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Abstract

Given a metric space (X, d), one can construct the “minimum uniform compactification”
ug X of X. ugX is minimum in the sense that it is the smallest compactification of the
Tychonoff space X (in the partially ordered set of compactifications of X') to which every
bounded uniformly continuous real-valied function with domain X can be continuously
extended . A substantial amount of theory on u4X has been developed in the case where
(X, d)is alocally compact separable metric space. We will describe the properties of g X
using the language of clusters, as employed in the construction of wgX. Also, we intend
to analyze the structure of «y X \ X for some locally compact separable spaces other than
the Euclidean space R™. I'inally, we will analyze the structure of 4 X \ X where (X, d)
is one of several important nowhere locally compact complete separable metric spaces, in
particular the irrationals with a compatible complete metric.

v
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Chapter 1

Introduction

1.1 Introduction

Given a metric space (X, d), one can construct the “minimum uniform compactification”
ugX of X. uyX is minimum in the sense that it is the smallest compactification of a
Tychonoll space X (in the partially ordered set of compactifications of X) to which every
bounded uniformly continuous real valued function with domain X can be extended. In
this thesis, we investigate some of the properties of vy X. We begin by building u4X using
maximal clans. The construction of 1,X is similar to the construction of the Stone-Céch
compactification of a Tychonoff space. In [Wo], the structure of ugX is investigated
in the case where (X, d) is a locally compact separable metric space. We apply results
from [Wo] to construct the minimum uniform compactification of the Jocally compact
separable metric space X = Upen[n — 1, 0] x [0,1]"71 with the subspace metric inherited
from the “standard” metric on B¥. We show that the outgrowth uy.X \ X can be written
as the union of two regular closed sets each homeomorphic to [0,1]¥ x (8N \ N}, whose
intersection is nowhere dense in 1y, X \ X. Lastly, we use inverse limit systems to build the
the minimum uniform compactification of a certain class of metric spaces. We apply this

technique to construct the minimum uniform compactification of the irrationals. Some
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results on the minimum uniform compactification of the irrationals are given.

1.2 Organization of the Thesis

The main goal of this thesis is to provide some examples of minimum uniform compacti-

fications and how they are constructed.

In Chapter 2 we formally define compactifications and state some well known results
concerning compactifications. In addition, we define the minimum uniform compactifica-

tion ugX of a metric space (X, d). We briefly state some results known about ugX.

The construction of the minimum uniform compactification #4X of a metric space
(X, d)is described in Chapter 3. Following arguments similar to [Ra], ©¢X is constructed
from maximal clans. The construction of uy X is similar to the construction of the Stone-
Céch compactification of a Tychonofl space. Some properties of ugX derived from the

construction are also stated.

In Chapter 4 we analyze the minimum uniform compactification of a locally compact
og—compact complete metric space. Using results from [Wo], a detail analysis of the
compactification is given. The motivation for this chapter comes from the analysis of

wR\ R in [Wo]. The approach taken in this chapter follows that of the one taken in [Wo).

Chapter 5 states some well known results on inverse limit systems. These results are
then used in Chapter 6 in constructing minimum uniform compactifications., A technique
is given in Chapter 6 on how to construct the minimum uniform compactification for

certain metric spaces.

In Chapter 7, we apply the results from Chapter 6 to build the minimum uniform
compactification of the irrationals. Some properties of this compactification are given.

The main result gives a characterization of the clopen subsets of this compactification.
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1.3 Frequently used Symbols
Some of the symbols used frequently throughout this thesis are defined as follows:

o R - the real line

o 0 - the rationals

e T - the positive integers

e 3X - the Stone-Céch compactification of a space X

o ug X - the minimum uniform compactification of the metric space (X, d)

o I - the subspace [0,1] of B

o C'(X} - the ring of continuous real-valued continuous functions with domain X
o C™*(X) - the ring of bounded continuous real-valued functions with domain X

o U3(X) - the ring of bounded uniformly continuous real-valued functions with do-

main (X, d)
o AY - el ,x A\ X where 4 is a subset of the metric space (X, d)

e P(X) - power set of the set X



Chapter 2

Introduction to

Compactifications

Most of the material in this chapter can be found in [PW]. The results pertaining to the
minimum uniform compactification of a metric space can be found in {Wo]. For proofs of
the results in this chapter and a more definitive treatment of the subject, the interested

reader should consult the references.

2.1 Some Basic Results on Compactification

Let X be a Tychonoff space. Then a compactification of X is a compact Hausdorff space
aX that contains X as a dense subspace. Two compactifications aX and X of X are
said to be equivalent if there is a homeomorphism A from aX onto vX such that for each
xin X, h{x) = 2. We denote this by writing a X & vX. Equivalent compactifications are
considered to be the “same”. Let K(X) denote the class of all compactifications of X. If

we identify equivalent compactifications, then K(X ) can be regarded as a set and partially

ordered as follows : X < 4 X if there is a continuous function f : X — aX such that

4
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for each 2 in X', f(z) = 2. It is a well known result that (K(X), <) is a complete upper
semilattice whose largest member is the Stone-Céch compactification 83X, It is also well
known that (KX}, <) is a complete lattice if and only if X is locally compact (see 4.3.e
of [PW]). If X is locally compact, then the one-point compactification X* is the smallest

member of (K(X), <).

Taimonov’s theorem gives a characterization for when aX < 4X where oX and v X
are two compactifications of X', The theorem can be found as 4.2.h of [PW] and is stated

below for reference.

Theorem 2.1 : Let X be a Tychonoff space and let X, vX € K(X). The following are

equivalent :
I. aX 2 vX.
2. If A and I are disjoinl closed subsets of X and if el x ANel,x B =8, then cl,x AN
eaox DB =1,

The following result is well known { sce 4.6.1>2 of [PW]).

Theorem 2.2 : Let X be a Tychonoff space, aX « compactification of X. Then {clyxC :

C closed in X'} is « base for the closcd subsels of aX.

Tor a space X, the projective maximum X is denoted by 84X and is called the Stone-
Céch compactification of X. There is a great deal of results on X (see [GJ], [W], [PW]).
Some useful results for the Stone-Céch compactification of a Tychonoff space X will now

be stated.
We give a characterization of X that we shall use in this thesis. See 4.6.g of [PW]

for a reference.

Theorem 2.3 : Lel X be a Tychonoff space. The following are equivalent for aX €

K(X}):
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1. aX 2 X (as compactifications of X ).

2. disjoint zero-sets in X have disjoint closures in X .

A space X is said to be zero-dimensional if it has a base of open-closed (clopen)
subsets. We denote the collection of all clopen subsets of X by B(X). A Tychonoff space
X is called strongly zero-dimensional if 58X is zero-dimensional. We now give a result

concerning Lindclof zero-dimensional spaces (see 4.8.1 of [PW]).

Theorem 2.4 : Let A and B be disjoint closed subscts of the zevo-dimensional Lindelof
space X. Then there exists C' € B(X) such that A C C and BNC = B (that is, X is

strongly zero-dimensional).

2.2 Boolean Algebras and Stone Spaces

In this section , we give a brief introduction to Boolean algebras and Stone spaces. Lattices
are mentioned but not defined. The reader is assumed to have a knowledge of lattices.
For a thorough treatment of lattices, the interested reader should refer to Chapter 2 of
[PW]. The material in this section have been taken from Chapters 3 and 4 of [PW]. We

begin with some basic definitions.

A Boolean Algebrais a complemented distributive lattice. Boolean algebras are impor-
tant in the study of Stone spaces. We shall be most concerned with the Boolean algebra
of the clopen subsets of a topological space X. We denote this Boolean algebra by B(.X).
If (B,v,A,0,1) s a Boolean algebra and A C B, A is called a Boolcan subalgebra if
{0,1} C Aand a,b € Aimplies anb, avd, ' € A

Let A, B be Boolean algebras. A function f : A — B is a Boolean homomorphism

if a,b € Aimplies flaVv b} = f(a)}V f(b) and for « € A, f(a') = (f(e)). The function
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[ is called a Boolean isomorphism if [ is a bijection and both [ and f= are Boolean

homomorphisms.

We now define the Stone space of a Boolean algebra. Let B be a Boolean algebra and
let S(B) = {U : U is a B—ultrafilter}. For @ € B let MNa) = {U € S(B):a € U}. The
set S(B) equipped with the topology for which {A\(a): @ € B} is an open base is called

the Stone spuce of B.

The following is Stone’s representation theorem. This can be found as theorem 3.2.d

of [PW].
Theorem 2.5 : Let B be a Boolean algebra. Then :

1. §(BY is a compact zero-dimensional space,
2. {AMa):a € B} = B(S(B)), and

3. A is a Booleun isomorphism from I onto B(S(3)).

We now restrict our discussion of Boolean algebras to the Boolean algebra B(X) of

the clopen subsets of a zero-dimensional space X,

Let X be a zero-dimensional space and let 5 C B(X) be a Boolean subalgebra such
that B is a clopen base for X'. By Stone’s representation theorem, S(B) is a compact
zero-dimensional space and for each A € B, the mapping A(A4) = clsgzyA is a Boolean

isomorphism from B onto B(S5(B)). The following is Proposition 4.7.h of {PW].

Theorem 2.6 : Let X be o zero-dimensional space and let B C B{X) be a Boolean
subalgebra such that B is an open buse for X. Forz € X, let U, = {B € B:2 € B}.
Then :
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[7e]

1. Forwe X, U, € 5(B),
2. The function f: X — S(B) defined by f(2) = U, is « dense embedding, and
3. f By, By € B are disjoint, then elgsy 31 N elgpa By = W

By identilying each 2 € X with U,, we may think of X as a subset of S(B). Thus S(B)

is a compactification of X,

2.3 The Minimum Uniform Compactification

Let {X,d)} be a metric space. We may regard X as a topological space with the met-
ric topology 4 inducted by d. It is well known (sce 7.7 of [NW]) that there exists a
compactification of X, called the Smirnov compactification of X. In Chapter 3, we will
give the actual construction of the Smirnov compactification of X. Properties of this

compactification are stated in the following theorem (see 1.1 of [Wo]).

Theorem 2.7 : Let (X, d) be a metric space. Then the topological space (X, 14) has a

compactification wy X with these properiies :

b

A BEP(X ) then el x ANy, x B # 6 if and only if d(A,B) =0

%

Af (XL, d) and (Y, €) are metric spaces and [ X — Y is uniformly continuous, then

there is a continuous function f*:uyX — w.Y such that f*|X = f.

o

. Let U (X') denote the ring of all boundcd real-valued uniformly continuous functions
with domain (X, d). If f € U3(X) then there is a (necessarily unique) continuous

Sunction [~ ugX — B such that f*}IX = f.

We call uy X the mintmum uniform compactification of the metric space (X, d). ugX is
minimum in the sense that it is the smallest compactification of X to which each member
of U"(X') can be extended continuously. The mininum uniform compactification can be

characterized in several ways. The following is 2.5 of [Wo]:
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Theorem 2.8 : Let (X,d) be o metric spuce and let oX € K(X). The following are

equivelent :

1. oX = uyX (as compacetifications of X').
2. IABCX thencayAncl,xB#0 if and only if d(A, B) = 0.

8. {f € C*(X): f can be continously exlended to a X} = U3(X).

A uscful consequence of theorem 2.8 is the following. It is stated as corollary 2.6 of

[Wo).

Corollary 2.9 : Let (X, d) be a metric space. If A C X and 2 € ugX \ el ,x A, then
there exvists a closed subset B of X such that @ € ¢l ,x B and d(A, B) > 0.

The following theorem is 2.9 of [Wo] :

Theorem 2.10 : If (X,d) is @ metric space , and if § C X , then cly, x5 = w5 (up
to equivalence), where wS is the minimum uniform compactification of the metric space

(S, d|S).

If (X,d) and (Y, e} are two metric spaces, then a bijection f : X — ¥ is called a
uniform isomorphism if f and f= are uniformly continuous. If a uniform isomorphism
exists between X and Y, we say that the metric spaces (X,d) and (Y, ¢) are uniformly
equivalent. If X = Y then the metrics d and e are said to be uniformly equivalent.
Clearly uniformly isomorphic spaces are homeomorphic but the converse fails. The fol-
lowing theorem (see 2.10 of [Wo]) states a sufficient condition for the minimum uniform

compactifications of two metric spaces to be homcomorphic.

Theorem 2.11 : If (X,d) and (Y,¢) are melric spaces and if f: X — Y is a uniform
isomorphism, then f extends to a homeomorphism F 1 ug X — .Y, in particular, ug X\ X

is homeomorphic to u,Y \ Y.
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Let (X, d) be a metric space. The metric completion of (X,d) will be denoted by
(X7, d*). The following theorem (see 3.2 of [Wo]) relates the minimum uniform compact-

ification of (X, d) and the minimum uniforin compactification of (X=,d").

Theorem 2.12 : Let (X, d) be a metric space. Then ugs X* is equivalent (as a compact-

ification of X ) to ugX.

The theorem states we may deal exclusively with complete metric spaces when ana-
lyzing the minimum uniform compactifications of metric spaces.

If € > 0is given , a subset D of X is called e—discrete if S{x,e)n D = {z} for each
€ D, Wenow give a characterization of those metric spaces (X, d) such that 83X 2 uy X

(sec 3.4 of [Wo]).
Theorem 2.13 : The following are equivalent for a metric space (X, d) :

1 ugX = pX.
2. C*(X)=U*X).
3. C(X)=U(X).

4. There is a compact subsel K of X such that X \ K consists of isolated poinis of X

and for cach v > 0 there exists ¢, > 0 such that {x € X : d{x, K) >} is ¢, —discrete.

Let X and Y be Tychonolf spaces. Glicksberg’s theorem (see 1AG of [PW] ) states
that S(X x V) = 8X x Y if and only if X xY is pseudocompact. If (X,d) and (Y,e) are
metric spaces, it is natural to ask whether there is a necessary and sufficient conditions
on A and Y such that wgX X w.Y = w,{X x Y) where the metric ¢ on X x Y is defined
as follows :

{{x, ), (va, 42)) = d(2y, 22} + (1, v2).

Such conditions are known and are stated in the following theorem ( see 3.6 of [Wo]) .
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Theorem 2.14 : The following are equivalent for two metric spaces (X, d) and (Y, ¢e) :
Lo X xY) = ugX x .Y ((where t is as deseribed above).
2, At least one of (X, d) and (Y, e} is totally bounded.

If a metric space (X, d) is locally compact and o—compact, then [Wo] contain results
that can be used to analyze wgX. II' X is a locally compact o-—compact noncompact
Hausdoril space, it is well known (see 11.7.2 of [D]) that there exists a sequence {K, :

n € M} of compact subsets of X such that :

1. I{,, is a proper subset of inty K41,
2. K, =clyinty I,

3. X = Unepgh’n.

We state this formally in the next theorem .

Theorem 2.15 : If X is a locally compact o—compact noncompact Hausdorff space,

then there exists a sequence {K,, 1 n € M} of compact subsets of X such that :

1. Ky is a proper subsel of intx N1y,
2, K, =elyinty Iy,
3. ‘Y = UnENI(n-

Suppose C' is a subset of a metric space (X,d). Then let C* denote cl,,xC \ X.

Clearly, for 4 C X, (elxA)* = AY,

The following theorem is 4.2 of [Wo].

Theorem 2.16 : Let (X, d) be a locally compact o—compact metric space, and let A and

B be two closed noncompact subsets of X. The following are equivalent :
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1 limpecesup{d{z,A) 12 € B\ K,,} =0,

2. BUC Av,

For a more definitive presentation of the minimum uniform compactification, the

reader is asked to refer to [Wol.



Chapter 3

Building the Minimum Uniform

Compactification

The minimum uniform compactification ws X of a metric space (X, d) can be built ab-
stractly much like the Stone-Céch compactification of a Tychonofl space. The method for
the construction of both these compactifications of a metric space (X, d) are quite similar.
The main difference is that the underlying “points” of the two compactifications come
from different sources. The points of the Stone-Céch compactification are z-ultrafilters of
X whereas the points of the minimum uniform compactification are the ¢ d— clusters”
of X. We proceed to build the minimum uniform compactification ug X of a metric space
(X,d) in this chapter. This compactification is a special case of the Smirnov Compact-
ification of a proximity space. The Smirnov Compactification can be found in [NW] or
[Ra]. Most of the material in this chapter can be traced to the manuscript by Dr. M.

Rayburn [Ral.

13
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3.1 Definitions

Several terms need to be defined in this section. As we are dealing only with metric spaces,
all terms will be defined in terms of metric space. However, most of these definitions can

be generalized to a wider range of spaces (in particular, proximity spaces).

Definition 3.1 : Let (X,d) be a metric space. A elan o is a non-empty collection o of

subsels of X such that :

1. ifA€oand AC B then B € o, (3.1)
2. fAUDB €o then A€o or B€ o, (3.2)
3. if A, B € o then d(A, B) = 0. (3.3)

Using a standard Zorn’s Lemma argument, one easily sees that any clan is contained
in some maximal clan. Maximal clans are clans which are not strictly contained in any
other clan. I A is a subset of a space X and o is collection of subsets of X, then we write
d(A,0) = 0 to denote

Vi3 € o,d(A, B)=0.
Definition 3.2 : 4 clan o on a space (X, d) is called a d-cluster if
ACX and d{A,a) = 0 implies A € 0. (3.4)

If there is no ambiguity about which metric is under discussion, we will say “cluster”

rather than “d-cluster”.

3.2 Some Results on Clusters

This section will list some results for clusters that witl be useful in the construction of

g X. The main result in this section is that maximal clans and clusters are the same
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objects. This will be a useful fact since results are sometimes easier to obtain using

maximal clans instead of clusters and vice versa.

Lemma 3.3 : Let (X,d) be @ metric spece and let A, B C X. Then d(A,BY =0 if and

only if there cxist sequences {a,} C A, {b,} C B such that limy_cod(ty,0,) = 0.

Proof :
If d(A, B} = 0, then for each u € I there exists a, € A, b, € B such that d{a,,b,) < L.

Tt

Thus Wy eed(ay, by) =0, 0

The other implication follows dircctly from the definition. O

Lemma 3.4 : Let (X,d) be « melric space with A, B C X. If d(AU B,C) = 0 then
dA,CY=0o0rd(B,CYy=10

Proof : If d{AU B,C') = 0 ; then there exists sequences {a,} € AU B and {¢,} C C
such that lim,_od{a,, ¢q) = 0. I d(A,C) # 0 then there exists some ng € M such that

for all n > ng, a, € B. Hence d(B,C)=0. O

Definition 3.5 : For cach point & in a metric space (X,d), define g, = {A C X :

d(A,z) =0}, o, is called @ point-cluster.

Clearly {2} € o,.

Theorem 3.6 : JFor each x € X, 0, is a clusler.

Proof: Let z € X Dbe given.

L. Suppose 4 € o, and A C B. As d(A,z) = 0, then d(B,2) = 0. Thus B € o, and

hence o, satisfies (3.1).
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2. Let A, € .. Then d{A,x) = 0 and d(I3,2) = 0, so there exists a sequence
{a,} € A and {b,} C I such that lim,— d{a,,z) = 0 and lim,_ o d(b,,2) = 0.

By the triangle inequality, we see that {or each n € |l
dan, bn) < dlag,2) + d{z,by).

This hnplies

n@'}o d{a,, by) = 0.
Hence d(A, B) = 0 and o, satisfies (3.3).

3. Id(A,C)y = 0forall C' € a,, then in particular d(A4,{2}) = 0 as {&} € o,. Thus

d(A,z)=0and so A € 0,,. Hence g, satisfies (3.4).

4. Suppose that AU B € o,; then d(AU B,2) = 0. By lemma 3.4 d(4,z) = 0 or
d(B,z) = 0. Thus o, satisfies (3.2). O

The following is an example of a collection o of subsets of a space (X, d) that satisfies

(3.1),(3.3), and {3.4) but doesn’t satisfy (3.2).

Example 3.7 : Let (&, d) be the Buclidean metric space. Let A = {3 :n € N}, B =
{-Lt:inen},andC={1-L:n>2}u{-1+ Lin > 2}, Clearly

d(A,B)=0,d{A,C)=0 and d(B,C) =0 (3.5)

Let A={SCX:ACSor BCSorC CYY}. Ilisclear from (3.5) that, if §,T € A
then d(5,T)=10. Hence A salisfy {3.1). By the definttion of A, if S€Aand SCT C X,
then T € A\, Thus A satisfy (3.3).

Let P = {a¢ C P(X): o satisfies {3.1) and (3.3)}. Then clearly, X € P. Now order P be
inclusion . (P, C) is a partially order sel (POSET). By Zorn’s lemma, there is ¢ mazimal
chain C C P such that A € C. Let v = UC.

Claim : g salisfies (3.1),(3.3) and (3.4).

Proof of Claim :
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1. Seyand 5 €T C X, then there exists some oo € € such that § € a. As o

satisfies (3.1), T € a. Thus T € .

2. I 5,7 € ~, then there exists ap, a5 € € such that S € a; and T' € ay. Since C is
a chain, either a1 < ag or as < aq. Without loss of generality, assume a; < 5.

Then 5,7 € ay. But as ay satisfies (3.3), then d(.5,7) = 0.

3. Suppose ¥ doesn’t satisfy (3.4). Then there exists § C X such that for all T' € v,
d(S,T)=0but 5¢~.
Let v* = ~vU{U C X :5 C U}. Clearly v~ satisfies (3.1),(3.3) and 7 is strictly
contained in v*. This contradicts the maximality of 4. Hence 7 must satisly (3.4)

and the claim holds.

It was just shown that v satisfies (3.1), (3.3) and (3.4). We now proceed to show that

v fails (3.2).

Recall C ={l-L:n2>2}u{-1+L:n>2}and C€v. Let Cy = {1~ Lin>2}

and Cy = {-1+ 3—1 :n > 2}, Clearly, "= CyUCy. Now d(A,Cy) = % > 0, hence Uy ¢ 7.

Similarly d(B,C) = § > 0, hence Cy ¢ 7. This shows v doesn’t satisly (3.2). O

In a metric space, distinct points give rise to distinct point clusters. This will be im-
portant when we build the minimum uniform compactification of a metric space. Namely,
the set of point clusters is identified with the metric space in the minimum uniform com-

pactification.
Theorem 3.8 : If v # y then o, # oy,

Proof: If @ # y then d(,y) # 0 and hence {2} ¢ o, and {y} ¢ o,. This shows ¢, # ay,.

]
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Lemma 3.9 : Ifo is a cluster in X then X € o.

Proof: If A € ¢, then d{A, X ) = 0since A C X. As ¢ is a cluster, (3.4) implies X € ¢, O

Corollary 3.10 : Given A C X and a cluster o, either A€ o or X\ A € 0.

Proof : Let A be a subset of X' . We sce that X' = AU (X \ A) and by lemma 3.9,

X € 0. Since ¢ is a cluster, either A€ cor Y\ A€o, D

Lemma 3.11 : Let (X, d) be @ metric space and let A, B be subsets of X. If d(A, B) # 0
then there exists 8 C X such that d(A, E)#0 and d(X \ E, B) £ 0.

Proof :Suppose d(A,B) = ¢ where ¢ > 0. Let ' = {¢ € X : d(x,B) < £}. Then
d(A, Y2 Sand d(X\E,B)>5. O

It is a well known result [Wi] that if A, I3 are subsets of a space (X, d) then

d(A,B)=0iland only il d(clxy A, cly B}y =0 (3.6)

Theorem 3.12 : If A C X and o is a cluster on X, then A € o if and only if cly A € ©.

Proof : If A € o, then by (3.1}, ely A € 6. On the other hand, if A ¢ &, then by (3.4),
there exists €' € o such that d(A,C) # 0. By {3.6), d{clx A, clxyC) # 0. As € € ¢ and
CCelxC, by (3.1),clxC € ¢. Hence by (3.3),clyA¢o. O

The following theorem shows that clusters and maximal clans on a metric space are

the same.

Theorem 3.13 : The following arc cquivalent for a clan o on a metric space (X, d)
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1. ¢ is ¢ maximal clan,

2, ¢ is a cluster.

Proof :

19

2) == 1) Let ¢ be a cluster on X, and suppose that 3 is a maximal clan such that o C 3.

Let A € 3. Since for all S € g, d(A,S) = 0, we see that for all § € o, d(A,5) = 0, so

A € o. Thus § = o. llence ¢ is a maximal clan as required.
1} == 2) Let o be a maximal clan. We show that ¢ is a cluster.

Let A= {C C X :YB € 0,d(C,B)=0).

1. Let 4 € Aand let ' be a set containing A. Then ; for all B € ¢, d(A, B) = 0 which

implies d(C, B) = 0. Hence C € A.

2. Let A, B € A and suppose d(A, B) # 0. Then; by lemma 3.11 , there exist C C X

such that d{A,C) # 0 and d(B,X\C) # 0. Asgisaclan and X = CU(X\C) € o,
then either ' € 0 or X \ €' € o. In cither case, it contradicts the definition of .

Hence A, B € Aimplies d{ A, B} = 0.

» Let A, B C X such that A ¢ Aand B ¢ A.

Claim: AUD & A.

Proof of claim : Since 4 ¢ A, there exist Dy € o such that d(A, D;) # 0. Thus,
there exists C7 such that d(4,C) # 0 and d(D1, X \ C1) # 0. Similarly, since
B & X there exists Dy € o such that d( 3, Dy} # 0. Thus, there exist 'y such that
d(B,Co) # 0 and d{ Dy, X\ Cy) £ 0.

Note X' = (C1nC)U(N\(C1NC,)) € 0. Hence CyNCy € o or (X\(CiNCLY)) € a.
F(XN(CINC)={(XY\NCHU{X\Cy)) €, then XY\C  €oor X\, € 0.
But X \ € cannot belong to a since d{Dy, X \ €1} # 0. Similarly, But X \
cannot belong to o since d( Dy, X'\ Ca) # 0. Thus (X' \ (C; N (%)) € ¢ and hence

C’]ﬂc'z €o.
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Now d{(Cy Ny, 4) # 0 because d(Cy, /) # 0. Similarly d(Cy N Cy, B) # 0 because
d(C3, B) # 0. By lemma 3.4, d{(CynCy, AUB)# 0. Hence AUD ¢ A,

The 3 items above imply A is a clan. By definition of A, A satisfies (3.4). Since o is a

maximal clan, ¢ = A, Hence o is a cluster. O

The above theorem provides a characterization of clusters that will be used in subse-

quent proofs,
Theorem 3.14 : [f 2 € X and o is « clusier containing {2}, then o0 = o,.

Proof : Suppose 2 € X,0is a cluster and {z} € 0. If A € o, then d(A,z) = 0 which by

definition means 4 € ¢,. Thus ¢ C a,. By the maximality of ¢, ¢ = 0,. O

We now give a useful characterization of Ty space . This characterization involves

closed sets instead of open sets.

Theorem 3.15 : The following are equivalent :

1. A topological space XN is Ty,

2. Given two distincl points @ and y in X, there are 2 closed sets Fy, F, of X such

that w € I, C(X\{y}) and ye F, C(X\ {a}) end F, UF, = X.

Proof : (1 = 2) Suppose X is T5. Let 2 and y be distinct points of X. Then
there exist aopen disjoint subsets U,, U, of X such that @ € U, and y € U,. lLet
Fp =elxU,, F, =X\ U, Itiscearthat F, UF, = X. It is also clear that = € F,.
Suppose y € clxlUy = F,. Then as U, is a neighborhood of y, we have U, N U, # 0
which is a contradiction. Hence y ¢ F, which implies 7 € (X \ {¢}). Using a similar
argument, we sce y € Iy and F, C{N\ {«})

(2= 1) : Let 2 and y be distinct points of X.Let F, and I, be closed subsets of X such
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that x € I, C© (X \{y}),ye Fy, C(X\ {2} and I, UF, = X. Then X\ F,nX\F, =0
and both X \ Fi and X'\ I, arc open subsets of X. Since @ ¢ F,, we have z € X \ F,.

Similarly, as y ¢ £, we have y € X'\ .. Hence X is T and we are done. O

3.3 Construction of u Y

We now proceed to building of the minimum uniform compactification of the metric
space (X, d). The construction is similar to that of the construction of the Stone-Céch

compactification.

Let 44X be the collection of all clusters on (X,d). For a closed subset ' of X, we

define €' = {o € ugX : C € a}.

Lemma 3.16 : Let B be the family of closed sels of X. Then {B: B € B} is a base of

closed sets for a topology T on ugXN. That is, AUDB = AUB.

Proof : Let A, B be closed subsets of X. Then by (3.2),

AUB={c:AUuBea}={c:AcCcoor Bco}=AUBR.

Hence we are done.0

Lemma 3.17 : (ugX,7) is 15,

Proof: Let oy an d o2 be distinet clusters. By the maximality of oy and g, there exists
A € 03,8 € oy such that d(A, B) # 0. By lemma 3.11 there exists ¢ C X such that
d(A,CY#0and d(B, X\ C)# 0. Hence A C N \C Cely(X\C)= X \inix(C) which
implies X \ intx(C) € oy. Let Iy denote XN \inty(C).Then X \ intx(C) is a closed
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subset of ugX containing 1. By symmetry, we have B C ¢lx(C'), so elx(C) € 3. Let
F3 denote m Then el x(C) is a closed subset of ug X containing os.

If o3 € Iy, then by theorem 3.12, X\ intx(C') € 0o. This implies d(B, X \intx(C)) =0
and thus d(B,X \ C) = 0.This is a contradiction. So we have o3 ¢ Fy, and similarly

o1 € Fy. Thus

cdx(CYU X\ intx {(C) = clx (CHU (X \ intx (C)) = X = ugX.

Hence by theorem 3.15, uy X is 7. O
Lemma 3.18 w4 X is compact.

Proof : Let {I} :j € A, F;is a closed subset of X} be a collection M of basic closed
subsets of g X with the finite interscction property. To prove uy X is compact, it suffices

to show that

NT#0

JEA
Let F = {I; : j € A}. Choose a finite subfamily of F, say {A;}}.; C F. By the finite

intersection property, we can choose

n
T & m —r_l—:
i=1

This implies Ay, Ag, -+, 4, € ¢. Thus each finite sumbfamily of F belongs to some cluster
on X.

Define
A={AdCPX): Fcrand {G:}e, CA= Jo € wyX 3 {G;}, C o).

As seen above, F € A, hence A # (0. Partially order A by inclusion. Then by Zorn’'s
lemma, there is a maximal element ;o € A.
We proceed to show that g € uyX. Since F C p, it follows that p € QjEA—Fg and so

ﬂjeAITj # 0. To do this, we now show that j¢ is a maximal clan and invoke theorem 3.13.
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1. @ ¢ g5 for if not, there exists a € vy N such that § € o, a contradiction.

2. Let Goepand Go C I C X. Now FC peU{H}. Let (q,Ge,.., G, be arbitrarily
chosen from y. Then {G', Gy, ..., Gy, T} C U {H}. By definition of g, there
exists a ¢ € ug X such that {Go, G, ..., G} C 0. But as Gg € a, then H € o (as
o € ugX). Thus p C pU{II} € A So as g is a maximal element in .4 we must

have ¢t = pU {I}. Hence I € pu.

3. Suppose that AU B € pand A ¢ ji. We need to show that B € . As A ¢
and by the maximality of ;. there exists a finite family {G;}%, C p such that
{G1,Ga, .., Gy, A} is not contained in any maximal clan. Consider g U {B} and
take any finite subfamily {1, /1y, ...11,,, B}. Then there exists ¢ € ugX such that
{G1,Gay o, Gy Hy Hoy o, 1, AUBY C oo As A ¢ o, we have B € o {as o satisfy
(3.2)). Thus {1y, Iy, ..., H,,, B} Ca. Hence p U {B} € A. But as j¢ is maximal in

A,we have B € p.

4. ¥ A, B € p then by 5.14 of [NW], there exists some o € uy X with {4, B} C o.
Since ¢ is a clan, we sce that d(A, B) = 0 and thus g is a clan. Now there will be
a maximal clan « that contains pi. Clearly & € A, But as pu is a maximal element

of A, we have a = ;.

This shows that x is a maximal clan and hence by theorem 3.13, it is an element of

ug X, Hence uy X is compact and we are done, O

Let 5 : X — uygX be defined as ;

S{a) = o,.

Proposition 3.19 : 5 embeds X homeomorphically into ugX .

Proof:
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L. If & and y be distinct points of X'. Then by theorem 3.8, o, # o,. Hence 5 is

one-to-one.
2. Let A be a closed subset of X. Now A is a basic closed subset of uy X . We see
STAl={r:o, €A} ={a:Adca,}={r:zeca}=A
which is closed in X. Hence § is continuous.

3. IT Ais closed in X we claim that
S[A] = An SIXT

To see this; note that if o, € S{A], then 0, € {o: 4 € 0} = A as 2 € A. Hence
a. € AN S[X).
Conversely, if 0 € S{X]N A then A € ¢ and ¢ = a,. for some 2 € X. This implies

v € A and hence o € S{A]. This immediately imply that §: X — S[X]is a closed

map, and hence a homeomorphism.

Proposition 3.20 : S[X] is dense in wyX.

Proof : We note by defintion that

elugx SIN] = ) = S[X] C Y.

suppose STX] = {¢, : v € X} is contained in A, Then for each fixed 2 € X, 6, € 4

which implies 4 € o, Thus 2 € A, as No, = {&}. We see that 4 = X, hence
cly,xS[X] =X = wX.
Thus S[X]is dense in wg X, O

We have shown that u,A is a compactification of (X, d). We proceed to investigate

the properties of ug X .
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Proposition 3.21 : For any closed ' C X, ¢l xS{F] = F.

Proof : Note that S(F) C F which is closed in 1y X, so cly,x S(I") C F. Conversely
if S(F) C B where B is a closed subset of X. Then I € B. TFor if z € F then
0. € S(F) C B which implies o, € B, and hence z € B. Thus I C B; because if 0 € T
then I' € o, hence B € ¢, and so ¢ € B. llence we have:

FC(UB:S(F)C BY = elyx S(F).

Together we have :

F = clyxS(F) = clyx I 0

Theorem 3.22 : Lt A,BC X, Then d{A, B) =0 iff ely,x ANl x B #0.

Proof : (<) Suppose d(A, B} # §. Then for any cluster o € 1y X, one of the following
is true :

e Aca, éo,

o Ada, Deo,

e Ado, Bdo.

In any case, 0 € AND = cly,x A Nely,x B, Since this is true for all 0 € wgX

cluyx AN ely,x B =,
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(=) : By theorem 5.14 [NW], there exist a cluster o such that both A and B belong
too. Thuse € AnD =cl,,xANel, xB. So, clyx AN, xB#0.0

Theorem 8.23 : Let (X,d) and (Y,¢) be two metric spaces. Let f : X — Y be a
uniformly continuous function. Then [ extends conlinuously to a function f* : ugX —

U Y .

Proof : Let ¢ € g X and define
g = {ACY VB €a,e(A, f[B]) =0}

Claim : a, is a cluster.

Proof of Claim :

1, Clearly if A € oy and A C D CY then 17 € ay,.

We claim that if P,Q € a, then ¢ P, @) = 0. To see this, suppose that e( P, Q) # 0.
Then by lemma 3.11, there exist 5 C ¥ such that e(@, 5} # 0 and e(P, Y \ §) # 0.
Let 5= f7[S]. For Beo, B={(BNEYU(B\EL). As B € ¢ and o is a cluster,
either BNLecor B\ Fe€o.

o If BN L€ o, then since ¢(Q,5) # 0and f[BNE]C S, we have @ ¢ «,.

o If B\ E € o, then since ¢( Y\ S)# 0and f[B\E]C Y\ S, wehave P ¢ a,.
Soif e(P,Q) # 0, then either P ¢ o, or Q € ay.

2. We claim that if ¢(P, () = 0 for all @ € a,, then P € a,. To see this; suppose
C € 0. Then as ¢ is a cluster, we have that d{B,C) =0 forall B € 0. As fis
uniformly continuous, we have ¢( f[B]. f[C]) = 0 for all B € o. This shows that
J[C] € ag. Thus for any C € o, f[C] € ay. By hypothesis, e( f[C], P) = 0. As Cis

arbitarily choosen from o, then definition of a,, P € oy.
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3. We claim that il PUQ € a, then P € a, or @ € a,. To see this, suppose P € «,.
Then theve exists By € o such that ¢( P, fI3]) # 0. By lemma 3.11, there exists
S € Y such that ¢(P,5) # 0 and e f{B], Y \ S) £ 0. Let £ = f—[5]. Tor
any B € o write B = (BnE)U{B\ E). As o is a clan, cither BN E € ¢ or
B\E € o0. Asf[B\ E] C Y\ S it follows that e(f[B\ E], f[Bo]) # 0. Hence
B\E¢gao. Thus BN E€e. But [[BNE]C S which implies e( P, f[B N E]) # 0.
As e(PUQ, f[BNI]) =0 we see that (@, f[B N E]) = 0 and thus ¢(Q, f[B]) = 0.

This means Q € a,.

By theorem 3.13, it follows from the above that a4 is a cluster in V. This proves our

claim.

Now we define f*:uy X — .Y as f%(o) = a, for cach o € g X.
Claim : f%(0.) = a4
Proof of Claim :

If A € oy, then f(x) € ABut for each ' € 0, .2 € C so f(2) € f[C] which implies
e(fIC), A) = 0. Thus A € o, = f*(0,). Hence oy,y C f*(0z). By the maximality of
O1(z)» it follows that o,y = [*(0,). O
If we identify X with {o, : 2 € X}, this shows that f/*|X = f.

Claim : f* is continuous.

Proof of Claim: It suffices to show that if A C uyX, then f*[el, v A] C cly fU[A]
Suppose not. Then there exists o € ¢/, v A such that f%(c) ¢ el v f'[A]. Note that
iy A=0{P:ACP=n{P :¥yeAyeP} =n{P:V¥ye APcr) So

o € cly,x A if and only if
Vye A,PEy= Pcoa. (3.7)

If f¥(o) & cli,y [¥[A], then there is some closed subset @ of ¥ such that for all f¥(y) €
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JHA) Q € [¥(v) (that is for each v € A and every B3 € v,¢(Q, f[B]) = 0) but yet there
is some By € ¢ 3 e(Q, f[H3]) # 0). Then by lemma 3.11, there exist ' € ¥ such that
e(C, flBo]} # 0 and e(Q, Y \ ) # 0. Let § = f—[C] which is closed in X. For each
y€ Aand B € y,wesee B =(DNSYU(B\S). As yis acluster, BNS € yor B\ S € 7.
Now f[B\ S} C Y\ C implies e(fiB\ 5],Q) # 0. Since for all B € 7,¢(Q, f[B]) = 0,
then B\ S ¢ y. Hence BN S € 7, which implies § € v (as 7 is a cluster and BN .S C 5).
So 5§ is closed in X such that for all y € A, S € 3. Now § ¢ o forif § € o then as
By € o, we have d(.5, Bg) = 0. As [ is uniformly continuous, e( f[S], /[Bo]} = 0 which

implies e(C', f[Bg)) = 0. This is a contradiction, hence § ¢ o as require.

This ultimately give :

Vye A, 5€v,5¢¢

which contradicts { by (3.7)), the fact o € el ,xA. We have shown that f* is continuous
and our claim holds .

Since all the requirement for the theorem are proved, then we are done. O
An immediate consequence of theorem 3.22 is the following result that characterizes
ug X.

Theorem 3.24 : The following is equivalent for a metric spuce (X,d) and a compacti-

fication v X of X

14X = uyX,

2. d(A, BY=014if and only if clux ANcl,x B £ 0.
. ¥ y

We have shown in this chapter the existence of the minimum uniform compactification

ug X of any metric space (X, d) and described how it is built using clusters.



Chapter 4

Analysis of a Locally Compact
Space

4.1 The Locally compact o —compact Complete Metric Space
(X, 0)

Let X = UjZg[n,n -+ 1] x [0,1)% For & = (21,29, .y t0) s T = {¥1, Y2y o, ¥m) € X, define
;=0 ili>nand y; = 04> m. As & has n components, it lies in [n— 1,n] x {0, 1]*71,

and similarly § € [m — 1,m] x [0, 171, We define o : X x X — B by

"--1

=1
- Eanl

It is casily verified that o is a metric on X', and a point has n components if and only if it
belongs to (n— 1,%] x [0,1]"~!. Let 7, denote the topology induced on X by o. A useful
fact to note is that [n,n 4 1] x [0,1]* inherits the usual product topology from 7, and
hence is compact. Also note that [, n+1] %[0, 1]" is regular closed in X. By convention ,
[0,1] will denote [0, 1] % [0, 1]% In this chapter, we shall analyze the structure of u, X \ X

. We now set forth the major steps taken to achieve this goal.

29
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o Show that (X, o) is a locally compact o-compact complete metric space.
e Write X as the union of two sets M and L.

¢ Define two metric spaces M and Ao that are uniformly equivalent to M and L

respectively. This is done hecause it is casier to work with Mg and Mo.

¢ Show that us a1 \ M and w,)p L\ L are homeomorphic to {0,1]* x M\ N and

whose union is 1, X'\ X,

o Show that u,as M\ M and u, L\ L are regular closed subsets of the outgrowth

of X and the interior (in the outgrowth of A7) of their intersection is empty.
Theorem 4.1 : (X, 0) is a locally compact o~ compact complete meiric space.

Proof :

1. Since [n,n+ 1] x [0,1]" is compact {or cach n € 1, X is o—compact.

2. Let {5} be a Cauchy sequence in X, We need to show that {7} converges in
X. Suppose n,m € . If in — n| > 2, then for & € [n,n 4 1] x [0,1}",7 €
[m,m 4 1] x [0, 1]™ we have d(Z,7) > lay — y1| 2 1. So as {7} is Cauchy, there
exists an ng € N such that for all » > ng there exists an » such that 2, €
[, n+1]%[0, 1]*U[n+1, n+2]x[0, 1]*F1. But [n, n+1] %[0, 1]*U[n+1, n4-2]x [0, 1]+
is compact, and thus complete. Thus the sequence {#,} must converge to a point
in[n,n+ 1] x [0,1]"U{n+ 1,0+ 2] x [0,1]"F". That means {&,.} converges in X,

implying X is complete,
3. Let @ = (vy,22,...2,) € X. We consider 3 cases

(a) : I 2y = 0, the we see that & € [0,1) C [0,1] so in this case {0, 1] is a compact

neighborhood of .
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(b} : If 2y = n—1where n # 1, then
FeUipll b+ 1) x [0, 1)° CUP o[k, h+ 1] x [0,1)*

and the latter set is a compact neighborhood of Z.

¢) @ If %1 is not an integer, then &€ (n — L,n) x {0,171 C [n - 1,2) x [0,1]*"1,
o

and the latter set is again a compact neighborhood of .

Thus in all cases X is locally compact at &, so X is locally compact.

We have shown z is a locally compact a—compact complete metric space, so we are done.

O

Let M = U5l 35 [n,n4+ 1] x[0,1]" C X and let d = oM. Here is a partial picture of
M

Lemma 4.2 :M is a closed subsel of X,
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Proof : Let & = (21,22, .., %20, Z2a41) € X\ M. Let

1+ 2n 2n4 14
2 ’ 2

Uy =(2n,20+1)N¢( )

and let
U =1, x{0,1]".
Clearly ¥ € U,U is an open subset of X, and U C X \ M. That is, X \ M is open in X,

so M is closed in X. O
Theorem 4.3 : (M, d) is a locally compuct o— compact complete metric space.

Proof : Aslocal compactness, o —compactness and (for metric spaces) completeness are
all inherited by closed subspaces, the result lollows immediately from the previous lemma.

0

Let I¥ = [0,1]¥ be given the metric ¢ it naturally inherits from B¥. That is, if

T = (21,82, 7= (v1,¥2,...) then :
L 1
e(&§) =) 5;?-1'5 - uil-
i=1"

Let w; 0 K — [0,1] be the i'" projection map from K onto [0, 1]. Denote K X M by X,

and define a metric ¢ on X, by : &((¥,n), (7, m)) = e(Z,§) + [n — m|.
Definition 4.4 : We denote Mg by

{(m,j)e X, 17 dseven, and for i > j,m(ni) = 0}.
Theorem 4.5 : (X, ¢) is a compleic melric spuce.

Proof : I n # m, the distance from & X {n} to K x {m} is at least 1, so any Cauchy
sequence must eventually be contained in K x {n} for some n € N. But K x {n} is

compact hence complete, so we are done, O
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Theorem 4.6 : Mg is a closed subsel of X,.

Proof :IMirst suppose j is even. Let (F,7) € X, \ Mg, then without loss of generality

suppose 241 # 0. For i = [ to j, define U; = (5, 3”5“ ), and define Uj4q = (&lzﬁa i’%ﬂ)
Fach U; is open in {0, 1]Jand we sce 0 € Uj4y. Let U denote the open subset (Hfi’f U} x

(T155200,1]) x {j} of X,,. One easily sees that & € U and
UnMp = 1.

Note that U is an open neighorhood of (£, §).

Now suppose that 7 is odd. Then K x {j} is an open neighborhood of (Z,7) such that

(#,7) € K x {7} C Xu\ My,
Thus if (£,7) € X, \ Mg, there is an X,— neighborhood of (2, 7) disjoint from M.
Hence My is closed. O

Corollary 4.7 : (Mg, d|Mp) is « complcle melric space.

Proof : Closed subspaces of complete metrie spaces are complete, and X, is complete.

Thus by theorem 4.6, A is complete. O

Theorem 4.8 : (Mg, ¢|MEg) is uniformly equivalent o (M, d).

Proof : Define f: (M, d) — (Mg, 1M p) as follows : Let & € M; then there is a unique

n such that & € [ — I, n] x [0,1}""" where n is even. Define

J(&)y = (21,20, 0 20) = (01 —n 4+ 1,29, 00, 24,0,0,0, .., n).
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Clearly, f is a bijection,

We claim that [ is uniformly continuous. To prove this, let ¢ > 0 be arbitarily chosen.
Let 6 = min{3,§}. Suppose & = (x1,..., ), ¥ = (Y1, .., ym) € M and d(&,7) < 6. Thus
d(&,7) < § which means that m = n, hence |m — n| = 0. Thus ¢(f(F), f(7)) = d(Z,7) =

¢ < e. So [ is uniformly continnous.

We now claim that /7 is uniformly continuous. To prove this, let f/* be denoted by
g to simplify notation. Let ¢ > 0 be arbitarily given, § = min{3, %}? and let &, 7 € Mg.
Now & = (i) € K x N, and 7 = (#,7) € K x N where i,7 are even numbers (7, j
are even by definition of Mg), 7p(3) = 0 for & > 7 and 7 (@) = 0 for £ > j. Let

= (Mg, Me, Ma, ...} and @ = (g, 09, n3,...). By the delinition of f we have
g(@) = (g + ¢ — 1,109, Mg, Mg,y oy M)

and

g(if) = (ny + j — 1, g, n3, ., nj).
Ha{F, 7)< < %, then ¢ = j which implies
(&) = (mq +i = 1,me, my,my, ..., my)
and

gy = (ny + i — 1, ng, ma, ..., ).

This gives the following :

N | Ll o
d(g(Z), g(7) = Z QTlm"* — g < (Z 35!””: = ne])+ i — 7}
h=1" k=1 7

—

LT < b < e

{

H

M

=

This shows that f= is uniformly continuous.

Thus to investigate ug M, it is enough to investigate uyas, Mg since theorem 4.8 and

theorem 2.11 together imply that wgAf is homeomorphic to Uitz Mp.
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A useful well known theorem that we now state and prove here is that a uniform
isomorphism preserves completeness. A proof of this cannot be readily found so it is

included for completeness.

Theorem 4.9 A uniform isomorphism [ . (X,d) — (Y,¢) from a metric space (X,d)

onto another space (Y, ¢) preserves compleleness,

Proof : Suppose that (X', d} is complete. We show that {Y,e) is also complete, Let
{yn} be a Cauchy sequence in Y. We first show that {/~{y,)} is a Cauchy sequence
in X. To do this, let ¢ > 0 be arbitarily chosen. As [ is uniformly continuous, there
exists & > 0 such that if 2,y € Y and ¢(a,y) < & then d(f=(2), [ (y)) < ¢. Now as
{#a} is Cauchy, there exists N € I such that if m,n > N then e(yn, %) < 6. Thus if
m,n > N we have e(yn, ) < & which implies d(S (4., [ (ym)) < e. This shows that
the sequence { [ (y,}} is Cauchy.

As X is complete {f(y,)} must converge to a point & € X. By the continuity of f it
follows that the sequence {f(/~(y.))} = {y.} converges in Y. Hence Y is complete and

our theorem holds. ©

By theorem 20407, ME © wp Xy = wgl x w,H = [0,1]Y x 4,N, where s is the
metric on W given by s(n,m} = |n — m|. By theorem 2.13, we have w1 2 A1 ,and thus
ug X, = [0,1]% x A1, Now, one can easily see that w, X, \ X, & [0,1)* x (BH\ N). By

theorem 2.10 , we have wuyyy, Mg = clio e xpu .

Because Mg is closed in X, we have the following,
Theorem 4.10 : uya, Mg\ Mg = Ualate ME \ N

The following lemma is a well known fact whose proof has been included for com-

pleteness.
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Lemma 4.11 : [f U is open in 311 and U0 (SERNH) # 8 then [UNHK| =

Proof : Suppose U/ NI = {ay,v2,..,2,}. But we know that since It is dense in 3H,
elpnll = clpgn(U NN) = {2, 2, ..., &n} as B0 is Hausdorff. This is a contradiction, hence

our result holds. O
Theorem 4.12 : cljgjoxpuMpe \ My = [0,1]Y X (BN N),

Proof:

We first show that el 1jexaiMp\ M C [0,1]Y X (FH\N). Let & € el joaxsnMe \ Mg,
Then & ¢ My and & € ol jwxguMp. Suppose & ¢ [0,1]¥ x (BH\N). Then ¥ = (M, )
where j € Nand i € [0,1]<. Denote m by (mq, ma, ...).We will derive get a contradiction.

We consider the 2 cases :
L If 7 is odd, then [0,1)* x {7} is an open neighborhood of & in [0,1]* x AN. But
Mg ({0,1]* x {7}) = @ which contradicts the assumption that & € ¢ljg 1jexpnME.

2. Il j is even, we can assume without loss of generality that m;y; # 0 since if for all

k> j,my # 0 then & would belong to Afp, contrary to hypothesis, Now

(z[o 1) (1 (3 (0,1 45)

k=342
is an open neighborhood of & that has empty intersection with Mg, This contradicts

the assumption that & € c/(g jjwxgn M.

So we have shown that cljp jexsndM e \ My C [0, 1] x (FH\ R).

We now show eljg yjwyanMe \ Mg 2 [0,1]% x (BH\ M), Let

F= (2,22, ) € [0, 1 x (FHH).
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Define

@y = (2, 20,0,0,...,2)

— ;

Ty = ('Tl RO PRCR PRCN PITPR {)

If ¢ is an even number, 27 € M. Tet

0= (U %V
i=1

be an open neighborhood of & where each U; is open in {0,1], V is open in A8, and all

but finitely many of the U;’s arce all of [0, 1]. Let

F={en: U £[0,1]).

Then F7is a finite set. Let m = max(F). By the lemma 4.11, we see that |V N 1| = oc.

Hence there exists m* € ¥V N M such that m* > m and m* is an even number.

Now

Tme € MU, so (UN M)\ {Z} # 0. As this is true for arbitary neighborhoods U of #,

we see that ¥ € cljg e x s ME \ Mpe. But this holds true for arbitary & € [0, 1] x (AN \I)

we lave

[03 I]w X (}6’[{ \ [i) g C’{{},]ijﬁﬂﬂfﬁ‘ \ ."’l'fE.
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We have shown that el jpexsp M\ Mg = [0, 1]¥ x (BH\1). O

So we have tginip M & C,[D‘I]a’xﬁ;»"i;‘:f}; and C![O'l]wxﬁg‘;l‘jj}j \ Mg = [0,1]¥ x (B \ M),
Recall (A, d| M) is uniformly equivalent to (Af,d) by theorem 4.8, Thus cl,,x M \ M

is homeomorphic to {0, 1]* x FF\ I

Similarly, let

L= U?:].?ln["’?n + 1] X [U! ”n A,

and let e = o|L. An argument similar to that for (A, d) shows that (L, e) will be a locally
compact ¢—compact complete metric space. Also L is a closed subset of X.
Define

Mo ={(m,j)e XN, :jisodd and , i > j = =;(m) = 0}.

Using an argument like the one for Mg, we can show that (Mo, ¢lMp) is uniformly

equivalent to (L,d) and that ¢/, v L \ I (as a subspace of u,X) is homeomorphic to

[0, 1} x (AR\ ). Since X = LU M and L, M are closed subsets of X, it follows that
e X \ X can be written as the union of two copies of [0,1]% x (8H\ ).

Proposition 4.13 : el x M\ M =l x M\ X and el x L\ L =l ,x L\ X

Ug
Proof This result is follows immediately from fact M, L are closed subsets of X, as

(cly,x MINX =clxM =M and {cl,,xL)NX =clyL =L O

Following the steps that we used to show ugAf \ A is homeomorphic to [0, 1}¥ x
(BN}, we now proceed to show that wyanry(M 0 LY\ (M N L) is homeomorphic to
[0, 13 x {BAH\ M.

Let 7' = (M 0 L)\ {1} = UsL, ({n+ 1} x [0, 1]*). We see that Mo U Mg = {(#,7) €

n=1

o jeli>j— 7:“1(’??) = U}.
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Proposition 4.14 : The funciion [ {Mo U Mg, ¢|(Mo U Mg)) — (T, 0|T) defined as

Dif ¥ =0, j) € Mo U Me where 1 = (my,ma,...) and for i > j, mi(n) = 0, then
SUE) = (F + 1, my,mg, ..., m;)

is a uniform isomorphism,

Proof : It is clear that f is one-to-one and onto. To show [ is uniformly continuous,
let € > 0 be given. If 8 = min{%,%} and & = (m,7),% = (7,1) € Mo U Mg such that
AT, 7} < 8, then ¢(&,7) < % which implies i = 7. We have

'] i

e 1 1
A, ) = Z aﬂmk —ngl = Z .—Z—Ehnﬁ. — ngl.

k=1 k=1

Thus we conclude that

1 1
SEA Imy —ng| = §gb(i", ¥) < e

i ’ i
OU @) F@) = 5li =314 D sy bk = mel = 3
k=17 k=1
This shows that f is uniformly continuous.
We now show that [ is uniformly continuous. Let g denote /7, and let € > 0 be arbitar-
ily given and let ¢ = min{%,%}. HZE=(n21,2, 0, Taa1 ¥ = (M, 91,925 ooy Ym1) € T

such that o(&, ) < §, then

—

This implies that m = n. Now we see that g(F) = (§,n — 1) where 7,(8) = z; for
‘} 1 1 1

0<i<mn-—1and m(5) = 0fori > n. Similarly, g(§) = ({,n ~ 1) where mi(1) = y; for
0<i<n—1and (1) =0fori>n. Since
i

. 1
alt, ) = Z Wl-ﬂ; -yl <
k=1

€
Tia

we sece Lhat _
1
o l L,
Sg(®).9(N) = ) srler — wil = 20(&,) < <
k=1
This shows that 7 is also uniformly continuous. O
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We conclude from the above that (MoU Mg, ¢|(MeoUAME)) and (T, o|T") are uniformly
equivalent.Observe that T = (A N L)*. We now proceed to show that (M N L)% is a
homeomorphic copy of [0, 1]* x (S \ 1) in X*. To show this it is enough to show that
cligaexpr( Mo UME)\ (Mo U Mg ) = [0,1]* X {BE\F) since ¢ljg 1jexpn( Mo UME)\ (Mo U
Mg) = (M0 L)* Recall that ug([0, 1] x D) = [0,1]¥ x B,

Proposition 4.15 : ¢lg 1joxgu( Mo U Mg) \ (Mo U Mg) = [0, 1] x (BN \ N)

Proof :

Let & € cljgypexpnl MoUMp)\(MoUMp). Sof ¢ MoUMp and & € clion)expn{ MoUME).
Suppose that & ¢ [0,1]% x {FH\ ). We want a contradiction. Since & ¢ [0, 1]* x (819 \ ),
then we write & = (9%, j) where j € F. Without loss of generality assume that m;; # 0.

Now the set

J m i , )
>o10,1] % ’“,1]>< > [0,1) % {4)
k-1 k=j3+2

is an open neighborhood of # that has empty intersection with MoUMp which contradicts
the assumption that @ € cliojxsn(Mo U Mg). This shows that clygoajexpn(Mo U ME)\
(Mo U Mpg) C0,1]° x (BN N).

We now slow that eljg1joy (Mo U Mg)\ (Mo U Mg) 2 [0,1]¥ x (S 1). Let

F= (21,29, .,0) € [0,1]Y x (AR N).

Define

4] :(1‘1,0,0,...,]) (.4.1)

¥y = (21,22,0,0,..,2)

Ty = (:E}:-'U‘Qa vy Ty 0,0, ey}
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Clearly each @7 € Mo U Mg. Let
o0
U= (H UyxV
i=1
be a basic open neighborhood of &' ; thus each U; is open in {0,1] , V' is open in SN, and

all but finitely many of the U;’s are all of [0,1]. Let
F={ien:U;#[0,1]).

Then F'is a finite set, so let m = max(F). By lemma 4.11, we see the V N M is infinite.
So there exist m™ € ¥V NN such that m* > m. Now z,» € (Mg U Mo)N U, so (N
(MpUMo))\ {Z} # 8. As this is true for arbitary neighborhoods U of &, we sce that
& € clpexpn{ MoUME)\(MoUMz). But this holds true for arbitary & € [0, 1]¥x (SN\}M)

we have

[0, 1} x (B \I) C Cl’-[o,l]wxﬁr-;(,fWO UMeY\ (Mo U Mg).

We have shown that C[[U,i]wxﬁm(ﬂ{O UM\ (Mo U Mg) =[0,1]Y x (BN \ N). O

Define Ky = [0,1], Ky = Ky U([1,2] x [0, 1]), K3 = K2 U ([2,3] x [0,1)%) and so on
for each n € M. That is, K, = Ny U ([0 —1,2] x [0,1]*71). Tt is clearly obvious that
K, is a compact subset of X and K, is a proper subset of K,y for each » € I and

U?:Ei“i]\/n = X.

Proposition 4.16 : elxyinty K, = K, Jor cach n € B,
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Proof : Let > 1 € M. It is easy to see that
ity K, = Ko_1U([n—=1,n)x[0,1]""1)
and hence we have

cxinix I, = elyKa_y U{n—1,2)x[0,1]*"1)
= KpgUdx([non—1)x[0,1]"7h

= KyqU[n—1,2]x[0,1]* = K,.
So this proves our claim. O

The following is a well known theorem(28.2 of [Wi]) that will allow us to show that

1o X is not homeomorphic to [0,1]¢ x (AT M),

Theorem 4.17 : If (X, )uen is a colleclion of compact connected subspaces of a Haus-
dorff space X, and ¥n € N, X301 C X, then Nyen Xy is @ compact connected subspace of

X.

We now proceed to prove that

e X\ X = Myenfelu, x(Ursall —~ 1,4 x [0, 1)71).
Theorem 4.18 : u, X \ X = Muen(cly,x(Urpnlk — 1,k x [0, 1=1).

Proof: Let T, = ngn([k ~ 1,k] % [0, 1)*71). We see that X = K, UT,, so u, X =
Clyugx KnUely xT, = Ky Ucly, xT, (as I, is compact). Thus v, X\ X = (K, \ X)uU

{clugxTu \ X) C elyyxTy as Ky, € X. This holds for each n € H, so v, X \ X C

g

Nuenclugx Tn. But X = Uy Ny and Kynely, xTogpr = 0. Thus Nuenely, v Ty C up X\ X

Hence our theorem holds, O
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Now for each n € M,
clyox (Ugsalk, b+ 1] x [0, 1)571)

is a compact connected subset of u, X because (U;‘.Zn{k, k4 1] x [0, 1]"‘”1) is connected.
So by theorem 4.17, ¥, X \ X is a compact connected subspace of u,X. Hence it is
not homeomorphic to [0,1]¥ x (11 \ M). Observe that since M \ I is not connected,

[0, 1]¥ X (AN\M) cannot connected. We summarize these remarks in the following theorem.
Theorem 4.19 : w, X \ X is nol homeomorphic to [0,1]% x (B ),
We record for future use the following well-known theorem:

Theorem 4.20 : {¢/

U

xC\X ¢ closed in X} is a closed base for u, X \ X

In the next section, a more detailed description of u, X\ X is given.

4.2 Properties of u, X'\ X
Theorem 4.21 : wyM \ M, u L\ L are regular closed subsets of u, X \ X

Proof : We show this for v, L \ L. A similar argument will yield the same result for
ug M\ M. To show that u.L is a regular closed subsct of u, X \ X it suffices to show that

if Ais a closed subset of X, p € (u.L\ L)\ A", then
(o X \ XY\ A% 0 (0 X\ X)\ 217 # 0

since clearly

(ta X \ XY\ MY C inty, yyy LV

By theorem 2.16 it suffices to show il p € LY\ A* then

Hmpeesup{o(z, AUM) 12 ¢ K} #0. (4.2)
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Suppose 4.2 fails. Since p € A* by theorem 2.9 there exists G C X and é € (0,%) such
that p € G* and d(G, A) > 8. Since (4.2) fails there exists ng € N such that if @ ¢ K,
then o(2, AUAM) < %

Claim : Let B ={{2n+ 5,20+ 1 ~ £] x [0,1] : n > ng}. Then

BC{z:a(x,A)< ﬁl}

Proof of Claim : If p € B, and n > ng then p ¢ K,, which implies o(p, AU M) < -‘f
But d(p, M) > Lf hence we must have o(p, 4) < ﬁ{ So our claim holds.

Claim :
G\ K. ClUHRn =1+ 6,20 — 6] x [0,1]"" i n € 1) (4.3)

Proof of Claim : if p & K, and o(p, B) < ‘3“—5 Then p is within & of A which is a

contradiction since p € G and d(A,G) > é. So, in order for it not to be within lf of B,

then clearly we must have
pe U{{‘Zn —1+462n~- 8 x[0,1 ' : n e M}
So, the claim holds.
Butaspe A" and p€ G*N L* it is clear that
PE(GN Ky ) N (LN Ky)®

and thus
o((G\ K ), (LN I, ) = 0.
But from (4.3), we sce that
oy e Lo 38
U{{G \ I\ng)u(L\ ]\115) 2 _;\

which is a contradiction. Hence (4.2) must hold and thus L* is a regular closed subset of

X+ 0o
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Theorem 4.22 : (M NL)" = M*N LY

Proof : Clearly (M 0 L) C MY 0 L*. On the other hand; suppose p € X"\ (M n L)*.

By theorem 2.9 there exists D C X such that p € D* and
(D, MnLy=r»>0. (4.4)

Note that » < 1. For each n € H, define €, = [n— §, 2] x [0,1]*~1. Clearly the collection
{C} is alocally finite collection of subsets of X, since for n # m, a(C),, Cy) < %, Each

C', is also closed in X. Define ' be to
C = UJ!EI‘IC’n-

As {Chi}nen is a locally finite collection of closed subsets of X, C'is closed in X. Here is

a partial diagram of how C looks like :

Claim : a(C, D) > §.

Proof of Claim : Suppose not. Then there exists € € C',d € D such that o(é, dy < !

i
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By definition of €, sup{o(&, M n L)} < £. Let & be an arbitrary point of M N L. Then
oy
a(e, T < 1
which implies
~ . e T T
a(d, Ty < o{d, €} + 0(€, %) < 1 + 1 < 7.

This contradicts (4.4). Hence our claim holds.

By theorem 2.8 and the fact ', D are closed subsets of X, C* N D = @. Thus p ¢ C*
since p & D",
Claim: p & M n LY,
Proof of Claim : H p € MY N LY then p € (AN CY N (L\C). But we saw that

o{(M\C, L\ () =% >0 which is a contradiction to theorem 2.8. Thus our claim holds.

It follows from the two claims that A/ N L* = (M N L)* and hence we are done. O

Theorem 4.23 : intx-(M N LY = 0.

Proof : Suppose not; then there exists A closed in X such that
0 # X\ AYC(Mn LY.
We see that (M N L)*U A" = X" and X" ¢ A", By theorem 2.16 we have :
36 >0, where {n € i o(n, A} > & and 2 ¢ K, } is infinite.

Let T be an infinite subset of 1 such that for all # € T, there exists 25, € X such that
T & Iy and o(a,, A) > 6. Without loss of generality assume that if »,k € T where
n # kithen o(2,,4}) > 2. For each n € T, define S, as [ollows :

a

= 1 .
Sn = (:H[?Un,k — oy ak ’*]} nx.
k=1 8 8
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Clearly {5,} is a locally finite collection of closed subsets of X and
sup{o(ay, & §€ 5,1 < él

Let 5 = Uy, Sa.

Claim : d(A,S5) # 0.

Proof of Claim : Suppose d(4,5) = 0. Then there exists sequences {@,} C A, {s;} C §

g. Let ng be a fixed

where there exists an N € N such that for all n > N, o(dy, 5,) <
integer greater than N . Then o(ag,, 5, ) < §[ There exists & € T such that s, € Sp.
Thus o(s,,, 2%) < él By the triangle inequality, we have the following :

. . = L ) )
(8, g ) < (X Smp) + 0(Sngs g ) < 1 +- = 7 < 4.

i | 1

This contradicts the assumption that d(a}, A) > é. Ience o(A,5) # 0 and our claim
holds.

By theorem 2.8, A*US™ = . Hence $* C (MNL)*. Now for each n € T, choose #;, € 9,
such that a(y,, M NL) > 3‘—2 (this is possible because of the definition of S, and M N L).
Let W = {#, : » € M}. Since {5, : n € W} is a locally finite collection of subsets of X and

S is closed in X, we have W is closed in X. Since o(W, M N L) > 3%, then by theorem
28 Wen (M n L) = 0. But as W is closed, 1¥* C S% This is a contradicts the fact

S*C (M n L) Hence we must have inly«{M N L)Y = §. O.

The result of these 2 theorems and proposition 1.15 immediately yield the following

theorem.

Theorem 4.24 : u, X \ X is the union of two vequlur closed homeomorphic copies of
[0,1]” x (BN\ ) whose intersection is nowhere dense and is homeomorphic to [0, 1]% x

(B \ 1),

In this chapter, the space that was analyzed was a space that was a locally compact

o-compact non-compact complete metric space. The analysis was aided by theorems in
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[Wol that apply to metric spaces that are locally compact o-compact non-compact and
complete. In the chapter 7, we will be analyzing a space that is a nowhere locally compact

non-compact complete metric space.



Chapter 5

Inverse Systems and Their Limits

5.1 Some Results on Inverse Systems

This section is a brief overview of inverse systems and inverse limits. Most of the results
stated in this chapter can be found in [IIK]. We talk about spaces indexed by the positive
integers I and state results based on this assumption. However, most of the results can
he extended to spaces in an inverse system indexed by an arbitrary directed set. For our
purposes, spaces indexed by I will be suflicient. In actuality, when spaces in a inverse
system are indexed by W, it is called an inverse sequence. Our goal is to state here the
results which we use in the next chapter to develop theories about the minimum uniform

compactilication of a specific class of metric spaces.

Suppose {X, : n € 1} is a sequence of topological spaces, and for n < m there exists

a continuous function x* : X, — X, such that it satisfics the following 2 conditions:

1.ilk<n<mthen 7 o 7™ = 7P
= = k b 5o

2. 7" = idy,.

If these two conditions are satisfied, we say that the family F = {X,, 77, N} is an inverse

49
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system of the spaces X',. The mappings )7 are called bonding maps of the inverse system

J. This is a special case of more general inverse systems that are described in {EK].
fw] i

Let {a}nen € [lhen Nn- Wesay {2,} is a thread of F if #2*(2,) = 2, for all n < m.
The subspace of ], ¢y X, consisting of all threads of F is called the limit of the inverse
system F. This subspace of [, X, will be denoted by X, or by Invlim F. We may
also denote the limit of the inverse system F by InvLim X, if there is no ambiguity

about the bonding maps and the indexing sct.

It is clear (sce 2.5.1 and 2.5.2 of [EK]) that the limit of an inverse system F is a
closed (possibly empty) subspace of [],c, Xa, and that the limit of an inverse system
of Ty, 15, T3, and T} 1 spaces is a1y, Ty, Ty, and Ty 3 space respectively. Turthermore (by
3.2.13 of [EK]}), the limit of an inverse system of compact spaces is compact non-empty.
Another way Lo ensure that our inverse limit is non-empty is to assume each of the bond-
ing maps is onto. It can easily be shown that if the bonding maps are onto, then the
inverse limit will be non-empty(Fxercise 2.5.A of [EX]). We formalize this in the following

theorem.

Theorem 5.1 : The limit of an inverse system (X,, 7, N) of non-empty compact Ty

spaces 18 non-emply compact Ty.

Let p, denote the n'* projection from [Tien Xn to Xy, Let w1, = py|Xoo. Clearly,

Tp =m0y, forall n <m,

The following is exercise 2.513.(a) of [EK].

m

m ) are all ondo, then

Theorem 5.2 : If the bonding maps of the inverse system (X, ©

all the projections wn; are onio.

The following theorem gives a base for the open sets of X (see 2.5.5 of [EK]).
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Theorem 5.3 : Let Xoo = InvLim{ X, #7 M} and let It € B. Both
{w, U)o n e U, open in X, }

and

{7, [Us) s € B, U, open in X, n > k}

are bases for the open scts of X .

A very uselul fact is that the closure of any subset of an inverse limit is itself the
inverse limit of some inverse system. This result is stated in the following theorem which

is 2.5.6 of [EK].

Theorem 5.4 : Let A be a subsel of a inverse limit X of an inverse system F =
{Xuy MY, and let Fu denote the family {cly, Ay, p N} (where A, = m,[A] and

o) = mi{x) for v € ¢lx, A,). Then Fa is an inverse system and InvLimF, =

ely. A C Xeo.

Theorem 5.5 : The limil of an inverse systen (X,, 7)) of zero dimensional spaces is

zere dimensional.

Proof : Let {X,, : n € N} be zero dimensional spaces and let X4, be the limit of those
spaces. Then Xy, is a subspace of [[, ¢y X,. But this product is zero dimensional, and
hence X, is zero dimensional as subspaces of zero dimensional spaces are zero dimen-

sional. O

We note that the metric , given by
=01
AT, = 5i il )
=1

is put on [], ey Xy Clearly the metric on [,y Xy whose induced topology is the product

topology. If we start with an inverse system of complete metric space, then the inverse
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limit of this system is complete because the inverse limit is a closed subset of the product
space whiclh is a complete metric space and thus the limit is a complete metric space. We

summarize the theorem here.

Theorem 5.6 : The limit of an inverse system (X, 7™, M) of complete metric spuces is

a complete melric spuce.

Suppose that we are given (wo inverse limit systems F = (X,, 7 N) and § =
(Y, ppt, M), A mapping of the system F to ¢ is a family of continuous mappings

n o XNy — Y, such that

fp 0T = it oy, for cach n,m € I with n < m.

In other words, the following diagram commutes,
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These mappings from Fto § induce a continuous mapping p from ImvLim F = X
to InvLim G = Y in a natural way. For any thread {2, }aen € Xoo, define y, = e (2,),
then the commutativity condition imposed above implies that {y,}.en is a thread in
Yoo and we define g by letting pi({a}uen) = {¥atuen. This function is known to be

continuous (see page 139 of [EK]). The following result is 2.5.9 of {EK].

Theorem 5.7 ; If for each n € N, i, is a one-to-one continuous function, then the
1 ¥ H

continuous funclion jo will also be a one-to-one function.



Chapter 6

Constructing vy X Using Inverse

Systems

6.1 Inverse Limit Construction of 1, X

In this chapter, we use inverse systems to construct the minimum uniform compactifica-
tion of a metric space for a certain class of metric spaces.

For each n € H, let (X,.d,) be a complete metric space where the metric d,, is
y : I ]

bounded by 1. That is, for any x,y € X,, d,(x,y) < 1. Suppose also for each n € I

il X4 — X, is a uniformly continuous surjection from X,41 onto X,. Then

??l .

{X,, A1, M} is an inverse limit system. Note if m > n, we define X — X, to be

m= o, ::11——21 oo fr1 Clearly f7* is a uniformly continuous surjection from X,,
onto X,,. This shows that it is enough to just talk about the bonding maps f2+! where
n € M when dealing with inverse systems that are indexed by . As f7*1: X, — X,
is a uniformly continuous surjection, by theorem 2.7, there exists a continuous surjection
gitl . U, o N1 — g, X such that g2+ X,y =[5! We denote each ug, X, by Y,

We can see that {¥,, gn™! 1} is also an inverse limit system. Let X, be the inverse limit

of the system {X,, f2t!, 1}, and let Y. be the inverse limit of the system {Y,, g?+! 1}

Pt
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. For each n € Nlet ¢, : X, — Y, be the embedding map of X, into ¥,,. Each ¢, is
continuous and cearly fit! o o, = 41 0 "L Hence there is a continuous function

w1 Xoo — Yoo defined as

11-3(_(;??1,.'1.‘-3., oKD )) = {Q](Il -)1 {192('1:?)’(;’13{_'?3), )

where (27, 22,...) € Xo. This is a special case of the construction of i from the previous

chapter.

Let px, @ [lien Xa — X, be the nth projection map from [[,zy Xy to X,,. We
define mx, + Noo — Xy by 7x, = px,[Naoo Similavly let py, @ [Ten¥a — X be the

Yoo To

nt projection map from [1, .., Yy onto Y,. Define 7y @ Yoo — ¥, by 7y = py
1 .] ] el n « }n ])1:
simplify notation, let g,41 denote g2 and let f,4; denote fi*t'. We now proceed to

show that ¥, is a 1% compactification of X

Proposition 6.1 : ¢ : X — ¢IXa] is @ homecomorphism and Y, is a compactification

of ¢[Xso] .

Proof : By definition ,e is the embedding map from X into Y, so it is one to one, and
onto @{X.). By theorem 5.7, ¢ is continuous. Since cach ¥, is Ty, we have that ¥, is
Ty. As each Y, is compact, Y will also be compact and non-empty . Hence it remains to
show ¢ 1 Xoo — @[N] is open and that @[N] is dense in Y. Toshow ¢ @ X — ¢[Xoo)
is an open map,let I/, be an open subset of X,,. By theorem 5.3,it suflices to show that
@[y, [Unl] is open in p[Xo]. Note that if A € ¢, [X,] then 75 [¢r[A]] = =[xy [4]].
Let A = ¢,[U,]. Then

as ¢, is one to one. Now ¢,[U,] = V, N X, where V,, is open in ¥, since ¢, is an

embedding of X', in ¥,. Hence,

‘P[W,;\?.[Un” = TFE[VH N Xl = (Wr,,[vn]) N[N}
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Thus, the map is open. Next we show that X, is dense in Y. Let U, be an open subset
of Y. Now wy, [{7,] is a basic open subset of Yo, We need to show 7y [N X # 0. As
U, is open in Y, then X, N U, # § as X, is dense in ¥}, Let 2 € U, N X,,. By theorem
5.2, there exists (aq,ag,a3,....) € Xo such that a, = 2. Also (a1,a2,a3,...) € 7y (U]

from the definition of g,4q and the fact {ey, as,...,a,) € U,. Hence X, is dense in Y. O

Now note that if A C X, then 7y, [4] = 7x,[4]. We next show that Y, is the
minimum uniform compactification of {X..,d..). To do this, we prove that Y, satisfies

the conditions of aX stated in (2) of theorem 2.8, The following theorem is well known.

Theorem 6.2 : If X is compaci Hausdorff and Y is Hausdorff and f : X — Y is «

conlinvous function then [ is a closed function.

It immediately follows that the map 7y, : V5, — V), is a continuous closed map.

Lemma 6.3 : Lel A, B C X If there exists n € W such that dy(7wx, [A],7x,[B]) # 0
then doo(A, B) # 0.

Proof: Suppose doo(A, 3) = 0, then by lemma 3.3, there exists sequences {(@;1, @i 2,...) }ien C
A, {(i 1,02, . ) Yien € B such that

lmicaodosa({aiq, i 2, .2), (big, biny ) = 0.

So for fixed n > 0 !im,-__c(,é};dn(aim bi ) = 0 from the definition of d.,. Hence we have
ooty (@ n, i) = 0 which implies d,(7x,[A],7x,[B]) = 0 by lemma 3.3. We have

shown the contrapositive of the theorem. ITence our claim holds. O

Lemma 6.4 : Let A, BC X, IfVn >0, dy(wx, [A], 7x,[B]) =0 then doo(A, B) = 0.
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Proof : Suppose that Vi > 0 d,(7x,[AL#wx,[B]) = 0. Let ¢ > 0 be arbitarily given,
then for fixed n > 0, choose a,, € 7wy, [A] and y, € 7x,[B], such that d, (2., 1) < €
. By theorem 5.2, there exists @, = {(¢y.1.00,2,...) and by = (bn1:0p2,..)in A and B
respectively such that a, ., = @, and by, = y,. Now let A* = {a, : n € N} C A and let
b = {b:1 cn € N} C B. Choose ng € N 3 ;—10 < e. If n > ng then (recalling our earlier

assumption that d,,(z,y) < 1 for cach n € I and each z,y € X,,) we have

=1

dooltin, by) = Z Q—kdk(ir_yk(rz}), 7x,. (b)) (6.1)
k=1
70 . - o 1
< Z Q_k(]"'x‘((ﬁ-\’k(”” )s ﬂ:\'k(bn)) + z 2_.1. (62)
k=1 k=ng+1
g 1
< (CZQ—E)+C<2€ (6.3)
k=1

So, given any ¢ > 0 we can find a sequences {a,} and {b,} of points of A and I vespec-
tively such that d.(é,b,) < € for large enough » {(which depends only on ¢). Hence we

see that do(A, B) = 0 as required. O

Theorem 6.5 : [f A, B C X then ey ANcly B # 0 if and only if do(A, B) = 0.

Proof : = : Suppose ¢y A Ncly B # 9. Then ely, wy, [A] N ey, 7y, [B] # § for cach
n € M since
§ #£ mylcdv ANy, B
Ty, [Ch-‘w .»"i] Ny, [C.")-‘& B]
=y, my, [A] Nely, my, [ 1)

= cly,mx 1Al nely, wx, [B).

Thus Vo > 0 d(7y, [A], 7y, [B]) = 0. By lemma 6.1we see do(A, B) = 0.

< 1 Suppose doo (A, B) = 0. Then by lemma 6.3 we have that Yo € I, d,(7x, [A], 7x,[B))
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0. Hence, as ¥, is the minimum uniform compactification of X, by theorem 2.8, we have

ey, mx, [A] Nely, mx, [B] # 0.

rn

Let A, = cly, mx, [A] and By = by, wx,[B]. Let F = {44, 9:| A0, N} and G = { By, ga| Bn, M},

By theorem 5.4, these are inverse systems and

cl Voo A

fl

InvlimA,
and

InvlLimB, = cly_1B.

Claim ‘H = {4, N By, ga|A. N B, B} is an inverse system and InvLimA, N B, # §.
Proof of Claim : Ilirst we need to show {4, N B, g.|A. N B,, N} is an inverse system.
Let us let h, = go|(A. 0 By). We see that for each n € 14, each h, is well-defined and

continuous. What needs to be shown is that foreach n € M, h,JA, N B, C A1 0 Byy.

Let n € I4, then

halAa N B,)

N

GnlAn] N gal ]

= galely, (v, [ADIN galcly, (zy,, [B])]

= by, (galnv, [A]]) O ely,_ {gaimy, [B]]) (as gnis continuous and closed)
= cly,_ (wmy,_ [A])nely,_ (7y,_,[B]) (as gp 0Ty, = 7y, _,)

= A,y NG,

This shows that the function fi,, = ¢,|(A, 0 B} is a well defined continuous function
from A, N B, to Ay 1N By, So, H is an inverse system. It remains to show the inverse
limit of this system is non-empty. Note each A, N B, is non-empty. So as these sets

are non-cmpty closed subsets of the compact space ¥, for cach n € M, we see that each
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A, N B, is a compact subset of ¥, and hence TnvLim(A,N B,) # §. By theorem 5.1 our
claim holds.

Claim : Invlim(A, N B C InelimA, N TnulimB,,.

Proof of Claim : let {2,} € InvLim(A, N ,), then g1 l{Angr N Bpgr ) = 20
for all n. MHence ¥Yn € B, guail (a1} = @0y Gusi|Bulasr} = ¢, which implies that

{20 }nen € InvLim 4, N InvLim B, and our claim holds.

By the previous claim and theorem 5.4, we have :

0 # InvLim(A, N B,)C InvlimA, N InvlimB, = ¢y _Ancly B.O

Corollary 6.6 : uy N = Vi .

Proof : This follows immediately from theorem 6.5 above and the characterization of

ug X given in theorem 2.8. O

We have constructed the minimum uniform compactification of an inverse limit of any
inverse system of the form (X, /%!, 1), This technique in constructing the minimum
uniform compactification of spaces will aid us in analyzing certain minimum uniform

compactifications.



Chapter 7

The Irrationals with a

Compatible Complete Metric

7.1 Constructing the Minimum Uniform Compactification

of the Irrationals

In this chapter, we analyze the minimum uniform compactification of the irrationals with
a compatible complete metric. The resulis from the last chapter will be used to build
the minimum uniform compactilication of the irrationals as the inverse limit of a certain

inverse system. The following is excercise 241 of [Wi).

Theorem 7.1 : The space of irrationals with the subspace metric inherited from B is
homeomorphic to N equipped with the canonical product metric d where the metric d,,

on N is as follows

L ifm#n
0 ym=n

dri(n,m) =

]
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and

i )
d{{ry w0, ), Gy ges ) = :fg([?'i(ft'vnyn)-

AeER
Clearly, (1%, d) is a nowhere locally compact complete metric space.

Let X, = B"™ and define the metric d,, on X, by:

T

o 1 ‘
(,,,((T, 1)) = ZF(]gq((l,',bi).

i=1
Observe that with this meirie, disjoint subsets of X, are a distance at least 517; apart.

Thus ue, X, = X . Now define [0 0 Nypy — X, by
fﬁ—i—l ((rry, ay iy, My )) = (ay, g, ...ap}
Proposition 7.2 : f,41 is uniformly continuous.

Proof : Let ¢ > 0 be given, let ¢ = ¢. I (ay, 02, anq1), (b1, b2y ooy bp1) € Xy such

that
dn«i—] ('(rr] PRI P (| } (1}1._1')-2, P [)ﬁ_;.] )) < 8
then
ot L
; E" Ii(ai, b 1 < é
whicl implies
n l
Z =dy(a;, b)) < d =€
i=1

Hence fo41 is unilormly continuous. O

As the f s are uniformly continuous, we sce that {X,, fo, 14} is an inverse system of

the sort discussed in the chapter 6 .We denote its limit by X
We can clearly sce that X = {({&y), (@1, @2),...} 1 @y € N,7 € N}. As before, let dy,

denote the metric on Xo.. Now define a mapping f : 1Y — X by
pping

Fllar az, ) = ((a1), (a3, az), ...).
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Clearly [ is one -to -one and onto. We now show that [ is a uniform isomorphism.

Proposition 7.3 : [ s wniformly conlinvous.

Proof : Let ¢ > 0 be given. Let é = ¢. Suppose that d((eq, aa,...), (b, ba, ...)} < 6. Then
we have that

14 arsb) < b

NIH

which implies that

7L

Z _—217@”(“,-,!),‘) < d¥ncH.

i=1

Hence we have

U l
Z 5 Z r!g (i, b Zz— =

n=1" =t

That is doo (S (@, a2,...)), f{{b1, 02, ...))) < ¢ so f is uniformly continuous. O
Proposition 7.4 : f~ is uniformly continuous.

Proof : Let ¢ > 0 he given. Then there exists N € M such that 5% < ¢ and so

[ae] 1
Z ??‘ < 2e.
i=N+1
Let 6 = 5%. I ((@1), (@1, @2)y5 )5 (01, (b1, 02), ...} € X such that the distance between

these 2 points is less than 4, we would have

Z ‘nZ )F fy ("“ r < 4.

n=l]

Thus
N

SN Z 2?(1;, (a;, b)) < &

which implies
N

> Slidﬁ(a,-,b;) < 2Vs.

i=1
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Now

=g N |
. " N P
d({(ay, az,..), (b1, 02,..)) .E: 5— wlag, b;) _2: ? H{ag, b)) + ,-=,E\r+1 5 < 278 4 2¢ < 3.

Hence £ is uniformly continuous, O
Hence (Nao, dao) is uniformly equivalent to (HY, d).

Now for each n € I AN is the minimum uniform compactification for N*. Using the

results from the previous chapter we can generate the following diagram.

We sce ug, Noo = Yoo CI1e A1V, That is |, wylt™ = Y.

7.2 The Structure of uy(1¥)

In this section, we analyze ug(I¥). We begin by analyzing the “size” of wyNY.
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As ¥ is a zero-dimensional Lindelof space, theorem 2.4 states we may replace “If 4
and B are disjoint closed subsets of X7 of theorem 2.1 by *If A and B are complementary

clopen subsets of T, We use this to achieve the following result.
Theorem 7.5 : (SM)¥ < wHY,

Proof : Tet A be a clopen subset of M. Suppose that elggyyeA 0 clgyye(N¥\ A) = 0.
Then clgnyed and eligyy«(FM¥\ A) are complementary clopen subsets of (FH)*. Let C
denote the set clgyywA. Note since A is a clopen subset of ¥, then C NF* = A and

(PR CYNEY =¥\ A. As ' is open, € can be wrriten as:
C = Uiz 757 [Adl]

1

where 7 is an indexing set and the A, ;’s are open subsets of gH. As C is closed in the
compact space (FR)¥, then C is compact. Thus there exist a finite subset F of I such

that :
C = Uiep[NiL a7 [4:,]] (7.1)

From (7.1}, it is easy to sce there exist a smallest & € I such that for every n > & and

for each i € F,
F,l[ﬂ?;]ﬁ_;-_[/ig_j]] = 1, (7.2)

Claim : d(C'nRY, ((FE)¥\ CYNEY) £ 0.

Proofof Claim : Let & = (21, 29y ey €y Cpogys o) € CONY and let F = (91, Y2, vovy Ybs Yoa1s o

(B CYn e,

Mforeachi =110k, 2y = y; then § = {oq, 10, .p, Yogr1, -0 ) By (7.2), we have § € CNRY
which is a contradiction. Hence there exists some ¢ < b such that 2; # . This implies
d(&, i) > % > _i, Since this holds for arbitary & € ¢ NHY and 7§ € ({(FH)“\ C)NEY,
then d(C NEY, (BN CYNIY) # 0 and our claim holds.

)€
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By theorem 2.8,

C]i,dg‘;u‘(‘(./r M i]d) N C,u,;;"’i“‘ N (([)’“)W \ C') N Nw) = (/J

Hence,

(f!‘,(f;,:a‘ An (,']”d;!;u‘(r].w\ '1} = @

By theorem 2.1, (FH)* < wyli¥.

We proceed to show that (811) # uB%. Let A = Ugen{{n} x {n} x(J]X, 7). Clearly
A s a clopen subset of N¥, Let B =T\ A, I ¥ = {2ey,29,..) € A, § = (y1,¥2,...) € B,
then there exists n € M snch that 2y = 23 = » and 3y # yo. We consider the following

two possible cases @

1. If gy # n, then d(E,7) >

L=

2. If y2 # n, then &, 7) >

b3 [—

Thus, d(A, B) > 0 and hence by theorem 2.8, ¢l g Nely ne 3 = 0.

Claim : eligp)e A N el B # 0.

Proof of Claim : Let o € I\ . We now proceed to show ¥ = (a,a,n,n,n,....)
€ clgyeA Ncligyye B for any n € I A basic neighborhood of & is given by elgnC’ x

elgnD x 1725 U; where C, D € a and U; is a neighborhood of n in 811 for each ¢ > 2. As

ais afilter, AN B #0. Let me An B Then

(o8]
(m,m,n,n,n,n, ) € (elgnCoXoelgnD) % H Ui A
1=3
Hence ¥ e cl(f;mw{_
As a € I\ I, then C and 12 are infinite subsets of . For if ¢ (respetively D) is finite,

then elgnC’ = Crespectively clg1) = 1) which contradicts the fact €' € a (respectively
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D€ a). Let me C.le D such that m # (. Then
>0
(m,L,n,n,n,n, ) € (elgnC X elpyD x H UynB.
=3
Hence @ € cl(gnye . Thas ez AN cligny= 3 # 0 and our claim holds. By theorem 2.1,
(BH)Y % ™. O

The following illustrates that S{139) % w4
Proposition 7.6 : N & u N>,

Proof : Let A = {(n,n,n....):n eM}and B = {{n,n,n,..,n,n+ 1,04+ 2,0+3,..):
n € N}

Claim : A is a closed subsel of 19,

Proof of claim : Let & € I\ A, Then there exists n < m such that &, # 2,. For
every i # n,m , define A; = I, Define A,y = {z,} and A, = {&n}. Then [[enAn is a
basic open neighborhood of & such that ([, ¢y An)NA = 0. Thus & € [], ey An € HY\ AL

Hence A is closed in 1™,

Clearly I} is also a closed subset of F1* 1 since H has no convegent sequences. Obviously
A0DB =1
Claim : d(A, B) = (.
Proof of claim : Denote (n,n,n,n,...) by @, and (n,n,n,...,n,n+1,n+2,n+3,...) by b:l.
Observe that foreach n € M, @, € A and b, € B. It sullices to show limy, _ood{a,, by) = 0.
To this end, we see
. 1

1 S
didy, by ) = Z, —2— = 2 Z{;z_ = 2'1“1‘1

{=n

Thus, limy—scd(d@, by) = 0.
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By theorem 2.8, as d(A, B) = 0 we sce that ¢ly ned el ned # 0. By theorem
2.3 and the fact that A and I are disjoint closed (hence zero-sets) of MY, we have

clgmey A Nelgey B = 0. By theorem 2.1 B(M¥) ¥ w13, O

Lemma 7.7 : Let C and D be disjoint subscts of N¥. Then d(C, D) > 0 if and only if
there exists It > 0 such that for cach &€ C and § € D, there exists i € {1,2,..,k} such

that ¢; # y;.

Proof : Let C,D be disjoint subsets of H*,

(<=) : This is obvious since for any ¢€ C and ¥ € D, d{¢,7) > 2%

(=} : We prove the contrapositive. Suppose for every & > 0, there exists ¢ € € and
¥k € D such that for each i € {1,2,...k}, yr; = ci;. Then d(é, 4;) < -;T Thus

limyp— oo d(¢, i} = 0 which implies d(C', D)= 0. O

We now give a characterization of those clopen subsets C' of M¥ for which ¢/, o' is

clopen in 1w N%,

Theorem 7.8 : The following are cquivalent for a clopen subset C' of ¥ :

1. There exists I € W such that C can be writien as UjegA; where each A; s a
basic open subsct of % of the Jorm Nyepa i8] where B, € N and F C

{1,2,3, ..., k}.

2. d(C, 1"\ C) > 0.

Proof :
(1=2): LletceCand e ¥\ C. Suppose fori € {1,2, ..., k},¢; =y; . Then 7€ C
since by hypothesis, for cach » > &2 € J, 7,[4] = I, T'his contradicts the hypothesis

7 € MY\ (. Thus there exists i € {1,2,...,k} such the ¢; # y;. By the previous lemma
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T.7,d(C, 2\ O > 0.

(2 = 1) ¢ We prove the contrapositive. Suppose condition 1 fails. Then given any
representation of ' as the union of basic open subsets of H¥ and for each £ € I there
exists jp € J such that A; is a basic open subsct of 1 and there exists my > & such

that m,,[A;,] # M. Let f:J — ITbe a mapping defined as follows :
Jj)=mn,

where 71;,1[!'13-] # M and for all wm > o, 7,[A;] = FL

For each j € J, denote A; as [[i2, B;; where each 3;; is a (open) subset of I¥ and for
m > f(7), 7m[Bjm]) = B For each & > 0 let T denote all 7 € J such that f{j) > k. By
hypothesis, 73 # 0.

Claim : Let k € . Then there exists j € Ty such that [I5, Bji x i NEC.
Proof of Claim : Suppose not. Suppose there exists b € B such that for all j € T},
[T Bis x [T 401 B C €. Then we could veplace each A;, 5 € Ty with C; = [T5, Bj; x

HiZep B C C and write C as

C = (Ujenn,4;) U (Uien,Cj).

This contradicts our hypothesis that condition 1 fails. ITence our claim holds.

Thus for any & > 0 choose j € T} such that TTL, Bii x [[Zpp M Z C. Let 7 €
(IThey B x T IO\ Ay, We have (TTE, Bis x [T M\ A; # 0 since f(5) > k.
Note that § ¢ . Clearly there exists & € A; such that foreach i € {1,2,3,...,k}, ¢; = w.

By lemma 7.7, we have d(C, ¥\ ('} = 0. Thus we have shown the contrapositive. O

We conclude with the main result of the thesis.

Theorem 7.9 : uN¥ is cquivelent (as a compactification) to the Stone spuce of the

Boolean subalgebra A = {C € B1) : d(C, 119\ C') > 0} of B(14¥).
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Proof:

Claim : A is a Boolean subalyebra of B("i\:]'*") and is « clopen buse for 1Y,

Proof of Claim : Suppose ¢, € A, Then by lemma 7.7, there exists &y > 0 such
that for cach & € ¢ and § € F¥\ Cy, there exists ¢ € {1,2,3,...,k1} such that ¢; # y;.
Similarly, there exists ko > 0 such that for each & € €5 and § € N¥\ (5, there exists
i€ {1,2,3,...,.’.'2} such that ¢; # y. Let kb = maz{ks,k2}. Then for each &€ C; U C,
and 7€ (B@\ C) N (YN C). there exists § € {1,2,3,...,k} such that ¢; # y;. Thus by
lemma 7.7, d(C'y U Co, Y\ (T U (U3)) > 0. This means ¢ UGy € A

If ¢ e A then d(C,H*\ ') > 0 which means d(F¥\ C, ') > 0. Hence ¥\ C € A. Hence
A is a Boolean subalgebra of B{11%)

Sets of the form Nyepm;[By] where B, € M and F C {1,2,3,..k} for some k € [
belong to A by theorem 7.8. Dut these sets form a base for the open subsets of MY,

Hence A is a clopen base for T%., Our claim holds .

By theorem 2.5, S(A) is a zero-dimensional compactification of F%.
Claim : Suppose B € B(M¥). Then clg ) B 0 clg (MY \ B}y =0 if and only if B € A.
Proof of Claim : If B € A, then by theorem 2.6, clgiay) B N elgq)(B¥\ B) = 0
Conversely, suppose elg4) BNelg ) (FY\ 1) = @, Clearly clgpa) BUclg 4y (HY\B) = S{A).
Thus /g8 € B(S(A)). But the mapping A+ A — B(S(A)) defined by MA) = clgq)4A
is a Boolean algebra isomorphism from A onto B(S(A)). Thus, as clg B € B(5(A)),
we sce that 7 € A. llence our claim holds.
Claim : Suppose M, L € W, Then clg oM Oelgyl =0 if and only if d(M, L) > 0.
Proof of Claim :  Suppose elg A7 N elgql = 0. By theorem 2.4, there exists
G € B(S(A)) such that elg M C G and (clg L) NG = 0. Hence G'NNY € A which
implies d{(AM, L) > 0.
Conversly, suppose d(A/, L) > 0. Then by lemma 7.7, there exists & > 0 such that for

each & = {¢1,¢2,...) € M and § = (y1, 42, ...) € L, there exists i € {1,2,...,k} such that
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¢; # yi. Define the set & as
G= e} x {ea x-ox {en} X WX B x-),
ZeM
Clearly G € Aand M C G. Now L C ¥\, for if ¥ € L then given &€ M, there exists
i€{1,2,3,...,k}such that ¢; # y;. Thus ¢ ({e1} x {ea} x ... x {ex} xH x M x -} Since
this is true for each €€ M, we have 7 € . 1lence L € MY\ G. Now by the above claim, we

have el g )G Nel s N\G = 0. This implies elg ayMNelgay L = (. Thus our claim hotds.

By theorem 2.8 and the above claim, uw4* = 5(A4) (as compactifications of *). O
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