) + I. By Lemma 3.1.5, Rank(C) <

l"l-l7l+Aank(e)-1. Since l"l : lfl+lf l, we have Rank(C) < lîl+nank(e)-1 -
lf I + lÃl - 2. By Lemma 4.r.2e, Rank(C) S 1.,41 - 1.

'We now show (ii). Taking into account Lemma 3.1.11d, we need to show that every

S-component of (lú, Mo) is marked iff every S-component of (7F, ff¡ i, marked.

+. Consider an S-component 51 of .l/. Since l/ is a subnet of l/, we have two cases.

(a) There is an S-component ,9r of l/ such that 31 - ^9r. Since ,9r is marked in .l/,

by the definition of R1, 51 is marked in F.

(b) There is an S-component ,9r of lú such that 3r C Sr. Then by the definition of

R2, intersection of the subnet (St, Si) with fr is a path in fr from {ú,} : T¿ to aplace

s e î n,9. ny the definition of R1, if 
^91 

is marked by Mo in l/ then 31 is marked by
J

M" in,n/. So every S-component ,9r of N is marked.

+. Consider an S-component ,Sr of lú. Since l/ is a subnet of .ly', we have three cases.

(a) There is an S-component 5r of F such that 51 - ,Sr. Since 51 is marked in l/,
by R1, ,91 is marked in l/.

(b) There is an S-component 5r of F such that 51 C ,Sr. Continuation is similar to

(b) above.

(.) (,9t, ^9i) is a loop of fr. Then by condition C2, it is marked in M0.

T

To simplify the reduction process and the corresponding propositions, we will use only

one reduction rule instead of two or more as in 122, 25]. In this case we are forced to

use live and bounded T-systems as atomic nets instead of strongly connected system
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consisting of two nodes. The complexity of analysis of T-systems (Marked Graphs)

is lower, comparing to EFC-nets or regular nets [3].

Theorem 4.2.2 (completeness of R)

R is complete for the class of regular systems.

Proof:

Let (l/, Mo) be a regular system.

'We only need to show the following: (¡ú, Mo) is a live and bounded T-system or has

a TCP-subnet satisfying 4.1, 4.2, 4.3, and every loop of û is marked.

Since (¡/, Mo) is regular, by Lemma 3.5.5, lú is T-coverable and by Lemma 3'!'7, N

is feedback-free.

We have 2 cases.

(i) ¡ú is a T-net. Then we are done.

(ii) N is not a T-net. We take a minimal cover C of. N by T-components. Since N is

not a T-net, we have lcl > 1. we construct the (non-directed) graph G: (v,E) u.

follows. I/ is the set C and E is the set of pairs (l/,;, /ú¡) such that /V¿ and N¡ have

at least one common node. The graph G is connected because C is a cover of ,ô/ and

ly' is connected. Moreover, G has at least two nodes because lCl > 1. We choose a

spanning tree of G, and select one of its leaves, say Nl. We then construct a maximal

set of nodes X of l{r satisfying the following properties: (a) the net generated by X

is connected, and (b) no element of X belongs to a T-component of C \ {N1}. The

set X is nonempty, because C is a minimal cover. Since Nr is a leaf of G, the subnet

f generated by X is connected, and by definition is a TCP-subnet. Since F covered

by the set C \ Nr, 4.3 holds. So it is only left to prove that 4.1 and 4.2 hold. Let

N, : a(N) be the EFC-representation of lú. By Lemma 3.1.9a, .ly'' is a well-formed

EFC-net. By Lemma 3.1.11c, fi is a T-component of N ifi 
"1 

is a T-component of

.lú'. So the subnets F and -N' of .lü' have the same sets of transitions as fr and F of
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lú. By Theorem  .L.L,F is well-formed, and lf | : 1. By Lemma 3.1.11a, 4.1 holds

for fr. By Lemma 3.1.9a, F is well-formed. By Lemma 3.5.5, ¡tr is T-coverable. By

Lemmata 4.1.1bc,

(är) Rank(C) > Rank(e)+ lfl - 1.

Since N and F both satisfy 2.5, 2.6 and 2.7, we have

(ä2) Rank(C) : lAl- 1 and Rank(e): lZl - 1.

Substituting (ii2) into (ii1) we got 1..41 > lZl + lfl - 1. Then by Lemma 4.7.2e,

lAl-lZ"l+ lfl > lZl +lfl -t and lZ,l :1. So 4.2holdsandhenceconditionCl

holds.

Since (N, Mo) is regular, every loop of fr is marked by M0. So condition C2 holds.

T

4.3 The Algorithm of Reduction and its Complex-

itv

The algorithm below has two passes (two while loops). During the first pass, the

algorithm checks if a given system (N, Mo) is T-coverable, finds a T-cover and cor-

responding TCP-subnets, and simultaneously memorizes TCP-subnets in a STACK.

Actual reduction is done during the second pass (second while-loop).

Algorithm 4.3.L Reduction (N)

Input:

(N, Mo) is a system

Output is one of the following messages:

1: "(ly',Mo) is completely reduced "

2: " (N,Mo) is not completely reduced "
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Function: get - T - component(N,t)

This function finds an T-component of N containing transition ú. It is similar (and

reverse-dual) to the function mark-S-component [41j, but gives (as ihe output) the

subnet (S,7) of transitions of a T-component containing ú. If it finds a minimal set

Tt Ç T such that fi ç'fi and fi +'fi, the algorithm stops and gives a message

" (N, Mo) is not completely reduced".

F\rnction: str ong connect(N)

This function checks if the graph of l/ is strongly connected and is based on the

depth-first search algorithm. This function is described in [9a].

Function: get - TC P - subnet(Ñ, Nl, ¿)

This function finds a TCP-subnet F Ç Nr of tr u ¡ft containing ú.

begin

if strongconnect(N) : No then

Stop with "N is not completely reduced"

endif

choose t € T;

(S,T) :- get -T - con'ry)onent(N,t);

To :-_tr\T;

while (r' + Ø) do

choose t € To; To ;: 
"'\{¿h

T1: get -T - con'¿ponent(N,t);

(,9,f ': get-TCP - subnet(ñ,I/r,ú);

endwhile

while (STACK #Ð ao

fr': Pop@rACK);
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if (fr, Mo) satisfies (9,10) then

(N, Mo) :: R(N, Mo);

else Stop with " (N, Mo) is not completely reduced"

endif

endwhile

if (¡/, M0) is live and bounded T-net then

Stop with " (N, Mo) is completely reduced";

else Stop with " (N, Mo) is not completely reduced";

endif

end

Proposition 4.3.2

Proof:

The complexity of function "strongconnect" for a directed graph G : (V,E) is O(lVl+

lE'l) [94]. The complexity for function "mark-S-component" is given in [ i] (O(l"l)).

Since the set of the TCP-subnets (under consideration) defines a partition on the set

of nodes of the net, the complexity of the finding and checking of the TCP-subnets

is O(l^91 x l"l). Hence the upper Bound of the time complexity of the algorithm is

O(lSl x l7l). The complexity of verifying if a given T-system is live and bounded is

o(lsl x l"l).

T

The reduction algorithm has the complexity 0(1,91 * lfl).

4.4 Summary

An improvement to the reduction method given in [25] was presented. First, we

generalized the method to regular Petri nets. Initially the method was used only

for extended free-choice Petri nets. Second, we gave more precise evaluation to the
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complexity of the method (O(lSl x l"l)), versus polynomial without specifying the

degree of polynomial in [25]. Third, we improve the Reduction Rule. We eliminate

one computationaily expensive step and reduce overall complexity of the reduction

algorithm.
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Chapter 5

The Algorithm to Decide if a Petri

Net is Regular and its Complexity

In this chapter we present an O(l,Sl x l"l)-algorithm to decide if a given net is regular

[57].

We give a necessary and sufficient condition of regularity of a system. This condition

proves to be liveness and boundedness of the EFC-representation of the system. Hence

we reduce the problem of regularity to the problem of liveness and boundedness of

EFC-systems.

To decide the well-formedness of a given EFC-net we give an inductive criterion of

well-formedness. This criterion is based on complete reducibility of the ciass of nets

[23].

In [5a] we present an O(l,Sl x l"l)-algorithm to decide if a given EFC-system is live

and bounded. In the paper we refine this algorithm and apply it to decide if a system

is regular.

To prove the soundness of our algorithm we use a theorem on covering of strongly con-

nected EFC-nets by minimal siphons given above. The theorem wa.s not formulated

or proved anywhere previously, although for FC-nets the similar proposition follows

from Theorem 4.2 [28]. The theorem from [28] uses an algorithm of constructing of
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minimal siphon beginning from an arbitrary place. In our paper more formal proof

is given.

It is well known from [34] that every initial marking of a well-formed EFC-net is

bounded. Hence we need to check only liveness of a given marking.

To decide the liveness of an initial marking for well-formed EFC-nets, we define a

simple transformation rule, i.e. a mapping, whose domain is the class of EFC-nets

and range 1-out nets (every place has at most one output transition). This mapping

proved to be useful twofold: when checking whether an EFC-net is well-formed, and

when checking whether an initial marking of a well-formed EFC-net is live. It is shown

that a well-formed EFC-system is live iff (if and only if) the maximal unmarked siphon

of the corresponding 1-out net is the empty set. An O(lSl x l"l)-algorithm to find

the maximal unmarked siphon of 1-out net is given.

5.1 Liveness of Initial Marking

Since well-formedness is only a necessary condition for a system to be live and

bounded, we need to decide if a given initial marking of a well-formed EFC-system is

live and bounded or not.

Lemma 5.1.1 [3a] Let lú be an EFC-net. Then

(a) an initial marking Mo oL N is live iff every siphon contains a marked trap;

(b) if lü is well-formed then every initial marking of I/ is bounded.

t

Lemma 5.t.2 [57] Let .^/ be a well-formed EFC-net and M be a marking of l/.
Then the following equivalent:

(u) (¡/, M) is live and bounded;

(b) the maximal unmarked siphon of (l/, M) is the empty set;
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(c) the maximal unmarked siphon of (@(N), M) is the empty set.

Proof:

(r) + (b) (Indirect.) Let the maximal unmarked siphon D of (N, M) be not empty.

From definition of a siphon it follows easy that an unmarked siphon stay unmarked

at any reachable marking of N. Then all the transitions D' can not be live. A

contradiction.

(o) e (å) Let D be a minimal siphon of N. Since the maximal unmarked siphon of

N is the empty set, D is marked. By Theorem3.2.2, D is an S-component, hence a

trap. By Lemma 5.1.1a, (N,M) is live. By Lemma 5.1.1b, (N,M) is bounded.

(b) <+ (c) follows from Lemma3.2.3c.

¡

Lemma 5.1.2 reduces the problem of liveness of a well-formed EFC-net lü to the

problem to decide if the maximal unmarked siphon of /(N) is the empty set.

The maximal unmarked siphon of an 1-out net -lú can be obtained by the following

algorithm, a modification of an algorithm in [91].

Algoríthm 5. L. 1 get-mar-unmarlced-si'phon

Input: a 1-out system (N,,M).

Output: maximal unmarked siphon D of (N,M).

begin

D :: ^9\{s e ^9lM(s) > 0}; T¿::7\D'; T1 :: r\A
while T¿*Ø do

D :: D\Tå;T¿1: ?t\D'; T1;: 
"1\4

endwhile

end
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Theorem 5.1.3 [57] The following problems have the complexity o(lsl x l"l):

(a) to decide whether a strongly connected l-out system (¡/, M) is live;

(b) to decide whether a well-formed EFC-system (l/, M) is live.

Proof:

(a) Lei 1-out net N be presented as two functions S" 
' 

,S ) T, To: T I 2s, defined

as ^9"(s) : s', T"(t) : ¡'. Since the sets T¿ do not intersect in any two different

iterations of the algorithm, the complexity of computation:

D (in all iterations) - O(l^91 x l7l);

T¿ (in all iterations) - O(lSl x l"l);

rr (i" all iterations) - O(lrl x l7l).

Since l7l < l^91 in strongly connected l-out nets, the upper bound of the time com-

plexity is O(1.91 x l"l).

(b) It is easy to see that the simple algorithm to construct /(.nf) has the complexity

O(lSl x l"l). Then the result foliows from (a) and Lemma5.7.2.

I

5.2 The Algorithm

Algorithm 5.2.L deci,de-well-formed (N )

Input:

lú : (S, T,F) is a strongly connected EFC-net

Output is one of the following messages:

1: ".ôy' is well-formed "

2: " N is not well-formed "

F\rnction: get - S - component(N,s)
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This function finds an S-component of N containing place s. It is similar to the

function mark-S-component [41], bui gives (as the output) the subnet (3,7) of places

of an S-component containing s. If it finds a minimal siphon not generating an S-

component, the algorithm stops and gives a message "N is not well-formed".

F\rnction: get - TC P - subnet(N, s, ,So)

This function finds a TCP-subnet of .lü containing place s. It finds also the set of the

output places ,9o of the TCP-subnet. It is a version of the function get-S-component.

Function: strongconnect(N)

This function checks if the graph of /ú is strongly connected and is based on the

depth-first search algorithm. This function is described in [94].

begin

if strongconnect(N): No then Stop with "N is not well-formed" endif

choose s € ,9; (S,7) :- get - ^9 - cornponenú(Iú,s); Si :: '7\3;

while (Su + Ø) do

choose s €,S¿; Si:: Su\{r}; (S,f,,9") ': get-TCP - subnet(N,s);

if (l3,l > 1) then Stop \¡/ith "N is not well-formed" endif

endwhile

Stop with "N is well-formed";

end

Proposition 5.2.1 [57] The following problems have the complexity O(lSl x l"l):

(a) to decide well-formedness of EFC-nets;

(b) to decide whether a system (N,M) is regular.

Proof:

(a) The complexity of function "strongconnect" for a directed graph G : (V,,8) is

O(lVl + lEl) [9a]. The complexity for function "mark-S-component" is given in [a1]
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(O(l"l)). Since the set of the TCP-subnets (under consideration) defines a partition

on the set of nodes of the net, the complexity of the finding and checking of the

TCP-subnets is O(lSl x lfl). Hence the upper bound of the time complexity of the

algorithm is O(lsl x l"l).

(b) It follows from Theorem 5.1.3b, Lemma 3.1.9a, Propositions 3.1.10 and 5.2.la.

I

5.3 Summary

In [43, 40] O(lSl'z x l"l)-algorithm to decide if a given EFC- net is well-formed was

given. This algorithm checks the conditions 2.5, 2.6,, 2.7 (Theorem 3.1.6). To check

the condition 2.5 (if a net has a positive S-invariant), this algorithm finds a cover of

S-components. Checking of the condition 2.6 has been done analogously (finding a

cover of S-component on reverse-dual net). Hence two main steps of the algorithm in

[40] are: to find a cover of S-components and to compute the rank of the incidence

matrix. Finding a cover of S-components has been done in [a1] in O(lSl x l7l)-time.

Since the calculation of a matrix rank requires O(l,Sl2 x l?l), the Rank Theorem can

be checked in O(l^912 x l"l).

Our algorithm avoids the computation of rank. It results in a reduction by one order

of magnitude, compared to the algorithm in [40]. Hence the absolute minimum of the

complexity has been reached, because the input information on the structure of the

net takes the capacity O(l^91 x l"l).

The mapping 7 was used to decide the liveness of an initial marking. But it proves

to be useful for another goal. In [42] the net Iü itself is used to find a cover of

S-components for the FC-net N. But the class of EFC-net is wider than the class

of FC-nets. Therefore, the application of the method from [42] is not possible. To

overcome this difficulty, in [a1] the cluster graph is used as auxiliary data to find a

cover of S-components. We propose the use of the mapping 7 instead. Since 1-out
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nets are a subclass of FC-nets, Lemma 3.2.3b allows us to compute a cover of minimal

siphons using only one graph 7(,n/) instead of two (l/ itself and cluster graph) in [41].

Next step is to check if every minimal siphon is an S-component. For that check we

should use the net ll itself, not 7(l/).
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Chapter 6

Concurrency Relations

In general to find an efficient polynomial algorithm for the computation of the con-

currency relation between nodes of a net, and to prove it for nontrivial classes of Petri

nets is extremely hard task. The problem is EXPSPACBhaTd for arbitrary systems,

and PSPACBcomplete for 1-bounded systems [14] (we use the terms Petri net and

system interchangeably).

In [55] we proposed an O(nt) algorithm for the computation of the concurrency

relation of extended Flee-Choice Petri nets. Before that time the problem has been

shown to be polynomial only for live Marked Graphs [63] and 1-bounded Conflict-Flee

systems [100, 26] (the algorithm of [26] can be easily generalized to the n-bounded

case).

In [a9] we generalized the algorithm for the computation of the concurrency relation

to regular Petri nets. The time complexity of the algorithm is O(na), where n is the

number of nodes of the net.

The concurrency relation is usually defined

more general definition.

Let (N, Ms) be a system, and let X be the

the marking M, of l/ as follows:

bi)

as a set of pairs of transitions. We use a

set of nodes of N. Given r €. X ) define



o if r is a place, then M, is the marking that puts one token on s, and no tokens

elsewhere;

o if r is a transition, then M* is the marking that puts one token on every input

place of u, and no tokens elsewhere.

The concur"rencA relati,on ll g X x X contains the pairs (u1, z2) such that M > M,rI
Mr, lor some reachable marking M. In particular, two transitions tt, tz belong to

the concurrency relation if they can occur concurrently from some reachable marking,

and two places belong to the concurrency relation if they are simultaneously marked

at some reachable marking.

The concurrency relation is directly related to the co relation used in the theory of

nonsequential processes [9]: (*r,*r) belongs to the concurrency relation if and only if

some nonsequential process of (lú, Ms) contains two elements in co labelled by u1 and

22. This is in fact a more elegant definition, but, since it requires the introduction of

a number of concepts, v¡e use the one above.

We now define the structural concurrency relation, first presented in [63]. Let (,n1, Ms)

be a system, where N: (S,T,F), and let X: S U?. The structural concurrency

relati,on ll" ç X x X is the smallest symmetric relation such that:

(i) Vs, s' € ^9: Mo 2. M, I M", è (s, s') e lll

(ii) Vú € T: (t' x ¿') \ i,dr Ç llA

(iii) Vz e.XVteT: {æ} x'úç ll'+ (2,ú) e ll' n {"} x¿'Ç ll/

where zd7 denotes the identity relation on ?.

Loosely speaking, condition (i) states that any two places marked at the initial mark-

ing are structurally concurrent (actually, this is the case for a pair (s, s) only if Mo

puts at least two tokens on s). Clearly, this condition is fulfiiled by the concurrency

relation ll. Condition (ii) states that all the output places of a transition are struc-

turally concurrent. This condition is futfilled by the concurrency relation ll only for
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Fig. 6.1 A System for which Concurrency Relation and Structural Concurrency Relations

are not Equal.

non-dead transitions. At first sight it could seem that ll also fulfills condition (iii),

but this is not the case. This condition states that if a node is structurally concurrent

with all the input places of a transition, then it is also structurally concurrent with

all its output places. Figure 6.1 shows a system in which ll does not satisfy (iii):

(r, rr) and (s, s2) are concurrent, because there are two different reachable markings

which mark s, s1 and s, s2, r€sp€ctively, but there is no reachable marking which puts

tokens simultaneously on s, s1 and s2. So for this system we have ll + llo.Another

exampie in which the system is iive and 1-bounded can be found in [a9].

We prove in this chapter that llÁ and ll coincide for regular systems. The proof has

much in common with the proof of the Second Confluence Theorem [22], which we

now recall.

6.1 The Second Confluence Theorem

The Second Confluence Theorem [22] states that if two live markings Mt and M2 of.

a regular system agree on all S-invariants, then they have a common successor, i.e.,

there exists a marking that is reachable from both Ml and M2. Since it can be easily
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shown that any two reachable markings agree on all S-invariants, it follows that any

two reachable markings have a common successor. The result can be generalized to a

set My, . . . , Mn of markings which agree pairwise on all invariants, and in the sequel

we consider this more general version.

Let us first recall the notions of markings that agree on all S-invariants.

Two markings M and M' of. N agree on all S-invariants if 1' lf : I' M' for every

S-invariant I of N.

Theorem 6.L.L l22lLet (N, Mo) be a system, and let M be a reachable marking.

Then M and Ms agree on all S-invariants.

I

The proof of the Second Confluence Theorem distinguishes two cases, according to

whether the EFC-net /ú is a T-net or not. The first case is easily solved using the

following result, which states that for T-systems the converse of Theorem 6.1.1 holds:

Theorem 6.L.2 122] Let (N, Mù be a live T-system. A marking M is reachable

iff it agrees with Ms on all S-invariants.

I

Since Mt,,. .. , Mn are live and bounded and agree on all S-invariants, they are all

reachable from each other. Therefore, any of them is a common successor of all the

others.

In the second case, when N is not a T-net, the proof makes use of a reduction

procedure given in the previous sections. lú is split into two: a TCP-subnet Ñ :

(^ç,f), and the subnet 7Í generated by all the nodes that do not belong to f.

Theorem 4.2.2 guarantees that Iü can be split.

Once N is split, we let n particular sequences occur from M1,. . . , Mn. These sequences

contain only transitions of f which are not way-in transitions.
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Proposition 6.L.3 l22lLet N be an EFC-net, and let M1,...,Mn be live and

bounded markings of N that agree on all S-invariants. Let fr ¡. a CP-subnet of

lú, let 4 ¡" the set of way-in transitions of fr, and let F : N \ Ñ. fnere exist

occurrence sequences Mr, I Ml,...,Mn I M'r, where or¡...,an contain only

transitions of f \ f,,, such that

(u)

(b)

(")

No transition of f \ 4" is enabled at Ml, . . . , M'n,

@: . . . : ffI, where û denotes the projection of M onto the places of F,

M S@ for 1 < i < n, where JIZ denotes the projection of M onto the places

of lü, and

(d) W,...,W are live and bounded markings which agree on all S-invariants of

T

Using Lemma 4.1,.2, Proposition 6.1.3 can be easily generalized to regular systems.

After the occurrence of these sequences we 'freeze' the transitions of the CP-subnet,

i.e., we forbid them to occur again, and so preserve the equalitq@: ..' : n.
If N is a T-net, then Theorem 6.1.2 can be applied, and we are done. Otherwise,

by Theorem 4.2.2 and Proposition 6.1.3c rile can iterate the procedure until we get

two markings which coincide everywhere, and are therefore the same. This marking

is a common successor of M1,...,Mn. Instead of freezing the transitions of the CP-

subnet, \¡/e can equivalently remove them and consider thereafter the remaining net

F.

tr.

6.2 The New Result

In order to adapt these results to the concurrency problem for regular systems, we

take a closer look at the proof of Theorem 6.1.1. The proof is based on the notion of

T-component.
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It is easy to see that if a net is T-coverable then every node of the net, and not only

every transition, belongs to some element of a cover.

Now, in order to find a TCP-subnet, we proceed as follows. 'We take a minimal cover

C of N by T-components. Since .lü is not a T-net, we have lcl > I. We construct

the (non-directed) graph G : (V,E) * follows. I/ is the set C and ,E is the set of

pairs (&,1ú¡) such that ,n/¿ and .ô/¡ have at least one common node. The graph G is

connected because C is a cover of l/ and N is connected. Moreover, G has at least

two nodes because lCl > 1.

We choose a spanning tree of G, and select one of its leaves, say Nl. We then

construct a maximal set of nodes X of Nr satisfying the following properties: (a) the

net generated by X is connected, and (b) no element of X belongs to a T-component

of C \ iNr). The set X is nonempty, because C is a minimal cover. The subnet N,

generated by X is a TCP-subnet.

We prove preliminary results, and then our main theorem.

Lemma 6.2.L [1S] Let (N, Mo) be a live T-net.

(a) Let M be a marking of N. Then there exists a marking M' €. [M0) such that

M' > M itr Mo(S') > M(S') for every directed circuit N' : (S', ?/, F') of N.

(b) Every directed circuit is marked at M0.

(") Mo and M are reachable from each other itr Ml(S') : M(S') for every directed

circuit -lü, : (s,, T' , F,) of N.

I

Lemma 6.2.2 l7a]Let M,Mo be markings of a T-net N : (S,T,F) and the

system (N, Mo) be live. Then there exists a marking Mr e [M0) such lhat Mr ]

M itr Mo(St) 2 M(S) for every elementary directed circuit N1 : (^9t,?t,¡t) of

N.
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Proof:

Each directed circuit of a T-net can be represented as an union of elementary circuits.

Then apply Lemma 6.2.L.

t

Theorem 6.2.3

(u)

(b)

For every net system, ll ç ll".

For every live T-system, ll : lle

174l

Proofi

(a) It issufficient toproveVM e [Mo)Vsi, s2€ S,if M > 5r*52 then (s1,sz) e llÁ.

Let Mo[o)M. We prove by induction on | ø l.

Basis. (l " l: 0) follows from (i).

Step. (l " l> 0). Let o: o't and M0lo')M'lt)M. By the induction hypothesis

Vs1,s2 € ^9 such lhat Mt) 5r + 52,'ù/€ have (s1,rr) € ll'. W" need to prove this

lor M. Let s1,s2 € ^9 such that M ) st *52. There exist three cases:

(1) {tt, s2}n(t'\'t) : Ø. Then M' > sr*52 and by induction hypothesis (s1, s2) e

ll'. It is also true, if sr: s2.

(2) rt, s2 €t' Aq + s2. Then by (ii) (rt,rr) € ll'.

(3) tt € ¿'\'ú A (s1 : s2v s2 ø ¿'\'ú). Then M' > 5z *'ú and by induction

hypothesis we have Vs €'ú (s,rr) € ll/. Then by (iii) we have (rt,"r) € ll'.

(b) Inclusion llá ç ll' ir Theorem 6.2.3(a). We prove now lll r ll'. The condition

(i) of the lll definition is trivial. (ii) follows from liveness of (N,Mo). We now

prove (iii).

Assumes €,S, t eTandVsl €'ú (r,rt) e ll. Wetakeamarking M :':-¿+s. It
is obvious that l'ún,9rl < 1 for every elementary directed circuit N1 : (,9t,"t, .t't).

Hence for every elementary circuit N1 containing places s and s1 €' ú (s and s1 cân
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coincide) we have M(Sù:2. Since Vs1 €'ú (t,tt) € ll, we have Mo(,Sr) 22
for the same circuits. For every other elementary circuit Nr we have M(S1) < 1,

and since (N,Mo) is live, we have Mo(St) I 1. Hence M0(^9t) ¿ M(Sr) for every

elementary circuit lúr of (N,Mo).Flom Lemma 6.2.2it follows lhatlMr e lMo)

such that ¡¡t > M.lt is obvious that Mlt > and hence Mtlt).Assume Mllt)Mz.

Then M2 > ¿ì + s. Hence Vs2 € t' (s, s2) e ll.

I

Proposition 6.2.4 Let (lü, Ms) be a regular system, and let s and ú be a place

and a transition of N such that 'ú : {rr, ...,rn}. Assume that for every I 1 i, 1 n

there exists a reachable marking M¿ such lhat M¿ ) M" I M,r. Then there exists

a reachable marking M ) M" t DT=t M,r.

Proof:

Let C be a minimal T-cover of l/, which exists by Lemma 3.5.5. 'We consider two

CASCS:

(a) Some T-component l[ of C contains both s and ú.

Let G be the graph described above, and let G" be a spanning tree of G. We

construct systems (Nr,, M{),. . . , (Nr, MÐ * follows. If G" has only one node,

then .f/ : Nr, and we take (l/r, M{) : (No,Mo). If G" has more than one

node, we select one of its leaves, different from Nr (this is possible, because

a spanning tree with at least two nodes has at least two leaves, and so we

are never forced to select N1). Once such a leaf $ is chosen, we consider its

TCP-subnets one by one. For each TCP-subnet, we execute the occurrence

sequences of Proposition 6.1.3 from the markings Mt,... ,Mn. After that, we

remove the TCP-subnet. We proceed like this with all the TCP-subnets of l/¿.

We thus obtain systems (N' , Ml),. . . , (N', Ml), where N' is minimally covered

by C' : C \ {¡ú,}. Moreover, the graph G' corresponding to the minimal cover

72



C' is the graph obtained from G by removing the node N', and the graph G'"

obtained from G" by removing the node N' is a spanning tree of. G'. 11 Gt"

contains more than one node, we iterate the procedure, this time starting from

(N"Ml),...,(N" Ml) and G'".

Since each iteration removes one node from G, the procedure terminates when

the spanning tree contains only one node. Since N1 is never removed, this node

is n1. So the procedure outputs systems (Nt, M{),. . . ,(Nr, MÍ).

Let M¡,...,Mtn be the projection of. M1,...,Mn onto the places of ¡ú1. Since

Proposition 6.1.3b can be applied each time'tre remove a TCP-subnet, we have:

(i) M{ ) Mt¿ for 1 ( i, 1n., and.

0Ð M{ ..., Ml agree on all the invariants of Ni.

By (i), M! > M" -f M,,. The result follows from (ii) and Theorem 6.2.3b.

(b) No T-component of C contains both s and ú.

Let l/r be a T-component of C containing s. 'We choose a spanning tree G" of

G, and proceed as in (a), iteratively selecting a leaf different from l[. However,

we no longer stop when the spanning tree contains a node, but as soon as ú

belongs to a TCP-subnet f of some leaf. Notice that this eventually happens,

because otherwise the reduction process could continue until only N1 remains,

which contradicts the assumption that no T-component of C contains both s

and t.

Let l{' be the net obtained afber termination, and let M{ , . . . , MI be the cor-

responding markings. F\rrther, let M1,...,M'" be the projection of. My,...,Mn

onto the places of N'. By Proposition 6.1.3c,, M! > Ml, and therefore M!

marks both s and r¿. Now, by Proposition 6.1.3, there exist occurrence se-

quences ot¡...,o,, enabled at M{,...,MÍ, which contain only transitions of

f \ 4,, and lead to markings satisfying two conditions:
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(i) the projections of. M{ , . . . , MI onto the places of .8 coincide, and

(ii) no transition of f \ î0, i, enabled at Mt,.. . , Ml.

Since N is a T-net, (i) and (ii) can only hold if all of or¡...,on contain the

transition ú. Since s remains marked along the execution of these sequences,

some reachable marking marks simultaneously s and all the input places of ú.

t

Proposition6.2.4leads to our main result:

Theorem 6.2.5 Concurrencg Theorem for regular systems

The relations ll and llÁ coincide for regular systems.

Proof:

'We 
have ll q ll' by Theorem 6.2.3a. We prove that the ll relation of a regular system

(N., Mo) satisfies the three conditions of the definition of the structural concurrency

relation. Since ll4 is the smallest symmetric relation satisfying these conditions, we

have lll Ç ll, which finishes the proof. Condition (i) follows easily from the definition

of ll. Condition (ii) is a direct consequence of the liveness of (i/, Mo). Condition (iii)

follows immediately from Proposition 6.2.4.

I

6.3 Computing the Structural Concurrency Rela-

tion

In [63], we present a O(n') algorithm for the computation of llÁ in an arbitrary system,

where n is the number of places and transitions of the net. In [55] we have shown

that ll/ can be computed in O(na) time, and in O(n3) time for free-choice systems.
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For self-containment of the article we repeat the algorithm given in [55] for ordinary

nets.

Algorithm 6.3.1

Input: A system (N,Mù, where N: (S, T,F).

Output: RÇXxX.

begin

Ã :: {(s, t') I Mo > M, + M,,} U [J ú' x ú';
teT

E::Rn(Xx^9);
whíle E lØ do

choose (ø, s) e E; E :: E \ {(r, s)};

for every ú € s' do

if {ø} x'¿ q -R then

E::Eu(({"}xú.) \,R);

R :: Ru {(r,t)} u ({r} t ú.);

endif

endfor

endwhile

end

Proposition 6.3.2

Algorithm 6.3.1 terminates, and after terminatiott Ã: llá.

Proof:

Observe that E Ç ,R is an invariant of the while loop and holds initially. Therefore,

each execution of the while loop removes from .E an element of E a R. This element

is never added to ,E again. So the algorithm terminates.
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Let Q be the value of R after termination. We prove:

(1) I q llÁ.

We have {(r, r') I Mo 2 M" t M",I Ç ll1 and l)rrrt' x ú' c ll' bv definition.

SoinitiallyAÇ ll/.

Moreover, it follows easily from the definition of llá that A g llá is an invariant

of the while loop. So we have I ç llA.

(2) Q satisfies the three conditions of the definition of the structural concurrency

relation.

Conditions (i) and (ii) follow immediately from the initialization of .R. For

condition (iii), let r € X and ú € ?. We have to prove:

If {z} x 'ú is not included in Q, we are done. So assume {"} * 't ç Q.

Let (u, s) be the last eiement of {z} x 'ú which is removed from .E during the

execution of the algorithm. As we have seen above, (r, s) is never added to .E

again.

Assume that immediately after (r,s) is removed from E,we have (r, s') ç R

for some s' C.'t. We prove that (r,s') is never added to -R later on. Every new

element added to -R is also added to E, and every element of ,E is removed before

termination. Therefore, if (2, s') were added to ,R it would later be removed

from .Ð, which contradicts our assumption about (", r).

Since {"} * 't ç R and no element of {z} x 'ú is added to -R afier (c, s) is

removed from .8, we already have {r} x 'ú C -R immediately after (r, s) is

removed from -8. Then, the next execution of the for loop adds ({ø} x ú') to

8. So ({"} * t') ç Q after termination.
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Q : llo follows from (1), (2) and the minimality of ll/

T

We calculate the complexity of the algorithm when the subsets X x X (in particular,

the incidence relations of the net) are encoded as bidimensional arrays X x X -+

{0,1}. In this case, the algorithm needs O(lXl') space.

The initialization of Q, E and N takes O(lSl' . l"l) time. The while loop is executed

at most O(lsl . lXl) times, because each iteration removes one element from ,E which

is never added to it again. In each iteration the execution of the for loop takes

O(lSl . l"l) time (O(l7l) iterations with O(lSl) time each). So the algorithm runs in

o(lsl'. l?l . lxl) time.

6.4 Summary

We have presented an O(na) algorithm for the computation of the concurrency relation

of regular systems, where n is the number of nodes of the net.

The work adds one more to the list of results on the concurrency problem, i.€.,

the problem of deciding if two given transitions are concurrently enabied at some

reachable marking. The problem is EXPSPACBhaTd for arbitrary systems, and

PSPACE-complete for 1-bounded systems [1a]. It has been shown to be polynomial

for live T-systems [63], l-bounded conflict-free systems [100, 26] (the algorithm of

[26] can be easily generalized to the n-bounded case), live and bounded extended

free-choice systems [55], and in [a9] for regular systems.

Our algorithm also can be used to solve the l-boundedness problem: that is, deciding

if a given regular system is l-bounded. It follows easily from the definition of the

concurrency relation that a system is l-safe iff its concurrency relation is irreflexive.

So the 1-boundedness problem can be solved in O(na) as well. This improves the

complexity of earlier algorithms based on linear programming.
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Chapter 7

The Method of Unfoldings for the

Analysis of Persistent Nets

The method of unfoldings is used for the verification of net properties because of the

following obvious idea. The unfolded system beiongs to a more restricted class of

systems than the original one. And for this restricted class a lot of analysis problems

can be decided easier than for a wider class. Hence we reduce the complexity of

analysis.

Persistence is one of important behavior properties of Petri nets and other models of

concurrency and has been intensively studied by several authors [39, 76]. Persistence

means that for any two fireable transitions, the firing of one of them does not disable

the other. In this chapter some nev/ properties of persistent systems are proven.

Conflict-free systems are a proper subclass of persistent ones. Conflict-freeness is a

structural property. Persistence of conflict-free systems is based on their structure.

To unfold a system li/e use partial order semantics (POS) [6, 5]. POS represent

concurrency in a "trtle" way and facilitates the proofs of some results [6, 5]. It is

especially useful for analysis of persistent systems, because they have no behavior

conflicts. We say that two systems are behavior equivalent if they have the same

processes.
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The method of unfoldings for the class of live safe persistent systems (LSP-systems for

short) by labelled live and safe marked graphs was considered by a number of authors

[8S, 87]. However in these papers only intuitive discussion has been given and no

propositions about behavior equivalence have been proved. In [11] it was proposed to

split conflict places of a bounded persistent system (BP-system) to obtain a bounded

marked graph. However, some problems remained outside of these discussions.

The goal of this chapter is to solve these problems, to provide a method of unfoldings

for ordinary Petri nets by conflict-free ones and to prove a theorem about behavior

equivalence of two ciasses of safe Petri nets: persistent systems and labelled conflict-

free systems, which are the result of unfoldings of persistent systems. The method

of unfoldings and the behavior equivalence theorem â,re used for the verification of

whether the given system is safe and persistent.

7.L Definitions and Preliminaries

We recall some notions. L(N,MÙ) : {olMolo)} is said to be the language of.

(N,Mo); ¿-(¡/, Mo) : L(N,Mï)u {olMÙlo) and ø is infiniteh lMÙ) : {Mllo e

L(M0)M01")Mj (the reachabi,ti,ty set of (¡/, Mo)). If ø is a sequence of symbols and

z is a symbol, then lø1" denotes the number of times u appea,rs in ø. If l/ is fixed we

will write L(M) instead of L(N, M).

In [17] 5 levels of transition liveness are given:

0)ro(M): {¿ € TlVo e L(M)lø|, : 0},

Ðrt(M): {ú € Tl-o e L(M)lol, > 0},

Ðr2@) : {t e TlYk eINIø € t (tw)lol¿) > k},

Ðr3@): {¿ € Tllo € L*(M)Vk € lNlol¿ > k},

4)74(M) : {¿ € rlv Mr e [M)t € Tt (M1)].

A transition t in a system (N, Mo) is said tobe Lk-liue i.n M € lMo) ifrt € Tk(M),,|c :
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0,L,2,3,4. A system (N,Mo) is said to be Lk-Ii,ue iffevery transition in the system

is Lk-live, k, : 0,7,2,3,4.

Let (ú, t') e i,ndep ÇT x T ifr ('t u ¿') n ('tt utt') : Ø.

The following lemma easily follows from the definitions.

Lemma 7.L.L Let (N, M0)beasystem. Then:

(a) vM e lMo)

Tn(Mo) çT!(Mo) çT'(Mo) çr'(Mo);

rn(M) çr7(M) çr,(M) ÇT,(M);

r'(M) ÇT'(Mo);

rr(M) ÇTr(Mo);

rt(M) Ç T1(Mo);

Tn(Mo) çra(M);

(b) let (N, Mo) be safe, Vt + t' e T YM € lMÙ)iÍ(Mltt'l A Mlt't) A(t,tt) Ç i,ndep)

then 'ú ll'ú' : t' att' + Ø.

I

A transition is said tobe strictly LI*Iiue i.n M ifrit is Lk-livein M , but not .L(fr+1)-live

in M,le :112,3.

A, Iabelled system (N,Mo)' : ((¡út, Ml),X',1) consists of a system (¡út, M!), an

alphabet X/ and labelling homomorphism I : (,S1U"l). -+ Xt* such that ¿(^91)n¿(7i) :
Ø.

For a given firing sequence d Pk : L(N, Mo) -+ [.llrl is the Pari,kh rnap defrned by:

Pk(o):: flølr, ,. .. ,lolr,]'

Let us introduce some denotations: A,M : Mt - M, where M[o)M'; Ln(M) :

{o € L(M)|A(") > 0} is the set of repeatable firing sequences at M; Lr(M) :

{o e L(M)l¡(") : 0} is the set of. reproducti,onfrring sequences at M; Pn(M):
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{Pk(o)lo e Ln(M)};Pn - u¡aç¡¡ao¡Pn(M). Let

I/' : min(Iz) iff:

(t)v' ç v,

(2)Vu,u' e V'lu * ,'l -+ -fu 3 u'1,

(S)Vr.' €Vlut eVtut 1u;

mPn: min(Pn), mPr: {u emPnlA(o) : 0} is the set of minimal reproducti,on

Parikh vectors.

A process n : (N,p) : (B,E,K,p) of a system (S,T,F,Mo) consists of an occur-

rence net .l/ : (B,E,K) together with a labelling p: B U E ë S UT which satisfy

the properties such that z' can be interpreted as a concurrent run of (l/, M0). We

distinguish i,niti,al processes which start with the initial marking Mo and general pro-

cesses which may start at any successor marking of. Mo. A process which corresponds

to a reproduction firing sequence ø with Pk(o) € Pr is said to be a reproducti,on

process. A reproduction process 7r which corresponds to a firing sequence ø with

Pk(o) € mPr is said to be a minimal reproduction process. II(¡/,M0) denotes the

set of ail initial processes of (,n/, M0).

A system (N, Mo) and a labelled system (N' , Mo'): ((¡ft , Ml), S t-)T,l) are behaui,or

equi,ualent iff II(¡/, Mo) : fI(¡/', Mo').

A system (S,T,F,Mo) is said to be persi,stent(P-systern for short) iffV¿1 lt2 eT
VM elMo) M[tr) AMltz) -+ Mltrtz). In Fig. 7.1 a live safe persistent system (LSP-

system for short) is shown with its initial reproduction process is shown in Fig. 7.2.

For a given process zr the Parikh map Pk:fI(N, Mo) -+ [.[l"l is defined analogously.

The following notions can be found in [76].

EPk :T* -+ n\il"l+lsl is the ertended Pari,lch map defrned,by: EPIe(o) : Pk(o).4(");

P Í : {Pk(o)lE Pk(o) € u¡aç¡¡ao¡ min({E Pk(o)lo e rn@)})}.

Define an operation + on ?*.

o + ),:: o;
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Fig. 7.L LSP-system.
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Fig. 7.2 Reproduction Process.

o * t :: o if lol¿ :0, otherwise delete leftmost occurrence of t in o;

o + (rt) ,: (o + r) + t (o,r e T*,t e T).

Lemma 7.1.2 gives some properties of P-systems. Specifically:

(a) if some repeatable firing sequence can fire from the given marking M then for every

marking M' rcachable from M some other firing sequence, whose Parikh mapping is

the same, can fire hom M';

(b) a maximum of every two repeatable sequences is also repeatable;

(c) if one of two repeatable sequences is a reproduction one then the intersection of

their supports is the empty set;

(d) there does not exist any strictly L2- and L3-live transitions in a P-system, and

the set fn(M) is an invariant at any evolution of the given system and equals the

union of all supports of firing sequence Parikh maps from the sets Pf(Pn).

These properties do not hold for arbitrary systems.

Lemma 7.L.2 Let (N, Mo)be a P-system. Then:
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(a)vM €lMÛ)Vo e Ln(M)VML e[M)1q e L(ML)Pk(o): pk(o),

(b) Va1, o2 e Ln(M) ot(ora où e Ln(M),

(c) V'u1 * uz emPn if u1 €mPr or u2 €mPr then (rr) n (ur) : Ø,

(d) vM € lMo) rn(Mo) : T3(M0) : Tz(Mo) : T4(M) : Ts(M) : Tz(M) :
Urep¡(u) : l),epn(u),

(e) if (N, M0) is bounded then {(u) lu emPn} is a partition on the set ?4.

Proof:

The proof is given in the appendix for this chapter.

I

The property of Lemma 7 .1,.2e does not hold if \rye remove persistence or boundedness.

A system (N, Mo) is said to be reuersi,ble itr V M € [M0) Mo e lM) .

7.2 Motivation

The method of unfoldings from [88] is an intuitive application of partial order se-

mantics [6]. An initial process n" is called in [88] a behavior graph and is built in

an obvious way: take the initial marking âs ?r*¡,,, choose a fireable transition ú, add

t to r together with places ú' and all the arcs incident to ú, take a new marking

M ;: (M\'ú) U ú' and so on. In Fig. 7.7 an LSP-system is shown. In Fig. 7.2 the

corresponding process. To get a marked graph from the process we propose to find

two different B-cuts c < C with the same labels (M.- M.,).Such cuts always exist

for any LSP-system. Then we need to take the fragment of the process 1","']l, merge

every pair of places (s € c, s' e c') such that l(s) : l(s,) (we will call rnerge c and

c'), and add one token to each merged place to get a labelled live and safe marked

graph (L means here L4-liveness). The result of such unfolding for an LSP-system

(Fig. 7.1) is shown in Fig. 7.3.
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3

Fig. 7.3 Unfolding.

It is easy to see the problems of such an approach. The first problem appears when

a given initial marking is not reproducible (i.e. a system is not reversible). No one

marked graph constructed by the method of [88] has the same language as the original

system because no initial process is a reproduction one.

To solve this probiem \rye propose to build a labelled conflict-free system instead of a

marked graph. To do so we propose to take the prefix of the process [**,,.,, c'] instead

of [c,c'], merge the cuts c and c'as before and then add one token to each place

s € Í,,,i,, to get a labelled safe conflict-free system (see Fig. 7.4).

The second problem concerns so called fictitious conflict. We will say that transitions

ú and t' areina ficti,ti,ousconflict iff'ú n't'+Ø,M¡tt'¡,Mlt't). The conflict is called

fictitious because the conflict is structural ('ú f\'t' + Ø) lut not behavioral. In the
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Fig. 7.5 Live safe persistent system.

LSP-system (¡/, M0) of. Fig.7.5 transitions a and darc in conflict ('óñ'c #Ø)b:ut
1M : {2,3,5} e lMg)Mlåc) and M[cb). The result of the method of unfoldings [88]

(Fig. 7.6) is not behavior equivalent to the original system.

To handle this problem it is proposed to split the places of fictitious conflict before

unfolding. This is done in Fig. 7.7 (the place 3 of the system in Fig. 7.5 is split to 3

and 7).

It is easy to see that the transformation preserves the language of a system and a

lot of the behavioral properties such as liveness, boundedness, safeness, persistence

and so on. Particularly, if a place s of a fictitious conflict such that 's : s' and

Mo(t): 1 then s can be deleted by the deleting of a place-loop reduction rule [64].

But in the case of Fig. 7.7 removing of place 5 can lead to violation of the condition
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Fie.

T Çdom(F)ncod(F). In this case it is recommended to leave the place for those tran-

sitions, which are candidates for the violation of the condition ? Çdom(F)ncod(F).

The result of splitting for the system, shown in Fig. 7.8, consists of the systems of

Fig. 7.1 and the trivial system consisting of the transition d and the place 5, connected

with two opposite arcs.

If the result of splitting is not a connected system then we can unfold and analyze

the parts in isolation.

The third problem appears when we have several initial reproduction processes (sys-

tems of Fig. 7.8, 7.9). The system of Fig. 7.8 is an LSP-system. But afber the

splitting of the fictitious conflict places, the system is transformed into two isolated

LSP-systems with the single minimal reproduction processes. As shown in Theorem

7.2.L, every LSP-system without fictitious conflicts has one and only one minimal

reproduction process.

87

7.7 Unfolding.

d

f--1.--
5

€<-

3

Fig. 7.8 LSP-system.



Two transitions h * tz are in the fai.r relation Ifr 1n € INVM e lMï)Vo e L(M) n

(?\{¿r})-lo1,. 1n. A system (N,Mo) is said to be fair iff Yh I t2 € T fi and. t2

are in the fair relation.

Theorem 7.2.L Let (l/, M0) be an SP-system having no fictitious conflicts. Then:

(u) (N, M0) is L4-live 1ff mPr: iuÌ and (u) : ?;

(b) if (N, Mo) is L4-live then (l/, Mo) is reversible ifr 1o e Ln(M1)\{À};

(c) Two transitions h * tz are in the fair relation iff they are both L1-live or there

exists a u €. mPr such that {ú1, tz} Ç (u);

(d) If (N,, Mo) is L4-live then it is fair.

Proof:

The proof is given in appendix of this chapter.

I

In this work we do not want to restrict ourseives to LSP-systems. 'We want to prove

the result of behavior equivalence for widest possible class of systems. The system of

Fig.7.9 is an SP-system having no fictitious conflict and having two minimal repro-

duction processes.
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7.LO Unfolding.

To solve the third problem v/e propose to construct systems corresponding to minimal

reproduction processes each and then unite them (see Fig. 7.10).

Now we consider the drawbacks of other approaches. In [11] it is proposed to

split conflict places of a BP-system to get a bounded marked graph. Again when

the initial marking is not reproducible, the marked graph obtained is not behavior

equivalent to the original system. The second problem of splitting is illustrated by

Fig. 7.11, 7.72, 7.L3.

There are several possible outcomes from splitting. For example, the unfoldings

obtained (Fig. 7.12, 7.13) are not behavior equivalent. Fbom the example it can be

seen that for non-safe systems the order of transitions, used for building the process,

affects the result of unfoldings, and we cannot aiways obtain a behavior equivalent
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Fig. 7.12 Splitting Result.

Fig. 7.13 Splitting Result.

system. Hence v/e restrict ourselves to SP-systems.

7.3 The Algorithm of Unfoldings and a Theorem

on Behaviour Equivalence

So we can see that for a system with formal conflicts we can not obtain a behavior

equivalent conflict-free system. Hence we will split fictitious conflicts before unfoldings

and build behavior equivalent conflict-free systems for such persistent systems without

fictitious conflicts.

Let us define the operation of fictitious conflict splitting formally:

Vs¿ € ^9 such that l's¿ n ril > 2 denote Ti:: 'sin s'¿;

Vt eT¿ create a nelv place sl,

,S :: ,S u {ti},
F :: F u {(¿, s!), (sl,t)};

2bo- -{'_
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YslYfi €'si\fi F :: F U {(ú1,sj)},

Vúl € s;\4 F :: Fu {(sj,ú1)};

IêIIIOVê S¿.

If it is not confusing, sometimes we will consider a marking M as a set of marked

places if Vs e S M(s) < I.

The algorithm.

i,nput system (S,T,F,Mo) having no fictitious conflicts

output (N', Mo')

Program:

begi,n

if 1s € S M0(s) > L then Stop wi,th rnessl,ge" (N, M0) is not safe, (.1[¿, MÙt) is empty";

(N',Mot): ((¡/r, Ml),5 uT,l), where (Nr,Ml)': (Sr, T1:: Ø,F1 :: Ø,Ml': ,St),

^91 
is such that l,S1l : l{r e ,SlM0(s) : 1}1,

I : ,91 -+ ,S is such that Vs # s' e St ¿(s) # I(t');

T, :: T; M :: MO;

Step 1. r r: (B,E :: Ø,K ::Ø,p), where B is such that lBl : l{s e SIM(s) : 1}1,

p : B -+ 
^9 is such that Vs t t' e B p(s) t pG');

whi,le 1t € T/ is fireable in (,S, T, F, M);

begi,n

choose ú, fireable in M

f ((M\'¿)) nt I Ø

then Stop with message " (N, M0) is not safe, (N' , Mo') is empty"

add ú and ú' to r; M :: (M\'ú) U ¿';

z/ I two B-cuts c < c' of z¡ such that M" 1 M",

then Stop with message " (N,M0) is not safe, (Nt , Mot) is empty"
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z/ I two B-cuts c < c' of r such that M.: Mc,

then lake the leftmost such c and c';

r :: ltr^inrc'11

merge c and c/ to get (N1,, Mlt) from zr' ;

(N',,M0') ': (Iú', Mo')¿(N!,Ml');

T'::"'\(Pfr([c,c']));

M :: M\\Pk([c,.']))';

go to step 1;

end

(N' , Mo') ': (N', MoI) u r;

output (N' , Mo')

end

For an SP-system (N, Mo) of Fig. 7.9, the system (Nt , Mot) (the result of algorithm)

is shown in Fig. 7.10.

Proposition 7.3.1

Proof:

The proof is given in appendix of the chapter.

I

In theorems and lemmata below (N',Mo') is assumed to be nonempty.

We recall the concurrency relation [63] which can be computed with a polynomial

algorithm.

The concurrencA relation llç S * ,9 is defined above.

The algorithm stops at some step.

For (lú, M0) and corresponding (N¿, MÛt) we introduce a useful property (ll is con-

structed for (.1/¿, Mo')),
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Vt,tt eT if 
=St 

Ç.9r such that l(S') :'tl-J't'ls'l: l'úU'ú'l,Vs,s'€,S'(s,s') e ll

then 'ú ì't' : Ø

(7.1)

For a class of systems satisfying the next property:

Vr1,r2 € II(N, M0)1r € II(¡/, M0) such that zr1 C r,r2 C r (7.2)

partial order semantics can be reduced. That is, II(¡ü, M0) can be represented by the

only process (possibly infinite).

Lemma 7.3.2 presents properties of (N', Mot) and relations between the properties

7.1, 7.2 and persistence.

Lemma 7.3.2 Let (lú, M0)be a system and (lú¿, M0t)be its unfolding. Then:

(u) (N', MÙt) is safe and conflict-free and hence satisfies 7.2;

(b) if (N,Mo) is safe and persistent then 7.1 holds for (N¿, Mo');

(") (¡f, M0) and (Nt , Mo') are behavior equivalenr ifr 7 .2 hotds for (N, M0).

Proof:

(a) easily follows by construction of (N', Mo') and the firing rule.

(b) (Indirect). Let (N,Mo) not satisfy the properry 7.I. Then )h I t2 €T 
=M 

e

lMg)(Mltr)) n(Mlt2)) n ('¿t t'tzlÐ.Bv persistence Mltrt2) and Mlt2tr). Since

(N, Mo) is safe, by Lemma 7.1.1 we have 'ú1 À't2 : tiìti t Ø and hence a fictitious

conflict. A contradiction.

(.) BV Lemma 7.3.2a (N',Mo') satisfies 7.2. The rest follows from definitions and

the algorithm.

I

Theorem 7.3.3 represents a result about behavior equivalence between safe persistent

systems and safe conflict-free systems, which are the result of unfoldings of persistent

systems.
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Theorem 7.3.3 Let (N, M0) be a system and (lü¿, M\I) be its unfolding. Then

(N, Mo) is an SP-system iff (N, Mo) and (l/¿, MÛI) arc behavior equivalent.

Proof:

<+. Let (ll, M0) be an SP-system. Then by Lemma 7.3.2b (N,Mo) satisfies 7.1'.

Since (N, Mo) is safe, it is easy to see that 7.1 implies 7.2 for (N,Mo). By Lemma

7.3.2c (N, Mo) and (.0ú¿, MoI) arc behavior equivalent.

ê. By Lemma 7.3.2a (N',Mo') satisfies 7.2. Since (N,Mo) and (l/¿, MÙI) are

behavior equivalent, (N,Mo) also satisfies 7.2. It is easy to see that 7.2 implies

persistence of (N, Mo).

Claim. Property 7.2 implies safety of (l/, M0);

Proof of the claim. (Indirect.) Let (N, M0) not be safe. Since (N', Mo') is not empty,

it is easy to see that 3c e BC(n)=h * bz € c such that p(fu) : p(bz),h I Ø ot

bz * Ø. Then 7.2 does not hold. A contradiction.

It follows from the claim that (lü, M0) is safe.

t

However Theorem 7.3.3 is weak for verification because it uses the notion of behavior

which can be infinite. In order to simplify the problem of verification we give Theorem

7.3.4, which does not use the notions of behavior, language, process or lMï). This

theorem uses only ll for (,n/¿, Mo').

Theorem 7.3.4 Let (N, M0) be a system and (lú{, Mlt) be its unfolding. Then

(N, Mo) is an SP-system iff 7.1 and

hold.

Proof:

Vq # s2 € ,S1 such that l(s1) : l(s2)(s1, tù # ll
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+. II(N{, M|\ ç II(N,M0) follows from construction of (l/¿, M0I) and the firing

rule. Then the safety of (,À/,M0) implies 7.3. Since (N,Mo) is an SP-system, by

Lemmma 7.3.2b, 7.1 holds.

€. It is easy to see that 7.1 implies the persistence of (N,Mo) and that (N,Mo)

and (N¿, M0¿) have the same lMo). Then 7.3 implies safety of (l/, M0).

I

To verify if the given SP-system is L4-live (LSP), Theorem 7.2.1a is applied. And to

verify if the given SP-system is L4-live and reversible (LSPR), Theorem 7.3.5 below

is applied.

Theorem 7.3.5 Let (l/, Mo) be an SP-system and (N',Mo') be its unfolding.

Then (N, Mo) is ,L4-live and reversible iff (N' , Mo') is strongly connected.

Proof:

The proof is easy to see.

I

7.4 Summary

The main results of the chapter are following.

1) We present a simple algorithm of unfolding of ordinary Petri nets by conflict-free

ones.

2) We prove a proposition about behavior equivalence.

3) We give a necessary and sufficient condition of persistence which does not use the

notions of behavior or state space.

 ) We also solve the problems of the previous approaches. The system we got as a

result of unfolding, is allowed to be a conflict-free system and not necessarily live,

instead of requiring live safe marked graphs as in previous papers. The admission
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extends the class of unfolded systems to the non-reversible ones. Our method of

unfoldings allows us to handle the problem of fictitious conflicts. This method can

also be applied in those cases when the number of reproduction processes exceeds

one.

The limitation of this method is a comparatively small class of the correct systems

(safe and persistent Petri nets).

This method can be applied in those areas where the requirements of correctness for

modeled systems include safeness and persistence.

7.5 Appendix

Lemma 7.5.L (a) If (Vu1,u2 e V ç lNe-(ur < ,r)) then V is finite.

(b) Let o:'t)r1)2...u¿...,be an infinite sequence, where u¿ € INfr,k e IN. Then there

exists infinite subsequence o' :'u7t)2...1f ... of.o such that Vj e {1,2,...}oi 1

yi+t.

Proof:

(a) The proof is given in [76] (Lemma 4.1).

(b) The proof is given in [8a] (Lemma 4.3).

I

Lemma 7.6.2 Let (lú, Mo) be a system.

(a) T7(Mo) : U,ep",(u)

(b) Pf is finite.

Proof:

(a) T3(M0) f U,ep,,(u) is trivial. Now prove Tt(Mo) Ç U,ep",(o). By definition

of ,L3-liveness lø e L(M0)løl¿ : oo. By Lemma7.5.Ib o can be represented as
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o : o0oro2..oi.t where Mo[os)MLlo)M2lo2)..Mnloo)..,Vi : 0,7,2,..o¿ is finite and

¡¡4t' < Mi+r. Hence V,i.:7,2,..o¿ e Ln(M¿). Since lol, : oo,3i e {0,1,2,..} such

that lø¿l¿ > 0.

(b) The proof is given in [76] (Lemma 4.2).

t

The following lemma gives a necessary and sufficient condition of persistence.

Lemma 7.5.3 (N,Mo) isaP-systemiff[ø1 e L(M),oze L(M)] -+ [o1(ø2*o1) €

L(M)],

Proof:

The proof is given in [76] (Lemma 3.1).

I

Lemma 7.5.4 gives some known properties for persistent Petri nets:

(a) every two markings of [M0) have at least one common successor;

(b) there do not exist strictly L?-live and ,L3-live transitions;

(c) every nonfinising firing sequence can be decomposed on elementary repeatable

firing sequences.

Lemma 7.5.4 Let (I/, M0) be a P-system. Then:

(a)V Mt , M2 e lMo)lM') n lMz) I Ø;

(b) vM e lMo)72(m) C rn(u);

(c) if ø e Ln(M) then there exists â sequence atoz...o,¡r) t,o¿ € 7+ such that

I)Pk(o¿) e PÍ,2 € {i, 2,...,r}i

2)C' Pk(otoz...o,) : C . Pk(o);

3)op2. ..c, € Ln(M).
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Proof:

(a) and (b) are Theorem 1.8 and Lemma 4.7l39l adapted for Petri nets. (c) is Lemma

4.31761.

t

Proof:

of Lemma 7.7.2. (a) If 1ot € L(Mt) then since o e Ln(M) and Pk(o): Pk(où,it

must be o1 € Ln(Ml). Let Mlo')Mr. \Me continue the proof by induction on lø,1,

where la'l is the number of transitions firings in o' .

Basis: lo'l:0 is trivial.

Step: lo'l > 0. Let the lemma conditions hold for o' i.e. Mlo),M[o')Mtlø1) and

Pk(o): Pk(o:). We prove for ø'ú now. By Lemma 7.5.3, ML[t)M2[or +ú). Two

cases are possible.

L) t ç (Pk(o1)). Then 01 . t: or ând Mt[t)Mz[or).q.".d.

2) t e (Pk(o1)). Then 01 . tf o1 and Mr[t)Mzlo1+t)M3. Since Pk(t(q+ú)) :
Pk(o) and ø1 e Ln(M),¡4s > Mr. Btt M'lt), hence Mtlt).Then MrIþr+t)t).
It is obvious Pk((o1 +t)t): Pk(ot).

(b) BV Lemma 7 .5.3, Mlor(o, + ot)) Mt. By Lemma 7 .\.2a, )o'r, o', e Ln(M) such

rhat Pk(o') : Pk(o1), Pk(ot) : Pk(oz). Hence Mtlo'tþ'r+o'1))M2 and Pk(o1(or+

ot)) : Pk(o'r(o'r+ otl)). We can continue the proof for M2 as well as for M1. We get

an infinite sequence Mloï)Mrfot)M2[o2)..., where Pklotl : Pk[o{oz+o)),i e lN.

Hence ot(oz; où e Ln(M).

(c) (Indirect). Let 3q # u2 €mPn such that (rt) n \ur) t Ø and u1 € mPr. Then by

Lemmata 7.1.2a and 7.5.4a 1M e lM0)1oyoz € L(M) such that o1 : Plc(ot),uz :
Pk(o2). By Lemma 7.1.2b, ot(oz+ø1) € Ln(M). Since u1 €mPr, Pk(o2+or) € Pn.

Since 1)1,'u2 € mPn, o2+o1 f À. Since (rr) n (rù t Ø, oz+ot # oz. Hence

Pk(o2) /mPn. A contradiction.

(d) BV Lemmata 7.I.1a and 7.5.4b VM e [M0)74(M0): Ts(Mï): T'(Mo) :
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Tn(M) : T3 (M) : T2(M), by Lemma 7.5.2a Tt (Mo) : t)uepn(u), by Lemm a 7.5.4c

U,cpn(u): U,epJ(u).

(e) Since (N,Mo) is bounded, mPn:mPr:Pf. Then apply Lemma 7.I.2cd,.

T

Proof:

of Theorem 7.2.7. (u) <+ (Indirect). Let lmPrl > 1. By Lemma 7.\.2e, {(r)1, emPr}

is a partition on the set ?4. Since .ôy' is connected, :ú1 € (u)1t2 e \ur) such that

(rt)n (rr) : Ø and (h,tz) / indep. By Lemmata7.5.4a and 7.1.2a=M €. [Mj)Mlt) A

Mltr). By Lemma 7.7.Ib we have a fictitious conflict. A contradiction. Hence

lmPrl : 1. Let mPr: {o} and f\(u) * Ø. Since rnPr : {r}, by Lemma T.I.2d

(f\(r)) flTa : Ø. A contradiction to L4-liveness of (N,Mo).Hence (u):f .

+ Since (N, Mo) is bounded mPn : mPr : PÍ. Then Tn(Mo): T and (Iú, M0) is

L4-live.

(b) is simple.

T

Proof:

of Proposition 7.3.1. By Lemma 7.5.2b the set mPr is finite. After finding of every n''

such that Pkþr') € mPn\mPr, the algorithm stops because of non-safety of (N, M0).

After finding every zr' such that Pk(n') emPr the marking M and the set fi of

transitions decrease, so that we can not find any other ¡'" with Pk(tr') : Pk(tr").

After finding of all mPr, only strictly trl-live transitions are ieft which can be fired

only a finite number of times.

I
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Chapter I

An Efficient Modular Synthesis of

Regular Petri Nets by Simple

Composition Rules

The synthesis problem can be stated as follows: given a set of properties of good be-

havior, how does one construct systems satisfying them? One of basic methodologies

of synthesis is modular synthesis. It deals with the case when modules (subsystems)

are merged (composed) into new systems.

The system is divided into modules that can be easily modeled. In practice, the

design of systems traditionaily uses state machine model which is very familiar to

engineers and designers. Each module can be represented in the model autonomously.

Then such representations should be coordinated to describe the whole system. The

corresponding Petri net model is a state machine decomposable net (SMD-net for

short). There is a broad spectrum of models supporting modular approach to system

design, for instance, SDL [32], CSP [35], CCS [81], LCS [78], COSY [77].

The problem of modular synthesis can be stated as follows: given a set of well-behaved

modules, how does one compose the modules to yield a well-behaved system.

What are criteria of good behavior in concurrent systems? We consider two central
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properties of Petri nets: liveness and boundedness.

There are three major concerns in modular synthesis:

1) The class of modeled systems should be wide enough.

2) Algorithms for synthesis should be efficient.

3) The synthesis procedure should produce the well-behaved result.

In different papers only subsets of the problems were solved 14, 29, 30, 31]. In

[29, 30, 31] the condition of well-formedness of the resulting net is formulated us-

ing the conditions of well-formedness of modules. However, the class of nets under

consideration is free-choice nets, quite a narrov¡ class.

In [ ] behavioral and structural composition rules preserving liveness for high-level

Petri nets are given. However, they consider only a special class of Coloured FIFO

nets. Moreover, no efficient algorithm for checking of preserving liveness is given.

In this chapter we handle all three above problems together and present two efficient

methods for modular synthesis of regular Petri nets, a subclass of SMD-nets. We also

give exact conditions for the preservation of well-formedness under synchronization

of nets (a particular kind of composition in which transitions are merged), and fusion

(places are merged).

8.1 Synchronizations

The notion of a CP-subnet can be found in 1221. For our convenience we slightly

changed the definition and introduced two kinds of CP-subnets: one is a TCP-subnet

(for T-cover), and another is a SCP-subnet (for S-cover). So the notion of a SCP-

subnet is reverse-dual to that of a TCP-subnet.

Theorem 8.1.1- [46] Let N be a feedback-free S-coverable net and not a SCSM.

Let ,A/ have a SCP-subnet Ñ of N wiih 4.2 and the following two conditions:
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(S,7) is ,9 - couerable

Then N is regular iff F is regular.

Proof:

The proof follows from reverse.dual version of Theorem 4.2.1.

I

Now we consider a composition of subsystems, and how to interconnect the sub-

systems to yield a well-behaved system. Within our context, the problem can be

formulated as follows: given several regular nets, characterize the composition that

preserves well-formedness.

Since composition of fr nets can be spiit into k - 1 composition of 2 nets, we consider

only this particular case.

l/ is a composi,ti,on of N1 and l/2 itr

(1) ¡/t and ,A/2 are subnets of l/ and

(2) ¡f : Nl U Nz: (Si U Sz,TtUT2, F1¿ Fz).

l/ is a synchroni,zation of. Nr and Ä/z

itr

(1) ¡ü is a composition of ¡ú1 and l[2 and

(2) s e ,Sr fl ^92 * 's U s' € T1lT2.

Let Nr and ÀI2 be two nets. l/ is an FC-sgnchroni,zati,onof. two FC-nets l/r and l/z

iff l/ is also FC.

The next theorem is the Monotonicity result, and gives us a necessary condition for

well-formedness of an FC-synchronization. It says that if one of two synchronized
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FC-systems is not well-formed then the synchronization can not be well-formed, and

can not become well-formed after further synchronizations.

Theorem 8.L.2 [31] Let ,n/ be an FC-synchronization of N1 and Ä/2. If N is

well-formed then N1 and N2 are well-formed.

t

Now we extend this result to regular nets.

Theorem 8.L.3 Let lü be a synchronization of N1 and .nü2. If ^lú is a regular net

then Nr and Âþ are regular nets.

Proof:

Follows from Theorems 8.1.2 and 3.1.9a.

t

Theorem 8.1.3 allows us to use a SCSM as l/r or 
^/2 

without loss of generality, because

by Lemma 3.4.2, regular nets are state machine decomposable.

As we noted in the introduction, one of the major problems of modular synthesis

is that the synthesis procedure should produce the weil-behaved result. Theorem

8.1.3 gives us the necessary condition of well-formedness of the result. However the

condition is not sufficient, as we see in Fig. 8.1. Both free-choice modules are well-

formed, but the result of FC-synchronization is not.

In Fig. 8.2 the synchronization of the same modules produces the well-formed result.

Therefore there shouid be special requirements for the synchronization procedure in

order to get well-formed result. For the FC-synchronization such requirements were

given in [4, 29, 30, 31]. The next theorem gives such requirements for regular nets.

Theorem 8.1.4 Let N be a synchronization of a SCSM l[ and a regular net l/2.

If N has a SCP-subnet f C Nr with 4.2,8.L and 8.2 then N is regular.
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Fig. 8.1 An FC-synchronization which is not'Well-formed.

*l-\*/\ f\oa oorT TY

Fig. 8.2 An FC-synchronization which is'Well-formed.
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Proof:

By induction on n, where ,^/ is the number of SCP-subnets F of l/ such that fr C N1.

Basis. n: !. Then l/ : Àh, and by Theorem 8.1.1 we are done.

Step. n > 1. We consider the system F : .l/ \ f. gv 8.2 itis SMD. Since fr c l/r,

lfz c F. Hence F is a synchronization of Àþ and several SCSM 
^/8, ^f4, 

..., l/¡. First

we consider À{,, the synchronization of Ni and the SCSM À/3. Since N" c N, we have

n" 1 D, where n" is the number of the SCP-subnets fr of Ä{, such that fr c Ns. By

the induction hypothesis, Ä1, is a regular net. Repeating this argument with N¿, ...,

N¡, we eventually get that F is a regular net. By Theorem 8.1.1, l/ is a regular net.

I

Erarnple. A synchronization of two regular nets is shown in Fig. 8.3. The result is

also a regular net.

Proposition 8.1.5 The problem to check if a synchronization of a SCSM .nú1 and

a regular net ,l/z is regular, has the complexity O(cx lTl), where lÎl is the number

of transitions of the synchronization, and c is the number of all the CP-subnets

fr c /Vt.

Proof:

Fig. 8.3 A Synchronization of a Regular Net and a SCSM.

t
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Properties 4.2 and 8.1 are local and can be verified in O(l7rl) time. Property 8.2

requires one to obtain a cover by S-components. Since l/z is regular, by Lemmma

3.5.6, it is SMD. Hence we need only to check whether all SCP-subnets of l[ are

covered by S-components. In [57] the compiexity of the problem is given as O(l7l).

Hence the overall complexity of checking of the synchronization is O(c x l7l).

I

Fig. 8.4 A F\rsion of a Regular Net and a SCMG.

8.2 F\rsions

l/ is a fusi,on of ¡ú1 and Äþ iff

(1) ¡/ is composition of /úr and l/z and

(2) t € Tt ñTz=>' ¿ u ú' € 
^91 

ñ.92

Erample. A fusion of two nets is shown in Fig. 8.4.

For Propositions 8.1.3, 8.1.4 and 8.1.5 we have their dual counterparts.

Theorem 8.2.L

are regular.

Let N be a fusion of 
^¡r 

and N2. If N is regular then N1 and N2
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Theorem 8.2,2 Let ll be a fusion of a SCMG Nr and a regular net Nz. If N has

a TCP-subnet fr C l/r with 4.2, 4.I and 4.3 then N is regular.

I

Theorem 8.2.3 The problem to check if a fusion of the SCMG N1 and a regu-

lar net l/z is regular has the complexity O(c x l^91), where l^91 is the number of

transitions of the fusion, and c is the number of all the TCP-subnets frC Nl.

¡

8.3 Summary

'We have presented two efficient methods of modular synthesis of regular Petri nets,

a subclass of state machine decomposable Petri nets.

The first method deals with the synchronization of nets (transitions are merged).

The main problem is to check if a synchronization of a regular net and a strongly

connected state machine is regular. The complexity of this checking is O(l"l), where

l"l is a number of transitions of the state machine. This method is due to exact

condition of regularity of synchronization.

The second method deals with fusion of nets. It is the dual version of the first. The

main problem is to check if a fusion of a regular net and a strongly connected marked

graph is regular. The complexity of this checking is O(l^91), where lSl is a number of

places of the marked graph.

The advantage of our approach is that we soive all three major problems of modular

synthesis: relatively wide class of nets, efficient algorithms and well-behaved result of

synthesis.

Our study provides deeper insight into the relationship of the behavior of Petri nets

and their structure.
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Applications of our methods are numerous, particularly for synthesis of systems in

programming languages, such as SDL [32], CSP [35], CCS [81], LCS [78], COSY [77].

When we compose systems (nets with initial markings) the composition net (synchro-

nization or fusion) can be regular, but the system can be live or non-live depending

on initial marking. To check if the initial marking of a composition is live, we use the

O(lSl x l"l)-algorithm of [57], where 
^9 

and T are the sets of places and transitions

of the synchronization.

In the future we are going to develop an efficient method of modular synthesis for the

whole class of state machine decomposable nets.
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Chapter I

Application to Hardware Design

When the complexity of design increases, it is helpful to move from semi-formal spec-

ification of hardware (for example, timing diagrams) to a more abstract form, similar

to sofüware specification. Because in this case doing modification, reuse, modularity,

hierarchy and technology independence are much easier, than with using of semi-

formal models.

One of formal models of hardware is Finite State Machine. The shortcomings of Finite

State Machine are due to their problems with adequate interpretation of concurrency

and synchronization. However, the concurrency is inherent to electronic circuits,

because the signals run concurrently, and we have large number of global states in

digital hardware. So, Finite State Machine becomes very large and inconvinient.

There is also such concurrent phenomena as races. Especially, Petri Nets are similar

to asynchronous circuits.

9.1 Signal Transition Graphs

Si,gnal Tfansi.ti,on Graphs (SfGs) [15, 80] are a class of interpreted Petri nets for

modeling, verification and synthesis of. speed i,ndependent ci,rcui,ts. STGs are especially

useful for the design of hardware with reactive behavior. STG model allows automatic
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Fig. 9.L Smaller Version of VMÞbus controller.

verification and implementation of circuits.

LDTACK+

STGs are bounded Petri nets whose transitions are labeled with the changes of binary

signals. The occurrence of a transition with label ø+ raises c, while the occurrence

of a transition with label r- lowers n.

We use an example to demonstrate the application of the concurrency relation for

the hardware design from the STG specifications. In [99] the process of modeling

VMBbus Slave-Interrupter controller by STG was described. The original protocol

specifications are defined by timing diagrams. Using a technique from [16] the protocol

is specified by the STG.

Petri net model of a VMBbus controller is shown in Fig. 9.1.

This device synchronizes two handshake protocols, one at the VME-bus link and other

at the link with the device. The first handshake involves bus data strobe signals DSR

(read operation) or DSW (write operation) and acknowledgement DTACK. The sec-

ond handshake involves the local data strobe command LDS and local acknowledge.

ment LDTACK. The process of synchronization includes an additional signal, DEN,

to control data bus buffers.

The STG combines both Read and Write operations into a single model. This is

due to the ability of Petri nets to model choice using places with several incident

output transitions. The STG also captures potential concurrency by allowing some

transitions to fire independently.

The signal abbreviations are as follows:
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DSR : data strobe read;

DSW : data strobe write;

DTACK : data acknowledgement;

DEN : data buffer enable;

LDS : local data strobe;

LDTACK : local data acknowledgement.

To produce hazard-free implementations, STGs must be consi,stently encoded. In cur-

rent synthesis tools, the verification ofthis property is carried out by the construction

of the reachability graph and therefore is very expensive computationally.

Recentl¡ some synthesis methods were proposed which avoid the reachability graph

construction. They have low polynomial complexity, but require knowledge of.the con-

currencA relati,on between transitions. Therefore, an efficient polynomial algorithm

for the computation of the concurrency relation between transitions has become very

important.

For the above example of an STG, rù¡e compute the concurrency relation using our

algorithm (Fig. 9.2).

But STGs are not only application of the concurrency relation. Another application

is the verification of concurrent control algorithms.

The problem of concurrency relation computation is exponential for arbitrary Petri

nets, even for 1-bounded Petri nets [14].

FC- and EFC Petri nets can model conflict and concurrency, they are easy to analyze,

but they are too restrictive for some applications. The article [98] contains strong

arguments in favor of lifting free-choice limitation for Signal Thansition Graphs. So

we need to compute the concurrency relation for wider classes of Petri nets.
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DSR+

Fig. 9.2 The concurrency relation for the VMBbus controller.

9.2 Summary

DSW+

In [49] we generalize the previous algorithm of the concurrency relation construction

for free-choice Petri nets [55], to regular Petri nets, and therefore to regular STGs.

The time complexity of the algorithm is O(na), where n is the number of nodes of

the net.

The usefulness of our algorithm is raised by conjecture that it is valid for the whole

class of state machine decomposable Petri nets. The proof is left for future work. For

instance, the Signal tansition Graph from [98] (a smaller version of a model of the

VMBbus controller) is SMD, and our algorithm is valid for it.

Our work was motivated by interesting applications of the concurrency relation to

the design and verification of asynchronous circuits. Our algorithm can be used to

detect inconsistently encoded regular STGs.

DEN.

DEN+
DTACK.
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Chapter 10

Application to Logical Control

10.1 Logical Control Algorithms

Here we consider logical control in automated production. This production is under-

stood as a number of distributed facilities. The different pieces of this distributed

dynamic system are working independently and interacting with each other from time

to time. The system can be viewed as a condition-event system. Examples of con-

ditions: a part is ready for processing or some resources are available. Examples of

events: closing a valve, begin of processing a part, end of processing a part. The

control system is waiting for a condition in the system to satisfu, then it performs

some control action, causing another event and other conditions to satisfy.

One way of solving the problems of logical control in automated production is to

reflect the concurrency of control objects in control algorithms.

These problems cannot be resolved simply by borrowing appropriate models and

methods from the theory of parallel computations because control algorithms basically

differ from computationai ones and represent open dynamic systems continuously

interacting with the control objects. Classical automaton theory is also not sufficient

for that purpose because it only deals with strictly sequential discrete processes.

A number of original models have been proposed. These models define the concurrent
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control algorithms and are related, to a lesser or greater degree, to Petri nets. The

Logical Control Algorithms (LCAs) [101] are also such a model.

It is natural to begin the design of a logical control device with formulating a logical

control algorithm deriving it from a notion of the behavior of a system that has to

be put under control. LCAs are formal models proposed for the description of such

algorithms in terms of input and output Boolean variables of control devices.

The LCA model combines the properties of formality, universality and simplicity.

Formality facilitates automation of the development of control algorithms, verification

and the synthesis of the structures realizing them. Universality allows for a wide

application. Simplicity facilitates the use of the model in engineering practice and

also promotes the development of the theory of the model.

LCA is a class of interpreted Petri nets, whose transitions are labeled with pairs

of operations. The first element -fr1 is said to be the waiting operation and the

second -+ lcz is the acting operation. The transitions may fire analogously to the

transitions of a Petri net, but the firing rule is slightly modified to take into account

the information in the waiting and acting operations. The waiting operation does

not change a,ny values but waits until k1 becomes equal to 1. The acting operation

assigns to the variables of fr2 such values that satisfy the equation k2 - L.

The pair of operations -k1 -+ kz assigned to a transition of the algorithm specifies

the condition-event relationship between the simple events represented by conjunction

terms fr1 and k2: the event k1 gives rise to the event k2.

Let us ciassify the Boolean variables of the waiting and acting operations into three

classes: X - input variables in fr1 only; Y - output variables in k2 only; Z - internal

variables encountered both in fr1 and k2.

A logical control algorithm is presented as atriple (N,Mo,P), where (,n/,M0) is an

underlying Petri net and is said to be a skeleton of an algorithm, and P is the set of

pairs of operations assigned to transitions.

A iogical control algorithm is shown in Fig. 10.1.

1i6



-v)-âC

For ensuring the determinism of an algorithm's execution, the following constraints

are introduced into the model: for two conflict transitions ú¿ and ú¡ the terms fri and

fr{ should be orthogonal.

So called two-terminal algorithms may be used as blocks in hierarchical algorithms.

One mechanism for transitions to interact is contained in the skeleton of an algorithm.

The remaining information is contained in waiting and acting operations, which ensure

informational interactions between transitions.

Fig. 10.1 A Logical Control Algorithm.

LO.z Logical Control Algorithm Correctness

Now we consider the verification of algorithm correctness. The foilowing proposition

was given in [101].

An algorithm is correct iff it is live, safe, persistent and consistent.

The algorithm is consistent iff any of its concurrent transitions t¿ aîd ú¡ satisfy the

condition: k?t A tír l 0. The algorithm is persistent iff the completion of one of the
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parallel chains being performed does not destroy conditions for executing the others

(ki A tCr l 0 and lC, A kL I 0 for the concurrent chains).

The verification of each of these properties represents a nontrivial combinatorial prob-

lem. Let us consider some of them.

Abstracting of informational interaction we propose the next criterion of correctness:

The algorithm A is correct iff its skeleton (N, Mo) is live and safe.

A skeleton of a two terminal algorithm has only one marked place in the initial

marking and is called a-net.

To take into account informational interaction of transitions rve first model the al-

gorithm by a Petri net (Nr, Ml): we replace each internal variable by corresponding

pairs of places u and Ð, and connect the places to the corresponding transitions by

arcs.

We prove the following proposiiion in [69].

The LCA (N,Mo,P) is correct iff (,n[, Ml) is a live safe and persistent Petri net.

10.3 Summary

In [71, 72., 73,64] we develop a set of simple local reduction rules for a-nets and

EFC-nets, prove the hypothesis on complete reducibility of live and safe a-nets, and

give another hypothesis on complete reducibility of live and bounded extended free-

choice systems. In [49] we give a complete reduction method for regular Petri nets

and estimate its complexity as 0(1,91 x l?l). In [70] we give a decomposition method

for Logical Control Algorithms.

In [54, 59, 60] we develop an O(l^91 x l?l)-algorithm to decide if a given EFC-system

is live and bounded, which is a reduction by one order of magnitude, compared

to the algorithm in [a3] (O(lSl' x l"l)). The algorithm [a3] is based on the Rank

Theorem. Two main steps of the algorithm [43] are: to find a cover of S-components
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a,nd to compute the rank of incidence matrix. Finding a cover of S-components

has been done in [41] in O(lSl x l"l)-time. Since the calculation of a matrix rank

requires O(lSl'x l"l), the Rank Theorem can be checked in O(l^912 x lf l). Hence the

calculation of the matrix rank dominates the complexity of the algorithm. To reduce

the complexity we need other criterion of well-formedness. In 12\ such a criterion

has been given. In order to reduce the complexity of the decision algorithm v¡e

combine two approaches above. Since well-formedness is only a necessary condition

for a system to be live and bounded, we need to decide if a given initial marking

of a well-formed net is live and bounded. An O(lSl x l?l)-algorithm to decide this

problem is given.

In [60] an algorithm is given to decide if an EFC-system is live, and if it is not, to

obtain the maximal live subnet or to answer that it is impossible.

In [57] we present an 0(1.91 x l"l)-algorithm to decide if a given system is regular. To

prove the soundness of our algorithm we give a theorem on the covering of strongly

connected EFC-nets by minimal siphons.

In [56, 60, 51] new formulations of the Rank Theorem for extended free choice systems

and for regular Petri nets are given. These formulations strengthen the known ones

ftom 122, 13] in the sense that the nevr necessary and sufficient conditions of well-

formedness are less strict than the known ones. A necessary condition of structural

liveness for EFC-nets is given. A simple and unified proof for covering live and

bounded EFC-systems by S- and T-components is proposed. This proof is based on

structural properties of this class of nets. A theorem on the coverability of strongly

connected EFC-nets by minimal siphons is given.

In [51] we generaiize the Rank Theorems to general class of Petri nets.

In [61, 68] we solve the so called problem of diagnostics, i.e. not only checking liveness

and boundedness properties of free choice Petri nets, but also finding the source of

the error, i.e. Unbounded place and/or non-live transitions.

To verify the algorithm with informational interaction between transition in [62, 58]
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we develop a method to decide whether a Petri net is safe and persistent. This prob-

lem has application at the verification of systems. To solve this problem we propose

a method of simulation of ordinary Petri nets by conflict-free ones and prove a propo-

sition about behavior equivalence of two classes of safe Petri nets: persistent systems

and labeled conflict-free systems, which are the result of simulation of persistent sys-

tems. The behavior equivalence proves to be a necessary and sufficient condition for

an ordinary system to be safe and persistent.
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Chapter 11

Application to Workflow

Management

11.1'Workflow Procedures

Workflow management provides us a new solution to an old problem: controlling,

monitoring, optimizing and supporting business processes. The new feature is the

formal representation of the business process logic which facilitates computerized

support. Petri nets are a formal model which can be used as a formal design language

for the specification of workflow processes and also as verification tool. In [1] such

possibilities are considered.

A Petri net model of. a workfl,ow procedure is shown in Fig. 11.1. A procedure specifies

the set of tasks and the partial order in which these tasks have to be executed.

Each task represents an elementary activity, for example, sending a message or print-

ing a report. A Petri net model of a workflow procedure is called a worlefl,ow net.

Tasks are modeled by transitions and precedence relations are modeled by places and

arcs.

In [1] the definition of a workflow net is given:

A net .lú is a workfl,ow net ifr.
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o->trtk;
(u) ¡f has two special places: i and o. Place i is a source place: 'i, : Ø. Place o is a

sink place: o' : Ø.

(b) If we add a transition Í to ,^/ which connects place o with 'i, then the resulting

net is strongly connected.

By Mo (M,) we denote a marking with the only token in a place i (o).

Fig. 1L.1 A Workflow Procedure.

analyze

Lt.z Strongly Connected Flee-Choice Systems [fav-

>fÞoreport

ing Nondead Home Markings are Live and

Bounded

A home marking is a marking which is reachable from any other reachable marking.

In [7] it is shown that live and safe extended free'choice systems have home mark-

ings. In [97] it is observed that the result could be easily generalized to live and

bounded extended free-choice systems. In the present chapter \rye prove the reverse.

Combining the results we get another necessary and sufficient condition of liveness
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and boundedness expressed in terms of home markings: for an extended free-choice

system to be live and bounded it is necessary and sufficient to be strongly connected

and to have a nondead home marking. Strong connectedness can not be removed

from the proposition because it is a necessary condition for liveness and boundedness

but not for the existence of nondead home markings. The latter can be easily shown

by a simple counter example.

The idea of the proof came while considering a problem stated in [1]: to prove that

a live extended free-choice system is bounded if it has a positive T-invariant and is

strongly connected.

Let (lú, Mo) be a system. A marking M of the net l[ is a home marking of (N,M\)

itrVM' € lMo) M e lM'). A marking M of the net l/ is dead, iffthere are no

transitions fireable at M. A transition ú is dead at a marking M ifrVM' e lM) ú is

not fireable at, M'.

Theorem LL.2.L -7, 94 Live and bounded EFC-systems have home markings.

T

Lemma LL.2.2 [52] Let (N, Mo) be a live EFC-system. Then (N, Mo) is bounded

iff it is strongly connected and satisfies 3.2.

Proof:

=+. By Lemma 3.3.1e, l/ is strongly connected and has a positive T-invariant. Hence

l/ satisfies 3.2.

+. Since (N,Mo) is live, by Theorem 5.1.1a (Hack's theorem), every siphon contains

a trap. By Lemma 3.3.5a, every minimal siphon is an S-component. Since l[ is

strongiy connected, by Theorem 3.2.7, it is covered by minimal siphons and hence by

S-components. Hence it has a positive S-invariant and is structurally bounded and

bounded for each marking.

T
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Theorem 11.2.3 Let (N, M0) be an EFC-system. Then (N,Mo) is rive and

bounded iff it is strongly connected and has a nondead home marking.

Proof:

+. Lemma 3.3.1c and Theorem 11.2.1.

ê. Let M e [M0) be a marking such that every transition is live or dead. Such a

marking always exists by definition of liveness. Let Tt Ç ? be the set of all the live

transitions at M . Since (N, Mo) has a nondead home marking, n + Ø. Let M, e lM)
be a home marking with M/(s) : n.

We prove now that Tt:7. (Indirect.) Suppose thatT¡ lT. Since lú is strongly

connected, there exists a place s and two transitions ú1 andt2 such that (ú1,s) e F',

(s, úz) e F, 4 is live, and ú2 is dead at M. By the EFC-property, all the transitions

s'are dead at M. Since t1 is live at M, tve can get M" elM) with Mtt(s) > n, and

the number can not be reduced after the firing of any transition. Hence M' # lM"l,,
and M' is not a home marking. A contradiction to our supposition. Hence Tt : T,

and (N, Mo) is live.

Let o be a firing sequence from a home marking to itself which fires every transition

of l/. Such a sequence exists because (N, Mo) is live and has a home marking. Then

f(ø) is a positive T-invariant (where f(o) denotes a vector whose entries are the

numbers of firings of each transition in ø). Hence r¡ú has a positive T-invariant and

satisfies 3.2. Then by Lemma IL2.2, (N, Mo) is bounded.

T

11.3 Soundness of 'Workflow Procedures

For verification of correctness of workflow nets the soundness property is introduced

in [1].

A workflow net lú is soundiff.
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(i) vM e [Mn) M. e [M),

(ii) vM e lMn) M ) Mo-+ M: Mo,

(iii) Vú € 7 1M e lM¿) Mlt).

For the verification of soundness property, the extended net F was defined by adding

an extra transition 7 which connects o and i:

P:P

T:Tu{t}
T:Fu{(o,Ð,(l,i)}

Theorem 11.3.1 [t] (u) A workflow net N is sound iff (F, M¿) islive and bounded.

(b) For free-choice workflow net lú, (i) and (ii) imply (iii).

I

Theorem 11.3.1a allows us to apply the Rank Theorems and our other techniques for

verification of soundness.

Theorem 11.3.lb says that for free-choice workflow net N, (i) and (ii) imply (iii). That

means that (iii) is redundant in the definition of soundness for free-choice workflow

nets.

Using Theorem 17.2.3, we now prove stronger result than Theorem 11.3.1b.

Theorem LL.3.2 For free-choice workflow net ¡ü, (i) is sufficient for soundness

and hence implies (ii) and (iii).

Proof:

The proof easily follows from Theorem 11.2.3 and the definition of a workflow net.
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LL.4 Summary

Here we prove a proposition which is stronger than the previous proposition from [1].

To prove it we used our theorem, that for extended free.choice systems: strong con-

nectedness and the existence of home state is necessary and sufficient for liveness and

boundedness.

Applying the theorem to extended free-choice workflow nets we get that (i) is neces-

sary and sufficient for soundness and hence (i) implies (ii) and (iii). So (ii) and (iii)

are redundant in the definition of soundness for extended free-choice workflow nets.
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Chapter L2

Application to the Performance

Evaluation of Communication

Networks

Afler model development, performance evaÌuation is usually required. The developed

universal methods face the state explosion problem. Therefore our objectives are

the creation of efficient algorithms for performance evaluation of communication net-

works. Petri nets are an analytical model in performance evaluation. The advantages

of analytical models in performance evaluation are:

1. the use of probabiiistic approach with macroscopic assumptions, when the de-

tails are not known;

2. sufrcient accuracy and generality;

3. a higher level of abstraction.

In general, exact performance results are obtained from the numerical solution of a

Markov chain, whose dimension is given by the size of the state space of the model.

Constructing models of complex systems directly at the Continues Time Markov

Chain level is generally difficult, mainly due to the need of choosing an appropriate
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state definition, and enumerating all states in the evaluation process. For this reason,

more abstract probabilistic modeling tools were proposed.

Product form queuing networks are used for the performance evaluation of traditional

communication systems. The shortcomings of queueing-based models are mainly due

to their lack of descriptive po\Mer in presence of phenomena such as simultaneous

possession of resources, synchronization, blocking and splitting of customers. More

over these features, quite common in distributed and concurrent systems, generally

destroy the product form solution.

More powerful model, which can model the above features is stochastic Petri nets.

Analysis algorithms for Petri nets are mostly non-efficient in general case because of

the state explosion problem [37]. One of the techniques to cope with the problem is

to identify a subclass of systems for which polynomial algorithms can be proposed.

In [13] the polynomial algorithms for the performance evaluation of live and bounded

free.choice Petri nets have been proposed. free-choice and extended free-choice Petri

nets can model conflict and concurrency, they are easy to analyze, but they are too

restricted for some applications. Therefore we need to generalize the method of [13]

to wider classes of Petri nets. Here we generalize this method to regular Petri nets

and propose polynomial algorithms for performance evaluation of communication

systems using stochastic Petri nets. Quick computation of performance bounds is a

complementary approach to the exact analysis, especially useful in the preliminary

phases of the design. We evaluate the upper and lower bounds for the throughput,

the mean queue length, the Probability Mass function of the number of customers in

queues and the mean response time at steady-state.

Lz.L Stochastic Petri Nets

Since transitions represent activities that change the state (marking) of the net, it is

natural to associate a duration with transitions.
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In order to solve conflicts among transitions, two alternatives have been proposed:

either a "timed firing" of transitions in three phases (which changes the firing rule of

Petri nets introducing a timed phase in which the transition is "working" afber having

removed tokens from the input places and before adding tokens to the output places)

or "timed enabling" followed by an atomic firing (which does not affect the usual

Petri net firing rule). A more detailed discussion of the timing and firing process can

be found in [79]. These different timing interpretations have different implications on

the resolution of conflicts.

In [13], free-choice systems were considered. Therefore any conflict can be resolved

in a local way by specifying the routing rates of tokens at cluste¡s; thus we are not

forced to choose a particular firing mechanism. Now we show that in regular systems

any conflict can also be resolved locally.

Lemma Là.L.L Let (l/, M0)be a regular system, s € ^9, lr'l > L, M e lMÙ),

M(t) > 0. Then for every t €. s' fø such that Mlo)M1[t) and Vú1 € s' #(oltr) :
0.

Proof:

Let l// be an EFC-representation of l/. By Lemma 3.1.9a, (N' , M) is live and bounded

EFC-net. Then by liveness, lo such that Mlo)Mit). Let o be the firing sequence

of minimal length such that MlolMl. Then Vúr e s' ff(olt): 0 by minimality of ø

and the EFC-property.

I

We consider both timed and immediate transitions. For simplicity it is assumed that

there do not exist circuits containing only immediate transitions.

For each cluster with more than one transition, rve assume that these transitions are

immediate (i.e. they fire in zero time). The constants 11, ...,rk e .A/+ are explic-

itly defined in the net interpretation in such a way that when tt,...,t¡, are enabled,
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transition ú¿ fires with probability

Taking into consideration all structural conflict transition sets, the system of equa-

tions for any set of transitions in a structural conflict describing the ratio of firing

frequences between the transitions using associated routi,ng rates can be represented

straightforward in a matrix form as: R. u : 0. We will call .R the Routi'ng Rates

matrix.

A stochasti,c Petri, netis a sixtuple (5,7, F, M0 ,O, Æ), where O : ? -+ ?r is a function

assigning the delays to transitions. Replacing the triple (S,T,F) bV .lü, we get shorter

description (N, Mo,O, A).

In the case of stochastic Petri nets, the ergodicity condition can be considered for

the two most important associated stochastic processes: the marking process and the

firing process.

k

,lÐ,¡
j=t

Theorem 12.'l-.2

marking.

Using the previous result we prove the next theorem.

[19] Let (N, Mo) be a regular system. Then it has a home

Theorem L2.L.3 Let (N, M0,@,-R) be a stochastic regular system. Then, both

the marking and the firing processes of (lú, M0) are weakly ergodic.

Proof:

For regular systems, the existence of home marking is assured (Theorem 72.7.2).

Then afber a possible transient phase, the system state is always trapped in a unique

strongly connected finite subset of the state space. Thus, the marking and firing

processes are weakly ergodic.

T

I
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Fig. 12.1 A Regular Petri net for which the Visit Ratios Depend on Initial Marking.

In other words, for regular systems it makes sense to speak of a unique steady-state

behavior and to compute bounds for the performance of this steady-state.

In [13] it was proved that for live and bounded FC-systems the visit ratios depend only

on the net structure and matrix .R, and do not depend on initial marking and actual

delays associated with each transition. We will prove in this section that it is valid

for safe regular systems. For general class of regular systems the above conclusions

are not valid. An example from [13] is given in Fig. t2.L. If we put two tokens to the

place s, this system will behave as two separate systems.

A place s €,S is irnpli,citiffV¿ e s'VM elMî) if Vs1 €'ú\{s} M(s1) ) 0 then

M(t) > 0. That is, the deletion of an implicit place does not affect the language of

the system.

Let l/ be a net with l^91 > 1. We define the net .lü-' : (,S\ {t},7,F n((S \ {s}) x

r)ug x (,s\{'})).

A place s € ,9 is bri,dge place 1ff 1.,4-'l > 1"41. That is, after the deletion of a bridge

place, the cluster splits into two or more clusters.

Lemma L2.L.4 Let (lú, M0) be a safe regular system and s be a bridge place.

Then s is not implicit.

Proof:

By definition of a bridge place there are two transitions ú,ú1 such that {(s,ú), (s,Ú1),

(sr,¿r)Ì c Fn (^9 x 7) and (s1,t) ç Fn (,9 x 
").
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Since (N, Mo) is live and safe, and there exists the corresponding live and safe EFC-

net, there is a marking M when all the places of the cluster are marked . Lef Mlt) Mt .

Then M'(t):0 and M'(tr):1. Therefore s can not be implicit.

T

L2.2 Bounds for the Throughput of Transitions

Throughput u¿ of a transition ú¿ is the average frequency of firings of ú¿. The constant

vector ø is the lirnit firing fl,ow uector, with components o¿,i : 7,...,ffi. The mean

cycle ti,me 7 has the components r¿ : *. The vector of. uisi,t ratios, normalized

for transition ú^ (for having the úa component equal to 1), is a vector 7^ with

components:

,f:+
From the definitions it follows that 7^ : rL .d.

Theorem L2.2.L [13] Let (N,M0,O,ft) be a stochastic Petri net. Then a lower

bound for the mean interfiring time ra of transition úa (or its inverse an up.

per bound for the throughput) can be computed by solving the following linear

programming problem:

rL > maximum Yr . PRE .6 .u^

subject toYr -C - O,Yr.M0 : I,Y ) 0, where 6 is a diagonal matrix with

elements of O.

t

The throughput upper bound derived from Theorem L2.2.1is not reachable in general

for live and bounded free-choice systems. Several improvements and a reachable

bound for the case of live and safe free'choice systems can be found in [12]. Those

improvements are also applicable to regular systems.
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To calculate the vector of visit ratios for a stochastic regular Petri net (N, Mo , O, R),

we define the corresponding non-stochastic Petri net (ll¡, M$) which have the same

visit ratios.

Let Q: {h,...,t*} Ç 7 be the set of transitions of a cluster (where ú1,..,t- is an

arbitrary fixed order). For every transition t¿ of. Q, we define a new place s¿. The

net l/ç : ({sr, ...,s*},8, {(rr, tt),(tr,sz),..., (s*,t*), (¿-,s1)}) is called a regulati,on

ci,rcuit of. Q.

We denote by

ly'R:U¿Nq,UN

Fig. 12.2 The Net ,lÍ¿ For the System in Fig. 2.L.

the net obtained from N by componentwise union of places, transitions and arcs of

lú and .l[q, for every cluster i. Note that, afber the addition of all regulation circuits

to every ciuster the resulting net l/¿ is not regular any more.

Lemma L2.2.2 Let (N, M0,A,.R) be a stochastic regular Petri net, and N¿ be a

net defined above. Then

cn:f " I\a/
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Example. Consider the system in Fig. 2.1. For simplicity we assume that all routing

rates at the conflict are equal to 1. Then the net l/¿ is shown in Fig. I2.2, and the

matrix

1 -1
00
-1 1

00
00
00
00
00
10
00
-1 0

000
1 0 -1
0 0-1
010
001
000

-1 0 0

0-i0
0 0 -1
001
000

Cn:

0

0

-1

-1
0

1

0

0

0

1

0

0

0

1

0

0

0

0

Lemma t2.2.3 122] Let l/ be a net and lú¿ be a net defined above. Given a

marking M' of..ly'', define M as the projection of M' on the places of l/. Then

(a) If Mifo)tWi is an occurrence sequence of Iú¿, then Mllo)M2 is an occurrence

sequence of N.

(b) The regulati.on circuit Nç is an S-component of ,ô/¿.

T

Lemma L2.2.4 [82] Let X be a minimal support of an invariant. Then there

exists a unique minimal invariant J such that (J) : X, and for every invariant Jr

such that (Jt) : X, there exists an integer k such that Jr : IcJ.

I

Lemma L2.2.5 l22l Let (N, Mo) be a bounded system and let Molo) be and

infinite occurrence sequence.
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-1
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0
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(a) There exists sequences ott o2t ø3 such that o : o1a2cs, ø2 is not empty

sequence and M0lo1)Mlo2)Mlø3) for some marking M.

(b) There exists a semi-positive T-invariant J such that (J) g Pk(o).

I

Lemma L2.2.6 Let .^l be a regular net and N¿ be a net defined above. Then N¿

is has the only minimal T-invariant J, and J is positive.

Proof:

Let M0 be a live and bounded marking of N. Choose a marking Mfl of lr/¿ which

coincides with M0 on all places of I/ and marks one place of each regulation circuit.

Claim 1. (Na,Mfl) is bounded. By Lemma 3.5.6, N is covered by S-components.

Since both the S-components of l/ and the added regulation circuits are S-components

of N¿, the net l/¿ is also covered by S-components.

Claim 2. (Nn,MB) is deadlock-free. Let Mp be a reachable marking of (Nn,MB),

and let M be its restriction to the places of Iú. By Lemma 12.2.3, M is reachable

marking of (l/, M0). We prove lhat Mp enables some transition.

Since (N, Mo) is live and M is reachabl e, M enables a transition ú. Since lú is regular,

there exists a marking Mt reachable from M which enables every transition of the

cluster [ú]. Since the regulation circuit of the transitions of [ú] is an S-component of

Iy'¡, the total number of tokens in its set of places remains constant, and so M'rmarks

one of its places. This place belongs to the preset of some transition in [t], say tp.

Then M'* enables ú¡, and the claim is proved.

Claim 3. l/¿ has a semi-positive T-invariant. By Claim 2, there exists an infinite

occurrence sequence mH["). By Lemma12.2.5,,I/¿ has a semi-positive T-invariant

J . J is also a T-invariant of N because the pre- and post-set of a place of ,Â/ coincides

with its pre- and post-set in .l/¡.

Claim 4. For every semi-positive T-invariant: [ú] : [úÈ] implies J(t): J(tn).
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Since [ú] : [ú¡], there exists a path ts1fi...t¡-1s¡ú¡ inside the regulation circuit of the

transitions of [ú] leading from t to t¡. Since J is a T-invariant of N¿, and the places

sl,...r s¡ have exactly one input and one output transition, we have

J(t) : J(tL) : ...: J(tn_t) : J(tn)

Claim 5. Every semi-positive T-invariant of N¡ is positive. Let ú be a transition of

(J). Since .lú¡ is strongly connected, ú has an output place s in .ly'¡. Since J is a

semi-positive T-invariant, we have '(J) : (J)', and therefore s' contains a transition

t¡ of. (J). By Claim 4, \J) includes every transition of the cluster [ú¡]. Since N is

regular, this set is [s]. Hence, ((/)')'g (J). Since (J) is non-empty and l{¿ is

strongly connected, the set (J) contains all transitions of N¿, which implies that J

is positive.

By Claim 3, there is a semi-positive T-invariant of N6. By Claim 5, it is positive. By

Lemma 12.2.4, the result follows.

T

To calculate the vector of visit ratios for a stochastic regular Petri net we use the

following theorem.

Theorem L2.2.7 Let (lú, M0,@,,R) be a stochastic safe regular Petri net. Then,

for every live and safe marking of .lú, the vector of visit ratios zA depends only on

l/ and -R, is positive, and is the one and only one solution of the system of linear

equations:

Proof:

By LemmaL2.L.4,, the system (N,Mo) does not have implicit bridge places and we

câ,n use the net l/¿ for calculation of.v^. Let (l/¿, Mfl) be the net defined above. By
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Lemma 72.2.6,1/¿ has the only minimal T-invariant ,,I, and J is positive. By Lemma
( c\

12.2.2, Cn: I L and equation C¡ . J :õ is equivalent to:

\n/
i) C . J :õ (i.e. J is a T-invariant of C)

ii) Æ. J :0 (i.e. the routing rates are respected)

Let o be a Parikh map of a reproductive firing sequence of (ll¡, M$). Obviously õ

is a semi-positive T-invariant of N¿. By Lemma 12.2.4, õ : lcJ. Then 4 : S and

_^ Iu" : jE.

Since every place of the regulation circuit is linearly independent from the places of

N, we haveranle(Cn):rank(C)+rank(R):lAl - 1+ l"l - l"4l : lfl - 1. So the

system 12.1 has one and only one solution.

I

Example. For the system above, and for tL : tr,7L : (1,3, 1, 1, 1, 1, 1, 1)t. Then

the lower bound of the mean cycle time ,1 : mar(302i_ gz -l0s,0sl0z,0n+96), and

the upper bound of the throughputõu: (+,å, +,+,;þ,+, +,+)'.Note that

0t : 0s - 0a : 0, because transitions in a conflict should be immediate as agreed

above.

Theorem 72.2.7 was first proved in [13] for the class of free-choice nets. In [12] this

result was generalized to FRT-nets (nets wi,th freelg related T-semi,fl,ows). The class

of regular nets is not included into the class of FRI-nets (the regular net in Fig. 2.1

is not an FRT-net). To check this statement, and for the complete definition of

FRT-nets (quite involved), we direct the reader to [12].

Let (N, M0) be a system and ú eT,E(t): mar{kl1M e R(N,Mo) , M > kPre(t)}

is an Enabli,ng bound.

L(t) : mar{klVM: € R(¡/, M0),1M € .R(N, Mt), M > kPre(t)} is a li,ueness

bound.

SE(t): maximizefr subjectto M -: M0 *C xo 2kPre(t),o > 0 is a Structural

bound.
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Lemma L2.2.8 [13] Let (N,Mo) be a system. Then

(a) Vú e T, S E(t) > E(t) > L(t)

(b) if (N, M0) is reversible, then E(t) : L(t)

I

Lemma t2.2.9 If (¡ú, M0) is a live and bounded system, such that for every

transition ú¿ there is an S-component,S¿ with Mo(Sn): l then SE(t): E(t):

L(t) :1.

Proof:

Obvious.

r

For T-systems, it makes no sense to speak about -R matrix, because there are no

conflicts there. So the definition of stochastic T-systems is shorter: (I/, Mo,O).

Theorem L2.2.LO [13] Let (N, Mo,O) be a stochastic live and bounded T-system,

and let the mean firing times 0¿ for each transition be ú¿. It is not possible to assign

PDF's to the transition firing times such that the average cycle time is greater than

-"-S oj' - fusq1j
independently of the net structure. Moreover this upper bound is reachable for

any T-system structure and for any assignment of PDF's to the firing delay of

transitions (i.e. the bound cannot be improved).

I

Theorem L2.2.LL Let (,1/, Mo,O) be a stochastic live and bounded T-system

such that for every transition there is a loop with the only token on it. It is not
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possible to assign PDF's to the transition firing times such that the average cycle

time is greater than

,":i0,
j:l

independently of the net structure. Moreover this upper bound is reachable for

any T-system structure and for any assignment of PDF's to the firing delay of

transitions (i.e. the bound cannot be improved).

Proof:

The proof follows from Lemma 12.2.9 and Theorem 12.2.L0.

I

To calculate the lower bound for the throughput we use the following theorem.

Theorem L2.2.LZ Let (/ú, M0,@,-R) be a stochastic safe regular system. Then

the upper bound for the average cycle time of transition ú^ is

rî : i ," çt,¡e ,
j:t

I

Example. For the system above the upper bound of mean cycle time ,uL :31zigsl

0¿t0z-10u and the lower bound of the throughput is õ¿ : (+, å, å, å, å, å, å,
1\?-- )

Tú

L2.3 Bounds for the Mean Length of Queues

To compute the lower bound for the mean length of queues we generalize the results

from [12]: M' : PRE .6 .õ' , where a¡ is a lower bound for the throughput vector

(i.e.,aI(t¿):|fr,(t¿),i:7,...,ffi, with r,(ú¿) being the upper bound for the mean

cycle time of ú¿ computed in Theorem L2.2.I2).

For the computation of an upper bound for the mean marking of a given place s let

us consider an S-invariant .I, whose support includes this place.

139



We have Yr .Mo :Yr .M.

-r--,Hence M(t) <M'(t) + å . 7r . Qvlo -M') and the same condition holds for each

S-invariant including place s. Then, the computation of an upper bound for the mean

marking of places can be formulated in terms of an LPP as follows:

W (t) : m'in-t tt (t) +Yr . (Mo -rt)subject toYr' C : o; Yr' e" : !; Y ) 0, where

e" is the characteristic vector of s (i.e. er(s) : 1, and for any other place s' * s ;

er(s') :0) the restriction YT .e": 1 allows us to omit the denominator /(s) which

is assumed to be non-zero value.

Now the computation of the pmf of the number of tokens at steady-state in a place

s is straightforward. Since the system is safe, p(M(s) - 1) : M(t) and p(M(s):

0) : t -M(t).

L2.4 Bounds for the Mean Response Time at Places

The mean response time E(s) at a place s is the mean value of the sojourn time of

a token in this place (i.e., sum of waiting plus service time). Flom the knowledge of

upper and lower bounds for the throughput of transitions and for the mean marking

of places, and applying Little's law, upper and lower bounds for the mean response

time at places can deduced as follows:

E"(') : ffiþ u.,a

n'(') :ffiff.
To confirm the theoretical results given in the chapter we give the unfolding of our

system from Fig. 2.1. The unfolding is presented in Fig. 12.3.

L2.6 Summary

In [a6] we propose polynomial algorithms for performance evaluation of communica-

tion networks using stochastic Petri nets. We used theoretical results and polynomial
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algorithms from [13, 19,20,57] for quantitative analysis of stochastic Petri nets.

Our major contribution is a generalization of results from [13] obtained for free-choice

Petri nets to regular Petri nets. There was already a generalization to FRT-nets [12].

It can be shown that regular Petri nets are not a subclass of FRI-nets. We proved

that in regular Petri nets, conflicts can be resolved locally, similar to free-choice Petri

nets and extended free-choice Petri nets.

.@tr+o ot 2 3 I | 2 ,\å s 7f

101o+eo o
1?¡7

Fig. L2.3 The unfolding of the system from Fig. 2.L.
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Chapter 13

Conclusions and Rtture Research

13.1 Contributions of this Thesis

In this work we described the solution of some problems of verification and perfor-

mance evaluation of concurrent systems. We studied Petri nets and their derivatives:

Signal T[ansition Graphs, Logic Control Algorithms, stochastic Petri nets. Commu-

nication and interaction in concurrent systems are complex and difficult to specify,

implement and test. Therefore formal approaches are needed for the design, synthesis,

verification and implementation of concurrent systems.

\Me applied our results in four fields:

1) Asynchronous Circuits Analysis and Synthesis.

Signal tansition Graphs is a model of speed-independent circuits. Several synthesis

techniques for Signal Tbansition Graphs have been proposed which require knowledge

of the concurrency relation for the corresponding Petri net. We use some results

on Petri nets to derive an efficient polynomial algorithm for the computation of the

concurrency relation on free-choice Signal Tiansition Graphs. This result can be

generalized to a broader class of Signal Tlansition Graphs.

2) Verification of Logical Control Algorithms.
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In the recent years a lot of investigation have been made in the field of asynchronous

interactions of concurrent processes. One of the reasons is the problems of logical

control in automated production. One way to solve the problems is to reflect the

concurrency of control objects in control algorithms.

\Me develop a number of techniques to verify the algorithm correctness: reduction,

graph-theoretic analysis, Rank Theorem and unfoldings.

3) Verification of workflow procedures. A workflow Petri net is a model of workflow

procedure. For verification of correctness of workflow nets the soundness property

is introduced. The soundness is a set of behavioral properties of Petri nets. Using

the Petri net theory, linear algebra and graph theory, new results have been obtained

which facilitate the analysis of workflow nets. For some analysis problems polynomial

algorithms have been obtained.

4) Performance evaluation of communication networks. In [a6] we propose polynomial

algorithms for performance evaluation of communication networks using stochastic

Petri nets. \Me used theoretical results and polynomial algorithms from [13, L9,20,

57] for quantitative analysis of stochastic Petri nets. Our major contribution is a

generalization of results from [13] obtained for free-choice Petri nets to regular Petri

nets.

t3.2 F\rture 'Work

o We are going to develop the reduction method (based on simple local rules) of

analysis and refinement (synthesis) of EFC-nets. Such rules are necessary for the

construction of more complex systems with a correct behaviour. F\rrthermore,

they are interesting for theoretical considerations. Together with completeness

results, which state that each system with some behaviour properties can be

reduced, they provide the possibility of proving new results using inductive

arguments.
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We are going to generalize the method of concurrency relation computation to

the class of state machine decomposabie Petri nets.

We are going to find a polynomial algorithm for the reachability problem in

live and bounded (live and safe) EFC-nets. There exists already a polynomial

algorithm to decide reachability problem for cyclic live and bounded extended

free-choice nets. But the problem for all live and bounded extended free-choice

nets is still open.

We are going to generalize Siphon/Thap analysis for different subclasses of Petri

Nets.

'We are going to generalize the methods of modular synthesis to the class of

state machine decomposable Petri nets.

We are going to generalize the Performance Evaluation method to the class of

state machine decomposable Petri nets.

r45



Bibliography

[1] W.M.P. van der Aalst, "Verification of Workflow Nets", In P.Azema and G.Balbo,

editors, Proc. 18th Int. Conf. on AppI. and Theory of Petri,lúeús, Lecture Notes

in Computer Science, Vol. 1248, Springer-Verlag, L997, pp. 407-426.

[2] M.Ajmone Marsan, "stochastic Petri nets: an elementary introduction", In

G.Rozenberg, editor, Aduances i,n Petri nets 1989. Lecture Notes in Computer

Science, YoI. 424, Springer-Verlag, 1990, pp. 1-29.

[3] P.Alimonti, E.Feuerstein, U.Nanni, "Linear time algorithms for Liveness and

Boundedness in Conflict-free Petri nets". Proc. of l-st Latin Americo,n Sympo-

s'ium on Theoretical Informattics, Lecture Notes in Computer Science, Vol. 583,

Springer-Verlag, 1992.

[4] M.-L. Benalycherif, C.Girault: "Behavioral and Structural Composition Rules

Preserving Liveness by Synchronization for Coloured FIFO Nets" . Proc. 17th

Int. Conf. on Appli,cati,on and Theory of Petri nets, Osaka, Jøpan, Lecture Notes

in Computer Science, Vol. 1091, Springer-Verlag, 1996, pp.73-92.

[5] E.Best, J.Desel, "Partial order behavior and structure of Petri nets" . Forrnal

Aspects of Computi,ng,YoI.2 No.2, 1990, pp. 123-138.

[6] E.Best, R.Devillers: "Concurrent Behaviour: Sequences, Processes and Program-

ming Languages". GMD-Studien Nr.99, 1985, Sankt Augustin.

747



[7] E.Best, K.Voss: "F]ee Choice Systems Have Home States" . Acta Injormatica 21,

1984, pp. 89-100.

[8] E.Best: "Structure Theory of Petri Nets: the Fbee Choice Hiatus" , Aduances i,n

Petri, Nets 1986, Lecture Notes in Computer Science, VoI. 254, Springer-Verlag,

pp. 168-205.

[9] E.Best, C.Fernández: "Non-sequential processes. A Petri net view". EATCS

Monographs on Theoretical Computer Science, 13, 1988.

[10] G.Berthelot, G.Roucairol, R.Valk: "Reduction of Nets and Parallel Programs".

Net Theory and Applicati,ons, Lecture Notes in Computer Science, Vol. 84,

Springer-Verlag, 1980, pp. 277-290.

[11] G.Berthelot: "Checking Properties of Nets Using Thansformations". Lecture

Notes in Computer Science, Vol. 222, Springer-Ver1ag, 1986, pp. 19-40.

[12] J.Campos, "Performance Bounds for Synchronized Queuing Networks", PhD

thesis, Departamento de Ingenieria Electrica e Informatica, Universidad de

Zaragoza, Spain, December 1990. Research Report GISI-RR-90-20.

[13] J.Campos, G.Chiola, M.Silva, "Properties and Performance Bounds for Closed

Flee Choice Synchronized Monoclass Queuing Networks", IEEE Ttrans. on Au-

tomati,c Control, Vol. AC-36 No. 12, 1991, pp. 1368-1382.

[14] A. Cheng, J. Esparza, and J. Palsberg. "Complexity Results for l-safe Nets".

Theoreti,cal Computer Sc'ience,Yol.I47, No.1-2, 1995, pp. 117-136.

[15] T.A. Chu. "synthesis of Setf-timed VLSI Circuits from Graph-theoretic Specifi-

cations". Phd thesis, MIT, 1987.

[16] P.Civera, G.Conte, D.Del Corso, F.Maddaleno, "Petri net models for the De-

scription and verification of parallel bus protocol" , Computer Hardware Descri'p-

148



t'ion Languages and thei,r Appli,cations, M.R.Barbacci and C.J.Koomen (Eds.),

Elsevier (North-Hoiiand), 1987, pp. 309-326.

[17] F.Commoner: "Deadlocks in Petri nets". Wakefield. Applied Data Rsearch, Inc.,

Report ilC A-7206-23LL, 7972.

[18] F.Commoner, A.W.Holt, S.Even, A.Pnueli: "Marked Directed Graphs."

J.Comput. Syst. Sci,., Vol.5, 1971, pp. 511-523.

[19] J.Desel: "Regular marked Petri nets" . Proc. of the 19th Int. Workshop on Graph-

Theoreti,c Concepts in Cornputer Sci,encef Jan van Leeuween (ed.) Lecture Notes

in Computer Science, Vol. 790, Springer-Verlag, 1993, pp.264-275.

[20] J.Desel, "A proof of the Rank Theorem for extended free choice nets", Proc.

13th Int. Conf. on AppI. and Theory of Petri nets, Lecttre Notes in Computer

Science, Vol. 616, Springer-Verlag, 1992, pp. 299-309.

[21] J.Desel: "Reduction and Design of Well-behaved Concurrent Systems", in CON-

CUR'90, Baeten, Klop eds., Lecture Notes in Computer Science, Vol. 458,

Springer-Verlag, 1990, pp. 166-181.

[22] J.Desel, J.Esparza, Free Choice Petri, Nets, Cambridge University Press, 1995.

[23] J.Desel,J.Esparza: "Reachability in cyclic extended free choice systems" . Theo-

reti,cal Computer Sci,ence Vol. 114, 1993, pp. 93-118.

[2a] J.Esparza, "synthesis rules for Petri nets, and how they lead to new results",

Proc. CONCUR'97, Lecttre Notes in Computer Science, Vol. 458, Springer-

Verlag, 1990, pp. 182-198.

[25] J. Esparza. "Reduction and Synthesis of Live

Nets" . Informati,on and Computati,on. Yol.IL .

L49

and Bounded Free Choice Petri

No.l. 1994, pp. 50-87.



126l J. Esparza. "A Solution to the Covering Problem for l-Bounded Conflict-Fbee

Petri Nets Using Linear Programming" . Informa,ti,on Processi,ng Letters, Vol. 41,

1992, pp. 313-319.

l27l J. Esparza. "Model checking using net unfoldings". Sci,ence of Computer pro-

grammi,ng, 23, 1994. pp. 151-195.

[28] J.Esparza, E.Best, M.Silva, "Minimal deadlocks in free choice nets",

Hildesheimer Informatik-Berichte. Universität Hildesheim. No 1. 1989.

[29] J.Esparza, M.Silva: "Modular Synthesis of free-choice nets". Departamento de

Ingenieria Electrica e Informatica, Universidad de Zaragoza, Research Report

GISI 90.06, March (29 pages).

[30] J.Esparza, M.Siiva: "Circuits, Handles, Bridges and Nets" . Aduances i,n Petri,

/úeús. 1990. G.Rosenberg (Ed.). Lecture Notes in Computer Science, Vol. 483.

Springer-Verlag, 1991, pp. 210-242.

[31] J.Esparza, M.Silva "On the Analysis and Synthesis of F]ee Choice Systems".

Aduances i.n Petri, Nets 1990. G.Rosenberg (Ed.). Lecture Notes in Computer

Science, Vol. 483, Springer-Verlag, 1991, pp.243-286.

[32] O.Fergemand, A.Olsen. Introducti,on to SDL-92. Computer Networks and ISDN

Systems, Vol. 26, 1994, pp. LL43-I167.

[33] H.J.Genrich, K.Lautenbach. "system modeling with high-level Petri nets" . The-

oreti,cal Computer Sci,ence Vol. 13, 1981, pp. 109-136.

[34] M.T.Hack, Analysi,s of producti,on schemata by Petri nets, TR-94, MIT, Cam-

bridge, MA, 1972, Corrections 1974.

[35] C.A.R.Hoare: "Communicating Sequential Processing", Prentice lHall, London,

1985.

150



[36] K. Jensen, Coloured Petri, Nets. Basi,c Concepts, Analysi,s Methods and Practi'-

cal (Jse. Volumes 1-3. Monographs in Theoretical Computer Science, Springer-

Verlag, 2nd corrected printing, 1997.

[37] N.D.Jones, L.H.Landweber, Y.E.Lien. "Complexity of some problem in Petri

nets". Theoreti,cal Computer Sci,ence Vol. 4, L977,pp.277-299'

[38] R.Johnsonbaugh, T.Murata: "Additional Methods for Reduction and Expansion

of Marked Graphs" . IEEE hans. Ci,rcuits and Systems, Vol.CAS-28, 1981, no.10,

pp. 1009-1014.

[39] R.M.Keller: "A F\rndamental Theorem of Asynchronous Parallel Computation".

Parallel Processi,ng, Lecture Notes in Computer Science, Yol.24, Springer-Verlag,

1975, pp. L02-112.

[40] P.Kemper: "On Finding a cover of minimal siphons in extended free choice nets".

Algorithmen und Werkzeuge fíir Petri,netze. Workshop der Gl-Fachgruppe 0.0.1

"Petrinetze und verwandte Systemmodelle". Berlin, 10-11, Oktober 7994.

[41] P.Kemper: "O(lPl x l"l)-algorithm to compute a cover of S-components in EFC-

nets". Forschungsbericht 543, Universitaet Dortmund , 7994.

l42l P.Kemper: "Linear time algorithm to find a minimal deadlock in a strongly

connected free-choice nets". Proc. of the llth Int. Conf . on Appl. and Theory

of Petri. nets. Chicago, Lecture Notes in Computer Science, Vol. 691, Springer-

Verlag, 1993, pp. 319-338.

P.Kemper, F.Bause: "An efficient polynomial-time algorithm to decide Liveness

and Boundedness of free-choice nets" . Proc. of the 13th Int. Conf. on Appl. and

Theory o! Petri neús. Sheffield, Lecture Notes in Computer Science, Vol. 6L6.

Springer-Verlag, 1992, pp. 263-278.

151

[43]



[44] Pastor, E., Cortadella, J., Kondratyev, A.., Roig, O. " Structural methods for

the synthesis of speed-independent circuits. " . IEEE Tfan* on Computer-Ai,ded,

Design of Integrated Ci,rcui,ts and Systems, Vol. 17, No. 11, 1998, pages 1108-

7129.

[45] A.Kovalyov, "Efficient Methods for Verification of Distributed and Concurrent

Systems by Petri Nets" , Formal Methods for Open Object-Based Di,stributed Sys-

tems, Stanford Uni,uersi,ty, Stanford, California, USA. Sept. 2000.

[46] A.Kovalyov, R.McLeod, O.Kovalyov, "Performance Evaluation of Communi-

cation Networks by Stochastic Regular Petri Nets" , The 2000 Internati,onal

Conference on Parallel and Di,stributed Processing Techni,ques and Appli,cati,ons

(PDPTA'2000), USA. 2000, Vol. 4, pp. 1991-1998.

[47] A.Kovalyov,O.Kovalyov, "An Efficient Modular Synthesis of Regular Petri Nets

by Simple Composition Rules", the lth World Multi,conference on Systemi,cs,

Cyberneti,cs and Informatics SCI'2000. USA. 2000, Vol. 8, pp. 655-660.

[48] A.Kovalyov, "A Poiynomiai Algorithm to Compute the Concurrency Relation

of Regular Signal tansition Graphs", in: Hardware Design and Petri Nets

(A.Yakovlev, L.Gomes, L.Lavagno eds.), Kluwer Academic Publishers, March

2000. pp. 107-126.

[49] A.Kovalyov, "A Polynomiat Algorithm to Compute the Concurrency Relation

of Regular Signal Tlansition Graphs" , 20th Internati,onal Conference on Appli-

cati,on and Theory of Petri Nets (ICATPN'?7), Williamsburg, Virginia, USA.

1999, pp. 15-34.

[50] A.Kovalyov, "A Concise Proof of the Coverability Theorem for Live and Bounded

Extended Free Choice Nets" , Petri, Nets Newsletter. No.56, 1999, pp. 1-6.

L52



[51] A.Kovalyov and R.McLeod, "New Rank Theorems for Petri Nets and their Ap

plication to Workflow Management", 1998 IEEE Internati,onal Conference on

Sgstems, Man, and Cgberneti,cs, San Diego, California, USA. 1998, pp. 226-23I.

[52] A.Kovalyov and R.McLeod, "Strongly Connected Flee-Choice Systems Having

Nondead Home Markings are Live and Bounded", Petri, Nets Newsletter. No.54.

1998, pp. i6-18.

[53] A.Kovalyov, R.McLeod and B.Rahardjo, "A Simple Co-design Approach for Em-

bedded Systems Using SDL" ,, Proc. Mi,cronet Annual Workshop, Ottawa, On-

tario, p.67, 1,997.

[5a] A.Kovalyov, "An O(lSl x l"l)-Algorithm to Verify Liveness and Boundedness in

Extended Flee Choice Nets" , Int. J. of Intelligent Control and Systems, Vol.l,

No.3, 1997, pp. 401-406.

[55] A.Kovalyov and J.Esparza, "A polynomial algorithm to compute the concurrency

relation of Signal tansition Graphs" , Proc. ?rd Worlcshop on Discrete Eaent

Systems (WODES'96), Edi.nburgh, Scotland, UK, August 1996.

[56] A.Kovalyov, "New Formulations of the Rank Theorem for Live and Bounded

Extended Fïee Choice Nets" . Internati,onal Conference on Roboti,cs and Automa-

ti,on. t996. USA.

[57] A.Kovalyov, "An O(lSl x lTl)-Algorithm to Verify if a Net is Regular", Proc.

17th Int. Conf . on Appli,cation and Theorg of Petri, nets, Osakø, Japan, Lecture

Notes in Computer Science, Vol. 1091, Springer-Verlag, 1996, pp. 366-379.

[58] A.Kovalyov, "A Simulation Method of Petri nets by Conflict-füee Ones" ,, Proc.

1995 INRIA/IEEE SAmp. on Emergi,ng Technologies and Factory Automati,on,

Paris, France, Voi.1, October 10-13, 1995, pp. 583-591.

153



[59] A.Kovalyov, "An O(lSl x l"l)-Algorithm to Verify Liveness and Boundedness

in Extended Fhee Choice Nets",, Proc. 10-th IEEE Int. Symp. On Intelli,gent

Control, Monterey, Cali,forni'a, [/^9á, August 27-29,1995' pp. 597-601.

[60] A.Kovalyov, "Good Behaviour in Extended Fbee Choice Nets", Technical Report

FBI-HH-B-176 195, Fachbereich Informatik, Universität Hamburg, Germany",

May 1995. 22p.

[61] A.Kovalyov, "A polynomial-time algorithm for Diagnostics of Extended Free

Choice Nets" , Proc. ?rd Int. Conf. on Automati,on, Roboti,cs and Computer Vi-

si,on (ICARCV'/Ð, Republi,c of Si,ngapore, November 1994, pp.2149-2753'

[62] A.Kovalyov, "On behaviour equivalence of two classes of safe Petri Nets: Per-

sistent and Conflict-free Nets" , Proc. ?rd Int. Conf. on Automati,on, Roboti,cs

and Computer Vi,sion (ICARCV'7Ð, Republic of Si'ngapore, November L994,

pp. 2135-2138.

[63] A.Kovalyov, "Concurrency Relations

Proc. 13th Int. Conf. on Appli,cati,on

Lecture Notes in Computer Science,

309.

[64] A.Kovalyov, "On Complete Reducibility of Some Classes of Petri Nets", Proc.

llth Int. Conf. on Appli,cation and Theory of Petri, nets, Pari,s, June 1990, pp.

352-366.

[65] A.Kovalyov, "On Finding the Parallelism Relation on the Set of Places for Some

Subclasses of Petri Nets" Problems of theoreti,cal Cyberneti,cs. Abstracts oJ papers

of the VIil USSR Conference, July 1988. Gorkiy, USSR, Part 1. pp. 156-157, in

Russian.

154

and

and

Vol.

the Safety Problem for Petri Nets",

Theory of Petri, nets, Sheffi,eld, UK,

616, Springer-Verlag, 1992, pp. 299-



[66] A.Kovalyov, "On Finding the Parallelism Relation on the Set of Places for some

Subclasses of Petri Nets" Preprint. The Institute of Engineering Cybernetics of

Belarus Academy of Sciences. 1987, in Russian.

[67] A.Kovalyov, "On Finding the Parallelism Relation on the Set of Places for a

Subclass of Petri Nets", Vesci Akad. Nauulc BSSR, Ser. F.-M. Navuk, 1989,

No.2, pp. 106-110, in Russian.

[68] A.Kovalyov, "Diagnostics of One Class of Algorithms for Logical Control" , Vesci,

Akad. Nauulç BSSR, Ser. F.-M. Navuk, 1989. No.5, 96-101, in Russian.

[69] A.Kovalyov, "Diagnostics and Checking of Correctness of Concurrent Algorithms

for Logical Control" , Desi,gn of Di,screte Systems, Minsk, 1989, pp. 12-21, in

Russian.

[70] A.Kovalyov, U.Pottosin, "To Decomposition of Concurrent Algorithms for Log-

ical Control" , Automati,cs and Computers, 1988. No 1. pp. 8-13, in Russian.

[71] A.Kovalyov, "On Verification of Algorithms for Logical Control", Abstracts of

Papers of USSR Scientific Conference Theoreti,cal and Appli,ed Problems of Desi,gn

of Technological Processes Control Systems. Chelyabinsk, 1990, p.110, in Russian.

l72l A.Zakrevskii, Y.Novikov, M.Gurskaya, V.Vasilenok, A.Kovalyov, "Design of Al-

gorithms for Logical Control" , Modeling of Informati,on Systems. Abstracts of

papers of USSR Conference, Novosibirsk, Computer centre of Siberian Depart-

ment of Sciences Academy of the USSR, 1988. P.248-250, in Russian.

[73] A.Kovalyov, "On Verification of Algorithms for Logical Control by means of Petri

Nets". Preprint. The Institute of Engineering Cybernetics of Belarus Academy

of Sciences. 1990, in Russian.

155



[74] A.Kovalyov, "Concurrency Relations and the Safety Problem for Petri Nets".

Automation of Logical Design of Discrete System. Minsk. 1991, pp. 28-37, in

Russian.

[75] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing

of asynchronous circuits. Kluwer Academic Publishers, 1993.

[76] L.H. Landweber, E.L.Robertson: "Properties of conflict free and Persistent Petri

nets". J.ACM, Vol.25, No.3, 1978, pp. 352-364.

[77] P.E. Lauer, P.R.Torrigiani and M.W. Shields. "COSY - a System Specification

Language Based on Paths and Processes." Acta Informati'ca,12, L979, pp. 109-

158.

[7S] K. Lautenbach and H. Wedde. "Generating Mechanisms by Restrictions". Lec-

ture Notes in Computer Science, Vol. 45, Springer-Verlag, 1.976, pp.476-422.

[79] M. A. Marsan, G. Balbo, A.Bobbio, G.Chiola, G.Conte, and Cumani. "The

effect of execution policies on the semantics and analysis of Stochastic Petri

Nets" . IEEE Tfansacti,ons on Software Engi'neeri'ng, Vol. 15 No. 7, July 1989,

pp. 832-846.

[80] T.H.Y. Meng, editor. "synchronization Design for Digital Systems". Kluwer Aca-

demic Publishers, 1991.

[8i] R. Milner. "A Calculus of Communicating Systems". Lecture Notes in Computer

Science, Vol. 92, Springer-Verlag, 1980.

[82] G.Memmi, G.Roucairol, "Linear Algebra in Net Theory" , Net Theory and Ap-

pli.cati,ons, Lecture Notes in Computer Science, Vol. 84, Springer-Verlag, 1980,

pp.273-223.

[83] T.Murata. Petri Nets: "Properties, Analysis and Applications" . Proceedi,ngs of

the IEEE.Yo7.77, No.4, April 1989, pp. 541-580.

156



[84] J.L. Peterson. Petri, Net Theory and the Modeli,ng of Sgsterns. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1981.

[85] C.A. Petri. "Kommunikation mit Automaten". Bonn: Institut flur instrumentelle

Mathematik, 1962.

[86] E. Pastor and J. Cortadella. "An efficient unique state coding algorithm for

signal transition graphs" . Proceedi,ngs of the IEEE Internati,onal Conference on

computer Design: VLil in Computers and Processors, 1993, pp. 174177.

[87] C.V.Ramamoorthy, G.S. Ho: "Performance evaluation of asynchronous concur-

rent systems using Petri nets" . IEEE Tfans. Sofiware Erg., Vol.sD6/5, 1980,

pp.440-449.

[SS] C.Ramchandani: "Analysis of Asynchronous Concurrent Systemsby Timed Petri

nets". TR - 120, MIT-MAC, 1974.

[S9] W.Reisig: Petri, Neús. Springer-Verlag, 1985.

[g0] W.Reisig: "Petri nets with individual tokens" , Informati'k-Fachberi'chte 66,

pp.229-249, 1983.

[g1] P.H.Starke: "Analyse von Petri-Netz-Modellen". B.G.Teubner Stuttgart 1990 (in

German).

[92] J.Sifakis. "structural Properties of Petri Nets" . Mathemati,cal foundations of

computer sci,ence 1978. Springer-Verlag. Lecture Notes in Computer Science,

Vol. 64, Springer-Verlag, 1978, pp.474-483.

[g3] I.Suzuki, T.Murata: "A Method for Stepwise Refinements and Abstractions of

Petri Nets" . J. Comput. Syst. Sci'.,Yo1.27, 1983, No.1, pp. 51-76.

[94] R.Tarjan. "Depth-first search and linear graph algorithms" . SIAM J. Comp.,

Vol.1, p.p.146-160.

t57



[95] R.Vatette. "Analysis of Petri nets be stepwise refinements" , Journal of Computer

and System Sci,ence, Vol. 18, 1979, pp. 35-46.

[96] R.Valk. "Petri Nets as Token Objects - An Introduction to Elementary Object

Nets" . Proc. 19th Int. Conf. on Applicati,on and Theory of Petri, nets, Li,sbon,

Portugal, Lecture Notes in Computer Science, Vol. 1420, Springer-Veriag, L998,

pp. 1-25.

[97] W.Vogler: "Live and Bounded Fbee Choice Nets have Home States". Petri, Net

Newsletter 32, published by the Gesellschaft für Informatik, Bonn, Germany,

1989, pp. 18-2i.

[9S] A.V.Yakovlev. "On limitations and extensions of signal transition graph model

for designing asynchronous control circuits" . Proc. Int. Conf. on Computer De-

si,gn (ICCD'92), Cambridge, MA, October 1992, IEEE Comp. Society Press,

N.Y., pp. 396-400.

[99] A.V.Yakovlev and A.M.Koelmans. "Petri Nets and Digital Hardware Design".

Lectures on Petri, Nets II: Appli,cations. Aduances'in Petri, Nets, Lecture Notes

i,n Computer Sci,ence, Vol. 1492, Springer-Verlag, 1998, pp. 154-236.

[100] H. C. Yen. "A Polynomial Time Algorithm to Decide Pairwise Concurrency

of Tlansitions for 1-Bounded Conflict FÌee Petri Nets" . Informati,on Processi'ng

Letters, Vol. 38, 1991, pp. 77-76.

[101] A.D.Zakrevski. "Concurrent Algorithms for Logical Control, Reports of Sciences

Academy of Belarus" ,1982, Vol.26, No.12, pp. i088-1091.

158


