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ABSTiIACT

This thesis does not present resurts which were
previousì-y unknown in physics, but att,empts to present a

thorough introducbion to a field which previously had been
difficult of access to beginning graduate students because
detailed explanations of basic methods had been J_acking, The

subject matter covered inclucles a general discussion of the
Lagrangian formal-ism for physicaÌ f ields, with detaired exampJ-es

of several fierds ill-ustratÍng specific properties, Thus the
cornplex fiel-d introduces charge and the vecbor fierd introduces
spin" The method of second quantization, which forms the basis
of the quantum mechanica-l- discussion of interactions for elementary
particLes, is, it is hopedo formulatecl in such a way that the
method is clear and bhat, the ser-f -consist,ency of the technique,
with postulates exolicitl-y stated, is evident, The rerationship
between invariance properties of a system and conservation laws
is worked out, in cetair- for energy, momentunu charge o and
angular momentum, with a discussion of spinu both classicaÌ and
quantum mechanÍca1. Two second qr:antizatÍon procedures are
discussed corresponding to Bose-Einstein and to Fermi-Dirac
fypes of particles, along with an intrrcduct,ory discussion of
Dlrac theory. Finally, the application of perturbation theory
to Èhe second quantized fields is discussed,, .rrith brief illustrative
examplesu as a method of obbaining resul-ts which can be subjected
fo experi-mental test"
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INTRODUOTION

The main object of this thesis is pedagogical. It rt"as

felt t,Lnt the subj ecÈ of the interactions of el-ementary particles

had not appeared in a form suitable for s&udy by stud'ents wit,h

the equivaÌent of an Honours degree 1r¡ Physicsr and yet that the

subject did not have inherent difficulLies sufficient Lo justify

its neglect at t,his l-evel"

The interaction of the electromagnetic field with

eLementary particles has received much attention in the modern

l-iterature of physicsu and has had fairly adequate treatmento

Because of this, and even more because of the limitations of time

a,¡ailable in preparing an M. Sc" thesis, the subject of the

electromagnetie field in quantum phenomena has been omitted"

Instead, the emphasis has been placed upon discu:;s Íon of the

various types of flel-ds which have been postulated as accor¿ntlnq lor

#Såfjffi" These fields may be generalì-y categorized as

Bose-Einstein fieldso due to the nature of the statistics obeyed

by their quanta, 0f equal importance, both to the subject and

to the thesis o 1s a d¡.soussion of the Fermi-Dirac field, vùtose

quanta are the co¡nmonest elementary parLicles: electrons, protons

and neutrons,

The necessi,ty of quantizing the radiation field in

considering sub-microscopic phenomena is one of the oldest facts



of quanbum physics, dating back to Planckis quantum hypothesis'

Since phenomena are observed in which particl-es of one type

are transformed inLo part,icles of another type, perhaps with

dif ferent masses as in /3-decay for exanPle, it is desirabl-e to

have e theory in which the creation and annihil-ation arise

naturally, and the development of such a theory is not too

difficult, for the quantization of the radiation field in which

photons are produced or absorbed, is availabLe as a guide' The

quantum mechanical eqr.lations are baken aS t'he analogue of the

classical electromagnetic field equations. The resultanL

quantization, which is discussed in detaiL in what follows, is

cal-led second <luantizqtion.

ft, should be emphasized that the second quantized field

theory of elementary particles, with the concept of particle

creations and annihilations is significant mainJ-y in considering

sysÈems of interacting particles" The theory aÌso shows certain

qualitaÈive properties of systens of particles, particularly

with resrect to conservation Laws. The Èheory in the form

presented is not original. It is a form possessing much beauty

in it,s logical consistency and in its cLear rel-ation to cl-assical

f ield mechanics. Unfortrrnately, calculaÈions based on the theory

and utiLizing the pert,urbation theory of quantum mechanics e generally

give onJ-y qualitati-ve agreement with experiment o and the theory

relies upon experimentaL checks af perhaps more points than is

desirable" In particular, the reader may feel, after reading the



section on interactions (Chapter V), that an experimental_

determination of which form to choose for the int,eraction for
every type of interaction, requires Less of the theory than
might be hoped for"

Even the theory of the interaction of radiation with
matterr or! which a tremendous quantlty of experimental evidence
is available u h?s not been satisfactorily developed" The

techniques are not avair-abre for arriving at experimentally
verifiabre resurts even for many relativery slmpLe cases. such
difficuÌties are even more pronounced in deaÌing with other
types of interactions for which relatively Little dat,a are
availabl-e. There is nevertheless a twofol-d value in presenting
t'his quantit,atively unsatisfactory theory" Firstr-yu the theory
is qualitativeJ-y largej-y val-id , and almost certainl-y has features
which v¡ill be of lasting inrportance " secondly, the theory
presented forms the prerequisite knowledge for understanding
present-day attempts to arrive at a quantitatively valid form.

Time has not permitted as detaiÌed a discussion of
interactions as would idear-ry be desired" Mor€ examples of
common interactions courd well have been ciscussed, and some

rcre general questions could aLso have received more detail-ed
treaÈment" rt was fel-t to be of prime importanee, hov¡ever, to.
set dornn the underlying principles of seco¡rd quantization in
sufficient detaÍÌ and clarity, rt is hoped that the subject of



interactions has been treated well enough that the reader can

progress to bhe study of standard texbbooks and current paperse

confident in a familiarity with the principles involved'

The thesis assumes familiariLy with classical mechanj-cs

at a level comparable to that occurring in Gol-dsLein?s

rrCLassical Mechanicsrf o and with a first course in non*

rel-ativi stic quantìf,m rlechanics.

The follovring books are particr.lì-arÌy pertinerû

references for this subiect and are referred to in the text by

authorls surname onÌY.

Schiffo L. I: eîQuantum Mechanics?r ,

for general quantum theory

Schweber, S. S" u Bethe,

Fiel-ds ?t , Yol.

for an outline

discussion of

the ory ) "

H" A" u and de

(t{cGraw-l{ill-, 1949 ) ,

of particl-e s.

Hoffmannu F: llMesons and

I: Fietds, ( Row, Peterson, L955 ) "

of the subject and for a helPful

Dirac theory (relativistic electron

Wentzel , G; tîQuantum Theory of FieIds lro (Inber science , New

York, f9&9 ). This is a standard book on the subject u

but is too difficulb for a student to whom the ideas

are new. some of the central ideas of the theory are 
,

not sufficiently emphasizedo and some of the arqumentst

while correct, d.o not proce€d so as to have intuitive



appeal-: raLher bhan indicating t,he method of

arriving aL a res.rl-t o the resul_t is merely set down

and shown to be correct.

Goldsteinu H; trClassical- Mechanics er (Addison-!Ves]_ey, l95L).
An advanced text desir:;ned to prepare t,he student for
modern tlieoretlcal- physics" Cont ains also an adequate

introduction to special reJ-ativity.

In the text u the Einstein sum¡nation convention has

been used consisüentJ-y, repeated lower case Greek subscripÈs

indicating summation over indices (r rz,3 r4) ,rnless otherwise

indicated, and l-ower case Roman subscripts indicating sunmation

over indices (rr2r3), The symbol (i,* has generaì-1y been employed

to indicate ¿ The superscript star # indicates Hermitian
âX*

adjoint, which for a number or a function is the complex

conjugate quantity.



CHAPTER I
THE SCALAR KIEIN-GOIì,DON FIELD

Laeraqå-ian Formal-ism for Fie_Lds

The method of quantum field Èheory to be discussed

proceeds in essentially two stages, rn the first step the

equatj-c,ns of motion of the field are found using t,he

HamiÌtonian method for mechanics as applied to fields. rn

the second step the field is quantized by first finding a

canonical set of variabres describing the field and then

representing these variables by non-commuting Hermibian

operators. The result is that the quantized fie l-d has

mathematical- properbies which all-ow ib to be described as a
system of particles.

In mechanicsr Hamiltonîs nrinciple is written

(t.t) 6l¿dt = e.
J

where d is the Lagrangian for the mechanical system and 6 is
an operator effecting a variabion of the generalized coordinates
which is arbitrary except at the limits of integrat,ion, over
which it is zero. rn"fitfl'fitvi""ff conclirion for equarion (t.L)
Èo be satisfied is a seÈ of differential equations carl_ed

Lagrangees equations. For a field the Lagrangiand rs defined

fby d = I !*àV
JV

v¿here t is the Lagrangian density, and V is the volume of space

under consideration containlng t,he physical f telrj. L is e

functÍon of one or more quantities S caIì-ed the fietd functions,
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and of their time and space derivatives, Since Ó a.penrìs on

the time anri space eoordinates, so does L, whereas the total
-@Lagrangiand for the fiel-d depends only on the values of tþ

and its derivatives on the surface bounding Vo that 1s on the

lii'nits of the inteqral- {t oo, For simplicity L is assumed to' J,.,

depend only on the first parÈial der.ivatives of the dr 
t 

" 
wlth

respect to position and time" Then Hamilton?s principl_e for
a field is:

(:..2)

where d4* - dx,dxrdxudx, is the four dimen.sional- volume element,

xou being (ict)" The variation ó of the integral means infinÍ-
tesinal changes of the n". ts and their derivatives anywhere in
V or in time except at the Limitso and Hamiltonrs principle then

requires L to be such that the integral has an extremum vaLue"

From the form (1.2) it is evident that if t is invariant under

four-space rotations (proper Lorentz transformaLions), then since

d",,;o is likewise invariantu the fiel-d equations resulting from

Hamiltonrs principle wilL be Lorentz-invariant.

The res"¡l-t of Hamil-tonîs principle for fiercis is the
wel-L-known EuIer-Lagrange equations, which arise in the following
way" The variation { behaves essentlally like a different,ial
operatoro but care must be taken in deciding the functional
dependence of the quantities invol-ved. If L is a function of
the C,pt" and the èr,4r"o but not explicitLy a function of the



x-,ts, as will be the case here, then:
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which is sÈraightforward, resrrlts i-n cne such equation for 
,,.

each fiel-rì function þ"

fn deciding on the fornr of the Lagrangian density
for a field the main criteria are LorenÈz invariance¡ âs

menLioned , and simpli-cit,y. For simpJ.icity, derivatives of order

greater than one are generally not used in the Lagrangian

densÍty" rf the fiel-d equations are knownr âs¡ for exampreo

Maxwelr?s equations for the el-ectromagnetic fieldu L is so

forrned that Hamilton ? s principle l-eads to the correct equations,

rf the fiel-d equations are unknown, the predictions arising
from the use of various simpJ-e forms of L are conrpared with
experimental resul-ts n and on this basis a selection of the best
form of L may be possible.

As an exampJ-e, the fiel-d obeyinr bhe Kl-ein-Gordon

equation wll1 be considered. The transit,Íon from the cLassical

equation p-l2m = E for a free particl-e, where p is momentum,

m nass and E energy, to the quantum mechanicar equrtion
describing the motion of an elementary particle;

-i,-tl.. V'- .;, :Ì ,. c ,: 
"eY.zrn ,it

by repl-acing g- by - ifig and B by iñd-, and interpreting pzl\n a E
it

as an operator equation, should be familiar to the reader. The

corresponding reLativistic equation E¿ = p'""' o mtc4 leads, by

the sâme substitut'ions for g and E and interpreÈabion as operators o

to the KIein-Gordon equation

-t¿ {;)1t *k,".'V-f)/rt', :,'.:..
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(t. 5 ) €-, .. 
' 

", ei = { onu¿ o} {:,:.' L" ffu,'' 
¡

In this ecillåtion the operand dwill be thought of as descrlblng
a field which after quantization wilL be found to have properties

which in relativistic notation is:

equivarent to those of a system of particles. such operands,

having different covarianbe propertiu=1 n or obeying different
fierd equationso will be found to describe particres having

different properties' A scaÌar flel-d funct,ion y' obeyì-ng

Ir The cov¿ìr j.¿rnce property of an expression clenotes its
behaviour under rotation of four-space axes (proper Lorentz

transf ormation ) , and under ref l_ect,ion of three -space axes.

Common types of covariants are:

Þcalar: unchanged under rotaùions or refl-ections"
Pseudoscalar: changes algebraic sign under refLection of three-

Otherwise it behaves as a scalar"

a vector. before and after Lorentz Eransformation

y t,flüi\ and t" lüi ì respecrivel-y, rhen y' - Ay[U*i i$i dtJll 1"J,, j
the four-by-four matrix of the Lorentz transformation)
behaviour of a vecÈor under such bransformation"

: The bhn ee -space components of .,: pS€.¿dovector

e under reflection of three-space axes. (Those

change sign). The pseudovector behaves rlke a vector

space axes.

VQ4pr: If

is denoÈed b

(where A is
denotes the

Pseudovector

do not chanq

of a vector
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the Kl-ein-Gordon equation will firsÈ be considered, A suitable
Lagrangian density is

(1"6) L = 
3u 

( A, ø.ão # l- ry:,*" #')

Yho.u. 1, is a constant to be assignecl l¡ter,for then:

iþ ,; r,tje m:g* É and ¿" f' _14 "1 
ã â11 àv òu @,l', ii'- L ¿?; ;.1j ¿'

so that the f,uler-Lagrange equation is the same as the
Kl-ein -Gordon equat ion.

The detailed behaviour of the field is studied on the
basis of densit ies of observabLe quantities such as energy" rn
the nechanics of a system of particleso if the Lagrangirrrd i"

under four-space rotations.
Tgnsor: Let a/Å, }.epr.esent the elements of a Lorentz transformation.
Then a tensor of r th rank rc.,+.-.T where 7 is the r bh index,
is defined as transforming under Lorentz transformation by the rule:

*If,',j...v

Anot,her covarianb o the spinor, wlll be discussed in connection
with the Dirac fieldc



z

ã
1o

a function of qeneralized coordinates q* havirg conjugate
generalizeC momenta po = ; # u the Ha¡niltontanVu equal to

ðÇ^
the energy of the s..¡stem t Q*{ = A, is def ineci by

åt
¿)/

.i:"i* *#
Analo{ously for a fÍerd theory, in which the Lagrangian density
L plays the central rôIe, Èhe values of the eptu at every point
in the fleld a-r- takerl as generar-izeri coor<iinates, an,r the
conjugate momenta. are defined by

TT Ê ,èL
a?p

af each point' Then the energy density of a fieìd at a point
is defined by H = n @ - L, an,1 tiæ total energy of the field
by i!. i HdV. If the tot,al energy ..1; is conserved t,he energy¿'..' """'5J j

density H must saùisfy a conti nuity ec;uatio.,, .

(L.7) :: !! ç- q. S : ,
c- í-

rf a quantity H in a vorume v, having density H, is conserved,
then 41 = { nÍ ¿r' is the rare of chan,qe of ,;i. in v. Thisdi" / .'t
must equaì- the inw,ard fr-ux af M through the surface ¿- of v. rf
S_ is the flux density of 7./ then

atH,, -f Ç..cr -,f (--v.', dv,, f ëH=¿:,'.
rj : /ú j,,, /,/ c'1*
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v.'here 
-S_ 

is Lhe energy flux density. An atternpt is therefore

made to set ;*! in the for¡n of the divergence of a vector.
f

Now:

þ$x t4-Ar ú\L ",1 -L
;,,r4

Therefore;

(r"g)

It sh

only

expli

would

the d

expl i

e-U:. |rÍ'{..,} *åL. )) !-

i;ù þi Ad cj

ould be recal-l-ed thaü L is Laken as explicitly dependent

on 4 and ðn# and H on n and, S. If L and H depended

citly on the *rt" as well, the symbols {19 and åhl
ú.¡,., . . ,

be ambiguous. A distinction woulcl have to be made between

ependence of L and H on the xrrs throùEh #, and the

cit dependence. Here:

(Ì.9) ðL * È*¿=- .,). å¡v) r àA.;i *9:1!- . :l
à.t ¿' ¿i ¡"o)' , 

' ' ¿";t: :' :;i

where e!;; is a vector normal Lo 6 in the outward direction"

For arbitrary voJ"ume V the last equat ion above implies:
åê{ Êp. S =o.
òf

Such an equation is called a cont,inuity equation"



comblne to fcjrm:

(it , ,:',q,f,q8,ï- ,. Ið: , \ð¿t!

Substitutingrorf l/,,'\ ,,¿l fr|'irtaÞj øtr
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è4 ã ,ì f ': --J + Llà'# LaØ¡éiY àt:,
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ÚL

(r"10) ,jr"=^¿þr¡[ .]ç._l ',r.(

;.t [" ,], j dJ ]
One concl-udes that

9.

The terrns in é è+ canceÌ, ancì equations {r"B) ancl (1"9)
@q

ç. 
n, ^.'Jj: (¿ :::_

å (a¡ 6j
in the continuity equation (I.T) for energy.

continuity equations can often be found from the
invariance properties of L. Lorentz invariance has already
been mentioned. An especial-ly simnle form of Lorentz trans-
formation will be considered, namely transLation of four-space
axes. Suppose:

lr'/ -' n/ t ?
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e

(,
-5
Ø¡6
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10.

for one val-ue of r, v¡here 6s is an infinÍtesimal_ constant.
rnvariance of L r:neans that, at, any qiven point in the fierd
the value of L will not be changed by referring to the new

coordinates x! " This requiremeat is written

6t =e.
For such a transfornetion the reader can verify t,hat the chanrs
produced j.n $ and &*-"þ , where d, is a scal-ar or a vecbor component

is zero" Tf L depends explicit,Ly on # , u,.,¡.:..:,, an¿ on the x,..,s,
then:

6 L = *"! ¿t, r¡t, .:- * . I i,.7* (,
þ,/p å(ê";{,',

L,l^ ,, l^ t*{.yo u €o'} - L (y-*:l = e- ¿ t
\^f

ø ttd

- åL "|frr; :i
å l::;,,)

where èe- indicates the partial derivative taken with çL and=:" .
ê(/ztnj

âeþneta constant. The above equation is triviar, si_nce

6'! " sïit',.'$) =ø, and x.,i, being a vector component,, is arso
unchanged at the fierd ooint by translation of axes. rn order
to obtain a non-ÈriviaL resul-tn let us consider the transforma-
tion in two stages. In the first stage the poin¡ of observaÈion
is shift,ed reraÈive to the fietd, pararì_er to the x axi-s; ã

new point of the f iel"d is considered. The variation of L in
this process is

To complete the translation
untiÌ the previous point, of

(no sumrnati-on over ., ) ,

field is now shifted
coincides with the

the physical-

observat ion
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new point. The variation of L in this process is the reverse

of å,Lo for the val-ue of L at the point of observation reverts

to the vafue of L at the initial point. The net variation of

L is zero, as it musb be, with the field translated in the x6-

direction a dlsÈance {io, relative to the original frarre of

refei"ence" The seeond varlation is

6"J-, L ti1, ^. l-(¡t"," '"r.,Ìl Ê -* : ftt: ^ eo j- 1-.", J' - €, PL
ð ttå

The result 6Lt 6n t',. I ç:;' @ again seems trivial, since

Invariance of L under translation of axes therefcre implies

nobhing rnore than could have been deÈermined from evaluating

:É = Þt " What we are seeking is to set A L in the form of a

õv; i: t,

four-divergence, which being zero wil-1 denote a continuity
equation: a conservation law" Now

ë-b :: .?', ( L l,, ] = àL . ãn t') :- ,i:\. 
"î*- 

(*a-; ,',n,, -p ;i :^
"i:iíc ã nþ ;( a-tû åT{*"i

which from the Euler-Lagrange equation (1.&)is:

.r--.f,¿5=,¿j.'.= r., T aol, q:L I e èL
L ,+(,"5;: ] à{y,':

Substituting into 6 L - 0 for one of the È_-L terms:
å {,,

e,d :::u ( d- 5r,.] -.i, . . " èL T- .i,¿ '. . ,. (no sumrnarlon
f. t ò{àù#i} àiiíc',i over c- )"



wher e T*, * { ào"(,.;: !- * L6rr}*. rt shourd be emphasizedt 'tàùë': -"J

that the conservation laws are arways present in the theory,
but they may not always be so obvious as in this case where

they foLÌow simply from differentiating the Lagrangian density"
consideration of the invariance properties of L then al-1ow a

systematic determination of continuity equations" Consideration

of, angr-ilar momentum in a l-ater chapÐer wil-l ill_ustrate thls
point 

"

L2..

{€}ÕL) If P-A is zero, the invariance impì-ies a
ê(uv3

continuity equation:

(f .ff ) 't.., \ €.ù E a

The conserved quantities corresponding to the continuity
equation (1"11) wifl be shown to be energy anC momentum,

Invariance under transl-at,ion in time impì_ies conservatlon of
energy, for with ,J- o 4 equation (l.lL) i.s simpry the energy

coniinuity equation (Ì"10)" Energy density H, clefined as

{ + g!- - L) tr given by To,q. Then since energy and q-ic)
\. å'U¿ ¡ îtimes'momentum form a relat,ivistíc four-vector r , momentum

density I must be given by
(i¡,. -.t r = * â¡ çl àL,

.: ¿åi

C. F. GoJ-dstein, p. ZO3.



Momentum conservation, following from equation (1"1I
{ a I, 2, or 3, is a consequence of invariance under

lation of spatial axes. T*, Ls called the canonicaL

momentum tenscr u and obeys a continuity Law provided

The lat,ter condition is applied whenever possibLe in
L so that energy and momentum conservat,ion may hoLd

Field Quantization and the

13"

) with

trans *

energy-

PÅ *0"
ð{re}

forming

for the field.

P_article _lroperties of a _Fie-1{.

The second stage in the devel-opment of the quantum

field theory has now been reached. The generalized coordinates

consisting of the values of ,$ at every point are not conveniento

for they form a non-denumerable set. one method of obtaining
a denumerabÌe set is to expand 4 in a F'ourier series throughout

the vol-ume v" For simpì-icity v wilL be taken to be a cube of
siCe Length /' For a fieLd extencling through the whole of space

/approaches infinit,e length. Let

þ : N 
T: 

( f ,,=. r-o's /e. í: + ,, sin þ.y) .

where N is a constantr f- is the position vector
v¡ith origin at one corner of the cube V, and k i
or propegation vector with j th component equal

where each of the n,:." ranges over alL positive i
zero: in this r^oay the trigonometric functions f

relative to axes

s a wave number
/ - * ," '\to ü --¡¡'uJ !'\":\-li

ntegers and

orrn a complete



Il+ '

orthogonal seL e for:

fr
/sin k.r sin k?.r dV = I cos k.r cos kr"r dVlv Jr -- - --:-

{and f sin k,r cos kî.r dV = O"
J,,r

For the scal-ar f ield obeying the Klein-Gordon equat,ion:

t" Ï L¿V, { 1,,åo4.à¿éu*fr" .{,^'j ,: '= 
{3ul(vr,r)i,' /,¡,u+ wr.;,1.=,,i,,, @V.Jv Joo' h ,uluF\v'l 7'r 

ir,.
Substitut,ing the Fourier expansion for $ :

j,u' )"dy = N"Í 
fu,(- h q,-,,,:; ,þ.ç+ [: G,i eeu b.rX-&'1,åsiu, h'.r +.. ]¿,rt

The time dependence of çå occurs in the gi,* (" = Êuo) expansion
coefficients. These coefficients form a suitabLe set of
generalized coordinates because to specify them at any time is
bo specify the field q complet,eJ-y at that time. The correspondin,g
generalized mornenta p6n âre defined by

rr - )4
I'þn - i.r-

..-j q,
t La'a
I l"ü

= ç4' ã *'{í"
e f acra

the orthogonaì_it,y relations. Simiì-arl_y:

-yr,*,"*tu,(or.*ssle'v^ -9E"s¡ob'rX'iu- eos b''[ u" ]'i
,.. ,V

having used

-l* f år*àv 
=e¿J-rv

rn" ¿" f
TJo f (q,å)

f=@tO

and
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ColLecting these resuJ-ts, ¿f is evaLuated asi

= i- N';i;c, 4 (q; - ü)å r*î)\ ,-r'ìl ' ,I u,,

where 
"2 Ê u2 " ú"' ' has been written (orh* ). For this f ieLd

[ -7-,
\ni

the general-ized. momenta are:

Fn" " årÉ-. ^:-¿N'ákr\ q'
i 4*. ,. =' t 

r-ort" I 
t ir;'

The choice of N ={i,fl-Tnormal-izes the expansion functions

(N cos E.f) and (f'¡ sin k.r) in Vu and the choice of go = -.]-cu

is convenient in that with this choice pho is simply å rr^ .

Then f 4^s the form;

É ' r ã ( pw"" -.of lui)L þ,tr

so Ehat H for the field is:
i =ä Pu'q,.*- {= 

*"-fr;-zPrui*ä*å1,.,,,
= å î"(P*: 

r",i lul)
The reader should verify t,hat thj.s resuLt is the same as

obtained from:

1.,', ¡ Fl d"\i, i,-'., dv = r ( a rrå_ - u) avrv Jv Jv- aø t

by substitution of the Fourier series for é into T++ and

integration, It is also left, to the reader to verify that the

fieÌd equationn V" 4 - i"4 = ry:^?" .É , under the substitution\¿ fi"



of t,he Fourier series and using t,he orthcqonality
yields the same field equâtions for the qrs as do

equations: þ*- '.. * àM . and ä : ', j+
! r.'.* I i,'-àqu' è p,-.

tr o:;

The form of þ/ ís that of a sum over E of harmonic

of angul-ar frequency ¿,J,- and mass unity,

The operat or !/

Hermitian operators such

- l(p- + td-g-)¡ where
t

thar (qp-pq): [q, pJ

16.

condi tions ,

Hamilton ? s

osc il-l-ators

p and q are

- ifi, su,qqests

The quantizat ion procedure o as stated previously is
ncw to consiijer the p?s and qts as l{ermitian operators instead
of as functions, The operators are ass¿med to have the
c onmutat io n re l_at i o ns :

( o,o-''.' - 
inh'o' 9r.,") " L..., Fi,'o'J' ùå ;. 6n"'

al-1 other quantities commuting. This is calrerl second

quantization. The first quantization consists of assuming

momentum and position operators for a particle, havinq the same

c,ornrnutation ru-le with positional coordinate s X r y ¡ and z

represented b)'multiplicat,ive operators and momentum by (-ifig).
we have seen that in this rray the equation E? * muc4 + poc*

becomes the Kl-ein-Gordon equation, The properties of .Jrj wirr
first be discussed in the light of second quantization" To

Ùhis end it' wil-i be instructive to discuss the properties of t,he

quantum mechanical Hamiltonian of a simple harmonic oscj_ll_ator,



r7,"

bhe factorization:

{p".o u;u¡}{ p*" e .',t * 
f"+e^)oqo u ¿"-l I p"n'j

(1.12) or ,o.A* , ..'r/ +- frrs.

w here s.l"ev{ng l.*i.t4++A = (p-ir¿ì) and A E (p " ir,r1).

(t.13) simirarly: A.A = zM^ Ê^:.

From these Èwo equations:

./i:- -r r( A*A * AA*]
4

and (¿nn-4"11 = [A,A*J = zÈe¿.

Also, multinlying the whore of eqi;ation (r,re) on the right by

A anC of (l.l-3) on t,he left by A and subtractÍng:

o å r-{?.{þ,""*?{) + aÈ¿.rA.

which can be rewritten:

NÅ= fr,!,, {.¡4.

similarly operating on the left with A9õ on (1"12) and on the

right on (1"13) 
o

7-t de - Ãt þ r i: A'r.

suppose now that N operating on a wave function \Ç n^" an



r,8

elgenvalue E" Thæ*

H*, = *.{A*A+ÁA"}*u =Ege
lds¡r consider the gerato'rãs. operatfu:g: on the sane fi¡netlwr

qA*E= A7'/,{,8-Ê,¿Aþe = AE+'E - hu>A*u =(F-fi-} Å*ø.
and sfird.LarLyÊ

14",,1'e 1 A:ry.*r.+ \t A: le, A" E p¿+å - A*p¿ . ( E+t-) A**" .lhese resul-ts índicate that i.g E is an etgelñralue of H then sa *,s(Elã-;
and that ¿ ana ¿* e,re lad.der operators for obtaining the co¡?espondf-ry eigæ*
fr¡¡retfeÐs ,{ *e ) and (a g, )" /f lhercrore has efgenvalues diff,er{.ng by uxî€.&s

of 6ø' Nûw ttre enægr øf a guan&an meehar¡ieal osclJ-l-ator mrst be pea¿tigglts

lhen tJrere rmrst qist' sone elgenf\rretl.on of 3/ suah ttrat .a, operattng Ír¡ it
gf'ves &ws for othenülse the e,nersr eigenvalues wouLd not be bor¡nded beLowc

for any ei€envalue E$ tùrere rpuLd be anotirer, (nsdar)* *g *m be the eågeno,
frrna*.ìæ .1À^? ^-J*-_s¡e*wa yslE¡s.gr_¡¡g {,s Ene t@hrga€ ergøwa1tre E*o Thgn

w,Id
A*. -- o,

Kþ*= E* *,q = å 
(¿*A r AAx) *nn = å A*(A**) + 

å 
AA*grur

= r A*(u) " ä(Ao 
A + zfi-)*m = o + 

;Fru: 
*w1.

I4 /f = pt+r¿tq* r*lere p and q are }lermltlan operatorsa p and. q t&erefæ
have re&[" ef'genv*lues and so p¿ and g¿ have pcsitl,ve or zero ei.genvalues"
stnce p and g &re nol'.'somrmrting operatorsu they cannot both give aero
operating on a given r*av'e fi¡neÈie&" ?f can theee,fore not have an eigenvalue
ã€roô
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Thereforu EH - * fr*, and the energy eisenva-r-ues are (rv * r) fi¡,t¿7_
where N is any positive inte,qer or zero.

Returning to the scal-ar f ield the Hannil-tonian operator

M= J-ã (Þ,o-,-(.)*è 2.

Jhf -[k" -th,. I

must have o eigenval-ues;

[=
ä(Nh,,^+L)fi,,;6

where for each k and rr N,* may have one of the varues orr,zu-?r.oo
The energy E may be writt,en:

E = E ( Nl,,o 5**) * r E ha,:*
h,r rq)r 

¿ hJ 
v\

The seconci sum is infinite in magnitude, for k has infinit,eJ.y
many values" This difficrrrty can be er-iminated by proper choice
of the order of terrns in H before second quantization" IIad M
been wri-t,ten in the form;

(r't'4) H = : ã( Pt.,l *e-r,i 
Xmi )= å F, 

(pr*' +i,c.r*n*-Xflr,.- ir*9aJ.
and then the prs and qts interpreted as non-conmuting operatorse
the Hami-l,tonian operator woul-d have had the form:

È/ = +(A*Ai= r.( ¡no,r'10) +l i*: [1,p,t, 4- | I ã - r'ü "

* .¡-( ?'o."q") 6g
J

z
?-Now I (p- * ,j"q") stilr- has eigenvar-ues (¡¡ - l) fi¿.¡ so rhat H wíÛ2Z
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have e iqenval ue s :

E =(r{ +r
.' )6'r- N 6..,:

2' leJ 
=*;*

Two fornis which are equivarent when p and q commute may not be

equivalent when p and q commute do not commute" The choice of
the form of H prior to quantization is then macre in such a way

that the resul_t is meaningful_. If the form (f"fi*) is used the
energy of the fieLd is a sum of terms of the form (Nno*ræ6), where

*,.= d nE.ã;f"^ . According to rhe cte Broelie postuì-are, there
is associated with a particre of energy ä a wave of anqurar
fr'ecluency r^r cÌef inecÍ by t] - 'j/h,. rf then we interpr4 the ener,gy
(Nq*hco¡) as representing Nh, particles of energy ña:r, the field
energy is a sum over k of such Lerms.

fnstead of a FourÍer expansion in trigcnornetric functions,
comolex exponeatials couÌd as weLl have been useci" This approach
has certain advantages which will be dernonstrated" Let #a"
written;

ä 
( laecb'r + gJ*-¿h':)

where Ó iu the real scal-ar field functiono and where now

k = 
# 

(nu, ny, **) is such that trx, fly, and n, take on all
negative, as wel-l as positive, vaÌues, ancì zero" The q rs are
different from those used previousr-y, and are in general compì_ex

time dependent quanLities" The orthonormaJ-ity conìiti.on nc;v¡ is:

r f e'&.- e; L"o d d = d. 1,.
Åt J, 1'- r

Qr= I

,t a'*
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The fiel-rl energyi as calcul-ated from H = T,"., =( é ¿L - t j where\ ¿ø f
g- = - q" [ & é)n - l. ]rt^ + *%* é.f. is:

?" d-?' 
æ 

)

t-/. f þ{ ¿V = ,. I* t d,,= o e"(v Ø)"+ %"-J } ¿ulvSubstit,utinq the exponential Bxnansion of ç: 
-'

H = [ ^o{ 
*}j f (1o.utb't*10 e-'å tXq,. eib''* lnne-i4ii:*¿,lv ( rî ulu,

'--' 
ñ,(¿ 

h gk*t b'r - u 3qJ*-' *'').(; &'gu edh:''-' h'gñ e-tbir)+e

+ F. (4 etá'' *qi*-t't'' j. ei,, etb"'*e,Te-;þ1r).
[lb,'l¡i- 

f¿r '"lh'- ¡h'- "
lrtakin,g use of the orthogonal-ity conrlit,ion, and recall_ing that
in the sum, for every terrn in.K there is now a term in -k:

P = 
ä I f'fl(qog-a+'i,i q-fl +eqrlsa)

+ ô*h"(qnq_u n g,. -1.å * aqf q,.)

"(qnl-u* iüEï *aqå9a¡

{f i5) = I ã(iug-h +'.r,' 4_i *eE;å )r..t;(qnq_u+qf q_,. , zSJqn¿h

The eht " and qå t 
" are not sui-tabl-e a-s qener.alized coordinates

since they are not independent. A transform¿,ition is souqht from

the Qht" and ,rf ts to Pht" and Qht" such that the r-atter are

ca.nonicaf variables' In attemntinq t,o find such a transformation,
an examinaLion of the field equation rnight be helpful. on

su.bstitution of the complex exponential seri.es for $the fieLd



eq,rat ion:

Simil-arly

These equa

t,he gus, t
quantit ies

dependence
l'8.r .Qhe ln

If e p were

comb ina t io

position o

= *" --." é
{u

Lt9? -: 6
en

22"

super-

If

becomes i

ä (- Ë!-, c'bir - h "q *i e- 
d l$'5 

-
h' lh

= rn"¿' Y-( a,, €itt 5 o q,,s e-;b''r).
-{.-. H ltt lþ.

.,

Multiplying both sides of t,his equation by u 
- t1'f tnd ir:teqrating

over V, using the orth<;gonality relation, the equation reduces

fo:

,. * -¡h'.r-þÎt'e - -ì
t

e'

i h'.r
9u'€

ence of

dr

he time

Lerm

wa\re,

+ 'Jh 1-h /.

gration gives:
?- *\u dh q-h,

the time Cepend

ions for the fo

stent to take t

is done a given

a single plane

ndence a l-inear
d&.n woulo De a

ite directions.

mult i

t ions

he i'e

Q 
h.u

ofq

the

take

nof

f two

L.i*..,;qh.)= ( q_;

plication by 
" 

d[3"f and i¡'ite

( îï + .,t 1*r) = -( q-t

do not determine uniciu€J-Y

being essential.ly two equab

ttq; ' 9-k' 9-6. It is ccnsi
-to'f ro" if thishto be e F

expansion of 4 represenLs

n to have for its time depe

e-,'dÄ,t "nd "r.ot , a term Q h"

waves propogating in oppos

4p. = - idaga.

4*u " t"i "l* qJand



Then

4,lqu
3u

23.

4_u = - ,^:{ gu 1-u. and 4f q_; = _,of qJq å , and

-à." lul qu' rufaking use of these rer-arionships the
Haniltonian (f,f:) becomes:

{= ¿ ¿a;fqfla.
ki

This is reminiscent of the form (l.l/+) obtained using the
tri.gonometric Fourier series for þ from which

N= i A(Fu'' 
+'rËqhî) = å ä"(pu,*idu.gn")(pu"-iÐhq6,)

= + ;à AåAr,¿ h,s-
where after quantizat,ion (A,* À, )k¡. P-Y '

with Nhr a positive integer or zero.
transform to canonical. variabl_es is

(1" 1ó ) ñ. ,^i *g r. =
I

{z ! ( P* - d*h en,.

ã
t

¿*lÈ luulu = I ?( rr" È "lf' ed-,.

That the Pht" and Qku" satisfy the Hamir-tonian equations
Pb = - ry , and q\, = ?.3 and are therefore canonical variabresaQa 'Þ^
follows from äh - -i,roe*, for from equation (1"16) and its
complex con ju,ga te :

PÞ= du( guþ lh*,.

Q6= ¿ ( qn- gau)

has

ld

ei s1en.¡Af UeS I ou .ç-. \
" t"l-tt- r!(À'h/

reasonabJ-e attempt to
set;to

Áh:

Then 7+ Uecomes:

(r"12) H =



2l+"

so that,:

and: Qk=

in aqreement vrith

,:"rf (qa-qf) = -^:t Qu

d,. ( qa + qa*) =

ãl!= --.1 ; e5 and

P6

åH = Pu, from equation (1.17)
:)D t

á='t"qu"tion (r.16), the

out as before "

P,:-
Þ,

å er"
Therefore, with a transformation such

quantization procedure may be carried
i

However, a more eJ-egant statement of the quantization

procedure now appears possible, From considering the coefficients

in a triqonometric exfransion of ü¿ as generalized coordinates the

eigenval-ues of lt for the quantized field are known to be tãnr..lrN6)

that iso the eigenvalues of an operator (I +nf n6), where flot
2Þ'-

equations (1'ld ano (f"f¡);

t Ak, Ab,*.r = ¿h.¡u6UU'

AS

( rral*) u

r having

form

fnstead of

using ühe exponential

introducing the operators

vritten directly in

5_,
k

1.i enerqy

g enerqies

es operato

lnf Eu \\ffi./
en has the

d fle

havin

rticl

Srol=

an th

a:' ..,

In view of the interpretation of quantize

equivalent to thaÈ of a sum of particles

lt is convenient to define a nurnber of pa

eigenval-ues Nq" Such an operator is \ a¡l

where ,åt* is I i\ \ , The Hamiltoni
\ 4 'lþ/ = lt (o**ak)t;;;îño* t au, *t,* j :

h

transforming to canonical variables when

series for ,þ , and then quantizing, and

6t¡and oht, the Hamiltonian (1.16) can be

the formå

&d
å

fr= ¿.n)rî qu. 1u Ë'.a an* Qk



1tr,

by t,he transformation

(r.18)

Quant vzaLion

as operators

The energy ei

= re.G"s.s åcJ h,

ists of considering

he commutation rule

are then(3-uF-o)

îs and

au$ l

'4u

then cons

obeying t

genva lues

the e,
u@h,

*f '"
= 6uu.

The operators Q6 anC

creation operators respectivel-y,
u{'u b" such that:

o*ct *o = N**

Then by an argument similar to that used in showÍng the ladder

properties of the Aes following equation (t"t3)

aqG(4.ú*) =(N-rj\þ¡¿.

This is the mathematica] statement t,hat the operator q
operating on an eigenfunction of the number of particles operator

reduces the eigenvalue by one in formlng a new eigenfunctÍon.
Since the eigenvalue N represents the nu.mber of particÌes r G.

reduces the number of particles by one" Similarly qu i.r"reases

N by one.

It is of interest to see whet,her the definition of
field momentum

<r,f are ca11ed annihilation
for the foì-ì-owing reason"

-- , q-ô; #'A! àdd-Ju \ " èëi
that the fiefd energy is equivalenL

and

Let

=IG¡dv
terpretation

'l
naqrees with the
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to that of a sun over k of N. partic-r-es, each of energy frrh"
For the real sca]-ar field:

vé¿! = fru -!l 7å*26 = #vø
â ¿þ cul

substitu.tion of the complex exponentiar series for @ leads to:

.,3 =-f k+., . é) ¿v
t,v

'*f 
fd(¿ &q**'t'' - ihShuu-'h'tX qu, *; þls* 

q¡ul e-ib"r)av.
: 6 ä h(qo4-* * {,.if - qn* 4* - qf i-n-)

Si -^o ,l i ^ 4-r--- r .r¿i;uii .i6 j-s úaKen Èo be _idaq¡n this reduces to;

& = ã b (^¡ugu,i-u *dhlf rr-f; - ¿æh q;_'gu).

The terms *o(b1u.1 k +bq**q *u) ., forS = o!, and k = -k'
cancel- in summation over k" The fiercl mornentum is then;

g = -ã &- r;*1nu .i 
r*.

Substituting from equation (l.lg) fo", qf and eh¡

z
h

t
A

ä

h

( z"16 [) E
L.)

t h eå ou.

'f qh

After quantization, (o6qo¡.) is an operator havinq eiqenvalues Nh.
which are positive integers or zero" This supports the interpretation
of the 

_quantized fiel-d as equivalent to an integral number of
quanta o for it says that the field momentum is that of a sum over k



of N6 particles
r-^ã*k=O"d k'+

for the energy

MASS M:

)'7
-lø

havinq momentum ( +ng), The energy
tõn'"c'' aqrees with t,he relativistic expression¡z-

of a particle having momenùum p = (tÉ-¡) and rest

¡¿ +. È
R ênr e 

=-;-t-
n

Fields obeying t,he Klein-Gordon equation are calLed meson fields,
and the quanLa are caÌÌed Inesons" The theory of the pseudoscalar

meson f iel-d , whose propert,ies differ from tho se of the scalar
f ield ju.st discussed only r^dren interactions with other f ields are
considered, is found to give fair qualitative agreement with
IY-neson experiments" No quantitatively satbfactory theory for
mesons has yet been developed.

Þ
:i *

d{îóf;i+ä*-
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CHAPTûR IT

CH¿RGED pIESONS: THE COÌ'{PLEX FIELD.

ff a type of particle has two charqe states, the
field theory shorrld show t,his proper-ty" The scalar field just
discussed describes a singl-e type of particl-e. If some of the
particl-es are charged positiveLy and some negativery a field
funct,Íon havinq t,rvo inclependent parts is needed: a cornpì-ex #
has such a propar"ty. rnsteaci of t,he real and imaginary parts of +,

{>ï lvill be used to describe the charsed

{rs are required to satisfy the Klein-Gordon

be Ðossible to describe the two types of
second quantization as oppositeì_y charged

ti-re functions @ and

field " ff both @ and

e(ìuation then it will_

quanta which appear on

mescns.

The Lagrangian density

L = -€a(å" éâuþrn ù"+é.)
åo

results, as the reader should verify, in the Euler-Laqrange

equations for S anci E* uotrr being Kl-ein-Gordon equationsu
Folrowing t,he same argument, as for t,he real- scalar fietd, the
Hamiltonian density for this field is;

H = T++= ( c" v *4.vd ji- n!-'.e. 6u Ø u +r ø;.
{'

dt 
n tn complex Fourier

"¿-',, ? 
(t6e¿h': +

= Å-'r'2(lJ e-;h'r

Expanding .;f¡ and

é:

serj.es:

bu e-tb't)

*bh* e ib r)þu



al-l
a-r, o

where e, and bç are inCependent complex functions of tirneu the
^@, q.

Hamiltonian is:

=¿ F{dv= 3t';( lwnlJ "ghb-i 
- b,.q-ä * buoJ)

u(4*Qf * àr t ; * üuq-î * I;h;î))

For. the Kl-ein-Gordon equation for ø , subsLitution of the Fourier

expansion and separation of orthogonal terms .qives:

[4, + b-u¡ = -(^)Ë ( q,.* b-n).

and similarly for #*,
(ii n Ë-ä ) = -"lk-( qf * b-ä ¡

Then it, is consistent to take:

lu = - ¿dUgtr ; Ëk= tù,^¡U.bru.
(z"r)

i;:+¿o*if' bf=-¿dþbi.

It then follows that,:

i-qri = ''å qi q* ; '10 ü-*l = -' r,-' 1u b-i

,toü

Þu î-h = - "Ë q-- L*r Ë, ün" = -oo bJ bh '

Using these relations the fiel-d energy becomes:

w= L * *rf, (qj,ì** bf bh)
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bä.

'' G¡ k (')rf ;a.; a[ ; aL ;

(z-.2) u,,1,

f-r ICth AÌ-e def ined 'oy:

'v? 
'a

't, eJU

', ah'-t -

*oT;'),

and âht-) t"

.'¡ -^

fi-

' n ot-'

$ n,.'.

4

({

h

/ (+)(4t.

is to consider

ation rul-e:
snt)Ê'l - (-' l= $

qthen p takes the f orrn Ì./ = X
,r3

the quant izat j.on procedure

operators obeying the comi:nut

L qh,o o' u {-\,

the ah(t'o"and

raÞ

h,h'

/"! as an operator t,hen has eigenval-ues:

4 h*, 1ruf;-'+ Nt-,J
h

The f ieLd momentum is calculat,ed in a simil-a r way.

þ =,{o çdv= 
I(_ 

v+* vøn##-o

fL(vé) åpx *(v.&u¡ C,ldv

=1,1"n,{(, h lue¡h'r - ¿h b**-;b'rXqn"e-drs"on bri 
";h''r)

*(-¿[ qf *-r.h.r +";_] bo* e'b.r)(. ou _ o:ri]h, e,r'.r]j,*n
=-4{f rU quiu"n¿hqî.b-;-,i bu i_f-','h bn Ëh")'h ' * ( -,u ìf i, j,qrf u-, .,6 bf E-h + ib bf 6,*r j

Making use of rhe relations (z-"t) for 1* , ür,

,9 = X Âohh 
{ o ü qø *',*n bk + lhbì + q-n bJ

b 
\- |, 'R rrl

î¡bnq-J +b-hqh-Ï



Ðl
)L ø

Each of lhe last tv¡o bracketed sets cancel- in the suftmation over

k-, in the sen-se that when E = Bt :

,u h ( qo b b" n q-u bË) = ru h' (lr, b-r*. * 1-h,bñ )

and when ! = *k' it is;

* 
h, 

(- h';( g-u, b,i - gb, b-hJ) " -'.'r sì, h'( qu, b-ul * 1-b'b*T)

and sinilarly for the other term, Finaì-l-y;

p z z ä rq(q,J-1u -bJb*).'hq
Substj-tuting for g 

¡o and bq from equations (2.2) z

&= Z 3,h(;¿"iaft + *t-tuoå-t).
k

which has *ig*r,oi*u" T, Ë.h( Nt-'u Nt-')
ïl

From these calculat ions it is evident that for the conpì-ex scalar

field there are twq independent sets of occupation numbers

availabLe for every mr¡mentum sbate (fi!).

The consei"vation of charge for closed physical systems

is well-known experimentall-yo and for a field is expressed by a

continuity squation,

AP rv.J =ê,
àt

where f is charge density and J is current density. If interaction
of the f ield in que-stion with the el.ectromagnetic fieLd is not to

be used in determini.ng the forms of F and J, the relationship

betuieen conservation lav;s and invariance properties may be helpful ,
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es prel¡lously T{as the gase for Wrerg"y-saçgpn¿¡¡¡ eonserr¡at-lon* In
,&hroclinger qrantLun meehåî¡ics, the contsût of ttre theory is embodied

Í.n ecpress¿rns of the fonm go(op*o*torl* s æd sueh wcpresslsns

are nnchanged by a Èransfon@td-on *'= *.e;* , *tru"e e, is a real
eonstånt'e the ¡*'ave func*ion fs sald to be arbitna:y up to a constcn&

faetor of ¡nodulus unity6 fü.nee the Klej¡l*sordon equation ís a rel--

atúviståc extension of the sehrodinger equatlon, it is reasonabl.s

Èo postulate that the content of the fieLd tJreory uilå be invarian*

under zueh transfonnations, This pstrÀl&te rril-l be fonrurated as

fslLoarsc For a trarrsformatlon

€ie = r +

Let oú c-e an irlflnitesimå,l* Any trapsgormatl,on eiP ea¡r be conside¡.ed.

as a s,tlçcession of lnfl¡rttesi¡nal transfortnatl"onso Thenr

þ'= þe¿€(æ é{r+iæ).

fhts tre¡sfomnatåon ehanges the fonrr of L" Let

L( #', ào#',+o',àoø*')

5ø*¿tq&+...l! z.t

= L ( #, ãu #, ó*, àof.) + 6L ( ø, èu Ø, #*,å, éu).

óLnce 6 t ls the ehange in L resulting fronr tbe transfo¡rnatlon, the
postulate fs ttrat 6L=oo for i¡ the fleLd tlreory L snbedies the
physlcal co ntentu and so should have suc,*r lnvariar¡eeo Tf 6 z
een be ¡rritten &s a four rlivergene* èoJg e ilrsp åL=c rrrilJ.



)

constitute a continuity equabion ì,.J, * O, which might apply
to charge conservation. The four vector Ju woul-d be identif,ied
with (J, í c f )' Eva]-uating the variatlon of L:

5L" èL s4 *ê1 .6ø"+-4L $(¿"Ø)+åL ,(a,uoþ*,).
a ø å ,"p'* a{i* 61 ð{å, AR) 

¿ '

Now eó'(4'-61 = (r+cø)ø- #; ¿dé,
and simitart_y since (6')* = ( l_¿a) é*, it fol_rows rhat

8 þ* = -¿ u 4v; arso å(¿, é\n= ò,(6d) = ia åø @.

and 5(¿pé*)= -caår@*. Then usÍng rhese rer-ati-onsrrips
6o = ta f ?r-_ é- ¿L ó*r å1. . â.,4 - èL . dn øu\t æ ñ. ãtax:,þ 

vY 
àËæ tsubsbituiting for fe and åL from the Eur-er-Laqrange equati_ons:þ@ ¿$*

5L=;^{êa,lêL l- éÉåo[ rr- ]uåL a.,é-àL À..ttv' -"[-o¡l 
L;r;æ;] "r#- ]uoé uffi..;è,¡é

: Ð"[,"|'#_eq 4,* àLt I a(+øl .] {,1.¡ #und 6 I equaJ- to a four divergence,

be proportional to r

(

{ é å1, ønàL ì,l. ¿(å.t.-.\ å(å,¡4",1
ctually represents the four-curent
onsidering the system of the electro
-Gordon field in intera"tio.,f The f

33,

(J, ic,,,,) 1s
";l ï

l-

density can only be

magnetic field and

ield equations for

Having fo

taken to

T'hat Jrr a

seen by c

the Kl-ein

à
See for examp.l_e Schweber r êt. g!" , p. 1l_g,
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such a system then incl-ude the Maxwel-l- equåtions, with an expression

of the form just qiven for J p occurring in the position of the

four-cument density in Maxwell- rs equations" We conclude

therefore that the charge density P Ls given by:

f = J¿ = ¿E{ é.òA é*àL \(" I 't4 &"1
where €, is some real constant.

The total charge for the field cân now be cal"cul-ated

using the complex Fourier expansions for <þ and {tr.
(i. 

[r?dV = trfu(,i.','- éu ø)¿v

= ';r.{ n {('tnu'þ'r*b6e-;b'r)(4-l --'b''u * bJ ";b'r)

-(.ì;- €-ib'r* bñ *t*'*ro4n, *;blr - n* e-ib"-)) av

= i' Ð ä, t( qr.if . nu Ë-ni n b* 8-î * bhËJ)
t

- ( qr,*.1* " g r: ù-n u Uä å-o +í bf Ëh) Ì

whi-ch reduc es n using equat ions ( 2. I ) , to ;

e: - ze F -a{e'-1h-bolbrl u u7 -r(qnb-å - bJl-a)
Rß

+ E { -u(gu. b-* - bqg-;)
q

0n summation over k each of the Last two sums is zero, and a is:

= - z- îj ,r, ( qulqh - bf bh)
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CHAPTdR II]
THE VECTOR IVIESON FIELD AND THE CON0]'PT OF SPIN.

The Vector Fiel-d,

I

Pi-elds described by real- and compJ-ex scar-ar field
functions have been discussed. as ån ilÌustration of the appearance
in fiel-d theory of quanùa having zero, positive, or negative
charge " No particle has yet been found to correspond to the
theoreticaL quanta of the vector meson fleld, NevertheÌess, it
is fruitful- to investigate this field in detail, for it is related
to the el-ectromagnetic field whose pr.operties are of such great
importance' The vector meson theory, havirlg quanta of non-zero
rest må'ss, alÌows a sÍmpler discussion of fiel-d ang,rlar momentìm,
or of the angurar momenta of associated quanta, than does the
eÌectromagnetic fiel_d theory.

The vector meson fiel-d is rlescribed by four quantibies,
þ,, ér, f¡,and 4+ , which form a four-vector. uncharged quanta
v¡il] be a.ssumed for simplicityr so that Ø¡ (j * IrZ,3) wi]l be
real-, and 'ÉuwiLt be pure imaginary, as for the four-vector of
space*t'ime position xt, x, and *-. have been taken as realo and
* + "s ict, Each component of the field v¡il_l satisfy the Kl_ein-
Gordon equation:

àoàuú¡- -3'dl=e;
fir

If we anticipate that the field quanta

occurred for the scal-ar f ield, we see

Å t ¡,7r7r4.

will have mass m, as has

that a field having quanta



it"

with rest mass zero would obey the equations:

ð¿ àr *l

Then é; could be iclentified with the four vector potential
AÀ = (4, íé^) of the eLectromagnetic fieÌd, for these are

precisely the wave equ.ations;

lz¿ 4 -r- ø =o.
v"4 '' ¡i =Á.

cL

which fol-l-ovr lrom MaxwelLTs equations in t,he absence of charges

or currents" For the vector meson fie]d, the Lagrangian density
L = 1,[(àndr-àré,Xà, é\- a¡ír\r zù"

li'
l-eads to the Kl-ein-Gordon equation, for:

#, éÅ.

e L = 4gt d-"" 4u. and:
àéo h-

" L#*,i = '1u'''tt àuóÅ-ÐÀþo':(5""5r1'-5''À sr'"))

(l.t) = 41n à,,( àv, 4^, - à¡, ør:)

(3"2) -- a9u å,, à,, #À' - alu )l ( à, éf i

This does not appear to give the Klein-Gorcon equation unl_ess

â¿' (ào ér) = o. The eq.ration àoéu= o is rhe sarne as the



.Ò
,U O

Lorentz condition;

V.A +1 4 = àr) én =o.
c

in electromagnetic theory. l'or the vector field this conclition

is a consequence of the Euler-Lagrange equations, for if the Iatter

are written , f rom e<¿uat Íon ( 3. I ) as;

g;'- 4¡. - àÐ ( ¿u 4À - å¡ é",) ,

fr^

then taking the four divergence:

-':'àxía = âÀà,tàn4À àuà¡à¡#-.
ri

The right hand side of this equation is zero since À and 7) 
'

being dummy indices indicating the sâme summation, can have

. ,<- r . ^their rôLes interchanqed. It fol-lows that if m is not zero r then

àu 4r= O. The Eufer-Laqrange equetions are then, from equation

(3,2) u Kl-ein-Gorcon equations.

The field energy for the vector fiel-d is caLcuJ-ated in

the usual way. Let:

-' 
i,,,,?ttn*tt'' 

*1o* e-dt'r)

anr 41=:. >(b¡edb'r.b,l e-dk't
L)r, E

In three-dimensional vector notation:

L = zgo [ ( v x t)' * n.l-",' +'- l. (;c vdto- 
'i¿ GL
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ø¡)( cc â¡ d'4 -Then ¿!" c o
aé+

and àL = 4gv
èþ) _7-.

(ó'* +*'))m'c4

If th i. referued to axes which are right handed and orthogonaì-

and whose third direction coincicles with the direction of &,

then (! XgU) has no third component. Dot products of the form

(k xq*) ] (n'xq u,) u 
t/b* b')'r on integration involve rhe dot:R

product of tv¡o vectors in directions transverse to ko and are

üherefore expressible in terms of transverse comÞonents: that

and ft= ( 4, 
#,- 

L)

q.;)

Evaluation of al-l the other terrns in 7.{ is straightforward., and

gives:

= y{ .' (n4)' t ó'+c. ( vx É ).,c'ìt -
In evaluat íne H rhe rerm ,[,,rrx ø )t¿V me

attention. Using the rel-ati'on:

or tre''k't = -1h xv u,;b'r = ¿h n g.n

(vo !)'=¿'2. ( Erlr,e;þ'r - brqh*e-'b't ) "E'E 
"{¡''31'"ttt'-b''

a1pec 1

,¿b'.

h'
rits s

edh'r

Å
4,, êrE

r)

is as a sum over two components only.

I t"' É)'do = .'ã h'(-{ u,r-hr - gr, lnJ - qhi qu,- gJtv ¡:r¡r



l+0.

(t.3) ?{ = -z1u Ç'{ h'c-(- bu b-h - bhbf - bf bn - bJ b-; i
¿, L\

*( 
in. i-," * 10. i; * i;. t, " t;"{_; )

+ E lf "', on,. g -un r gr., X,l r luT 1u, 
* ïi q-r.l )

[= t¡L

# nr.ji1 ( 1r. 1-r, 
* tí. 1n 

- 
1t. 10,* 

- tJ. 1_;)--i

çf 
( bu, b-¡. o bJ b¡ + bor,,* o bf b-í)\

l
Since ø and 4a "otisfy the Kl-ein-Gordon equation it can be

shown as for the scalar field that the equations:

1¡= -ttrnLl ; bh= r'l¡b¡.'
(3. tn) -

1f = drulf , Ëro= ddhbJ

are consistent. The f1,"tfru" condition àrr4r= O following from

the field equations allows eLimination of one of the field
functions. Substitution of the Fourier series for $, ínto,

Ðróu = V.{ + + 4>* =o.
CC

and separation of orthogonal- terms qives;

(t.s) ¿b.(qu -t-äj*å(Étnú-;) =o

If e qare vectors re.l-ative to axes whose third direction coincides

with b then'k.q [- kgh:," Equation (3.5) may be written consistently



+
- P



ta+r-o

Then N , + ñ -h ouI oun
7=: rLr3

has eiqenvar,-,u" å k.\(È, ¡¡Or)

Simiì-arly the ealcul-ation of field momeutum gives!

þ = 
T 

*L (å, ( o*T oh"))

The vector meson fietd is therefore seen to be described by

three independent sets of occupation numbers.

F lqkl_{ngular MomenjÞ u¡n,

Energy and momentum conservation have been shown

to fol-l-ow from invariance of a field under time and space transl-aLions.

As in the classical mechanics of parti"f"" 1 anguì-ar momentum

conservation for fields should follow from ínvariance under

rotations of axes, that is n from Lorentz invariârlcQ¿,' It w'ill be

shown that a conservation law does foll-ow from Lorentz invariance

and that the conserved quantity in the case of a scalar fiel-d

agrees wit,h the conventional def inition of angular rnomentum 7t¡,

vrt, j = [, Md¡¿V = 
fo( 

<; G¡ - r¡ G¿) ¿V.

where i and j are two of .l-, 2u 3 in cyclic permutations. That A
as defined through its density by (rxG) is noÈ conserved for

the vector fiel-d will be shown, but should not be too surprising

when one realizes that under rotations a scafar 4i= unchanged,

L
See Goldstein, p"p, 258-263
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v¡irereas a vector fui" changed, so that the scalar field anguJ-ar

momentum is likely an especially simple case of a more general

angul-ar momentum quantity. This general- angular mornentum r¡lil-Ì

be shou¡n to consist of the orbitaL angular momentum fül pl-us a

furthr:r term / , 4 is caLl-ed the spin¡ or intrinsic .angular
moiäentum, for it wlll be shown that in the quantized theory a

narticle Lravinq no l-inear rnomentum, and hence no orbitaL ang'*lae'

nornentun still has a spin angular momentum"

Before considering the consequences

invariance, we shal-l investigate the cond it,ion

anqular momentìtrm conservation.

of Lorentz

for orbitaL

-x; Tto)M;¡ = (t¿ G ; - t'¡ G¿) =

If this definition is generalized

-l ( t;T¡+

to

rpT n)(j.7)

Now:

ôs î4spv
and since

(r"8)

Lhen orbital angular momentum

ày î4oþ"

conservatlon requires

: o.

. -å(f * a ,,,Tpy - x," èt T *t +

?rT., '/ = 0 for e¡rergy-momentum

Tpt54 Tæt5"o).
conservat ion;

å(tno
àt f"I dyy =

\,ltnl.
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Ïf the energy-rnomentum tensor is syrì"lmetric, orbitaÌ angular

moment um wlll be co nserved o otherr.¡ise not " The reader sh oul- d

verify that for the scal-ar field Tþu^ T^ê, but that for the

vector field ,oF rs not synrnetric o and so [î ts not a constant

of the motion. For the vector field (Tþø-- tsÊ) may be set

equal to a four-diversence, àr(+,, Ð*4t- é^àêáy), as the reader

shou.l-d verify" The quantity ( ó,;à*ót-ó^àpá)may be used as a

density s' an,l inte4rated over V using the exponential- Fourier
series to give a quantit,y 4' , On quantization, however, the

components of.,d' do not have the quantum mechanical- angular momentum

commurarion rule [.{r', Åi'I = n,/.6; (i, j u k) * (r,23) or cycllc
perinutations " 4' is th:refore not spì-n.

The general exlpression for angular momentum density
will now be deduced, Since L is assumed invariant, under Lorentz

transformation, the variation of L;SÍÉ[ rransformation wi]-l be
"l

cal-c,;late d ' o excl-uding space-tirne tran slations which have been

discussed :,n considering energy-momenturn conservation" Equating

this variation to zera witl then l-ead to a continuity equittion
for angula r molnent um"

rf an infinitesinul- Lorentz transformation is described
by;

Y; = a.r-,> x,:

7
See Appendix by Jauch in Vlentzel , p" Zl-8"
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then for the vector field:

#; = Qo, +o
where the Q*odiffer inf initesimal-ly fpom unity for ,e4 n ù , and

infiniteslmarly from '¿ero for /"'+ ù ' The variation may be

considered as a su.¡n of two variationso the f irst of wnich produces

a ti-ansl-ation of the field, and the second a rota[ion about the

point of observation" llle have seen in considering the energy-

momentum conservation, that the variation due to transÌation is

zero" In requiring 5 I to be zero, it is then suf'ficient to

consider the variation ¡rroduced by rotation at the point of

observation aS zero, In this câSe for the four-vectors x.{. and

4^, the variation is;

6 v.^ = x; -v4 = (auo - S^r) uu = N^rt x,
and similarly 6 **= -+{*,} of ù.

where f,.", i" the Kronec<er del-ta and (^nn- Í-J has been wrj-tten

w,r*tr, The variation of t can now be evaluabed at the fixed point

under rotation:

(3.s1 [L= àL.5ó^t-àL-. 6(aoó*)
à Ç"* a(èë 4;)

assurning L does not depend explicitly on the *r/ ts.

(¡.10) Now: å(ao,çr.) - à.'(rp.-) r(Eào)4,^-.

(¡"1r) sn¿,(54")= a:-ào=?- à- = 2.* -à- =¿ (à* -5aJ.
àf; àTo dY? àl¿ ) lo ète âri
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For the Lorentz

transformation

lc irì

Combininq ecluati

usi ng-,, the fact

åL = AL.

à+

Substituting frc

åÌ- = ,*J*r à.-

fn the last tenn

in t er rns

Since the

of rrigher

transf orrn¿lt ion

is x-. * a --, xv øL

&pü xu Lhe inverse

that

v, Énre!

,,SO
,tA,

) , and (3"L2) , and

ã. #e r w., r. ðe *\.

ations for âl :

à#*
ø^3 à\ -ò (òrç,_;
s of tandy'*,

àþ - &f¡
ì,,oÃ6

ons (3"9), (3,10), (3"11

that [ #* = ú*r"¡ *u,

(w*F *r') n "-- [ **,. a?où_") L

m the Euler-Lagrange equ

I ,t 4p1 t ,.rør ( àe
LaÞ,4^1 J

, interchanging t,he 16le

ì.i_
b ¿ù

)j
from å L

" ïtis
quation.

rrna.t ion o

(:.tt) 5L= d*? 
[r"Tr#J,) 

*;]
Thj.s is not a continuiNy equation such

under the lransformation +'= *tof in a

however a condiLion on L which leads t
First w-" must be eIÍminated". For the

the orthoqonaì,it,y condition;

Q*o Q\v = 5,,l.

+ {àP ó;r

as wáìs o

is c ussing

o a conti

Lore nt z

AL

àG^ço
btained

charge

nuity e

transfo

an infinitesimal

dropped 
"

1S

be

of the *nrrt s may be writteni

(*,*u * [r.r)( *Ir' åuu'] = 5*\.

*,,*rr's are infinitesi-mals , (wr.rr.r¡¿ )

orCer than the other terrns anri may
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Then:

Wr^à= -WÀrr-'

The wÁqe are arbitrary except for their property of being

infinitesinaals, and this anti-symmetry property. Supoose

wn\n= -wo- = I , and w^v= 0 if (¿,y) is not (m,n)" Then in

summati on

w¡¿p T*, : e ( !-r,,n - Fr,*ì = o

ì

rc s I-*n = l'nr"", for every ef enient of fr,r.¿:

nlmetr"ical tensor'" Applying this reasoning to

ich has the for-m i w*ur Çr = O, writing Y-Q=fr^ t

+ þe C,j à L = ào[ ,a * g,.l + (à* C,) àL
aQ^6à [ a{a,çri J òtàr ø,,

4r - ¿L d-\ = {f òr.&ø,\ ÐL -(àró.) iL_
ò( àn6r; , t aG r úrl à(à,^t

Since €, is not ze

the latter is a sy

equation (3"13) r.,'h

a,l ¿t qr1
La(ao roi I

which is:

a-1, àL

( 3" r¿ ) [ jr¿+-l

From the derinition T,*r ={í4,. O, 
#.f, 

- L t,.r} , the right

hand side of equation (3,U*) is (Tue- Tf*) r^rnicfr in turn is equal

to (ic Ar,!|,,?ì from equation ( 3,8 )" Using the def inirion (1.?)

for M t,r , equation (3.lJr) becomesi

'"\r*¿;)'4' ,h#""'Ì = -kt " t-'ren - ¿c n"^ù

which has the form:

,- { v^?, *5*r.-\ =o.
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where Su,., ic callec( the spin ter.sor, and is ctef ined by t

S.,ueo = : I +,..¿L- dp aL i' 
'.c t -@l 'Wqà\

The total anqular momentum, consisting of orbital- plus spin

angular momentunu is therefore conserved for the vector fie1d.

In order to investigate the spin of the vector meson

the field spin rnust be caLcul-ated and the thecrry quantized. For

rhe field:

(2"t5) Å = ( S¿"1 \n .-..rê Sr;¿= f+, ¿L ó; àL :..Jv-'\4)'¡G-,.
Using the vector field Lagrangian density:

S,j" = 4!L¿(¿. Ðù 41 - ö¿l - +.[, .( rcâ¡ 4^ ^ #¡î
rhent Þ= z ó*( 4- rcv 4^i.

and substituting for þ and Ç+,

)= ? [,

t u )u''* ?n' 
( 9. eih'r -1¡ t-; h'r) x

, ( tr,eih'-r * 1*î e-db'.r + ùc \' baeth'-g-;o b'bí "-tî.)
= z i 1-rc(qu' b)i,h-ic(i¡x!) ui t (qu*4-o) +(qrtqJr

+¿c (1f -L) bu r ic(1oo 
'h) b-ì * (1í, ir) * (1f -i-; )ì

Sr.rbstituting from equat ions (3,4) and (3.6) for q h and f or b¡:

. ä=-¿ ?.#[,q-u,- 9-'i)(qrrh)*(9u,- Î-uJ)ttf -h]l
(3"t5)

- 2. > d.h [(1r'1 h) - (qh. 
'1-ü) n.( 1,.*-3*l
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The terms in (tU"t_U) and (q[,tg-ü) cance]. separarely on

summation over k, The above form for j is not such thaÈ the
eigenval-ues after quantization can be deduced in the way in which
energy and momentum eigenvalues have been found" The reason is
that the complex Fourier expans j.on, vuhich is realry an expansion
in free-particle momentum eigenfunctionso separates the quantities
7f ' h and 4 into the contributions from given momentum eigenstates ¡

whereas the anguJ-ar momentum eigenstates do not correspond to
given val-ues of l-inear rnomentum. In fact, J is not even a constant
of the motion, so that, in the quantÍzed theory ¿ wil-l- not commute

with 7'l and it wil-l therefore not be possible to find a representation
in which /l and ¿ have simul-taneous eiqenvalues. rn contrast, in
discussinq N and & rre have tacit,l-y assumed a representation in
which ly' and,Í1 have simur-taneous eigenfunctions" rn spite of the
fact t'hat fl and J are not convenient forms in the q?s and b,s, if
one quantizes by transforming to the a 1s and c¡,Ùtso the cornrnutators
for the components of U , cal-cuLated using the comrrutat ion rule
for the cr 's and À*ts, wilt be found to be anEular momentum rel-ations:

thii,?a¡^7 =.t TNu.,

a cycl ic permut;rt ion of (L ,Z ,3) , The same wil_l
as will be proven in a speciaÌ case. The proofs
in generaL are straightforlrard, bub are too

the space here.

where (i, j, k) is
be found for spin,
of these statements

tedious to warrant

There is, honever, a conservâtion larv wirich can only be
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proven conveniently from the form (l"tS) tor,Å . A particl_e
having momentum (ãfl has no orbital angular momentum in the
direction k" If

(Wo4j = 4 (2trodu).
h

and if ?Z?oand4p^r" referued to axes v,¡hose three-direction is
1n the direction of k, then Mþ.r= o" suppose that only particles
of type k are considered" Since angular rnomentum including spin
is conservedo each componentu and in parbicular the three-
component (hhr* Åer), must be conserved separately. Sinc e bî¿1= O

it folÌows that f,h, , the longitudinar component of spin, is a

constant of the motion. This result can be verified quantum

mechanically by evaluating the commutator of the Hamil-tonian with
the k and (-t<) terms of -J3 in equation (l"lS) after quantization,
The l-atter expression is: r

( ¿1,+ 4-r), = - 4ú duLqf ,,1*) * (t_i n t_,.)jr.

since bhe terms having the cross product with k have no three-
component. Quantizing as for the HamiLtonian, with

dk"tu.F'îur;r:rrz
üh

Ç.,tr C-r), = ,tFr_ { oui GH.- âh,rt oH,-

In eval-uating the commutator, we need consider onl-y the terms of
H in k and (-k), corresponding to the transverse field components,
for:

I oh" , at,çtJ = áhL, 6nr.
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These terms are;

(xn * H-a),.

The comrnutator Ís then. 
v: lrl

L( 4^ + -!-k)r, t x * +H _e),.1

= ¿t 
F_, 

[(qu,lon,. -4h,.* rt¡,,) , ( a6,,* akî o o nI au,.)J

= rh 
Ft(",-4.&,tâ, - e,*a, a,È'a¿) *( ct,"a. cr"u{4. - a"te"e,nar)

- (a"uru, e,*a, - a,,*e,alq,) - ( a.oa., â.*ci, - &zÈo"a.oo,ù

= rt T { l- a,*e,*d, - q,*(q,*a, +,}l o. r [ û.û..te. - (a. c.j - r) a,l a,*

- [ a,G,nd, - { a,a,*- rj q,l G}]-[ar*a.uo. - ei (qJo.t,)J oi]

= rh f {(-a,n)q,.+{ta,l 
o,,* - (a,)aro-(- G"*io,} : '.

The quantum mechanical conservation law for the longitudinal
component of spin has therefore been proven usirrg only the

conmutation rules for the operators e¡, and aAÍ o

rn order to flnd the intrinsic angular momentum of
a vector meson, hre consider a quantized fieLd for lvhich N h. = 5h.o.

This means that there is in the field region only one particle,
and this particLe has zero rinear momentum. The spin, which

comprises the total angu]-ar momenturn of a particle having no
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l-inear rnomentum,

4"

where tÐo : c

and wh,¡ rê &o-

-.4¿uÐ"(q

+ rna¿t
T."

(;n = I,2,3) are

[ 4o'' a"å]

" 9.)

= LCt.
f,

operators such that
: år.'.

ü
o

¿ò.

from equation (3.t5) with k equal to zero. As in sett)-ng upSr/

for bhe fieId, the quantization procedure follows elimination
of the q us, and ordering products with qÍts preceding cì?s"

The substitution
(Ðov =? ^{* 

. 1o, ;r =r,L;r 4oB = zhcù go¡.
à d6-""ro

then gives the quanLum mechanical- spin operator:

Åo = - 4i !Li[ T¡ ( a,J Gor - q"ä ao.) e,fì L amc'

+ h'- ( ool ao, - a.ol *"u) g" + h" ( 
""1 6r or - a.J do,)

4n|ct +yt/tc.

First the formaL angular momentum propert,y of ¿. will be

proven. For examcl-e:

[/.',,ÅoJ= -rh[.f ao| aoz - a o\ oo.) , '{ ao j ao,

€rJ

* rì or)l

4.": a o. Qol (x o¡ - aol qur o"1 n.rjl

= - ch [(ao.o¿(o3 c\oTGo, - q"l oo, ôoî ao¡]-{o"Laorûoì Got-aon, cto.a j.n*-.

- ( a"T Âo. clol 4or - a,l ao,eoj q',r'} I (
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= ¿Ê Åor.

A sirnil-ar resr:l-t hoLds true for the other two components:

IJor, -foj J = ih,Jo-.

where ( i !,i ,m ) is a lyclic permuÈation of lL rZ 13) " From the
proÞêrties of angular momentum operators l d"lt h"" eigenvalues
of the forrn s(s o Ì) ã¿. The spin of the particÌe described by
bhe corresponding eigenfunction is defined to be s" Now:

3

I d.! " = - Ë'.> ( oi ao¡ - a"*¡ a- or',2.
i,j= r

with summatlon such that i+j , and 1 and 'j are al_ways 1n cycl_ic
order (L,213). The fact that there is assumed to be one particl-e
only in the state with k = O may be written:

3

t No" =l-
l': I

that is, two of the No" are zerou and one of them is unity. Then:

l,!,lt = - r" Z ( .oin G"¡ a"l q"j + ..i cro¿ eoj*ao¿
drj

^t- {_ { È \Ct.¿ 4"j O"i 4o¿ o.o¡ O.oi Q-,': û'oJ )

= -rh{ *",orf I Guaaoå -i a oz&cå -,i]r4o¿q"îfa,îqor-(a"1""r.,)jj

= -ih { -ao{ a." + ûo¿* a",\



(t"16)

(s.tt)

z;li [, ( 
^..n

aojaoj) + ( a.¡

- (a"I a"r)(o,; o"j)(a", a"1)1

)+a

i ( a.i âoi)

*
â"¿ úLo,. has eigenvalues

different from zero;
(r+rl=.t'.

a"r)( tn\

*"*,)- (o"i

The terms in rine (3.t6) operating on a system for which Noj = l,
and No! o 0 are identicalJ-y zerou for the state function operated
on by aoj becomes thât for no particles, and operation aqain withd.o¡
gives identical-ly zero. operation with cts¿ orce gives identicalLy
zero" This is a necessary condition that the energy eigenvaÌi:es
be bounded beÌow" The terms in l-ine (1.t7) have eigenvaLuesr

l¿ol' = F t'[ruo,(N"¡*,) * N.¡(N"¡.,)l
tf,

since (ao; cLot*) = (Ao*ieoi * l) and

No¿. Since not bot,h of No¿ and No¡ are

[lol'= t'*(*or+Nojl :. h.

Equating this eigenval-ue to s(s * l) -ñt, the spin must be s = l.
Therefore the vector rneson could be observed to have 

"nrþ,.,* of the
spin val-ues 0, f I in a {i-ven direction. rt has now been shown
thaÈ the quanta of a flerc described by three indepenrlent, vector
componen ts possess three possible intrinsi c anguì-ar mornentwn states
observabl-e in the non-relativistic limit,

rt shour-d not be thought, however, that the number of
fiel-d components determine the spin of the cluanta. For the complex
scalar flel-d we have seen that the two fiel-d functÍons are related
to the charges of the quanta. In the next section a field described
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by four indepen,lent complex functions wiÌ1 be shor.,t"r to have tr,ro
possibl-e spin va.l_ues,

Before l-eaving the subject of angurar momenti-rm it
should be provec that the quanta of the scal-ar fiel-d have zero
spin' ff + and é* are scal-arsn then for an infinitesima] Lorentz
transformat,ion, ãø and 5ót are zero at a fixed point, so that
referring back to equation (3"9);

ái-= àL (la")4 r
å (ào+)

(5 ¿,) ø*
ò(ù€,ù:

argument as for fieLd that:

o.
d(a"+*)

òo* rAL à-
à{-àe#e';

.à, Mrpr =: ( Tap-fra*l
CL

The condition 5f = 0 under infinitesimal-
therefore shows that the conserved angular
as the orbital ang.rlar momenturn: Èhere is

AL

the vector

.r, é.) =

It follows by the same

-o, { ¿L
[ ¿rao d)

àeó + åt-

d"Ì

d gives no information.

ent to saying t,hat T,o¿

an3uì-ar rnomentum is conserved,

and f'rom the antisynmetry of wop:

l+:ð"4+ àt- ào ótÏ ={ ar-
[ ¿(¿oø) òe,ú,\ I t ,ra +r

If Óf" real the staùement is trivlal an

If S is complex the sùatement is equival
is synnietric, and therefore that orbital-

since

Lorentz transformation

mornentum is the same

no spin"
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Ci{APTiìR IV.

THE DIRAC PArì,TICLES: THE SPII'IOR F'IELD

The mosL common elementary particles, el-ectrons,

protons, end neutrons ? are described by the Dirac theory. The

development of Lhe Dirac ec¡uation Ís indicated in the folÌowing

argument" For a causaL quantum theory obeylng a superposition

principle, the differential equation describing the system

should be llnear and should involve only first time derivatives.
The schrodinger equation has these properties. Howeveru for a

covariant, relativisÈic theory, tÍme and space coordinates

shoul-d enter on an equal basis: first derivatlves only with

respect to spatial coordinates shoul-d occur. If the quantum

mechanical- momentum operator is represented by (*l-tív ), and

the enerSy ogerator bv ( iã ¿ ) , the Hamiltonian operator replacing
òt

the cl-assicaÌ expression

þf = ( p. .'+ rr¡' 
"o)".

wil-l be of the form:

l-l = C *.P- +prnc'.
where clearly cx and ¡3 cannot be orclinary nr.unbers. Assuming 4
and fr commute with ordinary numbers and with coordinates and

momenta, their algebra can be deduced from considering:

Flt = ( a" p' + mac4) = ( c 4 .p +p nrrc.)¿
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or:
m'¿ 4 + ct pi * c'pi + c.fî = e-' o(¡

of any two of

"f¡' t c-(c. p, c¿ lz * u.p.a, p,)

'Þ c¡( *.P, ^, Y, * e,tPrr,p,) + c. ( or. pz *pt + dt pt dt pr).

+ mej { *.pn +F g.F) + F. rn*¿4

With p chosen to be zero, $re see that,:

F =l'

fn the remaining expression, the choice
(p, , p¿, p, ) equal to zero shows that:

*'¡ t = l'
{,oi F * pdt } = o

satisfies the equatlon resultÍ.ng. !{Íth these results, the
choice of any one of (p,, p¿, pr) zero gives tÌæ resuLt;

(o¡n¡ +r¡di) =o.

since tj" p are both one ' as operators oc¡ and p have
eigenvalues o 1, and since they have only these rear eigenvalrss¡
they are Hermitian. Furtherrnore the X¡ and p antlcommute in
pairs, The anti.com¡nutator is written;

{*jp+por¡} = [ o¡,frl*.
Returning to the Hamilt,onian operator involving a and p , the
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Dirac equation for free partlcles is:

(L"1) l-l*= (cg.p +ntc,{l)-{,; s-tà+.

or setting p - iñv and murriplying "" in:lefr wirh¿3:

ttr"2) - ¿hc ß o{,\r + f, ( a} + ê" rnc.* = o.t-t'tòt

A convenient notatlon f s to set L f X¡ = Y¡ and (l * yc.

Then (l*,2) becomes:

{tr,3) ,ròe**ig=o.
The operators { and p may be represenüed by four

by four matrices:

tb.*') r=(;,ï)\ p,(::r)

where ø'are the Pauli spin matrices:

tb'i, n,=( , :), *,=(", :) ,,,=(" ;)
and r and 0 are two by two identity and zero matrices
respectively. the notation indicates that cj has r/ rn trr.
appropriate posiÙion" The reader should verify that the matrices
so defined for a and p have the required anticommutation
relations and that oi - Ét * 1. rf this matrix representaÈion
is used for g andp, the state functions or operands must be

four row natrices; they are taken to be coLumn matrices"
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fnvariance of equation {1r,3} under Lorentz transformationS

(b.6, rJr. 
::::",

may be obtained by requiring

ll*,?) ., 1¡ rr ¿.rrn d; *r + vnc /3'ù'= o.
fìl

where *'ls deflned by some transformation

(4.8) *'= S+,

where s Ís assumed to have an inverse. s is caLled a spinor
transformationo and quantities which transform accoring to
(4'8) are cal-Led spinors. The Dirac equation could al-ternatively
be made invariant by requiring the v^rs to transform as vector
components' * would then be a column matrix of scaLar quantities,
but the form of the equation would change urder Lorentz
transformation in the sense that the /-matrices wourd have a
different form in each different Lorentz frame"

0nry Lorentz transformatlons not involving reflection of time
axes wll-l be considered, For discussi_on of time refLections
in Dirac theoryr sêe R" H. Good, Jr: er properties of the
Dirac Matrices il r Rev"_ l4od. phys. ¡ e-, No " 2 t lg/ _, 211 ,
April, Igjj.

I
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The spinor transforrnation rule is generally assuned, and Ír'lll
be followed here. The propertles of s will now be d.isc,r"".d.9
Substit,utlng equations {t*.6) and {L.8 ) into (b"?) z

f*eos ðu(s*) +rc.(Sg) =o.
6

Mutt,iplicati-on on the left by S-l gives;
(o^o 5-oyus) an* +qng *¡, =r¡.

fl

Comparing with equaËion (U.3) it foÌlows that:
(or.u S-' ln s) = Yr),

orr multiplying on the left by a¡, and sumrning, fron the'

orthogonality relation a;^s.e.tut a 5trrt

lt,,g, (t-'/¡s)'= droytt.

This matrix equation determines the spinor transformation s,qndretates Lt to the [_onentz transf ormation.since the operators c< and F are Hermitian, the'Herrnilian
adjoint of the Dirac equation (t+.3) should be valid. The

Hermltlan adjoint of a matrix B, which is the complex conjugate
of its transpose, will be writ,ten gt Then from (lr"l)

(t*,10) (àn *)* rr,,* f Inc *þ* = o.
ñ

since for naÈrlces B and C:

(Bc)" = c*Þt.
9 5"", for exarnple, Good, loc. e it.
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Now Y¡= -iþa¡ and, l*- ê so rhat:

,io = +ia¡t{3o = ia¡,g=.,-ípx,¡ and /** = ß.
It follows that the Y 's as def ined are Hermitian. Also:''

(a*g)* = *: )y = - ào+ i.' ç')¿ Ñ

Making use of these relabions, equatlon (t*.10) becomes:

*/ a¡ +*(f.rtl(;a¡ê\ - Ð.*n Y* + y go =o,
t

where þ* * r has been inserted in the first term. Multiplying
t,hls last equation on the right by p and deflnlng

+r = *"p
we have for the HermÍtian adjoÍnt Dirac equation;

(L.u I à.u*t uo E *t = o.
ñ

The requirement of invariance of the form of the Y*-r" under

rorentz transformation, appried to this equation¡ gives:

(tr.Lz) a)(+f)' ,^ - rnc(*t)'= o.
Ë

From thls hre can, by compari.son w-ith (4.11), obtain a form

for ( *1)' , which compared with

(vl)' = ( +*l' p, (+') *{, = {S.})'F = +*S"É.

should glve a condition on $*" Now èi - 
^orà",
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Nor,r equatlon (l+,12) has the forsrc

du,(,*1)'ø*o yw- 
%* i*r)'=o.
6

asd we haves

s-r /, S = e*Àv'

To obtsÍ:t %nv Yr*, mu1td,p1.y üre latter equation on the 1eft, by S,

on tfte right by 5 -t and by n*v and sum over,&¿ " lhen¡

Q*, Y* = &*u e*A S xn S-i

, 
fu* flie orthogonality of the rorentg trarisforynatio¡r

&*r) %nÀ= 6tÀ

u¡e have c

eøv Yno Ê S Z, $-t.

,srbståùri¡tlg. this into (L"l¿) tnen gÍvesç

âu (+')'( s Yr S-') - pÍ ( +t)r ;, o,
ã

ærd nnrltfpJ.lcati.oie on the right by $ leads to the eoncrusien

tirat" for the equation to be the earne ae (l+"11)u the @ndlt¿o¡r
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is:
(**l = (*t)'5

or

þtl' = * * 5*i*.

*f 5-' = *, þ 5-' = (9t)'.

, From the spinor transformation *'- S* we had the resul-t:

It follows Èhat S mr¡st have the propertyz

(¿Þ,r3) S*(t= {gsn.This property will be of 
-qse in a later c{iscr,rssion-

For the field theory of Dirac spinors r the

Lagrangian density

{4.r4) L = -fc +r( y*à.*r ry) + - tSL- {a*+t} {.**g *rJ *
ZñLf

leads by Hamiltonls principle to the field equations (lr'3) and

(4,11), fn this the spinors * and *t wrll be üaken as the

field functions, That ln the matrix representatlon each consists

of four functions, and that one should expect not two but eight

sets of occupation nrrmbers,will be shown to be correct at a

later stage. Viewing the Dlrac equation in its general form,

wlth no partlcular representation in mindr only leads at thls
stage to field functions * and f f. From the choice (4"fL)

for L, the Euler-Lagrange equations are

4ò+L
àr,àL = -ñ'c -ào*tL.¿(it+} r
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wl¡ence : à* *' lr* ry +t = or
in agreement with (4.11). Similarly equatÍon (t*.1) follows

from

L=àoàL
à *t a (¿u*+)

It should be noted that L is defined in equation {4"t4) is
zero as e consequence of the 

lfield equations, ThÍs lLlustratee
the lmportance of L as â form rather than as a nu^rber.

Tho argument advanced in Clupter I to show that
invariance of L under translatlons of four-spece axes implies

energy and momentum continuity equations is not dependent on

the nature of the field functions * ana ft, as reäxamination

of the argument will convínce the reader. One must, in
evaluating 6L, write 

t*" *r) 
in such e h'ìay rhar equaring

the result t,o zero is noC a trivlal form. The tensor

T,n , = ào*t àl {- aL- .ò** L 5*r.
à (an*r) à@n*)

therefore obeys a continuity equatlon for the Dirac fieLd"
The energy-momenturn tensor for the Dirac field, using the field
equation (tr"3) and (&.11) is;
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This is the expression in the first quantized theory for
the expected average in V of the operator H Ê + cÊ.p, * ¡3me-

for the state * of the system, Slnilarly t,he field momentum

Ís given by;

hi

whÍch from the periodicity of *, i."tl* 
Gaussr theorem again

on the firsÈ termo reduces toi

(4.t7) .þ¡ = fu + 
*(-;üå¡) +av.

The expression for the. spin of the Dlrac field ì^'i1L

now be deduced, rt is clear from equatlon (4.r5) defining þ,
that the energy-nomentum tensor is not symmetricn ard it foll-ows

as shown Ín Chapter III that bhe orbital angular momentum

74 * [n (rxc). ¿v is not a conserved quantity (eee equation 3"8).
The argument deducing angular momentusr conservation !,ncludtng

spin from Lorentz invariance wâs caried out only for scalar and

vector flelds. For the spinor field under an infinitesimal
Lorentz transformation,

5 t- = vr.o Xu.

= +1.[(¿
= ü f Íaj

Ltv

= L G¡ dv = [o -å r¡ q dV

¡f*)/** *rvuâj+l ¿v

(+tv4.{,) z +tto àj+lav.
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ae in Chapter III. The spinor transformation is:

wl¡ere 6 S is aE infinitesimal transformation equal to the

difference of S from the Ídentity Èransforrnation I. Similarly:
ã+t = *þ,t_+t= +tS-o_*1 = +t(s-,_l)= +f (55-,).

If S = (f * 65), then to first order in infinitesimal quantities,

S -u - (f - tS) satisfied the requirenent

55-'= T.

the terms linear in 5S cancelling" It follows that

55-' = (s'' -I) = - 5S.

and therefore that

{4. r9 ) 5*t = -*r5s.
Then evaluating the variation of L aÈ a fixed polnt:

åL = òj!s+ + 5*r ¿t- + àL s(a"-+) r 6 (ào+t) ¡t-
f+ ñr aoo+) ¿{à,.1,r)

uslng {t+.18), (t+.19), and (3"tt):
[L= àL,55+ +rã5-au *òL ro,(5s+)-ào(+lss)_¿L

a+ a.¡t ò(ð,-+\ âCòo +1)



{t+.zo) ÍL= A,l au 5s+- +t55 àL \***ttro *L5eo)'
" trc¿"+l a(a,*t)J

Â,s in the discussion of angular nomentum for the vector

fie1d, we wish to express 55 as a linear combination of the

,oft", for 55 is to be a fírst order infinitesimal'
55

ó8.

which from the Euler-Lagrange equatlons and the definition of

To¿ is:

Now frrf *,r.t be a four-by-four ¡natrix if we think of s as sucho
taken

and may Ueiãät:.symmetrical in the indices o- and f , slnce * n?

is antisymmetrical and interchange of dumrny lndices should not

change 6 S. The trial form

(tr,zl) ã5 = A ,^:rr( lo ff Tr Y*}

is therefore reasonable, r¡¡here A is a constant to be determined"

The condition set on S by a Lorentz transfor¡natlon a..O is

5-t Y* 5 = &u¿ Yu, .

fr.om equation (4.9). Substitut'ing S 
-r E (I- tS) and S = (I * ÍS) u

and ar.n - ( f,,.n * w,.*"r) , and considering only first order

lnfinltesimals:
(r - f s) l^(I+ 55) = ( wr,,, + Stt¿) Y,
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{t+,zz) or; r/r 5î -5SL =wr**tlr.

Substituting the form llr.ZL) for 5S an¿ uslng the relations

l*Yu+ ful^: zt*t,

which fol-low from the properties of 4 and p, the condltion

(l+"22) on 5S becomesi

A woe{ ,t*( ynY? - YrY,} - ( lofr - rrv*} v*,\ = w,.n Y,

= Awre{ ( - ro lu+ zS*} ry - Ç yry; o rSru*) o,
lo(-YuY, + z5*r\ t Yrt-Y*-fo +25-r)]

= A{ z"^rn^? T? LdnoYn - Zún*V* * zwoe YeI

= 8 A wo¿ Yu.

where the prOperty W,,t)* -wr^has been used, and all sumrned

indices have been represented by rz . ft follows that {84)

must equal orêo Then 5 S in (4,2L) may be written:
5s= =wre(lofp- Yf Y'.)

I

Schu¡eber shows'othut. Èhis form for tS is uniquely deternined

by equation (4.22) subJect to the norrnallzation (determlnant

of ås) - ln

r0
Schweberr êto a1: po 26,



Returning to the calculation
now becomes:

6L = -f { a"[ä*, (Yovo- v'rn\

+ Trn * t- [ r"I

and from the antisymmetry of w r¡t if å 1.,

brackebs must be syrn'netric. That is:
,' 

[ #,rrä 
( {o ie - Yr Yn\ + - +'- 

;( 
r" /, -

which has the forrn:

à.r( sen, +Menr} ?

of5

,Þ-*
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L, equation 14"2O)

, (t, fr - yry)l L 1
a Ca¿ çt) |

- 0, the tensor t" { }

t?t") ¿t- | =CIp-Te").
a{a"*r)J

where

6poo = #{ +t (rrrn - yoyr},"*r, 
,k, 

( rryo - ya,r", *}

siræ e t(T o r -T 7n) 
- -ic à¡(M po>)

The spin density S;¡a i" therefore:

5ii = lg { *t 
(t¿ r¡ -Yi Y¿).rvo* + i*r Y+ir'Yi -vir).r,}

4ie' [ " I

and since fq anticommutes with )/¡ ;

5;j 
åt V*( v¿ri-Yiv¿r*Ì

Using the definition l¡ = -1ßßi and Èhe antico¡nmutatlon rules
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bebween the a¡ and ,6 in pairs, Sij can be written:

The spin of the fiel"d is then;

As a first step toward second quanti za|íonr{ and *t
must be expanded in Fourier series. Now { is to be a solutlon
of the Dirac equaLion: that is, en energy eigenfunction. Its
Fourier series must then be an expansion in a complete set of
free particle energy eigenfunctions, For this purpose a non-

degenerate set of eigenfunctions will be found by considering the

eigenfunctions of operators commuting with the Hamiltonian.

rf the f ts are written as four-by-four matrices and * as a
four component spinor, the Dlrac equation

r*Òr+*TS*=o
ñ

I = å { +*(tx*}*}

where {qx5) is ttre ordinary vector cross product. Using the

matrix representation (lt"ln) and (t*"5) for a , and defining

t = 
[ :' ;,) ' then (s *x) = (g xr)' and since

dg'* g') = ziq-u t it follows that:
g=t(+*s.-û.

L

(t*"23) 4=f 5tv = f_f (+*s+)dV.
JY Ttv

The matrix f¡ qï is therefore the spln operator in the first\z _/
quantized theory"
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and its Hermitian adjoint are each really four equations'

Now suppose that ** is a momentum eigenfunctÍon. Then;

-rñv*¡ = (ñþ)Ç¡.

and tU must have the form:

Y'6 = a¡ e,;h'r

where u¡ ls a spiiior not depending on posltion' If *¡ is to

be símultaneously an energy eigenfunction, fron equations

(4,2) and the momentum eigenfunction property:

- itc g.o *t +p nc'*¡. - E U, {f. = o.

assuming if à *l - E h.*&. .,r
This reduces to:

(tcg.Lrp^t'-Eelu¡=ó'
If, using the matrices (¡*"L) for ü and ¡3 r one writes down

the four equations for the four components of u¡' then the

condltion that a non-triviaL solution exists 1s;ll
(Ei -h'c'h'--'"n)"= o.

This is an equatÍon of fourth degree in E 1, having two double

roots corresponding to:

Eh= t(m'c4 +t's'h')7t.

lt
c,fo Schiff, p.315,



73"

rt is to be expected that there are four linearly independent

solutions u¡r and t,his is found to be true" 1o renove the

twofold degeneracy of the energy eigenvalues whj-ch still remains

after considering simultaneous mo¡nentum eigenfunctÍons, a third
operator is sought which commutes with g and H and for which an

eigenfunctlon of g and H wlll have two different eigenvarüeso

commutatÍon wit,h H lmplies that the operator is a constant of
the motion" Two e¡¡eb constants we know to be Èhe anguì.ar

momentum including spin, and the longitudinal cornponent of spin.
Neamtant"h", shown that the latter operator, (q.!)o is
convenient to resolve the degeneracy. From the discusslon of
spin in chapter rrr we know thaÈ ( g,p) and H commute, and that
( q.p) commutes hrith g follornis fr.om:

(-;hv) q.(-;ñv) = c-. (-¿hv) (-iÈy).

For given eigenvalues E¡of H and (ñ!) of g, the eigenvalues

of (9,.g) are found from writing in matrix forn the eigenvalue

equat ion

{.(-¿tø) *k = fn') +1

where (n t ) is the

(-¿hv) *rr = (ñE)

eigenvalue to

*h- {ãE} uh"
be determined. Since
i h^r

IL
M, Near¡tan; Am. J" Phys, , &, t+5O (t952),
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t .{-; E v)*o

h,-jh.

-h,

coefficlenÈs of the four equatlonsThe determinant of the

resulting is:

[ - hi-"

which must be zero for
lt = h,t+

is:

or:

h)

h,+ ih¿

=ftr')

(¡ì

h

'u\(zì

h

lrl
h

(tt

th

(¿ï
h¡

4

al

a

r¡

q

o

o

t\ - k,'

a non-tri
ätt + hrt =

solution, Then;

¡2-
-RL

vial
h¿

l'

(F") = r th.

It follows that the four linearry independent wave functions
*¡ satisfying the Dlrac equation and having a give¡ ¡¡e¡¡s¡fr,m

eigenvalue (ñ&) may be separated into tvro pairs, each pair
corresponding to a given sign of

Eh = È(maca+fitc'tt)7'= teh..

and that a gÍven palr may be dlstinguished as corresponding to
particles having spin parallel or antiparal-leI to the momentum

(Ít<). The orthogonarit,y of eigenfunctions of (g.g) belonging
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to different eígenvalues follows from the fact that ( q.p) is

Hermitian, That g, is Hermitian follows from the fact that each

component has real ei-genvaluesr since a¡*= 1. Let Ufrsand Ii¡.¡

correspond to eigenfunctions of ( g.g) belonging to different

eigenvalues (ñ tr,"), From Èhe Herrnitlclty of (f-p):

{u.24) {.\ 4h, = csqhr"

{b,zj) ßn} q- b - rv,¡h}.

assurning u¡6 and u hr correspond to eÍgenfunctions of & wlth

eigenvalue (nt). Multiplying (4,24) on the ]eft by ukÍ and

(t*"25) on the rÍghÈ by unu and subtracting gíves the result

(or- r.) ur"j uh, = o.

Now if k is not zero,lf,.are not zero, ârd if r Ís , then

( a, - o--) ls not zero, so that;
*fJ dh, = ô.

Similar1y eigenfunctions of H belonging to different elgenvalues

are orthogonal, so that if the spinors are normelized¡

.thr* 4h, -- 5.r.

where r and s can have four values each.

For the Fourier expansion of * we now write

(tr.z6) * =

-2t/. h '
5=t¡z
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where uþ.:+edh'J is a simultaneous eigenfunction of H¡ pr and

(g"p) belonglng to eigenvalues E¡ - náq, p = (6k), and the

summatlon over s covering bobh eigenvalues of (5g)"

Similarly r1h¡-**tkf iu an eigenfuncbion of H with Eh = -LH,

The sulr over E is the sarne as in earller chapters where lde

consider a region cubicaL in shape wit,h sides of length /.
Similarly

ft is clear that , hr* - €

satisfy akâuì = ht(Àr,

(u.27) +t = i*.7

t:
z
h,b'

çoJ- á'I'E )

'àc
14"27) are plane-wave expansions formlng a cornplete set. Using

these expansions the values of N, ! , ¿, and l!.lt will be

worked out and the second quantization effected, For the

Harniltonian:

/,¿/ = f +t ( -¡h cf .v +rne'p) rÞ dV.
J,

substituting the Fourier series for * anA út and using

fact that

'i E't¡, 
and u ¡r,^r .*;et/6 slnce they

and that the expansions (4.26) and

E
É15

f _ * * -itr.r r
L qr,i,^ni e-'='E +qhi ql.l

and

the

(-itcg.y + rrr ct1) *t = +€eI¡,

lt follows tha

|{= t f
¿-'Jn

*[

"';b'rJ,

( qui. .,t rt* e-ib'= * qoi-

1Hr,+ ¿h.r¿h.,g,+ e 
;b''r * lhb,- ,!k,r,- {-ch,lã..&''{¿V
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Using the relationshiPs:
*t{t ú(¡r. = 5s¡'.

and "ll 4h*=! t ,^lltr¡-=o-

and , f "i{.L'l-.').r 
dv = S!,b,.

!, l,
7{ reduces to:

(,tr,z|'l H=V.t(.lerllkr*-iurl{nr-).
b,s

As in the t"åon field theoryr ürê here wish to quantize by

considering the qts and q*ts as ngn-cgnnuting operators. We

know, however, that the relations

ltr.zg) [ ahrt ,on*r,a, I = Skh,5rr"ft¿,.

where t = t, lead to number of particles operators

Nhrt ã (on} atrg) having as eigenvalues all positive integers

and zero. It, is known experimentally, however, thet two

eleCÈrons having the same energy, momentum, and spin cannot

exist in a closed system: this is the Pau1i exclusion principlet

and applies to all particles obeyi.ng the Dirac equation" The

principle states, in other words, that the operator N ¡r¿ can

only have eigenvalues zero or one. this nay be expressed by

the equation

{4"30) Nhrt(N¡rs -r) = ahsT^h'r,(ooiahrt -t) = o'
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If the aes and o,lt" ""u to have the interpretation of creatlon

and annihilation operators, t'hey nust have the properÈies:

(L.31 ) ourtaþrt=o j qkrt*o¡rl=o.

for â¡.operating twÍce on a state function for which N* is one

or zero must give identically zerer and af must likewise, for
otherwise N¡ could have a value of at leasb two, Operators A¡

and af,obeying (l*,29) will satisfy {b.3O) of course, but will
not in general sabisfy (4.3t )" However, operator rules:

(tr.3z) 
(ohrr aË;'* ah'Jr' ahrr) = Loa'rå,o&'å'lf 5[t' 5rr' 5tt''

allow all three conSequences {tn.3O) and 14'31) ' of the Pauli

principle, to be' satisfled" Accordingly, the quanti zatíon

procedure for the Dirac fleld involves replacing the erçansion

coefficlentd g hrû by operators aå.rt which satisfy the anticommutation

rules (b.32J, The reader should verify that if ü¡i" an

eigenfunctlon of H such that

Y{n= âr.af ar*r = Nhe¡.i[u.

where N6 is zero or one, then from the rules (4.32) it follows

that 1 of, {*) is an ei-genfunction oî ll belonging to an eigenvalue

€ h , and that Of is an operator which either increases by one

or leaves unchanged the nurnber of particles N¡depending on

whether N ¡ is zero or one respective ly" SirniJ-arly d'¡reducee

Lor. t, ep!s,t-'l + = f a5lr¿Ì, ah,r,T,l+= o'
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by one or leave unchanged the number of particles in the state

E.

After quantizatlon the Harnlltonian (tr"Z8) fras the

form:

V ¿r ( Nkr* - l't xr-)
È15

/= Z uu.(oal* 4r.,. - a¡rJapr-)
k'5

with eigenvalues!

7{=

This forrn for /l aLlows a negative energy for the system of
free particles described by the second quantized field. Such

a situation is not in agreement with the conventional notion

that free particles can have only positive energy

Eh.- o {mt ç1 * fitctk1'': rndteed, what we have taken to be the

Hamiltonian ôperator in the first quantized theory, (-lficg,vrmc'(3),

allows negative energy eigenvalues al-so. Now the field
Harniltonian operator can be rewritten u using the anticommutation

rules, to be:

K = ã e¡( a¡r} ßn * t chr- ohr* - Ðl.s

where the 2 results from summation over s. Now since the q,?s

obey anticom¡nutation rules, it is possible to write
r**iAht- = Þþr- i 4hs-- = Ðhs- |



and still
operator.

the first

lu"T)

and the second of which is negaÈively inflnite, The latter
term is dropped ln the theory as being a fixed quantity which

is unobservable. The expression {4"33) ts taken to be bhe

Hamiltonian operatoru

A pictur€sque terminology has been deveJ_oped, cal_led

the Dirac hole theory, to describe the second quantlzed Dirac

field. Considering the form,

a - t ¿h( ah;: 4h:* - a*l ar.r-)

one says that the field energy is equivalent to that of one set

of particlesn described by the dhr*t", of positlve energy,

plus thaÈ of another set having negative energy and described

by bhe d¡r-rs. The form

t{ = ? €r (or.,T ahr* + b;- bhr- -.)
h,s

then indicates that the vacuum state energy is negatively
inifinite, corresponding to all thd. negative energy states
being filLed, since oUia'hr- = (I - bal bhr-) which is one

if (oJ- bhr- ) = 0' rt is differences from this vacuum state
which are observab.tre " Thus the annihilation of a negat ive

. 80"

have (bhr: b ¿r- ) a suitable number of particles
With this transformaÈion H t" the sum,of two terms,

of wìrich can only be positive or zeroi

sn ( orl* aþ.sn * bni_ bUr_)
h¡
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energy particle, indicated by Gkr, corresponds to the

creation of a positive energy particle of the t]¡pe described

by the b*r* 'r, since dhr, = bå-. The annihilated negative

energy particle leaves a hole in the normally (vacuum state)

fill-ed set of negative energy states' ft is this holeo this

absence of a negative energy particle v,'hich is observable aS

a positive energy particle. Wrlt tng îy' in the form (ttr.T)

el-iminates the need for the llholett artifiee and a1lows one

to talk of two types of particl-es, each having positive energy

in the free state, In what follows, the additional terms

introduced in going from (-a¡rl qhr- ) to (+ oAJ- bhr- ) wi]l

always be dropPed.

on substitution of the expansions {4.26} and (tr"ZZ) for

f ana f* , using the fact thet

- df,v ( nht";h'r) = ñh *n, ¿dh'r.

The reader should verify that the field momentum

ä= [ -¡*(-¡Êv] vd'd,
Iv

reduces to:

(+.t+o) 'fu =' E ( q*ri îh,* - {r.l_ 1.,-)hþ.

Quantizing by replacing th,r* by ahr* and qhs- by bhi- , and

requiring the anticommutation rul-es (tb.3Z) for the operators ct
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where a term (+.2 nyl
k

previously" The field
h=

h,5

and b, then leads to:

(b.3b) -b = V eL(ori dbsr + bai_ bn,_).
h,s

has been dropped¡ âs i.n renormalizj,ng ly'

roomenLum then has eigenvalues

ËhLNi,'* ruli:

where ("hl- ai¡rr* ) has eigenvalues a t^Srt qnd {oui_ bh.-) has

eigenvah*, u$ . The choice of slgns for superscripts will
be clear later.

The Íield mon'¡entum is contributeð byfu€-*e; a sum over k_ añd s of partÍcles of two types, each

having momentu¡l (Ík). ft is interesting to noËice that the
absence of a negative energy particre of momentum (6g) ,

correspondlng to a ttholetî wlth momentum (fE), corresponds to
a positive energy particle having momentum (=ñk), for if

aof- ah,r- =o-

then (bn*- bl.r- ) - r, and from the form of (l*.3t), the term
in (lçs-) contributes momentu¡n (-n¡). rn the hole theory rhe

sura (zãnx) is not dropped, but it cancels for the summatlon
bis over pairs of opposite termso

rf one refers back to chapter rr, to the discussion
of charge conservatlon followÍng from invariance under
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transformations of. the type;

*'= * eit'

Inserting the Fourier expansf ons for **and **:
a = € ? 

({rT. ln,*+1uî-1*-)'
.. . ,,.:) . ,

Quantizatlon then gives;

(b.35) Gt = eE (ofidk"*- \r1 brr_).

fn Chapter II the choice of e as the charge on a proton raüher

, than that on an electron was arbitrary; tt simpJ.y declded

, which of two índependent sets of occupaÈion numbers was to
describe posiÈively charged particles. For this discusslon !ìre,

leÈ e be the charge on the electron, since it has been customary

to think of the positive energy particles of the hole theory as

being electrons. It is clear from (1n"35) tfrat the two sets of

it will be seen that the argument is not dependenÈ on the

covariance property of the field function. lle can the ¡.efore

u¡rite for the charge of the Ðirac f ield:

a = -- f ( a, +-+tâLl¿v
h/v \¿* tt-/

which from the Lagrangian density (4.1¿*) for the Dirac field is:
e = -" 

L[i 
-;+*É* -'.¡,t(i p'f.Idv

"[ (+r+]¿v
Jv
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occupaÈlon nunbers defined byq-us and by b?s respectively,
describe partlcles having opposite charge, The positively
charged particles are positrons. In the hole theory, the

absence of a negatíve energy el-ectron corresponds to &he

presence of a positively charged particle. In (U,lj) a term

e Z ('". U., )
hr

where nhs is one for all k and s¡ has been discarded; this
negatively infinite charge represents the charge of the vacuuq

state in the hole theory, in whlch alL negative energy states
are firled with electrons. The extension of this theory to
cover other charged particLes, such as protons, obeying Ferni-
Dirac statistics 1s obvious. The importance of the negative
energy particles, or antiparticl-es, in the case of uncharged

Fermions such as neutrons and neutrinos, is Less clearn

As in the

field does not have

expansion is used,

4--!
¿

vector meson theory, the spin

a useful forrn when a momentum

the spin is cal-culat,ed to be:

f t+* e' +)dv
Jv

of Èhe Dirac

elgenfunction

5*hr*)*=I
L i, t q..: I n,*( *u,l îr,i 'lh"-( uh; r tt r-)

+ q nr: .lr,-( nal [ .9ar-) * q*]- Ib*(*hJ q *rr, ) ï



= ã l, {^r,i lb,*(..u,i !t'aþ.u) +ahrT Þ"i(ul'ì'r'err)

t bhr- ahr+(sur.f g *hr.) uorl bn,- (g¡i

To determlne the spin of the electron, we consi.der;

T. Nllt=u; NoÍ*t= o , Ntt =' {,, h * o-
5

that is, we consider only one el-ectron, and that one at rest,

Making use of the orthogonallty relations
'kak t trh,,r.t, = Ssr, 5hË 5tr'

and rhe fact that (Ul¡Ì- bhj- ) ," *[T - 0 for t,his diseussion

l/l' reduces ter

14.[" = !*ã { (ooT* eott)'(.."; g ao.*).(*orï g uosc)
4 h,s\

aoì b":- (*"å r qo'*).( x'¡+t g uro<-)
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which

4
on quantization has the form;

s .{b"-)}.

* aol 4oat

+ bo¡- r2-os+ ø-ot+ ( ,{or-* g

b n,l ( *lr1

*
4 os+ (ros+) -( ,a. j* g aor*)

g r',.t+).(*ri g +nr-)|+ btr- Ahs+ *a*1

Using the
zai - rt

( tr. g6)

relations¡ uo; uo¡t = üo.t *o]t = I, and since

(q.q) = 3, the first term in I Å t[a reduces to

i¡ NÍ'l'''
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and the second and third terms are z,ero, for
(uorl g ^,s*) -(,{,rT y &or-) = (rro.å g- t ¿Lo:-)

= 3 {,. (tos** aos-) = 3 (o).

and from the anticommutation rule would seem Èo be infinite u

equal to;
bri hr-X hk, - &hs{ a.pr*)

the last term is:
t' ;1 3 ( bur_ bu,l )( or,, anrl ).t h,,

Ë ã r(ntr,
{to.3z) 4 h'5

i i 3(nr<s - ")( nhs -o)'

where r h, 
* 1 for all k and so This infinite term should be

dropped, howevero for if one norks out I ¿.1' before quantization,
then the quantlzation prrccedure involves replacing ( a¡rl Ah¡_ )

.t*by (-b¿r-_ b kr-) rather than by (l- ¡h; bbr_). fn thls case the

f lrst factor 1n (lr" 37 ) is zero for each term of bhe slltnu From

(4,36) and the requirement of onry one electron present, f, *Í?= t,
it follows that the val.ue of l/oft:.u, 

s

l4,l' = fi s(s+r) = f. f.
+

where se the spin of the electron, must then be Llz. the same

argument, leading to the same resuJt, is val-id for the antiparticle.
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CHAPTER V

INT;fi,AOTIJN OF ELEMENTART PARTTOI,ES T

The final test of a physlcal theory is the calcurlation
of some resuÌt which can be obtained experimenbally" In processes

invol-ving elementary parti cles , the average lifetirne of a state

of the system, or the calculatlon of a cross-section, are the

most common sort of quantitàtlve check of a theory. For the

calculation of these quantities, a technlque called perturbaÈÍon

theory, has been deveroped. For a quantum mechanical system

involving t,he interactlon of various particles or fields, it is
assumed that the Hamiltonian operator can be written in the form:

?/ = 7!o + y'-

where 7-lo Lu the Hamirtonlan operator of tte s¡ætem neglecting

any interactlon between the various elements of the system.

The notation
(/ I 7J',â¿>

will be used to indicate the matrix elenent of the operator

between an initial staÈe i and a final state f. The resul-t of
perturbation theory is to showtl th"t the transition probabll-ity
per unit time frorn the init ial state i to the final state f of
the systern is gÍven to f ir:t order by,

Å.r rc) = i FF (E)l .r tv't r, l'
t7

See, for exaû¡ple, Schiff r pp. 189-19ó,



88.

where fF lÐ) is the density of finaL states in Èhe vicinity of
the energy E, corresponding to energy conservation for the

system, and where ({ll{'l¿) is evaluated for the final state
corresponding to energy conservation for the proc€ss. Irnpliclt
i.n this result ls the assumptlon that 7J' and. ?r(ø) vary

nagligibly over the tine period required for the perturbation.

A cross section for a process is defined as the n¡¡s.lber

of'particles passing to the final state per unit timen pêr

unit j.ncldent fh¡x. Cros s sections are observed in exper iments

in which a beam of particJ,es enters en lnteraction, and in whlch

the resultant particles are observed, Now a transition probability
per unit time may be used to represent the density of partlcles
appearing in a final state per unit tirnen divided by the density
of incident particles. Now the density of incident particl-es is
the incident flux divided by the incident velocity. The number

of particles appearing in the final states is the density of
particles times the volume of the systerno From these considerations
it foLÌows that the cross-section crr for a process is rel_ated

to the transition probability per unit time by¡

t' =Y aÅrEi
4f

where v = ll is the volwne of the quantized system, and nf is the
velocity of incident particles.

The everage Lifetime of a quantun mechanical state re
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calculated on the assumption that the ,,u*U"r of transitions åvray

fron the statæ in a given time (trre decay rate) ts proportional
to the number of particles in that state. Quantitatively;

dN = -hN.
d,t

where t is a positive constant calred the decay constant, and

N is the number of particles in the given state at titrÞ to Then

to first order approximation,

ff = No s-It = No ( r-Àtl

on for e-ìt
it iaI
probabiliÈy

in No

is given by:

e(av - e- Itdt 
= |

À

the average llfetime is therefore the reciprocaL of the transition
probability per unit time, The half-life of a state defined by:

g"
7

is then given by:

frrr- = 1"5a, :

-

À

having taken the first two terms of the Taylor expañsi

and having let No be the number of parbicles in t,he in
state at time t = 0n À then represents the transition
per.unit ti¡ne slnce Àt gives the fractional_ decrease
during time to Nowthe average rttetrne defined by:

To" {- ¿r¿ = [" tdtv.
'N. J un¡yo

-r (* t N.(- l)
No J.f.: o

o.6i 3

À
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The half-l1fe as defined is the time required for the number

of particles in a statÆ to dlminislrby half 
"

Decav of the ?t( - Meson.

The second quantized field thecnry can be applied to

interactions, ard used to calcul-ate trangltion pÅbabilities per

unit tlme by writing the Lagrangian density in the form;

L= Lof f .

where Lo 1s the Lagrangian density of the fields wibhout intenaction,

and Lt accounts for Èhe interactlons between the fie 1ds. fn

this section the decay of the rf - meson will be wed as an example

of the development of the theory" The decay may be written¡

Í*= .p* +zt.

where 7.| represents a positively chargedrø.- meson, andt) a neutrino.

For this process, there are three fields involved, so that Lo has

the for n:

Lo= [-T *L**- Lrr.

wher^e from Chapter I,

{5.r) LÍ = -ca (a, ç* òp + r-inr.c +"ó).
Ft

assuming that the rr- meson is best described by a complex

pseudosalar field function S, obeying the Klein-Gordon eçati.on.

ft is known experiment,ally that the¡a- meson and neutrino are
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Dirac particles" Then:

{i"z)

and, a

(,5 .3)

l¡{e hav

respe c

oî rl-

Since each of L, , Lr¡ , and L, is Lorentz invariant,

L' must be chosen to be Lorentz j.nvariant also o if L for the whole

system is to be soo This, and simplicity of form' are the two

main criteria Ín setting up the ínteraction term of the Lagrangian

density, and. a comparison of calculated values for half-1ives,

for exampfe, with experimental data, helps decide whether a given

form is acceptable or not. For sinplicity L' will be seÈ up

containing each field function only linearly, and not having

derivarives ot tn",-,t:"î 
ïîît"""' 

the rorm'

is not Lorentz invariant, however, since f is a pseudoscalar and

(f tX) 1s a scaLar.

For the sake of the generat problern of fields in inter-

action it is important to knor"¡n hotr' to construct the various

covariant forms usi.ng field functlons of dlfferent types. Lorentz

invariants can then be forrned by combining pairs of terms having

.)L*=- þ { 
*r( ve?r *i)* + ( - )r *t rr +ve *tl

Á

ssuming that the res6 mass of the neutrino is ze

L¿ = V{r', + àt:íl - ( àexr} r, x\
e writtefl firrand m for Èhe rest masses of rt- and

tively, and P , * , and I to represent the field

meson, A- neson, and neutrino respectively.

ro:

/-- mesons

functions
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the same covariance property: the produet of two scalars or

of two pseudoscalars, the inner product of two vectors, or of

two pseudovectors, or the contracted product (Tf, f 'rn ) of two

tensore, form scalar quantities. The folÌowing table lists
somÊ of the simplest covariant forms which can be set up for
different types of field functions. the Sts are all assumed

to saùisfy the Klein-Gordon eqrlati-on.

ft should be noted that several of the terms in the above table
are non-llnear ln the field functions. Non-Iinear theories are

noüoriously dlfficult in calculating such results as cross-sections.
Several- other terms in the table lnvolve derÍvablves of the fietd
functions: interaction Lagrangian density terms involving such

covariants a.re said to have derivative coupling. Derivative

coupling is not commonly used. For the vector and pseudovector

field, one cannot set up a useful scalar or pseudoscaLar from

ðeúe, for this quantity vanlshes for the vector meson field
( see Chapter IfI ) "

Fiel-d Scalar Pseudoscalar Vector Pseudovector

Ê1
o

Í:q

+)

(õ
.r1
1.{
d
Þ
o(J

Scala r
Pseudoscalar

Vector

Pseudovector

SeconC Rank
Tens or

:

,:

àeà, é

ó*ø

4

àr4

r:,
è?

àp fn

ée_ór

4e

Covariants constructed from spinors are also needed,



93.

and the simplest forms, not involving derivatives of the field
functions w111, now be llsÈed,

Scalar: fn Chapter IV it was shown that a spinor which transforms

under Lorentz transformation accordlng to the relationship
tl't=5+

obeys also the transformation:

{Vtl' = +t S-i

' ft follows that ( +t * ) ts a scalar, for:
(+*+)'= ( +ts-')(s*) = +t+.

This is the property required of a scaLar.

þ!9. Since the spinor tr-ansfornation is related to the Lorentz

transformation by:

5-'LS = eo¿Yr,

the quantity t*tf-+) transforms as a vector:

(*tU*)'= (+t5-') u*{s*) = tt,t (*1 b"þþ.

Tensor of Second Rank:

= &.on 4rP( *t rryf *l-

where (S S -t) s I has been inserted"

Pseudoscal-ar: rt will be shown that (+t;ry*), where Y¡(r,hyry4\

(+t r-lr*\'= ( +t5-') r- ( s5-') /r( s*)
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transforms as a
(+t ¿ v5 *)'=

Inserting (S S-r )

s-t yns = a,rr, lo,

pseudoscalar.

¿ (+r5 -') rs(s *) =

:.

¿ +t S-'l, y.ys ye s+

between each pair of lîs -and .,"rn* ,n" property

this reduces to;

O1¡Çtt-p d3¿ Ã^n ,t i lu Y, t'(i.b) lI Y^

which can be written;

(5"5) ,, Errnrrr.n, 4Xkalrþev,rreo,r +f ( ;llyüyy yrï*-
4t ^',

where E Xo:u,r, is a symbol wiiich is zeîo if ( \'r*, y', ît ) is not
the set (Irzr3r!), and is pJ-us or minus one as {\'p'v't,) is an

even or an odd permutation respectively of the order (l12 13rL),
There are no terms in the sum (5"1r) having two subscripts of the

/ ? s the same , for suppose A =.p. There are four such terms o with
À - rr2r3, and t+ respectivery. Now f¡= r. Then the conùributlon
to the swn (5.4) fron the terms wlth \ =¡tLst

artrútzI &tu Q1o.ln Yn.

which is zere from the orthogonality property for Èhe Lorentz
transformabion, that a*l a*,A * 5,rrË" Al-l terms of (5.5) for
which (À;'¡Jl,') are even permutations of {I ,zr3rt+) can be put

in the order ll-rZ13rL) since an even number of pernutations of
the indices (\r¡t,4e) changes nothing due to the antlcommutation

of the / is, All sets of ( \'o,z)tÍ' ) which are odd permutations

of ll-'z'3Jo) can likewise be set in the order (I,2,3,t+) introducing
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an odd poh'er of (-1) due to anticommutation, which is cancelled
by the value {-1) of EX¿ rr,'l, The factor ,t,, accounts for

the fact that in the sum over ( 7t1't,r,) there are (41 ) non-zero
terms" Now /¡ Yo,Yrlnwí1.Jh alL of (Ipttt\ different can be wrltten:'

" lnu, 1 lr,Yl Y+ = € l^rn Ys -

because of the anticommutation of the ?/rs, rt follows that (5"1r)

can be written¡
Atì &r* lln, 4oo Y\ye /r, Yn = + E lrztt €1,*,",r, 4\I' Otrt, evv, Aon, Y5-

{l

= (clet a.3 ïr.

where (deta) is the determinant of the Lorentz transformation'S.
For four-space rotations, (deta) is *1, and for three-space
refþctions aij E -5tj, ã&4= 3*a r so that (deta) = (-r)3 â -l-.
rt foLl0ws that

(+r, zs g)' =(det q ) ( *r; 7, +'1.

and that {¿*tfr* ) is a pseudoscal-ar.

Pseudovector

(+t¿ rs ye+)'= ¿ (+t s-') /r,{¡ s-') r, ( s v}

t[Trr"t 
i¿lrl..nr e¡,¡n,¿rn, art, err.&, evv. eonr,el,o,nn o,l. e¿,ùßB.-,arr,

is equar to (¿eta) is proven in most texts on tensor analysis"
See for examplel Lass: ttVector and Tensor Analysisn , p"263,
(McGraw-Hill¡ New Tork, 1950).

'= 

i *t(s-'/is)(S -'t*S)ú = (¿"t sl a?o(+t ¡ ysv, gl .
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which proves the pseudovector character of ( *l;/7ye+ ),

The fol.lowing table summarizes the Dirac covariants"

for the

function

quantity

X¡is;

15"6)

Covariant Spinor function.

Scalar

Pseudoscal-ar

Vector

Pseudovector

Secord Rank Tensor

+r+
vf ¿ fs*
*t rr*

*1; v, Yr*
tl refo*

We are now equipped to seÈ up the interaction term

ft- meson decay problem. Since the Í - meson field
is taken to be a pseudoscalar, a Lorentz invarlant

involving the ,¿{- meson spinor f and the neutrino spinor

L'=g+(+tcvrH).

where 9 1s a constant to be experimenÈally determined, and is
caLled the coupling consÈant for the three fieldshere considered

in interaction" The most general interaction term using only

the three field functions, each linearly¡ ls;

t,5.7) L'= jlþ+tivrx- Xt¿'y¡Vþt + óX,lrr, + - *t;rrr #*\
which is Hermitian, for a purpose which w1ll appear later, To

proceed to second quantizatlon we shall have to evaluate f f *aV
with appropriate Fourier series inserted for the field functions,
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end using the l-abter form of Lr this is a formidable task"

Much of the r¡¡ork involved can be eliminated by consj-dering the

specif ic process of decay of one positive lf - meson at rest
into one positLve þL- meson and oEê neutrino. The Fourler series
for the field functions are;

= 
Ï',-T Îl'') 

e;h'r' + b¡ (w) e-;b'r '

u = 
t*.7, lbrrÇ*l uhr'('pleib'Et9h,-Ø) Tur- (r)ë;þ'r'

f = '.- L q,-- . (¿l4rr* ful e;b'r + i h* r v) ths- rrl edb'r.

and rheir ,".::r: "lï*.r"". rn rhe second quanrized rheory

the following interpretation is given to the operators which

replace the q-coefficients,

vrhere Ð represents the antineutrino, The application of these

operators to an initial state in which there is ane ilr- meson

onl-y, gives zero excepÈ for the creation operators and for bhe

annihilatlon operator corresponding to qo(nl. Now we are

ultimately lnterested in the matrix el-ement of Ht between and

inirÈiaI state *¡ .rra a finar stare *¡, where *f describes the

presence cif one ll+ - meson and one neutrino, The rnatrix element

may be wrltten symbolically in the form of an inner product

( *r*, H' ,þrl

ñ* fi- 4+ 7) t,-
creation

annihilation
ftlr"l
1¡tr)

brttr)
bO tr'ì

%l*{rl
1¡a*(Vl

qtu-(/*l

qhi- t¡
q¡l*(,)

thr. to)
Î¡p- (z,,)

q b:- (r)-
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Hermitian

that the

adjoint
(*f* , o
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rel,ationship between an operator 0 and its
0r is expressed by;
g;) = ((o**¡)*, *¿)

lt follows thaÈ all of the creatlon operaÈors followlng from the

above table, w'iII cause the tenn of H'in which they occur to
have zero matrix elementn for our choice of final stete, except

f or erl* t7.l and one of q nl, {r) and e hr- 
(.,) . For exan:p1e:

( *f', dr['*(-l *¿] = (( a!)c*) :pr1t, *;)

is zero since *f contains no ilr- mesons, so that the fi+-
annÍhilatlon operator applied to 9f gives identically zero,
Similarly;

( *r*, o['] 
*(, er) = 

( ( o[:'ro.r ü¡)*, *,)

and since üF ls not a state devoid of y'.+- mesons, af;'j t .)
operating on it is not necessarily zero. Since we must have Èhe

terms in q*l {*l , we must have gt in Lf , and therefore X

rather than Xt , in order to form a covariant, This specifles
that it 1s e¡r_(zr) rather that qnrl (:,rl ûrich must appear, and

corresponds to a process in v¡hich an antineutrino is produced.

rn our theory, there is no physÍcal distinction between tl¡e

neutrino and the antineutrino. rn caLcula ¡ins Ht, we may, for
this problem, use the follovring partial Fourier expansions;
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þ. 
{o ttt)'4=

*t=, Z
(5"81 l'''''\'?

qrl*r*r ,¡ul t¡*l e-¿b':

l= ' irr,T, lur- (u,l {hr-(.,) ã;b'r'

Before calculat Lng ?d', it will be interesting to find
the field equations for fields 1n interactj.on. For this purpose

the general form {5.7) for L' wiLl be used" If {n represents

the set of field functions describing the three fields here in
int era ct 1on ;

ìÞr. - ( ó, * ',.1,, +1, X, X t) .

the Euler-Lagrange equations are

eL = àrL
à +e òQ"ú"å

then from the forrins (f . I) , (5.2) , and 15.3) contributing to Lo ,

and from L t , for which àt is zero f or al-I iÞ, , L'
à(arf*]

not depending on derivativeç of the field functlons, the following
field equations res,rlt:

(nrr, 
Hl e* = -1 ( .|,t i r{x +¡t; ry,*)

(rrrr- "1"") A - +g (*rirsÍ ùrrivsv).
h' ¿-

Vr', -+) *t= L(**xtì,vu -úx'rr)-
nlc

I
l"rr, *g")v = 3-(+-#")ir5.{.tl l.
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Yeàr Xt= 1
üc

1_
hc

(ö- ç*l*'irr.
v?à?x = ( 4_ é*) i /ç*.

By analogy with electromagnetic theory, in which the fietd
equation, èeà, Ao c Q in the absence of sources of four-current,
and are Ð9àrA ¡ - J6. in the presence of sources o the non-zero

terms on the right hand slde of the above field equations are

called source termso The source terms are a consequence of the

interaction of the fields.

ft should be pointed out that the conservation laws for
energy, momentum, and charge, as derived in the earlier chapters,

hold true for fields 1n interaction, for the derivations were

not dependent upon the forrn of the Iagrangian dens ity except in
requiring eL = Oo The reader shoul-d verify that the

Ò(x)
conservation of angular momentum including spin for interacting
spinor and Èensor fields (where tensor fields include the scalar,
vector, pseudoscalar, pseudovecüor, and any rank of covariant

tensor fields) ¡ follows directlyo with the deflnition of spin

, ì simply a sum of those for Lagrangian densities depending

on spinor and on tensor fiel-d functions respectively. The fact
that the conservatlon Laws and the coruesponding definitions
of conserved quantities in tern'¡s of a Lagrangian density, hold
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for such a variety of systems, indicates the value of Ëhe

Lagrangian formalism. If a Lagrangian density for a field

system can be found o it is a routine matter to deduce the form

of the constants of the field motion.

As a first step to calculating the average lifetime

for rf - mesons decaying to l¿ - mesons and neutrinos, we must

obtain the second quantized operaïor Ht, Having writteni

L =LorL',

the energy mornentum tensor has a form:

T - z.{ àp ë, àL" - Los r"ì *( à, Þ" àL'- - L [rrì
'?o - ?\- 

-:F* 
'-i |.. 

' --,,.'+'l "l
= Trî' * Ti''

Now AL' * 0 as noted before, so that TËd *-¡u'6ea. and

¿Cr"-gJ
therefore H' = Tq'+ - -Lt. Using the short'ened. form 15.6) for

L', and the partial Fourier serieE (5.8) for the field functions,

7l'1."t

t= 
- \, I ounã,r,rq"(')1ü. (rl1u'''-co) øfr, ç'];" th'r'-(4';ltit]'r
r4h Jv $'þv,5'5' -

Now: 
Irt 

Gk.:- !^) -t dv = 1' L-ü,,bo.
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Thae is, only terms of the sum conbribute to ?J 'which conserve

momentum for the process, for in the second quantized theory

lñLþ) and (nyr) corespond to the momenta of & - meson and

neutrino respectively. Theni

Afo = -q
frr. l-r,r,s'

Qr¡antizaùion consists of the repl-acementsi

4o(rrr quî{pìq-r.s,- wìf.urlrr-, i Yr ü+h".- (o)l

{oc'.¡ *qíE- .a(j'ctl =-h. , .ai)tmr.
*¿t'. c(tm.)''z

1r,1,o, --þ 
"tå 

t(.r..).

1-hs'- 
(",) q-r1'(t)-

Finally H'has the operator form:

(5 "9) ?l' = - n t 4g Z .[ *ntr. (/.,\ ; ys L+hr,-(oil o{i*çnr a,-1,{,oi-

ffi.4t,. h,r,t'
the surunation over k and s accounts for all pos,sible directions

for ühe decay products as well as spins" The transl-tlon
probabiliby per unit time defined by

i r, I <tty't ¿>l'.

wlll not depend on the rnomentum direction or splns of the decay

products. fn evaluabing

I <r tH't¿)l' = {*;, H'fi)(ü,*, H' **r).

lf S¿ is normalized, *, ü,* Ê 1, and the double sum resulting
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from (?',/'rH'*) reduces, due to orthogonality of spinors for a

given type of particle corresponding to different spins and

dlfferent momenta, to a single sì.tm over ! and s, In Èhis way

the reader should verify that the transit,ion probability can be

calculated for transition Èo given nomentum and spin states, and

then a sunmati"on performed. Ât this stage 1t is evldent that

making L' Hermitian in (,5"7) renders-the operator Ã/'likewlse

Hermi-tian,

the sum (5"9) fs over all magnitudes as well as

directions of k, but the transition probability per unit tfune

involves evaluat íng (INH'l ¿) for the momentum vùich corresponds

to energy conservaüion for the procêsso For this, k must satisfy
the equation;

ffi,.ct =f rn'caf ( h þ)'a'l ''" + l (- t h)! "
which is a condition only "nlkË 

t

over direction of k stilL, tut"ln.
k we find ! .,1r..

the terms 1n the summation

Solving eqr.ration (5.10) for

( 5.10 )

(5.11)

sta te s

that is

' h= (mrr.-rn.)¿
.t *r.

There remains the calcuLation of the density of final
in the vicinity of final state energy eqial to (mn c¿),

, equal to the initial energy. The final stete snergy

E = Eh (¡,,) +Er.(4 = ( rn'ct + tth'.i)'o +f,¿h
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where k ltas the above value, is a functlon of lþl only. The
tímes dE

density of final sÈatesÁis the nunber of finaL states embraced

by an energy ran,ge (8, $ + dE), dE is related to dk by:

(5-rz) dE = Fr.{tck +r\dh.\Gt I
Slnce the final states are limited to a flxed magnitude of ! it
is convenient to calculate the number of final states in ühe

momentum range (k, k * dk)" If the Latter number is dN, then;
(s.lr). ¿lN = PF(E) dE.

Now k is defined by

þ= 4 ( no,, hhr,' nh.)'
l

where n' are integers or zero. ff instead of coordinate space

we conFlder a !-space, the distance between values of k¡'or
between cubical lattlce polnts, is zt " If the volume V is lar¡5e

T
the number of laütice pointsr or statesn ls approximately equal

to the number of latttce gubes. Is thls case the volume per

state tr ( il' 
. For a f ixed value of E one needs cons ider

only a spherical shell in k-space, bounded by the su¡rfaces of
radii k and (t * dk). the volume of the shell is ¡4rrt<zOt<) and

the nunber of final states contained is
dN: 4mh'dh 3 13h'Jh

(î)'
¿TÍ¿
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It foLlows from equations (5.I2) and (5,13) that;

frE.l = .Lt b' . E¡(,..)
¿rr. ñc 6ítr

Since at the appropriate value of k, Eh(/ù+ ñck * mrc'o

Substitution of the value of (5.11) for k, and simplffication
Leads to

¿.r(.) = T er(el l.t lN'l.tl'

=,t, . l'h'Et (À . 3' .-L | <tl - - -l j)lt.
h ¿n' t ct m., l' zmn cr

where summation over k ls over direction only, with magnitude

f ixed by equation ( 5.11) , The val-ue of *f ft) can be used to

calcul-ate the half-life of the fi -meson for decay from rest to
a neutrino and a¡t- meson. (See Appendix, page l-U,)

Neutron-Proton Scatterine: Virtual States.

Tlæ problem of scatüering of charged particles by

other charged partlcLes, due to tl¡e electromagnetic interaction
between them, was one of the earliest of quanÈum mechanical.

problems" ås the study of nueleons p¡ogressed, it became eyident

that another type of force was present between some elementary

particles, such as the force which produced the scattering of
neutrons by protons, "Experiments showed that this force was of
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short range relative to the CouLomb-type force, and the

development of a theory by ïukawa, based on a force of the type
'/0t f

e' u where p is a posbive constant and r the distance from
r

Èhe force centre, led to the concept of a field h¡hose quanta

had non-zero rest mess, as contrasted with the electromagnetic

field, whose quanta ere massless. the quanta of the nuclear

field v¡ere cal-led mesons, and nuclear interactions were thought

of as involving an interchrrye of quanta, as electromagnetlc

interactions in the quantized theory are described by lnterchanges

of photons, rn recent years the rT - meson has been associated

with nuclear forces r and consequently a secor¡d quantized field
ih"o"y of nucleon-nucLeon scattering rnusÈ include, in the

interactlon term, the fieLd functions for the nucleons and the

Tl - meson field functÍon.

the r(
as in
Dirac

l5,tb)

ff 4 , þ , and X represent the field functions for
- rneson, the neutron, and the proton respectively, then

bhe discussion of ?1- meson decay, since nucleons are

particles, we choose an interaction terrn of the forrn;

L' = g{ +* +t í v5l. t ó* yr ;vs*

consider ing derivative
that the energy of the

7/,= f r,_u)¿v.
J,

Since we are not

to { -L' 5o¿) , so

coupling , T,åo reduces

interaction is:
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It is easily verified thab the above form for L' leads to zero-

valued matrix eLenents for neutron-proton scattering in first
order. For such a process the lnitial and final states are

identically zero when operated upon by annlhilatlon operators

for tf- mesons, since they both correspond Ëo occupation numbers

N ¡ (n ) - 0 for all k" The terrns in Ó, in the second

quantized theory, give arf,} ana o[-', both of which operating

on the initial state function are zetoo

(gF*, ok"t 9¿) = o.

Simllarly the tu"rn, in {rprovlde
({.;, a;*)fu,) =((o[r'

o[*'

+r)*,

r
o and

9,) = o-

Since first order transitions cannot
6order perturbation theory must be applled" The

probability per unit tirne is then given by

occur, second

transition

where n numbers internediate states, for which energy is not

conserved with the initial state" the lntermediate states are

not necessarily devoid of Í - mesons, and thLrefore matrix
elements of the type (nlît 'l ¿ ) and <t lN 'ln) are nor

necessarily zero. In order thaü the qualitative featu¡res of
the theory may be most clearly brought out we shalr consider
Proaesses into

t5
Schiff: pp" 195-6.
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which enter only positive Tt- mesons, neutronso and protons.

i¡Je shall therefore use the partial Fourier expansions:

= ,t^7 9¡(n:etb'E'

* = 
ir,-ã thr* (u) .^hr*(N) eib'r

{ = 
ir,.?, 9ur* ( P) uhr'(P) e;b'r

and their Hermitian conjugates. We will al-so postulate charge

conservation between initial and intermediate states. This

postulate is necessary because the interaction Lagrangian density

is not invariant under infinitesimal gauge transformatÍons of

the type

eJ = Þo.'ß = Õ^ (, +ipì

where Õ- tu the set (, +, + ,l ), and (! Ís an ínfinitesimal real

number, for under such transformation L' has terms

4' (r- ;pl +t ( r- i¿r) i ß l( r +ip)

= ó* -f,t i yr x ( r - ¡þ)t I rf')

= +"+t;v5X (r-¿É).

having dropped terms in powers of þ beyond the first. The

variation of L' is then of the form (tB t,t ), wt¡lch cannot be

incorporated in a continuity equatlon. An elegant formalism
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involving the concept of isotopic spin space has been developedt

by Kemmer, called the symmetric meson theoryrt6 ir, which it ls

possible to set up geuge invariant interaction terms. The

postulate of charge conservation at every stage of the lnteraction

process, while less eleganb, serves the same purpose as gauge

invarlance. Wit,h this requirement and using the above partial

Fourier series, only the terms

g( ó" *t itsr, - # xt ¡ vr*}( 5.tj J

of the Lagrangian density (5"tU) need be considered. For an

initial state describing a proton at rest and a neutron with

mornenbum !o, on second quanti zaLíon the first term of (5.I5)

contributes terms havirg non-zero natrix elements, of the form:

g ü a-l tn) ar., cx) oorÍP) [ ,^ol*rru) i ry w"rn (P)J 
.

Itt' c(zmnl't'
The matrix element of such an operator indicates the process:

{5.t6) P(o) + r{(h) t ï+(-

where the bracketed qr¡antities are momenta, Momentum ls

conserved in the process because of

y, = r GL,)¿V.
Jv

Only terms of the Fourier expansion which correspond to momentum

conservation have a non-zero integraÌ over V. That energy is

t(
For reference and discussion¡ sê€ Wentzelo p' 63'

b).
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not conserved ín the above trvirti.¡ålrr process can be seen

from the energy balance equation:

rr ? c'= ( -l c+ ¡Trt"lf)'rn i(nr1.c" + t".'htlv'.

which cannoË be satisfied by any value of k, even k - 0, since:

Írp * lú6.6 m"i ûtN- 1839.I rn"i En = ,T?.3 ße

where mu is the mess of the electron, Slmllar}y the second terrn

of {5'15) having Borr-zero rnatrlx elements only between intermedlate

states n and the final state, contributes thrrcugh terms of the

form

g h_
tr'r. c(z*o)""

corresponding to virtual processes of the type z

(5.t?) rr 1(- L) + N (b.) .-+ p(h - - h).

fn the calculation of transition probability per unit ti¡ne, the

product <f lA'ln)(nllJ'Ê;> then describes a pracess which

is the combinatlon of (5.t6) and (5"L7) t namely:

P(o) Ì N(b.) -o N(Lrì ù N(bi +tr*(-b) * N (b) + P(b.-b).

The scattering rnay be picturesquely described by consideriqg the

proton at resÈ, under the influence of the incoming neutron, to
emit a nlmeson and become a neutron. The inci.dent neutron

then absorbs the fft-meson, becoming a pr.oton. The sca0tering

involves the exchange of a virtual meson.

a-L (rt) ahos,,(N) al-*,..., ç)L 
"{"1,s.., 

(p} {. ï5 ,h.,r..(Nü
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The matrix el-ements used in calculat ing ,$tr (E) must

be such that energy is conserved between init,ial, and final
states. This serves to determine both the magnitu,ce and

direction of (-t), the intermediate meson momentum r for k must

satisfy the energy conservatton equatlon;

moê' + [ rnn'c* +t"ihï 1". =[,rr,f,ca . h?"h'J%* [r i .*+hä ( b.- h )J 
tr'

For initial and final states which ar.e specified completely as

to epins and momenta of initial and final partleres, the

summation over o, an" lntermediate states is jr¡st a summation

over intermediate spins.

â"- Pecay.

The Í - meson decay is an example of two-particre decay.

An example of three-particle decay will now be dlscussed, namely

the decay of a neutron into an electron, a proton, and a neutrino.
The process is knon¡n to occur spontaneously for free neutrons

and for neutrons in certain nuclear configuratlons" For the
process

N

an inberaction between neutron, proton, electron, and neutri.no

flelds i.s required. tet * , X , ç ,r1I represent t,he corresponding
field functions: all are Dirac type partlcles. The interacÈion
in which ro'e are interested may be represented by a form;
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(5"18) L'= n(x* Õþ*)(gotrur)

,ô
dnere Ø represents some ccflrbiratien of ûi.ra.s matrices such ttiat

(Xf & *) * a covariant, and the produet, of the $*o factors i¡r

L¿ ls zuch as to produce a Ïorentg invarfar¿t guantiff' Other te¡nns

s{wilar to (5"L8\u deseriblng the lnteraetlon of the fenrr fields

ln qrestf.sn are also possibleu but lf the ínitial state is to.have

only one neutron a¡rd the fi-nal state one protone one electnrortu and

oree neut¿:tno, tto other terms, zueh ae (*tt{)rc,fttù, 1n the seænd

quantåsed fo:s¡l ¡rjJ.l have sero rratri¡c elements betr¡een zuch states"

That the term (5.I8) i.s sìrÍtabLe fæ deecribe ttre procees of p,aelry
followe r¡hen oare notes that ff æntainso ln second quanf;løed form,

botÏ¡ the anrri-hilatú.ør operatørs for neut¡i¡osø Ðd the creatLon êp*

erato¡:'s for arrtfneutrinos" As far ae olltr theorl¡ Ís cøncenred, there

is ns dlstd.netLon between neutrinos and anti-nenrtrfnos, both befug

uneharged"

fhe ealculatlon of decay raÈes using dlfferent'aperatørs

& ln Le 1n general leads to difrferent rezuLts, &rperiraental date

on nusleatr /3 4*W as now.lnterpreted i¡rdicates thgt a J:i¡rear eom-

blnatlon of sealaru tørsor, and pseudsseala:r cenr$35ngsu ffid no othens;

is needed for the tlreo¡y to agree ruittr obseyv@¿æst7, Ttre relatdge

t7 
ßof, Kmepinski and Isngers .axrïrâ Rer¡. tsuc, s*x.; % z6l-¡ob,u (rrlS,J"
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strengf,hs of eaeh of the courpøn€rts (scalare Èensoru and pseudosealar))

have not yet been deterrnined, because Ít is di-ffífi¡lt to relate t¡re

simple theory as rrresented here to tJre pr.obløn of a eomplex rnrcl-ear

strueture undergoisrs p -deeay 
18, 

For eca:r¡pJ.eu the elw*,rornagnetíe

Ínteraetisn between p -narticLe (e1.eeårsn) and the positiveþ chargd

r¡ucleus in genera-l is not neg]J.ggþLe" though it ï1111- not be dlss¡ssed

hereo T\uo of the røost coru,ænr.y used Ínteractisn fe¡ms are the Fe¡wf

type, r+here & i" either 7"or Y*(scarar or vector i¡rteraet,im)¡ a¡rd

the oansw*Teller typeg in rÈiích f is (ifsl"j o, (Lyor, (pseud-e-

veetor or tensor lntoraatienr)" HS.thout speeSfyÍng tbe operato, &n
T',ve cån write dorø¡.the fom ef the operator Nttn the sesoüd qua¡tiø.ed

t'heory. For thls" rô$ly üre folLor+ing F,rtíal. Fourler series need

to be considsrdg

e{¿.(P} q*f fe) e'¿b'r

eo6+ lr.{} aoq(N}.

*frn (e-) 4ts ( e-).e-i b'r

t ¡¿5- 
(zz) a, *:6 k,) g - ¿ b' î

P,' = L L-g (xr t*\( qt Õ a)l av

l8 For a lucld though brlef diseussi.on of the probl-erns involved- see

Fernrte rElementaqy par-trclesn, p, 3gs {ra-le, lg5l}, Tiris book Ís
partlcularry valuable for the dlscusslon of prtneLples of eleroentar¡r
parblcle ttreoryu althorrgh it assumes some lctoi.rl€dge ef ttre details
of t'he sr¡bJeeto lhe reader of thùs tÀesis ræuld profft f,rom the furtJrer
discussien of, interactions in Fendss book*

N 
f -- ,t''''Z

A..s

.('a' F,
- hr3

-L-'a ã
- h,t

'{,''a E
h¡

*"

qî=

{:

S¡betitutlon into
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results in ter.ms of the fo¡"ml

a¡lr, Qla"r.(x) orlr"(e-)oür* [ur,l,, g uo",*l[urJ.n Øøa*r*J

where (h,nh.*h*) =o.

To calculate the transit'ion probability per r:nit tlme for d,ecay

of a neuüron at rest one must evaluate .t Glqf {A*,ü¿}üifrure the
ñinitial state is that of a neutron aÈ rest with specífied spin,

and the final state is with an erectron, a proton, and an

anbineutríno, each having specifÍ.ed spÍns and. momentau such

Ëhat energy is conserved with the J.nit,ial state.' Averaging
over Ëhe initial stateso which tn Ëhfs case Lnvolves sunmatÍon

over spln süates and division by two since there are two equally
probabre such states, and surunation over aLl final ataües, Èhen

gives the transition probabitity per unft time, whlch is the
recfprocal of the average lifeüír¡eo "
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conTclus[0$["

It should not ¡¡-e t'hought that th-ts thesfs slaåms to pnesenÈ

a balansed discusslon of lts tltLe s'ubject, Great ernphesis has besl

glven ta the i¡troductory concepts of fielcl theory and of sesond

qrrantiøattoa, while tfie subJee.b cÊ lnteractiene has been only sketchiþ

@veM' Had ti¡re permlttedo a detalled dlscussion of the interaetions

of fields and the effeets of qua,nt1zatj.on ln the interactlons would

have been desirable, S¡ch a treaüaent wouLd have requlred more su&ca

thar¡ the first, four ehapters ef tkre thesis nol{ fil1. However, ttrie

lack Ls not vlewed as an i¡moortant shortreni-ngr the J"iterature laeks

cl-ear dlscussion of the inÈroductory cËryrcepts covered j:: the first
fzur chapùers, t¡ititout which a detaíled s$dy of lnterasttons Ls l¡n-

possible* It 1s hoped that thfs t,}resis prernldee such backgrnudd as

to enable the reader to study in det4ål interastÍons of the sort

outlåned in Ohapter 9a

Â more serC.eus Lack is felt to be_ the abssrce of the o@epte

of isotopic spin and of isotryte splir sgaceu for theee idees are- alse'

diffÈer¡lt to understand from the general li-terature of ¡irysicsr, but

are q-ssu¡ning e tþle of basic importance in the nascenÈ thesries of

theQrewrr eLenrentary pa:r'td.clese h¡pernns and heavy *"uor"ol9 The

¡ Ldsils

W1'- 2, The most thorough and successffù theoretical atternpts to

daÈe are due to ÐcEspag¡rat and ksrtjcie ffi¡elear phystcs* b 33, (L956)s

and Flgrs, Eev" (to ¡e prrblished), The zubJeet of the neu pårtd.cles

f.s grouång at a fast rate¡ Ðd only pernrsal- of the most reeent issues

sf the Journals of physies eâ!! asstlre one of upøfis*drte j-nfsrxptd-on"
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ornd.ssåsn of lsotopie epin, as r¡'rth other ma$ør smi.ssl,ons f,ron thls
thesj,s" ls due to the praetfeal J:irultatåens of tlme avail-ùle for
wri.ti.ng tl're thesf.s,

It sheuld be refterated that the theo:1" as here prresented

ís not consid.ered to be of general va-lidity for *l-*mur,taay partiicLes,

fhe subJeet sf eLemente¡y partd.cJ-es and their lnteraetd.onsu includirrg:

eLeet'ronagnetd.ø inberactions, is really in its early stagee* and f,he

theory glven here foryris a básis for many of the theoretical" attemptr

nor* fn progresså In sorie ¡rlaces the tk¡eory Êor&s fairly rcel-Lg in
many others lt c3-earI¡r does not applys it, may at best be a first
apprcximatåon to a f\rl-} tlreory of the subject, Th.:f.s thesra, tu*n,

has been rsr:ltten as a csnùråþution tn t,tle ped.agoglcal needs of the

lmmediate fuhre, withEut fn any 's¡ay purTûirtd.ng to present, a finatlued

tJ:e s¡Tr,
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.&PPEryM.,

The çalsulatû,on of thr¡ t¡lransítion px"Ðbabiltt'y per untt, time &r

ff"dneson deeay i-¡-j-LL be co¡npleted here, .t[re erpress'ien given on page 1O5 i.ee

(¿.r) w ( k) = t-( Tå;p1$:r-11ä, r ráiÌ"rdþ ei,.lorl; ft$r,r, M"
where su¡mnarion ;Jlgt:.lJl{r"*"r#.nryn rhe nraenitude or k beins

fiJfed accordlng to equatlon (5*L1,), For the msmeort, if we aszume that

ùhe fÍ¡al state fi¡nctåon speøiÊLes the nmenhu¡¡ di.reetd.sn and the spíns

s and seo then orrly one term of the sr¡r¡ has r¡on*uero ma@Lx elementu

then ¡r(k) has tlhe f,omc

w( t<,É,s') : conøt 
lt úirrr*livr çn,,!úJ<f l"ltrr)4'ri*l øi- e attt)N1

Ttre rnatrjx eJ-snent ríontrlbutes a fastor of modulus unlty, &s oån be geen

from the folLowing consLderations" l{e wå1L a$sume that irriti.al" and flyl
st'ate fbnetiens are no¡:naliaed" then ín fnner pro<luet r¡.o&atienr (*¿n u$¿)= t,
.[Lsor diirql &¿= o^*¡, where %. i, a ænstar¡t to be detemd:redu f,ør

t*re creation operatsr 4)r" C*l oper¿tds¡g on the initl*l state function

gfves acøstent ti.¡oes tlre $:ral- state firnctlon, as the Þbtær descrl.bes

c, sÈaÈe having gn€ more /ø-neson of tarpe &ßf+) trran aJes f; . '¡de al-so

reqnfre thaåì &; u*6,):1e for nottna}ira&lon, lt fol3-er+s tåraå;

(L r**n7r, e.*ip/) . tc,]t = (t"Tl-ø) &¿J i "fil 
* ,*t g ,)

= 
( git, 

";:'r¡¿ 
*fl * (r\ * ¿)



F?om tire anticorrunutation iof the 6Ês arrd from

or*1tr"*nresons operarør t offl i¡") a[Xt C*13

{¿*e )

sÍnce uf

]åg,

thre Ëaet, tJcaå the m¡rnber-

gives øero áperatång or 9¿,

tùe last eo¡ratlon reduces toa

te,þ*P= (*;en I r- oJ g¿) = ( çi,*) = L.

Sirrdlarly ttre antLneutr:!.no e¡eation operator íntroducess fu the rnatrix

el-emønÈu a cdrsbant fas.tor of rmdulus urity. The rea'der shoul-d show that

the same is true for the fi"+nes€n annihil.at'lon operator, us3-ng t&e S¡nrruta€og
of the ulnìttl anrl OfÐ*C'r) ar¿d. thef,aet that the r¡nrber-of-Tt**negons

operator u* 9¿ *Or** unítyo w(k) then redueee tot

w(k.s,€,)= e,onatx tx [ "'f] 
*þl ,0, n**r, e ø)\e

= eønst [ø*fu,_r*ì (';75) y* *¿:øTL óiJ,*l i ys \k,rr*ü.
= ttt*P t * l+s #d sinee I, ts HermLtian"

Si¡lce we are not interested in tl:e splns of the reflil'þant pertlc3-ee

(to obsernre these tloul-d. vastS.y cørplicate an ercpenîraent)ø ¡¡e must add up

the contributions to w(k) f,rro¡n aJ.J. poesible spin statesu lhe nrethed of

¡mrfonnfrrg such surmrabtons is adequaþeþ d.iscr{-bEd J¡ sc}soøbere ppso bg*íiJe

and wilJ. be applied i¡ the follorúng without dLscussisn, friorr esration (A,2 )

we are interested j.¡rc

(A.3) ft, w (b,t,5')' eon¡uå,ttf, ,czùÇ¿rslu'4l øIt ,{i}'rolirs çxr,-(rl.
the sunrnatíen 1s extended over.all førr spln states of l/*j, (tue posåË.ve

er¡ergyp and åçrs negative srergÏ)p þy intmduelng t}re pnoJeetion operatorr

€o+ (tcg.b**"þ) 
=

a €,*
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r*here a

(A.lr) €*r, +( rnÀca + f*.th"1"",
k beSng fixed by equat,Íon (5"t1)* Thås proJecåion operator ls ürisabLe

beca¿se the nÐn-$paåialþ{ependent epir:ors 
"(fl" t¡") eatlsfy the eqrratløar

I c s.trb] + me\p7 uf)tal = eþ &Tsç,*j

The spln zummations (.{"3) ti¡en reduce tos

$,y(!,s,s') 
= I con"st. 

[ni-,1r, 
Giyçta\t#] r. iv, \,,*-ro4,

*****g the firrther projectü,on eperator

€s,-[e.lot.b)] = {e*- H",\

wl,¡ere 
r \t 

'ê" 
I

$,il €v " (ñek),
tÀe spfn s,'trruxaìfons reduce to the problem of evalugti-rg the treee (sum ef

dlagonaS- eI-ernents) of the natråxs

(-iv)r-(f*e\Y4¿v.(Ç,)

That ls, r*e m.rst evaluatE

(¿"6) frYC 
t,',s'ì : g"r1- t'^{ysv+(e*+ hele. s +nlcþ Y¿ys ( eo -ñ" b.g)}

)
Uslng the antier**a-ffîo pnt"" of the T rsp includfng Y5 and. the

defí¡d-t$æs Yj = -L(gej t|=ir'r?u3)i Y^= þ , (Á,6) becomee

(â"? ) 
ã. 

* ( b' s,s') = * 
uf" {4( 

e* Yo+ íhc Y¡k¡ * * t') (- trXo u Y¿ - ; hcv¡ h¡ 

}
= .#rfn\, **'ta+ iftcy¡k¡ - rnc*) (euYo- ífic y¡*tr)



32A"

sínce 
"i= 

g" Using the matri-x repreøentation of ryr¡g given in fihapter lÇu

it is easily demonstrated tha*,

fn ( r*Y¡ï = *4n ( vj Y+) = o-,

t'o( Y¡) = ln (tal, 
= o,

and sl¡ce Ol =, (P"L'*Zø3rbr'1, f^(!p* j=+, r.¡irere ï is r,he hXtr fAørfi-ty

rnatrj;çø (¿"?) then beesmes;

(a-a¡3,*(b's's') = g3!' ín[ €^-êuYå * l'^c'(r¡h/"].
4€,,-€,v t

Ït ls.a sliraíghtf,orw¡d. problem to sho¡u ttrate

(r¡ k¡)* = ( - ips.h)(- ¿ês"h) = (g.bXe"&). k"I.

Finål1y, thenrt'he spin zununations (¿,3) gåvep using (a,l+), 11,,5I, an¿ (¿"8)r

(å.e) Ð,w(k,s,s,) = (ur"*Zlïu') = {r**}.
Ïf r¿e sÍrnlIarly are not to specífy the momentum directionn ire

n¡rst srrm gver theseô In the tlxd.t as the reglen u.nder aw*sd.deratlon goes

to j¡finíty, the zu¡m¡atfun over diæståons besomes an lntægratlsn over

soljd angle' slnce $(k) is J.ndepeld.ent sf tfie ctireetlon of Ss thls sum=

maLi-on introduces a factæ of hT, Fïnaaly theno fæom (,t"r) end {&g}s

(aro¡ w(kl: '4Í . l%*Al,t-*t
whieh using (rq"b), (e"5)u and (J"ì-t) reduceo tor

w(h')'W*
fie c rno3-



lå1"

ft ts desirable ts discuss the dlmensionarity of the a.bove

øc.pressíon" lbr tI! we hada

H'= g ø*?iy¡X.

rü'rl.ch mæt

dfi¡¡ensions

Then:

have di¡n@sfoas (energy)f(fenethi-3. ß*, @s ana S ha,ve

(lergth ¡-3/2*.t&g* g mraet have dlnrensísns (energylr {ïer6¡¡¡*3/z -

g" ( rnf -rn*)i
f,tc mf

has *i¡lensions: [( 2N

= (energylX(tl¡ne)"

1f

ls

dnere mass is taken as (energy)r(rength).2x(ti.,¡me)2, nrrc (ã)^,(energ,y)x(tj.ne),

A ractsr [r (urg')-1ï(see,l*zJ r', w(k] æraeo frøm ofito in tr( {1.,.f ¿XI
d f* of c1l¡nensiørs (1ength j*3/Z üren the For¡.rj-er

nôn-dÍ.me.nsisnalu The qn's and d. { n}ts are reJ.ated

aá*t(Í) thererore

x{tåme)-} = (energ,74/2x(ttme}-1e Hhíshinwatuating I<f t...I ¿>l.
lntroduces (*re)-k(seco )*2 io the e,gre" syst@ of rxrits, w(kÌ is
thorefore såven only nnmorically by (g"rg,), but has dl¡nmsåryrs 1tå*e1*1,
as a trensitlon probabillty per rmit tfune øuet have,

coefficienÈ q_( n )-o'
(see çrage LOp) bys

qotnl-+ S ,4(:ì{nl.
c (¿m)'/¿

1s an operator having d.i¡renrslons (øreryr)V2X{*n*ogy)-k

3y


