EFFECTS OF STRESS-RELEASE DISTURBANCE ON THE SHEAR BEHAVIOUR OF SIMULATED OFFSHORE CLAYS SUBJECTED TO DRAINED STORAGE

by

SEBASTIAN LUNG-KWONG LAU

A thesis presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering

> Winnipeg, Manitoba, 1986 (c) Sebastian Lung-Kwong Lau, 1986

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission. L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN Ø-315-34Ø37-1

EFFECTS OF STRESS-RELEASE DISTURBANCE ON THE SHEAR BEHAVIOUR OF SIMULATED OFFSHORE CLAYS SUBJECTED TO DRAINED STORAGE

ΒY

SEBASTIAN LUNG-KWONG LAU

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1986

Permission has been granted to the LIBRARY OF THE UNIVER-SITY OF MANITOBA to lend or sell copies of this thesis. to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the stress nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

ABSTRACT

The main objectives of this thesis were to examine the effects of stress-release disturbance on normally consolidated and overconsolidated samples of simulated offshore clay, and to search for a laboratory procedure to best recover the in situ undrained shear strength. Seventeen "samples" of illitic clay were consolidated one-dimensionally, offloaded, stored "drained" under three storage times, reconsolidated using three different procedures, and sheared undrained. The results were compared with six control "in situ specimens" that had not been offloaded.

For normally consolidated clay, anisotropic reconsolidation to the in situ stresses was successful in reproducing the in situ shear strength (s_u) only from the 15-minute "sample". It underestimated the s_u by 9% and 14% from the 1-day "sample" and the 1-week "sample" respectively. The isotropic reconsolidation to 0.6x(overburden stress) underestimated the in situ s_u by 18% to 19%, and while isotropic reconsolidation to 1.0x(overburden stress) overestimated the in situ value by 10% to 20% for three storage times.

For the overconsolidated clay, both the anisotropic and the isotropic 0.6x(overburden stress) procedures successfully reproduced the in situ s_u from the 15-minute "samples". They underestimated the in situ value by 18% to 29% from the 1-day and 1-week "samples". The isotropic 1.0x(overburden stress) reconsolidation overestimated the in situ s_u by 21% and 11% from the 15-minute "sample" and the 1-day "sample" respectively, but was successful in recovering the s_u from the 1-week "sample".

i

The effects of increasing storage time tended to decrease the undrained shear strength, and increase the porewater pressure parameters A_f and m if the "samples" were subjected to identical reconsolidation procedures. All three reconsolidation procedures overestimated the porewater pressure parameters A_f and m, the axial strains at failure. They underestimated the modulus E_{50} from both the normally consolidated "samples" and the overconsolidated "samples".

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to his advisor, Dr. J. Graham, for his advice, encourgement and patience throughout the project and especially during the preparation of this thesis.

The author also wishes to thank fellow graduate students, N. Chandler, M. Rahman and B. Sun for their helpful assistance throughout the testing program.

Special thanks is given to the technical staff of the Civil Engineering Department, especially N. Piamsalee, for their technical assistance during the experimental investigation.

Financial assistance, in form of support from the University of Manitoba Graduate Fellowship and NSERC grant are acknowledged.

The author is also deeply indebted to his parents for their continued support and encouragement throughout his graduate studies.

TABLE OF CONTENTS

			PAGE
	ABSTR	ACT	i
	ACKNO	WLEDGEMENTS	iii
	TABLE	OF CONTENTS	iv
	LIST	OF SYMBOLS	vii
	LIST	OF TABLES	х
	LIST	OF FIGURES	xi
CHAPTER			
1.	INTRO	DDUCTION	1
	1.1 1.2	General Objectives	1 4
2.	A RE' STRE	VIEW OF SAMPLE DISTURBANCE ASSOCIATED WITH SS RELEASE	7
	2.1 2.2 2.3 2.4	Introduction General Review of Process Disturbance Detailed Review of Process Disturbance Recovering In situ Strength	7 8 13 19
3.	TEST	ING PROGRAM: DESIGN AND PROCEDURES	24
	3.1 3.2	Introduction Design of Testing Program 3.2.1 Modelling Sampling Procedures 3.2.2 Modelling Storage	24 25 25 26
	3.3 3.4	3.2.3 Procedures for Recovering the In situ Strength of "Samples" 3.2.4 Overview of the Testing Program Soil Properties Sample Preparation and Testing Procedures 3.4.1 Slurry Consolidation	28 29 29 30 30
		 3.4.2 Extrusion, frimming and Burluing-In Of Reconstituted Specimens 3.4.3 Triaxial Consolidation 3.4.4 Back Pressuring 3.4.5 Unloading 3.4.6 Storage 3.4.7 Reconsolidation 3.4.8 Undrained Shear 	32 34 36 37 38 38 38

4.	CONS	SOLIDATION TEST RESULTS	41
	4.1 4.2 4.3	Introduction One-dimensional Slurry Consolidation (λ_1 -values) Triaxial Consolidation 4.3.1 Overview of Program 4.3.2 Linear and Volumetric Strains 4.3.3 κ_1 -values 4.3.4 λ_2 -values 4.3.5 κ_2 -values 4.3.6 Yield Determination 4.3.7 Elastic Parameters	41 45 45 45 47 48 49 50 51
5.	RESL	ILTS: UNLOADING, STORAGE AND RECONSOLIDATION	53
	5.1 5.2 5.3 5.4	Introduction Unloading 5.2.1 Unloading of Shear Stress 5.2.2 Unloading of Cell Pressure Storage Reconsolidation	53 53 53 56 58 62
6.	UNDR	AINED SHEAR TEST RESULTS	65
	6.1 6.2 6.3 6.4 6.5	Introduction Stress-Strain Relationships Effective Stress Paths 6.3.1 Normally Consolidated Soil 6.3.2 Overconsolidated Soil Porewater Pressure Generation 6.4.1 Normally Consolidated Soil 6.4.2 Overconsolidated Soil Elastic Modulus	65 67 67 70 70 72 74
7.	GENE	RAL DISCUSSION	77
	7.1 7.2	<pre>Introduction Basic Soil Properties and General Discussion on Moisture Contents 7.2.1 Basic Soil Properties 7.2.2 Moisture Contents at Various Stages During Testing 7.2.3 Moisture Content Profiles across Failed</pre>	77 77 77 78
	7.3	Undrained Shearing Behaviour 7.3.1 Normally Consolidated and Overconsolidated	83 83
		 Failure Envelopes 7.3.2 Influence of Storage Times and Reconsolidation Procedures on Undrained Shear Strength 7.3.2.1 Normally Consolidated Soil 7.3.2.1 Overconsolidated Soil 7.3.3 Failure Axial Strains and Elastic Modulus 7.3.4 Porewater Pressure Generation 	83 85 85 87 89 90
	7.4	Synthesis of Data	92

CONCLUSIO	NS	AND SUGGESTIONS FOR FURTHER RESEARCH	96
8.1 Conc 8.2 Sugg	:lu Jes	sions tions for Further Research	96 99
REFERENCE	S		100
TABLES .	••		106
FIGURES			118
APPENDIX	A	PREPARATION OF RECONSTITUTED CLAY SAMPLES FOR GEOTECHNICAL TESTING	187
APPENDIX	В	ADDITIONAL PLOTS FOR TRIAXIAL CONSOLIDATION TESTS	195
APPENDIX (С	ADDITIONAL PLOTS FOR UNDRAINED SHEAR TESTS .	226
APPENDIX [D	DRAINED STRESS-CONTROLLED TRIAXIAL TESTING IN EXPLORING YIELD ENVELOPE OF ILLITE	242
APPENDIX E	Ε	RELATED PUBLICATION	254
APPENDIX F	F	TABULATED LABORATORY TEST RESULTS	280

8.

LIST OF SYMBOLS

А,В	- porewater pressure parameters (after Skempton 1954)
A _f	- value of A = ∆u/∆q at failure
A _{fF}	- in situ value of A _f at field
A _{fS}	 value of A_f for samples during unconsolidated undrained triaxial test in laboratory
A _u	- value of A during undrained shear unloading
с'	- effective cohesion
c _v	- coefficient of consolidation
CAU	 strain-controlled, consolidated anisotropically undrained compression test
CIU	 strain-controlled, consolidated isotropically undrained compression test
CSL	- critical state line
е	- voids ratio
E ₅₀	- elastic modulus to 50% of maximum stress in undrained shear
G _{eq} ,K _{eq}	- shear and bulk moduli
Gs	- specific gravity
Ι _Ρ	- plasticity index
k	- coefficient of permeability
К	- o'3/o'1
К _о	- coefficient of earth pressure at rest
LSSV	- length of stress vector
m	- porewater pressure parameter = (\Du/\Dp)
NCL	- normal consolidation line
OCR	- overconsolidation ratio
p '	- effective mean principal stress = $(\sigma'_1 + \sigma'_2 + \sigma'_3)/3$

p'cons	- value of p' at the end of triaxial consolidation
p¦ iso	- value of p' at yield with isotropic consolidation
p	- deviator stress = (o ₁ - o ₃)
q _{max}	- maximum deviator stress
su	- undrained shear strength = (q _{max} /2)
^S uF	- in situ undrained shear strength in field
^s uS	 undrained shear strength of samples determined by unconsolidated undrained triaxial test
U-U	 strain-controlled, unconsolidated undrained compression test
u	- porewater pressure
u _f	- porewater pressure at failure
u _r	- residual porewater pressure
^u ri	- initial residual porewater pressure
٧	- volumetric strain
v _c	 volumetric strain at the end of triaxial consolidation to σ₁'c, σ₃'c
٧	- specific volume = (1 + e)
W	- moisture content
wL	- liquid limit
^w P	- plastic limit
W	- strain energy absorbed per unit volume
^o cell	- cell pressure (i.e. σ ₃)
°cyl	 vertical effective stress applied during cylinder consolidation
σ1,σ3	- major and minor principal effective stresses
°1c,°3c	- σ_1' and σ_3' at the end of triaxial consolidation
σps	- residual effective stress after perfect sampling
σ'n	- residual effective stress

viii

σv	- vertical total stress
σ <mark>ν</mark>	- vertical effective stress
σ <mark>'</mark> VC	- effective preconsolidation pressure
σνο	- in situ vertical (overburden) effective stress
σy	- vertical effective stress determined from yield criteria
ϕ̃ ¹	- effective angle of shearing resistance
ϵ_1,ϵ_3	- major and minor principal strains (i.e. axial and lateral strains in triaxial compression test)
E	- shear strain = $2(\epsilon_1 - \epsilon_3)/3$
€ _{1c} ,€ _{3c}	- E ₁ and E ₃ at the end of triaxial consolidation to o'1c, o'3c
ϵ_{1f}	- axial strain at failure
^ĸ l	 slope of reload line in ln(p'),V-space during triaxial consolidation
^ĸ 2	 slope of unload line in ln(p'),V-space during triaxial consolidation
λ ₁	 slope of normally consolidated line in ln(σ_v),V-space during cylinder consolidation
λ ₂	 slope of normally consolidated line in ln(p'),V-space during triaxial consolidation
Δþ	- change in total mean principal stress
Δu	- change in porewater pressure
ΔV _{rc}	 volumetric strain during reconsolidation
∆∈ _{1rc} ,∆∈ _{3rc}	- ϵ_1 and ϵ_3 during reconsolidation

iх

LIST OF TABLES

TABLE		PAGE
1	SUMMARY OF TEST PROGRAM	106
2	INDEX PROPERTIES OF ILLITE	107
3	SUMMARY OF ONE-DIMENSIONAL SLURRY CONSOLIDATION	108
4	TRIAXIAL CONSOLIDATION TEST RESULTS FOR NORMALLY CONSOLIDATED SAMPLES	109
5	TRIAXIAL CONSOLIDATION TEST RESULTS FOR OVERCONSOLIDATED SAMPLES (OCR = 2)	110
6	SUMMARY OF YIELD STRESSES FROM DIFFERENT CRITERIA	111
7	SUMMARY OF TEST RESULTS DURING STORAGE AND RECONSOLIDATION FOR NORMALLY CONSOLIDATED SAMPLES	112
8	SUMMARY OF TEST RESULTS DURING STORAGE AND RECONSOLIDATION FOR OVERCONSOLIDATED SAMPLES (OCR = 2)	113
9	SUMMARY OF UNDRAINED SHEAR TEST RESULTS FOR NORMALLY CONSOLIDATED SAMPLES	114
10	SUMMARY OF UNDRAINED SHEAR TEST RESULTS FOR OVERCONSOLIDATED SAMPLES (OCR = 2)	115
11	BASIC SOIL PROPERTIES AND MOISTURE CONTENTS (%) AT VARIOUS STAGES FOR NORMALLY CONSOLIDATED SAMPLES	116
12	BASIC SOIL PROPERTIES AND MOISTURE CONTENTS (%) AT VARIOUS STAGES FOR OVERCONSOLIDATED SAMPLES (OCR = 2)	117

LIST OF FIGURES

FIGURE		PAGE
3.1	SCHEMATIC DIAGRAM OF MODELLED CONDITIONS	118
3.2	GENERAL SET-UP DURING ONE-DIMENSIONAL SLURRY CONSOLIDATION	119
3.3	TIME-DISPLACEMENT CURVE DURING LAST LOAD INCREMENT OF ONE-DIMENSIONAL SLURRY CONSOLIDATION 732-733	120
3.4 a,b,c	LOADING AND DEVIATION CURVES DURING ONE-DIMENSIONAL SLURRY CONSOLIDATION 732-733	121
3.5 a,b,c	LOADING AND DEVIATION CURVES DURING ONE-DIMENSIONAL SLURRY CONSOLIDATION 737-739	122
3.6	GENERAL SET-UP DURING TRIAXIAL CONSOLIDATION TESTS .	123
4.1 a,b	ONE-DIMENSIONAL SLURRY CONSOLIDATION LOG (o _v) vs. w	124
4.2 a,b,c,d	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, NORMALLY CONSOLIDATED SAMPLES T732, T733, T734, T735	125
4.3 a,b,c,d	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, NORMALLY CONSOLIDATED SAMPLES T736, T737, T738, T739	126
4.4 a,b,c	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, NORMALLY CONSOLIDATED SAMPLES T740, T741, T742	127
4.5 a,b,c,d	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, OVERCONSOLIDATED SAMPLES T751, T752, T753, T754	128
4.6 a,b,c,d	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, OVERCONSOLIDATED SAMPLES T755, T756 T757, T758	129
4.7 a,b,c,d	TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION- LOG (p') vs. V, OVERCONSOLIDATED SAMPLES T759, T760 T761, T762	130
5.1	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING NORMALLY CONSOLIDATED SAMPLES T732. T733	131

5.2	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING NORMALLY CONSOLIDATED SAMPLES T734, T735, T736	132
5.3	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING NORMALLY CONSOLIDATED SAMPLES T737, T738, T739	133
5.4	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING OVERCONSOLIDATED SAMPLES T751, T752, T753	134
5.5	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING OVERCONSOLIDATED SAMPLES T754, T755, T756	135
5.6	POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING OVERCONSOLIDATED SAMPLES T757, T758, T759	136
5.7 a,b,c,d	STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING, NORMALLY CONSOLIDATED SAMPLES T732, T733, T734, T735	137
5.8 a,b,c,d	STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING, NORMALLY CONSOLIDATED SAMPLES T736, T737, T738, T739	138
5.9 a,b,c	STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING, OVERCONSOLIDATED SAMPLES T751, T752, T753	139
5.10 a,b,c	STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING, OVERCONSOLIDATED SAMPLES T754, T755, T756	140
5.11 a,b,c	STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING, OVERCONSOLIDATED SAMPLES T757, T758, T759	141
5.12	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T732, T733	142
5.13	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T734, T735, T736	143
5.14	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T737, T738, T739	144
5.15	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T751, T752, T753	145
5.16	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T754, T755, T756	146
5.17	POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T757, T758, T759	147

5.18 a,b	SWELLING AND POREWATER PRESSURE BEHAVIOUR DURING STORAGE	148
5.19	SWELLING BEHAVIOUR DURING STORAGE NORMALLY CONSOLIDATED SAMPLES T734, T735, T736	149
5.20	SWELLING BEHAVIOUR DURING STORAGE NORMALLY CONSOLIDATED SAMPLES T737, T738, T739	150
5.21	SWELLING BEHAVIOUR DURING STORAGE OVERCONSOLIDATED SAMPLES T751, T752, T753	151
5.22	SWELLING BEHAVIOUR DURING STORAGE OVERCONSOLIDATED SAMPLES T754, T755, T756	152
5.23	SWELLING BEHAVIOUR DURING STORAGE OVERCONSOLIDATED SAMPLES T757, T758, T759	153
5.24	VOLUMETRIC RECONSOLIDATION STRAIN VS. STORAGE TIME NORMALLY CONSOLIDATED "SAMPLES"	154
5.25	VOLUMETRIC RECONSOLIDATION STRAIN VS. STORAGE TIME OVERCONSOLIDATED "SAMPLES'	155
6.1	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS NORMALLY CONSOLIDATED SAMPLE T733	156
6.2	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS NORMALLY CONSOLIDATED SAMPLE T736	157
6.3	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS NORMALLY CONSOLIDATED SAMPLE T739	158
6.4	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS NORMALLY CONSOLIDATED SAMPLE T742	159
6.5	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS OVERCONSOLIDATED SAMPLE T753	160
6.6	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS OVERCONSOLIDATED SAMPLE T756	161
6.7	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS OVERCONSOLIDATED SAMPLE T759	162
6.8	UNDRAINED STRESS-STRAIN POREWATER PRESSURE RESULTS OVERCONSOLIDATED SAMPLE T762	163
6.9	EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T740, T741, T742	164
6.10	EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T732, T733	165

xiii

6.11	EFFECTIVE STRESS PATHS IN p',q-SPACE	160
6.12	EFFECTIVE STRESS PATHS IN p',q-SPACE	100
6.13	EFFECTIVE STRESS PATHS IN p',q-SPACE	167
6.14	EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T751, T752, T753	100
6.15	EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T754, T755, T756	100
6.16	EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T757, T758, T759	171
6.17	POREWATER PRESSURE BEHAVIOUR, Δυ/σ' vs. Δρ/σ' NORMALLY CONSOLIDATED SAMPLES T740, T741, T742	172
6.18	POREWATER PRESSURE BEHAVIOUR, Δυ/σ' vs. Δρ/σ' NORMALLY CONSOLIDATED SAMPLES T732, T733	173
6.19	POREWATER PRESSURE BEHAVIOUR, Δu/σ' vs. Δp/σ' NORMALLY CONSOLIDATED SAMPLES T734, T735, T736	174
6.20	POREWATER PRESSURE BEHAVIOUR, Δu/σ' vs. Δp/σ' NORMALLY CONSOLIDATED SAMPLES T737, T738, T739	175
6.21	POREWATER PRESSURE BEHAVIOUR, Δυ/σ' vs. Δρ/σ' OVERCONSOLIDATED SAMPLES T760, T761, T762	176
6.22	POREWATER PRESSURE BEHAVIOUR, △u/ơ' vs. △p/ơ' OVERCONSOLIDATED SAMPLES T751, T752, T753	177
6.23	POREWATER PRESSURE BEHAVIOUR, △u/ơ', vs. △p/ơ' OVERCONSOLIDATED SAMPLES T754, T755, T756	178
6.24	POREWATER PRESSURE BEHAVIOUR, Δu/σ' vs. Δp/σ'vc OVERCONSOLIDATED SAMPLES T757, T758, T759	179
7.1	MOISTURE CONTENT PROFILES ACROSS NORMALLY CONSOLIDATED SAMPLES T736, T739, T742 AFTER UNDRAINED SHEAR	180
7.2	MOISTURE CONTENT PROFILES ACROSS OVERCONSOLIDATED SAMPLES T753, T756, T759 AFTER UNDRAINED SHEAR	181
7.3	NORMALLY CONSOLIDATED AND OVERCONSOLIDATED RUPTURE ENVELOPES (σ'c=160 kPa) OF ILLITE	182
7.4	GRAPH OF END OF CONSOLIDATION/RECONSOLIDATION IN V,LN p'-SPACE	183

xiv

7.5	GRAPH OF NORMALLY CONSOLIDATED AND OVERCONSOLIDATED FAILURE ENVELOPES IN V,LN p'-SPACE	184
7.6	GRAPH OF CRITICAL STATE LINE IN V,LN p'-SPACE	185
7.7	COMPOSITE PLOT FOR CRITICAL STATE MODEL IN V,LN p'-SPACE	186

CHAPTER 1

INTRODUCTION

1.1 GENERAL

Increasing demand of hydrocarbon recovery has accelerated engineering activities within deep offshore water (McClelland 1974). Of the two principal types of seabed structures used as drilling platforms in the deepwater offshore hydrocarbon recovery, pile-supported structures are believed to be more economical compared with gravity structures. In the shallow water of Canada's East coast, a decision has been made partly because of difficult environmental loadings from waves and icebergs, and partly on socio-economic grounds, to develop large concrete gravity structures. Design engineers must now design larger and longer piles, or larger and heavier footings for greater structural loads (Semple et al. 1982). Kwok (1984) stated that one of the essential requirements for the safe design of offshore platforms is a better understanding of the strength of seabed clays underneath proposed structures.

In practice, both in situ tests and laboratory testing on recovered soil specimens are performed to measure the strength of offshore clays. While in situ measurement of the soil properties seems conceptually attractive, the design, fabrication and deployment of in situ apparatus is a complicated, costly, and time-consuming matter (de Ruiter 1976). Due to the expense and complication of in situ tests and also because of some uncertainty in interpreting their results, significant effort must

still go into soil sampling and conventional laboratory tests on hiqh quality specimens (Lunne and Christoffersen 1983, Lee 1985). Soil properties interpreted from in situ tests are most often utilized to complement laboratory testing on recovered specimens (Vyas et al. 1983). Soil specimens are also generally required for routine soil classification tests and structural assessment in a geotechnical investigation. It is desirable to measure the soil properties in the laboratory when soil specimens are available even though they may have experienced some disturbance. A complete offshore geotechnical investigation should therefore consist of both extensive in situ testing and a comprehensive sampling program for laboratory testing (Vyas et al. 1983).

Offshore soil specimens are often of relatively poor quality (de Ruiter 1977). When offshore specimens are brought up from their marine environment to the surface, sampling disturbance induced on the recovered specimens may be classified into mechanical disturbance caused by boring and sampling; and process disturbance due to release of total pressures. The effects of mechanical disturbance depend on the nature of the soils, and the sampling techniques which are used in practice. New sampling technology capable of minimizing the mechanical disturbance has greatly improved the quality of specimens recovered from the field (de Ruiter and Richards 1983). The effects caused by mechanical disturbance can therefore be avoided to a greater or less degree.

However the second type of disturbance, namely the process disturbance due to stress release, generally becomes unavoidable when soil specimens are removed from the seabed. The reduction in total stresses during offshore sample recovery results in the generation of

negative porewater pressures, swelling of soil materials out of the end of the core tubes, and gas bubbling phenomena (Fukuoka and Nakase 1973; Broms 1980). These effects become even more pronounced for gassy clays which generally expand in a nonuniform manner in the sampling tubes during recovery, causing various degree of disturbance within soil specimens (Young et al. 1983).

Process disturbance due to stress release can affect the shear strength and deformation properties measured in the laboratory (Broms 1980). The author recently (September-October 1985) took part in a sample collecting cruise on the "CSS Hudson" for the Bedford Institute of Oceanography in The Baffin Island area. Sampling of surficial sediments was carried out by piston coring. It was observed that free water accumulated inside the plastic core liners during the sampling process. Small water channels were also formed between the interface of plastic liners and the core surface when the retrieved cores were stored in the liners. These specimens had a great chance to swell because of their easy access to water in tubes. A large number of these cores were observed to swell longitudinally out of the core tubes when on-board testing was carried out. Therefore it might be concluded that the recovered specimens could not maintain totally undrained conditions in the sampling tubes without any swelling.

This thesis deals specifically with the effects of sampling disturbance due to stress release on specimens of reconstituted illitic clay used to simulate seabed clay. Effects of mechanical disturbance are excluded in this testing program. Techniques developed in the University of Manitoba are capable of producing artificial reconstituted laboratory specimens without mechanical disturbance. This permits

comparison between so-called "samples" which undergo offloading processes without any mechanical disturbance; and "in situ specimens" which are tested immediately without either offloading or mechanical disturbance. This procedure has been used to model the "perfect samples" that were defined by Ladd and Lambe (1963) as real soils which have experienced no disturbance during sampling other than that associated with stress release. They can then be compared with "in situ specimens" that simulate the behaviour of offshore clay in the field with no disturbance. Both Kwok (1984) and Ambrosie (1985) performed tests separately to model "samples" which had been immediately sealed upon recovery and had been stored under totally undrained conditions. This investigation is a subsequent but parallel study which tested "samples" that were allowed to be fully drained during storage. Other procedures in the tests were maintained similar to the conditions in the earlier studies. This study therefore permits detailed comparison of the results from two different assumed storage conditions (namely totally drained and totally undrained conditions).

1.2 OBJECTIVES

The main objective of this study is to search for a recommended procedure in the laboratory to recover the "in situ" properties of reconstituted illitic clays which experienced only process disturbance due to stress release, but no mechanical disturbance. "Samples" in this study were stored drained, for various periods of time, and then reconsolidated using the same procedures as Kwok (1984) and Ambrosie (1985) who had used undrained storage. The principal objective of the work is therefore to compare the effects of totally drained and totally undrained storage conditions on the stress-strain behaviour of the illite after reconsolidation.

In addition, other objectives of this investigation include:

- continued development in the University of Manitoba of techniques for the preparation of identical one-dimensionally consolidated reconstituted clay specimens,
- (2) additional information on the engineering properties and classification of illitic clay from Illinois,
- (3) additional data for the strength envelopes proposed by Kwok (1984) and Ambrosie (1985),
- (4) a preliminary yield envelope for reconstituted illitic clay when combined with the results obtained by Ambrosie (1985).

The laboratory testing program for studying stress release effects consisted of twenty-three 76 mm diameter specimens of the reconstituted illite. Of these twenty-three specimens, eleven were prepared as normally consolidated specimens for comparison with the results of Ambrosie (1985).Twelve specimens were prepared with an overconsolidation ratio (OCR) * equal to 2.0 for comparison with the results of Kwok (1984). Three control specimens from each group (total of six specimens) were used as "in situ specimens" to model the "in situ" behaviour of the clay. The remaining seventeen specimens were tested as "samples" which were allowed to drain fully after being offloaded. In addition to this work, three further overconsolidated specimens were tested to determine a preliminary yield envelope for the clay. The total number of specimens in this program was twenty-six.

A review of previous published work on stress release behaviour will be presented in Chapter 2. This will be followed by a presentation * see list of symbols on p. vii of the testing program in Chapter 3. Chapters 4, 5 and 6 respectively present the results obtained from the consolidation; the stress offloading, storage and reconsolidation; and the undrained shear phases of the tests. Chapters 7 and 8 respectively present a discussion and synthesis of the results, and the conclusions from the project. Finally the latter part of the thesis presents tables, figures and appendices referred to in the text. CHAPTER 2

A REVIEW OF SAMPLE DISTURBANCE ASSOCIATED WITH STRESS RELEASE

2.1 INTRODUCTION

The undrained shear strength of fine-grained marine soils is perhaps the most important single geotechnical parameter needed for offshore foundation design. However the undrained strength has not been a simple property to measure in hostile marine environments (Lee 1979). The strengths of marine sediments are affected by disturbance that occurs when specimens are taken from the seabed and brought to the surface. Sampling disturbance induced in recovered specimens may originate from the two general sources outlined in Chapter 1, namely mechanical disturbance and process disturbance. Because of this, it is usually necessary to combine a program of sampling and laboratory testing, with a program of in situ testing for major structures.

Factors that affect the mechanical disturbance of specimens have been discussed in detail by Broms (1980) and Young et al. (1983). The effects of mechanical disturbance depend on the nature of soils and the sampling techniques which are used. The introduction over a period of years of improved techniques that use thin-wall samplers and seafloor mounted equipment such as Seaclam (Fugro International) and Stingray (McClelland Engineers Inc.) has largely reduced mechanical disturbance, and has significantly improved the quality of recovered specimens. The research presented in this thesis deals only with the second source of disturbance, process disturbance due to stress release. Mechanical disturbance is excluded from the testing program. A detailed review of mechanical disturbance processes will therefore not be undertaken in this thesis.

2.2 GENERAL REVIEW OF PROCESS DISTURBANCE

This section summarizes the work by various investigators on the effects of stress release. Since only a limited number of publications has been published that deal directly with stress relief for offshore clays, similar research on onshore clays will also be included.

It is commonly believed that effective mean stresses before and after "perfect sampling" can be held constant by the generation of negative porewater pressures. However this is disputed by many researchers. Skempton and Sowa (1963), for example, suggested that even when there was no change in water content during "perfect sampling", the recovered specimen was still subjected to significant changes in stress state.

When an offshore specimen is removed from its natural environment to the surface, the in situ confining pressures are inevitably released. This may result from local consolidation of the thin skin of remoulded clay round the inside of the sampling tube. It may also result from the common practice of extruding samples from the tubes shortly after recovery for visual classification, and geological testing (de Ruiter 1976, Young et al. 1983, Long et al. 1986). This procedure is thought to minimize adhesion between the clay and the tube and to reduce the forces and disturbance which would be experienced with longer storage (Lee 1985). The process clearly leads to total stress unloading just after extrusion. In both cases, the clay tends to swell as the total stresses on the specimen decrease towards zero. If the expansion is prevented as it is when the unloading is undrained, negative porewater pressures or pore suctions (u_r) will be developed within the recovered specimen (Mori 1981a). The in situ effective stresses before sampling are anisotropic in a general case. On the other hand, the residual effective stress after the sampling, which is equal and opposite to the pore suction, is isotropic.

For normally consolidated and lightly overconsolidated clays with the coefficient of earth pressure at rest (K_0) less than one, the magnitude of the residual effective stress after "perfect sampling" (σ'_{DS}) has been given by Ladd and Lambe (1963) as:

 $\sigma'_{ps} = \sigma'_{vo} [K_{o} + A_{u} (1 - K_{o})]$

where $\sigma_{VO}^{\,\prime}$ = in situ vertical effective stress

A_u = porewater pressure coefficient from release of ground deviator stress during perfect sampling.

Ladd and Lambe (1963) suggested that the porewater pressure coefficient A_u for most normally consolidated clays varies between -0.1 and 0.3. Noorany and Seed (1965) studied a San Francisco Bay mud with a sensitivity of 8 to 10. In this case, A_u was found to range from 0.16 to 0.24 with an average of 0.20. Kirkpatrick (1982a) also reported average values of A_u for illite and kaolin of 0.20 and 0.25 respectively. Broms (1980) showed that the A_u value in the work of Skempton and Sowa (1963) was negative for a remoulded Weald clay with a sensitivity of 2. Similar results have been reported by Bjerrum (1973a) for a plastic clay from Drammen.

Examination of the previously published A_u values suggests that few natural and remoulded soils are perfectly elastic material in which A_u

would be 0.333 (Skempton and Sowa 1963). This would mean therefore that the effective mean stresses before and after "perfect sampling" cannot be constant. Both Skempton and Sowa (1963) and Ladd and Lambe (1963) observed from their laboratory work that the reduction in residual effective stress might be as high as 20% of the "in situ" mean effective stress. The operation of "perfect sampling" causes therefore not only the change in stress system direction discussed in a previous paragraph, but also a decrease in the magnitude of the stresses.

This view has been challenged recently by Kwok (1984) and Ambrosie (1985) in work at the University of Manitoba. Their tests measured A_u values of 0.37 and 0.33 respectively, suggesting only small deviations from elastic behaviour during undrained unloading of shear stress. These deviations may be due to anisotropy of elastic response (Graham and Houlsby 1983).

Examination of the actual residual effective stresses (σ'_r) in tube samples immediately on unloading always shows an appreciable difference from the value of the residual effective stress after "perfect sampling" (σ'_{ps}). Ladd and Lambe (1963), Lee (1979) and others assumed that the additional reduction was purely caused by mechanical disturbance of the clay structure. This assumption may not be completely true. The work by Kirkpatrick and Rennie (1975) implied that the assumption might only be true for insensitive clays removed from relatively shallow depths. The reasons are that most studies on the effects of stress release have been based on the following assumptions.

 The compressibility of the porewater is negligible as compared to that of soil skeleton.

(2) The soil water is capable of carrying all tensions without

cavitation, that is, the dissolution of gases (water vapour, methane etc) in the pore spaces of the specimen, and the specimen remains saturated even after stress release.

(3) The absorption of any free water on the surface of the specimen during sampling is so small that the sample volume remains constant. When a specimen is taken from its deep ocean floor to the surface, the unloading of the total confining pressures on the specimen causes the porewater to expand. Richards and Parker (1968) estimated that the volumetric strains of sea water for depths of 130m and 3700m were 0.06% and 1.6%, respectively. However Broms (1980) concluded that the effect on the measured strength and the deformation properties due to porewater expansion would be small.

Most laboratory studies on stress release have been carried out under back pressures in the pore fluid, or by removal of only the deviator stress component (e.g. Skempton and Sowa 1963; Ladd and Lambe 1963 and others). The total stresses acting on the soil specimens in the laboratory were therefore never fully reduced to atmospheric pressure. This was done to avoid the experimental problems involved with negative porewater pressures. However Kirkpatrick and Rennie (1975) indicated that residual negative porewater pressures decreased with increasing sample age. They concluded that specimens from deep in situ positions cannot maintain their high pore tensions despite being physically undisturbed.

Both dissolved and undissolved gases are found in offshore clays (Young et al. 1983). The offloading experienced during sampling can cause the dissolved gas to come out of solution as bubbles and undissolved gas to expand within the sample. The released volume, which can be estimated with Boyle's and Henry's laws, may be so large that the effective stresses can be reduced to zero (Broms 1980). The release of gas and its subsequent expansion would also cause the recovered specimens to swell. The sample expansion changes the in situ properties measured in the laboratory. Soil explorations in nearshore areas have revealed that the measured degrees of saturation of marine clays in the laboratory decrease with increasing sampling depths (Fukuoka and Nakase 1973).

When an offshore specimen is taken up to the deck of the drill ship, the clay is often observed to swell rather quickly out the end of the core tube (Emrich 1971, Fukuoka and Nakase 1973). Schjetne (1971) also observed swelling of Norwegian quick clay within the sampling tube. But in this case, the swelling was more gradual. Berre and Bjerrum (1973) have explained that the clay during sampling is subjected to the greatest shear deformations in the outer zone of the specimen due to a variation in stress state. After the sampling, the relatively undisturbed central part of the specimen may suffer from a swelling, as excess water migrates from the remoulded zones towards less disturbed zones. The negative porewater pressure in the specimen is thereby reduced. The change in clay microstructure caused by the shear deformations and subsequent internal swelling will make the stress-strain behaviour of the "sample" different from that of in situ soils (Mori 1981b).

The findings in the four previous paragraphs suggest that the second and third of the listed assumptions (p.10) cannot be fulfilled by the sampling procedures commonly employed for most natural clays. A degree of sampling disturbance due to stress release is therefore

2.3 DETAILED REVIEW OF PROCESS DISTURBANCE

It is clear that stress release can cause sampling disturbance. Various reseachers have tried to quantify the effects of stress release on recovered specimens. For example, Skempton and Sowa (1963) conducted tests on remoulded specimens of Weald clay (sensitivity = 2) from Surrey, England. Specimens were loaded anisotropically in a triaxial apparatus to simulate in situ conditions. At the end of the consolidation, one specimen was subjected directly to undrained shearing to measure the "in situ" strength of the clay. A second specimen was disturbed by unloading the shear stress to zero under undrained conditions. The specimen at this stage was subject to an isotropic residual effective stress, σ'_{ps} . No significant change in water content (less than 0.4%) was found. This was followed by undrained shearing to measure the shear strength of the "sample". The authors reported that the unloading caused only a small reduction in the "sample" strength of the order of 1% to 2% even though the resulting stress paths were quite different. However the comparison was made for a relatively insensitive remoulded clay. Since there was little change in water content and microstructure for such insensitive clay during "perfect sampling", the effect on strength reduction was expected to be minimal (Broms 1980; Kirkpatrick and Khan 1984). Skempton and Sowa (1963) further concluded that if two identical specimens of saturated clay were subjected to different changes in total stress without alteration in water content and microstructure, the strength of the two specimens would be practically equal.

Ladd and Lambe (1963) also investigated the effect of stress release on normally consolidated Kawasaki clay and Boston Blue clay. The sensitivities for both clays were approximately 5 to 10. Ladd and Bailey (1964) reported that the initial offloading of shear stress decreased the subsequent unconsolidated undrained (U-U) shear strengths of "samples" by 0% to 15% for two clays when compared to the comparable "in situ" shear strengths.

Noorany and Seed (1965) established a link in terms of Hvorslev strength parameters, c_e and Φ_e , between the "sample" strength and the in situ strength. The in situ strength (s_{uF}) of a normally consolidated clay is given by:

$$s_{uF} = \frac{\sigma'_{vo} \sin \Phi_{e} [K_{o} + A_{fF} (1 - K_{o})] + c_{e} \cos \Phi_{e}}{1 + (2A_{fF} - 1) \sin \Phi_{o}}$$

where Φ_e = Horslev angle of internal friction

 c_e = Horslev cohesion of soil

 A_{fF} = porewater pressure coefficient at failure in field. The shear strength of a "sample" (s_{uS}) measured with unconsolidated undrained triaxial test in laboratory is given by:

$$s_{uS} = \frac{\sigma'_{vo} \sin \Phi_{e} [K_{o} + A_{u} (1 - K_{o})] + c_{e} \cos \Phi_{e}}{1 + (2A_{fS} - 1) \sin \Phi_{e}}$$

where A_u = porewater pressure coefficient due to release of deviator stress during sampling operation

A_{fS} = porewater presure coefficient at failure for "samples"
 during unconsolidated undrained triaxial tests.

Note that $s_{\rm uF}$ and $s_{\rm uS}$ are only equal if porewater pressure coefficients $\rm A_{fF},~A_{\rm u}$ and $\rm A_{fS}$ are identical.

Noorany and Seed (1965) also conducted a series of tests on a soft

saturated clay from the San Francisco Bay areas. The sensitivity of the soil was approximately 8 to 10. Identical specimens were anisotropically consolidated in triaxial cells above their in situ stresses to become laboratory-produced, normally consolidated soils. One specimen was subjected to undrained shearing in order to measure the "in situ" strength (s $_{\rm uF}$) and the porewater pressure coefficient A $_{\rm fF}$. A second specimen was subjected to total offloading in undrained conditions. The residual negative pore water pressure was measured to evaluate the porewater pressure coefficient A_u. This was followed by undrained shearing to measure the "sample" strength (s_{uS}) and the porewater pressure coefficient A_{fS}. For the San Francisco Bay mud, reductions of the order of 6% were observed in the "sample" strengths. Average values of the porewater pressure coefficients A_u , A_{fS} and A_{fF} were found to be 0.20, 0.45 and 0.80 respectively. The differences in porewater pressure coefficients can be attributed to the non-reversibility and non-linearity of the relationship between porewater pressure change and deviator stress change. The analysis and its supporting experimental data indicated that for a normally consolidated sensitive clay, the in situ strength and the porewater pressure coefficient at failure are significantly different from those measured from "samples" using unconsolidated undrained triaxial compresion tests.

Davis and Poulos (1967) also performed tests to quantify the effect on the undrained strength due to stress release alone. They indicated that the strength of "samples" was less than in situ value by 18%.

Adams and Radhakrishna (1971) tested normally consolidated glacial lake clays from the St. Clair River, Ontario. Block specimens were

obtained in the field, then trimmed and placed in triaxial cells. The specimens were consolidated anisotropically to in situ stresses. At the end of consolidation, one specimen was subjected to undrained shearing for its "in situ" strength. The shear stress on a second specimen was offloaded down to isotropic stress under undrained conditions, and the sample was then sheared undrained. This measured strength compared favorably with the "in situ" strength from the first specimen. A third specimen was unloaded in drained condition. А considerable reduction in strength was found when undrained shearing was performed. The authors concluded that specimens that were allowed to swell showed a significant loss in undrained shear strength.

Preliminary tests reported by Kirkpatrick and Rennie (1975) on the other hand indicated much greater loss than those mentioned above, and brought into consideration the influence of sample age. Berre and Bjerrum (1973) also noticed that older samples tend to give lower strength than those tested at earlier age. Similar results have been reported by Sandegren (1961), Bjerrum (1973a), Arman and McManis (1977) and others.

Recent research by Kirkpatrick (1982a) studied the stress release effects on normally consolidated kaolin and illite. Specimens were prepared by consolidating a slurry at a water content of 1.5 times the liquid limit in a 254 mm diameter odeometer. "In situ specimens" were first consolidated to 276 kPa in the odeometer, then cut and placed in a triaxial apparatus for further K_o anisotropic consolidation. The final vertical stresses ranged from 400 to 800 kPa. The specimens were then back-pressured to 200 kPa and tested undrained to determine the "in situ" strength of the clays.

Normally consolidated specimens used for examining disturbance effects were prepared by consolidating the slurry to a final pressure of 552 kPa in the odeometer to simulate depths greater than 100 m below the seabed. The procedures of sampling were modelled in the laboratory by closing the end drains of the odeometer and rapidly reducing the pressure to zero. These large blocks or "cakes" were then sealed and stored at an even temperature. Sample age or storage time, which was defined as the time elapse between the unloading of the "cakes" and the time of testing, ranged from a few hours to 50 days. As the program required, "samples" were cut from the "cakes" using thin-wall tubes at selected time intervals to study the influence of sample age. These "samples" still experienced mechanical disturbance from the cutting tubes. Estimation of residual porewater pressures was performed in triaxial cells prior to undrained shearing tests.

The illite and kaolin both illustrated a large initial drop in residual negative porewater pressures, and the loss continued gradually for more than 50 days. Comparison of "in situ specimens" and "samples" of various ages of normally consolidated clays showed the "samples" experienced considerable loss in strength, increase in failure strains and appreciable difference in effective stress paths. The effects were more pronounced with increasing sample age, and were relatively greater in kaolin than in the less permeable illite. The processes involved in the loss of the pore suctions were thought to be related to cavitation and diffusion effects. The dissipation rates were found to be better correlated to the coefficient of consolidation (c_v) than the coefficient of permeability (k).

Kirkpatrick (1982b) also studied overconsolidated kaolin and

illite. Similar trends of behaviour were observed as previously described for normally consolidated clays. The reductions in both residual porewater pressure and strength were smaller for the overconsolidated "samples" than for normally consolidated "samples". The reason could either be due to the different behaviour of normally consolidated and overconsolidated soils; or simply that the stress release in the case of overconsolidated soils was smaller than for normally consolidated soils.

Kwok (1984) and Ambrosie (1985) respectively have also studied the effects of stress release alone on reconstituted specimens of overconsolidated and normally consolidated illite. Specimens were consolidated one-dimensionally, first in cylinders from a slurry, and then in triaxial cells along an approximate K_o stress path to a maximum vertical pressure of 160 kPa. Overconsolidated specimens were offloaded to 80 kPa to give an overconsolidation ratio (OCR) equal to two. Back pressure of 500 kPa was applied to simulate the porewater pressure in the field. By this procedure, mechanical disturbance was excluded in the testing programs. "In situ specimens" were subjected to undrained shearing without any offloading. "Samples" were unloaded under undrained conditions to simulate stress-release during the sampling process. The offloading of shear stress was carried out with porewater pressure changes that results in essentially constant p'. Negative porewater pressures caused by release of total pressures were monitored throughout different storage periods. At the end of storage, each "sample" was subjected to reconsolidation at one of three stress levels prior to undrained shearing. Kwok (1984) observed that the reductions in negative porewater pressures for overconsolidated illite were 0 to
3.2 kPa for "samples" subjected to 15-minute and 1-day storage periods, and 7.4 to 21.2 kPa for 1-week "samples". A similar but more marked trend of behaviour, one of residual negative porewater pressure decreases with increasing sample age, was also observed by Ambrosie (1985) for normally consolidated illite. Graham et al. (1986) suggested that the relaxation of the residual negative porewater pressure was due to internal creep straining caused by soil particle reorientation towards more stable isotropic microstructure. They concluded that the full negative porewater pressures u_{ri} could not be retained in the "samples" for periods longer than 1 to 2 days.

In summary, with increasing storage time, "samples" experience gradual loss in the residual effective stress due to cavitation and diffusion effects and/or creep reorganization of soil structures. This means that conventional unconsolidated undrained compression tests in the laboratory cannot reproduce the strengths or stress-strain behaviour of in situ soil.

2.4 RECOVERING IN SITU STRENGTH

As previously shown, "samples" recovered from deep sea environment are inevitably subjected to process disturbance, which reduces the strength measured with U-U tests in the laboratory. This section briefly describes the previous work by various researchers to recover the in situ strength of the clay in the laboratory. There are two common approaches:

- to correct the unconsolidated undrained strengths with an empirically determined multiplication factor,
- (2) to employ an appropriate laboratory reconsolidation procedure.

The use of correction factors to adjust "sample" strength to in situ strength is very empirical. Researchers such as Ladd and Lambe (1963), Noorany and Seed (1965), and others tried to quantify the degree of disturbance. However most of these researchers also included the effects of mechanical disturbance. This work has been reviewed in detail by Kwok (1984) and will not be repeated here.

Many researchers have also tried to develop appropriate reconsolidation procedures to recover the in situ strength in the laboratory. The most common reconsolidation procedure is to reconsolidate "samples" isotropically to in situ vertical stresses (e.g. Casagrande and Rutledge 1947; Bishop and Bjerrum 1960; Ladd and Lambe 1963). Other procedures include isotropic reconsolidation to 0.5-0.75 of the in situ vertical stresses (Raymond et al. 1971), K reconsolidation to in situ stresses (Davis and Poulous 1967; Bjerrum 1973b) and the SHANSEP method (Ladd and Foott 1974). However the value of these proposals is limited at best because the actual in situ strengths that the laboratory studies attempted to recover were in fact unknown.

Kirkpatrick (1982a), and Kirkpatrick and Khan (1984) studied the reliability of these reconsolidation procedures for normally consolidated kaolin and illite. Some swelling occurred during storage even though the average water contents were kept constant. Three types of reconsolidation were examinated in their study:

- (a) anisotropic reconsolidation to "in situ" effective stresses either by a progressive incremental method or by a two-step method,
- (b) isotropic reconsolidation to the "in situ" vertical effective stress,

(c) isotropic reconsolidation to the residual effective stress (σ'_{ps}) of the "sample" immediately on unloading.

They drew the following conclusions from their reconsolidation tests.

- Method (a) reproduced good simulation of "in situ" strength, stress-strain behaviour and stress paths.
- (2) Methods (b) and (c) using isotropic reconsolidation were found respectively to overestimate and underestimate the failure stresses. Neither tests reproduced similar stress paths when compared to "in situ specimens".
- (3) Sample ages up to one month had little or no effect on behaviour of consolidated undrained tests as long as the moisture contents were maintained constant.

Kwok (1984) and Ambrosie (1985) also investigated the validity of various reconsolidation procedures in recovering the "in situ" strength of reconstituted illite. "Samples" were "stored" undrained, and the effects of mechanical disturbance were removed from the test. Reconsolidation procedures examined in their studies included the following methods.

- (a) Isotropic reconsolidation to 0.6 of the "in situ" vertical effective stress.
- (b) Isotropic reconsolidation to the "in situ" vertical effective stress.
- (c) Anistropic reconsolidation to the "in situ" effective stresses. For overconsolidated illite, Kwok (1984) found that methods (a) and

(c) were both successful in reproducing the "in situ" strength. Method(b) overestimated the "in situ" value. On the other hand, Ambrosie

(1985) found that none of these methods could recover the "in situ" strength of the normally consolidated illite. Both investigators also found that all three methods overestimated and underestimated respectively the axial strain at failure (ϵ_{1f}) and the modulus (E_{50}). The "sample" strengths were unaffected by the duration of the undrained storage period if identical reconsolidation procedures were used (Graham et al. 1986).

Although research by Kirkpatrick and Khan (1984) provided an improved understanding of the influence of stress release on recovered specimens, the effects on mechanical disturbance were not entirely excluded in their testing program. The tests by Kwok (1984) and Ambrosie (1985) were based on the assumption that the recovered specimens remained totally undrained during stress release and the storage periods. Because the time during which the field stresses are released is relatively short in comparision with the drainage time of low-permeability clays (Bishop and Henkel 1962; Chaney et al. 1984), the sampling process can be assumed to be under totally undrained conditions. The porewater behaviour of the specimens at various stages after sampling is complex and relatively unknown. Observations such as those by Emrich (1971), Schjetne (1971) and Fukuoka and Nakase (1973), however, suggested that recovered specimens did swell after the sampling. The author's personal experience from a sample collecting cruise near Baffin Island confirmed that specimens could not maintain totally undrained conditions without any swelling, even when the samples were stored in sampling tubes. This finding has led to the present testing program in which, in contrast with the earlier programs of Kwok

(1984) and Ambrosie (1985), full drainage is allowed during the various storage periods.

CHAPTER 3

TESTING PROGRAM: DESIGN AND PROCEDURES

3.1 INTRODUCTION

Specimens recovered in practice are found to swell to a greater or less degree after sampling. The "samples" used in this study were allowed totally free drainage to atmospheric pressure conditions during storage. In contrast, and to provide the other bound of behaviour that can be experienced in practice, "samples" were examined under totally undrained storage conditions in preceding studies by Kwok (1984) and Ambrosie (1985). The specimens tested in the present investigation included both normally consolidated clay and overconsolidated clay with an OCR of 2. Figure 3.1 shows the equivalent field conditions of both groups of specimens that were modelled in the laboratory. The normally consolidated specimens simulated soil elements 20 m below the seabed, with 30 m of water overlying the seabed. It was assumed that the clay was fully saturated with an "in situ" stress state:

> vertical effective stress, $\sigma'_{1c} = 160$ kPa porewater pressure, u = 500 kPa

horizontal effective stress, $\sigma'_{3c} = 84.8 \text{ kPa} (= 0.53 \sigma'_{1c})$ For the overconsolidated specimens, an "in situ" stress state corresponding to 10 m of soil depth with an OCR of 2.0, and a 40 m water depth was modelled in the laboratory. The "in situ" stress state of the soil was assumed to be:

> vertical effective stress, $\sigma'_{1c} = 80$ kPa porewater pressure, u = 500 kPa horizontal effective stress, $\sigma'_{3c} = 42.4$ kPa

This again assumed K = $\sigma'_{3c}/\sigma'_{1c}$ =0.53 despite the change in K₀ that accompanies overconsolidation (Brooker and Ireland 1965; Mayne and Kulhawy 1982). The effective stresses and porewater pressure imposed on the specimens in this study modelled soils under moderately deep sea conditions.

The following sections provide a description of the design of the test program, of the soil classification properties, and of specimen preparation and test procedures.

3.2 DESIGN OF TESTING PROGRAM

The purpose of this investigation was to study the effects of sampling disturbance due to stress release only, with no influence from mechanically induced disturbance. This was achieved by comparing the shear strengths of reconstituted "samples" with those of simulated "in situ specimens". It was therefore necessary that the present testing program reproduced as closely as possible in the laboratory the conditions that would exist for the recovered specimens during and after the sampling process in the field. The following sections will provide the background leading to the selection of variables being studied and an overview of the testing program.

3.2.1 Modelling Sampling Procedures

When an offshore soil specimen is lifted out of its marine environment and extruded for inspection, classification, etc., the total confining pressures on the recovered specimen are inevitably removed. The stress release associated with the field sampling process was modelled in the laboratory by unloading the external pressures on artificial specimens made by anisotropic triaxial consolidation and back pressuring. Two choices were available when these "samples" were

offloaded in the triaxial cells. Firstly they could be unloaded under totally undrained conditions with porewater pressure measurements. Secondly they could be unloaded with drainage permitted. In this case measurements of volume changes could be taken while the "samples" swelled because of the release of stress. As mentioned in Chapter 2, the total stresses are typically released in practice in times that are relatively short in comparison of the drainage time of low-permeability clay in the field. The coefficient of consolidation (c,) of illite reported by Kirkpatrick and Khan (1984) was of the order of 10^{-8} m²/s. During the offloading process the "samples" in the laboratory program are therefore best assumed to be under totally undrained conditions. Besides, it is helpful to know the effective stress path during unloading (Graham et al. 1986), and this can only be obtained by keeping the "samples" undrained and measuring the resulting decrease in porewater pressures. This undrained condition during unloading was also assumed in the earlier studies by Kwok (1984) and Ambrosie (1985).

3.2.2 Modelling Storage

Kwok (1984) and Ambrosie (1985) both assumed that after sampling, the recovered specimens were stored under totally undrained conditions. However in the author's opinion, this assumption is not completely valid. As mentioned in Chapter 2, the author's personal experience showed that the recovered specimens were always observed to swell to some degree even when they were stored in sampling tubes. Graham et al. (1986) showed that the negative porewater pressures relaxed with time, causing decreased value of mean effective stress p'. The mechanism is unclear. They suggested that the change from anistropic to isotropic effective stress states can cause internal creep straining at constant volume and particle reorientation towards more stable isotropic

microstructure. For these reasons, the "samples" in the present study were allowed to swell during various periods of storage in the laboratory. This procedure also provides an alternative limit to the practice defined in the previous studies in which the samples were kept totally undrained.

The selected storage periods model the time delays that occur in practice between specimen recovery from the seabed and actual testing in the laboratory. In order to investigate the effects of the duration of storage time between sampling and testing on undrained shear strength, Kwok (1984) and Ambrosie (1985) chose three storage periods to represent the potential variation of sample disturbance. The same storage periods were applied to the "samples" in this investigation. The three storage periods were:

- "Instantaneous" (15 minutes) this represents ship-board testing on recovered specimens of the highest quality.
- (2) 1 day this models onshore testing on high quality soil specimens which are transferred immediately to onshore laboratories after recovery.
- (3) 1 week this represents average practice of onshore testing on recovered specimens with long storage periods.

In actual cases, recovered specimens might be stored for longer periods than one week. However due to time constraints on the research, one week was chosen to be the longest storage time in this study. This has been subsequently justified by volume measurements during storage.

During the early stage of this study, two "samples" (T732 and T733) were allowed to have drainage from the top of the "sample" through the top cap, and at the same time porewater pressures were monitored from the cell pedestal for storage periods of 2 hours and 1 week

respectively. These required the elimination of the circumferential filter strips around the "sample", but with filter stones placed both at the top and bottom of the "sample". (No facilities exist in the University of Manitoba to measure the negative porewater pressures from the bottom of the "sample" with the hypodermic needles). These two "samples" were allowed to have both top and bottom drainage but no side drainage during the earlier triaxial consolidation phase of testing. However this arrangement caused different drainage boundary conditions when compared to the earlier studies of Kwok (1984) and Ambrosie (1985). Difficulty was therefore anticipated in comparing results from the previous "undrained storage" programs, and the present "drained storage" program. Drainage from one end only, without side drains, also greatly increased the duration of the tests.

In order to obtain uniform set of data for comparison with the earlier studies, it was therefore decided that the drainage conditions in the rest of the "samples" would be maintained from the bottom of the "sample" only, and that circumferential filter strips would be used. Besides, the use of top drainage was always prone to additional problems of leakage and bubble formation within the drainage lines (Graham et al. 1985).

3.2.3 Procedures for Recovering the In situ Strength of "Samples"

As discussed in Section 2.4, different reconsolidation procedures have been investigated by various researchers to recover the in situ strengths of recovered specimens. To facilitate comparisons, the following reconsolidation procedures used by Kwok (1984) and Ambrosie (1985) were also adopted in the present study:

 isotropic reconsolidation to 0.6 times the "in situ" vertical effective stress,

(2) isotropic reconsolidation to 1.0 times the "in situ" vertical effective stress,

(3) anistropic reconsolidation to "in situ" effective stresses.

The isotropic reconsolidation procedures were emphasized in previous work due to their relative simplicity. The anisotropic reconsolidation was due to its apparent success in the recovery of "in situ" behaviour (Kirkpatrick and Khan 1984).

3.2.4 Overview of the Testing Program

A summary of the testing program in this research project is given in Table 1. A total of seventeen normally consolidated and overconsolidated "samples" (T732-T739, T751-T759 respectively) of reconstituted illite were tested under the influence of stress release, and compared with a total of six normally consolidated and overconsolidated "in situ specimens" (T740-T742, T760-T762 respectively). The "in situ specimens" underwent the same consolidation processes as the corresponding disturbed "samples", but were not subjected to an offloading and reloading cycle. The "samples" were allowed fully open drainage to atmospheric pressure during the various storage periods.

3.3 SOIL PROPERTIES

The tests specimens in this study were prepared from reconstituted illitic clay from Grundy County, Illinois, similar to the grundite used by Wu et al. (1983). The advantange of using reconstituted clay rather than natural clays is that slurry consolidation can produce specimens with good consistency in their water contents so that better quality control can be maintained in the testing program. The clay was received

at the University of Manitoba in burlap sacks with water content of 21% (Ambrosie 1985). Standard classification tests and X-ray diffraction tests were performed on the clay, and the results were reviewd by Kwok (1984). The major minerals presented in the clay are quartz, illite and kaolinite with the proportion of illite to kaolinite more than 5:1. A summary of classification test results is given in Table 2. The illitic clay in this study had a clay fraction (less than 0.002 mm) of 66% with a specific gravity 2.74. The liquid limit (w_L) and plasticity index (I_p) were determined to be 59.5% and 33.6% respectively. These agree closely with the values reported by Graham et al. (1986).

3.4 SAMPLE PREPARATION AND TEST PROCEDURES

The following sections will describe briefly the techniques that have been used in the present study for preparing and testing the reconstituted illite specimens. The procedures were given in detail by Kwok (1984).

3.4.1 Slurry Consolidation

The illitic clay was first oven-dried, pulverized and mixed with deaired, distilled water in a mechanical mixer for five 30-minute periods over a duration of 2 days under vacuum. The water-clay ratio by weight chosen for this research project was approximately twice the liquid limit of illite $(2xw_L)$, which is very common in research work using slurry consolidation (e.g. Lewin and Burland 1970; Li 1983). The resulting slurry was poured carefully into a 256 mm diameter consolidation cylinder with top and bottom drainage.

The cylinder was then transferred to a newly designed loading frame for one-dimensional consolidation (Figure. 3.2). These procedures were

newly developed for this thesis. They were felt necessary to overcome some of the variability between "samples" that was observed in previous programs. A vertical load was applied to the slurry through an air-pressure controlled hydraulic jack (booster), and was monitored with a load cell placed between the cylinder and the jack. The initial vertical stress used in this test was 14 kPa. The slurry was then allowed to stabilize for three days under this stress level due its high initial porewater pressure. Five successive consolidation stresses were applied using 24-hour periods each with a load ratio of 1.38 to a final vertical stress of 70 kPa. Vertical displacement was monitored with time throughout this compression process. When the final vertical stress of 70 kPa was attained, all "cakes" were allowed to reach porewater pressure equilibrium. This was monitored by plotting a log time-displacement curve, and this condition was interpreted as the "cake" entering the secondary consolidation (Figure 3.3). The equilibrium procedure was time-consuming, often taking more than one week to complete. At this stage, a "cake" of 256 mm diameter was produced inside the consolidation cylinder. It was then ready for extrusion from the cylinder, and for cutting into three identical "pie slices" that could be used to form "samples". More complete details of preparing the "cakes" from slurry consolidation are included in Appendix Α.

During the earliest stage of this study, there was considerable difficulty in maintaining the required vertical loads for slurry "cake" 732-733. The loads observed from the load cell fluctuated with time especially during the load application of first stress level (Figure 3.4 a). This occurred due to the mechanical inability of the booster to

maintain constant pressure to the hydraulic jack. Deviations from desired stress levels (in percent) were computed by comparing the actual load cell reading and required vertical load in each increment (Figure 3.4 b). The average vertical stress in each increment was calculated by assuming the area bounded by the curve in Figure 3.4 b equal to that in Figure 3.4 c. The inadequate booster was subsequently replaced. Graphs for the slurry consolidation of the slurry "cake" 737-739 are presented in Figure 3.5, and much better control in vertical loading is observed. There were only two "samples" (T732 and T733) available from the "cake" 732-733. It had been allowed to reach porewater pressure equilibrium at an average initial stress level of 12.9 kPa as well as at 70 kPa.

Towards the end of the program, a lever-loading system was developed to provide better load control on the consolidating "cakes". It is also described in Appendix A.

3.4.2 Extrusion, Trimming and Building-in of Reconstituted Specimens

The loading frame was also designed for extrusion of the "cake" and cutting it into three "pie slices" which could then be trimmed into three identical specimens for the subsequent triaxial tests (Appendix A). The trimming and building-in of three specimens usually lasted two days. While the "pies" were waiting for the trimming, they were wrapped with Saran wrap, sealed with wax, and stored in a cool, humid sample room to minimize changes in moisture content.

The importance of high quality sampling and testing techniques has been emphasized by several investigators (e.g. Graham 1974; Crooks and Graham 1976; Tavenas and Leroueil 1977). Although mechanical disturbance due to sampling is avoided in laboratory consolidated clay, disturbance associated with specimen preparation and testing should be nevertheless minimized. The approach used by Graham et al. (1986) was to trim specimens from the "cakes" that had been consolidated one-dimensionally to $\sigma'_{1c} = 70$ kPa, and then to further consolidate them anisotropically in triaxial cells to $\sigma'_{1c} = 160$ kPa. They argued that normal (virgin) consolidation from 70 kPa to 160 kPa would remove any influence of the trimming disturbance (see also, Ladd and Foott 1974).

Triaxial tests were done on 76 mm diameter specimens that were carefully trimmed from the "pie slices". Equipment and testing procedures aimed at reducing disturbance during trimming and building-in of triaxial specimens are well developed at the University of Manitoba. The most important feature of the equipment is that the top of the triaxial specimen is supported throughout the processes so that minimum disturbance is ensured. The trimming and building-in procedures were carefully described in detail by Lew (1981). They can be outlined as follows:

The cell pedestal was deaired by flushing water through it by means of two burettes to the pedestal drainage leads. The base plate of the trimming equipment was placed on the cell base and was adjusted until the inverted cutting cylinder was accurately centred over the pedestal. The trimming table was then attached to the base plate. The trimming equipment was lubricated with silicone oil to facilitate smooth sliding. A slightly oiled cutting cylinder with a sharp leading edge was pushed carefully into the soil to a depth of about 1 cm. The excess soil outside the cutting edge was removed by trimming wire. This process was repeated until 2 to 3 cm soil protruded the top of the cylinder. The top and the bottom of the specimen were then carefully trimmed with a cutting wire. The cutting cylinder with specimen inside was then

removed from the uprights, and weighed.

A saturated de-aired filter stone was placed on the pedestal. The cutting cylinder containing the specimen was then lowered to the top of the filter stone. The top cap was located firmly by a central rod and the cylinder was removed. The height and the diameter of the specimen were measured. The average diameter of the specimen was 76.15 cm with height varying between 130 mm and 135 mm. A thin coat of silicone stopcock grease was applied to the sides of the pedestal and the top cap. Lateral drainage filter strips were applied longitudinally around the specimen's surface. (For specimens T732 and T733 with no lateral filter strips, filter stones were placed both at the top and the bottom of the specimens.) Two membranes separated by a coating of silicone oil were placed around the specimen with four sealing rings on the bottom pedestal and two sealing rings on the top cap to seal the specimen from cell water. The top of the triaxial cell was carefully placed over the specimen and the piston lowered to touch the top cap and clamped. The cell was then filled with deaired distilled water until the top of specimen was covered. A 2 cm thick layer of viscous oil was applied on the top of the water through the top of the cell to reduce leakage of cell water and friction between the piston and the rotating bush. Initial readings of the axial dial gauge and volume change burettes were taken carefully, and loading was ready to start.

3.4.3 Triaxial Consolidation

The triaxial consolidation tests were performed in triaxial cells supported on a steel loading frame, the general arrangement of which is shown in Figure 3.6. Cell pressure was applied through deaired water in the cell, using compressed air to pressurize an external air water tank. The cell pressures and the porewater pressures at the bottom the specimens were monitored by pressure transducers, which were rezeroed before each load increment to atmospheric pressure at mid-height of the specimen. Axial load was applied through the piston by a hanger and a dead weight system. Dial gauges and burettes were used to monitor vertical displacements and volume changes of the specimens.

The specimens were subjected to anisotropic consolidation with σ'_{3c} = K x (σ_{1c}) in the triaxial cells. The first axial stress applied to the specimens was 50 kPa. All specimens in this study were tested with a K value of 0.53, which was chosen in the earlier programs by Kwok (1984) and Ambrosie (1985) to remove one of the potential variables in the test series. The specimens were loaded for 24-hour periods between successive load increments with a load ratio of 1.15. Before each loading increment, water was flushed through the drainage leads to remove air that might have been trapped in the cell base. After the application of a new load, the readings of the axial dial gauge and volume change burette were recorded using "standard" time intervals (that is 1,2,4,8,15,30 min, 1,2,4,8 hr etc). When the maximum vertical stress of 160 kPa was reached, the normally consolidated specimens were allowed to stabilize for standardized periods of four days to reach porewater pressure equilibrium. The overconsolidated specimens were unloaded to an axial stress of 80 kPa in one step to give an OCR of 2 after being at the maximum stress of 160 kPa for one day. The 4-day stabilization period then resumed at the vertical stress of 80 kPa with K = 0.53.

3.4.4 Back Pressuring

Backpressuring of the specimens after triaxial consolidation simulated the high porewater pressure experienced in the seabed. In this investigation, the effective stresses and back pressuring imposed on the normally consolidated specimens a stress state representative of 30 m of water and 20 m of saturated soil (Fig. 3.1). The overconsolidated specimens with an OCR of 2 represented a stress state of 40 m of water and 10 m of soil. These stresses brought the normally consolidated specimens and overconsolidated specimens to "in situ" vertical total stresses of 660 kPa and 580 kPa respectively, with a porewater pressure of 500 kPa. The backpressure of 500 kPa modelled a soil specimen under moderately deep sea conditions of 30 m to 40 m depth.

Before back pressuring, the drainage system was flushed to ensure that any trapped air was removed. The piston was clamped before the hanger and dead weights were removed. The cell pressure, burettes, axial dial gauge, and transducers lines were all kept in place. The triaxial cell was then carefully transferred from the consolidation frame to the compression frame. The axial load at the end of the triaxial consolidation was re-established by means of a proving ring. The specimens were then subjected to ten increments of 50 kPa in both cell pressure and porewater pressure. The procedure took about 10 minutes with the specimens undergoing negligible axial strain (less than 0.1%). The specimens were then allowed to stabilize for a period of 24 hours before any further testing.

The "in situ specimens" (T740-T742, T750-T752) were then subjected immediately to undrained shearing as described in Section 3.4.8 without

any further offloading and reloading cycle. Sections 3.4.5 to 3.4.7 inclusive are applicable only to "samples" (T732-T739, T751-T759) which were subjected to a sequence of unloading, storage and reconsolidation. 3.4.5 Unloading

This section describes the procedure used in the laboratory to model the stress release associated with sampling from the field. As mentioned in Section 3.2.1, the confining pressures on recovered specimens are released in a relative short time compared to the drainage time of low-permeability clay. The unloading in the laboratory was chosen to be under totally undrained conditions. Techniques used for unloading were outlined by Kwok (1984) and will be briefly reviewed as follows:

Unloading was accomplished in two stages, namely shear unloading and isotropic unloading. During shear unloading, the shear load was removed in six steps by means of adjusting the proving ring force while the cell pressure was maintained constant. At the end of this stage, The "sample" was under an isotropic total stress condition. It was then subjected to isotropic unloading by reducing the cell pressure, in increments of 50 kPa until a cell pressure of about 5 kPa was reached. (The 5 kPa cell pressure was used to ensure contact between membrane and the clay, and to control volume readings in the burettes). The proving force was of course adjusted to compensate for the decreases in cell pressure. The total time for the unloading processes lasted for about 15 minutes. The porewater pressures and the axial displacements of the "sample" were monitored during the whole unloading processes. The results are presented in Section 5.2.

3.4.6 Storage

As mentioned in Section 3.2.2, three different storage periods of 15 minutes, 1 day or 1 week under totally free drainage conditions were selected to simulate various time delays between the field sampling and laboratory testing. This was achieved by opening the bottom drainage lead at the end of the unloading period, and by carefully monitoring the volume changes during the various chosen storage periods. The cell pressure was kept at around 5 kPa during storage. Results will be shown in Section 5.3. "Samples" stored under totally undrained conditions have been studied by Kwok (1984) and Ambrosie (1985).

3.4.7 Reconsolidation

In order to recover the in situ shear strength of seabed clays, specimens recovered from site investigation are usually subjected to reconsolidation prior to undrained shear test. Otherwise "loss of suction" leads to considerable reduction in shear strength (Kirkpatrick and Khan 1984). As described in Section 4.2.4, three reconsolidation procedures were selected for this investigation, namely isotropic reconsolidation (1) to 0.6 and (2) to 1.0 times "in situ" vertical effective stress, and (3) anistropic reconsolidation to "in situ" effective stresses. The main objective in this study is to determine which reconsolidation procedure can best recover the "in situ" strength of the clay.

For both isotropic and anisotropic reconsolidation, the cell pressures were first increased in one step to the required stress levels. The "samples" to be consolidated isotropically were then allowed to reach porewater pressure equilibrium before any further testing. For "samples" to be consolidated anisotropically, the extra

axial loads were usually established by increasing the proving ring force after the "samples" had been consolidated isotropically for 24 hours. This represented a slightly different procedure from that used by Kwok (1984) and Ambrosie (1985) who added the required cell pressures and axial loads almost simultaneously. Drainage during storage caused the "samples" to behave differently, and to require different treatment during reconsolidation. It agrees with technique currently in use in the Norwegian Geotechnical Institute (personal comm. S. Lacasse to J. Graham). Axial strains and volume strains experienced by the "samples" during reconsolidation varied with the reconsolidation procedures and the storage periods. This will be further discussed in Section 5.4.

Measurements of volume change versus time were taken during reconsolidation which allowed free drainage of the "sample" to atmospheric pressure. Equilibrium was usually reached after 3 to 4 days. Upon reaching porewater pressure equilibrium, the "samples" were subjected to a back pressure of 200 kPa which is used commonly in commercial and research laboratories to achieve high levels of saturation . The 200 kPa back pressure was applied in four increments of 50 kPa. The "samples" at this stage were then allowed to stabilize for 24 hours. Before undrained shear testing, the "samples" were checked that their saturation was acceptable, B-values greater than 0.98.

3.4.8 Undrained Shear

Undrained shear test procedures have been outlined by Kwok (1984). These procedures followed techniques developed at the University of Manitoba over several years (e.g. Graham et al. 1983). The rate of testing used in this study was approxiately 0.5% per hour, with readings

taken of time, axial displacement, proving ring, porewater pressure, and cell pressure at regular intervals. "Samples" T732 and T733 with no side drains were subjected to a lower shear strain rate of 0.2% per hour due to their slow response of porewater pressures. Shearing usually continued overnight until an axial strain of 12% was reached. After shearing was completed, the failed specimens were removed from the triaxial cells weighed and cut into six layers for determination of moisture contents. This was done to check the variability of water content along the length of the specimens, and the uniformity of the specimens. Chapter 7 will present and discuss the moisture content profiles across the failed specimens.

CHAPTER 4

CONSOLIDATION TEST RESULTS

4.1 INTRODUCTION

As described in Chapter 3, reconstituted specimens for triaxial testing were prepared by consolidating slurry in a consolidation cylinder until a "cake" with adequate strength for trimming was produced. A total of eight "cakes" were produced in the present program. Each "cake" was extruded from the cylinder and cut into three identical "pie slices", each of which was subsequently trimmed into a specimen for triaxial testing. (As mentioned in Chapter 3, only two specimens (T732 and T733) were available from the first "cake" during the earliest stage of the program). A total of twenty-three reconstituted specimens was then subjected to closely similar anisotropic consolidation procedures in triaxial cells to produce the consistent set of specimens required for the present study. This chapter reports and briefly discusses the results during the slurry consolidation and the triaxial consolidation phases of the tests.

4.2 <u>ONE-DIMENSIONAL SLURRY CONSOLIDATION (λ 1-VALUES)</u>

The consolidation of clay in first-time loading is commonly characterized by straight relationships in log(pressure) versus compression space expressed as changes in moisture content, voids ratio, or specific volume. The straight line portions of these graphs represent the critical state parameter λ , which indicates the compressibility of clay. It is expressed as the slope of voids ratio

versus the natural logarithm of vertical stress, $\Delta e/\ln(\sigma'_{v2}/\sigma'_{v1})$.

Values of compression index (λ_1) during slurry consolidation as outlined in Section 3.4.1 were obtained by plotting the logarithm of vertical stresses versus the moisture contents (Figure 4.1). The compression index (λ_1) has been used in this thesis to describe the parameter originating from slurry consolidation in the cylinder. Due to time constraints in the present investigation, complete porewater pressure dissipation in the slurry was not attempted during each of the loading increments. The "cakes" were therefore underconsolidated except at the end of the final stabilization period at the maximum vertical stress of 70 kPa. The λ_1 -values obtained in Figure 4.1 were simply the measured slopes of the graphs in ln(σ_{v}^{\prime}),e-space. They do not give the proper λ_1^{-} values that would be measured if complete consolidation was allowed in each load increment (Kwok 1984). Values of $\lambda_1^{}$ are summarized in Table 3. They varied over a narrow range from 0.501 to 0.533 with an average of 0.513 and a standard deviation of 0.012. This suggests a high level of consistency in the observations that were taken.

As mentioned in Section 3.4.1, the slurry "cake" 732-733 was treated slightly differently from the rest of the specimens. During the first stage of the testing program, it was compressed with a slightly lower average initial vertical stress of 12.9 kPa, and it was allowed to reach complete porewater pressure equilibrium before the next increment was applied. This initial stabilization lasted for 6 days (Figure 4.1 a). The rest of the slurries were allowed to sit for only 3 days due to time constraints. Compressions during this first stage of loading show as the initial vertical sections on the graphs in Figure 4.1. When the final stress of 70 kPa was reached, the resulting "cakes"

were allowed to reach equilibrium and undergo some aging before extrusion and specimen trimming. This is shown as the final vertical sections in Figure 4.1. It was observed that the "cake" 732-733 seemed to experience two $\lambda_1^{}-values\,$ during the slurry consolidation (Figure 4.1 a). The first λ_1^- value was calculated from the results from the average initial stress of 12.9 kPa to an intermediate stress of 50 kPa. The value for this phase of slurry consolidation was 0.327. This was significantly lower than the other values given in Table 3, and has not been included in the above statistical analysis giving a mean λ_1 =0.513. This low value in "cake" 732-733 was partly due to the effects of aging (Bjerrum 1967). During the initial 6-day equilibrium period (which was longer than the other slurries), some additional resistance was built up in the clay structure to resist further loading. А pseudo-preconsolidation pressure of about 50 kPa can be approximately determined from Figure 4.1 a. After the vertical stress exceeded 50 kPa, the λ_1 -value for the second phase was 0.504. This compared very well with the general range of λ_1 -values from the other tests.

The mean and standard deviation of λ_1 -values (0.513 and 0.012 respectively) from the present program showed lower values than those obtained from the two previous programs (0.621 and 0.055 respectively from Kwok (1984); 0.689 and 0.067 respectively from Ambrosie (1985)). The lower average λ_1 -value in the present tests was due to the longer initial loading period (3 days) used in the present program rather than the 24 hours that both Kwok and Ambrosie used in their testing programs. Laboratory plots showed that the larger part of the initial high porewater pressures caused by the initial loading had dissipated at the end of 3 days. The degree of consolidation obtained in the present

study was therefore higher than those experienced in the two previous programs. Less excess porewater pressure was carried over from the initial loading to subsequent loading stages in the present program. The compressions of the "cakes" occurring during subsequent loading were therefore smaller. This means that the slope λ_1 of the compressibility line in $\ln(\sigma'_v)$,e-space would be less steep.

It is evident from Figure 4.1 that the drainage conditions in the "cakes" were not exactly identical during slurry consolidation although they were closely similar. Table 3 shows a range of moisture contents calculated in the specimens at 24 hours after the final load application of 70 kPa. The moisture contents at this stage ranged from 55.4% to 59.4% with a standard deviation of 1.3%. This variation compared favorably than those from two previous programs (5.2% from Kwok 1984; 6.4% from Ambrosie 1985) and reflects the improved sample preparation techniques introduced in the present project. Even though there were relatively small differences in moisture content after 24 hours in the present tests, different "cakes" underwent different changes in moisture contents during the remainder of the stabilization period at 70 kPa. Different straining rates during secondary consolidation and aging in fact produced specimens with smaller range of moisture contents at the end of consolidation (Table 3) than at the 24-hour stage. The moisture contents calculated from height changes during slurry consolidation varied from only 49.1% to 50.5% with a standard deviation of 0.5%. The range was less variable than the equivalent ranges obtained from the two previous programs (2.0% from Kwok 1984; 3.29% from Ambrosie 1985) and again represents the improvements effected by detailed procedural differences in the present program. Table 3 also shows the average

moisture contents measured from the trimming of specimens during the building-in process. There was a good agreement between the measured and calculated moisture contents. The maximum difference was only 1%, which compared very favorably with the 3% reported by Kwok (1984). Slurry consolidation in the present study can be considered to give good control in producing uniform moisture contents among specimens.

4.3 TRIAXIAL CONSOLIDATION

4.3.1 Overview of Program

After slurry consolidation, each "cake" was extruded from the cylinder and trimmmed into three identical specimens. The specimens were then carefully transferred into triaxial cells and were subjected to the uniform anisotropic consolidation procedures described in Section 3.4.3. Drainage volumes were measured carefully during this phase of testing. Drainage conditions in the two "samples" T732 and T733 were slightly different from the rest (Section 3.2.2). For "sample" T732, there was also a leakage at the top drainage, but this was not discovered until the reconsolidation phase of the tests. On the basis of results from T733, the volume change of this "sample" during triaxial consolidation was estimated by taking the top and bottom drainage volumes to be equal.

4.3.2 Linear and Volumetric Strains

All specimens were subjected to closely similar anisotropic consolidation with a stress ratio of K=0.53. During the triaxial consolidation, volume changes and axial deflections of the specimens were measured. These measurements enabled calculation of axial strains and volumetric strains at any stage of the triaxial consolidation. Air

trapped in the specimens during the building-in process was flushed out before each load increment was applied. This was excluded from the calculation of volume changes. Lateral strains were computed from the measured volumetric strains and axial strains on the basis of common assumption that the specimens remained cylindrical during deformation.

Linear and volumetric strains for normally consolidated specimens are presented in Table 4. The axial strains (ϵ_{1c}) varied from 11.15% to 15.97% and the volumetric strains (v_c) ranged from 10.49% to 12.79%. The lateral strains (ϵ_{3c}) varied from -1.27% to 0.65% with a mean of -0.25% and a standard deviation of 0.70%. The axial and volumetric strains were comparable to those reported by Ambrosie (1985). The absolute values of the $\epsilon_{1c}/\epsilon_{3c}$ ratio in Table 4 varied from 9.7 to 149. Ambrosie (1985) found this ratio varied in his tests from 2.68 to 22.76.

For the overconsolidated specimens with OCR=2, results of the linear and volumetric strains during consolidation are shown in Table 5. The axial strains (ϵ_{1c}) ranged from 9.74% to 12.57% and the volumetric strains (v_c) ranged from 9.50% to 10.76%. The lateral strains (ϵ_{3c}) varied from -1.14% to 0.02% with a mean of -0.54% and a standard deviation of 0.38%. The absolute values of the $\epsilon_{1c}/\epsilon_{3c}$ ratio were found to vary from 10.4 to 518. Kwok (1984) reported this ratio varied in his tests from 5.8 to 48.5.

Under fully K_0 conditions, the cross sectional areas of the specimens should remain constant by definition, with zero lateral strains. With the test facilities available at the University of Manitoba, zero lateral strain could not be controlled. They were held to small values by carefully choosing the imposed K value. As mentioned earlier, a K value of 0.53 was used in all specimens of the present

study to permit comparison with previous studies. This came from the value $K_0=0.95-\sin\Phi'$ proposed by Brooker and Ireland (1965) for normally consolidated clays with the value of $\Phi'=25^{\circ}$ suggested by Ambrosie (1985). Kwok (1984) and Ambrosie (1985) both determined $K_0=0.46$ empirically from very limited testing. Graham et al. (1986) suggested $K_0=0.50$ from examining the results at the end of their testing programs. The specimens in the present study were subject to a small degree of lateral straining from their "in situ" condition. The overall average $\epsilon_{1c}/\epsilon_{3c}$ was 62.9. The higher $\epsilon_{1c}/\epsilon_{3c}$ ratio in this series indicated that the consolidation at the chosen value of K=0.53 was closer to the zero lateral strain condition than in the previous series. The adopted K value was virtually constant in the present program, and there was therefore no systematic relationship between K and $\epsilon_{1c}/\epsilon_{3c}$.

4.3.3 <u>kg-values</u>

When specimens were transferred from from one-dimensional cylinder consolidation to the triaxial cells, disturbance due to stress release inevitably occurred. There were also varying degrees of mechanical disturbance caused by the extrusion, cutting, trimming and building-in processes although the equipment used and the procedures adopted were aimed at reducing the disturbance as much as possible. The approach used by Graham et al. (1986) was to consolidate reconstituted specimens anisotropically in triaxial cells to σ'_{1c} =160 kPa, 2.3 times larger than the maximum stress in the one-dimensional cylinder. They argued on the published evidence that normal (virgin) consolidation from 70 kPa to 160 kPa would remove any influence of mechanical disturbance during trimming. Values for the recompression index (κ_1) during the early stages of triaxial consolidation were calculated from the reload portion

of the log(p') versus V plots in the stress range of 50 kPa to 70 kPa (Figures 4.2-4.7). Values of κ_1 are presented in Tables 4 and 5. They were found to range between 0.082 and 0.124 with a mean of 0.102 and a standard deviation of 0.013. Similar results were reported by Kwok (1984) and Ambrosie (1985), with mean values of 0.103 and 0.105 respectively.

4.3.4 λ_2 -values

The values of the compression index (λ_2) during the later stages of triaxial consolidation were calculated from the graphs of log(p') versus V for the stress range from approximately 70 kPa to 160 kPa (Figures 4.2-4.7). The λ_2 -values represented by the linear section of virgin compression lines varied from 0.169 to 0.263 with an average of 0.234 and a standard deviation of 0.019. Results of λ_2 -values are summarized in Tables 4 and 5. Mean λ_2 -values reported by Kwok (1984) and Ambrosie (1985) were 0.226 and 0.237 respectively. The mean λ_2 =0.234 in the present study falls well between these two values.

"Samples" T732 and T733 exhibited λ_2 -values at the lower end of the range (0.169 and 0.209 respectively). The reason is thought to be due to the different drainage condition used in these tests during the earliest phase of the program. As mentioned earlier, both "samples" (T732 and T733) were allowed to drain only from the top and bottom of the "samples" but with no side filter drains. The remaining specimens in the program were given lateral filter drains as well as bottom drainage. Daily loading increments were applied throughout the whole triaxial consolidation phase of the tests. "Samples" T732 and T733 with only end drainage would experience smaller daily volume changes than those with bottom drainage and lateral drainage due to their lower

degree of consolidation resulting from the different boundary conditions (Bishop and Henkel 1962). This would make the slope of the normal consolidation line in ln(p'),V-space become less steep because the measurement values did not represent complete consolidation.

The parameter λ_2 was observed to be much lower than the value of λ_1 from slurry consolidation. The mean λ_1/λ_2 ratio was found to be 2.2 as compared to the higher value of approximately 3.0 obtained by Kwok (1984) and Ambrosie (1985). Kwok(1984) suggested that the variation in λ_1 and λ_2 may be due to the difference in load ratios during slurry consolidation and triaxial consolidation (1.38 and 1.15 respectively). However changes in load ratio would normally be expected only to move the consolidation line in $\ln(\sigma'_V)$,e-space, but not to change its slope (Leonards and Altschaeffl 1964). Ambrosie (1985) suggested that the higher λ_1 -values may be due to the higher porewater pressures developed during the slurry consolidation and dissipated subsequently.

The mean $\lambda_2'\kappa_1$ ratio was found to be 2.3 in the present study. A value of 2.2 was reported by Graham et al. (1986) for the same clay and by Graham et al. (1983) for natural Winnipeg clay. Li (1983) reported the $\lambda_2'\kappa_1$ ratio was 2.1 for remoulded Winnipeg clay.

4.3.5 <u>_</u>∠-values

Twelve specimens (T751-T762) were overconsolidated by reducing stresses from σ'_{1c} =160 kPa to σ'_{1c} =80 kPa following the original stress path to give an OCR of 2.0 (Figures 4.5-4.7). The change in K_o which would normally accompany overconsolidation had not been modelled in these tests. The offloading was done in one step due to time constraints. The specimens were then allowed to stabilize for a period of four days after unloading. The κ_2 -values for the swelling phase are

also presented in Table 5. They ranged between 0.036 and 0.054 with a mean of 0.047 and a standard deviation of 0.005. They were the least variable among all the λ and \ltimes values reported. Kwok (1984) and Ambrosie (1985) reported that the mean $^{\kappa}2^{-}$ values were 0.048 and 0.05 respectively. The average $\kappa_1^{\prime}\kappa_2^{\prime}$ ratio was 2.2, which was also observed by Kwok (1984). Kwok suggested that the difference in $\kappa_1^{}$ and $\kappa_2^{}$ might be due to different load ratios used during the reloading phase and during the unloading (swelling) phase (1.15 and 0.5 respectively). The author suggests it is more likely due to the difference in slope between loading and unloading in the overconsolidated range. Leonards and Altschaeffl (1964) showed that the reload line is always observed to be steeper than the swelling line within the range of vertical pressures in this study.

4.3.6 Yield Determination

The preconsolidation pressure from slurry consolidation, (that is, the highest pressure reached in the cylinder, $\sigma'_{cyl}=70$ kPa) was compared to the vertical yield stresses (σ'_y) interpreted from the triaxial tests. The triaxial consolidation data were analysized using the computer program TXCEP which was developed by Lew (1981) at the University of Manitoba. The program produced printouts of the results and seven different stress-strain plots. The plots included:

- 1. log(p') versus V
- 2. p' versus v
- 3. q versus \in
- 4. σ_1' versus ϵ_1
- 5. σ'_3 versus ϵ_3
- 6. p' versus ϵ_1

7. W versus LSSV

The stresses at which yielding took place have been interpreted using the bilinear plotting techniques described by Graham et al. (1983). Graphs of various yield curves are presented in Figures 4.2-4.7 and in The plot of σ_3' versus ϵ_3 was Appendix B. omitted from the interpretation because specimens were loaded along an approximate K_o-line with small lateral strains. Some problems were encountered with the interpretation of the yield stresses on some of the p' versus v plots where bilinear behaviour was not observed. For comparison purposes, stresses at yield determined from the various plots for each specimen were expressed in terms of a common variable, namely the vertical effective stress (Table 6). An average vertical yield stress (σ_V') was also calculated for each specimen from the various plots. It was found to vary from 70.6 kPa to 73.9 kPa, and averaged only 3.0% higher than the 70 kPa applied in the slurry consolidation. It was comparable to 2.6% obtained by Ambrosie (1985) and 3.3% obtained by Kwok (1984).

4.3.7 Elastic Parameters

According to Graham and Houlsby (1983), five elastic parameters are required to describe the cross-anisotropic elasticity of clays inside their state boundary surface. However this requires specimens stressed along stress paths in widely different directions in p',q-space. All specimens in the present program were tested only along a stress path with K=0.53. This meant that the full range of elastic parameters could not be obtained. Equivalent isotropic pseudo-elastic bulk and shear moduli (K_{eq} , G_{eq}) close to the K_o -condition were calculated from the linear reload sections of the p' versus v and q versus \in plots

respectively (Appendix B) before yielding occurred. Results are summarized in Tables 4 and 5. Values of $\rm K_{eq}$ and $\rm G_{eq}$ varied from 772 kPa to 1126 kPa and from 376 kPa to 893 kPa respectively. Since the stiffness of lightly overconsolidated clay depends on the preconsolidation pressures, normalized values of Keq/o'cyl and Geq/o'cyl are also shown in Tables 4 and 5. The values of K_{eq}/σ_{cyl} were observed to vary from 11.0 to 16.0 with an average of 13.5. The values of G_{eq}/σ'_{cyl} ranged between 5.3 and 12.8 with a mean of 8.8. The mean value of G_{eq}/σ'_{cyl} in the present program was lower than the results reported by Kwok (1984) (G_{eq}/σ'_{cy1} =13.2) and Ambrosie (1985) (G_{eq}/σ'_{cy1} = 15.5) for the same clay, and Li (1983) (G_{eq}/σ'_{cyl} =13.6) for reconstituted Winnipeg clay. The reasons are unclear this time. On the other hand, a much lower value of $G_{eq}/\sigma'_{cy]}$ =4.5 was reported by Graham et al. (1983) for natural Winnipeg clay. Wroth et al. (1979) reported G_{eg}/o'cyl values of many clays to be about 11.

CHAPTER 5

RESULTS: UNLOADING, STORAGE AND RECONSOLIDATION

5.1 INTRODUCTION

As described in Section 3.4.3, all specimens at the end of triaxial consolidation were allowed to stabilize for a period of 4 days that was the same as was used in the previous programs by Kwok (1984) and Ambrosie (1985). They were then backpressured with 500 kPa to simulate high porewater pressures experienced in the seabed, and were allowed to stabilize for a period of 24 hours. "Samples" T732-T739 and T751-T759 were subsequently subjected to the total stress unloading procedures described earlier to model the field sampling process. "Samples" were then allowed to swell for various periods of time to simulate totally drained storage of recovered samples from a site investigation. At the end of various storage periods, all "samples" were subjected to one of the chosen reconsolidation procedures prior to undrained shear tests. The following sections will present the results of "samples" during the unloading, storage and reconsolidation phases of The "in situ specimens" (T740-T742, T760-T762) the tests. were subjected immediately to undrained shearing without an offloading and reloading cycle. The results during shearing will be presented in Chapter 6.

5.2 UNLOADING BEHAVIOUR

5.2.1 Unloading of Shear Stress

As described in Section 3.4.5, the consolidation shear stresses on

the "samples" were first offloaded quickly in a period of about 5 minutes while the cell pressures maintained constant. The porewater pressures of the disturbed "samples" during shear unloading were monitored from the cell pedestals with pressure transducers. Graphs of porewater pressures versus deviator stress for the normally consolidated "samples" (T732-T739) and the overconsolidated "samples" (T751-T759) are shown in Figures 5.1-5.3 and Figures 5.4-5.6 respectively. The porewater pressure typically shows an initial non-linear relationship with deviator stress, and then a subsequent linear relationship. Similar porewater pressure behaviour was observed by Noorany and Seed (1965). Some differences in detail compared with the results of Kwok (1984) and Ambrosie (1985) will be discussed later.

The porewater pressure parameter ($A_u = \Delta u/\Delta q$) based on the total unloading of shear stress for the normally consolidated "samples" T732-T739 ranged from 0.26 to 0.49 with an average of 0.37 and a standard deviation of 0.08. For the overconsolidated "samples" T751-T759, A_u varied between 0.36 to 0.47 with a mean of 0.42 and a standard deviation of 0.05. Since these two mean A_u -values are greater than 0.333, the "samples" generally experienced higher mean effective stress immediately following shear unloading than their in situ values. These values are somewhat higher than what Graham et al. (1986) found in their studies. Their mean A_u -values for normally consolidated "samples" and overconsolidated "samples" of the same clay were 0.33 and 0.37 respectively. This means that their mean effective stresses remained essentially constant or increased just slightly immediately after unloading the shear stress to zero.

Unusual behaviour was observed in "sample" T732 (Figure 5.1), in
which porewater pressures increased slightly with decreasing deviator stress during the first two decrements of shear stress. This might be due to a minor leakage at the top drainage connections of the "sample". In this case, A_u was found to be negative in this range.

The stress paths of the normally consolidated and overconsolidated "samples" during unloading in p',q-space are also presented in Figures 5.7-5.8 and Figures 5.9-5.11 respectively. The stress paths in p',q-space first move downwards to the left instead of being vertical as would be expected from a linear elastic isotropic soil. Behaviour similar to the present study was reported by Kwok (1984) and Ambrosie (1985). The mechanism is unclear. They both attributed the occurrence to be caused by the "samples" not being at porewater pressure equilibrium before unloading. (To permit comparison, "samples" in the present study were consolidated for the same time duration as in the previous program). Alternatively, the leftwards movement may be caused by a small amount aging of the "samples" at the end of triaxial consolidation and backpressuring, or to a delay in porewater pressure equalization between the "sample" and the sensing element in the transducer.

After two to three decrements of shear stress, Figures 5.7-5.11 show a tendency to move to the right as well as downwards. Kwok (1984) and Ambrosie (1985) both observed similar but less marked behaviour during the last decrement in their tests. They suggested this behaviour was perhaps due to slow equalization of porewater pressures between the "samples" and the porewater pressure transducer. The shear unloading procedure was completed in all studies within 5 minutes, and did not allow the readings to fully stabilize during unloading. This occurrence was more systematic in the present study than the two previous programs. The behaviour might simply be due to the inherent anisotropy of the "samples" (Graham and Houslby 1983). This would explain a straight unloading in p',q-space with $A_u \neq 0.333$, but would not explain the observed non-linear behaviour.

5.2.2 Unloading of Cell Presssure

All "samples" were subjected to isotropic unloading following the unloading of the shear stress. The isotropic unloading lasted for a further period of 10 minutes. Porewater pressure changes that accompanied the removal of cell pressure for normally consolidated "samples" and overconsolidated "samples" are shown in Figures 5.12-5.14 and Figures 5.15-5.17 respectively.

For normally consolidated "samples" (Figure 5.12-5.14), the B-values (= $\Delta u/\Delta \sigma_{cell}$) during isotropic unloading were 96% to 99%. The initial residual porewater pressure immediately following the isotropic unloading reached an average value of -88 kPa. The stress paths for normally consolidated "samples" during isotropic unloading in p',q-space are also shown in Figures 5.7-5.8. Following the combined processes of shear and isotropic unloadings, the normally consolidated "samples" had been unloaded from an "in situ" p'=109.9 kPa (σ'_{1c} =160 kPa, K=0.53) to an average p'=93.0 kPa. The loss in p' averaged 15%. This is lower than the 20% reported by Skempton and Sowa (1963) and Ladd and Lambe (1963). It should also be noted on these tests that the shear unloading phase with A_u > 0.333 actually led to small increases in p' before cell pressure reduction.

Exceptions to the general pattern were the normally consolidated "samples" T733 and T736 in Figures 5.12 and 5.13 respectively. The

porewater pressures in both "samples" were observed to deviate from an approximate 1:1 relationship with the cell pressure during isotropic unloading. This is more evident in the negative pressure range for the "sample" T736 (Figure 5.13). It was probably associated with the presence of air coming out of solution into the system and inhibiting the development of high negative porewater pressures (Okumura 1971). (It was confirmed during the later reconsolidation phase of testing that both "samples" had air in their drainage systems). The initial residual porewater pressures immediately following isotropic unloading for both "samples" T733 and T736 were -44 kPa and -45 kPa respectively, about half of what was experienced by other normally consolidated "samples". This caused a total loss of 55% in p' as the mean effective stress dropped to about 50 kPa.

For overconsolidated "samples, the B-values during the isotropic unloading were 99% to 100% (Figures 5.15-5.17). They were higher than those obtained for normally consolidated "samples" as discussed in one of the earlier paragraphs. It can be observed that the deviation from the 1:1 relationship was much less obvious in the overconsolidated "samples". The initial residual porewater pressures immediately following the isotropic unloading ranged from -45.3 kPa to -51.6 kPa with an average value of -47.5 kPa. Figures 5.9-5.11 also show the stress paths of the overconsolidated "samples" in p',q-space during isotropic unloading. The residual effective stress immediately following the shear and isotropic unloadings reached an average value of 52.7 kPa, which compared favorably to the "in situ" mean effective stress of 54.9 kPa (σ'_{1c} =80 kPa, K=0.53). The loss in p' was only 3.8%, which is much less than the 15% from the normally consolidated

"samples". The mean effective stress of the overconsolidated "samples" can be considered to remain approximately constant immediately before and after the unloading processes, especially for "samples" T751, T752, T756 and T759 where the differences were usually of the the order of 2 to 3 kPa. A similar conclusion was drawn for overconsolidated "samples" of the clay by Graham et al. (1986).

5.3 STORAGE

All "samples" after being unloaded were subjected to different periods of swelling to model various storage periods imposed on the recovered samples. The selected durations of the storage periods were 15 minutes, 1 day and 1 week. The background leading to the selection of these storage periods was discussed in Section 3.2.2. Section 3.4.6 described the test procedure during the storage phase of testing.

Figures 5.18 to 5.20 show the swelling behaviour of the normally consolidated "samples" T733-T739 with respect to the storage time. The final volumetric strains measured during this phase are summarized in Table 7. The swelling curve for "sample" T732 is not available due to leakage at the top drainage connection. "Sample" T733 was allowed to have drainage from the top of the "sample" through the top cap (Figure 5.18 a), and at the same time negative porewater pressures were monitored from the cell pedestal (Figure 5.18 b) during a storage period of 1 week (Section 3.2.2). It was observed in Figure 5.18 b that the negative residual porewater pressure stayed almost constant at a value of about -55 to -57 kPa for some time, and then a loss of negative porewater pressure started at a time ranging from 10 hours to 1 day. (This relatively sudden breakdown phenomenon was not so obvious at the

corresponding section of the swelling curve in Figure 5.18 a but the curves have the same general shape). The drop of porewater pressure continued in an approximately linear relationship with log(storage time). This gradually caused decreased values of the mean effective stress p'. Similar porewater pressure behaviour was also observed by both Kwok (1984) and Ambrosie (1985), (Graham et al. 1986). The mechanism is unclear. They suggested that some may be due to slow reorientation of clay particles. This could develop as the anisotropic in situ stress changed to isotropic effective stresses controlled by negative porewater pressures. The remainder may result from diffusion through the double membranes, or past the sealing rings under the low cell pressure of 5 kPa during this stage of testing. Kirkpatrick and Khan (1984) attributed the loss of pore suction with increasing storage time to the effects of cavitation. The occurrence may result from a combination of all these factors to varying degrees. Further work is needed on the effects of cavitation in these samples.

After the "sample" T733 had been stored for about 4 to 5 days, the linear relationship (Figure 5.18 b) of porewater pressure with respect to log(time) tended to slow down. This is also reflected at the corresponding section of the swelling curve in Figure 5.18 a. At the end of the 1-week storage time, the residual porewater pressure (u_r) at the bottom of T733 dropped to -7.5 kPa, and the u_r/u_{ri} ratio decreased to 14%. The final volumetric strain (expansion) for T733 was 5.92%.

Two other 1-week normally consolidated "samples" (T736 and T739) also show swelling curves with a shape similar to a conventionally S-shaped consolidation curve with large load increment ratios (Figures 5.19-5.20). The swelling of the "samples" resulted from the dissipation

of negative porewater pressures. The volume increases of the "samples" were observed to take place more gradually than the losses in negative porewater pressure.

A typical swelling curve in log(time) space consists of an initial non-linear section followed by a second linear section and a third less steep linear line. The time where the two linear sections meet may be interpreted as the equilibrium time, and was observed to range from about to 1 to 2 days in T736, about 3 to 4 days in T739, and about 5 days in the one-end drainage "sample" T733 (Figure 5.18 a). At the end of the 1-week storage period, both "samples" T736 and T739 had final volumetric strains of 7.46% and 7.76% respectively. These strains were higher than the 5.92% from "sample" T733. The lower strain in T733 was probably due to the partially drained condition imposed on the "sample", where lateral filter paper drains had not been used. Ambrosie (1985) reported the volumetric strain of the same clay after a storage period of 1 week was 1.7%. Re-examination of the original laboratory data shows that this figure should be corrected to 6.95%.

The 1-day storage "samples" T735 and T738 exhibited only the first linear relationship without any subsequent slow-down during the storage period. The final volumetric strain of "sample" T738 after 1-day storage was 5.20%. "Sample" T735 had an unusually high volumetric strain of 8.11% probably because its membranes were accidentally overexpanded for a short time at the end of unloading when the "sample" was under low cell pressure with high applied porewater pressure. After its "in situ" stresses (σ_{1c} =160 kPa, σ_{3c} =84.8 kPa) had been re-established, the drainage system was flushed to ensure that any trapped air was removed. The "sample" was then allowed to stabilize for

24 hours under a backpressure of 500 kPa. The unloading procedure was subsequently repeated. The soil structure at end of the backpressuring might be different from that at its "in situ" state despite the rescue procedure. However the most important thing is that the shape of this swelling curve during the first 2-hour storage period is identical to the corresponding stage of "sample" T736.

The 15-minute "samples" T734 and T737 had volumetric strains of 0.54% and 0.46% respectively. These strains were small when compared to those obtained from "samples" after a storage period of 1 day or 1 week. However their swelling behaviour did show the initial shape of a 1-week swelling curve, especially for "sample" T737.

The swelling curves for the overconsolidated "samples" T751-T759 during various storage periods are presented in Figures 5.21-5.23. Similar trends of swelling behaviour were observed as previously described for the normally consolidated "samples". Equilibrium times usually occurred at times ranging from 2 to 3 days after the drainage leads were opened. This was in the same range as the normally consolidated samples but the results appeared to be more consistent. The reason may be due to the smaller magnitude of stress release in the case of overconsolidated "samples" than normally consolidated "samples".

Table 8 summarizes the final volumetric strains measured during swelling for the overconsolidated "samples". The volumetric strains for the 1-week "samples" varied from 6.49% to 6.75%. The 1-day "samples" and 15-minute "samples" show volumetric strains of 4.13% to 5.29%, and 0.28% to 0.37% respectively. These strains are only slightly lower than the corresponding values from the normally consolidated "samples". This may be due to the marked non-linearity of swelling behaviour during unloading. Figure 5.21 shows a sudden jump in the results for "sample" T752 after it has been drained for a period of 2 hours. This was because of a sudden loss of the cell pressure during the early stages of the test.

5.4 RECONSOLIDATION

At the end of various selected storage periods, all "samples" prior to undrained shearing were subjected to reconsolidation at one of the various stress levels chosen in Section 3.2.2. The main objective in this study is to determine which reconsolidation procedure can best reproduce the "in situ" strength of reconstituted illite clay. Section 3.4.7 described the test procedure during this phase of testing.

Reconsolidation was usually complete after 3 to 4 days. Axial strains and volumetric strains measured during this stage for the normally consolidated "samples" T732-T739 are summarized in Table 7. Lateral strains were also computed in Table 7 from the measured volumetric strains and axial strains assuming that the "samples" remained cylindrical during deformation. Test results for "sample" T732 were not available due to leakage at top drainage connection.

It was observed that reconsolidation strains experienced by the normally consolidated "samples" varied with the reconsolidation procedures and the storage periods. The volume changes in term of volumetric strains experienced by the "samples" during this reconsolidation phase are also plotted against log(storage time) in Figure 5.24. There is an approximately linear and parallel relationship between the volumetric reconsolidation strain and the storage time of the "sample" in log space. The "samples" which had been subjected to

longer periods of drained storage experienced larger subsequent volume decreases when they were subjected to identical reconsolidation procedures. The volumetric strains were usually the highest for the "samples" stored for 1 week. Table 7 also shows similar relationships in the measured axial strains.

As well as this influence of storage time, "samples" which had been subjected to identical period of storage experienced larger volume decreases resulting from $1.0 \times \sigma_{1c}^{\prime}$ -iso reconsolidation than those from 1.0x σ_{1c}^{\prime} -aniso reconsolidation. (These symbols will be used again later to refer to the reconsolidation procedures. " $1.0 \times \sigma_{1c}^{+}$ iso" means "isotropic reconsolidation to $\sigma'_1=1.0 \times \sigma'_1c$; "aniso" means "anisotropic reconsolidation to $\sigma_1'=1.0\, imes\sigma_1\, extsf{c}''$.) These larger volume decreases are due to the higher imposed mean stress level of p'=160 kPa in the $1.0 \times \sigma_{1c}^{\prime}$ -iso reconsolidation compared with p'=109.9 kPa in the $1.0 \times \sigma_{1c}^{+}$ -aniso reconsolidation. Of the three 1-week normally consolidated "samples" (T733, T736 and T739), "sample" T733 which was subjected to the $0.6x\sigma_{1c}^{\prime}$ -iso reconsolidation procedure gave the lowest volumetric strain. This is probably because it had the lowest p' value of 96 kPa of the three "samples". Results of the $0.6x\sigma_{1c}^{\prime}$ -iso reconsolidation for normally consolidated "samples" with other storage times are not available as explained in an earlier section.

Reconsolidation strains for the overconsolidated "samples" T751-T759 are summarized in Table 8. Volumetric reconsolidation strains are plotted against log(storage time) in Figure 5.25. Similar trends of reconsolidation behaviour were observed to those described earlier for normally consolidated "samples", but the results appear to be more consistent. The volume decreases experienced by overconsolidated

"samples" during this stage were smaller than corresponding values from normally consolidated "samples". The reason is probably due to the smaller magnitude of the reconsolidation stress levels in the case of overconsolidated "samples" compared with the normally consolidated "samples".

Unusual behaviour was observed in "sample" T751 which experienced a small volume expansion instead of volume compression during the 0.6x σ'_{1c} -iso reconsolidation (Table 8). "Sample" T751 was not able to swell fully during the short imposed storage period of 15 minutes. The mean effective stress of the "sample" at the end of storage period therefore dropped only slightly lower than the initial value of p'=53 kPa immediately following the total stress unloading, and was still higher than the value of p'=48 kPa that was applied during $0.6 \times \sigma_{1c}^{\prime}$ -iso reconsolidation. This explains why swelling still continued during the reconsolidation phase of the tests. Swelling is also seen in the results of axial strain for T751 (Table 8). On the other hand, the 1-day and 1-week "samples" (T752 and T753 respectively) had released their negative porewater pressures, and the p' values were therefore lower than the reconsolidation value p'=48 kPa. These samples experienced volume decreases during the 0.6xo'_1c-iso reconsolidation.

CHAPTER 6

UNDRAINED SHEAR TEST RESULTS

6.1 INTRODUCTION

After triaxial consolidation, all specimens were transferred from the consolidation frame to a strain-controlled compression test frame. They were then subjected to a backpressure of 500 kPa for a 24-hr period before any further testing. Seventeen specimens (T732-T739 and T751-T759) now referred to as "samples" were subsequently subjected to processes of unloading, swelling and reconsolidation before undrained shearing was performed. On the other hand, six control "in situ specimens" (T740-T742 and T760-T762) were sheared undrained immediately following the backpressuring without the unloading and reloading steps. This chapter presents the undrained shear test results for both the normally consolidated specimens (T732-T742) in Table 9 and the overconsolidated specimens (T751-T762) in Table 10.

Properties examined from the results of the undrained shear tests include the undrained shear strength, s_u ; the porewater pressure parameters, A_f and m; and the "elastic" modulus, E_{50} . In each case, the results from the "in situ specimens" will be identified first, and then the results from various reconsolidation procedures will be presented.

6.2 STRESS-STRAIN RELATIONSHIPS

Graphs of $(\sigma_1 - \sigma_3)/2\sigma'_{vc}$, σ'_1/σ'_3 and $\Delta u/\sigma'_{vc}$ versus ϵ_1 have been plotted for all specimens during undrained shearing. Eight representative sets of these graphs differentiated in terms of the

reconsolidation procedures and their overconsolidation ratio are given in Figures 6.1-6.8. The remaining graphs from the test program have been included in Appendix C for further reference.

The stress-strain curves from the undrained shear tests are all rather similar, showing a variety of slightly strain softening behaviour that depends (1) on the overconsolidation history of the specimens; (2) on the duration of storage; and (3) on the reconsolidation procedures. In general, all tests exhibited an initial stiff section on $(\sigma_1 - \sigma_3)/2\sigma'_{VC}$ versus ϵ_1 plots, followed by a more flexible stress-strain response. А small amount of strain softening behaviour was usually observed after a maximum deviator stress had been reached. The reduction in the shear resistance between the maximum deviator stress and the end of the test at large strain, was not as large as observed for example by Li (1983) in remoulded Winnipeg Clay. The stress-strain curves in the present study were examined using the maximum deviator stress for determining This failure criterion differed from the yield failure failure. criterion used by Kwok (1984) and Ambrosie (1985), in which a yield point was identified with some difficulty as the stress at which their samples had maximum curvature in stress-strain behaviour.

For normally consolidated soil, the "in situ specimens" T740-T742 failed at axial strains ranging from 0.56% to 0.75%. The isotropically reconsolidated "samples" T732-T736 failed at markedly larger axial strains (4.39% to 5.37%) than the anisotropically reconsolidated "samples" T737-T739 (0.82% to 1.37%).

In the case of overconsolidated soil, the failure of the "in situ specimens" T760-T762 occurred at axial strains ranging from 0.97% to 1.39%, larger than the corresponding values from the normally

consolidated soil. The failure strains of the isotropically reconsolidated "samples" T750-T756 ranged between 2.73% and 4.11%. The anisotropically reconsolidated "samples" T757-T759 failed at slightly lower strains of 1.38% to 2.50% than the isotropically consolidated "samples", and at slightly larger strains than the control specimens.

In general, the reconsolidated "samples" of the normally consolidated and the overconsolidated illite usually failed at higher axial strains than the control "in situ specimens". The failure strains observed from the anistropically reconsolidated "samples" were also closer to the "in situ" values when compared to the isotropically reconsolidated "samples". Similar results were reported by Okumura (1971), Kirkpatrick and Khan (1984), and Graham et al. (1986). However no systematic relationship was observed between the failure strains and storage time (Tables 9 and 10).

6.3 EFFECTIVE STRESS PATHS

6.3.1 Normally Consolidated Soil

The effective stress paths in p',q-space of normally consolidated specimens are presented in Figures 6.9-6.12. "Samples" subjected to identical reconsolidation procedures are plotted in the same graphs to show comparisons regarding the storage periods. The results from the different reconsolidation procedures will be discussed separately in the following paragraphs. The influence of normal consolidation is clearly demonstrated in all effective stress paths, with some differences due to the different reconsolidation procedures. They generally rise fairly steeply and then move to the left as the specimens try to compress during undrained shear.

The three normally consolidated "in situ specimens" T740, T741 and T742 rose steeply at the beginning of the test (Figure 6.9), and then moved sharply to the left with some strain softening once failure had been reached. This behaviour indicated breakdown of the soil microstructure that had been developed during anisotropic consolidation. The "in situ specimens" failed at almost identical shear stresses (Figure 6.9; Table 9).

The $0.6x\sigma'_{1c}$ -iso reconsolidated "samples" T732 and T733 exhibited slightly different effective paths in p',q-space (Figure 6.10) although they were reconsolidated to identical reconsolidation stresses. (They were also quite different from the control "specimens" in Figure 6.9). "Sample" T732 shifted first slightly to the right and then back to the left as it moved upwards. It then reached maximum shear stress and continued to the left with a small amount of strain softening. "Sample" T733, on the other hand, moved upwards to the left at the start of shearing, and then ran approximately parallel to T732. Its maximum shear stress, and post-failure behaviour were very similar to those in T732.

The stress paths of the $1.0xo_{1c}^{\prime}$ -iso reconsolidated "samples" T734, T735 and T736 in Figure 6.11 are again similar to each other but different from the other series. They first moved upwards to the left until reaching failure, and continued to the left with some strain softening at large strains. However the pre-failure stress path of the 15-minute "sample" (T734) rose more steeply than the 1-day and 1-week "samples" (T735 and T736 respectively). The maximum shear stresses of these reconsolidated "samples" decreased with increasing storage time.

The stress paths of the $1.0x\sigma_{1c}^{\prime}$ -aniso "samples" T737, T738 and T739

are shown in Figure 6.12. They exhibited generally similar shapes of effective stress paths to the "in situ specimens" (Figure 6.9). The 15-minute "sample" T737 moved upwards steeply until reaching the failure. The effective stress paths of "samples" T738 and T739 (with storage times of 1 day and 1 week respectively) deviated more to the left during the pre-failure stage. The duration of storage seemed to have similar effects on the stress paths as described in the previous paragraph for $1.0xo_{1c}^{\prime}$ -iso reconsolidated "samples". That is, the maximum shear stress decreased with increasing storage time.

6.3.2 Overconsolidated Soil

The effective stress paths in p',q-space for the overconsolidated illite are presented in Figures 6.13-6.16. The effective stress paths generally moved upwards either almost vertically or slightly to the left at the beginning of shear. They then moved slowly to the right and subsequently failed as the lightly overconsolidated clay tended to dilate, producing decreasing porewater pressures. They generally continued to move to the right with some strain softening. Some exception to this general behaviour are shown in Figure 6.15. The shapes of the pre-failure stress paths of the $1.0x\sigma_{1c}^{\dagger}$ -iso "samples" T754, T755 and T756 in Figure 6.15 are very similar to those from other overconsolidated specimens (Figures 6.13, 6.14 and 6.16). However after the $1.0x\sigma_{1c}^{\dagger}$ -iso "samples" reached failure, they moved to the left instead of to the right, and showed the expected strain softening. With the increase of p' to 80 kPa during reconsolidation, these "samples" tended to compress during the later stages of shear, producing increasing porewater pressures.

The duration of storage seemed to have similar effects on the

effective stress paths of the overconsolidated "samples" to those described earlier for the $1.0 \times \sigma'_{1c}$ isotropically and anisotropically reconsolidated "samples" that were normally consolidated. The deviation of the pre-failure effective stress paths from the vertical to the left (Figures 6.14 and 6.15) increased with increasing storage time. The 15-minute "samples" usually exhibited the highest shear strength.

6.4 POREWATER PRESSURE GENERATION

6.4.1 Normally Consolidated Soil

The relationships between normalized changes in porewater pressure $(\Delta u/\sigma'_{VC})$ and axial strains (ϵ_1) for all the normally consolidated specimens during the undrained shearing phase of the tests are presented in Figures 6.1-6.4 and in Appendix C. The porewater pressures continued to increase after the failure was reached. These increases in porewater pressures are characteristic of normal consolidation as the soil tends to compress under undrained shearing.

The porewater pressure parameter $A_f = \Delta u_f / \Delta (\sigma_1 - \sigma_3)_f$ was obtained from each test and results are summarized in Table 9. The reconsolidated "samples" usually failed at higher A_f -values (0.51 to 0.79) than the control "in situ specimens" (0.37 to 0.42). They also showed the A_f -values increased with increasing storage time. For "samples" subjected to identical periods of storage, the $0.6 \times \sigma_{1c}^{+}$ -iso reconsolidation gave the best estimates of the "in situ" A_f . This view was also reflected in the results of Ambrosie (1985). On the other hand, the anisotropic reconsolidation was the least successful method for estimating the "in situ" value except from the 15-minute sample (Table 9).

The porewater pressure behaviour was also examined using the normalized change in porewater pressure $\Delta u/\sigma'_{VC}$ versus normalized change in octahedral total mean stress $4p/\sigma'_{vc}$. The graphs shown in Figures 6.17-6.20 are presented in groups according to reconsolidation procedures. The shapes of these graphs for the anisotropically reconsolidated "samples" T737, T738 and T739 (Figure 6.20) are quite similar to those obtained from the control "in situ specimens" T740, T741 and T742 (Figure 6.17). The specimens generally exhibited remarkably linear initial relationships until close to failure. When the porewater pressures suddenly increased, the normalized changes in octahedral total mean stress $\Delta p/\sigma_{VC}^{\prime}$ remained almost constant. The slopes of the initial linear sections represent the m-values summarized in Table 9. The m-values of the "in situ specimens" ranged between 1.21 and 1.42 with an average of 1.29. This average is close to the m-value of 1.26 reported by Ambrosie (1985) and represents anisotropic particle structure in the specimens (Graham and Houlsby 1983). The m-values of the anisotropically reconsolidated "samples" were usually slightly higher than the "in situ specimens" and had larger variability from 1.37 to 1.88.

The relationships between $\Delta u/\sigma'_{VC}$ versus $\Delta p/\sigma'_{VC}$ for the isotropically reconsolidated "samples" (Figures 6.18 and 6.19) were slightly different from the anisotropically reconsolidated specimens shown in Figure 6.20. The initial linear section was more pronounced for the isotropically reconsolidated "samples", and the transition to non-linear behaviour was not as sudden as in the anisotropically reconsolidated "samples". A similar observation was made by Ambrosie (1985). Despite these differences, the isotropic "samples" exhibited a

similar range of m-values (1.56 to 1.86) when compared to that from anisotropic "samples" (1.37 to 1.88). However the anisotropic reconsolidation generally tended to give the best estimates of the "in situ" m-value compared with the isotropic reconsolidations if identical periods of storage were imposed to the "samples". There was exception for the case of the 1-week "samples" (Table 9).

Overall, the reconsolidated "samples" generally exhibited higher m-values than the control "in situ specimens". The m-values also increased with increasing storage time (Table 9). The $1.0x\sigma'_{1c}$ -aniso reconsolidation generally gave the best estimate of its "in situ" m-value.

6.4.2 Overconsolidated Soil

The relationships between $\Delta u/\sigma'_{VC}$ and ϵ_1 for the overconsolidated samples during undrained shearing are given in Figures 6.5-6.8 and in Appendix C. The porewater pressures rose to maximum before failure was reached, and then decreased as the specimens tended to dilate and strain soften to the end of the test at axial strains of about 12%.

Figures 6.21-6.24 group the plots of $\Delta u/\sigma'_{VC}$ versus $\Delta p/\sigma'_{VC}$ according to the reconsolidation procedures. For specimens except the $1.0\sigma'_{1C}$ -iso reconsolidated "samples" (T754-T756; Figure 6.23), the initial relationship was approximately linear and suddenly showed a decrease in $\Delta u/\sigma'_{VC}$, with an increase in $\Delta p/\sigma'_{VC}$ hooking the curve to the right. This indicated the dilative behaviour of lightly overconsolidated soils. The subsequent Δu versus Δp behaviour is complex and will be discussed further in Chapter 7. There is close general agreement between the "in situ specimens" in Figure 6.21 and the $1.0x\sigma'_{1C}$ -aniso "samples" in Figure 6.24. The initial porewater pressure responses shown in Figures

6.21 and 6.24 seemed to be less certain and less linear when compared to those of the $0.6x\sigma'_{1c}$ -iso reconsolidated "samples" (Figure 6.22).

The porewater pressures of the $1.0 x \sigma_{1c}^{+}$ -iso reconsolidated "samples" T754, T755 and T756 (Figure 6.23) are slightly different in detail, although they show similar trends. They increased slightly more quickly during the early stages of the tests than other overconsolidated specimens. In this case, the "loop" in the porewater pressure curves shown in Figures 6.21, 6.22 and 6.24 have degenerated into simply a marked discontinuity and a sudden change of direction. The $1.0 x \sigma_{1c}^{+}$ -iso reconsolidated "samples" at this stage tended to compress and behaved more like normally consolidated soils. This behaviour was also observed by Kwok (1984) in his $1.0 x \sigma_{1c}^{+}$ -iso reconsolidated "samples".

The A_f-values of the overconsolidated samples are summarized in Table 10. The control "in situ specimens" T761 and T762 had A_f-values of 0.12 and 0.18 respectively. These compare with values of 0.19 and 0.20 reported by Kwok (1984) at smaller axial strains defining his "yield stress". The control specimen T760 showed an unusually low A_{f} -value of 0.03. This is possibly due to a saturation problem encountered at the end of triaxial consolidation. The B-value = 0.97 reported in Table 10 was obtained only after efforts to increase the saturation. For the reconsolidated "samples", the measured A_{f} -values varied considerably from 0.11 to 0.50. It was observed that A_f -values increased with increasing storage time when "samples" had been subjected to identical reconsolidation procedures. Kwok (1984) also reported that the 1-week storage "samples" showed the highest A_f-values. The anisotropically reconsolidated "samples" seemed to give the best estimates of "in situ" A_f-value compared with the isotropically

reconsolidated "samples" when they had been subjected to identical duration of storage. Graham et al. (1986) also drew the same conclusion.

The m-values for the overconsolidated specimens are given in Table 10. All specimens except T760 and T762 have m-values higher than 1.0. The m-values of the "in situ specimens" varied considerably from 0.86 to 1.34. The reason is unclear, but the same difficulty was encountered by Kwok (1984) in his overconsolidated "in situ specimens".

For "samples" subjected to identical periods of storage, the isotropic "samples" generally exhibited higher m-values than the anisotropic "samples", which usually gave results closer to the "in situ" m-values. This view is also reflected in the results of A_f -values which have just been discussed. The m-values also tended to increase with increasing storage time although the tendency was not as consistent as in the case of the normally consolidated "samples".

6.5 ELASTIC MODULUS

In the present study, the non-linearity of the $(\sigma_1 - \sigma_3)/2\sigma'_{VC}$ versus ϵ_1 curves from undrained shear testing has been approximated by a secant modulus E_{50} . This E_{50} -value was obtained as the slope of a stress-strain curve between start of shearing and 50% of the maximum deviator stress (Graham 1974). Table 9 and Table 10 summarize the results for the normally consolidated specimens and the overconsolidated specimens respectively. The relative stiffnesses E_{50}/s_u and E_{50}/σ'_{VC} are also included in Table 9 and Table 10 for comparison.

For the normally consolidated specimens, the E₅₀-values of the "in situ specimens" T740 and T741 were 63.5 mPa and 70.6 mPa

respectively. "In situ specimens" T762 showed a comparatively low value of 25.4 mPa that has been excluded from the analysis. There was no systematic variation of stiffness with storage time. This means that the effectiveness of the reconsolidation procedures can be examined in terms of the average ${\rm E}^{}_{50}$ values. These were calculated from Table 9 to be (1) 67.1 mPa for the control "in situ specimens", (2) 11.4 mPa for the $0.6x\sigma'_{1c}$ -iso "samples", (3) 17.4 mPa for the $1.0x\sigma'_{1c}$ -iso "samples" and (4) 37.4 mPa for the $1.0x\sigma'_{1c}$ -aniso "samples". This shows that the reconsolidated "samples" generally exhibit much lower E₅₀-values than the "in situ specimens". Similar results were found by Atkinson and Kubba (1981); and by Kirkpatrick and Khan (1984). Although there was considerable scatter among the measured E₅₀-values (as is usual in estimating clay stiffnesses in the laboratory), the $1.0 \times \sigma_{1c}^{\prime}$ -aniso "samples" usually gave closer results to "in situ" values than the isotropic "samples". This contrasted with what Graham et al. (1986) found, namely that the $1.0 \times \sigma_1'$ -aniso reconsolidation procedure was actually the least successful method in recovering the elastic modulus E50.

The E_{50} values for the overconsolidated specimens varied considerably (Table 10) so no firm interpretations can be made. The "samples" subjected to a storage period of 15 minutes usually showed the highest E_{50} -values if identical reconsolidation procedures were applied. This indicated that the 15-minute "samples" were subjected to less disturbance due to offloading and storage than other "samples". If some apparently divergent results are discarded, it can be suggested tentatively that both isotropic reconsolidation procedures underestimate the "in situ" soil stiffness, and a better estimate is obtained from $1.0 \times \sigma'_{1c}$ -aniso reconsolidation procedure. This view was also reflected in the last paragraph for the normally consolidated "samples". Further discussion of the soil stiffnesses will be undertaken in Chapter 7.

CHAPTER 7

GENERAL DISCUSSION

7.1 INTRODUCTION

This investigation studied the effects of stress-release disturbance on the shear behaviour of simulated offshore clay samples. It was aimed at searching for laboratory procedures which can best recover the "in situ" strength and stress-strain behaviour of the clay. The design program and test procedures for this study were outlined in Chapter 3. Chapters 4, 5 and 6 presented the results in detail from the consolidation; the unloading, storage and reconsolidation; and the undrained shear phases of tests. They also contained some preliminary discussion of the results as they were being presented. This chapter will discuss more general topics raised by the research.

7.2 <u>BASIC SOIL PROPERTIES AND GENERAL DISCUSSION ON MOISTURE CONTENTS</u> 7.2.1 <u>Basic Soil Properties</u>

General classification tests, including Atterberg limits, grain size distribution and specific gravity tests, were performed on the illitic clay used in this investigation. The average index properties were compared in Table 2 with results reported by Ambrosie (1985), Kwok (1984) and Wu et al. (1983) on similar clay. Relatively good agreement was found between these four sets of results. Atterberg limits were performed on all specimens used for the present stress release study. The range of plasticity index (Tables 11 and 12) was from 28.4% to 37.3% with a mean of 33.6% and a standard deviation of 4.7%. There was no systematic variation of the Atterberg limits with time during the course of the testing program.

7.2.2 Moisture Contents at Various Stages During Testing

Tables 11 and 12 present six sets of moisture contents at different stages during testing. These six sets of moisture contents were obtained as follows:

- (1) from slurry at the beginning of one-dimensional consolidation.
- (2) from soil trimmings at the beginning of triaxial consolidation.
- (3) from measured volume changes at the end of triaxial consolidation.
- (4) from volume changes at the end of unloading and storage.
- (5) from volume changes at the end of reconsolidation and immediately before undrained shear testing.
- (6) from trimmings of failed specimens after undrained shear testing.

The moisture contents during the above six stages of testing will be discussed in the following paragraphs.

The moisture content of each slurry was measured after the initial slurry mixing and before it was poured into the cylinder for one-dimensional consolidation. The moisture contents of all slurries were within 1% of the intended value of 114.4% (twice of the liquid limit used by Kwok 1984) except for specimens T740-T742 in which the moisture contents were around 5% higher (Table 11).

At the end of one-dimensional consolidation (stage 2) , moisture contents measured directly from the trimmings of specimens during the building-in process varied from 49.0% to 51.5% with a mean of 50.2% and a standard deviation of 0.7% (Tables 11 and 12). Standard deviations of

3.4% and 2.0% were obtained by Ambrosie (1984) and Kwok (1985) respectively. The results obtained from the present program thus compare favourably with those from the two previous programs and justify the extra effort and attention that was given to them.

Moisture contents of normally consolidated samples at the end of triaxial consolidation (stage 3) were calculated from the observed volume changes during triaxial consolidation based on the known moisture contents measured from stage 2 above. They varied from 38.3% to 39.1% with a mean of 38.8% and a standard deviation of 0.5% (Table 11). "Samples" T732 and T733 with higher moisture contents of 41.0% and 39.7% respectively were excluded from the above statistical analysis due to their different drainage conditions and leakage problems during testing (Section 4.3).

The moisture contents of overconsolidated samples at the end of triaxial consolidation (stage 3) varied from 41.3% to 42.7% with a mean of 42.0% and a standard devaiation of 0.4% (Table 12). Kwok (1984) and Ambrosie (1985) had the standard deviations of 1.3% and 3.3% respectively at this stage. The variations in moisture contents at this phase of testing in the present program were much less when compared to the two previous programs. This again indicated that much better control in moisture contents was achieved in the present study.

The changes in moisture contents of the normally consolidated "samples" during their storage can be obtained by comparing the moisture contents between stages 3 and 4 in Table 11. The changes depended upon the duration of storage time. The 1-week "samples" (T733, T736 and T739) generally experienced the largest increases in moisture contents (4.5%, 5.6% and 5.8% respectively). "Sample" T733 exhibited the lowest

moisture increase of 4.5% among these three "samples" because only top drainage with no side filter drains was allowed (Section 3.2.2). The 1-day "samples" T735 and T738 experienced increases of 6.1% and 3.9% respectively. The moisture increase in T735 was unusually high due to the unusual unloading and rescue procedures previously mentioned in Section 5.3. The 15-minute "samples" T734 and T737 experienced the smallest moisture increase in the range 0.3% to 0.4%.

The increases in moisture contents of the overconsolidated "samples" during their storage periods can be obtained from Table 12. The increases from stage 3 to stage 4 were similar but slightly lower than in normally consolidated "samples" with identical storage times. However the results seemed to be more consistent in this case of the overconsolidated soils. Despite some scatter, the rather obvious conclusion can be drawn that during "drained" storage, "samples" experience increasing moisture contents (volumes) with increasing storage times.

The net changes of moisture contents resulting from the combined "drained" storage and the reconsolidation process for the normally consolidated "samples" can be obtained from Table 11 by comparing moisture contents at stages 3 and 5. These net changes depend very much on the reconsolidated procedures, but not so much on the storage periods. That is, the two processes tended to counteract one another to some extent. "Sample" T733 ($0.6x\sigma_{1c}^{+}$ -iso group) gave a result of 0.1% loss in moisture content from stage 3 to stage 5 even though the mean pressure p'=110 kPa during initial triaxial consolidation decreased to p'=96 kPa during subsequent reconsolidation. It is therefore suggested that a change must have occurred in the microstructure of the clay

during the unloading, storage and reconsolidation (see also, Graham et al. 1986).

The $1.0x\sigma_{1c}^{\prime}$ -iso samples (T734-T736) showed net losses of 2.0% to 2.9% in moisture contents (that is, volume decrease) between stages 3 and 5. There was no systematic relationship observed between the net moisture changes and the storage times. Although the "samples" swelled during the various storage periods, more moisture was lost during the reconsolidation period. Therefore there were net volume decreases in the "samples" at the end of reconsolidation. These losses in moisture contents were expected due to an overall increase in p' from 110 kPa at the end of triaxial consolidation to 160 kPa at the end of reconsolidation. Since the $1.0x\sigma'_{1c}$ -iso "samples" undergo additional volumetric straining, changes in the measured properties can be expected.

Table 11 showed that the $1.0x\sigma_{1c}^{\prime}$ -aniso set of "samples" (T737-T739) underwent reconsolidation back to their "in situ" anisotropic stresses after the "drained" storage periods. Net decreases in moisture contents in the range of 0.5% to 0.7% still occurred between stages 3 and 5. However these losses were relatively small when compared to those from $1.0x\sigma_{1c}^{\prime}$ -iso "samples". No consistent relationship was observed between the decreases of moisture contents and the storage times.

On the other hand, the differences in moisture contents between stage 3 and stage 5 for the overconsolidated "samples" were clearly affected by the duration of storage as well as the subsequent reconsolidation procedures (Table 12). The $0.6 \times \sigma_{1c}^{\prime}$ -iso "samples" (T751-T753) experienced 0.3% to 1.5% net increases in moisture contents because p' was decreased from about 55 kPa at the end of triaxial

consolidation to 48 kPa at the end of reconsolidation. The gains tended to increase with increasing storage times. This tendency was not observed in the case of the normally consolidated "samples". For "samples" in the $1.0xo_{1c}^{\prime}$ -iso reconsolidation (T754-T756), the p' values increased from about 55 kPa to 80 kPa at the end of reconsolidation. This was accompanied by a net loss of 0.4% to 1.1% in moisture content. The loss in this case tended to decrease with increasing storage times. Although the $1.0xo_{1c}^{\prime}$ -aniso "samples" (T757-T759) were reconsolidated to "in situ" anisotropic stresses, they still experienced small net gains of 0.1% to 0.9% in moisture contents. The tendency of increasing moisture contents with increasing storage times was again observed.

All the above observations indicate that "samples" subjected to longer storage periods experience higher degrees of sample disturbance during their "drained" storage. Although "samples" within the same reconsolidation group were subsequently reconsolidated to identical stress levels, they behaved slightly differently during the reconsolidation and the undrained shear stages due to the different durations of storage that had been previously imposed. None of the reconsolidation procedures in this thesis could fully recover the moisture contents immediate before the unloading, swelling and reconsolidation cycle.

Finally, the moisture contents measured from the trimmings at the end of undrained shearing tests (stage 6) were compared to calculated moisture contents at the end of reconsolidation (stage 5). Since the specimens were sheared undrained, the moisture contents before and after shearing should be the same. Tables 11 and 12 show that these two sets of values are comparable in most cases. The percentage differences

between measured and calculated moisture contents range from 0% to 2.7% for the normally consolidated soils, and 0% to 2.1% for the overconsolidated soils. Although these differences are slightly higher than the values of 0% to 1.2% obtained by Kwok (1984), they show much better consistency than the values of 0% to 4.1% obtained by Ambrosie (1985).

7.2.3 Moisture Content Profiles across Failed Samples

There was intially some concern regarding possible variations of moisture content along the length of the failed samples. Each sample was cut into six transverse slices along its height at the end of undrained shear testing. Two moisture determination were carried out on each slice. Figures 7.1 and 7.2 show the moisture content profiles across six randomly selected samples. Observations drawn from these figures were as follows:

- The difference between the two moisture content determinations from each slice generally varied from 0% to 0.9% with an average of 0.3%.
- (2) The moisture content differences across the whole sample were in the range of 1.3% to 1.7%.
- (3) There is a tendency for the moisture contents to be slightly lower in the middle of the samples compared with the top and the bottom.

Similar results and observation were obtained by Kwok (1984).

7.3 UNDRAINED SHEARING BEHAVIOUR

7.3.1 Normally Consolidated and Overconsolidated Failure Envelopes

The tests conducted in this investigation permit an evaluation of

both normally consolidated and the overconsolidated rupture envelopes of illite at a preconsolidation pressure of 160 kPa. The stress states at which maximum deviator stresses occurred in the present study were plotted as the data points in Figure 7.3. The composite strength envelopes obtained from the two previous programs of Kwok (1984) for overconsolidated samples and Ambrosie (1985) for normally consolidated samples were also included in line form in the figure for comparison. Using an assumption of zero cohesion for the normally consolidated samples ($c'_{nc}=0$), Ambrosie (1985) found that the effective friction angle (Φ'_{nc}) was equal to 25°. The data from the present program were observed to fall on the same envelope.

The overconsolidated envelope with $c'_{oc}=16$ kPa, $\Phi'_{oc}=18^{\circ}$ was obtained by Kwok (1984) for his "samples" stored "undrained". Failure in his "samples" was clearly affected by the reconsolidation procedures and was apparently unaffected by the storage times. His "samples" were stored under "undrained" conditions so that there were losses only in the negative porewater pressures, but not in the volumes or moisture contents. On the other hand, the "samples" stored under "drained" conditions in the present program were allowed to have moisture changes as well as dissipation of negative porewater pressures. Failure in these "samples" was seen to depend upon the duration of storage as well as the subsequent reconsolidation procedures. Figure 7.3 shows that the 15-minute overconsolidated "samples" gave the same strength envelope obtained by Kwok (1984). This was because the 15 minutes of storage time was so short that the degrees of sample disturbance introduced from both the "drained" and the "undrained" storage were small (0.2% to 0.3% of moisture content increase (Table 12) or a drop of 0 to 3.2 kPa in p'

(Kwok 1984)). Therefore it did not really matter whether the "samples" were stored "drained" or "undrained" in this case, and the subsequent reconsolidation procedures dominate the undrained shear behaviour. However the "samples" with longer "drained" storage periods develop higher mosture contents and larger volume changes and these were not overcome by the subsequent reconsolidation procedures. Lower strength envelopes could therefore be expected. This can be seen in Figure 7.3, where the 1-week storage data produce an envelope ($c_{OC}^{*}=11$ kPa and $\Phi_{OC}^{*}=18^{\circ}$) shown dotted below the overconsolidated envelope from Kwok (1984). There is more scatter however in the 1-day data.

7.3.2 Influence of Storage Times and Reconsolidation Procedures on Undrained Shear Strength

The effects of two test parameters, namely duration of storage and reconsolidation procedures, on the undrained shear strength of "samples" were investigated in this study. Six control "in situ specimens" were sheared undrained immediately at the end of triaxial consolidation under a backpressure of 500 kPa to model the undrained shear behaviour of the "in situ " soils. The results were compared to those of the seventeen "samples" which had undergone unloading, storage and reconsolidation befor shearing. Test results for "samples" during the unloading, storage and reconsolidation stages were given in detail in Chapter 5. Chapter 6 described the undrained shearing behaviour for all specimens, and the results were summarized in Tables 9 and 10. The stress paths in p',q-space during the undrained shearing for all control "in situ specimens" and "samples" are presented in Figures 6.9 to 6.16.

7.3.2.1 Normally Consolidated Soil

As shown in Figure 6.9, the stress paths of the three control

"in situ specimens" exhibit similar behaviour in p',q-space. The undrained shear strengths (s_u) of these specimens (T740-T742) are also in relatively good agreement with values of 55.3 kPa, 56.3 kPa and 54.7 kPa respectively. Ambrosie (1984) found that the undrained shear strength of his control specimens were 54.4 kPa and 54.6 kPa. In conjunction with Ambrosie's results, the average value of the "in situ" shear strength for comparison purposes will be taken as 55.0 kPa.

Table 9 showed that "samples" T732 and T733 (0.6 $x\sigma_{1c}^{+}$ -iso group) had shear strengths of 81.6% and 81.1% of the average "in situ" value respectively. These two "samples" also showed that the s_u tended to decrease with increasing storage times although the difference was small (only 0.5%). The strength losses of 18.4% and 18.9% from these two "samples" compared well with the loss of 18% reported by Ambrosie (1985) for his 15-minute "samples" (T703). They were however about 6% lower than the 25% loss he reported for his 1-week "sample" (T707). The unloading procedures and drainage boundaries used in his program were slightly different. The bottom drainage lead was open throughout the unloading and storage phases of the tests, and the samples were placed with lateral filter paper drains. A higher degree of disturbance could therefore be expected from his 1-week "sample" (T707) with lateral filter drains, than from the 1-week "sample" (T733) without lateral drains in the present program. Work done by Adams and Radhakrishna (1971) also showed that a considerable decrease in strength can be expected during undrained shearing on samples that had been allowed to swell.

"Samples" from $1.0x\sigma_{1c}^{\prime}$ -iso reconsolidation experienced net volume and moisture reductions due to an overall increase in p' from triaxial

consolidation (p'=110 kPa) to reconsolidation (p'=160 kPa). These associated volume decreases cause increases in undrained shear strength. Table 9 showed that "samples" T734, T735 and T736 had undrained shear strength of 119.8%, 114.2% and 109.8% of the average "in situ" shear strength respectively. The tendency that s_u decreased with increasing storage times was clearly observed. A conclusion that the $1.0x\sigma_{1c}^{\prime}$ -iso reconsolidation generally overestimates the "in situ" shear strength of soil has been frequently drawn by researchers such as Bishop and Bjerrum (1960), Ladd and Lambe (1963), and Kirkpatrick and Khan (1984).

"Samples" T737, T738, and T739 $(1.0 \times \sigma_{1c}^{\prime} - aniso \text{ group})$ provided effective stress paths in Figure 6.12 similar to those of the "in situ specimens" in Figure 6.9. However they had only 97.1%, 91.3% and 86.5% of the average "in situ" shear strength respectively. The tendency of decreasing s_u with increasing storage times was observed again as in the two other sets of samples".

Generally, none of the adopted reconsolidation procedures could successfully recover the "in situ" shear strength of the normally consolidated soils. For "samples" with 15 minutes "drained" storage time, the best estimate of s_u was obtained from the $1.0x\sigma_{1c}^{+}$ -aniso reconsolidation procedure.

7.3.2.2 Overconsolidated Soil

Figure 6.13 presented the effective stress paths in p',q-space of three control "in situ specimens" (T760-T762) in the present study. They exhibited similar behaviour during the undrained shear test even though there was some scatter in the values of undrained shear strength ranging from 35.5 kPa to 39.9 kPa (Table 10). The "in situ" shear strength found by Kwok (1984) was 39.0 kPa. When this result was taken

in conjunction with the results in the present program, the average "in situ" s_u-value was taken as 37.6 kPa for comparison purposes.

Table 10 showed that "samples" T751, T752 and T753 had shear strength of 99.7%, 72.3% and 75.2% of the average "in situ" value respectively. Thus $0.6x\sigma'_{1c}$ -iso reconsolidation underestimated the "in situ" strength from the 1-day and 1-week "samples" but, in the author's opinion, recovered the "in situ" value from the 15-minute "sample" within experimental error. Although the tendency that "samples" decrease in shear strength with increasing storage times is not as obvious as in the normally consolidated soils, the 15-minute "sample" does show the the highest s_u among the three "samples".

All "samples" in $1.0x\sigma_{1c}^{\prime}$ -iso reconsolidation group (T754-T756) behave in an almost normally consolidated manner during undrained shear even though the original clay was overconsolidated with OCR=2.0. This was due to an overall increase of p' from triaxial consolidation (p'=55 kPa) to the reconsolidation pressure p'=96 kPa. Effective stress paths in p',q-space were shown in Figure 6.15. There were generally reductions in moisture contents and sample volumes associated with the isotropic reconsolidation to the "in situ" vertical effective stress (Table 12). In this case, "samples" T754, T755 and T756 had shear strengths of 121.3%, 110.6% and 101.1% of the average "in situ" value respectively. Therefore $1.0x\sigma'_{1c}$ -iso reconsolidation overestimated the "in situ" s_u from the 15-minute and 1-day "samples", and might be considered to recover the "in situ" from the 1-week "sample" within experimental error. The tendency of decreasing s_u with increasing storage times was clearly observed in this set of "samples".

Although the $1.0x\sigma_{1c}^{\prime}$ -aniso "samples" showed rather similar shapes

of stress paths in Figure 6.16, they exhibited different maximum deviator stresses due to their different durations of storage time. "Samples" T757, T758 and T759 had s_u of 39.9kPa, 26.9 kPa and 31.0 kPa respectively (Table 10). This showed that the 15-minute "sample" again exhibited the highest s_u among the three "samples". The $1.0x\sigma_{1c}^{+}$ -aniso reconsolidation underestimated the "in situ" s_u from the 1-day and 1-week "samples", but recovered the "in situ" s_u in the upper bound value from the 15-minute "sample".

Overall, it can be concluded that both $0.6x\sigma'_{1c}$ -iso and $1.0x\sigma'_{1c}$ -aniso reconsolidation procedures were successful in reproducing the "in situ" shear strength only from the 15-minutes "samples". The $1.0x\sigma'_{1c}$ -iso reconsolidation procedure gave the best estimate only from the 1-week "sample".

As shown in Chapter 6 (Figures 6.9 to 6.16), the shapes of the q,p'-stress paths were much better recovered by anisotropic reconsolidation than by either of the isotropic reconsolidations.

7.3.3 Failure Axial Strains and Elastic Modulus

The behaviour of the vertical strains at failure was examined in Section 6.2. Since there was no systematic relationship observed between the failure axial strains and the storage time, the failure strains were grouped according to the reconsolidation procedures. The average failure strain for each group of the normally consolidated samples in Table 9 was (1) 0.66% for control "in situ specimens", (2) 4.52% for $0.6xo_{1c}^{\dagger}$ -iso "samples", (3) 4.98% for the $1.0xo_{1c}^{\dagger}$ -iso "samples" and (4) 1.18% for the $1.0xo_{1c}^{\dagger}$ -aniso "samples". The corresponding average failure strains for the four groups of the overconsolidated samples were 1.17%, 3.36%, 3.49% and 1.83% respectively (Table 10). This showed that both the normally consolidated and the overconsolidated "samples" usually failed at higher axial strains than the "in situ specimens", and that the $1.0xo'_{1c}$ -aniso reconsolidation procedure gave the best estimates of the "in situ" failure strains.

Values of secant modulus (E_{50}) and the relative stiffness (E_{50}/s_u) were presented in Tables 9 and 10. Since they were discussed in Section 6.5, they will only briefly be reviewed here. The $0.6x\sigma_{1c}^{\prime}$ -iso and $1.0x\sigma_{1c}^{\prime}$ -iso reconsolidation procedures both underestimated the average "in situ" E_{50}^{-} -value of the normally consolidated illite by greater amounts than "samples" from the $1.0x\sigma_{1c}^{\prime}$ -aniso group. The average values were 17%, 26% and 56% respectively of the "in situ" values. For the overconsolidated illite, the ranges of variation of the secant moduli and relative stiffness were quite high among each group. Therefore firm interpretation was difficult. However if some apparently divergent results were discarded, the $1.0x\sigma_{1c}^{\prime}$ -aniso reconsolidation procedure again seemed to give the best estimate of the "in situ" stiffness.

7.3.4 Porewater Pressure Generation

The results of porewater pressure generation during undrained shear were presented in Section 6.4. The values of porewater pressure parameters A_f and m-values are given in Tables 9 and 10. The A_f -values from the reconsolidated "samples" were 30% to 100% higher than the average "in situ" A_f of the normally consolidated illite (0.40), and 30% to 230% higher than the average "in situ" A_f of the overconsolidated illite (0.15). Although the $1.0xo_{1c}^{\prime}$ -aniso again gave the best agreement in overconsolidated "samples", none of the presently adopted reconsolidation procedures could successfully reproduce the "in situ" A_f -values from "samples" that had been stored "drained". Kirkpatrick
(1982) also found that the A_f -values of the "samples" reconsolidated to "in situ" stresses were about two times larger than the "in situ" A_f -values. This indicates the unloading, storage and reconsolidation processes cause particle reorientation towards a larger porewater pressure generation, leading to a larger A_f -value for "samples" compared to in situ " soils. This view is also supported by Graham and Au (1984) for the "freeze-thaw", "softened" and "undisturbed" Winnipeg clay they tested, and by Graham et al. (1986) in discussing the results of the test programs preceding the author's.

Tables 9 and 10 also showed that the A_f-values tended to increase with increasing storage time. This is expected because longer storage time can cause higher degree of disturbance to the "samples".

Porewater pressure behaviour during shearing was also examined in terms of $\Delta u/\sigma_{VC}^{\prime}$ versus $\Delta p/\sigma_{VC}^{\prime}$ (Figures 6.17-6.24) in this study. The slopes m of the intial linear section of these graphs were summarized in Tables 9 and 10. The average "in situ" m-value of the normally consolidated illite (1.29) was overestimated by all reconsolidated "samples" with m-values ranging 1.37 to 1.88. There was considerable scatter of m-values (ranging from 0.86 to 1.34) among the overconsolidated "in situ specimens". Kwok (1984) had a similar interpretation problem in which his control specimens gave m-values between 0.82 and 1.25. However the overconsolidated "samples" in the present study with m-values ranging from 1.09 to 1.77 seemed to overestimate the "in situ" value in most cases, especially for the "samples" with long storage duration. As in the case of A_f -values discussed in the last paragraph, there was the tendency that m-values increased with increasing storage time for both normally consolidated

and overconsolidated soils. This occurred due to the increasing degree of sample disturbance imposed to the "samples" as storage duration increased.

7.4 SYNTHESIS OF DATA

Figure 7.4 shows a plot of specific volume (V = 1+e) versus mean effective stress p' in natural logarithm space at the end of the consolidation or reconsolidation. These results come from all the tests in the present program. The specific volumes were calculated in this case from final moisture contents measured after the undrained shear tests were completed. The data in Figure 7.3 are shown separately for different overconsolidation histories and reconsolidation procedures. The normal consolidation line from the triaxial consolidation tests for one-dimensional compression (1-D NCL) was drawn with slope λ_2 through the data for the normally consolidated "in situ specimens" and the 1.0xo'_{1c}-aniso "samples".

All the overconsolidated "in situ specimens" and "samples" were located to the left-hand side of the 1-D NCL. The overconsolidated "in situ specimens" were obtained by unloading to p'=55 kPa ($\sigma_1'=80$ kPa, $\sigma_3'=42.4$ kPa) after they had reached p'=110 kPa ($\sigma_1'=160$ kPa, $\sigma_3'=84.8$ kPa) for 1 day. The normally consolidated "in situ specimens", on the other hand, were allowed to age for a total of 5 days at p'=110 kPa. Therefore the line joining the two sets of control specimens has a slope different to the κ_2 -values in Section 4.3.5 for unloading. This is due to the different durations of creep allowed to these two sets of

specimens at p'=110 kPa. The overconsolidated, isotropic $(0.6 \times \sigma_{1c}^{\prime}$ -iso and $1.0 \times \sigma_{1c}^{\prime}$ -iso) data were observed to locate more or less on the "unload" line in Figure 7.4.

The peak failure state of the samples have also been examined in the V,ln(p')-space shown in Figure 7.5. Storage times are represented by numbers labelled beside the failure points. The consolidation data from Figure 7.4 were also included in this figure to show the stress paths in V,ln(p')-space during undrained shear tests. For the normally consolidated samples, each test moved horizontally from the isotropic NCL or 1-D NCL to the left depending on the type of reconsolidation. The samples then failed towards unique failure envelopes for each of the storage times, although the data from the $0.6x\sigma_{1c}^{\prime}$ -iso reconsolidation seemed to be anomalous. This might be due to the different drainage conditions (no radial drainage) and strain rate imposed to these two "samples" during the undrained shearing. The two failure envelopes for normally consolidated samples with $slope=\lambda_2$ from triaxial consolidation are shown parallel in Figure 7.5. It should be remembered that this is different from the results in p',q-space where only one failure envelope was obtained for the normally consolidated samples (Figure 7.3). When Figures 7.4 and 7.5 are compared, the 1-D NCL and the 15-minute failure line for normally consolidated samples are coincident although they are different in Figure 7.3. This can be interpreted from the relationship between p'cons and p'iso in these tests.

Figure 7.5 also shows that the overconsolidated samples generally tended to move to the right before they failed. However there were some tests from $0.6x\sigma'_{1c}$ -iso reconsolidation that were observed to move to the left. There was a tendency for m= $\Delta u/\Delta p$ to increase with storage time,

and this would indicate a time-dependent transition towards more anisotropic behaviour. This is surprising, and will require further attention. The overconsolidated samples exhibited three distinct failure envelopes for different storage times in V,ln(p')-space in a clearer way than the results in p',q-space (Figure 7.3). The 1-day "samples" were also more consistent in this V - ln(p') plot (Figure 7.5) than in Figure 7.3.

The states of samples in V,ln(p')-space at the end of the undrained shear tests were also examined, and are shown in Figure 7.6. The states were interpreted from the measured data at the end of the testing. They can be considered in this program (see for example Figures 6.1-6.8) to be only a fair approximation to the classical definition of critical state where $\delta u/\delta \epsilon_1 = \delta q/\delta \epsilon_1 = \delta p/\delta \epsilon_1 = 0$. These formal conditions were clearly not totally met by the samples in the present study. However it can be shown that the data in Figure 7.6 correspond to what would be interpreted as a "Critical State Model" (Wroth and Houlsby 1980). The line shown in the figure is a best-fit line with slope $\lambda_2=0.234$ that was measured from anisotropic consolidation of the triaxial samples before unloading, storage, reconsolidation and shearing. The agreement is good. In fact, regression analysis through the end-of-shear data points in Figure 7.6 gives a slope of 0.213 compared with 0.234 from consolidation.

A composite plot of the isotropic NCL, 1-D NCL and CSL for a Critical State Model of this sample behaviour is shown in Figure 7.7. It is interesting to note that the separation of the isotropic NCL to the CSL was calculated to be 1.67 compared to the value of 2.0 that would be expected from the Modified Cam Clay Model. The conclusion that

can be drawn from this work is that the Critical State Model permits good understanding of the particular processes that have been explored in the testing program.

CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 <u>CONCLUSIONS</u>

Based on the results for reconstituted illite presented in this thesis, the following conclusions can be drawn:

- The one-dimensional consolidation using a large cylinder to provide three test specimens was successful in providing good quality control of tested specimens. The average moisture content measured at the end of consolidation was 50.2% with a standard deviation of 0.7%.
- 2. Under identical loading schedules, the λ_1 -values for one-dimensional cylinder consolidation varied from 0.501 to 0.533 with an average of 0.513 and a standard deviation of 0.012.
- 3. The λ_2 -values for the triaxial consolidation varied from 0.169 to 0.263 with an average of 0.234 and a standard deviation of 0.019. The mean λ_2 (0.234) during triaxial consolidation was about 2.2 times smaller than the mean λ_1 -value (0.513) for cylinder consolidation.
- 4. During triaxial consolidation, the κ_1 -values for reloading varied from 0.082 to 0.124 with an average of 0.102 and a standard deviation of 0.013. The mean κ_1 -value (0.102) during reloading in overconsolidation region was about 2.3 times smaller than the mean λ_2 -value (0.234) during loading in the normal consolidation line.
- 5. During triaxial consolidation, the κ_2 -values for unloading varied from 0.036 to 0.054 with an average of 0.047 and a standard

deviation of 0.005. The mean κ_2^- -value (0.047) for unloading was about 2.2 times smaller than the mean κ_1^- -value (0.102) for reloading.

- 6. The average one-dimensional yield stress measured during triaxial consolidation using bilinear plotting techniques was 3.0% higher than the actual preconsolidation pressure of 70 kPa.
- 7. The values of K_{eq}/σ'_{vc} during triaxial consolidation varied from 11.0 to 16.0 with an average of 13.5. Corresponding values of G_{eq}/σ'_{vc} varied from 5.3 to 12.8 with a mean of 8.8.
- 8. The non-vertical stress paths of the "samples" in p',q-space during undrained shear unloading indicated the anisotropic behaviour of the reconstituted illite. The mean values of the porewater pressure parameter A_u for shear unloading of the normally consolidated "samples" and the overconsolidated "samples" were 0.37 and 0.42 respectively.
- 9. During isotropic unloading, the porewater pressures decreased by 96% to 99% and 99% to 100% of the corresponding total stress decreases for normally consolidated "samples" and overconsolidated "samples" respectively.
- 10. "Samples" subjected to storage periods of 15 minutes under fully "drained" conditions experienced small volume increases (0.2% to 0.5%). "Samples" with storage periods of 1 day and 1 week exhibited much greater volume increases from 4.1% to 5.3% and 6.5% to 7.8%, respectively. The normally consolidated "samples" swelled slightly more than the overconsolidated "samples" when they were both subjected to identical periods of "drained" storage.
- 11. Assuming that $c'_{nc}=0$, the effective friction angle (Φ'_{nc}) of the

normally consolidated samples was 25°. A failure envelope with c'_{oc} =16 kPa and Φ'_{oc} =18° was obtained for the 15-minute storage overconsolidated samples. The 1-week overconsolidated samples had a failure envelope with slightly lower c'_{oc} =11 kPa and Φ'_{oc} =18°.

- 12. If identical reconsolidation procedures were used, samples subjected to increasing storage time generally tended to have decreased undrained shear strength (s_u), and increased porewater pressure parameters A_f and m. This is because longer duration of storage caused higher degrees of sample disturbance due to stress-release.
- 13. For normally consolidated "samples", the $1.0 x \sigma_{1c}^{\prime}$ -aniso reconsolidation procedure was successful in reproducing the "in situ" shear strength only from the 15-minute "sample". It underestimated the s_u by 9% and 14% from the 1-day "sample" and the 1-week "sample" respectively. The $0.6 x \sigma_{1c}^{\prime}$ -iso reconsolidation underestimated the "in situ" s_u by 18% to 19% and the $1.0 x \sigma_{1c}^{\prime}$ -iso reconsolidation overestimated the "in situ" value by 10% to 20%.
- 14. For the overconsolidated "samples", both $1.0 \times \sigma_{1c}^{\prime}$ -aniso and $0.6 \times \sigma_{1c}^{\prime}$ -iso reconsolidation procedures successfully reproduced the "in situ" s_u from the 15-minute "samples". They underestimated the "in situ" value by 18% to 29% from the 1-day and 1-week "samples". The $1.0 \times \sigma_{1c}^{\prime}$ -iso reconsolidation overestimated the in situ" s_u by 21% and 11% from the 15-minute "sample" and the 1-day "sample" respectively, but was successful in recovering the s_u from the 1-week "sample".
- 15. All three reconsolidation procedures overestimated the axial strains at failure, ϵ_{1f} ; porewater pressure parameters, A_f and m; and underestimated the secant modulus, E_{50} from both the normally

consolidated "samples" and the overconsolidated "samples".

- 16. The moisture content difference across the whole sample after the undrained shearing was generally less than 1.7%. There wass a tendency for the moisture contents to be slightly lower in the middle of the sample compared with the top and bottom.
- 17. The data from the present program seemed to fit into a generalized Critical State Model which permits good understanding of the soil behaviour.

8.2 SUGGESTIONS FOR FURTHER RESEARCH

- A better understanding of the generation of air bubbles within samples is required. It is recommended that negative porewater pressures be measured within the samples with hypodermic needles during unloading and storage periods.
- The actual value of K₀ should be determined either by using a load cell attached to an oedometer similar to Kirkpatrick (1984) or by using a servomechanism suggested by Kwok (1984).
- 3. Further research should be conducted on samples subjected to higher stress levels and higher OCR, which are now common in offshore geotechnical practice.
- Further work is needed to compare the effects of sample disturbance due to stress-release on real offshore clay samples.

REFERENCES

- Adams, J.I. and Radhakrishna, H.S. 1971. "Loss of Strength due to Sampling in a Glacial Lake Deposit". Sampling of Soil and Rock, ASTM STP 483, pp. 109-120.
- Ambrosie, A.W. 1985. "Effects of Stress-release Disturbance on the Shear Behaviour of Simulated Offshore Normally-consolidated Clay Samples". M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba.
- Arman, A. and McManis, K.L. 1977. "The Effects of Conventional Soil Sampling Methods on the Engineering Properties of Cohesive Soils in Louisiana". Engineering Research Bullitin No. 117, Louisiana State University, Division of Engineering Research, Baton Rouge, Louisiana.
- Atkinson, J.H. and Kubba, L.M. 1981. "Some Effects of Sample Disturbance on Soft Clay". Proc. 10th Int. Conf. on Soil Mech. and Found. Eng., Stockholm, Vol. 2, pp. 423-426.
- Berre, T. and Bjerrum, L. 1973. "Shear Strength of Normally Consolidated Clays". Proc. 8th Int. Conf. on Soil Mech. and Found. Eng., Moscow, Vol. 1, pp. 34-49.
- Bishop, A.W. and Bjerrum, L. 1960. "The Relevance of the Triaxial Test to the Solution of Stability Problems". Proc. ASCE Spec. Conf. on Shear Strength of Cohesive Soils, Boulder, Colorado, pp. 34-49.
- Bishop, W.W. and Henkel, D.J. 1962. "The Measurement of Soil Properties in the Triaxial Test". 2nd Ed., Edward Arnold, Ltd. London.
- Bjerrum, L. 1967. "Engineering Geology of Norwegian Normally Consolidated Marine Clays as Related to Settlements of Buildings". Geotechnique 17, No. 2, pp. 81-118.
- Bjerrum, L. 1973a. "Geotechnical Problems Involved in Foundation of Structures North Sea". Geotechnique 23, No. 3, pp. 319-358.
- Bjerrum, L. 1973b. "Problems of Soil Mechanics and Construction of Soft Clays and Structurally Unstable Soils". State-of-the-Art report at Session 4, Proc. 8th Int. Conf. on Soil Mech. and Found. Eng., Moscow, Vol. 3, pp. 111-159.
- Broms, B.B. 1980. "Soil Sampling in Europe: State-of-The-Art". Journal of The Geotechnical Engineering Division, Proc. of American Society of Civil Engineers, Vol. 106, No. GT1, pp. 65-98.
- Brooker, E.W. and Ireland, H.O. 1965. "Earth Pressures at Rest Related to Stress History". Canadian Geotechnical Journal, Vol. 2, No. 1, pp. 1-15.

Casagrande, A. and Rutledge, P.C. 1947. "Co-operative Triaxial Shear Research". Waterways Experiment Station, Vicksburg, Mississippi. Crooks, J.H.A. and Graham, J. 1976. "Geotechnical Properties of the Estuarine Deposits". Geotechnique 26, No. 2, pp. 293-315.

- Chaney, R.C., Demars, K.R. and Fang, H.-Y. 1985. "Toward a Unified Approach to Soil Property Characterization: In situ Versus Laboratory". Strength Testing of Marine Sediments: Laboratory and In situ Measurements, ASTM STP 883, R.C. Chaney and K.R. Demars, Eds., American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 425-439.
- Davis, E.H. and Poulos, H.G. 1967. "Laboratory Investigation of the Effects of Sampling". Civ. Eng. Transactions, Instn. of Engrs. Australia, CE9, No. 1, pp. 86-94.
- de Ruiter, J. 1976. "North Sea Site Investigations The Role of The Geotechnical Consultant". Offshore Soil Mechanics. Philip George and David Wood, Eds., Cambridge University Engineering Department, Cambridge, England, pp. 62-78.
- de Ruiter, J. 1977. Workshop on Specialty Session 7-Geotechnical Problems in Ocean Engineering. Proc. 9th Int. Conf. on Soil Mech. and Found. Eng., Tokyo, Vol. 3, pp. 513-523.
- de Ruiter, J. and Richards, A.F. 1983. "Marine Geotechnical Investigation, A Mature Technology State". State-of-The-Art Paper, Proc. of the Conf. on Geotechnical Practice in Offshore Engineering, University of Texas at Austin, Austin, Texas, pp. 1-24.
- Emrich, W.J. 1971. "Performance Study of Soil Sample for Deep-Penetration Marine Borings". Sampling of Soil and Rock, ASTM STP 483, American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 30-50.
- Fukuoka, M. and Nakase, A. 1973. "Problems of Soil Mechanics of the Ocean Floor". Special Lecture, Proc. 8th Int. Conf. on Soil Mech. and Found. Eng., Moscow, Vol. 4.2, pp. 205-222.
- Graham, J. 1974. "Laboratory Studies of Sensitive Clay from Lyndhurst, Ontario". Civil Engineering Research Report CE74-2, Royal Military College, Kingston, Ontario.
- Graham, J. and Houlsby, G.T. 1983. "Anisotropic Elasticity of a Natural Clay". Geotechnique 33, No. 2, pp. 165-180.
- Graham, J., Noonan, M.L. and Lew, K.V. 1983. "Yield States Stress-Strain Relationships in a Natural Plastic Clay". Canadian Geotechnical Journal, Vol. 20, No. 3, pp. 502-516.
- Graham, J. and Au, V.C.S. 1984. "Influence of Freeze-Thaw and Softening on a Natural Clay at Low Stresses". Canadian Geotechnical Journal, Vol. 22, No. 1, pp. 69-78.

- Graham, J., Shields, D.H. and Sun B.C.-C. 1985. "Stress-Strain Relationship in Sand-Clay Buffer Materials". Proc. 19th Information Meeting on the Nuclear Fuel Waste Management Program, Toronto, Ontario, May 1985, AECL Technical Report TR-350, Vol. 3, pp. 745-760.
- Graham, J., Kwok, C.K. and Ambrosie, R.W. 1986. "Reconsolidation procedures to Offset Stress-Realease Effects in Simulated Offshore Clays". Third Canadian Conference on Marine Geotechnical Engineering, St. John's, Newfoundland, Vol. 2, pp. 637-653.
- Kirkpatrick, W.M. 1982a. "Stress Relief Effects on the Undrained Behaviour of Clays". Normally Consolidated Clays. Report No. CESM 82/01, Department of Civil Engineering, University of Strathclyde, Glasgow.
- Kirkpatrick, W.M. 1982b. "Stress Relief Effects on the Undrained Behaviour of Clays". Overconsolidated Clays. Report No. CESM 82/02, Department of Civil Engineering, University of Strathclyde, Glasgow.
- Kirkpatrick, W.M. and Rennie, I.A. 1972. "Stress Relief Effects in Deep Sampling Operations". Proc. Conf. Offshore Engineering, Cardiff.
- Kirkpatrick, W.M. and Khan, A.J. 1984. "The Reaction of Clays to Sampling Stress Relief". Geotechnique 34, No. 1, pp. 29-42.
- Kwok, C.K. 1984. "Effects of Stress-Release Disturbance on the hear Behaviour of Simulated Over-Consolidated Clay Samples". M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba.
- Ladd, C.C. and Lambe, T.W. 1963. "The Strength of Undrained Clay Determined from Undrained Tests". ASTM-NRC Symposium on Laboratory Shear Testing of Soils, Ottawa, Canada, ASTM STP 361, pp. 342-371.
- Ladd, C.C. and Bailey, W.A. 1964. Correspondence on "The Behaviour of Saturated Clays During Sampling and Testing" by Skempton, A.W. and Sowa, V.A., Geotechnique 14, No. 4, pp. 353-358.
- Ladd, C.C. and Foott, R. 1974. "New Design Procedures for Stability of Soft Clays". Journal of the Geotechnical Engineering Division, Proc. of American Society of Civil Engineers, Vol. 100, No. GT7, pp. 763-786.
- Lee, H.J. 1979. "Offshore Soil Sampling and Geotechnical Parameter Determination". Proc. 11th Offshore Technology Conf., Houston, Texas, OTC Paper 4524, pp. 1449-1457.
- Lee, H.J. 1985. "State of The Art: Laboratory Determination of the Strength of Marine Soils". Strength Testing of Marine Sediments: Laboratory and In situ Measurements, ASTM STP 883, R.C. Chaney and K.R. Demars, Eds., American Society for Testing and Materials, Philadelphia, Pennsylvania, pp. 181-250.

- Leonards, G.A. and Altschaeffl, A.G. 1964. "Compressibility of Clay". Journal of the Soil Mechanics and Foundation Division, Proc. of American Society of Civil Engineers, Vol. 90, No. SM5, pp. 133-156.
- Lew, K.V. 1981. "Yielding and Limit State in a Winnipeg Clay". M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba.
- Lewin, P.I. and Burland, J.B. 1970. "Stress-Probe Experiments on Saturated Normally Consolidated Clay". Geotechnique 20, No. 1, pp. 38-56.
- Li, E.C.C. 1983. "A Geotechnical Study of Remoulded Winnipeg Clay". M.Sc. Thesis, University of Manitoba, Winnipeg, Manitoba.
- Long, L.G., Thompson, G.R., Brown, J.D. and Rivette, C.A. 1986. "Hibernia Site Geotechnical Characterization". 3rd Canadian Conf. on Marine Geotechnical Engineering, St. John, Newfoundland, Vol. 1, pp. 99-116.
- Lunne, T. and Christoffersen, H.P. 1983. "Interpretation of Cone Penetrometer Data for Offshore Sands". Proc. 15th Offshore Technology Conf., Houston, Texas, OTC Paper 4464, pp. 181-192.
- Marsland, A. 1971. "Laboratory and In situ Measurements of the Deformation Modulus of London Clay". Proceedings of the Symposium on the Interaction of Structure and Foundation, The Midland Soil Mechanics and Foundation Engineering Society, pp. 7-17.
- Mayne,P.W. and Kulhawy, F.H. 1982. "K -OCR Relatioship in Soil". Journal of the Geotechnical Engineering Division, Proc. of American Society of Civil Engineers, Vol. 108, No. GT6, pp. 851-872.
- McClelland, B. 1974. "Design of Deep Penetration Piles for Ocean Structures". Journal of the Geotechnical Engineering Division, Proc. of American Society of Civil Engineers, Vol. 100, No. GT7, pp. 705-747.
- Mori, H. 1981a. "Soil Sampling in Site Investigation for Coastal Structure". Proceedings of the Symposium on Geotechnical Aspects of Coastal and Offshore Structures, Bangkok, pp. 1-10.
- Mori, H. 1981b. General report on Session 7 Soil Exploration and Sampling. Proc. 10th Int. Conf. on Soil Mech. and Found. Eng., Stockholm, Vol. 4, pp. 399-413.
- Noorany, I. and Seed, H.B. 1965. "In situ Strength Characteristics of Soft Clays". Journal of the Soil Mechanics and Foundation Division, Proc. of American Society of Civil Engineers, Vol. 91, No. SM2, pp. 49-80.

- Okumura, T. 1971. "The Variation of Mechanical Properties of Clay Samples Depending on Its Degree of Disturbance". Proceedings of the Specialty Session on Quality in Soil Sampling, 4th Asian Conf., International Society for Soil Mechanics and Foundation Engineering, pp. 73-81.
- Raymond, G.P., Townsend, D.L. and Lojkocek, M.J. 1971. "The Effect of Sampling on the Undrained Soil Properties of Leda Soil". Canadian Geotechnical Journal, Vol. 8, No. 4, pp. 546-557.
- Richards, A.F. and Parker, H.W. 1968. "Surface Coring for Shear Strength Measurements". Civil Engineering in the Ocean, American Society of Civil Engineers, N.Y., pp. 445-489.
- Sandegren, E. 1961. "Sample Transportation Problems". Proc. of the Swedish Geotechnical Institute, Linkoping, Sweden, No. 19, pp.35-37.
- Schjetne, K. 1971. "The Measurement of Pore Pressure During Sampling". 4th Asia Conf., International Society on Soil Mechanics and Foundation Engineering Proceedings of Specialty Session 1, Quality in Soil Sampling, pp. 12-16.
- Semple, R.M., St. John, H.D. and Toolan, F.E. 1982. "Statement of Research Needs in Offshore Foundation Design". Geotechnical Committee, Society for Underwater Technology, London, England.
- Skempton, A.W. 1954. "The Pore Pressure Coefficient A and B". Geotechnique 4, No. 4, pp. 143-147.
- Skempton, A.W. and Sowa, V.A. 1963. "The Behaviour of Saturated Clays During Sampling and Testing". Geotechnique 13, No. 4, pp. 269-290.
- Tavenas, F. and Leroueil, S. 1977. "The Effects of Stresses and Time on Yielding of Clays". Proc. 9th Int. Conf. on Soil Mech. and Found. Eng., Tokyo, Vol. 1, pp. 319-326.
- Vyas, Y.K., Angemmer, J., Murff, J.D., Neuberger, C.A., McNeilan, T. and Klejbuk Jr., L.W. 1983. "Deepwater Geotechnical Site Investigation: Santa Ynez Unit, Offshore California". Proc. 15th Offshore Technology Conf., Houston, Texas, Vol. 1, pp. 217-226.
- Wroth, C.P., Randolph, M.F., Houlsby, G.T. and Fahey, M. 1979. "A Review of the Engineering Properties of Soils with Particular Reference to Shear Modulus". Internal Report CVED/D-Soils TR75, Cambridge University Engineering Department, Cambridge, England.
- Wroth, C.P. and Houslby, G.T. 1980. "A Critical State Model for Predicting the Behaviour of Clays". Proc. of Workshop on Limit Equilibrium, Plasticity and Generalized Stress-Strain in Geotechnical Engineering, McGill University, Montreal, Quebec, pp. 592-627.
- Wu, T.H., Hsu, J.R. and Ali, E.M. 1983. "Plastic Deformation of an Embankment on Clay". Canadian Geotechnical Journal, Vol.20, No. 3, pp. 437-452.

Young, A.G., Quiros, G.W. and Ehlers, C.J. 1983. "Effects of Offshore Sampling and Testing on Undrained Soil Shear Strength". Proc. 15th Offshore Technology Conf., Houston, Texas, Vol. 1, pp. 193-216.

SAMPLE NO.	т732	T733	T734	T735	т736	T737	т738	т739	T74 0	T741	т742
OVERCONSOLIDATION RATIO	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
STORAGE PERIOD (hours)	2	168	0.25	24	168	0.25	24	168	-		.
RECONSOLIDATION TYPE	CIU	CIU	CIU	CIU	CIU	CAU	CAU	CAU	-	-	-
RECONSOLIDATION LEVEL (*o;c)	0.6	0.6	1.0	1.0	1.0	1.0	1.0	1.0	-	-	_

				-								
SAMPLE NO.	T751	т752	т753	T754	T755	т756	T757	T758	т759	т760	T761	т762
OVERCONSOLIDATION RATIO	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
STORAGE PERIOD (hours)	0.25	24	168	0.25	24	168	0.25	24	168			-
RECONSOLIDATION TYPE	CIU	CIU	CIU	CIU	CIU	CIU	CAU	CAU	CAU	-	-	
RECONSLIDATION LEVEL $(*\sigma_{c})$	0.6	0.6	0.6	1.0	1.0	1.0	1.0	1.0	1.0	-	_	

- not applicable to control samples

4

TABLE 1 SUMMARY OF TEST PROGRAM

	WL	WP	Г _Р	Clay Fraction (%)	G _S
Author	59.5 (11)	25.9 (11)	33.6 (11)	66.0 (1)	2.74 (1)
Ambrosie (1985)	57.9 (7)	25.1 (7)	32.8 (7)	61.0 (1)	2.73(1)
Kwok (1984)	57.2 (8)	25.7 (8)	31.5 (8)	61.0 (1)	2.73 (1)
Wu et al. (1983)	54.4	26.1	28.3	53.0	

Numbers in parentheses represent the number of tests

\$

TABLE 2 INDEX PROPERTIES OF ILLITE

т732	т733	T734	т735	т736	T737	T738	T739	т740	T741	T742
114.4	114.4	114.2	114.2	114.2	113.7	113.7	113.7	120.5	120.5	120.5
19	19	13	13	13	10	10	10	14	14	14
58.5	58.5	57.7	57.7	57.7	55.4	55.4	55.4	56.6	56.6	56.6
50.1	50.8	49.4	49.7	49.8	49.0	49.1	49.3	49.5	49.5	49.9
49.9	49.9	49.3	49.3	49.3	49.1	49.1	49.1	49.5	49.5	49.5
0.504	0.504	0.503	0.503	0.503	0.533	0.533	0.533	0.523	0.523	0.523
- -	T732 114.4 19 58.5 50.1 49.9 0.504	T732 T733 114.4 114.4 19 19 58.5 58.5 50.1 50.8 49.9 49.9 0.504 0.504	T732 T733 T734 114.4 114.4 114.2 19 19 13 58.5 58.5 57.7 50.1 50.8 49.4 49.9 49.9 49.3 0.504 0.504 0.503	T732 T733 T734 T735 114.4 114.4 114.2 114.2 19 19 13 13 58.5 58.5 57.7 57.7 50.1 50.8 49.4 49.7 49.9 49.9 49.3 49.3 0.504 0.504 0.503 0.503	T732 T733 T734 T735 T736 114.4 114.4 114.2 114.2 114.2 19 19 13 13 13 58.5 58.5 57.7 57.7 57.7 50.1 50.8 49.4 49.7 49.8 49.9 49.9 49.3 49.3 49.3 0.504 0.504 0.503 0.503 0.503	T732T733T734T735T736T737114.4114.4114.2114.2114.2113.719191313131058.558.557.757.757.755.450.150.849.449.749.849.049.949.949.349.349.349.10.5040.5040.5030.5030.5030.533	T732T733T734T735T736T737T738114.4114.4114.2114.2114.2113.7113.71919131313101058.558.557.757.757.755.455.450.150.849.449.749.849.049.149.949.949.349.349.349.149.10.5040.5040.5030.5030.5030.5330.533	T732T733T734T735T736T737T738T739114.4114.4114.2114.2114.2113.7113.7113.7191913131310101058.558.557.757.757.755.455.455.450.150.849.449.749.849.049.149.349.949.949.349.349.349.149.149.10.5040.5040.5030.5030.5030.5330.5330.533	T732T733T734T735T736T737T738T739T740114.4114.4114.2114.2114.2113.7113.7113.7120.519191313131010101458.558.557.757.757.755.455.455.456.650.150.849.449.749.849.049.149.349.549.949.949.349.349.349.149.149.50.5040.5040.5030.5030.5330.5330.5330.523	T732T733T734T735T736T737T738T739T740T741114.4114.4114.2114.2114.2113.7113.7113.7120.5120.51919131313101010141458.558.557.757.757.755.455.456.656.650.150.849.449.749.849.049.149.349.549.549.949.949.349.349.349.149.149.549.50.5040.5030.5030.5030.5330.5330.5330.5230.523

SAMPLE NO.	т751	т752	т753	T754	т755	т756	т757	T758	т759	T760	т761	т762
MOISTURE CONTENT OF SLURRY (%)	114.4	114.4	114.4	113.6	113.6	113.6	114.3	114.3	114.3	116.0	116.0	116.0
PERIOD UNDER 70 kPa (DAYS)	12	12	12	8	8	8	12	12	12	9	9	9
MOISTURE CONTENT AT 70 kPa , AFTER 24 HOURS (%)	58.2	58.2	58.2	56.3	56.3	56.3	57.6	57.6	57.6	59.4	59.4	59.4
MEASURED MOISTURE CONTENT AFTER CONSOLIDATION (%)	50.0	50.5	51.0	50.6	50.6	50.8	50.4	50.5	50.9	51.0	51.5	51.4
CALCULATED MOISTURE CONTENT AFTER CONSOLIDATION (%)	50.2	50.2	50.2	50.2	50.2	50.2	50.2	50.2	50.2	50.5	50.5	50.5
λ ₁	0.501	0.501	0.501	0.521	0.521	0.521	0.513	0.513	0.513	0.502	0.502	0.502

TABLE 3 SUMMARY OF ONE-DIMENSIONAL SLURRY CONSOLIDATION

SAMPLE NO.	T732	т733	т734	т735	т736	т737	T738	T739	T740	т741	т742
o'cyl (kPa)	71.2	71.2	70.4	70.4	70.4	70.0	70.0	70.0	70.0	70.0	70.0
o'y (kPa) ¤	73.8	73.7	71.1	70.9	71.1	73.1	73.0	72.6	72.3	70.6	71.0
σ'vc (kPa)	156.1	158.3	160.0	159.7	159.7	159.9	159.7	158.3	160.0	159.6	159.9
σic (kPa)	156.1	158.3	160.0	159.7	159.7	159.9	159.7	158.3	160.0	159.6	159.9
osc/oic	.543	.536	.530	.531	.531	.530	.531	.536	.530	.531	.530
€1C (%) †	11.74	15.97	11.15	12.78	13.45	11.33	12.57	15.33	11.56	13.58	12.21
€3C (%) †	-0.62	-1.65	0.65	-0.17	-0.09	0.42	-0.10	-1.27	0.31	-0.40	0.17
vc (%) †	10.49	12.68	12.45	12.44	13.27	12.17	12.38	12.79	12.18	12.79	12.54
€1C/E3C	-18.9	-9.7	17.2	-75.2	-149	27.0	-126	-12.1	37.3	-34.0	71.8
λι #	.504	.504	.503	.503_	.503	.533	.533	.533	.523	.523	.523
K 1	.087	.100	.096	.082	.113	.099	.100	.121	.099	.106	.106
λ2	.169	.209	.230	.228	.211	.227	.227	.230	.234	.239	.238
Keq (kPa)	1081	1020	978	1126	816	945	954	827	937	864	901
Keq/ø'cyl	15.2	14.3	13.9	16.0	11.6	13.5	13.6	11.8	13.4	12.3	12.9
Geq (kPa)	463	376	668	498	563	703	650	805	594	684	559
Geq/ <i>o</i> 'cyl	6.5	5.3	9.5	7.1	8.0	10.0	9.3	11.5	8.5	9.8	8.0

;

Г

from TABLE 6
† positive compression, negative expansion
from TABLE 3

TABLE 4 TRIAXIAL CONSOLIDATION TEST RESULTS FOR NORMALLY CONSOLIDATED SAMPLES

1												
SAMPLE NO.	T751	T752	т753	T754	т755	т756	т757	т758	T759	T760	T761	т762
σ'cyl (kPa)	70	70	70	70	70	70	70	70	70	70	70	70
σ'y (kPa) ¤	73.0	72.6	72.4	71.7	71.0	72.4	73.6	72.0	73.7	71.8	71.9	71 4
σ'vc (kPa)	159.3	158.8	159.5	159.3	159.5	159.1	159.6	159.5	159.5	159.1	159 1	159 6
σ¦c (kPa)	80.3	79.9	80.2	79.9	79.9	79.9	79.8	79.7	79.8	80.1	79.3	80.1
ojc/ojc	.528	.528	.531	.533	.531	.531	.533	.532	.532	529	529	50.1 E22
€1C (%) †	10.83	10.87	10.37	10.56	10.95	12.07	9.74	11.10	10 30	11 78	12 57	.532
€3C (%) †	-0.42	-0.66	0.02	-0.44	-0.12	-0.87	-0.12	-0.78	-0.22	-1 14	0.05	12.33
vc (%) †	9.99	9.55	10.41	9.68	10.71	10.33	9.49	9 54	0.02	0 50	-0.95	-0.78
€1C/€3C	-25.8	-16.5	518	-24.0	-91.3	-13 9	-78 5	_14 2	9.00	9.50	10.66	10.76
λ ₁ #	.501	.501	.501	.521	. 521	521	E12	-14.3 	-46.4	-10.4	-13.2	-15.8
κ.		000	0.05			• 521	.513	.513	.513	.502	.502	.502
	.009	.090	.095	.100	.124	.121	.093	.086	.093	.104	.122	.118
λ2	.236	.228	.246	.242	.243	.252	.243	.244	.245	.252	.257	.263
κ2	.042	.036	.054	.045	.051	.048	.049	.052	.049	.046	.049	.041
Keq (kPa)	1065	1061	977	960	772	788	1002	1108	1012	914	794	819
Keq/o'cyl	15.2	15.2	14.0	13.7	11.0	11.3	14.3	15.8	14.5	13.1	11.3	11.7
Geq (kPa)	893	892	617	652	518	495	737	662	688	564	498	473
Geq/o'cyl	12.8	12.7	8.8	9.3	7.4	7.1	10.5	9.5	9.8	8.1	7 1	
									2.0	0.1	/ • 1	0.0

ł.

from TABLE 6
† positive compression,negative expansion
from TABLE 3

TABLE 5 TRIAXIAL CONSOLIDATION TEST RESULTS FOR OVERCONSOLIDATED SAMPLES (OCR = 2)

SAMPLE NO.	T732	T733	T734	T735	т736	T737	т738	T739	T740	T741	T742
03/01 AT YIELD	.538	.530	.530	.530	.530	.530	.529	.530	.529	. 529	530
log(p)-V	73.7	74.2	72.8	72.8	71.4	73.6	72.9	74.3	72.9	72.1	71.4
p-v	*	74.2	69.2	71.3	*	72.8	74.3	72.6	72.9	69.2	69.9
q- e	74.7	74.5	70.6	70.7	72.3	72.3	73.3	72.3	71.2	71.2	72 3
01-01	75.0	74.0	71.0	69.0	71.0	74.0	72.5	72.0	70.0	70.0	70 5
p-e1	73.7	73.5	71.4	70.6	70.7	73.6	73.6	72.6	71.4	69.2	71 4
W-LSSV	72.0	71.9	71.6	71.1	70.1	72.6	71.7	71.7	75.6	72 1	70.0
AVERAGE d'y	73.8	73.7	71.1	70.9	71.1	73.1	73.0	72.6	72 3	70.6	70.8
ø'cyl	71.2	71.2	70.4	70.4	70.4	70.0	70.0	70.0	70.0	70.0	/1.0
<pre>% DIFFERENCE WITH o'cyl</pre>	-3.6	-3.5	-1.0	-0.7	-1.0	-4.4	-4.3	-3.7	-3.3	~0.9	70.0

SAMPLE NO.	T751	T752	T753	T754	T755	т756	T757	T758	T759	T760	T761	T762
01/01 AT YIELD	.529	.529	.530	.530	.530	.530	.530	.530	. 529	529	520	F 20
log(p)-v	73.6	72.9	72.8	72.1	72.1	72.8	72.1	75.9	76.3	72 9	72 0	
p-v	71.4	72.1	71.4	72.8	70.6	72.8	72.8	69.2	72.1	71 4	72.5	71.4
q- «	71.2	73.3	73.4	72.3	71.2	72.3	77.6	73.4	74 4	72.2	73.0	72.1
$\sigma_1 - \epsilon_1$	76.5	71.0	71.0	71.0	70.0	71.0	75.0	70.5	72 5	71.0	71.2	72.3
p-e1	76.0	72.9	72.8	72.1	70.6	72.8	72.8	70 6	73.5	71.0	/1.0	72.0
W-LSSV	74.9	73.2	72.9	70.0	71.7	72.4	71 7	72.0	72.9	70.7	70.7	69.9
AVERAGE o'y	73.9	72.6	72.4	71.7	71.0	72 4	77 6	72.0	72.9	/2.4	72.0	70.8
ø'cyl	70.0	70.0	70.0	70.0	70.0	70.0	73.0	72.0	/3.7	71.8	71.9	71.4
% DIFFERENCE	······					/0.0	/0.0	/0.0	70.0	70.0	70.0	70.0
WITH o'cyl	-5.6	-3.7	-3.4	-2.5	-1.4	-3.4	-5.1	~2.9	-5.3	-2.5	-2.7	-2.0

* not available

TABLE 6 SUMMARY OF YIELD STRESSES FROM DIFFERENT CRITERIA (vertical stress in kPa)

	U.6 ISOT	×°1c ROPIC		1.0×σ¦ ISOTROPI	c C	A	1.0×σ1 NISOTROP	c PIC
SAMPLE NO.	T732	T733	T734	T735	т736	T737	т738	T739
STORAGE TIME (hr)	2	168	0.25	24	168	0.25	24	168
VOLUMETRIC SWELLING (%)	*	5.92	0.54	8.11	7.46	0.46	5.20	7.75
RECONSOLIDATION TYPE	CIU	CIU	CIU	CIU	CIU	CAU	CAU	CAU
RECON. o; (kPa)	96	96	160	160	160	160	160	160
RECON. o' (kPa)	96	96	160	160	160	84.8	84.8	84.8
Δe1rc(%) #	*	2.17	0.13	3.27	3.40	1.56	8.50	8.25
Δε ₃ rc (%) #	*	1.95	1.99	3.75	4.00	-0.26	-1.20	0.06
Δvrc (%) #	*	6.06	4.11	10.76	11.39	1.04	6.10	8.37

* not available due to leakage at top drainage connection # positive compression; negative expansion

TABLE 7 SUMMARY OF TEST RESULTS DURING STORAGE AND RECONSOLIDATION FOR NORMALLY CONSOLIDATED SAMPLES

	U.6X		ROPIC	1.0x	σ <mark>1</mark> c ^{ISOT}	ROPIC	1.0x	σ¦ ANISO	TROPIC
SAMPLE NO.	T751	T752	T753	T754	T755	T756	 T757	T758	T759
STORAGE TIME (hr)	0.25	24	168	0.25	24	168	0.25	24	168
VOLUMETRIC SWELLING (%)	0.30	4.74	6.75	0.28	5.29	6.57	0.37	4 13	6 40
RECONSOLIDATION TYPE	CIU	CIU	CIU	CIU	CIU	CIU	CAU		0.49 CNU
RECON. o' (kPa)	48	48	48	80	80	80	80	80	80
RECON. σ3 (kPa)	48	48	48	80	80	80	42.4	42.4	
Δeirc (%) #	-0.33	-0.07	1.47	0.02	1.50	2.22	0.57	1.98	2 81
Δε₃rc (%) #	0.11	1.76	1.67	0.79	2.24	2.55	-0.13	0.71	1 26
Δvrc (%) #	-0.12	3.47	4.80	1.59	5.77	7.32	0.31	3.39	5.33

O Cu I TOOTTOOT

positive compression; negative expansion

TABLE 8 SUMMARY OF TEST RESULTS DURING STORAGE AND RECONSOLIDATION FOR OVERCONSOLIDATED SAMPLES (OCR = 2)

	0.6 ISOT	^{5χσ} ίς ΓROPIC	1.0>	σ¦_ISOT	ROPIC	1.0	xoʻ _{1C} ANIS	OTROPIC	CON	ITROL SP	ECIMENS
SAMPLE NO.	T732	T733	T734	T735	т736	 T737	т738	T739	T740	T741	
TEST TYPE	CIU	CIU	CIU	CIU	CTH						
RECON. σ_1^{+} (kPa)	96	96	160	160	160	100		CAU	CAU	CAU	CAU
RECON. σ'_3 (kPa)	96	96	160	160	100	160	160	160			
STORAGE TIME (hr)	2	168	0.25		160	84.8	84.8	84.8			
σ'vc (kPa)	156 1	150 2	0.25	24	168	0.25	24	168			
oic (kPa)	150.1	158.3	160.0	159.7	159.7	159.9	159.7	158.3	160.0	159.6	159.9
OCR	156.1	158.3	160.0	159.7	159.7	159.9	159.7	158.3	160.0	159.6	159.9
ala /ala	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	0.54	0.54	0.53	0.53	0.53	0.53	0.53	0.54	0.53	0.53	0 52
qmax/2 (kPa)	44.9	44.6	65.9	62.8	60.4	53.4	50.2	47.6	55.3	56.3	64.7
qmax/2ø'vc	0.287	0.282	0.412	0.392	0.378	0.334	0.314	0.299	0 345	0.352	54.7
<pre> e1 at qmax (%) </pre>	4.39	4.64	5.04	5.37	4.54	1.34	1.37	0 82	0.345	0.352	0.342
p' at qmax (kPa)	79.7	78.3	123.6	115.9	116.7	102 6	100 5	100.02	0.68	0.75	0.56
Af at gmax	0.51	0.54	0.60	0.69	0 69	0 52	100.5	100.1	108.4	107.2	106.9
B (%)	98	100	100	100	100	0.55	0.71	0.79	0.37	0.40	0.42
n	1.64	1.73	1 56	1 01	1.00	99	99	98	99	100	99
5 ₅₀ (mPa) =	13.5	9 20	10.0	1.01	1.86	1.37	1.47	1.88	1.21	1.26	1.42
50/S,, #	300	200	10.3	13.5	20.5	42.6	19.9	49.8	63.5	70.6	25.4
50/0'VC #	96.2	200	211	215	339	799	396	1045	1148	1253	464
	00.3	58.7	114	84.3	128	267	124	312	397	442	159
	28.8	19.6	38.0	28.1	42.8	88.9	41.4	104	132	147	52.9

-- not applicable to control samples
calculated using qmax

TABLE 9 SUMMARY OF UNDRAINED SHEAR TEST RESULTS FOR NORMALLY CONSOLIDATED SAMPLES

	0.6	xo' ISOT	ROPIC	1.0xo'1SOTROPIC			1.0xg'ANISOTROPIC			CONTROL SPECIMENS			
SAMPLE NO.	T751	T752	T753	T754	T755	T756	·T757	T758	T759	T760	T761	T762	
TEST TYPE	CIU	CIU	CIU	CIU	<u> </u>	0111						1702	
RECON. o¦ (kPa)	48	48	48	80			CAU	CAU	CAU	CAU	CAU	CAU	
RECON. σ_3^i (kPa)	48	48	48			80	80	80	80				
STORAGE TIME (hr)	0.25	24	10	00	80	80	42.4	42.4	42.4				
o'vc (kPa)	159 2	150 0	168	0.25	24	168	0.25	24	168				
oic (kPa)		158.8	159.5	159.3	159.5	159.1	159.6	159.5	159.5	159.1	159.1	150 C	
OCR	80.3	79.9	80.2	79.9	79.9	79.9	79.8	79.7	79.8	80.1	79.3		
	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2 0		80.1	
03C/0iC	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.52	2.0	2.0	2.0	
gmax/2 (kPa)	37.5	27.2	28.3	45.6	41.6	38.0	30 0		0.53	0.53	0.53	0.53	
gmax/20'vc	0.236	0.171	0.178	0.286	0.261	0 220		26.9	31.0	39.9	36.1	35.5	
€1 at qmax (%)	2.76	4.05	3.26	2 73	4 11	0.239	0.250	0.168	0.194	0.251	0.227	0.222	
o' at gmax (kPa)	58.5	46.2	43 3			3.63	1.61	1.38	2.50	0.97	1.39	1.14	
f at qmax	0.20	0.30	0.42	/9.9	72.9	70.7	64.5	55.5	54.7	67.8	60.0	62.9	
(%)	98		0.42	0.35	0.43	0.50	0.11	0.27	0.33	0.03	0.18	0.12	
	1 25		100	98	99	99	97	99	100	97	100	100	
50 (mDa) m	1.25	1.76	1.61	1.73	1.68	1.77	1.09	1.21	1.39	0.86	1 34	0.00	
/-	12.9	5.64	7.55	35.8	9.31	8.85	27.9	20.0	6.72	44 0		0.98	
50/5u ¤	343	207	267	784	224	233	700	743	217	1102	12.1	19.1	
50/0'VC #	80.7	35.5	47.3	224	58.4	55.6	175	125	42.4	1103	544	539	
/o'vc =	26.9	11.8	15.8	74.8	19.5	18.5	58 2	120	42.1	277	124	120	
							50.5	41.8	14.0	92.2	41.2	40.0	

-- not applicable to control samples ¤ calculated using qmax

.

TABLE 10 SUMMARY OF UNDRAINED SHEAR TEST RESULTS FOR OVERCONSOLIDATED SAMPLES (OCR = 2)

		ISOTROPIC		1.0xg/1SOTROPIC			1.0xo'ANISOTROPIC			CONTROL SPECIMENS		
SAMPLE NO.		T732	T733	T734	т735	т736	T737	т738	т739	T740	T741	T742
LIQUID LIMIT (%)		53.7	53.7	56.8	56.8	56.8	63.5	63.5	63.5	<u> </u>	60 0	60.0
PLASTIC LIMIT (%)		25.3	25.3	26.5	26.5	26.5	26.2	26.2	26.2	25.5	25 5	25 5
PLASTICITY INDEX (%)		28.4	28.4	30.3	30.3	30.3	37.3	37.3	37.3	34.5	34.5	34 5
STORAGE TIME (HOURS)		2	168	0.25	24	168	0.25	24	168	_		
RECON. σ¦ (kPa)		96	96	160	160	160	160	160	160	-		~
RECON. σ3 (kPa)		96	96	160	160	160	84.8	84.8	84.8			
BEFORE CYLINDER CONSOLIDATION (MEASURED)	(1)	114.4	114.4	114.2	114.2	114.2	113.7	113.7	113.7	120.5	120 5	120 5
BEFORE TRIAXIAL CONSOLIDATION (MEASURED)	(2)	50.1	50.8	49.4	49.7	49.9	49.0	49.1	49.3	49.5	49 5	120.5
AFTER TRIAXIAL CONSOLIDATION	(3)	# 41.0	39.7	38.7	39.0	38.4	38.6	38.5	38.3	39.1	38.3	30 1
AFTER STORAGE SWELLING	(4)	*	44.2	39.1	45.1	44.0	38.9	42.4	44.1			
BEFORE SHEARING	(5)	*	39.6	36.0	37.0	35.5	38.1	37.8	37.8	39.1	38.3	20 1
AFTER SHEARING (MEASURED)	(6)	43.5	42.3	38.0	37.3	37.4	39.8	38.9	38.7	39.4	38.4	20 1

0.6xa!

not applicable to control samples
 # only approximation taken due to leakage at top drainage coonection
 * not available

TABLE 11 BASIC SOIL PROPERTIES AND MOISTURE CONTENTS (%) AT VARIOUS STAGES FOR NORMALLY CONSOLIDATED

.

		U.6xo ¹ CISOTROPIC			1.0xg ¹ _{1C} ISOTROPIC			1.0xg'ANISOTROPIC			CONTROL SPECIMENS		
SAMPLE NO.		T751	T752	т753	T754	т755	T756	T757	T758	т759	T760	T761	T762
LIQUID LIMIT (%)		61.5	61.5	61.5	63.8	63.8	63.8	<u> </u>					······
PLASTIC LIMIT (%)		25.4	25.4	25.4	26.4	26.4	26 4	25 6	00.4	60.4	65.0	65.0	65.0
PLASTICITY INDEX (%)		36.1	36.1	36.1	37.4	37.4	20.4	20.0	25.6	25.6	26.5	26.5	26.5
STORAGE TIME (HOURS)		0.25	24	168	0.25	24	160	34.8	34.8	34.8	38.5	38.5	38.5
RECON. o' (kPa)		48	48	48	80	80		0.25	24	168		-	
RECON. o's (kPa)		48	48	48	80	 		80	80	80			<u> </u>
BEFORE CYLINDER							80	42.4	42.4	42.4	-	-	_
CONSOLIDATION (MEASURED)	(1)	114.4	114.4	114.4	113.6	113.6	113.6	114.3	114.3	114.3	116 0	116 0	110.0
BEFORE TRIAXIAL CONSOLIDATION (MEASURED)	(2)	50.0	50.5	51.0	50.6	50.6	50.8	50.4	50 5	E0 0			116.0
AFTER TRIAXIAL						······································			50.5	50.9	51.0	51.5	51.4
CONSOLIDATION	(3)	41.4	42.2	41.9	42.2	41.3	41.8	42.1	42.2	42.3	42.7	42.1	42.0
AFTER STORAGE SWELLING	(4)	41.6	45.9	47.2	42.4	45.4	46 9	12 1					
BEFORE								72.4	45.4	47.4	-	-	-
SHEARING	(5)	41.7	43.2	43.4	41.1	40.9	41.2	42.2	42.8	43.2	42.7	42.1	42 0
AFTER SHEARING (MEASURED)	(6)	43.8	44.4	44.4	41.6	41.4	41.2	42.7	42.7	43.7	43.4	42 9	42.0

- not applicable to control samples

TABLE 12 BASIC SOIL PROPERTIES AND MOISTURE CONTENTS (%) AT VARIOUS STAGES FOR OVERCONSOLIDATED SAMPLES (OCR =2)

WATER SURFACE

FIGURE 3.1 SCHMATIC DIAGRAM OF MODELLED CONDITIONS

FIGURE 3.2 GENERAL SET-UP DURING ONE-DIMENAIONAL SLURRY CONSOLIDATION

FIGURE 3.3 TIME-DISPLACEMENT CURVE DURING LAST LOAD INCREMENT OF ONE-DIMENSIONAL SLURRY CONSOLIDATION 732-733

FIGURE 3.4 a,b,c LOADING AND DEVIATION CURVES DURING ONE-DIMENSIONAL SLURRY CONSOLIDATION 732-733

FIGURE 3.6 GENERAL SET-UP DURING TRIAXIAL CONSOLIDATION TESTS

LOG (q) vs. w

FIGURE 4.3 a,b,c,d TRIAXIAL CONSOLIDATION AND YIELD DETERMINATION—LOG (p') vs. V NORMALLY CONSOLIDATED SAMPLES T736, T737, T738, T739

6.5

NORMALLY CONSOLIDATED SAMPLES T740, T741, T742

OVERCONSOLIDATED SAMPLES T755, T756, T757, T758

FIGURE 5.3 POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING NORMALLY CONSOLIDATED SAMPLES T737, T738, T739

FIGURE 5.4 POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING OVERCONSOLIDATED SAMPLES T751, T752, T753

FIGURE 5.6 POREWATER PRESSURE BEHAVIOUR DURING SHEAR UNLOADING OVERCONSOLIDATED SAMPLES T757, T758, T759

FIGURE 5.7 a,b,c,d STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T732, T733, T734, T735

FIGURE 5.8 a,b,c,d STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T736, T737, T738, T739

OVERCONSOLIDATED SAMPLES T751, T752, T753

i

FIGURE 5.10 a,b,c STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T754, T755, T756

FIGURE 5.11 a,b.c STRESS PATHS FOR TRIAXIAL CONSOLIDATION, SHEAR UNLOADING AND ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T757, T758, T759

FIGURE 5.12 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T732, T733

FIGURE 5.13 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T734, T735, T736

FIGURE 5.14 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING NORMALLY CONSOLIDATED SAMPLES T737, T738, T739

FIGURE 5.15 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T751, T752, T753

FIGURE 5.16 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T754, T755, T756

FIGURE 5.17 POREWATER PRESSURE BEHAVIOUR DURING ISOTROPIC UNLOADING OVERCONSOLIDATED SAMPLES T757, T758, T759

FIGURE 5.18 a,b SWELLING AND POREWATER PRESSURE BEHAVIOUR DURING STORAGE T733

NORMALLY CONSOLDATED SAMPLES T737, T738, T739

OVERCONSOLIDATED SAMPLES T754, T755, T756

FIGURE 5.24 VOLUMETRIC RECONSOLIDATION STRAIN VS. STORAGE TIME NORMALLY CONSOLIDATED "SAMPLES"

FIGURE 5.25 VOLUMETRIC RECONSOLIDATION STRAIN VS. STORAGE TIME OVERCONSOLIDATED "SAMPLES"

FIGURE 6.9 EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T740, T741, T742

FIGURE 6.10 EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T732, T733

FIGURE 6.11 EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T734, T735, T736

FIGURE 6.12 EFFECTIVE STRESS PATHS IN p',q-SPACE NORMALLY CONSOLIDATED SAMPLES T737, T738, T739

FIGURE 6.13 EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T760, T761, T762

FIGURE 6.14 EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T751, T752, T753

FIGURE 6.15 EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T754, T755, T756

FIGURE 6.16 EFFECTIVE STRESS PATHS IN p',q-SPACE OVERCONSOLIDATED SAMPLES T757, T758, T759

FIGURE 6.17 POREWATER PRESSURE BEHAVIOUR, $\Delta u/\sigma'_{VC}$ vs. $\Delta p/\sigma'_{VC}$ NORMALLY CONSOLIDATED SAMPLES T740, T741, T742

FIGURE 6.18 POREWATER PRESSURE BEHAVIOUR, Δu/σ[']_{VC} vs. Δp/σ[']_{VC} NORMALLY CONSOLIDATED SAMPLES T732, T733

FIGURE 6.19 POREWATER PRESSURE BEHAVIOUR, Δu/σ' vs. Δp/σ'vc NORMALLY CONSOLIDATED SAMPLES T734, T735, T736

FIGURE 6.20 POREWATER PRESSURE BEHAVIOUR, Δu/σ'_{VC} vs. Δp/σ'_{VC} NORMALLY CONSOLIDATED SAMPLES T737, T738, T739

FIGURE 6.21 POREWATER PRESSURE BEHAVIOUR, $\Delta u/\sigma'_{VC}$ vs. $\Delta p/\sigma'_{VC}$ OVERCONSOLIDATED SAMPLES T760, T761, T762

FIGURE 6.22 POREWATER PRESSURE BEHAVIOUR, Δυ/σ'_{VC} vs. Δρ/σ'_{VC} OVERCONSOLIDATED SAMPLES T751, T752, T753

FIGURE 6.23 POREWATER PRESSURE BEHAVIOUR, $\Delta u/\sigma'_{VC}$ vs. $\Delta p/\sigma'_{VC}$ OVERCONSOLIDATED SAMPLES T754, T755, T756

FIGURE 6.24 POREWATER PRESSURE BEHAVIOUR, Δu/σ'_{VC} vs. Δp/σ'_{VC} OVERCONSOLIDATED SAMPLES T757, T758, T759

FIGURE 7.1 MOISTURE CONTENT PROFILES ACROSS NORMALLY CONSOLIDATED SAMPLES T736, T739, T740 AFTER UNDRAINED SHEAR

FIGURE 7.2 MOISTURE CONTENT PROFILES ACROSS OVERCONSOLIDATED SAMPLES T753, T756, T759 AFTER UNDRAINED SHEAR

FIGURE 7.3 NORMALLY CONSOLIDATED AND OVERCONSOLIDATED RUPTURE ENVELOPES (σ_{vc}^{i} =160 kPa) OF ILLITE

FIGURE 7.4 GRAPH OF END OF CONSOLIDATION/RECONSOLIDATION IN V,LN p'-SPACE

FIGURE 7.5 GRAPH OF NORMALLY CONSOLIDATED AND OVERCONSOLIDATED FAILURE ENVELOPES IN V,LN p'-SPACE

FIGURE 7.6 GRAPH OF CRITICAL STATE LINE IN V,LN p'-SPACE

APPENDIX A

PREPARATION OF RECONSTITUTED CLAY SAMPLES

FOR GEOTECHNICAL TESTING

APPENDIX A

PREPARATION OF RECONSTITUTED CLAY SAMPLES FOR GEOTECHNICAL TESTING

A.1 INTRODUCTION

This note describes the process of preparing "slurry cakes", each of which can be subsequently cut and trimmed into three identical reconstituted clay samples for further triaxial testing. The process usually consisted of three stages: (1) remoulding, (2) consolidation and (3) extrusion. The procedures used for remoulding soil in a mechanical unit and pouring slurry into a consolidation cylinder are similar to those described by Li (1983), and they will not be repeated here. The equipment (Figures A1 and A2) used throughout the consolidation and extrusion stages was designed by the author and Mr. N.Piamsalee. Usefully advice given by Dr. J.Graham during the design stage is much appreciated.

This note takes the form of a set of abbreviated instruction for the operation of the equipment and preparation of specimens for testing.

A.2 ONE-DIMENSIONAL CONSOLIDATION

- 1. Place a load cell that is connected to a strain gauge box on the top of the hydraulic jack.
- 2. Place the steel stand plate on the top of the load cell and make sure the plate sits well and is in good contact with the load cell.
- 3. Transfer the 254-mm diameter consolidation cylinder with slurry inside to the loading frame (Figure A1). Place the guide plate in

place to prevent any lateral movement of the cylinder.

- 4. Record the initial load cell reading.
- 5. Place a filter paper on the top of the slurry.
- Apply a thin layer of silicone grease to the side of the top cap, and lower the cap into the cylinder with care until it reaches the top of slurry.
- 7. Place the ball bearing on the top cap, and lower the cylinder piston until it is brought in contact with the steel ball.
- 8. Tighten the the clamping nut at the top of the cylinder piston. Care must be taken to line up the piston vertically without any lateral and vertical movement.
- 9. Connect top and bottom drainage leads and collect drainage in a 1-litre measuring cylinder.
- 10. Attach a dial gauge platform on the side of the loading frame, set the vertical dial gauge in place, and take the initial dial gauge reading. Its placement should facilite the reading of slurry compression as indicated by the movement of the jack piston and steel stand plate.
- 11. Determine the desired vertical stress level and calculate the load requirement.
- 12. Adjust the air pressure to the booster slowly and carefully until the load cell indicated that the required vertical load is achieved.
- Record times, dial gauge readings and load cell readings according to the following elapsed time schedule:
 30 sec., 1, 2, 4, 8, 15, 30 min., 1, 4, 8 hr. and every 24-hr.
- 14. Repeated step 11 to step 13 for next load increment.

A.3 EXTRUSION

- 1. Once equilibrium is obtained at the desired stress level, the dial gauge is removed after the final reading is recorded.
- 2. Disconnect drainage and store the measuring cylinder safely.
- 3. Release the air pressure to the booster, and lower down the hydraulic jack and the consolidation cylinder.
- 4. Remove the cylinder piston from the loading frame and the ball bearing from the top cap.
- 5. Clamp the top cap with the specially made clamping ring.
- 6. Remove the guide plate from the cylinder and move the cylinder from the loading frame to the floor.
- 7. Remove the steel stand plate and the load cell from the top of the hydraulic jack.
- Invert the consolidation cylinder and place it over the hydraulic jack
- 9. Unscrew the six screws on the bottom cap of the consolidation cylinder.
- 10. Remove the bottom cap from the cylinder.
- Remove the bottom filter stone and the filter paper from the "cake" with care.
- 12. Align the cutting plate with three cutting wires exactly over the top of the consolidation cylinder.
- 13. Tighten the screws of the cutting plate on the loading frame.
- 14. Release the screw of the clamping ring on the top cap.
- 15. Applied air pressure to the booster to push the "cake" slowly out of the cylinder. The "cake" at this stage is cut into three "pie slices".

- 16. One slice is ready for the trimming and building-in procedures described by Lew (1981). The two other slices while waiting for trimming are wrapped with Saran Wrap, sealed with wax, and stored in a cool, humid, sample room to minimize changes in moisture content.
- 17. Six moisture contents are obtained from the trimmings of the working slice.
- 18. Finally, all the equipment should be cleaned and set aside for the next time.

A.4 <u>A LEVER-LOADING SYSTEM</u>

This is an alternative way to load the consolidation cylinder in a lever-loading system (Figure A2), rather than using the booster-hydraulic jack system described in Section A.2.

- 1. Place the consolidation cylinder on the steel plate.
- 2. Place a filter paper on the top of the slurry. Prior to loading, weigh the top cap with top filter stone and the load cell with its adaptor.
- 3. Apply a thin layer of silicon grease on the side of top cap and lower it carefully into the cylinder.
- 4. Place a load cell with its adaptor on the top of the top cap.
- 5. Set dial gauge platform on the cylinder piston shaft.
- 6. Lower down the piston into the cylinder until it comes into contact with the top of load cell.
- 7. Rotate the "screw" until the lever arm is horizontal. This can be moinitored by the level on the lever arm.
- 8. Set up a dial gauge on the loading frame and take the initial

reading.

- 9. Connect top and bottom drainage connections and collect drainage in a 1-litre measuring cylinder.
- 10. Determined the desired vertical stress level and determine the required load.
- 11. Place the roughly calculated dead weight on the pan, and adjust the load carefully until the load cell indicates the required load is achieved.
- 12. Record times, dial gauge readings and load cell readings using double time schedule.
- 13. Adjust the "screw" as necessary to keep the lever arm in the horizontal position.
- 14. Repeat step 10 to step 13 for next load increment until the final stress level is attained.
- 15. For extrusion of the "cake", use steps 1, 2, 4-6, and 8-18 in Section A.3.

FIGURE A1 SCHMATIC DIAGRAM OF A LOADING FRAME FOR ONE-DIMENSIONAL SLURRY CONSOLIDATION

FIGURE A2 SCHMATIC DIAGRAM OF A LEVER-LOADING SYSTEM FOR ONE-DIMENSIONAL CONSOLIDATION

APPENDIX B

ŧ,

ADDITIONAL PLOTS FOR TRIAXIAL CONSOLIDATION TESTS

FIGURE B1 a,b,c,d YIELD DETERMINATION-p' vs. v T732, T733, T734, T735

Š.

÷ ÷

.

212

•

¢,

APPEND'IX C

ADDITIONAL PLOTS FOR UNDRAINED SHEAR TESTS

NORMALLY CONSOLIDATED SAMPLE T732

APPENDIX D

DRAINED STRESS-CONTROLLED TRIAXIAL TESTING IN

EXPLORING YIELD ENVELOPE OF ILLITE

÷.

APPENDIX D

DRAINED STRESS-CONTROLLED TRIAXIAL TESTING IN EXPLORING YIELD ENVELOPE OF ILLITE

An understanding that yielding is a fundamental feature of clay behaviour is essential to designing structures on the soft ground. The locus of effective stress conditions at which yielding occurs can be represented in stress space by a "yield envelope". It separates relatively stiff, linear, pseudo-elastic pre-yield hehaviour, from the larger strains, porewater pressures and dissipation times that accompany post-yield stressing. The existance of a yield envelope is now confirmed both in the laboratory and in the field.

A preliminary yield envelope for illite was given by Ambrosie (1985). In order to supplement data for the envelope, three lightly overconsolidated samples with OCR=2 were tested in the present program. The reconstituted specimens used for the drained stress-controlled triaxial testing were prepared individually in the same way as described by Li (1983) and Kwok (1984). It will only be briefly reviewed here.

A slurry with moisture content at $2xw_L$ was first consolidated in five load increments up to a maximum vertical stress of 70 kPa in a 100 mm diameter perspex consolidation cylinder. The axial load was applied through a hanger and dead load system. Upon reaching porepressure equilibrium, the sample was extruded and trimmed simultaneously with a extrusion unit designed by Kwok (1984). A sample of 76 mm in diameter and 130 mm in height was finally obtained and transferred to a triaxial consolidation cell. It was then subjected to further anisotropic consolidation described in Section 3.4.3 to give the sample an OCR equal to 2.

After lightly overconsolidated samples had reached the "in situ" stresses for four days, drained stress-controlled triaxial tests were subsequently followed along the selected stress paths shown in Figure Deformations of the samples in the course of testing were measured D1. with a dial gauge and a drainage burette. The yield stresses for T728 were determined from various TXCEP plots given in Figures D2-D8 with the bilinear plotting technique. The yielding of samples T729 and T730 was taken at the stress conditions at which ruptures occurred as they moved towards the overconsolidated failure envelopes shown in Figure 7.3. Since it is believed that a unique yield envelope would be obtained when normalized with respected to preconsolidation (Graham et al. 1983), the yield stresses obtained in the present study, in conjunction with the results from Ambrosie (1985), were normalized with σ'_{vc} =160 kPa. The shape of the yield envelope is shown in Figure D9 and has been recently published by Graham et al. (1986). Figure D9 also includes the results of lightly overconsolidated control specimens subjected to strain-controlled, undrained shear test.

FIGURE D5 YIELD DETERMINATION FOR YIELD ENVELOPE—σ₁ vs. ε₁ T728, T729, T730

FIGURE D6 YIELD DETERMINATION FOR YIELD ENVELOPE— σ_3 vs. ϵ_3 T728, T729, T730

1. St. 1.

FIGURE D9 YIELD ENVELOPE OF ILLITE, σ'_{VC} = 160 kPa

APPENDIX E

RELATED PUBLICATION

DRAFT: 2nd June, 1986

YIELD ENVELOPES: IDENTIFICATION AND GEOMETRIC PROPERTIES

by

J. Graham⁽¹⁾, J.H.A. Crooks⁽²⁾, and S. Lau⁽¹⁾

Submitted to the Canadian Geotechnical Journal for possible publication as a Technical Note

January, 1986

Dept. of Civil Engineering, University of Manitoba, Winnipeg, Canada R3T
2N2
Golder Associates, 7017 Farrell Road S.E., Calgary, Canada T2H 0T3

ABSTRACT

Yielding is an important feature of the stress-strain behaviour of lightly overconsolidated clays. Of necessity however, techniques used for evaluating yield states must be partly empirical. It is therefore important that the techniques are as general as possible, that they do not lead to spurious conclusions, and that their limitations are understood.

Attention is drawn to four features of yield envelopes. They are commonly identified from the intersection of two straight-line approximations to measured stress-strain curves in natural clays which have experienced diagenetic aging. However the procedure is inapplicable in reconstituted clays where linear pre-yield behaviour proceeds directly into exponential post-yield behaviour. Envelopes are often considered to be symmetric about the K_0 -line in s',t-space. Such envelopes are shown to be nonsymmetric in p',q-space, and this raises questions regarding the relationship between K_0 and yielding. Factors influencing the shape of yield envelopes in different clays are explored in the following section.

Finally, the geometry of the complete state boundary surface of a natural clay in p',q,V-space is related to the Critical State Model. Discrepancies between measured envelopes in p',q-space and the Modified Cam Clay model are shown to be largely the result of differences in plotting the data.

KEYWORDS

Clays, overconsolidated, yielding, yield envelopes, symmetry, state boundary surface, Critical state

2

INTRODUCTION

An understanding that yielding is a fundamental feature of clay behaviour is essential to the design of structures on soft ground (for example, Folkes and Crooks, 1985). The locus of effective stress conditions at which yielding occurs can be represented in stress space by a "yield envelope" (Crooks and Graham, 1972, 1976). Yield envelopes separate relatively stiff, linear, pseudo-elastic pre-yield behaviour, from the larger strains, porewater pressures and dissipation times that accompany post-yield stressing. In p', q, V-space* (Graham et al., 1983a; Wood, 1984) they are traces of a state boundary surface with non-constant V. The shapes and magnitudes of yield envelopes depend on the composition and stress history of the clay. For given testing rates in the laboratory, unique yield envelopes can be obtained by normalizing measured yield stresses by a characteristic stress which is representative of the stress history of the material. In natural clays this has commonly been taken as the oedometer preconsolidation pressure σ'_{VC} (Bell, 1977; Graham et al., 1983a). In reconstituted clays it is more common to use the "equivalent pressure" p_e (Atkinson and Bransby, 1978).

The Paper examines interpretive procedures used in the laboratory for identifying yielding in clay soils. It considers implications of plotting techniques for defining yielding; features related to asymmetry of yield envelopes about the hydrostatic stress axis; and factors that influence the three-dimensional shape of yield envelopes in different clays.

GRAPHICAL TECHNIQUES FOR ESTIMATING YIELD STRESSES

The stresses at which yielding occurs must be estimated on the

* Notation is summarized at the end of the Paper.

258 basis of empirical procedures. These should ideally be as general as possible (Graham et al, 1982) and as free as possible from observer influence.

There is typically a region of transitional behaviour between pre-yield and post-yield straining, and consequently some degree of judgement must be exercised in selecting a "yield stress". An example of this is the widely used construction for oedometer preconsolidation pressures in which Casagrande recommended using a "likely range" of σ'_{VC} rather than a single value.

Triaxial samples may be loaded along a wide variety of stress paths. On completion of these tests, it is common to plot a series of graphs such as σ'_1 vs. ε_1 ; p' vs. v; q vs. ε ; σ_3 vs. ε_3 ; and W vs. length of stress vector LSSV (Graham et al., 1983a). The yield stress is then estimated from each of the plots in turn and converted to a common parameter such as p', (or W, or σ_1). Yield values obtained from the different graphs are usually remarkably similar (Graham et al., 1983a) and suggest that the tests do in fact measure a real component of soil behaviour. This has now been confirmed in many studies of field behaviour, for example by Clausen et al. (1984); Watson et al. (1984); Folkes and Crooks (1985).

It is important to be sure that the techniques used for interpreting the test data are thoroughly understood, and do not themselves suggest spurious behaviour which is then assigned to the clay.

ARITHMETIC-LOGARITHMIC MAPPING

Some implications of the commonly-used log σ'_V vs. ε_V plots were presented in an earlier Paper by Graham et al. (1982). They also discussed how yielding in natural clays could be interpreted from straight-line curve-fitting (bilinear plotting) of the pre-yield and post-yield behaviour

in arithmetic stress-strain space. This deserves some further attention since it appears to conflict with the common understanding that post-yield stable straining (plastic strain-hardening) is exponential in nature. The differences lie in part in the aging or diagenetic processes experienced by natural clays following deposition. The discussion here will be restricted simply to stress-strain behaviour in fixed time periods with small stress increment ratios. Questions of the relationship between primary and secondary consolidation, rate effects, superposition of strains, etc. will be left for a future occasion.

Realization that clay behaviour inside the state boundary surface is more linear than previously thought, has encouraged the plotting of stress-strain curves in arithmetic (as opposed to logarithmic) stress space (Mitchell, 1970; Tavenas and Leroueil, 1977; Graham et al., 1983a). This also avoids the difficulty in logarithmic plotting that the inferred preconsolidation pressure can depend on the scale at which the data is plotted.

Fig. 1 examines the mapping of identical oedometer data for reconstituted plastic clay between arithmetic and logarithmic stress-strain space. For emphasis, the observed behaviour has been idealized in the insert drawing so that the transitional region has been removed, and the yielding is made "sharper" than would be normally observed. The Figure also shows the importance of using natural stains $[\Sigma(\delta_i/H_i)]$ rather than engineering strains $[(\Sigma\delta_i)/H_0]$ when the strains exceed about 10%. By the nature of logarithmic transforms a straight pre-yield line AB in Fig. 1a plots as a curve AB in the logarithmic stress space in Fig. 1b. Conversely a straight post-yield (normal consolidation line (NCL) BC in Fig. 1b maps into Fig. 1a as exponential strain hardening behaviour.

Understanding the yielding of lightly overconsolidated clays has

5

been developed from studies on carefully handled "undisturbed" natural clays (Mitchell, 1970; Crooks and Graham, 1976; Tavenas and Leroueil, 1977; Graham et al., 1983a) rather than from reconstituted clays as in Fig. 1. In the natural clays, the observed behaviour can often be reasonably approximated by straight pre-yield and post-yield segments, particularly if the clay is sensitive or cemented. Fig. 2 shows data from anisotropic triaxial consolidation (close to K_0 -consolidation) of natural plastic clay from Winnipeg. In contrast with Fig. 1, the micro-structure of the clay here is probably cemented (Graham et al., 1983a) and yields quite markedly before proceeding to exponential strain hardening.

The natural clay in Fig. 2 shows clearer evidence of yielding than the reconstituted samples in Fig. 1, and faster post-yield straining before exponential strain-hardening is observed. (Note the different strain-scales in the two Figures.) This suggests that for natural clays the schematic behaviour AB, BC in Fig. 1 should be conceptually modified as shown in Fig. 2 by the addition of an additional region B_1 B_2 between the pre-yield and post-yield behaviour. In this region, the micro-structure of the clay experiences major disturbance (Bjerrum, 1967) or de-structuring (Leroueil et al., 1979). The change in logarithmic function at B_1 in Fig. 2b may explain why the Casagrande construction "at the point of maximum curvature" can be successful.

Fitting observed stress-strain results with two straight lines (bilinear plotting) in arithmetic { σ '}, { ε } space appears acceptable in a variety of natural clays (Mitchell, 1970; Bell, 1977; Graham et al., 1983a, among others) over a measurable range of post-yield strains. At larger strains (B₂C in Fig. 2) the behaviour converts into the usual exponential plastic strain hardening behaviour. Houlsby et al. (1982) showed that when soils undergo a large amount of plastic strain hardening; then the behaviour

linearizes in log σ'_v , log V plotting rather than in the more common semi-logarithmic plots.

SYMMETRY OF YIELD ENVELOPES

The magnitude and locations of yield envelopes depends on the apparent stress history of the clay. Envelopes are commonly thought to be approximately symmetric about the K_0 -consolidation line, with their size controlled by the (apparent) preconsolidation pressure. Thus there is a causal relationship between not only the magnitude, but also the detailed shape of the envelope and consolidation history. A suggestion that yield envelopes were symmetric about the K_0 -line was implicit in the work by Mitchell (1970), and was proposed as an approximation by Graham (1972) based on work on Norwegian and Belfast clay. Tavenas and Leroueil (1977) presented the arguments more precisely, and the understanding is now widely held. Some care is needed, however, since it can be shown that the observed "symmetry" depends on the plotting techniques which are used. The causality between the K_0 -line and the shape of the yield envelopes is less direct than is commonly assumed.

Fig. 3a shows an idealised yield envelope drawn as an ellipse in s' = $(\sigma'_1 + \sigma'_3)/2\sigma'_{VC}$, t = $(\sigma_1 - \sigma_3)/2\sigma'_{VC}$ -space, and symmetric about the K-line $\sigma'_3/\sigma'_1 = 0.5$. The same σ'_1 , σ'_3 data used to generate this ellipse and the line K = 0.5 are replotted in Fig. 3b in terms of the stress invariants p' = $(\sigma'_1 + 2\sigma'_3)/3\sigma'_{VC}$; q = $(\sigma_1 - \sigma'_3)/\sigma'_{VC}$. It is evident from Fig. 3b that the yield envelope is no longer symmetric about the line K = 0.5.

It is sufficient to disprove the symmetry of the mapping in p', q-space if the perpendicular directions between the tangent AB and normal AC at point A in Fig. 3a (the intersection between the yield envelope and the K-line) do not map as perpendiculars in Fig. 3b. The product of the slopes

of A'B' and A'C' in Fig. 7b is $9(1-K^2)/(2K^2-3K-2)$. When K = 0.5 as in Fig. 3, the product of the slopes is -2.25, and not -1 required for orthogonality. A'B' and A'C' are only orthogonal when K = .81 and -1.24. (The latter value requires tensile stresses and is unattainable in clay soils.)

The mapping between z = (s' + it)-space and w = f(z) = (p' + iq)-space can be examined more formally (D.W. Trim, pers. comm.) using the Cauchy-Reimann conditions for conformality

[3]
$$\frac{\partial p'}{\partial s'} = \frac{\partial q}{\partial t}$$
; $\frac{\partial q}{\partial s} = -\frac{\partial p'}{\partial t}$

By rewriting the variables in terms of σ_3^{\prime} and σ_1^{\prime} it is seen that

[4] p' = s' - t/3; q = 2t,

and therefore the conditions in [3] are not met. This means that mapping between s', t-space and p', q-space does not preserve angular relationships. The symmetrical ellipse in Fig. 3a cannot map as a symmetrical locus into Fig. 3b. Note also that the t-axis (s' = 0) in Fig. 3a does not map as the q-axis in Fig. 3b.

Figs. 4a and 4b show two published examples of yield envelopes that have been selected because of their approximate symmetry in s', t-space. The lines of symmetry shown in these Figures have been reconstructed graphically and may not correspond to in situ K_0 -values. The same data are shown plotted in p', q-space in Figs. 4c and 4d. As expected from the preceding discussion, symmetry is not shown in p',q-space.

Chan (1985) has shown a yield envelope for overconsolidated clay $(OCR = 2.0, K_0 = 1.0)$ that is approximately symmetrical about the p'-axis. Consideration of Eqns. 3, 4 and a development of Fig. 7 will show that even in this apparently simpler case, a yield envelope cannot be formally symmetric about a $K_0 = 1.0$ axis in both s', t-space and p', q-space.

COMPARISON OF YIELD ENVELOPES

Fig. 5 shows a selection of yield envelopes taken from the literature. Basic classification information for these clays is given in Table 1. They are all recent (mostly post-glacial) clays from a variety of sources with varied mineralogies, geochemistries, sensitivities and activities. They all exhibit stress-strain behaviour that can be summarized by unique yield envelopes in normalized p'/σ'_{VC} , q/σ'_{VC} -space. There is considerable variation in the shapes of the envelopes and it is reasonable to examine the causes of the variability.

As a first approach, Fig. 6a represents an attempt to include the effect of mineralogy on the observed variability at the top (high q-values) of the yield envelope. In this Figure, the q/σ'_{vc} data has been normalized with respect to $M = 6 \sin \phi'/(3 - \sin \phi')$ following a suggestion from C.P. Wroth (pers. comm.). While this process reduces the variability of the data in the q-direction, quite significant variability still exists in the p'-direction, particularly for Winnipeg clay. Fig. 6b is an approximate examination of the influence of overconsolidation ratio (OCR) on the bulk compressibility of the clays. This has been done by dividing p'/σ'_{vc} -values by $(1 + 2 K_0)/3$, where K_0 values have been taken from the data produced by Brooker and Ireland (1965). This also produces some concentration of the data but anomalies still remain, particularly in the way that high OCR's appear to be associated with low normalized p'-values. This is contrary to a perception (and the experimental results of Chan, 1985) that when the clay has an OCR of about 2-2.5 then the yield envelope will be approximately symmetrical about the p'-axis, with $K_0 \approx 1.0$.

YIELDING AS A STATE BOUNDARY SURFACE IN p',q,V-space

It is now common to present normalized yield envelopes as a

264 relationship between stresses in the form shown in Figs. 4, 5. The usefulness of these envelopes in geotechnical practice has been well demonstrated (for example by Wood, 1980; Clausen et al., 1984; Folkes and Crooks, 1985). However the behaviour is one in which straining as well as stressing is important. It should be remembered that yielding is described by a three dimensional state boundary surface in p', q, V-space. The present practice of plotting only normalized yield envelopes in p'/σ'_{vc} , q/σ'_{vc} -space, while it is helpful in many instances has, in other ways, obscured some fundamental features of yielding in natural clays. For example, undrained strengths are of course located on the state boundary surface. However they do not in general plot on yield envelopes that are obtained by drained stress probing from the same initial stresses and specific volumes (Wroth and Houlsby, 1985).

Figs. 7a,b show one of the few published examples of a complete state boundary surface (Graham et al., 1983a). In these Figures the lighter lines represent previously published envelopes for four different depths and preconsolidation pressures in Winnipeg clay. Two features of these envelopes differ noticeably from the shapes which are commonly adopted in the Critical State modified Cam-clay model of soil behaviour (for example, Houlsby et al., 1982). Firstly, the envelopes in p', q-space are not elliptical, that is, the hydrostatic yield stress p'_{1so} is not the largest value of p'_y . Secondly, in p', V-space, the traces of the yield envelopes have an unusual "hooked" shape rather than the straight κ -lines of the model. However, apart from these differences, important similarities are apparent. The yield data normalize well in p', q-space; the separation of the envelopes in p', V-space corresponds well with the expected value $V = \lambda \ln(\sigma'_{vc2} / \sigma'_{vc1})$ (Graham et al., 1983a); and a straight envelope with κ = 0.09 is obtained in $(V + \lambda \ln \sigma'_{VC})$, $\ln(p'/\sigma'_{VC})$ - space (Wroth and Houlsby, 1985). Nevertheless,

the in-turning shape of the yield envelopes suggests a limitation on the applicability of the Critical State model.

Graham and Li (1985) reported that yield data for natural and reconstituted Winnipeg clay lay on the same normalized yield envelope, so the geometric shape of the yield envelopes in this clay is not a function of geological aging or weathering. (The envelopes did however differ in p', V-space). The heavier lines in Figs. 7a,b have been constructed graphically as constant-V traces of the drained state boundary surface measured in the laboratory. They therefore permit a better appreciation of the true shape of the surface than can be obtained from yield envelopes that are skewed to the reference planes. It is now seen that the traces (no longer "yield envelopes") are much more elliptical, and closer in shape to the Critical State model. Their shape has not been established in detail at low stresses close to the q, V-plane, although some information on the strength envelope in this region has been reported by Graham and Au (1985). Stress path testing into this region is difficult due to accelerating displacements in load-controlled tests (Graham et al., 1983a), and strain controlled testing will be required. Fig. 7 and Fig. 8 show different three-dimensional views of the state boundary surface for Winnipeg clay. These have been constructed graphically in this case, but have also been viewed using axis rotation of digital data on a micro-computer. The similarity between the data and the Critical State model is now clearer than before.

Additional information has been shown schematically in Fig. 8. The normally consolidated Coulomb Mohr plane with slope $M(\Phi)$ intersects the state boundary surface at the Critical State line, CSL. Overconsolidated undrained samples of this clay strain-soften from the Hvorslev surface and approach this plane at large strains (Graham et al., 1983a). The Figure also gives an impression of how rate effects such as those discussed by Tavenas and

11

Leroueil (1977) and Graham et al. (1983b) might form a series of 'skins' or 'shells' round the state boundary surface. Undrained strengths, preconsolidation pressures and yield envelopes all decrease in magnitude with increased durations of testing. The changes in natural clays are rather larger than would normally be expected from reconstituted samples. Different straining rates produce different undrained strengths at the same specific volume. There must therefore be a strain rate component in the constitutive relationships (Leroueil et al., 1985) which is separate from the expansion of the elastic behaviour yield envelope that accompanies aging or delayed compression.

Consider a typical stress path such as ABCD in Fig. 8 in which a sample at its in situ state at A is first consolidated anistropically with constant stress ratio. Small volume strains are measured until the sample yields at B on the state boundary surface. With further stress increases (and the same stress ratio) large consolidation strains occur as plastic strain hardening expands the region of pseudo-elastic behaviour between B and C. Undrained shear leads to normally consolidated failure at D. Different speeds of testing will produce different values of undrained strength, but identical values of $M(\phi)$. In p', q-space, the constant-volume trace of CD will not coincide with the drained yield envelope through C. Different rates of straining or porewater pressure dissipation occur between AB and BC. Changes similar to these have been clearly observed in field applications (for example Folkes and Crooks, 1985).

SUMMARY AND CONCLUSIONS

Yielding is an inherent feature of most lightly overconsolidated clays. It is observed in the field under embankments; and in the laboratory provided careful sampling, trimming and testing are undertaken. The criteria

12

for identifying yielding are empirical and require judgement. It is therefore important to understand the limitations of the procedures which are used, and the impact they might have on the interpretation of test data.

Figs. 1 and 2 show that bilinear curve-fitting in σ', \mathcal{E} -space is formally incompatible with exponential post-yield straining. However, as an empirical procedure, it works reasonably well in natural clays that are very carefully handled to preserve their "aged" microstructure. Reconstituted samples are widely used because of their uniformity, but may lead to important misconceptions about the behaviour of real clays.

Figs. 3 and 6b raise questions about the influence of overconsolidation and K_0 on the shape of the yield surface. The symmetry which is frequently observed in s',t-plots is not seen in q,p'-plots of the same data. Geometrically-similar yield envelopes which can be normalized into a unique envelope have been measured in several clays with OCR's up to about 2.0 (for example Graham et al., 1983a; Fig. 8). This means that K_o should be approaching 1.0, and yet the shape of the envelopes does not appear to become more symmetrical about the q = 0 axis. The microstructure, and hence the shape of the yield envelope, in these clays may be controlled mostly by normally consolidated conditions during and shortly after deposition, and to a lesser extent by the subsequent development of apparent overconsolidation. Consideration of the envelopes in Figs. 5, 6 shows no systematic relationship between the geometry of the envelopes and classification data of the clays given in Table 1. Further work is needed.

Finally, yielding is a particular "state" in the clay, and should be examined in terms of a state boundary surface, for example in p',q,V-space. It is only in this way that some of the apparent anomalies in yield envelope plotting in p',q-space can be understood. For example, Figs. 7, 8 suggest that the Critical State model of soil behaviour may be rather

13

ACKNOWLEDGEMENTS

This work was funded in part from Grant A3712 from the Natural Sciences and Engineering Research Council, Canada. This Paper has drawn on data and ideas provided to us at various times by K. Been, A.L. Bell, G.T. Houlsby, K.T. Law, K.V. Lew, E.C.C. Li and C.P. Wroth. N. Piamsalee assisted with the tests. I. Trestrail typed the manuscript.

REFERENCES

- Atkinson, J.H. and Bransby, P.L. 1978. The mechanics of soils: an introduction to critical state soil mechanics. McGraw Hill (U.K.) Ltd., Maidenhead, England, 375 pp.
- Bell, A.L. 1977. A geotechnical investigation of post-glacial estuarine deposits at Kinnegar, Belfastlough. Ph.D. Thesis, Queen's University, Belfast.
- Bjerrum, L. 1967. The engineering geology of Norwegian normally consolidated marine clays as related to the settlement of buildings. Geotechnique <u>17</u>, pp. 81-118.
- Brooker, E.W. and Ireland, H.O. 1965. Earth pressures at rest related to stress history. Canadian Geotechnical Journal, <u>2</u>, pp. 1-15.
- Chan, A.C.Y. 1985. Geotechnical characteristics of genesee clay. Ph.D. Thesis, University of Alberta, 374 pp.
- Clausen, C.-J.F., Graham, J. and Wood, D.M. 1984 in soft clay at Mastemyr, Norway. Geotechnique, <u>34</u>, No. 4, pp. 581-600.
- Crooks, J.H.A. and Graham, J. 1972. Stress-strain properties of Belfast estuarine clay. Engineering Geology, Elsevier, Amsterdam, <u>6</u>, pp. 275-288.
- Crooks, J.H.A. and Graham, J. 1976. Geotechnical properties of the Belfast estuarine deposits. Geotechnique, <u>26</u>, No. 2, pp. 293-315.
- Folkes, D.J. and Crooks, J.H.A. 1985. Effective stress paths and yielding in soft clays below embankments. Canadian Geotechnical Journal, <u>22</u>, No. 3, pp. 357-374.

Graham, J. 1972. Discussion on Session 3 "The meaning and measurement of

basic soil parameters (3)". Roscoe Memorial Symposium, Cambridge 1971. Ed. R.H.G. Parry, publ. Fonlis, Henley-on-Thames, 1972, pp. 388-389.

Graham, J. 1974. Laboratory testing of sensitive clay from Lyndhurst, Ontario. Civil Engineering Research Report CE74-2, Royal Military College of Canada, Kingston, Ontario, 50 p.

Graham, J., Pinkney, R.B., Lew, K.V. and Trainor, P.G.S. 1982. Curve-fitting and laboratory data. Canadian Geotechnical Journal, <u>19</u>, No. 2, pp. 201-205.

Graham, J., Noonan, M.L. and Lew, K.V. 1983a. Yield states and stress-strain relationships in a natural plastic clay. Canadian Geotechnical Journal, 20, No. 3, pp. 502-516.

Graham, J., Crooks, J.H.A. and Bell, A.L. 1983b. Time effects on the stress-strain behaviour of natural soft clays. Geotechnique, <u>33</u>, No. 3, pp. 327-340.

Graham, J. and Au, V.C.S. 1985. Effects of freeze-thaw and softening on a natural clay at low stresses. Canadian Geotechnical Journal, <u>22</u>, No. 1, pp. 69-78.

Graham, J. and Li, E.C.C. 1985. Comparison of natural and remoulded plastic clay. Journal Geotechnical Engineering, Amer. Soc. Civil Engrs., Vol. III, pp. 865-881.

Houlsby, G.T., Wroth, C.P. and Wood, D.M. 1982. Predictions of the results of laboratory tests on a clay using a critical state model. Results of the Int. Workshop on constitutive relations for soils, Grenoble. Ed. G. Gudehus, F. Darve, I. Vardoulakis, publ. Balkema, Amsterdam.

Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. and Roy, M. 1979. Behaviour of destructured natural clays. ASCE Journal of the Geotechnical Engineering Division, <u>105</u> (GT6), pp. 759-778.

Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. 1985. Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Geotechnique, <u>35</u>, pp. 159-180.

Mitchell, R.J. 1970. On the yielding and mechanical strength of Leda clays. Canadian Geotechnical Journal, <u>7</u>, pp. 297-312.

Tavenas, F. and Leroueil, S. 1977. The effect of stresses and time on yielding of clays. Proc. 9th Intl. Conf. on Soil Mechs. and Founds. Eng., Tokyo, Japan, <u>1</u>, pp. 319-326.

Tavenas, F., Des Rosiers, J.-P., Leroueil, S., La Rochelle, P. and Roy, M. 1979. The use of strain energy as a yield and creep criterion for lightly over-consolidated clays. Geotechnique, <u>29</u>, pp. 285-304.

Watson, G.H., Crooks, J.H.A., Williams, R.S. and Yam, C.C. 1984. Performance of preloaded and stage-loaded structures on soft soils in Trinidad. Géotechnique, <u>34</u>, No. 2, pp. 239-257. Wood, D.M. 1980. Yielding in soft clays at Bāckebol, Sweden. Geotechnique, <u>30</u>, pp. 49-65.

Wood, D.M. 1984. On stress parameters. Geotechnique, <u>34</u>, No. 2, pp. 282-287.

Wroth, C.P. and Houlsby, G.T. 1985. Soil mechanics - property characterization and analysis procedures. Proc. 11th Int. Conf. on Soil Mechs. and Founds. Eng., San Francisco, California, <u>3</u>, pp. 1-54.
Site				T	c	.		
Rang de Fleuve		80	L 70	*p	۲	Activity	OCR	Reference
		80	70	50	-	-	1.0≈1.2	Tavenas et al., 1979
Beltast	a) b)	35-55 60-80	40-60 75-110	20-40 50-70	40-50 30-40	0.6 1.5	1.6-2.0 1.2-1.8	Bell, 1977 Crooks and Graham 1076
Winnipeg		54-63	65-85	35-60	70-80	0.67	2 4	Cretics and Grandin, 1976
St. Alban		90	50	22	()	,	4.4	Granam et al., 1983a
Lyndhunst		4.5		23	61	0.38	2.2	Tavenas and Leroueil, 1977
eynanar sc		45	36	13-16	60	0.25	1.5	Graham 1974
Mastemyr		40	26	5.13	-	-	1.2	Clausen Graham Wood 1004
· •				1				

Classification data for clays yield envelopes in Fig. 7.

FIG.2 (a) STRESS-STRAIN AND (b) LOG(STRESS)-STRAIN PLOTS FOR NATURAL PLASTIC CLAY.

FIG.1 (a) STRESS-STRAIN AND (b) LOG(STRESS)-STRAIN PLOTS FOR RECONSTITUTED PLASTIC CLAY: ENGINEERING STRAINS AND NATURAL STRAINS.

FIG.3 SCHEMATIC OF IDEALIZED YIELD ENVELOPES IN s',t- and p',q-SPACES.

FIG.4 MEASURED YIELD ENVELOPES IN s',t- AND p',q'-SPACE.

. .

I	RANG DE FLEUVE	2	BELFAST	3	WINNIPEG
4	ST. ALBAN	5	LYNDHURST	6	MASTEMYR

FIG.5 EXAMPLES OF NORMALIZED YIELD ENVELOPES FROM VARIOUS SITES.

FIG.6 NORMALIZED YIELD ENVELOPES EXAMINED FOR (a) INFLUENCE OF MINERALOGY THROUGH THE M-PARAMETER, AND (b) OCR THROUGH (1+2K₀)/3

FIG.7 MEASURED YIELD ENVELOPE FOR NATURAL PLASTIC WINNIPEG CLAY SHOWING GRAPHICALLY CONSTRUCTED CONSTANT-V TRACES AND SHAPE OF STATE BOUNDARY SURFACE

FIG. 8 IDEALIZED STATE BOUNDARY SURFACE FOR NATURAL PLASTIC CLAY INDICATING EFFECTS OF CHANGES IN STRAIN RATE.

APPENDIX F

TABULATED LABORATORY TEST RESULTS

PT

EFFFCT

SAMPLE NO. I T 728 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 48.2 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.316
INITIAL HEIGHT OF SAMPLE	= 13.29 CM
INITIAL VOLUME OF SAMPLE	= 604.86 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 0.98
FINAL MOISTURE CONTENT	= 36.1 PERCENT
TX. CONSOLIDATION START 270	586 510 1000

TRIAXI	AL CONSOLIDATION	START	270584	END	190684
* * * * * * *	************	11111			

_

	S I GMA 1	SIGMAS	STRAINT	VOLUME Strain	STRAINJ	EFFECT P	¢	VOID Ratio	v	SHEAR Strain
1 2 3 4 5 6 7 8 9 10 11 12	79.85 79.82 72.97 81.37 89.58 97.85 105.05 114.23 122.49 130.73 139.01 147.19	42.40 42.40 45.80 57.60 78.50 100.20 111.10 122.00 143.80	12.374 12.342 12.257 12.315 12.436 12.436 12.479 12.517 12.555 12.600 12.641 12.686	10.670 10.543 10.480 10.711 11.021 11.373 11.778 12.232 12.728 13.249 13.720 14.232	-0.852 -0.900 -0.888 -0.802 -0.580 -0.532 -0.351 -0.142 0.087 0.325 0.539 0.773	54.88 54.87 54.86 64.92 74.93 84.95 104.88 114.80 124.91 134.94	37.45 37.42 27.17 24.67 21.98 18.35 16.65 14.03 11.39 6.73 6.11 3.39	1.069 1.072 1.068 1.068 1.065 1.052 1.043 1.023 1.021 1.009 0.986	2.069 2.072 2.068 2.061 2.052 2.043 2.043 2.033 2.033 2.021 2.008 1.898 1.986	8.817 8.828 8.765 8.745 8.745 8.545 8.545 8.440 8.312 8.183 8.068 7.942

÷.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	SIGMA 1	S I GMA3	STRAINI	STRAINS	v
1234567890112	79.85 78.82 72.97 81.37 89.58 97.85 106.05 114.23 122.49 130.73 139.01 147.19	42.40 45.80 56.70 67.50 78.50 89.40 100.20 111.10 122.00 143.80	12.374 12.342 12.257 12.315 12.380 12.436 12.479 12.517 12.555 12.600 12.641 12.686	-0.852 -0.900 -0.888 -0.680 -0.532 -0.351 -0.142 0.087 0.087 0.325 0.538	2.069 2.072 2.073 2.068 2.061 2.052 2.043 2.033 2.033 2.021 2.009 1.998

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = T 728	(REMDULDED	SAMPLE)	190584
TEST RESULTS START	270584	End	

PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT DCT STRESS KPA	AXIAL Strain X	RADIAL Strain %	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy KN-m/vol	TOTAL Energy KN-m/Vol
1	79.9	42.4	37.5	54.9	12.374	-0.852	10.670				
2	79.8	42.4	37.4	54.9	12.342	-0.900	10.543	0.0	0.0	-0.065	0.0
3	73.0	45.8	27.2	54.8	12.257	-0.888	10.480	0.0 8 4	0.1	-0.055	-0.066
4	81.4	56.7	24.7	64.9	12.315	-0.802	10.711	20.3	0.1	0.134	-0.121
5	89.6	67.5	22.0	74.9	12.380	-0.680	11.021	36.0	0.1	0.207	0.013
6	97.9	78.5	19.4	85.0	12.436	-0.532	11.373	54.5	0.2	0.269	0.220
7	105.1	89.4	16.7	95.0	12.479	-0.351	11.778	71 4	0.5	0.348	0.489
8	114.2	100.2	14.0	104.9	12.517	-0.142	12.232	8.2 -	0.7	0,437	0.835
9	122.5	111.1	11.4	114.9	12.555	0.087	12.778	105.1	1.0	0.529	1.273
10	130,7	122.0	8.7	124.9	12.800	0.325	13.249	122 5	1.3	0.611	1.802
11	139.0	132.9	6.1	134.9	12.641	0.539	13.720	141 0	1.7	0.603	2.413
12	147.2	143.8	3.4	144.9	12.686	0.773	14.232	158 4	2.0	0.711	3.017
									×.3		3.728

UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

AMPLE NO. 1 T 728	(REMOULDED	SAMPLE)	190584
(EST RESULTS START	270584	End	

ΡT	EFFECT Sigma; KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT Oct Stress	AXIAL STRAIN X	RADIAL STRAIN X	VOL Strain %	LSSV	LSNV	DELTA Energy	TOTAL Energy
1	79 9			KF A					~	KN-M/VOL	KN-M/VOL
_		42.4	37.5	54.9	13.190	-0.959	11.271	0.0			
2	79.8	42.4	37.4	54.9	13.154			•.•	0.0	-0.074	0.0
3	73.0	45.8	27 2				11.129	0.0	0.1		-0.074
4				54.9	13.056	-0.999	11.059	8.4	0.1	-0.063	
	01.4	56.7	24.7	84.9	13.123	-0.903	11.318	20 7	• •	0.150	0.136
5	89.6	67.6	22.0	74.9	13, 197			20.3	0.1	0.233	0.014
6	97.9	78.5	19 4			0.785	11.655	36.9	0.3		0.246
7	105 1			85.0	13.260	-0.800	12.051	54.1	0.5	0.303	0 540
-		89.4	16.7	95.0	13.310	-0.396	12.519	71 4		0.383	0.548
8	114.2	100.2	14.0	104.9	13 757			/ 1 . 4	0.8	0 495	0.943
9	122.5	111 1				-0.169	13.036	88.7	1.1		1.439
10	130 5		11.4	114.9	13.396	0.103	13.502	106.1	1.5	0.804	
	130.7	122.0	8.7	124.8	13.448	0.376	14 201			0.703	2.043
11	139.0	132.9	6.1	134 0	12		14.201	123.5	1.9		2.746
12	147.2	147 .			13.495	0.625	14.745	141.0	2.3	0.698	3.443
			3.4	144.8	13.547	0.897	15.341	158 4	~ •	0.827	
											4.270

.

- ·

SAMPLE NO. # T 729 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	46.8 PERCENT
SPECIFIC GRAVITY OF SOIL	2.73
INITIAL VOID RATIO	1.278
INITIAL HEIGHT OF SAMPLE	3.19 CM
INITIAL HEIGHT OF SAMPLE	5.600.95 CC
EFFECTIVE PRINCIPAL STRESS RATIO	5.0.41
FINAL MOISTURE CONTENT	3.6.3 PERCENT

TX. CONSOLIDATION START 10684 END 180684 TRIAXIAL CONSOLIDATION TEST

PT	EFFECT SIGMA 1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	Ŷ	VOID Ratio	v	SHEAR Strain
1 2 3 4 5 6 7	80.49 80.45 92.97 105.74 118.80 131.55 142.76	42.40 42.40 45.30 48.40 51.60 54.70 57.90	10.890 10.859 10.958 11.178 11.438 11.823 14.383	11.382 11.274 11.399 11.588 11.823 12.064 12.580	0.245 0.227 0.220 0.210 0.182 0.070 -0.802	55.10 55.08 61.19 67.51 74.00 80.32 86.19	38.09 38.05 47.67 57.34 57.20 75.86 84.85	1.018 1.021 1.018 1.013 1.008 1.003 0.991	2.018 2.021 2.018 2.013 2.008 2.003 1.991	7.097 7.101 7.158 7.312 7.497 7.902

i.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	S I GMA 3	STRAINI	STRAIN3	v
1	80,49	42.40	10.890	0.246	2.018
2	80,45	42.40	10.859	0.207	2.021
3	92,97	45.30	10.858	0.220	2.018
4	105,74	48.40	11.178	0.210	2.013
5	118,80	51.60	11.438	0.192	2.008
6	131,56	54.70	11.923	0.070	2.003
7	142,76	57.90	14.383	-0.902	1.991

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMP Test	LE NO, = Results	T 729 Start	(REMOUL) 1088/	DED SAMPL End	E) 1906)	34					
ΡŢ	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN %	VOL Strain 2	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/yol
1	80.5	42.4	38.1	55.1	10.880	0.245	11.382	• •	• •		
2	80.5	42.4	38.1	55.1	10.859	0.207	11.274	0.0	0.0	-0.058	0.0
3	83.0	45.3	47.7	51.2	10.958	0.220	11.399	17.1	0.1	0.097	-0.058
4	105.7	48.4	57.3	67.5	11.178	0.210	11 598	26.6	0.1	0.209	0.039
5	118.8	51.6	67.2	74.0	11.438	0.192	11	20.0	0.3	0.274	0.249
6	131.6	54.7	76.9	80.3	11.823	0.070	11.023	40.5	0.5	0.478	0.523
7	142.8	57.9	84.9	85.2	14 303	0.070	12.064	54.0	1.1	2.280	1.000
					14.363	-0.902	12.580	66.O	3.9	2.200	3.280

UNIVERSITY OF MANITOBA Soil mechanics laboratory

ENERGY CALCULATIONS

.

**** NATURAL STRAIN ****

SAMPLE ND. ± Test results	T	729 Start	(REMOULDED 10684	SAMPLE) End	190684
FEST RESULTS		START	10684	END	190684

PΤ	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL Strain %	RADIAL Strain %	VOL Strain %	LSSV KPA	LSNV %	DELTA ENERGY KN-M/VOL	TOTAL Energy KN-M/Vol
1	80.5	42.4	38.1	65.1	11.518	0.275	12.069				
2	80.5	42.4	38.1	55.1	11 487			0.0	0.0	-0.065	0.0
3	93.O	45.3	47 7			0.232	11.947	0.0	0.1		-0.065
			47.7	61.2	11.593	0.247	12.088	13.1	0.1	0.109	
-	105.7	48.4	57.3	67.5	11.841	0.236	12.313	26 C		0.236	0.044
5	118.8	51.6	67.2	74.0	17 134			20.0	0.3	9.310	0.280
6	131.6	54 7				0.217	12.588	40.5	0.6		0.590
_			/6.9	80.3	12.884	0.079	12.842	54.0	1.2	0.541	
7	142.8	57.9	84.9	86.2	15.516	-1 047				2.622	1.131
							13.430	66.0	4.4		3.753

'n

SAMPLE ND. : T 730 [REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 48.8 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.336
INITIAL HEIGHT OF SAMPLE	= 12.26 CM
INITIAL VOLUME OF SAMPLE	= 558.07 CC
EFFECTIVE PRINCIPAL STRESS RATID	= 0.31
FINAL MOISTURE CONTENT	= 41.0 PERCENT
TX. CONSOLIDATION START 260 Triaxial consolidation test	584 END 180784

TX. CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST

ΡT	EFFECT SIGMA 1	EFFECT SIGMA3	STRAIN1	VOLUME Strain	STRAINS	EFFECT P	Q	VOID Ratio	v	SHEAR STRAIN
1234567890112	79.25 79.21 83.18 86.94 90.78 94.65 94.65 94.65 105.94 105.94 105.84 105.84 113.16 113.56	42.40 41.70 40.90 39.40 38.70 37.90 37.20 36.40 35.60 34.90	6.905 6.872 6.886 5.916 6.958 7.016 7.095 7.196 7.359 7.359 7.647 8.369 12.802	9.067 8.941 8.941 8.941 8.968 8.972 8.986 8.972 8.986 8.995 9.036 9.052 9.251	1.081 1.035 1.028 1.008 0.992 0.876 0.939 0.895 0.818 0.818 0.346 -1.775	54.68 54.67 55.63 57.82 57.82 58.59 59.11 60.80 61.12	36,81 36,81 41,88 46,04 55,25 59,67 54,29 58,74 73,20 77,56 78,66	1.125 1.127 1.127 1.128 1.127 1.127 1.127 1.127 1.126 1.126 1.125 1.125	2.125 2.127 2.127 2.128 2.127 2.127 2.127 2.127 2.126 2.126 2.125 2.125 2.120	3.883 3.891 3.905 3.938 3.977 4.027 4.104 4.200 4.360 4.635 5.348 8.718

Ϋ.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

-

ΡT	S I GMA 1	S I GMA 3	STRAINI	STRAINS	v
1 2 3 4 5 5 7 8 9 0 1 1 1 2	79.25 79.21 83.18 86.94 90.79 94.65 98.37 102.19 105.94 105.94 105.60 113.16 113.56	42.40 41.70 40.90 39.40 38.70 37.90 37.20 36.40 35.60 34.90	6.905 6.872 6.886 6.916 7.095 7.196 7.359 7.647 8.369 12.802	1.081 1.035 1.028 0.992 0.976 0.939 0.895 0.895 0.695 0.346 1.775	2.125 2.127 2.128 2.127 2.128 2.127 2.127 2.126 2.126 2.126 2.125 2.125

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. =	T 730	(REMDULDED	SAMPLE)	180784
Test results	START	260684	END	

PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT Oct Stress	AXIAL STRAIN 2	RADIAL STRAIN	VOL Strain %	LSSV	LSHV	DELTA Energy	TOTAL Energy
1	70 7			RF4					~	KN-M/VOL	KN-M/VOL
•	10.3	42.4	36.9	54.7	6.905	1.081	9 067	• •			
2	79.2	42.4	36.8	54 7			5.08)	0.0	0.0	-0.055	0.0
3	83 2				6.872	1.035	8.941	0.0	0.1	-0.065	-0.055
		41.7	41.5	55.5	6.886	1.028	8.941	A 1	<u> </u>	0.005	0.005
4	86.9	40.9	46.0	55.2	5.915			4.1	0.1	0.010	-0.050
5	80.8	40.2	50 6			1.008	8.833	8.0	0.1		-0.051
-			00.8	67.1	6.958	0.992	8.941	12.0	0.1	0.024	
	84.6	39.4	55.3	57.8	7.015	0.976				0.042	-0.027
7	98.4	38.7	59.7	58 6			5.868	16.0	0.2		0.015
8	102 2			35.6	7.095	0.939	8.972	19.8	0.3	0.046	0.051
		37.9	64.3	59.3	7.196	0.895	8.986			0.068	0.001
8	105.8	37.2	68.7	60.1	7 350			23.0	0.4	0 112	0.130
10	109.6	76 4				0.518	8.995	27.7	0.5		0.241
			/3.2	60.8	7.647	0.895	9.036	31.5	• •	0.220	
	113.2	35.6	77.5	51.5	8.369	0 345			•.•	0.553	0.461
12	113.6	34.9	78 7	e		0.346	9.052	35.2	1.8		1.014
				1.10	12.802	-1.775	9.251	35,9	7.1	3.530	
											•.344

UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE ND. * T	730	(REMOULDED	SAMPLE)	190784
Tëst rësults	Start	260684	End	

ΡT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL Strain %	LSSV KPA	LSNV X	DELTA ENERGY KN-M/VOL	TOTAL Energy Kn-m/yol
1	79.3	42.4	36.9	54.7	7.152	1.173	9 497		_		
2	79.2	42.4	36.8	54.7	7.115	1.122	9 760	0.0	0.0	-0.072	0.0
3	83.2	41.7	41.5	\$5.5	7.131		3.250	0.0	0.1	0.005	-0.072
4	86.9	40.9	46.0	56.2	7.104		9.360	4.1	0.1	0.010	-0.086
5	90.8	40.2	50.6	57 1		1.093	9.350	8.0	0.1	0.010	-0.056
6	94.6	38.4	55 7	57.1	7.208	1.075	9.360	12.0	0.1	0.026	-0.030
7	98.4	38 7	E0	57.8	7.272	1.059	9.389	16.0	0.2	0.045	0.015
8	102 2		38./	58.6	7.356	1.019	9.393	19.8	0.3	0.050	0 055
9	105 0	37.9	64.3	59.3	7.465	0.972	9.409	23.8	0.4	0.074	0.000
	105.5	37.2	68.7	60.1	7.841	0.889	9.419	27.7	0 6	0.121	0.139
10	109.6	36.4	73.2	60.8	7.952	0.756	9.464	71 5	• •	0.238	0.259
11	113.2	35.5	77.6	61,5	8.737	0.377	9 400		1.0	0.501	0.497
12	113.6	34.9	78.7	51.1	13.695	-1 007		35.2	1.9	3.946	1.098
							9.701	35.9	7.9		5.045

4

SAMPLE NO. = T 732 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 50.1 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.366
INITIAL HEIGHT OF SAMPLE	= 12.91 CM
INITIAL VOLUME OF SAMPLE	= 587.97 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 41.0 PERCENT
TX. CONSOLIDATION START 171 TRIAXIAL CONSOLIDATION TEST	184 END 11284

TX. CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST

ΡŢ	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	Ŷ	VOID Ratio	v	SHEAR STRAIN
1234567890112345678901222222222222222222222222222222222222	$\begin{array}{c} 49 & 93 \\ 57 & 47 \\ 56 & 06 \\ 75 & 97 \\ 87 & 35 \\ 100 & 38 \\ 115 & 35 \\ 132 & 50 \\ 132 & 50 \\ 132 & 50 \\ 155 & 713 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 33 \\ 130 & 10 \\ 142 & 30$	$\begin{array}{c} 26.50\\ 30.90\\ 35.50\\ 40.90\\ 47.10\\ 54.20\\ 64.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 85.70\\ 95.70\\ 95.70\\ 95.70\\ 95.70\\ 95.70\\ 98$	$\begin{array}{c} 3.199\\ 3.532\\ 4.051\\ 4.624\\ 5.422\\ 6.383\\ 7.552\\ 4.908\\ 10.922\\ 11.394\\ 11.735\\ 11.743\\ 11.743\\ 11.743\\ 11.743\\ 11.743\\ 11.743\\ 11.224\\ 11.394\\ 11.086\\ 11.086\\$	3.061 3.572 4.116 4.728 5.476 5.310 7.313 8.436 9.898 10.579 10.494 10.	$\begin{array}{c} -0.068\\ 0.020\\ 0.052\\ 0.052\\ 0.052\\ 0.027\\ 0.036\\ -0.120\\ 0.526\\ -0.512\\ -0.408\\ -0.625\\ -0.625\\ -0.609\\ -0.580\\ -0.580\\ -0.580\\ -0.265\\ -0.265\\ -0.266\\ -0.226\\ -0.266\\ -0.214\\ -0.195\\ -0.121\\ -0.1171\\ -0.144\\ -0.125\\ -0.102\\ -0.078\\ \end{array}$	34.31 39.76 45.69 52.59 60.559 80.05 92.03 108.52 108.57 108.44 102.81 95.55 102.60 97.16 97.16 99.55 102.60 97.700 97.700 95.80 94.000 93.10 92.10 91.60 92.10 92.10 92.0000 92.0000 92.0000 92.0000 92.00000 92.00000 92.000000 92.000000000000000000000000000000000000	$\begin{array}{c} 23.43\\ 26.56\\ 30.56\\ 40.25\\ 40.25\\ 85.07\\ 40.25\\ 85.07\\ 40.25\\ 85.07\\ 1.31\\ 59.13\\ 59.13\\ 59.13\\ 23.88\\ 1.30\\ 35.51\\ 1.85\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	1.296 1.283 1.271 1.256 1.238 1.219 1.195 1.158 1.134 1.117 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120 1.120	2.296 2.283 2.271 2.256 2.238 2.195 2.195 2.195 2.195 2.120	$\begin{array}{c} 2 \ . \ 1742\\ 2 \ . \ 6778\\ 3 \ . \ 5779\\ 4 \ . \ 2715\\ 6 \ . \ 6952\\ 7 \ . \ 8637\\ 8 \ . \ 2454\\ 8 \ . \ 2454\\ 8 \ . \ 2454\\ 8 \ . \ 2454\\ 7 \ . \ 5326\\ 7 \ . \ 5427\\ 7 \ . \ 5427\\ 7 \ . \ 5427\\ 7 \ . \ 5427\\ 7 \ . \ 2546\\ 7 \ . \ 2546\\ 7 \ . \ 2546\\ 7 \ . \ 2546\\ 7 \ . \ 1853\ . \ 1853\ . \$

.

.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT	S I GMA 1	S I GMA 3	STRAINI	STRAINJ	v
P 12345678901123456789012345	SIGMA1 49.93 57.47 66.06 75.97 87.35 100.38 132.50 155.95 156.11 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 155.85 156.71 157.58 107	26.50 30.90 35.50 40.90 47.10 54.20 62.40 71.80 84.80 84.80 84.80 84.80 83.20 82.80 85.30 85.30 85.30 85.70 102.60 97.70 97.00 97.00 95.80 94.00 93.10 92.10	STRAIN1 3.199 3.532 4.051 4.624 5.422 6.383 7.552 8.908 10.922 11.394 11.743 11.743 11.743 11.743 11.743 11.224 11.673 11.284 11.030 10.822 10.823 10.825 10.827 10.837 10.722 11.722 11.72	STRAIN3 - 0.059 0.020 0.032 0.052 0.027 -0.036 -0.120 -0.236 -0.512 -0.551 -0.551 -0.551 -0.550 -0.550 -0.355 -0.355 -0.355 -0.355 -0.268 -0.2214 -0.214 -0.214 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.214 -0.171 -0.171 -0.171 -0.171 -0.171 -0.171 -0.214 -0.171 -0.171 -0.171 -0.171 -0.214 -0.171 -0.171 -0.171 -0.214 -0.171 -0.171 -0.171 -0.171 -0.216 -0.216 -0.171 -0.216 -0.171 -0.216 -0.171 -0.216 -0.171 -0.216 -0.171	V 2.296 2.243 2.271 2.256 2.188 2.198 2.188 2.134 2.1120 2.120
26 27 28	91.80 90.00 82.00	91.60 90.00 82.00	10.744 10.897 10.851	-0.125 -0.102 -0.078	2.120 2.120 2.120 2.120 2.120

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

TES	IPLE NO T Results	T 732 START	(REMOU 1711	ILDED SAME	PLE) 10 11	284						
ΡT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stres Kpa	EFFECT S OCT STRESS KPA	AXIAL STRAI %	RADIAL N STRAIN %	L VOL N STRAIN X	LSSV I KPA	L S N Y	DELTA Energy Knadios	TOTAL Energy	
1	49.9	26.5	23.4	34.3	3.19	8 -0.065	3 061				KN-M/VOL	
2	57.5	30.9	26.6	38.8	3.53	2 0.020	3.572	0.0	0.0	0.230	0.0	
3	\$6.1	35.5	30.6	45.7	4.051	0.037	a	a.8	0.4	0.329	0.230	
4	75.0	40.9	35.1	52.6	4.624	0.057	4 7.110	20.5	0.8	0.422	0.559	
5	87.4	47.1	40.3	60.5	5.422	0.007	4./28	33.1	1.4	9.630	0.981	
6	100.4	54.2	46.2	69.6	6.387	-0.027	5.476	47.4	2.2	0.837	1.810	
7	115.4	52.4	53.0	80.0	7 5=0	-0.035	6.310	63.9	3.2	1 1 1 5 5	2.448	
8	132.5	71.8	60.7	92.0	7.552	-0.120	7.313	82.8	4.4	1.100	3.612	
9	155.9	84.8	71.1	108 5	6.808	-0.236	8.436	104.5	5.7	1.523	5.136	
10	156.1	84.8	71.3	102.5	10.922	-0.512	9.898	134.3	7.7	2.473	7.509	
11	155.7	84.B	70 0	100.5	11.394	-0.408	10.579	134.4	8.2	0.913	8.522	
12	142.3	83.2	50 1	108.4	11.735	-0.621	10.494	134.1	8.6	0.170	8,692	
13	130.1	87 8	38.1	102.9	11.743	-0.625	10.494	122.3	8.6	0.005	8.697	
14	120.8	85 7	47.3	98.6	11.743	-0.625	10.494	113.0	8.6	0.0	8 697	
15	112.0	00.J	35.5	97.1	11.712	-0.609	10.494	109.3	8.5	-0.013		
16	107 5	00.J	23.7	96.2	11.673	-0.580	10.494	107.2	8.5	-0.011	v. 005	
7	102 0	85,7	11.9	89.7	11.495	-0.501	10.494	113.6	8.3	-0.032	0.0/3	
•	.02.6	102.5	0.0	102.6	11.224	-0.365	10.494	119.8	8.0	-0.016	6.642	
•	98.7	88.7	0.0	98.7	11.139	-0.322	10.494	113 9	5.0	0.0	8.625	
4	97.7	87.7	0.0	97.7	11.084	-0.295	10.494	111 4	7.9	0.0	8.625	
•	97.0	87.0	0.0	87.0	11.030	-0.268	10 494		7.9	0.0	8.625	
1	95.8	95.8	0.0	95.8	10.976	•0.241	10 404	110.3	7.8	0.0	8.625	
2	94.9	94.9	0.0	94.9	10.922	-0.214	10.494	108.2	7.8 7.7	0.0	8.625	
											•. 525	
3	94.0	94.0	0.0	94.0	10,883	-0 195				0.0		
ŀ	93.1	83.1	0.0	93.1	10.837	-0.174	10.484	105.1	7.7	0.0	8.625	
	92.1	82.1	0.0	92.1	10 782		10.494	103.5	7.6	0 0	8.625	
	91.6	91.6	0.0	91.6	10 744	-0.144	10.494	101.9	7.6		3.625	
	90.0	90.0	0.0	90 0	10.744	-0.125	10.494	101.1	7.5	0.0 8	. 625	
	82.0	82.0	0.0		10.697	-0.102	10.494	98.3	7.5	0.0	. 625	
				e∡.Q	10.651 -	0.078	10 494		-	0.0		

\$

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. : Test results	T	732 Start	(REMOULDED 171184	SAMPLE) End	11284
------------------------------	---	--------------	----------------------	----------------	-------

₽T	EFFECT Sigmat KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN X	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy Kn-m/voj	TOTAL Energy - KN-m/Vol
1	49.9	25.5	23.4	34.3	3.251	-0.071	3.109	0.0	0.0	,	• •
2	57.5	30.9	25.6	39.8	3.595	0.020	3.637	9.8	0.4	0.238	0.0
3	66.1	35.5	30.6	45.7	4.135	0.034	4.203	20 5	0.9	0.342	0.238
4	76.0	40,9	35.1	52.5	4.734	0.054	4.843	33 1	1 5	0.441	0.580
5	87.4	47.1	40.3	80.5	5.574	0.029	5.632	47 4		0.663	1.021
6	100.4	54.2	46.2	69.6	5.595	-0.039	5.517	67.4	2.3	0.890	1.684
7	115.4	52.4	53.0	80.0	7.852	-0.129	7.594		3.3	1.251	2.574
8	132.5	71.8	60.7	92.0	9.329	-0.258	8 817	104 5	4.6	1.657	3.825
9	155.9	84.8	71.1	108.5	11.565	-0.571	10 427	104.5	5.1	2.735	5.482
10	156.1	84.8	71.3	108.6	12.097	-0.458	11 181	134.3	8.3	1.022	8.216
11	155.7	84.8	70.9	108.4	12.482	-0.688	11 010	134.4	8.9	0.183	9.238
12	142.3	83.2	59.1	102.9	12.491	-0.703	11.086	134.1	9.3	0.006	9.431
13	130.1	82.8	47.3	98.6	12.491	-0.703	11.000	122.3	9.3	0.0	9.437
14	120.8	85.3	35.5	97.1	12.456	-0.685	11.000	113.0	9.3	-0.015	9.437
15	112.0	88.3	23.7	96.2	12.412	-0 563	11 000	109.3	9.2	-0.013	9.423
16	107.6	95.7	11,9	99.7	12.211	-0.552	11.000	107.2	9.2	-0.036	8.410
17	102.5	102.6	0.0	102.6	11.905	-0 410	11.000	113.6	9.0	-0.018	9.374
18	98.7	98.7	0.0	98.7	11.809	-0.365	11.086	119.8	8.7	-0.000	9.356
19	97.7	97.7	0.0	97.7	11.748	-0 331	11.086	113.2	8.6	-0.000	8.356
20	97.0	87.0	0.0	97.0	11.687	-0.301	11.085	111.4	8.5	-0.000	9.356
21	95.8	95.8	0.0	95.8	11.528		11.086	110.3	8.4	-0.000	9.356
22	94.9	94.9	0.0	94.9	11.585	-0.270	11.085	108.2	8.4	~0.000	9.356
						-0.240	11.086	106.7	8.3		9.356
23	94 0										
24	97.0	94.0	0.0	94.0	11.522	-0.218	11.086	105.1	8.3	-0.000	9.356
25		93.1	0.0	93.1	11.469	-0.192	11.086	103.6	8.2	-0.000	9 768
26	~ 4 . I	¥2.1	0.0	92.1	11.409	-0.161	11.085	101.9	8.2	-0.000	9.356
27	ФГ. 6 90 о	81.6	0.0	91.6	11.365	-0.140	11.086	101.1	8.1	-0.000	9 756
28		80.0	0.0	90.0	11.313	0.114	11.086	98.3	8.1	-0.000	9 350
	¢∠.Q	82.0	0.0	82.0	11.261 .	0.088	11.086	84.8	8.0	•0.000	8.356

289

•

 SAMPLE NO. : T 732
 (REMDULDED SAMPLE)

 SAMPLE HEIGHT AFTER CONSOLIDATION : 11.677 CENTIMETRES

 SAMPLE VOLUME AFTER CONSOLIDATION : 45.430 CUBIC CENTIMETRES

 SAMPLE AREA AFTER CONSOLIDATION : 45.430 SOUARE CENTIMETRES

 CONSTANT LOAD PROVING FING FACTOR PISTON AREA
 : 16.29 N.

 INITIAL DIAL READING
 : 1930.00 DIVISIONS

SHEAR TEST RESULTS START 121284 END 141284

CONSOLIDATED UNDRAINED TRIAXIAL TEST

na na sa sa sa sa

P	T TIME	DISP DIAL RDG	L PRIN DIAL RDG	G PORE Pres Kpa	E PER S CENT PCSTR	EFFECT Sigmai N Kpa	EFFECT Sigma3 Kpa	HALF Dev Stress KPA	DEV Stress Kpa	EFFECT OCT Stress	RATID OF EFF SIGMA1 EFF SIFMA3	Δ	
	1 630	1830.0	108.2	2 201.	3 0 0					КРА			
	2 645	1928.5	128.0	201.	8 0.01	85.1	95.1	÷0.0	-0.0	95.1	1 000		
	4 720	1926.5	152.0	204.	3 0.03	104 3	94.8	2.7	5.3	96.6	1.000	0.0	
	5 730	1925.2	164.0	205.	8 0.04	105.3	82.5	5.9	11.8	96.4	1 128	0.09	
	6 740	1922 0	173.5	207.	4 0.05	107.3	89.6	7.5	15.1	96.2	1.165	0.25	
	7 750	1920.0	192 0	208.	5 0.07	108.4	88.0	10 2	17.7	95.5	1.197	0.34	
	3 800	1918.0	200 5	209.	8 0.09	109.4	86.7	11 4	20.4	94.8	1.232	0.35	
	815	1914.8	212.4	211	3 0.10	110.5	85.5	12.5	22.7	94.3	1.262	0.37	
10	830	1911.6	223.0	215.0	0.13	111.7	83.5	14.1	28.2	83.8	1.293	0.40	
13	845	1907.5	234.5	216.9	9 0.19	113.1	82.0	15.5	31.1	92.4	1.338	0.43	
12	930	1904.5	243.0	218.3	3 0.22	115 2	80.1	17.1	34.2	91.5	1 4 2 7	0,44	
14	1000	1888 *	262.0	221.2	2 0.23	117.5	75.7	18.3	36.5	90.9	1.464	0.46	
15	1040	1876.2	277.2	223.5	5 0.36	119.2	73.5	20.8	41.6	89.8	1.549	0.47	
16	1105	1869.5	305.5	226.2	0.46	123.5	70.7	26.4	45.7	88.7	1.622	0.49	
17	1130	1861.5	316.5	228.0	0.52	122.7	69.2	26.8	52.8	88.3	1.747	0.47	
18	1200	1852.0	328.0	230 7	0.59	124.1	67.8	28.1	56.3	87.0	1.773	0.50	
20	1230	1841.5	338.8	232.4	0.76	125.6	66.3	29.7	59.3	86.1	1.830	0.49	
21	1330	1832.0	348.0	233.5	0.84	128.1	64.7	31.1	62.2	85.4	1.095	0.50	
22	1405	1810 0	357.5	234.6	0.93	129.5	63.5	32.3	64.6	85.0	2.017	0.50	
23	1435	1800.0	368.0	236.0	1.03	131.0	61.1	33.6	67.1	84.8	2.078	0.50	
24	1500	1790.5	342 0	237.0	1.11	132.1	80.1	36.0	59.9	84.4	2.143	0.50	
25	1530	1780.5	390.0	237.8	1.19	132.8	59.3	36.8	77.6	84.1	2.197	0,50	
26	1630	1758.0	402.0	239.9	1.28	134.4	58.8	37.8	75.6	84 0	2.240	0.50	
28	1705	1745.5	409.0	240.0	1.58	135.8	57.1	38.3	78.7	83 3	2.286	0.49	
29	1900	1723.5	416.5	241.5	1.77	137.2	56.7	40.3	80.5	83.5	2.3/8	0.49	
30	2000	1676 5	424.0	242.4	1.97	138.8	55.5	41.2	82.3	83.0	2.480	0.48	
31	2100	1852.0	429.5	242.6	2.17	139.5	54.0	42.1	84.1	82.7	2.538	0.49	
32	2200	1528.0	437 6	243.5	2.38	139.7	53.4	43 2	85.5	82.5	2.583	9.48	
				244.3	2.59	140.1	52.9	43.6	87 2	82.2	2.817	0.49	
										02.0	2.648	0.49	
33	2300	1604 0											
34	100	1555.2	440.8	244.6	2.79	140.4	52.5	47 0					
35	250	1510.0	449.5	246.3	3.21	140.3	51.6	44.4	67.9	81.8	2.574	0.49	
36	320	1497.8	449.5	243 7	3.80	140.1	50.8	44.7	88.3	81.2	2.720	0.51	
38	632	1417.0	453.5	247.2	4.39	142.6	53.2	44.7	89.4	83 0	2.758	0.52	
39	800	1380.0	454.0	247.5	4.71	139.5	49.8	44.9	89.7	79.7	2.680	0.47	
40	1009	1305.6	454.5	248.2	4.92	138.6	48.4	44.8	89.6	79.3	2.814	0.51	
41	1104	1303.5	455.7	249.5	5.17	138.0	48.5	44.7 44.7	89.5	78.9	2.822	0.52	
42	1200	1281.2	456.8	249.7	5.37	137.7	48.3	44.7	89.5	78.3	2.845	0.54	
43	1300	1256.0	456.8	249 2	5.56	137.4	48.0	44.7	89 A	78.1	2.851	0.54	
44 45	1400	1231.0	457.5	249.1	5 99	137.2	48.0	44.6	89.2	77 7	2.863	0.54	
46	1500	1206.0	457.5	249.5	6.20	137.2	47.8	44.5	89.3	77.7	2.859	0.54	
47	1700	1180.5	457.7	250.1	6.42	136.7	47.6	44.5	89.1	77.3	2.004	0.54	
48	1900	1104 2	457.9	250.5	6.63	135.9	47.4	44.4	88.9	77.0	2.875	0.54	
49	2100	1055.0	456.2	250.0	7.07	135.2	46.8	44.3	88.7	76.8	2.879	0.55	
50	2400	980.0	461.9	250.4	7.49	135.1	46.6	44.3	00.4 88 E	76.3	2.890	0.55	
51	800	779.0	460.1	252.2	0.14	134.6	46.3	44.2	88.3	76.1	2.800	0.55	
53	301	753.0	459.2	252.0	10.08	131.6	45.4	43.1	86.2	74 1	2.907	0.56	
54	1101	728.0	458.8	251.7	10.29	131.3	45.5	42.9	85.8	74.1	4.898 2 885	0.59	
55	1203	876 8	458.0	251.7	10.52	130 8	40.5 Ac e	42.7	85.5	74.0	2.879	0.59	
56	1300	652.2	456.5	251.9	10.73	129.7	45.2	42.5	85.0	74.1	2.857	0.53	
57	1404	626.0	454 5	251.4	10.94	129.3	45.3	42.0	84.5	73.4	2.870	0.50	
58	1500	802.5	454.0	251 7	11.17	128.0	45.3	41.8	83 7	73.3	2.855	0.50	
					11.37	128.5	45.2	41.7	83.4	73.2	2.848	0.59	
											2.845	0.60	

54	AMPLE NO. 1	T 732	REMOULDE						
COPR	NSOLIDATIO Reconsolida	N AXIAL STI TION PRESSU	RESS	= 95.	10 KPA				
NU	RMALIZING	STRESS		- 156.	11 KPA 11 KPA				
NO	RMALIZED SI	HEAR TEST R	ESULTS	START	121284	END	141284		
P	T PED								
	CENT	NRMLZD	EFFECT	NRMLZ					
	PESTRA	l nev	RATIO	OCT	CHANGE				
		STREEC	SIGMAI	STRESS	IN PWP				
		KPA	SIGMAS	КРА	KPA				
	0.0	-0.000	1.000	0.609	<u> </u>				
		0.017	1.056	0.619	0.007				
4	0.04	0.038	1.128	0.518	0,019				
5	0.05	0.048	1.165	0.616	0.029				
6	\$ 0.07	0.065	1.187	0.612	0.039				
7	0.08	0.073	1.267	0.607	0.046				
8	0.10	0.080	1.293	0.601	0.054				
10	0.13	0.080	1.338	0.595	0.064				
11	0.18	0.100	1.379	0.592	0.088				
12	0.22	0.117	1.427	0.586	0.100				
13	0.23	0.133	1.464	0.582	0.109				
14	0.36	0.146	1.622	0.5/5	0.127				
16	0.46	0.169	1.747	0.566	0.142				
17	0.52	0.171	1.773	0.558	0.150				
18	9.57	0.180	1.830	0.554	0.177				
19	0.76	0.190	1.895	0.551	0.188				
20	0.84	0.207	2 017	0.547	0.199				
21	0.93	0.215	2.076	0.545	0.207				
23	1.03	0.224	2.143	0.541	0.213				
24	1.19	0.230	2.197	0.538	0.229				
25	1.28	0 242	2.240	0.537	0.234				
26	1.47	0.252	2.286	0.538	0.236				
27	1.58	0.258	2.420	0.534	0.247				
29	1.97	0.254	2.480	0.532	0.248				
30	2.17	0.259	2.538	0.530	0.263				
31	2.38	0.276	2.583	0.528	0.265				
32	2.59	0.279	2.517	0.526	0.271				
34	2.79	0.281	2.574	0.524	0.275				
35	3.21	0.284	2.720	0.520	0.277				
36	3.70	0.285	2.758	0.516	0.296				
37	4.39	0.287	2.580	0.532	0.272				
38	4.71	0.287	2.814	0.511	0.284				
40	4.92	0.287	2.822	0.506	0.296				
41	5.37	0.287	2.845	0.502	0.300				
42	5.58	0.285	2.851	0.500	0.310				
43	5.77	0.286	4.863	0.498	0.311				
44	5.99	0.285	2.864	0.498	0.311				
- 0	6.20	0.285	2.871	0.495	0.306				
~									
40 47	6.42	0.285	2.875	0.497	0 7 -			 	
48	7.07	0.284	2.879	0.492	0.313				
4 8	7.49	U.283 0 284	2.890	0.489	0.312				
50	8.14	0.283	2.900	0.488	0.315				
51	9.86	0.276	2.89*	0.485	0.318		Ϊ.		
3	10.08	0.275	2.885	0.475	0.326				
4	10.29	0.274	2.879	0.474	0.325				
55	10.73	0.272	2.857	0.475	0.323				
;6	10.94	0.269	2.870	0.470	0.324				
17	11.17	0.268	4.855 2 848	0.470	0.321				
8	11.37	0.267	2.845	0.469 0.469	0.319				
					u 370				

SAMPLE NO. 4 T 733 (REMOULDED INITIAL MOISTURE CONTENT SPECIFIC GRAVITY OF SOIL INITIAL VOID RATIO INITIAL HEIGHT OF SAMPLE INITIAL VOLUME OF SAMPLE EFFECTIVE PRINCIPAL STRESS RATIO FINAL MOISTURE CONTENT	SAMPLE) = 50.8 PERCENT = 1.386 = 13.01 CM = 592.53 CC = 1.00 = 39.7 PERCENT
TX. CONSOLIDATION START 171	184 END 11284

TX. CONSOLIDATION START 171184 END TRIAXIAL CONSOLIDATION TEST

PΥ	EFFECT Sigmai	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAINS	EFFECT P	Ŷ	VOID Ratio	v	SHEAR STRAIN
1234567890123456789012345678	$\begin{array}{r} 49.90\\ 57.46\\ 56.12\\ 75.37\\ 100.36\\ 115.24\\ 132.25\\ 155.37\\ 147.88\\ 133.31\\ 157.87\\ 147.88\\ 133.31\\ 126.32\\ 1147.88\\ 133.31\\ 126.32\\ 1147.88\\ 33.50\\ 73.20\\ 68.50\\ 68.50\\ 68.50\\ 68.50\\ 68.50\\ 68.50\\ 51.00\\ 51.00\\ 48.00\\ 48.10\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.978\\ 4.424\\ 5.042\\ 5.719\\ 6.845\\ 8.121\\ 9.596\\ 11.249\\ 15.653\\ 15.968\\ 15.968\\ 15.968\\ 15.968\\ 15.968\\ 15.968\\ 15.968\\ 15.185\\ 15.185\\ 15.185\\ 15.185\\ 15.185\\ 15.185\\ 15.185\\ 15.124\\ 15.124\\ 15.101\\ 15.070\\ 15.032\\ \end{array}$	$\begin{array}{c} 3.688\\ 4.245\\ 5.434\\ 5.623\\ 7.611\\ 8.793\\ 10.0337\\ 12.675\\ 12.6$	$\begin{array}{c} -0 & .145 \\ -0 & .089 \\ -0 & .095 \\ -0 & .142 \\ -0 & .161 \\ -0 & .255 \\ -0 & .608 \\ -1 & .577 \\ -1 & .641 \\ -1 & .641 \\ -1 & .643 \\ -1 & .598 \\ -1 & .598 \\ -1 & .598 \\ -1 & .255 \\ -1 & .486 \\ -1 & .248 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .255 \\ -1 & .258 \\$	34.30 38.42 45.37 52.19 60.05 68.99 79.21 90.24 109.31 108.33 108.35 109.24 108.50 109.26 109.24 109.35 100.45 100.55 100.55 100.45 100.55 100	23.40 27.06 31.12 35.68 40.95 73.32 73.32 73.17 48.70 36.51 22.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.298 1.284 1.256 1.230 1.204 1.176 1.176 1.083 1.	2.298 2.284 2.256 2.256 2.230 2.204 2.176 2.146 2.160 2.083	2.749 3.009 3.425 5.584 6.666 1.128 1.128 1.128 1.128 1.1744 1.598 1.1.744 1.598 1.1.648 1.559 1.1.421 1.648 1.559 1.1.421 1.648 1.0.953 1.0.960 1.0.953 1.0.960 1.0.953 1.0.925 1.0.925 1.0.925 1.0.896 1.0.8

÷

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT	S I GMA 1	SIGMA3	STRAINI	STRAINS	v
1	49.90	75 FO			
2	57.46	30.40	3.978	-0.145	2.298
3	66 12	30.40	4.424	-0.089	2.284
Ä	75 98	35.00	5.042	-0.095	2.270
5	87 37	40.30	5.719	-0.142	2.256
ā	100 76	45.40	6.845	-0.161	2.230
	116 24	53.30	8.121	-0.255	2.204
Å	130.24	61.20	9.596	-0.402	2.176
	132.25	70.30	11.249	-0.608	2.145
10	156.12	84.80	15,111	-1.577	2.100
11	156.33	84.80	15.653	-1.443	2.051
	157.97	84.80	15.968	-1.647	2.083
12	147.88	87.00	15.957	-1.641	2.083
13	140.80	92.10	15.922	-1.624	2.083
14	133.31	96.80	15.872	-1.599	2.063
15	126.72	102.40	15.784	-1.555	2 083
16	120.32	108.20	15.646	-1.488	2 083
17	114.30	114.30	15.438	-1.382	2 0 3
18	82.40	92.40	15.170	-1 244	2.003
18	83.50	83.50	15.178	-1 282	2.003
20	76.50	75.50	15.185	+1 785	2.083
21	88.20	58.20	15.185	-1 755	2.083
22	73.20	73.20	15.174	-1 250	2.083
23	60.90	60.90	15 151	-1 230	2.083
24	56.60	56.60	15 124	-1.230	2.083
26	63.30	53.30	15 101	-1.425	2.083
26	51.00	51.00	15 070	-1.213	2.083
27	48.00	48.00	15 070	-1.198	2.083
28	49.10	49 10	15.039	-1.182	2.083
			10.032	-1.178	2.083

ENERGY CALCULATIONS

5

87.4

**** ENGINEERING STRAIN ****

SAMP	LE NO. # Results	T 733 Start	(REMOUL) 171184	DED SAMPLI 4 End	E) 1128	34		
ΡT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT STRESS KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA
1	49.9	26.5	23,4	34.3	3.978	-0.145	7	
2	57.5	30.4	27.1	39.4			3.688	0.0
з	66.1	35.0	31 1		2 4	-0.089	4.245	9.4
4	76 0		21.1	45.4	5.042	-0.095	4.852	20.2
5		40.3	35.7	52.2	5.719	-0.142	5.434	32.6

5	87.4	46.4	41.0	60.1	e			32.0	1.7	0 907	1.095	
6	100.4	53.3	47.1	69.0	0.845	• • • • • • •	6.523	46.9	2.9	1 104	1.998	
7	115.2	61.2	54.0	79.0	6.121	-0.255	7.611	63.1	4.1	1.104	3.102	
8	132.2	70.3	61 9	78.2	9.596	-0.402	8.793	81.7	5.5	1.422	4.525	
9	158.1	84.8	77 7	90.9	11.249	-0.508	10.033	103.0	7.3	1.774	6.299	
10	158.3	Ad a	73.3	109.2	15.111	-1.577	11.957	136.0	11.3	4.104	10.403	
11	158.0		/3.5	109.3	15.653	-1.443	12.767	136.2	11.8	1.085	11.488	
12	147 0	04.6	73.2	108.2	15.968	-1.647	12.675	135.9	12.2	0.152	11 840	
13	140.0	87.0	60.9	107.3	15.957	- 1 . 5 4 1	12.675	130.1	12.2	-0.008	11.040	
	140.8	92.1	48.7	108.3	15.922	-1.624	12.675	129.9	12.1	-0.019	11.633	
14	133.3	96.8	36.5	109.0	15.872	-1.599	12.675	129.8	12 1	-0.021	11.614	
15	126.7	102.4	24.3	110.5	15.784	-1.555	12.675	132 0	12.1	-0.027	11.592	
16	120.3	108.2	12.1	112.2	15.646	-1.486	12.675	175 -	12.0	-0.025	11.566	
17	114.3	114.3	0.0	114.3	15.438	-1.382	12 675	135.3	11.8	-0.013	11.540	
18	92.4	92.4	0.0	82.4	15.170	-1.24*	12 675	139.9	11.6	-0.000	11.528	
19	83.5	83.5	0.0	83.5	15.178	-1 250	14.675	102.4	11.3	0.0	11.528	
20	76.5	76.5	0.0	76.5	15 185	1.202	12.675	87.3	11.3	0.000	11.528	
21	68.2	68.2	0.0	68.2	15 105	-1.255	12.675	75.5	11.3	0.0	11.528	
22	73.2	73.2	0.0	77 2	19.185	-1.255	12.675	61.7	11.3	0.0	11.528	
	~~~~~~~			13.2	15.174	-1.250	12.675	70.0	11.3	0.0	11.528	
¥ J	60.9	60.9	0.0	60.9	15.151	-1.238	12.675	49 9	11 3	-0.000		
24	56.6	56.6	0.0	56.6	15.124	-1.225	12.675	47 1		0.0	11.528	
25	53.3	53.3	0.0	53.3	15.101	-1.213	12 675	73.1	11.3	0.0	11.528	
26	51.0	51.0	0.0	51.0	15.070	-1.198	12 676	38.1	11.2	0.000	11.528	
27	48.0	48.0	0.0	48.0	15.039		12.575	34.7	11.2	0.0	11.528	
28	49.1	49.1	0.0	49.1	15 030		12.575	30.5	11.2	0.0	11.528	
					15.032	-1.178	12.675	32.0	11.1	•.•	11.528	

## 293

DELTA TOTAL ENERGY ENERGY KN-M/VOL KN-M/VOL

0.271

0.379

0.445

۰.۰

0.271

0.650

1.095

***

LSNV

*

0.0

0.5

1.1

1.7

0.0

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. : Test results	T	733 Start	(REMOULDED 171184	SAMPLE) End	11284
------------------------------	---	--------------	----------------------	----------------	-------

ΡT	EFFECT SIGMA1 KPA	EFFECT Sigma3 KPA	DEV Stress Kpa	EFFECT DCT Stress KPA	AXIAL STRAIN 2	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy KN - M/Vol	TOTAL Energy Kn-m/vol
1	49.9	26.5	23.4	34.3	4.058	-0.151	3.757	0.0	0 0		
2	57.5	30.4	27.1	39.4	4.524	-0.093	4.337			0.282	0.0
3	66.1	35.0	31.1	45.4	5.173	-0.100	4,973	20.2		0.397	0.282
4	75.0	40.3	35.7	52.2	5.888	-0.151	5.587	20.2	1.1	0.470	0.679
5	87.4	46.4	41.0	60.1	7.090	-0.172	6 745	32.6	1.8	0.962	1.149
6	100.4	53.3	47.1	69.0	8.469	-0.276	7 010	46.9	3.0	1.191	2.112
7	115.2	61.2	54.0	79.2	10.088	-0.442	7.310 P. 207	63.1	4.4	1.555	3.303
8	132.2	70.3	61.9	90.9	11.933	-0 680	0.203	81.7	6.0	1.970	4.858
9	158.1	84.8	73.3	109.2	16.382	-1 874	10.573	103.0	7.9	4.685	6.828
10	158.3	84.8	73.5	109.3	17.022	-1 640	12.734	136.0	12.5	1.254	11.513
11	158.0	84.8	73.2	109.2	17 396	-1.002	13.659	136.2	13.1	0.184	12.768
12	147.9	87.0	60.9	107.3	17 383	-1.322	13.552	135.9	13.6	-0.009	12.952
13	140.8	92.1	48.7	108.3	17 341	1.815	13.552	130.1	13.6	-0.023	12.943
14	133.3	86.8	36.5	109.0	17 241	-1.895	13.552	129.9	13.5	-0 025	12.920
15	126.7	102.4	24.3	110.5	17 177	-1.865	13.552	129.8	13.4	•0 032	12.895
15	120.3	108.2	12.1	112.2	17.017	*1.812	13.552	132.0	13.3	-0.032	12.863
17	114.3	114.3	0.0	114 3	10.70	-1.730	13.552	135.3	13.1	-0.015	12.833
18	82.4	92.4	0.0	97 4	10.767	-1.608	13.552	139.9	12.9	-0.013	12.818
19	83.5	83.5	0.0	87 5	10.450	-1.449	13.552	102.4	12.5	-0.000	12.818
20	76.5	76.5	0.0	76 6	15,459	-1.454	13.552	87.3	12.5	-0.000	2.818
21	68.2	68.2	0 0		16.469	-1.458	13.552	75.5	12.5	-0.000	2.818
22	73.2	73.2	0.0	77.0	16.469	-1.458	13.552	61.7	12.5	0.0	2.818
				· · · · ·	15.455	-1.451	13.552	70.0	12.5	•0.000	2.818
	_										
23	50.9	60.9	0.0	60.9	16.429	-1.438	13.552	49 9 1	<b>.</b> .	0.000	
24	56.6	56.6	0.0	56.6	16.396	1.422	13.552	47 1 1	x.5	-0.000	2.818
25	53.3	53.3	0.0	53.3	16.369	1.408	13.552	70.1 1	2.5	•0.000 1	2.818
26	51.0	51.0	o.o	51.0	16.333 -	1.390	13.552		£.4	-0.000 1	2.818
27	48.0	48.0	o.o	48.0	16.296 -	1.372	13.552	30 F -	×.4	0.0	2.818
28	49.1	49.1	0.0	49.1	16.287 -	1.368	13.552	30.5 1	2.4	0.000	2.818
								32.0 1	2.3	1:	2.818

294

SAMPLE NO. + T 733	(REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER C Sample Volume After C Sample Area After Con	ONSOLIDATION ONSOLIDATION SOLIDATION	<pre>11.208 CENTIMETRES 516.727 CUBIC CENTIMETRES 46.103 SQUARE CENTIMETRES</pre>
CONSTANT LOAD Proving ring factor Piston area		= 16.47 N . = 1.0225 N ./DIV = 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING		= 1183.50 DIVISIONS
SHEAR TEST RESULTS	START 111	284 END 131284

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL	PRING	PORF	DED	FFFFF			-				
		DIAL	DIAL	BBBSS	FER	CICHAN	EFFECT	HALF	DEV	EFFECT	RATIO OF	A	
		RDG	RDG	KPA	DCCTON	SIGMAI	SIGMAS	DEV	STRESS	OCT	EFF SIGMA1		
					PESIKN	RPA	КРА	STRESS	KPA	STRESS	EFF SIFMA3		
								KPA		KPA			
1	1408	1183.5	130 7	100 7	~ ~								
2	1413	1181.0	141 8	204 9	0.0	86.2	86.2	0.0	0.0	96.2	1.000	0.0	
3	1421	1180.5	144 5	204.0	0.02	94.1	91.7	1.2	2.4	82.5	1.026	2.18	
4	1435	1177 7	181 5	203.2	0.03	85.0	91.1	2.0	3.9	92.4	1.043	1 4 1	
5	1447	1175 5	171 0	207.5	0.05	96.1	89.4	3.4	6.7	91.6	1.075	1 16	
6	1500	1177 5	184 2	208.3	0.07	86.9	88.0	4.5	8.9	81.0	1.101	0 97	
7	1530	1158 5	214 0	208.5	0.09	98.7	86.9	5.9	11.8	90.8	1.136	0 83	
8	1500	1163 0	241 0	213.7	0.13	101.2	82.8	9.2	18.4	88.9	1.222	0 76	
9	1615	1159 8	241.0	217.5	0.18	103.7	79.4	12.2	24.3	87.5	1.305	0 73	
10	1630	1156 2	200.7	219.0	0.21	105.7	78.1	13.8	27.6	87.3	1.353	0.70	
11	1645	1153.0	277 0	220.7	0.24	106.2	76.1	15.1	30.1	86.1	1.396	0.70	
12	1702	1149 0	200 5	222.2	0.27	107.1	74.8	16.1	32.3	85.6	1.431	0 70	
13	1730	1142 2	200.5	223.8	0.31	107.7	72.9	17.4	34.8	84.5	1.478	0 69	
14	1800	1134 0	307.5	225.9	0.37	109.9	70.9	19.5	39.0	83.9	1.550	0.65	
15	1830	1125 2	325.0	227.9	0.44	111.5	68.7	21.4	42.8	83.0	1.624	0.67	
16	1902	1116 0	341.0	230.2	0.52	112.7	66.3	23.2	46.4	81.8	1.699	0.00	
17	1959	1099 0	357.0	232.1	0.60	114.2	64.3	24.9	49.9	80.9	1.775	0.65	
18	2101	1080.0	362.0	235.4	0.75	116.3	61.0	27.5	55.3	79.4	1.906	0.65	
19	2200	1051 0	405.5	238.5	0.92	119.6	58.7	30.5	80.9	79.0	2.038	0.00	
20	2324	1037.7	428.5	240.2	1.09	121.8	56.3	32.8	65.5	78.1	2.163	0.84	
21	2400	1033.3	456.5	243.1	1.34	124.8	53.6	35.6	71.2	77.3	2.329	0.62	
22	100	1020.0	465.5	243.4	1.46	125.2	52.8	36.7	73.4	77 3	2 380	0.61	
23	200	888.2	481.4	244.6	1.64	128.0	51.5	38.3	76.5	77.0	2 485	0.60	
24	300	378.0	495.0	245.2	1.83	130.0	50.8	39.6	79.2	77 2	2.405	0.59	
25	470	355.0	505.6	246.6	2.04	131.4	50.0	40.7	81.4	77 1	2 678	0.59	
26	500	920.5	519.0	247.0	2.35	133.5	49.4	42.0	84.1	77 4	2.020	0.58	
27	676	885.0	528.5	247.8	2.66	134.8	49.0	42.9	85.8	77 6	2.702	0.66	
2.	700	671.0	531.5	247.7	2.79	135.3	48.9	43.2	86.4	77 7	2.751	0.55	
28	770	860.0	533.5	247.8	2.89	135.7	49.0	43.3	88.7	77 9	2.785	0.56	
30	130	849.0	535.5	247.9	2.98	135.9	48.9	43.5	87.0	77 9	2.769	0.55	
30	800	837.0	537.5	248.1	3.09	136.1	48.7	43.7	87 4	77 8	2.780	0.55	
3.2	800	824.5	539.0	248.0	3.20	136.2	48.6	43.8	87.6	77 8	2.704	0.65	
	200	811.8	540.5	247.9	3.32	136.5	48.7	43.9	87.8	78 0	2.803	0.55	
_										10.0	2.003	0.55	
77													
34	1000	800.0	641.8	248.0	3.42	136.6	48.5	44.0	88.0	77 9			
76	1040	787.6	543.0	247.9	3.53	136.8	48.5	44.1	88.2	78.0	2.011	0.55	
35	1105	770.5	544.5	247.8	3.68	137.1	48.7	44.2	88.4	78 2	2.014	0.55	
37	1100	760.3	545.5	248.3	3.78	137.0	48.5	44.2	88.5	78 0	2.014	0.54	
3.6	1200	780.5	546.0	247.7	3.86	137.1	48.5	44.3	88.5	78 1	2.024	0.85	
10	1220	738.0	547.2	248.0	3.87	137.3	48.6	44.3	88.7	78.2	2.022	0.54	
40	1700	725.5	548.5	247.9	4.09	137.4	48.6	44.4	88.8	78 2	2.024	0.64	
4 1	1330	713.0	649.0	247.6	4.20	137.6	48.7	44.4	88.9	78 7	2.010	0.54	
42	1405	701.0	550.0	248.1	4.30	137.6	48.7	44.5	88.9	78 3	2.025	0.54	
43	1502	665.0	551.0	247.5	4.44	137.6	48.5	44.5	88.1	78 2	2.040	0.54	
44	1630	663.0	552.5	247.7	4.64	137.8	48.6	44.6	89.2	78 3	2.037	0.84	
45	1707	040.5	553.5	247.6	4.98	137.7	48.6	44.5	89.1	78 3	2.035	0.54	
4.6	1800	512.0	554.5	247.9	5.10	138.0	48.9	44.6	89.1	78 5	7 877	0.54	
47	1800	566.2	554.5	248.0	5.31	137.6	48.7	44.5	88.9	78 3	2.023	0.54	
4.8	2000	562.8	554.8	248.1	5.54	137.5	48.7	44.4	88.8	78 3	2.020	0.64	
80	2100	537.5	554.8	248.2	5.76	137.3	48.8	44.3	88.5	78 7	2.623	0.55	
50	2100	512.0	554.2	247.5	5.99	137.1	48.8	44.1	88.3	78 2	2.814	0.55	
51	2200	487.5	553.5	248.2	6.21	136,4	48.5	43.9	87 9	77 .	2.809	0.54	
52	100	462.0	552.2	248.3	5.44	135.7	48.3	43.7	87.4	77 4	2.812	0.55	
57	700	411.5	551.2	248.8	6.89	135.4	48.7	43.3	86 7	77 6	2.810	0.55	
54	500	360.0	549.0	247.7	7.35	135.0	49,1	42.8	85.9	77 7	2.780	0.57	
55	800	271.0	546.0	248.6	8.14	132.6	48.1	42.3	84.5	75 3	2.748	0.55	
55	800	233.0	543.0	248.7	8.48	131.5	47.9	41.8	83 6	75.8	2.758	0.58	
50	1010	207.5	539.8	249.0	8.71	130.8	48.1	41.4	87 7	75.0	2.745	0.59	
51	1100	176.8	536.3	249.4	8.98	129.9	48.2	40.9	81 7	75.7	2.720	0.50	
50	1108	153.0	535.8	249.2	9.19	129.4	47.9	40.7	81 5	70.4	2.696	0.61	
53	1200	130.0	535.8	249.8	9.40	129.0	47.7	40.6	81 3	75.1	2.701	0.61	
	1300	105.8	535.8	250.0	9.62	128.6	47.5	40 5	81 1	74.0	2.704	0.62	
67	1500	80.5	535.5	250.4	9.84	127.9	47.1	40.4	80.8	74.5	2.707	0.62	
o ∡	1500	55.0	534.5	250.5	10.07	127.5	47.1	40.2	80.4	77.0	2.716	0.63	
										13.8	2.707	0.63	

s	AMPLE N	0. = 1	733	(REMOULDI	ED SAMPIES					
C P N	ONSOLID RECONSO ORMALIZ	ATION LIDATI ING ST	AXIAL STR Ion Pressi Ress	RESS	* 96. * 158.	20 КРД 33 крд				
N	ORMALTZ	-			- 158.	33 KPA				
		and	AR LEST R	ESULTS	START	111284	END	131284		
;	PT PE CE PC	R NT STRN	NRMLZD HALF DEV STRESS KPA	EFFEC RATIO SIGMA SIGMA	T NRMLZ OCT 1 STRESS 3 KPA	D NRMLZD Change S IN PWP KPA				
	1 0.	•	0.000	1 000						
	2 0.	02	0.008	1.026	0.608	0.0				
	4 0.	03	0.012	1.043	0.584	0.033				
	5 Q.	07	0.021	1.075	0.579	0.049				
	6 O.	9	0.017	1.101	0.575	0.054				
	7 0.	13	0.058	1 2 2 2	0.574	0.062				
	8 Ó.	18	0.077	1.305	0.562	0.088				
	• 0.1	21	0.087	1.353	0.553	0.112				
1	1 0 1		0.085	1.396	0.544	0.122				
1:	2 0		0.102	1.431	0.540	0.147				
1 :	3 0.3	7	0.110	1.478	0.534	0.152				
14	4 0.4	4	0.135	1.550	0.530	0.185				
18	0.5	2	0.145	1.624	0.524	0.178				
16	0.6	<u>°</u>	0.157	1.775	0.515	0.193				
18	0.7	5	0.175	1.906	9.502	0.205				
19	1.0	4	0.192	2.038	0.488	0.225				
20	1.3	4	0.207	2.163	0.493	0.256				
21	1.4	6	0.275	2.329	0.488	0.274				
22	1.5	4	0.242	2.390	0.488	0.276				
23	1.8	3	0.250	2.559	0.485	0.284				
25	2.0	4	0.257	2.628	0.487	0.294				
26	2.3	5	0.265	2.702	0.489	0.296				
27	2.7	3	0.271	2.751	0.490	0.304				
28	2.81		0.274	2.766	0.491	0.303				
29	2.81	5	0.275	2.789	0.492	0.304				
30	3.01	I	0.275	2.784	0.492	0.304				
37	3.20	•	0.277	2.803	0.491	0.305				
33	3.42		0.277	2.803	0.492	0.305				
34	3.53		0.278	2.811	0.492	0.305				
35	3.68		0.279	2.814	0.493	0.304				
36	3.78		0.279	2 8 2 4	0.494	0.304				
37	3.86		0.280	2.822	0 493	0.307				
39	3.97		0.280	2.824	0.484	0.303				
40	4,20		0.281	2.828	0.494	0.305				
41	4.30		0 281	2.825	0.495	0.303				
42	4.44		0.281	2.826	0.495	0.305				
43	4.64		0.282	2.835	0.494	0.303				
45	4.98		0.281	2.833	0 495	0.303				
	8.10		0.281	2.823	0.496	0.303				
46	5 2.									
47	5,54		0.281	2.826	0.495	9.305			 	
48	5.76		0.280	2.823	0.494	0.306				
49	5.99		0.279	2.814	0.495	0.306				
50	6.21	4	0.278	2.812	0.494	0.302		,		
52	5.44		0.276	2.810	0.481	0.306		,		
63	0.89 7 7c		0.274	2.780	0.490	0.307				
54	8.14		0.271	2.749	0 491	0.303				
55	8.48		J. 267	2.758	0.482	0.309				
56	8.71		2.261	2.746	0.479	0.309				
57	8.98		.258	2.720	0.478	0.311				
58 50	9.19	č	.257	2.701	0.475	0.314				
50	9.40	0	.257	2.704	0.472	0.313				
51	8.62	0	. 256	2.707	0.471	0.316				
32	10.07	0	.255	2.716	0.468	0.318				
	· • · • /	0	. 254	2.707	0.467	0.301				

SAMPLE ND. = T 734 (REMOULDED INITIAL MOISTURE CONTENT SPECIFIC GRAVITY OF SOIL INITIAL VOID RATIO INITIAL HEIGHT OF SAMPLE INITIAL VOLUME OF SAMPLE EFFECTIVE PRINCIPAL STRESS RATIO FINAL MOISTURE CONTENT	5 A M 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1PLE) 49.4 PERCENT 2.73 1.349 13.02 CM 593.67 CC 1.00 38.7 PERCENT
TX. CONSOLIDATION START 271 TRIAXIAL CONSOLIDATION TEST	284	END 90185

ΡT	EFFECT SIGMA1	EFFECT Sigma3	STRAIN1	VOLUME Strain	STRAIN3	EFFECT P	٩	VOID Ratio	v	SHEAR Strain
123456789011234567890122245678	50.04 57.56 56.22 76.26 87.79 101.03 116.25 133.79 159.89 159.85 147.86 137.65 123.56 123.56 104.60 103.30 102.10 103.30 101.250 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50	$\begin{array}{c} 26.50\\ 30.50\\ 30.50\\ 35.10\\ 46.50\\ 53.50\\ 61.60\\ 70.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 85.30\\ 87.50\\ 104.80\\ 103.70\\ 105.60\\ 104.60\\ 103.70\\ 105.60\\ 104.60\\ 103.30\\ 102.10\\ 105.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 102.80\\ 1$	$\begin{array}{c} 2.100\\ 2.430\\ 2.852\\ 3.557\\ 4.534\\ 5.735\\ 8.595\\ 10.614\\ 11.046\\ 11.152\\ 11.152\\ 11.152\\ 11.144\\ 10.737\\ 10.814\\ 10.639\\ 10.639\\ 10.639\\ 10.558\\ 10.558\\ 10.558\\ 10.537\\ 10.541\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.537\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438\\ 10.438$	$\begin{array}{c} 2.645\\ 3.200\\ 3.782\\ 4.733\\ 5.837\\ 7.083\\ 8.498\\ 10.073\\ 11.926\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448\\ 12.448$	0.272 0.385 0.652 0.588 0.6574 0.739 0.739 0.739 0.5656 0.701 0.548 0.648 0.652 0.657 0.648 0.652 0.875 0.875 0.855 0.890 0.895 0.9855 0.985 0.985 1.005 1.013	$\begin{array}{c} 34.35\\ 39.52\\ 45.47\\ 52.35\\ 60.26\\ 69.34\\ 79.82\\ 91.86\\ 109.83\\ 109.82\\ 106.15\\ 109.82\\ 106.15\\ 109.82\\ 106.52\\ 106.56\\ 108.70\\ 108.60\\ 104.28\\ 108.70\\ 108.60\\ 104.50\\ 103.30\\ 101.50\\ 101.50\\ 101.50\\ 101.50\\ 100.60\\ 98.90\\ 96.20\\ \end{array}$	$\begin{array}{c} 23.54\\ 27.06\\ 31.12\\ 35.86\\ 41.29\\ 54.65\\ 975.17\\ 62.56\\ 575.09\\ 75.05\\ 575.05\\ 57.56\\ 57.56\\ 57.56\\ 50.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{c} 1 & .287 \\ 1 & .273 \\ 1 & .260 \\ 1 & .237 \\ 1 & .212 \\ 1 & .182 \\ 1 & .161 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ 1 & .056 \\ \end{array}$	$\begin{array}{c} 2 . 287\\ 2 . 273\\ 2 . 260\\ 2 . 212\\ 2 . 182\\ 2 . 182\\ 2 . 056\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 0556\\ 2 . 05$	$\begin{array}{c} 1.218\\ 1.363\\ 1.592\\ 2.588\\ 3.374\\ 5.237\\ 6.639\\ 6.896\\ 7.002\\ 5.996\\ 7.002\\ 5.995\\ 5.964\\ 5.896\\ 5.6664\\ 6.588\\ 6.664\\ 6.588\\ 6.519\\ 6.469\\ 6.588\\ 6.5649\\ 6.588\\ 6.519\\ 6.468\\ 6.588\\ 6.386\\ 6.388\\ 6.357\\ 6.283\\ 7.287\\ 3.278\\ 5.287\\ 3.278\\ 5.287\\ 5.287\\ 3.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ 5.287\\ $

ï

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT         SIGMA1         SIGMA3         STRAIN1         STRAIN3           1         50.04         26.50         2.100         0.272           2         57.56         30.50         2.430         0.385           3         66.22         35.10         2.852         0.465           4         76.26         4.40         3.557         0.588           5         87.78         40.40         3.557         0.588           5         87.78         40.40         3.557         0.588           6         101.03         53.50         5.735         0.674           7         116.25         51.60         7.039         0.658           9         158.49         84.80         10.614         0.556           10         158.97         84.80         11.045         0.701           11         159.86         84.80         11.152         0.648           13         137.65         87.60         11.113         0.867           15         123.66         92.70         11.113         0.867           16         15.60         10.556         10.737         0.814         0.817           14         130.2						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PT	S I GMA 1	S I GMA 3	STRAIN1	STRAINS	v
26         100.50         100.60         10.507         0.971         2           26         100.10         100.10         10.476         0.986         2           27         99.90         99.80         10.476         0.986         2	P 123456789011111111111222224	50.04 57.56 66.22 76.26 87.79 101.03 116.25 133.79 159.86 159.87 159.86 147.86 137.65 130.26 123.66 116.85 109.70 105.60 104.80 103.30 102.10 101.50	26.50 30.50 35.10 40.40 53.50 51.60 70.90 84.80 84.80 84.80 84.80 84.80 84.80 84.80 84.80 84.80 84.80 84.80 84.80 85.30 87.60 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 92.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.70 90.700	STRAIN1 2.100 2.430 2.852 3.657 4.534 5.735 7.039 8.595 10.614 11.045 11.162 11.162 11.165 10.967 10.869 10.658 10.568 10.568	STRAIN3 0.272 0.385 0.588 0.588 0.652 0.574 0.556 0.556 0.548 0.652 0.648 0.652 0.867 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.856 0.855 0.856 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.55555 0.55555 0.55555 0.555555 0.555555 0.55555555	V 2.287 2.273 2.260 2.282 2.122 2.149 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055 2.055
28 86.20 95.20 10.422 1.013 2	25 26 27 28	100.50 100.10 99.90 95.20	100.60 100.10 99.90 95.20	10.507 10.476 10.438 10.422	0.971 0.986 1.005 1.013	2.056 2.056 2.058 2.055 2.055

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = Test results	т	734 Start	(REMOULDED 271284	SAMPLE) END	90185

P	T EFFEC SIGMA KPA	T EFFECT 1 SIGMA3 KPA	DEV Stres KPA	EFFECT S OCT STRESS KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL Strain 2	LSSV KPA	LSNV	DELTA ENERGY KN-M/VOL	TOTAL Energy Kn-m/vdl		
	50.0	26.5	23.5	34.3	2.100	0.272	7 645						
2	2 57.6	30,5	27.1	39.5	2.430	0.385	3 200	0.0	0.0	0.242	0.0		
3	66.2	35.1	31.1	45.5	2.852	0.465	3.200	9.4	0.4	0.313	0.242		
4	76.3	40.4	35.9	52.4	3.557	0 588	3.782	20.2	0.8	0.595	0.555		
5	87.8	46.5	41.3	60.3	4.534	0.652	4.733 E 077	32.8	1.5	0.856	1.151		
6	101.0	53.5	47.5	69.3	5.735	0 574	3.037	47.2	2.5	1.157	2.007		
7	116.2	61.6	54.6	79.8	7.099	0.699	7.083	63.7	3.7	1.511	3.164		
8	133.8	70.9	62.9	91.9	8,595	0 770	10 085	82.8	5.0	1.922	4.675		
9	159.9	84.8	75.1	109.8	10.514	0 656	10.073	104.7	5.5	2.836	6.597		
10	150.0	84.8	75.2	109.9	11.046	0.701	11.925	137.3	8.5	0.767	9.433		
11	159.9	84.8	75.1	109.8	11.152	0.701	12.448	137.4	9,0	0.080	10.200		
12	147.9	85.3	62.6	106.2	11, 152	0.048	12.448	137.3	9.1	0.0	10.279		
13	137.6	87.6	50.0	104.3	11.144	0.652	12.448	128.4	9.1	-0.004	10.279		
14	130.3	92.7	37.6	105.2	11.117	0.032	12.448	123.1	9.1	-0.013	10.275		
15	123.7	\$8.5	25.1	107.0	11.055	0.667	12.448	123.3	9.0	-0.018	0.262		
16	116.6	104.1	12.5	108.3	10.957	0.090	12.448	125.8	9.0	-0.017	0.244		
17	109.7	109.7	0.0	109.7	10 814	0.740	12.448	128.4	8.9	-0.010	0.227		
18	105.6	105.6	0.0	105.5	10 737	0.017	12.448	131.9	8.7	0.0	0.217		
19	104.6	104.6	0.0	104.6	10 699	0.055	12.448	124.9	8.7	0.0	0.217		
20	103.7	103.7	0.0	103.7	10.558	0.875	12.448	123.2	8.6	0.0	0.217		
21	103.3	103.3	0.0	103.3	10 670	0.890	12.448	121.7	8.5	0.0	0.217		
22	102.1	102.1	0.0	102.1	10 599	0.309	12.448	121.0	8.6	0.0	0.217		
						0.325	12.448	118.9	8.5	10	0.217		
23	101 5											 	 
24	101.2	101.5	0.0	101.5	10.568	0.940	12.448	117.9	8.5	0.0	2.217		
25	100 6	101.2	0.0	101.2	10.537	0.955	12.448	117.4	8.5	0.0	2.217		
26	100.1	100.6	0.0	100.6	10.507	0.971	12.448	116.4	8.5	0.0	. 217		
27	99.0	100,1	0.0	100.1	10.475	0.986	12.448	115.5	8.4	0.0	. 217		
28	43.3 96.0	99.9	0.0	99.9	10.438	1.005	12.448	115.2	8.4	*0.000	.217		
	30.2	96.2	0.0	96.2	10.422	1.013	12.448	108.8	8.4	0.0	217		
											/		

ENERGY CALCULATIONS

.....

1.15

NATURAL STRAIN **** ****

e

SAMPLE NO. = Test results	Ŧ	734 Start	REMOULDED	SAMPLE }	90185
------------------------------	---	--------------	-----------	----------	-------

₽T	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stres: Kpa	EFFECT DCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN %	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol			
1	50.0	26.5	23.5	34.3	2.122	0.279	2 580							
2	57.6	30.5	27.1	39.5	2.450	0 796	2.000	0.0	0.0	0.249	0.0			
3	66.2	35.1	31.1	45.5	2.894	0.481	3.263	9.4	0.4	0.324	0.249			
4	76.3	40.4	35.9	52.4	3.622	0 614	3.855	20.2	0.8	0.619	0.572			
5	87.8	46.5	41.3	60.3	4.639	0 687	4.848	32,8	1.6	0.899	1.191			
6	101.0	53.5	47.5	69.3	5.905	0.720	5.014	47.2	2.6	1.229	2.090			
7	116,2	61.6	54.6	79.8	7 364	0.750	7.346	63.7	3.8	1.628	3.319			
8	133.8	70.9	62.9	91.9	8 9.87	0.736	6.881	82.8	5.3	2.104	4.947			
9	159.9	84.8	75.1	109.8	11.221	0.015	10.617	104.7	6.9	3.162	7.051			
10	150.0	84.8	75,2	109,9	11.704	0.795	12.699	137.3	9.1	0.868	10.213			
11	159.9	84.8	75.1	109.8	11.824	0.735	13,293	137.4	9.6	0.090	11.080			
12	147.9	85.3	62.5	105.2	11.824	0.735	13.293	137.3	9.7	0.0	11.170			
13	137.6	87.6	50.0	104.3	11.815	0.730	13.293	128.4	9.7	-0.005	11.170			
14	130.3	\$2.7	37.6	105.2	11.780	0 757	13,293	123.1	9.7	-0.015	11.165			
15	123.7	98.6	25.1	107.0	11.716	0.789	13.293	123.3	9.7	-0.020	11.150			
16	116.6	104.1	12.5	108.3	11.616	0.878	13.283	125.8	9.6	-0.019	11.130			
17	109.7	109.7	0.0	109.7	11.444	0 925	12.233	128.4	9.5	-0.011	11.111			
18	105.6	105.6	0.0	105.6	11.358	0.955	13.283	131.9	9.4	-0.000	11.100			
19	104.6	104.6	0.0	104.6	11.315	0 989	12 000	124.9	9.3	-0.000	11.100			
20	103.7	103.7	0.0	103.7	11.281	1 005	17 207	123.2	9.2	-0.000	11.100			
21	103.3	103.3	0.0	103.3	11.238	1.028	13 203	121.7	9.2	-0.000	11.100			
22	102.1	102.1	0.0	102.1	11.203	1.045	13 202	121.0	9.2	-0.000	1.100			
								110.9	9.1	1	1.100			
23	101.5	101 5										 	 	
24	101.2	101 2	0.0	101.5	11.169	1.052	13.293	117.9	9.1	1	1.100			
25	100.6	100 5	0.0	101.2	11.135	1.079	13.293	117.4	9.1	-0.000	1.100			
26	100.1	100 1	0.0	100.6	11.100	1.097	13.293	116.4	9.1	-0.000	1.100			
27	99.9	99.9	0.0	100.1	11.066	1.114	13.293	115.5	9.0	-0.000 1	1.100			
28	96.2	95.2	0.0	99.9 9	11.023	1.135	13.293	115.2	9.0	-0.000 1	1.100			
			0.0	96.2	11.005	1.144	13.293	108.8	9.0	-0,000 1	1.100			

 SAMPLE NO. T 734
 (REMOULDED SAMPLE)

 SAMPLE HEIGHT AFTER CONSOLIDATION SAMPLE VOLUME AFTER CONSOLIDATION SAMPLE VOLUME AFTER CONSOLIDATION SAMPLE AREA AFTER CONSOLIDATION CONSTANT LOAD PROVING RING FACTOR SAMPLE VOLUME AFTER CONSOLIDATION SAMPLE AFTER AFTER AFTER CONSOLIDATION SAMPLE AFTER AFTER CONSOLIDATION SAMPLE AFTER AFTER AFTER AFTER CONSOLIDATION SAMPLE AFTER AFTER

SHEAR TEST RESULTS START 110185 END 120185

CONSOLIDATED UNDRAINED TRIAXIAL TEST

P	T TIME	DISP DIAL RDG	L PRIN DIAL RDG	G PORE Press KPA	PER Cent PCSTR	EFFECT SIGMA1 N KPA	EFFECT Sigmaj Kpa	HALF Dev Stress	DEV Stress 5 KPA	EFFECT DCT Stress	RATID OF EFF Sigmai EFF Sifma3	۵	
	1 839	2017.0	134					КРД		KPA			
	2 940	2011.0	174 0	200.6	0.0	159.4	159.4	0.0	0 0	150 4			
:	3 950	2007.0	194.	207 7	0.05	166.8	155.4	5.7	11.4	158.4	1.000	0.0	
	4 1000	2004.5	217.5	210 9	0.09	169.5	152.1	8.7	17.4	157 9	1.074	0.36	
	5 1010	2001.5	242.0	214.3	0.17	173.3	149.3	12.0	24.0	157 3	1.114	0.41	
	1020	1998.0	267.0	217.8	0.15	1/6.8	145.7	15.5	31.1	156.1	1 212	0.43	
,	1030	1994.0	289.0	220.4	0.20	187 6	142.2	19.1	38.2	154.9	1.259	0.44	
ŝ	1052	1990.5	307.0	224.0	0.23	186.2	139.0	22.3	44.6	153.9	1.321	0.46	
10	1100	1985.0	328.5	227.1	0.27	188.8	172 0	24.8	49.7	153.1	1.364	0 47	
11	1110	1975 5	344.8	229.5	0.31	191.4	130 9	28.0	55.9	151.5	1.421	0.47	
12	1120	1970.2	360.2	231.4	0.35	193.3	128.3	30.3	50.5	151.1	1.462	0.48	
13	1130	1965.0	3/5.0	234.2	0.40	195.4	126.2	34 6	85.0	150.0	1.507	0.47	
14	1158	1948.0	425 5	235.6	0.44	197.3	124.1	36.6	73 2	149.3	1.548	0.49	
15	1210	1939.5	440.0	241.7	0.59	202.1	118.6	41.8	\$3.5	140.5	1.590	0.48	
16	1220	1933.0	451.0	245 4	0.66	203.9	116.2	43.8	87.7	145.4	1.704	0.49	
17	1230	1826.2	451.0	246.4	0.72	205.5	114.7	45.4	80.8	145.0	1.755	0.49	
19	1240	1919.2	471.6	248.5	0.84	208.7	113.1	46.8	93.6	144.3	1 878	0.49	
20	1700	1912.5	480.5	249.4	0.89	200.3	111.8	48.3	96.5	144.0	1.883	0.49	
21	1315	1905.5	489.0	251.8	0.95	210.5	100.3	49.5	99.1	143.3	1.898	0.50	
22	1331	1881 0	502.5	253.1	1.07	211.9	106 7	50.7	101.3	143.0	1.928	0.51	
23	1345	1872 0	515.0	254.7	1.16	213.6	104 9	52.6	105.2	141.8	1.986	0.50	
24	1401	1859 0	522.8	256.3	1.24	214.5	103.7	54.3	108.7	141.1	2.035	0,50	
25	1415	1848.0	532.U	257.3	1.35	215.8	102.5	56.6	110.8	140.5	2.058	0.50	
26	1430	1836.0	546 5	258.8	1.44	216.7	101.4	57.6	115 7	140.3	2.105	0.50	
27	1445	1823.0	553.2	200.0	1.55	216.8	99.6	58.6	117.2	139.6	2.137	0.50	
28	1500	1810.0	559,9	263 0	1.66	217.2	98.3	59.5	118.9	130.7	2.177	0.51	
29	1515	1797.8	565.2	264.1	1.17	217.9	97.2	60.3	120.7	137 4	2.210	0.51	
30	1530	1784.8	569.6	285.2	1.98	218.0	96.0	61.0	122.0	136.7	2.291	0.52	
32	1645	1771.5	574.0	286.1	2.10	218.2	95.1	61.6	123.1	136.1	2.285	0.52	
		1758.0	577.5	267.0	2.21	218 1	94.0	62.1	124.3	135.4	2.322	0.52	
							83.0	62.6	125.1	134.7	2.345	0.53	
33	1617	1743.2	581.0		_								
34	1630	1731.8	583.9	267.6	2.34	217.9	S1.S	63.0	126.0	177 0			
35	1647	1715.5	586.9	269 6	2.44	217.8	91.2	63.3	125.5	133.5	2.371	0.53	
36	1703	1701.8	589.5	270.3	2 80	217.7	90.4	63.5	127.3	132 8	2.388	0.54	
38	1717	1689.1	591.5	271.0	2.80	217.4	89.5	53.9	127.9	132.1	2 4 2 8	0.54	
39	1747	1576.0	593.6	271.6	2.91	216 9	89.0	• 84 . 1	128.3	131.8	2.441	0.55	
40	1800	1662.1	595.8	272.2	3.03	216.7	80.1 87 E	64.4	128.8	131.0	2.482	0.55	
41	1830	1872 6	597.9	273.0	3.14	216.5	86.8	64.6	128.2	130.6	2.477	0.55	
42	1900	1585.4	507 F	274.0	3.37	216.0	85.8	85 1	128.7	130.0	2.494	0.56	
43	1931	1566.8	806 F	275.1	3.60	215.1	84.5	85 3	130.2	129.2	2.518	0.55	
44	2000	1538.5	808 F	275.9	3.85	214.7	83.6	65.5	130.5	128.0	2.546	0.57	
45	2035	1507.2	610.4	278 0	4.09	214.3	82.9	65.7	131.4	127.3	2.568	0.57	
46	2100	1484.0	611.5	278 0	4.36	213.4	82.0	65.7	131.4	125 8	2.585	0.58	
47	2200	1427.0	614.8	278.9	5 04	212.9	81.3	85.8	131.6	125.2	2.603	0.59	
40	2300	1371.2	617.0	281.0	5.52	210.2	79.7	65.9	131.8	123.6	2 657	0.59	
50	100	1313.9	619.2	282.9	6.01	208 7	78.5	65.8	131.7	122.4	2 678	0.60	
51	201	1259.6	520.9	283.4	6.47	207.8	77.1	65.8	131.6	121.0	2.706	0.67	
52	300	1146 0	622.1	284.0	5.97	206.6	70.4	65.7	131.4	120.2	2.720	0.63	
53	410	1080 4	522,5	284.7	7.44	205.4	74.9	00.5 #E 0	131.1	119.2	2.736	0.64	
54	800	976.5	044.5 677 E	285.8	8.01	203.8	73.9	64 8	130.5	118.4	2.742	0.54	
55	824	784 5	622 .	266.3	8.89	201.4	72.9	64.2	128.7 198 F	117.1	2.755	0.66	
56	1000	749.2	622 *	288 -	0.53	197.9	71.7	63.1	126.2	115.7	2.762	0.57	
67	1030	721.0	622.8	288 7 4	0.84	197.4	71.6	62.9	125.8	117 8	2.760	0.69	
98 E 6	1100	692.6	622.8	288.4 1	1 32	196.8	71.4	62.7	125.4	113.2	2.757	0.70	
60	131	683.5	522.3	288.3 1	1.57	100.3	71.2	62.5	125.1	112.9	2 767	0.70	
61	1230	534.2	621.5	288.5 1	1.82	195.8	71.2	62.3	124.5	112.7	2.750	0.70	
62 1	304	607.6 575.6	521.2	288.9 1	2.05	194.5	71.0	52.0	124.1	112.4	2.747	0.70	
		3/3.5	520.9	289.2 1	2.32	193.7	70 5	01.8	123.7	112.0	2.747	0.71	
								01.0	123.2	111.6	2.747	0.72	

_ _

s,	AMPLE NO. =	T 734	(REMOULDE:	SAMPLE)						
	DNSOLIDATION Reconsolidat DRMALIZING S	I AXIAL STRI Ion Pressu Tress	ESS RE	* 159.4 * 160.0 * 160.0	10 КРА 00 КРА 00 КРА				30	)1
. N C	RMALIZED SH	EAR TEST RE	ESULTS	START	110185	END	120185			
P	T PER Cent PCSTRN	NRMLZD HALF DEY Stress KPA	EFFECT RATIO SIGMAI SIGMA3	NRMLZD DCT STRESS KPA	NRMLZD Change In Pwp Kpa					
	1 0.0 2 0.05 3 0.09 4 0.11	0.000 0.036 0.054 0.075	1.000 1.074 1.114	0.996 0.995 0.987	0.0 0.026 0.044					
-	5 0.13 6 0.16 7 0.20 8 0.23	0.087 0.120 0.140 0.155	1.213 1.269 1.321	0.983	0.054 0.085 0.107 0.124					
9 10 11 12	0.27 0.31 0.35 0.40	0.175 0.189 0.203 0.215	1.421 1.462 1.507	0.947 0.944 0.937	0.145 0.155 0.181 0.192					
13 14 15 16	0.44 0.59 0.66 0.72	0.229 0.261 0.274 0.284	1.590 1.704 1.755 1.781	0.928 0.915 0.909	0.210 0.219 0.257 0.259					
17 18 19 20	0.78 0.84 0.89 0.95	0.293 0.302 0.310 0.317	1.828 1.863 1.898	0.902 0.902 0.800 0.895	0.280 0.286 0.299 0.305					
21 22 23 24	1.07 1.16 1.24 1.35	0.329 0.340 0.346 0.354	1.986 2.036 2.068 2.105	0.885 0.882 0.879 0.877	0.328 0.338 0.348					
25 26 27 28	1.44 1.55 1.66 1.77	0.360 0.365 0.372 0.377	2.137 2.177 2.210 2.241	0.874 0.867 0.862 0.859	0.354 0.364 0.371 0.381 0.381					
28 30 31 32	1.87 1.98 2.10 2.21	0.381 0.385 0.388 0.391	2.271 2.295 2.322 2.345	0.854 0.851 0.846 0.842	0.397 0.404 0.409 0.415					
34 35 36 37	2.34 2.44 2.58 2.69 2.80	0.394 0.395 0.398 0.400	2.371 2.388 2.408 2.429	0.837 0.834 0.830 0.826	0.419 0.427 0.431 0.436					
38 39 40 41	2.91 3.03 3.14 3.37	0.401 0.402 0.404 0.405	2.441 2.462 2.477 2.494	0.824 0.819 0.816 0.813	0.440 0.444 0.447 0.452					
42 43 44 45	3.60 3.85 4.09 4.36	0.408 0.410 0.410 0.411	2.546 2.568 2.585 2.803	0.808 0.796 0.792 0.785	0.459 0.466 0.471 0.474 0.484					
46 47 48	4.56 5.04 5.52	0.411 0.412 0.412	2.618	0.782	0.484 0.496			 	 	
49 50 51 52	6.01 6.47 6.97 7.44	0.411 0.411 0.410 0.408	2.706 2.720 2.736 2.742	0.765 0.756 0.751 0.745 0.745	0.502 0.514 0.517 0.521		'n			
53 54 55 56	8.01 8.89 10.53 10.84	0,405 0,402 0,394 0,393	2.755 2.762 2.760 2.757	0.732 0.723 0.711 0.710	0.533 0.536 0.544 0.547					
58 59 60	11.08 11.32 11.57 11.62	0.382 0.391 0.389 0.388	2.757 2.757 2.750 2.747	0.708 0.705 0.705 0.702	0.548 0.549 0.548 0.548					
62	12.05	0.386 0.385	2.747 2.747	0.700 0.697	0.552					

SAMPLE NO. = T 735 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 48.7 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.357
INITIAL HEIGHT OF SAMPLE	= 12.96 CM
INITIAL VOLUME OF SAMPLE	= 590.25 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 38.0 PERCENT
TX. CONSOLIDATION START 281: TRIAXIAL CONSOLIDATION TEST	284 END 110185

TX. CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST

ΡT	EFFECT SIGMA1	EFFECT Sigmaj	STRAINI	VOLUME Strain	STRAINS	EFFECT P	Q	VOID Ratio	۷	SHEAR STRAIN
12345678801123456789012345678	$\begin{array}{r} 49.88\\ 57.56\\ 56.15\\ 76.03\\ 87.32\\ 100.47\\ 115.38\\ 132.62\\ 159.57\\ 159.57\\ 159.57\\ 159.73\\ 148.84\\ 140.76\\ 125.02\\ 116.72\\ 107.10\\ 105.00\\ 105.50\\ 105.50\\ 105.50\\ 105.10\\ 105.90\\ 105.90\\ 105.90\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.80\\ 105.$	$\begin{array}{c} 26.50\\ 30.40\\ 35.10\\ 40.30\\ 61.20\\ 61.20\\ 61.20\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 84.80\\ 85.50\\ 90.80\\ 100.00\\ 104.20\\ 105.90\\ 104.70\\ 105.50\\ 106.10\\ 105.50\\ 106.10\\ 105.80\\ 105.80\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.80\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 105.90\\ 100.90\\ 100.90\\ 100.90\\ 100.90\\ 100.90\\ 100.90\\ 100.9$	2.442 2.810 3.279 4.198 5.253 6.582 8.063 9.676 12.573 12.573 12.778 12.784 12.781 12.781 12.781 12.276 12.276 12.221 12.180 12.180 12.180 12.180 12.180 12.130 12.130	$\begin{array}{c} 2.860\\ 3.160\\ 3.651\\ 4.413\\ 5.345\\ 6.734\\ 8.073\\ 9.615\\ 11.461\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\ 12.444\\$	$\begin{array}{c} 0.109\\ 0.175\\ 0.186\\ 0.046\\ 0.076\\ 0.005\\ 0.031\\ -0.264\\ -0.167\\ -0.158\\ -0.158\\ -0.098\\ -0.098\\ -0.098\\ -0.098\\ -0.036\\ 0.0168\\ -0.132\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112\\ 0.112$	34.29 39.45 45.45 52.21 59.97 68.96 79.26 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.72 109.50 109.72 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 109.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 100.50 10	$\begin{array}{c} 23.38\\ 23.38\\ 31.05\\ 31.05\\ 35.73\\ 41.02\\ 54.18\\ 62.34\\ 74.77\\ 74.77\\ 62.44\\ 37.50\\ 25.02\\ 12.52\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	1.294 1.282 1.271 1.253 1.231 1.198 1.167 1.067 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064 1.064	2.294 2.282 2.281 2.253 2.231 2.188 2.167 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2.064 2	$\begin{array}{c} 1 & .555\\ 2 & .726\\ 2 & .721\\ 4 & .337\\ 5 & .471\\ 8 & .537\\ 5 & .471\\ 8 & .558\\ 8 & .6336\\ 3 & .556\\ 8 & .491\\ 8 & .0731\\ 8 & .0731\\ 8 & .0932\\ 8 & .00132\\ 8 & .0932\\ 8 & .0932\\ 8 & .0932\\ 8 & .0932\\ 8 & .0932\\ 8 & .0932\\ 8 & .0932\\ 7 & .9856\\ 7 & .9828\\ \end{array}$
					4.100	34.90	0.0	1.054	2.064	7.920

----

ĥ

. . .

## SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	S I GMA 3	STRAINI	STRAIN3	v
1	49.88	26.50	2.442	0 108	
2	57.56	30.40	2.810	0.175	2.294
3	86.15	35.10	3.279	0 185	2.202
4	76.03	40.30	4.198	0 108	2.2/1
5	87.32	46.30	5.253	0.046	2.253
5	100.47	53.20	6.582	0 075	2.231
7	115.38	61.20	8.063	0 005	2.180
8	132.62	70.30	9.676	+0.031	2 170
9	159.50	84.80	12.087	-0.313	2 087
10	159.57	84.80	12.573	-0.264	2 077
11	159.73	84.80	12.778	-0.187	2 064
12	148.94	86.50	12.784	-0.170	2 064
13	140.76	90.80	12.761	-0.158	2 054
14	133.40	85.90	12.708	-0 132	2 054
15	125.02	100.00	12.639	-0.098	2 064
16	115.72	104.20	12.515	-0.035	2 064
17	107.10	107.10	12.278	0.084	2 084
18	105.00	105.00	12.242	0.101	2 064
19	104.70	104.70	12.221	0.112	2 064
20	105.00	105.00	12.189	0.122	2 054
21	105.50	105.50	12.180	0.132	2 064
22	106.10	106.10	12.160	0.142	2.064
23	105.10	105.10	12.145	0.149	2 054
24	105.90	105.90	12.130	0.157	2 054
25	106.10	106.10	12.114	0.165	2.064
26	105.90	105.90	12.099	0.173	2 064
27	103.80	103.80	12.076	0.184	2.054
28	94.90	94.90	12.068	0.188	2.054

ENERGY CALCULATIONS

**** ENCINEERING STRAIN ****

SAMPLE ND. ± T 735	(REMOULDED	SAMPLE)	110185
Test results Sta	Rt 281284	End	

Þ.	FFECT Sigmat KPA	T EFFECT SIGMA3 KPA	DEV Stres Kpa	EFFECT S OCT STRESS KPA	AXIAL STRAIN X	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol		
1	49.9	26.5	23.4	34.3	2.442	0.105	2.660	0.0	0.0		• •		
2	57.6	30.4	27.2	39.5	2.810	0.175	3.160	9 5	0.0	0.235	0.0		
3	66.1	35.1	31.0	45.4	3.279	0.186	3.651	20.7	0.4	0.297	0.235		
4	76.0	40.3	35.7	52.2	4.198	0.108	4,413	37 6		0.594	0.533		
5	87.3	46.3	41.0	60.0	5.253	0.046	5.345	46 9	7.8	0.809	1.127		
5	100.5	53.2	47.3	69.0	8.582	0.076	5.734	67.1	×.0	1.278	1.835		
7	115.4	61.2	54.2	79.3	8.053	0.005	8.073	81.8		1.517	3.213		
8	132.5	70.3	52.3	91.1	9.676	-0.031	9.615	107.4	5.6	1.953	4.730		
8	159.5	84.8	74.7	108.7	12.087	-0.313	11.461	137 2	, <u>,</u>	3.084	6.683		
10	159.6	84.8	74.8	109.7	12.573	-0.264	12.046	137 2	10.1	0.859	8.767		
11	159.7	84.8	74.9	109.8	12.778	-0.167	12.444	137 3	10.7	0.491	10.626		
12	148.9	86.5	62.4	107.3	12.784	-0.170	12.444	130 4	10.3	0.004	11.117		
13	140.8	90.8	50.0	107.5	12.761	-0.158	12.444	128.5	10.3	-0.013	11.121		
14	133.4	95.9	37.5	108.4	12.708	-0.132	12.444	128.9	10.3	-0.023	11.108		
15	125.0	100.0	25.0	108.3	12.639	-0.098	12.444	128.3	10.2	-0.022	11.085		
16	116.7	104.2	12.5	108.4	12.515	-0.036	12.444	128.5	10 1	-0.023	11.053		
17	107.1	107.1	0.0	107.1	12.276	0.084	12.444	127.5	9.8	-0.015	11.040		
18	105.0	105.0	0.0	105.0	12.242	0.101	12.444	123.9	9.8	0.0	11.025		
19	104.7	104.7	0.0	104.7	12.221	0.112	12.444	123.4	9.8	0.0	11.025		
20	105.0	105.0	0.0	105.0	12.199	0.122	12.444	123.9	9 A	0.0	11.025		
21	105.5	105.5	0.0	105.5	12.180	0.132	12.444	124.8	9.7	0.0	11.025		
22	106.1	106.1	0.0	106.1	12.160	0.142	12.444	125.8	9.7	0.0	1 025		
23	106.1	105.1	0.0	106.1	12.145	0 149				0.0		 	
24	105.9	105.9	0.0	105.9	12,130	0 157	12.444	125.8	9.7	0.0	1.025		
25	106.1	106.1	0.0	105.1	12.114	0,165	17 444	125.5	9.7	0.0	1.025		
26	105.9	105.9	0.0	105.9	12.099	9.173	12 844	145.8	9.7	0.0	1.025		
27	103.8	103.8	0.0	103.8	12.075	0.184	12 444	125.5	¥.7	0.0	1.025		
28	94.9	94.9	0.0	94.9	12.068	0.188	17 444	121.8	9.6 0.0	0.0	1.025		
							*****	106.7	9.6	1	1.025		

#### ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 735 (REMOULDED SAMPLE) TEST RESULTS START 281284 END 110185

P	F EFFECT SIGMAS KPA	Г ЕFFECT SIGMAЗ КРА	DEV Stres: KPA	EFFECT OCT STRESS KPA	AXIAL STRAIN X	RADIAL STRAIN X	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy Kn-m/ydi	TOTAL Energy KN-M(Vo)		
1	49.9	26.5	23.4	34.3	2 470								
2	57.6	30.4	27.7	70 E	2.472	0.112	2.696	٥. ٥	0.0	0 343	0.0		
3	55.1	35.1	31.0	38.5	2.850	0.180	3.211	9.5	0.4	0.242	0.242		
4	76.0	40 7	75 7	45.4	3.334	0.192	3.719	20.3	0.9	0.307	0.549		
5	87.3	46.7	35.7	52.2	4.288	0.113	4.514	32.5	1.8	0.518	1.157		
5	100 5	57.0	41.0	60.0	5.398	0.049	5.493	46.8	2.9	0.849	2.017		
7	115 4	53.2	47.3	69.O	6.808	0.082	6.972	63.1	4.3	1.359	3.376		
,	170.4	61.2	54.2	79.3	8.407	0,005	8.417	81.8	5.9	1.638	5.013		
Š	132.8	70.3	62.3	91.1	10.175	-0.034	10.108	103.4	7.7	2.143	7 155		
â	159.5	84.8	74.7	109.7	12.882	-0.355	12.173	137.2	10.4	3.454	1.155		
10	159.6	84.8	74.8	109.7	13.437	-0.301	12.835	137.2	11.0	0.976	10.611		
11	159.7	84.8	74.9	109.8	13.671	-0.191	13.289	137 3	11.0	0.560	11.587		
12	148.9	86.5	62.4	107.3	13.578	-0.195	13 289	170.4		0.005	12.147		
13	140.8	90.8	50.0	107.5	13.651	-0.181	13 280	120.4	11.2	-0.015	12.152		
14	133.4	95.9	37.5	108.4	13.591	-0.151	17 700	120.6	11.2	-0.026	12.137		
15	125.0	100.0	25.0	108.3	13.512	-0 111	12.209	128,9	11.1	-0.025	12.110		
16	115.7	104.2	12.5	108.4	13.370	-0.041	13.289	128.3	11.0	-0.027	12.085		
17	107.1	107.1	0.0	107.1	13 097	0.041	13.289	128.6	10.9	-0.017	12.059		
18	105.0	105.0	0.0	105.0	13.054	0.036	13.289	127.5	10.6	-0.000	12.042		
19	104.7	104.7	0.0	104 7	13.058	0.115	13.289	123.9	10.6		12.042		
20	105.0	105.0	0 0	105 0	13.034	0.127	13.289	123.4	10.6	0.000	12.042		
21	105.5	105,5	0.0	103.0	13.009	0.140	13.289	123.9	10.5	-0.0	2.042		
22	105.1	106 1	0.0	105.5	12.987	0.151	13.289	124.8	10.5	-0.000	2.042		
			0.0	105.1	12.965	0.162	13.289	125.8	10.5	-0.000	2.042		
23	106.1	106.1	0.0	106.1	12.948	0.170	13 289	195 4		-0.000			
24	105.9	105.9	0.0	105.9	12.930	0.179	13 240	125.6	10,5	-0.000 1	2.042		
25	106.1	105.1	0.0	106.1	12,913	0 188	13 200	125.5	10.5	0.0	2.042		
26	105.9	105.9	0.0	105.9	12.895	0 100	13.289	125.8	10.4	-0.000	2.042		
27	103.8	103.8	0.0	103.8	17 869	0.197	13.289	125.5	10.4	-0.000 1	2.042		
28	94.9	94.9	0.0	94.9	12 460	0.210	13.289	121.9	10.4	-0.000	2.042		
					14.850	0.214	13.289	105.7	10.4	1:	2.042		

 SAMPLE NO. T 735
 (REMOULDED SAMPLE)

 SAMPLE HEIGHT AFTER CONSOLIDATION F
 11.427
 CENTIMETRES

 SAMPLE VOLUME AFTER CONSOLIDATION F
 503.100
 CUBIC CENTIMETRES

 SAMPLE AREA AFTER CONSOLIDATION F
 15.33
 N

 CONSTANT LOAD PROVING RING FACTOR PISTON AREA
 0.4177
 N

 INITIAL DIAL READING
 2071.00
 DIVISIONS

SHEAR TEST RESULTS START 150185 END 170185

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISP										
		DIAL RDG	DIAL RDG	PRES KPA	S CENT PCSTRN	SIGMA1 KPA	EFFECT SIGMA3 KPA	HALF DEV STRESS	DEV Stress KPA	EFFECT OCT Stress	RATIO OF EFF Sigmai EFF Sigmai	A
								КРА		KPA		
1	914	2071.0	400.3	200.	3 0,0	150.3	180 4	- 0 0				
ź	920	2070.5	419.0	200.	9 0.00	160.9	159.1	-0.0	-0.1	150.4	1.000	0.0
4	830	2070.0	428.0	202.	1 0.01	161.0	158.4	1 7	2.6	159.7	1.011	0.32
5	957	2068.5	442.5	202.4	8 0.02	161.9	158.0	2 0	2.6	158.3	1.016	0.68
5	1011	2000.5	450.0	204.	3 0.04	160.9	156.2	2.3	4 7	153.3	1.025	0.63
7	1021	2065.5	471.0	205.1	0.05	160.6	153.9	3.4	5 7	157.0	1.030	0.84
8	1033	2063.0	497.0	208.	0.05	161.3	152.2	4.5	9.1	155 7	1.044	0.82
9	1040	2062 0	526.0 E4E F	211.3	2 0.07	151.0	149.1	5.5	11.9	153.1	1.080	0.92
10	1052	2051.2	545.5	212.1	0.08	162.0	148.3	5.9	13.7	152.9	1 093	0.91
11	1100	2050.0	599 0	213.0	0.09	163.5	146.5	8.5	17.0	152.2	1.115	0.86
12	1116	2059.0	639 0	214.0	0,10	164.2	145.4	9.4	18.8	151.7	1.129	0.77
13	1143	2055.0	704.0	210 5	0.11	167.6	145.0	11.3	22.6	152.5	1.156	0 67
14	1150	2054.8	721.5	220 5	0.13	159.8	141.1	14.4	28.7	150.7	1.203	0 67
15	1200	2053.5	744.5	222 2	0.15	170.5	140.1	15.2	30.4	150.2	1.217	88.9
16	1211	2051.5	768.5	223 4	0 17	170.5	137.9	16.3	32.6	148.8	1.236	0.57
17	1221	2049.8	791.5	224 7	0.19	172 2	135.7	17.4	34.9	148.3	1.255	0.66
18	1240	2046.2	832.5	227.5	0.22	173 7	135.3	18.5	37.0	147.6	1.274	0.65
19	1250	2044.2	855.2	228.8	0.23	174 4	132.8	20.4	40.9	145.4	1.308	0.66
20	1301	2041.8	880.0	229.8	0.25	175 8	131.4	21.5	43.0	145.7	1.328	0.55
21	1320	2037.3	820.0	232.4	0.29	177.1	128 0	22.7	45.4	145.5	1.348	0.65
27	1335	2034.0	947.0	233.5	0.32	178.6	127 0	24.0	49.1	144.4	1.384	0.65
24	1345	2032.0	969.9	235.1	0.34	179.1	125 3	25.0	51.5	144.2	1.407	0.64
25	1400	2028.0	997.0	236.6	0.38	180.1	123.7	28 2	53.6	143.2	1.429	0.55
25	1478	2023.0	1033.5	238.9	0.42	181.5	121.8	29 9	50.4	142.5	1.456	0.64
27	1502	2017.4	1057.5	241.1	0.47	182.4	119.4	31.5	87 0	141.7	1.491	0.65
28	1534	1009.8	1110.5	243.6	0.54	184.0	117.0	33.5	67 0	130 3	1.527	0.65
29	1600	1988.2	1155.0	247.1	0.63	185.4	113.3	36.1	72.1	137.3	1.572	0.65
30	1627	1980 4	1204.0	249.4	0.70	186.5	110.8	37.8	75.7	136.0	1.03/	0.65
31	1702	1957 0	1260.0	251.8	0.79	188.5	108.6	40.0	79.9	135.2	1.003	0.85
32	1740	1951.0	1757 5	254.8	0.81	190.4	105.7	42.4	84.7	133.9	1 801	0.64
			1463.5	256.7	1.05	191.1	101.6	44.7	88.5	131.4	1.880	0 65
33	1800											
34	1835	1842.2	1378.0	259.9	1.13	192.3	100.6	45.8	91 7	191 9		
35	1900	1928.5	1422.0	262.0	1.24	193.9	98.2	47.9	95.7	130.1	1.811	0.65
36	1950	1897 1	1454.0	263.7	1.34	194.8	96.3	49.3	98.6	129 2	1.875	0.54
37	2058	1859 2	1511.0	266.8	1.57	196.9	93.2	51.9	103.7	127 8	2.024	0.64
38	2201	1824 5	1820 0	270.7	1.85	198.1	89.2	54.4	108.9	125.5	2 221	0.54
39	2300	1790.0	1659 5	273.4	2.15	200.3	87.1	56.6	113.2	124.8	2.299	0.65
40	2401	1752.0	1697 0	276.9	2.46	200.2	83.7	58.2	116.5	122.5	2.382	0.65
4 1	105	1710.0	1714.5	280 0	2.79	200.2	81.1	59.5	119.1	120.8	2.468	0.66
42	300	1632.0	1747.0	280.8	3.16	200.6	79.9	60.3	120.7	120.1	2.510	0 67
43	502	1547.2	1777.5	285 4	J. 54 A E *	200.3	77.6	61.4	122.8	118.4	2.584	0.68
44	708	1457.2	1799.4	286.5	4.00	139.5	75.0	62.3	124.6	116.5	2.662	0.68
45	905	1370.5	1802.0	288.0	5.37	103.6	74.0	62.8	125.6	115.9	2.697	0.69
46	1000	1329.0	1804.8	288.7	5.49	13/.1	72.3	62.4	124.8	113.9	2.726	0.70
47	1108	1281.0	1809.8	289.7	6.91	105 1	72.1	62.3	124.5	113.6	2.727	0.71
48	1200	1242.0	1813.0	289.7	7.25	194 5	70.7	62.2	124.4	112.2	2.780	0.72
49	1300	1198.0	1818.1	290.5	7.84	193.8	10.3 69 7	62.2	124.3	111.7	2.768	0.72
50	1400	1153.0	1822.0	291.2	8.03	193.3	69.7	62.1	124.2	111.1	2.782	0.73
51	1833	1082.5	1820.0	291.4	8.85	192.3	69 7	02.0 61 6	124.0	110.6	2.789	0.73
92 57	1700	1017.0	1819.0	292.1	9.22	190.2	68.0	61.5	123.0	110.3	2.774	0.74
54	2102	925.0	1822.9	293.2	10.02	188.4	67.0	60 7	122.2	108.7	2.797	0.75
55	2301	634.0	1528.2	293.5	10.83	187.6	66.8	60.4	120 8	107.6	2.812	0.76
56	726	742.5	1820.0	293.4	11.63	186.0	67.0	59.5	119 0	107.1	2.808	0.77
57	905	382.0	1820.0	291.8	14.96	183.1	68.6	57.3	114 5	106 .	2.776	0.78
		210.0	1/62.0	289.2	15.75	180.4	71.7	54.4	108.7	107 9	2.559	0.80
											4.517	0.82

SAM	PLE NO. :	T 735	REMOULDER					
CON				SAMPLES				
PRF	CONSOLION	AXIAL STRE	ISS	= 159.7	O KPA			
HOR	ALITZING C	ION PRESSUR	RE .	159.7	0 6 8 4			
	Merzinu S	IRESS		= 160.3	O KPA			
NORM								
	Merteo an	CAR TEST RE	SULTS	START	150185	END	170105	
							170185	
PT	PER	NDMI NO						
	CENT	HALE	EFFECT	NRMLZD	NRMLZD			
	PCSTRN	nev	RATID	001	CHANGE			
		STREEC	SIGMAI	STRESS	IN PWP			
		KPA	SIGMAS	КРА	KPA			
1	0.0	-0.000	1 000					
2	0,00	0.005	1.000	1.000	0.0			
3	0.01	0.008	1.011	0.996	0.004			
4	0.02	0.012	1.016	0.993	0.011			
5	0.04	0.015	1 070	0.994	0.016			
6	0.05	0.021	1.030	0.984	0.025			
7	0.05	0.028	1 050	0.874	0.035			
8	0.07	0.037	1 080	0.958	0.052			
9	0.08	0.043	1 097	0.855	0,058			
10	0.09	0.053	1 115	0.954	0.074			
11	0.10	0.059	1.128	0.949	0.084			
12	0.11	0.070	1.156	0.940	0.090			
13	0.13	0.090	1.203	0.840	0.094			
14	0.14	0.095	1.217	0 937	0.120			
15	0.15	0.102	1.235	0.828	0.126			
17	0.17	0.109	1.255	0.825	0.144			
1.8	0.19	0.116	1.274	0.921	0 152			
19	0.22	0.128	1.308	0.913	0 170			
20	0.23	0.134	1.328	0.809	0 178			
21	0.20	0.142	1.348	0.908	0.184			
22	0 72	0.153	1.384	0.901	0.200			
23	0.34	0.161	1.407	0.900	0.207			
24	0.38	0.158	1.429	0.894	0.217			
25	0.42	0.176	1.456	0.889	0.225			
26	0.47	0.100	1.491	0.884	0.241			
27	0.54	0 200	1.527	0.876	0.255			
28	0.63	0 225	1.672	0.859	0.270			
29	0.70	0.236	1.837	0.857	0.282			
30	0.79	0.249	1.583	0.849	0.306			
31	0.91	0.264	1.735	0.844	0.321			
32	1.05	0.279	1 840	0.836	0.340			
33	1.13	0.285	1 911	0.820	0.364			
34	1.24	0.299	1.975	0.010	0.372			
35	1.34	0.308	2.024	0.812	0.385			
36	1.57	0.324	2.113	0.202	0.395			
	1.85	0.340	2.221	0.783	0.415			
30	2.16	0.353	2.299	0.779	V.438			
3.7	2.46	0.363	2.392	0.764	0 474			
	2.78	0.371	2.468	0.754	0 494			
12	3.16	0.376	2.510	0.748	0 507			
3		0.383	2.584	0.739	0.518			
4	7.30 5 77	0.389	2.662	0.727	0.531			
5	6.13	0.392	2.897	0.723	0.538			
		V.389	2.726	0.711				

467 490 55555555555555555555555555555555555	6.49 6.91 7.25 7.64 8.03 8.55 9.22 10.02 10.63 11.63 14.96 15.76	0.388 0.388 0.388 0.387 0.387 0.384 0.384 0.381 0.379 0.377 0.371 0.357	2.727 2.760 2.768 2.789 2.789 2.774 2.812 2.808 2.776 2.808 2.776	0.708 0.597 0.693 0.690 0.688 0.688 0.678 0.678 0.678 0.668 0.665 0.865	0.551 0.558 0.558 0.563 0.567 0.568 0.573 0.580 0.581 0.581 0.581
			4.017	9.573	0 655
SAMPLE NO. I T 736 (REMOULDED	SAMPLE)				
-------------------------------------------------------------	----------------				
INITIAL MOISTURE CONTENT	= 49.9 PERCENT				
SPECIFIC GRAVITY OF SOIL	= 2.73				
INITIAL VOID RATIO	= 1.362				
INITIAL HEIGHT OF SAMPLE	= 12.94 CM				
INITIAL VOLUME OF SAMPLE	= 589.57 CC				
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00				
FINAL MOISTURE CONTENT	= 38.4 PERCENT				
TX. CONSOLIDATION START 281: Triaxial consolidation test	284 END 100185				

TRIAXIAL CONSOLIDATION START

ΡŤ	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	Ŷ	VOID Ratio	v	SHEAR Strain
1234567880112345678901222222222222222222222222222222222222	50.14 57.73 65.53 75.58 88.17 101.32 116.22 133.09 159.24 159.70 159.70 159.70 159.70 159.24 133.59 127.46 117.69 111.00 103.20 98.40 98.40 94.00 94.00 92.60 86.20 94.00 92.60 86.40 87.00 87.00 80.00 74.00 50.00	26.50 30.50 35.20 40.50 51.70 51.70 51.80 70.80 84.80 84.80 85.50 90.50 102.50 102.50 103.20 103.20 98.40 96.20 92.60 92.60 87.00 87.00 50.00 74.00 50.00	2.453 2.804 3.359 4.164 5.153 6.404 9.776 12.785 13.241 13.449 13.449 13.417 13.252 13.449 13.449 13.449 13.449 13.449 12.681 12.681 12.681 12.681 12.681 12.6857 12.6857 12.683 12.580 12.581 12.581 12.583 12.283	$\begin{array}{c} 3.082\\ 3.586\\ 4.427\\ 5.496\\ 6.793\\ 7.889\\ 8.829\\ 10.109\\ 12.577\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272\\ 13.272$	$\begin{array}{c} 0.304\\ 0.396\\ 0.534\\ 0.666\\ 0.792\\ 0.534\\ 0.167\\ -0.104\\ 0.167\\ -0.048\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.082\\ 0.236\\ 0.236\\ 0.236\\ 0.236\\ 0.236\\ 0.322\\ 0.335\\ 0.346\\ 0.368\\ 0.368\\ 0.346\\ 0.346\\ 0.485\\ 0.485\\ 0.485\\ 0.485\\ 0.485\\ 0.485\\ 0.534\\ 0.536\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ 0.558\\ $	$\begin{array}{c} 34.38\\ 39.54\\ 45.69\\ 60.52\\ 69.57\\ 79.94\\ 109.77\\ 109.61\\ 106.25\\ 108.66\\ 110.625\\ 108.66\\ 110.62\\ 109.36\\ 111.00\\ 108.66\\ 110.62\\ 109.36\\ 111.00\\ 100.80\\ 96.20\\ 94.00\\ 96.20\\ 94.00\\ 95.20\\ 94.00\\ 95.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 85.40\\ 8$	$\begin{array}{c} 23.64\\ 27.13\\ 31.33\\ 98\\ 41.47\\ 54.42\\ 62.25\\ 74.90\\ 74.90\\ 74.90\\ 74.90\\ 74.90\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	1.290 1.277 1.258 1.232 1.174 1.154 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.049 1.	2.290 2.277 2.258 2.252 2.174 2.154 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2.049 2	$\begin{array}{c} 1. \ 432\\ 1. \ 506\\ 1. \ 858\\ 2. \ 332\\ 2. \ 828\\ 3. \ 741\\ 6. \ 406\\ 8. \ 817\\ 6. \ 593\\ 8. \ 816\\ 9. \ 025\\ 8. \ 8932\\ 8. \ 828\\ 8. \ 684\\ 8. \ 438\\ 8. \ 3707\\ 8. \ 280\\ 8. \ 283\\ 8. \ 283\\ 8. \ 283\\ 8. \ 285\\ 8. \ 179\\ 8. \ 116\\ 7. \ 859\\ 8. \ 110\\ 7. \ 855\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 285\\ 8. \ 28$

Ϋ.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡŢ	S I GMA 1	SIGMA3	STRAINI	STRAIN3	v
P 12345678901123456789012345	51 GMA1 50.14 57.73 66.53 76.58 88.17 101.32 116.22 133.09 159.70 159.24 147.75 140.44 133.59 127.46 111.00 103.20 100.90 98.40 98.40 98.20 94.00 82.60	SIGMA3 26,50 30,80 35,20 40,50 53,70 53,70 53,70 84,80 84,80 84,80 84,80 84,80 84,80 84,80 85,50 90,50 90,50 102,50 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 103,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10,20 10	STRAIN1 2.453 2.804 3.359 4.164 5.153 6.404 7.760 9.776 12.785 13.241 13.449 13.449 13.449 13.449 13.449 13.457 13.252 13.109 12.862 12.704 12.681 12.657 12.629 12.603	STRAIN3 0.304 0.396 0.534 0.666 0.820 0.782 0.534 0.167 -0.104 0.016 -0.088 -0.072 -0.042 0.010 0.082 0.236 0.236 0.236 0.236 0.236 0.236 0.236 0.328 0.322 0.335	<ul> <li>V</li> <li>2.280</li> <li>2.277</li> <li>2.252</li> <li>2.202</li> <li>2.174</li> <li>2.154</li> <li>2.048</li> </ul>
24	86,40 87,00	85.40 87.00	12.603	0.322	2.049
22 23 24	\$4.00 \$2.60 86.40	96.20 94.00 82.60 86.40	12.681 12.657 12.629 12.603	0.296 0.308 0.322 0.335	2.049 2.049 2.049
25 26 27 28	87.00 80.00 74.00 50.00	87.00 80.00 74.00 50.00	12.580 12.534 12.383	0.346 0.369 0.445	2.049 2.049 2.049 2.049
				V.425	2.049

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = Test results	T	736 Start	(REMOULDED 281284	SAMPLE) End	100185
------------------------------	---	--------------	----------------------	----------------	--------

РТ													
F I	SIGMA 1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Strees	AXIAL STRAIN	RADIAL STRAIN	VOL STRAIN	LSSV	LSNV	DELTA Energy	TOTAL		
				KPA	<i>/•</i>	7.	*	KPA	%	KN-M/VOL	KN-M/VOL		
1	50.1	26.5	23.6	34.4	2.453	0.304	3.062	o.c	0.0		• •		
2	57.7	30.6	27.1	39.6	2.804	0.396	3 505			0.242	0.0		
3	66.5	35.2	31.3	45.6	3.359	0.534	4.427	20.5	, V.4 ; 10	0.436	0.242		
4	76.6	40.5	36.0	52.6	4.164	0.665	5 496			0.676	0.677		
5	88.2	45.7	41.5	60.5	5.153	0.820	6.793	47.6	1.6 2.8	0.949	1.353		
6	101.3	53.7	47.6	69.6	6.404	0.797	7 9 8 9			1.158	2.303		
7	116.2	61.8	54.4	79.9	7.760	0.534	8 800	04.0	4.0	1.177	3.460		
8	133.1	70.8	52.3	91.6	8.776	0.167	10 100	02.0	5.3	2.026	4.637		
9	159.5	84.8	74.7	109.7	12 785	-0.104	10.100	104.0	7.3	3.981	6.662		
10	159.7	84.8	74.9	109.8	12 044	-0.104	12.577	136.9	10.3	0.931	10.543		
11	159.2	84.8	74.4	109 6	13.241	0.016	13.272	137.1	10.8	0.156	11.574		
12	147.7	85.5	52 7	103.0	13.449	-0.088	13.272	136.8	11.0	0 0	11.730		
13	140.4	80.6		108.3	13,449	-0.088	13.272	128.4	11.0		11.730		
14	177.0	30.8	49.8	107.2	13.417	-0.072	13.272	128.0	11.0	-0.018	11.711		
15	197 5	96.2	37.4	108.7	13.357	-0.042	13.272	129.2	10.9	-0.026	11.685		
	127.5	102.5	25.0	110.8	13.252	0.010	13.272	132.4	10.8	-0.033	11.653		
16	117.7	105.2	12.5	109.4	13.109	0.082	13.272	130.2	10.7	-0.027	11.626		
17	111.0	111.0	0.0	111.0	12.862	0.205	13.272	134.1	10.4	-0.015	11 510		
18	103.2	103.2	0.0	103.2	12.800	0.236	13.272	120.8	10.3	0.0	11 610		
19	100.9	100.9	0.0	100.8	12.731	0.271	13.272	116.8	10.3	0.0	11.010		
20	98.4	98.4	0.0	88.4	12.704	0.284	13.272	117 8	10.7	0.0			
21	96.2	96.2	0.0	96.2	12.581	0.296	13.272	108.8	10.9	0.0	11.610		
22	94.0	84.0	0.0	94.0	12.657	0.308	13.272	105.1	10.2	0.0	11.610		
									10.2		11.510		
23	92.6	92.6	0.0	92.6	12.629	0.322	13.272	102.7	10.2	0.0			
24	86.4	86.4	0.0	86.4	12.603	0.335	13,272	92 1	10.2	0.0			
25	87.0	87.0	0.0	87.0	12.580	0.346	13.272	97.2		0.0	1.610		
26	80.0	80.0	0.0	80.0	12.534	0.369	17 272		10.1	0.0	1.610		
27	74.0	74.0	0.0	74.0	12.383	0 445		61.3	10.1	0.0	1.610		
28	50.0	50.0	0.0	50.0		~	13.272	71.3	9,9	0.0	1.610		
				39.0	12.283	0.495	13.272	33.2	9.8	1	1.610		

308

٠,

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

ΡT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN %	VOL Strain X	LSSV KPA	LSNV X	DELTA Energy KN - M/VOL	TOTAL Energy Kn-m/vol		
1	50.1	26.5	23.6	34.4	2.483	0.313	3 100	• •					
2	57.7	30.6	27.1	39.6	2.844	0.409	3 663	0.0	0.0	0.249	0.0		
3	66.5	35.2	31.3	45.6	3.416	0.556	A 530	8.6	0.4	0.452	0.249		
4	76.6	40.6	36.0	52.6	4.253	9 700	4.928 5 655	20.5	1.0	0.708	0.702		
5	88.2	46.7	41.5	60.5	5.290	0.872	7 075	33.1	1.9	1.005	1.409		
8	101.3	53.7	47.6	69.6	5.518	0.854		47.6	2.9	1.240	2.414		
7	116.2	61.8	54.4	79.9	8.077	0.583	0.320	64.0	4.2	1.274	3.654		
8	133.1	70.8	62.3	91.6	10.287	0.185	10 657	82.8	5.6	2.227	4.928		
9	159.5	84.8	74.7	109.7	13.679	-0.119	17 441	104.0	7.8	4.488	7.155		
10	159.7	84.8	74.9	109.8	14.203	0.018	14 999	136.9	11.2	1.069	11.544		
11	159.2	84.8	74.4	109.6	14.443	-0 102	14.239	137.1	11.7	0.180	12.713		
12	147.7	85.5	62.3	106.3	14,443	-0 102	14.239	136.8	12.0	0.0	12.893		
13	140,4	90.6	49.8	107.2	14.406	-0 087	14.238	128.4	12.0	-0.021	12.893		
14	133.6	86.2	37.4	108.7	14.336	-0 048	14.239	128.0	11.9	-0.030	12.872		
15	127.5	102.5	25.0	110.8	14.216	0.012	14.238	129.2	11.9	-0.038	12.841		
16	117.7	105.2	12.5	109.4	14.050	0 094	14.239	132.4	11.7	-0.031	12.804		
17	111.0	111.0	0.0	111.0	13.767	0.235	14 235	130,2	11.6	-0.018	12.773		
18	103.2	103.2	0.0	103.2	13.696	0.272	14 220	134.1	11.3	-0.000	12.755		
19	100.9	100.9	0.0	100.8	13.617	0.311	14 220	120.8	11.2	-0.000	12.755		
20	98.4	98.4	0.0	98.4	13.586	0.327	14.239	116.8	11.1	-0.000	12.755		
2 t	96.2	96.2	0.0	96.2	13.559	0.340	14.238	112.6	11.1	-0.000	12.755		
22	94.0	94.0	0.0	94.0	13.533	0.353	14.239	108.8	11.1	-0.000	2.755		
								105.1	11.0	1	2.755		
23	92.6	97 6										 	
24	86.4	86 4	0.0	92.6	13.500	0.370	14.239	102.7	11.0	1	2.755		
25	87.0	87.0	0.0	o to . 4	13.471	0.384	14.239	92.1	11.0	1	2.755		
26	80.0	80.0	0.0	87.0	13.444	0.398	14.239	93.2	11.0	-0.000	2.755		
27	74.0	74 0	0.0	80.0	13.391	0.424	14.239	81.3	10.9	1	2.755		
28	50.0	50.0	0.0	74.0	13.219	0.510	14.239	71.3	10.7	-0.000	2.755		
			0.0	50.0	13.105	0.567	14.239	33.2	10.5	-0.000 1	2.755		

ę

SAMPLE NO. # T 736	(REMOULDED	SAMPLE)	
SAMPLE HEIGHT AFTER CONS Sample volume after cons Sample area after consol	SOLIDATION Solidation .Idation	= 11.358 CENTIMETRES = 491.217 CUBIC CENTIMETRES = 43.247 SOURCE CENTIMETRES	
CONSTANT LOAD Proving Ring Factor Piston Area		= 16.55 N ./DIV = 1.0225 N ./DIV = 5.0700 SQUARE CENTIMETRES	
INITIAL DIAL READING		# 2133.50 DIVISIONS	
SHEAR TEST RESULTS ST	ART 200	0185 END 210185	

CONSOLIDATED UNDRAINED TRIAXIAL TEST

P	T	TIME	DISPL DIAL RDG	PRING DIAL RDC	PORE Press	PER Cent	EFFECT SIGMA1	EFFECT SIGMA3	HALF	DEV	EFFECT	RATIO OF	۵	
				NDU	KPA	PCSTRN	КРА	KPA	STRESS KPA	KPA	STRESS KPA	EFF SIGMA1 EFF SIFMA3		
	;	1100	2133.5	163.0	200.5	0.0	150 7							
	3	1120	2132.5	173.0	203.4	0.01	159 1	108.5	0.1	0.2	159.6	1.001	<u>.</u>	
	ă	1140	2131.5	202.5	207.7	0.02	161 8	155.5	1.3	2.5	157.4	1.016	0.0	
	5	1150	2130.0	228.0	211.6	0.03	167.0	152.3	4.8	8.5	155.5	1.052	1.23	
	6	1200	2128.5	256.5	215.6	0.04	166 7	140.4	7.8	15.5	153.6	1.105	0.77	
	7	1216	2126.5	278.0	219.0	0.05	168 6	144.4	11.1	22.3	151.8	1.154	0.72	
	Å	1232	2122.8	313.0	222.9	0.09	172 7	197.0	13.8	27.6	150.2	1.196	0.55	
ŝ	9	1247	2118.0	345.0	228.5	0.14	174.5	137.1	17.8	35.6	149.0	1.250	0.87	
10	5	1300	2112.5	371.5	232.0	0.18	177.4	131.4	21.6	43.1	145.8	1.328	0.85	
1	1	1315	2108.0	391.5	235.2	0.22	178.9	124 8	24.7	49.4	144.5	1.386	0.84	
12	ż	1330	2004 0	414.0	238.3	0.28	181.0	121 7	27.0	54.1	142.8	1.433	0.64	
13	3	1345	2084.2	436.0	241.7	0.35	182.8	118 7	29.7	59.3	141.5	1.488	0 64	
14	i -	1400	2077 5	454.5	244.6	0.42	184.2	115 A	32.2	64.5	139.8	1.545	0.64	
15	5	1415	2058 0	472.0	247.3	0.49	185.6	112 7	34.4	58.8	138.3	1.596	0 84	
16	; ;	1430	2058.0	488.0	250.6	0.58	186.2	109 4	30.4	72.9	137.0	1.647	0.64	
17	1 1	1445	2047 8	504.5	253.3	0.66	187.1	106.7	30.4	76.8	135.0	1.702	0.65	
18	1	1500	2017 5	520.0	255.1	0.75	188.8	104.9	42.0	80.4	133.5	1.753	0.65	
1 8	1	1515	2025 5	532.5	257.7	0.85	189.1	102.3	47.0	83.9	132.9	1.800	0.65	
20	1	1530	2016 0	546.0	259.7	0.94	190.2	100.3	44.0	86.8	131.2	1.848	0.55	
21	1	1545	2004 5	556.0	261.0	1.03	191.6	99.0	45 7	88.8	130.3	1.896	0.55	
22	1	600	1997.2	568.0	262.5	1.14	192.6	87.5	47 5	94.5	129.9	1.935	0.65	
23	1	615	1980.5	580.0	263,9	1.24	193.6	96.1	48.8	85.1	129.2	1.975	0.85	
24	1	630	1969.5	501.5 504 r	265.7	1.35	193.9	94.3	49 8	97.5	128.6	2.015	0.55	
25	1	700	1945.5	616 0	257.2	1.44	194.4	92.8	50 8	101 0	127.5	2.057	0.66	
26	1	730	1820.8	678.0	270.7	1.66	194.6	88.3	52 6	101.5	126.7	2.095	0.66	
27	1	800	1896.5	841 E	272.4	1.87	195.9	87.6	54.1	108.3	124.4	2.179	0.67	
28	1	830	1870.0	857 0	273.7	2.09	197.2	86.3	55.5	1100.3	123.7	2.236	0.67	
29	1	901	1843.0	661 5	275.5	2.32	197.6	84.5	55.5	117 1	123.3	2.285	0.66	
30	1	830	1818.0	668 0	276.3	2.56	198.7	83.7	57.5	115 0	122.2	2.338	0.55	
31	2	001	1790.0	675 0	276.9	2.78	197.3	81.1	58.1	116 2	122.0	2.374	0.86	
32	2	100	1737.8	684 5	278.3	3.02	198.3	80.7	58.8	117.6	118.8	2.433	0.68	
					200.4	3.48	198.8	79.6	59.6	118.2	110 7	2.457	0.67	
												2.497	0.67	
33	22	200	1682.4	691 7										
34	2:	310	1618.0	697 5	292 6	3.97	197.8	77.7	60.0	120 1				
35	24	400	1571.0	700.0	283 0	4.54	197.2	76.4	60.4	120.8	116 7	2.546	0.68	
36	24	434	1539.6	701.0	287 0	4.95	197.8	77.0	60.4	120.8	110.7	2.581	0.59	
37	1	100	1516.5	702.0	284 6	5.23	196.8	76.1	60.4	120.7	116 7	2.569	0.68	
38	4	426	1320.8	695.0	285 6	5.43	196.2	75.5	60.3	120.7	115 7	2.586	0.65	
39	7	700	1171.5	883.5	286 0		191.3	74.4	58.5	116.9	517 4	2.598	0.70	
40	8	300	1115.0	679.5	285 4	8 0 7	186.8	74.0	56.4	112.8	111 6	2.572	0.73	
41	8	30	1085.5	676.5	285 5	0.97	184.9	73.6	55.7	111.3	110 7	2.524	0.75	
42	9	00	1057.0	674.5	285.8	0.23	183.8	73.4	55.2	110.4	110.2	2.513	0.77	
43	. 9	30	1028.5	671.8	285 9	0 77	103.8	74.2	54.8	109.5	110 7	4.504	0.78	
44	10	00	999.0	669.O	286 A	9 9 9 9	162.8	74.1	54.4	108.7	110.3	2.477	0.78	
46	10	30	970.0	666.0	286 7	10 24	181.0	73.2	53.9	107.8	109 1	4.488	0.78	
	10	58	942.5	663.5	286.9	10 49	120.2	73.3	53.4	105.9	108.9	2.4/3	0.80	
	12	00	883.0	658.0	287.9	11 01	176.2	73.1	53.0	105.1	108.5	2 851	0.81	
	13	00	824.5	654.0	288.5	11.52	170.4	72.1	52.2	104.3	106.9		0.82	
	14	00	767.5	650.0	288.7	12.03	177 7	71.5	51.4	102.8	105.8	2 4 7 6	0.84	
								71.3	50.7	101.4	105.1	2 477	0.85	
													0.87	

54	MPLE NO .							
		1 736	(REMOULDE:	SAMPLE }				
20	FCONSOL IDATIO	N AXIAL ST	RESS	z 159	70			
NO	RMALIZING	TION PRESS	URE	× 159.	70 KPA 70 KPA			
				* 159.	70 KPA			
NO	RMAL 17ED							311
	WALLIZED S	HEAR TEST	RESULTS	START	200185	END	• • • •	
						640	210185	
P	T PER	NRMLZ	D EFFECT	NPMCT				
	PCSTD	HALF	RATIO	OCT	NRMLZD			
		STREES	SIGMA1	STRESS	IN PWP			
		KPA	SIGMA3	КРА	KPA			
1	0.0							
2	0.01	0.001	1.001	0.999	0.0			
3	0.02	0.030	1.016	0.986	0.018			
4	0.03	0.049	1.105	0.973	0.045			
5	0.04	0.070	1.154	0.851	0.070			
7	0.08	0.085	1.196	0.940	0.095			
8	0.14	0.111	1.260	0.933	0.116			
9	0.18	0.135	1.328	0.913	0.175			
10	0.22	0.185	1.386	0.905	0.187			
11	0.28	0.186	1.433	0.894	0.217			
12	0.35	0.202	1.545	0.885	0.237			
13	0.42	0.215	1.596	0.875	0.258			
15	0.49	0.228	1.647	0.858	0.276			
16	0.86	0.240	1.702	0.845	0.293			
17	0,75	0.252	1.753	0.836	0.331			
18	0.85	0.272	1.800	0.832	0.342			
19	0.94	0.281	1.848	0.822	0.358			
20	1.03	0.290	1.935	0.816	0.371			
22	1.14	0.298	1.875	0.813	0.379			
23	1.24	0.305	2.015	0.805	0.388			
24	1.44	0.312	2.057	0.788	0.408			
25	1.85	0.378	2.095	0,793	0.418			
26	1.87	0.339	2.179	0.779	0.440			
21	2.09	0.347	2.285	0.775	0.450			
29	2.32	0.354	2.338	0.785	0.458			
30	2.78	0.360	2.374	0.764	0.470			
31	3.02	0.364	2.433	0.750	0.491			
32	3.48	0.373	2.457	0.751	0.493			
33	3.97	0.376	2.546	0.747	0.500			
35	4.54	0.378	2.581	0.731	0.512			
36	9.85 5.21	0.378	2.569	0.734	0.520			
37	5,43	0.378	2.586	0.728	0.522			
38	7.15	0.378	2.598	0.725	0.526			
39	8.47	0.353	2.572	0.710	0.533			
40	8.97	0.349	2.513	0.599	0.535			
41	9.23	0.346	2.504	0.893	0.538			
43	9.48	0.343	2.477	0,693	0.539			
44	9.99	0.340	2.468	0.891	0.535			
45	10.24	0.335	2.473	0.683	0.540			
-			4.458	0.682	0.540			
46	10.49	0.332	2.451				ㅋ 또 할 때 또 해 수 밖에 또 해 수 있 수 있 수 있 수 있 수 있 때 한 이 일 하 수 한 의 왕 수 한 이 일 수 있 수 있 수 있 수 있 수 있 수 있 수 있 수 있 수 있 수	
4 / 4 A	11.01	0.327	2.447	0.679	0.541			
4 8	12.07	0.322	2.439	0.662	0.547			
		0.318	2.423	0.658	0.552			
							, t	

SAMPLE NO. # T 737 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 48.0 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.338
INITIAL HEIGHT OF SAMPLE	= 13.13 CM
INITIAL VOLUME OF SAMPLE	= 597.76 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 38.6 PERCENT
TX. CONSOLIDATION START 240 Triaxial consolidation test	185 END 60285

TRIAXIAL CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST 240185 END

PT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	¢	VOID Ratio	v	SHEAR STRAIN
1 2 3 4 5 6 7 8 9 0 1 1 3 1 1 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	50.16 57.78 66.45 76.49 88.01 101.18 116.35 133.73 159.67 159.85 148.17 139.74 134.65 128.43 120.52 114.00 107.40 107.40 105.10 104.30 104.30 104.30 104.30 104.30 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 105.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 105.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 104.50 105.50 104.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.50 104.50 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.500 105.50	26, 50 30, 50 35, 20 40, 50 51, 50 51, 70 70, 80 84, 80 84, 80 85, 80 85, 80 85, 70 103, 30 104, 30 104, 30 104, 10 103, 20 101, 60 95, 00	$\begin{array}{c} 1.624\\ 1.847\\ 2.373\\ 3.059\\ 4.065\\ 5.288\\ 6.712\\ 8.404\\ 10.629\\ 11.204\\ 11.333\\ 11.333\\ 11.322\\ 11.284\\ 11.227\\ 11.093\\ 10.827\\ 10.827\\ 10.827\\ 10.758\\ 10.758\\ 10.758\\ 10.758\\ 10.537\\ 10.537\\ 10.507\\ \end{array}$	2.258 2.844 3.446 4.324 5.455 9.519 11.418 12.204 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170 12.170	0.317 0.439 0.536 0.630 0.731 0.705 0.500 0.418 0.418 0.418 0.418 0.418 0.539 0.5392 0.5392 0.6472 0.5392 0.6472 0.5392 0.6472 0.5472 0.5472 0.705 0.7758 0.794 0.832	34.39 39.66 45.62 52.50 60.40 68.46 79.92 81.84 108.76 108.76 108.82 109.77 106.59 106.38 111.68 112.17 114.00 109.68 112.17 106.70 107.40 105.10 105.10 104.30 103.20 103.20 103.20 85.00	$\begin{array}{c} 23.66\\ 27.18\\ 31.25\\ 35.99\\ 41.41\\ 54.65\\ 62.87\\ 75.05\\ 62.37\\ 75.05\\ 62.37\\ 15.52\\ 52.52\\ 0.0\\ 62.37\\ 15.52\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	1.285 1.271 1.237 1.237 1.210 1.180 1.148 1.071 1.052 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053 1.053	2.285 2.271 2.257 2.237 2.210 2.180 2.180 2.180 2.113 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053	$\begin{array}{c} 0.872\\ 0.899\\ 1.225\\ 1.618\\ 2.250\\ 3.038\\ 4.005\\ 5.823\\ 7.277\\ 7.265\\ 7.277\\ 7.265\\ 7.277\\ 7.265\\ 7.39\\ 6.816\\ 6.713\\ 6.671\\ 6.671\\ 6.595\\ 6.564\\ 5.564\\ 5.54850\\ 5.4850\\ \end{array}$

i,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT	S I GMA 1	SIGMA3	STRAINI	STRAINS	v
P 123456789012345678901	51 GMA1 50.16 57.78 66.45 76.49 88.01 101.18 116.35 159.67 159.85 159.70 148.17 139.74 134.65 128.43 120.52 114.00 109.70 107.40 105.00	26.50 30.60 35.20 46.50 51.60 51.70 70.90 84.80 84.80 84.80 85.80 85.80 85.80 103.30 108.00 103.30 108.00 114.00 109.70	STRAIN1 1.624 1.947 2.373 3.059 4.065 5.286 6.712 8.404 10.529 11.204 11.333 11.332 11.331 11.322 11.284 11.284 11.284 11.284 11.083 10.872 10.827 10.827 10.766	STRAIN3 0.317 0.449 0.536 0.633 0.580 0.731 0.705 0.608 0.394 0.500 0.418 0.418 0.418 0.418 0.424 0.443 0.443 0.539 0.539 0.5592 0.539 0.5592 0.5672 0.672 0.667 0.672 0.687	V 2.285 2.271 2.257 2.237 2.210 2.148 2.113 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053 2.053
21 22 23	105.10	105.10	10.758	0.687 0.706 0.721	2.053 2.053 2.053
23 24 25	104.10 103.40 103.20	104.10 103.40 103.20	10.728 10.680 10.651 10.621	0.721 0.740 0.759	2.053 2.053 2.053
26 27 28	102.30 101.60 85.00	102.30 101.60 95.00	10.583 10.537 10.507	0.794 0.817 0.832	2.053 2.053 2.053 2.053

ENERGY CALCULATIONS

÷

**** ENGINEERING STRAIN ****

SAMPLE NO. = T 737	(REMOULDED	SAMPLE)	60785
TEST RESULTS START	240185	END	

PI	EFFEC SIGMA KPA	T EFFECT 1 SIGMA3 KPA	DEV Stres KPA	EFFECI S OCT STRESS KPA	T AXIAL STRAIN S %	RADIAL Strain %	VOL STRAIN %	LSSV I Kpa	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol	
1	50.2	26.5	23.7	34.4	1.624	0.317	2.258	0.0	0.0		• •	
-	57.8	30.6	27.2	39,7	1.947	0.449	2.844			0.249	0.0	
3	66,4	35.2	31.3	45.6	2.373	0.536	3.446	20.4	0.4	0.323	0.249	
4	76.5	40.5	36.0	52.5	3.059	0.633	4 394	70.0	•.•	0.563	0.572	
5	88.0	46.6	41.4	60.4	4.065	0.690	5.445	32.9	1.5	0.877	1.135	
6	101.2	53.6	47.6	69.5	5.288	0.731	5 750		2.5	1.198	2.012	
7	116.4	61.7	54.7	79.9	6.712	0.705	8.122	63.8	3.7	1.519	3.210	
8	133.7	70.9	62.8	91.8	8.404	0.608	0.010	02.0	5.1	1.986	4.729	
9	159.7	84.8	74.9	109.8	10.529	0.394	11 412	104.5	6.8	2.932	6.715	
10	159.9	84.8	75.1	105.8	11.204	0 500	10 000	137.1	8.0	1.058	9.647	
11	159.7	84.8	74.9	109.8	11 939	0.410	12.204	137.2	9.6	0.069	10.745	
12	148.2	85.8	62.4	105.5	11.333	0.418	12.170	137.1	9.7	0.0	10.814	
13	139.7	89.7	50.0	106.4	11 222	0.416	12.170	129.0	9.7	-0.005	10.814	
14	134.6	97.2	37.4	109 7		0.424	12.170	126.5	9.7	-0.017	10.807	
15	128.4	103.3	25.1	111 7	11.284	0.443	12.170	130.9	9.7	-0.017	10.781	
16	120.5	108.0	12 5	112.0	11.227	0.472	12.170	133.9	9.6	-0.018	10.773	
17	114.0	114.0		112.2	11.093	0.539	12.170	135.0	8.5	-0.025	10.748	
18	109.7	100 7	0.0	114.0	10.987	0.592	12.170	139.2	9.4	-0.007	10.741	
19	107 4		0.0	109.7	10.872	0.549	12.170	131.9	9.3	0.0	0 741	
20	100.0	107.4	0.0	107.4	10.827	0.572	12.170	127.9	9.2	0.0	0.741	
	108.0	105.0	0.0	105.0	10.796	0.687	12.170	125.5	9.2	0.0	0.741	
21	105.1	105.1	0.0	105.1	10.758	0.705	12.170	124.0		0.0	0.741	
22	104.3	104.3	0.0	104.3	10.728	0.721	12.170	122.6	9.1	0.0	0.741	
										. '	0.741	
23	104.1	104.1	0 0	104 4								
24	103.4	103.4	0.0	104.1	10.690	0.740	12.170	122.3	9.1	0.0	0.741	
25	103.2	107.2	0.0	103.4	10.651	0.759	12.170	121.1	9.0	0.0	0.741	
26	102 7	100.2	0.0	103.2	10.621	0.775	12.170	120.7	9.0	0.0	0.741	
27	101 6	102.3	0.0	102.3	10.583	0.794	12.170	119.2	9.0	0.0		
		101.5	0.0	101.5	10.537	0.817	12.170	118.0	8.9	0.0		
- 0	35.0	95.0	0.0	95.0	10.507	0.832	12.170	106.7	8.9	0.0	. 741 . 741	

-----

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

TEST RESULTS START 240185 END 6028	SAMPLE NO. * TEST RESULTS	Ŧ	737 Start	(REMOULDED 240185	SAMPLE) END	60285
------------------------------------	------------------------------	---	--------------	----------------------	----------------	-------

PI	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stres: KPA	EFFECT S OCT STRESS KPA	AXIAL STRAIN 2	RADIAL STRAIN %	VOL Strain %	LSSV KPA	LSNV %	V DELTA ENERGY KN-M/VD	TOTAL Energy L KN-m/Voi	
1	50.2	26.5	23.7	34.4	1.638	0.323	2.284	0 0				
2	57.8	30.6	27.2	39.7	1.866	0.460	7	0.0	0.0	0.255	0.0	
3	55.4	35.2	31.3	45.6	2.402	0.552	3.507	9.6	0.4	0.332	0.255	
4	76.5	40.5	36.0	52.5	3.107	0.657	4.421	20.4	0.8	0.583	0.587	
5	88.0	46.6	41.4	60.4	4.150	0.725	5.599	47 7	1.5	0.917	1.170	
6	101.2	53.6	47.6	69.5	5.432	0.778	6.989	47.3 63.4	2.6	1.267	2.087	
7	116.4	61.7	54.7	79.9	6,948	0.761	8.471	82.A	5.8	1.629	3.354	
8	133.7	70.9	52.8	91.8	8.778	0.568	10.114	104.5	ə. 3 7 2	2.164	4.983	
9	159.7	84.8	74.9	109.8	11.237	0.443	12.123	137.1	9 £	3.257	7.147	
10	159.9	84.8	75.1	109.8	11.882	0.566	13.015	137.2	10.3	1.240	10.404	
11	159.7	84.8	74,9	109.8	12.028	0.474	12.977	137.1	10.4	0.077	11.544	
12	148.2	85.8	62.4	106.6	12.028	0.474	12.977	129.0	10.4	0.0	11.721	
13	139.7	89.7	50.0	106.4	12.015	0.481	12,977	126.5	10.4	-0.007	11.721	
14	134.6	97.2	37.4	109.7	11.972	0.502	12.977	130.9	10.3	-0.019	11.714	
15	128.4	103.3	25.1	111.7	11.908	0.534	12.977	133.9	10.3	-0.020	11.695	
16	120.5	108.0	12.5	112.2	11.758	0.609	12.977	135.0	10.1	-0.028	11.675	
17	114.0	114.0	0.0	114.0	11.638	0.669	12.977	139.2	10.0	-0.008	11.647	
18	109.7	109.7	0.0	109.7	11.510	0.733	12.977	131.9	9.9	-0.000	11 570	
19	107.4	107.4	0.0	107.4	11.459	0.759	12.977	127.9	9.8	-0.000	11 620	
20	106.0	106.0	0.0	105.0	11.424	0.776	12.977	125.5	9.8	-0.000	11.639	
21	105.1	105.1	0.0	105.1	11.382	0.798	12.977	124.0	9.8	-0.000	11 630	
	104.3	104.3	0.0	104.3	11.348	0.815	12.977	122.6	9.7	-0.000	11.639	
23	104.1	104.1	0.0	104.1	11.305	0.836	17 977			-0.000		
24	103.4	103.4	0.0	103.4	11.262	0.857	12.977	121 1	9.7	0.0	11.639	
25	103.2	103.2	0.0	103.2	11.228	0.874	12 977	121.1	8.7	-0.000	11.639	
25	102.3	102.3	0.0	102.3	11.185	0.895	12 977	120.7	ы. Б	-0.000	11.639	
27	101.6	101.6	0.0	101.5	11.134	0.921	12.977	119.2	ษ.6	-0.000	11.639	
8 2	85.0	95.0	0.0	95.0	11.100	0.938	17 977	118.0	9.5	-0.000	11.639	
								106.7	9.5		11.639	

SAMPLE NO. = T 737	(REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CO Sample Volume After Co Sample Area After Cons	ONSOLIDATION DNSOLIDATION Solidation	11.606 CENTIMETRES 521.965 CUBIC CENTIMETRES 44.974 SQUARE CENTIMETRES
CONSTANT LOAD Proving Ring Factor Piston Area		* 16.50 N . * 1.2385 N ./DIV * 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING		2114.00 DIVISIONS
SHEAR TEST RESULTS	START 100	285 END 110285

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPI											
		0101	PRING	PORE	PER	EFFECT	FFFFFT						
		DIAL	DIAL	PRESS	CENT	SIGMAI	SIGMAN	natr	DEV	EFFECT	RATIO OF	•	
		RUG	RDG	KPA	PCSTRN	KPA	STOWN3	DEV	STRESS	OCT	PFF STOWAL	A	
							NFA	STRESS	KPA	STRESS	FFF STEMAN		
								КРД		KPA	CIT SIFMAS		
	836	2114.0	374.0	200.8	0 0								
<u> </u>	940	2113.9	386.0	201 6	0.00	158.4	84.0	37.2	74.4	108 .			
3	851	2112.0	414.0	205 5	0.00	161.0	83.3	38.8	77 7	100.8	1.885	0.0	
4	1000	2109.0	435 5	200.0	0.02	164.8	79.4	42.7	85.4	109.2	1.932	0.24	
5	1015	2102.5	460 .	208.1	0.04	168.0	76.8	45 6	0.0.4	107.9	2.075	0.43	
6	1030	2093.0	474 E	211.1	0.10	171.6	73.7	48.9		107.2	2.188	0.43	
7	1045	2081 4	4/4.5	212.8	0.18	174.0	72 2	50.0	87.8	106.3	2.328	0 44	
8	1100	2064 4	483.0	213.7	0.28	175.2	71 1	50.5	101.8	105.1	2.410	0.47	
9	1115	2000.0	488.5	214.3	0.39	176.0	70.5	52.0	104.1	105.8	2.464	0.43	
10	1170	2088.5	491.5	214.9	0.50	176 1	70.5	52.7	105.5	105.7	2 496	0.43	
11	1145	2042.0	493.0	215.3	0.87	176 1	70.2	53.1	106.1	105.6	2 510	0.43	
12	1745	2028.0	494.2	215.8	0 74	175.4	69.7	53.2	105.4	105 2	2.012	0.44	
	1200	2014.0	495.0	216.3	0.45		88.1	53.3	106.6	104 6	2.527	0.45	
13	1230	1986.0	496.2	217 2	0.00	175.5	58.8	53.3	105 7	104.0	2.543	Q.47	
14	1300	1959.0	497 5	210.2	1.10	174.7	67.9	53.4	106 .	104.4	2.551	0.48	
15	1330	1930.0	497 9	210.1	1.34	173.9	67.0	53 4	100.0	103.5	2.572	0.51	
16	1400	1902.0	407.0	218.1	1.59	172.7	66.0	57 7	100.8	102.6	2.595	0.53	
17	1430	1873 5	407.0	220.0	1.83	171.3	64 9	53.3	106.7	101.6	2.616	0 57	
18	1500	1845 5	497.8	220.6	2.07	170.4	64 2	53.2	105.4	100.4	2.640	0.60	
19	1530	1045.5	496.8	221.5	2.31	168 9	63.2	53.1	105.2	89.6	2.654	0.80	
20	1500	1010.5	495.9	222.4	2.56	167 6	03.3	52.8	105.6	98.5	2 889	0.62	
21	1630	1789.0	495.0	222.8	2.80	186 7	62.5	52.6	105.1	97.5	2.005	0.56	
	1630	1758.0	494.0	223.6	3 07	100.7	62.1	52.3	104.6	97 0	2.002	0.70	
	1710	1721.0	493.0	224 4	3 70	100.5	61.4	52.0	104.1	96.1	2.685	0.73	
23	1800	1674.5	492.2	225 4	3.38	164.1	60.6	51.7	103 5	00.1	2.695	0.77	
24	1900	1617.5	482.0	226 3	3.79	162.4	59.6	51.4	107 .	00.1	2.707	0.81	
25	2000	1560.5	492 0	220.3	4.28	161.0	58.8	51 1	102.0	83.8	2.725	0.87	
26	2113	1491.5	490.0	227.3	4.77	158.5	57.8	50.0	102.2	92.9	2.739	0.92	
27	2200	1446 0	440.0	228.0	5.36	157.6	57.0	E0.7	101.7	91.7	2.750	0.97	
28	2310	1781 0	408.5	228.4	5.76	156.3	56 7	50.3	100.6	90.5	2.764	1 04	
29	2400	1337	488.5	229.4	6.32	155 0	EE C	50.0	100.0	88.6	2.777	1.04	
30	11.	1333.0	489.8	229.9	6.73	154 1	55.5	48.7	99.4	88.7	7 788	1.06	
31	766	1260.0	490.2	230.7	7.36	157 7	55.0	49.5	99.1	88.0	2 801	1.14	
3.2	705	885.5	489.0	233.4	10 59		54.2	49.3	98.5	87 0	2.001	1.18	
34	900	820,0	488.0	233.5	11 16	140.0	51.7	47.4	94.8	83 3	2.617	1.24	
						145.4	51.5	47.0	93.9		2.833	1.60	
										oz. 6	2.824	1.67	
33	932	793.0	488 0										
34	1000	765.5	400.0	<b>∠33.6</b> 1	11.38	145.1	51.4	46					
35	1107	707 6	400.0	233.7 1	11.62	144.7	61 7	-0.0	¥3.7	82.6	2.823	1 70	
38	1127	585 A	488.0	234.1 1	2.15	143.9	51 0	40.7	83.4	82.4	2.821	1 77	
	· · - ·	305.0	488.0	234.1 1	2.31	143 8		46.4	92.9	82.0	2 821		
							• I • I • ·	46.3	92.7	82.0	7 814	1.80	
							•					1.82	

		1 737	(REMOULDE	D SAMPLE)			
CON	501 104770						
PPF	CONCOLLON	N AXIAL STR	ESS	* 158.4	0 894		
NOP		TION PRESSU	RE	¥ 159 A	5 8 8 8		
NON	MACIZING :	STRESS		= 159.8	5 8 9 4		
				100.0	5 KFA		
NURF	MALIZED SI	HEAR TEST RE	SULTS	START			
				STAR!	100285	END	110285
PT	PER	NRMLZD	FFFFF				
	CENT	HALF	PATIO	NKMLZD	NRMLZD		
	PCSTRN	DEV	STOMAN	001	CHANGE		
		STRESS	SICHAT	STRESS	IN PWP		
		KPA	SIGMAS	крд	KPA		
1	0.0	0.233					
2	0.00	0 243	1.885	0.581	0.0		
3	0.02	0 287	1.832	0.683	0.005		
4	0.04	0 285	2.075	0.675	0.029		
5	0.10	0 705	2.188	0.671	0.046		
6	0.18	0.308	2.328	0.665	0.064		
7	0.28	0 375	2.410	0.664	0.074		
8	0.39	0 370	2.464	0.552	0.081		
9	0.50	0 777	2.496	0.661	0.084		
10	0.52	0.332	2.512	0.560	0.088		
11	0.74	0 774	2.527	0.858	0.081		
12	0.86	0 774	2.543	0.655	0.094		
13	1.10	0 374	2.551	0.653	0.097		
14	1.34	0 334	2.572	0.647	0.103		
15	1.59	0.334	2.595	0.542	0.108		
16	1.83	0 377	2.516	0.635	0.114		
17	2.07	0.333	2.640	0.628	0.120		
18	2.31	0.332	2.654	0.623	0.124		
19	2.56	0 320	2.659	0.515	0.129		
20	2.80	0 727	2.682	0.610	0.135		
21	3.07	0 320	2.685	0.607	0.138		
22	3.39	0 374	2.685	0.601	0.143		
23	3.79	0 772	2.707	0.595	0.148		
24	4.28	0 720	2.725	Q.587	0.154		
25	4.77	0.710	2.739	0.581	0.180		
26	5.36	0 316	2.760	0.574	0.155		
27	5.76	0 313	2.764	0.586	0.170		
28	6.32	0 311	2.777	0.561	0.173		
29	6.73	0.310	2.788	0.555	0.179		
30	7.36	0.708	2.801	0.551	0.182		
31	10.59	0 296	2.817	0.544	0.187		
32	11.15	0 294	4.633	0.521	0.204		
33	11.38	0.293	4.824	0.518	0.205		
34	11.62	0.292	4.823	0.517	0.205		
35	12.15	0.290	4.821	0.516	0.206		
36	12.31	0.290	4.621	0.513	0.208		
			4.614	0.513	0.208		

Ϊ,

SAMPLE NO. : T 738 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 49.1 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.340
INITIAL HEIGHT OF SAMPLE	= 12.97 CM
INITIAL VOLUME OF SAMPLE	= 590.71 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FIHAL MOISTURE CONTENT	= 38.5 PERCENT
TX. CONSOLIDATION START 250 TRIAXIAL CONSOLIDATION TEST	185 END 70285

TRIAXIAL CONSOLIDATION START

₽T	EFFECT SIGMA1	EFFECT SIGMA3	STRAIN1	VOLUME Strain	STRAIN3	EFFECT P	٥	VOID Ratio	v	SHEAR STRAIN
234567890112345678901122223425222222222222222222222222222222	57.56 56.30 76.30 76.30 87.81 100.94 116.00 133.28 159.56 159.54 141.46 135.03 141.46 135.03 141.46 135.03 141.46 135.03 141.46 132.76 112.00 110.60 108.90 108.90 108.40 107.50 106.00 105.00 105.00 104.20 \$9.50	26.50 30.50 35.10 40.40 46.50 53.50 61.50 70.70 84.80 84.80 84.80 84.80 84.80 84.80 84.80 13.80 103.80 110.30 110.30 110.60 109.90 109.90 108.40 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50 108.50	$\begin{array}{c} 2.151\\ 2.463\\ 2.922\\ 3.616\\ 4.649\\ 5.914\\ 7.502\\ 9.241\\ 11.742\\ 12.359\\ 12.567\\ 12.571\\ 12.540\\ 12.490\\ 12.490\\ 12.491\\ 12.035\\ 12.035\\ 12.035\\ 12.035\\ 12.035\\ 11.981\\ 11.981\\ 11.981\\ 11.858\\ 11.858\\ 11.858\\ 11.858\\ 11.766\\ \end{array}$	2.336 2.878 3.504 4.368 5.485 5.485 6.704 8.633 11.478 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375 12.375	$\begin{array}{c} 0.083\\ 0.207\\ 0.291\\ 0.376\\ 0.418\\ 0.395\\ 0.312\\ 0.196\\ 0.036\\ -0.096\\ -0.083\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.088\\ -0.035\\ 0.132\\ 0.132\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\ 0.233\\$	$\begin{array}{r} 34.35\\ 39.55\\ 45.50\\ 52.37\\ 60.27\\ 69.31\\ 79.68\\ 109.75\\ 109.71\\ 105.66\\ 108.75\\ 109.71\\ 105.66\\ 112.13\\ 114.45\\ 116.30\\ 112.00\\ 112.00\\ 110.50\\ 108.90\\ 108.00\\ 108.00\\ 108.00\\ 108.00\\ 108.00\\ 108.00\\ 105.00\\ 105.00\\ 104.20\\ 99.50\\ \end{array}$	$\begin{array}{c} 23.56\\ 27.16\\ 35.80\\ 47.44\\ 54.58\\ 74.66\\ 74.66\\ 74.74\\ 49.86\\ 25.8\\ 74.74\\ 325.00\\ 12.46\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	1.286 1.273 1.258 1.238 1.238 1.184 1.150 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051 1.051	2.286 2.273 2.258 2.238 2.212 2.184 2.150 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051	$\begin{array}{c} 1.372\\ 1.504\\ 1.754\\ 2.160\\ 2.821\\ 3.679\\ 4.793\\ 5.030\\ 7.917\\ 8.251\\ 8.442\\ 8.445\\ 8.445\\ 8.365\\ 8.296\\ 8.180\\ 7.957\\ 7.910\\ 7.886\\ 7.856\\ 7.856\\ 7.856\\ 7.753\\ 7.760\\ 7.733\\ 7.770\\ 7.541\end{array}$

5

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT         SIGMA1         SIGMA3         STRAIN1         STRAIN3         V           1         50.06         26.50         2.151         0.093         2.286           2         57.65         30.50         2.463         0.207         2.273           3         65.30         35.10         2.922         0.291         2.258           4         76.30         40.40         3.616         0.376         2.238           5         87.81         40.40         3.616         0.376         2.238           6         100.94         53.50         5.814         0.385         2.184           7         115.00         61.50         7.502         0.312         2.180           8         133.28         70.70         8.241         0.196         2.115           9         159.46         84.80         12.571         -0.063         2.051           11         159.54         84.80         12.571         -0.063         2.051           13         141.46         91.80         12.450         -0.063         2.051           14         135.03         97.60         12.305         0.035         2.051           15						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΡT	S I GMA 1	SIGMA3	STRAINI	STRAIN3	v
24         105.70         105.70         11.803         0.222         2.051           25         105.00         106.00         11.805         0.233         2.051           25         105.00         105.00         11.855         0.245         2.051           26         105.00         105.00         11.855         0.245         2.051           27         104.20         104.20         11.855         0.258         2.051           28         99.50         99.50         11.765         0.305         2.051	P 123456789011234567890123	51 GMA1 50.06 57.66 66.30 76.30 76.30 133.28 159.46 159.66 159.54 148.19 141.46 135.03 128.80 122.76 116.30 122.76 110.80 109.90 109.90 108.40 107.60	SIGMA3 26.50 30.50 35.10 46.40 53.50 61.50 70.70 84.80 84.80 84.80 84.80 81.50 91.50 91.50 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 115.30 10	STRAIN1 2.151 2.922 3.616 4.649 5.814 7.502 8.241 11.742 8.241 11.742 12.359 12.567 12.571 12.571 12.540 12.421 12.305 12.421 12.082 11.811 11.955	STRAIN3 0.093 0.207 0.2291 0.376 0.418 0.312 0.132 0.132 0.096 -0.088 -0.088 -0.088 -0.058 -0.058 -0.058 0.312 0.147 0.147 0.187 0.197 0.210	V 2.285 2.273 2.273 2.212 2.1150 2.0172 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051 2.051
24         105.70         105.70         11.803         0.222         2.051           25         106.00         105.00         11.808         0.245         2.051           25         105.00         105.00         11.858         0.245         2.051           26         105.00         105.00         11.858         0.258         2.051           27         104.20         104.20         11.835         0.270         2.051           28         99.50         99.50         11.765         0.305         2.051	23	108.40	108.40	11.955	0.210	2.051
25         105.00         105.00         11.808         0.233         2.051           25         105.00         105.00         11.885         0.245         2.051           27         104.20         104.20         11.835         0.258         2.051           27         104.20         104.20         11.835         0.270         2.051           28         99.50         99.50         11.765         0.305         2.051	23 24	107.50	107.60	11.931	0.210	2.051 2.051
27         104.20         104.20         11.835         0.258         2.051           28         99.50         99.50         11.766         0.305         2.051	25 26	106.00	105.00	11.885	0.233	2.051 2.051
	27 28	104.20 99.50	104.20	11.835	0.258 0.270 0.305	2.051 2.051 2.051

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

S A T E	IMPLE NO. St result	⊧T 738 S START	(REMO) 250	ULDED SAMP 185 EN	LE) ID 70;	285						318
P	T EFFEC Sigma KPA	T EFFECT 1 SIGMA3 KPA	DEV Stres KPA	EFFECT S OCT Stress KPA	AXIAL STRAIN %	RADIAL Strain %	VOL Strain %	LSSV KPA	L S N V %	DELTA ENERG KN-M/VI	TOTAL Y Energy Ol KN-m/ydi	
	1 50.1	26.5	23.6	34.4	2.151	0.007						
:	2 57.7	30.5	27.2	39.6	2 462	0.083	2.335	o.c	0.0	0 234	0.0	
:	3 66.3	35.1	31.2	45 5	2.403	0.207	2.878	9.5	0.4	0.770	0.234	
4	76.3	40.4	35.9	52.4	2.822	0.291	3.504	20.3	0.8	0.335	0.573	
5	87.8	46.5	41 3	52.4	3.616	0.375	4.368	32.8	1.5	0.559	1.132	
6	100.9	53.5	47.4	60.3	4.649	0.418	5.485	47.2	2.5	0.884	2.016	
7	115.0	61 E	~7.4	69.3	5.914	0.395	5.704	63.6	3.8	1.171	3.185	
8	133.3	70.7	54.5	79.7	7.502	0.312	8.126	82.5	5.4	1.627	4 814	
9	159 5	,0.,	62.6	91.6	9.241	0.195	9.633	104.1	7.1	2.014	6 8 2 7	
10	150.5	84.8	74.7	109.7	11.742	-0.132	11.478	137.0	9.6	3.152	0.827	
11	155.7	84.8	74.9	109.8	12.359	-0.018	12.324	137.1	10.2	1.179	8.879	
	159.5	84.8	74.7	109.7	12.567	-0.086	12.375	137.1	10 4	0.199	11.158	
12	148.2	85.9	62.3	106.7	12.571	-0.098	12.375	128 2	10.4	0.003	11.357	
1.3	141.5	91.6	49.9	108.2	12.540	-0.083	12.375	129 7	10.4	-0.017	11.359	
14	135.0	97.6	37.4	110.1	12.490	-0.058	12.375	121.0	10.4	-0.022	11.342	
15	128.8	103.8	25.0	112.1	12.421	-0.023	10 995	131.6	10.3	-0.022	11.320	
16	122.8	110.3	12.5	114.5	12.305	0 035	10	134.7	10.3	-0.022	11.298	
17	116.3	116.3	0.0	116.3	12.151	0 110	(2.375	139.0	10.2	-0.010	11.277	
18	112.0	112.0	0.0	112.0	17 087	0.112	12.375	143.2	10.0	0.0	11.267	
19	110.6	110.5	0.0	110.6	12 075	0.147	12.375	135.9	9.9	0.0	11.267	
20	109.9	109.9	0.0	109 9	12.035	0.170	12.375	133.5	9.9	0.0	11.267	
21	109.0	109.0	0.0	109 0	11 005	0.185	12.375	132.3	9.9	0.0	11.267	
22	108.4	108.4	0.0	108.4	11.881	0.197	12.375	130.7	9.8	0.0	11.267	
					11.955	0.210	12.375	129.7	9.8	0.0	11.267	
23	107.6	107.6	0.0	107.6	11.931	0.222	12 375			0.0		
24	106.7	106.7	0.0	106.7	11.908	0.233	12 375	120.3	9.8	0.0	11.267	
25	106.0	106.0	0.0	105.0	11.885	0.245	12 775	140.8	9.8	0.0	11.267	
26	105.0	105.0	0.0	105.0	11.858	0.258	12 275	125.6	9.7	0.0	11.267	
27	104.2	104.2	0.0	104.2	11.835	0 270	12.3/5	123.9	9.7	0.0	11.257	
28	99.5	99.5	0.0	99.5	11.785	2 . 0	12.375	122.5	9.7	0.0	11.267	
					/	0.305	12.375	114.5	9.6		11.267	
											. <b>.</b>	

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. =	T 738	(REMOULDED	SAMPLE)	70285
Test results	Start	250185	End	

PI	EFFEC SIGMA KPA	T EFFECT 1 SIGMA3 KPA	DEV Stres: KPA	EFFECT DCT STRESS KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL Strain X	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol		
1	50.1	26.5	23.6	34.4	2.175	0.095	2,364						
2	57.7	30.5	27.2	39.6	2.494	0.213	2 920	0.0		0.240	0.0		
3	65.3	35.1	31.2	45.5	2.966	0.301	3 563	8.5	0.4	0.350	0.240		
4	76.3	40.4	35.9	52.4	3.683	0.391	3.367	20.3	0.8	0.580	0.589		
5	87.8	45.5	41.3	60.3	4.761	0 440	4,406	32.8	1.6	0.927	1.159		
6	100.9	53.5	47.4	69.3	6.096	0 422	5.641	47.2	2.6	1.241	2.096		
7	116.0	61.5	54.5	79.7	7 798	0.422	6,939	63.6	3.9	1.751	3.337		
8	133.3	70.7	62.6	91.6	9 606	0.338	8,475	82.5	5.6	2.204	5.088		
9	159.5	84.8	74.7	109 7	12 .000	0.216	10.128	104.1	7.5	3.522	7.292		
10	159.7	84.8	74.9	108 8	17 100	-0.150	12.191	137.0	10.3	1 770	10.814		
11	159.5	84.8	74.7	109 7	13.182	-0.020	13.152	137.1	11.0	0 227	12.153		
12	148.2	85.9	62.3	105 7	13.430	-0.110	13.210	137.1	11.3	0.007	12.380		
13	141.5	91.6	49.9	108 2	13.434	-0.112	13.210	129.2	11.3	-0.070	12.383		
14	135.0	97.6	37.4	110 1	13.399	-0.094	13.210	129.7	11.2	-0.025	12.363		
15	128.8	103.8	25.0	112 1	13.342	*0.066	13.210	131.6	11.2	-0.025	12.338		
16	122.8	110.3	12.5	114 6	13.262	-0.026	13.210	134.7	11.1	-0.025	12.314		
17	116.3	116.3	0.0		13.130	0.040	13.210	139.0	11.0	0.016	12.289		
18	112.0	112.0	0.0	110.3	12.955	0.128	13.210	143.2	10.8	-0.011	12.278		
19	110.6	110.6	0.0	112.0	12.876	0.167	13.210	135.9	10.7	-0.000	12.278		
20	109.9	109.9	0.0	110.6	12.823	0.193	13.210	133.5	10.6	-0.000	12.278		
21	109.0	109.0	0.0	108.9	12.788	0.211	13.210	132.3	10.6	10.000	2.278		
22	108.4	108 4	0.0	109.0	12.762	0.224	13.210	130.7	10.6	-0,000	2.278		
			0.0	108.4	12.731	0.239	13.210	129.7	10.6	-0.000 1	2.278		
23	107.6	107.5	0.0	107.6	12.705	0.253	13.210	128 3	10 5	-0.000			
24	106.7	106.7	0.0	106.7	12.879	0.266	13,210	125 a	10.5	+0.000	2.278		
25	106.0	106.0	0.0	105.0	12.652	0.279	13.210	125 6	10.5	-0.000	2.278		
26	105.0	105.0	0.0	105.0	12.622	0.294	13.210	127 0	10.0	-0.000 1	2.278		
27	104.2	104.2	0.0	104.2	12.596	0.307	13.210	199 E	10.5	-0.000	2.278		
28	99.5	99.5	0.0	99.5	12.517	0.347	13.210	114 5	10.4	-0.000	2.278		
								114.5	10.3	1:	2.278		

SAMPLE NO. = T 738 {REMOULDED	SAMPLE )
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	<ul> <li>10.792 CENTIMETRES</li> <li>512.956 CUBIC CENTIMETRES</li> <li>47.531 SQUARE CENTIMETRES</li> </ul>
CONSTANT LOAD Proving Ring Factor Piston Area	= 15.27 N . = 0.4177 N ./DIV = 5.0700 Square centimetres
INITIAL DIAL READING	= 2013.50 DIVISIONS

SHEAR TEST RESULTS START 120285 END 130285

# CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL DIAL RDG	PRING DIAL RDG	PORE Press KPA	PER Cent PCSTRN	EPFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	HALF DEV Stress KPA	DEV Stress KPA	EFFECT OCT Stress KPA	RATID OF EFF SIGMA1 EFF SIFMA3	Α
1	903	2013.5	1162.6	199.7	0.0	180.1	85.1	37.5	75.0	110 1	1 881	
2	910	2013.0	1182.0	200.9	0.00	160.6	83.9	38.4	75.7	109.5	1 9 1 4	0.0
3	920	2012.9	1208.5	202.0	0.01	161.8	82.8	39.5	79.0	109 1	1 954	0.57
4	930	2012.0	1232.0	203.4	0.01	162.5	81.4	40.5	81.1	108.4	1 995	0.57
5	940	2010.8	1256.0	204.1	0.03	163.9	80.7	41.5	83.2	108.4	2 031	0.61
6	950	2009.0	1281.0	204.9	0.04	165.3	79.9	42.7	85.4	108.4	2 068	0.54
7	1000	2007.0	1303.0	205.6	0.05	166.7	79.4	43.6	87.3	108.5	2 099	0.30
8	1010	2004.5	1325.0	206.8	0.08	167.1	77.9	44.6	89.2	107.5	2 145	0.50
9	1020	2002.0	1342.5	207.7	0.11	167.8	77.1	45.4	90.7	107 3	2 177	0.50
10	1030	1998.5	1359.0	208.5	0.14	168.3	76.2	46.1	92.1	106.9	2 209	0.51
11	1040	1994.6	1374.0	209.3	0.18	168.8	75.4	46.7	93.4	106.5	2 239	0.52
12	1050	1990.5	1388.0	210.2	0.21	168.9	74.2	47.3	94.7	105.8	2.275	0.53
13	1102	1988.5	1401.0	211.0	0.23	169.5	73.8	47.9	95.7	105.7	2 297	0.55
14	1116	1978.0	1415.0	211.5	0.33	169.9	73.0	48.4	96.9	105.3	2.327	0.54
15	1130	1989.8	1425.4	212.9	0.40	189.5	71.8	48.9	97.7	104.4	2.361	0.58
10	1145	1950.5	1434.5	213.1	0.49	170.5	72.1	49.2	98.4	104.9	2.364	0.57
	1200	1951.0	1442.0	213.7	0.58	170.1	71.1	49.5	99,0	104.1	2.392	0.58
10	1220	1937.0	1448.0	214.6	0.71	169.6	70.2	49.7	99.4	103.3	2.416	0.51
20	1230	1930.5	1450.5	214.9	0.77	169.3	69.8	49.8	99.5	103.0	2.426	0.52
2,	1200	1820.4	1454.4	215.4	0.86	169.2	69.4	49.9	99.8	102.7	2.438	0.63
	1300	1809.0	1458.0	215.8	0.95	169.1	69.1	50.0	100.0	102.4	2.447	0.54
27	1770	1000.0	1401.5	216.2	1.06	168.8	68.6	50.1	100.2	102.0	2.461	0.55
24	1345	1876 0	1403.0	216.6	1.16	168.3	58.0	50.1	100.3	101.4	2.475	0.67
25	1400	1886 0	1405.2	217.5	1.27	167.6	67.3	50.1	100.3	100.7	2.490	0.70
26	1430	1844 0	1400.0	217.6	1.37	167.4	67.1	50.2	100.3	100.5	2.495	0.71
27	1500	1873 0	1400.2	210.0	1.57	167.1	66.9	50.1	100.2	100.3	2.498	0.72
28	1530	1800 0	1470 2	210 7	1.77	165.6	85.5	50.1	100.1	58.9	2.529	0.75
29	1600	1777 8	1470 8	220 4	1.30	164.8	64.8	50.0	100.0	98.1	2.544	0.80
30	1700	1733 5	1477 0	220.9	2.10	164.4	64.6	49.9	99.8	97.9	2.545	0.83
31	1801	1687.0	1475 4	221.5	2.09	163.9	64.3	49',8	99.6	97.5	2.549	0.86
32	1900	1642.0	1476 8	222 2	3.03	162.0	83.4	49.7	99.4	96.5	2.588	0.89
							83.0 	49.5	99.0	96.0	2.572	0.94
33	2020	1582.5	1478.0	222.8	3.99	150.2	51.5	49.3	98.7	84.4	2.604	0.98
34	2100	1552.0	1478.0	223.7	4.28	159.4	61.1	49.2	98.3	93.9	2.509	1.03
35	2200	1507.0	1476.5	224.5	4.89	158.3	80.5	48.9	97.7	83.2	2.613	1.09
30	2300	1461.0	1478.0	225.1	5.12	157.4	60.1	48.6	97.3	92.5	2.518	1.14
37	2400	1416.5	1476.5	225.3	5.53	156.5	59.6	48.5	96.9	91.9	2.826	1 17
30	,	1098.0	1479.0	227.5	8.47	151.8	57.5	47.0	94.1	88.9	2.636	1.45
33	001	1051.0	1478.8	227.7	8.92	150.8	57.2	46.8	93.6	88.4	2.637	1.50
41	1000	1005.0	1480.0	228.6	9.34	149.5	56.2	46.6	93.3	87.3	2.550	1.58
47	1100	382.5	1480.0	228.7	9.74	148.9	56.0	46.4	92.9	87.0	2.859	1.62
47	1201	917.0	1478.5	228.9	10.16	148.1	55.8	46.2	92.3	86.6	2.855	1.68
43	1705	070.0	1477.0	228.7	10.80	148.0	56.3	45.9	91.7	86.9	2.529	1.73
45	1400	021.5	1475.5	229.2	11.05	146.7	55.5	45.8	91.2	85.9	2.843	1.82
46	1500	734 5	14/5.8	229.5	11.42	146.3	55.5	45.4	90.8	85.8	2.636	1.89
- 0		/34.0	1478.5	231.3	11.85	144.0	53.4	45.3	90.5	83.5	2.897	2.03

SAM	PLE NO. = 1	1738 (	REMOULDED	SAMPLE)			
CON							
PRE	CONSOLIDATI	AAIAL SIRE	55	= 180.10	КРА		
NDR	ALIZING ST	TON PRESSUR	r	* 159.86	КРА		
				1 160.10	КРА		
					1		
NORM	ALIZED SHE	AR TEST RE	SULTS	START 1	20285		
					20285	END	130285
PT	PER	NRMLZD	EFFECT	NRMLZD	NRMLZD		
	CENT	HALF	RATIO	OCT	CHANGE		
	PESIRN	DEV	SIGMAI	STRESS	IN PWP		
		SIRESS	5 I GMA3	KPA	KPA		
		AFA					
1	0.0	0.234	1 9 9 1				
2	0.00	0.240	1 914	0.688	0.0		
3	0.01	0.247	1.954	0 682	0.007		
4	0.01	0.253	1,996	0.677	0.014		
5	0.03	0.250	2.031	0.577	0.023		
6	0.04	0.257	2.068	0.677	0 037		
7	0.06	0.273	2.099	0.578	0.037		
8	0.08	0.279	2.145	0.672	0.044		
8	0.11	0.283	2.177	0.870	0.050		
10	0.14	0.288	2.209	0.668	0.055		
11	0.18	0.292	2.239	0.685	0.080		
12	0.21	0.296	2.276	0.661	0.055		
14	0.23	0.299	2.297	0.850	0.071		
15	0.33	0.303	2.327	0.658	0.074		
16	0.49	0.305	2.361	0.852	0.082		
17	0.58	0.309	2.364	0.655	0.084		
18	0.71	0 310	2.332	0.550	0.087		
19	0.77	0.311	2 476	0.845	0.093		
20	0.85	0.312	2.438	0 641	0.085		
21	0.96	0.312	2.447	0.840	0.098		
22	1.06	0.313	2.461	0.637	0 103		
23	1.16	0.313	2.475	0.634	0.105		
24	1.27	0.313	2.490	0.629	0.111		
25	1.37	0.313	2.495	0.628	0.112		
20	1.57	0.313	2.498	0.627	0.114		
28	1.77	0.313	2.529	0.518	0.122		
29	2 18	0.312	2.544	0.613	0.125		
30	2.59	0.312	2.545	0.511	0.129		
31	3.03	0 310	2.343	0.809	0.132		
32	3.44	0.309	2 572	0.803	0.136		
33	3.99	0.308	2 604	0.500	0.141		
34	4.28	0.307	2.809	0.585	0.144		
35	4.69	0.305	2.613	0.582	0 155		
36	5.12	0.304	2.618	0.578	0.159		
37	5.53	0.303	2.626	0.574	0,160		
38	8.47	0.294	2.836	0.555	0.174		
35	8.92	0.292	2.637	0.552	0.175		
41	3.34 9 71	0.291	2.880	0.545	0.181		
42	10 16	0.290	2.859	0.543	0.181		,
43	10.50	0 285	2.855	0.541	0.182		5
44	11.05	0 285	A.028 2 647	0.543	0.181		
45	11.42	0.284	2 676	0.537	0.184		
			2.030	0.535	U.186		
45	11.85	0.283	2.897	0.522	0 197		

.....

----

SAMPLE ND. = T 739 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 49.3 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.346
INITIAL HEIGHT OF SAMPLE	= 13.23 CM
INITIAL VOLUME OF SAMPLE	= 802.55 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 38.3 PERCENT

TX. TRJA)	CONSOLIDATION (IAL CONSOLIDATIO	START N TEST	250185	END	70285
:::::		::::::			

	SIGMAI	SIGMAS	STRAINT	VOLUME STRAIN	STRAINS	EFFECT P	¢	VOID Ratio	v	SHEAR STRAIN
1	50.07	28.50	2.014	2 380			_			
2	57.59	30.50	2 395	2 905	0.184	34.36	23.57	1.290	2.290	1.221
3	66.26	35.10	2 772	3 7 1 0	0.301	39.53	27.09	1.275	2.276	1.396
4	76.24	40.40	3 651	4 647	0.473	45.49	31.16	1.259	2.259	1.533
5	87.68	46.50	4 747	F 801	0.448	52.35	35.84	1.239	2.239	2.135
6	100.57	53.40	6 224	5.601	0.427	60.23	41.18	1.214	2.214	2.880
7	115.65	51.40	8 055	0.0/1	0.323	69.16	47.27	1.185	2.185	3.934
8	132.63	70 50	10 121	0.290	0.112	79.48	54.25	1.151	2.151	5.307
9	157.90	84.80	14 467	3.750	-0.185	91.21	62.13	1.117	2.117	5.871
10	158.27	84 80	15 151	12 004	-1.392	109.17	73.10	1.072	2.072	10.573
11	158.10	84.80	15 720	12.029	-1.151	109.29	73.47	1.045	2.045	10.875
12	147.58	86 60	15 720	12.787	-1.271	109.23	73.30	1.046	2.045	11 066
13	141.68	92.80	15 325	12.787	-1.271	106.96	51.08	1.046	2.046	11.055
14	136.49	99.80	15 276	12.707	-1.269	109.09	48.88	1.046	2.046	11.083
15	131.40	105 90	15 200	12.787	1.244	112.03	36.69	1.045	2.045	11.013
16	127.10	114 80	15 040	12.787	-1.208	115.07	24.50	1.046	2.045	10 938
17	121.00	121 00	13.043	12.787	-1.131	118.90	12.30	1.048	2.045	10 787
18	115.50	115 50	14.045	12.787	-1.029	121.00	0.0	1.046	2.046	10 587
19	114.30	114 30	14.709	12.787	-0.991	115.50	0.0	1.048	2.046	10 507
20	112.80	112 80	14.732	12.787	-0.972	114.30	0.0	1.046	2.045	10 469
21	111.40	111 40	14.034	12.787	-0.953	112.80	0.0	1.046	2.046	10 431
22	110.50	110 50	14.007	12.787	-0.940	111.40	0.0	1.045	2.045	10 405
23	109.20	109 20	14.041	12.787	-0.927	110.50	0.0	1.046	2.045	10 379
24	108.20	108 20	14.018	12.787	-0.915	109.20	0.0	1.046	2.046	10 355
25	107 80	107 80	14.586	12.787	-0.904	108.20	0.0	1.046	2.048	10 373
26	104.70	104 70	14 858	12.787	-0.885	107.60	0.0	1.046	2.046	10 295
27	102.80	102 80	14.558	12.787	-0.885	104.70	0.0	1.045	2.046	10 295
28	90.50	90 50	14.497	12,787	-0.855	102.80	0.0	1.048	2.046	10 275
		30.80	14.497	12.787	-0.855	90.50	0.0	1.045	2.046	10.235

ę,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	S I GMA 3	STRAINI	STRAINS	v
1	50.07	25.50	2.014	0 184	2 204
2	57.59	30,50	2.395	0 301	2.230
3	85.25	35.10	2.772	0 477	2.2/0
4	76.24	40.40	3.851	0 44.5	4.458
5	87.88	46.50	4.747	0 427	2.238
6	100.57	53.40	6.224	0 323	2.214
7	115.85	61.40	8.085	0 112	2.105
8	132.83	70.50	10.121	-0 185	2.151
9	157.90	84.80	14.457	-1 392	2.117
10	158.27	84.80	15.151	-1 181	2.072
11	158.10	84.80	15.329	-1 271	2.045
12	147.88	86.60	15.329	-1 271	2.046
13	141.88	92.80	15.325	-1 269	2.046
14	136.49	99.80	15.276	-1 244	2.046
15	131.40	106.90	15.200	-1 208	2.046
16	127.10	114.80	15.049	-1 #71	2.048
17	121.00	121.00	14.845	1 029	2.046
18	115.50	115.50	14.789	-0.023	2.048
19	114.30	114.30	14.732	-0.001	2.046
20	112.80	112.80	14.884	-0.057	2.048
21	111.40	111.40	14.887	-0.940	2.048
22	110.50	110.50	14 841	-0.240	2.048
23	109.20	109.20	14.618	-0.915	2.046
24	108.20	108.20	14.595	-0.904	2.048
25	107.60	107.60	14 558	-0.204	2.046
26	104.70	104.70	14.558	-0.885	2.046
27	102.80	102.80	14 497	-0.005	2.048
28	90.50	90.50	14 497	-0.000	2.048
				-4.035	2.045

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE ND. = T 739 {REMOULDED SAMPLE} TEST RESULTS START 250185 END 70285

\$

ΡŢ	EFFECT Sigmai Kpa	EFFECT Sigma3 KPA	DEV Stress KPA	ÊFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN X	LSSV KPA	LSNV Z	DELTA TOTAL Energy Energy KN-m/Vol KN-m/Vol
1	50.1	26.5	23.6	34.4	2.014	0.184	2.382	0.0	0.0	
2	57.6	30.5	27.1	39.5	2.395	0.301	2.996	9.4	0.4	0.271
3	66.3	35.1	31.2	45.5	2.772	0.473	3.718	20.2	0.9	0.347
4	76.2	40.4	35.8	52.3	3.851	0.448	4.547	32.7	1.7	0.607
5	87.7	46.5	41.2	80.2	4.747	0.427	5.801	47.1	2.8	0.880
6	100.7	53.4	47.3	69.2	6.224	0.323	5.871	63.3	4.2	1.288
7	115.6	81.4	54.3	79.5	8.085	0.112	8.290	82.1	5.1	1.749
B	132.6	70,5	62.1	91.2	10.121	-0,185	9.750	103.4	8.1	2.160 7.302
9	157.9	84.8	73.1	109.2	14.467	-1.392	11.684	135.7	12.7	4.440
10	158.3	84.8	73.5	109.3	15.151	-1.151	12.829	136.0	13.3	1.472
11	158.1	84.8	73.3	109.2	15.329	-1.271	12.787	135.9	13.5	0.095
12	147.7	86.5	51.1	107.0	15.329	-1.271	12.787	129.4	13.5	0.0
13	141.7	92.8	48.9	109.1	15.325	-1.259	12.787	131.1	13.5	-0.002
14	136.5	99.8	36.7	112.0	15.276	-1.244	12.787	135.0	13.4	-0.021
15	131.4	106.9	24.5	115.1	15.200	-1.206	12.787	139.8	13.3	-0.023 13.263
16	127.1	114.8	12.3	118.9	15.049	-1.131	12.787	146.7	13.2	-0.028 13.235
17	121.0	121.0	0.0	121.0	14.845	-1.029	12.787	151.3	12.9	-0.013 13.223
18	115.5	115.5	0.0	115.5	14.769	-0.991	12.787	141.9	12.9	-0.000 13.223
19	114.3	114.3	0.0	114.3	14.732	-0.972	12.787	139.8	12.8	0.0 13.223
20	112.8	112.8	0.0	112.8	14.694	-0.953	12.787	,137.2	12.8	0.0 13.223
21	111.4	111.4	0.0	111.4	14.687	-0.940	12.787	134.8	12.8	0.0 \$3.223
22 	110.5	110.5	0.0	110.5	14.641	-0.927	12.787	133.3	12.7	0.0 13.223
23	109.2	109.2	0.0	109.2	14.618	-0.915	12.787	131.1	12.7	0.0 13.223
24	108.2	108.2	0.0	108.2	14.596	-0.904	12.787	129.3	12.7	0.0 13.223
25	107.6	107.5	0.0	107.6	14.558	-0.885	12.787	128.3	12.5	0.0 13.223
26	104.7	104.7	0.0	104.7	14.558	-0.885	12.787	123.3	12.6	0.0
27	102.8	102.8	0.0	102.8	14.497	-0.855	12.787	120.1	12.5	0.0
28	90.5	90.5	0.0	90.5	14.497	-0.855	12.787	99.1	12.5	0.0 13.223

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. # T 739 (REMOULDED SAMPLE) Test results Start 250185 END 70285

PT	EFFECT Sigmai Kpa	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN X	VOL Strain %	LSSV KPA	LSNV %	DELTA TOTAL Energy Energy KN-m/vol KN-m/vol
1	50.1	26.5	23.6	34.4	2.035	0.188	2.410			
2	57.8	30.5	27.1	39.5	2.424	0.309	3.041	9.0	0.0	0.0
3	66.3	35.1	31.2	45.5	2.812	0.488	3.788	70.3	0.4	0.278 0.358
4	76.2	40.4	35.8	52.3	3.719	0.467	4 654	20.2	0.9	0.636 0.631
5	87.7	46.5	41.2	60.2	4.853	0.451	5 754	32.7	1.7	1.267 0.923
6	100.7	53.4	47.3	69.2	5.427	0.345	7 1 1 4	47.1	2.9	2.190 3.368
7	115.6	61.4	54.3	79.5	8.409	0 122	4 657	63.3	4.4	3,558 1,887
8	132.6	70.5	62.1	91.2	10.670	-0 205	10 050	82.1	5.4	5.445 2.375
9	157.9	84.8	73.1	109.2	15.626	-1 601	10.259	103.4	8.7	7.820 5.032
10	158.3	84.8	73.5	109.3	18 429	-1.001	12.424	135.7	13.8	12.852 1.595
11	158.1	84.8	73.3	109 2	16 679	-1.350	13.729	136.0	14.5	14.547 0.113
12	147.7	86.6	61.1	107 0	16 676	- 1 . 4 / 8	13.682	135.9	14.8	14.661 0.0
13	141.7	92.8	48.9	109.1	10.030	-1.478	13,682	129.4	14.8	14.561
14	136.5	99.8	36.7	112 0	10.034	-1.475	13.682	131.1	14.8	14.658 *0.025
15	131.4	106.9	24 5	115 1	10.576	-1.447	13.682	135.0	14.7	14.633
16	127.1	114.8	12 3	110.1	10.486	-1.402	13.682	139.8	14.6	14.506
17	121.0	171 0		110.9	16.308	-1.313	13.682	146.7	14.4	14.573
18	115 5	116 6	0.0	121.0	15.068	-1.193	13.882	151,3	14.2	14.558
19	114 7	110.5	0.0	115.5	15.980	-1.149	13.682	141.9	14.1	14.558
20	110.0	114.3	0.0	114.3	15.935	-1.127	13.682	139.8	14.0	14.558
21	112.0	112.8	0.0	112.8	15.891	-1.105	13.682	137.2	14.0	14.558
~ ~	110 -	111.4	0.0	111.4	15.880	-1.089	13.682	134.8	13.9	14.558
**	110.5	110.5	0.0	110.5	15.829	-1.074	13.582	133.3	13.9	0.000 14.558
23	109.2	109.2	0.0	109.2	15.802	-1.060	13.582	131.1	13 9	0.000
24	108.2	108.2	0.0	108.2	15.776	-1.047	13.582	129.3	171 0	0.000
25	107.6	107.5	0.0	107.5	15.732	-1.025	13.682	128 3	17 2	0.000
26	104.7	104.7	0.0	104.7	15.732	~ 1.025	13.682	123 3	17 0	14.558
27	102.8	102.8	0.0	102.8	15.661	-0.990	13.682	120 1	13.0	-0.000
28	90.5	90.5	0.0	90.5	15.661	-0.990	13 682			14.558 0.0
								a a . I	13.7	14.558

SAMPLE NO. = T 739 {REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	* 10.780 CENTIMETRES = 522.247 Cubic Centimetres * 48.440 Square Centimetres
CONSTANT LOAD Proving Ring Factor Piston Area	- 16.56 N . - 1.0225 N ./DIV - 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING	2011.50 DIVISIONS
SHEAR TEST RESULTS START 190	285 FND 200245

START 190285 END 200285

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL DIAL RDC	PRING Dial RDG	PORE Press KPA	PER Cent PCSTRN	EFFECT Sigma1 KPA	EFFECT Sigma3 Kpa	HALF DEV Stress KPA	DEV Stress KPA	EFFECT DCT Stress KPA	RATID DF EFF Sigma; EFF Sifma3	۵
1	858	2011.5	482.2	200.7	0.0	159 5	•• •					
. 2	900	2011.0	488.5	202.4	0.00	158.0	04.1	37.7	75.4	109.2	1.897	
3	905	2010.0	504.0	205.0	0.01	153.2	82.5	38.4	76.7	108.1	1.930	1 30
4	910	2009.2	518.0	206.4	0.07	155,5	79.9	40.0	80.0	105.6	2.001	1.23
5	915	2009.0	530.0	208 3	0.07	101.3	78.4	41.5	82.9	105.0	2 058	0.94
6	920	2004.0	537.0	208.9	0.02	162.1	75.6	42.7	85.5	105.1	2 1 1 5	0.76
7	926	2001.0	545.0	210.1	0.07	162.9	76.0	43.4	85.9	105.0	2 142	0.76
8	930	1999.0	550 5	210.5	0.10	163.4	74.8	44.3	88.5	104.3	2 1 8 4	0.71
9	940	1992.0	560.0	211 6	0.12	154.0	74.3	44.9	89.7	104.2	2 207	0.71
10	950	1984.2	565 5	411.b	0.18	164.9	73.2	45.8	91.7	103 8	2.207	0.59
11	1000	1975.0	571 0	212.5	0.25	185.3	72.3	46.5	93.0	107 7	4.452	0.67
12	1010	1987 0	571.0	213.3	0.33	165.2	71.3	46.9	93.9	102.2	2.285	0.67
13	1020	1957 5	574.0	213.9	0.41	165.2	70.8	47.2	9A A	102.0	2.315	0.68
14	1031	1947 6	575.0	214.5	0.50	164.9	70.2	47.4	94 7	101.3	2.333	0.69
15	1047	1077 5	377.5	215.1	0.59	164.5	69.5	47.5	95.0	101.8	2.349	0.72
16	1100	1833.5	575.0	215.9	0.72	164.0	68,9	47 6	az 1	101.2	2.366	0.74
17	1115	1942.8	580.0	216.4	0.82	163.6	68.3	47 6	00.1	100.6	2.381	0.77
1.8	1130	1808.0	580.0	217.1	0.96	162.9	67.8	47 6	83.J	100.1	2.395	0.79
19	1145	1894.0	580.5	217.6	1.09	162.4	67.3	47.0	32.1	99.5	2.403	0.83
20	1200	1680.0	580.8	218.2	1.22	161.8	85 8	47.5	35.1	89.O	2.413	0.85
21	1220	1885.5	581.0	218.5 -	1.35	161.2	85 3	47.5	¥6.0	98.5	2.422	0.89
20	1234	1834.0	580.8	219.6	1.85	159.9	85 7	47.5	94.9	97.9	2.432	0.92
22	1300	1810.0	580.8	220.3	1.87	159.0	64 C	47.3	94.6	96.8	2.449	0.98
23	1325	1784.5	580.2	221.1	2.11	157.9	87 0	47.2	94.4	98.1	2.451	1.03
24	1430	1724.0	579.0	222.5	2.67	155 8	80.9	47.0	94.0	95.2	2.472	1 09
25	1530	1867.5	577.6	223.6	3.19	153 9	02.5	45.6	93.2	93.7	2.490	1 22
26	1637	1504.0	576.2	224.5	3.78	1 2 3 . 3	61.4	46.2	92.5	\$2.2	2.506	1 74
27	1700	1583.0	575.8	225.1	3 97	151.0	80.2	45.8	91.6	90.7	2.522	1 47
28	1801	1523.5	575.0	225.8	4 53	101.0	59.6	45.7	91.4	90.1	2.533	1 59
29	1900	1468.0	573.5	226.5	5 04	143.7	59.0	45.3	90.7	89.2	2.537	1.53
30	2010	1401.0	572.5	227 0	5.04	148.5	58.6	44.9	89,9	88.6	2 534	1.04
31	2100	1352.0	572.0	227 2	5.00	147.1	58.0	44.5	89.1	87.7	2 838	1.78
32	2215	1283.5	570 5	227 7	0.12	145.2	57.6	44.3	88.6	87.1	2 5 2 4	1,92
					D. / D	144.5	56.9	43.9	87.7	86 1	2.000	2.01
											4.941	2.19
33	2311	1229.0	570 0	227 .								
34	2332	1209.0	569 6	227 .	7.26	144.1	57.0	43.6	87.1	88.0	3 534	
35	741	747.0	552 5	220 0 -	/.44	143.8	57.0	43.4	86.8	85 9	2.548	2.31
36	820	710.0	562.0	448.0	1.73	137.6	58.1	40.7	81.5	87 7	4.524	2.37
				443.0 1	2.07	137.0	55.9	40.6	81.1	87 0	2.453	4.65
										01.9	2.451	4.93

SAMP	PLE ND. =	1739 (	REMOULDED	SAMPLE)			
CONS	OLIDATION	AXIAL STRE	ss	z 159 50	KBA		
PREC	ONSOLIDAT:	ON PRESSUA	E	* 158 30			
NORM	ALIZING ST	RESS		* 159.50	KPA		
NORM	ALIZED SHE	AR TEST RE	SULTS	START 1	90285	END	200285
PT	PER	NRMLZD	EFFECT	NRMLZD	NRML 7D		
	CENT	HALF	RATIO	OCT	CHANGE		
	PCSTRN	DEV	SIGMA 1	STRESS	IN PWP		
		STRESS	SIGMA3	KPA	KPA		
		кра					
1	0.0	0 236	1 807				
2	0.00	0.240	1 930	0.685	0.0		
3	0.01	0.251	2 001	0.678	0.011		
4	0.02	0.250	2.058	0 885	0.027		
5	0.02	0.258	2.116	0.659	0 048		
6	0.07	0.272	2.143	0.658	0.051		
7	0.10	0.278	2.184	0.854	0.059		
8	0.12	0.281	2.207	0.853	0.052		
10	0.18	0.287	2.252	0.550	0.088		
11	0.25	0.291	2.285	0.548	0.074		
12	0.41	0.294	2.316	0.843	0.079		
13	0.50	0.287	2.333	0.641	0.083		
14	0.59	0.298	2.343	0.838	0.087		
15	0.72	0.298	2.381	0.634	0.090		
16	0.82	0.299	2.395	0 877	0.095		
17	0.96	0.298	2.403	0.624	0 107		
18	1.09	0.298	2.413	0.621	0.105		
19	1.22	0.298	2.422	0.517	0.110		
20	1.35	0.298	2.432	0.614	0.112		
22	1.65	0.297	2.449	0.607	0.118		
23	2 11	0.295	2.461	0.602	0.123		
24	2.57	0.295	2.472	0.597	0.128		
25	3.19	0.290	2.490	0.587	0.137		
26	3.78	0.287	2 572	0.578	0.144		
27	3.97	0.286	2.533	0.565	0.150		
28	4.53	0.284	2.537	0 559	0.163		
29	5.04	0.282	2.534	0.555	0.167		
30	5.66	0.279	2.536	0.550	0.165		
31	5.12	0.278	2.538	0.546	0.155		
32	6.75	0.275	2.541	0.540	0.189		
34	7.25	0.273	2.528	0.539	0.170		
35	1, 44	0.272	2.524	0.539	Q.170		
36	12 07	0.255	2.453	0.522	0.177		

.....

-----

-----

SAMPLE)
* 49.5 PERCENT
* 2.73 * 1.751
= 13.20 CM
= 601.18 CC
F 0.53

TX. TRIAX	CONSOLIDATION IAL CONSOLIDATI	START ON TEST	150885	END	280885
:::::	*************	******			

	SIGMAI	SIGMAS	SIRAINI	VOLUME STRAIN	STRAIN3	EFFECT P	Q	VOID RATID	v	SHEAR STRAIN
1 2 3 4 5 6 7 8 9 10	50.01 57.80 65.33 75.33 87.76 100.73 115.93 133.33 159.87 160.03	26.50 30.50 35.10 40.40 45.50 53.50 61.40 70.70 84.80 84.80	2.015 2.371 2.841 3.538 4.489 5.780 7.155 8.667 10.947 11.557	1.996 2.553 3.185 4.092 5.190 6.570 7.958 9.448 11.386 12.184	-0.010 0.091 0.172 0.277 0.351 0.395 0.406 0.391 0.219 0.314	34.34 39.53 45.51 52.38 69.25 69.24 79.58 91.58 109.88	23.51 27.10 31.23 35.93 41.26 47.23 54.53 52.63 75.07 75.23	1.304 1.291 1.276 1.255 1.229 1.197 1.164 1.083 1.065	2.304 2.291 2.276 2.255 2.229 2.197 2.164 2.129 2.063 2.065	1.350 1.520 1.779 2.174 2.759 3.590 4.499 5.517 7.152 7.495

٩.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	S I GMA3	STRAINI	STRAINS	۷
1	50.01	26.50	2.015	-0.010	2.304
2	57.80	30.50	2.371	0.091	2.281
3	68.33	35.10	2.841	0.172	2.276
4	78.33	40.40	3.538	0.277	2.255
5	87.76	46.50	4.489	0.351	2.229
6	100.73	53.50	5.780	0.395	2.197
7	115.83	61.40	7.155	0.406	2.164
8	133.33	70.70	8.667	0.391	2.129
9	159.87	84.80	10.947	0.219	2.083
10	180.03	84.80	11.557	0.219	2.085

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. * T 740 (REMOULDED SAMPLE) Test results start 150885 end 280885

PT	EFFECT SIGMA1 KPA	EFFECT Sigmaj Kpa	DEV Stress KPA	EFFECT OCT STRESS KPA	AXIAL STRAIN %	RADIAL STRAIN X	VOL Strain %	LSSV KPA	LSNV X	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vdl
1	50.0	26.5	23.5	34.3	2.015	-0.010	1.996	0.0	0.0		0 0
2	57.6	30.5	27.1	39.5	2.371	0.091	2.553	8.5	0.4	0.249	0.249
3	56.3	35.1	31.2	45.5	2.841	0.172	3.185	20.4	0.9	0.344	0.593
4	76.3	40.4	35.9	52.4	3.538	0.277	4.092	32.9	1.6	0.576	1 169
5	87.8	46.5	41.3	50.3	4.489	0.351	5.190	47.2	2.5	0.844	2 0 1 7
6	100.7	53.5	47.2	69.2	5.780	0.395	6.570	63.5	3.8	1.262	3 375
7	115.9	61.4	54.5	79.6	7.155	0.406	7.968	82.3	5.2	1.502	4 778
8	133.3	70.7	62.5	91.6	8.867	0.391	9.448	104.2	6.7	1.883	4.770 5.841
9	159.9	84.8	75.1	105.8	10.947	0.219	11.386	137.4	8.9	3.077	0.041
10	160.0	84.8	75.2	109.9	11.557	0.314	12.184	137.5	9.6	1.135	10.853

2

UNIVERSITY OF MANITOBA Soil mechanics laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 740 (REMOULDED SAMPLE) Test results start 150885 END 280885

PT	EFFECT SIGMA1 KPA	EFFECT Sigma3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN 2	VOL Strain %	LSSV KPA	LSNV X	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vdl
1	50.O	28.5	23.5	34.3	2.036	-0.010	2.015	0.0	0.0		
2	57.6	30.5	27.1	39.5	2.400	0.093	2.585	9.5	0.4	0.255	0.255
3	88.3	35.1	31.2	45.5	2.882	0.178	3.237	20.4	0.8	0.354	0 808
4	76.3	40.4	35,9	52.4	3.602	0.288	4.178	32.9	1.8	0.597	1.000
5	87.8	46.5	41.3	BO.3	4.592	0.358	5.329	47.2	7 8	0.883	1.206
8	100.7	53.5	47.2	69.2	5.954	0.421	6.796	63.5	4.0	1.336	2.088
7	115.9	61.4	54.5	79.6	7.424	0.439	8.303	82 3	4.0 E A	1.514	3.424
8	133.3	70.7	82.8	91.6	9.085	0.430	9.974	104 2		2.032	5.038
9	159.9	84.8	75.1	109.8	11.594	0.247	12 088		7.1	3.423	7.070
10	160.0	84.8	75.2	109.9	12.281	0.358	12.993	137.5	9.8 10.3	1.284	10.493

328

È

-----

SAMPLE NO. 1 1 740	REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CO Sample volume after co Sample area after cons	DNSOLIDATION DNSOLIDATION Solidation	<ul> <li>11.527 CENTIMETRES</li> <li>528.330 CUBIC CENTIMETRES</li> <li>45.300 SQUARE CENTIMETRES</li> </ul>
CONSTANT LOAD Proving Ring Factor Piston Area		T 16.53 N . F 1.2365 N ./DIV F 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING		2107.00 DIVISIONS
SHEAR TEST RESULTS	START 280	885 END 290885

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT TIME DISPL DIAL PRING Dial RDG PORE Press Kpa PER Cent PCSTRN EFFECT SIGMA1 KPA EFFECT SIGMA3 KPA HALF DEV Stress KPA EFFECT DCT Stress DEV Stress Kpa RATIO OF EFF SIGMA1 EFF SIFMA3 RDG KPA 913 920 925 930 935 940 945 950 955 1000  $\begin{array}{c} 5 & 2 \\ 5 & 2 \\ 5 & 5 \\ 5 & 5 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 5 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\ 5 & 7 \\$  $\begin{array}{c} 5 \ 0 \ 0 \ . \ 7 \\ 5 \ 0 \ 1 \ . \ 8 \\ 5 \ 0 \ 2 \ . \ 7 \\ 5 \ 0 \ 5 \ . \ 2 \\ 5 \ 0 \ 5 \ . \ 2 \\ 5 \ 0 \ 5 \ . \ 2 \\ 5 \ 0 \ 5 \ . \ 2 \\ 5 \ 0 \ 5 \ . \ 2 \\ 5 \ 0 \ 0 \ . \ 3 \\ 5 \ 0 \ 0 \ . \ 3 \\ 5 \ 1 \ 0 \ . \ 5 \ 1 \\ 5 \ 1 \ 0 \ 5 \ 1 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ 0 \ 5 \ 1 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ 0 \ 5 \ 1 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ 0 \ 5 \ 1 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ 0 \ 5 \ 1 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \\ 5 \ 1 \ . \ 2 \ . \ 1 \ . \ 2 \ 1 \ . \ 2 \ 1 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \ 2 \ . \$  $\begin{array}{c} 0.0\\ 0.01\\ 0.02\\ 0.02\\ 0.04\\ 0.09\\ 0.13\\ 0.20\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.34\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\ 0.33\\$  $\begin{array}{c} 1\,5\,9\,,\,5\,\\ 1\,6\,4\,,\,6\,3\\ 1\,7\,0\,,\,5\,0\,,\,1\\ 1\,7\,2\,,\,0\,0\,,\,1\\ 1\,7\,2\,,\,0\,0\,,\,1\\ 1\,7\,2\,,\,0\,0\,,\,2\\ 1\,1\,7\,2\,,\,0\,0\,,\,2\\ 1\,1\,7\,2\,,\,0\,0\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\,2\,,\,2\\ 1\,1\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2\,2\,,\,2$ 37.5 40.9 43.0 45.1 45.8 234567890123456789012234567890  $\begin{array}{c} 75.2\\ 81.8\\ 85.0\\ 90.3\\ 93.6.2\\ 956.2\\ 956.2\\ 103.1\\ 104.8\\ 105.9\\ 104.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 110.5\\ 105.4\\ 109.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5\\ 108.5$ 109.4 110.1 110.2 110.3 109.9 109.7 109.6 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 109.3 108.5 108.5 108.4 108.6 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.5 105.4 105.4 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.4 105.5 105.5 105.4 105.5 105.4 105.5 105.5 105.4 105.5 105.4 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 10 1020 1030 1040 1050 1100 1112 1120 1130 1140 1150 1200 1230 1230 1300 1330 1400 1430 1500 1540 1540 1540 1540 1540 1500 31 \$30.5

33 34 35 36 37 38 39 40 41 42	1800 1900 2000 2102 2200 2300 2400 700 803 900	1846.0 1530.0 1473.5 1473.5 1361.0 1307.0 910.5 852.0 795.0	829.4 828.5 827.0 826.5 826.0 625.0 625.0 624.5 623.5 622.5	525.6 526.2 527.1 528.3 529.3 529.6 533.6 532.6 532.6	4.00 4.49 5.01 5.50 5.97 5.97 5.94 10.38 10.38 11.37	165.8 184.1 182.1 180.3 159.8 157.8 157.0 150.4 149.6 148.6	80.3 59.4 58.3 57.2 57.3 58.1 55.8 53.2 53.1 52.9	52.7 52.4 51.9 51.6 51.2 50.8 50.8 48.6 48.2 47.9	105.5 104.7 103.8 103.1 102.5 101.7 101.2 97.2 95.5	95.5 94.3 92.9 91.5 91.5 90.0 85.5 85.6 85.3	2.749 2.763 2.781 2.803 2.788 2.813 2.813 2.813 2.828 2.817	0.82 0.85 0.92 0.93 1.01 1.08 1.11 1.47 1.50	
41 42 43 44	803 900 1010 1100	852,0 795.0 732.0 583.0	623.5 622.5 622.5 622.0	532.6 532.6 532.7 533.1	10.32 10.89 11.37 11.93 12.35	149.6 148.6 148.0 147.2	53.2 53.1 52.9 52.9 52.7	48.6 48.2 47.9 47.6 47.3	97.2 95.5 95.7 95.1 94.5	85.6 85.3 84.8 84.6 84.2	2.828 2.817 2.810 2.798 2.794	1.47 1.50 1.55 1.60	

A

0.0 0.17 0.30 0.30 0.32 0.33 0.33 0.33 0.34 0.35

1.892

1.982 2.045 2.126 2.236 2.235 2.3370 2.409 2.459 2.459 2.524 2.534 2.534 2.534 2.534 2.534 2.534 2.534 2.534

2.578 2.578 2.536 2.611 2.643 2.683 2.661 2.683 2.681 2.882 2.703 2.726 2.725

SAMPLE	NO.	¥	т	740	(REMOULDED	SAMPLE }
--------	-----	---	---	-----	------------	----------

с	160.03	КРА	
2	160.03	Кра	
2	180.03	Кра	
	::	* 160.03 * 160.03 * 160.03	= 160.03 КРА = 160.03 КРА = 180.03 КРА

### NORMALIZED SHEAR TEST RESULTS START 280885 END 290885

PT	PER	NRMLZD	EFFECT	NRML 20		
	CENT	HALF	RATIO	OCT	CHANCE	
	PCSTRN	DEV	SIGMA 1	STRESS		
		STRESS	SIGMA3	KPA	K PA	
		KPA			NF A	
1	0.0	0.235	1.892	0.683	0 0	
2	0.01	0.255	1.988	0.688	0.007	
3	0.00	0.269	2.045	0.593	0.012	
4	0.02	0.282	2.126	0.589	0.074	
5	0.03	0.292	2.185	0.689	0.014	
5	0.04	0.300	2.236	0.585	0.047	
- ?	0.05	0.308	2.285	0.685	0 048	
8	0,09	0.316	2.333	0.585	0 053	
. 9	0.11	0.322	2.370	0.685	0 057	
10	0.13	0.327	2.409	0.683	0.052	
11	0.20	0.334	2.459	0.681	0 069	
12	0.27	0.338	2.482	0.682	0 071	
13	0.34	0.342	2.504	0.683	0 074	
14	0.42	0.344	2.524	0.681	0.076	
15	0.49	0.345	2.538	0.579	0 078	
16	0.58	0.345	2.542	0.678	0 081	
17	0.68	0.345	2.547	0.677	0.082	
18	0.75	0.345	2.549	0.675	0.083	
19	0.83	0.346	2.574	0.570	0 089	
20	0.91	0.345	2.576	0.668	0.091	
21	0.98	0.345	2.578	0.567	0.091	
22	1.07	0.345	2.536	0.678	0.082	
23	1.32	0.344	2.511	0.555	0.102	
24	1.56	0.343	2.643	0.548	0.105	
10	.1.80	0.342	2.553	0.639	0.117	
27	2.03	0.341	2.661	0.637	0.119	
	2.28	0.339	2.682	0.629	0.126	
20	2.53	0.337	2.703	0.521	0.132	
20	2.00	0.335	2.720	0.614	0.139	
31	3.04	0.334	2.725	0.510	0.142	
	3.20	0.334	2.733	0.607	0.145	
33	3.50	0.332	2.755	0.800	0.151	
34	4.00	0.330	2.749	0.597	0.156	
35	5 01	0.327	2.763	0.589	0.159	
36	5 50	0.324	2.781	0.581	0.165	
37	5 97	0.322	2.803	0.572	0.172	
38	5 47	0.320	2.788	0.571	0.172	
38	5 94	0.318	2.813	0.562	0.179	
40	10.38	0.316	2.813	0.559	0.181	
4 1	10.89	0.304	2.828	0.535	0.202	
42	11.37	0.301	2.817	Q.533	0.199	
43	11.93	0 207	2.810	0.530	0.199	
44	12.35	0.205	2.188	0.529	0.200	
			4.194	0.526	0.202	

÷

TX. TRIAX	CONSOLIDATION JAL CONSOLIDAT	START ION TEST	160885	END	300885
* * * * *	************	* * * * * * * * *			

PT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME STRAIN	STRAIN3	EFFECT P	۰	VOID Ratio	v	SHEAR Strain
1 2 3 4 5 8 7 8 9 10	50.05 57.63 66.42 75.38 87.92 100.99 116.05 133.35 159.62	$\begin{array}{c} 26.50\\ 30.50\\ 35.10\\ 40.50\\ 46.60\\ 53.60\\ 61.60\\ 70.70\\ 84.80\\ 84.80\\ \end{array}$	2.398 2.807 3.187 4.207 5.433 6.894 8.490 10.153 12.872 13.583	2.135 2.750 3.431 4.386 5.632 7.003 8.480 9.936 11.830 12.785	$\begin{array}{c} -0.132 \\ -0.029 \\ 0.117 \\ 0.090 \\ 0.100 \\ 0.055 \\ -0.000 \\ -0.113 \\ -0.521 \\ -0.399 \end{array}$	34.35 39.54 45.54 52.46 69.40 78.75 91.58 109.67 108.74	23.55 27.13 31.32 35.88 41.32 47.39 54.45 54.65 74.61 74.82	1.302 1.288 1.272 1.248 1.220 1.188 1.153 1.119 1.074 1.052	2.302 2.288 2.272 2.249 2.220 2.188 2.153 2.153 2.153 2.074 2.052	1.687 1.891 2.053 2.745 3.556 4.559 5.660 6.851 8.928 9.321

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	SIGMAS	STRAINI	STRAINS	v
1 2 3 4 5 6 7 8 9 0	50.05 57.83 56.42 76.38 87.82 100.99 116.05 133.35 159.41 159.82	26.50 30.50 35.10 40.50 46.60 51.80 51.80 70.70 84.80	2.399 2.807 3.197 4.207 5.433 6.894 8.490 10.163 12.872	-0.132 -0.028 0.117 0.090 0.100 0.055 -0.000 -0.113 -0.521	2.302 2.288 2.272 2.248 2.220 2.188 2.153 2.153 2.118 2.074
	109.92	84.80	13.583	-0.399	2.052

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE ND. = T 741 (REMOULDED SAMPLE) TEST RESULTS START 160885 END 300885

ΡT	EFFECT 5 I GMA 1 KPA	EFFECT Sigma3 KPA	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL Strain %	VOL Strain %	LSSV KPA	LSNV X	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vdl
1	50.1	26.5	23.6	34.3	2.399	-0.132	2.135	0.0	0.0		0 0
2	57.8	30.5	27.1	39.5	2.807	-0.029	2.750	9.5	0.4	0.279	0.279
3	56.4	35.1	31.3	45.5	3.197	0.117	3.431	20.4	0.9	0.337	0 616
4	76.4	40.5	35.9	52.5	4.207	0.090	4.386	32.9	1.8	0.701	1 717
5	87.9	46.6	41.3	80.4	5.433	0.100	5.632	47.4	3.1	1.016	2 2 2 2 2
6	101.0	53.6	47.4	69.4	6.894	0.055	7.003	63.7	4 5	1.335	2.333
7	115.1	51.5	54.4	79.8	8.490	-0.000	8.490	82.6	5 1	1.570	3.667
8	133.4	70.7	62.7	91.6	10.163	-0.113	9.936	104 1		1.935	5.337
9	159.4	84.8	74.5	109.7	12.872	-0.521	11.830	137.0	10.5	3.332	7.272
10	159.6	84.8	74.8	109.7	13.583	-0.399	12.785	137.1	11.2	1.342	10.604

ę

UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 741 (REMOULDED SAMPLE) TEST RESULTS START 160885 END 300885

ΡT	EFFECT SIGMA1 KPA	EFFECT Sigmaj Kpa	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL Strain %	RADIAL Strain %	VOL Strain %	LSSV KPA	LSNV X	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol
1	50.1	26.5	23.6	34.3	2.428	-0.135	2.158	0.0	0.0		0.0
2	57.6	30.5	27.1	39.5	2.847	-0.030	2.788	9.5	0.4	0.285	0.288
3	85.4	35.1	31.3	45.5	3.249	0.121	3.491	20.4	0.9	0.348	0 634
4	75.4	40.5	35.9	52.5	4.298	0.094	4.485	32.9	1.9	0.728	1 300
5	87.9	46.6	41.3	80.4	5.588	0.105	5.797	47.4	3.2	1.068	1.302
8	101.0	53.6	47.4	89.4	7.143	0.059	7.280	83.7	4 7	1.423	
7	116.1	61.6	54.4	79.8	8.872	-0.000	8.872	82.6	в д	1.809	3.864
8	133.4	70.7	82.7	91.8	10.717	-0.125	10.465	104.1	8.7	2.133	5.563
9	159.4	84.8	74.6	109.7	13.778	-0.594	12.580	137 0	11 4	3.754	7.798
10	159.6	84.8	74.8	109.7	14.598	-0.459	13.679	137.1	12.2	1.536	11.550

SAMPLE ND. = T 741 (REMOULDE	D SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATIO Sample volume after consolidatio Sample area after consolidation	N = 11.338 CENTIMETRES N = 523.364 CUBIC CENTIMETRES = 46.160 SQUARE CENTIMETRES
CONSTANT LOAD Proving Ring Factor Piston Area	= 15.04 N . = 1.3970 N ./DIV = 5.0700 Square centimetres
INITIAL DIAL READING	= 1752.00 DIVISIONS
SHEAR TEST RESULTS START 30	00885 END 310885

CONSOLIDATED UNDRAINED TRIAXIAL TEST

ΡT	TIME	DISPL DIAL RDG	PRING Dial RDG	PORE Press KPA	PER Cent PCStrn	EFFECT Sigmai KPa	EFFECT Sigma3 KPA	HALF DEV Stress KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	RATIO OF EFF Sigma1 EFF Sifma3	A
1	800	1752.0	452.0	500.2	0.0	180 7						
2	805	1751.5	490.0	502.2	0.00	170 0	80 7	37.9	75.8	110.2	1.893	0.0
з	810	1749.0	515.0	503.8	0.03	176 2	02.1	43.7	87.3	111.8	2.056	0.17
4	815	1745.0	530.5	505.2	0.05	179 2	70 7	47.6	95.2	112.7	2.175	0.19
5	820	1743.0	540.0	508.2	0.08	178 0	75.7	49,8	99.5	112.9	2.249	0.21
6	825	1740.1	546.0	508.9	0 10	1.0.1	76.5	51.2	102.4	110.5	2.338	0.30
7	830	1736.0	554.0	509.7	0 14	182 1	75.9	52.1	104.2	110.5	2.372	0.31
8	835	1732.0	560.0	510.4	0.18	187 1	75.5	53.2	106.5	111.1	2.409	0.31
9	840	1729.5	563.0	510.9	0.70	103.1	74.8	54.1	108.3	110.9	2.447	0.31
10	845	1725.5	567.0	511 4	0.20	103.4	74.2	54.6	109.2	110.5	2.471	0 37
11	850	1721.5	569.5	511 5	0.23	103.8	73.4	55.2	110.4	110.2	2.504	0 72
12	855	1717.5	571.0	512 0	0.27	104.1	73.0	55.6	111.1	110.0	2.522	0 32
13	900	1713.0	572.0	512 4	0.30	184.2	72.7	55,8	111.5	109.9	2.534	0 37
14	922	1897.0	574.0	513 2	0.34	184.0	72.2	55.9	111.8	109.5	2.548	0 34
15	940	1584.0	575.0	514 0	0.43	143.5	71.4	56.1	112.2	108.8	2.572	0 36
16	1004	1666.5	575.0	515 0	0.30	103.9	71.6	56.1	112.3	109.0	2.568	0.34
17	1030	1547.0	576 0	81E 0	0.75	182.2	69.7	56.3	112.5	107.2	2.814	0.30
18	1100	1822.0	576 0	515.5	0.83	181.4	69.1	56.1	112.3	106.5	2 625	0.40
19	1155	1581.0	575 5	517.1	1.15	180.2	58.2	56.0	112.0	105.5	2.542	0.43
20	1300	1531.0	574 8	516.0	1.51	178.2	66.7	55.8	111.5	103.9	2 572	0.47
21	1403	1483.0	573 0	520.4	1.95	176.2	85.6	55.3	110.5	102.5	2 685	0.50
22	1500	1442.0	572 0	520.8	2.37	174.0	64.2	54.9	109.8	100.8	2 710	0.55
23	1611	1385 5	571 0	522.6	2.73	172.1	63.2	54.5	108.9	99.5	2 724	0.81
24	1725	1330 0	571.0 570 E	524.0	3.23	170.0	61.9	54.1	108.1	97.9	2 744	0.88
25	1900	1257 0	570.5	525.1	3.72	168.2	60.8	53.7	107.4	95.6	2 767	0.74
26	2103	1163 0	570.0 588 A	525.9	4.37	166.1	59.5	53.3	105.6	95.0	2 707	0.79
27	2256	1077 0	568.0	528.5	5.19	163.7	58.3	52.7	105.4	93 4	2 800	0.83
28	805	889 0	568.0	627.4	5.85	181.9	57.6	52.2	104.3	92.4	2.808	0.89
29	938	590.0	567.0	530.4	9.84	154.1	54.1	50.0	100.0	87 4	2.011	0.95
30	1250	445 0	567.0	530.2	10.25	154.2	55.0	49.6	99.2	88 1	2.040	1.25
31	1400	793.0	566.5	531.4	11.53	151.8	54.1	48.8	97.7	86 7	2.004	1.28
32	1425	372 0	D00.0	531.4	12.00	150.8	53.8	48.5	97.0	85 1	2.005	1.43
		372.0	566.0	530.7	12.17	150.8	53.9	48.5	96.9	88 2	2.004	1.47
										30.2	X.788	1.44

,

SAMPLE NO. = T 741	(REMOULDED	SAM	PLE)	
CONSOLIDATION AXIAL STR Preconsolidation pressu Normalizing stress	IESS IRE	1 1 1	159.62 159.82 159.62	КРА Кра Кра

NORMALIZED	CHEAD						
	SHEAR	1621	RESULTS	START	300885	END	310885

P T	885					
	CENT	NRMLZD	EFFECT	NRMLZD	NRMLZD	
	LENI	HALF	RATIO	OCT	CHANGE	
	PUSTRN	DEV	S I GMA 1	STRESS	IN PWP	
		STRESS	SIGMA3	KPA	KPA	
		KPA				
1	0.0	0.237	1.893	0.690	0.0	
2	.0.00	0.273	2.056	0.700	0 017	
3	0.03	0.298	2.175	0.705	0 077	
4	0.05	0.312	2.249	0.707	0.071	
5	0.08	0.321	2.338	0.683	0.080	
6	0.10	0.328	2.372	0.893	0.050	
7	0.14	0.334	2.409	0 898	0.085	
8	0.18	0.339	2.447	0 895	0.080	
9	0.20	0.342	2.471	0 897	0.084	
10	0.23	0.346	2.504	0 890	0.087	
11	0.27	0.348	2.522	0.620	0.070	
12	0.30	0.349	2 534	0.669	0.071	
13	0.34	0.350	2 548	0.888	0.074	
14	0.49	0.352	2 870	0.888	0.076	
15	0.80	0.352	7 8 8 8	0.682	0.081	
15	0.75	0.352	2.500	0.883	0.086	
17	0.83	0.382	2 0 0 0	0.872	0.093	
18	1.15	0 361	2.020	0.657	0.098	
19	1.51	0 348	4.042	0.881	0.105	
20	1.95	0 745	2.6/2	0.851	0.112	
21	2.37	0 744	4.685	0.842	0.127	
22	2.73	0.344	2.710	0.531	0.129	
23	3 23	0.341	2.724	0.823	0.142	
24	3 72	0.339	2.746	0.614	0.149	
25	A 77	0.336	2.767	0.805	0.156	
26	8 10	0.334	2.792	0.595	0.181	
27	5 05	0.330	2.809	0.585	0.185	
28	0.00	0.327	2.811	0.579	0.170	
20	10.04	0.313	2.848	0.548	0,189	
30	11 8 7	0.311	2.804	0.552	0.188	
3.5	12.00	0.306	2.805	0.543	0.195	
	12.00	0.304	2.804	0.540	0.195	
<u>ل</u> ي در	12.17	0.304	2.798	0.540	0 191	
				· · · · · · ·	~	

SAMPLE NO. * T 742 (REMOULDED	) SAMPLE)
INITIAL MOISTURE CONTENT	= 49.9 PERCENT
SPECIFIC GRAVITY OP SOIL	= 2.73
INITIAL VOID RATID	= 1.363
INITIAL HEIGHT OF SAMPLE	= 13.23 cm
INITIAL VOLUME OF SAMPLE	= 602.55 cc
EFFECTIVE PRINCIPAL STRESS RATIO	= 0.53
PINAL MOISTURE CONTENT	= 39.1 PERCENT
TX. CONSOLIDATION START 16 TRIAXIAL CONSOLIDATION TECT	0885 END 290885

TX. CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST

PT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	Q	VOID Ratio	v	SHEAR Strain
1 2 3 4 5 5 7 8 9 10	50.03 57.71 56.45 87.98 101.26 116.40 133.70 159.63 159.85	$\begin{array}{c} 25.50\\ 30.50\\ 35.20\\ 40.50\\ 46.50\\ 53.60\\ 61.70\\ 70.90\\ 84.80\\ 84.80\\ \end{array}$	1.890 2.305 2.768 3.477 4.603 5.918 7.377 8.972 11.489 12.207	2.050 2.547 3.303 4.174 5.452 6.813 8.240 9.651 11.559 12.538	0.080 0.171 0.268 0.349 0.424 0.424 0.447 0.431 0.339 0.035 0.165	34.34 39.57 45.62 52.48 60.39 69.49 79.93 91.83 109.74 109.82	23.53 27.21 31.25 35.95 41.38 47.68 54.70 62.80 74.83 75.05	1.315 1.301 1.285 1.265 1.235 1.202 1.169 1.135 1.030 1.057	2.315 2.301 2.285 2.265 2.235 2.202 2.169 2.135 2.050 2.057	1.206 1.423 1.686 2.086 3.847 4.630 5.755 7.636 8.028

,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	S I GMA 3	STRAINI	STRAINS	v
1 2 3 4 5 6 7 8 9 10	50.03 57.71 56.45 76.45 87.98 101.28 115.40 133.70 159.63 159.85	26.50 30.50 40.50 45.80 53.80 51.70 84.80 84.80	1.890 2.305 2.788 3.477 4.803 5.918 7.377 8.972 11.489 12.207	0.080 0.171 0.288 0.349 0.424 0.424 0.431 0.339 0.035 0.185	2.315 2.301 2.285 2.285 2.202 2.169 2.135 2.090 2.057

### ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = T 742 (REMOULDED SAMPLE) TEST RESULTS START 160885 END 290885

₽T	EFFECT Sigmai KPA	EFFECT Sigmaj KPA	DEV Stress KPA	EFFECT DCT Stress KPA	AXIAL STRAIN Z	RADIAL Strain %	VOL STRAIN X	LSSV KPA	LSNV X	DELTA Energy KN-m/yol	TOTAL Energy Kn-m/yol
1	50.0	26.5	23.5	34.3	1.890	0.080	2.050	0.0			
2	57.7	30.5	27.2	39.6	2.305	0,171	2.647	9.5	0.4	0.275	0.0
з	65.4	35.2	31.3	45.6	2.766	0.268	3.303	20.5	0 9	0.350	0.278
4	76.4	40.5	35.9	52.5	3.477	0.349	4.174	33.0	1 6	0.559	0.625
5	88.0	45.5	41.4	60.4	4.503	0.424	5.452	47 4	2.0	0.992	1.194
6	101.3	53.6	47.7	69.5	5.918	0.447	6 8 1 3	54.0	2.0	1.267	2.186
7	116.4	61.7	54.7	79.9	7.377	0.431	8 240		4.1	1.569	3.454
8	133.7	70.9	62.8	91.8	8.972	0 339	0.240	63.0	5,5	1.872	5.023
9	159.6	84.8	74.8	109.7	11 489	0.533	a. 001	104.6	7.1	3.218	6.895
10	159.9	84.8	75.1	109 8	10 202	0.035	11.559	137.1	9.6	1.358	10.113
					12.207	0.155	12.538	137.3	10.3		11.482

ł,

UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. 3 T 742 (REMOULDED SAMPLE) TEST RESULTS START 160885 END 290885

PT	EFFECT SIGMA1 KPA	EFFECT Sigmaj Kpa	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL Strain %	RADIAL Strain %	VOL Strain X	LSSV KPA	LSNV Z	DELTA Energy KN-m/vol	TOTAL Energy Kn-m/vol
1	50.0	28.5	23.5	34.3	1.908	0.082	2.071	0.0	0.0		
2	57.7	30.5	27.2	39.5	2.332	0.175	2.683	9.5	0.4	0.282	0.0
3	85.4	35.2	31.3	45.8	2.805	0.276	3.358	20.5	0.9	0.380	0.282
4	76.4	40.5	35.9	52.5	3.539	0.362	4.263	33.0	1.7	0.589	0.842
5	88.0	46.6	41.4	60.4	4.712	0.447	5.605	47.4	7.8	1.038	1.231
6	101.3	53.B	47.7	69.5	8.101	0.478	7.058	84 0	A 2	1.344	2.270
7	116.4	61.7	54.7	79.9	7.663	0.488	8.699			1.690	3.614
8	133.7	70.9	82.8	91.8	9.400	0.374	10 148	104.0		2.048	5.304
9	159.6	84.8	74.8	109.7	12.204	0 040	12 242	104.8	7.5	3.592	7.351
10	159.9	84.8	75.1	109.8	13.019	0.149	13 307	137.1	10.3	1.555	10.943
							12.397	137.3	11.1		12.497

SAMPLE NO. = T 742 (REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATION	I 11.572 CENTIMETRES
Sample volume after consolidation	526.797 CUBIC CENTIMETRES
sample area after consolidation	45.523 SQUARE CENTIMETRES
CONSTANT LOAD	* 16.55 N .
Proving ring factor	* 1.0225 N ./DIV
Piston Area	* 5.0700 Square centimetres
INITIAL DIAL READING	= 2100.00 DIVISIONS

SHEAR TEST RESULTS START 290885 END 300885

CONSOLIDATED UNDRAINED TRIAXIAL TEST

P	T TIME	DISPL	PRING	PORE	PER	EFFECT	EFFECT	HALF	DEV			
		DIAL	DIAL	PRESS	CENT	SIGMAI	SIGMA3	DEV	578866	Errel:	RATID OF	A
		KDG	RDG	KPA	PCSTRN	KPA	KPA	STRESS	KPA	STREES	EFF SIGMAN	
								KPA		KPA	EFF SIPMA3	
1	809	2100.0	807 0	E 0 0 0								
2	815	2099.5	524 0	500.2	0.0	159.5	84.7	37.4	74.8	109.6	1 884	
3	820	2098.8	637 0	502.0	0.00	161.5	82.8	39.3	78.7	105.0	1 950	0.0
4	825	2097.8	648.5	505.5	0.01	162.7	81.1	40.8	81.6	108.3	2.006	0.47
5	830	2095.0	662 5	505.2	0.02	163,8	79.7	42.1	84.1	107.7	2 056	0.49
5	835	2094.0	673 0	508.3	0.03	165.8	78.5	43.6	87.3	107.6	2 112	0.34
7	841	2091.5	685 0	507.8	0.05	165.7	77.0	44.8	89.7	105.9	2 154	0.49
8	845	2089.5	697 5	509.3	0.07	168.0	75.7	46.1	92.3	106.5	2.219	0.50
9	851	2086.5	708 5	510 2	0.09	170.3	75.2	47.5	95.1	106.9	2 265	0.52
10	855	2083.0	719.0	511.0	0.12	172.0	74.5	48.8	97.5	107.0	2.309	0.46
11	900	2079.2	728 5	511.0	0.15	173.7	73.8	48.9	99.9	107.1	2 353	0.44
12	910	2072.5	779 6	511.7	0.18	175.1	73.1	51.0	102.0	107.1	2 395	0.43
13	920	2064.5	748 5	512.1	0.24	177.0	72.6	52.2	104.4	107.4	2 4 7 8	0.42
14	930	2055.0	755 +	513.0	0.31	178.1	71.8	53.2	106.3	107.2	7 481	0.40
15	940	2046.0	752.0	513.6	0.39	179.1	71.2	53.9	107.9	107.2	2 515	0.41
15	950	2035 5	782 4	513.6	0.47	180.1	70.9	54.8	109.2	107 3	2.515	0.41
17	1003	2025 0	763.4	514.6	0.55	179.8	70.5	54.7	109.3	106 9	2.340	0.39
18	1010	2019 0	703.5	514.9	0.85	179.2	59.9	54.6	109.3	106 7	2.351	0.42
19	1030	1990 0	763.5	515.5	0.70	178.7	69.5	54.5	109.2	105 9	2.364	0.43
20	1045	1985 0	763.0	516.2	0.95	177.8	68.6	54.5	109.0	104 9	2.3/1	0,45
21	1100	1970 5	763.5	516.8	0.99	175.8	67.9	54.5	108.9	104 2	4.569	0.47
22	1115	1957 5	763.0	518.1	1.12	175.9	67.3	54.3	108.6	103 5	2.804	0.49
23	1130	1947 0	702.8	518.2	1.23	175.3	86.8	54.2	108 5	103.0	2.614	0.53
24	1845	1970 6	782.0	518.4	1.36	174.4	\$6.2	54.1	108 2	102.2	2.624	0.54
25	1200	1915 0	762.0	519.7	1.47	173.6	65.5	54.0	108 0	101 6	2.634	0.55
26	1230	1885.0	751.0	519.8	1.60	172.7	85.0	53.8	107 7	101.8	2.646	0.59
27	1307	1851.0	761.0	520.5	1.85	171.5	84.0	53.7	107 5	100.9	2.857	0.80
28	1331	1837.0	761.0	521.8	2.15	169.8	62.7	53.6	107 1	88.0	2.679	0.62
29	1400	1704 5	780.5	522.0	2.36	189.9	53.2	53.4	105 7	30.4	2.708	0.67
30	1430	1736.5	759.5	522.0	2.51	168.9	62.6	53 1	105.7	30.0	2.688	0.58
31	1500	1771.0	759.0	523.8	2.84	186.7	80.8	53 0	105.0	38.0	2.598	0.69
32	1530	1742.0	758.5	524.3	3.09	186.4	60.9	52 7	105.5	315.1	2.742	0.76
	1530	1714.0	758.5	524.0	3.34	165.7	60.4	52.5	105.5	96.1	2.732	0.79
									103.3	95.5	2.743	0.78
33	1800	1885 5										
34	1830	1686 5	/68.0	524.5	3.57	185.2	BO.3	52.4	104 9			
35	1700	1894 5	757.5	523.6	3.83	165.9	61.4	52.2	104 5	40.1	2.739	0.81
36	1802	1020.5	755.0	528.7	4.07	182.4	58.5	51.9	107.0	86.2	2.701	0.79
37	1800	1817 5	755.0	525.6	4.58	163.0	59.7	51.7	103 3	33.1	2.775	0.91
38	2100	1013.5	755.0	527.7	5.07	159.7	57.1	51.3	107 6	34.1	2.730	0.89
3.9	2274	1401.0	752.5	530,0	6.04	155.7	54.6	50.5	101 1	31.3	2.797	0.99
40	2400	1311.0	751.5	531.8	6.82	153.3	53.4	50.0		88.3	2.851	1.14
4 1	100	1228.5	750.0	532.0	7.52	151.4	52.4	A0 5	38.8	86.7	2.872	1.26
42	800	776.0	742.5	535.5	11.44	142.9	49.7	46 6	49.0	65.4	2.889	1.32
43	970	715.0	741.5	535.8	11.97	142.0	49.6	46.2	43.2	80.8	2.875	1.92
44	1005	890.0	741.0	535.3	12.18	141.5	49.3	45 1	a 4 . 4	80.4	2.863	2.02
	.005	858.0	740.0	535.0	12.46	140.9	49.2	45 9	32.2	80.0	2.870	2.02
								-9.9	at 1.7	78.8	2.854	2.05

SAM	PLE ND. + T	742 (	REMOULDED	SAMPLEI			
CONS	SOLIDATION	AXIAL STRE	SS	1 150 a			
PREC	CONSOLIDATI	ON PRESSUR	E	* 159.8	5 8 9 A		
NORM	MALIZING ST	RESS		* 159.8	5 KPA		
NORM	MALIZED SHE	AR TEST RE	SULTS :	START :	290885	END	300885
PΤ	PER	NRMLZD	FFFFFT	-			
	CENT	HALF	RATIO	NKML2D DCT	NRMLZD		
	PCSTRN	DEV	SIGMAI	STRESS	LN DWD		
		STRESS	SIGMAS	KPA	KPA FWP		
		КРД					
1	0.0	0.234	1 884	A			
2	0.00	0.246	1.950	0 683	0.0		
3	0.01	0.255	2.006	0 678	0.011		
4	0.02	0.263	2.056	0.674	0.021		
5	0.03	0.273	2.112	0.673	0.038		
-	0.05	0.280	2.164	0.669	0.045		
Ŕ	0.07	0.289	2.219	0.885	0.057		
8	0.03	0.297	2.265	0.669	0.059		
10	0.15	0.305	2.309	0.889	0.063		
11	0.18	0.319	2.353	0.670	0.088		
12	0.24	0.326	2.438	0.670	0.072		
13	0.31	0.333	2.481	0 671	0.074		
14	0.39	0.337	2.515	0.670	0.080		
15	0.47	0.342	2.540	0.671	0.084		
15	0.56	0.342	2.551	0.689	0.090		
1.8	0.65	0.342	2.564	0.665	0.092		
19	0.95	0.342	2.571	0.552	0.096		
20	0.99	0.341	2.589	0.656	0.100		
21	1.12	0 340	2.504	0.652	0.104		
22	1.23	0.339	2 674	0.647	0.112		
23	1.36	0.338	2.634	0.540	0.113		
24	1.47	0.338	2.646	0.536	0 122		
25	1.80	0.337	2.857	0.831	0.123		
20	1.85	0.336	2.679	0.624	0.127		
28	2.15	0.335	2.708	0.616	0.135		
29	2.51	0.334	2.888	0.618	0.136		
30	2.84	0.332	2.898	0.613	0.136		
31	3.09	0.330	2.742	0.601	0.148		
32	3.34	0.329	2.743	0.507	0.151		
33	3.57	0.328	2.739	0.536	0.149		
34	3.83	0.327	2.701	0.602	0 145		
35 76	4.07	0.325	2.775	0.583	0.166		
37	4.58	0.323	2.730	0.589	0.159		
38	5.04	0.321	2.797	0.571	0.172		
39	5.82	0 313	2.851	0.552	0.186		
40	7.52	0.310	2.5/2	0.542	0.198		
41	11.44	0.292	2.875	0.534	0.199		
42	11.97	0.289	2.863	0 503	0.221		,
43	12.18	0.288	2.870	0.501	0 220		
44	12.46	0.287	2.864	0 499	0.220		

SAMPLE NO. 3 T 751 (REMOULDED INITIAL MDISTURE CONTENT SPECIFIC GRAVITY OF SOIL INITIAL VDID RATIO INITIAL HEIGHT OF SAMPLE INITIAL VOLUME OF SAMPLE INITIAL VOLUME OF SAMPLE FFFECTIVE PRINCIPAL STRESS RATIO FINAL MOISTURE CONTENT	SAMPLE) = 50.0 PERCENT = 2.73. = 1.365 = 13.02 cM = 592.58 CC = 1.00 = 41.3 PERCENT
TX. CONSOLIDATION START 130 TRIAXIAL CONSOLIDATION TEST	385 END 270385

PI	EFFECT	EFFECT	STRAINI	VOLUME	STRAINT	5555C7				
	SIGMAI	S I GMA3		STRAIN		LFFELS	Q	V010	v	SHEAR
				0.0411		P		RATIO		STRAIN
1	50 10	26 60								
2	57 61	20.50	1.920	2.287	0.183	34.37	23.60	1 3 1 1	2 711	
	66 37	30.50	2.177	2.759	0.291	39.54	27.11	1 300	2.311	1.158
~	76.37	35.10	2.550	3.333	0.391	45.52	31.27	1 286	2.300	1.258
	16.47	40.50	3.107	4.057	0.480	52.49	35 97	1 200	2.285	1,439
5	87.99	46.60	3.978	5.088	0.555	60.40	41 39	1.265	2.269	1.751
5	101.19	53.80	5.280	6.370	0.545	69 46	47.55	1.245	2.245	2.283
	116.28	61.70	6.816	7.788	0.485	79 89	47.53	1.214	2.214	3.157
8	133.63	70.90	8.656	9.332	0.338	91 81	54.58	1.181	2.181	4.220
9	159.31	84.80	11.536	11.323	-0 105	100 04	62.73	1.144	2.144	5.545
10	79.99	42.40	10.745	10.252	-0 247	F4 07	74.51	1.097	2.097	7.752
11	79.94	42.40	10.702	10 091	-0.205	54.93	37.59	1.123	2.123	7.328
12	80.34	42.40	10.826	9 990	-0.305	54.91	37.54	1.125	2.126	7.338
13	74.28	42.90	10.875	9 990	-0.418	55.05	37.94	1.129	2.129	7.496
14	68.68	43.60	10 822	9 990	-0.418	53.36	31.38	1.129	2.129	7.496
15	64.92	46.10	10 807	3.330	-0.415	51.96	25.08	1.129	2.129	7 492
16	61.56	49 00	10 775	3.330	-0.406	52.37	18.82	1.129	2,129	7 477
17	58.29	52 00	10 777	3.330	-0.393	53.19	12.55	1.129	2.129	7 446
18	56.00	55.00	10.737	9.990	-0.374	54.10	6.29	1.129	2 1 2 9	7 407
19	55 40	55.00	10.658	9.990	-0.339	56.00	0.0	1.129	2 129	7.407
20	54 90	53.40	10.630	9.990	-0.320	55.40	0.0	1.129	2 129	7.330
21	54 70	54.90	10.607	9.990	-0.308	54,90	0.0	1 129	2 120	7.300
22	54.70	54.70	10.580	9,990	-0.295	54.70	0.0	1 129	2 120	7.277
22	54.40	54.40	10.545	9.990	-0.278	54.40	0.0	1 1 20	2.129	7.250
24	54.00	54.00	10.522	9.990	-0.266	54.00	0.0	1 120	2.129	7.215
57	54.60	54,60	10 492	9.990	-0.251	54.60	0.0	1 1 2 3	2.129	7.192
23	54.50	54.50	10.453	9.990	-0.231	54.50	0.0	1.129	2.129	7.161
<u> </u>	54.30	54.30	10.425	9.990	-0.218	54 30	<u>.</u>	1.129	2.129	7.123
27	54.10	54.10	10.399	9.990	-0.205	54 10	0.0	1.129	2.129	7.095
28	54.30	54.30	10.389	9.990	-0.189	54 70	0.0	1.129	2.129	7.089
29	53.10	53.10	10.353	9,990	-0 182	57.10	0.0	1.129	2.129	7.039
						55.10	0.0	1.129	2.129	7.023

ł,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

----

ΡT	S I GMA 1	SIGMA3	STRAINI	STRAINS	v
1	50.10	26.50	1.920	0 182	
2	57.61	30.50	2 177	0.103	2.311
з	66.37	35.10	2 550	0.291	2.300
4	76.47	40.50	3 107	0.331	2.285
5	87.99	46.80	3 978	0.460	2.269
6	101.19	53.60	5 280	0.555	2.245
7	116.28	61.70	5 815	0.345	2.214
8	133.63	70.90	8 656	0.486	2.181
9	158.31	84.80	11 670	0.338	2.144
10	79.99	42 40	10 745	-0.106	2.097
11	79.94	42.40	10.745	-0.247	2.123
12	80.34	42.40	10 826	-0,305	2.126
13	74.28	42 90	10 876	-0.418	2.129
14	68.68	43.60	10 832	-0.418	2.129
15	84.92	48 10	10.822	-0.415	2.129
16	61.55	49 00	10.803	-0.405	2.129
17	58.29	52 00	10.775	•0.393	2.129
18	56.00	55.00	10.737	-0.374	2.129
19	55.40	55 40	10.000	-0.339	2.129
20	54.90	54 90	10.830	-0.320	2.129
21	54.70	54 70	10.807	-0.308	2.129
22	54.40	54 40	10.880	-0.295	2.129
23	54.00	54 00	10.545	-0.278	2.129
24	54.80	54.00	10.522	-0.255	2.129
25	54.50	54.50	10.492	-0.251	2.129
26	54 30	54.50	10.453	-0.231	2.129
27	54 10	54.10	10.426	-0.218	2.129
28	54 30	54.10	10.399	-0.205	2.129
29	53 10	54.30	10.389	-0.189	2.129
	55.10	53.10	10.353	-0.182	2.129

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE ND. = T 751 (REMOULDED SAMPLE) TEST RESULTS START 130385 END 270385

PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN	RADIAL STRAIN	VOL Strain %	LSSV KPA	LSNV >	DELTA TOTAL Energy Energy KN-m/Vol KN-m/Vol	
1	50.1	26.5	23.6	34.4	1.920	0.183	2.287	0 0	0.0		
2	57.5	30.5	27.1	39.5	2.177	0.291	2.759	9.0	0.0	0.0	
з	66.4	35.1	31.3	45.5	2.550	0.391	3.333	20.7	0.3	0.200 0.297	
4	76.5	40.5	36.0	52.5	3.107	0.480	4.067	20.3	0.7	0.497 0,465	
5	88.0	46.6	41.4	60.4	3.978	0.555	5 08*	33.0	1.3	0.962 0.782	
6	101.2	53.5	47.6	69.5	5.280	0.545	5.770	47.4	2.1	1.743	
7	116.3	61.7	54.5	79.9	5.816	0.485	0.210 7 78*	ъз.9 со -	3.4	2,965 1,502	
8	133.6	70,9	62.7	91.8	8,656	0 77.	0.770	82.8	4.9	4.567 2.103	
9	159.3	84.8	74.5	109.6	11.535	-0 105	3.332	104.5	5.7	6.670 3.527	
10	80.0	42.4	37.6	54.9	10.745	-0 247	(1.323	136.8	9.6	10.195 -1.125	
11	79.9	42.4	37.5	54.9	10 707	0.247	10.252	37.4	8.8	9.071	
12	80.3	42.4	37.9	55.0	10 825	-0.305	10.091	37.4	8.8	8.987 0.004	
13	74.3	42.9	31.4	57 4	10.026	-0.418	9.990	37.7	8.9	8.991	
14	88.7	43.5	25.1	57 0	10.826	-0.418	9.990	33.5	8.9	8.991	
15	64.9	46.1	18 8	52.0	10.822	-0.416	9.990	30.5	8.9	8,990	
15	61.6	49.0	10.0	52.4	10.803	-0.406	9.990	31.4	8.9	8.986	
17	58 7	FD 0	12.6	53.2	10.776	-0.393	9.990	33.8	8.9	8.981	
18	56.0	51,0	6.3	54.1	10.737	-0.374	9.990	37.0	8.9	8,978	
19	EE A	56.0	0.0	56.0	10.668	-0.339	9.990	42.1	8.8	8.976	
20	JJ.4	55.4	0.0	55.4	10.630	-0.320	9.990	41.2	8.7	8.976	
20	54.8	54.9	0.0	54.9	10.507	-0.308	9.990	40.4	8.7	0.0 8.975	
21	54.7	54.7	0.0	54.7	10.580	-0.295	9.990	40.1	8.7	0.0 8.976	
27	54.4	54.4	0.0	54.4	10.545	-0.278	9.990	39.7	8.6	0.0 8.976	
23	54.0	54.0	0.0	54.0	10.522	-0 288	8 880			0.0	
24	54.6	54.5	0.0	54.6	10.492	··· 200	3.990	39.1	8.6	8.975 0.0	
25	54.5	54.5	0.0	54.5	10 457	-0.221	a.aac	40.0	8.6	8.976	
26	54.3	54.3	0.0	54.3	10 425	-0.231	9.990	39.8	8.6	8.976	
27	54.1	54.1	0.0	54.5	10.426	-0.218	9.990	39.5	8.5	8.976	
28	54.3	54.3	0.0	54.1	10.339 -	0.205	9.990	39.2	8.5	8.976	
29	53.1	53 1	0.0	54.3	10.369 -	0.189	9.990	39.5	8.5	8.976	
			0.0	53.1	10.353 -	0.182	9.990	37.7	8.4	8.975	

### ENERGY CALCULATIONS

**** NATURAL STRAIN ****

### SAMPLE ND. 3 T 751 (REMOULDED SAMPLE) TEST RESULTS START 130385 END 270385

PT	EFFECT Sigmai Kpa	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN Ž	RADIAL STRAIN %	VOL Strain 2	LSSV KPA	LSNV %	DELTA Energy Kn-m/vdl	TOTAL Energy Kn-m/vol	
1	50.1	26.5	23.6	34.4	1,939	0.187	2.313	0.0				
2	57.6	30,5	27.1	39.5	2.201	0.298	2.798	9.4	0.0	0.205	0.0	
3	65.4	35.1	31.3	45.5	2.583	0.403	3.390	20.7	0.5	0.305	0.205	
4	76.5	40.5	35.0	52.5	3.156	0.498	4 152	77 0	0.7	0.481	0.510	
5	88.0	45.5	41.4	60.4	4.050	0.581	5.272	47.4	1.3	0.816	0.991	
6	101.2	53.6	47.6	69.5	5.425	0.579	6 582	-74 67 0	2.2	1.289	1.807	
7	116.3	61.7	54.6	79.9	7.060	0.524	8.108	82.5	5.5	1.715	3.095	
8	133.6	70.9	62.7	91.8	9.053	0.371	9.796	104 5	ə. i	2.289	4.810	
9	159.3	84.8	74.5	109.5	12.257	-0.120	12.017	176 0	7.1	3,927	7.099	
10	80.0	42.4	37.6	54.9	11.367	-0.275	10.816	37 4	10.3	-1.253	11.026	
11	79.9	42.4	37.5	54.9	11.319	-0.341	10 637	37.4	э, <b>5</b>	-0.094	9.763	
12	80.3	42.4	37.9	55.0	11.457	-0.466	10 525	37,4	9.4	0.005	9.569	
13	74.3	42.9	31.4	53.4	11.457	-0.466	10 525	37.7	9.6	0.0	9.674	
14	68.7	43.6	25.1	52.0	11.453	-0.464	10 525	33.5	9.6	-0.001	9.674	
15	64.9	46.1	18.8	52.4	11.431	-0.453	10.525	30.5	9.6	-0.005	9.673	
16	61.6	49.0	12.6	53.2	11.401	-0.438	10 575	31.4	9.5	-0.005	9.668	
17	58.3	52.0	6.3	54.1	11.358	-0.417	10 575	33.8	9.5	-0.004	9.663	
18	56.0	56.0	0.0	56.0	11.281	-0.378	10 525	37.0	9.5	-0.002	9.659	
19	55.4	55.4	0.0	55.4	11.238	-0.355	10 525	42.1	9.4	-0.000	9.657	
20	54.9	54.9	0.0	54.9	11.212	-0.344	10 525	41.2	a . 3	-0.000	9.657	
21	54.7	54.7	0.0	54.7	11.182	-0.379	10 525	40.4	9.3	-0.000	9,657	
22	54.4	54.4	0.0	54.4	11,143	-0.309	10.525	40.1	9.3	-0.000	9.657	
							10.925	39.7	9.2		9.657	
23	54 0	<b>F</b> 4 A										 
24	54.V 54.E	54.0	0.0	54.0	11.118	-0.296	10.525	39.1	9.2	-0.000	9.657	
- 7	54.0 EA #	54.6	0.0	54.6	11.083	-0.279	10.525	40.0	9.2	0.0	9.857	
26	54.5	54.5	0.0	54.5	11.040	-0.258	10.525	39.8	9.1	-0.000	9.657	
~ ~	54.3	54.3	0.0	54.3	11.010	-0.243	10.525	39.5	9.1	-0.000	9.657	
- /	54.1	54.1	0.0	54.1	10.980	-0.228	10.525	39.2	9.1	-0.000	9.657	
**	54,3	54.3	0.0	54.3	10.946	-0.211	10.525	39.5	9.O	-0.000	3.657	
£3	ə.J. ]	53.1	0.0	53.1	10.929 -	0.202	10.525	37.7	9.0	-0.000	.657	

SAMPLE NO. = 7 751 {REMDULDED	SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATION	11.738 CENTIMETRES
Sample volume after consolidation	538.030 CUBIC CENTIMETRES
Sample area after consolidation	45.666 SQUARE CENTIMETRES
CONSTANT LOAD	= 16.52 N .
Proving Ring Factor	= 1.2365 N ./DIV
Piston Area	= 5.0700 Square centimetres
INITIAL DIAL READING	= 2038.00 DIVISIONS

SHEAR TEST RESULTS START 300385 END 310385

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL DIAL RDC	PRING Dial RDG	PORE Press KPA	PER Cent Pcstrn	EPFECT SIGMA1 KPA	EFFECT Sigma3 KPA	HALF Dev Stress Kpa	DEV Stress KPA	EFFECT OCT Stress KPA	RATIO OF Eff Sigma1 Eff Sifma3	۵
1	907	2038.0	88.5	199.7	0.0	48.4		• •				
2	915	2037.2	110.0	199.7	0.01	54.2	40.4	2.0	0.0	48.4	1.001	0.0
3	925	2033.8	124.5	201.5	0.04	55.2	46.4	4.9	9 8	49 7	1.121	0.0
4	930	2032.0	132.0	202.5	0.05	57.2	45.4	5.9	11.8	49.3	1.280	0.18
5	940	2030.0	141.5	203.6	0.07	58.8	44.4	7.2	14.4	49.2	1.324	0.23
7	945	2026.5	149.0	204.4	0.08	50.0	43.6	8.2	16.4	49.1	1.376	0,29
8	950	2025.0	166.5	205.7	0.10	51.5 #2 c	42.3	9.6	19.3	48.7	1.455	0.31
9	\$55	2022.8	176.0	207.8	0.13	62.6 84 1	41.5	10.6	21.1	48.5	1.509	0.33
10	1000	2020.2	184.8	208.7	0.15	65.5	39.4	13 0	23.7	48.3	1.586	0.34
11	1011	2015.2	201.0	210.5	0.19	67.9	37.5	15.2	30.4	40.1	1.862	0.35
12	1021	2009.5	216.0	212.0	0.24	70.5	36.0	17.2	34.5	47.5	1.958	0.36
14	1041	2005.0	222.0	213.0	0.28	71.1	35.0	18.0	36.1	47.0	2.031	0.37
15	1050	1994 5	240.0	214.6	0.32	74.5	33.6	20.5	40.9	47.2	2.218	0.36
16	1102	1986.5	258.5	216 3	0.37	75.8	32.7	21.5	43.1	47.1	2.317	0.36
17	1110	1981.0	285.0	216.9	0.48	78 9	31.9	22.9	45.9	47.2	2.437	0.36
18	1121	1973.4	274.0	217.4	0.55	80.5	30.6	25.0	47.6	47.2	2.520	0.36
19	1130	1967.0	280.8	218.0	0.80	82.0	30.2	25.9	51.8	47.3	2.634	0.35
20	1141	1959.0	288.5	218.4	0.87	83.5	29.7	26.9	53.8	47.6	2 812	0.35
22	1200	1952.4	294.0	218.7	0.73	84.8	29.5	27.6	55.3	47.9	2.873	0.34
23	1210	1937 6	307.1	218.9	0.78	86.3	29.2	28.6	57.1	48.2	2.955	0.34
24	1220	1930.4	312.9	219.4	0.85	87.7	29.0	29.4	58.7	48.6	3.024	0.33
25	1230	1924.5	318.2	219.4	0.97	80.4	20.0	30.1	50.2	48,9	3.091	0.33
26	1240	1916.0	324.0	219.6	1.04	91.7	28.5	31.6	61.5	49.3	3.140	0.32
27	1250	1908.0	329.0	219.6	1.11	92.9	28.5	32.2	64 4	50.0	3.20/	0.32
28	1302	1899.0	334.5	219.8	1.18	94.4	28.5	32.9	65.8	50.5	3.302	0.31
30	1330	1875 0	340.8	219.3	1.28	\$6.3	28.8	33.7	67.5	51.3	3.343	0.29
31	1345	1862.8	351 0	218.2	1.38	87.8	29.0	34.4	68.8	51.9	3.372	0.28
32	1400	1849.0	355.5	218.4	1 61	39.3	28.3	35.0	70.0	52.8	3.390	0.27
						100.5	23.1	35.8	71.2	53.4	3.396	0.28
33	1415	1876 6		<b>.</b>								~~~~~~~~~~~~~~~~~~~~~~~
34	1432	1821 4	358.9	218.0	1.72	102.1	30.1	35.0	72.0	54.1	3.392	0.25
35	1446	1808.0	364.8	217 1	1.05	103.3	30.6	36.4	72.7	54.8	3.377	0.24
36	1500	1795.0	386.4	216.7	2.06	105.0	30.9	36.7	73.4	55.4	3.375	0.24
37	1530	1789.5	370.0	215.7	2.29	106.8	32.3	38.5	73.7	55.8	3.356	0.23
38	1800	1742.0	372.1	215.2	2.52	107.7	32.8	37.4	74.9	57 8	3.307	0.21
33	1830	1714.0	373.5	214.7	2.75	108.5	33.5	37.5	75.1	58.5	3.241	0.21
41	1733	1857.0	373.9	214.1	2.99	109.1	34.1	37.5	75.0	59.1	3.199	0.19
42	1800	1633.0	374.3	213.9	3.25	109.2	34.3	37.4	74.9	59.3	3.184	0.19
43	1830	1805.2	374.0	213.3	3.45	109.2	34.5	37.3	74.6	59.5	3.156	0.19
44	1900	1581.0	373.9	213.3	3.89	109.0	34.7	37.2	74.5	59.5	3.147	0.18
45	2000	1528.5	374.0	213.1	4.33	109.0	35.0	37.0	74.3	39.5 80 7	3.142	0.18
46	2105	1476.0	373.2	213.0	4.78	108.5	35.2	36.7	73.4	59.7	3,114	0.18
47	2200	1430.5	372.0	212.7	5.18	108.2	35.4	36.4	72.8	59.7	3.057	0.18
49	2400	1332 0	372.9	213.1	5.54	107.9	35,1	36.4	72.8	59.4	3,073	0.18
50	334	1158.0	364 6	213.1	6.01 7 EO	107.1	35.1	36.0	72.0	59.1	3.052	0.19
51	800	1028.0	357.0	213.1	8.80	104.1	34.9	34.6	69.2	58.0	2.982	0.19
52	900	999.0	354.0	212.9	8.85	100.8	39.3	33.2	68.5	57.1	2.905	0.20
53	937	982.0	354.2	212.8	9.00	100.8	35.3	32.8	00.0 85 E	37.1	2.852	0.20
54	1000	958.0	354.2	212.8	9.20	100.8	35.5	32.7	85.3	57.1	2.855	0.20
55 88	1200	900.5	349.5	212.2	9.69	99.8	36.0	31.9	83.8	57.3	2.773	0.20
57	1300	541.0 783 A	340.5	211.8	10.20	97.8	36.5	30.5	61.3	55.9	2.879	9.20
58	1400	725.5	331 5	211.3	10.69	95.4	36.8	29.8	59.5	56.7	2.521	0,19
89	1500	888.5	327.5	211 2	11.15	85.2	36.7	29.2	58.5	56.2	2.593	0.20
80	1800	510.0	326.0	211.3	12.17	97.1	30.9 76.9	28.6	57.2	55.0	2.550	0.20
						· · · ·	30.0	28.3	58.5	55.6	2.538	0.21

		•					
SAN	IPLE ND. = T	751 [	REMDULDED	SAMPLE)			
CON Pre Nor	SOLIDATION Consolidati Malizing St	AXIAL STRE ON PRESSUR RESS	5 S E	48.4 159.3 159.3	0 КРД 1 КРД 1 КРД		
NOR	MALIZED SHE	AR TEST RE	SULTS	START :	300385	END	310385
ΡT	PER Cent PCSTRN	NRML 2D HALF DEV STRESS KPA	EFFECT RATIO Sigmai Sigmaj	NRMLZD DCT STRESS KPA	NRMLZD Change In Pwp Kpa		
123456789012341567890123456789012345678901234567890123456789012345678901234567890123456789012	0.0 0.04 0.05 0.07 0.05 0.10 0.11 0.15 0.24 0.22 0.37 0.49 0.550 0.78 0.322 0.374 0.550 0.786 0.927 1.18 1.288 1.49 1.52 0.927 1.964 1.18 1.288 1.49 1.52 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.525 2.555 2.555 2.555 2.5555 2.5555 2.55555 2.555555555555555555555555555555555555	0.000 0.018 0.031 0.037 0.045 0.052 0.052 0.0560 0.074 0.0860 0.113 0.113 0.113 0.1128 0.144 0.149 0.157 0.163 0.157 0.163 0.179 0.189 0.202 0.2216 0.223 0.2236 0.2236 0.235 0.235 0.235 0.235 0.235 0.235 0.231 0.235 0.231 0.235 0.231 0.235 0.231 0.235 0.231 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.235 0.23	1.001 1.121 1.211 1.250 1.324 1.376 1.509 1.585 1.585 1.585 2.031 2.218 2.031 2.520 2.534 2.317 2.520 2.534 2.317 2.520 2.534 2.317 2.520 2.534 3.024 3.390 3.3267 3.2261 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3276 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3276 3.3276 3.3267 3.3267 3.3267 3.3276 3.3276 3.3267 3.3267 3.3267 3.3276 3.3276 3.3267 3.3267 3.3276 3.3276 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267 3.3267	0.304 0.315 0.312 0.309 0.305 0.305 0.302 0.299 0.298 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.295 0.301 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.305 0.355 0.326 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.325 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.357 0.355 0.355 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.375 0.375 0.375 0.375 0.375 0.375 0.	0.0 0.0 0.011 0.024 0.030 0.044 0.051 0.068 0.077 0.083 0.094 0.108 0.104 0.111 0.112 0.121 0.122 0.122 0.122 0.123 0.122 0.122 0.123 0.122 0.122 0.122 0.122 0.122 0.123 0.122 0.122 0.123 0.122 0.123 0.122 0.123 0.122 0.123 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257 0.257		
43 44 45	3.89 3.89 4.33	0.234 0.233 0.232	3.147 3.142 3.114	0.374 0.373 0.375	0.085 0.085 0.084		
444455555555555555555555555555555555555	4.79 5.18 5.54 6.01 7.50 8.60 8.60 8.85 9.00 9.20 9.20 9.20 9.20 9.20 9.10.20	0.230 0.229 0.228 0.226 0.217 0.205 0.205 0.205 0.205 0.205 0.200 0.192 0.187 0.184	3.085 3.057 3.057 2.982 2.982 2.855 2.856 2.840 2.773 2.679 2.679 2.521 2.593	0.375 0.375 0.371 0.364 0.358 0.358 0.359 0.380 0.380 0.380 0.357 0.355 0.355	C.083 C.082 C.084 C.084 C.084 C.084 C.083 C.082 C.082 C.082 C.075 C.075 C.073		
60	12.17	0.177	2.536	0.351	0.072 0.073		
SAMPLE NO. : T 752 INITIAL MOISTURE CONT SPECIFIC GRAVITY OF S INITIAL VOID RATIO INITIAL HEIGHT OF SAM INITIAL VOIME OF SAM	(REMOULDED Ent OIL Ple	) SAMPL = 5 = 2. = 13 = 13	E) 0.5 PERCEN 73 .379 .02 CM	т			
---------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------	----------------------------------------	------------------------------------------	-------			
EFFECTIVE PRINCIPAL S FINAL MOISTURE CONTEN	TRESS RATIO	- 5a - 1. - 4	2.98 CC 00 2.2 PERCEN	т			
TX. CONSOLIDATION	START 14	0385	END	28039			

TX. CONSOLIDATION	START	40385	END	280385
INIAXIAL CONSOLIDATIO	N TEST			

PT	EFFECT SIGMA;	EFFECT SIGMA3	STRAIN1	VOLUME Strain	STRAINS	EFFECT P	٥	VOID Ratio	v	SHEAR STRAIN
1 2 3	50.50 57.64	25.50 30.50	1.736	1.872 2.344	0.068	34.50 39.55	24.00 27.14	1.334	2.334	1.112
4 5	76.31	40.40	2.834 3.633	2.909 3.592 4.553	0.279	45.51 52.37	31.23	1.309 1.293	2.309 2.293	1.381
6 7 8	101.01	53.50 61.60	4.846 5.329	5.767 7.117	0.461	69.34 79.76	41.35 47.51 54.49	1.270	2.270 2.241 2.200	2.115 2.924
9 10	158.80	84.80 42.40	8.172 11.582 10.883	8.834	0.231	91.64 109.47	62.52 74.00	1.173	2.173	3,957 5,294 8,038
11	79.80 79.90	42.40	10.829	9.587 9.553	-0.621	54.88 54.87 54.77	37.44 37.40 37.70	1.147	2.147 2.151	7.637 7.634
14 15	70.73 67.74	42.70 45.60 48.90	10.858 10.856 10.831	9.553 9.553 9.553	-0.657 -0.651	53,17 53,98	31.41 25.13	1.151	2.151 2.151 2.151	7.683 7.683 7.672
16 17 18	54.95 62.16	52.40 55.90	10.799	9.553 9.553	-0.623	56.58 57.99	18.84 12.55 6.26	1.151 1.151 1.151	2.151 2.151 2.151	7.647 7.614
19 20	59.80 59.20	59.80 59.80 60.20	10.558 10.522 10.584	9.553 9.553 9.553	-0.557 -0.534	59.80 59.80	0.0	1.151	2.151 2.151	7.484 7.438
21 22 23	60.10 50.20	60.10 60.20	10.561	9.553 9.553	-0.504	50.10 50.20	0.0	1.151 1.151 1.151	2.151 2.151 2.151	7.399 7.376
24 25	59.80 59.80	59.80 59.80	10.522 10.499 10.484	9.553 9.553 9.553	-0.484 -0.473 -0.455	59.80 59.80	0.0	1.151	2.151	7.338 7.315
25 27 28	59.60 60.20 59.20	59.80 50.20 59.20	10.485	9.553 9.553	-0.456	59,80 59,80 60,20	0.0	1.151 1.151 1.151	2.151 2.151 2.151	7.299 7.280 7.245
29	55.80	56.80	10.407	9.553 9.553	-0.427 -0.426	59.20 55.80	0.0 0.0	1.151	2.151 2.151	7.223

.

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	SIGMA 1	SIGMA3	STRAINI	STRAIN3	v
1	50.50	26.50	1.736	0.088	2 774
2	57.64	30.50	2.001	0 177	2.334
3	65.33	35.10	2.350	0 279	2 200
4	76.31	40.40	2.834	0 379	2.309
5	87.85	46.50	3.633	0 480	2.283
5	101.01	53.50	4.845	0 461	2.270
7	116.09	61.60	6.329	0 304	2.241
8	133.32	70.80	8.172	0 231	2.209
9	158.80	84.80	11.582	-0 475	2.173
10	79.84	42.40	10.883	-0 572	2.126
11	79.80	42.40	10.829	-0 871	2.14/
12	79.90	42.20	10.888	-0 667	2.151
13	74.11	42.70	10.888	-0 EE7	2.151
14	70.73	45.80	10 855	-0.651	2.151
15	67.74	48.90	10 831	-0.051	2.151
16	64,95	52.40	10.799	-0 827	2.151
17	52.15	55.90	10.745	-0 200	2.151
18	59.80	59.80	10.868	-0.558	2.151
19	59.80	59.80	10.822	-0.557	2.151
20	60.20	80.20	10.884	-0 E1E	2.151
21	80.10	80.10	10.581	-0.515	2.151
22	80.20	50.20	10 541	-0.504	2.151
23	59.80	59.80	10 522		2.151
24	59.80	59.80	10 499	-0.477	2.151
25	59.80	59.80	10 484	-0.473	2.151
26	59.60	59.80	10.445	-0.485	2.151
27	50.20	60.20	10 430	-0.455	2.151
28	59.20	59.20	10 407	-0.438	2.151
29	55.80	58.80	10 406	-0.427	2.151
			10.408	-0.425	2.151

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. : T 752 (REMOULDED SAMPLE) TEST RESULTS START 140385 END 280385

PT	EFFECT SIGMA1 KPA	EFFECT Sigma3 KPA	DEV STRESS KPA	EFFECT OCT Stress KPA	AXIAL STRAIN	RADIAL STRAIN 2	VOL STRAIN	LSSV KPA	LSNV	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol	
1	50.5	26.5	24.0	34.5	1.736	0.068	1.872	0.0	0.0			
2	57.6	30.5	27.1	39.5	2.001	0.172	2.344	9.1	0.3	0.202	0.00	
3	66.3	35.1	31.2	45,5	2.350	0.279	2.909	20.0	0.7	0.287	0.202	
4	75.3	40.4	35.9	52.4	2.834	0.379	3.592	32.4	1 2	0.420	0.490	
5	87.9	46.5	41.4	60.3	3.633	0.460	4.553	45.9	2 0	0.725	0.810	
6	101.0	53.5	47.5	69.3	4.845	0.461	5.767	63.3	3 2	1.146	1.636	
7	116.1	61.6	54.5	79.8	6.329	0.394	7.117	82.3	4.6	1.532	4.782	
8	133.3	70.8	62.5	91.6	8.172	0.231	8.634	103.8	6.4	2.083	4.315	
9	158.8	84.8	74.0	109.5	11.582	-0.475	10.633	136.1	9.9	3.882	882.0	
10	79.8	42.4	37.4	54.9	10.883	-0.572	9.739	37.0	9 2	-0.958	0.280	
11	79.8	42.4	37.4	54.9	10.829	-0.621	9.587	36.9	9 1	-0.084	5.323	
12	79.9	42.2	37.7	54.8	10.868	-0.657	9.553	36.8	9.1 9.7	0.000	9.238	
13	74.1	42.7	31,4	53.2	10.868	-0.657	9.553	32.9	9.2	0.0	9.238	
14	70.7	45.8	25.1	54.0	10.856	-0.651	9.553	33.7	9.2	-0.003	3.238	
15	67.7	48.9	18.8	55.2	10.831	-0.639	9.553	36.1	9.7	-0.006	9.235	
16	64.9	52.4	12.5	56.6	10.799	-0.623	9.553	39.4	91	-0,005	a . 7.7.8	
17	82.2	55.9	6.3	58.0	10.745	-0.596	9.553	43.2	91	-0.005	U. 224	
18	59.8	59.8	0.0	59.8	10.668	-0.557	9.553	48.0	9.0	-0.002	9,219 0,045	
19	59.8	59.8	0.0	59.8	10.622	-0.534	9.553	48.0	8.9	0.0	9.217	
20	60.2	60.2	0.0	80.2	10.584	-0.515	9.553	48.6	A. 9	0.0	a,∡17 0.04≂	
21	60.1	BO . 1	0.0	60.1	10.561	-0.504	9.553	48.5	8.9	0.0	3.217	
22	60.2	60.2	0.0	60.2	10.541	-0.494	9.553	48.6	8.8	0.0	₽·∡I7 3.217	
23	- 59.8	59.8	0.0	59.8	10 527	-0 484				0.0		
24	59.8	59.8	0.0	59.8	10 499	-0.484	ə.553	48.0	8.8	0.0	.217	
25	59.8	59.8	0.0	59.A	10 484	-0.473	8.553	48.0	8.8	0.0	.217	
26	59.6	59.6	0.0	59.6	10 485		¥.553	48.0	8.8	9.0 9	. 217	
27	60.2	60.2	0.0	60.2	10.430	-0 478	9.553	47.7	8.8	9 0.0	.217	
28	59.2	59.2	0.0	59.2	10 407	0 427	9.553	48.5	8.7	9 0.0	. 217	
29	56.8	56.8	0.0	56.8	10 405	0.427	9.553	47.1	8.7	9.0	. 217	
						0.426	9.553	43.3	8.7	9	. 217	

#### ENERGY CALCULATIONS

**** NATURAL STRAIN ****

# SAMPLE ND. = T 752 (REMOULDED SAMPLE) TEST RESULTS START 140385 END 280385

PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress	AXIAL Strain %	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy Kn-m/ydl i	TOTAL ENERGY	
1	50.5	26.5	24 0	74 5								
2	57.6	30.5	27 1	34.3	1.751	0.069	1.890	0.0	0.0	0 207	0.0	
з	85.7	35.5	21.1	39.5	2.021	0.175	2.372	9.1	0.3	0.207	0.207	
-	76.3	35,1	31.2	45.5	2.378	0.287	2.952	20.0	0.7	0.295	0.501	
-	/6.3	40.4	35.9	52.4	2.875	0.392	3,658	32.4	1.2	0.433	0.934	
5	87.9	46.5	41.4	60.3	3.700	0.480	4.680	46.9	2.0	0.754	1.889	
6	101.0	53.5	47.5	69.3	4.958	0.486	5.940	63.3	3.3	1.203	2.892	
7	116.1	81.6	54.5	79.8	6.538	0.422	7.382	82.3	4.8	1.531	4 572	
8	133.3	70.8	62.5	91.6	8.525	0.252	9.030	103.8	6.8	2.253		
9	158.8	84.8	74.0	109.5	12.309	-0.534	11.241	136.1	10.5	4.303		
10	79.8	42.4	37.4	54.9	11.522	-0.638	10.245	37.0		-1.072	1.079	
11	79.8	42.4	37.4	54.9	11.461	-0.692	10.078	75 0	5.5	-0.094	0.007	
12	79.9	42.2	37.7	54.8	11.504	-0.732	10.041	30.3	9.8	0.000	3.914	
13	74.1	42.7	31.4	53.2	11.504	-0 732	10.041	36.8	9.8	0.0	.914	
¥ 4	70.7	45.6	25.1	54.0	11 497	-0 705	10.041	32.9	9.8	-0.004	.914	
15	67.7	48.9	18.8	55.2	11 457	.0.725	10.041	33.7	9.8	-0.006	.910	
15	64.9	52.4	12.6	56 6	11 403	-0.711	10.041	36.1	9.8	300.0-	. 904	
17	62.2	55.9	5 7	50.0	11.427	-0.693	10.041	39.4	9.7	e 000 0+	. 898	
18	59.8	59.8	0.5	58.0	11.367	-0.663	10.041	43.2	9.7	9	. 893	
19	50 8		0.0	59.8	11.281	-0.620	10.041	48.0	9.6	9	. 890	
20	80.0	53.8	0.0	59.8	11.229	-0.594	10.041	48.0	9.5	-0.000 9	. 890	
	60.2	80.2	0.0	60.2	11.186	-0.573	10.041	48.5	9.5	-0.000 S	. 890	
21	50.1	50.1	0.0	80.1	11.150	-0.580	10.041	48.5	9.5	-0.000 9	. 890	
22	50.2	50.2	0.0	60.2	11.139	-0.549	10.041	48.6	9.4	-0.000 9	. 890	
23	59.8	59.8	0.0	59.8	11 117					-0.000		
24	59.8	59.8	0.0	50 0		-0.538	10.041	48.0	9.4	9	890	
25	59.8	59.8	0.0		11.092	-0.525	10.041	48.0	9.4	•0.000	890	
26	59.6	59.6	 	53.6	11.075	-0.517	10.041	48.0	9.4	-0.000	890	
27	60.2		0.0	ວຢ. 6	11.053	-0.506	10.041	47.7	9.3	9.	890	
28	EQ 9	60.2 50 0	0.0	50.2	11.014	-0.487	10.041	48.6	9.3	9.	890	
20	58.2	59.2	0.0	59.2	10.989	0.474	10.041	47.1	9.3	-0.000 9.	890	
29	55.8	55.8	0.0	56.8	10.988 -	0.474	10.041	43.3	9.3	0.0	890	

SAMPLE NO. = T 752 (REMOULDED	SAMPLE )
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	11.947 CENTIMETRES 543.132 CUBIC CENTIMETRES 54.462 SQUARE CENTIMETRES
CONSTANT LOAD Proving ring factor Piston Area	= 15.02 N . = 0.4177 N ./DIV = 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING	T 1842.50 DIVISIONS

SHEAR TEST RESULTS START 20485 END 30485

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	0159										
		DIAL	DIAL	PRESS	PER Cent	EFFECT SIGMA1	EFFECT	HALF	DEV	EFFECT	RATIO OF	۵
		RDG	RDG	KPA	PCSTRN	KPA	KPA	STRESS	STRESS KPA	OCT Strees	EFF SIGMA1	
								KPA		KPA	EFF SIPMA3	
1	912	1842.5	285.0	199.7	0.0	49.7	48.2	0.8				
3	930	1839.2	301.5	200.5	0.00	50.1	47.3	1.4	2.8	48.7	1.032	0.0
4	935	1837.0	322.8	201.0	0.03	50.9	46.9	2.0	4.0	48.2	1.059	0.63
5	940	1834.5	327.5	201.5	0.07	51.4	47.0	2.2	4.4	48.5	1.094	0.53
5	945	1833.2	337.0	201.9	0.08	51.5	46.5	2.4	4.8	48.1	1.103	0.55
á	950	1832.0	350.0	202.8	0.09	52.1	45.5	3 2	5.5	47.8	1.120	0.55
9	1000	1830 5	361.0	203.2	0.10	52.2	44.9	3.7	7 3	47.8	1.142	0.63
10	1010	1829.0	393.4	203.5	0.10	52.8	44.7	4.1	8.1	47.4	1,164	0.60
11	1020	1826.0	415.0	205.6	0.11	53.1	43.3	4.9	9.8	46.6	1.227	0.58
12	1030	1824.0	436.0	206.9	0.15	54.) 54.)	42.6	5.7	11.5	46.4	1.289	0.59
13	1043	1821.2	452.0	208.1	0.18	55.3	41.3	5.5	13.1	45.7	1.317	0.82
15	1100	1820.0	476.0	208.6	0.19	55.7	39.6	7.5	15.1	45.2	1.374	0.62
16	1110	1818.0	491.5	209.3	0.22	56.1	38.8	8.7	17.3	45.0	1.407	0.61
17	1121	1809.0	528.5	210.1	0.25	56.9	38.2	9.3	18.7	44.4	1.445 1.480	0.61
18	1130	1805.0	542.5	211.5	0.28	57.2	37.1	10.1	20.1	43.8	1.542	0.61
19	1140	1802.8	557.5	212.3	0.33	57.5	36.6	10.5	21.2	43.7	1.579	0.60
20	1150	1799.0	574.5	213.4.	0.36	58.4	35.8 34 8	11.2	22.3	43.3	1.822	0.61
22	1210	1795.0	585.0	213.5	0.40	59.0	34.5	12.3	23.6	42.7	1.679	0.82
23	1220	1787.8	501.0	214.4	0.44	59.3	33.7	12.8	25.6	42.7	1.710	0.61
24	1230	1783.5	874 5	214.8	0.45	59.8	33.2	13.3	25.6	42.1	1.761	0.61
25	1240	1779.0	636.5	215.1	0.49	50.2	32.8	13.7	27.4	41.9	1.836	0.50
26	1250	1774.5	648.8	216.4	0.57	61 0	32.3	14.1	28.3	41.7	1.876	0.61
27	1300	1770.0	580.5	217.0	0.81	61.5	31.8	14.6	29.2	41,5	1.920	0.80
29	1315	1782.4	676.5	217.4	0.67	81.9	30.5	15.1	30.1	41.4	1.959	0.81
30	1350	1745 0	881.2	217.9	0.73	62.5	30.0	16.2	32.5	41.0	2.028	0.59
31	1400	1740.0	724 0	218.5	0.82	83.5	29.4	17.1	34.1	40.8	2,082	0.59
32	1415	1732.0	739.9	219.1	0.85	64.0	29.1	17.4	34.9	40.7	2.190	0.58
					0.82	64.7	28.5	18.0	36.1	40.5	2.261	0.50
33	1430	1725.5	753 5	210 0								
34	1445	1718.2	767.8	220.2	1.04	85.3	28.2	18.5	37.1	40.5	2.315	0 57
35	1500	1710.0	781.8	220.7	1.11	88 9	28.2	19.1	38.1	40.9	2.352	0.56
30	1530	1694.5	808.5	221.2	1.24	87.8	26.5	18.6	39.2	40.8	2.414	0.55
38	1832	1878.0	834.5	222.0	1.38	69.3	26.3	21.5	41.2	40.3	2.548	0.54
39	1700	1644.0	858.0	222.3	1.53	70.7	25.9	22.4	44.8	40.6	2.637	0.54
40	1736	1625.0	895.0	222 B	1.85	72.2	25.9	23.1	46.3	41.3	2.787	0.52
4 1	1801	1805.5	914.0	222.8	1.98	73.3	25.8	23.7	47.5	41.6	2.840	0.50
42	1900	1569.0	943.0	222.0	2.29	76.8	28.0	24.4	48.7	41.9	2.897	0.49
44	2100	1529.0	961.8	221.5	2.62	78.2	26.1	28 0	50.B	42.9	2.954	0.45
45	2201	1407.8	977.4	221.5	2.97	79.7	26.7	26.5	⇒∡,1 53 0	43.5	2.995	0.43
46	2300	1403.5	988.0 898 7	220.9	3.33	81.0	27.4	26.8	53.6	4,4	2.984	0.43
47	2400	1358.5	1004.0	220 2	3.67	81.8	27.8	27.0	54.0	45.8	2.943	0.41
48	100	1314.0	1003.0	218.9	4.42	62.5 82 F	28.1	27.2	54.4	46.2	2.934	0.39
49	400	1180.0	1005.0	219.2	5 55	82.7	28.5	27.0	54.1	46.5	2.897	0.38
51	800	1045.0	1016.0	219.3	6.68	82.5	28.8	20.0	53.7	46.9	2.850	0.37
52	800	883 0	1009.5	219.5	7.06	81.8	28.8	26.5	53.7	45.7	2.866	0.38
53	1000	907.0	1009 5	219.3	7.45	81.8	28.9	26.5	52.9	40.5	2.842	0.38
54	1102	860.5	1008.0	219 8	7.83	81.3	28.7	26.3	52.8	46.2	2.833	0.38
55	1202	815.0	1007.5	219.4	8.60	80.6 80 9	28.3	26.2	52.3	45.7	2.848	0 39
55	1305	767.0	1005.5	219.3	9.00	80.7	28.9	28.0	52.0	46.2	2.800	0.39
58	1509	725.0	1004.0	219.4	9.35	80.2	28.9	25.8	51.7	46.2	2.781	0.39
59	1804	874 0	986.0	219.2	9.83	78.7	28.8	24.9	51,3 49 6	48.0	2.777	0.40
80	1800	532.0	975.5 989 A	219.2 1	0.20	77.7	28.8	24.5	48.9	95.4	2.731	0.40
61	1930	463.0	955.0	218.0 1	0.97	76.3	28.9	23.7	47.4	44.7	4.599 2 640	0.41
82 :	2050	401.0	945.0	219.2 1	2 07	75.0	29.1	23.4	46.9	44.7	2.611	0.42
						/*.3	28.4	22.9	45.9	43.7	2.816	0.44

SAM	IPLE NO. *	752	REMOULDED	SAMPLE)			
CON Pre Ndr	SOLIDATION Consolidati Malizing St	AXIAL STRI Ion Pressui Tress	ESS Re	= 50.00 = 158.80 = 158.80	С КРА Кра Кра		
NOR	MALIZED SHE	AR TEST P	5117 75				
				JIANI	20485	END	30485
PT	PER	NRMLZD	EFFECT	NRMLZD	NRMLZD		
	CENT PCSTRN	HALF	RATIO	OCT	CHANGE		
		STRESS	SIGMAI	STRESS	IN PWP		
		KPA		NF A	KPA		
1	0.0	0.005	1.032	0.307	0 0		
2	0.00	0.009	1.059	0.304	0.005		
4	0.03	0.013	1.085	0.304	0.008		
5	0.07	0.015	1.103	0.305	0.009		
5	0.08	0.017	1.120	0.301	0.014		
7	0.09	0.020	1.142	0.301	0.020		
9	0.10	0.023	1.164	0.298	0.022		
10	0.11	0.031	1.182	0.299	0.024		
11	0.14	0.036	1.269	0.292	0.033		
12	0.15	0.041	1.317	0.288	0.045		
14	0.18	0.047	1.374	0.285	0.053		
15	0.22	0.055	1.467	0.283	0.056		
16	0.25	0.059	1.489	0.280	0.055		
18	0.28	0.063	1.542	0.275	0.072		
19	0.33	0.070	1.579	0.275	0.074		
20	0.36	0.074	1.579	0.269	0.079		
21	0.40	0.077	1.710	0.269	0.088		
23	0.46	0.081	1.761	0.255	0.093		
24	0.49	0.086	1.836	0.265	0,095		
25	0.53	0.089	1.876	0.263	0.103		
27	0.57	0.092	1.820	0.252	0.105		
28	0.67	0.099	2.028	0,251	0.109		
29	0.73	0.102	2.082	0.257	0.115		
31	0.82	0.107	2.150	0.257	0.119		
32	0.92	0.114	2.251	0.256	0.122		
33	0.98	0.117	2.315	0.255	0.125		
34	1.11	0.120	2.352	0.258	0.129		
36	1.24	0.130	2.414	0.257	0.132		
37	1.38	0.136	2.637	0.256	0.135		
38	1.53	0.141	2.728	0.257	0.142		
40	1.82	0.145	2.787	0.260	0.143		
4 1	1.98	0.153	2.897	0.262	0.144		
42	2.29	0.180	2.954	0.270	0.140		i,
44	2.97	0.154	2.995	0.274	0.138		
45	3.33	0.169	2.955	0.279	0.138		
6 E							
47	4.05	0.170	2.943	0.288	0.130		
48	4.42	0.170	2.897	0.291	0.129		
49 50	5.55	0.189	2.850	0.295	0.123		
51	7.06	0.189	2.866	0.294	0.123		
52	7.45	0.167	2.831	0.293	0.125		
53	7.83	0.186	2.833	0.291	0.124		
55	8.60	0.165	2.848	0.288	0.125		
56	9.00	0.163	2.781	0.291	0.124		
57	9.35	0.162	2.777	0.290	0.124		
59	¥.83	0.157	2.731	0.285	0.123		
80	10.97	0.149	2.640	0.254	0.123		
61 50	11.55	0.148	2.611	0.282	0.122		
6 X	12.07	0.144	2.616	0 275			

SAMPLE NO. : T 753 (REMOULD	DED SAMPLE)
INITIAL MOISTURE CONTENT	51.0 PERCENT
SPECIFIC GRAVITY OF SOIL	5.73.
INITIAL VOID RATID	1.392
INITIAL HEIGHT OF SAMPLE	512.96 CM
INITIAL VOLUME OF SAMPLE	590.25 CC
EFFECTIVE PRINCIPAL STRESS RATI	0 1.00
FINAL MOISTURE CONTENT	54.9 PERCENT
TX. CONSOLIDATION START TRIAXIAL CONSOLIDATION TEST	140385 END 280385

ΡT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME STRAIN	STRAIN3	EFFECT P	٥	VOID Ratio	v	SHEAR Strain
1234567890112345678901222222222222222222222222222222222222	50.09 57.704 75.47 88.000 106.31 153.60 159.53 80.07 80.07 80.07 80.07 80.07 57.50 54.43 58.200 58.100 57.900 57.400 57.400 57.900 57.400 57.900 57.400 57.900 57.400 57.900 57.900 57.400 57.900 57.900 57.400 57.900 57.400 57.900 57.900 57.400 57.900 57.900 57.400 57.900 57.900 57.900 57.400 57.900 57.900 57.500 57.500 57.500 57.500 57.500 57.500 57.500 57.400 50.900 50.900	26.50 30.50 40.50 51.70 84.80 42.40 42.40 42.40 42.40 42.40 53.50 51.90 54.20 58.20 58.20 58.20 58.20 57.80 57.40 57.40 57.40 57.40 55.90	2.025 2.346 2.812 3.484 4.572 5.910 7.589 9.390 11.798 10.228 10.228 10.357 10.324 10.324 10.347 10.321 10.131 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.069 10.9855 9.9855 9.946 9.946	$\begin{array}{c} 2 & .474 \\ 3 & .016 \\ 3 & .626 \\ 4 & .524 \\ 5 & .769 \\ 7 & .090 \\ 8 & .640 \\ 10 & .216 \\ 11 & .995 \\ 10 & .555 \\ 10 & .453 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .411 \\ 10 & .$	0.224 0.335 0.520 0.520 0.526 0.590 0.526 0.413 0.029 0.201 0.113 0.022 0.043 0.086 0.132 0.140 0.171 0.171 0.171 0.223 0.2217 0.2217 0.2217	34.35 39.57 45.61 80.40 79.90 91.80 109.71 54.87 55.12 54.85 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.03 55.32 55.03 55.32 55.03 55.32 55.32 55.30 57.40 57.40 57.40 57.40 57.40 57.40 57.40	23.59 27.20 31.24 35.97 41.40 54.61 62.70 37.40 54.61 62.70 37.40 37.40 37.40 37.40 37.40 37.50 31.24 91 18.70 18.70 18.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.333 1.320 1.254 1.254 1.254 1.186 1.148 1.148 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143 1.143	$\begin{array}{c} 2.333\\ 2.320\\ 2.306\\ 2.254\\ 2.254\\ 2.254\\ 2.148\\ 2.148\\ 2.148\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.143\\ 2.$	$\begin{array}{c} 1.2010\\ 1.5044\\ 1.9749\\ 3.5479\\ 5.479\\ 5.8479\\ 5.8479\\ 5.8479\\ 5.8850\\ 6.8857\\ 6.8857\\ 6.8854\\ 6.877\\ 6.8559\\ 6.8559\\ 6.5598\\ 6.5598\\ 6.5598\\ 6.5598\\ 6.5598\\ 6.5595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.460\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.595\\ 5.59$
						30.90	0.0	1.143	2.143	5.491

ł,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	SIGMA 1	S I GMA3	STRAIN1	STRAINS	v
1	50.09	26.50	2 025		
2	57.70	30.50	7 348	0.224	2.333
з	66.44	35.20	2 812	0.335	2.320
4	76.47	40.50	3 484	0.407	2.305
5	88.00	46.60	4 570	0.520	2.284
6	101.20	53.60	5 910	0.538	2.254
7	115.31	81.70	7 580	0.590	2.223
8	133.80	70.90	9 390	0.526	2.186
9	159.53	84.80	11 798	0.413	2.148
10	79.80	42.40	10 957	0.099	2.105
11	80.07	42.40	10 228	-0.201	2.140
12	80.16	42.60	10 367	0.113	2.142
13	75.67	44.40	10 359	0.022	2.143
14	71.29	46.30	10 347	0.026	2.143
15	67.50	48.80	10 324	0.032	2.143
16	64.43	51.90	10.285	0.043	2.143
17	61.18	54.90	10.239	0.083	2.143
18	58.20	58.20	10 147	0.088	2.143
19	58.20	58.20	10.131	0 140	2.143
20	58.10	58.10	10.089	0.140	2.143
21	58.00	58.00	10.069	0 171	2.143
22	57.90	57.90	10.089	0.171	2.143
23	57.90	57.90	10.089	0.171	2.143
24	57.80	57.80	10 000	0.305	2.143
25	57.40	57.40	9.977	0.217	2.143
26	57.40	57.40	9.965	0 227	2.143
27	57.00	57.00	9,931	0 240	4.143
28	56.00	56.00	9.946	0.230	2.143
29	50.90	50.90	9 961	0 225	2.143
				V. 425	2.143

#### ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

# SAMPLE NO. = T 753 (REMOULDED SAMPLE) TEST RESULTS START 140385 END 280385

PT	EFFECT SIGMA1 KPA	EFFECT Sigmaj KPa	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN X	RADIAL STRAIN	VOL Strain %	LSSV KPA	LSNV	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol	
,	50.1	26.5	23.5	34.4	2.025	0.224	2.474	0.0	0.0		0.0	
2	57.7	30.5	27.2	39,6	2.345	0 335	3 015	0.0	0.0	0.236	0.0	
з	65.4	35.2	31.2	45 6	2 810	0.000	3.015	¥.5	0.4	0.337	0.236	
4	76.5	40 5	76.0		2.012	0.407	3.626	20.5	0.8	0.565	0.573	
-		40.5	36.0	52.5	3.484	0.520	4.524	33.0	1.5	0.953	1.138	
2	88.0	46.5	41.4	50.4	4.572	0.598	5.769	47.4	2.5	1 258	2.101	
6	101.2	53.6	47.6	69.5	5.910	0.590	7.090	63.9	3.9	1.230	3.359	
7	116.3	61.7	54.6	79.9	7.589	0.526	8.640	82.8	5.6	1.751	5.110	
8	133.6	70.9	52.7	91.8	9.390	0.413	10.216	104.5	7.4	2.101	7.212	
9	159.5	84.8	74.7	109.7	11.798	0.099	11.995	137.0	9.8	3.039	10.251	
10	79.8	42.4	37,4	54,9	10.957	-0.201	10.555	37.3	9.0	-1.387	8.863	
11	80.1	42.4	37.7	55.0	10.228	0.113	10.453	37.5	8.2	-0.317	8 547	
12	80.2	42.6	37.6	55.1	10.367	0.022	10.411	37 7	8 3	0.034	5 7 8 1	
13	75.7	44.4	31.3	54.8	10.359	0 075	10 411	36.0		-0.003	0.581	
14	71.3	46.3	25.0	54 6	10 747	0.020	10.411	36.0	8.3	-0.003	8.578	
15	67.5	48.8	18 7	55 0	10.347	0.032	10.411	35.1	8.3	-0.005	8.575	
16	8A A	F1 0	10.7	55.0	10.324	0.043	10.411	36.0	8.3	-0.006	8.570	
		51.5	12.5	56.1	10.285	0.063	10.411	38.7	8.3	-0.004	8.564	
	81.2	54.9	6.3	57.0	10.239	0.085	10.411	41.7	8.2	-0.003	8.560	
18	58.2	58.2	0.0	58.2	10.147	0.132	10.411	45.6	8.1	-0.003	8,557	
19	58.2	58.2	0.0	58.2	10.131	0.140	10.411	45.6	8.1	0.0	8.557	
20	58.1	58.1	0.0	58.1	10.089	0.151	10.411	45.4	8.1	0.0	8.557	
21	58.0	58.0	0.0	58.0	10.069	0.171	10.411	45.2	8.0	0.0	8.557	
22	57.9	57.9	0.0	57.9	10.059	0.171	10.411	45.1	8.0	0.0	8.557	
23	57.9	57.9	0.0	57.9	10.089	0.171	10.411	45.1	8.0	0.0	8 557	
24	57.8	57.8	0.0	57.8	10.000	0.205	10 411	44.9		0.0		
25	57.4	57.4	0.0	57.4	9 977	0 217	10.411	**.3	a.u	0.0	8.557	
26	57.4	57 4	0.0	57 4		0.217	10.411	44.3	8.0	0.0	8.557	
27	57 0	57.7	5.0	37.4	9,965	0.223	10.411	44.3	7.9	0.0	8.557	
~ '	37.0	57,0	0.0	57.0	9.931	0.240	10.411	43.7	7.9	0.0	8.557	
28	56.0	56.0	0.0	55.0	9,946	0.232	10.411	42.1	7.9	• •	8.557	
29	50.9	50.9	0.0	50.9	9.961	0.225	10.411	34.5	7.9	0.0	8.557	

#### ENERGY CALCULATIONS

**** NATURAL STRAIN ****

#### SAMPLE NO. = T 753 (REMOULDED SAMPLE) Test results start 140385 end 280385

ΡŢ	EFFECT Sigmai Kpa	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT Oct Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV T	DELTA Enercy Kn-m/vol	TOTAL Energy KN-M/Vol	
1	50.1	26.5	23.5	34.4	2.046	0.229	2.505	0.0	0.0		0.0	
2	57.7	30.5	27.2	39.6	2.374	0.344	3.062	9.5	0.4	0.242	0.242	
3	66.4	35.2	31.2	45.6	2.853	0.420	3.693	20.5	0.9	0.347	0.589	
4	76.5	40.5	36.0	52.5	3.546	0.542	4.529	33.0	1.6	0.587	1.176	
5	88.0	46.5	41.4	60.4	4.679	0.631	5.942	47.4	2.7	1.010	2.187	
6	101.2	53.6	47.6	69.5	5.092	0.631	7.354	63.9	4.1	1.336	3.523	
7	116.3	61.7	54.6	79.9	7.892	0.572	9.035	82.8	5.9	1.890	5.413	
8	133.6	70.9	62.7	91.8	9.861	0.458	10.776	104.5	7.8	2.308	7.721	
9	159,5	84,8	74.7	109.7	12.553	0.112	12.777	137.0	10.5	3.408	11.129	
10	79.8	42.4	37.4	54.9	11.604	-0.225	11.154	37.3	9.6	-1.564	9.565	
11	80.1	42.4	37.7	55.0	10.789	0.126	11.041	37.5	8.7	-0.354	9.210	
12	80.2	42.6	37.6	55.1	10.944	0.025	10.993	37.7	8.9	0.038	9.249	
13	75.7	44.4	31.3	54.8	10.935	0.029	10.993	36.0	8.9	-0.003	9.246	
14	71.3	46.3	25.0	54.6	10.922	0.036	10.993	35.1	8.9	-0.004	9.242	
15	67.5	48.8	18.7	55.0	10.896	0.048	10.993	36.0	8.9	-0.008	9.236	
16	54.4	51.9	12.5	56.1	10.853	0.070	10.993	38.7	8.8	-0.007	9.230	
17	51.2	54.9	6.3	57.0	10.802	0.096	10.993	41.7	8.8	-0,005	9.225	
18	58.2	58.2	0.0	58.2	10.699	0.147	10.993	45.6	8.7	+0.003	9.222	
19	58.2	58.2	0.0	58.2	10.682	0.156	10.993	45.6	8.6	-0.000	9.222	
20	58.1	58.1	9.0	58.1	10.634	0.179	10.993	45.4	8.6	-0.000	9.222	
21	58.0	58.0	0.0	58.0	10.613	0.190	10.993	45.2	8.5	+0.000	9.222	
22	57.9	57,9	0.0	57.9	10.612	0.191	10.993	45.1	8.6	-0.000	9.222	
23	57.9	57.9	0.0	57.9	10.612	0.191	10,993	45.1	8 F	0.0		
24	57.8	57.8	0.0	57.8	10.535	0.229	10.993	44.9	8.5	-0.000	9.222	
25	57.4	57,4	0.0	57.4	10.510	0.242	10.993	44.3	8.5	-0.000	9.112	
26	57.4	57.4	0.0	57.4	10.497	0.248	10.993	44.3	8.5	-0.000	9 222	
27	57.0	57.0	0.0	57.0	10.459	0.257	10.993	43.7	8.4	-0.000	9.222	
28	56.0	56.0	0.0	56.0	10.476	0.259	10.993	42.1	8,4	-0.000	9.222	
29	50,9	50.9	0.0	50.9	10.493	0.250	10.993	34.5	8.4	-0.000	9.222	

٠.

SAMPLE NO. = 7 753 (REMOULD	ED SAMPLE}
SAMPLE HEIGHT AFTER CONSOLIDATI Sample volume after consolidati Sample area after consolidation	ON = 11.881 CENTIMETRES DN = 538.800 CUBIC CENTIMETRES = 45.350 SQUARE CENTIMETRES
CONSTANT LOAD Proving ring factor Piston area	= 15.51 N . = 1.0225 N ./DIV = 5.0700 Souger Centimetres
INITIAL DIAL READING	= 1850.00 DIVISIONS
SHEAR TEST RESULTS START	80485 END 90485

CONSOLIDATED UNDRAINED TRIAXIAL TEST

.

PT	TIME	DISPL DIAL RDG	PRING DIAL RDG	PORE Press Kpa	PER Cent PCSTRN	EFFECT SIGMA1 KPA	EFFECT Sigma3 KPA	HALF DEV Stress KPA	DEV Stress KPA	EFFECT DCT Stress KPA	RATID DF EFF Sigmai EFF Sifma3	A
1	855	1950.0	116.5	200.6	0.0							
2	901	1949.0	122.5	202.1	0.01	43.8	47.6	1.1	2.2	48.3	1.045	0.0
3	910	1945.3	142.0	204.9	0.03	51 A	45.7	1.8	3.6	46.9	1.078	1.07
4	915	1944.3	152.0	205.9	0.05	52 3	43.5	3.9	7.9	46.1	1.181	0.75
5	920	1942.0	150.5	207.1	0.07	53.0	40.9	5.1	10.2	45.5	1.242	0.65
5	925	1939.5	168.5	208.2	0.09	53.7	39.8	6.0	12.1	44.9	1.296	0.65
	830	1937.0	177.8	209.9	0.11	54.5	38.6	8.0	13.9	44.4	1.349	0.65
۵ ۵	935	1934.0	185.0	210.5	0.13	55.2	37.6	8.8	15.9	43.9	1.413	0.58
10	940	1931.0	192.0	211.2	0.15	55.9	36.7	3.6	10 0	43.5	1.458	Q.54
11	945	1927.5	199.0	212.4	0.19	56.6	35.9	10.4	20 7	43.1	1.523	0.62
12	955	1925.0	204.0	213.0	0.21	57.1	35.3	10.9	21 8	42.0	1.577	0.64
13	1000	1922.0	209.5	213.4	0.24	57.7	34.6	11.5	23.1	42.0	1.618	0.63
14	1010	1919.0	214.4	214.3	0.28	58.1	33.9	12.1	24.2	42.0	1.668	0.51
15	1020	1904 5	225.0	215.8	0.33	59.2	32.7	13.3	26.5	41 5	1.713	0.62
16	1035	1894 0	234.0	216.8	0.38	60.1	31.6	14.3	28.5	41.1	1.011	0.62
17	1040	1889.5	249.0	217.7	0.47	61.5	30.5	15.5	31.0	40.B	2 016	0.61
18	1050	1882.5	255 3	210.5	0.51	61.9	29.9	16.0	32.0	40.6	2 089	0.59
19	1100	1875.0	262.0	210.9	0.67	52.5	29.3	16.6	33.3	40.4	2.135	0.80
20	1110	1867.5	258.2	220 5	- 5 80	83.3	28.6	17.4	34.7	40.2	2.214	0.53
21	1120	1858.8	275.0	220 9	0.83	64.0	27.9	18.0	36.1	39.9	2.294	0.59
22	1130	1852.0	280.5	221.7	0 87	04.9	27.3	18.8	37.5	39.8	2.378	0.57
23	1140	1844.0	286.2	221.6	0.89	00.0 85 5	26.8	18.4	38.8	339.7	2.447	0.58
24	1150	1835.5	292.0	222.4	0.85	80.0	25.4	20.0	40.1	39.8	2.518	0.55
25	1203	1825.0	298.5	223.0	1.05	68 7	23.8 .25 F	20.7	41.3	39.7	2.595	0.56
26	1215	1815.0	304.0	223.0	1.13	89.0	25.5	21.4	42.7	39.7	2.675	0.55
27	1230	1802.5	310.5	223.5	1.24	89.9	24 6	22.0	43.9	39.7	2.751	0.54
28	1245	1790.5	317.0	223.9	1.34	70.9	24.2	22.1	45.3	39.7	2.843	0.53
23	1300	1778.0	323.0	224.1	1.45	71.9	23.8	24 0	40.7	39.8	2.932	0.52
30	1330	1752.0	333.5	224.4	1.57	73.9	23.6	25 1	40.U	39.9	3.010	0.51
31	1400	1726.0	342.5	224.4	1.89	75.7	23.6	25.1	50.3	40.4	3.130	0.49
	1430	1699.4	350.0	224.7	2.11	77.2	23.6	25.8	53 6	41.0	3.209	0.48
									53.6	41.5	3.273	0.47
33	1502	1871 0										
34	1530	1646 0	300.5	224.8	2.35	78.2	23.5	27.4	54.7	41.7	7 7 20	
35	1600	1617.5	367 0	224.3	2.56	79.4	23.8	27.8	55.6	42.3	3,323	0.45
36	1630	1591.0	365 0	229.2	2.80	80.2	24.1	28.1	56.1	42.8	3 328	0.44
37	1700	1553.0	366 5	227 7	3.02	80.9	24.5	28.2	58.4	43.3	3.304	0.42
38	1808	1499.0	367.4	223 2	3.20	81.0	24.4	28.3	56.6	43.3	3.321	0.42
39	1900	1450.0	366.5	272 *	4 21	61.5	25.0	28.3	56.5	43.8	3.260	0.42
40	2000	1393.0	364.8	222.1	4.21	81.8	25.5	28.0	58.1	44.2	3.198	0.41
41	2100	1335.0	362.5	221.7	5 18	81.3	25.9	27.7	55.4	44.4	3.141	0.40
42	2200	1277.0	357.5	221.5	5.86	79 0	20.0	27.3	54.6	44.7	3.062	0.40
43	2304	1217.0	356.5	221.8	6.17	79.2	20.0 76.6	26.7	53.3	44.4	3.004	0.41
44	2400	1164.4	356.2	221.5	6.61	78.9	26 4	20.4	52.8	44.0	3.000	0.42
45	700	765.0	347.5	221.5	9.97	75.4	26.6	20.3	52.5	43.9	2.989	0.42
40	815	693.5	345.0	221.1	10.58	75.2	27.0	24.1	98.8	42.9	2.835	0.45
4/	803	647.0	345.6	221.3	10.97	74.7	25.8	24 0	48.2	43.1	2.785	0.45
40	1100	594.0	345.0	221.2	11.41	74.4	28.8	23.8	47.8	42.8	2.788	0.45
50	1200	537.0	345.0	221.1	11.89	74.3	27.0	23.7	47.0	42.7	2.775	0.45
		480.0	345.0	220.9	12.37	74.3	27.2	23.5	47 1	42.8 AD 0	2.752	0.45
											2.730	0.45

SAM	PLE NO. = 1	T 753	(REMOULDED	SAMPLE)			
CONS	SOLIDATION						
PRE	CONSOLIDAT	ION PRESSI		49.70	5 KPA		
NDR	ALIZING ST	RESS		169.5	5 КРА		
				* 159.52	S KPA		
NORP	ALIZED SHE	AR TEST RE	SULTS 9	START	80485	END	90495
						2.05	30485
PT							
• •	CENT		EFFECT	NRMLZD	NRMLZD		
	PESTRN	DEV	RATIU CICMO.	001	CHANGE		
		STRESS	SIGMAN	SIRESS	IN PWP		
		KPA	0. GRAD	NFA	RPA		
1	0.0	0.007	1.045	0.303	0.0		
2	0.01	0.011	1.078	0.294	0.009		
4	0.03	0.025	1.181	0.289	0.027		
5	0.03	0.032	1.242	0.285	0.033		
6	0,09	0 044	1.295	0.282	0.041		
7	0.11	0.050	1 4 1 3	0.279	0.048		
8	0.13	0.055	1.488	0.275	0.058		
5	0.15	0.080	1.523	0 270	0.052		
10	0.19	0.055	1.577	0.258	0.074		
11	0.21	0.058	1.618	0.287	0.078		
12	0.24	0.072	1.868	0.285	0.080		
14	0.25	0.076	1.713	0.263	0.085		
15	0.38	0.083	1.811	0.280	0.095		
16	0.47	0.087	1.903	0.258	0.102		
17	0.51	0.100	2.016	0.256	0.107		
18	0.57	0.104	2.135	0 253	0.112		
19	0.63	0.109	2.214	0.252	0.115		
20	0.69	0.113	2.294	0.250	0 125		
21	0.77	0.118	2.378	0.250	0.127		
23	0.82	0.122	2.447	0.249	0.132		
24	0.03	0.126	2.518	0.249	0.132		
25	1.05	0.130	2.595	0.249	0.137		
26	1.13	0.138	2.0751	0.249	0.140		
27	1.24	0.142	2.843	0.249	0.140		
28	1.34	0.147	2.932	0.245	0 145		
29	1.45	0.151	3.010	0.250	0.147		
30	1.67	0.158	3.130	0.253	0.149		
32	7 11	0.153	3.209	0.257	0.149		
33	2.35	0 172	3.273	0.260	0.151		
34	2.56	0.174	3 337	0.282	0.152		
35	2.80	0.175	3.328	0 268	0.149		
36	3.02	0.177	3.304	0.272	0.146		
37	3.25	0.178	3.321	0.271	0.145		
38	3.80	0.177	3.260	0.275	0.142		
40	4.21	0.175	3.198	0.277	0.139		
41	5.18	0,174	3.141	0.278	0.135		
42	5.86	0.167	3.062	0.280	0.132		
43	5.17	0.185	3.000	0.278	0.131		•
44	6.81	0.165	2.989	0.275	0.133		
45	9.97	0.153	2.835	0.289	0.131		
46	10.58	0 151					
47	10.97	0.150	2.788	0.275	0.129		
48	11.41	0.149	2.775	0.257	0.130		
49	11.89	0.148	2.752	0.258	0.129		
50	12.37	0.147	2.730	0.289	0.127		

SAMPLE ND. = T 754 (REMOULDES	SAMPLE)
INITIAL MOISTURE CONTENT	= 50.6 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATID	= 1.381
INITIAL HEIGHT OF SAMPLE	= 13.24 CM
INITIAL VOLUME OF SAMPLE	= 603.00 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MUISTURE CONTENT	42.2 PERCENT

TX. TRIA>	CONSOLIDATION	START On test	240485	END	80585
	1111111111111111111	* * * * * * * *			

ΡT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME STRAIN	STRAIN3	EFFECT P	Ŷ	VOID Ratio	۷	SHEAR STRAIN
1	50.00	25.50	1.314	1.658	0.172	34.33	23 50			
2	57.50	30.50	1.639	2.172	0.257	39 53	27 10	1.342	2.342	0.751
3	66.26	35.10	2.088	2.819	0.365	45 49	71 10	1.330	2.330	0.915
4	76.27	40.40	2.825	3.748	0.452	52 36	75 87	1.314	2.314	1.149
5	87.76	46.50	3.935	4.942	0 503	60.25	41 20	1.282	2.292	1.575
6	100.92	53.50	5.305	6.227	0 461	69 71	47.40	1.264	2.264	2.288
7	115.97	61.50	7.032	7.753	0 361	79 55	54.42	1.233	2.233	3.230
8	133.27	70.70	8.739	9.287	0 274	01 55	54.47	1,197	2.197	4.447
9	159.30	84.80	11.337	11.128	-0.105	100 67	02.57	1.150	2.150	5.643
10	79.87	42.40	10.514	9,959	-0 278	EA 80	74.50	1.115	2.115	7.628
11	79.83	42.40	10.483	9 826	-0 320	54.63	37.47	1.144	2.144	7.194
12	79.93	42.50	10.555	9 677	-0 479	54.00	37,43	1.147	2.147	7.208
13	74.18	43.00	10.555	9 677	-0 439	55.04	37.33	1.151	2.151	7.330
14	70,40	45.40	10 551	9 677	-0.433	53.38	31.18	1.151	2.151	7.330
15	67.45	48.90	10.529	8 677	-0.437	53.73	25.00	1.151	2.151	7.326
16	64.97	52.60	10 498	9 877	-0.428	55.08	18.55	1.151	2.151	7.303
17	61.98	55.80	10 488	9 677	-0.411	56.72	12.37	1.151	2.151	7.273
18	59.50	59.50	10 408	9 677	-0.395	57.86	5.18	1.151	2.151	7.243
19	58.30	58.30	10 378	3.077	-0.366	59.50	0.0	1.151	2.151	7.182
20	57 30	57 30	10.3/8	3.577	-0.351	58.30	0.0	1.151	2.151	7.152
21	55 40	56 40	10.347	9.877	-0.335	57.30	0.0	1.151	2.151	7.122
22	55 30	55.70	10.317	9.677	-0.320	56.40	0.0	1.151	2.151	7.092
23	55 40	55.30 55 AO	10.287	3.677	-0.305	56,30	0.0	1.151	2.151	7.051
24	55 20	55.40 EE 20	10.261	9.677	-0.292	55.40	0.0	1.151	2.151	7.035
25	54 80	55.20	10.230	9.677	•0.277	55.20	0.0	1.151	2.151	7.005
26	54 40	54.60	10.204	9.677	-0.264	54.80	0.0	1.151	2.151	6.978
27	54.40	54.40	10.174	9.677	-0.249	54.40	0.0	1.151	2.151	6.948
2.	52 60	54.00	10.151	9.677	-0.237	54.00	0.0	1.151	2.151	6.926
20	54.80	52.60	10.113	9.677	-0.218	52.80	0.0	1.151	2.151	5.888
£ 3	30.80	50.80	10.083	9.677	-0.203	50.80	0.0	1.151	2.151	5.858

ł,

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡŤ	SIGMA 1	SIGMA3	STRAINI	STRAINS	v
1	50.00	26.50	1.314	0.172	2 342
2	57.80	30.50	1.639	0.267	2 330
3	66.25	35.10	2.088	0.365	2 314
4	76.27	40.40	2.825	0.482	2 292
5	87.78	45.50	3.935	0.503	2 284
6	100.92	53.50	5.306	0.451	2 233
7	115.97	61.50	7.032	0.361	2 197
8	133.27	70.70	2.739	0.274	2 180
9	159.30	84.80	11.337	-0.105	2 116
10	79.87	42.40	10.514	-0.278	2 144
11	79.83	42.40	10.483	-0.329	2 147
12	79.93	42.80	10.555	-0.439	2 151
13	74.18	43.00	10.555	-0.439	2 151
14	70.40	45.40	10.551	-0.437	2 151
15	87.45	48.90	10.529	-0.428	2.151
16	84.97	52.80	10.498	-0.411	2 151
17	51.98	55.80	10.468	-0.386	2 151
18	59.50	59.50	10.408	-0.365	2 151
19	58.30	58.30	10.378	-0.351	2 181
20	57.30	57.30	10.347	-0.335	2 151
21	88.40	56.40	10.317	-0.320	2.151
22	56.30	58.30	10.287	-0.305	2 151
23	55.40	55,40	10.281	-0.282	2 151
24	55.20	55.20	10.230	-0.277	2 181
25	54.80	54.80	10.204	-0.284	2 151
26	54.40	54.40	10.174	-0.249	2 151
27	54.00	54.00	10.151	-0.237	2 151
28	52.80	52.60	10.113	-0.218	2 151
29	50.80	50.80	10.083	-0 203	2 151
				~	

#### ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = T 754 (REMOULDED SAMPLE) Test results start 240485 end 80585

PT	EFFECT Sigmai Kpa	EFFECT Sigma3 KPA	DEV Stress KPA	EFFECT OCT Stress	AXIAL STRAIN Ž	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy KN-m/vol	
	E0.0	75 F	77 5	74 7	1 714	0 172	1 059		• •			
•	50.0	20.5	23.5	34.3	1.314	0.172	1.850	0.0	0.0	0.229	0.0	
2	57.5	30.5	27.1	39.5	1.639	0.267	2.172	9.5	0.4	0.343	0.229	
3	86.3	35.1	31.2	45.5	2.088	0.365	2.819	20.3	0.8	0.597	0.572	
4	76.3	40.4	35.9	52.4	2.825	0.462	3.748	32.8	1.6	0 847	1.169	
5	87.8	46.5	41.3	60.3	3.935	0.503	4.942	47.2	2.7	1 750	2.116	
6	100.9	53.5	47.4	69.3	5.306	0.451	6.227	63.6	4.0	1.250	3.367	
7	118.0	61.5	54.5	79.7	7.032	0.361	7.753	82.5	5.7	3.757	5.123	
8	133.3	70.7	52.6	91.6	8.739	0.274	9.287	104.1	7.4	2.013	7.136	
9	159.3	84.8	74.5	109.6	11.337	-0.105	11.128	136.9	10.0	3.212	10.348	
10	79.9	42.4	37.5	54.9	10.514	-0.278	9.959	37.4	9.2	-1.204	9.143	
11	79.8	42.4	37.4	54.9	10.483	-0.329	9.826	37.4	9.2	-0.068	9.076	
12	79.9	42.6	37.3	55.0	10.555	-0.439	9.677	37.5	9.3	-0.037	9.039	
13	74.2	43.0	31.2	53.4	10.555	-0.439	9.677	33.6	9.3	0.0	9.039	
14	70.4	45.4	25.0	53.7	10.551	-0 437	9 677	33.6	9.1	-0.001	9 038	
15	87 4	48.9	18 6	55 1	10 579	-0 425	9 677	36.2		-0,005	9 033	
1.6	68.0	50.0	12 4	55.7	10 498	-0 411	0 677	70 4	0.0	-0.005	0.000	
	60.0					-0.411		33.0	3.1	-0.003	3.028	
	62.0	35.0	0.2	57.8	10.468	-0.396	9.8//	43.1	9.2	-0.002	9.028	
18	59.5	59.5	0.0	59.5	10.408	-0.366	9.677	47.6	9.1	0.0	9.024	
18	58.3	58.3	0.0	58.3	10.378	-0.351	9.877	45.7	9.1	0.0	8.024	
20	57.3	57.3	0.0	57.3	10.347	•0.335	9.677	44.2	9.1	0.0	9.024	
21	56,4	56.4	0.0	56.4	10.317	-0.320	9.877	42.8	9.0	0.0	9.024	
22	56.3	86.3	0.0	56.3	10.287	-0.305	9.877	42.5	9.0	•.•	9.024	
			<b>-</b> -							11 me 140 me 114 far 414 far 144 far 144		 
27	66 A	85 A	~ ~	66 A	10 261	-0 282		41.2		0.0		
			0.0	55.4	10.201	-0.232	5.077	41.2	3.0	0.0	8.024	
24	55.x	55.2	0.0	55.2	10.230	-0.277	9.677	40.9	8.9	0.0	9.024	
25	54.8	54.8	0.0	54.8	10.204	-0.284	9.677	40.3	8.9	0.0	9.024	
26	54.4	54.4	0.0	54.4	10.174	-0.249	9.877	39.7	8.9	0.0	9.024	
27	54.0	54.0	0.0	54.0	10.151	-0.237	9.877	39.1	8.9	0.0	9.024	
28	52.5	52.6	0.0	52.6	10.113	-0.218	9.677	37.0	8.8	0.0	9.024	
29	50.8	50.8	0.0	50.8	10.083	-0.203	9.677	34.4	8.8	•.•	9.024	

#### ENERGY CALCULATIONS

**** NATURAL STRAIN ****

## SAMPLE NG. = T 754 (REMOULDED SAMPLE) TEST RESULTS START 240485 END 80585

PΤ	EFFECT Sigmai KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN Ž	RADIAL STRAIN 2	VOL Strain %	LSSV KPA	LSNV	DELTA TOTAL Energy KN-m/Vol KN-m/Vol
1	50.0	26.5	23.5	34.3	1.323	0.175	1.672	0.0	0.0	
2	57.6	30.5	27.1	39.5	1.653	0.272	2.195	9.5	0.4	0.233
3	86.3	35.1	31.2	45.5	2.110	0.375	2.850	20.3	0.8	0.351
4	76.3	40.4	35.9	52.4	2.865	0.477	3.820	32.8	1 6	0.515
5	87.8	46.5	41.3	60.3	4.015	0.527	5.068	47.2	27	0.986
6	100.9	53.5	47.4	89.3	5.452	0.489	6.429	63.6	4 2	2.185
7	116.0	61.5	54.5	79.7	7.291	0.389	8.070	82 5	5.0	1.880
8	133.3	70.7	62.5	91.6	9.144	0.301	9.747	104 1	7.0	5.383
9	159.3	84.8	74.5	109.6	12.032	-0.118	11.797	136 0	10.7	7.576
10	79.9	42.4	37.5	54.9	11.108	-0.309	10 490	37.4	10.7	11.149 -1.349
11	79.8	42.4	37.4	54.9	11.074	-0.356	10 343	37.4	9.8	9.800 -0.075
12	78.9	42.6	37.3	55.0	11.154	-0.489	10 177	37.4	9.8	9.725 -0.040
13	74.2	43.0	31.2	53.4	11,154	-0.489	10 177	37.6	9.9	9.685 0.0
14	70.4	45.4	25.0	53.7	11,150	-0 487	10.177	33.6	9.9	9.685 -0.001
15	67.4	48.9	18.6	55.1	11.125	-0.474	10.177	33.6	9.9	9.684 -0.006
15	65.0	52.6	12.4	56.7	11.091	-0 457	10.177	36.2	9.8	9.678 •0.005
17	62.0	55.8	6.2	57.9	11.057	• • • • •	10.177	39.8	9.8	9.673 -0.003
18	59.5	59.5	0.0	59.5	10 990	-0.400	10.177	43.1	9.8	9.670 -0.002
19	58,3	58.3	0.0	58.3	10 956	-0.300	10.177	47.5	9.7	9.858 -0.000
20	57.3	57.3	0.0	57 3	10.350	-0.390	10.177	45.7	9.7	9.668 -0.000
21	56.4	56.4	0.0	55 4	10.922	-0.373	10.177	44.2	9.6	9.888 -0.000
22	56.3	55.3	0.0	55.7	10.009	•0.356	10.177	42.8	9.6	9.668
				50.5	10.855	-0.339	10.177	42.5	9.6	9.568
23	55.4	55.4	0.0	55.4	10.826	-0.324	10.177	41.2	9.5	~0.000 9.858
24	55.2	55.2	0.0	55.2	10.792	-0.307	10.177	40.9	9.5	000.0-
25	54.8	54.8	0.0	54.8	10.763	-0.293	10.177	40.3	9.5	-0.000
26	54.4	54.4	0.0	54.4	10.729	-0.275	10.177	39.7	9.4	-0.000
27	54.0	54.0	0.0	54.0	10.704	-0.263	10.177	39.1	9.4	0.0
28	52.6	52.6	0.0	52.5	10.662	-0.242	10.177	37.0	9.4	-0.000
29	50.8	50.8	0.0	50.8	10.528	-0.225	10.177	34.4	9.3	-0.000
									4.6	3.555

SAMPLE NO. = T 754 (REMOULDED	SAMPLE )
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	11.927 CENTIMETRES 537.500 CUBIC CENTIMETRES 45.066 SQUARE CENTIMETRES
CONSTANT LOAD Proving ring factor Piston area	= 16.53 N . = 1.2366 N ./DIV = 5.0700 SOUARE CENTIMETRES
INITIAL DIAL READING	= 2128.00 DIVISIONS
SHEAR TEST RESULTS START 120	585 END 130585

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL DIAL RDG	PRING DIAL RDG	PORE Press Kpa	PER Cent Pcstrn	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	HALF Dev Stress Kpa	DEV Stress KPA	EFFECT OCT Stress KPA	RATIO OF EFF SIGMA1 EFF SIPMA3	A
1	904	2128.0	112.0	199.8	0.0	83.1	80 2	1 4				
2	910	2127.8	126.8	199.8	0.00	87.3	80.4	3 5	5 9	87.7	1.036	0.0
3	915	2126.0	133.5	201.0	0.02	88.0	79.2	4.4	A A	82.1	1.086	0.0
4	\$20	2124.5	142.0	202.2	0.03	89.0	77.9	5.6	11 1	81 6	1.111	0.20
5	925	2123.5	150.5	203.5	0.04	90.0	76.6	6.7	13 4	81 1	1.142	0.29
6	830	2123.2	158.5	204.9	0.04	90.9	75.3	7.8	15 6	80.5	1.204	0.36
7	940	2121.0	179.2	207.8	0.06	93.6	72.3	10.7	21.3	79 4	1 205	0,40
8	950	2119.6	200.5	210.5	0.07	96.9	68.8	13.6	27.1	78.8	1 789	0.43
10	1000	2119.0	220.0	213.0	0.08	99.7	67.2	16.2	32.5	78.0	1 483	0.45
10	1012	2117.0	240.5	215.5	0.09	103.0	54.9	18.0	38.1	77.6	1 587	0.45
	1020	2116.8	252.2	216.8	0.09	104.5	63.2	20.7	41.3	77.0	1 854	0.45
12	1030	2114.6	267.3	218.8	0.11	106.8	61.4	22.7	45.4	76.5	1 740	0.45
1.0	1040	2111.0	280.5	220.3	0.14	108.9	59.9	24.5	49.0	76.2	1.819	0 44
	1080	2105.5	292.5	221.6	0.18	110.9	58.6	26.2	52.3	76.0	1.893	0 44
16	1100	2100.4	303.5	222.8	0.23	112.6	57.3	27.7	55.3	75.7	1.965	0.44
17	1110	2094.0	313.0	223.8	0.29	114.3	56.5	28.9	57.8	75.8	2.024	0 44
1.6	1120	2087.8	322.0	224.8	0.34	115.8	55.5	30.t	80.3	75.6	2.086	0.44
10	1140	2080.8	332.0	225.3	0.40	117.9	54.9	31.5	63.0	75.9	2.147	0.42
20	1150	2075.0	340.0	226.2	0.44	119.1	53.9	32.6	65.2	75.6	2.209	0.42
21	1200	2080.0	350.0	226.9	0.50	121.0	53.1	33.9	67.9	75.7	2.278	0.42
22	1215	2050.5	358.0	227.5	0.57	122.5	52.5	35.0	70.0	75.8	2.333	0.41
23	1230	2080.0	389.0	228.4	0.65	124.6	51.7	36.5	72.9	76.0	2.410	0.41
24	1245	2027 0	380.0	228.9	0.75	127.0	51.1	37.9	75.9	76.4	2.484	0.40
25	1300	2015 0	389.0	229.5	0.85	128.9	50.7	39.1	78.2	76.8	2.543	0.39
26	1330	1991 0	300.5 417 F	230.0	0.95	130.8	50.1	40.4	80.7	77.0	2.611	0.39
27	1345	1978 5	412.5	230.2	1.15	134.3	50.0	42.2	84.3	78.1	2.687	0.37
28	1400	1985 5	410.0	230.3	1.25	135.9	50.0	42.8	85.9	78.6	2.717	0.37
29	1430	1939.0	429 8	230.2	1.36	137.0	50.0	43.5	87.0	79.0	2.740	0.35
30	1500	1911.0	434 5	230.3	1.00	138.5	49.8	44.3	88.7	78.4	2.780	0.36
31	1530	1885.0	438.0	230.9	7.04	138.3	49.5	44.9	89.7	79.5	2.809	0.35
32	1500	1857.0	440.4	230 8	2.04	138.7	48.3	45.2	80.4	79.4	2.834	0.36
				200.0		140.4	49.5	45.4	80.9	79.8	2.835	0.35
33	1634	1875 5	440 C									
34	1700	1802 0	442.0	230.4	2.54	140.7	49.6	45.5	91.1	80.0	2.836	0.35
35	1730	1774 6	442.6	230.5	2.73	140.6	49.5	45.6	91.1	79.9	2.840	0.35
36	1800	1745 0	443.4	231.0	2.96	140.1	49.1	45.5	91.0	79.4	2.854	0.35
37	1900	1688 5	443.0	231.1	3.21	140.0	49.2	45.4	80.8	79.5	2.846	0.36
38	2000	1632 0	443.0	231.5	3.88	138.9	48.7	45.1	80.2	78.8	2.853	0.36
39	2104	1571.0	441 5	232.1	4.15	137.7	48.2	44.7	89.5	78.0	2.855	0.37
40	2200	1518.5	441 0	232.5	4.67	136.7	47.8	44.5	88.9	77.4	2.860	0.38
41	2300	1461.0	440.0	277 1	5.11	135.7	47.3	44.2	88.4	75.8	2.858	0.39
42	2400	1405.0	439 A	233 6	5.05	134.0	46.9	43.8	87.7	76.1	2.870	0.39
43	100	1348.5	439.0	233.7	5 54	134.0	46.8	43.5	87.2	75.9	2.863	0.40
44	630	1036.0	435.0	235.2	9 16	128 1	40.4	43.3	85.6	75.3	2.865	0.41
45	800	851.0	434.5	235.7	9.87	126 9	45.0	41.6	83.1	72.7	2.847	0.44
46	800	883.0	434.0	235.9	10 35	176 3	44.0 AA E	41.2	82.3	72.0	2.846	0.45
47	1000	836.5	434.0	236.2	10.43	125 4		40.8	61.8	71.8	2.837	0.45
48	1100	780.5	433.5	236.2	11.30	124 6	47.8	40.7	d1.3	/1.2	2.844	0.45
49	1200	724.0	433.0	236.7	11.77	123.7	43 4	40.1	80.8	70.7	2.845	0.47
50	1310	858.0	432.0	237.0	12.32	122.5	43.0	39.4	70 5	20.2	2.849	0.48
					· ··· •					09.5	2.849	0.45

35Ġ

SAMP	1 F ND 6 T 7	5A (8		EAMDIE)				
LONS			CEMUDEDED	SAMPLE!				
PREC	DNSOLIDATION	PRESSURE	5	* 159.3	0 KPA 0 KPA			
NORM	ALIZING STRE	SS		¥ 159.3	О КРА			
NORM	LIZED SHEAR	TEST RES	ULTS	START	120585	END	130585	257
								557
PΤ	PER	NRMLZD	EFFECT	NRMLZD	NRMLZD			
	PESTRN	HALF	RATID	007	CHANGE			
	1 251 44	STRESS	SIGMAS	KPA	IN PWP KPA			
		КРА						
1	0.0	0.009	1.036	0.510	0.0			
2	0.00	0.022	1.086	0.519	0.0			
3	0.02	0.028	1.111	0.516	800.0			
	0.03	0.035	1.143	0.512	0.015			
5	0.04	0.049	1.208	0.505	0.024			
7	0.06	0.067	1.295	0.498	0.050			
8	0.07	0.085	1.389	0.495	0.057			
9	0.08	0.102	1.483	0.490	0.083			
10	0.08	0.120	1.587	0.487	0.099			
17	0.08	0.130	1.654	0.483	0.107			
13	0.14	0.154	1.740	0.451	0,119			
14	0.18	0.154	1.893	0.477	0.137			
15	0.23	0.174	1.965	0.475	0.144			
16	0.28	0.182	2.024	0.476	0.151			
17	0.34	0.189	2.086	0.475	0.157			
19	0.40	0.188	2,147	0.476	0.160			
20	0.50	0.213	2.278	0.475	0.166			
21	0.57	0.220	2.333	0.475	0.174			
22	0,65	0.228	2.410	0.477	0.180			
23	0.75	0.238	2.484	0.479	0.183			
24	0.85	0.245	2.543	0.482	0.185			
2 6	1.15	0 265	2.511	0.483	0.190		·	
27	1.25	0.270	2.717	0.494	0.191			
28	1.36	0.273	2.740	0.496	0.191			
29	1.58	0.278	2.780	0.498	0,191			
30	1.82	0.282	2.809	0.499	0.192			
32	2 27	0.285	2.834	0.499	0.195			
33	2.54	0.286	2.835	0.507	0 192			
34	2.73	0.286	2.840	0.501	0.193			
35	2.96	0.286	2.854	0.499	0.196			
36	3.21	0.285	2.846	0.488	0.195			
38	4 16	0.283	2.853	0.495	0.199			
39	4.67	0.279	2.850	0.480	0.203			
40	5.11	0.277	2.868	0.482	0.208			
41	5.58	0.275	2.870	0.478	0.209			
42	6.05	0.274	2.863	0.475	0.212			
43	5.54	0.272	2.865	0.472	0.213			
45	9.87	0.258	2.846	0.452	0.222			
46	10.35		<b>-</b>	<b>-</b>				
47	10.83	0.255	2.844	0.447	0.227			
48	11.30	0.254	2.845	0.444	0.228			
49	11.77	0.252	2.849	0.440	0.232			
50	12.32	0.250	2.849	0.436	0.234		1	

SAMPLE NO. : T 755 {REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 50.6 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.381
INITIAL HEIGHT OF SAMPLE	= 13.24 CM
INITIAL VOLUME OF SAMPLE	= 603.00 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 41.3 PERCENT

TX. CONSOLIDATION START 250485 END 93585 TRIAXIAL CONSOLIDATION TEST

ΡŢ	EFFECT SIGMA 1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	٥	VOID Ratio	v	SHEAR STRAIN
123456789011234456789012224 11111111112212224 2227222222222222	50.08 57.705 76.45 87.93 101.06 116.16 133.52 79.80 79.80 79.93 62.21 59.53 62.21 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.80 58.50 58.50 57.20 57.20 57.20 57.50 57.50 52.30	25.50 30.50 45.50 40.50 40.50 51.50 51.50 84.80 42.40 42.40 42.40 42.40 42.40 42.40 45.50 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 5	$\begin{array}{c} 1 & 6 & 1 & 3 \\ 2 & 0 & 1 & 7 \\ 2 & 5 & 8 & 3 \\ 3 & 4 & 4 \\ 4 & 5 & 4 & 7 \\ 4 & 5 & 4 & 7 \\ 7 & 5 & 6 & 6 & 6 \\ 9 & 2 & 8 & 2 \\ 1 & 5 & 9 & 9 \\ 1 & 6 & 9 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 9 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 8 & 1 \\ 1 & 6 & 6 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 5 & 4 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 & 6 & 6 \\ 1 & 6 &$	1.841 2.521 3.300 4.303 5.423 8.882 9.842 11.716 10.373 10.257 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705 10.705	$\begin{array}{c} 0.114\\ 0.252\\ 0.358\\ 0.430\\ 0.438\\ 0.358\\ 0.280\\ 0.009\\ -0.214\\ -0.257\\ -0.123\\ -0.122\\ -0.112\\ -0.123\\ -0.122\\ -0.003\\ -0.003\\ -0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.031\\ 0.050\\ 0.050\\ 0.085\\ 0.081\\ \end{array}$	34.36 39.57 45.62 52.48 69.42 9.42 9.42 77 91.70 104.88 54.87 53.04 53.12 53.04 53.04 53.00 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.80 55.50	23.58 27.25 35.95 47.46 52.70 37.40 37.40 31.25 2.70 74.43 37.40 31.25 2.50 31.25 2.50 31.25 2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.338 1.321 1.303 1.279 1.252 1.217 1.182 1.147 1.102 1.134 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126 1.126	2.338 2.321 2.303 2.278 2.278 2.217 2.182 2.182 2.102 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126	0.999 1.175 1.483 2.010 2.739 3.778 4.872 7.39 3.778 4.872 7.343 7.351 7.383 7.357 7.357 7.357 7.357 7.357 7.149 7.121 7.149 7.121 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.0559 7.055
					0.001	5∡.30	0.0	1.126	2.126	6.976

----

<u>, i</u>

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

_____

РТ	SIGMAI	S I GMA 3	STRAINI	STRAIN3	v
1	50.08	26.50	1 613	<u> </u>	
2	57.70	30.50	2 012	0.114	2.338
3	66.45	35.20	2 583	0.232	2.321
4	75.45	40.50	2.505	0.359	2.303
5	87.93	46 60	3.444 A 5.47	0.430	2.279
6	101.06	53.60	S 077	0.438	2.252
7	116,16	61 50	7 666	0.405	2.217
8	133.50	70 80	0 242	0.358	2.182
9	159.52	84 80	3.202	0.280	2.147
10	79.83	47 40	10 801	0.009	2.102
1.1	79.80	42.40	10.801	-0.214	2.134
12	79.90	42 40	10.770	-0.257	2.137
13	73.95	47 70	10.952	-0.123	2.126
14	69.03	44 00	10.952	-0,123	2.126
15	65.53	45 80	10.948	-0.122	2.126
16	62.21	49 70	10.825	-0.110	2.126
17	59 19	52 00	10.891	-0.093	2.126
18	55 50	51.30	10.838	-0.067	2.126
19	55 80	55.60	10.763	-0.029	2.126
20	58 80	55.80	10.718	-0.006	2.126
21	58 80	50.80	10.595	0.005	2.126
22	53 70	56.80	10.580	0.013	2.126
23	58 50	58.70	10.555	0.020	2.125
24	58.50	58.50	10.542	0.031	2.126
25	57.00	58.00	10.527	0.039	2.126
26	57.30	57.90	10.604	0.050	2.126
27	56 70	57.20	10.585	0.050	2.126
28	55.70	56.70	10.566	0.059	2.126
20	55.50	55.50	10.544	0.081	2.126
23	5∡.30	52.30	10.544	0.081	2.125

358

. .

# ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPL	ΕN	Ο.	=	Ŧ	755	REMOULDED	SAMPLES	
TEST	RES	υι.	TS		START	250485	END	90585

ΡŢ	EFFECT SIGMA1 KPA	EFFECT Sigma3 KPa	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL Strain %	LSSV KPA	LSNV	DELTA Énergy Kn-m/yol	TOTAL Energy Kn-m/vol
1	50.1	26.5	23.6	34.4	1.613	0.114	1.841	0.0	• •		
2	57.7	30.5	27.2	39.6	2.017	0.252	2.521	9.5	0.0	0.296	0.0
3	66.4	35.2	31.3	45,6	2.583	0.359	3.300	20.5		0.422	0.296
4	76.4	40.5	35.9	52.5	3.444	0.430	4.303	77.0	1.0	0.659	0.718
5	87.9	46.6	41.3	60.4	4.547	0.438	5.423	47 7	7.8	0.914	1.387
6	101.1	53.6	47.5	69.4	6.073	0.405	6.882	47.3	3.0	1.408	2.301
7	116.2	61.6	54.5	79.8	7.666	0.358	8.383	82 5	4.5	1.677	3.709
8	133.5	70.8	62.7	91.7	9.282	0.280	9.842	104 7		1.914	5.386
9	159.5	84.8	74.7	109.7	11.699	0.009	11.716	177 0		3.119	7.300
10	79.8	42.4	37.4	54.9	10.801	-0.214	10.373	37.7	0.1	-1.358	10.419
11	79.8	42.4	37.4	54.9	10.770	-0.257	10.257	77.5	3.2 0.5	-0.061	9.061
12	79.9	42.4	37.5	54.9	10.952	-0.123	10.705	37.3	3.2 0.7	0.258	9.000
13	73.9	42.7	31.3	53.1	10.952	-0.123	10.705	77 (	a.s	0.0	9.258
14	69.O	44.0	25.0	52.3	10.948	-0.122	10.705	31.2	8.3	-0.001	9.258
15	85.5	46.8	18.7	53.0	10.925	-0.110	10.705	37 6	ə.3 0 7	-0.005	9.257
15	62.2	49.7	12.5	53.9	10.891	-0.033	10.705	35.0	a.s 0 7	-0.005	9.252
17	59.2	52.9	5.3	55.0	10.838	-0.057	10.705	38.4	3.3	-0.005	9.246
18	55.8	55.8	0.0	55.8	10.763	-0.029	10.705	41 R	3.2 0 0	-0.002	9.241
19	55.8	55.8	0.0	55.8	10.718	-0.005	10.705	41 8	a 1	0.0	9.239
20	58.8	58.8	0.0	58.8	10.695	0.005	10.705	46 5		0.0	9.239
21	58.8	58.8	0.0	58.8	10.680	0.013	10.705	46.5	a 1	0.0	9.239
22	58.7	58.7	0.0	58.7	10.665	0.020	10.705	46.3	9 1	0.0	9.239
											9.239
23	58.5	58.5	0.0	58 C	10					0.0	
24	58.0	58.0	0.0	58.0	10.642	0.031	10.705	45.0	9.0	0.0	9.239
25	57.9	57.9	0.0	57 0	10.827	0.039	10.705	45.2	9.0	0.0	9.239
26	57.2	57.2	0.0	57 2	10.604	0.050	10.705	45.1	9.0	0.0	9.239
27	56.7	56.7	0.0	56 7	10 585	0.060	10.705	44.0	9.0	0.0	9.239
28	55.5	\$5.5	0.0	55 5	10.585	0.059	10.705	43.2	9.0	0.0	3.239
29	52.3	52.3	0.0	52 3	10.544	0.081	10.705	41.4	8.9	0.0	. 239
					10.544	0.081	10.705	36.6	8.9		. 239

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 755 (REMOULDED SAMPLE) TEST RESULTS START 250485 END 90585

PΥ	EFFECT SIGMA1 KPA	EFFECT Sigma3 Kpa	DEV Stress KPA	EFFECT OCT Stress	AXIAL STRAIN	RADIAL STRAIN	VOL STRAIN	LSSV	LSNV	DELTA Energy	TOTAL Energy	
				KPA	~	~	7.	KPA	*	KN-M/VOL	KH-M/VOL	
1	50.1	26.5	23.6	34.4	1.626	0.116	1.858	0.0	0.0		0.0	
2	57.7	30.5	27.2	39.6	2.037	0.258	2.553	0 E		0.303	0.0	
3	56.4	35.2	31.3	45.6	2.617	0 360		D.5	0.5	0.433	0.303	
4	76.4	40.5	35.9	52.5	3.505	0.447	4 700	20.5	1.1	0.693	0.736	
5	87.9	46.6	41.3	60.4	4.653	0 451		33.0	1.9	0.956	1.429	
6	101.1	53.6	47.5	69.4	6.265	0 477	5.575	47.3	3.1	1.494	2.385	
7	116.2	61.6	54.6	79.8	7 975	0 300	7.130	63.8	4.7	1.809	3.879	
8	133.5	70.8	62.7	91 7		0.390	8.755	82.6	6.4	2.098	5.688	
9	159.5	84.8	74 7	100 7	3.742	0.310	10.361	104.3	8.1	3.489	7.787	
10	79.8	42.4	77 A	.03.7	12.442	0.010	12.461	137.0	10.8	-1 578	11.276	
11	79.8	42 4	37.4	54.9	11.429	-0.239	10.951	37.3	9.8	-0.058	9.748	
12	79.9	47 4	37.4	54,9	11.395	-0.287	10.822	37.3	9.8	0.000	9.680	
13	73 9	42.4	37.5	54.9	11.599	-0.138	11.322	37.3	10.0	0.288	9.968	
14	· 4 . 3	42.7	31.3	53.1	11.599	-0.138	11.322	33.1	10.0	0.0	9.968	
	03.U	44.0	25.0	52.3	11.594	-0.136	11.322	31.2	10.0	-0.001	9.967	
15	85,5	46.8	18,7	53.0	11.569	-0.124	11.322	32.6	9.9	-0.006	9.962	
	52.2	49.7	12.5	53.9	11.531	-0.104	11.322	35.o	9.9	-0.005	9.956	
17	59.2	52.9	5.3	55.0	11.472	-0.075	11.322	38.4	9.8	-0.006	9.950	
18	55.8	55.8	0.0	55.8	11.387	-0.032	11.322	41.8	9.8	-0.003	9.947	
19	55.8	55.8	o.o	55.8	11.336	-0.007	11.322	41.8	9.7	• 0 . 000	9 947	
20	58.8	58.8	0.0	58.8	11.311	0.006	11.322	46.5	9,7	-0.000	9 947	
21	58.8	58.8	0.0	58.8	11.294	0.014	11.322	46.5	9.7	-0.000	a.aw/	
22	58.7	58.7	0.0	58.7	11.277	0.023	11.322	46.3	9.7	-0.000	3.347	
											3,341	
23	<b>E0 r</b>											
24	58.5	58.5	0.0	58.5	11.252	0.035	11.322	46.0	9.6	-0.000	9.947	
<u>4</u> 4	58.Q	58.0	0.0	58.0	11.235	0.044	11.322	45.2	9.6	-0.000	9.947	
¥5	57.9	57.9	0.0	57.9	11.209	0.056	11.322	45.1	9.6	-0.000	9.947	
26	57.2	57.2	0.0	57.2	11.188	0.067	11.322	44.0	9,6	-0.000	9.947	
27	56.7	56.7	0.0	56.7	11.167	0.077	11.322	43.2	9.5	-0.000	9 9 4 7	
28	55.5	55.5	0.0	55.5	11.142	0.090	11.322	41.4	9.5	+0.000		
29	52.3	52.3	0.0	52.3	11.142	0.030	11.322	36.6	9 5	0.0		
								20.0		:	3.947	

.

SAMPLE NO. = T 755 (REMOULDED SAMPLE) SAMPLE HEIGHT AFTER CONSOLIDATION = 11.070 CENTIMETRES SAMPLE VOLUME AFTER CONSOLIDATION = 535.000 CUBIC CENTIMETRES SAMPLE AREA AFTER CONSOLIDATION = 44.770 SOUARE CENTIMETRES CONSTANT LOAD Proving ring factor Piston area = 15.06 N . = 0.4177 N ./DIV = 5.0700 Square centimetres INITIAL DIAL READING = 1830.00 DIVISIONS SHEAR TEST RESULTS START 140585

END 150585

CONSOLIDATED UNDRAINED TRIAXIAL TEST

P	T TIME	DISP	L PRING	PORF	DED.								
		DIAL	DIAL	PRES	S CENT	ETEMAN	EFFECT	HALF	DEV	EFFECT	RATIO OF	A	
		RDG	RDG	KPA	PCSTR	I KOA	SIGMA3	DEV	STRESS	OCT	EFF SIGMA1		
							KPA	STRESS	KPA	STRESS	EFF SIFMA3		
								КРА		KPA			
	935	1830.0	318.0	199.1	9 0.0	81.8	80.5						
	945	1829.0	334.0	200.0	0 0.01	83.3	80.5	0.6	1.3	80.9	1.016	0.0	
	850	1828.9	344.5	200.3	2 0.01	83.6	79.8		2.8	81.4	1.034	0.07	
	1000	1826.5	362.5	200.1	9 0.03	84 . R	70.7	1.8	3.8	81.1	1.048	0.12	
2	1005	1825.5	373.0	201.3	3 0.04	85.3	78.9	2.7	5.5	B1.1	1.059	0.24	
	1010	1825.0	384.0	202.1	1 0.04	85.6	78 1	3.2	6.4	81.0	1.082	0.27	
	1015	1824.0	397.0	202.5	5 0.05	86.4	77 7	3.7	7.5	80.5	1.095	0.36	
ŝ	1020	1823.5	409.8	203.3	3 0.05	86.8	76.9	4.3	8.7	80.6	1.112	0.35	
	1025	1823.0	421.0	203.8	30.06	87.4	76.5	4.9	9.9	80.2	1.128	0.40	
	1030	1822.0	437.0	204.8	\$ 0.07	87.9	75 5	5.4	10.9	80.1	1.142	0.42	
	1035	1821.5	445.5	205.0	0.07	88.3	75 1	0.2	12.4	79.6	1.164	0.44	
	1040	1821.0	458.0	205.6	5 0,08	69.0	74 7	7 0	13.2	79.5	1.175	0.43	
1.3	1045	1820.4	470.5	206.5	6.08	89.1	77 6	7.2	14.3	79.5	1.192	0.44	
	1050	1819.5	479.5	206.9	0.09	89.8	73 5		10.5	78.8	1.211	0.46	
10	1055	1819.0	490.0	207.4	0.09	90.1	72 4		16.3	78.9	1.222	0.47	
17	1100	1818.0	501.0	207.6	0.10	91.0	72 7	0.7	17.3	78.6	1.238	0.47	
	1175	1815.0	535.0	209.5	0.13	82.3	70.8	10.1	10.3	78.8	1.252	0.45	
10	1145	1812.0	567.3	211.8	0.15	82.9	68.4	17 3	21.5	78.0	1.304	0.47	
20	1145	1809.0	595.2	213.1	0.18	94.1	67.0	17 6	24.5	76.6	1.359	0.51	
21	1200	1805.0	625.0	214.5	0.21	95.5	65.6	14 9	27.1	76.0	1.405	0.51	
2.7	1215	1800.5	651.6	216.3	0.25	96.1	63.8	16.2	28.9	75.6	1.456	0.51	
22	1245	1796.5	677.0	217.6	0.28	87.7	53.0	17 7	32.3	74.6	1.507	0.53	
24	1245	1791.5	702.0	218.4	0.32	98.6	61.6	18 5	37.0	74.6	1.550	0.53	
25	1300	1786.0	726.0	218.8	0.37	99.6	60.4	19 6	37.0	73.9	1.601	0.52	
26	1310	1778.0	755.0	221.5	0.43	100.7	58.8	20.9	S8.2	73.5	1.649	0.52	
27	1400	1770.0	782.0	222.7	0.50	102.0	57.6	22 2	41.5	72.8	1.712	0.53	
28	1420	1762.0	810.0	224.2	0.57	102.9	56.0	23 5	44.4	72.4	1.770	0.53	
28	1440	1754.0	834.5	225.3	0.63	104.1	54.9	24.5	40.5	71.6	1.838	0.53	
30	1500	1745.0	862.0	226.3	0.71	105.7	54.0	25.8	51 7	71.3	1.896	0.53	
31	1570	1736.0	885.0	227.2	0.79	105.9	53.0	25 9	57 0	71,2	1.957	0.52	
32	1600	1722.5	919.0	228.3	0.80	108.8	51.9	28.4	56.9	70.0	2.016	0.52	
		1708.0	954.0	229.4	1.02	110.9	50.9	30.0	60.0	70.9	2.096	0.51	
									00.0	/0.8	2.179	0.50	
33	1630	1693 5											
34	1700	1678 0	1012 0	230.2	1.14	113.0	50.3	31.4	62.7	71.2	2 247	~ **	
35	1730	1652.0	1040 5	231.5	1.27	113.9	48.7	32.6	65.2	70.4	2 339	0.49	
36	1800	1646.0	1065 5	231.8	1.40	116.0	48.3	33.9	67.7	70.9	2.403	0.49	
37	1830	1629.5	1088 0	232.0	1.54	117.5	47.5	35.0	70.0	70.8	2 473	0.48	
38	1900	1612.5	1110 0	233.0	1.08	119.2	47.3	36.0	71.9	71.3	2.520	0 47	
39	1930	1595.0	1127 0	233.7	1.62	120.2	45.4	36.9	73.8	71.0	2.591	0.47	
40	2000	1576.0	1145 0	233.8	1.86	121.8	46.5	37.6	75.3	71.6	2.619	0.45	
41	2030	1557.0	1159.0	234.7	2.12	123.0	46.2	38.4	76.8	71.8	2.862	0 45	
42	2100	1538.0	1172.5	234 5	2.20	124.0	46.1	39.0	77.9	72.1	2.680	0 45	
43	2200	1498.0	1194.0	234 5	2.99	124.6	45.5	39.5	78.1	71.9	2.738	0.44	
44	2300	1456.5	1212.0	234 3	3 9 2	126.6	45.9	40.4	80.7	72.8	2.758	0.44	
45	2401	1414.0	1225.0	234.5	3 48	128.0	45.9	41.0	82.1	73.3	2.788	0.43	
46	145	1337.6	1233.5	234 8	4 11	120.0	45.7	41.5	82.9	73.3	2.815	0.42	
47	538	1154.0	1242.4	235.3	5 5 5	120.4	45.2	41.6	83.2	72.8	2.840	0.43	
48	700	1103.0	1243.0	235.4	6 07	127.0	44.9	41.3	82.7	72.5	2.841	0.43	
49	800	1057.0	1241.5	235.5	6 46	127.3	45.0	41.1	82.3	72.4	2.828	0.44	
50	900	1011.5	1238.0	235.8	6 84	126.6	45.0	40.9	81.8	72.3	2.817	0.44	
51	1000	964.0	1234.0	235.8	7.23	124 7	44.4	40.6	81.2	71.5	2.828	0.45	
52	1100	819.0	1232.0	235.6	7.61	174 -	44.2	40.3	80.5	71.0	2.821	0.45	
63	1203	872.0	1232.0	236.2	8.00	123 #	44.6	40.0	80.0	71.3	2.793	0.45	
54	1300	828.0	1232.0	236.2	8.37	123 5	44.2	38.8	79.6	70.7	2.802	0.46	
55	1400	782.5	1230.0	236.3	8.75	177 8	NA.2	39.7	79.3	70.5	2.784	0.47	
55	1500	737.2	1228.2	236.7	8.13	121 8	44.0	38.4	78.8	70.3	2.791	0.47	
57	1500	691.5	1225.0	236.9	9.51	121 1	47 7	39.2	78.4	89.5	2.806	0.48	
55	1700	645.0	1223.0	237.0	9.90	120 7	47 5		77.8	69.2	2.786	0.48	
38	1800	601.0	1221.8	237.5	10.27	119.8	47.0	38.6	77.2	69.2	2.775	0.49	
50	1900	555.0	1222.0	237.5	10.65	119.4	42 0	30.4	75.8	88.6	2.785	0.50	
61	2100	464.0	1221.8	237.9	11.41	118.2	42 4	30.2	76.5	58.4	2.783	0.50	
02	4235	393.0	1218.0	238.0	12.01	117.5	42.5		75.8	57.7	2.789	0.51	
									15.0	57.5	2.765	0.52	

SAMPLE	NO.	₹ T	755	(REMOULDED	SAMPLE)	
CONSOL Precons Normal	IDATI Solid Izing	0 N / A T I C S T F	AXIAL : DN PRE: Ress	STRESS SSURE	* 81.78 * 159.52 * 159.52	КРА Кра Кра

NOR	MALIZED SHEA	AR TEST RE	SULTS	START	140585	END	
						- 40	150585
PT	PER						
	CENT	HALF	PATIO	NRMLZD	NRMLZD		
	PCSTRN	DEV	516461	ETDEEC	CHANGE		
		STRESS	SIGMAT	214522	IN PWP		
		KPA	e i enimali	NF A	крд		
	0.0	0.004	1.016	0.507	0.0		
	0.01	0.009	1.034	0.510	0.001		
ž	0.01	0.012	1.048	0.508	0.002		
5	0.04	0.017	1.069	0.509	0.005		
6	0.04	0.020	1.082	0.508	0.009		
7	0.05	0.027	1 1 1 2 2	0.505	0.014		
8	0.05	0.031	1 128	0.505	0.016		
9	0.05	0.034	1.142	0.503	0,021		
10	0.07	0.039	1.164	0.499	0.025		
11	0.07	0.041	1.176	0.498	0 032		
12	0.08	0.045	1.192	0.498	0.036		
14	0.08	0.049	1.211	0.494	0.041		
15	0.09	0.051	1.222	0.495	0.044		
16	0.10	0.054	1.238	0.493	0.047		
17	0.13	0.067	1 704	0,494	0.048		
18	0.15	0.077	1 354	0.489	0.050		
19	0.18	0.085	1.405	0 477	0.075		
20	0.21	0.094	1.456	0.474	0.083		
21	0.25	0.101	1.507	0.458	0.103		
22	0.28	0.109	1.550	0.467	0.111		
24	0.32	0.115	1.801	0.484	0.115		
25	0.43	0.123	1.649	0.461	0.125		
26	0.50	0.139	1.712	0.456	0.135		
27	0.57	0.147	1.838	0.454	0.143		
28	0.63	0.154	1.898	0.447	0.152		
29	0.71	0.182	1.957	0.445	0.155		
30	0.79	0.189	2.015	0.445	9.171		
32	1.02	0.178	2.095	0.444	0.178		
33	1.14	0.188	2.179	0.444	0.185		
34	1.27	0.704	2.247	0.446	0.190		
35	1.40	0.212	2.403	0.442	0.198		
36	1.54	0.218	2.473	0 444	0.201		
37	1.68	0.225	2.520	0.447	0.207		
38	1.82	0.231	2.591	0.445	0.212		
40	2 1 2	0.236	2.619	0.449	0.213		
41	2.28	0.241	2.852	0.450	0.214		
42	2.44	0.248	2 778	0.452	0.215		
43.	2.77	0.253	2.758	0.450	0.217		
44	3.12	0.257	2.788	0.459	0.217		
45	3.48	0.280	2.815	0.480	0.217		
46	4.11	0.261	2.840	0 457			
47	5.56	0.259	2.841	0.454	0.219		
48	6.07	0.258	2.828	0.454	0 223		
4¥ 80	5.48	0.256	2.817	0.453	0.223		
51	7 77	0.254	2.828	0.448	0.225		
52	7.81	0.252	2.821	0.445	0.225		
53	8.00	0.250	2.783	0.447	0.224		
54	8.37	0.249	2.794	0.443	0.228		
55	8.75	0.247	2.791	0.441	0.228		
55	9.13	0.245	2.805	0.436	0.231		
57	¥.51 9 80	0.244	2.796	0.434	0.232		
59	10.27	0.242	2.775	0.434	0.233		
80	10.85	0.240	2.785	0.430	0.236		
81	11.41	0.238	2.789	0.429	0.236		
82	12.01	0.235	2.765	0.423	0.238		
					~		

SAMPLE NO. = T 756 [REMOULDED S	SAMPLE)
INITIAL MOISTURE CONTENT	50.8 PERCENT
SPECIFIC GRAVITY OF SOIL	2.73
INITIAL VOID RATIO	1.387
INITIAL HEIGHT OF SAMPLE	13.24 CM
INITIAL VOLUME OF SAMPLE	503.00 CC
EFFECTIVE PRINCIPAL STRESS RATIO	1.00
FINAL MOISTURE CONTENT	41.8 PERCENT
TX. CONSOLIDATION START 2604 TRIAXIAL CONSOLIDATION TEST	85 END 100585

PT	EFFECT SIGMA1	EFFECT Sigma3	STRAINI	VOLUME Strain	STRAINS	EFFECT P	Ŷ	VOID Ratio	v	SHEAR STRAIN
- 2345878901234587890123458789	50.00 86.203 87.86 115.81 1152.818 100.799 1152.818 79.848 79.848 79.848 79.848 79.848 79.848 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.845 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 79.945 7	$\begin{array}{c} 25 & .50\\ 35 & .10\\ 46 & .50\\ 51 & .40\\ 51 & .40\\ 70 & .60\\ 61 & .40\\ 70 & .60\\ 42 & .40\\ 42 & .40\\ 42 & .40\\ 43 & .80\\ 43 & .80\\ 56 & .10\\ 56 & .10\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\ 58 & .30\\$	1.601 1.979 2.576 3.399 4.736 6.284 7.953 9.743 9.743 12.878 11.949 12.089 12.089 12.089 12.089 12.089 12.089 12.089 12.081 1.949 12.089 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 12.081 1.949 1.081 1.949 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.949 1.081 1.949 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.949 1.081 1.805 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1785 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1805	$\begin{array}{c} 1.708\\ 2.305\\ 3.118\\ 4.030\\ 5.357\\ 6.808\\ 8.284\\ 9.776\\ 10.539\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\ 10.332\\$	0.053 0.153 0.271 0.316 0.262 0.165 0.016 0.564 -0.727 -0.784 -0.859 -0.859 -0.854 -0.727 -0.859 -0.859 -0.869 -0.727 -0.727 -0.727 -0.727 -0.859 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.858 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.838 -0.8388 -0.8388 -0.8388 -0.8388 -0.8388 -0.8388	34.33 39.549 52.34 69.549 50.22 89.20 79.54 91.40 109.56 54.90 54.90 54.80 53.64 54.21 54.21 55.16 56.70 58.70 58.40 58.30 58.30 58.40 58.30 58.30	$\begin{array}{c} 23.50\\ 27.10\\ 35.83\\ 41.18\\ 47.39\\ 54.41\\ 52.39\\ 74.29\\ 77.49\\ 37.49\\ 37.49\\ 37.49\\ 37.49\\ 37.49\\ 37.49\\ 37.49\\ 37.49\\ 37.61\\ 30.00\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$	1.346 1.332 1.291 1.259 1.224 1.189 1.153 1.165 1.135 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140 1.140	$\begin{array}{c} 2.346\\ 2.332\\ 2.312\\ 2.291\\ 2.259\\ 2.254\\ 2.189\\ 2.163\\ 2.139\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.140\\ 2.$	$\begin{array}{c} 1. & 0.32\\ 1. & 2.10\\ 1. & 5.36\\ 2. & 950\\ 2. & 950\\ 5. & 192\\ 5. & 192\\ 5. & 484\\ 8. & 961\\ 8. & 481\\ 8. & 481\\ 8. & 481\\ 8. & 626\\ 8. & 625\\ 8. & 573\\ 8. & 524\\ 8. & 323\\ 8. & 323\\ 8. & 3242\\ 8. & 3201\\ 8. & 2263\\ 8. & 2263\\ 8. & 2203\\ 8. & 180\\ 8. & 187\\ \end{array}$

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡT	S I GMA 1	SIGMAB	STRAINI	STRAINS	v
P 123455788012345878801234587	SIGMA1 SO.00 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 B7.80 F3.81 B2.99 F3.84 F5.81 B2.99 F3.84 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F5.83 F	28.50 30.50 35.10 40.50 53.40 45.50 53.40 45.50 51.40 70.80 42.40 42.40 43.20 43.20 43.20 43.20 55.10 55.10 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.40 55.30 55.40 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.30 55.300	5 TRAIN1 1.801 1.975 2.578 3.399 4.736 6.284 7.853 9.743 12.878 11.994 12.089 12.089 12.069 12.047 11.968 11.892 11.605 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.884 11.884 11.884 11.884 11.884 11.884 11.884 11.884 11.884 11.884 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.884 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.785 11.7	STRAIN3 0.053 0.183 0.271 0.316 0.262 0.165 0.016 0.2584 -0.784 -0.859 -0.859 -0.859 -0.859 -0.859 -0.858 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.727 -0.7584 -0.859 -0.859 -0.858	V 2.346 2.332 2.312 2.291 2.259 2.228 2.128 2.138 2.108 2.138 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140 2.140
28 29	57.40 55.30	57.40	11.824	-0.645	2.140
				-0.635	2.140

ENERGY CALCULATIONS

27

28

29

58.1

57.4

56.3

58.1

57.4

56.3

0.0

0.0

0.0

58.1

57.4

56.3

**** ENGINEERING STRAIN ****

SAM Tes	PLE NO. # T Results	T 758 Start	(REMOUL 26048	DED SAMP 5 En	LE) D 1005	585					
PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3	DEV Stress	EFFECT Oct	AXIAL Strain	RADIAL STRAIN	VOL Strain	LSSV	LSNV	DELTA	TOTAL
		NF M	RPA	STRESS KPA	2	x	*	КРА	x	KN-M/VOL	ENERGY KN-M/VOL
1	50.0	26.5	23.5	34.3	1.601	0.053	1.708	0.0			
2	57.6	30.5	27.1	39.5	1.979	0.163	2.305	9.5	0.4	0.255	0.0
3	66.3	35.1	31.2	45.5	2.576	0.271	3.118	20.3		0.440	0.266
4	76.2	40.4	35.8	52.3	3.399	0.316	4 030	20.0	1.0	0.620	0.705
5	87.7	46.5	41.2	60.Z	4.736	0 310	E 367	32.0	1.8	1.081	1.325
6	100.8	53.4	47.4	69.2	6.284	0 262	5.357	47.1	3.2	1.410	2.417
7	115.8	61.4	54.4	79.5	7 857	0.202	6.808	63.5	4.7	1.697	3.828
8	133.0	70.6	62.4	81.4	0 747	0.165	8.284	82.3	6.4	2.030	5.524
9	159.1	84.8	74.3	108 8	10 070	0.015	9.776	103.8	8.1	3.675	7.555
10	79.9	42.4	37.5	54 0	12.070	-0.564	11.750	136.7	11.3	-1.264	11.230
11	79.5	42.4	37 8	54.5	11.894	-0.727	10.539	37.4	10.5	-0 084	9.966
12	79.9	47 4	37.8 37 E	54.9	11.949	-0.784	10.381	37.4	10.4	0.024	9.882
13	74 5	47.5	37.6	54.9	12.069	-0.859	10.332	37.4	10.5	0.024	9.907
14	70.8	43.2	31.3	53.6	12.069	-0.869	10.332	34.0	10.5	0.0	9.907
15	67 7	45.8	24.9	54.2	12.069	-0.889	10.332	34.4	10.5	0.0	9.907
1.5		48.9	18.8	55.2	12.047	-0.858	10.332	36.3	10.5	-0.005	9.902
	BB.1	52.5	12.6	56.7	12.017	-0.842	10.332	39.8	10.5	-0.005	9.897
17	62.3	56.1	6.2	58.2	11.968	-0.818	10.332	43.5	10.4	-0.005	9.892
1.5	60.0	60.0	0.0	60.0	11.892	-0.780	10.332	48.4	10.4	-0.002	9.890
19	58.9	58.9	0.0	58.9	11.805	-0.737	10.332	46.7	10.3	0.0	8 890
20	59.8	59.8	0.0	59.8	11.786	-0.727	10.332	48.1	10.2	0.0	9 490
21	59.3	59.3	0.0	59.3	11.767	-0.718	10.332	47.3	10.2	0.0	9 850
22	58.5	58.5	0.0	58.5	11.745	-0.707	10.332	46.0	10.2	0.0	
											9.880
23	58.2	58 2								0.0	
24	58.3	56.9	0.0	ə 8 , 2	11.730	-0.699	10.332	45.6	10.2	0.0	9.890
25	58 2	~~ E 0 ~	0.0	58.3	11.707	-0.588	10.332	45.7	10.2	0.0	8.890
26	58.4	00.Z	0.0	58.2	11.684	-0.576	10.332	45.6	10.1	0.0	9.890
		58.4	0.0	58.4	11.669	-0.669	10.332	45.9	10.1	0.0	9.890

11.647 -0.657

11.624 -0.646

11.601 -0.635

10.332

10.332

10.332

364

_____

0.0

0.0

0.0

9.890

9.890

9.890

45.4 10.1

44.3 10.1

42.6 10.0

ENERGY CALCULATIONS

SAMPLE NO. * T 756 (REMOULDED SAMPLE) Test results start 260485 end 100585

PΤ	EFFECT SIGMA1	EFFECT SIGMA3	DEV Stress	EFFECT Oct	AXIAL STRAIN	RADIAL STRAIN	VOL Strain	LSSV	LSNV	DELTA Energy	TOTAL Energy	
	KPA	КРА	КРА	STRESS KPA	%	x	×	КРА	*	KN-M/VOL	KN-M/VOL	
1	50.0	26.5	23.5	34.3	1.614	0.054	1.723	0.0	0.0	0.271	0.0	
2	57.6	30.5	27.1	39.5	1.999	0.157	2.332	9.5	0.4	0 457	0.271	
3	56.3	35.1	31.2	45.5	2.509	0.279	3.167	20.3	1.0	0 641	0.723	
4	76.2	40.4	35.8	52.3	3.458	0.328	4.113	32.8	1.8	1 1 4 1	1.364	
5	87.7	46.5	41.2	60.2	4.851	0.327	5.505	47.t	3.3	1 497	2.505	
6	100.8	53.4	47.4	69.2	5.490	0.280	7.050	63.5	4.9	1 871	4.003	
7	115.8	61.4	54.4	79.5	8.287	0.180	8.647	82.3	6.7	2 230	5.834	
8	133.0	70.6	62.4	91.4	10.251	0.018	10.287	103.8	8.6	A 174	8.063	
9	159.1	84.8	74.3	109.6	13.785	-0,643	12.499	136.7	12.2	-1 471	12.197	
10	79.9	42.4	37.5	54.9	12.776	-0.820	11.136	37.4	11.2	-0.094	10.766	
11	79.9	42.4	37.5	54.9	12.724	-0.882	10.961	37.4	11.2	0.026	10.672	
12	78.9	42.4	37.5	54.9	12.862	-0.978	10.905	37.4	11.3	0.010	10.700	
13	74.5	43.2	31.3	53,6	12.862	-0.978	10.905	34.0	11.3	0.0	10.700	
14	70.8	45.9	24.9	54.2	12.862	-0.978	10.905	34.4	11.3	-0.006	10.700	
15	67.7	48.9	18.8	55.2	12.836	-0.965	10.805	36.3	11.3	-0.005	10.695	
16	65.1	52.5	12.6	56.7	12.802	-0.948	10.905	39.8	11.3	-0.005	10.689	
17	62.3	56.1	6.2	58.2	12.746	-0.920	10.905	43.6	11.2	+0.003	10,684	
18	80.0	60.0	0.0	60.0	12.660	-0.878	10.805	48.4	11.1	-0.000	10.681	
19	58.9	58.9	0.0	58.9	12.562	-0.828	10.905	46.7	11.0	-0.000	10.681	
20	59.8	59.8	0.0	59.8	12.540	-0.818	10.905	48.1	11.0	+0.000	10.681	
21	59.3	<b>59.3</b>	0.0	59.3	12.519	-0.807	10.905	47.3	11.0	0.000	10.681	
22	58.5	58.5	0.0	58.5	12,493	-0.794	10.905	46.0	10.8	•.•••	10.681	
23	58.2	58.2	0.0	58.2	12.476	-0.785	10.905	45.6	10.9	-0.000	10.681	
24	58.3	58.3	0.0	58.3	12.450	-0.773	10.805	45.7	10.9	-0.000	10.681	
25	58.2	58.2	0.0	58.2	12.425	-0.760	10.905	45.6	10.9	-0.000	10.581	
26	58.4	58.4	0.0	58.4	12.408	-0,751	10.905	45.9	10.9	-0.000	10.681	
27	58.1	58.1	0.0	58.1	12.382	-0.738	10.905	45.4	10.8	-0.000	10.881	
28	57.4	57.4	0.0	57.4	12.356	-0.726	10.905	44.3	10.8	-0.000	10.681	
29	56.3	56.3	0.0	56.3	12.331	-0,713	10.905	42.6	10.8	-0.000	10.881	
			•.•									

365

.

SAMPLE NO. = T 756 (REMOULDED	SAMPLE )
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	11.788 CENTIMETRES 536.600 CUBIC CENTIMETRES 45.521 SQUARE CENTIMETRES
CONSTANT LOAD Proving ring pactor Piston area	= 16.52 N . = 1.0225 N ./DIV = 5.0700 SOUARE CENTIMPTOPS
INITIAL DIAL READING	= 2083.00 DIVISIONS
SHEAR TEST RESULTS START 210	585 END 220585

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPL DIAL RDG	PRING Dial RDG	PORE Press Kpa	PER Cent PCSTRN	EFFECT Sigmai KPA	EFFECT SIGMA3 KPA	HALF DEV Stress KPA	DEV Stress Kpa	EFFECT Oct Stress KPA	RATIO OF EFF Sigmai EFF Sifmaj	A
1	855	2083.0	149.0	200.0	0.0	86.3	80.4	2.9	5.9	87 8	1 077	
2	900	2082.0	160.5	202.8	0.01	86.1	77.6	4.2	8 6	80.4	1.073	0.0
3	810	2078.5	185.5	205.2	0.03	88.2	74.1	7.0	14 1	74 4	1.108	1.08
4	820	2075.4	210.0	209.4	0.06	90.5	70.9	9.8	19.6	70.0	1 276	0.75
	830	2071.0	230.0	212.1	0.10	92.0	67.9	12.0	24 1	76.0	1.276	0.69
6	940	2068.0	245.0	214.2	0.14	93.8	66.2	13.8	27 6	75.0	1.355	0.66
	950	2051.0	260.0	216.0	0.19	95.0	64.2	15.4	30.8	74 8	1.417	0.85
8	1000	2055.0	272.5	217.4	0.24	96.2	82.5	16.4	33.6	74.5	1.478	0.64
8	1010	2048.5	285.0	218.3	0.28	97.2	60.9	18.2	36.3	73.6	1.636	0.63
10	1020	2042.0	296.2	220.3	0.35	98.5	59.7	19.4	78.8	70 6	1.58/	0.63
11	1030	2035.5	306.5	222.2	0.40	99.1	58.0	20 5	A1 1	74.0	1.651	0.62
12	1045	2024.0	319.5	223.2	0.50	100.8	56.8	22.0	44 0	71 5	1.705	0.63
13	1100	2015.4	332.5	224.9	0.57	102.1	55.3	23.4	48.8	70.0	1.775	0.61
14	1115	2004.5	344.0	226.3	0.67	103.4	54.1	24.7	49.3	70.5	1.047	0.61
15	1130	1992.8	355.0	227.5	0.77	104.6	52.8	25.9	51 A	70.1	1.012	0.60
16	1145	1981.5	365.5	228.1	0.85	106.2	52.2	27.0	54 0	70.7	1.980	0.60
17	1200	1970.0	375.2	229.3	0.96	107.3	51.2	28.1	56.1	69.9	2.035	0.58
18	1215	1958.0	385.0	230.2	1.06	108.6	50.4	29.1	58 2	80.8	2.026	0.58
19	1230	1946.0	394.0	230.5	1.16	110.0	49.8	30.1	50 2	6 6 6	2.100	0.58
20	1300	1823.0	410.0	232.2	1.36	111.8	48.2	31.8	53.6	68 A	2 720	0.56
21	1330	1897.6	424.0	232.9	1.57	114.0	47.4	33.3	66.6	89 5	2.320	0.56
22	1400	1872.0	436.0	233.3	1.79	115.8	46.7	34.6	69.1	89 7	2.405	0.54
23	1430	1847.0	445.0	234.0	2.00	117.4	46.5	35.5	70.9	70.1	2.460	0.53
24	1500	1820.5	452.5	234.4	2.23	118.2	45.8	36.2	72.4	Re c	2.020	0.52
25	1630	1794.0	458.5	234.9	2.45	118.9	45.3	36.8	73.6	69 A	2.001	0.82
26	1504	1783.0	463.8	235.0	2.71	119.6	45.1	37.3	74.5	69.9	2.024 9 859	0.52
21	1830	1739.0	466.9	235.3	2.82	120.2	45.2	37.5	75.0	70 2	2.000	0.51
28	1707	1705.0	470.5	234.9	3.21	121.2	45.6	37.8	75.6	70.8	2.000	0.51
20	1/30	1882.0	471.5	234.9	3.40	121.0	45.3	37.8	75.7	70 5	7 670	0.80
30	1800	1655.0	473.5	234.9	3.63	121.3	45.4	38.0	75.9	70.7	2 670	0.50
31	1900	1699.5	474.8	235.2	4.10	120.8	45.0	37.9	75.8	70.3	2 685	0.50
32	2000	1542.0	475.0	235.5	4.59	120.5	45.0	37.7	75.5	70.2	2 677	0.80
33	2100	1487.0	474.0	235.3	5.06	119.8	44.9	37.5	74 9	80 D	0.000	
34	2200	1428.0	472.5	235.5	5.55	119.0	44.8	37.1	74 7	80 E	4.000	0.81
35	2300	1371.0	470.5	235.6	8.04	118.4	45.0	36.7	77 4	80.5	2.666	0.52
36	2400	1313.0	467.5	235.3	5.53	117.3	44.9	36.2	72 4	80.0	2.630	0.53
37	500	1027.5	452.0	235.9	8.95	111.8	44.5	33 7	87 7	68.0	2.812	0,53
38	800	870.0	448.5	235.9	9.44	111.0	44.6	33 2	86 A	88 7	2.813	0.58
38	700	911.0	448.0	235.9	9.94	110.1	44.3	32 9	85 8	66.7	2.490	0.59
40	800	798.2	444.7	236.4	10.90	108.1	43.6	32.2	84 5	20.2 22 1	2.485	0.60
41	855	759.2	443.3	236.8	11.23	107.3	43.4	32.0	87 6	44 7	2.478	0,82
42	1115	\$70.0	441.5	238.8	11.99	105.3	43.3	31.5	63.0	84.7	2.4/3	0.63
43	1147	640.0	440.5	236.8	12.24	105.9	43.3	31.3	67 8	64 7	2.400	0.84
						-	· · · · · -				4.447	U. 55

SAMPLE	NO.	z	т	756	(REMOULDED	SAMPLE)
			•		(	

CONSOLIDATION AXIAL STRESS	F	86.27	KPA
PRECONSOLIDATION PRESSURE	ε.	159.09	KPA
NORMALIZING STRESS	2	159.09	KPA

_____

NORMAL	IZED SHE	AR TEST RESU	JLTS S	TART	210585	END
		NOMI TO	*****	NEMI 70	NOMI TO	
	CENT	HALE .	DA710	ACT	CHANCE	
	DCCTDN	DEV	CICHAI	001		
	FLATER	027	STOMAT	PDA		
		21KC32	SIGWAD	NFM	NF A	
		KFA				
1	0.0	0,018	1.073	0.518	0.0	
2	0.01	0.027	1.108	0.505	0.018	
3	0.03	0.044	1.190	0.495	0.039	
4	0.05	0.052	1.276	0.487	0.059	
5	0.10	0.076	1.355	0.477	0.076	
6	0.14	0.087	1.417	0.474	0.089	
7	0.18	0.097	1.479	0.458	0.101	
8	0.24	0.108	1.536	0.454	0.109	
9	0.28	0.114	1.597	0.458	0.121	
10	0.35	0.122	1.651	0.457	0.128	
11	0.40	0.129	1.709	0.451	0.140	
12	0.50	0.138	1.775	0.449	0.146	
13	0.57	0.147	1.847	0.448	0.157	
14	0.67	0.155	1.912	0.443	0.165	
15	0.77	0.163	1.980	0.440	0.173	
16	0.85	0.170	2.035	0.441	0.177	
17	0.96	0.175	2.095	0.439	0.184	
18	1.05	0.183	2.155	0.439	0.190	
19	1.15	0.189	2.209	0.439	0.192	
20	1.36	0.200	2.320	0.435	0.202	
21	1.57	0.209	2.405	0.437	0.207	
	1.75	0.217	2.460	0.438	0.208	
23	2.00	0.223	2.525	0.441	0.214	
75	2 45	0.221	2 8 2 4	0 439	0 218	
26	2 71	0 234	7 653	0 440	0 220	
27	2 87	0 236	2 680	0 441	0 222	
28	3.21	0.238	2.657	0.445	0.218	
29	3.40	0.238	2.870	0.443	0.219	
30	3.63	0.238	2.672	0.444	0.219	
31	4.10	0.238	2.685	0.442	0.221	
32	4.59	0.237	2.677	0.441	0.223	
33	5.06	0.235	2.668	0.439	0.222	
34	5.56	0.233	2.656	0.437	0.223	
36	6.04	0.231	2.630	0.437	0.224	
36	6.53	0.227	2.612	0.434	0.222	
37	8.95	0.212	2.513	0.421	0.225	
38	9.44	0.209	2.480	0.420	0.225	
39	8.94	0.207	2.485	0.416	0.226	
40 1	0.90	0.203	2.478	0.409	0.229	
41 1	1.23	0.201	2.473	0.407	0.231	
42 1	11.99	0.198	2.456	0.404	0.231	
43 1	2.24	0.197	2.447	0.403	0.231	

ΡT

----

EFFECT

SAMPLE NO. : T 757 (REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= S0.4 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.376
INITIAL HEIGHT OF SAMPLE	= 13.20 CM
INITIAL VOLUME OF SAMPLE	= 601.18 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 1.00
FINAL MOISTURE CONTENT	= 42.1 PERCENT
TX. CONSOLIDATION START 290	585 FMD 1000

TRIAXIAL CONSOLIDATION TEST	290585	END	120685

PT	EFFECT SIGMA1	EFFECT SIGMA3	STRAIN1	VOLUME Strain	STRAIN3	EFFECT P	Ŷ	VOID RATIO	v	SHEAR STRAIN
123456789011234567890123456739 111214567890123456739	50.04 57.55 66.22 87.78 101.01 116.13 133.49 79.82 79.82 79.82 79.82 79.82 79.82 79.82 79.82 79.82 79.82 79.82 59.82 59.82 59.53 56.30 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20	$\begin{array}{c} 26.50\\ 35.10\\ 46.50\\ 53.50\\ 53.50\\ 70.80\\ 42.40\\ 42.40\\ 42.40\\ 42.40\\ 42.50\\ 53.30\\ 55.20\\ 55.20\\ 54.30\\ 53.60\\ 53.60\\ 53.60\\ 53.60\\ 53.60\\ 53.60\\ 53.70\\ 51.70\\ 51.70\\ \end{array}$	$\begin{array}{c} 1.167\\ 1.447\\ 1.871\\ 2.538\\ 3.439\\ 4.788\\ 6.348\\ 6.348\\ 8.061\\ 10.602\\ 9.739\\ 9.739\\ 9.739\\ 9.739\\ 9.739\\ 9.739\\ 9.739\\ 9.739\\ 9.568\\ 9.559\\ 9.568\\ 9.559\\ 9.394\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.384\\ 9.285\\ 9.258\\ 9.258\\ \end{array}$	$\begin{array}{c} 1.863\\ 2.146\\ 3.560\\ 4.707\\ 5.080\\ 9.090\\ 1.053\\ 9.747\\ 9.639\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.490\\ 9.$	$\begin{array}{c} 0.248\\ 0.349\\ 0.449\\ 0.646\\ 0.531\\ 0.634\\ 0.658\\ 0.515\\ 0.225\\ 0.012\\ -0.027\\ -0.124\\ -0.124\\ -0.124\\ -0.124\\ -0.124\\ -0.108\\ -0.093\\ -0.039\\ -0.039\\ -0.039\\ -0.015\\ -0.003\\ 0.048\\ 0.048\\ 0.065\\ 0.048\\ 0.065\\ 0.074\\ 0.086\\ 0.101\\ 0.112\\ 0.112\\ 0.116\\ \end{array}$	$\begin{array}{c} 34.35\\ 39.52\\ 45.47\\ 52.34\\ 69.34\\ 79.78\\ 97.70\\ 109.73\\ 54.86\\ 53.08\\ 53.08\\ 53.10\\ 54.86\\ 53.08\\ 53.10\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 5$	$\begin{array}{c} 23.54\\ 27.05\\ 31.82\\ 41.28\\ 41.51\\ 54.53\\ 74.59\\ 74.79\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37.39\\ 37$	1.336 1.325 1.310 1.291 1.264 1.261 1.261 1.187 1.160 1.113 1.144 1.147 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150	2.336 2.325 2.325 2.251 2.264 2.254 2.187 2.160 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150	$\begin{array}{c} 0.512\\ 0.732\\ 0.948\\ 1.351\\ 1.870\\ 2.761\\ 3.840\\ 5.030\\ 6.918\\ 6.474\\ 6.575\\ 6.5643\\ 5.543\\ 6.355\\ 5.353\\ 6.231\\ 6.231\\ 6.231\\ 6.231\\ 6.231\\ 6.231\\ 6.231\\ 6.231\\ 5.155\\ 5.155\\ 5.155\\ 5.102\\ 6.197\\ 6.178\\ 5.102\\ 5.102\\ 5.094\\ \end{array}$

---------

۰,

# SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT	S I GMA 1	SIGMA3	STRAINI	STRAINS	v
PT 1234567690112345678901222456	SIGMA1 50.04 57.55 86.22 87.78 101.01 116.13 133.49 153.59 79.80 79.80 79.80 79.80 79.80 79.80 79.80 79.80 55.53 56.40 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 55.20 5	$\begin{array}{c} 25.50\\ 35.10\\ 40.40\\ 46.50\\ 51.50\\ 51.50\\ 61.80\\ 70.80\\ 42.40\\ 42.40\\ 42.50\\ 42.40\\ 42.50\\ 42.40\\ 42.50\\ 50.10\\ 53.30\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55.20\\ 55$	5 TRAIN1 1.167 1.447 1.871 2.536 3.439 4.786 6.348 8.061 10.602 9.723 9.739 9.739 9.739 9.739 9.739 9.739 9.739 9.727 9.706 9.628 8.568 8.5519 9.394 9.394 9.380 9.360 9.341	STRAIN3 0.248 0.349 0.511 0.654 0.546 0.515 0.225 0.012 -0.027 -0.124 -0.124 -0.118 -0.108 -0.093 -0.070 -0.039 -0.039 -0.039 -0.048 0.0554 0.0554 0.0554	Y 2.336 2.325 2.325 2.251 2.254 2.251 2.254 2.150 2.113 2.144 2.117 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150
26 27 28 29	53.60 53.20 52.70 51.70	53.60 53.60 53.20 52.70	9.341 9.318 9.288 9.265	0.074 0.086 0.101 0.112	2.150 2.150 2.150 2.150 2.150
		51.70	9.258	0.116	2.150

ENERGY CALCULATIONS

, .**.** 

**** ENGINEERING STRAIN ****

SAMPLE NG. = T 757 (REMOULDED SAMPLE) TEST RESULTS START 290585 END 120685

ΡŢ	EFFECT Sigmai Kpa	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV Z	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol	
1	50.0	26.5	23.5	34.3	1.167	0.248	1.663	0.0	0.0		0.0	
2	57.6	30.5	27.1	39.5	1.447	0.349	2.146	9.4	0.3	0.208	0.208	
з	66.2	35.1	31.1	45.5	1.871	0.449	2.770	20.2	0.8	0.328	0.536	
4	76.2	40.4	35.8	52.3	2.538	0.511	3.560	32.7	1.4	0.521	1.058	
5	87.8	46.5	41.3	50.3	3.439	0.634	4,707	47.2	2.3	0.846	1.904	
6	101.0	53.5	47.5	69.3	4.788	0.646	6.080	63.7	3.7	1.285	3.189	
7	116.1	61.6	54.5	79.8	6.348	0.589	7.527	82.7	5.2	1.629	4.818	
5	133.5	70.8	62.7	91.7	8.061	0.515	9.090	104.3	6.9	2.039	6.856	
9	159.6	84.8	74.8	109.7	10.602	0.225	11.053	137.1	9.4	3.274	10.131	
10	79.8	42.4	37.4	54.9	9.723	0.012	9.747	37.3	8.6	-1.324	8.807	
11	79.8	42.4	37,4	54.9	9.693	-0.027	9.639	37.3	8.5	-0.057	8.750	
12	79.8	42.5	37.3	54.9	9.739	-0.124	9.490	37.4	8.6	-0.047	8.703	
13	73.8	42.7	31.1	53.1	9.739	-0.124	9.490	33.0	8.6	0.0	8.703	
14	69.7	44.8	24.9	53.1	9.727	-0.119	9.490	32.5	8.6	-0.003	8.700	
15	66.1	47.4	18.7	53.6	9.705	-0.108	9.490	33.6	8.6	-0.005	8,695	
16	62.5	50.1	12.5	54.3	9.676	-0.093	9.490	35.6	8.5	-0,005	6.691	
17	59.5	53.3	6.2	55.4	9.629	-0.070	9.490	39.1	8.5	-0.004	8.686	
18	56.4	56.4	0.0	56.4	9.568	-0.039	9.490	42.8	8.4	-0.002	8.685	
19	56.3	56.3	0.0	56.3	9.519	-0.015	9.490	42.6	8.4	0.0	8.685	
20	55.2	55.2	0.0	55.2	9.496	-0.003	9.490	40,9	8.3	0.0	8.685	
21	55.2	55.2	0.0	55.2	9.394	0.048	9.490	40.9	8.2	0.0	8.685	
22	54.7	54.7	۰.۰	54.7	9.394	0.048	9.490	40.2	3.2	0.0	8.685	
												•••
23	54.3	54.3	0.0	54.3	9.383	0 054	9 490	79 5	8 2	0.0	9	
24	53.6	53.6	0.0	53.6	9 380	0.055	9 490	33.5 78 E	* 2	0.0	0.000	
25	53.6	53.6	0.0	53 6	9 341	0.074	9 490	30.5 70 E		0.0	0.000	
26	53.6	53.6	0.0	53.6	9.318	0.086	9 490	30.3	0.1 8 7	0.0	0.000 0.000	
27	53.2	53.2	0.0	53.2	9.288	0.101	9 490	30.3	8 1	0.0	0.000 8 685	
28	52.7	52.7	0.0	52.7	9.265	0.112	9.490	37.1	8 1	0.0	5.555 "\$ 885	
29	51.7	51.7	0.0	51.7	9.258	0.115	9.490	35.7	8.1	0.0	8 685	
											0.000	

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 757 (REMOULDED SAMPLE) Test results start 2905&5 end 1206&5

ΡŢ	EFFECT Sigmai Kpa	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress	AXIAL STRAIN X	RADIAL STRAIN	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy KN-m/Vol
1	50.0	26.5	23.5	34.3	1.174	0.252	1.677	0.0	0.0	0.212	0.0
	67 6	30.5	27.1	39.5	1.458	0.356	2.169	9.4	0.3	0 335	0.212
2	57.0	20.0	31 1	45.5	1.889	0.460	2.809	20.2	0.8	0.335	0.547
3	66.Z	39.1	31. 1	52.3	2.571	0.527	3.625	32.7	1.5	0,536	1,083
4	76.2	40.4	41.3	60.3	3.500	0.661	4.822	47.2	2.4	0.876	1.962
5	87.8	40.3		E 0 7	4.906	0.683	6.272	63.7	3.8	1 350	3.311
6	101.0	53.5	47.5		6 559	0.633	7.825	82.7	5.4	1.737	5.048
7	116.1	61.6	54.5	/3.0	8 404	0.563	8.530	104.3	7.2	2.210	7.253
8	133.5	70.8	62.7	91.7	6.404	0.000	11 713	137.1	10.0	3.625	10.884
9	159.6	34.8	74.8	109.7	11.207	0.253	10.255	37.3	9.1	-1.475	9.408
10	79.8	42.4	37.4	54.9	10.229	0.013	10.250	37.3	9.0	-0.063	9,345
11	79.8	42.4	37.4	54.9	10.195	-0.030	10.135		9,9 9 t	-0.051	9.293
12	79.8	42.5	37.3	54.9	10.245	-0.138	9.970	31.4	a. 1	0.0	9.293
13	73.8	42.7	31.1	53.1	10.246	-0.138	9.970	33.0	9.1	-0.004	9 280
14	69.7	44.8	24.9	53.1	10.233	-0.131	8.970	32.5	9.1	-0.005	0.284
15	66.1	47.4	18.7	53.6	10.210	-0.120	9.970	33.6	9.1	-0,005	3.207
16	62.6	50.1	12.5	54.3	10.176	-0.103	9.970	35.6	9.0	-0.005	3.273
17	59.5	53.3	6.2	55.4	10.124	-0.077	9.970	39.1	9.0	-0.002	5.274
18	56.4	56.4	۰.۰	56.4	10.057	-0.043	9.970	42.8	8.9	-0.000	9.272
19	56.3	56.3	0.0	56.3	10.003	-0.015	9.970	42.6	8.8	-0.000	9.272
20	55.2	55.2	0.0	55.2	9.978	-0.004	9,970	40.9	8.8	-0.000	9.272
21	55,2	55.2	0.0	55.2	9.865	0.053	9.970	40.3	8.7	0.0	9.272
22	54.7	54.7	0.0	54.7	9.865	0.053	9.970	40.2	8.7	•••	9.272
• •											
							5			-0.000	9 272
23	54.3	54.3	0.0	54.3	9.862	0.059	9.970	38.5	8.7	-0.000	- · - · -
24	53.6	53.6	0.0	53.6	9.827	0.072	9,970	38.5	8.7	-0.000	a
25	53.6	53.6	0.0	53.6	9.806	0.082	9.970	38.5	8.6	-0.000	3.414
26	53.6	53.6	۰.۰	53.6	9.781	0.095	9.970	38.5	8.6	-0.000	9.212
27	53.2	53.2	0.0	53.2	9.748	0.111	9,970	37.9	8.6	-0.000	5.272
28	52.7	52.7	0.0	52.7	8.723	0.124	9.970	37.1	8.6	-0.000	8.272
	51.7	51.7	0.0	51.7	9.714	0.128	8.970	35.7	8.5		9.272

SAMPLE NO. ± T 757 (	REMOULDED	SAMPLE )
SAMPLE HEIGHT AFTER CONS Sample volume after cons Sample area after consol	OLIDATION OLIDATION IDATION	* 11.939 CENTIMETRES * 544.430 CUBIC CENTIMETRES
CONSTANT LOAD Proving Ring Pactor Piston Area		* 16.55 N . * 1.2365 N ./DIV
INITIAL DIAL READING	:	5.0700 SQUARE CENTIMETRES 2149.50 DIVISIONS
SHEAR TEST RESULTS ST	ART 1601	885 END 170685

END

CONSOLIDATED UNDRAINED TRIAXIAL TEST

I     IOA3     2148.5     224.5     200.1     0.0     78.4     42.4     18.4     37.5     8.4     1.88.5     0.0       3     1055     2148.0     232.5     202.5     0.00     81.5     42.2     18.8     33.7     84.4     1.88.5     0.00       4     1065     2148.0     235.5     73.7     23.5     73.7     84.4     1.88.5     0.00       5     1100     2143.1     236.5     0.00     84.5     31.5     22.5     47.0     85.0     2.413     0.32       6     1132     2134.4     306.0     207.3     0.06     84.2     35.1     24.5     57.0     84.2     2.63     0.33       11     1132     2134.4     306.0     207.7     0.11     84.4     34.7     36.7     84.3     2.65     0.03       11     1138     2132.0     313.6     206.7     0.33     34.8     37.8     84.1     84.2     85.3     2.66     0.33       11     1138     2132.0     313.6     206.7     0.33     34.8     37.8     84.2     85.3     2.66     0.33       11     1138     2132.6     336.0     0.20     100.2     331.8     331	P1	T TIME	DISPL Dial RDG	PRING Dial RDG	PORE Press Kpa	PER Cent PCSTRN	EFFECT Sigma1 Kpa	EFFECT Sigmaj Kpa	HALF Dev Stress	DEV Stress Kpa	EFFECT OCT Stress	RATIO OF EFF Sigmai	A	
2       1045       2145.0       226.1       0.0       78.5       42.4       18.8       37.6       54.4       1.845       0.0         3       1055       2145.0       275.5       200.1       0.00       81.8       38.5       38.5       23.5       57.0       85.0       1.841       0.06         6       1100       2147.0       271.0       226.0       0.02       81.8       38.5       23.5       57.0       85.0       2.180       0.26         7       1115       2143.0       226.0       0.05       81.5       37.5       23.5       57.0       58.0       2.410       0.311         8       120       2138.4       316.0       207.7       0.01       86.2       38.5       22.6       56.0       2.453       0.331         1130       2132.6       331.0       20.6       0.12       86.3       33.2       33.2       27.46       0.331         12       1440       2132.0       332.0       20.2       86.2       33.2       33.2       24.8       86.2       28.60       0.321         12       144.0       2132.0       33.0       33.2       33.2       33.2       86.6       85.4 </td <td>1</td> <td>1043</td> <td>2140 .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>кра</td> <td></td> <td>KPA</td> <td>LIF SIFMAS</td> <td></td> <td></td>	1	1043	2140 .						кра		KPA	LIF SIFMAS		
3         1085         2145.0         226.2         10.0         37.6         5.4.0         1.845         0.0           5         1100         2147.0         226.0         0.00         86.8         38.5         32.5         36.0         55.4         1.845         0.26           5         1100         2146.0         226.0         0.00         86.8         38.5         32.5         36.0         55.4         1.845         0.26           7         1100         2146.0         226.0         0.00         86.2         38.5         37.6         86.0         56.0         56.0         0.03         0.31           8         1120         2138.4         206.0         0.06         82.2         38.1         27.4         86.0         56.0         56.0         2.607         0.33           1130         2138.4         316.0         206.7         0.10         86.2         36.7         56.0         86.2         2.607         0.33           13         1130         2138.4         316.0         206.7         86.2         36.7         36.0         86.7         2.667         0.33           13         114.6         2128.0         332.6         70.2 </td <td>2</td> <td>1045</td> <td>2140 0</td> <td>224.5</td> <td>200.1</td> <td>0.0</td> <td>79.9</td> <td>A.2 A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2	1045	2140 0	224.5	200.1	0.0	79.9	A.2 A						
4       1100       2147.0       202.8       0.01       4.8.8       78.4       12.8       78.4       1.84.1       0.02         5       1105       2145.2       281.0       200.0       0.05       40.5       31.3       26.1       40.2       55.0       2.116       0.05         7       1100       2143.4       228.0       200.5       0.05       40.5       31.4       22.4       85.0       2.116       0.031         8       1120       2143.4       326.5       200.5       0.05       41.2       31.4       22.6       80.0       2.4       82.4       2.5       0.031         9       1128       2134.6       314.0       0.00       0.11       44.2       33.1       23.5       2.5       2.5       0.33       0.33         112       2134.6       314.0       200.6       0.11       44.2       33.1       23.4       50.0       81.7       85.2       2.440       0.33         112       1146       2134.6       314.0       20.6       0.11       44.2       33.1       33.1       84.2       2.447       0.31         112       1140       2134.6       314.7       33.1       84.2 <td>3</td> <td>1055</td> <td>2148 0</td> <td>232.5</td> <td>200.2</td> <td>0.00</td> <td>81.9</td> <td>42.4</td> <td>18.8</td> <td>37.5</td> <td>54.9</td> <td>1</td> <td></td> <td></td>	3	1055	2148 0	232.5	200.2	0.00	81.9	42.4	18.8	37.5	54.9	1		
5       1105       2143.2       211.0       204.0       0.02       24.3       24.4       47.0       55.3       2.143       0.05         7       1130       2143.4       284.5       200.5       0.06       90.3       33.4       26.4       50.0       2.110       0.33         7       1130       2143.4       314.0       200.5       0.06       91.3       33.4       24.5       85.0       2.413       0.33         10       1130       2143.4       314.0       200.5       0.118       84.4       34.6       2.65       70.0       84.8       2.643       0.33         11       1130       2143.4       314.0       200.5       0.118       84.3       34.6       30.5       86.1       84.8       2.643       0.33         11       1130       2142.6       324.5       200.5       0.17       84.2       31.6       33.7       34.3       36.3       2.641       0.33         11       1130       2142.6       324.5       200.7       0.20       83.7       33.6       33.6       87.5       88.6       2.447       0.33         11       1200       2124.6       335.5       33.6       3	4	1100	2147 0	259.2	202.8	0.01	86.6	30.0	19.9	39.7	55.4	1 941	0.0	
6       1100       2131.6       238.0       208.0       0.04       80.3       27.4       28.0       80.2       85.0       2.100       0.23         8       1125       2131.6       208.6       200.7       0.04       81.4       21.5       81.6       21.6       50.0       24.1       0.23         9       1126       2138.4       310.0       200.7       0.04       81.4       33.4       30.0       200.7       0.03         111       1135       2122.0       314.0       200.7       0.01       84.3       34.7       30.0       20.74       0.033         111       1135       2122.0       314.0       200.6       0.12       84.3       34.7       30.6       20.7       84.8       2.748       0.33         121       144.0       2124.0       323.6       200.7       0.20       100.7       33.7       32.4       84.8       2.848       0.32         13       1148       2126.0       324.6       208.7       0.21       101.0       33.6       33.4       34.7       84.8       2.848       0.32         14       144.6       2124.6       334.6       34.4       72.6       84.7	5	1105	2145 2	271.0	204.0	0.02	88.5	38.7	23.5	47.0	55.3	2.188	0.05	
7       1115       214.5       205.8       0.05       91.8       7.8       27.5       52.8       55.0       2.413       0.32         8       1126       2138.4       304.0       207.5       0.05       92.4       38.8       28.8       57.0       54.8       2.583       0.33         9       1128       2134.4       304.0       207.7       0.01       84.2       38.1       28.8       57.0       54.8       2.583       0.33         111       1132       2134.4       314.0       206.3       0.12       84.3       34.7       30.3       60.7       54.8       2.583       0.33         12       1140       2134.6       318.2       206.3       0.15       87.3       33.4       30.1       85.6       2.681       0.33         13       1145       123.2       32.6       206.0       0.22       100.2       33.3       33.3       86.6       86.6       2.687       0.33         14       1180       2134.6       338.0       208.0       0.22       104.1       33.3       86.6       86.6       2.687       0.30         17       2138.0       2146.0       386.0       208.2       0.	6	1100	2143 8	281.0	205.0	0.04	80.3	37 4	25.1	50.2	55.0	2.310	0.29	
8       1120       2138.4       208.8       0.06       92.8       18.6       24.8       86.0       84.4       2.607       0.33         10       1130       2134.4       314.0       206.7       0.12       86.4       34.7       30.3       86.7       56.8       2.681       0.33         113       2132.0       318.2       206.3       0.12       86.4       34.7       30.3       86.7       56.2       2.748       0.33         13       1130       2132.0       331.8       206.6       0.17       88.2       31.7       31.8       2.681       0.33         13       1146       2135.0       323.8       206.7       0.20       100.2       33.8       33.3       85.8       85.8       2.847       0.33         14       1160       2134.8       335.0       206.0       0.21       101.0       33.5       33.8       85.8       2.847       0.31         15       115.5       2134.4       335.0       206.0       2.02       104.9       33.5       33.8       85.8       5.7       3.08       0.6       3.08       33.8       33.8       77.7       3.16       0.3.2         15       12	7	1115	2141.9	209.0	205.9	0.05	91.5	38.8	20.4	52.9	55.0	2.413	0.31	
9       1126       2134.6       200.7       0.06       94.2       15.1       20.8       97.0       54.8       2.863       0.33         11       2134.8       314.0       300.7       56.8       2.748       0.33         11       1130       2132.0       318.2       206.3       0.17       86.3       33.4       30.3       81.7       85.2       2.748       0.33         11       1130       2132.0       322.5       206.8       0.17       88.2       33.7       33.8       86.3       85.3       2.866       0.32         14       1180       2132.0       335.0       206.7       0.20       100.2       33.8       33.7       35.8       86.3       85.6       2.867       0.30         17       1200       2134.6       335.0       206.0       0.21       101.0       33.8       33.8       87.5       56.8       2.867       0.30       0.30         18       124.0       335.0       206.7       0.22       106.2       33.8       36.4       70.9       87.7       3.171       0.30         19       1200       2104.0       341.1       37.3       76.4       86.3       3.171 <td< td=""><td>8</td><td>1120</td><td>2139.4</td><td>200.0</td><td>206.5</td><td>0.05</td><td>92.8</td><td>35.8</td><td>20.0</td><td>55.0</td><td>54.8</td><td>2.507</td><td>0.32</td><td></td></td<>	8	1120	2139.4	200.0	206.5	0.05	92.8	35.8	20.0	55.0	54.8	2.507	0.32	
10       1130       213.6       213.6       206.7       0.11       86.4       34.7       30.3       80.1       54.6       2.66.3       0.33         11       1135       2132.0       320.3       0.15       86.3       34.4       30.3       80.1       55.3       2.764       0.33         11       1136       2124.0       322.5       206.3       0.17       87.3       34.2       31.6       81.7       55.3       2.764       0.33         15       1130       322.6       206.7       0.20       100.2       33.7       32.8       85.6       85.6       2.847       0.33         15       1185       2124.6       333.0       200.0       0.20       100.2       33.6       33.8       33.8       85.6       85.6       2.861       0.301         16       1200       2124.0       338.0       200.2       0.20       100.2       33.6       34.2       66.6       85.6       2.861       0.301         17       1215       212.0       386.0       208.0       0.22       101.6       33.5       34.2       66.6       85.6       1.02       0.31       0.20       0.201       0.31       0.20 <t< td=""><td>8</td><td>1128</td><td>2136.8</td><td>310.0</td><td>207.3</td><td>0.08</td><td>94.2</td><td>35.1</td><td>20 8</td><td>57.0</td><td>54.8</td><td>2.593</td><td>0.33</td><td></td></t<>	8	1128	2136.8	310.0	207.3	0.08	94.2	35.1	20 8	57.0	54.8	2.593	0.33	
11       1135       2132.0       318.2       200.0       0.12       96.3       34.6       30.0       00.7       56.8       2.748       0.33         11       1146       2128.0       323.5       208.7       0.20       98.2       33.5       32.1       64.3       56.3       2.846       0.32         11       1145       2128.0       336.5       208.7       0.20       100.2       33.7       32.8       65.5       2.846       0.32         15       1155       2128.2       336.5       200.0       0.21       101.0       33.5       33.3       86.6       55.8       2.846       0.31         17       1215.5       2128.2       336.0       200.2       100.2       33.7       33.8       33.3       86.6       55.8       2.981       0.31         18       1230       2118.5       336.2       208.2       0.22       104.3       33.4       35.8       47.7       77.6       48.6       56.4       56.4       3.122       0.27         21       1320       206.2       0.26.7       0.6.8       107.7       33.4       36.7       71.7       76.4       56.4       3.122       0.24       233	10	1130	2134.8	314 0	207.7	0.11	95.4	34.7	30.7	59.1	54.8	2.683	0.33	
12       1140       2128.9       222.6       206.3       0.15       97.3       34.2       31.6       82.1       88.2       2.784       0.33         11       1145       2128.2       332.0       208.7       0.32       88.2       33.7       33.8       88.6       88.2       2.846       0.32         15       1200       2124.8       335.5       208.0       0.20       100.6       33.8       33.8       86.6       86.8       2.847       0.31         17       1218.5       338.0       0.200.0       0.21       100.6       33.8       33.8       87.5       86.0       3.045       0.30       0.30         17       1218.5       338.0       0.200.0       0.21       100.7       33.8       34.7       75.7       86.4       50.3       0.050       0.30         18       1230.0       2068.0       366.5       206.7       0.180.3       33.4       17.7       77.7       171       0.25         21       130.0       2068.0       386.5       207.8       0.65       100.3       34.1       377.7       76.4       86.0       3.188       0.21         21       130.0       378.0       207.8 <td>11</td> <td>1135</td> <td>2132.0</td> <td>319 2</td> <td>208.0</td> <td>0.12</td> <td>96.3</td> <td>34.8</td> <td>30 9</td> <td>80.7</td> <td>54.9</td> <td>2.749</td> <td>0.33</td> <td></td>	11	1135	2132.0	319 2	208.0	0.12	96.3	34.8	30 9	80.7	54.9	2.749	0.33	
13       1146       2126.0       322.5       20.7       0.17       88.2       33.6       32.1       88.2       2.846       0.32         15       1185       2124.4       335.5       200.0       0.20       80.3       33.7       32.8       85.6       2.847       0.31         15       1185       2124.4       335.5       200.0       0.21       100.2       33.6       33.7       32.6       85.6       2.847       0.31         15       1220.2       1321.6       334.0       200.2       0.22       100.2       33.6       33.6       85.6       2.846       0.30         18       1220.2       136.0       200.2       0.22       100.2       31.6       34.2       88.4       56.3       3.015       0.30         18       1220.2       136.0       200.6.7       0.31       107.7       33.6       38.4       77.7       57.7       3.171       0.22       22         20       1250       204.0       38.6       207.6       0.456       109.7       34.1       37.7       74.7       80.0       3.188       0.23         21       1300       2068.5       375.0       207.6       0.58	12	1140	2128.9	323.5	208.3	0.15	\$7.3	34.2	31.8	61.7	55.2	2.784	0.33	
14       1180       2125.2       312.0       202.0       100.2       33.6       33.7       32.6       88.3       2.886       0.32         15       1155       2124.6       335.5       200.0       0.21       100.2       33.6       33.6       33.6       85.6       2.886       0.30         15       135.0       2124.6       335.0       200.0       0.21       100.2       33.5       33.6       87.5       86.0       2.886       0.30         15       135.0       2124.6       335.0       200.0       0.22       100.3       33.5       34.7       70.8       85.0       2.861       0.30         18       1240       2112.6       385.0       200.7       0.31       107.7       33.8       35.4       70.8       87.0       3.138       0.23         21       1300       2085.0       385.8       207.8       0.48       104.3       34.1       37.7       75.7       86.5       3.118       0.24         21       1310       2085.0       385.8       207.8       0.48       134.3       37.7       75.7       86.5       3.118       0.21         21       1310       2085.8       374.0	13	1145	2128.0	328.5	208.8	0.17	98.2	33.9	32.1	84 2	55.2	2.846	0.32	
19       1185       2124.8       335.5       200.0       0.20       100.2       33.5       33.5       33.6       75.5       85.8       2.947       0.31         19       120.0       2124.8       338.0       208.0       0.221       101.0       33.5       33.6       75.5       85.8       2.981       0.30         19       1215       2123.8       346.0       208.2       0.221       106.9       33.6       73.4       75.7       3.107       0.320       0.221       0.221       106.9       33.4       73.6       86.5       3.176       0.221       0.221       0.221       0.66.2       33.4       73.6       87.7       7       3.137       0.271       0.221       0.221       0.66.2       0.321       0.67.7       3.187       74.7       58.0       3.188       0.251         211       1300       2365.8       376.0       207.7       0.68       111.0       34.6       33.7       74.7       58.0       3.188       0.20       2.214.0       0.18       2.214.0       0.16       2.214.0       0.16       2.214.0       0.16       2.214.0       0.16       2.214.0       0.16       2.214.0       0.16       2.214.1       2.2137	14	1150	2125.2	332.0	208 0	0.20	89.3	33.7	32.8	85 0	55.3	2.898	0.32	
19       1200       2124.8       338.0       208.0       0.21       101.0       33.5       33.6       27.5       80.8       2.981       0.30         11       1215       2123.4       348.0       200.2       101.8       33.5       33.6       27.5       80.8       2.981       0.30         15       1230       2118.5       355.0       208.2       0.22       104.3       33.5       33.4       72.7       57.7       3.122       0.27         21       1210       355.0       206.7       0.31       107.2       33.5       34.4       72.7       57.7       3.180       0.23         21       1315       206.0       338.5       206.7       0.451       106.7       33.5       37.7       75.4       58.4       3.180       0.23         22       1315       206.0       338.5       207.6       0.56       111.0       34.3       37.7       75.4       58.4       3.180       0.23         23       1330       206.7       32.14       0.58       113.3       35.0       77.3       60.7       3.214       0.50         24       1302       0.55       345.0       0.23       3.113 <td< td=""><td>15</td><td>1155</td><td>2124.8</td><td>335.5</td><td>209 0</td><td>0.20</td><td>100.2</td><td>33.8</td><td>33.3</td><td>88.6</td><td>55.5</td><td>2.947</td><td>0.31</td><td></td></td<>	15	1155	2124.8	335.5	209 0	0.20	100.2	33.8	33.3	88.6	55.5	2.947	0.31	
1/1       1/218       2123.8       348.0       200.2       0.2.1       104.8       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.4       33.7       33.4       33.7       33.4       33.7       75.4       58.4       3.188       0.24       0.24         23       1333       2063.0       336.5       376.0       207.6       0.68       113.3       35.7       36.6       73.4       60.1       3.188       0.20       0.20       0.78       113.3       36.6       73.6       62.2       3.162       0.17       0.18       0.18	15	1200	2124.6	339.0	209.0	0.21	101.0	33.5	33.8	87 5	55.8	2.981	0.30	
13       1430       2118.5       355.0       208.2       108.3       33.4       35.4       70.8       35.5       3.043       0.28         13       1300       2112.0       355.0       208.5       0.31       107.7       33.5       35.4       72.7       57.7       3.122       0.27         21       1300       2104.0       352.5       208.6       0.33       106.7       33.4       35.9       73.8       58.6       3.171       0.25         21       1315       2061.0       356.5       207.2       0.656       111.0       36.6       37.7       75.4       58.0       1.180       0.23         23       1315       2061.0       375.0       207.6       0.656       111.0       36.6       37.7       75.4       58.0       1.3       200.6       0.21         24       1345       2051.0       375.0       207.0       0.78       113.3       35.3       36.6       77.3       60.1       3.200       0.21         25       1404       2039.0       376.0       207.0       0.78       113.3       35.7       76.0       61.3       3.210       0.16         26       130.0       286.5		1215	2123.8	348.0	209.2	0.21	101.9	33.5	34.2	88.4	56.0	3.015	0.30	
20       1400       2112.0       318.0       0.20.7       0.37       108.2       33.5       38.4       72.7       0.7       3.122       0.27         21       1200       208.0       355.5       208.6       0.38       100.7       33.8       35.9       73.8       85.5       3.171       0.24         21       1300       208.0       355.5       208.2       0.45       100.7       34.3       37.7       75.4       55.4       3.176       0.24         21       130.2       035.5       377.0       207.6       0.58       112.2       3.6.5       77.3       60.7       3.188       0.23         24       1345       206.5       377.0       207.6       0.58       112.2       3.6.5       77.3       50.7       2.122       0.18         25       1400       201.2       377.5       206.5       0.83       114.8       38.6       77.3       30.3       78.6       62.2       3.182       0.18         26       1400       38.5       204.7       1.81       117.7       37.8       38.5       78.0       63.3       3.127       0.16         27       150.0       150.5       38.5 <td< td=""><td>10</td><td>1230</td><td>2118.5</td><td>355.0</td><td>209.0</td><td>0 28</td><td>104.3</td><td>33.4</td><td>35.4</td><td>70.9</td><td>87 0</td><td>3.043</td><td>0.29</td><td></td></td<>	10	1230	2118.5	355.0	209.0	0 28	104.3	33.4	35.4	70.9	87 0	3.043	0.29	
1200       2104.0       382.5       208.6       0.32       100.7.7       33.8       36.9       73.6       67.7       31.71       0.26         21       1300       208.0       365.5       208.2       0.45       108.9       34.1       37.3       74.7       55.0       3.149       0.23         23       1315       208.5       377.0       0.55       111.0       34.3       37.7       75.4       55.0       3.149       0.23         23       130.0       207.6       0.55       0.73       0.65       0.85       77.3       50.7       3.209       0.20         25       140.6       2035.5       376.0       207.0       0.79       112.2       34.9       35.8       77.3       60.7       3.210       0.19         27       1500       2014.2       341.0       205.8       1.37       16.0       37.0       35.5       78.0       62.3       3.214       0.12       0.12         28       1500       2015.5       204.7       1.81       117.7       37.4       38.8       78.5       63.0       3.176       0.12       0.12       0.12       0.12       0.12       0.14       0.14       0.14	20	1240	2112.0	359.0	208.7	0.31	108.2	33.5	36.4	72.7	57.0	3.122	0.27	
1300       2088.0       385.5       208.2       0.85       108.7       34.1       37.3       74.7       65.0       3.188       0.23         1315       208.6.5       378.0       207.8       0.65       111.0       34.3       37.7       75.4       65.4       3.188       0.23         1315       206.5.5       377.0       207.8       0.65       111.0       34.6       38.2       76.4       65.4       3.188       0.21         1404       2038.0       377.6       206.5       378.6       207.6       0.76       112.2       34.9       35.3       38.0       78.0       60.1       3.121       0.10       0.17         27       1800       186.5       383.7       78.6       62.2       3.182       0.16         28       1832       185.5       205.2       1.37       118.0       37.0       38.5       78.0       62.2       3.182       0.14         29       1800       186.5       203.7       204.3       1.84       18.0       37.4       38.8       78.5       63.2       3.104       0.14         20       180.0       180.7       38.6       204.3       1.84       18.6       78.5 <td>21</td> <td>1200</td> <td>2104.0</td> <td>362.5</td> <td>208.8</td> <td>0.38</td> <td>107.7</td> <td>33.9</td> <td>36.9</td> <td>73.8</td> <td>57.7</td> <td>3.171</td> <td>0.25</td> <td></td>	21	1200	2104.0	362.5	208.8	0.38	107.7	33.9	36.9	73.8	57.7	3.171	0.25	
23       1310       2083.0       389.5       207.9       0.88       100.1       34.8       37.7       75.4       88.4       3.188       0.23         24       1345       2068.5       373.0       207.8       0.88       112.2       34.8       38.8       77.3       60.7       3.208       0.20         25       1404       2058.6       376.0       207.0       0.78       112.2       34.8       38.8       77.3       60.7       3.208       0.20         25       1404       2058.6       376.0       207.0       0.78       112.2       34.8       38.8       77.3       60.7       3.208       0.20         27       1500       2014.2       381.6       203.7       10.6       37.0       39.8       78.6       62.2       3.210       0.16         28       1500       135.6       204.7       1.81       117.7       37.4       39.8       78.5       63.3       3.162       0.12         28       1600       386.5       203.7       2.07       118.8       38.4       29.8       78.6       65.5       3.041       0.01         31       1700       186.5       203.4       2.77 <td< td=""><td>22</td><td>1315</td><td>2096.0</td><td>365.5</td><td>208.2</td><td>0.45</td><td>108.8</td><td>34.1</td><td>37.3</td><td>74.7</td><td>58.0</td><td>3.178</td><td>0.24</td><td></td></td<>	22	1315	2096.0	365.5	208.2	0.45	108.8	34.1	37.3	74.7	58.0	3.178	0.24	
24       1345       2058.5       373.0       207.8       0.68       112.0       34.8       38.2       78.4       00.1       31.88       0.21         25       1406       2039.0       376.5       205.6       0.68       114.3       35.3       38.0       78.6       0.7       3.208       0.20         26       1406       2039.0       376.5       205.6       0.63       114.5       35.3       38.0       78.6       62.2       3.214       0.19         27       1500       1886.5       363.5       205.2       1.37       116.0       37.0       35.5       78.0       63.2       3.182       0.14         28       1800       1886.5       204.7       1.84       17.7       37.9       35.8       78.0       63.2       3.142       0.16         30       1800       1830.0       35.5       204.3       1.84       17.7       37.9       35.8       78.5       63.3       3.104       0.11         31       1700       187.6       338.6       203.6       2.30       118.6       38.0       39.7       78.4       65.5       3.042       0.06         31       1700       186.8       2	23	1330	2083.0	389.5	207.9	0.58	111 0	34.3	37.7	75.4	59.4	3.189	0.23	
28       1408       376.0       207.0       0.79       111.2       35.3       36.8       77.3       60.7       3.214       0.20         28       1430       2014.2       381.0       205.8       1.13       114.6       35.3       36.0       78.0       61.3       3.214       0.19         27       1800       2014.2       381.0       205.8       1.13       114.6       36.0       38.3       78.0       61.3       3.214       0.16         27       1800       185.5       204.7       1.81       117.7       37.9       38.8       78.6       63.3       3.138       0.14         28       1800       180.0       38.5       204.7       1.84       118.1       38.4       39.8       78.6       65.0       3.075       0.10         31       1700       187.6       38.6       203.7       2.54       118.8       38.0       39.8       78.6       65.5       3.041       0.08         32       1730       1846.0       38.5       203.1       3.23       116.2       38.3       39.7       78.6       65.6       3.041       0.08         33       1800       184.8       38.5       203.	24	1345	2068.5	373.0	207.8	0.68	112 2	34.6	38.2	75.4	60.1	3.188	0.21	
28       1430       2038.0       378.5       205.8       0.93       114.6       38.0       38.0       78.0       61.3       1.21.6       0.19         27       1800       1985.5       333.5       205.2       1.37       118.0       37.0       33.5       78.6       62.2       3.182       0.16         28       1532       1957.5       385.0       204.7       1.81       117.7       37.9       39.8       78.6       63.3       3.138       0.14         28       1532       1957.5       385.0       204.7       1.81       117.7       37.9       39.8       78.8       63.3       3.127       0.12         30       1630.1       302.5       386.0       203.7       1.84       138.10       39.8       78.7       84.5       3.041       0.08         31       1700       1875.0       386.5       203.4       2.77       118.4       38.1       39.8       79.6       85.5       3.041       0.08         32       1730       1848.5       202.8       3.71       118.2       38.1       39.6       78.3       65.5       3.041       0.08         34       1800       1784.0       384.5	25	1404	2055.5	378.0	207.0	0.79	113.3	34.9	38.8	77.3	60.7	3.208	0.20	
27       1500       1016.2       381.5       205.2       1.13       116.0       30.0       38.5       78.6       62.2       1.162       0.16         28       1537.5       385.5       206.2       1.37       116.0       37.4       38.5       78.6       62.2       1.162       0.16         28       1537.5       385.0       204.7       1.81       117.7       37.9       38.6       78.6       62.2       1.12       0.12         21       1500       182.0       385.5       204.3       1.84       116.1       38.4       38.8       78.6       63.3       3.138       0.14         31       1700       1876.0       385.5       203.6       2.30       114.8       38.8       78.6       85.5       3.042       0.10         32       1730       1846.0       385.5       203.5       2.36       118.3       38.9       39.7       78.6       85.5       3.042       0.08         33       1800       1848.0       38.8       79.3       65.5       3.028       0.06       0.06         34       1900       1784.0       38.8       203.4       2.77       118.4       38.1       39.4       <	26	1430	2014 0	378.5	205.5	0.93	114.6	35.3	38.0	78.0	81.3	3 210	0.19	
28       1532       1537.5       385.0       206.2       1.37       116.6       37.4       38.5       79.0       63.3       3.132       0.14         30       1830.0       385.0       204.7       1.81       117.7       37.9       38.8       78.5       65.0       3.127       0.12         30       1830.0       385.0       204.7       1.81       117.7       37.9       38.8       78.5       65.0       3.042       0.12         31       1700       1848.0       386.5       203.7       2.07       118.6       38.0       39.8       78.5       65.0       3.042       0.05         32       1730       1848.0       386.5       203.5       2.54       118.6       38.0       39.7       78.4       65.4       3.041       0.08         33       1800       1764.0       386.5       203.1       3.23       114.2       38.3       39.6       79.3       65.6       3.041       0.08         34       1800       1764.0       386.5       203.1       3.23       114.2       38.3       39.4       78.8       65.6       3.005       0.07         35       2000       1767.0       386.5	27	1500	1985 2	381.0	205.8	1.13	115.0	37.0	39.3	78.6	82.2	3 182	0.17	
28       1800       180.0       204.7       1.81       117.7       37.9       38.8       78.5       83.9       1.127       0.14         30       1830.0       385.5       204.3       1.84       118.1       34.4       38.8       78.5       83.9       3.1004       0.11         31       1700       1875.0       386.5       203.7       2.07       118.8       38.0       38.8       78.5       83.9       3.041       0.10         32       1730       1848.0       385.5       203.5       2.54       118.3       38.9       39.7       78.6       85.5       3.041       0.08         33       1800       1848.0       386.5       203.4       2.77       118.4       38.1       39.6       78.5       85.5       3.041       0.08         34       1800       1784.0       386.5       203.1       3.23       118.2       39.4       78.5       85.5       3.041       0.08         35       2000       1764.0       386.5       203.1       3.23       118.2       39.4       39.4       78.5       85.5       3.041       0.08         36       2100       1853.0       384.5       203.4	28	1532	1957 5	383.5	205.2	1.37	115.9	37.0	39.5	79.0	83.3	3.138	0.16	
30       1830       1800       1800       1800       1800       1800       1800       1800       1800       1800       0.12       0.12         31       1700       1875.0       386.0       203.7       2.07       118.6       38.0       38.8       78.6       85.0       3.075       0.10         32       1730       1848.0       386.5       203.6       2.30       118.6       38.0       38.7       78.6       85.5       3.042       0.08         33       1800       1848.0       386.5       203.4       2.77       118.4       38.1       38.7       78.6       85.5       3.042       0.08         34       1800       1848.0       386.5       203.1       3.23       118.2       38.3       39.7       78.4       85.5       3.041       0.08         35       2000       1764.0       385.5       203.1       3.23       118.2       38.3       39.4       78.9       85.6       3.005       0.06         36       2100       1850.0       381.5       203.2       4.18       117.3       39.8       38.4       78.9       85.6       2.977       0.07         35       2000       15	29	1600	1830 0	365.0	204.7	1.81	117.7	37 9	39.8	79.5	83.9	3.127	0.14	
31       1700       1875.0       388.0       203.7       2.07       118.8       38.0       38.8       78.7       65.0       3.075       0.10         32       1730       1848.0       38.5       203.6       2.30       118.8       38.0       38.8       78.6       65.5       3.042       0.08         332       1730       1848.0       386.5       203.4       2.77       118.8       38.0       38.8       78.6       65.5       3.041       0.08         333       1800       1818.8       386.5       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.041       0.08         34       1800       1784.0       385.5       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.041       0.08         35       2000       1774.0       385.3       202.8       3.71       117.8       39.6       38.1       78.5       3.028       0.06         37       2200       1853.0       381.5       203.0       4.65       117.3       39.8       38.4       76.0       65.7       2.977       0.07         38       2300       1536.0	30	1630	1902 5	305.5	204.3	1.84	118.1	38.4	38.9	79.8	84.5	3.104	0.12	
32       1730       1846.0       365.5       201.6       2.30       118.6       35.0       25.6       79.6       85.5       3.042       0.08         33       1800       1818.8       386.5       201.5       2.54       118.3       38.9       39.7       78.4       85.5       3.041       0.08         33       1800       1784.0       386.5       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.041       0.08         34       1900       1764.0       385.5       203.1       3.23       118.2       39.6       78.3       65.5       3.041       0.08         35       2000       1707.0       385.5       203.1       3.23       118.2       39.6       38.1       78.9       65.6       3.005       0.07         36       2100       1850.0       384.5       202.9       3.71       117.9       39.6       38.1       78.6       65.6       3.005       0.07         37       2200       1583.0       38.15       202.9       3.71       117.9       39.6       38.1       78.6       65.6       2.977       0.07         37       2200       1583.0	31	1700	1875.0	300.0	203.7	2.07	118.8	39.0	76 0	79.7	65.0	3.075	0.11	
33       1800       1818.8       386.8       203.4       2.77       118.4       38.9       39.7       78.4       85.5       3.041       0.08         34       1900       1764.0       385.5       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.041       0.08         35       2000       1707.0       385.5       203.1       3.23       118.2       39.3       39.4       78.9       65.6       3.0041       0.08         36       2100       1650.0       385.5       202.9       3.71       117.9       39.6       39.1       78.3       65.6       3.005       0.08         37       2200       1583.0       384.5       202.9       3.71       117.9       39.6       38.1       78.3       65.7       2.977       0.07         38       2300       1538.0       381.5       202.9       5.14       115.6       39.6       38.4       76.9       85.1       2.948       0.07         39       2400       1478.5       380.0       203.1       5.81       114.5       39.3       37.6       75.0       64.4       2.919       0.07         41       600	32	1730	1848.0	385 5	203.6	2.30	118.6	39.0	39 8	78.6	65.5	3.042	0.08	
33       1800       1818.8       386.8       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.041       0.08         34       1800       1784.0       385.5       203.1       3.23       118.2       39.3       39.4       76.9       85.5       3.028       0.08         35       2000       1707.0       385.8       202.9       3.71       117.9       39.6       39.1       78.3       85.7       2.977       0.07         36       2100       1850.0       384.5       202.8       3.71       117.9       39.6       39.1       78.3       85.7       2.977       0.07         37       2200       1538.0       381.5       202.8       3.14       116.4       39.5       38.4       77.5       65.6       2.947       0.07         39       2400       1538.0       381.5       202.8       5.14       115.6       39.3       37.6       75.6       65.6       2.947       0.07         39       2400       1579.5       304.0       203.1       5.81       114.5       39.3       37.6       75.2       64.4       2.919       0.07         41       800       <					403.5	2.54	118.3	38.9	39.7	78.8	85.5	3.041	0.08	
33       1800       1818.8       386.8       203.4       2.77       118.4       38.1       39.6       79.3       55.5       3.028       0.08         34       1800       1784.0       385.5       203.4       2.77       118.4       38.1       39.6       79.3       55.5       3.028       0.08         35       2000       1707.0       385.5       202.9       3.71       117.8       39.3       39.4       78.9       65.6       3.005       0.07         36       2100       1550.0       384.5       202.8       4.18       117.3       39.6       38.4       78.9       65.6       3.005       0.07         37       2200       1583.0       383.5       203.0       4.58       116.4       39.5       38.8       77.5       65.6       2.948       0.07         39       2400       1479.5       380.0       203.1       5.61       114.5       39.3       37.6       78.2       84.4       2.819       0.07         41       500       1027.0       376.5       204.2       8.40       110.8       38.5       36.1       71.4       61.9       2.877       0.11         43       1000       <										78.4	85.4	3.041	0.08	
33       1800       1818.8       386.8       203.4       2.77       118.4       38.1       39.6       79.3       65.5       3.028       0.08         35       2000       1707.0       385.5       203.1       3.23       118.2       38.3       39.4       78.9       65.5       3.028       0.08         36       2000       1764.0       385.5       203.1       3.23       118.2       38.3       39.4       78.9       65.5       3.005       0.08         37       2200       1850.0       384.5       202.9       3.71       117.3       39.6       38.4       78.9       65.5       3.005       0.07         37       2200       1593.0       383.5       203.0       4.68       116.4       39.5       38.4       76.9       85.1       2.947       0.07         35       2300       1538.0       381.5       202.9       5.14       115.6       39.6       38.4       76.9       85.1       2.947       0.07         40       553       1147.0       377.0       204.0       1479.5       38.0       10.8       38.5       36.1       72.3       62.8       2.819       0.07       44       10.0	~ ~													
35       1000       1764.0       385.5       203.1       1.2.1       118.4       38.1       39.6       78.3       65.5       3.028       0.08         36       2100       1850.0       384.5       202.9       3.71       117.8       39.6       38.1       78.9       65.6       3.005       0.07         37       2200       1593.0       384.5       202.9       3.71       117.9       39.6       38.1       78.9       65.6       3.005       0.07         36       2100       1593.0       384.5       202.8       4.18       117.3       39.6       38.1       78.3       65.7       2.977       0.07         37       2200       1593.0       381.5       203.0       4.85       116.4       39.5       38.4       76.9       65.1       2.947       0.07         39       2400       1479.5       380.0       203.1       5.61       114.5       39.6       38.0       76.0       64.9       2.947       0.07         40       553       1479.5       380.0       203.1       5.61       114.5       39.3       37.6       75.2       64.4       2.919       0.07         41       800       <	33	1800	1818.8	385.8	203.4									
36       2000       1707.0       385.8       202.9       3.71       117.8       39.6       39.4       78.5       56.5       3.008       0.08         37       2200       1550.0       384.5       202.9       3.71       117.9       39.6       38.1       78.3       55.7       2.877       0.07         37       2200       1553.0       381.5       202.9       5.14       115.4       39.6       38.4       76.9       65.7       2.877       0.07         39       2400       1536.0       381.5       202.9       5.14       115.6       39.6       38.4       76.9       65.1       2.948       0.07         39       2400       1479.5       380.0       202.1       5.14       115.6       39.6       38.4       76.9       65.1       2.947       0.07         40       553       1147.0       377.0       204.0       8.40       10.8       38.5       36.1       72.3       62.8       2.819       0.07         41       800       107.0       376.5       204.2       9.40       108.5       38.1       35.5       71.0       61.8       2.877       0.11         42       800       8	34	1800	1764.0	388.5	203.1	3 23	118.4	38.1	39.6	79.3				
100       1850.0       384.5       202.8       1.1       117.3       39.6       39.1       72.5       30.5       3.005       0.07         34       2300       1536.0       383.5       202.8       1.17.3       39.6       38.4       77.5       85.7       2.877       0.07         35       2300       1536.0       381.5       202.8       5.14       115.6       39.8       38.8       77.5       85.6       2.877       0.07         39       2400       1478.5       380.0       203.1       5.61       114.5       39.8       38.8       76.0       64.9       2.817       0.07         40       553       1147.0       377.0       204.0       8.40       10.8       39.3       37.6       76.0       64.9       2.819       0.07         41       400       1027.0       376.5       204.2       9.40       108.5       38.1       35.5       71.0       61.8       2.877       0.11         42       800       1027.0       376.5       204.3       9.87       109.1       38.1       35.5       71.0       61.8       2.873       0.12         43       1000       815.0       376.2       <	30	2000	1707.0	385.9	202.9	3 71	118.2	38.3	39.4	78.9	85.5	3.028	0.08	
1       1200       1893.0       383.5       203.0       4.88       117.3       39.8       38.8       77.5       0.7       2.877       0.07         3       2400       1478.5       381.5       202.8       5.14       115.4       39.5       38.4       76.6       85.1       2.877       0.07         39       2400       1478.5       380.0       203.5       5.14       115.4       39.5       38.0       76.0       85.1       2.847       0.07         40       551       1147.0       377.0       203.1       5.61       114.5       39.3       37.6       75.2       64.4       2.819       0.07         41       800       1027.0       376.5       204.2       9.40       108.5       38.1       35.7       71.4       61.9       2.877       0.11         42       800       871.0       376.5       204.3       9.87       108.1       38.1       35.7       71.4       61.8       2.873       0.12         43       1000       815.0       376.5       204.3       9.87       108.1       35.3       70.5       61.8       2.863       0.12         44       1000       85.0       376.	37	2700	1550.0	384.5	202.8	4.18	117.8	39.5	39.1	78.3	85 7	3.005	0.07	
39       2400       1538.0       381.5       202.8       5.14       115.8       39.5       38.4       76.9       85.1       2.947       0.07         40       553       1147.0       203.1       5.61       114.5       39.5       38.0       76.0       84.9       2.947       0.07         40       553       1147.0       377.0       203.1       5.61       114.5       39.6       38.0       76.0       84.9       2.947       0.07         40       553       1147.0       377.0       204.0       8.40       100.8       38.5       36.1       72.3       62.8       2.915       0.03         42       800       871.0       376.5       204.2       9.40       108.5       38.1       35.5       71.4       61.9       2.877       0.11         43       1000       915.0       376.5       204.3       10.34       108.1       35.5       71.0       61.8       2.863       0.12         44       1100       858.0       376.2       204.3       10.34       106.7       38.1       35.5       71.0       61.8       2.863       0.13         45       1200       801.5       376.0	36	2300	1593.0	383.5	203.0	4.88	118 4	39.8	38.8	77.5	85 8	2.877	0.07	
40       555       14/9.5       380.0       203.1       5.81       114.5       39.6       38.0       76.0       4.9       2.947       0.07         41       500       1027.0       376.5       204.0       8.40       110.8       38.5       38.1       75.2       84.4       2.919       0.07         41       800       1027.0       376.5       204.2       9.40       101.8       38.5       36.1       72.3       82.8       2.877       0.11         42       900       871.0       378.5       204.3       9.87       108.1       35.5       71.4       81.9       2.873       0.12         43       1000       915.0       378.5       204.3       9.87       108.1       35.5       71.4       81.9       2.873       0.12         44       1000       856.0       376.5       204.3       9.87       108.1       35.3       70.6       81.8       2.883       0.12         44       100       856.0       376.2       204.6       10.82       108.0       37.8       35.3       70.6       81.8       2.883       0.13         45       1200       801.5       375.5       204.8       10	39	2400	1538.0	381.5	202.9	5.14	115 2	39.5	38.4	78.9	85.1	2.948	0.07	
41       800       1747.0       377.0       204.0       8.40       110.8       38.5       37.6       75.2       64.4       2.815       0.07         42       800       197.0       378.5       204.2       9.40       100.8       38.5       36.1       72.3       62.8       2.815       0.07         42       800       871.0       378.5       204.2       9.40       108.5       38.1       35.7       71.4       61.9       2.873       0.11         43       1000       915.0       376.5       204.3       108.1       38.1       35.5       71.0       61.8       2.873       0.12         44       1100       858.0       376.2       204.3       10.34       108.7       38.1       35.5       71.0       61.8       2.863       0.13         44       1100       858.0       376.2       204.8       10.32       108.0       37.8       35.1       70.2       61.2       2.854       0.13         45       1300       745.0       375.5       204.8       11.76       107.0       37.7       34.8       89.7       60.9       2.857       0.14         47       1355       694.0       3	40	567	1478.5	380.0	203.1	5.61	114 5	39.6	38.0	76.0	84.9	2.947	0.07	
42       500       571.0       375.5       204.2       9.40       105.5       36.1       72.3       62.6       2.877       0.11         43       1000       915.0       376.5       204.3       10.34       106.5       38.1       35.5       71.0       61.8       2.877       0.11         44       1000       858.0       376.5       204.3       10.34       106.7       38.1       35.5       71.0       61.8       2.863       0.12         45       1200       851.0       376.2       204.3       10.34       106.7       38.1       35.5       71.0       61.8       2.863       0.13         45       1200       850.0       376.2       204.6       10.82       108.0       37.8       35.1       70.5       81.8       2.854       0.13         45       1300       745.0       376.0       204.8       11.29       107.4       37.7       34.9       89.7       60.9       2.857       0.14         45       1300       745.0       375.5       204.8       11.76       107.0       37.7       34.9       89.7       60.9       2.850       0.15         47       1355       694.0       <	41	800	1007.0	377.0	204.0	8.40	110.8	39.3	37.6	75.2	64.4	2.819	0.07	
43       1000       915.0       376.5       204.3       9.87       109.1       38.1       35.7       71.4       81.9       2.873       0.11         44       1000       915.0       376.5       204.3       10.34       108.7       38.1       35.5       71.0       81.8       2.873       0.12         44       1000       858.0       376.2       204.6       10.82       108.7       38.1       35.3       71.0       61.8       2.863       0.13         45       1200       801.5       376.0       204.6       10.82       108.0       37.8       35.1       70.2       61.8       2.864       0.13         45       1200       801.5       376.0       204.6       11.29       107.4       37.7       34.9       88.7       80.9       2.857       0.14         45       1300       745.0       375.5       204.8       11.75       107.0       37.7       34.6       89.7       80.9       2.850       0.15         47       1355       694.0       375.0       204.8       12.18       106.5       37.7       34.4       88.8       60.6       2.827       0.15	42	800	871 0	378.5	204.2	9.40	109.5	30.D 38 1	36.1	72.3	62.8	2.877	0.08	
44       1100       854.0       376.2       204.3       10.34       108.7       36.1       35.5       71.0       61.8       2.863       0.13         45       1200       801.5       376.2       204.6       10.82       108.0       37.8       35.1       70.5       61.8       2.863       0.13         45       1200       801.5       376.0       204.8       11.29       107.4       37.7       34.9       89.7       60.9       2.857       0.14         45       1300       745.0       375.5       204.8       11.76       107.0       37.7       34.9       89.7       60.9       2.850       0.15         47       1355       694.0       375.0       204.3       12.19       106.5       37.7       34.4       68.8       60.6       2.837       0.15	43	1000	915 0	378.5	204.3	9.87	108.1	38 1	35.7	71.4	61.9	2.873	0.11	
45       1200       801.5       376.0       204.6       10.82       108.0       37.8       35.1       70.6       61.8       2.854       0.13         45       1300       801.5       376.0       204.8       11.29       107.4       37.7       34.9       69.7       60.9       2.854       0.13         45       1300       745.0       375.5       204.8       11.75       107.4       37.7       34.9       69.7       60.9       2.850       0.14         47       1355       594.0       375.0       204.9       12.18       106.5       37.7       34.6       89.3       60.8       2.850       0.15         47       1355       594.0       375.0       204.9       12.18       106.5       37.7       34.4       58.8       60.6       2.825       0.15	44	1100	858 0	J/8.5	204.3 1	0.34	108.7	38 1	39.5 76 7	71.0	51.8	2.863	0.12	
45 1300 745.0 375.5 204.8 11.29 107.4 37.7 34.9 88.7 80.9 2.857 0.14 47 1355 894.0 375.5 204.8 11.75 107.0 37.7 34.6 89.3 80.9 2.850 0.15 47 1355 894.0 375.0 204.9 12.18 108.5 37.7 34.4 88.8 60.8 2.837 0.15	45	1200	801.5	378.2	204.6 1	0.82	108.0	37.8	40.3	70.6	61.6	2.854	0.13	
47 1355 594.0 375.0 204.9 11.75 107.0 37.7 34.5 59.7 50.9 2.850 0.15 594.0 375.0 204.9 12.15 105.5 37.7 34.4 58.8 50.8 2.637 0.15 0.5 37.7 34.4 58.8 50.6 2.637 0.15	4 5	1300	745.0	376.U	204.8 1	1.29	107.4	37.7	33.1	70.2	61.2	2.857	0.13	
2,61,5 2,64,9 12,18 108,5 37,7 34,4 88,8 60,8 2,837 0,15 2,825 0,15	47	1355	594.0	375 0	204.8 1	1.75	107.0	37.7	34 6	69.7	60.9	2.850	0.15	
00.5 60.6 2.825 0.15					204.8 1	2.18	105.5	37.7	34.4	01.3	80.8	2.837	0.15	
										vo. 0	60. <b>6</b>	2.825	0.15	

170885

---

			0£0'0 820'0	182.0 085.0	728.5 728.5	91Z'0	61°21	L _ L 9
·····································			·				92 1	94
			820.0	ZBE.O	098.5	612.0	82.11	99
			920.0	285.0	788.5	0.220	28.01	
			920.0	785.0	298.Z	777.0	45.01	43
			0.026	885.0	578.5	+22.0	78.8	45
			0.024	282.0	778.5	9.22.0	09.8	0.0
			810.0	FOA.0	318.2	922.0	18.8	62
			810.0	803.0	610 2	822.0	\$L'S	38
			210.0	110.0	896.2	242.0	88.2	22
			810.0	0.412	77 B.S	0.245	1 L ' E	4 C 2 F
			120.0	119.0	300.5	722.0	2.23	72
			120.0	019.0	450 5	842.0	77.2	33
			220.0	119.0	140.5	822.0	2.54	35
			620.0	114.0	2,042	892.0	10.2	31
			6ZO'O	704.0	3.075	0.250	48.1	6Z
			0.032	001.0	121.5	0.250	18.1	82
			920.0	28E 0	351.5	872.0	75.1	22
			110.0	OBE O	2 182	372.0	55.0	92
			640.0	9.384	3.210	0.244	84'0	3C 9Z
			610.0	875.0	A12.5	0.242	88.0	53
			130.0	STE.0	661'E	852.0	99.0	22
			0.053	075.0	681 °C	0.234	80.0	12
			990.0	782.0	371.5	122.0	15.0	81
			480.0	782.0	121.5	0.228	82.0	81
			950.0	CSE . 0	221 2	0.222	22.0	<i>L</i> I
			9 80 .0	132.0	3.015	112.0	12.0	91
			950.0	0.350	188.2	0.209	02.0	51
			ESO'O	875.0	2,947	902.0	02.0	£ i
			150'0	325.0	268.2	102.0	41.0	21
			0.050	345.0	487.2	861.0	31.0	11
			840.0	445.0	847.2	061.0	11.0	01
			140.0	0.343	2.683	281.0	80.0	8
			920.0	245.0	589.2	541 0	30.0	L
			150.0	572'0	214.2	991 0	50'0	9
			\$ZO.0	345.0	2.210	451.0	70.0	5
			100.0	345.0	881.2	241.0	10.0	Ě
			0.0	742.0	196 1	124	00.0	ž
					300 ,	811.0	0.0	L
			<b>M</b> 4 M		_	K ₽ A		
				K b V	EAMDIZ	223972		
			BONAHO	130	1011AH 1011AH 1012	DEA	PCSTRN	
			US JMAN	NEWLZD	TJS443	UZ JMBN	CENT	
							444	19
372	388071	Q N 3	38801	91 ТЯАТ	s stiu	IS TEST RESU	AHS DEZITA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1. ·								
			A 9 A A 9 A	89'691 a		SSEE	IS SHIZING	MAON
			KPA	28.87 1	s	29772 JAIA# 79022399 NC	ILVGIJOSNO	PREC
								1 J 19 U J

.

-----

TST T = ,0N = 19MA2

.

.

(BI9MAR GBGJUGMBR)

FILL MUSIURE CONTENT SPECIFIC GRAVITY OF SOIL INITIAL VOLD RATIO INITIAL HEIGHT OF SAMPLE INITIAL HEIGHT OF SAMPLE EFFECTIVE PRINCIPAL STRESS RATIO FINAL MOISTURE CONTENT	<ul> <li>50.5 PERCENT</li> <li>2.73</li> <li>1.379</li> <li>13.23 CM</li> <li>502.55 CC</li> <li>1.00</li> <li>42.2 PERCENT</li> </ul>
TX. CONSOLIDATION START 300: Triaxial consolidation test	585 END 130685

TRIAXIAL CONSOLIDATION TEST

PT	ËFPECT Sigmai	EFFECT SIGMA3	STRAIN 1	VOLUME STRAIN	STRAIN3	2772CT P	۰	VOID Ratio	۷	SHEAR Strain
1	49.81	75 50								
2	57.39	30.40	1.670	1.593	-0.039	34.30	23.41	1.341	2 341	
3	66.01	35 00	1.969	2.041	0.035	39.40	25.99	1.330	7 770	1.1.19
4	75 90	40.30	2.361	2.589	0.104	45.34	31.01	1 317	2 212	1.285
5	87 37	40.20	3.107	3.477	0.185	52.10	35.70	1 296	2.317	1.518
6	100 44	46.30 E7.70	4.185	4.589	0.212	59,99	41.07	1 789	2.280	1.948
	115 70	53.30	5.563	5.917	0.177	69.02	47 16	1 2 2 4 5	2.269	2.635
Å	173 80	61.20	7.230	7.394	0.082	79.25	54 18	1.230	2.238	3.591
ă	150 40	70.30	8.083	8.979	-0.042	\$1.05	62 26	1.203	2.203	4.765
10	70 74	84.80	11.920	11.028	-0.446	109.70	74 69	1 1 1 1 1	2.185	5.070
	70.75	42.40	10.950	9.651	-0.855	54.85	37 36	1.115	2.116	8.244
	78.73	42.40	10.930	9.543	-0.693	54.84	77 73	1.142	2.149	7.743
	70.96	41.50	11.096	9.543	-0.777	54 05	77 76	1.152	Z. 152	7.749
	12.83	41.80	11.085	9.543	-0.777	52 14	31.03	1.152	2.152	7.915
	68.82	43.90	11.089	9.543	-0.773	52.74	31.03	1.152	2.152	7.915
15	65.48	46.80	11.073	9.543	-0.785	57 07	24.22	1.152	2.152	7.908
	60.97	48.50	11.054	9.543	-0 766	53.03	16.66	1.152	2.152	7.892
17	69.73	53.50	11.005	8.543	-0 731	52.65	12.47	1.152	2.152	7.873
18	56.50	56.50	10.967	9.543	-0 717	55.56	6.23	1.152	2.152	7.824
19	55.50	55.50	10.952	9.541	-0.701	35.50	0.0	1.152	2.152	7.787
20	55.40	55.40	10.941	9 547	-0.405	35.50	0.0	1.152	2.152	7.771
21	55.00	55.00	10.830	9 547	-0.689	55.40	0.0	1.152	2.152	7.760
22	55.00	65.00	10.915	8 547	-0.883	55.00	0.0	1.152	2.152	7.749
23	54.70	54.70	10.803	0 547	-0.686	\$5.00	0.0	1.152	2.152	7.734
24	53.90	53.90	10.882	0 643	-0.680	54.70	0.0	1.152	2.152	7.722
25	53.40	53.40	10.884	0 543	0.875	53.90	0.0	1.152	2.152	7.711
25	52.10	52.10	10 889	0.043	-0.871	53.40	0.0	1.152	2.152	7.703
27	52.40	52.40	10 882	0.943	-0.663	52.10	0.0	1.152	2.152	7.888
28	50.00	50.00	10 854	0.043	-0.855	52.40	0.0	1.152	2.152	7.641
28	46.20	46.20	10 847	8.843	-0.856	50.00	0.0	1.152	2.152	7 677
				a. 543	-0.652	45.20	0.0	1.152	2.152	7 886

·-----

er Let e

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PΤ	S I GMA 1	S I GMA3	STRAINS	STRAIN3	۲
1	49.91	26.50	1.870	-0.039	7 941
2	57.39	30.40	1.969	0 076	2.341
3	\$5.01	35.00	2.381	0.000	2.330
4	75.90	40.20	3.107	0.104	2.317
5	87.37	46.30	4.165	0.183	2.296
6	100.46	53.30	5.551	0.177	2.269
7	115.38	61.20	7 230	0.000	2.238
8	132.59	70.30	8 067	-0.042	2.203
9	159.49	84.80	11 970	-0.042	2.165
10	79.76	42.40	10 980	-0.445	2.116
11	79.73	42.40	10 870	-0.655	2.149
12	78.96	41.50	11 095	-0.883	2.152
13	72.83	41.80	11 095	-0.777	2.152
14	68.82	43.80	11 044	-0.777	2.152
15	65.48	46.80	11 077	-0.773	2.152
16	\$0.87	48.60	11.054	-0.785	2.152
17	59.73	53 50	11.0054	-0.755	2.152
18	55.50	56 50	10.005	-0.731	2.152
19	55.50	55 50	10.067	-0.712	2.152
20	55.40	55.80	10.952	-0.705	2.152
21	55.00	55 00	10.041	-0.699	2.152
22	55.00	55.00	10.830	-0.693	2.152
23	54.70	54.70	10.915	-0.886	2.152
24	53 90	53.00	10.903	-0.880	2.152
25	53 40	53.50	10.892	-0.675	2.152
26	\$2 10	53.40	10.884	-0.671	2.152
27	52.40	62.10	10.869	-0.863	2.152
28	50.00	52.40	10.862	-0.859	2.152
26	45 30	80.00	10.854	-0.655	2.152
	40.20	48.20	10.847	-0.852	2.152

# ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. : T 758 (REMOULDED SAMPLE) TEST RESULTS START 300585 END 130685

ΡŢ	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN Z	RADIAL STRAIN %	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy KN-m/VDL	
1	49.9	26.5	23.4	34.3	1.670	-0.039	1.593	0.0	0.0		0.0	
2	57.4	30.4	27.0	39.4	1.969	0.036	2.041	9.3	0.3	0.203	0.203	
3	56.0	35.0	31.0	45.3	2.381	0.104	2.589	20.1	0.7	0.299	0.501	
4	75.9	40.2	35.7	52.1	3.107	0.185	3.477	32.4	1.5	0.576	1 077	
5	87.4	46.3	41.1	60.0	4.165	0.212	4.589	46.8	2.5	0.887	1.964	
6	100.5	53.3	47.2	69.0	5.563	0.177	5.917	63.2	3.9	1.278	3.242	
7	115.4	61.2	54.2	78.3	7.230	0.082	7.394	81.8	5.6	1.690	4,932	
8	132.6	70.3	62.3	91.1	9.063	-0.042	8,979	103.3	7.4	2.110	7.042	
9	159.5	84.8	74.7	109.7	11.920	-0.446	11.028	137.1	10.3	3.546	10.588	
10	79.8	42.4	37.4	54.9	10.960	-0.655	9.651	37.4	9.3	-1.414	9 174	
11	79.7	42.4	37.3	54.8	10,930	-0.693	9.543	37.3	9.3	-0.057	9.117	
12	79.0	41.6	37.4	54.1	11.096	-0.777	9.543	36.1	8.5	0.062	9.179	
13	72.8	41.8	31.0	52.1	11.095	-0.777	9.543	31.5	9.5	0.0	9.179	
14	68.8	43.9	24.9	52.2	11.089	-0.773	9.543	31.0	9.5	-0.002	9.178	
15	65.5	46.8	18.7	53.0	11.073	-0.765	9.543	32.7	9.5	-0,003	9,174	
16	51.0	48.5	12.5	52.7	11.054	-0.756	9.543	33.0	9.4	-0.003	9,171	
17	59.7	53.5	6.2	55.6	11.005	-0.731	9.543	39.4	9.4	-0.005	9.167	
18	56.5	56.5	0.0	56.5	10.967	-0.712	9.543	42.9	9.3	-0.001	9.165	
19	55.5	55.5	0.0	55.5	10.952	-0.705	8.543	41.4	9.3	0.0	9.165	
20	55.4	55.4	0.0	55.4	10.941	-0.699	8.543	41.2	9.3	0.0	9,165	
21	55.0	55,0	¢.0	55.0	10.530	-0.693	9.543	40.6	9.3	0.0	9,165	
22	55.0	55.0	0.0	55.C	10.915	-0.586	9.543	40.6	9.3	0.0	9,165	
23	54.7	54.7	0.0	54 7	10 807					0.0		 
24	53.9	53 9	0.0	53.9	10.803	-0.680	8.543	40.2	9.3	0.0	9.165	
25	53.4	53.4	0.0	53.3 53.4	10.882	-0.675	8.543	39.0	9.3	0.0	9.165	
26	52.1	52.1	0.0	52 1	10.884	-0.671	9.543	38.2	9.3	0.0	9.165	
27	52.4	52.4	0.0	92.I	10.859	-0.663	9.543	36.3	9.2	0.0	9.165	
28	50,0	50.0	0.0	50.0	10.852	-0.659	9.543	36.7	9.2	0.0	9.165	
29	46.2	46 7	0.0	50.0	10.854	-0.656	9.543	33.2	9.2	0.0	9.165	
		40.2	0.0	46.Z	10.847	-0.652	9.543	28.1	9.2		9.165	

## ENERGY CALCULATIONS

•

**** NATURAL STRAIN ****

SAMPLE ND. = T 758 (REMOULDED SAMPLE) Test results start 300585 end 130685

PT	EFFECT SIGMA1 KPA	EFFECT Sigmaj KPA	DEV Stress KPA	EFFECT OCT STRESS KPA	AKIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol		
ı	49.9	26.5	23.4	34.3	1.685	-0.039	1.606	0.0	0.0	0.205	0.0		
2	57.4	30.4	27.0	39.4	1.989	0.037	2.062	S.3	0.3	0.305	0.206		
3	66.0	35.0	31.0	45.3	2.410	0.107	2.623	20.1	0.8	0.593	0.512		
4	75.9	40.Z	35.7	52.1	3.156	0.191	3.539	32.4	1.5	0.923	1.105		
5	87.4	46.3	41.1	60.0	4.254	0.222	4.697	46.8	2.6	1.346	2.028		
6	100.5	53.3	47.2	69.O	5.724	0.187	6.099	63.2	4.1	1.808	3.374		
7	115.4	61.2	54.2	79.3	7.504	0,088	7.681	81.8	5.8	2.297	5.182		
8	132.6	70.3	62.3	91.1	9.500	-0.046	9.407	103.3	7.8	3.952	7.479		
9	159.5	84.8	74.7	109.7	12.692	-0.504	11.685	137.1	11.0	-1.584	11.432		
10	79.8	42.4	37.4	54.9	11.608	-0.730	10.148	37.4	10.0	-0,063	9.847		
11	79.7	42.4	37.3	54.8	11.574	-0.772	10.029	37.3	9.9	0.070	9.784		
12	79.0	41.5	37.4	54.1	11.761	-0.865	10.029	36.1	10.1	0.0	9.854		
13	72.8	41.8	31.0	52.1	11.761	-0.866	10.029	31.5	10.1	-0.002	9.854		
14	68.8	43.9	24.9	52.2	11.753	-0.862	10.029	31.0	10.1	-0.004	9.852		
15	65.5	46.8	18.7	53.0	11.735	-0.853	10.029	32.7	10.1	-0.003	9.848		
16	61.0	48.5	12.5	52.7	11.714	-0.842	10.029	33.0	10.1	-0.005	9.844		
17	59.7	53.5	5.2	55.8	11.659	-0.815	10.029	39.4	10.0	-0.001	9.839		
18	56.5	56.5	0.0	56.5	11,616	-0.794	10,029	42.9	10.0	0.0	9.838		
19	55.5	55.5	0.0	55.5	11.599	-0.785	10.029	41.4	10.0	0.000	9.838		
20	55.4	55.4	0.0	55.4	11.587	-0.779	10.029	41.2	10.0	-0.000	9.838		
21	55.0	55.0	0.0	55.0	11.574	-0.772	10.029	40.6	9.9	-0.000	9.838		
22	55.0	55.0	0.0	55.0	11.557	-0.764	10.029	40.6	9.9		9.838		
							 i					 	 
23	54.7	54.7	0.0	54.7	11.544	-0.758	10.029	40.2	9.9	-0.000	9.838		
24	53.9	53.9	0.0	53.9	11.532	-0.751	10.029	38.0	9.9	-0.000	9.838		
25	53.4	53.4	0.0	53.4	11.523	-0.747	10.029	38.2	9.9	-0.000	9.838		
26	52.1	52.1	0.0	52.1	11.506	-0.739	10.029	36.3	9.9	-0.000	9.838		
27	52.4	52.4	0.0	52.4	11.498	-0.734	10.029	36.7	9.9	0.000	9.838		
28	50.0	50.0	0.0	50.0	11.489	-0.730	10.029	33.2	9.9	0.000	9.838		
29	46.2	46.2	0.0	46.2	11.481	-0.725	10.029	28.1	9.8	-0.000	9.838		

SAMPLE NO. # T 758 (REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	<ul> <li>11.686 CENTIMETRES</li> <li>549.050 CUBIC CENTIMETRES</li> <li>46.984 SQUARE CENTIMETRES</li> </ul>
CONSTANT LOAD Proving Ring Factor Piston Area	* 15.07 N . * 1.3970 N ./DIV * 5.0700 SOHARE CENTINETRES
INITIAL DIAL READING	= 2034.00 DIVISIONS

SHEAR TEST RESULTS START 180685 END 190685

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PI	TIME	DISPL DIAL RDG	PRING Dial RDG	PORE Press Kpa	PER Cent PCSTRN	EFFECT SIGMA1 KPA	EFFECT Sigmaj Kpa	HALF Dev Stress	DEV Stress Kpa	EFFECT Oct Stress	RATIO OF EFF SIGMA1 EFF SIFMA3	Δ
1	915	2034.0	204 0					NI A		КРА		
2	920	2033.2	215 0	200.5	0.0	79.8	42.1	18.8				
3	825	2031.8	223 2	202.1	0.01	81.3	40.3	20.5	41 0	54.7	1.895	0.0
4	830	2029.2	230 9	202.9	0.02	82.7	39.3	21.7	47.4	64.0	2.017	0.49
5	835	2027.0	236 9	204.5	0.04	83.9	38.2	22.8	45 7	53.8	2.105	0.42
6	940	2024.0	240 4	205.0	0.06	85.0	37.6	23.7	A7 A	53.4	2.195	0.50
7	945	2021.0	244.1	205.1	0.09	85.9	37.4	24.2	48 5	53.4	2.262	0.46
8	850	2017.8	246.3	205 8	0.11	86.7	37.1	24.8	49.6	53.8	2.296	0.43
. 9	955	2014.0	247.8	205 8	0.14	87.1	36.9	25.1	50.2	53.5	2.336	0.40
10	1000	2011.0	250.0	205 5	0.17	87.4	36.8	25.3	50.6	53.5	2.380	0.42
11	1015	2000.0	252.5	205 8	0.20	88.1	36.8	25.6	51.3	53.7	2.376	0.41
12	1030	1988.5	254.3	205 6	0.28	88.8	36.9	26.0	51.9	54 2	2.394	0.38
13	1045	1978.0	255.6	205.4	0.48	89.3	36.9	25.2	52.4	54.4	2.408	0.37
14	1100	1866.0	257.0	205 4	0 5 8	69.9	37.1	26.4	52.8	54.7	2.421	0.35
15	1115	1953.0	258.0	205.0	0 69	80.3	37.2	26.6	53.1	54.8	2.423	0.32
10	1130	1844.0	258.4	204.9	0.77	80.8	37.4	25.7	53.4	55.2	2 4 2 8	0.32
	1141	1936.0	258.9	204.8	0.84	01.1	37.6	26.7	53.5	55.4	2 422	0.29
10	1336	1872.5	260.4	204.8	1.38	91.2	37.6	26.8	53.6	55.5	2.425	0.28
20	1330	1853.0	280.5	204.7	1.55	91.3	37.8	26.9	53.7	55.5	2 4 2 9	0.27
21	1400	1830.5	250.4	204.6	1.74	81 7	37.7	26.8	53.7	55.6	2.423	0.27
22	1500	1808.5	260.4	204.5	1.93	91 7	37.8	26.8	53.5	55.6	2.415	0.26
23	1570	1785.0	260.0	204.9	2.13	80 7	37.8	26.7	53.4	55.7	2.410	0.25
24	1805	1763.0	260.0	204.5	2.32	81.1	37.5	25.5	53.2	65.2	2,419	0.25
25	1630	1735.0	259.5	204.5	2.56	90.9	38.0	26.5	53.1	55.7	2.397	0.27
26	1703	1/18.0	259.9	204.4	2.70	80.9	30.1	26.4	52.8	55.7	2.386	0.27
27	1800	1683.0	259.9	204.3	2.92	80.8	38.0	25.4	52.9	55.6	2.391	0.76
28	1900	1807 0	269.5	204.4	3.29	90.4	38.0	26.4	52.7	55.7	2.384	0.25
29	2002	1555 0	259.0	204.1	3.89	90.5	38.5	20.2	52.4	65.5	2.380	0.26
30	2200	1466 6	257.2	204.0	4.09	80.0	38 7	28.0	52.0	55.8	2.352	0.25
31	2401	1375 0	255.0	204.0	4.86	88.7	38.4	28.7	61.3	56.8	2.328	0.26
32	557	1107 0	265.2	204.5	5.64	87.9	38.0	25 0	50.3	55.2	2.310	0.28
			x 3 5 . 8	204.9	7.93	85.4	37.5	24 5	48.8	54.6	2.314	0.33
									40.8	53.8	2.305	0.39
33	807	1010 0										
34	800	1012.0	255.5	204.9	8.75	85 9						
35	1000	967.0	255.2	205.1	9.13	85.5	37.5	24.2	48.4	53.6	2.280	0.41
36	1100	821.5	254.4	205.0	9.52	85.2	37 6	24.0	48.1	53.4	2.285	0 44
37	1200		263.0	204.6	9.90	84.8	37.5	23.8	47.7	53.4	2.271	0 45
38	1303	787 5	252.0	204.8 1	0.29	84.1	37.4	43.6	47.1	53.2	2.257	0.43
39	1400	711 5	251.5	204.8 1	0.70	83.7	37 4	23.3	46.7	53.0	2.247	0.48
40	1500	897 0	248.5	204.9 1	1.09	82.8	37.5	43.2	46.3	52.8	2.238	9.50
41	1600	645 0	445.Z	204.8 1	1.48	81.8	37.8	22 1	45.3	52.6	2.208	0.58
42	1823	828 0	242.0	204.4 1	1.89	80.9	37.7	~~. ) 71 #	44.2	52.3	2.178	0.67
	-		441.0	205.1 1	2.02	80.2	37.3	21 4	43.2	52.1	2.146	0.71
									42.8	51.6	2.149	0.89
											· ·	

SAMP	LE	NC.			т	7	58	3			( ;	٩E	M	31	JL	DE	D	s	AM	P	LE	:)								
CONS	OLI	DAT	T	O N	4	x	1 2		s	те	F	. e									~ -					_				
PREC	ONS	OLI	D.	AT	10	N	F	R	ĒS	su	RP	-						:		•	78		79	ĸ	. P /					
NORM	AL I	ZIN	G	s	ΤF	tEs	5 5											÷			5 3	1	4 19 A O	2						
																		-		•		•		~		•				
NORM		780		е м	5 4																									
NO AM				ə n	E #	NR.	'	23	51	R	es	u	L1	ſS			s	τ <i>ι</i>	٩R	T			1	80	68	5			END	
ΡT		PER					N	RI	٩L	ZD			E	F	FI	EC.	т		N	Rł	٩L	z	6		N		41.7	n		
		CEN	т				н	A	L F				R	۱A	τ:	10			D	CI	r		-		ĉ	н.	NG	F		
		PCS	T	S M			P	EI	<u> </u>				S	1	Gţ	AP	1		S	TF	٩E	s	5		1	N	PW	P		
							5	T	RE	SS			S	1	Gł	MA:	3		ĸ	P 4	4				ĸ	P A	1			
							κ.	۲,	•																					
1		0.0					٥	. 1	1	8			1		8 9	15			٥			3			~					
2		o.o	1				0	. 1	2	8			2		01	17			ō	. 3	13	8			ŏ					
3		0.0	2				0	. 1	3	6			2		10	5			٥.	. 3	13	7			ō		15			
4		0.0	4				•	- 1	4	3			2		1 8	15			٥.	. 3	13	5			ò	. c	25			
ě		0.0	5				0	- 1	4	9			2	•	26	52			ο.	. 3	13	5			0	. 0	28			
7	2		1				0	• ]	5	2			2	•	28	6			۰.	. 3	13	6			٥	۰.	29			
a	č	5.1					ž	•	5				2	•	33	8			<u>.</u>	. 3	3	6			0	. 0	30			
9	č	5.1	7				õ	1		,			-	•	38				°.	. 3	3	5			•	. 0	33			
10		. 20	0				õ	. i	6	1			2	1	39	4			8.			7			0	. 0	33			
11		>.29	В				٥	. 1	6:	3			2		40	B			٥.		4				ž	. 0	32			
12	•	).39	9				٥	. 1	64	1			2	. •	42	1			ō.	3	4	ī			ŏ	័ត	32			
13		2.48	8				۰	. 1	6 5	5			2	• •	42	3			٥.	3	4	3			õ	ō	31			
18			5				•	. 1	61	7			2	• •	42	8			٥.	3	41	4			0	. 0	31			
16	2		1				0	• !	67				2	• *	42	8			۰.	3	41	5			0	. o	28			
17	č	. 84					~		80	2			2	• •	42	2			<u>.</u>	3	41	7			٥	. 0	28			
18	1	. 38	3				õ	1	8 8	í			\$	• •	* 2	8			<u>.</u>	3	48	5			0	. 0	27			
19	1	. 5 5	5				Ō,	i.	68	i .			2	1	12	3			ŏ.	3		2			~	. 0	27			
20	1	. 74	L.				ο.	. 1	68				2	. 4	11	6			δ.	3	4 9	í			ŏ		20			
21	1	. 93	1			•	ο.	1	67				2	. 4	51	٥			ο.	3	4 9				õ	õ	25			
22	2	. 13				1	<u>.</u>	1	67				2	. 4	11	9			ο.	3	4 6	5			ο.	. 0	28			
24	ŝ	. 32						1	66				2.	. 3	39	7		•	٥.	3	48	1			ο.	. 0	26			
25	ŝ	. 70				- 2		1	00 82				2.	. 3	8	5		1	<u>.</u>	3	49				•	. 0	26			
26	2	. 92				- 2	Ď.	÷	65				5						2.	3	49				0.	. 0	24			
27	3	. 29					Б.	1	B 4				2		18	õ		2	5.	3	4 9 4 8				÷.	. 0	24			
28	3	. 69					э.	1	B 3				2.	3	15	2			51	31	50	5			ö.		24 77			
29	4	. 09					٥.	11	6 1				2.	3	12	6			5.	31	50	,			ŏ.	0	22			
30	4	. 86				<	>.	11	58				2.	3	11	0		•	۶.	34	46				ο.	0	22			
32		. 64					2.	11	57				2.	3	11	4		•	٥.	34	43				ο.	0;	25			
33	ś	. 75				2	<b>(</b> •	1	23				2.	3	0	5			2.	3:	37				۰.	0:	28			
34	8	. 13				2	5	10	1				<u>.</u>	2	8			2	· ·	33	36				۰.	02	2.8			
35	9	. 5 2				ō	5.	14	19				2	2	7	1		2	· · ·	-	30				<u>ە</u> .	02	29			
36	9	. 90				c	۶.	14	18				2.	2	5	7		č	5	33	14				č.	0.2	5			
37	10	. 29				Q	۰.	14	5				2.	2	4	,		ē		33	12				ő.	02	27			
38	10	. 70				0	٠.	14	5			1	2.	2	38	3		ç	.:	33	11				ο.	02	7			
40 40	11	.08				0	• •	14	2			1	2.	2	08	3		¢	.:	33	10				ο.	02	8			
41	11	. 46				2	•	13	8			-	2.	1	78	5		0	• • •	32	8			,	ο.	02	8			
42	12	02				õ		13 13	14				¥ .	1	48	5		2	•	32	.7				ο.	02	4			
	. – .					•	•					-	<b>.</b> .	1	- 3			Q	•	3 2					ο.	02	9			

'n,

SAMPLE NO. + T 758	(REMOULDED	SAMPLE)	
INITIAL MOISTURE CO	NTENT	1 50.9 PERCENT	
SPECIFIC GRAVITY OF	SOIL	= 2.73	
INITIAL VOID RATIO		1.390	
INITIAL HEIGHT OF S	AMPLE	E 13.24 CM	
INITIAL VOLUME OF S	AMPLE	# 803.00 CC	
EFFECTIVE PRINCIPAL	STRESS RATIO	× 1.00	
FINAL MOISTURE CONT	ENT	# 42.3 PERCENT	
	START 310	5585 END 14068	5

TX. CONSOLIDATION START 310685 END 140 TRIAXIAL CONSOLIDATION TEST

PΤ	EFFECT	EFFECT	STRAINI	VOLUME	STRAINJ	EFFECT	Ŷ	AOID	v	SHEAR
	S I GMA 1	S I GMA3		STRAIN		P		RATIO		STRAIN
,	50 11	76 50	1 427	1.998	0.245	34.37	23.61	1.342	2.342	0.761
-	57 62	30.50	1 726	7.463	0.368	39.54	27.12	1.331	2.331	0.905
ŝ	66.29	35.10	2.155	3.083	0.466	45.50	31.19	1.316	2.316	1.125
4	76.31	40.40	2 787	3.805	0.559	52.37	35.91	1.296	2.296	1.485
5	87.70	46.50	3.761	4.925	0.582	60.23	41.20	1.272	2.272	2.120
6	100.87	53.50	5.186	6.335	0.569	69.29	47.37	1.238	2.238	3.085
7	116.02	61.50	6.858	7.902	0.522	78.67	54.52	1.201	2.201	4.224
8	133.35	70.70	8.580	8.436	0.428	\$1.58	62.65	1.154	2.164	5.435
9	159.54	84.80	11.137	11.343	0.103	109.71	74.74	1.118	2.119	7.356
10	79.67	42.40	10.272	10.025	-0.124	54.89	37.47	1.150	2.150	6.930
11	75.83	42.40	10.234	8.809	-0.163	54.88	37.43	1.153	2.153	6.931
12	78.76	42.40	10.302	9.859	-0.222	54.85	37.36	1.154	2.154	7.016
13	75.13	44.00	10.299	9.859	-0.220	54.38	31.13	1.154	2.154	7.013
14	71.72	46.80	10.279	9.859	-0.210	55.11	24.92	1.154	2.154	6.993
15	64.39	48.70	10.253	9.859	-0.197	65.93	18.89	1.154	2.154	6.967
16	85.56	53.10	10.215	9.459	-0.178	\$7.25	12.46	1.154	2.154	6.929
17	62.43	56.20	10.159	8.859	-0.150	58.28	6.23	1.154	2.154	6.572
18	59,60	59.50	10.078	9.859	-0.110	59.60	0.0	1.154	2.154	6.783
19	59.40	59.40	10.034	\$.859	+0.087	58.40	0.0	1.154	2.154	6.748
20	59,30	59.30	9.377	9.859	-0.059	59.30	0.0	1.154	2.154	6.691
21	58.90	58.90	8.847	8.859	-0,044	58.90	0.0	1.154	2.154	6.661
22	58.80	58.80	9.924	9.859	-0.033	58.80	0.0	1.154	2.154	6.638
23	58.10	58.10	8.906	9.869	-0.023	58.10	0.0	1.154	2.154	6.619
24	58.20	58.20	9.887	8.859	-0.014	58.20	0.0	1.154	2.154	6.800
25	58.10	58.10	9.864	8.859	•0.003	58.10	0.0	1.154	2.154	6.578
26	58.40	58.40	9.845	9.859	0.007	58.40	0.0	1.154	2.154	6.559
27	58.00	58.00	9.630	9.859	0.014	58.00	0.0	1.164	2.154	6.544
28	67.80	57.80	9.823	9.859	0.018	57.80	0.0	1.154	2.154	6.536
29	56.20	\$6.20	5.856	8.858	0.001	55.20	0.0	1.154	2.154	6.570

#### SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PT	S I GMA 1	SIGMA3	STRAINI	STRAIN3	v
1	50.11	25.50	1.427	0.285	2.342
2	57.62	30.50	1.726	0.358	2.331
3	66.29	35.10	2.156	0.468	2.316
4	76.31	40.40	2.787	0.558	2.296
5	87.70	45.50	3.761	0.582	2.272
6	100.87	53.50	5.196	0.559	2.238
7	116.02	61.60	6.858	0.522	2.201
8	133.35	70.70	8.580	0.428	2.164
8	159.54	84.80	11.137	0.103	2.118
10	79.87	42.40	10.272	-0.124	2.150
11	79.83	42.40	10.234	-0.163	2.153
12	78.76	42.40	10.302	-0.222	2.154
13	75.13	44.00	10.299	-0.220	2.154
14	71.72	46.80	10.279	-0.210	2.154
15	68.39	49.70	10.253	-0.197	2.154
16	65.56	53.10	10.215	-0.178	2.154
17	52.43	56.20	10.159	-0.150	2.154
18	59.50	59.80	10.079	-0.110	2.154
19	58.40	58.40	10.034	-0.087	2,154
20	59.30	59.30	9.877	-0,059	2.154
21	58,80	58.90	9.947	-0.044	2.154
22	58.80	58.80	9.924	-0.033	2.154
23	58.10	58.10	9.906	-0,023	2.154
24	58.20	58.20	9.887	-0.014	2.154
25	58.10	58.10	9.854	-0.003	2.154
26	58.40	58.40	9.845	0.007	2.154
27	58.00	58.00	9.830	0.014	2.154
28	57.80	57.80	8.823	0.018	2.154
29	55.20	56.20	9.856	0.001	2.154
### ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMPLE NO. = T 759 (REMOULDED SAMPLE) TEST RESULTS START 310585 END 140685

ΡŢ	EFFECT SIGMAI KPA	EFFECT Sigma3 KPA	DEV STRESS KPA	EFFECT DCT STRESS KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL STRAIN	LSSV KPA	LSNV 1.	DELTA Energy Kn-m/yol	TOTAL Energy Kn-m/vol
1	50.1	26.5	23.6	34.4	1.427	0.285	1.998	0.0	0.0		0.0
2	57.6	30.5	27.1	39.5	1.726	0.368	2.463	9.4	0.3	0.208	0.208
3	66.3	35.1	31.2	45.5	2.155	Q.468	3.093	20.2	0.8	0.332	0.540
4	76.3	40.4	35.9	52.4	2.787	0.559	3.805	32.8	1.4	0.518	1.059
5	87.7	46.5	41.2	60.2	3.761	0.582	4.825	47.0	2.4	0.819	1.877
6	100.9	53.5	47.4	69.3	5,196	0.569	6.335	63.5	3.8	1.340	3.218
7	116.0	61.5	54,5	79.7	6.858	0.522	7.902	82.4	5.4	1.748	4.965
8	133.4	70.7	62.7	91.6	8.580	0.428	9.436	104.1	7.2	2.023	6.988
9	159.5	84.8	74.7	109.7	11.137	0.103	11.343	137.0	9.7	3.239	10.227
10	79.9	42.4	37.5	54.9	10.272	•0.124	10.025	37.3	8.9	-1.324	8.904
11	79.8	42.4	37.4	54.9	10.234	-0.163	9.909	37.3	8.8	-0.063	8.840
12	79.8	42.4	37.4	54.9	10.302	-0.222	9.859	37.2	8.9	0.004	8.844
13	75.1	44.0	31.1	54.4	10.299	-0.220	9.859	35.2	8.9	-0.001	8.843
14	71.7	46.8	24.9	55.1	10.279	-0.210	9.859	35.9	8.9	-0.005	8.838
15	68.4	49.7	18.7	55.9	10.253	-0.197	9.859	37.6	8.9	-0.005	8.832
16	65.6	53.1	12.5	57.3	10.215	-0.178	9.859	40.7	8.8	-0.006	8.826
17	62.4	56.2	6.2	58.3	10.159	-0.150	9.859	43.8	8.8	-0.005	8.821
18	59.6	59.6	0.0	59.6	10.079	-0.110	9,859	47.8	8.7	-0.002	8.819
19	59.4	59.4	0.0	59.4	10.034	-0.087	9.859	47.4	8.6	0.0	8.819
20	59.3	59.3	0.0	59.3	9.977	-0.059	9.859	47.3	8.6	0.0	8.819
21	58.9	58.9	0.0	58.9	8.947	-0.044	9.859	46.7	8.5	0.0	8.819
22	58.8	58.8	0.0	58.8	9.924	-0.033	9.859	46.5	8.5	0.0	8.819
23	58.1	58,1	0.0	58.1	9 905	-0.022				0.0	
24	58.2	58.2	0.0	58 2	0.000 0.887	-0.023	3.059	45.4	8.5	0.0	8.819
25	58.1	58.1	0.0	58.1	9 867	-0.007	3.65¥	45,6	8.5	0.0	8.819
26	58.4	58.4	0.0	58.4	9 845	0.003	J.859	45.4	8.4	0.0	8.819
27	58.0	58.0	0.0	58 0	9 830	0.007	3.053	45.9	8.4	0.0	8.819
28	57.8	57.8	0.0	57 8	9.837 9.877	0.014	3.655	45.2	8.4	0.0	8.819
29	56.2	56.2	0.0	56 7	J.023	0.018	3.859	44.9	8.4	0.0	.8 - 8 1 9
			0.0	JO. 2	3.855	0.001	9.859	42.4	8.4		8.819

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 759 (REMOULDED SAMPLE) TEST RESULTS START 310585 END 140685

ΡT	EFFECT SIGMA1 KPA	EFFECT Sigmaj Kpa	DEV Stress KPA	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL Strain %	VOL Strain X	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol		
1	50.t	26.5	23.6	34.4	1.438	0.290	2 019						
2	57.6	30.5	27.1	39.5	1.741	0.376	2 497	0.0	0.0	0.212	0.0		
3	66.3	35. t	31.2	45.5	2.180	0 481	2.433	9.4	0.3	0.341	0.212		
4	75.3	40.4	35.9	52.4	7 877	0.401	3.142	20.2	0.8	0.535	0.553		
5	87.7	46.5	41.2	69.2	7 874	0.575	3.984	32.8	1.4	0.852	1.088		
6	100.9	53.5	47.4	69.3	5 776	0.608	5.051	47.0	2.4	1.412	1.940		
7	115.0	61.5	54.5	797	7 104	0.604	5.544	63.5	3.9	1.871	3.352		
8	133.4	70.7	52.7	91 5	7.104	0.564	8.232	82.4	5.7	2.203	5.223		
9	159.5	84.8	74.7	100 7	6.970	0.470	9.911	104.1	7.5	3.603	7.426		
10	79.9	42.4	37 6	54.0	11.807	0.116	12.040	137.0	10.4	-1 482	11.029		
11	79.8	42.4	37 4	54.5	10.838	-0.137	10.563	37.3	9.4	-0.070	9.547		
12	79.8	42 4	77 4	54.9	10.796	-0.181	10.434	37.3	9.4	0.005	9.477		
13	75.1	44 0	37.4	54.9	10.872	-0.246	10.379	37.2	9.5	-0.003	9.482		
14	71.7	44.0	31.1	54,4	10.859	-0.245	10.379	35.2	9.5	-0.001	9.481		
15	58 A	40.0	24.9	55.1	10.847	-0.234	10.379	35.9	9.4	-0.005	9.474		
1.6	65 6	43.7	18.7	55.9	10.817	-0.219	10.379	37.6	9.4	-0,005	9.468		
17	62.4	53.1	12.5	57.3	10.775	-0.198	10.379	40.7	9.4	-0.007	9.461		
1.8	50 C	56.2	6.2	58.3	10.712	-0.166	10.379	43.8	9.3	-0.006	9.456		
10	55.6	59.6	0.0	59.6	10.624	-0.122	10.379	47.8	9.2	-0.003	9.453		
7.0	55.4	59.4	0.0	59.4	10.573	-0.097	10.379	47.4	9.2	-0.000	9.453		
20	59.3	59.3	0.0	59.3	10.511	-0.066	10.379	47.3	9.1	-0.000	9.453		
21	58.9	58.9	0.0	52.9	10.477	-0.049	10.379	46.7	9.1	-0.000	9.453		
22	58.8	58.8	0.0	58.8	10.452	-0.036	10.379	46.5	9.0	-0.000	9.453		
23	58.1	58.1	0.0	58.1	10.431	-0.026	10 379	4 E - A		-0.000			 
24	58.2	58.2	0.0	58.2	10,410	-0 015	10.375	45.4	9.0	-0.000	9.453		
25	58.1	58.1	0.0	58.1	10.385	-0.007	10.379	45.6	9.0	-0.000	9.453		
26	58,4	58.4	0.0	58.4	10.364	0.000	10.379	45.4	9.0	+0.000	8.453		
27	58.0	58.0	0.0	58.0	10.347	0.015	10.379	45.9	8.9	-0.000	6.453		
28	57.8	57.8	0.0	57.8	10 330	0.016	10.379	45.2	8.9	-0.000	9.453		
29	56.2	56.2	0.0	56 2	10 770	0.020	10.379	44.9	8.9	-0.000	.453		
			• •		10.376	0.001	10.379	42.4	8.9		. 453		

SAMPLE NO. = T 759 (REMOULDED	SAMPLE }
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	11.951 CENTIMETRES 549.850 CUBIC CENTIMETRES 46.009 Square Centimetres
CONSTANT LOAD Proving Ring Factor Piston Area	* 16.52 N . * 1.0225 N ./DIV * 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING	= 2097.00 DIVISIONS
SHEAR TEST RESULTS START 250	685 END 260685

CONSOLIDATED UNDRAINED TRIAXIAL TEST

PT	TIME	DISPI	DOTHE										
		DIAL	DIAL	PORE	PER	EFFECT	EFFECT	HALF	DEV	AFFFCT			
		RDC	PDC	PRESS	CENT	SIGMAI	SIGMA3	DEV	STRESS	007	RATID OF	А	
			K D G	KPA	PCSTRN	KPA	KPA	STRESS	KPA	STRRSS	EFF SIGMAT		
								KPA		KPA	EFF SIFMAS		
1	809	2097.0	274 0	200 6									
2	915	2095.5	286.5	202.3	0.0	79.8	42.0	18.9	37.8	54.6	1 800		
3	920	2093.8	296 5	202.3	0.01	80.5	39.9	20.3	40.6	53 4	7.000	0.0	
4	825	2091.0	304 5	203.2	0.03	81.8	39.0	21.4	42.8	53.3	2.017	0.50	
5	830	2088.5	311 0	205.0	0.05	82.7	38.2	22.2	44.5	53.0	2 165	0.52	
6	940	2083.0	321 0	205.2	0.07	83.3	37.3	23.0	46.0	52 6	2.100	0.58	
7	850	2075.2	329 0	206.2	0.12	84.5	36.4	24.1	48.1	52.4	2.232	0.56	
8	1000	2057.0	374 0	205.5	0.18	85.6	35.7	25.0	49.9	52 3	2.323	0.54	
9	1010	2059 0	334.0	207.6	0.25	85.9	34.9	25.5	51.0	51.0	2.399	0.48	
10	1020	2051.0	338.5	207.5	0.32	87.0	34.8	26.1	52.2	52 2	2.461	0.53	
11	1030	2043 5	344.0	208.1	0.38	87.5	34.4	28.6	53.1	82.1	2.499	0.48	
12	1040	2034 A	340.5	208.4	0.45	88.4	34.3	27.0	54.1	52.7	2.544	0.49	
13	1050	2026 0	382.0	208.3	0.52	88.8	34.0	27.4	54 8	54.3	2.575	0.48	
14	1100	2018 0	355,2	208.7	0.59	89.3	33.8	27.7	55 5	52.3	2.613	0.45	
15	1115	2018.0	368.0	208.8	0.66	89.7	33.5	28 0	55.5	52.3	2.641	0.45	
16	1130	1004.5	352.0	208.9	0.77	90.3	33.4	28 5	58.1	52.3	2.689	0.45	
17	1146	1991.5	366.5	208.3	0.88	91.0	33 2	20.0	66.9	52.4	2.704	0.43	
	1200	1878.0	370.0	209.7	1.00	91.6	33.1	20.0	57.6	52.5	2.741	0.43	
10	1200	1964.5	373.0	209.5	1.11	92.3	33.2	28.2	58.5	52.6	2.767	0.44	
	1215	1952.5	376.5	209.5	1.21	82 8	77 0	29.5	59.1	52.9	2.780	0.42	
20	1230	1937.0	378.5	209.6	1.34	83 3	33.0	29.9	59.8	52.9	2.813	0.40	
21	1245	1924.5	380.0	209.8	1.44	93.4	33.1	30.1	5Q.2	53.2	2.817	0.40	
	1300	1909.5	382.5	209.2	1.57	84 2	33.0	30.2	60.4	53.1	2.830	0.41	
23	1330	1883.5	385.5	209.4	1 79	94.4	33.3	30.5	50.9	53.6	2.829	0.37	
24	1400	1855.5	387.5	208.7	2 02	97.9	33.5	30.7	61.4	54.0	2.832	0.37	
25	1430	1828.0	388.0	208.9	2 25	80.J	33.6	30.9	61.7	54.2	2.837	0.34	
26	1500	1798.5	380.0	208 5	2 50	92.9	34.0	30.9	61.9	54.6	2 819	0.34	
27	1530	1771.5	390.5	208 9	2 70	96.0	34.0	31.0	62.Q	54.7	2.822	0.34	
28	1800	1742.0	390.5	201 6	2.72	85.8	33.9	30.9	61.9	54.5	2 826	0.33	
29	1630	1714.5	391 0	208.8	2.8/	85.9	34.2	30.9	61.7	54.8	2 805	0.34	
30	1700	1885.0	390 5	208.5	3.20	95,9	34.2	30.9	61.7	54.8	2.000	0.33	
31	1801	1627.5	390 5	200.0	3.45	85.5	34.0	30.7	61.5	BA B	2.808	0.32	
32	1900	1570.0	388 5	208.5	3.93	95.2	34.1	30.6	81.1	54.5	2.608	0.33	
			200.5	208.7	4.41	94.5	34.1	30.2	80.4	54.0	2.783	0.34	
										04.2	2.771	0.38	
33	2000	1514.5	788 0	200 -									
34	2101	1455.0	786 5	208.5	4.87	94.0	34.0	30.0	60.0	54 0			
35	2202	1400 0	300.0	208.6	5.37	93.4	34.0	29.7	59 4	57.0	2.765	Q.35	
36	2300	1343 0	385.0	209.0	5.83	82.6	33.8	29.4	58 A	63.6	2.747	0.37	
37	2416	1270.0	384.0	209.4	6.31	91.7	33.4	29.1	50.0	53.4	2.739	0.40	
38	300	1114 0	381.5	208.9	6.92	91.1	33.7 7	28 7	55.3	02.8	2.744	0.43	
39	710	1114.0	376.0	208.9	8.23	89.0	33.5	27 7	87.9 85 5	52.8	2.703	0.42	
-40	800	0/5.0	368.0	209.5	10.23	85.5	32.9	28.3	00.B	52.0	2.655	0.47	
A 1	800	828.0	366.0	209.4	10.62	85.1	33 1	20.3	92.7	50.5	2.501	0.50	
42	1000	768.0	363.5	208.9	11.11	84.8	33 6	20.0	52.0	50.4	2.572	0.82	
47	1000	714.0	380.5	209.2	11.57	83.6	33.3	20.0	51.3	50.6	2.530	0.61	
~ 2	1100	556.0	357.5	209.2	12.05	82.7	33.2	40.Z	50.4	50.0	2.518	0.58	
								<b>44.8</b>	49.5	49.7	2.492	0.73	

. ...

SAM	PLE NO. +	T 758	(REMOULDED	SAMPLE]			
CON	SOLIDATION	ATTAL STR					
PRE	CONSOLIDAT	LON PRESSU	C33 DF	* 79.75	KPA		
NOR	MALIZING ST	RESS		* 159.54	KPA		
				159.54	КРА		
NOP	4411780 cus						
	ALIZED SHE	AR TEST R	ESULTS S	START 2	50685	END	260685
PT	PER	NRMLZD	EFFECT	NOWI 70			
	CENT	HALF	RATIO	OCT	CHANCE		
	PCSTRN	DEV	SIGMA 1	STRESS			
		STRESS	S I GMA 3	KPA	KPA		
		KPA					
1	0.0	0.118	1 800				
2	0.01	0.127	2 017	0.342	0.0		
3	0.03	0.134	2.097	0 374	0.011		
4	0.05	0.139	2.165	0.332	0.015		
5	0.07	0.144	2.232	0.330	0.024		
	0.12	0.151	2.323	0.329	0.015		
í.	0.18	0.155	2.399	0.328	0.037		
ĕ	0.25	0.160	2.481	0.325	0.044		
10	0.32	0.164	2.499	0.327	0.043		
11	0.45	0.185	2.544	0.327	0.047		
12	0.52	0 172	2.575	0.328	0.049		
13	0.59	0.174	2.013	0.328	0.048		
14	0.66	0.175	2.669	0.328	0.051		
15	0.77	0.178	2.704	0.328	0.051		
15	0.88	0.181	2.741	0.329	0.055		
18	1.00	0.183	2.767	0.330	0.057		
19	1.21	0.185	2.780	0.332	0.056		
20	1.34	0.189	2.813	0.332	0.055		
21	1.44	0.189	2 830	0.333	0.056		
22	1.57	0.191	2.829	0.333	0.058		
23	1.79	0.192	2.832	0.338	0.054		
24	2.02	0.193	2.837	0.340	0.051		
26	2.25	0.194	2.819	0.342	0.052		
27	2.72	0.194	2.822	0.343	0.050		
28	2.97	0.193	2.825	0.342	0.052		
29	3.20	0.193	2.805	0.343	0.050		
30	3.45	0.193	2.808	0.343	0.048		
31	3.93	0.192	2.783	0.341	0.050		
32	4.41	0.189	2.771	0.340	0.051		
34	5 37	0.188	2.785	0.339	0.050		
35	5.83	0.185	2.747	0.337	0.050		
36	6.31	0.183	2.738	0.335	0.053		
37	6.92	0.180	2.703	0.331	0.055		
38	8.23	0.174	2.656	0.326	0.052		
38	10.23	0.165	2.801	0.316	0.052		
41	10.52	0.163	2.572	0.316	0.055		
42	11 67	0.161	2.530	0.317	0.052		
43	12.06	0 155	2.518	0.313	0.054		
		4.190	4.492	0.312	0.054		

**.**...

SAMPLE NO. = T 760 (REMOULDED	SAMPLE
INITIAL MOISTURE CONTENT	51.0 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	× 1.392
INITIAL HEIGHT OF SAMPLE	= 13.24 CM
INITIAL VOLUME OF SAMPLE	= 603.00 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 0.53
FINAL MOISTURE CONTENT	# 42.7 PERCENT

TX. TRIAX	CONSOLIDATION START (IAL CONSOLIDATION TEST	30785	END	190785

ΡT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME Strain	STRAIN3	EFFECT P	Ŷ	VOID Ratio	v	SHEAR STRAIN
1 2 3 4 5 6 7 8 9 10 11 12	49.83 57.41 56.13 76.10 87.55 100.69 115.73 132.85 159.09 79.82 79.79 80.10	$\begin{array}{c} 2 \ 5 & 5 \ 0 \\ 3 \ 0 & 4 \ 0 \\ 3 \ 5 & 0 \ 0 \\ 4 \ 0 & 3 \ 0 \\ 5 \ 3 & 4 \ 0 \\ 5 \ 3 & 4 \ 0 \\ 5 \ 1 & 4 \ 0 \\ 7 \ 0 & 5 \ 0 \\ 8 \ 4 & 8 \ 0 \\ 4 \ 2 & 4 \ 0 \\ 4 \ 2 & 4 \ 0 \\ 4 \ 2 & 4 \ 0 \end{array}$	1.730 2.088 2.583 3.384 4.524 6.054 7.900 9.890 12.893 12.153 12.039 11.775	1.410 1.957 2.620 3.582 4.760 6.144 7.720 9.370 11.252 10.083 8.900 9.502	-0.160 -0.066 0.019 0.099 0.118 0.045 -0.080 -0.260 -0.820 -1.089 -1.135	34.31 35.40 45.38 52.23 69.12 69.16 79.51 91.28 109.56 54.87 54.87	23.43 27.01 31.13 35.80 41.15 47.29 54.33 62.35 74.29 37.42 37.39 37.70	1.358 1.345 1.329 1.306 1.278 1.245 1.207 1.168 1.151 1.151 1.155	2.358 2.345 2.329 2.306 2.278 2.207 2.168 2.151 2.155	1.260 1.436 1.710 2.190 2.938 4.006 5.327 6.767 9.142 8.752 8.739

4

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PΤ	S I GMA 1	SIGMAS	STRAIN1	STRAINS	v
1	49.93	26.50	1.730	-0.160	2.35
2	57.41	30.40	2.088	-0.066	2.34
3	66.13	35.00	2.583	0.019	2 3 20
4	76.10	40.30	3.384	0 099	2 30
5	87.55	46.40	4.524	0 118	2 271
6	100.69	53.40	6 054	0.045	
7	115.73	61.40	7 900	-0.045	2.245
8	132.85	70.50	9 890	-0.050	2.20
8	159 09	84 80	12 602	-0.260	2.160
			12.033	-0.azo	2.123
10	15.82	42.40	12.153	-1.035	2.151
11	79.79	42.40	12.039	-1.069	2.155
12	80.10	42.40	11.775	-1.136	2.165

### ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

SAMP TEST	LE NO. = Results	T 760 START	( REMOUL 3078	DED SAMPL 5 End	E) 1907(	8 5					
PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT Oct Stress KPA	AXIAL STRAIN 7	RADIAL STRAIN X	VOL Strain %	LSSV KPA	LSNV %	DELTA Energy Kn-m/vol	TOTAL Energy Kn-m/vol
1	49.9	26.5	23.4	34.3	1.730	-0.160	1.410	0.0	0.0		0.0
2	57.4	30.4	27.0	39.4	2.088	-0.066	1.957	9.3	0.4	0.246	0.246
3	66.1	35.0	31.1	45.4	2.583	0.019	2.620	20.2	0.9	0.361	0.607
4	75.1	40.3	35.8	52.2	3.384	0.099	3.582	32.6	1.7	0.630	1 237
5	87.6	46.4	41.2	60.1	4.524	0.118	4.760	47.0	2.8	0.949	7 186
6	100.7	53,4	47.3	69.2	6.054	0.045	5.144	63.4	4.3	1.367	3 554
7	115.7	61,4	54.3	79.5	7.900	-0.080	7.720	82.3	6.2	1.843	5 796
8	132.9	70.5	62.4	91.3	9.890	-0.280	9.370	103.7	8.2	2.249	7 545
9	159.1	84.8	74.3	109.6	12.893	-0.820	11.252	136.8	11.2	3.513	11 168
10	79.8	42.4	37.4	54.9	12.153	-1.035	10.083	37.4	10 5	-1.157	10.001
11	79.8	42.4	37.4	54,9	12.039	-1.069	9,900	37 4	10.4	-0.120	10.001
12	80.1	42.4	37.7	55.0	11.775	- 1.136	9.502	37.6	10.1	-0.268	9.613

#### UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMPLE NO. = T 760 (REMOULDED SAMPLE) TEST RESULTS START 30785 END 190785

PT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress	AXIAL STRAIN T	RADIAL STRAIN	VOL STRAIN	LSSV	LSNV	DELTA Energy	TOTAL Energy
				KPA	~	~	~	KPA	*	KN-M/VOL	KN-M/VDL
1	49.9	26.5	23.4	34.3	1.745	-0.163	1.420	0.0	0.0		0.0
2	57.4	30.4	27.0	39.4	2.110	-0.057	1.976	9.3	0.4	0.251	0.251
3	66.1	35.0	31.1	45.4	2.617	0.019	2.655	20.2	0.5	0.369	0.520
4	76.1	40.3	35.8	52.2	3.442	0.103	3.648	32.6	1.7	0.550	1 270
5	87.6	46.4	41.2	50.1	4.630	0.123	4.875	47.0	2.9	0.990	2 250
6	100.7	53.4	47.3	69.2	6.245	0.048	6.341	63.4	4 5	1.445	2.200
7	115.7	61.4	54.3	79.5	8.230	-0.098	8.034	82.3	R 5	1.980	5.704
8	132.9	70.5	62.4	91.3	10.414	-0.288	9.838	103 7	8 7	2.464	5.084
9	159,1	84.8	74.3	109.5	13.802	-0.933	11.937	176 9		3.944	8.149
10	79.8	42.4	37.4	54.9	12.956	-1.164	10 578	37 4		-1.305	12.093
11	79.8	42.4	37.4	54.9	12.827	-1.201	10 425			-0.134	10.788
12	80.1	42.4	37.7	55.0	12 527			37.4	11.2	-0.300	10.654
			-				a. 885	37.8	10.9		10.355

SAMPLE	NO.	2 T	76	•	( REI	40 U L I	a da s	AMP	LE)		
SAMPLE Sample Sample	HEIG Volui Area	нт 40 Ар	APT APT Ter	ZR CO Er Co Cons	MSOL) MSOL) Olida	DATI	ION = ION = I =	1 841 41	1.641 6.700 8.877	CENT Cuei Squai	IMETRES C CENTIMETRES RE CENTIMETRES
CONSTAN PROVING PISTON	T LDA Ring Area	AD F	ACT	DR			, , ,	1. 15.	16.47 2365 0700	N . N ./ Squar	DIV Centimetres
INITIAL	DIAL	. Ri	EAD	ING			8	210	8.00	D I V I S	IOMS
SHEAR T	EST A	ESI	UL 75	s :	BTART		1907/	65	e M	D	200785

CONSOLIDATED UNDRAINED TRIAXIAL TEST

		8 D G	DIAL RDS	PRESS KPA	CENT PCSTRN	EFFECT SIGMA1 KPA	ЕРРЕСТ Sigma3 Кра	HALF Dev Stress Kpa	DEV Stress Kpa	EPPECT OCT Stress	RATIO OP EPF Sigma1 EPF Sipma3	Α
5	838	2168.0	353 0							KPA		
2	845	2187.8	341 0	500.0	0.0	80.1	42.4	18.8	37 7			
3	855	2168.5	408.0	500.7	0.00	87.1	41.8	22.7	48 7	55.0	1.889	0.0
4	900	2164.5	421.8	803 8	0.01	\$2.5	40.0	28.2	62.6	55.9	2.045	0.09
5	910	2161.0	439.0	505.3	0.03	94.8	38.8	28.0	58.0	87.5	2.312	0.16
8	920	2155.0	454.0	808.1	0.05	97.9	37.3	30.3	80 s	87.5	2.444	0.20
7	830	2150.0	485.8	BOB A	0.10	101.0	36.5	32.3	64.5	897.5	2.824	0.23
3	940	2144.0	475.0	SOB.B	0.15	103.8	38.3	33.8	67.5	55.0	2.788	0.23
	950	2137.5	481.0	808.4	0.28	108.1	38.1	35.0	70.0	59 A	2.880	0.21
10	1000	2130.0	487.5	505.4	0.33	107.8	38.0	35.8	71.5	59 A	7.838	0.20
	1010	2126.5	491.6	505.8	0.38	111 0	36.8	36.6	73.2	81.0	2.987	0.19
17 1	1020	2124.5	498.5	505.4	0.37	117 4	38.8	37.1	74.2	81.B	3.000	0.18
10 1	1030	2121.5	800.0	804.7	0.40	114 7	36.9	37.8	78.5	82.1	3.017	0.18
18 1	1040	2118.0	804.0	804.3	0.43	118 9	37.9	38.2	78.4	63.4	3.047	0.14
18 1	1100	2118.0	505.0	803.9	0.45	118 2	38.5	38.7	77.4	84.3	3 011	0.12
17 1	1110	2109.6	507.5	803.4	0.50	117 4	30.5	38.9	77.7	84.4	3 018	0.11
18 1	1120	2102.0	509.0	803.3	0.57	114.1	30.1	39.2	78.3	85.2	3.003	0.10
19 1	1130	2083.0	510.5	802.8	0.54	119.0	40.0	38.3	78.5	65.7	2.880	0.08
20 1	140	2024 . 8	511.6	502.3	0.73	119.3	40.0	38.5	79.0	88.3	2.874	0.08
21 1	180	2088 0	812.5	802.1	- 0.80	120.0	A0 8	38.8	79.2	68.5	2.975	0.07
22 1	200	2055 6	613.0	501.7	0.88	120.5	41.1	38.7	79.4	57.1	2.985	0.05
23 1	210	2048 8	814.5	801.2	0.87	121.0	41.2	39.7	78.4	87.6	2.932	0.05
24 1	220	2037 0	814.8	BO1.4	1.04	121.1	41.4	30.9	78.8	67.8	2.937	0.01
25 1:	230	2027.0	814.6	801.1	1.13	121.4	41.8	30.0	79.7	68.0	2.925	0.03
26 1:	245	2013 6	010,5 Hts #	501.0	1.21	121.8	41.8	70.0	79.6	08.3	2.804	0.01
27 1:	300	1999.0	818 6	801.4	1.33	121.3	41.6	38 8	79.8	88.4	2.809	0.07
28 1;	329	1973.0	518 A	801.9	1.45	120.8	40.8	38.9	79.7	68.2	2.816	0.03
29 14	400	1944.0	516 8	501.3	1.68	120.9	41.3	39.8	78.6	67.4	2.985	0.0B
30 14	433	1913.0	516.6	501.0	1.92	121.1	41.6	39.8	70.0	87.8	2.927	0.03
31 10	504	1883.5	515.0	500 4	2.19	121.0	41.7	39.8	79 7	68.7	2.911	0.02
32 11	830	1850.0	818.5	800 8	2.44	121.6	42.7	39.5	78.9	88.1	2.901	0.03
					4.95	121.8	42.7	39.4	78.9	88.0	2.848	0.01
											2.847	0.01
33 36	801	1829.0	514.0	500.5	2.81							
36 18	830	1804.0	512.5	B00.B	3.13	120.8	42.8	39.0	78.0	8A.A	3	
38 10	107	1771.0	512.0	500.7	3.41	119 8	43.0	38.7	77.4	88.8	2.042	0.01
37 19		1721.0	510.2	500.6	3.84	110 3	42.8	38.5	77.1	88.S	2 801	0.01
38 20	000 .	1853.5	509.0	500.7	4.33	118.8	43.0	38.1	78.3	68.4	2.777	0.02
38 21	100	1807.8	508.5	801.0	4.81	117.9	43.1	37.8	75.5	88.3	2.783	0.02
40 27	00	1849.5	508.5	801.4	8.31	117.1	44.0	37.6	75.0	87.8	2.749	0.02
41 23	107	1484.8	505.5	500.9	5.87	18.2	A2 7	37.3	74.8	87.4	2.755	0.01
42 24	00	1378 0	904.0	500.8	6.31	15.4	42.8	30./	73.8	87.2	2.721	0.03
43 6	23	1013 8	501.5	501.0	6.79 1	14.8	42.8	-0.4 78 a	72.8	66.9	2.708	0.03
44 8	00	877 K	494.0	501.1	9.92 1	10.1	42.B	30.8	71.7	88.8	2.872	0.02
45 9	00	865 O	494.0	501.3 1	0.70 1	08.9	41.9		87.6	SS.0	2.590	0.04
46 9	45	822.0	401 0	301.2 1	1.19 1	08.5	42.3	33 1	87.0	84.2	2.800	0.04
47 11	01	747.0	480.0	501.3 1	1.55 1	07.5	41.9	32 8	98.2 88 3	84.4	2.584	0.04
				SUI.Z 1	2.21 1	07.0	42.0	32.6	80.7 85 A	63.8	2.588	0.05
										63.7	2.547	0.04

-_ -_

	NO.	•	1	760	(REMOULDED	SAMPLE }	
--	-----	---	---	-----	------------	----------	--

- ---

NORMALIZED SHEAD THE	* 168	.OS KPA
HORMALIZING STRESS	• 166	.08 KPA .08 KPA
PRECONSOLIDATION AXIAL STRESS	• 80	.48 KPA

9 1						
	rer Cant	NRMLZD	EFFECT	NRMLZD	NRMLZD	
	DCCNI	MALF	RATIO	OCT	CHANGE	
	CLAIRA	OFA	S I GMA 1	STRESS	IN PWP	
		STRESS	S I GMA 3	KPA	KPA	
		кра				
1	0.0	0 118				
2	0.00	0 142	1.889	0.346	0.0	
3	0.01	0 185	2.045	0.358	0.004	
4	0.03	0 176	2.312	0.361	0.015	
5	0.05	0 190	2.444	0.361	0.023	
8	0.10	0 202	2.624	0.361	0.033	
7	0.15	0 717	2.788	0.385	0.038	
8	0.21	0 220	2.460	0.370	0.040	
8	0.26	0 796	2.838	0.374	0.041	
10	0.33	0 230	2.887	0.376	0.040	
11	0.36	0 233	3.000	0.383	0.036	
12	0.37	0 237	3.017	0.387	0.038	
13	0.40	0.240	1.047	0.390	0.034	
14	0.43	0 243	3.016	0.388	0.030	
15	0.45	0 744	3.011	0.404	0.027	
18	0.50	0 244	3.018	0.405	0.025	
17	0.57	0.245	3.003	0.410	0.021	
18	0.84	0 244	2.990	0.413	0.021	
19	0.73	0.246	2.874	0.417	0.018	
20	0.80	0 249	2.875	0.418	0.014	
21	0.88	0.980	2.866	0.421	0.013	
22	0.97	0 761	2.832	0.425	0.011	
23	1.04	0.280	2.937	0.426	0.008	
24	1.13	0 750	2.926	0.427	0.008	
25	1.21	0.751	2.904	0.420	0.007	
26	1.33	0.750	2.808	0.430	0.008	
27	1.45	0.251	2.010	0.428	0.008	
28	1.88	0.250	2.995	0.424	0.012	
28	1.92	0.250	4.921	0.426	0.008	
30	2.19	0.249	2.011	0.428	0.005	
31	2.44	0.248	2.001	0.428	0.007	
32	2.65	0.248	7 844	0.434	0.003	
33	2.61	0.245	2 8 2 2	0.434	0.003	
34	3.13	0.243	2 800	0.432	0.003	
35	3.41	0.242	2 801	0.432	0.003	
36	3.84	0.240	2 777	0.430	0.004	
37	4.33	0.237	2 783	0.410	0.004	
38	4.81	0.236	2.748	0.429	0.004	
38	5.31	0.235	2.758	0.427	0.008	
40	5.87	0.231	2.721	0.420	0.008	
41	6.31	0.228	2.708	0.422	0.005	
47	6.78	0.225	2.672	0 420	0.005	
43	9.92	0.212	2.590	0 408	0.008	
44	10.70	0.211	2.800	0 404	0.007	
45	11.19	0.208	2.564	0.405	0.008	
					0.008	
		*****				
46	11.55	0 205				
47	12.21	0 204	2.555	0.401	0.008	
	· · · · · · ·	····	2.547	0 400		

÷.

SAMPLE NO.	T 761 (REMOULDED	SAMPLE)
INITIAL MOI	STURE CONTENT	= 51.5 PERCENT
SPECIFIC GR	AVITY OF SOIL	= 2.73
INITIAL VOI	D RATIO	± 1.405
INITIAL MEL	GHT OF SAMPLE	= 13.26 CM
FFFFFFTTVE O	UME OF SAMPLE	= 603.91 CC
FINAL MOIST	UDE CONTENT	= 0.53
	DRE CONTENT	# 42.1 PERCENT

TX. CONSOLIDATION TRIAXIAL CONSOLIDATION	START TEST	40785	END	180785
*********************	* : : : :			

PΤ	EFFECT SIGMA1	EFFECT SIGMA3	STRAINI	VOLUME STRAIN	STRAIN3	EFFECT P	٥	VOID Ratio	v	SHEAR STRAIN
1	49.96	26.50	2.036	1.813	-0.112	34.32	23.45	1.362	2 362	1 472
2	57.44	30.40	2.413	2.376	-0.019	39.41	27.04	1.348	2 348	1 671
3	56.11	35.00	3.002	3.196	0.097	45.37	31 11	1 728	2 2 2 2 8	1 070
4	76.16	40.30	3.873	4.205	0 157	52 25	75 86	1 204	2.320	1.830
5	87.63	46.40	5.053	5.456	0 202	60 14	33.00	1.304	2.304	2.471
6	100.70	53.40	5 514	6 905	0.102	60.14	. 41.23	1.274	2.274	3.234
7	115.72	51.40	8 394	8 610	0.146	59.17	47.30	1.239	2.239	4.312
8	132 91	70 50	10 117	0.518	0.063	79.51	54.32	1.200	2.200	5.554
ä	159 10	10.30	10.113	9.952	-0.081	91.30	62.41	1.166	2.166	6.796
10	30.00	64.60	13.341	12.055	-0.643	109.57	74.30	1.115	2.115	9.323
	79,86	42.40	12.481	10.738	-0.871	54.89	37.45	1.147	2.147	8.902
11	79.84	42.40	12.459	10.656	-0,902	54.88	37.44	1 149	2 149	8 907
12	79.29	41.90	12.572	10.664	-0.954	54.36	37.39	1.149	2.149	9.017

ì

387

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

PΤ	S I GMA 1	S I GMA3	STRAINI	STRAINS	v
1	49,96	26.50	2 036	-0.112	
2	57.44	30.40	2.413	-0 019	2.302
3	66.11	35.00	3.002	0.097	2 3 7 8
4	76.16	40.30	3.873	0 167	2 304
5	87.63	46.40	5.053	0.202	2 274
6	100.70	53.40	5.514	0.145	2 2 7 9
7	115.72	61.40	8.394	0.063	2 200
8	132.91	70.50	10,113	-0.081	2 155
8	159.10	84.80	13.341	-0.543	2 115
10	79.86	42.40	12.481	-0.871	2 147
11	79.84	42.40	12.459	-0.902	2 149
12	79.29	41.90	12.572	-0.954	2.149

ENERGY CALCULATIONS **** Engineering Strain ****

SAMPLE NG. = T 761 (REMOULDED SAMPLE) TEST RESULTS START 40785 END 180785

ΡT	EFFECT	EFFECT SIGMA3	DEV STRESS	EFFECT Oct	AXIAL STRAIN	RADIAL STRAIN	VOL Strain	LSSV	LSNV	DELTA Energy	TOTAL Energy
	KPA	КРА	КРА	STRESS KPA	2	*	*	КРА	×	KN-M/VOL	KN-M/VOL
١	50.0	26.5	23.5	34.3	2.036	-0.112	1.813	0.0	0.0	0 255	0.0
2	57.4	30.4	27.0	39.4	2.413	-0.019	2.376	9.3	0.4	0.439	0.255
3	66.1	35.0	31.1	45.4	3.002	0.097	3.196	20.1	1.0	0.672	0.694
4	76.2	40.3	35.9	52.3	3.873	0.167	4.206	32.7	1.9	0,997	1.366
5	87.6	46.4	41.2	60.1	5.053	0.202	5.456	47.0	3.0	1.414	2.363
6	100.7	53.4	47.3	69.2	6.614	0.146	6.905	63.4	4.6	1.831	3.777
7	115.7	61.4	54.3	79.5	8.394	0.063	8.519	82.2	6.4	1.948	5.608
8	132.9	70.5	62.4	91.3	10,113	-0.081	9.952	103.7	8.1	3.839	7.555
3	79 9	64.8 47 A	74.3	105.5 EA 0	12 481	-0.871	12.055	136.8	10.5	-1.318	10 078
11	79.5 79.8	42.4	37.5	54.5	12.459	-0 802	10.855	37.4	10.5	-0.044	10.035
12	79.3	41.9	37.4	54.4	12.572	-0.954	10.664	36.5	10.5	0.046	10,080

#### UNIVERSITY OF MANITOBA Soil Mechanics Laboratory

ENERGY CALCULATIONS **** NATURAL STRAIN ****

SAMPLE NO. = T 761 (REMOULDED SAMPLE) TEST RESULTS START 40785 END 180785

PT	EFFECT SIGMA1	EFFECT SIGMA3	DEV Stress	EFFECT Oct	AXIAL STRAIN	RADIAL STRAIN	VOL STRAIN	LSSV	LSNV	DELTA Energy	TOTAL Energy
	КРА	KPA	КРА	STRESS KPA	*	×.	*	КРА	2	KN-M/VOL	KN-M/VOL
1	50.0	26.5	23.5	34.3	2.057	-0.114	1.830	0.0	0.0	0 761	0.0
2	57.4	30.4	27.0	319.4	2.443	-0.019	2.405	9.3	0.4	0.451	0.251
3	66.1	35.0	31.1	45.4	3.047	0.100	3.248	20.1	1.0	0,697	0.712
4	76.2	40,3	35.9	52.3	3.949	0.174	4,297	32.7	1.9	1.045	1.409
5	87.6	46.4	41.2	60.1	5.185	0.213	5.610	47.0	3.2	1.504	2.455
6	100.7	53.4	47.3	69.2	6.843	0.156	7.155	83.4	4.8	1.982	3.960
7	115.7	61.4	54.3	79.5	8.767	0.059	8.904	82.2	6.7	2.147	5.841
8	132.9	70,5	62.4	91.3	10.662	-0.090	10.482	103.7	8.6	4.334	8.088
9	159.1	84.8	74.3	109.5	14.318	-0.736	12.845	136.8	12.3	-1.497	12.422
10	79.9	42.4	37.5	54.9	13.331	-0.986	11.359	37.4	11.3	-0.049	10.925
11	79.5	42.4	37.4	54.9	13.305	-1.019	11.267	37.4	11.3	0.052	10.877
12	79.3	41.9	37.4	54.4	13.434	-1.079	11.275	36.5	11.5		10.929

ŝ,

SAMPLE ND. = T 761 (REMOULDED	SAMPLE)
SAMPLE HEIGHT AFTER CONSOLIDATION Sample volume after consolidation Sample area after consolidation	* 11.593 CENTIMETRES * 539.513 CUBIC CENTIMETRES * 46.538 SQUARE CENTIMETRES
CONSTANT LOAD Proving Ring Factor Piston Area	* 15.00 N ./DIV * 1.3970 N ./DIV * 5.0700 SQUARE CENTIMETRES
INITIAL DIAL READING	= 2038.00 DIVISIONS
SHEAR TEST RESULTS START 180	785 END 190785

CONSOLIDATED UNDRAINED TRIAXIAL TEST

₽T	TIME	01501	80140									
		DIAL	DIAL	PORE	PER	EFFECT	EFFECT	HALF	DEV	EFFECT	PATIO OF	
		RDG	RDG	KPA	PCSTRN	SIGMA1 KPA	SIGMA3 KPA	DEV	STRESS	OCT	EFF SIGMA1	A
							Nr A	KPA	кра	STRESS	EFF SIFMA3	
1	828	2038.0	310.7	500 S						KPA		
2	845	2037.0	325.2	502.6	0.01	79.3	41.9	18.7	37.4	54.4	1 892	• •
د ۵	850	2035.4	337.0	504.4	0.02	83.3	40.7	20.8	41.Б	54.5	2.023	0.0
5	800	2033.5	348.0	505.7	0.04	85.2	36.0	22.6	46.3	53.1	2.192	0 48
6	810	2031.5	355.5	507.1	0.06	86.5	35.4	24.3	48.6	52.8	2.328	0.46
7	820	2022 0	369.5	508.7	0.09	88.7	33.7	20.0	51.1	52.4	2.444	0.47
8	830	2015.5	378.0	609.4	0.14	90.8	33.0	28.9	55.0	52.0	2.632	0.46
9	840	2009.5	395 5	510.1 E10.4	0.19	93.2	32.3	30.5	50 9	52.3	2.752	0.43
10	950	2003.5	400.5	510.4	0.25	94.7	32.0	31.3	62.7	92.8 87 0	2.887	0.40
11	1000	1896.5	404.5	510 1	0.30	96.2	32.0	32.1	64.2	53 4	2.959	0.39
12	1010	1989.5	407.5	509.9	0 42	97.6	32.3	32.7	65.3	54.1	3.005	0.37
13	1020	1983.5	411.0	509.8	0.47	90./ 90.0	32.5	33.1	66.2	54.6	3.036	0.34
15	1040	1976.0	414.0	509.6	0.53	100.8	32.6	33.6	67.2	55.0	3.061	0.32
16	1050	1968.5	417.0	509.7	0.80	101.8	32.8	34.0	68.0	55.5	3.074	0.29
17	1100	1950.8	418.8	508.8	0.67	102.6	33.2	34.4	68.9	55.9	3.093	0.29
18	1111	1946 0	420.2	508.8	0.72	103.3	33.5	34.7	68.4	56.3	3.091	0,25
19	1120	1939.0	427 5	508.2	0.79	104.3	34.0	35.1	70 7	56.8	3.083	0.25
20	1131	1831.0	424 -	508.5	0.85	104.6	34.0	35.3	70.5	57.4	3.067	0.23
21	1140	1925.0	426.0	507.9	0.92	105.5	34.5	35.5	71.0	0/.5 58 7	3.078	0.24
22	1150	1918.0	427.0	507.6	0.97	105.0	34.7	35.7	71.3	90.2 58 5	3.058	0.22
23	1200	1910.0	427.8	507.0	1 10	106.2	34.6	35.8	71.6	58.5	3.055	0.21
24	1217	1598.0	428.8	506.8	1.21	105.9	35.1	35.9	71.8	59.0	3.065	0.20
25	1230	1888.0	428.5	505.5	1.29	107 7	35.4	36.0	72.0	59.4	3.034	0.19
27	1245	1877.0	430.2	506.8	1.39	108.1	35.6	36.1	72.1	59.6	3.026	0.18
28	1315	1865.0	430.2	506.7	1.48	108.0	30.9	35.1	72.2	50.0	3.012	0.18
29	1330	1889.0	430.2	505.9	1.59	108.5	36.4	36.1	72.2	59,9	3.016	0.18
30	1345	1830 5	430.5	506.0	1.69	108.4	36.3	30.1	72.1	60.4	2.981	0.15
31	1400	1819 5	430.5	506.0	1.79	108.4	36.3	36.0	72.1	60.3	2.987	0.15
32	1430	1798.0	431.0	505.7	1.88	108.6	36.5	36.1	72.1	60.3	2.985	0.16
				305.2	2.07	109.0	36.9	36.0	72.1	80.5	2.977	0.15
										30.3	2.953	0.13
33	1500											
34	1530	1753 0	432.2	505.2	2.27	109.3	37.1	36 1				
35	1600	1730 0	432.5	505.0	2.46	109.5	37.4	36 1	/2.2	61.2	2.946	0.13
36	1630	1707.0	434 0	505.0	2.55	108.5	37.3	36.1	72.1	61.4	2.929	0.13
37	1700	1885.0	434.4	504.7	2.86	110.0	37.7	36.1	72.3	61.4 61.4	2.934	0.13
38	1800	1638.0	434.2	504 7	3.04	110.0	37.7	36.1	72.3	61.6	2.917	0.12
38	1900	1593.0	433.5	504 B	3.40	108.6	37.7	36.0	71.9	61.7	4.817	0.12
40	2000	1548.5	431.2	504.7	4.24	108.1	37.7	35.7	71.4	61.5	2.807	0.12
41	2100	1502.5	430.0	504.7	4.82	107 6	37.7	35.2	70.5	61.2	2.889	0.12
43	2200	1457.0	429.8	504.7	5.01	107.3	37.8	34.8	89.8	51.1	2.847	0.12
44	2400	1412.0	429.8	504.8	5.40	106.8	37.6	34.7	69.5	61.0	2.838	0 13
45	530	1386.0	429.2	504.9	5.80	105.3	37.6	34.6	59.2	80.7	2.841	0.13
46	800	1002 0	427.5	505.2	7.96	102.8	36.2	34.4	58.7	60.5	2.828	0.14
47	802	954.0	427.5	506.1	8.94	102.1	36.1	33.0	86.7 85 A	58.4	2.842	0.19
48	1002	908.0	428.8 428 E	505.2	9.35	101.5	35.0	32.8	85 C	58.1	2.828	0,19
49 1	1104	862.0	425.0	505.4	9.75	100.6	36.0	32.3	64.6	57.8 E7 E	2.820	0.20
50 1	203	817.0	424.0	507 8	10.14	99.6	35.2	32.2	54.4	56 7	2.794	0.21
51 1	300	775.0	424.0	507.9	10.53	98.7	34.8	31.9	63.9	56.1	2.831	0.24
5Z 1	400	730.5	424.5	507.7	11.28	¥8.0	34.4	31.8	83.6	55.6	4.836	0.26
5J 1	500	883.5	424.5	508.8	11.68	97 2	34.5	31.8	63.5	55.7	2.841	0.28
9 <b>4</b> 1	600	630.5	424.0	508.7	2.14	96.9	34.0	31.6	63.2	55.1	2.858	0.27
							34.2	31.3	62.7	55.1	2.833	0 32

SAM	IPLE NO	T 761 (	REMOULDED	SAMPLE)				
CON	SOLIDATION	ATTAL STRE						
PRE	CONSOLIDAT	ON PRESSUR		* 79.3	O KPA			
NOR	MALIZING ST	RESS	-	1 159.1	O KPA			
				- 100.1	V KPA			
NDR	MALIZED SHE							
	Sector She	AR IESI RE	SULTS	START	180785	END	190785	
PT	PER	NRMLZD	EFFECT	NRML 7D	NDMI 7D			
	CENT	HALF	RATIO	OCT	CHANGE			
	PESIKN	STORES	SIGMA 1	STRESS	IN PWP			
		KPA	SIGMAS	KPA	KPA			
1	0.0	0.117	1.892	0.342	0.0			
	0.01	0.131	2.023	0.343	0.013			
4	0.04	0.142	2.192	0.334	0.024			
5	0.06	0.161	2.328	0.332	0.032			
6	0.09	0.173	2.632	0.330	0.041			
7	0.14	0.182	2.752	0.329	0.055			
8 0	0.19	0.191	2.887	0.331	0.060			
10	0.30	0.197	2.959	0.332	0.052			
11	0.36	0.205	3.005	0.336	0.062			
12	0.42	0.208	3.036	0.340	0.060			
13	0.47	0.211	3.061	0.348	0.058			
14	0.53	0.214	3.074	0.349	0.057			
16	0.60	0.216	3.093	0.351	0.057			
17	0.72	0.218	3.081	0.354	0.052			
18	0.79	0.221	3.083	0.357	0.052			
19	0.85	0.222	3.078	0.362	0.048			
20	0.92	0.223	3.058	0.366	0.046			
27	0.97	0.224	3.065	0.368	0.044			
23	1.10	0.225	3.058	0.367	0.044			
24	1.21	0.228	3.045	0.371	0.040			
25	1.29	0.227	3.026	0.375	0.039			
26	1.39	0.227	3.012	0.377	0.038			
21	1.49	0.227	3.015	0.376	0.038			
29	1.69	0.227	2.981	0.380	0.033			
30	1.79	0.226	2.987	0.378	0.034			
31	1.88	0.227	2.977	0.381	0.034			
32	2.07	0.227	2.953	0.383	0.029			
34	2.46	0.227	2.946	0.384	0.029			
35	2.66	0.227	2.929	0.386	0.028			
36	2.86	0.227	2.917	0.385	0.028			
37	3.04	0.227	2.917	0.388	0.026			
38	3.45	0.226	2.907	0.388	0.026			
40	4.74	0.224	2.894	0.387	0.025			
41	4.82	0.219	2.859	0.385	0.026			
42	5.01	0.218	2.638	0.384	0.025			
43	5.40	0.218	2.841	0.381	0.025			
45	5.80	0.216	2.828	0.380	0.027			
		0.210	2.842	0.367	0.035			
4.6	* 94	a aa-						
47	9.35	0.207	2.828	0.365	0.035			
48	9.75	0.203	2.820	0.364	0.035			
49	10.14	0.203	2.831	0.355	0.036			
50	10.53	0.201	2.836	0.353	0.044		,	
52	11.58	0.200	2.850	0.350	0.046			
53	11.68	0.198	2.841	0.350	0.045			
54	12.14	0.197	4.008	0.346	0.052			
					0.051			

SAMPLE NO. : T 762 [REMOULDED	SAMPLE)
INITIAL MOISTURE CONTENT	= 51.4 PERCENT
SPECIFIC GRAVITY OF SOIL	= 2.73
INITIAL VOID RATIO	= 1.404
INITIAL HEIGHT OF SAMPLE	= 13.25 CM
INITIAL VOLUME OF SAMPLE	= 603.46 CC
EFFECTIVE PRINCIPAL STRESS RATIO	= 0.53
FINAL MOISTURE CONTENT	= 42.0 PERCENT

TX. CONSOLIDATION START 50785 END 190785 TRIAXIAL CONSOLIDATION TEST

PT	EFFECT SIGMA1	EFFECT SIGMA3	STRAINT	VOLUME STRAIN	STRAIN3	EFFECT P	¢	VOID Ratio	v	SHEAR Strain
1 2 3 4 5 6 7 8 9	49.91 57.50 66.13 76.08 87.51 100.53 115.45 132.64 159.57	26.50 30.40 35.00 40.30 46.40 53.30 61.30 70.40	2.008 2.423 2.996 3.857 5.125 6.785 8.415 10.596	1.757 2.353 3.107 4.085 5.326 6.786 8 136 10.075	-0.126 -0.035 0.055 0.114 0.102 0.000 -0.139 -0.260	34,30 39,43 45,38 52,23 50,10 69,04 79,35 91,15	23.41 27.10 31.13 35.78 41.11 47.23 54.15 52.24	1.362 1.347 1.329 1.306 1.275 1.241 1.208 1.162	2.362 2.347 2.329 2.306 2.276 2.241 2.208 2.162	1.422 1.638 1.961 2.495 3.349 4.523 5.703 7.238
10 11 12	79,93 80.01 80.09	42.40 42.50 42.60	12.204 12.185 12.325	12,114 10,995 10,945 10,763	-0.517 -0.604 -0.620 -0.781	109,72 54.91 55.00 55.10	74.77 37.53 37.51 37.49	1.113 1.140 1.141 1.145	2.113 2.140 2.141 2.145	9.109 8.539 8.536 8.737

5

SUMMARY OF ESSENTIAL RESULTS STORED IN FILE

ΡŤ	S I GMA 1	S I GMA3	STRAINI	STRAIN3	v
ĩ	49.91	26.50	2.008	-0.126	2.352
2	57.50	30,40	2.423	-0.035	2 347
3	66.13	35.00	2.995	0.055	2 3 7 9
4	76.08	40.30	3.857	0 114	2 705
5	87.51	46.40	5.125	0 107	2 276
e	100.53	53.30	6.785	6 000	2 241
7	115,45	61.30	8.415	-0 179	2 200
5	132.64	70.40	10.596	-0.250	2.200
9	159.57	84.80	13.147	-0 517	2.162
10	79.93	42.40	12 204	-0.504	2.113
11	80.01	42.50	12 185	-0.804	2.140
12	80.05	42.50	12.325	-0.781	2.141

ENERGY CALCULATIONS

**** ENGINEERING STRAIN ****

S A MP T E S T	LE NO. = RESULTS	762 START	(REMDUL) 5078	DED SAMPL 5 End	E) 1907	85					
ΡŢ	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress Kpa	EFFECT OCT Stress KPA	AXIAL STRAIN %	RADIAL STRAIN %	VOL Strain 2	LSSV KPA	LSNV	DELTA Energy Kn-m/vol	TOTAL Energy KN-m/vol
1	49.9	26.5	23.4	34.3	2.008	-0.126	1.757	0.0	0.0		0.0
2	57.5	30.4	27.1	39,4	2.423	-0.035	2.353	9.4	0.4	0.275	0.275
3	66.1	35.0	31.1	45.4	2.996	0.055	3.107	20.2	1.0	0.414	0.688
4	76.1	40.3	35.8	52.2	3.857	0.114	4.085	32.6	1.9	0.656	1.344
5	87.5	46.4	41.1	50.1	5.125	0.102	5.328	47.0	3.1	1.025	2.370
δ	100.5	53.3	47.2	59.0	6.785	0.000	6.786	63.2	4.8	1.460	3.831
7	115.4	61.3	54.1	79.3	8.415	-0.139	8.136	82.0	6.4	1.600	5.431
8	132.6	70.4	62.2	91.1	10.596	-0.260	10.075	103.4	8.6	2.546	7.977
9	159.6	84.8	74.8	109.7	13.147	-0.517	12.114	137.2	11.2	3.329	11.305
10	79.9	42.4	37.5	54.9	12.204	-0.604	10.995	37.5	10.2	-1.241	10.065
11	80.0	42.5	37.5	55.0	12.185	-0.620	10.945	37.7	10.2	-0.028	10.037
12	80.1	42.6	37.5	55.1	12.325	-0.781	10.763	37.8	10.4	-0.025	10.012

#### UNIVERSITY OF MANITOBA Scil Mechanics Laboratory

ENERGY CALCULATIONS

**** NATURAL STRAIN ****

SAMP Test	LE NO. = Results	T 762 START	(REMOUL) 5078	DED SAMPL 5 End	E) 1907	85					
ΡT	EFFECT SIGMA1 KPA	EFFECT SIGMA3 KPA	DEV Stress KPA	EFFECT OCT Stress	AXIAL STRAIN	RADIAL STRAIN	VOL Strain	LSSV	LSNV	DEL TA Energy	TOTAL Energy
				KPA	~	^	*	КРД	*	KN-M/VOL	KN-M/VOL
,	49.9	26.5	23.4	34.3	2.028	-0.128	1.772	0.0	o.c		0.0
2	57.5	30.4	27.1	39,4	2.452	-0.036	2.381	• •	~ ~	0.280	
3	66.1	35.0	31.1	45.4	3.042	0.057	3.156	20.2	1.0	0.425	0.280
4	76.1	40.3	35.8	52.2	3.933	0 119	4 170	-		0.680	0.705
5	87.5	46.4	41.1	50.1	5.260	0.107	5.475	47.0	1.9	1.076	1.385
6	100.5	53.3	47.2	69.0	7.026	0.001	7.027	63.2	5.0	1.554	4 015
7	115.4	61.3	54.1	79.3	8.790	-0.152	8.486	82.0	5.8	1.731	5.945
8	132.6	70.4	62.2	91.1	11.200	-0.290	10.519	103.4	9.2	2.807	3.745 9.557
9	159.6	84.8	74.8	109.7	14.095	-0.591	12.912	137.2	12.1	3.752	10 2.5
10	79.9	42.4	37.5	54.9	13.015	-0.684	11.647	37.5	11.0	-1.411	12.315
11	80.0	42.5	37.5	55.0	12.993	-0.701	11.592	37.7	11.0	-0.032	10.904
12	80.1	42.5	37.5	55.1	13.152	-0.883	11.387	37.8	11.2	-0.027	10.872

i,

SAMPLE NO. = T 762 (REMOULDED SAMPLE) SAMPLE HEIGHT AFTER CONSOLIDATION = 11.617 CENTIMETRES SAMPLE VOLUME AFTER CONSOLIDATION = 538.508 CUBIC CENTIMETRES SAMPLE AREA AFTER CONSOLIDATION = 46.355 SQUARE CENTIMETRES CONSTANT LOAD Proving ring factor Piston area = 16.49 N . = 1.0225 N ./DIV = 5.0700 Square centimetres INITIAL DIAL READING = 2075.00 DIVISIONS SHEAR TEST RESULTS START

190785 END 200785

CONSOLIDATED UNDRAINED TRIAXIAL TEST

рт	<b>T</b> 7 M F												
	1 1 1415	DISPL	PRING	PORE	PER	EFFECT	EFFECT	HAIS	DEV				
		BDC	DIAL	PRESS	CENT	SIGMA 1	SIGMAS	DEV	STREEC	EFFECT	RATIO OF	Α	
		KDU	RDG	KPA	PCSTRN	KPA	KPA	STRESS	KPA	STREEP	EFF SIGMA1		
								KPA		KPA	CPP SIPMA3		
1	810	2075.0	422.7	490 7		•• •							
2	820	2074.0	447.0	501 5	0.01	80.1	42.6	18.7	37.5	55.1	1.880	<b>^ ^</b>	
3	830	2071.0	468.5	503 9	0.01	83.6	40.8	21.4	42.8	55.1	2.050	0.0	
4	835	2069.0	481.0	504 A	0.05	86.2	38.7	23.8	47.5	54.5	2.228	0.34	
5	840	2057.0	481.0	505 2	0.03	00.2	37.9	25.1	50.3	54.7	2.327	0.42	
6	845	2064.5	500.0	505 A	0.09	68.9	37.4	25.2	52.5	54.9	2.403	0.37	
7	850	2081.5	507.5	505.8	0 12	07.6	38.7	27.2	54.5	64.9	2.484	0.36	
8	855	2059.0	514.0	505.2	0.14	94.0	36.5	28.1	56.1	55.2	2.538	0.33	
	800	2055.5	520.5	506.4	0.17	95.0	30.3	28.8	57.5	55.5	2.585	0.32	
10	810	2049.5	529.0	506.9	0.22	86.6	30.1	28.5	58.9	55.7	2.633	0.31	
	120	2043.0	539.0	506.6	0.28	99.0	30.8	30.4	60.7	56.1	2.692	0.31	
12	830	2034.5	546.5	505.2	0.35	100 8	30.1	31.5	62.9	57.1	2.743	9.27	
13	940	2026.0	554.0	506.0	0.42	102.6	36.4	32.3	64.6	57.7	2.783	0.24	
1.2	350	2018.0	558.0	506.0	0.49	103.5	78 5	33.1	86.2	58.5	2.818	0.22	
1.6	1000	2009.0	563.0	505.5	0.57	104.8	36.8	33.5	67.0	58.8	2.835	0.21	
17	1010	2002.0	567.0	505.5	0.63	106.0	37 1	34.0	68.0	59.5	2.849	0.19	
18	1020	1982.0	570.0	504.8	0.71	107.2	37.7	34.4	68.8	50.1	2.856	0.18	
19	1042	1985.0	572.0	504.5	0.77	107.9	38.0	34.0	09.5	60.S	2.842	0.16	
20	1050	1874.0	574.5	504.3	0.87	108.4	36.1	35.2	58.9	61.3	2.838	0.15	
21	1100	1867.0	575.0	504.6	0.93	108.7	38.4	35.2	70.3	61.5	2.846	0.14	
22	1115	1047.8	577.0	503.8	1.01	109.6	38.8	35 4	70.3	61.8	2.832	0.15	
23	1130	1943.0	578.5	503.6	1.14	110.2	39.2	35 5	71.0	62.4	2.824	0.12	
24	1145	1916 0	578.0	502.9	1.26	110.8	40.0	35.4	70.8	62.8	2.811	0.12	
25	1200	1901 0	578.5	603.0	1.37	110.6	39.8	35.4	70.8	63.6	2.769	0.10	
26	1215	1887 0	579.0	501.7	1.50	111.5	40.6	35.4	70.9	64 0	2.779	0.10	
27	1235	1867 6	578.5	502.2	1.62	111.5	40.5	35.4	70.9	84.2 84.7	2.746	0.05	
28	1245	1858 5	578.5	502.2	1.79	111.2	40.5	35.4	70.7	64. <u>2</u>	2.745	0.07	
29	1305	1840.0	576 E	502.9	1.86	110.4	39.9	35.2	70.5	83 4	2.747	0.08	
30	1335	1811.0	573 5	503.2	2.02	109.5	39.6	35.0	89.9	62.8	2.700	0.10	
31	1400	1784.0	568.0	502.0	2.27	109.1	40.0	34.5	89.1	63 0	2.700	0.11	
32	1430	1755.0	564 0	501.5	2.50	108.2	40.5	33.9	67.7	83.1	2.121	0.10	
				501.6	2.75	107.9	41.2	33.3	66.7	63.4	2 616	0.09	
											2.010	0.07	
~ ~													
33	1502	1724.0	558.0	501.7	3.02	106.5	41 7	30.0					
76	1530	1698.0	552.5	501.1	3.25	105.3	A1 7	32.0	85.2	63.0	2.579	0.07	
35	1671	1667.0	545.0	501.8	3.51	103.8	41 7	31.0	64.0	62.6	2.549	0.05	
37	1705	1636.0	540.0	501.8	3.78	102.8	42 0	30.4	02.1	62.4	2.489	0.08	
3.4	1800	1802.0	535.0	501.8	4.07	100.9	41.2	20.4	50.8	52.3	2.448	0.09	
39	1800	1646.0	527.0	501.1	4.54	100.1	42.5	28 8	59.7	61.1	2.448	0.09	
40	2000	1430.5	520.0	500.8	5.03	97.8	41.9	28.0	57.6	61.7	2.356	0.07	
41	2100	1374 0	515.0	500.7	5.53	96.6	42.0	27.3	54.4	80.5	2.335	0.05	
42	2209	1309 0	513.5	501.2	6.03	95.8	41.8	27.0	54 0	5V.Z	2.300	0.05	
43	2301	1250 5	510.0	501.7	6.59	84.2	41.3	26.5	57 9	58.5	2.291	0.09	
44	2400	1205 0	510.0	501.8	7.01	83.5	40.8	26.4	52 7		2.282	Q.13	
45	621	846 0	510 5	502.2	7.49	83.4	41.3	26.0	52.1	55.4	2.293	0.14	
46	800	752.0	517.5	503.5	10.58	90.5	39.8	25.4	50.7	56 7	2.261	0.17	
47	900	698.0	512 0	503.8	11.39	80.2	39.4	25.4	50.8	56 3	4.2/5	0.28	
				003.6	11.85	89.7	39.4	25.2	50.3	56 2	4.400	0.31	
											A · 4 / /	V.32	

SAMPL	.E NO T	762 (	REMOULDED	SAMPLE)			
CONSC	LIDATION	AXIAL STRE	S S E	* 80.09 * 158.57	КРА Кра		
NUKMA	LIZING ST	RESS		* 159.57	KPA		
NORMA	LIZED SHE	AR TEST RE	SULTS S	TART 1	90785	END	200785
PΤ	PER	NRMLZD	EFFECT	NRM170	NRMI 70	<b>,</b>	
	CENT	HALF	RATIO	OCT	CHANGE	Ē	
	PCSTRN	DEV	SIGMA 1	STRESS	IN PWF	<b>,</b>	
		KPA	SIGMAS	KPA	КРА		
1	0.0	0.117	1.880	0.345	0.0		
2	0.01	0.134	2.050	0.345	0.011		
4	0.05	0.158	2.228	0.342	0.026		
5	0.07	0.164	2.403	0.344	0.034		
6	0.09	0.171	2.484	0.344	0.038		
7	0.12	0.176	2.538	0.346	0.038		
8	0.14	0.180	2.585	0.348	0.041		
10	0.17	0.185	2.633	0.349	0.042		
11	0.28	0.197	2.743	0.352	0.043		
12	0.35	0.202	2.783	0.362	0.041		
13	0.42	0.207	2.818	0.366	0.039		
14	0.49	0.210	2.835	0.369	0.039		
16	0.63	0.215	2.649	0.373	0.037		
17	0.71	0.218	2.842	0.381	0.032		
18	0.77	0.219	2.838	0.384	0.030		
19	0.87	0.220	2.846	0.386	0.029		
20	0.93	0.220	2.832	0.388	0.031		
22	1.14	0.222	2.611	0.381	0.026		
23	1.26	0.222	2.769	0.399	0.020		
24	1.37	0.222	2.778	0.397	0.021		
25	1.50	0.222	2.745	0.403	0.013		
27	1.52	0.222	2.745	0.402	0.015		
28	1.86	0.221	2.786	0.397	0 020		
29	2.02	0.219	2.766	0.394	0.022		
30	2.27	0.216	2.727	0.395	0.019		
31	2.50	0.212	2.673	0.395	0.015		
33	3.02	0.208	2.619	0.385	0.013		
34	3.25	0.200	2.549	0.382	0.009		
35	3.51	0.195	2.489	0.391	0.013		
36	3.78	0.191	2.448	0.390	0.013		
37	4.07	0.187	2.448	0.383	0.013		
39	5.03	0.175	2.335	0.367	0.008		
40	5.53	0.171	2.300	0.377	0.005		
41	5.03	0.169	2.291	0.375	0.009		
42	8.59	0.185	2.282	0.369	0.013		
44	7.49	0.165	2.293	0.365	0.013		
45	10.58	0.159	2.275	0.355	0.024		
46	11.39	0.159	2.289	0.353	0.026		
47	11.85	0.158	2.277	0.352	0.026		