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It is now widely recognized that fractures can play an important role in ground-

water flow and contaminant transport in geologic media. As open fractures gener-

ally offer the path of lower hydraulic resistance, direct transport of a contaminant

entering a fractured rock system will be primarily along the fractures. However,

contaminant diffusion from the fractures to the porous matrix can significantly

reduce migration rates along the fractures. In order to simulate such processes

as diffusion into the matrix block, advection and dispersion along the fractures,

decay or biodegradation of the contaminants, and perhaps advection in the ma-

trix (if it is sufficiently permeable), a robust and effi,cient numerical techniques

must be used. A multi-dimensional multi-species contaminant transport problem

can easily introduce hundreds of thousand to millions of unknowns. Using tra-

ditional numerical approaches, it is very difficult to solve these type transport

problems. This is especially true for the transport problem in fractured media,

due to the complexity of problem and limitations of computer resources. There-

fore, an effective algorithm for reducing the original equation system may be of

great assistance in simplifying the problem. The Arnoldi or Lanczos reduction

technique uses orthogonal matrix transformations to reduce the discretized trans-

port equation system. The reduced equation system is much smaller compared to

the original one. The new system can be solved by a standard solution scheme

with very iittle computational effort. This research focuses on extending the ap-

plication of the two reduction techniques to the simulation of groundwater fl.ow

and multlspecies contaminant transport in fractured porous media. Several very

efficient two-dimensional numerical models based on the reduction methods have

been developed. The developed models include dual-porosity groundwater flow
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model, dual-porosity decay chain transport model, dual-porosity TCE biodegra-

dation transport model, discrete fracture flow model, and discrete fracture multi-

species contaminant transport model. These models are suitabie for solving fl.ow

and transport problems using the most popular three approaches (continuum,

dual-porosity and discrete fracture approach) for the fractured porous media.

The difficulties of using the reduction techniques have been overcome, such

as implementation of boundary conditions, choice of a common starting vector

and computation of leakage terms for the dual-porosity approach. Moreover, the

"shift" technique has been introduced. Using the "shift" technique, the diagonal

dominant property of the matrix to be solved can be improved. This property lead

to great enhancement of the iterative solution convergence rate and the conver-

gence rate for Lanczos or Arnoldi reduction recursion process. In addition, use of

the "shift" technique can extend the application of the Arnoldi reduction method

to solve iarge Peclet number problems. The proposed numerical method has been

verified by several comparisons between analytical solutions and the reduction

method solutions. The developed models show great saving in computing time

and storage space for the examples compared to traditional methods and LTG

method. A problem with about 7 million unknowns had been solved using the

proposed method. Therefore, the aforementioned approach will allow for a variety

complex, high-resolution problems to be solved for on a personal computer.
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Chapter 1

Introduction

1.1 Background

Increased interest in fractured porous media has resulted from harmful waste

storage programs and industrial pollutants, especially those associated with high-

level radioactive waste or mining tailings. Many countries are seriously considering

siting final repositories for nuclear waste in such environments, at depths ranging

from a few tens of meters to 500 m or even a kilometer fNeretnieks, 1993]. It is

now widely recognized that fractures can play an important role in the transport

of contaminants in a groundwater system. As open fractures generally offer the

path of lower hydraulic resistance, direct transport of a contaminant entering a

fractured rock system will be primarily along the fractures. Transport through

the rock matrix by advection mây be small in comparison because of the relatively

Iow hydraulic conductivity of the rock itself.

A number of mathematical models describing groundwater flow and conta-

minant transport in fractured porous media have been developed over the past

two decades. The distinction between these models arises from differences in the

conceptual model upon which they are based and the methods used to solve the

governing equations. There are three popular models, including continuum, dual-

1



porosity and discrete fracture models. The continuum model treats the fractured

porous medium as a single continuum which is similar to the classical continuum

representation of an unfractured porous medium [Bear, 7972). The properties of

the porous medium and the individual fractures are averaged over a Representa-

tive Elementary Volume (REV) to define macroscopic properties describing bulk

groundwater flow and contaminant transport. For many applications involving

large-scale areal simulation, the single-continuum porous media approach to a

fractured system has been justified and is reasonable. This is because the area

of interest is sufficiently Ìarge to effectively be an REV. This approach has been

used by Berkowitz eú a/.[1988], Schwartz and Smith [1988], Long et al.[7982], and

others to investigate groundwater flow and contaminant transport in the fractured

porous media. As the single continuum approach requires only lumped parame-

ters representing the average behavior of the media over a small REV, it needs

less computational effort and is relatively easy to use compared to dual-porosity

approach and discrete fracture approach. However, this approach cannot always

adequately represent groundwater flow and solute transport in fractured geologic

media. More explicit descriptions of the fracture matrix system may have to be

considered [Long et al. 1982).

The dual-porosity (or double-porosity) model was first introduced by Baren-

blatt et al. [1960]. Such â,n approach assumes two overlapping continua in which

two porosities and permeabilities are associated with the fractured medium. The

primary porosity and permeability are those of the porous, but low-permeability

blocks that are separated by fractures. The secondary porosity and permeability

are associated with fractures, where the permeability is generally high and the

porosity is low. In order to use the dual-porosity approach, two sets of properties

must be known, one for the fractures and another for the blocks. The two systems



are linked through a leakage term representing the fluid or solute mass exchange

between them. It is also assumed that the porous matrix blocks act as sources

(or sinks) that feed (or drain) the fractures with fluid or solute mass. Examples

of using the dual-porosity approach to simulate flow in fractured media include

Barenblatt et al. 11960l, and Huyakorn et al. ll983l. Solute transport in fractured

media is more difficult to simulate than the simulation of groundwater flow, but it

has been modeled both analytically and numerically. Numerical models for solv-

ing the contaminant transport problem using the dual-porosity approach include

those of Bibby [1981], Huyakorn et al. ll983a], and Sudicky [1990]. For geomet-

rically simple fractured media, analytical solutions have been developed. Tang

et al. 11981], and Sudicky and Frind [1982] present analytical solutions based on

the dual-porosity approach. One of the most critical components of dual-porosity

models is the source/sink term that describes the exchange of water or contami-

nant mass between the fracture and porous matrix. The source/sink term needs

to capture the local-scale microscopic processes with a relatively simple term for

use in â macroscopic dual-porosity model. The shortcomings of this approach

are that fracture patterns and porous matrix blocks are assumed to be of simple

geometry with uniform size and shape and that the advection of solutes in each

block is typically ignored.

Dual-porosity models of varying complexity have been widely used to simulate

the flow of fluid, heat, or transport of solute in a fractured porous media. Many

research projects have been conducted in the applìcation of the dual-porosity

approach, evaluation of the coupling term, parameter estimation, and numerical

algorithms for implementation of the approach. The following discussion reviews

the works that have been done in recent years. A more complete review of the

previous work, main ideas and methodologies in this fieid can be found in the



monogrâph edited by Bear et al. lL993l (see Neretnieks [1993]).

The influence of parameters in the dual-porosity approach for various mod-

els have been widely investigated. Tomasko eú al. [1939] developed a type-curve

methodology for modeling radionuclide transport through a dual-porosity system

using four dimensionless parameters, including dimensionless velocity, dispersion

coefficients, solute storage enhancement coefficients and time constants. Sensitiv-

ity of the parameters were analyzed and their importance were investigated.

The coupling term between fracture and matrix block is a key parameter for

the dual-porosity approach. Zimmerman and Bodvarsson [1989] developed an ap-

proximate analytical solution for the problem of a Newtonian fluid infiltrating into

a porous spherical block. It was reported that the instantaneous and cumulative

fluxes into the sphere can be predicted with very high accuracy by their model.

Dykhuizen [1990] presented a quasi-static formulation for the coupling term for

dual-porosity models. His model retains the original simplicity as proposed by

Barenblatt et aI. lL960l, but is not restricted to very slow transient flow. Bai [1997]

presented an algorithm for computing the solution of coupled processes. Instead

of solving the coupled system of equations using special functions as practiced

by most analytical methodologies, his algorithm offers a direct solution technique

using the method of differential operators in the Laplace domain.

Several strategies have been proposed to model the matrix-fracture interaction

in a dual-porosity system by Arbogost [1992]. Among these are (1) to directly

compute the internal flow within the matrix blocks as it is affected at the blocks'

surfaces by the external fracture flow and (2) to define the matrix-fracture in-

teraction by a "transfer function". His simplified dual-porosity model for two

phase flow has a nonlinear matrix fracture interaction, and it is more general than

similar existing transfer function models.



Novak [1993] presented a dual-porosity chemical transport model. His study

examined systems that include chemical reactions and changes in retardation

caused by precipitation. The finite difference technique and a chemical equi-

librium simulator based on the Villars-Cruise-Smith algorithm are used in the

model.

Lao and Booker [1996] developed a finite element method for analyzing conta-

minant transport in dual-porosity media using a time-stepping approach. In their

approach, the flux exchange that occurs between the fluid in the fractures and the

matrix block is represented by a linear hereditary process. Their study shows that

atl the hereditary information necessary to carry the solution forward from time to

time is contained in the values of certain hereditary variables at current time step

so that it is not necessary to store the complete time history and consequently a

more efficient numerical process can be developed.

Fillion and Noyer [1996] used a dual-porosity model to simulate groundwater

flow with automatic mesh generation and parameter calibration. The numerical

investigation focused on the mesh generation for discretization of fracture and

matrix domain has also been done by Taniguchi and Fillion [1996].

Pini and Putti [1997] used the parallel finite element Laplace transform method

to solve the equation of non-equilibrium contaminant transport in a dual-porosity

system. When the sorption reaction is represented by a first-order kinetic rela-

tionship, the equation takes the form of a convection-dispersion partiai differential

equation with an integral term describing the mass transfer between the matrix

and fracture. This type of problems can be solved efficiently in Laplace space. A

similar approach was also adopted by Sudicky [1990]

Transport of contaminants in dual-porosity formations was shown to occur in

three distinct regimes: fracture, dual-porosity and total porosity transport [Os-



tensen, 1998]. In Ostensen's study, a formation parameter called transport length,

was used to describe the controlling of dual-porosity transport. Conventional two-

well tracer tests were used to estimate the transport length. The effect on tracer

tests of random heterogeneity and anisotropy in the formation was analyzed.

Besides the approaches mentioned previously, the discrete fracture model has

also been widely used. This approach requires that the geometry and hydraulic

properties of each fracture be specified. The early numericaÌ studies of solute

transport in discrete random fracture networks neglect any mass transport inter-

actions that occur between the fractures and the porous matrix blocks, and also

the consideration of matrix diffusion. These works are described by Schwartz eú

al. [1983], and Smith and Schwartz lI98a]. Some recently developed numerical

models incorporate matrix diffusion by using the principle of superposition of frac-

ture elements onto porous matrix elements to solve the coupied fracture-matrix

groundwater flow and solute transport equations. This type of model was used

by Sudicky and Mclaren [1991], Therrien and Sudicky [1996], and Vanderkwaak

and Sudicky [1996]. Advective transport in the matrix is also accounted in these

models.

In recent years, many studies have been done using the discrete fracture ap-

proach. Some interesting examples may include the following. Liggett and Medina

[1988] presented a three-dimensional flow model. The flow in a 3D network of dis-

crete fractures is calculated by the boundary element method. In their model,

the flow in any fracture is considered two-dimensional but these fractures may be

connected in a three-dimensional network. The authors claim that the bound-

ary element is extraordinarily effective in computing flow in three-dimensional

networks of fractures and the requirement for data is much less than for the com-

parable finite element analysis.



Casas et al. ll990l developed a stochastic discrete fracture network model for

the investigation of possible nuclear waste repository sites in crystalline environ-

ments and used this model to predict the flow and transport properties of the

medium. The model assumed that fractures can be represented as circular discs;

the density, orientation and size of which can be inferred from in situ geometric

observations. However, the flow in their model is assumed to be restricted to ide-

alized channels within the fracture planes, the hydraulic conductivities of which

must be inferred from hydraulic tests. The parameters of a probability distribu-

tion function of the hydraulic properties of these channels are inferred from local

scale hydraulic injection tests in boreholes. In their transport model, microscopic

dispersion in the fractures and retardation effects due to unevenness of the flow

paths were taken into account.

A comparison between transport simulation in the flow-calibrated discrete

model and tracer tests of the field experiment was conducted by Dverstorp eú

al. 11992]. Field tracer migration in sparsely fractured rock was analyzed with a

discrete fracture network model. They concluded that the uneven spatial distrib-

ution of flow and tracer, the complex dispersive behavior, and channeling effects

that have been observed in the field experiment can be reproduced by the discrete

fracture transport model.

Huyakorn et al. [1994] developed a sophisticated three-dimensional, three

phase numerical model for simulating the movement of non-aqueous-phase liquids

(NAPL's) by using dual-porosity and discrete fracture approaches. The model

accommodates a wide variety of boundary conditions, including withdrawal and

injection well conditions which are treated rigorously using fully implicit schemes.

A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix

lumping, and fully implicit treatment of nonlinear coefficients and well conditions



was used in the model. The nodal connective schemes and the computational

effective numerical schemes were also discussed in their paper.

L.2 Multi-species contaminant transport

The most common multi-species contaminant transport problems are caused by

either radionuclide decay chain, biodegradation or chemical reaction. Previous

works related to the simulation of transport of decay chain in porous media can

be categorized into two groups: analytical solutions and numerical models. Ana-

Iytical solutions can, in spite of their limitations to some simple problems provide

effective alternatives for predicting the transport of multi-member decay chains

in groundwater [Lester et a\.,1975; Haderman, 1980; Gureghian and Jasen 1985].

For more complicated problems, numerical methods have been widely used. The

equations described radionuclide transport can embody most of the physical and

chemical processes known. The main processes may include advective, retarda-

tion, dispersion, radioactive decay, and molecular diffusion. Solving of the decay

chain equations can be computationally and computer memory intensive. This re-

sults from the requirement of solving several equations for different species at the

same time, which is caused by chains arising from parent to daughter transforma-

tion. Domenico and Schwartz [1990] classified the known numerical methods for

solving decay chain problems into tr,vo type approaches, "two-step" or "one-step".

The "two-step" approach first provides an approximate concentration by consid-

ering advection and dispersion only. The results are then corrected to account for

the changes of mass due to the decay and transformation. This method requires

iterations between the two steps until the specified convergence criterion is met.

This approach has been used by Liu and Narasimhan [1989] and Narasimhan el

8
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0,1. [1986]. The "one step" approach solves all of the equations with advection,

dispersion, decay and transformation simuitaneously using either a finite element

or finite different method. Comparing to the "two-step" approach, this method

is numerically complicated but more rigorous. Examples of this approach can be

found in the works of Miller and Benson I1SSS], Willis and Rubin [1987], and Li

et al. 11998).

Similar to the radionuclide decay chain problem, the simulation of chlorinated

solvents such as trichloroethylene (TCE) transport in the groundwater system also

involves multi-species transport. During the course of migration, in the absence

of oxygen, TCE will be reductively transformed to three isomers of dichloroethene

(DCE) which are further converted to vinyl chloride and finally to ethene. Mc-

Carty and Semprini [1994] have a detailed discussion of this type of TCE biodegra-

dation. Recent research into numerical modeling of TCE transport is found in the

works of Woodbury and Li [1998]. The analytical solutions for this type problem

are provided in the work of Sun eú a/. [1999] and Sun et al. lI999a).

For the modeling of multi-species radionuclides or TCE transport in fractured

rocks, only a limited number of studies have been done. These studies mainly

focus on analytical solutions and numerical solutions of simple conceptual models

for the reason of problem complexity. Most analyticaÌ solutions are restricted

to single fracture or parallel fractures and one-dimension. Numerical models all

require high memory allocations and are computationally intensive. These greatly

limit the application of numerical methods to solve the real world problems of

multi-species transport in fractured media.

Sudicky and Frind [1984] presented an analytical solution by Laplace trans-

forming radionuclide transport equations for a two-member decay chain in a single

fracture. Their solution takes into account advection along the fracture, molecu-



lar diffusion from the fracture to the porous medium, adsorption on the fracture

face, adsorption in the rock matrix, and radioactive decay. The solution for the

daughter product is in the form of a double integral which is evaluated by Gauss-

Legendre quadrature. They concluded that the daughter product may advance

ahead of the parent nuclide even when the half-life of the parent is longer. Other

similar analytical solutions include the work of Chen [1936], Chen and Li [1997],

and Rasmuson [1984].

Hodgkinson and Maul [1988] developed a semi-analytical solution for arbitrary

length decay chains in fractured rock. They assume fractures are identical and

parallel to each other. The following physical and chemical phenomena are con-

sidered in their solution: advection through the fractures, linear equilibrium on

the fracture surfaces, the hydrodynamic dispersion in the rock matrix, and de-

cay and in-growth for the chains of all the members. Talbot's algorithm is used

for the numerical inversion of the analytical solutions to the Laplace-transformed

equations to obtain the time-dependent solutions.

Lee and Lee [1995] developed a one-dimensional stochastic analytical model us-

ing continuous in-time Markov processes for radionuclide transport of decay chain

of arbitrary length in the fractured rock media. In their model, the planar frac-

ture in the rock matrix is considered as a finite number of compartments in series.

Therefore, the medium is continuous in view of various processes associated with

nuclide transport but discrete in medium space. Processes including advection,

diffusion into matrix, and radioactive decay chain are taken into account in the

model. However, they neglect the both longitudinal and transverse dispersions

in the fracture. They compute the expectation and variance of nuclide distribu-

tion for compartment or fracture medium by calculating the transition probability

for nuclides from the transition intensity between the compartments utilizing the
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Chapman-Kolmogorov equation.

Huyakorn el ø1. [1983b] developed a finite element modei for simulation of

radionuclide decay chain transport in a naturally fractured porous medium system.

The dual-porosity approach, discrete fracture approach or combination of these

two approaches are used in their model to represent the actual physical system.

Advection and hydrodynamic dispersion in the fractures, as well as diffusion in the

porous matrix and chain decay or in-growth of solution species, have been taken

into account in the model. For the dual-porosity approach, the blocky fractured

system is represented by using either a prismatic or spherical idealization of matrix

blocks. Two governing equations are written for solute transport in the fractures

and diffusion in the porous matrix blocks, respectively, for each species. These

equations are coupled together by mass exchange terms and the parent to daughter

transform terms. They used a numerical scheme of combining a two-dimensional,

upstream-weighted, finite-element approximation for transport in the fractures

with a one-dimensional Galerkin approximation f'or diffusion within the individual

matrix blocks. Two schemes are provided for solving of the equations: iterative

solution scheme or direct solution schemes. Both schemes are computationally

intensive. For the discrete fracture model, they neglect the mass exchange between

the fracture and matrix, and write the equations for fractures in local coordinate

system, which can be very difficult for relatively complicated fracture system.

Codell [1995] reported that the American Nuclear Regulatory Commission was

developing a finite-different model for transport of chain decay radionuclides in

porons and fractured media. The dual-porosity concept is to be used in their

model. The Laplace transform is applied to the advection-dispersion-decay equa-

tion for the fractures and matrix blocks. After the transformed equation is solved

by using the finite different method, nodal concentrations in the time domain are

11



obtained using a Laplace inversion algorithm to invert the Laplace domain nodal

concentrations.

1.3 Numerical methods

Over the past two decades, rapid advancements have been made in the devel-

opment of numerical solution techniques for groundwater flow and contaminant

transport modeling. Sudicky and Huyakorn [1991] provide a detailed review on

the development of numerical methods. They concluded that the recent mod-

eling advancements center in four key aspects. The first of numerical modeling

research concerns development and application of efficient matrix solution tech-

niques for flow and transport problems with a large number of degrees of freedom.

The second aspect is the development of stable and accurate numerical schemes

for handling advective-dominated transport problems. The third aspect concerns

the recent development of improved techniques for handling nonlinearities in the

variably saturated flow problems. The final aspect of recent modeling is the de-

velopment of multiphase models for simulating the migration of NAPL organic

chemicals.

Sudicky and Huyakorn [1991] concluded that the Preconditioned Conjugate

Gradient (PCG) iterative solution approach may be the most promising method

for handling large sparse matrix equations from two- and three-dimensional nu-

merical approximations. \4odifications of the standard FCG procedure have been

made to deal with the asymmetric matrix equations. One of such modification

made by Behie and Forsyth [1984] is known as the ORTHOMIN procedure, which

has been applied increasingly in the subsurface contaminant transport and vari-

ably saturated flow simulation [Sudicky, 1990; Therrien and Sudicky, 1996]. Other

widely used direct solving methods which may improve the accurâcy, effi.ciency
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or stability of the solutions include the upstream weighted residual and Petrov-

Galerkin schemes fHuyakon and Pinder, 1983], the Laplace Transform Galerkin

(LTG ) technique fSudicky, 1989], and ArnoldifLanczos modal reduction method

(ARM or LRM) fDunbar and Woodbury 1989; Woodbury et al. L99ll. Farrell eú

ø/. [1993] has made a comparative analysis between the method LTG and ARM

with an attention focused on efficiency and âccuracy. For the homogeneous mate-

rials, he found that the LTG method maintains a higher degree of accuracy than

does the ARM. However, in terms of efficiency, the Arnoldi method attains a pre-

defined level of accuracy faster than does the LTG method. For the heterogeneous

hydraulic conductivity field, the level of accuracy achieved by the ARM and the

LTG method are similar. Compared to the tradition time-marching approach,

both methods are stable and robust, and greatly out-perform the traditional ap-

proach in efficiency. A potential shortcoming of the LTG formulation was recently

reported by Xu and Bruseau [1995]. In their work, they showed that the negative

dispersion which is inherent in the Galerkin finite element scheme can be poten-

tially problematic when the LTG method is applied to highly advective problems

under high grid Peclet number conditions. In addition, the LTG method is known

to be limited to problems involving linear mass transport in steady flow fields.

The Arnoldi method is a modal reduction technique based on the recursive

Arnoldi algorithm. Using this algorithm a matrix differential equation can be

transformed into a smaller system of equations. The size of the reduced system

is dependent on the number of modes or Arnoldi vectors chosen, which is much

less than the size of the original equation system. The reduced system is then

solved using a time-stepping scheme such as the Crank-Nicolson approach. The

solution of the original equation is then obtained from the reduced space using

a matrix-vector multiplication. Compared with conventional methods the main
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advantage of the ARM is its high efficiency.

The modal reduction technique was first introduced to groundwater hydrology

by Dunbar and Woodbury [f989]. They appiied the Lanczos method to solve the

groundwater flow probiem. Later, Woodbury eú ø1. [1991] and Nour-Omid eú

al. [1991] used the Arnoldi reduction method to solve the contaminant transport

problems. A1l these applications have demonstrated great efficiency of the modal

reduction technique. In 1994, Dunbar et al. made a detailed discussion of several

implementation difficulties for the Lanczos method, including the choice of starting

vector and implementation of time-dependent boundary conditions, etc. For the

purpose of improving the approximation of the eigenvalues of the problem and

thus increase the convergence rate of the method, Farrell [1997] developed a "shift"

version of the ARM. Li [1996] extended the Lanczos methods to solve unsymmetric

groundwater problems and applied this method to the multi-species decay chain

transport problem lLí et ø/. [1998]).

L.4 Objective and research methodology

Multi-species contaminant transport in fractured porous media has been examined

using a variety of underlying physical models such as the continuum, dual-porosity

and discrete fracture models. Analytical and numerical solutions of contaminant

transport problems using these models for flow and single species contaminant

transport problems have been in existence for many years and have been devel-

oped for application to both unsaturated soils and saturated geologic media. There

a e several numerical models available for the simulation of multi-species trans-

port in fractured porous media, such as FTRANS, STAFF3D [Huyakorn, 1983b],

TRACR3D [Travis, 1984], TOUGH2 [Pruess, 1991], and FRAC3DVS [Sudicky

and Mclaren, 1992], FracMan/MAFIC [Golder Associates, Inc, 1994]. However,
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most of these models are limited by the efficiency and accuracy of the available

solvers and the complexity of the problems. The mass exchange between fracture

and matrix is a complicated process for the duai-porosity approach. The coupling

term has been investigated for many years in groundwater hydrology fZimmerman

and Bodvarsson, 1989; Dykhuizen, 1990]. An efficient scheme for computing the

transient coupling term for mass transport modeling is very important.

The primary objective of this study is to provide effective numerical tools for

solving the real world engineering problems in evaluation of environmental im-

pact of high-level radioactive waste, mining tailings, accidental chemical spills,

and improperly designed or maintained chemical transportation and storage fa-

cilities. Several efficient numerical approaches for the simulation of two or three-

dimensional groundwater flow and multi-species solute transport in fractured me-

dia, such as the transport problem of decay chain components or TCE and its

biodegradation products will be presented. In order to simulate groundwater flow

and contaminant transport behavior in fractured media, the flow and contami-

nant transport equations will be discussed and the mass exchange term between

fracture and matrix block will be examined. The consideration of multiple dimen-

sional problems allows for a more realistic representation of the physical system

of the real world. However, even a transport problem of single species in two or

three dimensions can introduce tens to hundreds of thousand of unknorvns. By

the traditional numerical approaches, it is very difficult to solve the multi-species

transport problem, especially for the transport problem in fractured media, due

io the complexity of problem and limitation of computer resources. Therefore,

an effective algorithm for reducing the original equation system may be of great

assistance in simplifying the problem.

The dual-porosity and discrete fracture approaches will be introduced for the
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solute transport in fractured media. The dual-porosity approach is suitable for

the case of incomplete information about the fracture distributions. The math-

ematical models for dual-porosity approach by using parallel fracture model and

spherical model are developed. An explicit expression for the mass exchange be-

tween the porous matrix and fractures is obtained, which is a function of recent

concentration and history concentration of the solute and its parent species in

the fracture. The discrete fracture approach requires that the geometry and the

hydraulic properties of each fracture be specified. Using a superimposing tech-

nique, one final system of equations for the whole domain will be obtained. This

approach is applicable for the detailed simulation of solute transport in fractured

porous media. Processes of advection, mechanical dispersion, molecule diffusion,

biodegradation, decay and in-growth due to the decay of parent species are fully

accounted for, except the advection in the porous matrix for dual-porosity ap-

proach, which is considered negligible. The traditional Galerkin technique is used

to discretize the flow and transport equations. The Lanczos or Arnoldi algorithm

is applied to reduce the original equation system, which in turn can be solved by

a suitable time integration algorithm such as Crank-Nicolson method. Using a

matrix-vector multiplication, the solution of original equation at a particular time

can be sought. This approach achieves a tremendous advantage in computation

CPU time and computer storage memory over classic methods. When a problem

involves large numbers of unknowns or with a large band width, the reduction pro-

cedure may not be efficiently implemented by a direct solution method, a fast and

robust accelerated iterative solver-OHfHOMIN [Vinsome, 1976] or PCG solver

is employed. AII the numerical models developed will be verified by comparison

with analytical solutions. Several field scale example simulations covering a range

of flow and soÌute transport problems in different fractured geological media will
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be presented.

The behavior of a radionuclide decay chain or TCE transport in fractured

porous media is not completely understood. Further study of the contaminant

transport behavior is necessary for the simulation of multi-species transport in

fractured media. In this study, the influences of uncertainty in the distribution of

fractures on the contaminant transport wili also be investigated.

In particular, the foliowing will be examined in this study:

1. The transport behavior of decay chain radionuclides and TCE biodegrada-

tion contaminants (in anaerobic conditions) in saturated fractured porous

media. The influence of randomly distributed fractures on multi-species

contaminant transport will be examined.

2. Detailed governing equations describing groundwater flow and multi-species

contaminants transport (decay chain radionuclides and TCtr) in fractured

porous media using dual-porosity and discrete fracture approach will be

studied. The conditions under which these equations can be written in a

form suitable for the Arnoldi or Lanczos reduction methods.

3. How can the calculation of fluid or mass exchange between fracture and

matrix block for dual-porosity approach be made more efficient.

4. The appiicability and performance of the Lanczos or Arnoldi methods for

solving various flow and multi-species mass transport equations with differ-

ent time-dependent boundary conditions.

5. Improvement of the accuracy and efficiency of the reduction techniques,

especially for problems with large Peclet number and heterogeneous media.
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In general, the accuracy and efficiency of the numerical methods for simula-

tion of multi-species transport in fractured media and the implementation of the

methods are the key issues in this work. In order to achieve the objectives, the

following schemes or methodology will be adopted:

1. The fluid or mass exchange term in the dual-porosity model is a function of

groundwater head or concentration history of the contaminant, and concen-

tration and concentration history of its parent species. For the groundwater

flow problem, this term can be written in a recursive form. It is expected to

be more efficient compared to the iterative scheme used in most numerical

methods using dual-porosity model. By writing the mass exchange term

in recursive form, reduction of the discretized system of equations can be

implemented. For the transport problem, the mass exchange term can be

computed directly in reduced space and the solution is sought through a su-

perposition scheme. This method is expected to be more efficient compared

to the computation in the original space.

2. The groundwater flow and contaminant transport equations will be devel-

oped in a form which is suitable for the reduction methods. Several reason-

able assumptions will be made in the development of the equations. The

Lanczos and Arnoldi reduction methods are used to reduce the size of equa-

tion systems. Solving the reduced equations will be more efficient than

directly solving the original equations.

The general form of the time-dependent first and second type boundary

conditions will be examined. By grouping the same time history boundary

nodes and considering the different time history groups separately, the first

and second type time-dependent boundary conditions can be implemented

18
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in the reduction methods.

4. Because of the complexity of multi-species transport, the common starting

vector for the Arnoldi reduction method wilÌ be carefully selected and the

equation system solver will be chosen to achieve extra efficiency and robust-

ness of the adopted numerical techniques. Two schemes f'or choosing the

common starting vector wili be presented. Further efficiency is achieved by

using features of FORTRAN 90 for programming.

The "shift" technique will be re-introduced and improved. It is expected

that this technique can greatly enhance the convergence rate of the iterative

solution procedures and the convergence rate of the recursion process. The

new technique makes the application of ARM to problems with large Peclet

number and large time step size possible.

The efficiency and accuracy of the reduction methods wiil be evaluated

through the comparison of the results of reduction methods and the tradition

time-stepping methods or LTG method. The flow and transport models will

be verified by using published analytical solutions, real field data, and results

of generic transport problems solved using different numerical methods.

The modal reduction methods will be extended to solve problems of long-

term and large-scaie groundwater flow and multi-species contaminant trans-

port in fractured media.

r
d.

b.

7.
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Chapter 2

The Reduction Techniques

2.t Introduction

In this chapter, the Lanczos reduction method (LRM) and the Arnoldi reduction

method (ARM) are reviewed. First, the general reduction procedure of a differ-

ential equation system is examined, Application of the finite element or finite

difference method to the governing groundwater flow or mass transport equation

subject to initial and boundary conditions results in a matrix differential equation

of the form

Mc*Kc:f (2.1)

where c is a vector of unknowns at the nodes of the finite element mesh, K is

the "conductivity" matrix, M is the "capacity" matrix and f is a vector which

contains the effects of the boundary conditions as well as source/sink terms. Both

M and K are n x n matrices, where n is the number of nodes in the mesh. Matrix

M is symmetric and positive-definite. Matrix K is symmetric for groundwater

flow probÌems and unsymmetric for contaminant transport problems.

The traditional approach for solving the above matrix differential equation is

to apply a finite difference approximation to the time derivative followed by a time-

stepping routine such as the Crank-Nicolson scheme. This method first discretizes
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equation (2.1) in time, and then obtains solutions by recursive substitutions. For

instance, the Crank-Nicolson algorithm gives

M/.Æ+r:K'ck+f,ntç{*t+f,) e2)

where M' : M + AúK 12, K': M - AtKl2,Aú is the time step and fr denotes

the time level.

It is apparent that the cost of solving the above equation system will be a

function of the size of the matrices K and M, as well as the number of time steps

required to reach the desired time. Recently, there has been research into reduction

methods to solve these problems, including the Lanczos reduction method and the

Arnoldi reduction method. These methods project the large system into a very

small subspace (a "Krylov" space) constructed using M-orthogonal vectors, giving

a small-sized system of the first order differential equations of the form

Hu/+w:g or Tw+u/:g

wlrere H (or T) is a rn x rn matrix, r¿ is the total number of M-orthogonal

Arnoldi (or Lanczos) vectors required to solve the original system of equations, g

is an rn-element vector. The advantage of reduction is that m K n. Approximate

solutions in the subspace can then be obtained by solving the reduced system (2.3)

using any time-stepping scheme. The solution in the original space is obtained by

a transformation (a matrix-vector multiplication).

The LRM applies lhe Lanczos algorithm [Lanczos, 1950] to the symmetric

matrix K-1, using a three term recurrence to construct the tridiagonal matrix T.

The ARM method applies the Arnoldi algorithm fArnoldi, 1951] to the unsym-

metric matrix K-1. In the Arnoldi reduction process, the recurrence involves all

previously produced vectors, resulting in a upper Hessenberg matrix H. Details

(2 3)
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can be seen in the works of Dunbar and Woodbury [1989], Nour-Omid and Glough

[1984], and Nour-Omid et al. lI99I).

The reduction methods have the potential to render problems with large dis-

cretization into equivalent systems of much smaller size. Consequently, large

savings in computer time and memory are realized, especially for multi-species

transport problems which require only one reduction process for all the equation

systems.

The reduction method was first introduced to solve groundwater problems by

Dunbar and Woodbury [1989]. In 1990, Woodbury eú al. applied the reduction

method to the single species contaminant transport problem. In 1998, Li et al. ex-

tended the Lanczos method to solve multi-species decay chain transport problem.

Later, Woodbury and Li [1998] extended the application of the Arnoldi method

to the TCE transport in porous media.

Due to the difficulties of choice of common starting vector, the work of Wood-

bury and Li is limited to special decay boundary conditions and constant retar-

dation factors for all species. Moreover, a number of mathematical challenges

have also hindered the application of the reduction methods. One of the most

important challenges is the implementation of complicated first type or second

type boundary conditions in the reduction methods. Both the choice of common

starting vector and boundary condition implementation will be investigated in

this research.

2.2 Lartczos reduction method

The Lanczos reduction process begins by multiplying the symmetric matrix K-1

to both sides of equation (2.I):

K-lMcfc:K-1bp(ú) (2.4)
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where b is a time independent vector and ¡-r(t) is a scalar time function such that

f(¿) : bp(t).

The method generates a set of Lanczos vectors er, ez, ...,A,, (m < n) to form

a M-orthogonaì matrix, Q : (qr, e2,...,q-). The algorithm can be described as:

Start from an initial vector ro : K-lb and qo :0, then calculate for j:Q, 1,

2, ..., m-L, recursively,

(1) Xj+t: (rjMrr;å,

(2) Qr+1 : *r,,
AJ+ I

(3) gj+t: _q,+rMK-1Mqr*r,

(4) rj+r : 1ç-1Me¡+r - gi+t9¡+t - X¡+tg.¡,

Thus, the matrix Q : lqr, g2,...,q-] and the tridiagonal matrix T are formed

T-

9t Xz

Xz 9z Xz

Xz Qs

Flom the above algorithm, the following relationships hold

K-1MQ: QT *re!,.

and

?rn-t Xr"
X'n 9'n

QtMQ:I Q¿Mr:o

where I is the rnxm identity matrix, the m-vector em is the rnth column of matrix

I and r is a residual vector. The superscript ú denotes transpose of that matrix

or vector.

(2 5)

(2 6)
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The two equations in (2.7) refer to the M-orthogonality property. The Rayleigh-

Ritz reduction process is then used to reduce the size of equation (2.1).Multiply-

ing equation (2.1) by Q'M, substituting the approximate transformation

c: Qw (2 8)

into the original equation, and applying (2.6) and(2.7), the reduced system (2.3)

is obtained, where g is given by:

g: xptp(t)

The approximate solution to the original equation (2.1) can be obtained by

transforming the solution w according to (2.8) The LRM is only for solving

groundwater flow probiems which have a symmetric K matrix.

2.3 Arnoldi reduction method

The ARM may also be appropriately described as a subspace method. However,

unlike the LRM method where the Krylov subspace is formed using the symmetric

matrix MK-IM, the ARM generates the subspace using the unsymmetric matrix

MK-1M.

The application of the ARM to the mass transport problem is also initiated

by multiplying (2.1) by K-t and the equation in the form of (2.a) is obtained.

Application of m steps of the recursive Arnoldi algorithm to the matrix K-tM,
the reduced system of equations is formed.

The Arnoldi reduction process can be concluded as follows. It is almost iden-

tical to the Lanczos reduction method.

Start from a vector ro : K-lb and qo :0, then calculate for j:9, I,2, ...,

m-1, recursively,

(1) Xj+t: (rtMr)à,
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(2) er+r: *r,,AJ+I
(3) pj+t: aj*rltX-tMqr*,,

(4) ,þ::Å'-ù : qfMK-'Mqj*, , i : 
!,r, 

..., j,
J

(5) r7*1 : K-lMq¡+t-ei+re¡*r - I rþj!rq,*r-',
i':7

The M-orthogonal matrix Q : lqr, e2,...,q-] and the Hessenberg matrix

are formed
, f1l , (2\

9t q')ò' 1Pà'
, r1)Xz 9z Và'

Xs 9s
H-

Analogous to the LRM, equations (2.6) and (2.7) arc also valid for the Arnoldi

reduction method.

The same Rayleigh-Ritz reduction process as in the LRM is used. Using equa-

tion (2.8) for approximate transformation, the reduced system of equations in the

form of (2.3) is obtained. The reduced system of equations is then solved using a

suitable time stepping procedure such as the Crank-Nicolson method. Woodbury

et al. [1990] indicated that the time required for the time stepping procedure is

not significant if m K n. It is noted that using the equation (2.8) for transfor-

mation of the subspace solution is computationally inexpensive and contributes

Iittle to the overall computational cost. At this point it should be stated that

the reduction procedure for both the LRM and the ARM can be implemented

using either direct or iterative solvers. In this research, both direct and iterative

versions of the reduction process have been implemented.

Compared to conventional methods, the main advantage of the reduction

method is its efficiency in computing time and storage. The efficiency can be
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further enhanced by using a larger time step without violating the Courant con-

straint fFarrell, 1997]. However, the efficiency to be gained from the ARM is

currently only available for transport problems involving steady state groundwa-

ter flow. If a problem involve transient flow, the K matrix must be reformulated

and the reduction process repeated each time the velocity field changes. This

process is computationally expensive and severely reduces the efficiency of the

reduction method, because the reduction process is based on the conductivity

matrix K.

The convergence rate for both the iterative solution procedure for the reduction

process and the recursion procedure for the reduction process itself depends on the

properties of K. The properties of the matrix can be changed by a "shift" method

fFarrell, i997] which greatly enhances the convergence rate. Detailed discussions

of application of the shifted Arnoldi method to the problem of flow and transport

in discretely fractured media are presented in next chapter.

26



Chapter 3

Theoret ical D evelopment-Flow
and l)ecay Chain Transport

3.1 Physical system

Clay aquitards and consolidated rocks are often considered to be safe geological

formations in which to dispose of hazardous waste because of their low hydraulic

conductivity. In this case, dissolved contaminants released from hazardous waste

facilities migrate mainly by molecular diffusion, which is a relatively slow process;

however, these geological materials often contain high conductivity fractures which

can greatly enhance the migration rate of dissolved contaminants. As the open

fractures generally offer the path of least hydraulic resistance, the transport of

a contaminant entering a fractured rock system will be primarily along the frac-

ture. At the same time, contaminants also migrate through the rock matrix by

advection.

Figure 3-1 illustrates a commonly occurring geological feature that forms a

physical system of groundwater flow and contaminant transport in a fractured

porous medium. The physical system consists of a fractured porous medium and

a waste facility, such as a mining tailings pit or a dump site, situated on the top

of the medium. If fractures exist on the side or bottom of the waste site, the
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Figure 3-1 One of the most commonly observed physical system of groundwater flow and
contaminant transport in fractured porous media (modified from Therrien et al.,1996)
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Figure 3-2 Dual-porosity conceptual models: (a) parallel fracture model,
(b) spherical block model (after Huyakom et al,1983 )
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contaminant that originates from the source may migrate along the fractures by

advection and dispersion in the aqueous phase. It further diffuses into the porous

matrix, sorbs onto the fracture surfaces and the suspended or filtered colloids,

and may decay for some radioactive chemical contaminants. The contaminants in

the fracture can distribute among four phases: mass in the solution phase, on the

fracture surface, on mobile colloids, and on filtered colloids [Ibaraki and Sudicky,

lee5l.

The distribution of fractures can be very complicated. For a naturally frac-

tured porous medium, the fractures are interconnected in three dimensions. In

order to simplify the system, one can use a family of parallel fractures or two or-

thogonal families of parallel fractures to represent the physical system. In the work

presented herein, the physical system is simulated by using both the dual-porosity

approach and the discrete fracture approach separately. For the dual-porosity ap-

proach, two conceptual models, the parallel fracture model and the blocky fracture

model (see Figure 3-2), are used. For the discrete fracture approach, the fractures

can be randomly distributed as one or two-dimensional plates. The theoretical

development in this study is for three dimensional problems.

3.2 Properties of contaminant transport

Multi-species contaminant transport in the fractured porous media is a very com-

plicated physical and chemical process. This research focuses on the transport of

decay chain radionuclides and multi-species TCE biodegradation contaminants.

The water moving in the fractures in the rock may transport dissolved ra-

dionuclides from a repository for radioactive waste or radioactive mining tailings.

The assessment of how much and at what rate the nuclides are carried by the

moving water is governed by the flow rate of the water in the rock, pathways, and
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on the retardation of the radionuclides by physical and chemical interactions with

the rock [Neretnieks, 1993]. Domenico and Schwartz [1990] concluded that the

magnitude and direction of advective transport are controlled bV (t) the hydraulic

conductivity distribution within the flow field, (2) the configuration of the water

table or potentiometric surface, (3) the presence of sources or sinks, and (4) the

shape of the flow domain. Other important processes that influence decay chain

transport may include retardation and radioactive decay.

The water flow rate calculations are based on flow models for fractured media.

Based on the calculated flow rate, velocity of the flow can be determined. The

flow velocity is then used in the transport models. However, the radionuclides do

not move with the velocity of water in general. Their velocity will deviate from

the average velocity. This is because of the effect of diffusion. Small molecules

or ions diffuse in a concentration gradient and can move from high concentration

to low concentration locations. Wiih only advection and dispersion active, the

classical advection-dispersion equation results. It has been used extensively to

describe non active contaminant transport in porous media. It is easily modified

to account for the influences of decay. The same equation can be used to describe

contaminant transport in the fractures or matrix blocks.

In most circumstances, radionuclides will adsorb on the surfaces of the rock

minerals. These processes may considerably retard the radionuclides which, in

some instances) can be expected to move many orders of magnitude slower than

the flow. For a given flow rate the retardation will be greater for a nuclide if there

are more exposed surfaces at which the nuclides can interact. This is because

the radionuclides not only interact with the fracture surface, but may also diffuse

into the matrix and sorb onto the inner surfaces of the rock matrix. The inner

surfaces in the matrix blocks are much larger compared to the fracture surfaces
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contact with the flowing water. Therefore diffusion into the matrix may lead

considerable increase in retardation.

In addition, decay of the radionuclides has a significant impact on the transport

of contaminants. The concentration of a radionuclide may decrease due to the

decay of that species or increase due to the decay of its corresponding parent

species changing into that species. Each radionuclide may have more than one

parent species and may also have more than one daughter species.

The dissolved species may also experience kinetic effects caused by physical

processes [Neretnieks, 1993]. One such process that has a very large impact for

solute transport in fractured rock is the diffusion in and out of zones in which the

water is moving so slowly that it can be assumed to be stagnant. Such stagnant

zones can be expected in fractures with uneven surfaces and with fracture filling

materials.

The presence of colloids may enhance the transport of radionuclides in ground-

water by reducing retardation effects [van der Lee et al., Igg2; Baek and Pitt,

i996]. Colloids existing in groundwater act as carriers, adsorbing radionuclides

onto their large surface area and moving with the groundwater. When the colloidal

particles are vigorously fi.ltered onto the fracture surfaces, contaminant migration

is not significantly enhanced because of the low colloid mobility, even when the

sorption capacity of the colloid is large flbaraki and Sudicky, 1995].

In addition, properties of the fractured media greatly influence the transport

capacity of the individual fractures. Fracture apertures are known to span several

orders of magnitude. Fractures offer paths to a contaminant entering a fractured

rock system. Therefore the size of apertures is a key parameter that influences

the fracture hydraulic resistance. The porosity and conductivity of the fractures

and porous matrix media are the two most important parameters determining the
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groundwater flov/ velocity. The flow velocity determines the transport capacity of

the fractured porous media through advection.

Except for decay, all the properties mentioned for decay chain transport also

influence TCE transport. In addition, TCE biodegradation is an important prop-

erty that influences its transport. Biodegradation is the transformation of organic

chemicals mediated by living organisms through enzymes. Microorganisms de-

grade organic chemicals as a source of energy and for their growth, atthough

most of the degradative enzymes are not used directly for growth. The rate of

biodegradation of an organic chemical is dependent on chemical and environmen-

tal conditions, and on the microorganisms that are present. Extensive laboratory

and modeling work has been performed in recent years to examine the contami-

nant biodegradation properties in the fractured porous media [Vogel and McCarty,

1985; MacQuarrie et al. L990; and Semprini, et a1.,1995]. In this research, only

the dissolved-phase contaminant transport will be considered and the complicated

biodegradation procedure will be simplified as a first order decay process.

3.3 Governing equations

3.3.1 Ground\r/ater flow equations
(f ) Dual porosity approach

The partial differential equations describing groundwater flow in dual-porosity

íractured media are obtained by considering a representative eiementary volume

(REV) consisting of a sufficiently large number of matrix blocks and fractures. The

dimensions of each of these blocks are assumed to be small relative to the scale of

the problem. The geometry of the matrix blocks is taken here to consist of either

parallel slabs or spherical "bLocks", as shown in Figure 3-2. Because the matrix

block dimensions are assumed to be small relative to the scale of the problem,
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the hydraulic heads on the surface of each matrix block will be approximately

uniform and flow in the block will be essentially one-dimensional. At each point

in the domain, there are two overlapping continua, one for the matrix blocks and

the other for the fractures.

The partial differential equation of flow in fracture continuum takes the form

fBarenblatt et a1.,1960, Huyakorn et a\.,7983]

0 ,_ ah,, -ôh
Aro\toiAri):¿ At-r -q-

t',i:1, 2

where h is the hydraulic head in the fracture, T¿¡ and ,9 are the fracture trans-

missivity and storage coefficient of the formation, f is the volumetric rate of fluid

transferring from porous matrix blocks to fractures per unit volume, and q- is the

volumetric rate of fluid flow via sinks or sources.

The term I represents the fluid-flux interaction between the porous matrix and

the fracture. In general, it is a function of both time and space. There are three

popular alternative mathematical models for describing f. Detailed description

of these models can be found in Huyakorn et al. [1933]. In this research, both

the unsteady parallel fracture and blocky fracture models are used, although the

approach discussed herein can be extended to any fracture model.

The fluid interaction at the interface of the matrix block and fracture can be

obtained by solving a one-dimensional governing equation with appropriate initial

condition and boundary conditions at the rock matrix-fracture interface. For the

dual-porosity parallel fracture, f can be expressed as

t : eryZ)(ä l, \e-,^(t-Ò dr¡

(3 1)

where a, b are the half thickness of matrix block and fracture, H is the aquifer
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thickness, K' is the hydraulic conductivity of the matrix,

given by

an : 12 (2n + Ð2 K' l(45',o',)

where ^9j is the specific storage of the rock matrix.

ln a similar way, f for the spherical blocky matrix is given by

r : e 6,K'.H,,XË 
/' 9!"-'^(t-,)dr¡' oLo i bl".?_rJo ôr

where

Lùn: T2n2 K' f (S'"a2)

and ø for the blocky model is the radius of a spherical "block,,.

(2) Discrete fracture approach

The description of groundwater flow in a discretely fractured porous media re-

quires governing equations for both the porous matrix and the fracture system.

The governing equation for flow in the porous matrix is described by the tradi-

tional groundwater flow equation for porous media [Bear, IgT2]:

and an is a constant

**t'#)+q':s!#
'i, .i:1, 2, 3

where h' is the hydraulic head in the matrix, K'0, and ^9j are the hydraulic conduc-

tivity and specific storage of the porous matrix. The effect of a,ny solrrce or sink

on the flow in the matrix such as a fluid exchange with the fractures or extraction

by pumping is represented in (3.b) by q'.

The fluid fl* q, in any direction'1, at any point within the matrix can be

defined accordingly by using the Darcy equation:

(3 3)

(3 4)

--, ôh'q¿: -K¿j ða

(3 5)

ÐrJ(J
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z,i :1, 2, 3

In one version of the discrete fracture approach, the fractures are idealized as

two-dimensional plates. This implies that the hydraulic head is uniform across

the fracture width. The equation for groundwater flow in a fracture of aperture

2b is:

zuftfNff) - q-ft- -tq.lr:2bs"ff

i, i:1,2
where å is the hydraulic head in the fracture, ,S" and K are the specific storage

and hydraulic conductivity of the fracture, and the two qn terms represent the

normal components of the fluid leakage flux across the boundary interfaces (1-

and 1+) that separate the fracture and the porous matrix. It is this leakage term

together with an assumed continuity in the head along the interface that provides

the link between the flow equations for each fracture and porous matrix. K is

given by [Bear, 1972]

r. pg(2b)2

12p'

where p and p. are the fluid density and

eration of gravity.

By combining (3.8) with the one-dimensional form of the Darcy equation, the

fluid flux q/ along the axis of a fracture is [Sudicky and Mclaren, 1992]

ps(2b)2 dhñ"-_-_uI - r2p dt

3.3.2 Radionuclide decay chain transport equations
(1) Dual-porosity approach

(3 7)

(3 8)

viscosity, respectively, and g is the accel-

The governing equations for transport of radionuclide component p (p : L,2..., P)

in the fractures using a dual-porosity approach can be written in the following form
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fHuyakorn et al. t983b, 1983a]

*,rr,,#) -,,#: 4# + R"^ece - 
--f-,ep,n,R,n,À^,c,n,1_,4

/ t Yrn
-(-;-ll'p P:I,2,..',P i,i:I,2'a

where Co is the concentration of species p, t ts the time, ø¿ is the spatial coor-

dinate, D¿¡ is the hydrodynamic dispersion tensor, u¿ r€pr€sênts the flow velocity

in fractures along the r¿ direction, Ào and Ro are the first-order decay constant

and the retardation coefficient of species p in the fractures, respectively, (o,n, is

the fraction of parent componenl, m' transforming into componenl p, M is the

total number of parent components transforming into the component p, R n,, Àn",

and C,n, are the retardation coefficient, decay constant, and the concentration of

the parent species m' ,lp is the volumetric rate of mass exchange of component p

between the rock matrix and fracture, and the þ is the secondary fracture porosity

which is defined as the volume of fractures per unit volume of the entire porous

medium. For the parallel fracture model, the secondary fracture porosity is given

by

ó:

where ø and ö are the half thickness of matrix block and fracture. The similar

expression for the spherical block model can also be derived if the packing of the

spheres is knor,vn.

For linear-reversible equilibrium sorption, the retardation coefficient R, or R"-

in fracture can be further defined as [Freeze and Cherry, 1979]

atb

(3 10)

R:7. +
where Kj is the fracture wall distribution coefficient ftr].
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As mentioned earlier, the two most popular conceptual models for the frac-

tured porous medium are the parallel fracture-prismatic block and spherical block

models [Huyakorn et al., 1983a]. Both models are depicted in Figure 3-2. The

mass transfer between the matrix block and fracture (lo) can be written in the

terms of concentration gradient at their interface using Fick's law. For the parallel

fractured model, the expression of lo takes the form:

where z is a local coordinate with the origin at the center of the matrix block, D/

is the molecular diffusion coefficient of the rock matrix, and C', is concentration

of radionuclide component p in the matrix btock.

The corresponding expression for the spherical model is given by:

ñ sD',ðcL 
,| 

-__-t 0, ôr lr:a

where r is the radial distance from the center of the sphere.

The development of equation (3.10) is based on the following major assump-

tions [Huyakorn et a\.,1983b, 1983a]:

1. Contaminant transport in the fractures is two-dimensional and is controlled

by both hydrodynamic dispersion and advection.

2. The local sorption equilibrium isotherm can be considered linear.

3. Chemical reaction or radioactive decay or ingrowth effects can be described

by a first-order term.

(3.13)

4. The fractured porous medium is macroscopically uniform and can be ap-

proximated by the parallel fracture-prismatic block conceptual model or by

the spherical block model.
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5. Transport in the matrix blocks is dominated by molecular diffusion, and this

can be described by an one-dimensional diffusion equation in Cartesian or

spherical coordinates.

6. For the spherical model the block diameter is small in comparison with

overall transport distance.

Equation (3.10) represents a system of P partial differential equations linked

together by the decay chain terms, which account for transformation of parent to

daughter components. In order to solve equation (3.10), boundary conditions and

initial conditions are required. The initial conditions can be expressed as

Co: Cl

The common boundary conditions are the first or second type with constant or

transient concentration. A decaying source condition can be described by a set

of mass-balance equations, known as Bateman's system of ordinary differential

equations fBateman, 1910]

aI t:0, p:7, 2,..., P

,l(: - M

+ : -ÀrÕo+ t (on,),n,Õ,n,
uL m't:r

where Co denotes the boundary concentration of species p.

component decay chain in the sequence:

(t)+(Z)......-+(P-1)-+(P), the analytical solution of (3.15) was given by Harada

eú o/. [1980]

pp
co: cle-^,' + Àotcf;t t e-^*'|tl ll (.1* - À-,)l-t + ...

¡n':p-I Ur=:)

*ÀetÀe-2...^tcl
p

\-
/J

¡nt:1 "-Àat¡

(3. 15)

For a general P-

p

il
¿-- 1

k#*'

(À* - À-,)l-'
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P:7, 2,......,P

The superscript 0 on boundary concentration Õo in the above equation denotes

the initial boundary concentration value of that species.

In equation (3.10), the mass exchange term fo is related to the concentration

gradient at the interface between the matrix blocks and fractures. The concentra-

tion gradient may be computed by solving the diffusion equation for contaminant

concentration in the matrix block. For the prismatic block, the equation repre-

senting one-dimensional diffusion in the block takes the form [Huyakorn et al.,

1e83bl

*ro'#): ó'q# + ó'He^pc;- i ep,n,þ'Rtn,À,n,c',n,
n'¿t :l

P:1,2,..., P

where Cl, is the concentration of p's parent species rn' inthe slab, þ'is the matrix

porosity, Ho and Rl, are the retardation coefficients of component p and rn' in the

blocl< respectively. The retardation coefficient in the matrix is given by fFreeze

and Cherry, 1979]:

R' :7 * #*,
where p6 is the bulk density of the matrix and K¿ is the equilibrium distribution

coefficient describing a linear Freundlich adsorption isotherm.

The solution of equation (3.i7) must satisfy the following initial conditions.

c;: c;o

The appropriate boundary conditions are of the form

CL: CO

u9i:o
dz

at t:0, p:7, 2,..., P

(3.17)

at z:at p:7, 2,..., P

al z:0, p:l, 2,..., P
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For spherical blocks, the corresponding system of equations is

þ*,n'o'ff1 : ó'q# + ó'He^ec; 
Ë,ep-ó'R;^,-cL"

^-1 aD
It-f, tJr..., I

which must be solved subject to

c;: c;o

Ci: CO

99
0r

al t:0, p:7, 2,...,

- 0 at r:0, P:1, 2,..., P

The systems (3.10) and (3.17) or (3.19) are related together through the parent-

daughter decay chain and the mass exchange terms. For a real-world problem,

this most likely would result in a large system of equations. In order to solve these

problems, a robust and effective scheme to reduce and solve the equation system

is necessary.

(2) Discrete fracture approach

Similar to the formulation of the flow problem using the discrete fracture mode1,

two equations will be used to describe the decay chain contaminant transport

in fractured porous media for each species: one for the fracture and another for

the porous mairix. Iu contras'r, wilir lhe dual-porosiby rnodel, the adveciion in

the porous matrix is also taken into account in the discrete fracture model. The

coupling between the two equations is provided by the continuity in concentration

at the fracture-matrix interface and by the equality of the normal component of

the solution mass flux across this interface.

al T:a, p:l, 2,..., P

(3 1e)
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For the species p, the equation governing mass transport in the porous matrix

is given by

firot,ffi) -,:#: q# + He^ec;- 
_Ë-,c,n,R',",À,n,ç;,

p:1,2,...,P i,j:1,2,3

The notation above is the same as in equation (3.10), except that the parame-

ters are for the porous matrix.

The equation describing radionuclide decay chain transport in a fluid-filled

fracture can be written as follow (modified from Sudicky and Mcl,aren, 1992)

(zb)w,W +,,# - ftrr,,ffil . &À,c,- 
#,ep,n,R,n,Àn,c*,)

The two terms involving Á.,, represent the mass loss (or gain) of soiute mass

across the fracture-matrix interfaces .I- and 1+ due to fluid ieakage and hydro-

dynamic dispersion. The retardation factor Ëo is defined by equation (3.12). In

(3.21), it is assumed that the adsorption characteristics of both fracture walls are

identical.

-l\.lt- *.4.," l¡+: 0

4," along interface 1+ interface can be written as:

Â," l¡+: lq.Co - On^ffi)b.
where q. is the normal component of the Darcy flux, and Dn and ôColôn are the

dispersion coefficient and concentration gradient, respectively, acting perpendicu-

lar to thc fracture-matrix interface I*. Ln along interface I- can be de'uermined

in the same way.

3.4 Numerical techniques for flow modeling

The numerical solution of the governing flow equations for both the dual-porosity

and discrete fracture models are obtained by applying the standard Galerkin finite
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element method for spatial discretization. Their solution is complicated because

strong contrasts in material properties are likely to exist betlveen the fractures

and the porous matrix. In addition, a multi-dimensional model can easily involve

many hundreds to thousands of unknowns. Therefore, an efficient and robust

numerical technique is necessary to solve the governing equations. Dunbar and

Wooclbury 11989] have shown that the Lanczos algorithm is well suited for solving

large groundwater flow problems, particularly when the time duration is long. The

Lanczos algorithm uses orthogonal matrix transformations to reduce the finite

element equations to a much smaller tridiagonal system of first-order differential

equations. A standard tridiagonal solution algorithm can solve this new system

with litile computational effort. A matrix-vector multiplication is then used to

obtain the original solutions at desired time steps. Solution techniques for flow

equations for both the dual-porosity and discrete fracture models are discussed in

the following sections.

3.4.L Dual-porosity approach

Consider now the following flow equation obtained by substituting (3 2) or (3.a)

into (3.1).

*r"t#)- tXiq-_ oi,,:o ,i:1,2 (323)

where

I,: ft 9!"-''{'-'¡0,
Jo dr

and o for a parallel fracture model is

2K'H
a(a -t b)
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or for a blocky fracture model

6K'H- a(a+b)

If a finite difference approach is adopted to solve (3.23) and if the

Aú is assumed constant, at time step k+1, the time integration in

approximated by

-r.r1 hr - ho fh t^2 
- ¡} tLzI!*t x I I e--'(t*+t-ùdr +'','' 1"" ¿-',(to¡r-')dT+...' At Jo Aú Jt,

.ry [rr*'"-,,ttk+r-r)dr ez7)

where the superscripts of h (0, 7, ...,,k and k+-l) denotes the groundwater heads

at different time steps.

From (3.27), it is easy to show that the relation between If and f+1 can be

expressed as:

tk+r - o-u,Al ru * !:!!(hk+r _ hk)-z 'z' ,r5t Yo -t

Note equation (3.28) is in a recursive form and can be rewritten as a function

of groundwater hydraulic head history.

Il*t : €,(h - t ^) + õ"(e,(hk - h*-t) -t 6,(...e,(h' - ht) +

õ,(e,(hr - ho)) ))

where

(3.26)

time step size

(3.24) can be

I ^-ø,Âtuz-E

1 _ 
"-u,L,ta--Lz - .,.r\t

The assumption of a constant time step is not necessary. However, without this

assumption ô, and e, must be re-evaluated for each different time step. In order to

use the Lanczos reduction method, it is assumed here that the storage coefficient
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^9 is a constant for all the fractures. For the traditional solution methods, this

assumption is not necessary.

After substituting (3.29) into (3.23), discretization of (3.23) by Galerkin finite

element method leads to the following system of first-order differential equations

Mh + Kh - "# å 
€,h -"T å'-.,h* 

+ d,(e,(hÀ - h*-') +

6"(...e,(h2 - ht) f ô,(e,(hl - ho)). ))l : f

where h is a vector of hydraulic heads at nodes of a finite element mesh, K and

M are the conductivity matrix and capacity matrix respectively. Both of these

matrices are symmetric and positive definite. The right hand side vector f includes

the effects of source terms as well as boundary conditions. In the next section,

system (3.30) is reduced in size by means of the Lanczos reduction method.

3.4.2 Application of the Lanczos reduction method

Background of the rnethod The Lanczos method begins by constructing an

orthogonal set of vectors, known as Lanczos vectors fNour-Omid, 1g8Z]. This

method uses the transformation h : e\¡¡, where e is a M orthogonal matrix

(i.e., Q¿MQ : f , the identity matrix). Q consists of m Lanczos vectors each of

dimension n, i.e. Q is a n x T'n matrix. The Lanczos reduction process may be

started with a vector r¡ which depends on the right-hand side of the discretized

system of equations. Equation (3.30) is transformed by multiplying it by MK-1
and substituting the transformation h : Qw. The reduced equation is obtained

by iaking advantage of the orthogonality of the Lanczos vectors. rs is chosen to

be K-1f. The vector f includes the influences of non-zero boundary conditions

and the effects of sources/sinks of the problem at any time. Detailed discussion of

the Lanczos reduction method can be found in the following references fl,anczos,
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1950; Simon, 1984; Nour-Omid, 1989]. The algorithm for the method is detailed

in Chapter 2.

The Lanczos method does not require an actual inversion of the stiffness matrix

K [Dunbar et al, 1994], even though there aïe many references to K-1 in the

Lanczos algorithm. The K-lf are actually computed by solving the system Kx:
f. This is accomplished by performing one factorization of the K matrix followed

by * back-solves for each Lanczos process.

Both the direct and iterative solution methods are used for different versions

of the Lanczos reduction process. For the dual-porosity flow model, the direct

solution method is adopted. In the direct solution version, a Cholesky decom-

position and a series of back-solves are used to carry out the Lanczos reduction.

This is, of course, a direct as opposed to an iterative scheme. In addition, for the

dual-porosity flow model, time-marching by the Crank-Nicolson method and di-

rect solvers are typically used for the soiution of (3.30) as a basis for overall timing

comparisons between traditional method and the LRM. It has been pointed out

that perhaps iterative solvers such as conjugate gradients should be used instead

of direct solvers for the Crank-Nicolson solution of (3.30).

It is recommended that iterative solvers be used to carry out the Lanczos

reduction in place of direct solvers if the Lanczos method is applied to three-

dimensional problems, or where an arbitrary sparsity structure is encountered.

It should be noted that whatever method is used to compute the solutions to

Kx : f, the overhead cost will be the same for both the direct integration of

(3.30) and the Lanczos method. The total computational effort of a Lanczos

process is approximately equal to solving equation Kx : f for m time steps, no

matter what solution method is used.

During the Lanczos decomposition, each Lanczos vector generated is subject
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to loss of M orthogonality with respect to earlier vectors due to computer runoff

error and cancelation. This means that Q¿Mq+I Therefore, the orthogonality

must be monitored. When loss of orthogonality has occurred, reorthogonalization

must be implemented (Simon, 1984).

Another important issue for the Lanczos method is the criterion for terminat-

ing the recursion when a sufficient number of Lanczos vectors has been computed.

In this work an approach described by Dunbar and Woodbury [1989] is adopted.

Numerical experiments have shown that the number of Lanczos vectors needed is

dependent on the inhomogeneity of aquifer hydraulic properties and element grid

size. Howevet, in a typical case for a probiem of 5,000 nodes, less than 100 vectors

are needed.

Following the Lanczos reduction method, the following reduced system of equa-

tions is created

T\M + * - "T Ë.,* - "T Ë[-.,** * ô,(e,(wÆ - *u-') -F
u z:0 ù z:O

õ,(...e"(w2 - *t) + d,(.,(*t - *0))..))] : g

where w is the solution vector with a length of minreduced space, T : Q¿MK-IMQ,
is arn x rn tridiagonal matrix, and Q is an x rn matrix. Note rhatm is much

less than total number of original equations, n. This is due to the fact that the

recursion for determining the Lanczos vectors would be terminated after rn <, n

steps and these basis states capture the essence of the solution. g : Q¿MK-1f
is the right-hand side vector of the equation system and can be determined from

equation (2 9)

The reduced system of equations can be solved by any time integration tech-

nique. Note the solution at each time level does not need to be transformed back

to the original unknowns. Only the original solutions h at the desired time steps or

locations are computed by the matrix-vector multiplication h:Qw. The Lanczos
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reduction method therefore yields a large saving in computer memory storage and

solving the reduced system is much faster than time-marching the original equa-

tion system (3.30). For a medium-sizedreal field probtem with several thousands

to several ten thousands solving time steps, the solution data for all time steps

can easily involve hundreds of megabytes to even several gigabytes. However, the

total reduced solution data (w) are much less than total original solution data

(h) Typically, the total reduced solution data may be only I.07o or less of the

total originai solution data. The original solution for any desired time step or

location can be retrieved from the reduced solution data in future with very little

computational effort.

Initial and boundary conditions Proper implementation of initial and bound-

ary conditions is a key to efficient use of The Lanczos reduction method. When

the boundary conditions are complicated, the reduction method may lose its ad-

vantage by having to re-evaluate the vector g. This subject is discussed in more

detail below. If all the boundary conditions can be written in terms of one time

varying function, the reduction method will be most efficient. This situation may

include a single well system, or multi-well system with the same linearly depen-

dent pumping rates. For different time-dependent boundary conditions, these can

be divided into several groups and each group can be implemented separately.

Initial conditions must also be treated properly. They can be eliminated from

the solution by writing h as the sum of the initial conditions h0, plus a transient

part v(ú):

h(ú) :ho+v(i),

Substituting the above equations into (3.30), one can obtain

h(o) :60, v(0) : I
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equation for the transient v:

Mv + Kv - "+ Ë €,y -"Y Ëf-. ,vk tô,(e,(vÆ - .rr-r) fgu"(JlJL
" z.=0 u z=O

õ,(...e,(v2 -.rt) i d,(e,(v1 -.ro)) ))l : f - KhO

Equation (3.33) has the same form of left hand side as the original equation

(3.30) for h. The only difference between (3.30) and (3.33) is that the new equation

has a right hand side of f - Kh0. This is because Mho : 0, since h0 is not a

function of time. In this way the initial vector w0 can be set equal to the zero

vector, 0.

The right-hand vector f is time-dependent if the boundary conditions are time-

dependent or wells have a non-constant pumping history. Therefore the right hand

side vector of the reduced equation g : Q¿MK-I1f-Xtro), is also time-dependent.

Unfortunately, the vector g would have to be evaluated at each time step during

the solution of the small tridiagonal system. This would be very time consuming

and completely negates any benefits in efficiency afforded by the small system.

The Lanczos decomposition is spatial in nature. Therefore, to retain the time-

dependent effects which arise in the vector g, the vector f must be decomposed

into spatial and temporal components, i.e. f :b¡t(t). Here p(ú) represents the

temporal behavior of the boundary conditions or sink/sources. The vector K-1b

then becomes the starting vector which is transformed to the constant part of

vector g.

For multiple time-history boundary conditions, Dunbar and Woodbury [1989]

proposed a scheme that groups the boundary conditions and wells into l/ parts

with each part having the same individual time history pattern:

(3.33)

r:Ib¡p¡(t)*fo-Kho
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Its corresponding reduced right hand side vector has form

s:te¡tt¡(t)'reo
j:1

At each time step, g is updated individually for every group boundary condi-

tions. Investigation in this research indicates that this scheme is appropriate for

one dimensional problems; however, it may not converge (or converge slowly) for

multi-dimensional problems. A new scheme is developed below for the multiple-

group time-history boundary condition problems based on the principle of super-

position. Similar ideas have been proposed by Li [1998].

According to Dunbar's scheme, one can start by writing right hand side of

(3.33) in the form of (3.34). Due to homogeneous initial conditions (the influence

of initial conditions has been eliminated from the left hand side of the equation),

equation (3.33) can be split into several systems of equations equivalent to,

MVo + Kto - o#to - o#to : fo *Kho

Mv, + K',r, - oY M
S 

v¿ -o S 
r,: l.L¿(t)bi i:I,...,N

where u¿ is compact notation for the known part of the leakage terms, l/ is the

time history group number, and v : Ð[o ro. The right hand side of equation

(3.36) is not a time dependent function. It denotes the influence of the steady

state boundary conditions and the initial conditions.

The modified reduction method generates Lanczos vectors by using their cor-

responding starting vectors K-t(fo - Kho) and K-1b¿ for each equation system.

Qo and T¿ are produced for all the equation systems. After the Lanczos reduction

process, equations (3.36) and (3.37) will be reduced to:

(3.35)

To To
I011/o f v/o - oT*o - o, yo : go

(3.36)

(3.37)
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where yo denotes a reduced vector of known part of the leakage terms in compact

notation, and v¿ : Q¿s/¿.

In this approach, ly' Lanczos processes are needed, but only one decomposition

of matrix K needs to be computed. For a limited number of boundary condition

time histories, this approach is expected to be very efficient. In most cases bound-

ary conditions can be grouped into similar time history patterns. Therefore the

Lanczos method is still efficient. The computation effort for each Lanczos process

is about the same as solving the original equation system for m time steps. When

more Lanczos processes are required or when (N + L) x m > tn (tn is the total

required solution time steps), the Lanczos method would not be efficient.

Choice of Starting Vector The convergence of the Lanczos method is sensitive

to the starting vector which is used to compute the first Lanczos vector. The best

starting vector for the method is the steady state solution [Dunbar and Woodbury

1989]. From equation (3.30), Note that the leakage terms of the dual-porosity flow

problem are zero at steady state. The starting vector for each Lanczos process

can simply be chosen as K-rb, a vector parallel to its steady solution. Using the

boundary condition data at the moment when all the data are non-zero determines

the vector b. Before the reduction procedure, the Dirichlet boundary conditions

need to be partitioned from the original equation system.

Computer implementation The Lanczos method for solving the dual-porosity

flow problem is set up in the following stages:

1. The coefficients ô, and e, for updating of the leakage terms are computed.

'i: L,..., N (3.3e)
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2. The matrices K, M are formed. The initial and boundary conditions are

applied to the discretized equation system to form the right-hand side vector

f.

3. The matrix K is factored by the Cholesky decomposition method.

4. The Lanczos decomposition is performed. The Lanczos vectors Q, right

hand side g, and matrix II are formed. Q is then stored on a disk file for

future references.

5. The small Inxrn system of first order differential equations is decomposed

using a standard tridiagonal solver.

6. The leakage terms are evaluated and a back solve is performed at each time

step.

7. If there are more than one boundary condition time history patterns, repeat

step 4 to 6 for the next group boundary conditions.

8. A matrix-vector multiplication computes the solution to the original problem

for all the desired time or a dot product of two m entry vectors to obtain the

original solution for any location. Computation for the original solutions can

be performed during solving of the reduced system or any time after solving

of the system.

9. If there are more than one group time-dependent boundary conditions, add

the solutions of different groups together.

Updating the leakage terms of the reduced equation system is needed at each

time step, and they are related to the solution history. By using the following
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equation, it is possible to avoid the storage of all the hydraulic head time history

data.

At time k x Lt, the leakage terms can be written as

tu: oTått
Then, the correction term at time (k + t) x Aú can be written as:

1À+i - "T i @,elr e,wÈ) - r:i.,*u\gDr:o ò=õ
Evaluation of the leakage terms of I, invoives an infinite exponential series

summation. Therefore, updating the right hand side requires the storage of three

extra arrays for f,, ô, and e" with a length of the number of truncated terms for

the infinite exponential series. Huyakorn eú a/. [1983] showed that the rate of

convergence of the series depends directly on the dimensionless parameter ú* :
K'tl6'"o,2). It is sufficiently accurate to determine a'such that ú* :0.b and

a ) a' , where ¿' is an effective thickness. They indicated that the computational

efficiency can be greatly improved by replacing the actual semi-thickness of the

matrix block, a, with the effective thickness, ø'. Only within this effective thickness

is the hydraulic head h' in the matrix block affected by the change of head at the

block-fracture interface. Using ø' instead of ø, very small truncation errors are

introduced by retaining only the first several terms of the series. My experience

indicates that with less than 20 truncated terms a very high accuracy can be

achieved. Updating the leakage terms in reduced space is based on the reduced

Ieakage terms and solutions of the last time step. If 20 truncated terms are used, at

each time step only about (22+m) x m multiplications are required to update the

leakage terms. It is very economic compared to the computation for the original

equation system which needs (22 + n) x n multiplications by using the equation

(3.41) to update the leakage terms. This recursive scheme is also more efficient

compared to the iterative scheme proposed by Huyakorn et al. [19S3].
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3.4.3 Discrete fracture approach

The most advanced approach for simulating groundwater flow in fractured porous

media is the discrete fracture approach. However, this approach is limited by

the large computational overheads associated with traditional modeling methods.

One primary reason is because of the vastly different flow velocities between the

fractures and the matrix blocks, which results in sharp groundwater head gradi-

ents near the fracture-matrix interface. In addition, for most field problems, the

formations contain complex randomly-distributed networks of discrete fractures.

In order to simulate the sharp hydraulic head gradients at the interface between

fractures and the matrix, a fine time and spatial discretization is needed. The

discretization can easily involve many tens to hundreds of thousands of unknowns

and time steps. In this work, the Lanczos reduction method is extended to the

modeling of groundwater flow using the discrete fracture approach.

The numerical solutions of the governing equations (3.5) and (3.2) for transient

groundwater flow in fractured porous media using the discrete fracture approach

are also obtained by applying the standard Galerkin finite element method for

spatial discretization, and then reducing the finite element system by the Lanczos

algorithm. The discretization method is discussed as follows.

The trial solutions for ä and h' are defined according to

h'(ru,t) =h'(ro,¿) : D N1(r¿)h'r(t)
I

h(ri,t) = îr(r¡,¿) : f A¡@¡)h¡(t)
J

where r¿ ('i:I,2,3) and r¡ (j:7,2) are the spatial coordinates, l and J are nodal

indices ranging from 1 to n' and n, n' and n aÍe the total number of nodes in

porous matrix and fracture respectivel¡ and À/¡ and f)y are linear interpolation

functions.
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It is now required that the residual generated, when trial solutions âre substi-

iuted into (3.5) and (3.7), is minimized in the following sense:

f,rftt*:,ffii - s,# - q'tNldv : o

i,,j:L,2,3; I:7,2, , n'

l^t oftf*,tft1 - 2bs"X - Q.lt- *q- l',-le¡ctA: 0

'i,j:t,2; J:7,2,...,n

where I/ denotes the porous matrix 3D domain and A denotes the fracture 2D

domain.

Application of Green's theorem and introducing of Q.a\ and (3.a3) into (3.44)

and (3.a5) reduces the order of the second derivative terms and then forces the re-

sulting residual orthogonal to all the weighting functions. In the Galerkin method,

the weighting functions are chosen to be identical to the interpolation functions.

By subdividing the integrals over the porous matrix domain I/ into piecewise

elemental contributions of volume Vu and the fracture domain ,4 into fracture

elements of area A, à system of algebraic equations is obtained.

Because we have the condition that h' : h for nodes common to a fracture

areal element and volumetric porous matrix element, and because common nodes

receive numerical contributions from both types of elements, the two discretized

equations for the porous matrix and fracture can be superimposed. The discrete

equations obtained by the method discussed above are independent of the choice

of element type. The block elements and fracture elements are generated such

that they correspond to each other. The nodes comprising the fracture elements

are therefore all common to nodes comprising the porous matrix elements. The

commonality of these nodes thus ensures the continuity of hydraulic head at the

fracture matrix interface. Also, by superimposing the contributions at each node
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from both element types, the exchange flux terms qn cancel internally and need

not be calculated explicitly. The final system of the algebraic equations for the

superimposed fracture and matrix element system has the following form:

n'

ÐOnÐ lu"s',N,Nrdv +Deul lo.t,n,nrd,Al +

, :r-n, rÐ l, " 
*'u,,, # o* 

ov + lQa) I ̂
" 

*,,#W o o, :
fz, î

åry 1,.ø'N,w,dv +Ð I"#*;N¡d's * (2b)Ð /,#,o,n,
I:I, 2, ... , TL'; i' , j':t, 2, 3; i, j:L, 2

where !" and D"¡ refer to the summation over volumetric matrix and areal frac-

ture elements, respectively, that are connected to node J, s and I represent the

areal and linear boundaries of the three-dimensional and the two-dimensional el-

ements, and n denotes the direction normal to the boundary. The last two terms

on the right hand side of equation (3.46) represent flux contributions due to any

imposed natural boundary conditions.

Equation (3.46) can be easily written using a matrix notation as

Mh+Kh:f

The notation here is the same as in (3.30). Equation (3.47) can conveniently

be reduced by the Lanczos algorithm to a small system. An iterative version of

the LRÀ,{ is implemented for the discrete fracture approach. The PCG solver is

used in the Lanczos reduction process. A similar scheme as the one discussed in

last section to solve (3.47) can be used.

The efficiency of the LRM will be determined by the number of Lanczos vectors

(nz) used and the efficiency of solving equation Kx : b. In the LRM, the K matrix

can be manipulated to facilitate the PCG solution through a "shift" technique. A
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similar technique has been introduced by Farrell [1998] for the Arnoldi reduction

method. Equation (3.47) can be rewritten as:

Mh + (K + oM)h - pMh: f

K is replaced with K + pM in the reduction process. If an appropriate value of

p is selected, the iterative solution convergence rate will be enhanced dramatically.

This is because for optimal convergence rates, the matrix to be solved by the PCG

method should be diagonally dominant, like the mass matrix M (Meijerink and

van der Vorst, L977). That is, in a row, the diagonal is positive, and sum of

the off-diagonals is less than or equal to the diagonal, with strict inequality for

at least one ro\M in the matrix. Experience indicates that p should have a value

that makes K and pM similar in absolute value. If p > 2l\t (Lt is the time-

marching step size), the convergence rate in the reduction process should not be

worse than the classic iterative solution method for the original equation system.

This is because the matrix K+21 Lt}i[ parallels to the left-hand side matrix of the

original equation system after the temporal approximation by the Crank-Nicolson

scheme.

Following the LRM, a reduced system of equations is created

Tv/+w-pTw:f

(3.48)

The above reduced equation system can be easily solved using the same scheme

as discussed for the dual-porosity flow model.
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3.5 Transport modeling techniques for the dual-
porosity approach

3.5.1 Solution of diffusion equations in matrix blocks

In order to determine the mass exchange between the fracture and matrix block,

the diffusion equation in the porous matrix blocks must be solved first. Figure

3-3 shows the discretization of porous matrix block for the two type conceptual

models. Discretization of the mass diffusion transport equation can be performed

by applying the traditional Galerkin finite element technique.

First we focus our attention on the equations for the prismatic matrix block.

By applying the Galerkin technique to equation (3.17), one will get the one di-

mensional finite-element equations for the matrix block in matrix notation:

M
þ' HoMc| I Kc', + ó, 

^eHpMCo 
- Ð ep*,þ, R,n, À,n },/.c!,n, : fp

P:7r 2, ..., P

Using standafd linear basis functions and the boundary conditions, the n' x n'

conductivity matrix K, n' x n' capacity matrix M and right hand vector f, can

be determined. The node number n' of the discretized matrix btock is small. In

most cases, it is in the range of several tens of nodes.

Using the temporal approximation by the way of finite differences, such as the

Crank-Nicolson method, the following tridiagonal set of equations can be obtained

for the porous matrix biock associated with an arbitrary node J in the fracture

domain. Let us consider the pth species for now:

þ,cl['+Tc:ï, :dI
.nClo*-t, + 1nC!¡*t + 1¿Cfilr: d,¿

r-'k+I _ r:k+tup,n, - vp,J

(3.50)

'i:2r3, ...,n' - |
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Figure 3-3 Discretization of porous matrix blocks: (a) prismatic block, and
(b) spherical block (after Huyakorn et a|,7983)

b.

at r=a
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where Cljr is the concentration of component p at node J in the fracture domain,

the superscript k*1 denotes the current time level. The coeffi.cients a.¿, B¿ and

7¿ in the left hand side of the equation can be easily determined from equation

(3.50). The right hand side vector of equation system (3.51) is given by:

d¿: ,ó'4M K + ó'^eRpMr^,r,\A¿2t'o
, { Ç*,ó'À*,H,,,M 

G,Aï, + cl},)'k, 2

where Aú is the finite difference time step size. In order to simplify the equations,

Aú has been assumed to be a constant for all the time steps. Moreover, each block

is assumed homogeneous.

The general solution of above equation system can be expressed in the form

c*{'

'ii'
rr'k+I9p,r'-2
rr'k+79p,n'_r

:^ 
| or.' ,1.^
I a.'-, )

where A is defined as

A:

þt 'lt 0

d2 þ, 'lz
Q¿ þn

0 "' dn,-2
000
an an
azt azz

0

0

(3 52)

From equation (3.53), it is easy to show that the concentration solutions for

any species in the matrix block consists of two parts. The first part (part I) is
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0

0

0

0n'-t

(3.53)
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caused by the concentration history of that species and its parent species, and the

second part (part II) is caused by the corresponding node current concentration

in the fracture (i.e. caused by the term 1,,-1Cii').
The general solution of any species for any node in the matrix block can be

written as

C:,i':Õ:i+-oC!,it

'i : I,2, ...D' - 7, p : Lr2r..., P

where Õf, is the solution to part I, and

computing the solution to part II, which

where the right-hand side vector of the above equation is the last column (column

n' -l) of matrix A. It can be obtained by solving the equation system (3.51) with a

right hand side of (0,0,...,0,1). It is interesting to note that the solution coefficients

may be very smali for the nodes far from the fractures and the influences of fracture

concentration on these nodes can be neglected.

The solution to part I is obtained by setting -yn,_r:0 in equation (3.51)

and solving the equation directly. The solution to part II is computed simply by

multiplyin g ø¿ with CiI'
Substituting equation (3.55) into (3.13), the mass exchange term fo at time

step k+1 can be calculated

rf*' : -ftfciJ' - -.,-rCiI, - Õ'fr,-r) (3.b2)

After the solution to part I is obtained, substituting fo of different species into

its corresponding transport equation for the fractures, the concentrations of that
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Ant -Lnt-1

æ¿ is a constant solution coefficient for
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species in the fractures can be solved without requiring the solution of current

concentration in the matrix block. After the contaminant concentrations in the

fractures are determined, the solution to part II for the matrix block at current

time step can be updated. The summation of the solutions to part I and part II

forms the final concentration solution for the matrix blocks.

The spherical block model has the same discretized system of equations as the

paralleÌ fracture model. Its tridiagonal equation system and the exchange terms

can be obtained in a manner similar to that described above. The only differences

are the coefficients of the equations. The two matrices M and K for the spherical

block model [in equation (3.50)] are determined by

K: I [x]";
n¡ -I

where n' is the total nodes in the block domain. The element matrices are given

as follows:

lKl": *2-rr:-"i_,)óL\ri

M: I [Ivr]"
nt-I

[M]":
T IM.,|,'

60\rl I, M¡

where,

Mn :2rl - 2orl-rrl -r 3orf-rr¿ - 72r5n-,

Mn : Mzt:3ri - 5r¿-1rf -f\rf-rr¿ - 3ri-,

Mz, : Lzrl - 30r¿-1rf + 20rl-rrl - 2r'o-,

'i: I,...,nt - I

[-"

Mn
Mzz

-1
1

In above two equations, Ar¿ is the grid size of a spherical element associated

with node z and r¿ is the local coordinate of the node.
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3.5.2 Reduction of the transport equations in fractures
using the Arnoldi algorithm

In order to fully illustrate the method only a simple case of multi-species decay

chain transport is considered. It is supposed that any species in the decay chain

Ìras only one direct parent component and 100% of the parent component will

decay to a daughter component. This means that ( : 1, except the first species

in the decay chain is without a parent component. However, the procedure for

solving the equations presented can easily be generalized.

By applying the Galerkin finite element method [Huyakorn and Pinder, 1983]

to the equation (3.10) and considering the case of only one direct parent species,

the following set of linear equations are produced

R;Jr/iëof Kco f ÀoÄrMc o - Àp-t&-rMco-r - L-l.Mrtp : fp-ó

P: I,2,-.-, P

where co is the vector of species p's concentration with n unknowns at the nodes

of the mesh, co-r is the vector of parent species's concentration which is known,

co is the vector of concentration derivative with respect to time ú, uo is the vector

of mass exchange rate between fracture and matrix block, fo is a time-dependent

force vector containing the effects of the initial and boundary conditions in the

fractures, M is a positive-definite and symmetric capacity matrix, and K is a

unsymmetrical conductivity matrix which depends on D¿¡ and velocity u. Both

K and M have a size of n x n.

For the first species (p : 1), which has no parent species, the term related to

co-r does not exist in equation (3.61). The elements of up can be determined by

equation (3.57). It is a function of time and location; however it can be divided

into two independent parts. One part relates to C, and the other part relates to

the concentration history of the species and its parent species, and also relates to
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present concentration of the parent species. The second part can be predetermined

before the solution of the equations.

By using the Arnoldi algorithm [Arnoldi, 1951; Woodbury et a1.,1990; Nour-

Omid et a|.,1991], the size of these equations can be reduced to a series of small

ordinary differential equations of the form

RàHúo* wo * ÀrLrhwo - Àp-t&-rlrwo-r - +"yp: 8p

where H is a rn x rn upper Hessenberg matrix, rn is much smaller than n, and

wp1 wp-l, Bo â,nd y, are reduced vectors of cp, c,p-t, fp and uo respectively.

The Arnoldi reduction method uses orthogonal matrix transformations to re-

duce the equation (3.61) to a much smaller upper Hessenberg system of first-order

differential equation by approximating the solution of co with Qwo. Q, anxm ma-

trix, consists of the first rnth Arnoldi vectors which is created during the Arnoldi

process. The details of determination of the matrix Q and H and the reduction

procedures can be found in Chapter 2.

From equation (3.57), the reduced mass exchange vector V, can be determined.

It is in the following form

"r: -#l(r - -.,-i)wp - w'o,n,-r)

where w'o,n,-t corresponds to e!r,-,-t in reduced space.

Equation (3.62) was obtained based on the assumption of homogeneous matrix

blocks throughout the doma,in, na,mely, D' , H, and þ' are constants rn the whole

domain. This assumption makes the system reduction relatively easy. For the

traditional iterative or direct solving schemes, the assumption is not necessary.

In order to make the problem simple, the reduced initial condition vectors are all

supposed to be zero, i.e,

*ofo : o
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'i:7,...rn' - t
Equation (3.62) can be solved by a suitable time integration algorithm such as

Crank-Nicolson scheme. As the H is an upper Hessenberg matrix, it can be easily

decomposed into the product of an upper triangular matrix and a lower bidiagonal

matrix. Note that the Arnoldi method shows a great advantage here in that only

one process is required to reduce multiple equation systems simultaneously. Also,

the solution to the reduced system (3.62) using the Crank-Nicolson time-stepping

scheme is economic because the reduced system size is much smailer than the

original system. This also yields a large saving in storage required by the reduction

method. Therefore, solving of the reduced system is more efficient than direct

solving of the original equation system. Woodbury eú al. [1990] indicated that

the penalty with the time-stepping procedure is not significant if m K. n.

In w space, equation (3.50) is still valid and the coefficients are still the same.

However, now the equations are coruesponding to the reduced nodes. Therefore

the solutions for the matrix can be directly substituted into equation (3.63). This

is because the current species concentration in the matrix block can be written as

a function of the species and its parent species concentration and concentration

history in the fracture. After reduction, the function is still the same. This

property affords additional efficiency in computing time and memory storage for

the Arnoldi reduction method. At each time step, the mass exchange terms are

computed in the reduced space and only require solving m I-D diffusion equations.

For the original equation system, in order to determine mass exchange terms zz

l-D diffusion equations need to be solved.

It is important to mention that the solution of. C'o,., the concentration at ith

node in the matrix, can be directly computed from the reduced space solutions
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for the zth node by:

"!o,o: Q*r,n

i: I,2,...,n' - L

Note, it is not necessary to compute concentrations for all the nodes. For a

matrix block corresponding to a specific fracture node J, various node concen-

trations can be obtained by the dot product of Jth row of matrix Q and vector

w'^r.

3.5.3 Choice of common starting vector

The choice of the starting vector is a very important factor infl.uencing the con-

vergence and accuracy of the Arnoldi reduction method. For the multi-species

transport problem, a common starting vector must be chosen for all the equa-

tion systems to minimize the residual errors. Li et al. [1999] showed that any

vector parallel to the vectors fo (p:7,2,...,P) is a suitable starting vector for

the Arnoldi process in reducing the equation system (3.62). It is also required

that all the right-hand side vectors fo must be parallel to each other. However,

in most cases these vectors are not parallel to each other. It is shown here that

these vectors can be partitioned into two parts, each of which is parallel to each

other. Two approaches for choosing the common starting vector for most common

transient and constant type Dirichlet boundary conditions are presented below.

A simple case is discussed here where a 2nd-type boundary condition is zero

and there are no other source/sinks. The concentration vector co in equation

(3.61) is for all the nodes in the domain, including the first-type boundary nodes.

The submatrices of M and K without the influence of first type boundary nodes

can be obtained by partitioning-out the rows and columns from M and K corre-

sponding to the first type boundary nodes. After partitioning, all the entries of
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f, are zero except contributions from first type boundary nodes

Let Õ be the set of index values of all nodes, and ú1 C 0 be the subset of

index values of all first type nodes, CI c Õ be the subset of index values of all

nodes which are not first type boundary nodes but are in an element which has

one or more first type boundary nodes, and T c Õ be the subset of all other

nodes.

After partitioning, the zth entries of the fo can be written as

fø : - D lR"Mo¡Cp¡ * K¿¡Cp¡ + 
^eR"MijCp¡ 

-
j€úu

Ào- t Rp-r M ti C p- tj - 7 * o,r r,l

where \[r1¿ denotes the subset of index values of first type boundary nodes

are in the same element as node z.

It follows lhat fe¿: 0, when i e T because the subset ù1¿ is empty. When

z € Q, /o has:

fp¿: - D, lKu¡Co¡ + MijF(Ce)l
j€Úu

where F(Cr¡) is a function of C,p¡ and can be written as

F(Cr¡): RpCpj + 
^p}"Cpj 

- Ào-t&-tCp-tj -#rr,-v.róvr

Two schemes are used to find the common starting vector for different species.

The first scheme assumes that the two vectors formed by D¡.v,, K¿¡ andÐjrvro Moj

for all nodes are parallel to each other, so it can be writen

D Mot:,1 L Kn¡.
ievü

where4isaconstant.

This assumption is valid provided that all the first type boundary nodes have

similar connections, the discretized element grids have same size and the hydraulic
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properties are homogeneous in the first type boundary area. The first two condi-

tions can be implemented during the discretization of the modeling domain. The

last condition is true for most situations due to the fact that typicai sites have

relative small source areas.

In this way, a vector b for all the species can be determined. Its elements are

computed by following equation:

. ( o zeTh:t
ì. -I¡.*'nKo¡ ze f)

i:1,2,...,fr
All the right hand side vectors fo (p : 1,2, ..., P) in equation (3.61), which are

only affected by first type boundary conditions, are parallel to the vector b. They

can be determined and are of the form:

fe: (Õp + nF(Cò)b

The values of FQ) and, Õo at any moment can be determined easily based on the

given first type boundary conditions for steady state boundary or the equation

(3.16) for the decay boundary. It has been shown that K-1b is the only choice of

a starting vector for the decay chain problem lLí et al., 1999].

Another scheme for determination of the common starting vector is based

on the principle of superposition. Equation (3.61) can be considered to be the

superposition of two equations. The two equations have the right hand side of the

two parts of equation (3.66), respectively. The common starting vector for the first

equation can be determined in the same way as first scheme. The determination of

common starting vector for the second equation is also similar to the first scheme

except that the vector b is computed from the matrix M.

(3.6e)

, ( o ieT
":l -D¡ev,,lvl¡¡ iÇçl

(3.70)

68

(3.71)



'i: \,2,...,fl

The right-hand sides of the two superposition equations can be rewritten as

f' : c;51)

fP) : F(Co¡ø{zt

Using the second scheme, two Arnoldi processes are required and two reduced

equation systems must be solved. Even though additional computations are re-

quired compared to a single Arnoldi process, this method can still achieve great

efficiency. The second scheme is more general compared to the first scheme and

does not require the assumptions of equation (3.68). Therefore, more compli-

cated boundaries, such as multiple sources and non-zero second type boundary

conditions can be implemented for ihe ARM in the similar way.

The final reduced system is obtained by using a common starting vector K-lb
in the Arnoldi algorithm.

&Húo* wo * RoÀo*wo. "#P(r - øn,-r)Hwo :

xt(co + nF(ceDe1 -l_ -R-o-rÀo-rfrwp-r -'+Pw'n,-1

P: I,2, "', P

Note that the vector e1 is the first column of identity matrix (wiih dimension

m), and ¡1 is the M-norm of K-1b. Equation (3.74) is the reduced system for the

first scheme of choosing a starting vector. The second scheme has two reduced

equation systems. Both systems are similar to equation Q.7a) except the first

terms of the right hand side, which are:

(3.72)

(3 73)

RàH*rr wo * RoÀ;Hwo - "#P(! - æn,-r)H*o :

xtcpet -t R.p-Àe-, rrwo-r .'+Pw,* -1
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4:r.úo* wo * RoÀor..wo. "#P(7 - øn,-1)Hwo :

y,F (cr)e, -t R-e-Àe-, rrwo-r . "+Pw'n, -1
P: 7,2r-.-, P

The final solutions of the pth species at desired steps are given by cp: Qwo

for the first scheme. The concentration solutions for equations (3.75) and (3.76)

are obtained in the same way as for the solution of first scheme. Summation of

the solutions for the two equations gives the final solutions for the second scheme.

3.5.4 Summary of solution procedure

The solution procedure for the transport of multi-species decay chain radionuclide

components using the Arnoldi method can be described as follows.

1. Discretize the fracture and matrix block domains, select an appropriate grid

for both domains and determine the time step size for ail the solutions.

2. Consider the component that is the first in the order of hierarchy. Compute

the coefficient matrix for left hand side of the system of equations (3.51)

and then compute the last column of the matrix A in (3.5a). Use (3.56)

to compute the solution coefficients ø¿ for all the matrix block nodes. It is

noted that the solution coefficients are the same for all the matrix blocks

if matrix blocks are homogeneous. In addition, if the time step size Af is

not a constant, last column of A and ø¿ must be re-evaiuated at any Aú

changing step.

3. The coefficient matrix of (3.51) is factored by a tridiagonal method [Press

et aI., 19921

(3.76)

4. Repeat steps 2 and 3 for all species.
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5. The matrices K, M, and the common starting vector K-1b are formed.

6. Reduce the original system by performing an Arnoldi decomposition, The

Arnoldi vectors Q, the Hessenberg matrix H, and the right hand-side vectors

Bo for first time step corresponding to the pth component is determined.

7. The small T-n x n-L systems of first-order differential equation for the compo-

nents are decomposed into LU forms by Gauss elimination.

8. Update the right-hand side vector d of equation (3.51) using (3.52), which is

a function of the species last time step concentration and its parent species

current step and last time step concentration, and then perform the back

solve to obtain the solution to part I for the matrix block. Note the concen-

tration used in updating vector d is the reduced space solution.

9. Update the right-hand side of the fracture equation system (3.74) by sub-

stituting the solution to part I for matrix block and concentration of parent

species to it. Back solve the equations.

10. Compute the solution to part II and then by summing up the two part so-

Iutions to obtain the concentration solution for matrix blocks at the current

time step.

11. At desired time steps a matrix vector multiplication is performed for com-

puting the solution to the original problem.

12. Repeat steps 8 to step 11 for all species.

13. Proceed to next time step. Update the vector go and then repeat steps 8 to

12 for all time steps.
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74. If the second scheme for determining a common starting vector is used,

Repeat steps 5 to 13 for the equation system with second starting vector

(K and M matrix do not need to be computed again). The final results are

obtained by adding solutions of the two Arnoldi processes together.

3.6 Tbansport modeling techniques for the dis-
crete fracture approach

The discrete fracture approach for simulation of multi-species contaminant trans-

port in fractured porous media is limited by large computational overheads if one

uses the traditional numerical methods. One primary reason is because of the

vastly different hydraulic properties between the fractures and the matrix blocks,

which results in sharp concentration gradients near the fracture-matrix interface.

For field scale problems, the formations can contain very complex randomly dis-

tributed fractures. F\rrthermore, the multi-species transport problem requires the

simulation of multiple components in the same time, because the contaminant

species influence each other during their transport in the groundwater system.

In order to simulate the sharp concentration gradients, the complicated fracture

networks and the multiple components, a fine time and spatial discretization is

needed. The discretization can easily involve many hundreds of thousands to mil-

lions of unknowns and time steps. To solve this type of problem, a very efficient

numerical method in terms of boih CPU time and computer memory must be

used. The ARM is the right choice for modeling of multi-species contaminant

transport in fractured porous media using the discrete fracture approach.

Sudicky and Mclaren [1991] used the LTG method [Sudicky, 1989] to solve the

two-dimensional contaminant transport equation using discrete fracture approach.

Therrien et al.[I9921 applied a similar approach to three-dimensional variably
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saturated flow and transport problem. Both approaches are limited to the single

species transport problem. In the following the discrete fracture approach for

multi-species contaminant transport problem will be discussed.

The spatial discretization of the transport equations is identical to that of the

flow equations. Similar to the flow problem, v/e can also perform superposition

of the two dimensional areal elements representing the fractures onto the three

dimensional volumetric elements representing the porous matrix. This ensures

the continuity of the concentration at the fracture-matrix interface and avoids

the need to explicitly determine the solute mass exchange terms involving .4.,

in (3.21). The elements can be any type. For a 2D problem, the fractures are

represented by one dimensional linear elements and the matrices are represented

by two dimensional areal elements. The final superposition form of the discretized

equations for species p can be expressed by

îr' r

t tr,rtD [,,.or*,*rdv +\-(2b) lo" oon,nrdA] +
J:7 " 

JV" 
eJ

f.r,,rt)] / @',,,ryry + urþtr, + R!,^pNrNr)dv +
7:, " ''l Jv.' "" 0r¡, 0a¡, " 0t¿,

D'Qut l^"ro',#H . ø'ffa'+ AeÀer¿ro 
')dAl -

rnt=lJ:I e JV" eJ JAc

,zt rãAt rãC
- \-l- ?-,Ðo'^ l"ffx,a, + Qb)Ðr, l,#n,ot) (rTT)

'i, i : I,2;'í',i' : L,2,3; I : I,2,...n'; p : 7,2...P

where s and I refer to the areal and linear boundaries of the three-dimensional

and two-dimensional elements respectively, i, j, i' and j' ref.er to the dimension

of spatial coordinate system, and !" and D".r represent the summation over the

3D porous matrix and 2D fracture elements that are connected to node ,,I. Terms

fó



on right hand side of the equations represent contribution from the boundary

conditions, in where n denotes the direction normal to the boundary.

Equation (3.77) can be conveniently written in the form of matrix notation as

M

&Mëo * Kco -f ÀoBoMc, - Ð (p,n,Àn",Rn}tÆc,,n, : fp
¡nt:l

where the assumption has been made that the ratio of retardation coefficient in

matrix and fracture for all species are same,-Rf lRp:constant. It is easy to prove

that this assumption is reasonable. Equation (3.78) is solved by reducing it to a

small system using the Arnoldi algorithm in a similar fashion as that used for the

dual-porosity model.

An iterative version of the Arnoldi algorithm is implemented fbr the reduction

process. The ORTHOMIN solver is used in the Arnoldi reduction process. In order

to improve the convergence rate of the iterative solution procedure, the"shift"

technique is adopted. Equation (3.78) can be rewritten as:

M

&Mö, + (K*pM)co - pMcp* ÀrÆrMco- I Çp,n,À,n,R,"Mc.,n,:fp (3.79)
rnt -_l

where p is shift factor which can be optimally selected based on the numerical

range of values in the M and K matrices. Experience suggests that the p should

have a value that makes K and pM in a similar absolute value range.

Replacing K with K+pM can dramatically enhance the iterative convergence

rate in ORTHOMIN. This is because for optimal convergence rates, the matrix

to be solved by the ORTHOMIN solver should be diagonally dominant. By using

the "shift" technique, the diagonal dominant property of the matrix to be solved

can be improved. Equally important, the "shift" technique can also increase

the convergence rate for the Arnoldi reduction recursion process which means

less Arnoldi vectors are required compared to the situation without using this

technique [Farrell, 1997]. In addition, using the "shift" technique can extend
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the application of the ARM to solve large Peclet number problems. Experience

indicates that without using "shift" technique, a problem with a Peclet number

larger than 2 is difficult to be solve by ARM. However after using the technique

a probiem with a Peclet number equal 100 can be solved by ARM.

The final reduced equation system for all species are in form of

M

ÇH*of wo - pHwp * ÀoÄoHwo - Ð ep*,^,n,R,'Hw,n, - gp
¡¡l,t :7

The traditional time-marching scheme is used to solve reduced system (3.80).

The final solutions for desired time steps are obtained by a matrix-vector multi-

plication. For detailed solution procedures, readers can refer to the last section

dealing with the dual-porosity model. The boundary conditions can also be han-

dled in a similar way as that used for the dual-porosity model.

(3.80)
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Chapter 4

Theoretical Development-TCE
Biodegradation Transport

4.L Background

TCE degradation in an anaerobic environment can be analyzed by the loss of three

chlorine atoms. The process can be described in following several steps [Vogel eú

a/., 1985; Fetter, 1992; Woodbury and Li, 1998]:

First, an enzyme or a cofactor catalyzes the reduction of TCE (HC2C\),

resulting in the loss of one chlorine ion and production of dichloroethene (DCE

or H2C3C|2):

H+ + HC2ch -+ Hzczctz -l ct-

where DCE exists as three different structuraì isomers 1,1-DCE,

trans-1,2 DCE, respectively. Another chlorine atom is lost from a

and vinyl chloride (VC or fuC2cl) is formed:

H+ + H2C2C\2 -+ H3C2C| + Ct-

Finally, the loss of a third chlorine atom produces ethene (HaC2):

H+ + H3C2C| -+ HaC2 + C¿-

(4 1)

cis-DCE and

DCE isomer

/o

(4 2)

(4 3)



All the reactions can be summarized as:

r 1,1 DCE
TCE -+ 1 cis-1.2 DCE -+ VC -+ Ethene

I

I trans-l,2 DCE

Discussion of this type of TCE biodegradation can be seen in the work of Semprini

and others [1995]. Wiedeme\er et al.[1996] presented a detailed case study on this

type biodegradation at a former fire training site.

As a single phase, TCE is regarded as dense non-aqueous phase liquid (DNAPL).

It has the potential to migrate to great depths. Once present in an aquifer,

DNAPL slowly dissolves into flowing groundwater, giving rise to aqueous phase

plumes. The life span of TCE and its biodegradation products in subsurface is

typically between several days to several thousand days, depending on the ground-

water flow conditions.

Migration of TCE and its biodegradation products are governed by the effects

of advection, dispersion, sorption and biodegradation. Simulation of this type

of contaminant transport in dual-porosity media involves six coupled equations

describing the contaminant transport in fractures, and equations describing the

contaminant diffusion in the porous matrix. Solving these equations using either

the finite element or finite difference equations for a fleld scale problem would

result in a large number of unknowns. This can render the problem almost im-

practical for anything less than a supercomputer. Therefore numerical techniques

must be carefully chosen to achieve efficiency and robustness. lVoodbury eú ol.

[1990] has shown that the Arnoldi reduction technique is very suitable for solving

this type of problem.

(4 4)
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4.2 Governing equations

Using the dual-porosity model, two groups of equations describing mass transport

in the fractures and matrix blocks are required for each contaminant species. It is

assumed that the solutes can sorb onto the fracture walls and onto the solid phase

comprising the porous matrix, and their degradation can be described with first-

order decay. These equations are coupled together by parent to daughter trans-

formation and the mass exchanges between fractures and matrix blocks. First,

the equations of the transport in fractures are discussed:

Lef Cp, p:t,2,...,6, be the concentrations of the species, which are TCE, cis-

1,2 DCE, Trans-1,2 DCE, 1,1 DCE, VC and ethene respectively. The governing

equations for these six species in the fractures can be written in the following form

[modified from Woodbury and Li, 1998]:

R'#: fr;{o',ft1 - ''# - Àtz;tct- À1341c1 - À1a'1c1

.r _ ó..+(--:)f]

R,# : *tn',#) - "# t À1ql1c1- Àqs¿qcq

.r-ó+(ï)fn for q:2,3,4

R # : fr;{r,,ffi1 - r,# * Àzs;zcz* ÀssÃec3 * À+sRacq

_ÀsoÆscs * f?lr,

R'# : fr;{oo,ffl - "'# t À56R5c5 - À67R6c6+ (+8,
;;-1qL1.J 

- 
LrL

(4 5)

(4.6)
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where fo is the rate of material exchange of species p between the rock matrix and

fracture, D¿¡ is the hydrodynamic dispersion tensor in the fracture, ?i represents

the flow velocity in fractures along the r¿ direction, Ão is the retardation coefficient

of species p in the fractures, / is the secondary fracture porosity which is defined

as the volume of fractures per unit volume of the entire fractured porous medium,

and À¡7 are decay constants. The first sub-index I denotes the parent species and

the second sub-index J denotes the daughter species member. The À are obtained

from half-life of the species decay constants (f ,t)tp, that is

. In2
AIJ: /r \

\J rJ )r/2

In the dual-porosity model, the domain is assumed to be comprised of matrix

blocks that are distributed uniformly in space in a macroscopic sense. The two

most popular geometries of the matrix block that have been used consist of either

parallelslabsorsphericalblocks, asdepictedinFigure3-1 [Huyakornet al., 1983].

Because their dimensions are assumed to be small relative to the scale of the prob-

Iem, the concentration at the surface of each matrix block will be approximately

uniform and diffusional transport in the block will be essentially one-dimensional.

In this work, only the parallel fracture-prismatic block conceptual model for TCE

transport is considered. The theory developed here is easily extended to other

matrix block types, such as the spherical block.

Equations of the onc-dimensional diffusion in a prismatic block can be written

AS

*ro'#) : ó'R\# . þ'R'1À12c'1+ ó'R'l^rsc'r + ó'Rll^r'ci

*rr'#) : ó' R'n# t þ' R'nÀqsc'n - ó' R'ÀIqc|

(4 e)
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*ro'#) : ó'Rr# + þ'R!rÀ56c', - ó'Ri^2.ci - ót RIr^sscL

-Ó'R'4^45CL

*ro'#) : ó' R;# + s' RluÀu,c'u - ó' RL^56c'6

where C', (n:1...6) is the concentration of pth species, ó', D' and Ho are

the porosity, the molecular diffusion coefficient and the retardation coefficient of

species p in the matrix block, respectively.

The mass transfer rate between the matrix block and fracture (fo) can be

written in the terms of concentration gradient at their interface using Fick's law.

The expression of fo for any species takes the form of equation (3.13).

The transport equations are subject to initial and boundary conditions and

the boundary conditions can be any type. However, the most common boundary

condition is a first type with a constant or transient concentration. For the first

type boundary condition with decay, where Cl, C3, C3, Cl, Cf ana Cl are initial

source concentrations which are placed on some part of first type boundary, then

the concentrations of these six species on the boundary are required to satisfy the

following equations fWoodbury and Li, 1998],

* : -ÀrrÕr- À,rCr - ÀrnC,
ðt

âa
T : ÀrnC¡_ - ÀqsCq for q:2,3,4
ot

ãa"
* : ÀzsCz* À¡sCs I ÀqsC¿- À¡oG
ot

*:)ruG - Àurcu

(4.r2)

(4 13)

where Ct C, Cs Cn C5 and C6 are the boundary concentration of these six species

respectively. Based on the analytical solution of Bateman's system of ordinary
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differential equations fBateman, 1910] given by Harada et aI. 179801, the solutions

of above equations can be written as:

Õr: ç7"-s"

ã - tão Cl¡ro \^-À;sr , ÕroÀr,
Ci : (Ci )e-n," + Àõ:î "-^", i:2,3,4

4

Õs: ôse-¡soú r Ë{ ' ^ot., (ci -..Õl^'i )"-À¿s¿ *
i:2 /\56 - ^¿5 

Ai,5 - AI

Õa : ôae^ur' +. 4Àtu e-\rut* f1$1¿tÀoz - Àso-' ?-','(Àu, - À,r)(Àso _ À¿s)

- 
Clxro \--À¿¡ú -, ÓfÀr¿À¿sÀso-ffç1" (Àu, - À,)(À;:îro*-::- - À,)e-À"Ì (4.2r)

where Àr : Àrz * Àrs -l Àr¿ and C5 and C6 in equations (a.20) and (4.21) are

constants determined by following formulae:

(Àru-À,)(Àor-À,)
ÔroÀ1¿À¿5

e-À"Ì

cr: c3- É{'. ^o'., (ci -.Õf^'i ) *
i:2 ^56 - 

/1.i' Ai' - Al

n^ -.-o - GÀtu - $¡ ÀtuÀ,, rõo - 
Cl¡ro \v6 : u6 - À6? _ À56 - àtæ(u; -,1" _ rl

-' Õ8ÀroÀorÀso .' (Àu, - À,)(Àro - À,)(À,, - À,),
The equations for the matrix blocks (equation (4.10)-(4.13)) are solved sub-

ject to the assumptions of continuity of the concentration at the fracture-matrix

interface, and the zero concentration gradient at the center of the matrix block for

all the contaminant species. The two groups of equations for both fractures and

matrix blocks are related together through mass exchange terms and the degra-

dation from one species to another. Therefore, in order to get the solutions for all

the six species, these equations must be solved at the same time.
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(4.1e)

(4.20)

(Àru-À,)(À,r-À,)
CroÀ1¿À¿5

(4 22)
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4.3 Determination of mass exchange terms

The mass exchange term can be determined based on the equation (3.13) and is

a function of the concentration gradient at the matrix block surface. Before the

computation is performed, the one-dimensionai diffusion equation for the matrix

blocks must be solved. However, at the moment of solving the one-dimensional

diffusion equation, the corresponding nodal concentration at the fracture (the

first type boundary for the equation) is variable and unknown. Due to this fact,

most algorithms solve the equation for the matrix block and fracture iteratively

to obtain the solutions [Huyakorn et a1.,1983]. In this thesis, a scheme based on

the principle of superposition to solve the equations directly is developed. Figure

3-3(a) shows the discretization of the prismatic matrix block.

A tridiagonal set equations is derived for the porous matrix block associated

with node J in the fracture domain. Application of the Galerkin technique to any

one of equations (4.i0)-(4.13), using the standard linear basis functions, applying

their boundary conditions and adopting the finite difference temporal approxima-

tion yields the same equation as (3.51). For the TCE problem, P in (3.51) has a

value of 6.

Equation (3.51) is the general form for all species. The coefficients a¿, p¿ and

7¿ in the left hand side and right hand side d¿ are given by:

a¡ : 7aI + $' HoA'zo-rl$Lt)

"Y¿ : o"Yi t þ' HrLz¿l(6Lt)

þ¿: o0i * þ'Rlo(Lzrt r Â^z¿)l(34ú)

d,¿ : (g - r)(aicfr-I+ pic*t + úcf¡+,) . #lnz¿-Q!¡-1-r
2(Lz¿-1+ Lz¿)C'f, * LzeCfr*rl + do

82



^* -D' , ÀS'HoAz¿-1.': 
L"n-., - 6

* -D', , Àþ'Rlr\z¿
:_!.¿tx Lzo 6

D', D', _ÀÓ'P.árA-.,t/R*- - _L +_#(Az¿_1IA,z¿)ut-Lro-r'Lr ' 3 \a'¿-rrL

h: oþi r þ'HrLzllQLt)

n: oti + þ'Ho\,zrlrcLt)

d,I : (o - t)(þicÌ,, + ñcÌ,) . wQc!,, + c:2) + dI

* - D', Àþ'R!"A,21
r-/l L¿ ' 6

D', Àþ'R!"L21
trt''i-Lzt ' 6

p: L,2...6; 'i :2,3,...,n' - 7

where 0 is a time-weighting factor. Note that I : 0.5 for the Crank-Nicolson

time-stepping scheme. The one-dimensional element sizes for the matrix block

are defined as A,z¿: zi+r - zi.

À and do fo, different species are given as follows.

Species 1:

À

i
A1

j
U;

Àrz*ÀrsfÀr¿

-0
-0

Species 2,3 and 4:

À-

dr:

'i:2,3,...,n' - 7

À¡t

(1

(1
d¿:

- 0)ó'Rlr^ri\f:{zcr*, + crrr) + 0ó'R'I^r,L}t crT, + crTr)

- o) 9' Rl^ri 
ly,z¿_1C'{r_1 i 2(Lz¿-1 + Lz¿)Crk, + Lz¿Crkr*r]
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. ry+)"lvz¿-1c11¿+-r, + z(Lzo-t * Lz¿)c:T' * Lzür:l\l

j :2,3,4; 'i:2,3,...,n' - |

Species 5:

/\ - /\56
4

a' : ¡¡1r - 0)ó'Hj^,rof{rr',1* c',5) + 0þ'H¡À¡sfffzc,!r.' + c'¡,r{'))
J-2

n, : \t9!4&b lL z ¿ - 1c',,k0 -, + 2 (L z, - r * L z ¿) c',,k, + L z ;c' ¡\ * 1l

0þ,R,À¡5. 
^+ "-:fzl\z¿aC'i,k¿!! + 2(Lzo-t * Lz¿)C' Ï*t + L"oC'¡lII])

i :2,3,...,n' - t

Species 6:

\_/\-

dt:

i
di:

Àoz

(1

(1

- 0)ó'RL^rr\ftzc;\ + C'ukp) + 0ó'R'5^5rLÇfzcLT, + C5l{r)

, 0ó'RL^56, 
^+ ::t'- [L"o-tCLTr, + 2(A,zo-t-t Lz¿)C!,+I + LznCrfi]

i:2,3,...,n' - I

- o)ó'RL^56fyz¿_1crf,

Equations (3.51) have a total of n' - 7 equations in n' unknowns for each

species. Note the concentration at the fracture-matrix interface is continuous.

However, the concentration in the fracture at the moment of solving the current

diffusion equation is not yet determined. The matrix concentration solutions are a

function of the fracture concentration at node ,,/ (Cljt) which is unknown. After

manipulating the equation system, the general solution for any species can be

expressed in the form of equation (3.53). The same procedure is adopted to solve
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the matrix block equations for TCE as the procedure discussed in Section 3.5.1.

The mass exchange term fo at time step k+1 is in the same form as (3.57).

It is assumed that all the matrix blocks have uniform properties. If the matrix

block domain is not homogeneous, the mass exchange term must be evaluated

for each block, which would be very time consuming for problem with a large

numbers of nodes. The time step size A¿ is an important parameter for the

equation system. If it is constant, the computation of the last column of matrix

A and part II solution coefficient ø¿ is computed only one time. Otherwise, the

last column of A and æ¿ must be re-computed whenever Aú changes.

4.4 FEM discretization of the equations in frac-
tures

Applying the Galerkin finite element method (Huyakorn and Pinder, 1983) to the

TCE transport equations (4.5)-(4.8) for the fractures, discretized equations for

the six species are obtained as follows:

RrMcr * Kc1 * À1,R1Mc, - 
t - dtür : fi

(h

R|Jrdcq* Kcn * Àq5ÃqM cn - À1n}1ly'Icr - }*un : rn-ÓY

q:2,3r4

.R5Mc5 f Kc5 * Àso.RsMc5 - À25R2Mcz - À35-R3Mca

-À45-R4M .n - !--9-Mu5 : ¡u
a

Ã6Mc6 * Kc6 * À67-R6Mc6 - À56-R5Mcs - |/*uu : ru
a

where co (p :1...6) is the vector of concentration of species p with n unknowns at

the nodes of the mesh, co is the vector of concentration derivative with respect to
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time, uo is the vector of mass exchange rate between fracture and matrix block, fo

is a time-dependent force vector containing the effects of the initial and boundary

conditions in the fractures, M is a positive-definite and symmetric capacity matrix,

and K is a unsymmetrical conductivity matrix which depends on D¿¡ and flow

velocityT,,.

The entries of vector up are determined by equation (3.57) which consists

of two independent parts. One part relates to the current concentration of the

species and the other part relates to the concentration history of the species and

its parent species, and also relates to current concentration of the parent species.

The second part can be predetermined before the solution of the equations.

A simple case is considered in this thesis where a second type boundary con-

dition is zero and there are no other 2nd type source/sinks. The concentration

vector co is for all the nodes in the domain, including the first-type boundary

nodes. The submatrices of M and K without the influence of first type bound-

ary nodes can be obtained by partitioning-out the rows and columns from M and

K corresponding to the first type boundary nodes. After partitioning, all the

entries of Ç are zero except contributions from first type boundary nodes.

Let Õ be the set of index values of all nodes, and ü1 C Õ be the subset of

index values of all first type nodes and T c Õ be the subset of all other nodes

that do not directly connect to nodes in ü1.

After partitioning, the zth entries of the right hand side vector fo can be written

AS

fro : - Ð lRrMotCt,¡ I Ko¡cr,¡ r À1R1M¿¡c1,¡
j€Vu

fs¿: - ÐlnnUotCq,j * K¿¡Cq,¡ * Àq5RqM¿¡Cq,j - À1R1qM¿¡C1,¡
j€vr¿
1_Á

-4M¿¡ls¡l q:2,3,4
ó
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fro: - D, lfurMo¡Cs,i I Kr¡Cs,¡ 1- Às6RrM¿¡Cr,¡ - À2R2lvI¿¡C2,¡
j€út,

- À3L3M¿¡cs,j - À1LaM¿¡ca,¡ - \! Mo¡lr¡)
q

fan: - llnuUtotCa,¡ I Ko¡Ca'lÀazRaM¿¡Ca,¡ - \56R5M¿¡C5,¡
j€úu

-4Mo,ru,lòoJ

where V1¿ denotes the subset of index values of first type boundary nodes which

are in the same element as node 'i, K¿j and M¿¡ are the elements of matrix K and

M at ¿th row and 7th column respectively.

The equations (4.28)-(4.31) can be written in a general form:

fø : - Ð [Ko¡co,¡ I M¿¡F(cr,)]
j€úu

P: \,2"'6

where F(Cr,¡) is a function of. Co,¡. The function takes different forms for different

species.

It follows that fo¿: 0, when i, e T , because the subset Ü1¿ is empty. The func-

lion F(Cr,i) can be easily determined from given boundary concentrations. if the

first type boundary conditions satisfy with equations (4.14)-(4.I7), the boundary

concentrations and F(Co,¡) can be determined based on equations (a.18)-(4.2I).

ÁItoL-f lll¡lJrçrltçlltr(lulull (Jl Ullç .la-I llulLl! ¡. çLl'tIUUI1JII IIIçtrll\-r\I

4.5.L Reduction of the transport equations

By applying the Arnoldi algorithm [Arnoldi, 1951; Woodbury et a\.,1990; Nour-

Omid et al., 1991; and Woodbury and Li, i998] to equations (4.24)-(4.27), the

(4.30)

(4 31)

(4.32)
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size of these equations can be reduced to a series of small ordinary differential

equations of the form

ArHwr f *, + À1-B1Hw1 - L-4lHVr : Br
ó

RqHv/q f wn f ÀqsÆrHw, - À1n.R1Hw1

q : 2,3,4

-R5Hw5 * *u + À56.R5Hw5 - À25Ê2Hw2 - À35,R3Hw3

-Àa5ÃaHw n -' -, Ó HY; : g¡
a

-R6Hw6 * wo * À67-R6Hw6 - À56Â5H *, - +Iryo 
: go

where H is a rn x rn upper Hessenberg matrix, m is the number of Arnoldi vectors

used which is much smaller than ri, and wp, go and yo are the reduced vector of

co, f, and uo respectively.

The Arnoldi reduction method uses orthogonal matrix transformations to re-

duce the equations (4.24)-(4.27) to a much smaller upper Hessenberg system of

first-order differential equation by approximating the solution of co with Qwo. Q,

a n x m matrix, consists of the first mth Arnoldi vectors which is created during

Arnoldi reduction process, The details of determination of the matrix Q and H

and the reduction procedures can be found in the work of Woodbury et at. llgg0],

and Nour-Omid et al lL997l and in Chapter 2. The criteria of monitoring and ter-

minating the unsymmetric Lanczos reduction process [Li et a\.,1999] can also be

applied to the Arnoldi reduction process. By using their criteria, the appropriate

number of Arnoldi vectors (rn) are selected.

Equations (4.33)-(4.36) are obtained based on the assumption of homogeneous

matrix blocks throughout the domain, namely D' and þ' are constants in the whole

8B

-+HYs:Eq

(4.33)

(4.34)

(4.35)

(4 36)



matrix domain, and Ho is constant for each species. This assumption makes the

system reduction relatively easy.

Equations (4.33)-(4.36) are solved by a suitable time integration algorithm

such as the Crank-Nicolson scheme. As H is an upper Hessenberg matrix and its

size is small, it can be easily decomposed into the product of an upper triangular

matrix and a lower bidiagonal matrix. Note that the Arnoldi method shows a great

advantage here in that only one process is required to reduce the entire multiple

equation system simultaneously. AIso, the solution to the reduced systems (4.33)-

(4.36) using a direct method is economic because the reduced system size is much

smaller than the original system. This also gives a large saving in storage required

by the reduction method. Therefore, solving of the reduced system is more efficient

than direct soÌving of the original equation system. The penalty with the time-

stepping procedure is not significant if rn K n. The original solution for any

desired time step or location can be retrieved from the reduced solution data in

future with very little computation effort.

It is easy to show that the entries of reduced mass exchange vector yo can be

computed with equaiion (3.57), even though that equation is for the unreduced

space mass-exchange rate calculation.

In w space (reduced space), the discretized equations for the matrix blocks

are stil the same as equation system (3.51):

n ^.,tk+r , ^. ^..',¿c+1 )lLIup,I -ï- lILUp,2 : uI

.r.ff], + þodfn*' + ywfi*I, : d,¿ 'i:2,3,...,n' - r

':,"\' 
: tl|'

P:7,2...6
Note the equations now correspond to the reduced space nodes and the first

type boundary concentrations at the fracture-matrix interface are equal to the
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reduced space soiutions of corresponding nodes in the fracture. Therefore the

solutions for the matrix blocks can be directly substituted into equation (3.57)

or reduced form (3.63) to compute the mass exchange rates in reduced space.

This is because that the current species concentration in the matrix block can

be written in a function of the species and its parent species concentration and

concentration history in the fracture. After reduction, the function is still the

same. This property affords additional efficiency in computing time and memory

storage for the Arnoldi reduction method. At each time step, the mass exchange

terms are computed in the reduced space which only requires to soÌve rn l-D

diffusion equations for each species. For original equation system @.2a)-@.27), n

l-D diffusion equations need to be solved to determine the mass exchange terms.

After the w space solutions are obtained, the concentration C'o,r at zth node

in the matrix, can be directly computed from the reduced spâce solutions for the

zth node by equation (3.64).

Note, it is not necessary to compute concentrations for all the nodes. Only

the concentrations at the desired locations and times are computed. For a matrix

block corresponding to a specific fracture node ,,/, various node concentrations can

be obtained by the dot product of Jth row of matrix Q and vector w!,;.

4.5.2 Choice of common starting vector for TCE transport

The choice of the starting vector is a very important factor influencing the con-

vergence and accuracy of the Arnoldi reduction method. For the multi-species

transport problem, a common starting vector must be chosen for all the equation

systems to minimize the residual errors. Lí et aI. [1999] showed that any vec-

tor parallel to the vectors fo (p: L,2,...,6) is a suitable starting vector for the

Arnoldi process in reducing the equation system (4.24)-(4.27). It is also required
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that all the right-hand side vectors fo must be parallel to each other. In most

cases these vectors are not parallel to each other. However, these vectors can be

partitioned into two parts, each of which is paraÌlel to each other. Two schemes

for choosing the common starting vector for most popular transient and constant

type Dirichlet boundary conditions are available. A detailed description of these

two schemes can be found Section 3.5.3.

The final reduced system is obtained by using a common starting vector K-1b

in the Arnoldi algorithm, where b is a constant vector. The reduced right hand

side vectors for both schemes are in the following form:

First scheme:

so: xt(Õo + rtF(cr))e,

P:1,2r...r6
Second scheme:

g(1) : X\t) Co",

stÐ : v\') rçco¡",

P:1,2r...r6
Note that the vector e1 is the first column of identity matrix (with dimension

m), Xt is the M-norm of K-1b, 4 is a constant, and F(C) is a function defined

in equation @.32).

The final solutions of the pth species at desired steps or locations are given by

co : Qwo for the first scheme. The concentration solutions for the second scheme

are obtained in the same way as for the first scheme. In the second scheme,

summation of the solutions for the two equations with different right hand sides

gives the final solution.
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Chapter 5

Verification of the Models

To verify the numerical formulae, the solutions of the proposed models are com-

pared to analytical solutions or solutions obtained by a different numerical mod-

els. The first example examines the Lanczos reduction method by simulating a

problem involving transient flow to a pumped weil fully penetrating a fractured,

confined aquifer. The second example investigates the application of the Arnoldi

reduction method to single species contaminant transport in parallel fractures.

The ihird and fourth examples show the accuracy and efficiency of the Arnoldi

method applied to three species decay chain and seven species biodegradation

transport problems, respectively. All the first four examples use the dual-porosity

model. The fifth example verifies the discrete fracture flow model by comparison

with the dual-porosity flow model. The last verification problem concerns single

species contaminant transport in discretely fractured porous media.

5.1 Dual-porosity flow

The first example shows a homogeneous, isotropic and infinite aquifer system with

a well at the center. The problem is identical to the Theis problem, except the

aquifer is a dual-porosity medium. The dual-porosity aquifer is considered to be
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a single horizontal fracture which is analogous to the aquifer-aquitard system.

The problem is geometrically symmetric, so only one quarter of the flow field is

simulated with ll4 of the original pumping rate. The dimension of the model is

set large enough so that the influence of the boundary cannot be reached in a

short time and can be considered of infinite extent. Values of various parameters

employed in the simulation are given in Table 5.1. Figure 5-1 shows the grid used.

The cross-section for this example is shown in Figure 5-2(a).

Parameter
Number of nodes
Number of elements
Dimension of aquifer r
Fracture Transmissivily 7,, Tu

Pumping rale, Q
Fracture storage coefficient, ,S

Hydraulic conductivity of matrix, K'
Specific storage of matrix, ,9j

Thickness of matrix block, 2o
Fracture aperture, 2b

Table 5.1: Values of various parameters for verification example 1

To obtain the numerical solution for the example, the fracture domain was

discretized into 980 triangular elements and 550 nodes. The grid size is about 0.1

m near the well and 300 m at the outside boundary. Figure 5-3 shows the com-

puted dimensionless drawdo\\¡n \¡ersus dimensionless time at r:48.3 m and 266.22

m compared to the analytical solutions. The analytical solutions are obtained

from the solutions of the classical problem of well flow in a confined aquifer-

aquitard system fHantush, 1964]. Note that the parallel fracture dual-porosity

model is analogous to the short-term response of the confined aquifer-aquitard

Value
550

980
2000 m
18.2 m2ld
250 m3 ld
0.002

0.0005 m/d
0.005 m-l
10m
0.01 m
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Figure 5-1 Finite element mesh for example
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1. Only one quarter of the total field is shown
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(a) Cross-section of parallel fracture model
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Figure 5-2 Cross-section of the two-dimensional flow in dual-porosity media
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2b:0.01 m Fracture

(B) Cross-section of spherical block model

Matrix Block
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Figure 5-4 Dimensionless fracture drawdown versus dimensionless time for the
dual-porosity blocky fracture model
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system which can be written as

s : (Q l rT)'H(u, B)

where s is the drawdown and 71 is the leaky well-function. By selecting an ap-

propriate B, the analytical solutions can be read from a column of the table of

function ?1(u, þ). From Figure 5-3 it can be seen that the results of Lanczos

reduction method agree very well with the analytical curves. For this extreme

example, in which the ratio between maximum and minimum grid size is 3000, it

is expected that more Lanczos vectors may be needed. However only 30 vectors

are required. For this small problem with 600 time steps, the reduction method

can still achieve about 75 To rcduction in time (1:4 in time) compared to the direct

solution method.

The same hydraulic parameters are applied to a blocky fracture model with the

exception that the prismatic matrix blocks are no\M replaced by spherical blocks

of 5 m radius (see Figure 5-2(b)). Computed dimensionless drawdowns at r:48.3

m and 266.22 m are plotted in Figure 5-4 against dimensionless time. The leakage

parameter B is used to identify the type curves. An analytical solution for the

problem of well flow in a spherical porous matrix fractured system is not available.

Therefore this solution is compared with the solution obtained by the traditional

finite element method, which had been verified by Huyakorn et al. [1983]. The

comparison indicates that both methods agree with each other very well. The

blocky model has less drawdown than the parallel fracture model for the same

parameters. This is due to the fact that the blocky fracture model has more

fracture space than the parallel fracture model in the same domain. The fracture

space determines the conductivity of the fractured aquifer system and the higher

conductivity causes less drawdown.

98



5.2 Single species contaminant transport

In order to verify the Arnoldi reduction method for contaminant transport in a

duaÌ-porosity medium, an example involving the transport of radionuclides in a

parallel-fracture system is investigated. Both longitudinal transport in the frac-

ture and transverse diffusion in the matrix block are examined and the results are

compared to analytical solutions. This example is also used to compute solutions

for the spherical block model.

In this example (see Figure 5-5), the numerical solution computed using the

Arnoldi reduction method is compared against the analytical solution developed

by Tang at al. [1981]. The input parameters describing the physical system are

given in Table 5.2. The boundary condition at the inflow end of the fracture (x:0)

is of the first type, with a constant concentration of 1.0. The two dimensional

transport region is 10.0 m in length and 1.0 m in width. The region length is suffi-

ciently long such that the concentration profiles do not reach the outflow boundary

for the purpose of comparison with the analytical solution, which assumes that

the medium is semi-infinite in length. The radionuclide source is located at r :0.
The node spacing is Ax:0.25 m for the first meter and 0.5 m for the rest of the

domain. A total of 104 triangular elements and 79 nodes are used in the plane of

fracture. Discretization in the matrix block is achieved by using 40 linear lD ele-

ments with a minimum 0.0012 m and maximum 0.12 m nodal spacing. A constant

time step size of 10 days is used.

Figure 5-6 compares the concentration profiles along the center of the fracture

obtained with the Arnoldi reduction method to the analytical results at 100, 1000

and 10,000 days, respectively. Excellent agreement is found between the analytical

and the numerical results. Note that for early time values the numerical solution

shifts slightly from the analytical solution. This can be improved by using more
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Figure 5-5 Physical system for verification problem 2.
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Figure 5-6 Comparison of the Arnoldi reduction method solution with
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100 days

46
Distance (m)

100



ço

E o.z
6)o
o
O

Distance from the source, x:1.5 m

Analytical solution
¡ Arnoldi solution

000 days

Figure 5-7 Concentration distributions in the matrix blocks, showing comparison
of the Arnoldi reduction method solution and analytical solution
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Figure 5-8 Concentration distributions in the fiacture by using spherical block
model for the verification example 2.
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Parameter
Fhacture aperture
Fracture spacing
Seepage velocity
Secondary porosity
Matrix block porosity
Longitudinal dispersivity
Fracture diffusion coefficient
Matrix diffusion coefficient
Solute decay coefficient
Retardation factors

Arnoldi vectors or reducing the time step. Note for this example oniy seven

Arnoldi vectors are required. The total solution time (from input data to output

data) of this problem for 1000 time steps is less than 1 second on a Pentium II
300 MHz personal computer. Of course, for this small l-D problem (which has

only 79 nodes) the Arnoldi reduction method cannot show its full advantage.

After the computation of the concentrations in the fracture, the concentration

distributions in the matrix blocks can be computed using the approach discussed

in Chapter 3. Figure 5-7 shows the numerical results together with the analytical

solutions ffrom Huyakorn et a|.,1981]. Both solutions are almost identical to each

other.

To show the transport behavior for the spherical block model, the same set

of parameters are applied to radionuclide transport in a blocky fractured system

except that now the parameter ¿ is the radius of the spherical block. The sphere

radius is chosen such that the surface-area-to-volume ratio is identical to that for

the prismatic slabs. The parallel fracture model of this example has a surface-

area-to-volume ratio of 0.833. Therefore 1.8 m is chosen (this equals 1.5 times

Value

Table 5.2: Parameter values for the verification example 2

2b:0.000|rn
2a:2.4m
u : 0.01rnld
d : 0.000042

ó' :0.01
d¡,:0.5m
D*:1.384 xI0-4m2f d
D':t.384xI0-7rn2f d
À:1.54x10-4d-1
R: Rt:l

r02



of the half-thickness of the slab) for the radius of the spherical block, which

ensures the ratio for ihe both models are the same. The computed concentration

distributions along the flow direction in the fracture are shown in Figure 5-8.

Due to the fact that no analytical solution for this problem can be found in

the literature, the numerical results cannot be directly compared with an exact

solution. Comparison of the numerical soiutions with the analytical solutions

for the parallel fracture model indicates that different matrix block geometries

will produce similar concentration distributions in the fracture as long as the

surface-area-to-volume ratio remains identical [Rasmuson, 1984; Sudicky, 1990].

The ARM for this problem achieves efficiency similar to the previous example. It

should be noted that the M matrix for transport equation in the spherical matrix

block is a function of ro5 (see equation 3.60). Therefore, one may need finer one-

dimensional discretization compared to the parallel fracture model to ensure the

convergence of the mass exchange terms.

5.3 Three species decay chain transport

This problem illustrates the transport of three species of radionuclides in porous

media. Since no analytical solutions to the decay chain transport with rock matrix

diffusion are available, an example with no diffusion into the rock matrix is intro-

duced. The effect of the diffusive loss into the rock matrix can be incorporated

by a straightf'orward extention of the present problem. However, in order to carry

out a direct comparison with the analytical solution for the system, it has been

omitted. Considering the previous example, it is clear that such an assumption

does not affect the verification of the whole model. This problem is equivalent to

a one-dimensional model for porous media with decay chain. The modeled region

can also be viewed as a single fracture with the plane of the fracture paraliel to
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the flow plane. A fracture geometry similar to the last example is used. The

fracture has unit width and is 20 m in length. Once again the radionuclide source

is located at the inflow end (x:0), which forms a first type boundary condition

with a transient concentration.

To obtain the numerical solution, the region is discretized into 210 triangular

elements with a nodal spacing of 0.25 m in the first two meters and 0.5 m for

the remainder. The total number of nodes is 153. The properties of the three

radionuclide members and the medium are given in the Table 5.3. For the purpose

of comparison, these data are selected to correspond to the data used in a previous

study on decay chain transport by Lee et aI. [1995]. The parent member has an

initial concentration of unity at the inlet source. The initial concentrations of the

second and third members equal to 0.0 meaning that the source concentrations

of all the three species at the inlet point are from the first member of the chain.

Decay or ingrowth of three species at the inlet source is governed by equation

(3.15) and its solution is given by (3.16).

Parameter
Decay chain
Source initial concentration

species (1)
species (2)
species (3)

FIow velocity
Longitudinal dispersivity
Transverse dispersivity
Solute decay coefficient

species (1)

species (2)
species (3)

Retardation factors

Value
(1) -+ (z) -+ (e)

Cfo :7'o
CFo : o'o
C¡Bo : o'o
u : l}.jmlAr
(IL:0.25m
ar : 0-0m

Àr : 0.0016
Àz:0-04620
À¡ : 0.000106
Rt: Rz: Es : 100

Table 5.3: Input data for three decay chain verification example
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Computed concentration profiles together with anaiytical solutions are de-

picted in Figure 5-9 for the time 100 years. Analytical solutions for this problem

can be found in the work by Lester et al [79751. It can be seen from Figure 5-9

that the Arnoldi reduction method yields results that are essentially identical to

analytical solutions, In order to test the efficiency of the numerical method, a

small time step size of 0.05 year and a large number of time steps are used. For

the simulation of 2000 time steps and 8 Arnoldi vectors used, the total solution

time is iess than 1 second. This exampie indicates that the ARM can effectively

solve the multi-species problem and the proposed schemes for choosing a multi-

ple component common starting vector can be used for the transient first type

boundary condition problem.

5.4 Seven species parallel and series reaction trans-
port

The purpose here is to demonstrate the accuracy and efficiency of the Arnoldi

reduction method as it applies to the transport of chlorinated solvents in dual-

porosity or porous media. To verify the proposed method, a problem involving

the transport of seven species, such as the transport of chlorinated solvent tetra-

chloroethylene (PCE) and its biodegradation products, along a two-dimensional

fracture is selected. Groundwater flow is uniform in the domain. Continuous

contaminant sources for all seven species, represented as first-type boundary con-

dition, are pÌaced at the upstream end of the aquifer. Since no analytical solutions

to this type of transport with rock matrix diffusion are available, an example with-

out diffusion into the rock matrix is introduced. The effects of the diffusive loss

into the rock matrix can be incorporated by a straightforward extention of the

present problem. However, in order to carry out a direct comparison with the
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analytical solution, this has been omitted. Because the application of the Arnoldi

reduction method to the radionuclides transport in dual-porosity has been veri-

fied in Section 5.2, i, is clear that such assumption does not affect the verification

of the whole model. The fracture can also be considered as a two-dimensional

aquifer system. The accuracy of the ARM for muiti-species contaminant trans-

port with parallel and series reaction is demonstrated by comparing reduction

method solutions with the one dimensional analytical solutions.

The biodegradation procedure of PCE can be described by a reaction net-

work that includes both serial and parallel reactions, which is the same as TCE

biodegradation as discussed in Chapter 4, except the reaction network has one

more parent species. Therefore, the model developed for the TCE transport can

be used to solve the PCE problem with a minor modification. In this case, PCE

will react to produce TCE. TCE can then react to simultaneously produce czs-

1,2-DCE, trans-L,2-DCE, and 1,l-DCE. Subsequently, DCE will react to produce

vinyl chloride (VC) and finally to ethene [Skeen et al., 1995; Jain and Criddle,

lee5l.

The fracture domain is rectangular, with a width equal to 0.4 m and a length

equal to 50 m in the direction of flow. The groundwater flow system is two-

dimensional with steady and uniform flow in one dimension only. In this way

the method can be tested against one-dimensional analytical solutions. To obtain

the numerical solution, the region is discretized into 400 triangular elements rvith

a nodal spacing of 1 m in length and 0.1 m in width, giving 255 nodes. The

patch pollution source is located at the inflow end (x:0), which forms a first

type boundary condition. A constant concentration of species 1 is set to one and

the daughter species are zero. Second-type boundary conditions of zero flux are

imposed along the remaining three sides of the domain. Groundwater flow velocity
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in the domain equals 0.4rr-ld. The longitudinal dispersivity, eL, is 10 m, and the

transverse dispersivity, dT, is zero. Molecuiar diffusion is also assumed to be zero.

A retardation factor R : 1 is used for all the species. Other properties of the

contaminants are given in Table 5.4. For the purpose of comparison, these data

are selected to correspond to the data used in a previous study for the analytical

solutions of a similar problem by Sun et al. ll999l. Note that the values of decay

coefficient and stoichiometric yield in the table do not reflect the real value of

PCE and its daughter products.

Parameter
Solute decay coefficient (d-r)

species (1)
species (2)
species (3)
species (4)
species (5)
species (6)
species (7)

Stoichiometric yield
species (t)+(Z)
species (Z)-+(:)
species (z)-+(+)
species (z)-+(s)
species (S)-+(0)
species (+)-+(6)
species (S)-+(0)
species (0)-+(Z)

Value

À:::0.2
Àz:Àzs lÀz¿,*Àzs:0.1
Àso : 0.02
À¿o : 0.02
Àso : 0.02
Àoz : 0.04
Àza : 0.006

(rz : 0.5
(zs : 0.3

ez+:0-2
(zs : 0.1
(so : 1.0

C¿o : 1'0
(so : 1.0
(oz : 1.0

Table 5.4: Parameters for Lhe 7 species transport verification problem

The stoichiometric yield factor ( in Table 5.4 describes the fraction of parent

component transforming into daughter component. The theoretical development

in this research does not consider the influence of this parameter. However it

can be easily incorporated into the model by substituting À with À x ( for each
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corresponding daughter species.

Numerical solutions for the problem are compared with the analytical solutions

provided by Sun [personal communication, see also Sun eú ol., 1999]. There are

no analytical solutions available for species six and seven. Figure 5-10 shows

concentration profiles computed by ihe Arnoldi reduction method compared to

analytical solutions for 40 days after the release of pollution. The concentration

distributions predicted by the Arnoldi method are identical to analytical solutions.

In order to get the numerical solutions for 40 days, a constant time step size of

two days is used for a total of 20 time steps. For this problem, only 10 Arnoldi

vectors are needed. The total CPU time for 20 time steps is iess than one second

using a Pentium 333 MHz personal computer. According to the report of Sun

et al. [1999], on a Pentium 100 MHz computer, the total solution time for the

first five species of this problem is 13 seconds using the analytical method and

112 seconds by using the RT3D model [Clement et a\.,1998]. Even for this small

problem, the Arnoldi reduction method has shown its efficiency.

5.5 Flow

The extension of Lanczos reduction method to the simulation of groundwater

flow in fractured porolrs media using a discrete fracture approach is verified by

comparison with the solutions of the dual-porosity approach. The dual-porosity

approach for the simulation of groundwater flow in fractured porous media was

discussed in previous sections and it has been verified.

The problem considered here consists of a two-dimensional cross-section do-

main with a single horizontal fracture distributed across the domain center. The

thickness of the layer is one meter and the domain has a length of 200 meters.

The fracture has a uniform aperture of 1 x 10-a m. Water was pumped from

1i0
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the center of the fracture with a constant pumping rate of 0.1 mS/d (see Figure

5-1i). The two ends of the fracture in the domain are considered as constant

head boundaries. Values of various parameters used in the simulation are given

in Table 5.5. The hydraulic conductivity of the fracture can be calculated based

on equation (3.8) using the given parameters in table 5.5.

Parameter
Matrix transmissivify T!, T{
Matrix storage coefficient, S'
Fracture specific storage, ,S"

Thickness of the flow system, l1
Fluid density, p

Fluid viscosity, p
Gravity constant, g

Table 5.5: Parameter values for the discrete fracture flow verification problem

The domain was discretized into 80 rectangular elements and 105 nodes. A

uniform nodal spacing of 10 and 0.25 m was used in the horizontal and vertical

directions respectively. The one-dimensional linear elements for the fracture have

a constant length of 10 m with total 20 elements. In the simulation, a constant

time step size of 0.1 day was used for a total of 100 time steps. Convergence

tolerance used in ihe PCG solver equaled 1 x 10-8. A total 75 Lanczos vectors

were used for the simulation. The computed hydraulic head distribution at time

^^.--^l¿- 1n -]^--^:^^l-- -, : n:, - r1ô Tr:- I rl r rl r'' ñcr{u¿1r r,u ru ua,yr l¡j ¡jlluwrl ril rrgul.e ¿-r¿. rt, ls cIe¿¿I rlÌar tlte rtactule tlillueltces

the head distribution significantly.

The same problem is solved by a one-dimensional dual-porosity model. Figure

5-13 shows the comparison of hydraulic head solutions along the fracture at the

end of the 10th day by both the dual-porosity and discrete fracture models using

the LRM. The agreement between the solutions of the two methods is quite good,
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0.0001
0.05

0.0002 m-l
1m
1000 kg/m3
86.4 kg/m.d
7.3223 x 1010 mld2
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despite the fact that both models have different assumptions.

5.6 Single species contaminant transport in dis-

A problem involving solute transport through a single fracture (or a system com-

prised of closely spaced and parallel fractures) was selected to verify the applica-

tion of the Arnoldi reduction method to discrete fracture approach. The analytical

solution for this problem is provided by Sudicky and Frind [1982].

The input parameters and values for the problem are shown in Table 5.6. In

order to compare with the exact analytical solution, the groundwater velocity in

the matrix is set equal to 0. Movement of contaminant into the matrix biocks is

governed solely by molecular diffusion. The domain is 200 m long in the x-direction

and 0.1 m in the z direction. A uniform nodal spacing of 10 and 0.025 m v/as

applied in the x- and z-directions respectively. Using this discretization scheme,

a total of 105 nodes and 80 rectangular elements are formed. The discretized

nodes include 21 fracture nodes which are connected by 20 one-dimensional linear

elements for the fracture. A constant concentration of 1.0 was specified at the

upstream end of the fracture. The problem with the same data set has been

solved for verifications of different numerical methods [Sudicky 1989; Sudicky and

Mclaren].

The second scheme which requires two Arnoldi processes is used to solve the

problem. A constant time step of 100 days is applied. To reach 20,000 days, 200

time steps are required. A total of 15 Arnoldi vectors are used in both Arnoldi

processes. Concentration distributions in the fracture for times equal to 10,000

and 20,000 days are compared to the analytical solutions in Figure 5-14. Good

agreement between the analytical and Arnoldi method results can be seen, despite
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Parameter
velocity in fracture (rn/d) 0.1
Fracture longitudinal dispersivity (m) 0.1
Fracture aperture (m) 1.0x 10-a
Fracture separation (m) 0.1
Fracture diffusion coefficient ^,ld 1.38x10-a
Matrix porosity 0.01
Matrix dispersivity 0.0

Table 5.6: Parameter values for the discrete fracture transport verification problem

the fact that the numerical solution was obtained by using relatively coarse spatial

and time discretizations. For the 20,000 day solution, the numerical results show a

slight fluctuation for the part a little far away from the comtaminant source. This

circumstance can be eliminated by using more Arnoldi vectors for the solution. It
is interesting to note that the probiem has a Peclet number of 100 in the direction

of flow along the axis of the fracture. If one solves this problem directly based on

the original conductivity matrix K, for each Arnoldi reduction solution step more

than 200 iterations are required to achieve the 1 x 10-8 convergence criterion. It
is difficult to get a convergence solution for this problem due to the large Peclet

number. By using the "shift" technique, the problem can be successfully solved

(see Chapter 3). After application of a shift factor of 0.002 to the problem, each

step in the reduction process requires only L2 iterations on average. The total

CPU time for 200 time steps on a Pentium II 333 MHz PC is less than 1 second.

The result indicates that the K matrix with a little "shift" can not only greatly

enhance the iterative convergence speed in the ORTHOMIN solution process, but

also improve its capacity for problems with large Peclet number.

Matrix diffusion coefficient ^'ldSolute decay coefficient, d-1
Fracture and matrix Retardation factor 1.0

Value

1.38 x 10-5
L.5377x70-a
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Chapter 6

Illustrative Examples

Six illustrative generic examples concerning groundwater flow and multi-species

contaminant transport in dual-porosity media and discretely fractured media are

presented in this chapter. The first problem involves application of the LRM to the

modeling of groundwater flow in a dual-porosity aquifer with multiple wells. The

second and third examples show the ARM for the simulation of three species decay

chain transport and 6 species TCE transport in dual-porosity media, respectively.

The fourth example investigates the application of LRM to the discrete fracture

flow problem and the last two examples show the application of ARM to 8 species

decay chain and 7 species biodegradation transport in discretely fractured media

respectively.

6.1 Groundwater flow in dual-porosity aquifer

In order to investigate the efficiency and robustness of the Lanczos method for

multiple well system with different time history, a relatively large confined dual-

porosity aquifer problem has been solved. Figure 6-1 shows the synthetic aquifer

system. The selected domain is a dual-porosity version of the example given in

the work of Townley and Wilson [1980]. The example is chosen to include sev-
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eral of the commonly occurring complexities in groundwater analysis. It includes

Dirichlet boundary conditions and two groups of time-dependent sources with dif-

ferent pumping histories. The fractured rock aquifer system is heterogeneous and

anisotropic with respect to the fracture transmissivity. The model parameters are

given in Table 6.1.

Parameter
Dimension of aquifer
Fracture Transmissivily T*, Tn

area 1

area 2
Pumping rate,

qr: (1 > i>0 day)
(2 > t>l days)
(t > 2 days)

qz: (l > t>0 day)
qe: (1 > t>0 day)

Qz,Qs'.(t>ldays)
Fracture storage coeffi.cient, ,9

Hydraulic conductivity of matrix, K'
Specific storage of matrix, ,9j

Thickness of matrix block,2a
Fracture aperture, 2b

Total thickness of the aquifer

Value
2000 m

10, 10 ^'ld100, 30 ^'ld
150 m3/d
100 m3/d
0

100 m3/d
250 m3/d
0

0.002
0.0005 m/d
0.005 m-1
5.0 m
0.01 m
20.04 m

To obtain the numerical solution for the problem, the flow domain was dis-

cretized into 10,085 trianguiar elements and 5,L20 nodes. The elements have a

size of 10 m near the pumping wells and 100 m in the boundary area. The initial

hydraulic head in the fractures is 60 m. A fully penetrating river flows through

the area and it is considered to be a first type boundary with a constant head

of 60 m. Three pumping wells with different pumping rate are distributed in the

area (see Figure 6-1). Well 2 and 3 have the same time-dependent pumping his-
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tories, so the three wells and constant heads can be grouped into two groups of

iime-dependent boundary conditions for the Lanczos method.

Table 6.2 shows the comparison of performance behavior of the Lanczos and

direct solution methods. The maximum error, which is defined as the maximum

difference between the two solution methods at each time level, is expected to

occur at one of the pumping wells. The root-mean-square (RMS) in the table is

computed based on the drawdown data at the three wells for all 3,000 time steps.

The maximum computed drawdown difference between the two methods is 0.039

m and occurs at weil 3 at the first time step. The results of the comparison are very

encouraging. For the case of 3,000 time steps and 80 Lanczos vectors used, the

Lanczos method is approximately 18 times faster than the direct solution method

and the å,ccuracy is almost the same. Even higher efficiency can be achieved if

the problem requires more time steps. In addition, if the wells have the same

pumping history, only one Lanczos process is needed. The solution time for this

problem is still reduced by about 45To compared to the solution time for the

original problem which requires two Lanczos processes. The Lanczos method also

shows great saving in computer memory. Through the operating system, It was

found that the peak computer memory requirement of Lanczos method for this

example is about 60% of the memory requirement for solving the original system.

The number of Lanczos vectors determines the accuracy of the method. The

maximum error always occurs in the first several time steps or the moment of

pumping rate change at a particular well. Figure 6-2 shows maximum errors

in the first 10 time steps compared to the number of Lanczos vectors for both

homogeneous and heterogeneous situations. For a problem of homogeneous and

isotropic hydraulic properties and simple boundary conditions, less Lanczos vec-

tors may be required. Figure 6-2 indicates that if the domain is homogeneous, less
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Items
Time step size
Time step number
Equation matrix size

Total solution time
Maximum drawdown

between the two
(in percentage)

RSM error

Table 6.2: Comparison between the Lanczos and direct solution method, a Pen-
tium II 333 MHz CPU with 128M memory personal computer was used for the
simulation.

(., -)

difference
methods

Lanczos vectors are needed to achieve a similar accuracy. In addition, if the heads

of the first several time steps are not important for a problem, one can use less

Lanczos vectors. For the example, less than 1% drawdown difference (or 0.018 m)

will occur by using only 60 vectors after 10 time steps, or 7To for 40 vectors. The

time needed to solve the problem is 3 minutes, 32 seconds using 40 vectors and 4

minutes, 20 seconds using 60 vectors.

In order to show the influence of domain discretization on the number of Lanc-

zos vectors, a different discretization scheme was used. The example domain was

discretized into 28,514 triangular elements and L4,456 nodes without a refinement

near the pumping wells. The new equation system has about 3 times the nodes

as the first scheme. However, it requires even less Lanczos vectors to achieve the

similar accuracy as the first scheme (see Figure 6-3). Using 60 vectors, a maximum

error of 0.074 m and RSM of 2.L6 x 10-3 m is reached. The total solution time for

3000 time steps is about 6.7 minutes. This result indicates that the discretization

scheme is one of the most important factors in determining the number of Lanczos

vectors required.

Directsolution Lanczos
0.001 day
3000
n:5120
92 min 34 sec

0.001 day
3000
m:80
5 min 12 sec

0.039 m
1.9 %
7.74x10-a m
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6.2 Decay chain transport in dual-porosity me-
dia

In order to investigate the efficiency and robustness of the proposed approach,

the Arnoldi technique is applied to a three species decay chain transport problem

which is loosely based on the McClean Lake project in Saskatchewan as shown on

Figure 6-4. At the center of study area is a pit which is proposed to accommodate

the disposal of uranium tailings generated from several ore bodies. Surrounding

the pit is a three meter buffer zone. Because the pit has a funnel shape, the

simulated pollution source is smaller than the pit shown on Figure 6-4. Solute

transport analyses are required to predict the long term environmental loadings

from the tailings. In this example, the computed concentration field is compared to

the results computed from a Crank-Nicolson (CN) scheme using a direct solution

method. For comparison purposes, two definitions [Woodbury, et al. 1990] are

used: the maximum error and root-mean-square(RMS) error.

The main radioactive component in the tailings is radium-226. All of the de-

cay products of 226 po and their half-life are given as: 226 po r600y' zzz ¡7.n 
3ßdry

218 po 3-ry zu pU 27'ry n+ gn 2\ zr+ po 0.16sÍc 2ro pb zzs\ zto g¿ sd"y zto po t?!S

zoap6. Compared with radium-226 and lead-210, ali other components have rela-

tively short half-lives. If the influence of mass Ìoss due to any physical or chemical

processes is neglected for all other species, the decay chain may be simplified

as226Ra -+ 210Pb -+ 206Pb, which will predict the worst case of decay of final

products. Lead-206, the last element on the list, is not radioactive.

The steady-state groundwater flow in the area is simulated by a two-dimensional

single-porosity model. For the steady-state flow, the dual-porosity properties do

not affect the groundwater flow behavior. This is because at steady-state there is

no fluid exchange between the matrix blocks and fractures. Therefore, the single-
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porosity model can be used for the simulation. The average velocities for both

the buffer zone and outside zone given by the flow problem solution are used as

input data for the three-species decay chain transport problem.

Figure 6-5 shows the finite element grid used for the transport model; a total

of 9,308 nodes and triangular 18,094 elements are used. A partial refinement is

made near the contaminant source area. A five year time step size is used for

the simulation. All the grid Peclet numbers are less than 2. Boundary conditions

for the transport model are also shown on Figure 6-5. The contaminant sources

are introduced instantaneously at time zero in the pit. The initial concentration

within the pit is normalized to one for 226 Ra and zero f.or 210 Pb and206 Pb. Note the

decaying source concentrations satisfy the Bateman equation and their solutions

are given by equation (3.16). The fracture longitudinal dispersivity is set to 10

m and transverse dispersivity is 1.0 m. The molecuiar diffusion coefficient in the

fracture is set at 2.2075 x 10-3 ^'lyt for all the three species. Due to lack of field

data, retardation factors in the fractures are assumed to be the same for all the

three species. The fracture density in the area is about 30.4 fractures/l0 m. Based

on this information, the thickness of the parallel slab used in the dual-porosity

model can be determined. AII the parameters for this example are given in Table

6.3.

The concentration distribution of the three species, after various time peri-

ods, are shown in Figure 6-6, Figure 6-7 and Figure 6-8. Figure 6-9 shor¡s the

breakthrough curves for a point (x:387.01 m, y:381.77 m) between the pit and

Fox Lake. The spreading patterns of these three species are similar and have a

physically reasonable concentration distribution. In the period of 10,000 years,

most of the radioactive materials will decay to lead-206, which is not a radioac-

tive material. This is because the half-life times of both parent species are much
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Parameter
Fracture aperture
Fracture spacing
Seepage velocity

Buffer zone
Other area

Secondary porosity
Matrix block porosity
Dispersivity
Fracture diffusion coefficient
Matrix diffusion coefficient
Source initial concentration

226 po
210 pb
zoa p6

Solute decay coefficient
226 po
2t0 p6
206 Pb

Retardation factors
In fracture
In matrix block

Value
2b:0.00007m
2a:0.35rn

u :2.}mlar
u :20.0mlar
Ó:0.0002
ó' :0.02
At : 10.0m, dr : L.Qm

D* :2.2075 x l0-3m2 f yr
D' :2.2075 x l0-am2 f yr

CtBo : 1'o
CFo : o'o
Cfo: o'o

Àr : 0.0004332
Àz : 0.0315
Às : 0.0

Rt : Rz : Rs: 349.33

Table 6.3: Parameter values for the decay chain transport in dual-porosity media
case study problem

less than 10,000 years. The speed of transformation from226Ra b 210pb is much

slower than that from210Pbto206Pb. This behavior results from the hatf-life of
226 Ra being much longer than that of 210 pb.

The execution time required for the solution of the three species decay-chain

transport problem for 2,000 time steps is about 5.12 minutes by using two Arnoldi

processes (using scheme two for a starting vector), and about 3.53 minutes by

using single Arnoldi process (using scheme one for starting vector with an average

4 value) on a Pentium II 350 MHz personal computer. Sixty Arnoldi vectors

were used for the solution. The traditional direct solution method on the same
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Figure 6-9 Breakthrough curves of the three species predicted by the Arnoldi method at the
location x:387.0 lm, y:381.77m
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computer requires about 5.4 hours. The original equation system has a bandwidth

of 142. For this problem, the Arnoldi method needs only about I.I% of the

execution time of the classic Crank-Nicolson solver. For problems with more time

steps, even higher efficiency in execution time can be reached. Table 6.4 lists error

comparisons with respect to the solution by the traditional method. The table

shows that the RMS error is of the order of 10-a and the maximum error is of

the order of 10-3. Even though the third species has relatively high maximum

errors) the maximum error in percentage is less than 3% (the percentage error is

defined by dividing maximum error by the concentration of that point). These

data indicate that 60 vectors is enough to produce good approximations to the

solution by the classic method. Note, however, that the percentage of Arnoldi

vectors to the total number of nodes is different in each case. Therefore even for

extremely large grids in three dimensions only a small number of vectors will be

required to solve a problem [Woodbury et a|.,1990].

Through the Task Manager of Windows NT"M system, it is found that the

peak memory requirement to solve this problem by the Arnoldi method is about

25% of the peak memory requirement of the direct solution method. A personal

computer with 64 MB memory can be used to solve this problem by the Arnoldi

method without extensive use of virtual memory. The great saving in computer

memory makes it possible to use a personal computer to solve large contaminant

transport problems. It is interesting to note for more species only very little

additional memory and computing time are required. This is due to the fact that

for each additional species, the additional required storage space and computing

time are for storing and solving an additional reduced equation system, which is

much smaller compared to the original system. An estimation is made for this

example that for each additional species, less than 0.5 MB additional memory and
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Time
One Arnoldi Process:
RMS error

500 years

3000 years

5000 years
10000 years

Maximum error
Maximum error in Percentage
Two Arnoldi Process:
RMS error

500 years

3000 years
5000 years

10000 years

Maximum error
Maximum error in Percentage

266 Ra 210 pb 206 pb

0.139E-2
0.2108-2
0.t26F'-2
0.2388-3
0.203E-1
6.0Y

Table 6.4: RMS errors and maximum errors of the Arnoldi method with respect
to classic CN solver

0.356E-3 0.208E-3
0.955E-3 0.389E-2
0.47083 0.4378-2

0.346î-2 0.229E-1
8.3% 2.8%

0.2578-3 0.129E-3
0.90683 0.376F'-2
0.468E-3 0.4258-2
0.663E-4 0.3988-2
0.345E-2 0.221F-L
8.2% 2.7%

Iess than 1 minute additional solution time are required. It is estimated that a 50

species contaminant transport problem with 10,000 nodes can be solved on a 96

MB PC computer by using the Arnoidi reduction method.

0.rr4B-2
0.206E-2
0.t258-2
0.238E-3
0.1518-1
4.5%

6.3 TCE transport in dual-porosity media

This problem involves the transport of TCE and its degradation products from

three point pollution sources in a dual-porosity aquifer. The presence of volatile

organic compounds, including TCE, were identified in well water samples from an

industrial site in Manitoba. The industrial site has been in operation for approxi-

mately 30 years and used chlorinated solvents TCE and TCA as a metal cleaning

fluid. The regional groundwater system, pollution sources and modeling domain

are shown in Figure 6-10 [Song and Woodbury, 1998]. It must be emphasized
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that only a semi-quantitative analysis of the case study is possible at this time,

and this simulation is intended to show the generic modeling capabilities of the

proposed method, Consequently, a detailed calibration to observed data is not

possible at this site.

The major aquifer underlying the site is a fractured carbonate aquifer which is

confined by glacial drift. The fractures observed in drill core are mainly horizonal

to sub-horizontal. Discrete packer sampling from boreholes indicates that the

concentrations of contaminants are distributed in layers. Therefore, the aquifer

system can be regarded as a typical dual-porosity medium. Also based on the

packer sampling results, it is assumed that the matrix slab has a thickness of

2a : 70 m and the fractures have a constant aperture of 2b : b x 10-a m, which

gives a secondary porosity of 5 x 10-5. According to the regional groundwater flow

condition (Figure 6-10), boundary conditions for groundwater flow are constant

head on the east and west sides of the domain, and no-flow boundaries on the north

and south sides, resulting in fluid flow from west to east with an approximately

uniform velocity. The average flow velocity of 1.0 m/d in the W-E direction and

0.1m/d in the N-S direction are applied to the simulation. The study domain

covers a range of 3,200 m by 2,000 m and the Galerkin finite element method,

is used to discretize the problem, with uniform linear triangular elements. The

maximum nodal spacing is about 20 m and is decreased to about 10 m near the

contaminant source areas. Discretization of the fracture domain results in 20,g81

nodes and 47,440 elements. Each one-dimensional matrix block is discretized into

55 nodes. Using this discretization scheme, a total of bb x 20, gg1 x 6 : 6,g23,TJ1

unknowns are needed to be solved at each time step. A constant time step size of

10 days is used for ail transport simulations. The simulation is terminated at 30

years with a total of 1,095 time steps.
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Transforming
TCE-+ cis-1,2 DCE (À12)

TCE-+ tran-L,2 DCtr (Àr2)
TCE-+ 1,1 DCE (À13)

cis 1,2-DCE-+ VC (À25)

tran 1,2-DCE-+ VC (À35)

1,l-DCE-+ VC (À4b)

VC-+ Ethene (À56)

Ethene-+ (À67)

Chlorinated solvents undergo chemical reactions with half-lives ranging from

several days to years. Table 6.5 lists typical half-life data [Woodbury and Li, 19g8]

which are used in the simulations. A constant retardation factor of 1.0 is applied

to all six species. The pollution sources in the fractured medium are treated as

the internal Dirichlet conditions in which the concentrations are prescribed as

constant values. The concentrations of TCE at the three point sources are set to

120,000, 20,000 and 15,000 ppb respectively, and the degradation species, DCEs,

VC and ethene are set to zero for all time. Other parameter values used in the

simulation are iisted in Table 6.6 [Song and Woodbury, 1g98].

Table 6.5: Half-life of TCE and its biodegradation products

Haif-life
200 days
300 days
300 days
140 days
20 days
70 days
1 year
10 years

Parameter
Porosity of the matrix blocks
Secondary porosity
Fracture diffusion coefficient
Matrix diffusion coefficient
Longitudinal dispersivity
Transverse dispersivity

Table 6.6: Parameters for TCE transport in dual-porosity media

The concentration distributions in the fracture for the first species (TCE)

and sixth species (ethene) at the time of 30 year are shown on Figure 6-11. Also
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0.01
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shown on Figure 6-11(a) is the measured 1.0 ppb TCE plume after about 30 years.

Unfortunately these were the only data available for comparison. In addition, no

measurements of biodegradation products are available for analysis. Nevertheless,

it is felt that the numerical scheme could be used at a site where such data is

available and are looking forward to incorporating the model in a well documented

area. TCE has a smaller contamination plume size compared to the plume size of

ethene. This is due to the fact that the ethene has a longer half-life than TCE.

The other four species have similar plume shapes but different sizes. Figure 6-12

shows the concentration distribution of species six in the matrix medium (3.0 m

away from fracture). It is clear that the concentration decreases rapidly into the

porous matrix.

In this example, 200 Arnoldi vectors are used. The number of Arnoldi vectors

is one of the most important parameters determining the accuracy and efficiency

of the Arnoldi reduction method. Based on the convergence criteria, the number

of Arnoldi vectors can be determined during the process. In addition, the problem

has been tested with 250 Arnoldi vectors and found almost the same results as

the 200 vector solution case. It is interesting to note that the number of Arnoldi

vectors required for a problem is dramatically reduced if the simulation domain

is discretized into a homogeneous grid size.

Due to the large number of degrees of freedom of the original equation sys-

tems, it is difficult to compare solution times for a classic time marching solution

of (a.2a)-(4.27) to that of the Arnoldi method for (4.33)-(4.36). However, the

computation loads for the example for both the Arnoldi method and traditional

method with Crank-Nicolson scheme can be qualitatively estimated. Table 6.7

shows the comparison of computational effort for the different methods. It is

clear that the Arnoldi method is more efficient than classic time marching.

140



Traditional method
o Solve the original equation system
of size 20981 x n6 lor 1095 x 6 times.

. Solve the equation system for matrix
block of size 55 x 3 for
20981 x1095x6times.

Table 6.7: The computation work need to be done for both the Arnoldi and
traditional methods for the example, n6 is full band width of the original equation
system. (t) fne Arnoldi process requires (as a principal computation overhead)
approximately m (:200)forward solutions of original equation system. (2) The
reduction method needs a little additional computation effort to transform the
reduced space solution to original solution at any desired time step or location.

For this problem, the total solution time for 1095 time steps is about 23.4

minutes on a Pentium II 350 MHz personal computer. Note that the total time

for the solution procedure is dominated by the reduction process. If the reduction

process is performed by a more efficient numerical solution method, such as OR-

THORMIN iterative solver fVinsome, 1976], even higher efficiency can be reached

by the reduction method.

Arnoldi reduction method
o Solve the original equation
system of size 20981 x n6 for
200 times(l).
o Solve the reduced equation
system of size 200 x 200

for1095x6times(2).
. Solve the equation system for
matrix block of size 55 x 3 for
200x1095x6times.

6.4 Flow in discretely fractured media

Groundwater transient flow in a two-dimensional saturated porous matrix con-

taining a randomly distributed and fully penetrated fracture network is used to

demonstrate the efficiency and accuracy of the discrete fracture flow model. A

comparison is made with the classic Crank-Nicolson method using a PCG solver.

The domain is 200 m in length and 100 m in width with a constant thickness of 10
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m (see Figure 6-13). The fractures are generated randomly in the two-dimensional

plane. The fractures can be distributed in any direction. Consistent with Sudicky

and Mclaren [1992], in this study two orthogonal sets of fractures are used, one

set being parallel to the x direction and the other parallel to the y direction. The

fractures have a constant aperture equal to 3.0 x 10-5 m. Two pumping wells

are located inside the domain. The first at x:139.89 m, y:77 m has a constant

pumping rate of 200 m3 fy, and the second at x:62.68, V:48.17 m has a constant

pumping rate of 150 m3/y.

The transmissivity and storage coefficient for the matrix blocks are 3.1536 x 10-2

^' ly and 0.03, respectively. The fractures have a specific storage of 0.001 m-1.

Their conductivity can be computed by equation (3.8) using the constants given

in Table 5.5. The boundary conditions for the problem consist of a specified hy-

draulic head equal to 10 m along the right-hand boundary and the lower half part

of the left-hand side boundary (y:Q-50 -).
The program PRtrFRAC [Sudicky and Mclaren, 1998] is used for the domain

discretization. The generated mesh contains a total of 127,408 nodes, includ-

ing 404 first type boundary nodes. The fractured porous medium is represented

by 120,690 rectangular elements, I0,445 horizontal fracture elements, and 10,140

vertical fracture elements. The convergence criterion used in the PCG iteration

solver is 1 x 10-8 m for both classic time-marching sotution and Lanczos reduction

process. For the reduction method, a shift factor equal to 30.0 is used. Figure

6-13(a) and (b) show the solutions of hydraulic head distribution in the domain

after 3-year pumping using Lanczos method and PCG method, respectively. The

comparison indicated that both methods yield nearly identical results.

The total CPU time for 3000 time steps using the classic method is about

5.93 hours, and the Lanczos method is about 0.95 hours on a Pentium II 350
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MHz personal computer. A total of 500 Lanczos vectors are required for this

problem. The classic method requires an average of 32 iterations for each solution

step. In the reduction process only about seven iterations are required for each

recursion step when the "shift" technique is applied. It is interesting to note that

solving the problem for 30,000 time steps using the Lanczos method requires only

about 50 seconds more time compared to solving 3000 time steps. However, for a

traditional time-marching method the solution time for 30,000 time steps can be

10 times the solution time for 3000 time steps. Therefore, the reduction method

is extremely efficient for large scale and long time simulations.

6.5 Decay chain transport in a cornplex fracture
network

The transient migration of an eight component decay chain transport in a two-

dimensional saturated porous matrix containing a complex fracture network is

used to demonstrate the performance of ARM for the simulation of decay chain

problems using the discrete fracture approach. A comparison with the Laplace

Transform Galerkin (LTG) method described by Sudicky [1989] is made. Imple-

mentation of the LTG method using the commercial software FRACTRAN can

only handle single species problems. Therefore the comparison for both efficiency

and accuracy is limited to the first species.

The geometry of the problem is a rectangular cross section of length 200 m

with a thickness of 30 m. The radioactive pollution source is located on the left

top (x:15-30 m, y:27-30 m) of the cross section. The physical properties of the

waste zone, porous matrix and fracture are given in Table 6-8. The conductivity of

fractures can be computed based on equation (3.8) using the values of fluid density,

viscosity and gravity constant presented in Table 5.5. The fracture distribution
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is shown in Figure 6-14. The fracture distributions are idealized horizontally and

vertically. Densities of horizontal and vertical fracture decrease with the depth.

AIi the fractures have a constant aperture of b.0 x 10-5m.

Parameter
Hydraulic conductivity, m
Porosity
Longitudinal dispersity, m
Transverse dispersivity, m
Diffusion coefficient, 

^' lyRetardation factor for all species 1.0

Table 6.8: Physical properties of 8 species decay chain transport in discrete frac-
ture media

The main radioactive component in the pollution source is considered to

be radium-226. The decay products of 226 Ra and their half-lives are given as:

226Rar!$ zzzpn3:9 2r8po3'-"g zt+p62$ zt+gn2S zt+po 0:1qry" znp6 zzai

210 B'¿ 
5d"1 zro p o 

1?!S zoa pb. Half-life times of the radionuclides are greatly differ-

ent from species to species. Due to the extremeiy short hatf-life time of Polonium-

218 and Polonium-214, these two components are neglected in the simulation.

This study focuses on the other eight species of the decay chain.

The flow velocities for both matrix blocks and fractures are determined by

solving the steady state flow problem of the domain. All sides of the domain

represent constant head boundaries except the bottom which is an impermeable

boundary. The teft and right side have a constant hydraulic head of 31 m and

30 m, respectively. Along the top, the head decreases linearly from 31 m on the

left to 30 m on the right. These boundary conditions cause ground.water to move

through the domain primarily in the horizontal direction from left to right. The

waste zone represents a contaminant source with a unity concentration for the

first componenl (226 Ra) and 0.0 concentration for all other species at all the time.
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The domain was discretized into L20,701 nodes with 120,000 rectangular el-

ements representing the porous matrix, 4,430 horizontal fracture elements and

10,350 vertical fracture elements. With this discretization scheme, the waste zone

contains 961 constant concentrations nodes. The convergence criterion used in

ORTHOMIN for the Arnoldi reduction process equals 1 x 10-8. A constant time

stepping with a size of 1 year was used to march the solution to 1000 years for

the ARM solution. A shift factor of 0.4 is used.

The same data set were applied to the LTG method. Figure 6-14(a) and

(b) shows the concentration solutions for the first species (226Ra) of the decay

chain by ARM and LTG method, respectively. Comparison of the two computed

concentrations indicates that the both methods yield nearly identical results. For

this problem the LTG method requires 2i ORTHOMIN iterations on average for

each of the 11 p space solutions. The solution for each Arnoldi vector in the

reduction process requires about 5 ORTHOMIN iterations. A total of 71 Arnoldi

vectors are required for this problem. The size of the reduced equation is only

L11700 of the original equation system. For the solution of t:1000 years, the total

CPU time for single species using the LTG method is 4.72 minutes on a Pentium

II 350 personal computer. The total CPU time for 8 species using the ARM is

4.63 minutes on the same computer. Solving all the 8 species with 30,000 time

steps using ihe ARM for this problem ( 30,000-year simulation) requires about

17 minute CPU time. The simulation results indicate that the ARM is extremely

efficient for large problems and long time simulation.

Figure 6-15, 6-16 and 6-17 show the concentration distribution of species 2

(""Rn),5 (210Pb) and 8 ('ouPb), respectively. The rapid advance of the plume

front in the fractures and the smoothing effect of diffusion in the matrix are quite

apparent for all the species. All the 8 species have similar pollution plume pat-
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tern. However their concentration values are tremendously different from species

to species. This is due to the large difference of half-life times for the differ-

ent species. The 8th species Pb-206 is a stable component and does not decay

to other materials. Due to this fact, the species has the highest concentration

plume compared to other daughter products. The zone of its peak concentration

has shifted to approximately 20 m down gradient from the waste zone after 1000

years. The problem has been tested with different hydraulic conductivities and

diffusion coefficients for the matrix block. The results indicate that these two

parameters control the regularity of concentration distributions. Detailed discus-

sion of factors controlling concentration distribution can be found in the work of

Harrison eú ø1. [1992]. From this example, it can be concluded that the decay

chain transport is not only controlled by advection, dispersion and diffusion but

also greatly influenced by the half-lives of the chain components.

6.6 Seven species PCE transport in discretely
fractured aquitard with an underlying aquifer

This example deals with the transport of PCE and its biodegradation products

in a two-dimensional cross section comprised of a low-permeability clay aquitard

overlying a sandy aquifer. A similar aquitard-aquifer system has been used in

many examples for demonstration of different discrete fracture models fSudicky

and Mclaren, 1992, Harrison, 1992; Therrien and Sudicky, 1996]. Surficial clayey

deposits overlying sand, gravel and bedrock aquifers are common aquifer-aquitard

systems. Because of the their 1ow permeability, many clayey deposits are used for

waste burial. The clayey layer may protect the underlying aquifers from conta-

mination. The amount of aquifer protection depends on the thickness, hydraulic

gradient, and diffusion properties of the aquitard, as well as the distribution and
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the hydraulic properties of any fractures that may exist in the aquitard.

In this example, the top clay aquitard has a thickness of 10 m and the un-

derlying sandy aquifer has a thickness also equal to 10 m (see Figure 6-18). The

aquitard contains randomly distributed vertical and horizontal fractures. The

downward migration of contaminants of different species from a pollution source

located on the surface and into the underlying aquifer will be examined. The

aquifer is considered to be a homogeneous porous medium. The rectangular cross

section has a length of 200 m and total thickness of 20 m. The physical sys-

tem is assumed to be entirely saturated. A typical set of hydraulic properties of

aquitard and the aquifer are used. A list of the physical properties characterizing

the system under consideration is presented in Table 6.9. The permeability con-

trast between the aquifer and the clayey aquitard is six orders of magnitude. All

the seven species are assumed to have the same effective diffusion coefficient in

aquitard and the aquifer.

Parameter
Hydraulic conductiviîy, m I y
Porosity 0.3
Longitudinal dispersity, m 0.1
Transverse dispersivity, m 0.01
Diffusion coefficient, 

^t ly 0.0227
Retardation factor for all species 1.0

Table 6.9: Physical properties of 7 species PCE biodegradation transport in dis-
crete fracture media

This generic multi-species contaminant transport model has properties rep-

resentative of commonly encountered chlorinated organic contaminants such as

the tetrachloroethylene (PCE) and its biodegradation products. The solubility of

such organics is generally in the range of several hundreds to several thousands

milligrams per liter. Because the permissible levels of groundwater contamina-
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tion by these compounds are low (iypical allowable drinking water limits is 1-50

pglÐ, it is important to understand the transport behavior of the these organic

contaminants. In numerical studies, it is common to neglect the transport of

biodegradation products. In this example, PCE and its biodegradation products

will be simulated at the same time. In anaerobic conditions, PCE biodegradation

will produce 6 products, inciuding TCE, 1,1-DCE, ci,s-t,2-DCE, trans-1,2-DcÐ,

VC and ethene. A detailed discussion of the degradation procedure can be found

in section 3 of this chapter. All the biodegradation procedures in this example

are simplified to first order decays. A half-life of 100 days is used for PCE. the

same half-life data as presented in Table 6.5 are used for other components.

In the aquitard, the fractures are generated randomly in the two-dimensional

section. In this example two orthogonal sets of fractures are considered, one set

being parallel to the x-axis and the other parallel to the z-axis. In addition, a single

vertical fracture runs through the pollution source from the top of the aquitard

to the bottom. The fractures have a constant aperture equal to 3x10-5 m. The

domain is discretized with rectangular elements and the fractures are discretized

with linear l-D elements using the program PREFRAC fSudicky and Mclaren,

1998]. The mesh is refined where necessâry to ensure that there is a minimum

of three nodes between adjacent fractures in each of the orthogonal sets. The

generated mesh contains 131,631 nodes. The aquifer and porous matrix blocks

in the aquitard are represented by I30,872 rectangular elements. The fractures

are discretized into 3824 houzontal fracture elements and 1842 vertical fracture

elements.

The groundwater system is supposed to be steady state. The aquifer has two

constant head boundaries, one at the left end of the aquifer with a hydraulic head

of 17 m, the other at the right end of the aquifer with a hydraulic head of 16 m.
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Along the top of the domain, the head decreases linearly from 21 m on the left to

20 m on the right. All other portions of the domain boundaries consist of imper-

meable boundary conditions for flow. Wiih these boundary conditions, the ff.ow

is predominantly downward through the aquitard to the aquifer. In the aquifer,

the groundwater flow direction is from ieft to right. The discrete fracture flow

system was solved first and then the solution results of flow velocity were applied

to the contaminant transport model. The boundary conditions for the transport

model consist of zero dispersive flux everywhere, except the pollution source on

the top of the aquitard between 30-50 m is a first type boundary. The constant

concentration is 1 for PCE and 0 for all other species. At the beginning of the

simulation, all contamination is confined to the pollution source. The contami-

nants are assumed to be present in the dissolved phase. Thus, uncontaminated

groundwater enters the aquifer from the left side and mixes with contaminated

water leaking from the overlying aquitard and then exits from the aquifer at the

right side,

The convergence criterion used in the ORTHOMIN solver for the Arnoldi re-

duction process is 1x 10-6. A total of 135 Arnoldi vectors are used for this problem.

On average, six ORTHOMIN iterations are required to get an Arnoldi vector. For

a 200-year simulation with a time step size of 1 year, 11.5 minute CPU time is

needed for all of the 7 species solutions. The problem with the same data set and

same convergence criterion is also solved by LTG method. Because the program

FRACTRAN fSudicky and Mclaren, 1998] for the LTG method solution is for

single species problem, only the first species is solved for this problem. The total

CPU time to get the solution for the first species is 2.5 minutes. Each of the 11

p space solutions on average requires eight ORTHOMIN iterations. Comparison

of the first species computed concentrations with the two different methods in-
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dicated that both methods yielded almost the same results. Therefore only the

results obtained with the ARM are shown.

Figures 6-18 to 6-21 show the concentration distribution at 50 years for PCE,czs-

1,2 DCE, tran-I,2 DCE and ethene, respectively. It is clear that the pollution

piumes of all the components move rapidly down through the fractures and are de-

flected laterally by the flow in the aquifer. As the contaminants move through the

aquifer, some diffusion up into the aquitard occurs. The fractures ciearly act as

the controlling pathways for contaminant migration from the pollution source to

the underlying aquifer. Due to the low hydraulic conductivity of the matrix block

in the aquitard, contaminant transport in matrix blocks are mainly controlled by

diffusion. The strength of the advective transport process along vertical fractures

in the aquitard is evidenced by much higher groundwater velocities compared

to velocities in the aquitard matrix. For the short half-life species, contaminant

transport is dominated by advection. This is because before the contaminants

effectively diffused into the matrix block, it had already been dramatically dimin-

ished. This property is clear for PCE and DCE isomers. However, because of

matrix diffusion, the rate of contaminant migration along the fractures is reduced

and the contaminant front advances with a slower velocity than the groundwater

velocity in the fracture. It is important to note that the biodegradation products

of an organic contaminant species can have much higher concentration distribution

and larger plumes than the species itself, such as VC and ethene in this exam-

ple which have about 1000 times higher concentration than PCE in the aquifer.

Therefore, simultaneous simulation of multi-species chlorinated organic contami-

nants transport and biodegradation is important for the evaluation of these type

contamination to groundwater.
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Chapter 7

Conclusions and Suggestions for
Future Work

7.L Conclusions

In this thesis, in-depth discussions for application of the two reduction meth-

ods have been presented. Several very efficient two-dimensional numerical models

based on the reduction methods have been developed to solve problems of ground-

water flow and multi-species contaminant transport in fractured media. The devel-

oped models include a dual-porosity groundwater flow model, dual-porosity decay

chain transport model, dual-porosiiy TCE biodegradation transport model, dis-

crete fracture flow model, and a discrete fracture multi-species contaminant trans-

port model. These models are suitable for solving flow and transport problems

using the most popular three approaches (continuum, dual-porosity and discrete

fracture approach) for the fractured porous media. Because of the large number

of unknowns that can be expected for field-scale multi-species transport problems

and because of the high contrast in material properties between the fractures and

matrix, selecting an eficient and robust numerical technique is necessary. The

research has demonstrated that both the Arnoldi and Lanczos reduction method

are the suitable choices for this type problems. The numerical results have shown
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that the reduction methods can result in large computational savings for long

term prediction. In addition, the storage saving is also significant. The following

is the summary of the conclusions of this research.

1. The LRM has been successfully developed for the solution of problems in-

volving groundwater flow in heterogeneous and anisotropic dual-porosity

media. The main advantages of the method are twofold: (1) the equation

system is solved in a reduced space, which is much smaller than the original

system, (2) The fluid leakage terms are calculated by a recursion scheme in

the reduced space. The solution time for the Crank-Nicolson scheme with

a direct solution method is proportional to rL x rL6, where n is the total

unknowns of the original equation system and n6 is the half bandwidth of

the matrices K and M, however soiution of the reduced tridiagonal system

is only proportionar to m, which is the unknown number of the reduced

equation system. In addition, the Lanczos method efficiency is such that

a dual-porosity solution presents a negligible additional computational bur-

den compared to that for a single-continuum simulation. Consequently, the

decrease in solution effort is pronounced, particularly on large problems or

problems required more time steps.

2. Comparisons with exact analytical solutions have indicated that the LRM

is capable of yielding a highly accurate solution even when relatively less

Lanczos vectors are employed. The example simulation for the case of mul-

tiple wells with different pumping time histories indicates that the reduction

method is very robust. Examples have shown that only a small number of

Lanczos vectors were required to accurately match the drawdown computed

by direct solution method. For the homogeneous problems, experiments

have shown the ratio of n to rr¿ can be as high as 200. However, r¿ is not a
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function of n. For a problem with a large n, the ratio is expected to be larger.

Experiences indicate that the aquifer hydraulic properties and domain dis-

cretization scheme are among the most important factors in determining

Tn.

'f. Multiple well systems with different pumping time histories or time-dependent

boundary conditions have been implemented in the reduction method using

a superposition principle. The results of the field-scale example have verified

that the implementation method is correct and efficient. It is noted that the

reduction method could be applied to any realistic single, dual-porosity or

discrete fracture groundwater flow or contaminant transport model. The

Lanczos algorithm performs the reduction process based on the matrix K

and M, and the starting vector. No matter what dimensionality of the prob-

lem, the properties of these matrices and vectors are the same. Therefore,

the theory developed in this thesis is readily applicable for a fully three-

dimensional groundwater flow problem.

The LRM is also successfully extended to the modeling of groundwater flow

in discretely fractured porous media. An iterative version of the Lanczos

algorithm has been developed and the "shift" technique has been introduced

to the discrete fracture flow model. The model is verified by comparison

with dual-porosity approach. The efficiency and accuracy of the method are

demonstrated on a field scale problem and compared to the performance of

classic time marching using a PCG iterative solver on the original system.

By using the "shift" technique, the diagonal dominant property of the ma-

trix to be solved is improved. This property greatly enhances the iterative

solution convergence rate. Equally important, the "shift" technique can also
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increase the convergence rate for the Lanczos or Arnoldi reduction recursion

processes which means less Lanczos or Arnoldi vectors are required compared

to the case without using this technique. In addition, using the "shift" tech-

nique can extend the application of the ARM to solve large Peclet number

problems. The shift factor p should have a value that makes K and pM

similar in absolute value. It is suggested that p > 2lLt be chosen.

The Arnoldi reduction technique has been successfully developed for the so-

Iution of problems involving multi-species radionuclides decay chain trans-

port in heterogeneous dual-porosity media. The computation and storage

savings of the developed model are substantial. These are achieved by solv-

ing a much smaller reduced equation system instead of the original system,

and also by calculating a mass exchange term for only rn reduced nodes. In

addition, the ARM requires only one or two Arnoldi reduction processes to

reduce all the equations for different species. The method is well-suited for

solving the large problems of multi-species with more nodes and more time

steps. It is expected that for long period predictions, the method would be

very efficient. More computational time and storage saving can be obtained

if more species and more finite element nodes are involved in the problem.

The formula for calculation of mass exchange between the fractures and

the matrix blocks has been presented. The formula is incorporated into the

contaminant transport equations for the fractures in a form that the Arnoldi

reduction method can be applied. By using a recursion-like scheme, the

concentration distributions in the matrix blocks do not need to be updated

before the solving of the equations for fractures and all the computations

are performed in the reduced space, which leads to the achievement of the

high efficiency in the computation of mass exchange terms.
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8. Two schemes for choosing a common starting vector for all species have

been developed. The chosen common starting vector ensures the conver-

gence of the Arnoldi method. Using these schemes, the most popular first

type boundary conditions can be implemented in the ARM. Considering the

superposition method for second type boundary conditions discussed for the

flow problem, it is clear that most first and second type boundary conditions

can be implemented in the ARM.

Comparisons with exact analytical solutions have indicated that the Arnoldi

method is capable of yielding a highly accurate solution even when relatively

small number Arnoldi vectors are used. The example simulation for 3 species

decay chain transport in dual-porosity media shows that the Arnoldi reduc-

tion method is very efficiency in both memory storage and computational

time. it was found that for most cases, less than 100 vectors may be required

to match accurately the concentration computed by a traditional method ap-

plied to the original system equations with several to ten thousand nodes.

Experiences indicates that the growth in the number of Arnoldi vector does

not linearly increase with the number of nodes in a system; its real growth

is much smaller.

The application of the ARM has been successfuliy extended to the simu-

lation of multi-species TCE biodegradation type solute transport in dual-

porosity media. The proposed method is capable of solving multi-species

transport problems with parallel and series reactions. The model devel-

oped was verified by a seven species parallel and series reaction transport in

a single fracture without diffusion into matrix block. The numerical solu-

tions were compared with analytical solutions. Excellent agreement between

the Arnoldi method solutions and analytical solutions \Mas achieved. A field
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scale problems concerned transport of TCE and its biodegradation daughter

products in a dual-porosity medium has been solved. The two-dimensional

model was simulated with typical parameters for decay and in-growth of the

contaminant species. The problem involves about 7 million unknowns at

each time step. To solve such a large probiem would normally be considered

being a formidable task using a traditional method.

11. The ARM has also been applied to the simulation of multi-species conta-

minant transport in fractured porous media using the discrete fracture ap-

proach. An iterative version of the ARM, in which the ORTHOMIN solver

has been adopted in the reduction process, has been developed for the dis-

crete fracture transport model. The largest problem solved by the ARM

using the discrete fracture approach invoives 8 species contaminant trans-

port and L20,707 nodes for each species. For multi-species contaminant

transport problems, the field scaie examples show that the ARM is even

more efficient than ihe LTG method in groundwater hydrology, which has

been considered one of the most efficient methods. After using the "shift"

technique, the reduction ratio ("1^) can be as high as 1700 and the Peclet

number of the problem can be as large as 100.

7.2 Suggestions for future research

The efficiency and accuracy of the reduction methods have been demonstrated

in this research. It can be concluded that the ARM is a very promising method

for multi-species contaminant transport problem. However further work for this

method may be necessary in following areas:

1. An efficient method for determining the optimum shift factor needs to be
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developed. The shift factor is a very important parameter that influences the

efficiency of the reduction method. If an appropriate shift factor is used, the

iterative convergence rate and the reduction process recursion convergence

rate can be improved dramatically.

The superposition method has been used for the implementation of multi-

ple source boundary conditions. This method requires multiple reduction

processes for complicated boundary conditions and it may not be the best

method for this type of problem. Further investigation on this topic is nec-

essary.

It is important to extend the ARM to solve transport equations of the kinetic

reaction processes in porous or fractured porous media. This type of problem

involves multiple components and would lead to extensive requirements of

computing time and storage space. Therefore an efficient numerical method

for this type of problem is necessary.

Non-linear problems in groundwater practices are quite common. The inves-

tigation of the extension of the ARM to solve the non-linear problem could

be very interesting to pursue.

2.

t.).

4.
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