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Abstract 

 

Objective 

It has been believed that traditional handcrafted radiomic features extracted from 

magnetic resonance imaging (MRI) of tumors are normally shallow and low-ordered. Recent 

advancement in deep learning technology shows that the high-order deep radiomic features 

extracted automatically from tumor images can capture tumor heterogeneity in a more efficient 

way. We hypothesize that MRI-based deep radiomic phenotypes have significant associations 

with molecular profiles of breast cancer tumors.  We aim to identify MRI-based signatures that 

can explain the potential underlying genetic mechanisms and predict the molecular classification 

of invasive breast cancers. 

 

Methods 

We developed a new deep learning model to retrospectively extract 4,096 MRI-based 

radiomic phenotypes from primary breast cancer tumor collected by The Cancer Imaging 

Archive (TCIA). These phenotypes of the tumors are then associated with genomic features 

(commercialized gene signatures, expression of risk genes, and pathways activities) of the 

corresponding molecular profiles (e.g. gene expression) and other clinical features collected from 

The Cancer Genome Atlas (TCGA). We developed novel association and classification methods 

to select the most-predictive radiogenomic features for the clinical phenotypes, including tumor 

size (T), lymph node metastasis(N) from breast cancer TNM staging system which is widely 

used in clinic, and status of estrogen receptor (ER), progesterone receptor (PR), and human 

epidermal growth factor receptor 2 (HER2). 
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Results 

We find that transcriptional activities of various genetic pathways and gene signatures are 

positively associated with more than 1000 of the 4,096 MRI-based radiomic phenotypes. These 

radiomic phenotypes are also associated with the mRNA expression of the risk genes identified 

from two other genome-wide association studies. Higher performances are obtained in the 

prediction of HER2 status, ER status and tumor size (T) than PR status and lymph node 

metastasis (N). These identified MRI-based radiomic phenotypes also show significant power to 

stratify the breast cancer tumors, which may have a significant clinical impact. 

 

Conclusion 

Our radiogenomic approach for identifying MRI-based imaging signatures may pave 

potential pathways for the discovery of genetic mechanisms regulating specific tumor 

phenotypes and may enable a more rapid innovation of novel imaging modalities, hence 

accelerating their translation to personalized medicine. 
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1 Chapter 1: Background and Introduction 

1.1 Dynamic Contrast-enhanced T1-weighted Magnetic Resonance Imaging  

Medical imaging is widely involved in different phases of disease management due to its 

interpretability, real-time monitoring, noninvasiveness, etc [1]. Originating from simple X-ray 

imaging, medical imaging has developed a variety of branches according to different imaging 

theories.  To form an image, there must be contrasts between contents. In the human body, these 

contrasts can come from natural properties of the tissue and/or introducing contrast media 

purposely.   

The contrasts of normal X-ray imaging come from the differences between radiation 

absorption by tissues [2]. Bones have a much higher density than surrounding soft tissues in 

terms of the elemental composition, thus having a higher X-ray absorption, which provides a 

perfect natural contrast. This mechanism supports X-ray imaging to become the pervasive and 

key examination method for fracture. However, the limitation of the X-ray is its weakness in 

distinguishing amongst soft tissues, due to the lack of natural radiation absorption differences 

among these soft tissues including the gastrointestinal tract. Introducing artificial high X-ray 

absorption liquid into these soft tissues through body vessels can help to address this problem, 

which is known as contrast-enhanced X-ray imaging. However, limited by the dependence on 

vessels in this procedure, it still cannot be expected that every soft tissue can be well detected by 

enhancement X-ray imaging.   

Different from X-ray imaging, the contrasts of normal magnetic resonance imaging (MRI) 

are determined by the interaction of a proton spin with external magnetic fields[3] and this 

procedure is controlled by multi-parameters[2]. These parameters mainly include the density of 

hydrogen atom proton in the tissues and magnetic relaxivity of the tissues. The spin of positively 
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charged hydrogen atom proton could generate a tiny magnetic momentum. This tiny magnetic 

momentum, along with a stronger external magnetic field, would force the proton to undergo a 

spinning-top-like precessional motion. If the external magnetic field is consistent, the precession 

of proton would also follow a consistent rate called Larmor frequency[4]. The stable spin system 

is able to absorb energy when an electromagnetic wave of the same Larmor frequency was 

introduced [3], which is the so-called magnetic resonance. It’s not hard to understand that more 

hydrogen atom protons in the tissues can potentially contribute more tiny magnetic momentum, 

thus can be used to generate more detectable signals later, while less content of hydrogen in the 

tissues will likely end up with fewer signals. The difference would partially form the contrasts of 

the image constructed using these signals. However, the signal is not determined only by the 

density of spin proton, magnetic relaxivity also plays a role[2].  After the applied 

electromagnetic wave is canceled, the excited spin would start to relax to the stable status. This 

process is called relaxation, and there are two ways of relaxation, namely T1 relaxation and T2 

relaxation. T1 refers to the way the spin releases the absorbed energy to the around substance 

(spin-lattice interaction), while T2 refers to the spins canceling the energy out within 

themselves(spin-spin interaction)[3]. T1 and T2 are intrinsic characteristics of organics and differ 

a lot among tissues. T1 relaxation is longer than T2 relaxation, and usually, they are independent 

but would happen simultaneously[4].  So, how would the T1 and T2 influence the MR signal? T1 

time can influence the spin intensity indirectly if we add another electromagnetic wave before 

previous T1 relaxation has completed.  Since not all of the spins can be excited in this case, those 

tissues with fast T1 relaxation would be more likely to be excited, therefore would contribute 

stronger MR signal, which turns out to be bright in the MR image.  Tissues with longer T1 

relaxation would appear dark in the image due to lack of excited spins. As for the T2 relaxation, 
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we can take advantage of the T2 time differences among tissues directly by setting the MR signal 

acquiring time. If we wait a while instead of acquiring the signal right after the excitation, then 

short T2 tissues would become dark because the relaxation has completed, and no signal would 

be detected. At the same time the long T2 tissues have not completed the relaxation, so the signal 

is still detectable to be  bright in the image[4].  Therefore, by changing the combination of 

acquiring parameters, different intrinsic properties could be emphasized, forming the different 

types of MR images such as the T1-weighted image and the T2-weighted image.  Because they 

reflect different information about the tissues, the grey levels or colors of the same tissue in 

different types of images differ. For example, fat tissue in T1-weighted MR images is bright, 

while it is dark in T2-weighted images (Figure 1-1). 

 

 

       

T1-weighted image    T2-weighted image 
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Figure 1-1: Comparing the T1-weighted image with the T2-weighted image for the same body slide. 

Fat tissue in the T1WI is bright, while in the T2WI it is dark. 

 

To be brief, the contrast of MRI is complex, mainly depending on proton density, T1 time, 

and T2 time. By changing excitation and acquisition strategies, we can generate a variety type of 

MR images that emphasize different intrinsic properties of the tissues, such as the T1-weighted 

images, the T2-weighted images, etc. The flexibility of emphasizing different contrast sources 

(i.e. the intrinsic properties of tissues) builds MRI a good reputation for soft tissue and tumor 

identification even without introducing external contrast agents.  

By analogy to enhanced X-ray imaging, MRI could also employ external contrast agents 

to improve its sensitivity and specificity[5][6]. The most commonly used MRI enhancement 

agent is Gd-DTPA (gadolinium diethylenetriamine penta-acetic acid) which can reduce tissue’s 

T1 time, therefore, forming a brighter contrast in the T1-weighted MR images. Another 

advantage of enhanced imaging is its ability to capture the contrast agents wash-in and wash-out 

time, which have important clinical diagnostic meaning. For example, some tumors show a 

contrast wash-in and wash-out behavior compared with their benign lesion, which  can be used 

for differential diagnosis[7].   

 

 

 

 

 

 



17 

 

 

 

1.2  Breast Cancer and Dynamic Contrast-enhanced T1-weighted Magnetic 

Resonance Imaging in Breast Cancer 

According to the latest Global Cancer Statistics published in 2018, breast cancer still 

remains the most commonly diagnosed cancer and the leading cause of death for women[8]. 

Breast cancer is known as a complex polygenetic disease, which means the risk of developing 

breast cancer is influenced by a large number of genes, which potentially results in the diversity 

of breast cancer patient’ clinical outcomes among individuals and populations. A lot of efforts 

have been invested in identifying breast cancer risk genes, classifying different types of breast 

cancer, and staging the severity of the breast cancer.  

Biomarkers like estrogen receptor (ER) status, progestogen receptor (PR) status, and 

human epidermal receptor 2 status are widely used in the clinic to gain a rough prospect of breast 

cancer patients’ prognosis and response to endocrine therapy. Estrogen and progesterone are sex 

steroid hormones which affect growth, differentiation, and function of the mammary gland by 

binding to their receptors. While human epidermal growth factor is a common simulating factor 

that would increase the proliferation of cells, and it also acts through binding to its receptor in the 

cells. If cancer cells have estrogen receptors, the cancer is called ER-positive and will be 

influenced by estrogen. Usually, ER-positive patients have better survival than ER-negative 

patients and more response to endocrine therapy[9]. Likewise, if cancer cells have progesterone 

receptors, the cancer is called PR-positive and it will be able to receive signals from progesterone.  

If the cancer cells have mutation in the HER2 gene, too many human epidermal growth factor 

receptor twos would be made, and this type of breast cancer is called HER2-positive. HER2-
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positive cancer usually has a rapid growth rate, but the patient is also more likely to benefit from 

the corresponding targeted treatment. ER, PR, and HER2 status are important clinic 

characteristics of breast cancer because such information can tell whether a patient would benefit 

from endocrine therapy or not. These three metrics can be tested through the 

immunohistochemistry examination.  

Traditional TNM staging system is still the most commonly used method in the clinic to 

stage breast cancer, but a final decision of the stage might not be possible to be made before the 

surgery is performed [10]. In the system, T(Tumor) is used to simply describe the size of the 

tumor, N(Node) is used to describe nearby (regional) lymph nodes that are involved and M 

(Metastasis) is used to describe whether the cancer has spread from one part of the body to 

another[10]. The detail of the staging levels of the metrics T and N is shown in Table 1-1.  

Table 1-1: Tumor(T) and Node(N) metrics in TNM staging system. 

Metric Level Meaning 

Tumor 

(T) 

T1 

T1mi 0.1cm across or less 

T1a more than 0.1 cm but not more than 0.5 cm 

T1b more than 0.5 cm but not more than 1 cm 

T1c more than 1 cm but not more than 2 cm 

T2 more than 2 centimetres but no more than 5 centimetres 

T3 bigger than 5 centimetres 

T4 

T4a the tumour has spread into the chest wall 

T4b 
the tumour has spread into the skin and the breast 

might be swollen 

T4c 
the tumour has spread to both the skin and the chest 

wall 

T4d 
inflammatory carcinoma – this is a cancer in which the 

overlying skin is red, swollen and painful 

TX tumour size can't be assessed. 

Tis ductal carcinoma in situ (DCIS) 

Node 

(N) 

N1  

there are cancer cells are in the lymph nodes in the 

armpit, but the nodes are not stuck to surrounding 

tissues. 

N2 N2a 
there are cancer cells in the lymph nodes in the armpit, 

which are stuck to each other and to other structures. 
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N2b 

there are cancer cells in the lymph nodes behind the 

breastbone (the internal mammary nodes), which have 

been seen on a scan or felt by the doctor. There is no 

evidence of cancer in lymph nodes in the armpit. 

N3 

N3a 
there are cancer cells in lymph nodes below the 

collarbone 

N3b 
there are cancer cells in lymph nodes in the armpit and 

behind the breastbone 

N3c 
there are cancer cells in lymph nodes above the 

collarbone 

NX  
the lymph nodes can't be assessed (for example, if they 

were previously removed) 

N0  there are no cancer cells in any nearby nodes 

 

To take more genomic information into account, PAM50 (Prediction Analysis for 

Microarrays) intrinsic subtyping was developed and has been widely accepted nowadays due to 

its excellence of capturing biological features and predicting clinical outcomes of breast cancer. 

PAM50 uses expression information of 50 genes to classify patients into 4 subtypes: Luminal A, 

Luminal B, Her2-enriched and Basal-like [11][12]. Previous studies have confirmed the different 

expression patterns of these 4 subgroups using the large public databases such as The Cancer 

Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE)[12].  

Besides the subtyping, identifying genes that associated with increased risk of breast 

cancer is also important and it is actually the foundation of gene-level subtyping. As biology 

entered the genomic era, it has been widely recognized that a large number of genes contribute to 

human cancer onset and development. Many genome-wide association studies (GWAS) in the 

cancer genetics field have been working on identifying genes or loci that are associated with the 

risk of cancer and they have already achieved fruitful results, which significantly impact today’s 

medicine. For example, recently, Baxter et al. used Capture Hi-C, a technology to map physical 

contacts between chromatin regions in cell nuclei using high-throughput sequencing, to annotate 

63 of the established breast cancer risk loci and then identified CHi-C interaction peaks 
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involving 110 putative target genes mapping to 33 of the loci[13]. Wu et al. performed a 

transcriptome-wide association study to evaluate associations of genetically predicted gene 

expression with breast cancer risk in 122,977 cases and 105,974 controls of European ancestry 

and identified 179 genes whose predicted expression was associated with breast cancer risk at 

false discovery rate (FDR) < 1.05 × 10-3 [14]. These genes are considered as breast cancer 

susceptibility genes or risk genes, which could be used as a short list of candidates for further 

studies. 

Previously, different gene signatures, such as Prosigna[15], MammaPrint[16], Oncotype 

DX[17], were also generated as biomarkers for different clinical purposes. Each of these gene 

signatures include a list of genes curated based on tumor subtypes and other clinical 

characteristics and genomic profiles. Each of these gene signatures can be summarized into a 

patient-specific risk score using its gene expression profiles following interpretable algorithms. 

The scores can be used to predict patients’ prognosis, recurrence, and therapeutic benefits. Many 

of these signatures have been well validated[18]. However, the cost of testing the expression 

levels of the genes in the lists are still expensive, usually thousands of USA dollars, which 

limited their clinical practice.  

Similar to gene signatures, the patient-specific risk score can be inferred at pathway level. 

The definition of a biological pathway is a series of actions and reactions among molecules 

within a cell that leads to a certain product or a change in a cell[19]. The biological pathways 

could be subtyped into three main categories according to their involvement in different 

biological functions. These three types are namely metabolism pathways, gene-regulation 

pathways, and signaling pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database collected 182 pathway maps representing the existing knowledge on each of the three 
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categories of the biological pathways[20]. Traditional case and control –based genomic 

experiments would identify some significant genes which are expressed differentially between 

the case group and the control group. Using the defined gene list, associated pathways could be 

identified as well. This is the so-called gene set enrichment analysis (GSEA) and it would put the 

relative pathways’ activity scores, which could provide statistical evidence for the repression or 

activation of these pathways. However, GSEA has to be limited by the hypothesis of the 

designed case and control experiment, due to its requirement of a phenotypical label to define the 

differentially expressed gene sets. To make it more flexible, single-sample gene set enrichment 

analysis (ssGSEA) was proposed to calculate a single sample’s pathway activity scores through 

its gene expression profile to get higher-ordered and biologically more interpretable features of 

the individual sample[21]. 

From the point of view of phenotype, medical imaging is applied to all phases of the 

management of spatially and temporally heterogeneous solid cancers like breast cancer in current 

clinic practice. MRI is well-known to be superior to X-ray imaging or ultrasound, but this 

doesn’t mean MRI can replace X-ray and ultrasound. Actually, although some explorations try to 

extend MRI as a new screening method for breast cancer other than mammography [22], the 

clinical reality is that the benefit does not compensate for the relatively higher costs for MRI, in 

most cases [23]. The strategy of current breast cancer screening, which combines mammography, 

clinical examination and ultrasound, has been validated to have good performance in detecting 

early-stage and low-risk breast cancer[24]. But MRI still plays an important role in detecting 

high-risk multifocal breast cancer and provides better staging information[25] with a reported 

sensitivity of over 90% for detecting malignant invasive breast cancer[8][22]. Most importantly, 

MRI, especially dynamic enhanced MRI, appears to have higher sensitivity than mammography 
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or ultrasound in detecting tumors in those females who have inherited susceptibility of breast 

cancer[26][27], which indicates MRI’s potential position in the genetic-based  personal medicine.  

Generally speaking, after the medical images are acquired, radiologists would make the 

diagnostic decisions based on their training and experience. As for the dynamic enhanced MR 

images, radiologists could observe the information contained in the images in two aspects, which 

are the morphologic and kinetic information during contrast medium wash-in/wash-out.  Because 

there are a lot of parameters and variances in both acquisition procedure and individual intrinsic 

properties as we mentioned previously, which also increase the complexity and subjectivity of 

MRI related healthcare studies, diagnosis especially differential diagnosis should be done 

carefully. Therefore, since the application of MRI technology has been introduced in the clinical 

practice, people have begun to explore quantitative and objective observation standards.  Current 

quantitative measurements generated by computer-aided diagnosis tools range from the simple 

features as the size and volume of the tumor, to the complex features as kinetic curves (wash-

in/wash-out times and patterns). They have already been well applied in the clinical practice  and 

performed very well in supporting the diagnosis of breast cancer[28].      
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1.3 Radiomics in Breast Cancer 

As an expansion of computer-aided diagnosis, radiomics is defined as using high-

throughput and large number  (usually larger than 200) of quantitative features extracted from 

medical images by advanced mathematic techniques to describe disease phenotypes thereby 

predicting the clinical characteristics and outcomes[29]. Actually, radiomics intends to make the 

best use of the medical images by thoroughly mining the information embedded in the image and 

exploring any possible representativeness of it.  

A typical workflow of radiomic-based study is as follows. Raw images are acquired in 

the first place following a standard and uniform procedure to make sure the origin of the data is 

comparable. Then the radiologists or oncologists need to be involved to mark the tumor regions 

in each of the images based on their experience so that subsequent feature extraction methods 

could be applied. There have been a large number of feature extraction algorithms  published in 

the recent decade, and their representativeness and predictive ability are identified and evaluated 

later on[29].  

We have learned from the principle of dynamic enhanced MRI mentioned above that 

MRI is a complex process and it has the ability to capture different intrinsic properties of the 

tissues. It is reasonable for us to expect that dynamic enhanced MR image could potentially 

contain the surrogate information of the disease about clinical characteristics/outcomes, 

pathology, genomics, etc. MRI has all the advantages in terms of non-invasive, real-time, and 

rich enough for us to mine. If significant associations can be identified between the radiomic 

features and other known important features of the disease, then the MRI could serve as a “one-

stop for everything” tool to better diagnose, monitor, and treat the disease.  
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Zhu et al. reported 38 quantitative radiomic features (Table 1-2) extracted from the 

dynamic enhanced MR images of 91 breast cancer patients, which characterize the size, shape, 

morphology, enhancement texture, kinetics, and variance kinetics of the breast tumor[30]. 

 

Table 1-2: The 38 semi-auto dynamic enhanced MRI-based radiomic features of breast cancer 

reported by a previous study.  

Feature category*  Name 

Size features 

 

Lesion volume  

Lesion diameter 

Lesion surface area 

Maximum length 

Shape features Sphericity 

Irregularity 

Surface-to-volume ratio 

Morphological features 

 

Margin sharpness 

Variance of margin sharpness 

Variance of radial gradient histogram 

Enhancement texture features 

 

Contrast 

Correlation 

Difference entropy 

Difference variance 

Angular second moment (energy) 

Entropy 

Inverse difference moment 
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Information measure of correlation 

Information measure of correlation  

Maximum correlation coefficient 

Sum average 

Sum entropy 

Sum variance 

Sum of squares (variance) 

Kinetic curve features 

 

Maximum enhancement 

Time to peak  

Uptake rate  

Washout rate  

Curve shape index 

Enhancement at first postcontrast time point 

Signal enhancement ratio 

Volume of most enhancing voxels  

Total rate variation  

Normalized total rate variation  

Enhancement-variance kinetics 

features 

Maximum variance of enhancement 

Time to peak at maximum variance  

Enhancement variance increasing rate  

Enhancement variance decreasing rate  

 

 

However, their radiomic features are semi-automatically extracted. Actually, although 

there are some imaging biomarkers identified by previous radiomics studies following such a 
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workflow [31], they are still subjective due to the requesting of radiologists to segment the 

regions of interest[32]. What’s more, it has been suggested that these handcrafted biomarkers, 

such as the tumor size and shape, are shallow and may not fully represent the heterogeneity of 

images[33]. These limitations must be overcome so that radiomics can be better explored on the 

right track. 
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1.4 Radiogenomics in Breast Cancer 

From the genomic side, the flourishing of genomic biomarkers has successfully revealed 

some biological mechanisms of diseases and performed very well in supporting clinical 

decisions[34]. However, although the development of biological technologies has highly reduced 

the cost of genome sequencing, it is still not that practical to test these genomic biomarkers in 

vivo and to use them in the real-time clinical routine[35]. Therefore, the attempt of integrating 

radiomics and genomics together has driven a brand-new discipline which is called 

radiogenomics. Radiogenomics aims to solve clinical problems by taking account of both 

radiomics and genomics. 

For example, Zhu et al. investigated their 38 semiauto- dynamic enhanced MR image 

features and reported significant associations between the image features and genomic 

signatures[35]. However, since their image features were obtained under the radiologists’ prior 

knowledge, the objectivity was still doubted. 

Besides the subjectivity, another critical issue in the radiogenomics analysis is the 

increasing computing complexity in both the feature extraction and later on association and 

prediction analyses, which is due to the nature of the high-dimensional and large-scale multi-

omics data.   
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1.5  Deep Learning in Radiomics and Radiogenomics 

Deep learning is a technique under the broad term of artificial intelligence which is not 

new but comes afresh in recent years due to the development of advanced hardware techniques 

in the computer science field. Artificial intelligence is broadly defined as computer programs 

trained to learn, reason, perceive, infer, communicate and make decisions as humans do. Under 

this umbrella, machine learning is the approaches of letting computers not just be programmed to 

be smart at something, but actually learn from its experience and improve its performance over 

time. Deep learning is a kind of machine learning which uses a specific model called deep 

artificial neural network to learn knowledge. The naming of artificial neural network was 

inspired by the networks of neurons in the human brain. Deep artificial neural network is 

composed of multiple non-linear data processing layers in its mathematic architecture to extract 

features with multiple levels of abstraction (Figure 1-2) [36].  

Deep learning is not a new technique but was remained under explored for many years 

because of the computing complexity. However, recently it has been warmly re-embraced in a lot 

of domains due to the rapid development of computer hardware and its power for handling big 

data. Like other learning methods, in order to solve different problems, deep learning could be 

implemented in a supervised or unsupervised way, which depends on whether the label 

information is given to the model or not. Supervised learning algorithms would use a guiding 

label to train a model and the model is often used to predict this label in an unlabeled dataset 

later on[37], while unsupervised learning algorithms do not force the model to learn a certain 

label, but it is more data-driven instead of hypothesis-driven[38][39].  
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Figure 1-2: Deep features with multi-level abstraction. Deep artificial neural network is composed of 

multiple non-linear data processing layers in its mathematic architecture and each hidden layer represents 

features with multiple levels of abstraction.  

 

Recently, deep learning has been applied to perform radiomic-based analyses. Li et al. 

developed a supervised deep learning model to automatically extract features from glioma 

patients’ MR images and these features were estimated to have tumor grading significance[40]. 

However, they didn’t perform further exploration of the genomic surrogate of these deep image 

features, which made their study limited to radiomics instead of radiogenomics.  

Among the unsupervised learning algorithms, autoencoder is a new technology that uses 

the data itself as the learning objective or label. Therefore, it is also known as self-labeled or 

self-supervised deep learning. Traditional autoencoders may face an invalid learning problem 
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when the number of hidden nodes is larger than the input size, which means the autoencoder 

would figure out a tricky way to finish the training task by just outputting the result that is 

exactly the same as the input data without learning anything. To avoid this potential risk, 

denoising autoencoders come up with adding some noise to the input data on purpose. Vincent 

et.al brought the concept of denoising autoencoders into deep learning and built a specialized 

feature extraction architecture [41]. The key idea of denoising autoencoders as mentioned above 

is to add random noise in the raw data before it is input into the network. After the encode and 

decode processes, raw data would be reconstructed from the noisy data, while the compact and 

efficient representations of the raw data could be learned as well [41].  

 Features extracted by a data-driven method under the unsupervised way are believed to 

have higher flexibility of representing the intrinsic pattern of the data being analyzed than 

supervised hypothesis-driven methods. Since the radiomics has a core goal of identifying as 

many as possible high-quality surrogate biomarkers, there is a slightly larger tendency in this 

field to use unsupervised learning like denoising autoencoders to extract features from medical 

images.  

 Deep learning has been believed to have the power to extract robust features from 

images, the increasing number of attempts to introduce deep learning to radiomics have proved 

this. However, deep learning-based auto- image features have not been well studied in 

radiogenomics yet.  Most of the completed radiogenomic studies were still done in a semiauto-

way. Radiogenomics is eager for automatic and powerful algorithms to push its limits, while 

deep learning could provide the solutions. 
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2 Chapter 2: Motivation, Hypothesis and Research Objectives 

2.1  Motivation 

       MRI especially dynamic enhanced MRI has the potential to encompass clinically relevant 

deep information due to MRI theory at the proton level, which is worthy to be dug up. Due to the 

severity and complexity of breast cancer, a large number of genetic and clinical research has 

been performed, which provides us with validated and valuable biomarkers to focus on. 

Meanwhile, the advancements in related biological techniques and computational techniques 

equip us to dive into radiogenomics deeply without considering too much about the cost and 

time.  

 The limitation of being subjective or lack of genomic information makes the image 

biomarkers identified by previous radiogenomic studies hard to be translated into clinical reality. 

The need of objectively mining deeper information from the complex medical images and 

exploring their genomic potential motivates us to identify radiomic biomarkers which can be 

acquired automatically by an advanced and effective deep learning model like denoising 

autoencoder, and also have strong genomic and clinical significance. An ideal thought is that the 

associations between auto- radiomic features and genomic signatures as well as the clinical 

outcomes could be learned thoroughly. The identified significantly associated radiomic 

biomarkers thereby can be used to predict those important genomic biomarkers and clinical 

outcomes, supporting personal medicine decision-making in an indirect way.  

It is expected that if the same radiomic features and genomic features can be significantly 

associated with the same clinical outcomes, then the radiomic features can be potentially used as 

a cost-saving non-invasive way to replace genomic signatures for cancer diagnosis, prognosis or 
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therapeutic use. Furthermore, they can also help deepen the understanding of cancer’s initiation 

and progression (Figure 2-1). 

 

Figure 2-1: A flowchart illustrating the rationale and significance of this project. The red dash line 

represents the workflow of traditional semiauto-image biomarker identification. It has been well studied 

and supported by genomic associations. The blue dash line represents the workflow of auto-image 

biomarker identification. It has been well studied the association of the features with clinical but not 

genomic features. The green dash line represents the workflow of this study. We intend to identify auto-

image biomarkers and study their association with both clinical and genomic features. 
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2.2 Hypothesis 

In this study, we hypothesize that dynamic enhanced MRI-based auto- image features 

extracted by denoising autoencoder models have significant association with breast cancer 

patients’ genomic profiles. We also hypothesize that these image features could also be used to 

predict patients’ clinical outcomes. Therefore, the radiogenomic findings could potentially be 

used for supporting personal medicine decision. 

2.3 Research Aims 

We have three aims:  

1. Develop a robust deep learning model in a denoising autoencoder way to automatically 

extract auto-image features from breast cancer dynamic enhanced MR images;  

2. Identify the significant associations between these auto-image features with genomic 

features;  

3. Predict clinical outcomes using these auto-image features. 
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3 Chapter 3: Materials and Methods 

3.1 Data Sources 

Three publicly available datasets were involved in this retrospective study, namely MR 

image data, genomic data, and clinical data. These datasets were downloaded from The Cancer 

Image Archive (TCIA) and The Cancer Genome Atlas Breast Cancer collection (TCGA-

BRCA)[44]. TCGA-BRCA is the counterpart of TCIA-BRCA project. TCIA provides images 

and TCGA provides matched clinical, genetic, and pathological data for the same patients. 

Several preprocessing procedures were done before the feature extraction and further statistical 

analyses were performed. The downloading and preprocessing procedures of the three data 

sources are shown in Figure 3-1. The details of these procedures are discussed in the following 

subsections. 

 

 

Figure 3-1: A flowchart showing the downloading and preprocessing procedures of the three data 

sources used in this study. Bold items were done by us, while RNA-Seq alignment and quantification 

were done by the TCGA database. 
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3.1.1 MRI data 

We downloaded the raw MR images of 139 breast cancer patients stored in TCIA-

BRCA[42]. These MR images were acquired under different devices and machine parameters, 

which resulted in different types such as the T1-weighted images, the T2-weighted images, and 

so on[43]. As discussed in the Chapter 1, different tissue intrinsic properties are emphasized in 

these types of images; the same tissue shows different grey levels (colors) in different types of 

MR images. For example, fat tissue in the T1-weighted MR images is bright, while in the T2-

weighted images it is dark (Figure 1-1). Therefore, to keep our study comparable between 

patients and reduce the error caused by differences of image series, we only focused on the T1-

weighted dynamic enhancement series from each study-level image sets as shown in Figure 3-2. 

It should be noted that one MRI series is like a 3-dimensional movie with a series of frames. 

Images within one series look very similar in contrast and resolution because they were acquired 

under the same parameters. The only difference is that they show different body slices. The 

organization structure of the MRI raw data is shown in Figure 3-2. 
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Figure 3-2:  The organization structure of TCGA breast cancer images. The total number of patients 

in TCIA-BRCA collection is 139. The top-level of TCIA image archive structure is the individual 

patients. Then according to the different time points and exam modalities, each patient is classified into 

different “study”, where MR refers to magnetic resonance images while MG refers to mammography 

images. We focus on only MR in this study. Under each study-level, “series” level image set is a 

combination of similar images that were acquired under the same device parameters but different body 

slides. While within a series (same patient, same date, same parameter setting), different numbers of 

images were acquired at different body slices of the same patient. These images look very similar in 

contrast and resolution to one other but different only by the body slice.  

 

It should be also noted that each patient has a different number of images as shown in 

Figure 3-3. To avoid potential bias, we filtered out three patients who have more than 2,000 

images. After the filtering, we were left with 52,238 images from the remaining 110 breast 

cancer patients.  
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Figure 3-3: Distribution of image numbers by patients. There are three patients who have 

more than 2,000 images, so we excluded them to avoid potential bias. After deleting the images 

of the three patients, we were left with 52,238 images for 110 patients. 

 

However, these images still have different image size (Figure 3-4) and image depth. 

Some preprocesses were applied to make these images comparable. We first zoomed the image 

size of all images to 64×64 pixels uniformly and then rescaled the pixel values to the range of 0 

to 1 for meeting deep learning model requirements. After all, we have 52,238 images from 110 

patients as samples and each sample has 64×64 pixels.  
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Figure 3-4: Size distribution of the raw MR images. The resolution of the images was lost after we 

reshaped them to a uniform size of 64×64. 

  

 

 

 

 

 

3.1.2  Genomic data 

The clinical and genomic (mRNA sequencing-based gene expressions) data of those 110 

breast cancer patients who also have MRI data in TCIA were retrieved from TCGA by TCGA-

Assembler[45]. For gene expression data, the sequencing, alignment, quality control, and 

quantification were done by the TCGA team previously[44]. The pipeline of these upstream 

processing analyses begins with the pre-alignment quality assessment using FASTQC tool[46]. 

Then the alignment is performed through a two-pass method with STAR2[47], which aligns each 

read group separately and then merges them into a final alignment using a splice junction 
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detection step proposed by the International Cancer Genome Consortium ICGC[44]. The 

alignment workflow outputs a BAM file, which contains both aligned and unaligned reads. Then 

a post-alignment quality assessment is performed using RNA-SeQC Tools[48]. Following that, 

the aligned BAM files would undergo an expression quantification workflow to generate 

quantified gene expression levels using HT-Seq-Count[49] and the GENCODE v22[50] is used 

as the reference genome for gene annotation. Although there is normalized data available for 

people to download through TCGA data portal, we decided to start with the raw gene count data 

and performed the filtering and normalization by ourselves so that different criteria could be 

tested.   

Using the TCGA-Assembler tool[45], we excluded unexpressed genes with count per 

million (CPM) less than 1 in 3 or more  patients. Normalization of the data using Upper Quartile 

Fragments per Kilobase of transcript per Million mapped reads (FPKM-UQ)[51] was also 

performed.  We ended up with 16,197 (genes) × 110 (patients) for gene expression data. 

 

 

3.1.3 Clinical data 

Clinical data were carefully scanned. We extracted and binarized the clinical characteristics 

such as pathological TN status (Tumor size (T), Node metastasis (N)), estrogen receptor (ER) 

status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) 

status.  Specifically, tumors with a size smaller than 2cm were assigned to the T-negative group, 

while those with size larger than 2cm were set to the T-positive group. Node metastasis was 
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coded as N-positive/N-negative simply according to whether there were lymph nodes invasion or 

not. The clinical data of the 110 patients are shown in Figure 3-5.  

 

Figure 3-5: The 5 binarized clinical characteristics and their distribution in the 110 patients. The Y-

axis is the number of patients and the X-axis is the clinical subgroups. 

 

3.1.4 Breast cancer risk genes 

Breast cancer is a complex and polygenetic disease. Identifying genes that are associated 

with the increased risk of breast cancer is important, not only because it is the foundation of 

gene-level subtyping, but also because the identified risk genes could be served as a shortlist of 

marks for further studies. Besides the well-known mutations in BRCA1, BRCA2, TP53 that have 

been accepted as high-risk factors of breast cancer onset, many other breast cancer risk genes 
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were identified by GWAS. Most recently, Baxter. et al. used Capture Hi-C to annotate 63 of the 

established breast cancer risk loci and identified CHi-C interaction peaks involving 110 putative 

target genes mapping to 33 loci[13].  Wu et al. performed a transcriptome-wide association study 

to evaluate associations of genetically predicted gene expression with breast cancer risk in 

122,977 cases and 105,974 controls of European ancestry and identified 179 genes whose 

predicted expression was associated with breast cancer risk at FDR < 1.05 × 10-3 [14].  We used 

this list of 288 well-validated  breast cancer risk genes identified from these two studies [13, 14] 

as the candidate breast cancer risk genes for further examination in our study which was a subset 

of our gene expression data with size of 288 (genes) ×110 (patients).  

3.1.5  Breast cancer gene signatures 

Based on different sets of risk genes (also called as gene signatures) and their 

performance in breast cancer recurrence or prognosis prediction, some patient-specific numeric 

risk scores have been designed and calculated for each of the gene signatures. These gene 

signature-specific risk scores quantified the risk of recurrence, risk of death, and/or effect of 

therapy. Their significance in predicting patient outcomes has been well-validated. What’s more, 

some of the genetic testing based on these gene signatures have already been approved and 

commercialized[18].  

In this study, we calculated the patients-specific risk scores for the 6 published and 

commercialized gene signatures (Table 3-1) using R package genefu [52]. These risk scores 

measure prognostic significance at patient level [52]. Oncotype DX is a recurrence risk score 

calculated from the expression of 16 cancer-related genes and 5 reference genes. It has been 

validated to have the ability of quantifying the distant recurrence in ER-positive, N-negative, and 
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tamoxifen-treated breast cancer[53]. EndoPredicte examines the expression of 8 cancer related 

genes and 3 reference genes, which has been validated as an independent predictor of distant 

recurrence in ER-positive, HER2-negative, endocrine-treated breast cancer patients[54]. 

Prosigna (rorS) is a gene expression signature estimating distant recurrence risk of ER-positive, 

PR-positive, hormone-treated, postmenopausal women with breast cancer. It is calculated from 

Prediction Analysis of Microarray (PAM50) gene set[55]. MammaPrint (GENE70) is offered in 

clinic as a gene expression signature for N-negative breast cancer women under the age of 61. It 

is calculated from the expression of 70 genes and could predict the benefit of adjuvant 

therapy[55][56].  GENIUS is a predicted prognostic risk score applicable for any subtype of 

breast cancer. It has a hyperparameter to decide the number of included genes[57]. PIK3CA-GS 

is derived from exon 20 (the kinase domain) mutations and is able to predict PIK3CA mutation 

status and tamoxifen sensitivity of ER-positive and HER2-negative breast cancer[58].  

 

 

 

Table 3-1: The six gene signatures used in this study. 

Gene 

signatures 

Clinical usage Comments  Genes 

OncotypeDX recurrent risk 

prediction of 

ER+/HER2- 

breast cancer  

Approved by FDA. 

Available in USA, 

but not available in 

majority provinces in 

Canada. >$4,000 

USD/test.  

ESR1, PGR, BCL2, SCUBE2, 

Ki67, STK15, Survivin, CCNB1, MYL2, HER-

2, GRB7, MMP11, 

CTSL2, GSTM1, CD68, BACG1 

endoPredict 10 years recurrent 

risk prediction of 

ER+/HER2- 

breast cancer  

More recent tool. 

More accurate than 

OncotypeDX. Not 

approved by FDA. 

Only available in 

Europe. 

BIRC5, UBE2C, DHCR7, RBBP8, IL6ST, 

AZGP1, MGP, STC2, CALM2, OAZ1, RPL37A 

 

rorS 

(Prosigna) 

Prediction of 

distant (another 

Approved by FDA 

and Europe. Will be 

ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, 

CCNB1, CCNE1, CDC20, CDC6, CDH3, CENPF, 
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part of the body 

called metastatic 

cancer) recurrence 

risk.  

available in Alberta.  

>$3,000USD/test 

CEP55, CXXC5, EGFR, ERBB2, ESR1, EXO1, 

FGFR4, FOXA1, FOXC1, GPR160, GRB7, 

KIF2C, KRT14, KRT17, KRT5, MAPT, MDM2, 

MELK, MIA, MKI67, MLPH, MMP11, MYBL2, 

MYC, NAT1, NDC80, NUF2, ORC6L, PGR, 

PHGDH, PTTG1, RRM2, SFRP1, SLC39A6, 

TMEM45B, TYMS, UBE2C, UBE2T 

gene70 

(MammaPrint) 

Prognosis 

and chemotherapy

  efficacy 

70 genes BBC3, EGLN1, BCL2, TGFB3 , ESM1, IGFBP5, 

SCUBE2, TGFB3, WISP1, FLT1, HRASLS, 

STK32B, RASSF7, DCK, MELK, EXT1, GNAZ, 

EBF4, MTDH, PITRM1, QSCN6L1, CCNE2, 

ECT2, CENPA, LIN9, KNTC2, MCM6, NUSAP1, 

ORC6L, TSPYL5, RUNDC1, PRC1, RFC4, 

RECQL5, CDCA7, DTL, COL4A2, GPR180, 

MMP9, GPR126, RTN4RL1, DIAPH3, 

CDC42BPA, PALM2, ALDH4A1, AYTL2, 

OXCT1, PECI, GMPS, GSTM3, SLC2A3, FGF18, 

COL4A2, EGLN1, MMP9, LOC100288906, 

C9orf30, ZNF533, C16orf61, SERF1A, C20orf46, 

LOC730018, LOC100131053, AA555029_RC, 

LGP2, NMU, UCHL5, JHDM1D, AP2B1, MS4-

A7, RAB6B 

GENIUS prognostic risk  Hyperparameter to 

determine the size of 

gene set 

 

Pik3cags-GS Tamoxifen 

monotherapy 

outcomes of 

ER+/HER2- 

breast cancer  

PIK3CA mutations 

(exon 20 kinase 

domain) 

PIK3CA 

 

 

3.1.6 KEGG pathways 

 KEGG database is a collection of 182 pathways representing the existing knowledge on 

each of the three categories of the biological pathways[20], which include metabolism pathways, 

gene-regulation pathways and signaling pathways. We calculated the pathway activity scores of 

these 182 KEGG pathways from the expression of the 16,197 genes in the 110 patients using the 

Single Sample Gene Set Enrichment Analysis (ssGSEA) function[59] which was implemented in 

the GenePattern toolkit [60]. Eventually, we got an activity score matrix with size of 

182(pathways) ×110(patients). 
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3.2 Deep Learning Model for Extracting Deep Radiomic Features  

  When applying an unsupervised deep learning model to extract features from data, what 

we want is not the output results of the interconnected layers of the mathematical architecture of 

the deep neural network. Instead, we are more interested in the information in the hidden layers 

in the middle of the model structure, which would be our deep features when they are exported 

from the well-trained model and would be passed on to the follow-up analysis. As we mentioned 

in the Chapter 1, we do not want to force our model to learn a set of features that only work well 

for predicting certain known information, but we wish the deep features to capture the intrinsic 

patterns of the data. Therefore, we won’t give any known information as labels to the model. To 

do this, here we employ the autoencoder to solve the problem. The idea of the autoencoder is to 

use the input data itself as labels to train a special structured model that has a bottom neck in its 

architecture. The bottle neck means the model first encodes the raw input data to a lower 

dimensional space, then decodes the lower dimensional projection of the data back to the high 

dimensional space. It is easy to follow the idea because if the low dimensional projection of the 

raw data could be successfully decoded to the original high dimension format, and could be very 

similar to the raw data, then we could say the projection of the raw data in the low dimensional 

space is representative. However, there is a limitation using this kind of traditional autoencoder, 

which is the so-called identity learning problem, that is, when the bottle neck has the size larger 

than the raw data, the model might become an identity function which only returns exactly the 

same output as the input without any intermediate processing. This situation is likely to happen 

because the introducing of kernels would usually increase the dimension of the middle layers of 

the model. To solve the identity learning problem, we introduce random noise to the raw data to 

avoid the model having exactly the same input and output. This is the key principle of denoising 
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autoencoder and the idea is also easy to follow by thinking in the way that if a deep learning 

model could recover data from its corrupted version, then we could say the model is more 

intelligent and the features it has learned in the deepest layer are more representative. 

  We developed a stacked convolutional denoising autoencoder (DA) model using 

Keras[61] with Tensorflow[62] as backend to automatically extract image features (Figure 3-6).  

It has 5 layers in the encode phase and 5 layers in the decode phase. 
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Figure 3-6: The DA model used in this study to extract deep radiomic features. There are two 

convolutional layers and two max-pooling layers in the encode phase, two convolutional layers, and two 

upsampling layers in the decode phase. For the (None, n, n, m), “None” is the place holding our 52,238 

image samples, (n, n) in the middle indicates the number of features in each kernel. m is the number of 

kernels.  

 

  Before the raw data were inputted into the DA model, a 5% level of normally distributed 

random noise was added into the data using the following formula (3-1).  

  noisy_data  =  raw_data + noise_level × random.normal (0 , 1, size (raw_data))          (3-1) 

 

  Here noise_level was set to 0.05; random.normal () is a function in Python NumPy 

package which was employed to generate random numbers normally distributed in a range of 0 

to 1.    

  In the encoding phase, noised data were processed by 2 repeated convolutional blocks 

which contained one 2-dimensional convolutional layer followed by a 2×2 max-pooling layer. In 

this type of neural networks, convolutional operation could be described as using a feature 

detector/filter/kernel to slide across the input image, then store the sum of their dot product to a 

feature map. This operation could reduce the input to its essential features. Actually, in the real 

convolutional neural networks, several convolutional operations would be included and the 

model would determine the weights in the kernels in a backpropagation way during training[36]. 

Max-pooling summarizes a certain size of the neighboring values within a feature map to 

increase the abstraction level of the feature map and protects from overfitting[63]. In the 

decoding phase, upsampling was used to increase the size back to the same as the input by 

simply repeating the values[64].  
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  Rectified Linear Unit (ReLU) was selected as the activation function to introduce 

interactions and non-linearities into the model. ReLU is the most commonly used activation 

function in deep learning[65]. It returns 0 if the input is negative, and returns the same value as 

the input if the input is positive.  ReLU function could be illustrated by the following formula (3-

2). 

f(x) = max (0, x)                                                      (3-2) 

  The cost function is a training parameter, which is also called loss function measuring 

how the prediction is similar to the ground truth. Actually, the goal of training is to minimise the 

cost function.  We selected mean square error (MSE) as cost function in this study. 

𝑴𝑺𝑬 =
𝟏

𝑵
∑ (𝒚𝒊 − 𝒚̃𝒊)𝑵

𝒊=𝟏                                                    (3-3) 

  Here y is the ground truth, 𝑦̃ is the prediction. In our case, y is the raw image data, 𝑦̃ is 

the denoised image data. N is the sample size. The goal of our training is to make the denoised 

images as close as the raw images. 

  Other hyperparameters required in the training step were also chosen carefully. Adam 

was used as optimizer[66], the original learning rate was set to 0.1, the batch size was 64, and the 

epoch was 100. 

  After the model was well trained, raw data were likely reconstructed from the noisy data, 

while the compact and efficient representations from the raw data were learned as well[41]. We 

extracted the output of last encode hidden layer as our radiomic features (Figure 3-6 blue circle). 

The radiomic feature matrix, which has a dimension of 52,238×4,096, where 52,238 is the image 

size from 110 patients while 4,096 is the deep radiomic feature size from 16 kernels with kernel 

size of 16×16.  
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3.3 Preprocessing of the Learned Deep Features and Their Visualization 

 For the extracted deep radiomic features, a sample-level quantile normalization was then 

performed using the following algorithm to make the deep features comparable[67]. 

 

 

Algorithm 3.1:  Quantile normalization 

 

Input:   

matrix X has dimension of p× n 

where n is the sample size, while p is the feature size.  

    Procedure: 

1. Sort each column of X to form Xsort 

2. Take the means across rows of Xsort and assign this mean to each element in the row to get 

X’sort 

3. Get Xnormalized by rearranging each column of Xsort to have the same ordering as original X. 

   Output: 

 normalized data matrix Xnormalized 

  

After quantile normalization was performed, the distributions of the unnormalized and 

normalized image-level deep features were visualized using kdeplot (kernel density estimation) 

function from Python package seaborn[68]. 

Unlike the semiauto handcraft radiomic features, deep radiomic features extracted by the 

deep learning model do not have predefined biological meaning. Therefore, visualization of the 
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learned deep radiomic features can be helpful for interpreting their potential biological meaning. 

According to the mathematical structure of our model, we know that the kernels created by the 

convolutional operations can be treated as different filtrations of an individual image, which 

means the kernels of the same image can highlight different information the image contains.  

Therefore, it would be more understandable if we plot the deep radiomic features from the same 

kernel into a map which has consistent position information as the original image. We employed 

the Heatmap function[68] to create the kernel-wise map for each of our 16 kernels for the 52,238 

images with different colors representing the magnitude of the feature values while position 

associating  to the original coordinates of the images. 
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3.4 Unsupervised Clustering and Visualization 

Heatmap3 [69] and t-Distributed Stochastic Neighbor Embedding (t-SNE)[70] were 

performed to visualize and cluster the normalized deep radiomic features in an unsupervised way. 

Complete linkage function in the hierarchical clustering process and visual-guided criteria by 

analysis of the dendrogram were used to decide the number of clusters in the heatmap.  

t-SNE is a prize-winning nonlinear dimensionality reduction technique. It has been 

validated to have better performance in capturing the structure of high-dimensional data[71].  

Traditional linear dimensionality reduction methods such as PCA (principal component analysis) 

always focus on keeping the dissimilar data points far away from each other. But in high 

dimensional case, besides emphasizing the difference, we also want to keep the similar data 

points as close to each other as possible. Therefore, nonlinear dimensionality methods are 

required to deal with high dimensional data. Among all the existing nonlinear dimensionality 

reduction methods, t-SNE is an outstanding one because of its ability to capture both local and 

global structures simultaneously. To be brief, the algorithm first defines a group of neighbors, 

and then gives higher weights to the neighbors within the same group and lower weights to the 

points out of the group. There is a hyperparameter Perp (perplexity) in the algorithm, which is 

used to adjust the effect of the number of neighbors on the final results. Usually, the 

hyperparameter Perp is chosen from 5 to 50[71].   

We performed t-SNE clustering of the deep radiomic features at both patient and image 

levels with the perplexity set as 5 and 50, respectively. Patient-level features were calculated as 

the mean of image-level features. Because we performed the clustering of the images and 

patients using the deep radiomic features in an unsupervised way, there were no colors 

representing the category differences of the images and patients in the original t-SNE maps. 
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However, after the patient-level t-SNE map was generated, colors were manually assigned to the 

clusters based on the patients’ clinical characteristics. In this way, we assigned the same colors to 

the image-level t-SNE map.  
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3.5 Classification of Clinical Characteristics Using Deep Radiomic Features 

We performed supervised classification analysis using the learned deep radiomic features 

to predict the status of the 5 clinical characteristics (ER status, PR status, HER status, T and N) 

at image level. Since there are 4,095 radiomic features as predictors in the classification model, 

overfitting is likely to occur. We built a least absolute shrinkage and selection operator (LASSO) 

regression model using the R packages biglasso[72]. LASSO is a regularization technique that 

can be added into the fitting process of a linear regression model to reduce the magnitude of 

coefficients so that overfitting could be avoided. The formula of the multiple linear regression is 

shown in the Equation 3-4. 

Yi = 𝛽0 + 𝛽1Xi1 + 𝛽2Xi2 + ⋯ +  𝛽pXip        i=1, 2, …, N                  (3-4) 

Here Xs are the 4,096 deep radiomic features, Y is a given clinical characteristic. N is the 

sample size, while p is the number of deep radiomic features. Generally speaking, to fit the 

multiple linear regression model, we need to find the best 𝛽s to minimize the sums of squares 

error between regressed values and the true values of Y. This is called least squares, which is the 

most commonly used approach to approximate the coefficients. Since there are too many 

predictors in the model, it’s easy to overfit the model if we include all of them in the model.  The 

idea of LASSO is to add a penalty term into the least squares as shown below. 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 min
𝛽

1

𝑁
∑ (−𝑦𝑖log (𝛽𝑗𝑥𝑖)

𝑁

𝑖=1
− (1 − 𝑦𝑖)log (1 − 𝛽𝑗𝑥𝑖)) + 𝜆 ∑ |𝑝

𝑗=1 𝛽𝑗|             (3-5) 

Here 𝑥 is a vector of radiomic features. y is a given clinical characteristic. N is the sample 

size. p is the number of the radiomic features in the feature vector. 𝜆 is a hyperparameter used to 

control the level of penalty. The consequence is that as 𝜆  increases, some of the 𝛽s would 

decrease to 0, which would result in some of the features being removed from the linear 
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regression model to avoid the overfitting issue and select the important features used to fit the 

model[72].  

Models were trained on a randomly selected sample set with 70% of the total samples 

and performance was evaluated using a test set with the remaining 30% of the total samples. 100 

𝜆s were tried and the performances of the models with different 𝜆s were measured using a metric 

called AUC which is a short term of the area under the receiver operating characteristic (ROC) 

curve. To understand AUC and ROC better, we need to look at the confusion matrix (Table 3-2), 

which is one of the efficient methods to describe the performance of a classifier.  

Table 3-2: Confusion matrix to describe classification performance 

 True class 

 positive negative 

Predicted class positive True positive 

(TP) 

False positive 

(FP) 

negative False negative 

(FN) 

True negative 

(TN) 

 

Using the confusion matrix, some classification performance measures can be defined, 

which include sensitivity or true positive rate (TP/(TP+FN)), specificity (TN/(TN+FP)), and 

false positive rate (FPR=FP/the actual number of negative samples tested). ROC curve is a line 

plotted in a space with false positive rate (FPR) as x-axis and true positive rate (TPR) as y-axis, 

while AUC is the area under the ROC curve (Figure 3-7). An AUC close to 1 means the model 

performs very well in classifying the test samples, while a smaller AUC value usually indicates a 

failure model.  The R packages ROCR[68] and MLmetrics[68] were used to calculate the AUC 

values for our LASSO models with different 𝜆s. 
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Figure 3-7: The relationship of ROC curve and AUC. 
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3.6 Association Analysis of Genomic Features and Deep Radiomic Features 

To evaluate the relationship between the genomic features (breast cancer risk genes, 

breast cancer gene signatures and KEGG pathways) and the deep radiomic features from our 

learned deep learning model, we performed association analyses between each of the 4,096 deep 

radiomic features and each of those genomic features using a Linear Mixed Effect (LME) Model, 

which can model and analyze the complex and structured data with multi-levels [75]. In our case, 

multiple images can be obtained from each individual patient. We implemented the analysis 

using the R package nlme[76]. The formula of the LME model is as follows. 

Xi = 𝛽0 + 𝛽1Gi + 𝛍Zi         i=1, 2, …, N                                      (3-6) 

Here X is a given deep radiomic feature, G is a given genomic feature and i is the ith 

images. Since our deep radiomic features are at image-level while each of the 110 patients has 

multiple images with a total of 52,238 images or samples.  Hence, the deep radiomic features 

were not independent of each other. However, the genomic features are at patient-level, which 

has only 110 patients or samples (Figure 3-8). 
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Figure 3-8: Non-independent issue for image-level deep radiomic features. Sample size doesn’t match 

between genomic features (110 samples) and radiomic features (52,238 samples). The observations of 

image-level deep radiomic features are not independent, as within the same patient, these features are 

more similar.  

 

In order to match the sample size of the response variable X and the predictor variable G, 

the genomic feature G have to be repeated multiple times based on the number of images a given 

patient has. Therefore, to take the repeated measurements of the genomic features into account 

and to address the effect caused by the dependence of the deep radiomic features, a random 

effect term 𝛍Z was introduced to the formula to simulate the variations coming from the patient 

differences where Z stands for patient ID.  

In the association analysis, we usually need a statistical hypothesis:  H0: 𝛽1 = 0 versus H1: 

𝛽1 ≠ 0. Through this hypothesis, we want to test whether the predictor variable can significantly 

explain the observed variability in response? To test the hypothesis, we would calculate a P-

value to decide whether the null hypothesis H0 should be rejected or not. Usually, a significance 

cutoff should be selected, and a P-value less than this cutoff means a rejection of the null 

hypothesis. In this case we could say the H1 hypothesis 𝛽 1 ≠ 0 is true. In our case, if H1 

hypothesis is true, then the genomic feature being tested is associated with the given deep 

radiomic feature. 

Since a large number of such hypotheses were tested, multiple testing correction was 

performed to calculate more strict P-values using Benjamin and Hochberg multiple testing 

procedure[77]. Significant genes, signatures and pathways were selected based on the adjusted P-

values (false discovery rate < 0.05).  
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4 Chapter 4: Results and Discussions 

4.1 Visualization and Unsupervised Clustering of Deep Radiomic Features  

4.1.1  Generation of Deep Radiomic Features 

 

At a noise level 5%, we trained the DA model and generated the denoised images. Figure 

4-1 shows one of the denoised images (C) and its raw (A) and noised images (B), respectively.  

The denoised image showed a better resolution than its original image, suggesting that the built 

DA model can learn deep radiomic features with better representation ability than original 

radiomic features.  

A. raw image   B. noised image   C. denoised image 

Figure 4-1: Image data after different processing steps. An example of reshaped 64×64 pixels MR 

image with noise (B) and without noise (A) as well as its denoised counterpart (C) after applying the 

proposed deep learning model.  

 

  For the learned deep radiomic features, we further processed them at sample-level using 

quantile normalization. Figure 4-2 showed the density distribution of the 4,096 deep radiomic 

features in one randomly selected sample before (A) and after (B) the normalization.  It can be 
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seen that before the sample-wise normalization, the distribution of the 4,096 feature values from 

the selected sample showed 2 or 3 peaks in the density plot (Figure 4-2A), while the distribution 

of the feature values didn’t change much after the normalization, but still kept the similar shape 

in the density plot, especially in the low-value and high-value regions (Figure 4-2B). However, 

the normalization enhanced the contrast of the middle-value region of the learned deep radiomic 

features in the density plot, making it show a density distribution with three clear peaks that 

indicate the bright, grey and dark regions in the image. After the quantile normalization, the 

features are more comparable across samples[67].  

 

 

           A           B 

Figure 4-2: Density of auto-image features of the first 3 samples before and after quantile 

normalization. A: Density distribution before quantile normalization. B: Density distribution after 

quantile normalization.  
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4.1.2  Visualization of Deep Radiomic Features 

  The normalized deep radiomic features were plotted in a heatmap way so that they could 

be visualized at kernel-wise. Figure 4-3 showed the kernel-wise normalized deep radiomic 

features of one randomly selected sample (B) and the sample’s raw image (A). The 16 kernels 

have learned different information from the original image. Some kernels highlighted the tumor 

edge while others showed the high pixel value regions. For example, kernel #5 highlighted the 

edge of breast cancer, kernel #12 emphasized the breast edge close to the tumor region. Kernel 

#7 only showed the high-density regions (the tumor and diaphragm regions) of the raw image. 

More interestingly, almost half of the heatmaps (kernel # 9, 10, 11, 13, 14, 15, 16) emphasized 

the tumor regions.  It has to be noticed that all these deep radiomic features are just numeric 

values. Therefore, if we just treat the values of these deep radiomic features as pixel values and 

plot them in a positional-based image, some may not have a biologically meaningful indication. 

However, as shown in the figure, we can still get some biological insight as to what these deep 

radiomic features represent.  Further discussion about these radiomic features can be found in 

Section 4.3. 
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   A       B 

Figure 4-3: Potential biologic interpretation of kernel-level deep radiomic features. A: A randomly 

selected raw image as an example. This image is in sagittal view of the body.  B: The kernel-wise 

heatmaps of the deep learning-based radiomic features of the same image shown in A. 

 

4.1.3 Clustering of Deep Radiomic Features 

  The result of hierarchical clustering of the normalized deep radiomic features is shown in 

Figure 4-4. Patients are clustered into roughly 2 groups. The sizes of these two clusters are not 

balanced, in that one has only 14 patients while the other has 96 patients. However, according to 

the sidebar labels, these two clusters do not enrich any of the five clinical characteristics 

(Fisher’s exact test, P-value>0.05). 
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Figure 4-4: Unsupervised clustering of the deep radiomic features using hierarchical analysis 

function. Columns are the 110 patients; rows are the 4,096 deep radiomic features. Clinical information 

is shown in the sidebar. T refers to the tumor size. For breast tumors, bigger than 2cm are considered to 

be T-positive. N refers to node status, which is considered to be positive when the tumor cell spreads into 

lymph nodes. ER, PR, HER2 refer to estrogen receptor status, progesterone receptor status, and human 

epidermal growth factor receptor 2 status. Patients seem to be clustered into 2 groups, but these two 

groups have no obvious clinical difference. 
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Besides the unsupervised hierarchical clustering, we also performed unsupervised t-SNE 

clustering of the normalized deep radiomic features at both patient-level (Figure 4-5A) and 

image-level (Figure 4-5B). In the patient-level t-SNE map, patients are clearly clustered into 5 

groups, but these groups show no clinical difference (Figure 4-6). We first manually colored the 

5 groups in the patient-level t-SNE map (Figure 4-5C), then tracked the dots in image-level t-

SNE map to patient-level, and finally colored the dots in the image level map using the same 

colors as what we used in coloring patient-level t-SNE map (Figure 4-5D).  The clustering 

patterns at both patient-level and image-level are consistent, indicating the robustness of the 5 

patient clusters or groups. However, similar to the 2-groups pattern in the hierarchical clustering, 

the 5-groups do not have explainable clinical difference (Figure 4-6). The biological or clinical 

meaning of these clusters needs further investigation in other cohorts with deep phenotype 

information. 

 

  

     A          B 
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      C          D 

Figure 4-5: t-SNE visualizes the deep radiomic features. A: Clustering results at patient level. Each dot 

is one patient. B: Clustering results at image level. Each dot is one image. C: Different colors are marked 

on different patient-level clusters manually. D: We first tracked the dots in image-level t-SNE map to 

patient-level, and then colored them using the same colors as what we used in coloring patient-level t-

SNE map. 
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Figure 4-6: The t-SNE maps colored by different clinical characteristics. The 5 clusters showed no 

obvious correlation with clinical features. 
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4.2 Classification of Clinical Characteristics Using the Learned Deep 

Radiomic Features 

As the hyperparameter 𝜆 increases, different numbers of deep radiomic features remain in 

the LASSO regression model to predict the clinical characteristics. Figure 4-7 shows the 

prediction performance measured by AUC under different number of selected deep radiomic 

features. As we can see from the figure, using the LASSO models with proper 𝜆, the deep 

radiomic features performed very well in predicting the 5 clinical characteristics. For example, 

the AUC could reach 90% or larger using 500 selected deep radiomic features in the LASSO 

models. 

 

Figure 4-7: Performance of using deep radiomic features to predict clinical characteristics. Different 

colors represent different clinical characteristics. The x-axis represents the number of deep radiomics 

features given different 𝝀 in the LASSO models. The y-axis represents the corresponding area under the 

curve (AUC) which is a metric used to assess the performance of the prediction.  

 



66 

 

4.3 Evaluation Relationship of Genomic Features and Deep Radiomic 

Features 

Using the LME model, we evaluated the association between each pair of the deep 

radiomic features and the genomic features and the results are shown in Figure 4-8. After 

multiple testing correction, 1,774 out of the 4,096 deep radiomic features are significantly 

associated with 213 of the 288 breast risk genes (Figure 4-8A). Two of the six gene expression 

signatures are significantly associated with the deep radiomic features. EndoPredict and Prosigna 

(rorS) scores are significantly associated with 848 and 1,395 deep radiomic features (Figure 4-

8B), respectively. EndoPredict is a novel gene expression signature predicting the likelihood of 

distant recurrence in patients with estrogen ER-positive, HER2-negative breast cancer treated 

with adjuvant endocrine therapy, and it has been validated by clinical trials [78]. Moreover, 

EndoPredict has been approved by the US Food and Drug Administration (FDA) in 2014 and has 

been considered to be better than the commonly used Oncotype DX test in guiding chemotherapy 

decision-making[79]. Currently, the cost of a EndoPredict test is around1,500USD [79]. Prosigna 

(rorS) score is calculated from PAM50 intrinsic subtypes, correlation between molecular 

subtypes and a subset of proliferative genes, and it has also been cleared by the FDA in 2013 for 

marketing as a prognostic tool[80, 81]. The price is around 2,000USD for testing the intrinsic 

subtypes and Prosigna (rorS) score[17]. Furthermore, 1,739 out of the 4,096 deep radiomic 

features are significantly associated with 166 out of the 182 KEGG pathways (Figure 4-8C).  
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Figure 4-8: Adjusted P-values of the association analyses between deep radiomic features and 

genomic features. The X-axis is the 4,096 image features. The Y-axis is the genomic features.  A: 288 

breast cancer risk genes.  B: 6 breast gene signatures. C: 182 KEGG pathway activity scores. 

 

In total there are 2,028 of the 4,096 deep radiomic features significantly associated with 

397 (213 risk genes + 2 gene signatures + 166 biological pathways = 381) genomic features. The 

details of the top 50 deep radiomic features are shown in the Table 4-1. Take the top 1 deep 

radiomic feature in the first row as an example, “fea_4043” is its feature ID, “55” in the first cell 

means that the radiomic feature “fea_4043” is significantly associated with 55 breast cancer risk 

genes. “2” in the second cell indicates that “fea_4043” is significantly associated with all the two 

A 

B C 



68 

 

gene signatures. “89” in the third cell refers to 89 KEGG pathways are significantly associated 

with the radiomic feature “fea_4043”. Hence, the total number of significant genomic features 

that are associated with the “fea_4043” is 146. This means that the radiomic fea_4043 is 

associated with greatest number of genomic features analyzed in the current study. This radiomic 

feature belongs to kernel #16. 

 

Table 4-1: The 50 most frequently genomic associated radiomic features. Rows are the top 50 deep 

radiomic features that are significantly associated with the one or more genomic features (ranked by the 

frequency of the associated genomic features). The first three columns are the number of significant 

associations between the given deep radiomic feature and the three levels of genomic features. The fourth 

column is the accumulated number of significant associations the given radiomic feature has. The last 

column is the kernel where the given radiomic feature is. 

 
risk_genes gene_signatures pathways frequency Kernel 

No. 

fea_4043 55 2 89 146 16 

fea_3782 54 2 87 143 15 

fea_3494 53 2 87 142 14 

fea_3750 49 2 91 142 15 

fea_3238 52 2 87 141 13 

fea_3488 53 2 86 141 14 

fea_3760 53 2 86 141 15 

fea_4015 50 2 89 141 16 

fea_3510 50 2 88 140 14 

fea_3222 48 2 89 139 13 

fea_4002 49 2 88 139 16 

fea_3232 47 2 89 138 13 

fea_3451 45 2 90 137 14 

fea_3723 44 2 90 136 15 

fea_4034 48 2 86 136 16 

fea_3254 47 2 86 135 13 

fea_3520 48 2 85 135 14 

fea_3766 46 2 87 135 15 

fea_3478 46 2 86 134 14 

fea_4031 46 2 86 134 16 

fea_4047 46 2 86 134 16 

fea_3216 44 2 87 133 13 

fea_3240 46 2 85 133 13 

fea_3504 46 2 85 133 14 
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fea_3526 47 2 84 133 14 

fea_4012 45 2 86 133 16 

fea_4026 47 2 84 133 16 

fea_4063 46 2 85 133 16 

fea_4058 47 2 83 132 16 

fea_3270 48 2 81 131 13 

fea_3464 45 2 84 131 14 

fea_3752 41 2 88 131 15 

fea_3794 39 2 90 131 15 

fea_4010 40 2 89 131 16 

fea_3462 46 2 82 130 14 

fea_3472 45 2 83 130 14 

fea_3480 43 2 85 130 14 

fea_3744 47 2 81 130 15 

fea_3756 45 2 83 130 15 

fea_3776 48 2 80 130 15 

fea_3802 49 2 79 130 15 

fea_3999 36 2 92 130 16 

fea_4042 46 2 82 130 16 

fea_3206 42 2 85 129 13 

fea_3500 43 2 84 129 14 

fea_3754 42 2 85 129 15 

fea_4018 44 2 83 129 16 

fea_4050 41 2 86 129 16 

fea_3248 43 2 83 128 13 

fea_3264 49 2 77 128 13 

 

 

As we can see from the Table 4-1, these deep radiomic features are mainly from kernel 

#13, 14, 15, and 16, which means they have more genomic associations. To make it clearer, we 

further calculated the frequency of the kernel-level deep radiomic features associated with the 

genomic features as shown in Table 4-2. This table was made based on all 2,028 significant deep 

radiomic features. A bar plot was also made to illustrate the frequency of the associations 

(Figure 4-9). As we can see, kernel #12, 13, 14, 15, and 16 are associated with the largest 

number of genomic features. 
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Table 4-2: Genomic association frequency of the kernel-level radiomic features. Rows are each 

radiomic feature kernel. The first three columns are the number of significant genomic features that are 

associated with the radiomic features mapped in the given kernel. The last column is the accumulated 

number of significant genomic features that are associated with the radiomic features within the given 

kernel. It should be noted that each kernel has 256 deep radiomic features. 

kernel risk_genes gene_signatures pathways frequency 

13 3251 227 7848 11326 

14 3374 208 7423 11005 

15 3039 190 6776 10005 

16 3093 178 6650 9921 

12 2510 203 6853 9566 

11 2176 194 5934 8304 

10 2045 185 5307 7537 

9 1964 183 4706 6853 

8 1852 163 3988 6003 

7 1358 118 2752 4228 

6 725 85 1601 2411 

5 577 75 1399 2051 

1 654 59 1158 1871 

4 496 67 961 1524 

2 358 56 890 1304 

3 384 52 793 1229 
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Figure 4-9: The genomic association frequency of the kernel-wise radiomic features 

 

 

 we also analysed the frequency of each of the genomic features associated with the 

number of deep radiomic features (Table 4-3). We did the analyses separately for the three 

different levels of genomic features, which included the top 5 significant breast cancer risk genes 

in the association tests (RP11-57H14.3, FIBP, ATP6AP1L, OVOL1, RP11-400F19.8), the 2 

gene signatures (EndoPredict, Prosigna), and the top 5 significant KEGG pathways in the tests 

(KEGG_FATTY_ACID_METABOLISM, KEGG_INSULIN_SIGNALING_PATHWAY, 

KEGG_PHENYLALANINE_METABOLISM, KEGG_RNA_DEGRADATION, 

KEGG_TYROSINE_METABOLISM), which will be discussed in detail in next section. 
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Table 4-3: The genomic features that are associated with the largest number of radiomic features. 

We only reported the top five significant genomic features in each of the three categories (risk genes, 

gene signatures and pathways). 

Gene signatures 

and pathways  

genes Number of 

significant 

radiomic features 

Top 5 frequent 

radiomic feature 

kernels (ordered) 

RP11-57H14.3  1118 13, 14, 15, 12, 16 

FIBP  1050 13, 14, 15, 10, 11 

ATP6AP1L  1038 13, 14, 16, 10, 15 

OVOL1  1019 13, 14, 10, 16, 11 

RP11-400F19.8  1017 13, 14, 16, 12, 15 

EndoPredict  BIRC5, UBE2C, DHCR7, RBBP8, IL6ST, AZGP1, MGP, STC2, 
CALM2, OAZ1, RPL37A 

848 13, 14, 12, 15, 11 

Prosigna (rorS) ACTR3B, ANLN, BAG1, BCL2, BIRC5, BLVRA, CCNB1, 

CCNE1, CDC20, CDC6, CDH3, CENPF, CEP55, CXXC5, EGFR, 
ERBB2, ESR1, EXO1, FGFR4, FOXA1, FOXC1, GPR160, 

GRB7, KIF2C, KRT14, KRT17, KRT5, MAPT, MDM2, MELK, 

MIA, MKI67, MLPH, MMP11, MYBL2, MYC, NAT1, NDC80, 
NUF2, ORC6L, PGR, PHGDH, PTTG1, RRM2, SFRP1, 

SLC39A6, TMEM45B, TYMS, UBE2C, UBE2T 

1395 13, 14, 12, 11, 10 

KEGG_FATTY_
ACID_METABO

LISM 

ACAA1, ACAA2, ACADL, ACADM, ACADS, ACADSB, 

ACADVL, ACAT1, ACAT2, ACOX1, ACOX3, ACSL1, ACSL3, 

ACSL4, ACSL5, ACSL6, ADH1A, ADH1B, ADH1C, ADH4, 

ADH5, ADH6, ADH7, ALDH1B1, ALDH2, ALDH3A2, 
ALDH7A1, ALDH9A1, CPT1A, CPT1B, CPT1C, CPT2, 

CYP4A11, CYP4A22, ECHS1, ECI1, ECI2, EHHADH, GCDH, 

HADH, HADHA, HADHB 

1269 12, 10, 11, 13, 9 

KEGG_INSULIN

_SIGNALING_P

ATHWAY 

ACACA,ACACB,AKT1,AKT2,AKT3,ARAF,BAD,BRAF,CALM

1,CALM2,CALM3,CALML3,CALML5,CALML6,CBL,CBLB,C

BLC,CRK,CRKL,EIF4E,EIF4E1B,EIF4E2,EIF4EBP1,ELK1,EX
OC7,FASN,FBP1,FBP2,FLOT1,FLOT2,FOXO1,G6PC,G6PC2,G

CK,GRB2,GSK3B,GYS1,GYS2,HK1,HK2,HK3,HRAS,IKBKB,I

NPP5D,INPP5K,INS,INSR,IRS1,IRS2,IRS4,KRAS,LIPE,MAP2K
1,MAP2K2,MAPK1,MAPK10,MAPK3,MAPK8,MAPK9,MKNK

1,MKNK2,MTOR,NRAS,PCK1,PCK2,PDE3A,PDE3B,PDPK1,P

HKA1,PHKA2,PHKB,PHKG1,PHKG2,PIK3CA,PIK3CB,PIK3C
D,PIK3CG,PIK3R1,PIK3R2,PIK3R3,PIK3R5,PKLR,PPARGC1A

,PPP1CA,PPP1CB,PPP1CC,PPP1R3A,PPP1R3B,PPP1R3C,PPP1

R3D,PRKAA1,PRKAA2,PRKAB1,PRKAB2,PRKACA,PRKACB
,PRKACG,PRKAG1,PRKAG2,PRKAG3,PRKAR1A,PRKAR1B,

PRKAR2A,PRKAR2B,PRKCI,PRKCZ,PRKX,PTPN1,PTPRF,PY

GB,PYGL,PYGM,RAF1,RAPGEF1,RHEB,RHOQ,RPS6,RPS6K
B1,RPS6KB2,RPTOR,SH2B2,SHC1,SHC2,SHC3,SHC4,SLC2A4

,SOCS1,SOCS2,SOCS3,SOCS4,SORBS1,SOS1,SOS2,SREBF1,T

RIP10,TSC1,TSC2 

1243 13, 12, 11, 14, 10 

KEGG_PHENYL

ALANINE_MET

ABOLISM 

ALDH1A3,ALDH3A1,ALDH3B1,ALDH3B2,AOC2,AOC3,DDC,

GOT1,GOT2,HPD,IL4I1,MAOA,MAOB,MIF,NAT6,PAH,PRDX

6,TAT 

1217 12, 13, 10, 9, 11 

KEGG_RNA_DE

GRADATION 

C1D,C1DP2,C1DP3,CNOT1,CNOT10,CNOT2,CNOT3,CNOT4,

CNOT6,CNOT6L,CNOT7,CNOT8,DCP1A,DCP1B,DCP2,DCPS,

DDX6,DIS3,EDC3,EDC4,ENO1,ENO2,ENO3,EXOSC1,EXOSC1

0,EXOSC2,EXOSC3,EXOSC4,EXOSC5,EXOSC6,EXOSC7,EXO
SC8,EXOSC9,HSPA9,HSPD1,LSM1,LSM2,LSM3,LSM4,LSM5,

LSM6,LSM7,MPHOSPH6,NAA38,PAPD7,PAPOLA,PAPOLB,P

APOLG,PARN,PATL1,PNPT1,RQCD1,SKIV2L,SKIV2L2,TTC3
7,WDR61,XRN1,XRN2,ZCCHC7 

1211 12, 13, 11, 14, 15 

KEGG_TYROSI

NE_METABOLI
SM 

ADH1A,ADH1B,ADH1C,ADH4,ADH5,ADH6,ADH7,ALDH1A3

,ALDH3A1,ALDH3B1,ALDH3B2,AOC2,AOC3,AOX1,COMT,D
BH,DCT,DDC,FAH,GOT1,GOT2,GSTZ1,HEMK1,HGD,HPD,IL

4I1,LCMT1,LCMT2,MAOA,MAOB,METTL2B,METTL6,MIF,N

AT6,PNMT,TAT,TH,TPO,TRMT11,TYR,TYRP1,WBSCR22 

1205 12, 9, 10, 11, 13 
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4.4 Biological Explanations of the Associated Deep Radiomic Features 

From Table 4-2 and Figure 4-9, we can see that the radiomic feature kernel #12, 13, 14, 

15, and 16 are associated with the largest number of genomic features. According to the selected 

heatmaps in Figure 4-10, kernel #12 is almost absolutely reversed the signals in the diaphragm 

and tumor regions(the tumor regions are bright in the raw image but are dark in kernel #12), but 

it has put a large weight on the bottle edge of the breast that is close to the tumor region, and 

there are some unclear patterns within the breast, chest, and lung regions. #13 emphasizes the 

tumor regions while lowers the values of other regions inside and outside the breast, but it has 

kept reasonable values for the diaphragm region. Kernels #14, 15, and 16 have the similar 

patterns as #13 but highlight different levels of the tumor regions. They both emphasize the 

tumor regions, but #15 puts the similar values to the breast and diaphragm and slight weaker 

values to the chest. Kernels #14 and #16 are almost the same as #13 with a dimming in breast 

region.  Among these top 5 deep radiomic feature kernels, #12 is special as it emphasizes the 

edge information. While kernel #13 to #16 more focus on the tumors and tissues around the 

tumors. Kernel #13, 14, 15, and 16 are considered as information rich kernels.  Comparing with 

the first several kernels (e.g. #1 to #12), they all learned more abstract and representative 

information from their original images, which captured the tumor regions, put different weights 

to the tissues around tumors, and partially kept the signals for other tissues far away from tumors. 

Interestingly, Kernel #7 is not standing out in our genomic-radiomic association analyses. 

However, from the kernel-level heatmaps, we can see it uniquely filtered out all of other parts 

but kept and highlighted the high-density regions, which fortunately contained the tumors. So, 

kernel #7 is actually a kind of a segment of the tumor. Since it has no significant associations for 

most of our genomic and deep radiogenomic features, this makes us believe that not only the 
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tumor regions matter, the tissues surround them also play a role in reflecting the genomic-level 

information in the images. Therefore, we have reasons to believe that the traditional 

segmentation-based feature extraction methods might result in losing a lot of meaningful 

molecular information. Kernel #5 is worthy of being discussed as well, because it puts a lot of 

weight on the edge of breast but generally ignores the signals in the tumor regions. Majority of 

the deep radiomic features in the kernel has no association with the genomic information. On the 

contrary, majority of the deep radiomic features in the kernel #12, which also lowers the signals 

of tumors and emphasizes the edge of breast, showed significant association with the genomic 

information. The difference is that kernel #5 emphasizes all the breast edge without any bias, 

while kernel #12 only emphasizes the edge close to the tumor regions. Hence, we believe that the 

edge of breast, which is really close to the tumor regions, might contain meaningful genomic 

information that is worthy of being further studied. 

 

 

Figure 4-10: Selected kernel-level radiomic features. Kernel #5 lowers the signal of tumor regions 

(blue circle) but highlights the edge of the whole breast. The signal of chest (green curve) is a little bit 

emphasized as well in this kernel. The kernel #12 looks like the kernel #5, but it puts more weight on the 

breast edge that is close to the tumor regions. The Kernel #7 keeps only the high-density regions 
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including tumor regions. It is kind of a segmentation of tumors since the signals of the tumors 

surrounding tissues are all decreased to 0 (black). Kernel #9 is a smooth kernel with a blurred contour of 

tumor regions. Kernel #10, 11, 12, 14, and 16 are information-rich kernels. They all highlight the tumor 

regions and the chest. The kernel #15 looks like those information-rich kernels but with lower values for 

the chest.   

 

As shown in the Table 4-3, 5 breast cancer risk genes are standing out, which are RP11-

57H14.3, FIBP, ATP6AP1L, OVOL1, and RP11-400F19.8. The RP11-57H14.3 and the RP11-

400F19.8 are classed as the processed transcript biotype. They do not code proteins and their 

biological functions are not clear[82, 83]. However, they were observed in several cancer related 

studies [84, 85]. Interestingly, these genes are highly associated with our top 5 radiomic feature 

kernels. FIBP, ATP6AP1L, and OVOL1 are protein-coding genes and their products are acidic 

fibroblast growth factor intracellular-binding protein[86], subunit ATPase[87], and a zinc finger 

protein[88] respectively.  The acidic fibroblast growth factor, intracellular-binding protein and 

the subunit ATPase coded by FIBP and ATP6AP1L are related to cell metabolism and growth. 

The zinc finger protein coded by OVOL gene could influence cell proliferation and malignant 

transformation by adjusting the MYC transcription, which is a well-known oncogene[89]. 

Comparing with RP11-57H14.3 and RP11-400F19.8, kernel #12 is not associated with the two 

protein-coding genes, which makes kernel #12 even more special. Hence, we suspect that RP11-

57H14.3 and RP11-400F19.8 are related to the morphological changes of the skin that is close to 

the tumor regions. 

   EndoPredict and Prosigna are gene signatures predicting breast cancer recurrence risk, 

but they were designed based on different gene sets. Deeper radiomic features are associated 

with Progsigna (1,395) than EndoPredict (848). These deep radiomic features are mapped 
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commonly in kernels #11, 12, 13, and 14. However, Progsigna has a specific most significant 

kernel #10 while EndoPredict also has a unique most significant kernel #15. Kernel #11 is more 

similar to other information rich kernels (#13, 14, 15, and 16) because they all give higher values 

to the chest and lower values to the breast. However, kernel #15 shows reversal of the values of 

the chest and breast. Therefore, according to the evidence from the deep radiomic features, we 

infer that EndoPredict and Prosigna can capture the similar radiomic information but Progsigna 

might do a better job.  

 Several metabolism pathways stand out in the radiomic feature-based association analysis, 

such as KEGG_FATTY_ACID_METABOLISM, KEGG_PHENYLALANINE_METABOLISM, 

and KEGG_TYROSINE_METABOLISM pathways. The radiomic features associated with 

these pathways are mapped to the common kernels #10, 11, 12, 13. These pathways are all 

reported in breast or human reproductive cancers related studies[90–92].  Kernel #9 looks very 

smooth, and it is included in three of these metabolism pathways, which might give us a clue that 

the genomic features in systemic function-level capture more heavily on the blurred and rough 

information of the breast cancer MR images. 

Although there are a lot of interesting findings in this study, the mechanism by which 

those genomic features are associated with certain deep radiomic feature kernels is still unclear. 

Currently, there is no similar research on the association analysis between the genomic features 

and the MRI-based radiomic features extracted from the deep learning “black-box”. There is a 

lack of good visualization tools and references between deep radiomic features and molecular 

biological markers, which should be overcome in the future studies.   
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5 Chapter 5: Significance, Limitations and Future Directions 

5.1 Significance 

 A novel deep learning model with denoising autoencoders technique was developed to 

extract the deep radiomic features from breast cancer enhanced T1-weighted MR images. These 

deep radiomic features were further mapped to the genomic features from three different angles. 

Their capability of predicting the clinical characteristics of breast cancer was also explored.  

The study contributed to improving the deep learning algorithm itself by testing and 

tuning the architectures and parameters of the model. However, the more important point is that 

the identification of the biologically relevant auto-archived radiomic biomarkers would support 

and improve MRI as an economical and effective clinical assessment tool. For example, a 

functional application can be packaged based on this algorithm, which could be installed in the 

MRI workstation to provide radiologists a real-time and “one-stop for everything” tool to assess 

the likely genomic profile and clinical characteristics of the patients. Furthermore, this 

workstation could also generate radiogenomic signatures like those currently commercialized 

gene signatures. These radiogenomic signatures could be used to predict the patient diagnosis, 

prognosis, and therapeutic benefits as well. Compared to using gene signatures, the 

radiogenomic signatures would be faster, cheaper, as well as containing both genomic and 

radiomic information.  

Unlike handcraft features which are based on radiologists’ prior knowledge, deep 

radiomic features from current deep learning models are automatically generated. These models 

are usually treated as black boxes, and hence, the results from the models are difficult for us to 

interpret their biological and/or clinical meanings. In order to be readily adopted by real-world 

clinical practices, deep learning models must be interpretable without sacrificing their prediction 
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accuracy. In this study, we explored some visualization techniques for this purpose and provided 

some likely interpretations, but more work is still needed. 
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5.2 Limitations  

 One limitation of the study is that we do not have valuable survival data of the patients, 

all of the 110 patients with MRI data are alive. Therefore, survival analysis cannot be performed, 

which prevented us from evaluating the ability of the identified deep radiomic features to be 

associated with the patients’ survival. High-quality databases and further studies are needed to 

explore the problem in the future. 

 Due to the computational complexity to analyze both of the MRI and genomic data, we 

did not use all the available information for the current analysis. To control the time and cost, we 

had to sacrifice some information by compressing the MR images to a lower resolution and 

stratifying the genome-wide level gene expression data into 3 higher-order levels so that the 

computing is possible to carry out. More advanced parallel techniques should be developed and 

added to the current deep learning and statistical analysis algorithms to make the computing 

faster. 

 The more challenging part of this study is the biological interpretation of the deep 

radiomic features and the identified relationship of these deep radiomic features with the 

genomic feature. Although many studies have identified the genes and their biological functions, 

the relationship of the imaging phenotypes, especially the deep radiomic phonotypes extracted 

by the deep learning models, and these genes and biological functions are highly lack of 

evidence. Furthermore, because of the complexity of the mathematic operations in extracting 

these deep radiomic features, there are no suitable visualization tools to clearly display the 

information contained in the features in a human-understandable way, which makes our further 

exploration even harder.   
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5.3 Future Direction 

       One future direction is to develop more advanced interpretable and extendable deep 

learning algorithms for modeling multimodal medical imaging and genomic data to identify 

clinically relevant biomarkers.  The interpretability should be evidenced in both statistic aspect 

and biologic aspect. 

Another direction goes to the development of an integrating framework for effectively 

utilizing multiple data sources (including both multiple imaging and genomic sources), which 

can be extended in the future to incorporate wider data modalities. For example, we can integrate 

MR images, X-ray images, ultrasound images together to generate super powerful radiomic 

features. We can also integrate gene expression data, copy number alteration data, mutation data, 

protein data, epidemiology data together to identify more valuable genomic features. By doing 

this, the relationship of the medical images and their molecular biology meaning would be 

clearer and more exhaustive. Hence, the patients would benefit more from the routine imaging 

examination. 

New visualization tools are urgently needed to understand these deep radiomic features. 

Techniques like deconvolution could be considered in the future [93]. 
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