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ABSTRACT

This thesis does not present results which were
previously unknown in physics, but attempts to present a
thorough introduction to a field which previously had been
difficult of access to beginning graduate students because
detailed explanations of basic methods had been lacking. The
subject matter covered includes a general discussion of the
Lagrangian formalism for physical fields, with detailed examples
of several fields illustrating specific properties. Thus the
complex field introduces charge and the vector field introduces
spin. The method of second quantization, which forms the basis
of the quantum mechanical discussion of interactions for elementary
particles, is, it is hoped, formulated in such a way that the
method is clear and that the self—consistency of the technique,
with postulates explicitly stated, is evident. The'relationship
between invariance properties of a system and conservatibn laws
is worked out, in detail for energy, momentum, charge, and
angular momentum, with a discussion of spin, both classical and
quantum mechanical. Two second quantization procedures are
discussed corresponding to Bose-Einstein and to Fermi-Dirac
types of particles, along with an introductory discussion of
Dirac theory. Finally, the application of perturbation theory
to the second quantized fields is discussed, with brief illustrative
examples, as a method of obtaining results which can be subjected

to experimental test.
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INTRODUCTION

The main object of this thesis is pedagogical. It was
felt that the subject of the interactions of elementary particles
had not appeared in a forﬁ suitable for study by students with
the equivalent of an Honours degree in Physics, and yet that the
subject did not have inherent difficulties sufficient to justify

its neglect at this level.

The interaction of the electromagnetic field with
elementary particles has received much attention in the modern
literature of physics, and has had fairly adequate treatment.
Because of this, and even more beéause of the limitations of time
available in preparing an M. Sc. thesis, the subject of the
electromagnetic field in quantum phenomena has been omitted.
Instead, the emphasis has been placed upon discussion of the
various types of fieldg which have been postulated as a’ccounting for
nuclear forces.
megon—tiedd. These fields may be generally categorized as
Bose-Einstein fields, due to the nature of the statistics obeyed
by their quanta. Of equal importance, both to the subject and
to the thesis, is a discussion of the Fermi-Dirac field, whose

quanta are the commonest elementary particles: electrons, protons

and neutrons,

The necessity of quantizing the radiation field in

considering sub-microscopic phenomena is one of the oldest facts



of quantum physics, dating back to Planck's quantum hypothesis.
Since phenomena are observed in which particles of one type

are transformed into particles of another type, perhaps with
dif ferent masses as in 3 -decay for example, it is desirable to
have a theory in which the creation and annihilation arise
naturally, and the development of such a theory is not too
difficult, for the quantization of the radiation field in which
photons are produced or absorbed, 1is available as a guide. The
quantum mechanical equations are taken as the analogue of the
classical electromagnetic field equations. The resultant
quantization, which is discussed in detail in what follows, is

called second cuantization.

Tt should be emphasized that the second quantized field
theory of elementary particles, with the concept of particle
creations and annihilations is significant mainly in considering
systems of interacting particles. The theory also shows certain
qualitapive properties of systems of particles, particularly
with resnect to conservation laws. The theory in the form
presented is not original. It is a form possessing much beauty
in its logical consistency and in its clear relation to classical
field mechanics. Unfortunately, calculations based on the theory
and utilizing the perturbation theory of quantum mechanics, generally
give only qualitative agreement with experiment, and the theory
relies upon experimental checks at perhaps more points than is

desirable. In particular, the reader may feel, after reading the



section on interactions (Chapter V), that an experimental
determination of which form to choose for the interaction for
every type of interaction, requires less of the theory than

might be hoped for.

EBven the theory of the interaction of radiation with
matter, on which a tremendous quantity of experimental evidence
is available, has not been satisfactorily developed. The
techniques are not available for arriving at experimentally
verifiable results even for many relatively simple cases. Such
difficulties are even more pronounced in dealing with other
types of interactions for which relatively little data are
available. There is nevertheless a twofold value in presenting
this quantitatively unsatisfactory theory. Firstly, the theory
is qualitatively largely valid, and almost certainly has features
which will be of lasting importance. Secondly, the theory
presented forms the prerequisite knowledge for understanding

present-day attempts to arrive at a quantitatively valid form.

Time has not permitted as detailed a discussion of
interactions as would ideally be desired. More examples of
common interactions could well have been discussed; and some
more general questions could also have received more detailed
treatment. It was felt to be of prime importance, however, to-
set down the underlying principles of second quantization in

sufficient detail and clarity. It is hoped that the subject of



interactions has been treated well enough that the reader can

progress to the study of standard textbooks and current paperss

confident

in a familarity with the principles involved.

at a level comparable to that occurring in Goldstein's

11C0lassical Mechanics'', and with a first course in non-

relativistic quantum mechanics.

The following books are particularly pertinernt

references for this subject and are referred to in the text by

author's surname onlye.

Schiff, L.

Schweber,

I: *"Quantum Mechanics'', (McGraw-Hill, 1949),

for general quantum theory of particles.

S. S., Bethe, H. A., and de Hoffmann, F: '"Mesons and
Fields' , Vol. I: Fields, (Row, Peterson, 1955).

for an outline of the subject and for a helpful
discussion of Dirac theory (relativistic electron

theory).

Wentzel, G: "Quantum Theory of Fields™, (Interscience, New

York, 1949). This is a standard book on the subject,
but is too difficult for a student to wnom the ideas

are new. Some of the central ideas of the theory are

The thesis assumes familiarity with classical mechanics

i

not sufficiently emphasized, and some of the arguments,

while correct, do not proceed so as to have intuitive



appeal: rather than indicating the method of
arriving at a result, the result is merely set down

and shown to be correct.

Goldstein, H: "Classical Mechanics' (Addison-Wesley, 1951).
An advanced text designed to prepare the student for
modern theoretical physics. Contains also an adequate

introduction to special relativity.

In the text, the Einstein summation convention has
been used consistently, repeated lower case Greek subscripts
indicating summation over indices (1,2,3,4) unless otherwise
indicated, and lower case Roman subscripts indicating summation
over indices (1,2,3). The symbol ¢ has generally been employed

to indicate 52 . The superscript star ¥ indicates Hermitian

ox,.

adjoint, which for a number or a function is the complex

conjugate quantity.




CHAPTER I
THE SCALAR KLEIN-GORDON FIELD

Lagrangian Formalism for Fields

The method of quantum field theory to be discussed
proceeds in essentially two stages. In the first step the
equations of motion of the field are found using the
Hamiltonian method for mechanics as applied to fields. 1In
the second step the field is quantized by first finding a
canonical set of variables describing the field and then
representing these variables by non-commuting Hermitian
operators. The result is that the quantized field has
mathematical properties which allow it to be described as a

system of particles.
In mechanics, Hamilton's principle is written
(1.1) 5j’ Zdt = 0.

where & is the Lagrangian for the mechanical system and § is

an operator effecting a variation of the generalized coordinates
which is arbitrary except at the limits of integration, over
which it is zero. Thexgg??%gﬁggg condition for equation (1.1)
to be satisfied is a set of differential equations called

Lagrange's equations. For a field the Lagrangiané& is defined

by éf = J[ L dV.
A2

where L is the Lagrangian density, and V is the volume of space
under consideration containing the physical field. L is a

function of one or more quantities ¢ called the field functions,




2

and of their time and space derivatives. Since ¢ depends on
the time and space coordinates, so does L, whereas the total
Lagrangiand for the field depends only on the”values of &
and its derivatives on the surface bounding V, that is on the
limits of the integral deV° For simplicity L is assumed to
depend only on the first Eartial derivatives of the gé's with
respect to position and time. Then Hamilton's principle for

a field is:

(1.2) f:f dt - s/z., dav o

where déx = dx,dx&dxgdxé is the four dimensional volume element,
Xg being (ict). The variation § of the integral means infini-
tesimal changes of the gﬂ's and their derivatives anywhere in

V or in time except at the limits, and Hamilton's principle then
requires L to be such that the integral has an extremum value.
From the form (1.2) it is evident that if L is invariant under
four-space rotations (proper Lorentz transformations), then since
déx is likewise invariant, the field equations resulting from

Hamilton's principle will be Lorentz-invariant.

The result of Hamilton's principle for fields is the
well-known Buler-lLagrange equations, which arise in the following
way. The variation § behaves essentially like a differential
operator, but care must be taken in deciding the functional
dependence of the quantities involved. If L is a function of

the ¢hp's and the Qﬁi's, but not explicitly a function of the



x_'s, as will be the case here, then:
b -, i Z £ s EE
é;f{i 6‘! Zow j :%: -—‘fe ¥ - g éi- é’ Al L g@, ek ”/j% S
o ! / P b B s 4

i o & ; b; 9(22) ¢)

g({izﬁg‘é}
) rTo
(1.3) = [ &L -~ oy o4 §$pdye [ | L 88,
%) & &g.) {i”«(f (j < i (éz) ¢>

where the following relationships have been used:

and L s

and a four-dimensional Gauss' theorem:

Y 3
b & {az) ¢} Lg;,j_

the subscript n indicating the component of the four-vector

normal to the four-surface S bounding V. Since ¢ is zero
over the entire surface, this integral is zero. Since ¢ is
arbitrary except on S, éjaLdéx = 0 from equation (1.3) has as

a sufficient condition:

(1.4) §fé = Iy [ ,J%ém, :
@ oy 9?5)}

which is the Euler-Lagrange equation. If L depends on several

field functions, the generalization of the above derivation,



which is straightforward, results in one such equation for

each field function ?5.

In deciding on the form of the Lagrangian density
for a field the main criteria are Lorentz invariance, as
mentioned, and simplicity. For simplicity, derivatives of ofder
greater than one are generally not used in the Lagrangian
density. If the field equations are known, as, for example,
Maxwell's equations for the electromagnetic field, L is so
formed that Hamilton's principle leads to the correct equations.
If the field equations are unknown, the predictions arising
from the use of various simple forms of L are compared with
experimental results, and on this basis a selection of the best

form of L may be possible.

As an example, the field obeying the Klein-Gordon
equation will be considered. The transition from the classical

equation p2/2m = E for a free particle, where p is momentum,

m mass and E energy, to the quantum mechanical equation

describing the motion of an elementary particle:

Fog o=k Y

by replacing p by - thy and E by ii¢, and interpreting p*/2m = E

as an operator equation, should be familiar to the reader. The
corresponding relativistic equation EY = pzcz + m”c? leads, by
the same substitutions for p and E and interpretation as operators,

to the Klein-Gordon equation

A2 2 - a z - o

L S S SN ) T o,
R C- IR R v A F R Al A




which in relativistic notation is:

E&aj
In this eguation the operand gévdll be thought of as describing
a field which after quantization will be found to have properties
equivalent to those of a system of particles. Such operands,
having different covariante propertiesl, or obeying different

field equations, will be found to describe particles having

different properties. A scalar field functiongé obeying

The covariance property of an expression denotes its
behaviour under rotation of four-space axes (proper Lorents
transformation), and under reflection of three-space axes.
Common tyves of covariants are:

Scalar: unchanged under rotations or reflections.

Pseudoscalar: changes algebraic sign under reflection of three-

space axes. Otherwise it behaves as a scalar.

Vector: If a vector before and after Lorentz transformation
?

is denoted by YE{%& and Y'€§§g} respectively, then Y' = AY
33 ¥
4 l§ L 4

(where A is the four-by-four matrix of the Lorentz transformation)
denotes the behaviour of a vector under such transformation.

Pseudovector: The three-space components of = pssudovector

do not change under reflection of three-space axes. (Those

of a vector change sign). The pseudovector behaves like a vector



6.

the Klein-Gordon equation will first be considered. A suitable

Lagrangian density is

(1.6) L= 900y 29,9+

where g, is a constant to be assigned later,

for then:
Jb o= 2a mict and a”[ oL | =29.9,9) 9.
9 i TER)

'so that the EZuler-Lagrange equation is the same as the

Klein-Gordon equation.

The detailed behaviour of the field is studied on the
basis of densities of observable quantities such as energy. In

the mechanics of a system of particles, if the Lagrangianéf)is

under four-space rotations.

Tensor: Let a4, Tepresent the elements of a Lorentz transformation.

A
Then a tensor of r th rank Trs...v where ¥ is the r th index,

1s defined as transforming under Lorentz transformation by the rule:

-

T‘"l‘/';-.. o = é\ga f’/ﬁs;} P éz’Y? E{/:@z}‘”ga

“is

Another covariant, the spinor, will be discussed in connection

with the Dirac field.
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a function of generalized coordinates e having conjugate

generalized momenta Pe = e ;, the Hamiltonian?V9 equal to

3]

Q
%Q .

®
the energy of the svstem if 0&?3 O, is defined by
<”é

Aow pede -2

7

Analsgously for a field theory, in which the lagrangian density
L plays the central role, the values of the @'s at every point
in the field ar=s taken as generalized coordinates, and the
conjugate momenta are defined by

T = cv

2%

at each point. Then the energy density of a field at a point
is defined by H = Wt@ - L, and the total energy of the field
by /= ﬁi HdV. If the total energy 2/ is conserved the energy

density H must satisfy a continuity equation .

(1.7)

If a quantity A/ in a volume V. having density H, is conserved,

then 4% . éﬁlci‘ is the rate of change of + in V., This
dt /&
must equal the inward flux of A through the surface & of V. If

S is the flux density of A then
dM . -f S.de = g“ (~w.§ W:/‘ SH V.
v

J

Ly b

t’
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where S is the energy flux density. An attempt is therefore

made to set &N in the form of the divergence of a vector.
=1

Now:
Hemwg-L= L. =L

Therefore:

(1.8 IH = & 2 ) L G~ L
ot ittt @ o ¢

It should be recalled that L is taken as explicitly dependent
only on ¢ and &,¢ and H on mwand ¢ . If L and H depended
explicitly on the x,'s as well, the symbols g%; and %f%

would be ambiguous. A distinction would have to be made between

the dependence of L and H on the x,.'s through ¢», and the

explicit dependence. Here:

(1.9) oL . 2L . 29 @) + oL .+l
ot dlo;a) ot 0 & <P

where c/¢- is a vector normal to ¢ in the outward direction.

For arbitrary volume V the last equation above implies:

o +v.§ =0
oE

Such an equation is called a continuity equation.
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The terms in %ﬁ 2L cancel, and equations {1.3) and (1.9)
oP

combine to form:

oH = & {2 % - 2908
ot ’ 4 ¢)

- Substituting for {_ﬁ f&;, - QL from the Euler-Lagrange
stlasn] @

equation (1.4), written in three-dimensional notation,

LN ;‘;7 ’“,ﬁg 2 )
o La@d; )] ot | 2

35{_ can be written:
et
(1.10) OH = - & eajg oL l ~ J(o€ ) : ij
ot o) L 2@ 8)
One concludes that
Sj= @ L
‘;(éjcﬁ)

in the continuity equation (1.7) for 2nergy.

Continuity equations can often be found from the

invariance properties of L. Lorentz invariance has already

been mentioned. An especially simnle form of Lorentz transe

formation will be considered, namely translation of four-space

axes. Suppose:
Xg = o

P prm

g = £y e

O
o
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for one value of o°, where €, is an infinitesimal constant.
Invariance of L means that at any given point in the field
the value of L will not be changed by referring to the new
coordinates x; . This requirement is written

SL =0
For such a transformation the reader can verify that the chanre
produced in ¢ and 9,4, where @ 1is a scalar or a vector component,

is zero. If L depends explicitly on <, £»%, and on the X..'s,

then:
§L= oL §+ oL |, 572, & L, SRy =
0% BRI 3(7.)

where oL indicates the partial derivative taken with < and
(%)

Jdy® held constant. The above equation is trivial, since

ggiz g€&ﬁ§é)1:@, and x,, being a vector component, is also

unchanged at the field point by translation of axes. In order

to obtain a non-trivial result, let us consider the transforma-

tion in two stages. In the first stage the point of observation

is shifted relative to the field, parallel to the x axis: a

new point of the field is considered. The variation of L in

this process is

Sl fv . b [ 3T § 3
MJL‘“[§~k§5€ €) L—ﬁxkﬁg” -t (no summation over - ).
e Yo
To complete the translation the physical field is now shifted

until the previous point of observation coincides with the
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new point. The variation of L in this process is the reverse
of é'L, for the value of L at the point of observation reverts
to the value of L at the initial point. The net variation of
L is zero, as it must be, with the field translated in the x.
direction a distance ¢, relative to the original frame of

reference. The second variation is

S L= [L{ver~ Ll sca)] =i o (rl - J=-¢, 0L
ol

g 4 . s .
The result §L= &, L+ ¢ =0 again seems trivial, since

L . dL . What we are seeking is to set §L in the form of a

oy
S 2

¥
four-divergence, which being zero will denote a continuity

equation: a conservation law. Now

5 ¢ , . P
oL = 2o { L& = aL Op P 4 . e {dy ¢
[ —— v LT LS4 ¢
Y ™ oA
2.9 &ep

which from the Buler-Lagrange equation {(l..4)is:

. '7! é .\» e
rf;}-e“‘i, L ge&;av; e ’iﬁ«:’; é@‘?ﬁ . gfi. R ad é&jl‘

fid
P )
-

Egﬁgﬁi ol¥,)

-
[ e

Substituting into § L = O for one of the JL terms:
C} 2{ o

- ol

o{¥e

2P

=7

<. (no summation
over ¢ ).

A e

N

Invariance of L under translation of axes therefore implies

nothing more than could have been determined from evaluating
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{5Q;L) . If el is zero, the invariance implies a

%)
continuity equation:

(lell) 17 }yv .—:@

where ﬂﬁgv @ { Q@féhgﬁi: - L,gwb}. It should be emphasized

that the conservation laws are always present in the theory,

but they may not always be so obvious as in this case where

they follow simply from differentiating the Lagrangian density.
Consideration of the invariance properties of L then allow a
systematic determination of continuity equations. Consideration
of angula: momentum in a later chapter will illustrate this

point.

The conserved quantities corresponding to the continuity
equation (1.11) will be shown to be energy and momentum.
Invariance under translation in time implies conservation of
energy, for with ¢ = 4 equation (1.11) is simply the energy
continuity equation (1.10). Energy density H, defined as
( & &4f__ij is given by Téﬂe Then since energy and (-ic)

X - 3
times momentum form a relativistic four-vector ” , momentum

2

density G_ must be given by
R R

3
4
&

3 O

o

2
C. F. Goldstein, p. 203.
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Momentum conservation, following from equation (1.11) with
=1, 2, or 3, is a consequence of invariance under trans-
lation of spatial axes. T,pis called the canonical energy-

momentum tensor, and obeys a continuity law provided ot . O.

()

The latter condition is applied whenever possible in forming

L so that energy and momentum conservation may hold for the field.

Field WYuantization and the

Particle Properties of a Field.

The second stage in the development of the quantum
field theory has now been reached. The generalized coordinates
consisting of the values of ¢ at every poiﬁt are not convenient,
for they form a non-denumer;ble set. One method of obtaining
a denumerable set is to expand ¢ in a Fourier series throughout
the volume V. For simplicity V will be taken to be a cube of
side length £. For a field extending through the whole of space

[approaches infinite length. Let
D= N E ( 6}',\,@ E O3 /;'a PN V) é’f‘)
! RE, B
i '

where N is a constant, |~ is the position vector relative to axes
with origin at one corner of the cube V, and k is a wave number

or propagation vector with j th component equal to {‘1ﬂ ﬁj§§
s/
A é

where each of the n}s ranges over all positive integers and

zero: 1in this way the trigonometric functions form a complete
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orthogonal set, for:

g e
//;in kKer sin k'.r dV = Jf cos k.r cos k'.r dV = 1 .7 é%@
v % 2
and jfsin kK.r cos k'.r dV = O,
v
The time dependence of ¢ occurs in the q%?‘(r = e¢,0) expansion

coefficients. These coefficients form a suitable set of
generalized coordinates because to specify them at any time is
to specify the field qﬁ completely at that time. The corresponding

generalized momenta Pre are defined by

Eﬁ%h?
For the scalar field obeying the Kleianordon equation:
% E

bubstltutlng the Fourier expansion for gé:

J, e N7 %’w(“ k.o heeke coshr)(-kq, sinkirs. Jdv
Y v &k

% g3 2; I
N*./{ L [
2 v=e,0
having used the orthogonality relations. Similarly:

@j@ d¥=-N*"Z, (q&ﬂ cosh.y % smhr)(ci c:oSf?o?fé ;?

v ’”vw
AR
Z‘C, {1: Ry

and m”é’{'f BV = fmte® N*2 DY (q‘z ).
ey U ) k tia
v k 24 i ove

@,o




lSo

Collecting these results, ;7 is evaluated as:

£ - ﬁ 3 LS
SN B () - wlad)
R S e,o

2

where ¢ (kz * m?c2 has been written (@5;)0 For this field

h™ /

the generalized momenta are:
I 2 03 .
?hﬁ’ - / &ﬂ == %‘P}mm@-ﬂ ) %&w“ :

g

o q ﬁ{zvf- %: t?\.; 6 &
The choice of N =%(§£'%_normalizes the expansion functions
(N cos k.r) and (N sin k.r) in V, and the choice of ¢, =~ 1¢

is convenient in that with this choice Pe is simply dhr .

Then iabas the form:

Z= E«r( Per = “k Fir)

&

so that 2 for the field is:

-~ % 2 i
IR L P e SRS T

=0 2 (pt + w0l q,%).
2 by th " qhv)

The reader should verify that this result is the same as

obtained from:

/:/‘ﬂ_:j; F!cii/:jlv led\/zj;( b % -L,) av

by substitution of the Fourier series for ¢ into T,, and
integration. It is also left to the reader to verify that the

field equation, ¥* ¢h-t ¢ = m*e™ ¢ , under the substitution
6%- MM%,'L FH
a4
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of the Fourier series and using the orthogonality conditions,

yields the same field equations for the q's as do Hamilton's

° °

equations: Pp- " ~ eN , and q = 4
> e b =
6"@7{2" C;}F%f

The form of % is that of a sum over k of harmonic oscillators

of angular freguency ¢J, and mass unity.

The gquantization procedure, as stated previously is
now to consider the p's and q's as Hermitian operators instead
of as functions. The operators are assumed to have the

commutation relations:

< @”ﬁ zi:?f*’i" - FE%‘V" qg?.f“\} - f B d %“ gz Q U éyﬁ'!'

all other quantities commuting. This is called second
quantization. The first quantization consists of assuming
momentum and position operators for a particle, having the same
comnutation rule with positional coordinates X, y, and z
represented by multiplicative operators and momentum by (-ifisp).

We have seen that in this way the equation E~ = m*¢c® + pte

becomes the Klein-Gordon equation. The properties of 7 will
first be discussed in the light of second quantization. To
this end it will be instructive to discuss the properties of the

quantum mechanical Hamiltonian of a simple harmonic oscillator.

The operator % = ;(pﬁ'+ ufqé), where p and q are

kHermitian operators such that (gqp-pq)% [q, p? = if, sugcests
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the factorization:

{?”é&¢%§§§é~éﬁ Yo F1+cgtq&¢¢h$£:?zqg.

H b

% £
(1.12) or ~ A = &+ Beo.

where

)

A = (p-iwy) and A = (p + iwy).
h:4
(1.13)  similarly: A A= 2¥-fw.

From these two equations:

e j( A‘gA + Aﬂt‘d)
4

and (AA™- AN = TAAY] = 2t

Also, multiplying the whole of equation (1.12) on the right by

A and of (1.13) on the left by A and subtracting:

o= 2{WA-2N) s 2bwA.

which can be rewritten:

MA= Ay - Kwoh.

Similarly operating on the left with A¥® on (1.12) and on the

right on (1«13) s

WA = AV - 4 - AT

Suppose now that A operating on a wave function ?é has an




eigenvalue E, Theng :
H e = L (A*A+ AA™) ¥ = E ¥

Now consider the Operator MA operating on the same functiems

HAVe = AHY, - hwAy, = Awg - HwAde = (E-fw) A¥e .
and similarlys

HA* e = AH b+ hes A* = A%E Ve +h oo ANV - (E+hw) A%y,

These results indicate thgt if E is an eigenvalue of A then so is(E:t’ﬁw) 5 :
and that A and A% are ladder operators for obtaining the corresponding eigene
functiens (4° Y. ) and (4 Vede A therefore has eigenvalues differing by wnits
of iw, Now the energy of a quantim mechamical osciliator mst be pesitivet‘,
Then there ‘must exist some eigenfunection of A such that & operating in it
_gives 2ero, for otherwise the energy elgenvalues would not be beunded belews
for any eigemmlue EP there would be another, (Et<-Hw), Iet ‘/JM be the eigen=

fungtion belonging to the lowest eigenvaine E me Then

and A¥m=e,
M= Epg ¥y, =;ti,(A*A +AA")~PM~ A*(A¢M) _‘\;AA’WM
:ZiiA*( o)+ 1 (A*A+z’hw)~!~'m =0+ 1 hw Yy
3 2

b A= ;5"+w‘q" wiere p and q are Hermitian operators, p and q therefare
have regl eigenvalues and so p* and q% have positive or zero eigenvalues,
Since p and q are non=commuting operators, they cannot beth give zere

- operating on a given wave functien, A can therefore not have an eigenvalue

Z8Y0,
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Therefore By = 1 Aw, and the energy elecenvalues are (N + 1) Aw
2

where N is any positive integer or zero.

Returning to the scalar field the Hamiltonian operator

= 12 ( ?k@ A Pl

2 é‘r

must have, eigenvalues:

£ - Z(Nkr#‘)%éf

where for each k and r, th may have one of the values 0,1,2,13,

The energy E may be written:
E=% (N, hoder 5 foo,
ke r 4 ky

The second sum is infinite in magnitude, for k has infinitely
many values. This difficulty can be eliminated by proper choice
of the order of terms in A4 before second quantization. Had A

been written in the form:

(L.14) 4 %(Ph e, Cih> }Z; (ka“’{”“:)kcia 5(%') ml‘duﬁzﬂ).

and then the p's and g's interpreted as non-commuting operators,

the Hamiltonian operator would have had the form:

%(Aﬁ/ﬁ\; = 'lf( r‘+w"<1’*) v ¢ [q,p,

(F+wq) ko

)

Now 1 (p™ +e5¥q*) still has eigenvalues (N + 1) fiwso that & will
2 2
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have eigenvalues:

& ::(N‘%’L)%aﬁ;a—”?éq = N,
Z

Two forms which are equivalent when p and g commute may not be
equivalent when p and g commute do not commute. The choice of
the form of } prior to quantizstion is then made in such a way
that the result is meaningful. If the form (1.14) is used the

energy of the field is a sum of terms of the form (Ngfﬁwg)s where

2y v m. g 4 k C& R

)

is associated with a particle of energy B a wave of angular

According to the de Broglie postulate,; there

frequency w defined by w = B/h. If then we interpre the energy
(N&vh““J as representing Ny, particles of energy“ﬁuk, the field

energy is a sum over k of such terms.

Instead of a Fourier expansion in trigonometric functions,
complex exponentials could as well have been used. This approach
has certain advantages which will be demonstrated. Let qﬁtm

written:

$= 1 Zk(qke(%.rﬁ,%g%;ch.:).

L

where @ is the real scalar field function, and where now

k =27 (ny, n,, n,) is such that Nys Ny, and n, take on all
negative, as well as positive, values, and zero. The q's are
different from those used previously, and are in general complex

time dependent gquantities. The orthonormality condition now is:

k- R
) e«.é?.;,e Ei‘dg/: dg_k'-
L3
v

- -
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(23]

The field energy, as calculated from H = L (?éégL - LE where

o¢
L= -¢* [(v¢) - .Lm P+ m"c,“ b* ]
2

M = /V HdV= / [ ¢+ (vg)+ ‘1194'} dv.

Substituting the exponentlal gxpansion of <

"’*-f*/ B

243 gl b,k
ihe o 4 -dn W) Blr ' -ik'y
?‘( kqye ™ -ingre '(‘Ma‘@ -ikqh e )
+ S- (é Q_‘k‘r-}{;%e—bl‘g‘r}‘a‘.e‘é.r +é?§e-té.r)
[T Tk i
3

Making use of the orthogonality condition, and recalling that

in the sum; for every term in k there is now a term in -k
= e @
Yoy % ) (g A el el

¥

-%*f‘@(wwq wof +290q)
(qhqh§' A% 9-n +?~%%;

(1015 =

.-c*'

5 ¥ ) t S 4
} ;
z{‘(ﬂﬁ LY 9w T2y §.)+v 0 (quq.+q, Do ¥29 Qo
The qk’s and q:"s are not suitable as seneralized coordinates
since they are not independent. A transformstion is sought from
the Ok s and qk 's to Ph s and Qk_s such that the latter are
canonical variables. In attempting to find such a transformation,

an examination of the field equation might be helpful. On

substitution of the complex exponential series for ¢h the field




equation:
et -1 b =W P
c* 42
becomes:
b3 G WAL PELE ¥ S P P AL
h‘ - %Q&’ - Qh‘ e -Eqk.e —EL qk| e ‘
ke _'k'.v"
= mxctcht@“r*’q.#eb” _)‘
—i o Ik b
S

-k,
Multiplying both sides of this equation by e L

and integrating
over V, using the orthogonality relation, the equation reduces

to:

(Qe * =0 qu) = ~ 9w + @09, ).

NS
. v . 2.7 . . . )
Similarly multiplication by e““ L and integration gives:

i 2 é' = - oy e t %
(g, +orqh)= -4, rwlqy)
These equations do not determine uniquely the time dependence of

the q's, there being essentially two equations for the four

* .
quantities qh, q; s 9ops 9oke It is consistent to take the time

e, T

denendence of g, to be e~ ¥, for if this is done a given term
L)

polair . .
98 in the expansion of ¢ represents a single plane wave.
If qj Were taken to have for its time dependence a linear

. \ -y € tw,, & k.
combination of ¢ %" and e ¥, a term qke‘-- would be a super-

position of two waves propogating in opposite directions. If

and %E;z- z~~£wk%.
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. . - _ 2 L I - 2 ? ¥
e qp g, T Wy gy end 4l 4T = -wr g, iy s 20d
S A - n ® . \ .
q. qy ~ “’& 9 C%h' Making use of these relationships the
Hamiltonian (1.15) becomes:
= N ¥
H % 29.9,79, -

t

This is reminiscent of the form (1.14) obtained using the

trigonometric Fourier series for gé from which

"=y E(M*' “k Ge) = L %}.(Fhv““’hqkr)(ﬂf “Ony ).

¥
=) 4 Ah AE .
Z ke TR
. . € .
where after quantization (Ahv' Akv) has eigenvalues (2ijﬁu%)
with Nhr a positive integer or zero. A reasonable attempt to

transform to canonical variables is to set:

(1.16) x/};;ﬁﬁ RN Agl= L (P - fw Qk.
e 91 0 L k ki

Then # becomes:

(1.17) M = % 2 ey Gh:%* = {'U’;:*’ W, Q.

That the Py's and Qk’s satisfy the Hamiltonian equations

P = -9¥  and Q}‘= 2% and are therefore canonical variables

follows from 9, ® -iw, gy, for from equation (1.16) and its

complex conjugate:

Per 0 (g, + q,%.

Q= ¢ (qy-q,. Y.




2l
so that: Ph:_;w;’(qh—qg)=-w; @a

and: Qi wyelg,+q)= P

in agreement with - 34 = -2)°Qy and ¢¥ = P, from equation (1.17).
ARy 2 Py
Therefore, with a transformation such as equation (1.16), the

quantization procedure may be carried out as before .

However, a more elegant statement of the quantization
procedure now appears possible. From considering the coefficients
in a trieonometric expansion of ¢ as generalized coordinates the
eigenvalues of # for the quantized field are known to be (Zﬁh%ﬂk)
that is, the eigenvalues of an operator (_]5 %AZ Ap ), where f:‘om

equations (1.12) and (1.13):

L Aksﬁgwg = zko¢k8hg.

In view of the interpretation of quantized field energy as
equivalent to that of a sum of particles having energies (huhg,
it is convenient to define a number of particles operator having

.4 <
eigenvalues Ny. Such an operator is xcq,ahrs (Ah Ah. R
A l‘Ewk
k. ) . The Hamiltonian then has the form

N2hwd

M = %(a.‘*ak\’ﬁww where Lay, @), ) = 2, . Instead of

where Ay is (

transforming to canonical variables when using the exponential
series for qb , and then quantizing, and introducing the operators
&, and ak‘g the Hamiltonian (1.16) can be written directly in

the form:

M = Z z.co,:‘ q;ﬁh = &ZL ‘Etdk ak‘* O‘k'
R
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by the transformation

(1.18) g = E/ & L Qy
204

Guantization then consists of considering the qaqs and ¢z§'s

as operators obeying the commutation rule Qy, QQA]= 8;1;,

The energy eigenvalues are then( %Nhﬁwk‘) .

The operators a), and Chf are called annihilation and
creation operators respectively, for the following reason. Let

%@ be such that:

a‘a ¥, = N¥,.

Then by an argument similar to that used in showing the ladder

properties of the A's following equation (1.13)
afalad,) =(N-1)¥,.

This is the mathematical statement that the operator a

operating on an eigenfunction of the‘number of particles operator,
reduces the eigenvalue by one in forming a new eigenfunction.
Since the eizenvalue N represents the number of particles, a.
reduces the number of particles by one. Similarly af increaseg

N by one.

It is of interest to see whether the definition of

field momentum
/Uf:J/ G;dV oy §§é¢'§k'}dJ‘
v o
agrees with the interpretation that the field energy is equivalent

1Y
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to that of a sum over k of N. particles, each of energy fwy.

For the real scalar field:

v ok = g ~.\.)zfifff vd = bvs.
EP Loel

Substitution of the complex exponential series for gé leads to:

{Jz-f(vzgﬁ;.qu) dv
v
L [ 2 (ke o tqre ) (g, ETL i) gy

-

2 k(g v 9,40 -0, - 90 d).

Since 4, is taken to be -1Wyq), this reduces to:
= e~ 'S ﬁ{,; ? b4 ’
T 22 hlonqq rorqlal - 2w,q.0q,).
The terms @t(quq”k + Bq‘fq"z) R for k = +k! and k = -k’

cancel in summation over k. The field momentum is then:

A = 2% éwkci;;ik.

Substituting from equation (1.18) for q: and qy,:

2, ) 2

/9'-' Z tk:‘goh
h
After quantization, (OSCMJ is an operator having eigenvalues Nk
wnich are positive integers or zero. This sSupports the interpretation

of the quantized field as equivalent to an integral number of

quanta, for it says that the field momentum is that of a sum over k
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of Ny particles having momentum (+fk). The energ
ﬁ«%{=“ﬁcﬁfwk2 * m2%2 agrees with the relativistic expression

A

for the energy of a particle having momentum p = (+fk) and rest

mass m-.

oo/ Kiemie® - «\f(;:‘?é)”c’%m’x“"’“ = A ot e
W :

Fields obeying the Klein-Gordon equation are called meson fields,

and the quanta are called mesons. The theory of the pseudoscalar

meson field, whose properties differ from those of the scalar

field just discussed only when interactions with other fields are

considered, is found to give fair qualitative agreement with
n-meson experiments. No quantitatively satisfactory theory for

mesons has yet been developed.




CHAPTER II
CHARGED MESONS: THE COMPLEX FIELD.

If a typve of particle has two charge states, the
field theory should show this property. The scalar field Jjust
discussed describes a single type of particle. If some of the
particles are charged positively and some negatively a field
function having two independent parts is needed: a complex gﬁ
has such a property. Instead of the real and imaginary parts of 9@,
the functions ¢ and 45?will be used to describe the charged
field. If both gﬁ and b are required to satisfy the Klein-Gordon
equation then it will be possible to describe the two types of

quanta which appear on second quantization as oppositely charged

mesons.

The Lagrangian density
L=~ (259, p¥s me* b b ¥).
%‘8—
results, as the reader should verify, in the Euler-Lagranzge
equations for ¢ and @f both being Klein-Gordon equations.,
Following the same argument as for the real scalar field, the
Hamiltonian density for this field is:
H= Ty=(c*veivd + me® ¢¥gh+ 3¥h,
KL
Expanding ¢ and qﬁ* in complex Fourier series:

&b - 1-3”'%(%5'%‘? + by ]

-3 ‘R.v X (R.v
p¥- /"%(q: @“’&'"4»5}{ e h").
. 4



29,

where Qy and bh are independent complex functions of time, the

Hamiltonian is:
T X * T
e[ v S0 s qy bl bia e byo))
v
A < oL X r. X © Cx
“‘”(% 9y + Gy P-x + 0190 + bk@h)}-

For the Klein-Gordon eguation for ¢>, substitution of the Fourier

expansion and separation of orthogonal terms gives:

Gy + By

1]

2
™ ( qh% b*h)'
4
and similarly for b :

(&* ,:\

Pk

it

"'Ukk( qu -+ b_Z}

Then it is consistent to take:

qQ =" C9Rqy b= +iwy by,
(2.1)

. x . « W °>9<“ i w

qk -+ccdkﬂk ! b%ﬂu-cwhbh,

It then follows that:
° = X _ W % . e \ é{_, _‘“‘2. *
e * “%ququs  qu by % qy Bk
g.&__ LJL ‘k@ gb*_ wzb’ﬁb
h9-n™ " “n 9y Ve RPR T “w Py PR
Using these relations the field energy becomes:

+ by by).

119

;o LS r %
ezl (9,
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&y ("\ * ) (~\ ¥

If o, yap ;& ; &, are defined by:
Y - RN
(202) ks.? - vloh . qh 3 ah( ) =, 7 %_i@ . b&'
R 13

then A/ takes the form } = 2 wh(a(* gq§)+ Gé»ﬁ: ;.}))

7

and the quantization procedure is to consider the ah(")’s and ah 's

as operators obeying the commutation rule:
(e) S DI S B
[ Q& 3 Q«ﬁ,r = skk‘ 'SV.P’.
’” '
A as an operator then has eigenvalues:
o= 13 e )
s h(«)h LN% + Nh ]

The field momentum is calculated in a similar way.

Y. dev=j - ve s - eg¥oL
-, ( Y B jk/é’

=/-[(v¢) &’k +(vs*; pldV

oy | (g - kb (G e e by o)
v

+(~chqh e, wabhe ‘3"5)( C}?h M\'-!B +bh‘e ‘a"q}oﬂ/
{( ck q 4 vikq, b -k b, g %~k b, 5*) |
f(tquqh‘bkqhbkfbhbqu Mkb b

Making use of the relations (2.1) for ({

B Zaokiqrg

] } }
&»,:

Lk‘#qhbkﬁ"qhbh

“biq +baqy |
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Each of the last two bracketed sets cancel in the summation over

k, in the sense that when k = k':
¥ *® ! hS . %
“)L\é(chz b‘—k 9.k bh‘yz &y k (qka b"ka‘ q’h'bh')
and when k = -k' it is:
e *® ¥ . t + ‘ ’g
“ ki g Py + 9 by, PR h (‘lh' b + 9.1, b)

and similarly for the other term. Finally:

@ T 2 Zb' @h(@“‘j qh ‘%’L?%f b«)

———

Substituting for g, and by from equations (2.2):
- i+ &) ) % 4 (=)
b— zk) éklg\ ‘@. ah + ak ak)}.

—

which has eigenvalues Z k(N(ﬂ kg}.
R

From these calculations it is evident that for the complex scalar
field there are two independent sets of occupation numbers

available for every momentum state (fk).

The conservation of charge for closed physical systems
is well-known experimentally, and for a field is expressed by a
continuity eqguation,

ij + :7.:? =0
ot

where £ is charge density and J is current density. If interaction
of the field in question with the electromagnetic field is not to
be used in determining the forms of P and J, the relationship

b2tween conservation laws and invariance properties may be helpful,
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as previously was the case for energy-mamentum conservation, In
Schrodinger Quantmn meehanics, the content of the theory is embodied
in expressions oi" the form \IJ*(Opemtor)% » and such expressions
are unchanged by z transformadion '= q;,em , Where 6L is a real
constants the wave funciion is said to be arbitrary up to a consisni
factor of modulus unity, Since the Klein-Gordon equation is a rele
ativistic extension of the Sehrodinger equation, it is reasonablse
to postulate that the content of the field theory will be invariant
under such transformations, This postulate will be fornlated as
follows: For a transformation
e'® = 1+« +i_.__zcx"+..-‘

L 24 ;
let ¢ be an ini‘inite’simal, Azzy transformation e can be considered

as a succession of infinitesimal transformations, Thens

P'= Pel®x & (1+ie)

This transfermation changes the form of L. let
LO#, a8, %, a,8%")
“L(8.9,4,6%2,0%)+ 5L(8,0,8, 4% 3, 4%).

dince §L is the change in L resulting frem the transformation, the
postulate is that §L=o0, for in the field theory I embodies the
physical ntent, and so should have such invariance, If S 1L

can be written gs a four divergence \3,,.7,, o then §L=0 will
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constitute a continuity equation ¢~Jds = 0, which might apply
to charge conservation. The four vector Jy would be identified
with (J, i ¢ P). BEvaluating the variation of L:

SL= 9L 5o + 2L S+ IL §(2¢) + oL s(a,0%),
o¢ dp* o(og $) 002, %)

Now é¢=(¢'-¢)=(l+éd)é-9§: €l b,
and similarly since (C.é')x 2 (1-cat) @ ¥, it follows that
5¢&=-éa¢’k; also §(§‘v§5323,(5¢)=54’<é2)¢-

and 8(39 é*) = ~tet éy ¢’% « Then using these relationships

Se - ia{i’: G- L ¥4 L . Iy - az-____,,.am’*}

2¢ o¢* 9y 2) (o, P¥)
Substituting for 2L and oL from the Euler-Lagrange equations:
2P Ok

SL - m{¢ av{ oL ]- ¢wﬁiwmé_;t:_,__]*_c>__g_ 2y -dL .o,
3‘5,5’,‘;;1”) 9(&,05*) &(&»é? 5(5@@5%}

. 3.@{ NI ¢ oL~ H* oL ]}
2(259) d(dn+*)

Having found &L equal to a four divergence, J, 2 (d, ic;) is
taken to be proportional to
{¢5L _ gt oL }

(s ) d(3u ™,
That J, actually represents the four -current density can only be

szen by considering the system of the electromagnetic field and

the Klein-Gordon field in interaction? The field equations for

See for example Schweber, et. al., p. 118.
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such a system then include the Maxwell equations, with an expression
of the form just given for J4 occurring in the position of the
four-current density in Maxwell's equations. We conclude

therefore that the charge density P is given by:

P=§g=i€{¢%_¢ﬁé}n
{¢C 3‘% &¢g{

where € 1is some real constant.

The total charge for the field can now be calculated

using the complex Fourier expansions for ¢ and ¢

Q=/;f’d\/= cef (.5% - @ * g)dv
v

. L E&(%%e‘h‘ﬂbhe“:g“f‘)(ég,f‘ ‘”3 r .g,,bk‘ oik\r
L3 ), BB

=ig %f{(%"l:"’ N b+ b g, + th:)

% " X ‘
~(9'q0 g b v Qo+ by bh)}

which reduces, using equations {2.1), to:

<

re 2o (glb, - bk‘%-:).

On summation over k each of the last two sums is zero, and @ is:

R :-z2¢ = W, (qy'qy- by by).
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Transforming to aéé‘

Q =(-he) % Lad* 2 - a oy

and a(l;\ according to equations (2.2):

If the particles described by the field are to have charges ‘e
where e is a positive number representing the charge on a proton,
and if(a%}*ag?is to have eigenvalues which are the occupation
numbers for positively charged particles in the momentum state

(+hk) then the number & must be:

- 4)

This amounts to an experimental determination of the constant €

for the total charge of the field quanta is the difference of

two charges, Ewtt\ih, Né*) ] . and E(cﬁ%a? >, N;;'}E,and
experimentally for a system of oppositely chargeg particles the
charge is e times the difference between the total number of
positively charged particles and that of negatively charged particles.
It is therefore possible to identify one set of occupation numbers

for the complex field with positively charged quanta and the

other with negatively charged quanta.
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CHAPTER III
THE VECTOR MESON FIELD AND THE CONCEZPT OF SPIN.

The Vector Field.

.
%

Fields described by real and complex scalar field
functions have been discussed as an illustration of the appearance
in field theory of quanta having zero, positive, or negative
charge. No particle has yet been found to correspond to the
theoretical quanta of the vector meson field. Nevertheless, it
is fruitful to investigate this field in detail, for it is related
to the electromagnetic field whose properties are of such great
importance. The vector meson theory, having quanta of non-zero
rest mass, allows a simpler discussion of field angular momentum,
or of the angular momenta of associated quanta, than does the

electromagnetic field theory.

The vector meson field is described by four quantities,
#.. ¢u ¢,,and %4, which form a four-vector. Uncharged quanta
will be assumed for simplicity, so that P (j = 1,2,3) will be
real, and §§$will be pure imaginary, as for the four-vector of
space-time position X1 xé and Xq have been taken as real, and
X 4 8s 1lct. Each component of the field will satisfy the Klein-

Gordon equation:

Oy Fy - mct fy 20 A=1,2,3,4
2

If we anticipate that the field quanta will have mass m, as has

occurred for the scalar field, we see that a field having quanta:



with rest mass zero would obey the equations:

c),,&,, 4’/\ = ﬁ, A= ,2,3,4.

Then <, could be identified with the four vector potential
Ay = (A, i) of the electromagnetic field, for these are

precisely the wave equations:

2 - % = .
ve< b - _ﬁb ©
v*A -+ A =5,

ct ~

which follow from Maxwell's equations in the absence of charges

or currents. For the vector meson field, the Lagrangian density

L = ‘jv[(‘)” <ﬁx-ax Cﬁ.,,‘)( 2y ¢) - ax ¢v)"" zm_:f_{* P ¢-.)]

leads to the Klein-Gordon equation, for:

L

oL - 496 r_q:__c_f by - and:
oo LY
a[ oL s 29, av'{wv @) =21 & (S0 3y = 8202 va‘)}

(2-1) = 495 % (o0 gty -0y @)

(3.2) = 4Q, dv 9y ¢x - 49, 9){(&,, <.6A,J

This does not appeaf to give the Klein-Gordon equation unless

33' (f)v ¢v) = 0. The equation av¢,,= O is the same as the
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Lorentz condition:

Voé + ¥ = av ¢-p = 0.

L
c
in electromagnetic theory. For the vector field this condition

is a consequence of the Euler-Lagrange equations, for if the latter

are written, from eqguation {(3.1) as:

miet ¢, = 9 (2y Py~ 9y $v))
.ﬁl

then taking the four divergence:

m"cl &AfA = 3‘\3,,9,, ¢) - 3,, 3;3;& ¢~ﬁ.;.
\y |

The right hand side of this equation is zero since A and vV,

being dummy indices indicating the same summation, can have
their r8les interchanged. It follows that if m is not zero, then
dv q§= 0. The Buler-Lagrange equations are then, from equation

(3.2), Klein-Gordon equations.

The field energy for the vector field is calculated in

the usual way. Let:

ch.r % -c"!.v_‘\
= 4 £ e
. Y _ck.ry
and qS‘ 2 Z(bhet‘s.! +bl e 'f,
L%k ‘

In three-dimensional vector notation:

L =29, [(vx @) +mic” ¢*- L (icve, - ) ¢.]

K* c* <
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- 291,{8' (v )" + @ +e*(oxé) r M (f2+ .qg;)}é :
‘hl—

In evaluating & the term /(foy;dv merits special
i\,’

CL

attention. Using the relation:

e der . k.
exq,et =g, xv e - ihxg, et
(7x )= F Clxg e - hrglem ™).
(o N R
.\BX’_EC r—kth,e )

- If qh_is referred to axes which are right handed and orthogonal
and whose third direction coincides with the direction of k,
then (k th) has no third component. Dot products of the form
-, (ke k').r .

(k xq,). (k Xq‘f) e on integration involve the dot
product of two vectors in directions transverse to k, and are
therefore expressible in terms of transverse components: that
is as a sum over two components only.

(vxp)dV: &%, k(- ~ *_aqaXqg -qgq.%fq”
] - Rk qqu“hr thth C‘Lv th qh.( q-br)
v r=i

Evaluation of all the other terms in M is straightforward, and

gives:
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(3.3) W= -2qy Z{k‘&(-bh by -byby - bl - by by
— L
C -

s . - o % X -~ *>
+(q_h'cl"t *9q,.-9,° iu'q_h *9e-9-k

v 2 B lq a0, 9 90+ 9o 90 ® G Ao )

\':I)L

ad - - -

v X * 3
* c“(q_h. et 909t W * 9 1o/

4 ¥ X ¥y X
- m_"_C__ (bﬁfl b"k +bh bh +b§1v§“ + bh b“'\l)§
Since ¢ and <¢4 satisfy the Klein-Gordon eguation it can be

shown as for the scalar field that the eqguations:

.

Qp: - @R 9k bp= - wy by,
(3.4) B

> )t__ N % L 4 . %
q‘h = Luhqh ; bh = LWy bb- .
are consistent. The further condition @&y @P,= O following from

the field equations allows elimination of one of the field

functions. Substitution of the Fourier series for ¢, into:

dndy, = v.& + L P, =o.
(c
and separation of orthogonal terms gives:

(3.5) k. (q, +q_€ﬁ}% + (Bh*{l:) zo.

1
c
If qyare vectors relative to axes whose third direction coincides

with k then'k.q p = kq,,. Equation (3.5) may be written consistently



L1,
ast i’\z: -Cchqm.

"
) %
and bn = +ccbqk3.
which from eguations (2.4) give:

. Y %

560 bt choqy ;b ack gl

. Wy

Eliminating by and b; from the Hamiltonian (3.3) and using
equations {3.4):

LA X - 1 R

W= -2y 2] - (2q8 qy - qudie ~ Q9

cr '

—

i S 2§
+(wh ¢ nl;c_)( 9 G-t * Qe - L]_’;)

*&‘*)13 \ "_'f_‘g"')( 29, q5)

h
T > x g )
4+ C k %n,\-{‘zq&h\r th+thq“h' -’.C%%Zr q'kV)}

2 L 2 4 T *
9y & 4umquhv+(wk+m<i—hc)zmuqks

Y=
Finally A has the form:
N= a wira X tc4 X 3

Z“{ ( ".th Ch’t‘f ¥ om =~ qh3 qkaa'

rain +h
where ¢, has been set equal to ( -1 c*). If Ay, 's are defined

2

by:

Qe = 24 QR -Jp 3 ¥ 7025
,ﬁ

f k4
5; Aps » ak's. ] = S“lﬁ.' Sss'.
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3
* .
Then N : Z“'l :1 Wh Oy By has eigenvalues Zhl k‘dk(%' ler)-
r=i%, -

Similarly the calculation of field momentum gives:

- Zk(Z (o))

The vector meson field is therefore seen to be described by

three independent sets of occupation numbers.

Field Angular Momentum.

Energy and momentum conservation have been shown
to follow from invariance of a field under time and space translations.
As in the classical mechanics of particles;ﬁ angular momentum
conservation for fields should follow from invariance under
rotations of axes, that is, from Lorentz invariance,. It will be
shown that a conservation law does follow from Lorentz invariance
and that the conserved quantity in the case of a scalar field

agrees with the conventional definition of angular momentum 77{.

= [ M dV: [ (x: G-y G)dY.
J /C ) | /Z ] ]

where 1 and j are two of 1, 2, 3 in cyclic permutations. That %f
as defined through its density by (r xG) is not conserved for
the vector field will be shown, but should not be too surprising

when one realizes that under rotations a scalar qSis unchanged,

é . .
See Goldstein, p.p. 258-2063
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whereas a vector ﬁﬁuis changed, so that the scalar field angular
momentum is likely an especially simple case of a more general
angular momentum quantity. This generalbangular momentum will
be shown to consist of the orbital angular momentum M/ plus a
further term 4 . 4 is called the spin, or intrinsic angular
momentum, for it will be shown that in the quantized theory a
particle having no linear momentum, and hence no orbital angular

momentum still has a spin angular momentum.

Before considering the consequences of Lorentz
invariance, we shall investigate the condition for orbital

anzular momentum conservation.

M;l' = (YLG%j - IIG") :“_:LC( 4N T]4‘XJ T,;4).

If this definition is generalized to

(3.7) M sy PR X Tor).

then orbital angular momentum conservation requires

dy Mupy = 0.

Now:
a' Mq{sy = ",ia('fu ayT/BY" s Oy Td-? + T/STSN - TWYSYﬂ>.

and since Jy T, y= O for energy-momentum conservation:

(3.8) 9, Ma(;y: {:LE,(TO‘{5~T/’“)
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If the energy-momentum tensor is symmetric, orbital angular
momentum will be conserved, othzarwiss not. The reader should
verify that for the scalar fieldfﬁ¢f=13ﬁ, but that for the

vector field T“ﬂ is not syametric, and so 27 is not a constant

of the motion. For the vector field {Tﬁu - T,ﬁ) may be set

equal to a four-divergence, ay (d’v: f).( 4{“ ¢x&(s¢y), as the reader
should verify. The quantity (@ 9«¢y‘¢d3(s¢y)may be used as a
density é' and integrated over V using the exponential Fourier
series to give a quantity«é'° On guantization, however, the
components of J' do not have the quantum mechanical angul ar momentum
commutation rule [«3;,4%'] = iﬁﬂj,; (i, j, k) = (1,23) or cyclic

permutations. .4' is therefore not spin.

The general expression for angular momentum density
will now be deduced. Since L is assumed invariant under Lorentsz

o . v under - o
transformation, the variation of L,such transformation will be

7 . . . .
calculated , excluding space-time translations which have been
discussed ‘n considering energy-momentum conservation. Equating

this variation to zero will then lead to a continuity equation

for angular momentum.

If an infinitesimal Lorentz transformation is described
by; '

{
Y/“’ = a,un) xa)-

7
See Appendix by Jauch in Wentzel, p. 218,
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then for the vector field:

¢,;, 2 Quy P
where the @ _,differ infinitesimally from unity for £ =%, and
infinitesimally from zero for 4+ ¥ . The variation may be
considered as a sum of two variations, the first of which produces
a translation of the field, and the second a rotation about the
point of observation. We have seen in considering the energy-
momentum conservation, that the variation due to translation is
Zero. In requiring 8L to be zero, it is then sufficient to
consider the variation produced by rotation at the point of
observation as zero. In this case for the four-vectors x, and

¢}, s the variation is:

SZA:X/‘L“YMz(aMu"SMv)xU:‘w vxv

AL

and similarly S Pz AT 5 F oy

where &“v is the Kronecxer delta and G1“,=-€“J has been written
Wow The variation of L can now be evaluated at the fixed point

under rotation:

(2.9) §L= oL §q, + 2L 8(2,5 &),
assuming L does not depend explicitly on the X, 's.

(3.10) Now: 8(d, 9 ) = 2.(8cg.) +(8§26) ...

(5.11) ana:(82)= 8} -2,=2 - 2 = 2.5 -2 =2 (2 -5p,)

—

3Ys °¥s 9% Yy s 9¥e oXg
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For the Lorentz transformation x, = a,y X, the inverse

transformation is x, = a,, x, , so that
(3012) gXF’ = &(fi;,'
QUi

Combining equations (3.9), (3.10), (3.11), and (3.12), and

using -~ the fact that 4 P =W, P,

oL = aL (Wap Pp) t 2 [WM:" Or Pp + Wor p B,
Q. 3(9, 4.)

Substituting from the Euler-Lagrange equations for J. :

W 5‘;{ L — ¢p] * "ng( aP ¢u} _%L—-—-
YERN) (s Pur,

In the last term, interchanging the rfles of o and .,

38

1]

A
(2.13) Sszup{aoé oL ¢>P}+§39¢:§ oL 33 E
L Olog ) 20Gu o),

This is not a continuity equation such as was obtained from §L
. ' et . . . .
under the transformation\y = e 4’1n discussing charge. It is
however a condition on L which leads to a continuity equation,
First w,p must be eliminated. For the Lorentz transformat ion,

the orthogonality condition:
Auw Gy = Sl

in terms of the w,, 's may be written:

P4
(N\IMZ’ + SM,))( W)\z} s SAV‘) = S,u—)

Since the w

. s o . ) . P .
wv S are infinitesimals, (w“ywxd) is an infinitesimal

of nigher order than the other terms and may be dropped.
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Then:

Wu)=s — w A s

The w,,are arbitrary except for their property of being

infinitesimals, and this anti-symmetry property. Suppose

Wean = “Wam = &€ , and w oy = 0 if (u,?) is not (m,n). Then in
summation
N
“h'Tsz c(ﬁm—f%m;-o

Since € is not zero, [, =T, for every element of ley:
the latter is a symmetrical tensor. Applying this reasoning to

equation (3.13) which has the form: 'w“ff;gs 0, writing er:rkaz

a{ oL 4»,.1 + Qe ¢5) L . a«i_e_g_b_ <;,] +2, 4,) oL
a(ao'tr’:u:

2(0.Ps) (2, ¢p) o3 b,
which 1is:
a.{al- bp - IL ¢“\=§<am,)_a_g__ (opd.) oL }
(3.14) 9(2,¢..) YEWS 0(2, bg) 200..%,)

- From the definition "[;Mp ={§Q“ éa_}_a_l___ - L S“f,}, the right
2(0ps)

hand side of equation (3.14) is (T _p=- Tp,) which in turn is equal
to (ic anupr) from equation (3.8). Using the definition (3.7)

for MA‘F,, equation (3.14) becomes:

az:r{ ,_a_._L_..m_ -¢f - dL ¢,~} = "'2{{ (c xX. TPO' - < 'xP Tu. v}
{209 ¢u) a(ar¢p§ «C

which has the form:

8¢{ Mupe +5M,,°,,s Zo.-
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is called the spin tensor, and is defined by:

SMPO = L { ¢. oL -
v 0Co,p) a(a, ¢,L)\§

The total angular momentum, consisting of orbital plus spin

whers 5,

e

angular momentum, is therefore conserved for the vector field.

In order to investigate the spin of the vector meson
the field spin must be calculated and the theory quantized. For

the field:

(3.15) 4 =/ 5 dV  wrhrre (WC;S aL - ¢ L
v | Lal 4),) a(cb
Using the vector fileld Lagrangian density:

S;j4= ¢j Ca(ic t)"' Py - ¢‘} - C/»,-_[ z( ico) Py - @13

-
—

Then: S 2 ¢x( @d-icy g,

and substituting for ¢ and ¢4:

—

L RE -

X(q .e. wr‘i—qift ‘e + Cck‘bhvp;h.t—fch'b: e-iigi.f)
- z.Z{ cc(qhﬁh\b k—lC(thh) bhf(qhxq o) +(qhan

4=z J av 3 (q, e™" +q:e';k'f)x

uc(qk &) b, * ‘C(‘ib x&)b_, R (qh qu + (Qk Xq_y, )‘f

Substituting from equations (3. 4) and (3 6) for qh and for bh’

h X'\ $

-L%cw [(qk“q ' (qk Xq- k; "L(Qk ’“M‘l
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The terms in (%h¥%=k) and (qiﬁig_;) cancel separately on

summation over k. The above form for _! is not such that the
eigenvalues after quantization can be deduced in the way in which
energy and momentum eigenvalues have been found. The reason is

that the complex Fourier expansion, which is really an expansion

in free-particle momentum eigenfunctions, separates the quantities
7-/,/_2] and /_X into the contributions from given momentum eigenstates,
whereas the angular momentum eigenstates do not correspond to

given values of linear momentum. In fact, 15 is not even a constant
of the motion, so that in the quantized theory <§ will not commute
with 2/ and it will therefore not be possible to find a representation
in which & and <§ have simultaneous eigenvalues. In contrast, in
discussing ¥ and J? we have tacitly assumed a representation in
which 2 and # have simultaneous eigenfunctions. In spite of the
fact that 77 and 4 are not convenient forms in the q's and b's, if
one quantizes by transforming to the a 's and q"ss the commutators
for the components of M , calculated using the commutation rule

for thea's and a*'s, will be found to be angular momentum relations:

[#1:5, w1 = chmy,

where (i, j, k) is a cyclic permutation of (1,2,3), The same will
be found for spin, as will be proven in a special case. The proofs
of these statements in general are straightforward, but are too

tedious to warrant the space here,

There is, however, a conservation law which can only be
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proven conveniently from the form (3.15) for § . A particle
having momentum (hk) has no orbital angular momentum in the

direction k. If

Cmed) = % Cmy s 4.

and»if jz&and-ﬂhare referred to axes whose three-direction is

in the direction of k, then 2”&;“ 0. Suppose that only particles
of type k are considered. Since angular momentum including spin

is conserved, each component, and in particular the three-
component ( fp.+ A.,), must be conserved separately. Since 7’1),_3= ¢
it follows that €h3, the longitudinal component of spin, is a
constant of the motion. This result can be verified quantum
mechanically by evaluating the commutator of the Hamiltonian with
the k and (-k) terms of‘Ja in equation (3.15) after quantization.

The latter expression is:

(A4 ), = - ai Wl xqg,)+ (qpxq.)] .

since the terms having the cross product with k have no three-

component. (Quantizing as for the Hamiltonian, with

Fer ”‘JZ' Qi 27T
¢

. X * b
@k*igvl!)'i = "tlz A {ak\' ah'z“ awz ak"?'
k- 4k
In evaluating the commutator, we need consider only the terms of
XN in k and (=k), corresponding to the transverse field components,

for:

Sl = S s
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These terms are:
X

(Nh iz‘/_h)‘z = 2 5 (ah-r ah-r).

The commutator is then:

LCdy v £.0),, (o v i),]

2 4

13}

ik hz ) [Capfap,-ag,* ap,) s Captay o, o h‘z)]
=%

‘*‘ %{(a\*al alial - a|*a| a|‘:az_) ‘1’( C\;*a-;_ a* Ry - a;*alq\*&g)
- (a*a, a,'a, -~ a*a,a¥a)) - Ca*oa¥cy ~ al*cg,_a:q,)g
. 5 ¥
= (h % {[ arara,-a*(ara, +1)]a,+[ a.q.a, - (a,aX-1) a.) aX

b 4
- [a'al*a\ "{a|al*" ‘% q;j Q;]"{az‘:a:alnc}*: (0(:07.*')] aa}“

= Ltl Z{(-a‘,*)a,_i—(faﬂa.* - (a.)az_* "‘(" az.*?’ Ch} = 0.
it

The quantum mechanical conservation law for the longitudinal
component of spin has therefore been proven using only the

commutation rules for the operators a,, and ahﬁ .

In order to find the intrinsic angular momentum of
a vector meson, we consider a quantized field for which Ny = koo
This means that there is in the field region only one particle,
and this particle has gero linear momentum. The spin, which

comprises the total angular momentum of a particle having no
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linear momentum, is:
= : ¥
4, = —aiw.(qltxq,).

- 0

from equation (3.15) with k equal to zero. As in setting up A/
for the field, the quantization procedure follows elimination
of the q 's, and ordering products with q*'s preceding ¢'s.

The substitution

= ,u) . - . = s
Qovr = 2 __:0 -qov,r-'az»,: a°3— 2mC _qoa.
7

'Hu)o
where W, =-=c° » et b
o o +mi¢t . mect
H k

and whare GQg, (¥ =1,2,3) are operators such that

[ Qor » ao:.} = 8'...\‘

then gives'the quantum mechanical spin operator:

. 2 T x
oo -aime| & (adlay,-aan) €
H L amct
T % ' * 2 % +* .%
+rh Cagya, - Qo 0‘03) €.+ K (a, a5~ Aoy aN)gs |
4mc 4mc’ g

First the formal angular momentum property of ,Xo will be

proven. For example:
. T *® b 4 { *
[/J()l)JO)J = -ih %.(aoz. Qo3 = Uy, aOl} , VQoz Aoy ~ aoaimicn)]

. ¥, * ¥ * L A + * X, o~
= - Lh [@.02_ 6(03 6\03 ao\ -~ qD3 a°| 001 a03,‘7- ‘aol C\°3 a°| aog"ao‘ C(Olaolao\g’;‘

¥ % % * b * + *
- (aos Oo; Qo3 Qo) = Aoz Ae1 Qo3 Cnyl b (Cl°3 Qo, Qo Co3 ‘ao*| Qoaaoaﬁczﬂ :
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%

. * 7 ? QA—‘( * ® — * QT
) -‘Hﬁ Ao a‘ot [ Qo3 Ctoy =1\ Qorlcs "‘é*aozaolfa—ﬁ Qo3 (a'°30‘°3“).§
. % *
= -Ch { _aO\ aoz_ + aoz ao|)‘
= th “Joa'

A similar result holds true for the other two components:

{"‘o&, "‘yoj] = ('?:\/!om.

-~

where (i,j,m) is a cyclic permutation of (1,2,3). From the
properties of angular momentum operators \‘éol&has eigenvalues
of the form s(s + 1) >. The spin of the particle described by
the corresponding eigenfunction is defined to be s. Now:

3
; S 3 T X * A
iR S (adlag - adj an)?

i,i:\

with summation such that i#j, and i and 'j are always in cyclic

order (1,2,3). The fact that there is assumed to be one particle

only in the state with k = @ may be written:

3
Z N, =t
=\

that is, two of the N, are zero, and one of them is unity. Then:
k3 2 2 &
|4°, = '~tt ‘z:' (acf. Q;} ao‘ aoj + a:‘ ac" onfaoc
6l

Y
\

% + * & )
- ao;CL03 O.oj A, - Qo,’ Qoi Ay,: Aoj)

5
3

i

p

i
i

L
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(3.16) =-h Z LCa, am»(a,,a D+ Ca,, C‘i;}(a.;aoa
49)

(3.17) - (ao*i, aoi)(aai A ) (a°j Clo (dou aociv}_

The terms in line (3.16) operating on a system for which Noj =1,
and Noy = O are identically zero, for the state function operated
on by'a,lbecomes that for no particles, and Operation again w1thaJ
gives identically zero. Operation with @,; once gives identically

zero. This is a necessary condition that the energy eigenvalues

be bounded below. The terms in line (3.17) have eigenvalues:

‘/ﬁia\l = 2 [No;(N°j+q/ + No,(NNv)]

")j
. ¥ ¥ .
since ( a,; CLO;.*) = (Qoi Qp; * 1) and Q.,; Qo has eigenvalues

Nei+ Since not both of Ng¢ and N oj are different from zero:

1 ORI Z(Nm+No), = R (va )= 28

43

Equating this eigenvalue to s(s + 1) &", the spin must be s = 1.
Therefore the vector meson could be observed to have anxbne of the
spin values O, £1 in a gziven direction. It has now been shown

that the gquanta of a field described by three independent vector
components possess three possible intrinsic angular momentum states,

observable in the non-relativistic limit.

It should not be thought, however, that the number of
field components determine the spin of the quanta. For the complex
scalar field we have seen that the two field functions are related

to the charges of the quanta. In the next section a field described
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by four independent complex functions will be shown to have two

possible spin values.

Before leaving the subject of angular momentum it
should be proved that the quanta of the scalar field have zero
spin. If ¢ and <b*are scalars, then for an infinitesimal Lorentz
transformation, 8¢ and Scb* are zero at a fixed point, so that
referring back to equation (3.9):
Sl L (83, ¢ + oL  (54,) ¢*.
EIEWS (o, *

It follows by the same argument as for the vector field that:

vai aL .a?¢ +- 3L .ap¢*} = 0.

B

JER'S) (9,9 %)

and from the antisymmetry of Wop:

{ A . Opd + oL a,,¢*};§a:_ O & + oL a,w}
2(2,4) (9, ¢*) (3, ) 203 %)

If ¢is real the statement is trivial and gives no information.

If‘qbis complex the statement is equivalent to saying that T

is symmetric, and therefore that orbital anzular momentum is conserved,

since
Dy Mx(&Y = -‘; (Td(y—”i};x).
[ 8 .

The condition 8L = O under infinitesimal Lorentz transformation
therefore shows that the conserved angular momentum is the same

as the orbital angular momentum: there is no spin.
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CHAPTER IV,
THE DIRAC PARTICLES: THE SPINOR FIELD

The most common elementary particles, electrons,
protons, and neutrons, are described by the Dirac theory. The
development of the Dirac equation is indicated in the following
argument. For a causal quantum theory obeying a superposition
principle, the differential equation describing the system
should be linear and should involve only first time derivatives.
The Schrodinger equation has these properties. However, for a
covariant, relativistic theory, time and space coordinates
should enter on an equal basis: first derivatives only with
‘respect to spatial coordinates should occur., If the quantum
mechanical momentum operator is represented by (-iiw ), and
the enerqy operator by (ifi d ), the Hamiltonian operator replacing

ot
the classical expression

1
H= (prct+m*c®) ™
will be of the form:

H:- cx.p +Amct .

where clearly o and (4 cannot be ordinary numbers. Assuming «
and /i commute with ordinary numbers and with coordinates and
momenta, their algebra can be deduced from considering:

HY = (e*p +mre?) = ( cx.p+pmc
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or.
mtec 4 FCpr +CTpr +C‘P3‘" = ¢ lepj" + e % piapa + % p. &, P:)

+lapap; +ospap) ¢ (o Pr o33 +ot3 ps oty pu).

+me(epa+p .-p) + A m*c4

With p chosen to be Zero, we see that:
{e‘ = 1.

In the remaining expression, the choice of any two of

(p, Pys pa) equal to zero shows that:

Ot:l =1

; .
{dl /3 i'/&o(j..) 0.

satisfies the equation resulting. With these results, the

choice of any one of (p‘ s Dy p3) zero gives the result:

(ﬂ;o(j fdj“,;) =0,
Since atj‘, # are both one, as operators o; and @ have
eigenvalues * 1, and since they have only these real eigenvalues,

they are Hermitian. Furthermore the o(j and (3 anticommute in

pairs. The anticommutator is written:
(«‘-{3 +(3uj§ = [ at,-,p]+.

Returning to the Hamiltonian operator involving « and 3 , the
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Dirac equation for free particles is:

(4.1) Ht = (ca.p +mcpl e 5 ihoy .
ot
or setting p = ifig and multiplying on the left with 8:

(4.2) -i’ﬁcﬂ v+ he 299 + g mc* Y =o0.
¢ ot

A convenient notation is to set - 1Aki=Y; and (B = Y4,

Then {(4.2) becomes:

(4.3) Ypap“"ff_’}g\l’:O-}-
h

The operators « and @ may be represented by four

by four matrices:
o o' i

(hed) o = ), s=[ T o)
g' o " o -1

where 0'are the Pauli spin matrices:

o | o -¢ |} i
A O"l' = i ) 0‘;' =
i\ 0 [ o o |

(14'05) f"=

and I and O are two by two identity and zero matrices
respectively. The notation indicates that ®; has U{'in the

| appropriate position. The reader should verify that the matrices
so defined for & and B4 have the required anticommutation
relations and that af'a A = 1. If this matrix representation
is used for o and(s, the state functions or operands must be

four row matrices: they are taken to be column matrices.
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Invariance of equation (4.3) under Lorentzytransformation8

XP = af)vxv.

(4.6) 5

H

a,pv 9,, .

may be obtained by requiring

(4o7) Y 3}; ¢! + mc /514,:':0.
: h

where ¥'is defined by some transformation

("""’8) j q": Sq"u

where S is assumed to have an inverse. S is called a spinor
transformation, and quantities which transform accoring to

(4.8) are called spinors. The Dirac equation could alternatively
be made invariant by requiring the ia's to transform as vector
components. ¥ would then be a column matrix of scalar quantities,
but the form of the equation would change under Lorentz
transformation in the sense that the Y-matrices would’have a

different form in each different Lorentz frame.

Only Lorentz,transfofmations not involving reflection of time
axes will be considered. For discussion of time reflections
in Dirac theory, see R. H. Goed, Jr: " Properties of the
Dirac Matrices'!', Rev. Mod. Phys., 27, No. 2, 187 -'211,
April, 1955,
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The spinor transformation rule is generally assumed, and will
be followed here. The properties of S will now be discussed:;
Substituting equations (4.6) and (4.8) into (4.7):

Ye A, 0, (59) +r%?(54/) = o.

Multiplication on the left by S~' gives:
(auy 57'7,.S) 2y +me Y =0
: h

Comparing with equation (4.3) it follows that:
(o, S"7.S) = v,

or, multiplying on the left by Ay and summing, from the

orthogonality relation A Bvu © Sh:

(4.9) (s %, 5) = ay, 1.

This matrix equation determines the spinor transformation S,
and relates it to the Lorentz transformation.

Since the operators « and 8 are Hermitian, the Hermitian
adjoint of the Dirac equation (4.3) should be valid. The
Hermitian adjoint of a matrix B, which is the complex conjugate

of its transpose, will be written B*i Then from (4.3)

(4.10) (0,4) 7% + me 9* =0
e

since for matrices B and C:
«
(B) = C*B*.

9 See, for example, Good, loc. cit.
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Now Yj-*- -if®; and %=/ so that:

% . < ¥ ' . R . B . *__
Yj = +¢aj BT = ‘“Jﬁ"."ﬁ“; and 74 = /3

It follows that the ¥'s as defined are Hermitian. Alsc:”

(2,¢) = 1_ 29* . —o,4%

——————

e 5t
Making use of these relations, equation (4.10) becomes:
Jaj Y (pAIp) - 2 4 Y, + mc b ¥ =0,
| %
where 4* = 1 has been inserted in the first term. Multiplying

this last equation on the right by @ and defining

&L = x
L SR R
we have for the Hermitian adjoint Dirac equation:

(4.11) 2u¥4Tr - mc a0
%

The requirement of invariance of the form of the Y, 's under
Lorentz transformation, applied to this equation, gives:
! ‘
(4.12) % (¥7) 7 = me(¢1) =0
h

From this we cah, by comparison with (4.11), obtain a form

for (*tf , which compared with

(‘Ptrz(q,“')'ﬁ ;(4,.)*14: !34’)*/3 : \l»*S*ﬁ.

‘o x ' '
should give a condition on S°. Now %; = g‘,,a R
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Now equation (Ls12) has the form:

9,,(4'”‘4,@;;» Yo - me (¥1)' = 0.
H
and we have:

-1 =

To obtain a v ):u. » maltiply the latter equation on the left by S5,

on the right by 5~ and by a,, @nd sum overAl, Then:
~1

v Yo T Gy Ay S'):\S ’

From the orthogonality of the lorentg transformation

Ly Xy )= S’w\

we have:

ol |
2 59 )"“ = SY,,S .

Substituting this into (L,12) then gives:

Oy <""t)‘,( 37, 57) - "_‘_’_‘_‘(4’1)‘ = o,
| h

and multiplica‘bioﬁ on the right by S leads to the conclusien

that, for the equatien to ba the same as (4.11), the cendition
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is:

(4t = (+1)'S
or VAR ‘V‘ S = ("f’)

From the spinor transformation ¥'= S¥ we had the result:

* oo %
6#*) 8
It follows that S must have the property:

(4.13) ' 51(3 = ﬂS".
This property will be of use in a fater discussion.
For the field theory of Dirac spinors, the

Lagrangian density

(h.14) L= -Fe vy o+ m) ¥ -hel- (2 $T)7 +me $1] ¢
2 ] z *h

leads by Hamilton's principle to the field equations (4.3) and
(4+11). In this the spihors ¢ and Pt will be taken as the
field functions. That in the matrix representation each consists
of four functions, and that one should expect ndt two but eight
sets of occupation numbers,will be shown to be correct at a
later stage. VieWing the Dirac equation in its general form,
with no particular representation in mind, only leads at this
stage to field functions ¥ and 4zt From the choice (4.14)
for L, the Euler-Lagrange equations are

oL . -mc 4T+ Ko ')y

¢ z

oy oL : -hc .oy ¥y
()(9«,)4‘} z
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whence: Op ‘5,1";‘ - mc ¢! =0
+
in agreement with (4.11). Similarly equation (4.3) follows
from '
ot 20, +%)

It should be noted that L is defined in equation (4.14) is
i
zero as a consequence of the field equations. This illustrates

the importance of L as a form rather than as a number.

The argument advanced in Chapter I to show that
invariance of L under translations of four-space axes implies
enefgy and momentum continuity equations is not dependeht on
the nature of the field functions and*%f, as reéxamination
of the argument will convince the reader. One must, in
evaluating 8L, write ‘ oL - éﬁﬁ;) in such a way that equating

, oxv oKy .
the result to zero is not a trivial form. The tensor

T
Tuw = ¥ L+ IL_ 9,% - LE,,.
23 ¥Y) Ao ¥)
therefore obeys a continuity equation for thé Dirac field.

The energy-momentum tensor for the Dirac field, using the field

equation (4.3) and {(4.11) is:

Ay

(4.15) T, = he[(9, 4N % - Ty 0 +].
A
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The field Hamiltonian is then:

7{=/‘,Hdv=j:/Tq4dV

- ﬁ;_;[ [Co 4N 4 -¢ty, 0,4]dV
4

£

Making use of the field equations in the form:

Y4'34¢ = "‘?_%}Is- 4’ - Yj aj"“'

me 47 - 2 ¥ty
h

and writing ‘gﬂr)',‘ = \P*ﬂl-“- ;(’* , M becomes:
A - ﬁig/‘;dV[(r%c +t- 04ty y —‘~l»“(—r%; -y op¥]

Y

and 344’1. 7'4

< he [ avlame 414 - 55041 4) + 24Tr; 94] .
zly %

Transforming

[ Bj(‘l»f fj ‘I’)d\/.‘
v .

to a surface integral, if 1'13 required to be periodic over
the bounding surface of the region V, or to vanish on the
surface, the integral is zero. Using the definition of the Y's,

N then reduces to:

(4.16) 2/ = / $¥(-cheo.v + mc's) ¢ dV
174
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This is the expression in the first quantized theory for
the expected average in V of the operator H = + c&.p *ﬁmc"
for the state Y of the system. Similarly the field momentum

is given by:

A [ Gj dV = / TMdV

v

__kj Lot v, & - ¢, ; ¢] dv
Ly

- c_ls/ 5 (¥ 4) - 24Ty 2. ¢]dv.
2y

which from the periodicity of ¥, using Gauss' theorem again

on the first term; reduces to:?
(4.17) ] =[ ¢ *(-ihd;) ¢dV.
'}

The expression for the spin of the Dirac field will

now be deduced. It is clear from equation (4.15) defining Tuw

that the energy-momentum tensor is not symmetric, and it follows

as shown in Chapter'III that the orbital angular momentum
an=/; (rxG). dV is not a conserved quantity (see equation 3.8).

The argument deducing angular momentum conservation %ncluding

spin from Lorentz invariance was carried out only for scalar and

vector fields. For the spinor field under an infinitesimal
Lorentz transformation,

52f W, ., Xv.
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as in Chapter III. The spinor transformation is:

.18 . {
e8] gy s w9 2S¢t -¢ =(S-I) ¥ = SV
where $S is an infinitesimal transformation equal to the

difference of S from the identity transformation I. Similarly:

But < ' T-gt= gf57 gt = ¢H(s7-T) = $T (557

If S = (I + &S), then to first order in infinitesimal quantities,
87" = (I - §S) satisfied the requirement

SST = T.

the terms linear in §S cancelling. It follows that

ss™ =(s'-I) =-§5.

and therefore that

(4.19) oyl = —¢pTgs

Then evaluating the variation of L at a fixed point:
SL= L84 +SToL + oL §(0,4) + 5o, 1) OL .
o¢ PYARR 7R PIERT)

Using (4.18), (4.19), and (3.11):
SL= oL .§5¢ - W8S .aL +aL 3, (559 -2,(4185) oL
¢ PYREFTZR (o4 ¥T)

+wa’?i__a_l_-_ BPQ-P "(la?“’*)__@_&___ .
,_t)(bc‘(—'\ ()(3,‘*(-'1-)
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which from the Euler-Lagrange equations and the definition of

T upis:

- t |
(4.20) §L= 95{ oL $S% - ¢85 oL %ﬂnw,?{ T,, +L o).
o(os%) 2, H)
As in the discussion of angular momentum for the vector
field, we wish to express $S as a linear combination of the

Weo 'S for §S is to be a first order infinitesimal.

85 = wyo A ge-

Now f\yemust be a four-by=-four matrix if we think of S as such,
taken ;

and may bepantisymmetrical in the indices 6" and ¢ , since Wgqp

is antisymmetrical and interchange of dummy indices should not

change §3. The trial form

(4o21) 55 = A wip( Yo Yp = 9p Ys)

is therefore reasonable, where A i1s a constant to be determined.
The condition set on S by a Lorentz transformation a is

P8
5-‘7;55 s a,y Y-

from equation (4.9). Substituting s™' = (I-§S) and S = (I +$88),

and a,, = ( 8.0% W), and considering only first order

infinitesimals:

(-55) 7. (T+55) = (Woo+ Suw) Vs




69.

(Lo22) or: YM 29 -SS)}’“_ =W, Ty,
Substituting the form (4:. 21) for §S and using the relations

Y“yv'ﬁ" 7,‘,7‘; = 25/“,,

which follow from the properties of & and B, the condition

(4.22) on &S becomes:
Aw,e§ 7Y - %) - (L, = YAV = w7

= Awep{(-7, 7 425,07 ~ (=Yo7 425, ) 7

0

K 2 Tp = 2ip Yy = 200 Yo 200 )

ocu ¥

A w0 Y,.

where the property w ., = -w,, has been used, and all summed
indices have been represented by » . It follows that (8A)

must equal one. Then §S in (4.21) may be written:

§S = . celYe Vo= Yo Vo)

Schweber shows wthat this form for §S is uniquely determined

by equation (4.22) subject to the normalization (determinant

of &8) = 1.

0
Schweber, et. al: p. 26,
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Returning to the calculation of §L, equation (4.20)

now becomes:

SL = 2y AR AA LRGN A AN,
"‘r { L(a.,+) ¢ 20, ¥7)

T, +Ls,,,}

and from the antisymmetry of wa,'(, if 8L = 0, the tensor in{ }

brackets must be symmetric. That is:

a,,{ S ALTECAREAS A A7 P REN S G Wit v |
PYEX DR 4 3(3,4") |

which has the form:

ov ( Seow *+ M‘Po*;))

Sfuv lz_.:'__{“’?(ypyr' yO'YF)—_%_’:__ oL _(ry,-% YP)“’}.
(o441 20s1)

since ATg o -Tp,)= -ic 9, (Mpyy).

The spin density § i 4 is therefore:

J
Sij= ke {\P'(Vz AONEAT IV U AR 7‘~)~L}.
4ic ,

and since Y4 anticommutes with 7',' :

S¢j = }'_\_{ ¢ Y‘-Yj~YjV«;%@'}.
44

Using the definition 7] = -1A#; and the anticommutation rules
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between the oy and (5 in pairs, S,-J' can be written:

S = h { qa*(egxes)%%

—

where (@®X®) is the ordinary vector cross product. Using the

matrix representation (4.4) and (4.5) for & , and defining

’ }
o= < 2 s then(es xq_c)-‘- (9_‘ Xg’), and since
o o : |
(g' Xo')= zig! , it follows that:
S=h(¥*c¥).
2

~The spin of the field is then:

(4.23) /__f=/§av = 5[ (+* o w)av.
v v

The matrix (g o*} is therefore the spin operator in the first
5 2

quantized theory.

As a first step toward second quantization, ¥ and \l't
must be expanded in Fourier seriés. Now & is to be a solution
of the Dirac equation: that is, an energy eigenfunction. Its
Fourier series must then be an expansion in avcoﬁplete set of
free particle energy eigenfunctions. For this purpose a non-
degenerate set of eigenfunctions will be found by’considering the
eigenfunctions of operators commuting with the Hamiltonian.

If the 7 's are written as fbur—by-four matrices and Y as a

four component spinor, the Dirac equation

L‘Dv‘l’ +h_1£—q"=0

h
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and its Hermitian adjoint are each really four equations.
Now suppose that ¢, is a momentum eigenfunction. Then:

~th V“'k = (tcl_l_) 4’&-

§

and Y, must have the form:

ik.r

\ﬁlk 2 Up ©
where up is a spinor not depending on position. If V¥, is to
be simultaneously an energy éigenfunction, from equations
(4.2) and the momentum eigenfunction preperty:

-ihe v b tam by - Ep ¥y =0

assuming iﬁb__t_l._b = Eh""h' This reduces to:

ot - A

(HC 9‘_-& *pmc}-Ek‘} WKy =0
If, using the matrices (4o4) for X and (3 , one writes down
the four equations for the four components of Ups then the

condition that a non-trivial solution exists is:"

(Ep -herk - m'ct) = 0.

This is an equation of fourth degree in Eh’ having two double

roots corresponding to:
[}
/
Ep=£(me? sher k)

i
c.f. Schiff, p. 315.
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It is to be expected that there are four linearly independent
solutions Ups énd this is found to be true. To remove the
twofold degeneracy of the energy eigenvalues which still remains
after considering simultaneous momentum eigenfunctions, a third
operator is sought which commutes with p and H and for which an
eigenfunction of p and H will have two different eigenvalues.
Commutation with H implies that the operator is a constant of
the motion. Two &wehk constants we know to be the angular
momentum including spin, and the longitudinal component of spin.
Neamtan'= has shown that the latter operator, (e.p), is
convenient to resolve the degeneracy. From the discussion of
spin in Chapter III we know that (g.p) and H commute, and that

( 0.p) commutes with p follows from:

(-itig) 0. (-ihv) = . (-ihe) (kb v).

For given eigenvalues Epof H and (k) of p, the eigenvalues
of {g.p) are found from writing in matrix form the eigenvalue

equation

¢ (-i60) by = (Re) ¢y

where (fio’) is the eigenvalue to be determined. Since

(-ihv) \’)lz = (fk) 4'&: (Ak) uhe‘g{ , the eigenvalue equation

12
S. M. Neamtan: Am. J. Phys., 20, 450 (1952).
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is: | Ry k -k, 0 o ‘\ {u;) -[agw
| bt iRy -k, it o | :‘ | (;\
g_—.(—itv)‘l'k"‘h . ‘ -‘-(ﬁ’)
1 . 3% ()
0 o Ry RecRy U U
\ 0 o kR.+ l‘-mh'a_ =k, / g\ uf‘“} [l{fj}

The determinant of the coefficients of the four equations

resulting is:

L-ky+ o= kRZ-k]®

which must be zero for a non-trivial solution. Then:

ot = h:'-fk:'fk; -'-'kl

or: (Kd) = thk

It follows that the four linearly independent wave functions
\Ph satisfying the Dirac equatipn and having a given momentum
eigenvalue (fik) may be separated into two pairs, each pair

‘corresponding to a given sign of

E, = t(mict + k)™ = ¢ € h-

and that a given pair may be distinguished as corresponding to
particles having spin parallel or antiparallel to the momentum

(Ak). The orthogohality of eigenfunctions of (o.p) belonging
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to different eigenvalues follows from the fact that (eo.p) is
Hérmitian. That ¢ is Hermitian follows from the fact that each
component has real eigenvalues, since 0‘32= 1. Let Wpgand Wy,
correspond‘to eigenfunctions of (o.p) belonging to different

eigenvalues (i 03 ¢). From the Hermiticity of (g.p):

H

(4021&) g'.g u’ks a's uksh

*

(4o25) Uy f-t

*
Oy URy -

assuming ugp¢ and u gy correspond to eigenfunctions of p with
eigenvalue (fik). Multiplying (4.24) on the left by ukf and
(4.25) on the right by uys and subtracting gives the result

* =
(0g-0y) Uy, Ups= 0.

Now if k is not zero,Ogy,are not zero, ard if r #5S , then
(05 - 0+) is not zero, so that:
* -
Upy Ups 0
Similarly eigenfunctions of H belonging to different eigenvalues

‘are orthogonal, so that if the spinors are normalized:

*
Upy Ups = SY‘S'
where r and s can have four values each.

For the Fourier expansion of ¥ we now write

4 _ ckr ‘
“’"26) Y= Zk (q\tﬂ “Urse © ¥ Qies- “Urs- €

$=1,2

1 “‘.g'[)
23/1
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where uhﬂe‘!': is a simultaneous eigenfunction of H, p, and

(0. p) belonging to eigenvalues E, = +&, p = (fik), and the
summation over s covering both eigenvalues of (’g'._g).

Similarly ‘#ks'eﬁhf is an eigenfunction of H with E, = -€,
The sum over k is the same as in earlier chapters where we
consider a region cubical in shape with sides of lengthl.

Similarly

+ik.r

x T R.Y .
+qtks- Ups- € | )

t ¥ t  ik.r
L.27) ¥ = jfg% 2;, (qh“‘ Ups, €

-c €t <
It is clear that u, —~e ¢ /fi and Wp,_ ~ e’ ﬁt/5
3+ 3

since they

satisfy (RdWUy - £€wUs, and that the expansions (4.26) and
1
(4.27) are plane-wave expansions forming a complete set. Using

these expansions the values of #/, 2, 4, and I/__!.I‘ will be
worked out and the second quantization effected. For the
Hamiltonian: : v
z/:/ ¥ (-ikhica .vemeg) P dV.
174
and substituting the Fourier series for V¥ and ¥ and using
the fact that
(-ikead.v + merg)uy = €Uy,

it follows that:

N= 2, % * e-ik.f x ok ek
S5 Bl v ra,t w et

X [qkl,|* ek' u.k|$l+et_
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Using the relationships:

* - |
Upy Wpet = ®ss'.

* — - * -
and uk* u,“ =1 3 M’ki Up = (o]
and '_/ eHe-blr av -5y
23 v
A reduces to: , |
(4.28) H = Z g, ( h )
bee qks qkﬂ Qes- Qps-1-

As in the meson field theory, we here wish to quantize by
considering the g's and q*'s as non-commuting operators. We

know, however, that the relations

(4e29) [ aksf ’al:s't'] = Skk’ dsse Sﬂ'-

where t =%, lead to numbér of particles operators

Nhst = (“%;tiih t) having as eigenvalues all p031tive 1ntegers
and zero. It is known experimentally, however, that two
electrons having the same energy, momentum, and spin cannot

exist in a closed system: this is the Pauli exclusion principle,
and applies to all particles Cbeying the Dirac equation. The
principle states, in other words, that the operator N ¢ can
only have eigenvalues zero or one. This may be expressed by

the equation

(4300 Npge (Npge -1) = Qpst Anae Cayge Qpse =1 = 0.
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« . .
If the a's and a 's are to have the interpretation of creation

and annihilation operators, they must have the properties:

(4’.31)‘ Aisg Fpst = © qkst*qhst Te.

for ay opefating twice on a state function for which N, is one
or zero must give identically zero, and a{: must likewise, for
otherwise Ny could have a value of at least two. Operators ak.
and a:obeying (4.29) will satisfy (4.30) of course, but will
not in general satisfy (4.31). However, operator rules:

(4. 32) (@ st ab:s::" * “w;e' Apsy) = [“ks’cr“h';e'}: S S;,- Sff’j
Lape.apse]e =1 ah{'st’ ’ ak’s‘i'}+= ©-

allow all three consequences (4.30) and (4.31), of the Pauli
principle, to be satisfied. Accordingly, the quantization
procedure for the Dirac field involves replacing the expansion

coefficients 9 pst by operators a; which satisfy the anticommutation

rules (4.32). The reader should verify that if {'h is an

eigenfunction of A such that
7/‘},{ = Zha;ﬂg‘}’k = Nkekgh-

where Ny is zero or one, then from the rules (4.32) it follows
that ( a@f “Ek) is an eigenfunction of N belonging to an eigenvaluek
: Eh’ and that a: is an operator which either increases by one

or leaves unchanged the numﬂer of particles Ny depending on

whether Ny is zero or one respectively. Similarly Qpreduces
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by one or leave unchanged the number of particles in the state

g’

After quantization the Hamiltonian (4.28) has the

form:

x
H = kz; z, (ol QA ese =~ ahs-*ab.s-‘)
>

with eigenvalues:
M= 5 £,(Npg, - Ny )

k;s
This form for M allows a negative energy for the system of
free particles described by the second quantized field. Such
a situation is not in agreement with the conventional notion
that free particles can have only positive energy ’
Cp= + (m*c4 + ﬁfc‘ﬁnvt Indeed, what we have taken to be the
Hamiltonian operator in the first quantized theory, (-ificawv+mcp),
allows negative energy eigenvalues also. Now the field
Hamiltonian operator can be rewritten, using the anticommutation
rules, to be: :
AN = E% :Eh('aksf£1h§41' ‘lhs-tzh;: "'2)'
where the 2 results from summation over s. Now since the'ajs
obey anticommutation rules, it is possible to write

S s *
Qps- * bh.s— ’ Ops- = Dps_
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and still have (bk;f bprs-) @ suitable number of particles
operator. With this transformation & is the sum of two terms,

the first of which can only be positive or zero:

(4.33) E; Ek( ak:} Qs T bh:— bhs—)
Y

and the second of which is negatively infinite. The latter
term is dropped in the theory as being a fixed quantity which
is unobservable. The expression (4.33) is taken to be the

Hamiltonian operator,

A picturesque terminology has been developed, called
the Dirac hole theory, to describe the second quantized Dirac
field. Considering the form,

| ¥ x
” = {‘ t’h(ahu Qs = Ags- aks-—)
5 |

one says that the field energy is equivalent to that of one set
of particles, described by the Qs 'Sy of positive energy,
plus that of another set having negative energy and described
by the am,'s. “The form

= % £ (ag,, ap,, + b:,_ bps- —2)

ks

then indicates that the vacuum state energy is negatively
inifinite, corresponding to all tﬁé negative energy states
being filled, since @y @ps.= (1 = bus_ bgs-) which is one
if (byy by )
which are observable. Thus the annihilation of a negative

= 0, It is differences from this vacuum state
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energy particle, indicated by A s s corresponds to the
creation of a positive energy particle of the type described
by the bkﬁﬁ’s, since Q.. = b;:,. The annihilated negative
energy particle leaves a hole in the normaliy (vacuum state)
filled set of negative energy states. It is this hole, this
absence of a negative energy particle which is observable as

a positive energy particle. Writing A in the form (4.33)
eliminates the néed for the 'hole' artifice and allows one
to talk of two types of particles, each having positivé energy
in the free state. In what follows, the additional terms

introduced in going from ("ahsf dy. ) will

X
s- 1 to (¥ By Dy

S -
always be dropped.

The reader should verify that the field momentum

= [y el gy,
4

on substitution of the expansions (L,.26) and (4.27) for
*
ﬁ? and VP , using the fact that

~ihv (uy e'br) - hk ups e'l-r

reduces to:

(4.349) b= % ( qksi Arese — ‘h:— qhs)ﬁk‘

Quantizing by replacing Qqp,, by ag,, and q, _ by bh:— » and

requiring the anticommutation rules (4.32) for the operators a
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and b, then leads to:

(L4.34) /_5_ = 2 %!(ak:‘_ Opsy + b@_:_ bhs.,)-
R,s

~where a term @ng'ﬁg) has been dropped, as in renormalizing &
k

previously. The field momentum then has eigenvalues

&- 3 R INS + N
— k's - ks hsE

where (a:; Qgs. ) has eigenvalues a N{;‘ and {b k:- bps-) has

eigenvalues Né: o The choice of signs for superscripts will

be clear later.

The field momentum is contributed by
;8 sum over k and s of particles of two types, each

having momentum (fik). It is interesting to notice that the
absence of a negative energy particle of momentum (k) ,
corresponding to a ''hole™ with momentum (fk), corresponds to

a positive energy particle having momentum (<Bk), for if

* —
QA ps- QAps. = °.

then (bh:- bps.) = 1, and from the form of (4.34), the term

in (KS-) contributes momentum (-fik). In the hole theory the

sum (23%k) is not dropped, but it cancels for the summation
k

is over pairs of opposite terms.

If one refers back to Chapter II, to the discussion

of charge conservation following from invariance under
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transformat ions of the type:

“‘"—' 4’6’;“

it will be seen that the argument is not dependent on the
covériance property of the field function. We caﬁ therefore
write for the charge of the Dirac field:
Q= -ie ( oL - +“9L)av
+ > %t
which from the Lagrangian density (4.14) for the Dirac field is:

Q - -e/[-‘zw‘,sq»»\l»‘*(!i,e*)]d\f
V X
¥4) dv.
e[v (+7¢) d

Inserting the Fourier expansions for \P*andtb*:

Te Z (qhs+ %kﬂ' + qhs—qks-») )

Quantization then gives:

* k.4
(4.35) | Q:e 2); (Ape, g, ~ bks- th_).

In Chapter II the choice of e as the charge on a proton rather
than that on an electron was arbitrary: it simply decided

which of two independent sets of occupation numbers was to
describe positively charged particles. For this discussion we .
let e be the charge on the electron, since it has been customary
to think of the positive energy particles of the hole theory as

being electrons. It is clear from (4.35) that the two sets of
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occupation numbers defined by q's and by b's respectively,
describe particles having opposite charge. The positively
charged particles are positrons. In the hole theory, the
absence of a negative energy electrdn corresponds to the

presence of a positively charged particle. In (4.35) a term

€3£§ Gyihs)

where L, is one for all k and s; has been discarded: this
negatively infinite charge represents the charge of the vacuum
state in the héle theory, in which all negative energy states
are filled with electrons. The extension of this theory to
cover other charged particles, such as protons, obeying Fermi-
Dirac statistics is obvious. The importance of the negative
energy particles, or antiparticles, in the case of uncharged

Fermions such as neutrons and neutrinos, is less clear.

As in the vector meson theory, the spin of the Dirac
field does not have a useful form when a momentum eigenfunction

expansion is used. The spin is calculated to be:

J -8 [(4% e wav

Ly
= h 2 * ( ‘o )-f > (u * s w )
- z hs{ aii@‘»*"hy uhsf - u'b.sir qk5+ -‘]ks‘ ks+ & “hs-

b 4 : X < "
M Qh$- qks—( Ups- & u:.h',_.) ¥ qh‘s__ thf (L-(-'b.s-— g uks«l)}
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which on quantization has the form:

% * * X
A = Bi%ls i Alsy Abss (Misy & Upss) t Ahst Prs- (Ups e %hs-)_

" . .
+ by Ape (WX o uy) = by by, (up @ %hs—)‘%-

To determine the spin of the electron, we consider:

~y )
ZN:;:&; Noéﬂ-— N(t =6 for R #o0.
S

that is, we consider only one electron, and that one at rest.

Making use of the orthogonality relations
iy ‘ = 1
Upst Uit = 855 Skh‘ Sét .

*
and the fact that (bp,_ b Nb.s

= O for this discussion
\Jl reduces to:

!
=f\_ Z i(aoﬂ D,,,) (uos+ -4 uo‘ii) ((&oﬂ o ubﬂ')
4

X ~ h ¢
¥ Aosy %ost aosq bo:- (Wose °' “-orn) (u.1+ & Weg- )

4 *x %
+ bos- Aoss Qose aon(“os- g “os*)‘(‘&oﬂ & uos-»)

+ by Qpsy a&w bhs (“'h;' T Ugss)- (“k;4 T Ups )}

. lat ions: x _ x »
Using the relations: Uggt Ugeg ® Yot Yost 1, and since

2 . . iz
o5 = 1, (g.6) = 3, the first term in “.‘.'o% reduces to

(4.36) | h‘z N& . 3

A
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and the second and third terms are zero, for

- o

= 3 ( ‘.Los;* uos-) - 3(0).

(uogf o 'Aos+) -(Kost & uos-): (“osz .o "Los-—)

The last term is:

%TZ B(bhs-.bh:—‘f)( Apse ahsf)'

ks

and from the anticommutation rule would seem to be infinite,
equal to: |
E‘} b B(nz““ bh:_ bh;—)(hazs" a‘ks-t*a“ks-&)
(4o37) 4 RS
=k 2 3(n, - o}(hks -0).
4 ks
where Dpg =1 for all k and s. This infinite term should be
dropped, however, for if one works out l<£|tbefore quantization,
then the quantization procedure involves replacing (aksj‘lhs- )
by ('bh:- b ps.) rather than by (1- bh:-bb,s~)° In this case the
»first factor in (4.37) is zero for each term of the sum. From
(4.36) and the requirement of only one elgctron present, 2y N£z= 1,
it follows that the value of Lgalais: °
“{:’or =h S(Sﬂ) = 3 ﬁl,
. 4

where s, the spin of the electron, must then be 1/2. The same

argument, leading to the same result, is valid for the antiparticle.
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CHAPTER V
INT:RACTION OF ELEMENTARY PARTICLES .

The final test of a physical theéry is the calculation
of some result which can be obtained experimentally. In processes
involving elementary particles, the average lifetime of a state
of the system, or the calcﬁlation of a cross-section, are the
most common sort of quantitative check of a theory.’ For the
calculation of these quantities, a technique called perturbation
theory, has been developed. For a quantum mechanical system
involving the interaction of various particles or fields, it is

assumed that the Hamiltonian operator can be written in the form:

N, + X'

where 7/, is the Hamiltonian operator of the system neglecting
any interaction between the various elements of the system.

The notation

SEFINTC?

will be used to indicate the matrix element of the operator
between an initial state i and a final state f. The result of
perturbation theory is to shc)w‘3 that the transition probability
per unit time from the initial state i to the final state f of

the system is given teo first order by:

ar(E) = 2w FF(F_)\ (HN"\i)r‘.
f , |

See, for example, Schiff, pp. 189-196.
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where FF(E) is the density of final states in the vicinity of

the energy E, corresponding to energy conservation for the

system, and where S£I3W’l¢) is evaluated for the final state

corresponding to energy conservation for the process. Implicit
in this result is the assumption that &' and f(E) vary

nagligibly over the time period required for the perturbation.

A cross section for a process is defined as the number
of particles passing to the final state per unit time, per
unit incident flux. Cross sections are observed in exper iments
in which a beam of particles enters an interaction, and in which
the resultant particles are observed. Now a transition probability
per unit time may be used to represént the density of particles
appearing in a final state per unit time, divided by the density
of incident particles. Now the density of incident particles is
the incident flux divided by the incident velocity. The number
of particles appearing in the final states is the density of
particles times the volume of the system. From these considerations
it follows that the cross-section o' for a process is related
to the transition probability per unit time by:

o' -’-y__ ,ur(f}
J
where V = £¥ is the volume of the quantized system, and A is the

veiocity of incident particles.

The average lifetime of a quantum mechanical state is
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calculated on the assumption that the number of transitions away
from the state in a given time (the decay rate) is proportional

to the number of particles in that state. Quantitatively:

dN =-AN.
dt

where ) is a positive constant called the decay constant, and
N is the number of particles in the given state at time t. Then

to first order approximation,

N=N,e M = N_(i-rt)

having taken the first two terms of the Taylor expansion for e"kt
and having let N, be the number of particles in the initial
state at time t = 0., A then represents the transition probability
per unit time since At gives the fractional decrease in No

during time t. Now the average lifetime defined by:
0 o
‘r,,,,/ AN / tdN.
N, N,

is given by:

Tav = -1 j‘” tNo("X‘) Q-Xtdt = "X

The average lifetime is therefore the reciprocal of the transition

=0

probability per unit time., The half-life of a state defined by:

_NiS’ - N° e—k(’l’.h_}’ ,
y ]

is then given by:

Ty, = |°gez- = 0.693
A A




90o

The half-life as defined is the time required for the number

of particles in a state to diminish by half.

Decay of the T - Meson.

The second quantized field theory can be applied to
interactions, amd used to calculate transition pr;obabilities per

unit time by writing the Lagrangian density in the form:

L=L,+L".

where L, is the Lagrangian density of the fields without interaction,
and L' accounts for the interactions between the fields. In
this section the decay of the M- meson will be used as an example

of the development of the theory. The decay may be written:
1{+= /u,* +"Z).
where ,u" represents a positively charged - meson, and ¥ a neutrino,

For this process, there are three fields involved, so that L, has

the form:

Lo= L'ﬂ' +§‘,«¢L+Lv'

where from Chap‘ter I,

(501) ’Lﬁ»=-Ct(3r ¢* 3,;4’ +'m‘_w_c ¢*¢).
' h
assuming that the w- meson is best described by a complex

pseudoscalar field function b, obejring the Klein-Gordon eq.zatioyn.

It is known experimentally that the 44- meson and neutrino are
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Dirac particles. Then:

(502) L/‘,:-5_-_?{q’f(yfaf*'n—_‘_s)?'f'(—ap‘JIfYF'*'r’I}S ‘Pr)\‘,}-
z % f |

and, assuming that the rest mass of the neutrino is zero:

(5.3) L,,=—§__c{)z"(r,,afx)-(a‘ox’%;xk
Z

We have written mgyand m for the rest masses of W- and s~ mesons
respectively, and b, ¥ , and X to represent the field functions

of ®- meson, M- meson, and neutrino respectively.

Since each of L, , Ly , and L, is Lorentz invariant,
L' must be chosen to be Lorentz invariant also, if L for the whole
system is to be so. This, and simplicity of form, are the two
mainkdriteria in setting up the interaction term of the Lagrangian
density, and a comparison of calculated values for half-lives,
for example, with experimental data, helps decide whether a given
form is acceptable or not. For simplicity L' will be set up
containing each field function only linearly, and not having

derivatives of the field functions. The form,

L'= & ¢Tx

is not Lorentz invariant, however, since ¢ is a pseudoscalar and

(‘f'fX) is a scalar.

For the sake of the general problem of fields in inter-
action it is important to known how to construct the various
covariant forms using field functions of different types. Lorentsz

invariants can then be formed by combining pairs of terms having
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the same covariance property: the product of two scalars or
of two pseudoscalars, the inner product of two veétors, or of -
two pseudovectors, or the contracted product (T,,'P},f) of two
tensors, form scalar quantities. The following table lists
some of the simplest covariant forms which can be set up for
different types of field functions. The ¢ 's are all assumed

to satisfy the Klein-Gordon equation.

Field Sealar Pseudoscalar Vector Pseudovector
Scal %)
£ calar ?® b 9%,929 ¢%>qép
()
fx, Pseudoscalar _— 4, — —
e
.§ Vector 3pg6 — qz’ o
&
2 Pseudovector — Qfgﬁ — Fp
S | Second Rank oy & — - Op b S
Tensor

It should be noted that’several of the terms in the above table

are non-linear in the field functions. Non-linear theories are
notoriously difficult in calculating such results as cross=-sections.
Several other terms in the table involve derivatives of the field
functions: interaction Lagrangian density terms involving such
covariants are said to have derivative coupling. Derivative
coupling is not commonly used. For the vector and pseudovactor
field, one cannot set up a useful scalar or pseudoscalar from
¢h=¢k, for this quantity vanishes for the vector meson field

(see Chapter III).

Covariants constructed from spinors are also needed,




93.

and the simplest forms, not involving derivatives of the field
functions will now be listed.
Scalar: In Chapter IV it was shown that a spinor which transforms

under Lorentz transformation according to the relationship

v'-5¢
obeys also the transformation:
. -
(47) = 475
It follows that (¢ T¢ ) is a scalar, for:

($te) = (475" W s¥) = ¢1.

This is the property required of a scalar.
Vector. Since the spinor transformation is related to the Lorentsz
transformation by:

S_’Z“S < IR yvr

the quantity (‘frz;‘f) transforms as a vector:
(4,1)’“4;)': (4,1'5--) Ku(S‘lJ) = a,w(\l’f)’,,‘??.

Tensor of Second Rank:

by 7, )= (4t (557) %, (s¥)

T Aus az;p( 4,1' Yy Y \,’)

where (S S~') = 1 has been inserted.

Pseudoscalar: It will be shown that (kl/rilb— ‘P). where );=(7,)',_Y374§




1

transforms as a pseudoscalar.
[} -t . -
($Frevd)= i(#¥S7) 7 (5¥) = c4T Sy, 9, 7,0, 5¢
Inserting (S S7') between each pair of ¥'s and using the property

-1

S ¥S = a,y Yy this reduces to:

which can be written:

(5.5) _4'_' £xﬂ.y.’. ax% a,a',a av'va-a.-a. +f(“7’)y‘;yv )",)\p_

where &y 1 ,1,11s a symbol which is zero if (A 'v'o!) is not

the set (1,2,3,4), and is plus or minus one as ()N «'v'er’) is an
even or an odd permutation respectively of the order (1,2,3,4).
There are no terms in the sum {(5.4) having two subscripts of the

Y 's the same, for suppose A =#. There are four such terms, with
A==l,2,3, and 4 respectively. Now 7;; 1. Then the contribution

to the sum (5.4) from the terms with /\=,u is:

ANA2) B3y Qgqo -7, Y,

which is zero from the orthogonality property for the Lorentz
transformation, that a,) 2.} = {a/;. Ail terms of (5.5) for
which (Acg'v'a”) are even permutations of (1,2,3,4) can be put
in the order (1,2,3,4) since an even number of permutations of
the indices (A, 4 vo) changes nothing due to the anticommutation
of the ¥ 's. All sets of ( A}bhv'a“) which are odd permutations

of (1,2,34) can likewise be set in the order (1,2,3,4) introducing
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an odd power of (-1) due to anticommutation, which is cancelled

by the value (-1) of Ey 1,9, The factor (1 ) accounts for
4}
the fact that in the sum over ( X/iwfu') there are (4!) non-zero

terms. Now "WYY, % with all of (Auve) different can be written:

Ex,uvo' }; r). r3 74 = €)u4:10’ ){5 .

because of the anticommutation of the ¥'s. It follows that (5.4)

can be written:

a a'lfm A3p A 46 y,\ yu rz/ yor = —'i £X,uvar 'El',“"y‘a-‘ ax)‘ aﬂ,‘- Ay Ay ! 75~

= (det a) Ys.

i
where (deta) is the determinant of the Lorentz transformation u.
For four-space rotations, (deta) is *1, and for three -space
1 = .- = = - 3 =
reffections a] "S*}’ Aug 3;«.4 , 80 that (deta) {-1) -1,
It follows that

(¢7¢7s 4) =(det a) ($F 7, ¢).
and that (i'#trkﬂﬁ ) is a pseudoscalar.

Pseudovector

($Tiv % w) = i (9757") v 557 (s )

-
-

= vt (STYS)ST §) b = (det a) apy (4Tivs ¥V, ¥).

17}
4

That .Ll £AA4-)’U' EX.M‘VIO" axx' a.ﬂ_ﬂ. avyl aUU':E)'u'v'c' a'xal,“. ag,- 44’1
is equal to (deta) is proven in most texts on tensor analysis. ‘

See for example: Lass: !'""Vector and Tensor Analysis" , p.263,
(McGraw-Hill, New York, 1950).
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which proves the pseudovector character of (‘¥rilg);‘P )

The following table summarizes the Dirac covariants.

Covariant Spinor function.
Scalar A g
Pseudoscalar sl;‘l' (Y
Vector 41 y' <+
Pseudovector $1; LA YPIIJ
Second Rank Tensor 1 YoV, .

We are now equipped to set up the interaction term
for the T - meson decay problem. Since the W - meson field
function is taken to be a pseudoscalar, a Lorentz invariant
quantity involving the ,d-— meson spinor ¢ and the neutrino spinor

X , is:

(5.6) L' =g HlpTivex).

3
where 9 is a constant to be experimentally determined, and is

called the coupling constant for the three fieldshere considered
in interaction. The most general interaction term using only

the three field functions, each linearly, is:

(5.7) L'=g{¢¢f("; X-Xlersgp* v gpxtiv ¢ - \I'fi'qué*‘%

which is Hermitian, for a purpose which will appear later. To

proceed to second quantization we shall have to evaluate jfT44dV
v
with appropriate Fourier series inserted for the field functions,
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and using the latter form of L' this is a formidable task.
Much of the work involved can be eliminated by considering the
specific process of decay of one positive W - meson at rest

into one positive M- meson and one neutrino. The Fourier series

L%

‘I,I\.
Ve % og Gu)u, (e’ () 5ik-r
I h qhﬁ A kS s e +qh$~ s b}.‘z;-(/“)e
£ % Yikss 2 Ulbﬂ('v)e !r+qhs+ () Chs- (Vﬁe‘hm

and their Hermitian conjugates. In the second quantized theory
-the following interpretation is given to the operators which

replace the g-coefficients,

—

nt wo At AR v V.

creation ql*(n) b:(wr) qk::'{/“) qhs-( ) qh:‘_(-u} qhs__(-v)
annihilation k(ﬂ | bh(n\ qh“(/,,) qm_(,u.] c“ls‘*(‘v) qh:_(v),,

where o7 represents the antineutrino. The application of these
operators to an initial state in which there is mne (Y- meson
only, gives zero except for the creation operators and for the
annihilation operator corresponding to q(m. Now we are
ultimately interested in the matrix element of X' between and
initial state w]gi and a final state \[‘f, where \Pf describes the
presence of one /4*- meson and one neutrino. The matrix element

may be written symbolically in the form of an inner product

CE5, o' &),
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Recalling that the relationship between an operator O and its

Hermitian adjoint o* is expressed by:

(£, 0 ¥:) = ((0%F)%, ¥.)

it follows that all of the creation operators following from the
[

above table, will cause the term of A in which they occur to

have zero matrix element, for our choice of final state, except

for qk:: (,u.\ and one of qh{;* h}) and qk$~ () . For example:
4
( \Pf s a(,‘;‘ *(11'] \Pﬁ = (( a(;’ () ‘P;)*, “I’,_)

is zero since \I’f contains no n¥- mesons , so that the WY-
annihilation operator applied to lkf gives identically zero.
Similarly:
X (p ¥ (€2 X
(‘I’; ) qks () f,-_): ( (ahs () ‘.P}-) , ‘I’.,)

. . . + @
and since ‘I’f is not a state devoid of 4 - mesons, s (,u.)
operating on it is not necessarily zero. Since we must have the

. * . !
terms in qhs+ {/u) s We must have 4’1’ in L', and therefore X
rather than Xr, in order to form a covariant. This specifies
that it is qks_(v) rather that qh; () which must appear, and
corresponds to a process in which an antineutrino is produced.
In our theory, there is no physical distinction between the
neutrino and the antineutrino. In calculating 7~/f we may, for

this problem, use the following partial Fourier expansions:
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¢ =1 q,
l’h. qo b
t ~iR.r
¢ ::('T’/ % 94 (0 uh,‘; () e
(5.8) R
' ih.r

Before calculating ?/ﬁ it will be interesting to find
the field equations for fields in interaction. For this purpose
the general form {5.7) for L' will be used. If <P, represents
the set of field functions describing the three fields here in

interaction:

B, ~(p % ¢ ¥ x xt).

the Euler-Lagrange equations are
o é«x ' 3(3,, éa} ‘
Then from the forms (5.1), (5.2), and (5. 3) contributing to L, ,

and from L' , for which oL is zero for all &, , L'
002, &)

not depending on derivatives of the field functions, the following

field equations result:

(apb,,*"_‘_f_f\ $*= -9 (q,fir‘.x +xTive¥)
ti by

C

(anP""‘_E_C)¢ : +g (\Iifi)’g X»A{-XTCY,—\P}.
h ct

§7F9P -r__rlf) \E»T': 1 ( 4>*Xfl:?'s "¢Xr(.r$')‘
h X

(y‘,a,,+mc)~i; = <_§.(<{>—¢*)i?5.¥.

e
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Yoo X1 = ~q (- g*)wTir.
| o
YeopX = g (¢-¢*) (¢
“he

By analogy with electromagnetic theory, in which the field
equations 3,,3, Aa = 0 in the absence of sources of four-current,
and are 3ParA,'= Jo 1n the presence of sources, the non-zero
terms on the right hand side of the above field equations are
called source terms. The source terms are a consequence of the

interaction of the fields.

It should be pointed out that the conservation laws for
energy, momentum, and charge, as derived in the earlier chapters,
hold true for fields in interaction, for ﬁhe derivations weré
not dependent upon the form of the Lagrangian density except in

requiring 2L = 0, The reader should verify that the
0OQJ .
conservation of angular momentum including spin for interacting

spinor and tensor fields (where tensor fields include the scalar,
vector, pseudoscalar, pseudovector, and any rank of covariant
tensor fields), follows directly, with the definition of spin

o simply a sum of those for Lagrangian densities depending
on spinor and on tensor field functions respectively. The fact
that the conservat ion 1aws and the corresponding definitions

of conserved quantities in terms of a Lagrangian density, hold
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for such a variety of systems, indicates the value of the
Lagrangian formalism. If a Lagrangian density for a field
system can be found, it is a routine matter to deduce the form

of the constants of the field motion.

As a first step to calculating the average lifetime
for - mesons decaying to 4« - mesons and neutrinos, we must

obtain the second quantized operator Z/ﬁ Having written:
L=L.+L,

the energy momentum tensor has a form:

TPU = Z( QP %, él'_" -L°$P¢) f(af éd _a_l;'.___ —L'SPG)
“ 225 3,) 2004 %)

(o) i

A 3

Now oL

(24 él)
therefore H' = T;4 =--L", Using the shortened form (5.6) for

= 0 as noted before, so that T",d =-L'5P6. and

L', and the partial Fourier seriés (5.8) for the field functions,
W' is:
(b, k e

W 3 / Wh% : sﬂo(ﬂqk:(r) Qs (A UG, (a5 Yy (e
RN v —A 1Yy 0y v

Now: /e[(-k:"kf‘x"f av= £ 8 .
TRV~

v
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L4
That is, only terms of the sum contribute to A which conserve
momentum for the process, for in the second quantized theory
(Rk,) and (fik,) correspond to the momenta of A - meson and

neutrino respectively. Then:

o= -9 2 q c‘k (,a)q ks~ (v)[uh () 07 U, (‘v)]

131, l,s,s'

Quantization consists of the replacements:

qo,tn) —-%g"__t_._" . o.(:’(ﬂ) = h .ai') (w).
2We clamg)”

@“9

c‘h*(,u) — ap. ()

x
Q‘hs'- (V\% —p q_hsu (1’).

Finally & 'has the operator form:

(5.9) ¥'= -hqa¥mMT, [u,m(,wmv WU, et S ma o (9],

Camg) "L R3S

The summation over k and s accounts for all possible directions

for the decay products as well as spins. The transiépion

probability per unit time defined by
: \NjZ
P | KAWL
K

will not depend on the momentum direction or spins of the decay

products. In evaluating

<Aty = (27, w 887, ¥ 5 )).

) ‘
if ‘E’; is normalized, ':[',; ‘J_;; = 1, and the double sum resulting
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from (leflts reduces, due to orthogonality of spinors for a
given type of particle corresponding to different spins and
different momenta, to a single sum over k and s. In this way
the reader should verify that the transition probability can be
calculated for transition to given momentum and spin siates, and
then a summation performed. At this stage it is evident that
making L' Hermitian in (5.7) renders ‘the operator }/’likewise

Hermitian.

The sum (5.9) is over all magnitudes as well as
directions of k, but the transition probability per unit time
involves evaluatingk(JWII’li) for the momentum which corresponds
tokenergy conservation for the process. For this, k must satisfy

the equation:

]

(5.100  m_c*=[me*+ (hR)' ) 4 (- fik)lc.

“which is a condition only onﬁkﬂ: the terms in the summation
over direction of k still remain. Solving equation (5.10) for

k we find: gt

(m"" - ml) C
1 h MNyg.

(5.11) ; k

There remains the calculation of the density of final
states in the vicinity of final state energy equal to (m"cl),
thaﬁ is, equal to the initial energy. The final staterenérgy

E=Ep G+ Ek(‘tﬁ = (m'c*+ Wk*'c?) " +hek




104.

where k has the above value, is a function of |k| only. The
‘ times dC
density of final statesAis the number of final states embraced

by an energy range (E, E + dE). dE is related to dk by:
(5.12) dE = hc(ﬁf_\_l +;)dk.
Ep(s
Since the final states are limited to a fixed magnitude of k it
is convenient to calculate the number of final states in the

momentum range (k, k + dk). If the latter number is dN, then:
(5.13). dN = pe(E) dE.

Now k is defined by

k= im (nh" hlzz‘nhsb'

where nhi are integers or zero. If instead of coordinate space
we congider a k-space, the distance between values of kj” or
between cubical lattice points, is 2w. If the volume V is 1arge
the number of lattice points, or states, is approximately:equal
to the number of lattice cubes. - In this case the volume per
state is (3?}3 . For a fixed value of k one needs consider
only a spherical shell in k-space, bounded by the surfaces of
radii k and (k * dk). The volume of the shell is (4nk®dk) and

the number of final states contained is

dN = awh'dk = £°R'dk .

———

b
y 4
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It follows from equations (5.12) and (5.13) that:

F(E) = £3 . . Byl
2T ke h‘l;,‘

Since at the appropriate value of k, £ (u)+ fick = m c*,
Substitution of the value of (5.11) for k, and simplification

leads to

a (k) =z,_r_r'PF(E”<fl
h

= 2w /( kEk(,u.) . kR I(fl—'-li)lz.

vt hcimyg 13 zm"c‘

= g (my *m?) (mgem?) e

Y 5
gnh cmy,

FIZ L, 00ir 4 andt taa b o)
s: :

where summation over k is over direction only, with magnitude

fixed by equation (5.11). The value of 47 (k) can be ﬁsed to

calculate the half-life of the m -meson for decay from rest to

a neutrino and a,a*- meson. (See Appendix, page 117.)

Neutron-Proton Scattering: Virtual States.

Tre problem of scattering of charged particles by
other charged particles, due to the electromagnetic interaction
between them, was one of the earliest of quantum mechanical
problems. 4s the study of nucleons p?ogressed, it became eviﬂent
that another type of force was present between some elementary
particles, such as the force which produced the scattering of

neutrons by protons. Experiments showed that this force was of
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short range relative to the Coulomb-type force, and the
development of a theory by Yukawa, based on a force of the type

- v
e s where p is a positive constant and r the distance from

tge force centre, led to the concept of a field whose quanta

had non-zero rest mass, as contrasted with the electromagnetic
field, whose quanta are massless. The quanta of the nuclear

field were called mesons, and nuclear interactions were thought

of as involving an interchage of quanta, as electromagnetic
interactions in the quantized theory are described by interchanges
of photons. In recent years the T - meson has been associated
with nuclear forces, and éonsequently a second quantized field
fheory of nucleon-nuclecn scattering must include, in the

interaction term, the field functions for the nucleons and the

Tl - meson field function.

If ¢¢, 4, and X represent the field functions for
the W - meson, the neutron, and the proton respectively, then
as in the discussion of 1 - meson decay, since nucleons are

Dirac particles, we choose an interaction term of the form:

L'=q{ ¢*4Tivgh + *xTivs ¢
(5.14) 9{ ¢ : d

- T iy~ BT ivd

: . . . . Ca . i
Since we are not considering derivative coupling, T 4v reduces

to (’L'Q“v), so that the energy of the interaction is:

| N’=/<—L’_)Av.
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It is easily verified that the above form for L' leads to zero-
valued matrix elements for néutron—proton scattering in first
order. For such a process the initial and final states are
~identically zero when operéted upon by annihilation operators
for ™N- mesons, since they both correspond to occupation numbers
Np{wm) =0 for all k. The terms in 40, in the second

J-‘)

quantized theory, give and ah , both of which operating

on the initial state function are zero.

(%f ¥ akt‘ i‘ )

, L
Similarly the terms in qb*jnwvide aéf) , and

(2}, a®8) = (Lo )%, &, )8

Since first order transitions cannot occur, second
15
order perturbation theory must be applied. The transition
probability per unit time is then given by
wr(E) = 23 £ (€)) 5, <A II<niyl ¢>\
h (E,-E,)

where n numbers intermediate states, for which energy is not

conserved with the initial state. The intermediate states are
not necessarily devoid of T - mesons, and th;refore matrix
elements of the type <ml#'lid>  ang <FWN'In? are not
ﬁecessarily zero. In order that the qualitative features of

the theory may be most clearly brought out we shall consider
processes into

15 :
Schiff: PDe 195"60
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which enter only positive T - mesons, neutrons, and protons.

We shall therefore use the partial Fourier expansions:

-

ch.vy
E | Z (me - ~.
¢ 713n k Te

L3
i %,
q’—:l(:h% qb.+(~) ukS (N)C g
X= I':B % qkﬂ'(P) Ya &(P)ei%&r

and their Hermitian conjugates. We will also postulate charge
conservation between initial and intermediate states. This
postulate is necessary because the interaction Lagrangian density
is not invariant under infinitesimal gauge transformations of

the type

H, =i€§‘¢f;ﬁ e~ <§5‘('+£Fﬂ

where %‘ is the set (¢, ¥ ,X ), and @ is an infinitesimal real

number, for under such transformation L' has terms

¢*(|-£(5\ \Pf(i—i[s) DN A x(|+£(5)
TSARS/S S t/.’a\( H/ﬁ)

= prPtivsX (1-ip).

having dropped terms in powers of A beyond the first. The
variation of L' is then of the form (i(BL'); which cannot be

incorporated in a continuity equation. An elegant formalism
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involving thé concept of isotopic spin space has been developed,
by Kemmer, called the symmetric meson theofy:‘ in which it is
possible to set up gauge invariant interaction terms. The
postulate of charge conservation at every stage‘of the interaction
process, while less elegant, serves the same purpose as gauge
invariance. With this requirement and using the above partial

Fourier series, only the terms
(5.15) gl e* 4tirsx - ¢ xtivs¥)

of the Lagrangian density (5.14) need be considered. For an

initial state describing a proton at rest and a neutron with

momentum k,s on second quantization the first term of (5.15)

contributes terms having non-zero matrix elements, of the form:
g o oafaal (Na, P [u! Nir us, P
23 clama)

The matrix element of such an operator indicates the process:

(5.16) P(0) — NI(R) + ¥ (-k).

where the bracketed quantit ies are momenta. Momentum is

conserved in the process because of

' =/v (-L')dv.

- Only terms of the Fourier expansion which correspond to momentum

conservation have a non-zero integral over V. That energy is

14 :
For reference and discussion, see Wentzel, p. 63.
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not conserved in the above "virtual'' process can be seen

from the energy balance equation:

' i
mp ¢t = ( mu ¢t thc k)™ e(mgc*+ hieR) "

which cannot be satisfied by any value of k, even k = O, since:
mp = 183606 me; mNm 183901 me; m-" =27303 me

where me is the mass'of the electron. Similarly the second term

of (5.15) having non-zero matrix elements only between intermediate
states n and the final state, contributes through terms of the

form

% t . |
1 h y a_,h (v ahosu (M) a‘ko_.%“m (P)[ tho_ ‘5)5‘“ (P) tYs uh S"lN)]
L3 clam )™ i * .

corresponding to virtual processes of the type:

(5.17) 71(-k) +N(k) — P(h.-k).

In the calculation of transition probability per unit time, the
product CFIH'In?<mIN'{ > then describes a process which
is the combination of (5,16) and (5.17), namely:

PCoY + N(k,) - Nk + N(R} +w*(-k) — N (k) + P(k _-k).

The scattering may be picturesquely described by considering the

proton at rest, under the influence of the incoming neutron, to
emit a m'-meson and become a neutron. The incident neutron
then absorbs the mtmeson, becoming a proton. The scattering

involves the exchange of a virtual meson.
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The matrix elements used in calculating 4w (E) must
be such that energy is conserved between initial and final
states. This serves to determine bbth the magnitude and
direction of (-k), the intermediate meson momentum , for k must

satisfy the energy conservation equation:

| 8 Al T ) ',_ a2 A !
mpc® + [myct e WRT 2= Tmet s 5K 174Im3 c*4hc (R -k)'] 2

For initial and final states which are specified completely as
to spins and momenta of initial and final particles, the
summation over n, the intermediate states is just a summation

over intermediate spins.

- Decay.

The ® - meson decay is an example of two-particle decay.
An example of three-particle decay will now be discussed, namely
the decay of a neutron into an electron, a proton, and a neutrino.
The process is known to occuf spontaneously for free neutrons
and for neutrons in certain nuclear configurations. For the

process

N — P+e s 5.

an interaction between neutron, proton, electron, and neutrino
fields is required. Let 4', X , g s ] represent the corresponding
field functions: all are Dirac type particles. The interaction

in which we are interested may be represented by a form:




618 L'z q(x* 2¥)(gTOn).

where o fepresen‘cs some cambinatien of Dirac matrices such that
(XT O ¥) 1s a covariant; and the preduct of the two factors in

L% 1s such as to produce a Iorentg invariant quantity, Other termé
similar to (5018); deseribing the interactlon of the four fields

in question are also possible; but if the initial state is to have
ehly one neutron and the final state one proten, one electron, and
one neutrins; the other tems; such as (»;Zr&x )(g’fﬁ'?z), in the second
quantized form will have zero matrix elements betwsen such states,
That the term (5,18) is suitable to deseribe the process of @ =decay
follows when one notes that 7 cntains, in second quantised form,
both the annihila’bioﬁ operators for neutrinos, and the creation op=
erators for antineutrinos, As far as our theory is cencerned, there
is ne distinction between n@utﬁ.ﬁes and antineutrinas; both being

uncharged,

The ecalculation of decay rates using different operators
G in 1t in general leads to different results, Experimental data
on nuclear /3 =decay as now interpreted indicates that a linear come
bination of sealar, tensor; and pseudoscalar cm@lings; and no others,

1s needed for the theery to agree with observatioms . The relative

7 > -
Cofo Konopinski and Langers Am, Reve Muc, Sele, 2, 261-30k, (1953).
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strengths of each of the compen@nts (sealar, tensor, and pseudosecalar)
have not yet been detezrm:’m,ed.;9 because it is difficult to relate the
simple theory as presented here to the problem of a complex miclear
stfucture undergoing /3 =decay ’86 For example, the electromagnetic
interaction between ﬂ =particle (electron) and the positively charged
xmcleué in general is not negligable, though it will not be diseussed
here, Two of the msst commenly used interaction forms are the Fevrmi
type, where & is either 4or )//w (scaler or vector interaction), and
the Gamow-Teller type, in which & is ({Jj Y.} or (Y %), (pseudo-
vector or tensor interaction), Without specifying the operator & o
we can write down the form of the operator &/'in the second quantized
theory, For this, only the following partial Fourier series need
to be considereds

t . oy T % ~ik.r
x'= A '-i U, (Plas(P)e ™"

\‘J 2 ,Z-B/" hz’s uos+(N)&05(N)-

-3 d = v ~tR.v.
gl- (™ f:s wl (e)al(e)e ™"
n: L% :\: Wps () @ (B) e ibr

%

Substitution into

¥'=[ L-q(x"64)(gTOn)] dv

'8 F'of a lucid though brief discussion of the problems invelved see
Fermis "Elementary Particles®, p, 39, (¥ale, 1951), This book is

' particularly valuable for the discussion of princigles of elementary
particle theory, although it assumes some knowledge of the details

of the subject, The reader of this thesis would profit from the further

discussion of interactiens in Fermifs book,
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results in terms of the form:

2 § g - X T
Qa h.s,(maoslm)“k;sa(e )akq% [“k,s;+ gu,s.l] E“h;3+ O Uy s,
where (lg,ﬂggdrlgﬂ = 0.

To calculate the transition probability per unit time for decay
of a neutron at rest one must evaluate ggf;l(f%%!qi}yahere the
initial state is that of a neutron at re;¥ with specified spin,
~and the final state is with an electron, a protbn, and an
antineutrino, each having specified spins énd momenta, such

that energy is conserved with the initial state.’ Averaging

over the initial states, which in this case involves summation
over spin states and division by two since there are two equally
probable such states, and summation over all final states, then
gives the transition probability per unit time, which is the

reciprocal of the average lifetime,




CONCLUSION,

It should not be thought that this thesis claims to present
a balanced discussioen of its title subject, Great emphasis has been
given to the intreductory concepts of field theory and of second
quantization, while the subject of interactiens has been only sketchily
éoverad, Had time permitted, a detailed discussion of the interactions
of fields and the effects of quantization in the interactions would
have been desirable, Such a treatment would have required more space
 than the first four chapters of the thesis now fill, However, this
lack is not viewed as an important shortceming: the literature lacks
clear discussion of the introductory‘cnncepts covered in the first
four chapters, without which a detailed study of intersctions is ime
possible, It is hoped that this theéis provides such backgrourd as
to enable the reader to study in detail interactions of the sort

outlined in Chapter V,

A more serious lack is felt to be the aﬁsence of the oneepts
of isotopic spin and of isctepic spin space; for these ideas are alse
vdifficult to understand from the general literaturs of physics, but
are gssuming g role of basie importance in the nascent theories of

\
the™ew!" elementary parvbicless hyperons and heavy mesons. 9 The

19 For phenomenological discussion see Dethe 6t al: "Mesons and ﬁfelds";
Vol. 2, The most thorough and successful theoretical attempts to

date are dus to DfEspagnat and Prentkis Nuclear FPhysics, 1, 33; (1956),
and Phys, Rev, (to be published)., The subject of the new particles

is growing at a fast rate, and only perusal of the most recent issues

of the journals of physics ean assure one of up=to-date informatien,
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oml.ssion of isotopic spin, as with other majer omissions from this
thesis, is due to the prastical limitstiens of time available for
Cwriting the thesis,

)

Tt should be reiterated that the theory as here presented
is not considered to be of general validity for eiementary particles.
The subject of elementary particles and their interactions, including
electromagnetic interactions, is really in its early stages, and the
theory given here foms a basis for many of the theoretical attempts
now in progress, In some pla cesv the theory @orks fairly wellg in
many others it clearly does not apply: it may at best be a first
approximation to a full theory of the subject. This thesis, then;
has been written as a conteibution to the pedagogical needs of the
Mediate future, without in any way purperting to present a finalized
theory,
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APPENDIX.

The ealculation of the transition probability per unit time fior

W=meson deczy will be completed here, The expression given on page 105 is:

{ v\' % -afe ot . 2

| wik): 9*(mE-m) (mEem)|S < Fla (ﬂ) Tl a “v)h)[f:( Yt ut)]

(4.1) 3 - ks- k«(‘ ths-
8nfhtemy® 58"

where summation over k is over direction only, the magnitude of k being

fixed according to equation (5,11}, TFor the mement, if we assume that
the final state function specifies the mementum direction and the spins
s and s8¢, then only one term of the sum has non-zero matrix element,

Then w(k) has the form:

w(k,ss)-const\[u (/u.)t.‘Ys J@{Flayma® o w)ii)r’.

The matrix element contributes a factor of modulus unity, as can be geen

from the following considerations, We will assume that initial and final
state functions are normalized, Then in immer product notatien: (§ i*’\Pi)= 1,
Also: a (¥ (,“) ,E Q f ,' where ¢, is a constant to be determined, fer

the creata.on operator a k ( 1) operating on the initial stete functien

glves acenstant times the final state function, as the Hiter deseribes

{(+3

a state having one more u-meson of &ype ks ' than does f; o We also

require that: (¢ ; 5 ‘Pf) 21, for normalization, It follews that:
& * ‘
(LC,‘."P;] Lo 8 =1, 12 ([6D " 8,15 af?*ou) ;)
(‘I“ , aéf( ) am *({(L) ‘I‘L)
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From the anticommutation %of th@ Gts and from the fact that the mumbere
ofebemesons operator [a C )af’“ ( /u.)] gives gero operating on %59

the last ecuation reduces ’co:
% %
leu?= (8,5 L1-0]12) = (5, 2) = 1,

| Similarly the antineutrino creation operator introduces, in the matrix
elementy o cms%;ant factor of modulus unity., The reader should show that

the same is true for the w-meson annihilation operatofs using the commtation
of the G(:‘(Tﬂ and Ct:’\ t(‘ﬂ.') and thefact that the number=of-Tl=mesons

operator on \2; gives wnity. w(k) then reduces to:

% o 2
wik.s,8)= const x x| wy) T(u) i w )
: : @<, [ w71, ..
(4.2) z const[u+ NG AR AN ‘/“)][“hs () {7 Lﬁ!ﬂ,_(—v)].
since u¥ = ut@ = ux ¥, , and since Ys is Hermitien,
dince we are not :mterested in the spins of the resultant mrticles
(to observe these would vastly cemplicate an expeximent), we must add up
the contributions to w(k) from all possible spin states., The method of
p’arfbming such swmations is adequately diseribed in Schweber, ppa, 2;,9..53’,
and will be applied in the following without discussion, From equation (4.2)
we are interested ing |
)
(8.3) 2 w (k5,51 censfz Lu’ @075y, off) (/‘7}[ Yiv g, 0.
&
The summation is extended over 'all four spin states of ( /u.,}, (‘h&m posikive

energy, and two negative energy), by introducing the projection operator:

€. + (ficok+ mc"ﬁ) z (éﬂ_ +HA) :
Z¢e,, 2e,
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wheres
(A1) €y +(m2»c4,+-“’~czhz)‘/?_’
k being fixed by equation (5,11). This projection operator is suitable

because the non=-spatially=dependent spinors u“’) { /u) satisfy the equatieng

[ catikl+ men] wfl () = €. u G,

The spin summations (A4.3) then reduce to:

% wik,s,s) : % const. w' NV €rHu) T4l w |, )]
ss' . *k - EandiS i $1<s
Introducing the further projection eperator

s Lot (+hck)] = (6,," Hv)

Zev Zév

where
(A.5) €, = (fck),

the spin summations reduce to the problem of evalugting the trace (sum of
diagonal elements) of the mabrix:

(- i %) 74(§A+H!,) Y4£Y,(e,; H,,).

€, 2€,

That is, we must evaluates

(1.6) i}l'/(k,s sV = const_ ,{A,{Y- Y, (€, +hcke. vt+mcp)7 Ys(Ep ~-hekh. a)}
2e,6,

Using the anticomuxta tic‘ﬂ in pairs of the Y s, including Y5 and the
definitiens y. = -4pag (3 =1,2,3): Y s> » (4.6) becomes

Zw(kss) 2 const 71{‘/.5(6 &_hkc?k +mC)(-Y5)(£,Y4 chc’/h)}
(4.7) | 4c.6,

- const. AA,{<€ y4‘”ﬁ€-7’1k mc")(év —-L‘Fcyk)}
A€ €,y
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since Y;= 1. Using the matrix representation of &, (2 given in Chapter IV,

it is easily demonstrated that

TA(&_YJ) 2 ',T'A(YJ Ye) = 05
JA-(Y) (Y4) o,

and since Y; =1 (P=l,2,3,h,); ?)A.( YP 2 )= 4, where I is the LX) identity
matrix, (4.7) then becomes:
2
T, wik,s,s) = const, /TA{ €, €,y 7’41 - W‘cz("jkj) )
(4.8} 44 4€,. €,
It i5 a straightforwsrd problem to show thats.

(7 k)" = (-ipa.k)(-ian.k)= (a.k)(a. k) =k*]

Finally, then,the spin summations (A.3) give, using (ach), (A65), and (A.8):

(49) 5 w(lk,s,s) = (sﬂe,,l, gzczkx) ’ (eﬂ+ev).
22 €. €y €

If we similarly are not to specify the momentum direction, we

mist sum over these, In the limit as the region under cemsideration gees
to infinity, the summation over directions becomes an integration over
solid angle, Since w(k) is independent of the diresction of k, this sume

mation introduces a factor of L. Finally then, frem (4,1) and (4,8)s

(AQIO) W(k) s 4T, q‘“( m " "m ) (n] w +n.}2) (6A+ év) :
| 8h*cmf® €.
thch using (4.L), (4:5), and (5.31) reduces tos

wi(k) : mg* (mE-m)?
R*Cm_3.
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It is desirable to discuss the dimensionality of the above

expression. For H! we had:

H': g ¢ ¢Tirx.

vhich must have dimedsions (energy)X(length)=3, If¢ » P, and X hsve

dimensions (1mgbh)""3/ 2;‘%&5 q must have dimensions (energy)X(length )*3/ 2,

Thenz: |
9* (mg-m™).

2 3
g € My

has dimensions: [(energy) x(ength x(enerey) = (enerey)X(tine).
(energy)ax (time ) 2X(Length ) X (time )~

where mass is tsken as (ene:cgy)x(length}”Zx(tis*ne)‘?a and (i) ~(enerzy)X(time),
A factor [1 (erg)"lx(sec, )“’2] in w(k) emmes from aﬁ" (R in \(ﬂ e '“>i%

If ¢ is of dimensions (1eng%';h)‘3/ 2 then the Fourier céeﬁ‘icient q o{ n)
is non-dimensional, The q's and @ (1X)?s are related (see page 107) by
q (v — & . a8 (w).
elam)'a

ag‘“(u) therefore is an operator having dimensions (energy)‘l/ 2X(ene::g;;r)"’z';){
X(time)~L = (energy)"l/zx(tm)'l, whieh in evaluating | £1...1¢) "-
introduces (erg)'lx(sec. )“2 in the c.g.5. system of units, w(k} is

therefore given only numerically by (A.l@”f)‘# but has dimensiens (time)‘l;

a8 a transition probability per unit time must have,



