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ABSTRACT

The applicability of a nonl-inear load-deformatj.on

finite el-ement program, developed at the University of

Mani-toba, to the problem of estimating the deformations

associated. with soft ground tunnelling operations in
hlinnipeg was investigated in this study. By using actual-

geotechnical data (1.". - moisture contents, plasticity

indecies, etc.) from a closely monitored and wel-l docu-

mented tunnel- in l,finnipeg in the finite el-ement model, it
was possible to assess the accuracy and li-mitations of the

program by comparing the computed values with the measured

field values.

The mod.el- provided. very good estimates of d.eformati-on

at the tunnel wall, however the agreement between predicted

and observed deformation at points a!¡ay from the tunnel- wall

I^IaS pOOf .

The deformations according to the model approached zero

asymptotically with radial dj-stance from the wall-, whereas

the observed deformations decreased approximately linearly
with distance from the tunnel wal-l.



TABLE OF CONTENTS

Acknowledgements

ABSTRACT

,1 
. O INTRODUCT]ON

¿ O METHODS OF PRED]CTING GROUND MOVEMENTS ASSOCIATED

WTTH TUNNELLING

2.1 Empirlcal Methods

2.2 Numerical Methods

2.2.1 Linear Analyses
2.2.2 Nonlinear Analyses

3.0 PROPOSED METHOD

3,1 Deformation Parameters

3.1.1 Bulk Modulus
3.1 .2 Shear Modulus

3.2 Finite El-ement Analyses

3.2.1 Nonlinear Analyses

3.3 The Finite El-ement Program

/+.0 MODELLTNG THE TUNNEL PROBLEM

/.,.1 Tunnel- Details

/1,.2 Soil Information

l_ l_

a l-l-

13

17

¿v

I

3

3

5

Ã

6

7

I
11
12

25
)4

4
/,
lr

.áo

)
1 Sources of Information
2 Soil- Profile and Index Properties
3 Properties Chosen for Finite Element

Mo d elling

2/+

2/+

25

2B



lr.3 Finite El-ement Model

/*.3.1 Boundary Load Conditions and Deforma'
tion Analyses

5.0 RESULTS AND ANALYSIS OF RESULTS

.1 Li-near Versus Nonl-inear Analyses

.2 Computed Deformations Versus Observed

.3 Discussion of Resul-ts

CONCLUSTONS AND RECOMMENDAT]ONS

REFERENCES

APPENDIX A

APPENDIX B

APPEND]X C

33

35

37

5
Ã

E

37
4)
lr5

/r9

57

50

Ã?

66



INTRODUCTION

Deformations resulting from tunnelling operations in

soft ground have been a concern for many years. Tn todays

cl-uttered urban areas, these deformations not only affect

surface structures, but also the multitude of buried ser-

vices such as gas and water lines. As well-, knowledge of

the deformations is useful- in determining the short and long

term stability of the surrounding soil mass and in calcula-

ting tunnel support and liner requirements, Consequently'

accurate estimates of the magnitude and distribution of these

deformations prior to constructionr particularly for large

diameter tunnel-s near the ground surface, j-s essential for

safe and economical tunnel- design.

At present there are no simple reliable methods for ac-

curately calculating or predicting these deformations. The

variables involved are just too numerous to incorporate i-nto

a closed-form solution. In recent years the development of

numerical methods and vari-ous computer techniques such as

finite elements, have made it possible to rnodel soft ground

tunnelling operations more real-istica1ly.

The majori-ty of finite element investigati-ons in soft

ground tunnelling (Hardy et aI, 1981 ; Hoyaux and Ladanyi,

1969) have used linear analyses and the results lrere not sat-

i-sfactory. It is realised that nonlinear analyses offer a

better representation of the physical problem (Desai and

1
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Christj-an, 1977) and therefore yield better sofutions, Un-

fortunately, three problems are generally associated with

this technique:

1) Commercially availabl-e programs are expensj-ve.

2) The nonlinear model descri-bing the soil behavior

is seldom fu11y understood by the user.

3) The deformation parameters necessary for the

analysi-s are difficult to quantify.

The purpose of this practicum is to i-nvestigate the ap-

plicability of an inexpensive nonfinear finite element pro-

gram, developed at the University of Manitoba, to the problem

of estimating the deformations associated with soft ground

tunnelli-ng operations in the hlinnipeg area. This l^ias done by

modelling an existing closely monitored and well documented

tunnel- in the ïlinnipeg area. Using geotechnical- data from

the site i-n the finite el-ement program made it possible to

assess the accuracy and l-imitations of the program by compar-

ing the computed values with the actual values observed in the

f iel-d o
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CHAPTER II

.O METHODS OF PREDICTING GROUND MOVEMENTS ASSOCTATED Ii\IITH

TUNNELLING

The literature contains several studies on tunnel design

i-n soft ground (Uuir l,rlood, 1975i Peck et aA, 1972; Henkel,

1g7O). However the majori-ty are only concerned with estima-

ting stresses around the tunnel. Although useful-' this infor-

mation is only a smal-l part of what is required for a complete

tunnel design.

More recently, attenti-on has been given to estimating de-

formations associated with tunnelling operations in soft

ground, whi-ch is more useful. From a designerl s poi-nt of view,

knowing the anticipated deformations makes it possible to

assess the short and long term stability of the surrounding

soil massi to calcul-ate support and Ij-ner requi-rements; and to

specify construction practiees. From a contractorls point of

vi-ew, stresses are meaningless as they are not visible, only

their effects are; namely straj-ns, distortions, displacements,

and ground surface settlements. Consequently, if these defor-

mations can be predicted accurately in advance of the excava-

tion, better all-round tunnel design and operations can be

effected.

2.1 EMPTRTCAL METHODS

Empirical techniques for predicting ground movements are
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not very common in the l-iterature. Clough and Schnj-dt' 1981

cite the major reason for this as being the complexity of

the deformations assoeiated with tunnelling. Displacements

at the tunnel face are three dimensional, novi-ng both

axially toward the advancing tunnel and radially toward the

tunnel walls. The authors suggest that for an order of mag-

nitude assessment of probable displacements this complexity

may be ignored, and it can be assumed that the tunnel- is ex-

cavated instantaneously such that displacements are only

radial. I^lith this in mindr ân empirical sol-ution for calcu-

lating the loss of ground is presented from which an approxi--

mate ground settl-ement curve can be made. The solution is

based on the theoreti-cal tunnel- dimensions and the actual

volume of soil- removedr âs calculated by summing the theor-

etical displacements around the periphery resulti-ng from the

stress red,uction. The solution assumes efastic conditions

prevail in the soil and zero volume change in the plastic

zone.

Rowe and Kack (lg8?) , suggest the best summary of em-

pirical solutions is contained. in a paper by Peck (1969). The

authors feel these sol-uti-ons when applied with appropriate

judgement, may yield quite ad,equate and. economical designs.

However, it is emphasised that empírical solutions are subject

to some important limitations; fi-rst, the limited information

on the distributi-on of deformations throughout the entire soil

mass; second., their applicability to dj-fferent tunnel geome-



I

tries and construction techniques; and third, the consis-

tency of the results.

2.2 NUMERICAT METHODS

Recent advances in theoreti-cal solutions using numeri--

eal methods, such as finite elements, have indicated a

potential for estimating deformations due to tunnelling, yet

their application is stil-l quite limited. (Row, Lo, and Kack,

1983). The finite el-ement method has made it possible to

overcome the complex boundary conditions, nonhomogeneity,

ani-sotropy, and nonl-inearity typical of many geotechnical

problems. Unfortunately, our ability to incorporate the ap-

propriate stress-strain characteristics of the soil has not

progressed sufficiently.

2.2.1 Linear Analyses

Earlier studies (Hoyaux and Ladanyi, 1969; Ghaboussi,

1978; Tan and Clough, 1980; Hardy et a.:-, 1981) using li-near

finite element analyses to predict soil movements due to

tunnelling in soft ground have displayed promising results

in some instances. It is generally agreed however, that

there has been insufficient consideration gi-ven to the gen-

eral theoretical and praetical factors necessary for these

techniques to yield consistently good results. To i1lus-.
trate this point, the treasonablet correlation betweenfield

observations and eomputer analyses described in several of

the studies rÀrere attained only after revising the elastic
parameters (Hardy et aln 1981).
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Clearly this technique of revising parameters can not be used

in a design office to predict deformations.

2.2.2 Nonl-inear Analyses

Rowe and Kack (lggl) a"scribe a theoretically based d.e-

sign procedure suitable for di-fferent soil types, construction

methodsr geometries, etc. using an elasto-plastic finite ele-

ment program. In an earl-j-er paper (forming part of a series

on soft ground tunnelling), Rowe, Lo, and Kack (lgAg) describe

the technique used in their study, and illustate it with a com-

prehensive parametric study. The analyses were performed using

a plane strain elasto-plastic finite element program (npfUN)

developed by the authors. The plastic behavior was model-led

using a Coul-omb-Mohr failure criterion and a nonassoei-ated flow

rule. The constitutiúe,, equati-ons made use of Young I s Modulus

and Poissonrs Ratio. Assumptions in the analyses included no

d j-latency.for soft or loose soil-s, and an isotropic draj-ned

response of the soj-l-.

Based on four case histories, the authors felt their theory

provided reasonabl-e predictions of ground movementr pïior to

construetion, in most cases, requiring only a limited knowledge

of the soil profile, tunnel characterj-stics, and construction

methods. However, the authors emphasize that there are certai-n

situations r^ihere the proposed theory and current empirical ap-

proaches would not provi-de satisfactory estimates; specificall¡r

in circumstances where large vol-ume changes within the soil are

possible.



CHAPTER I]I

3.0 PROPOSED METHOD

As described in Chapter If, the finite element method

is a recognised. and trusted technique in geotechnical engin-

eering. The problem in its use is i-ncorporating the appro-

priate geotechnical stress-strain or deformation character-

istics of the soil r âs it i-s difficult to evaluate the insitu

characteri-stics from laboratory testing.

The deformatj-on characteristics of an isotropic homo-

geneous elastic soli-d can be described by two parameters.

These can be Youngt s Modul-us (n) and. Poissonr s Rati-o (v), the

Bulk Modulus (K) and the Shear Modulus (C), or Lamers Con-

stants. Most studies have attempted to use non-constant

Youngts Modulus derived from standard triaxial eompression

tests to deseribe nonl-inear behaviour (Hoyaux & Ladanyi,

1969). However, the rel-ationship between the principal

stress difference (q) and axial strain (er) in the standard

triaxial test d.oes not represent the true deformation charac-

teristi-cs of a soil. The method only considers the change in

major principal stress and does not reflect the overall

stress condi-ti-ons in the soil-. As well-, determining an ap-

propriate value of Poissonrs Ratio j-s difficult in this

method., and in many cases it is simply assumed to be constant.

The approach followed in this study utilises the work of

7



I

Domaschuk and Vall-iappan (197/r) in which the nonlinear be-

haviour of l,rlinnipeg (f,ate Agassiz) clays was characterised

by non-constant bulk and shear modul-i (f & G ). Their study

established a techni-que whereby these parameters I^Iere deter-

mined as functions of soil properties and stress level. The

primary reason for choosing the deformation parameters K & G,

is that each is associated with separate physicaÌ components

of soil- behaviour. The bulk modulus is associated with

changes in mean normal stress, whil-e the shear modul-us is as-

sociated with changes in shear stress. Simi-larly, each can

be evaluated independ.ently by appropriate laboratory testing.

3.1 DEFORMATION PARAMETERS

In general, the state of stress at a point can be repre-

sented by three principal stresses and their respective

direction cosines. For a cubical element, the magnitude and

directi-on of these stresses can be represented by vectors act-

ing on each facer âs shown j-n Figure 1a. These pri-nci-pal

stresses can be separated into mean normal- components and

deviatoric eomponents as shown in Figures 1b and 1c, respec-

tively. The mean normal stresr (or) and resultant deviatorj-c

component (SU) are given by:

01 + Õ2 + 03
0.t)

J

(t "z)

Õ
m

222
Sr * Sz + S3

d
ò



(a) General stress state (b) Components equal to the
mean normal stres:

(") Deviatoric eomponents
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Figure 1: Typical State of Stress at Point
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in which Sr O1 o
m

52 = Õ2 olJ3 O3

3

td 2 (et + (¿, * (es L
m

The general constitutive relationship for a hono-

geneous, linear el-astic material- exhibiting smal_l_ strains,
can be expressed in terms of the bulk and shear moduli as

fol-lows:

o
m

o
m

,

By the nature of its formulation, the mean normal stress
(or) is only associated r,¡ith linear strains which resul-t in
vol-umetric changes. The resul-tant deviatori-c component is
associated with shearing strains r¿hieh tend to produce distor-
tion and dilatency effects. The mean normal strai-n (rr) and

resul-tant deviatoric component (rd) are given by:

e 1 + e2 * es
e (3.3)

(l. to)

(3.5)

(l .6)

m

))
2

tr)
2 2

c
m

aa'l K tkk uti + 2 G (eii - å tnu uti)

the stress and strain components

re spectively.

the cubical- di-lation.

the Kronecker del-ta

where o &l-I
c

r_J

e"kk
ô

r_J

Equation (3.5) can be resol-ved into a mean normal- component,

given by:

om 3Ke^



and a deviatori-c component, given by:

ò Ge

+0 Ae
^o

do
mr v

11

3.7)

(3.8)

d d

3.1 .1 Bulk Modul-us

The bulk modul-us is one of the constitutive parameters

used in this study. It reflects only one physical component

of behaviour and can be evaluated independently in the lab-

oratory by drained isotropic triaxial compression tests-

The bulk modulus (K) which relates isotropic strest (o,n)

and vol-umetric strain (..r) was given in equation 3.6. S j-nce

the rel-ati-onship is generally nonlinear, the bulk modul-us may

be defined as:

1im
Ae.V

m
K

v

Several factors can affect the bulk modulus, particu-

Larly soil- type, initj-al void ratio, the magnitude of iso-

tropic stress, sample di-sturbance' etc. Tn the work of

Domaschuk and Valliappan many of these 'h/ere investigated. The

resul-ts indicated the governing factors l^Iere soil typ" and

isotropic stress level-. The insitu void ratios fell in such

a narror^r range for each depth investigated, that they I¡Iere

not considered in the analysis. The expression used in the

study was given by:

Kt n-1
VN )Kt (t * ne 3.s)
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I^ihere K

ç

l-
initial bu]k modulus

normali zed vol-umetric strain
VN

The specific testing details and complete bulk modulus deri-
vation can be found i-n Chapter IV of their report. A brief
summary of that chapter can be found in Appendix A.

3.1.2 Shear Modulus

The shear modulus is the second constitut,ive parameter

used in this study to describe soil behavj-our. Like the bul-k

nodulus, it reflects only one physical component of behaviour

and can be evaluated independently in the laboratory. fn this
case the test requi-red is a constant-mean-normal triaxial- com-

pression test.
The shear mod.ul-us (C), which relates the deviatoric

stress (Sd) and the deviatoric strain ( rd) r^ras given in equa-

tion 3.7. Since the relationship is generally nonlinear' the

shear modulus may be defi-ned as:

^s. ds.
^ _ rr-m d * o. (Z.lo)\¡-aeu+oÇ-õ%

Domaschuk and valliappan investigated several of the factors
which affect the shear modulus,particularly the mean stress,
void ratio, overconsolidation ratio, strength, sample distur-
bance, etc., in order to obtain a sol-utj-on for the shear

modulus of ldinnipeg (lat<e Agas siz) clays in a functional
form. The expression used. i.n their study was given by:
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G = Gi{1
2

)]Rr( d
o

1os{,çLtco

(3 .11 )
ß

in which G= = initial_ shear modul_usa

R- = failure ratioI

S-, = Tesultant deviatoric stressd

o* = effective-mean-normal_ stress
m

P^ = preconsolidation pressurer- ---

"o = initial void ratio
o, & ß - l-inear regression coeffi_ci-ents

The specific testing details and complete shear modulus deri-
vation can be found in chapter v of their report" A brief
sunmary of that chapter can be found in Appendix B.

3.2 FTNTTE ELEMENT ANALYSES

The nonlinear stress-strain characteristics of hlinnipeg
(r,ate Agassiz) clayr âs per Domaschuk and valliappan were in-
corporated in a nonlinear l-oad-deformation finite el-ement

program. rn this study, that program uras used for the pro-

blem of predicting deformations associated with tunnelling
i-n hiinnipeg.

The most important consideratj.on when using any finite
el-ement method program is that it does not yield exact solu-
tions. At best, the solutions are very good approximations.

The method rel j-es on various t approximate numerieal method.s I

in its formulation as there are no cl-osed-form solutions.
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As well, there i-s always some doubt regarding the accuracy

of the material properties used in the analysis. Conse-

quently, the results are not exact, yet they are far better
than any lhand-methodt or educated guess could ever offer.

Complete explanations of the finite element method can

be found in severaf publicati-ons . Zienkiewic z (1971) , Desai

& Abel (lglZ), and Desai & Christian (lgll) all explain the

mathematical aspects of the method systematically, along

with several applicatíons of the method to varÍous geotech-

nical- problems. For completeness, a brief summary of the

method foll-ows.

ïn general, the finite element method consists of fi_ve

separate steps. The first step is to diseretj-ze the global

continuum into arr equivalent system of smaller l-ocal continua

called rfinite el.ementsl as shown in Figure 2. The choice of
orientation and size of el-ements is arbitrary. This allows

the user to buil-d a mesh which will- account for nonhomo-

geneity (".g. layered soil-s) with a mÍni-mum of difficulty.
As well, by consi-dering more el-ements in the anafysis, the

mathematical- mod.el is i-mproved and more accurate resul-ts can

be real-ised. However, this i-mprovement is achj-eved at the

expense of increased computing time.

The second step involves analysing each element in turn

on the basis of its physical properties and constituitive re-

l-at j-onships. Various nethods of analysis, al_l derived fron

the principle of conservation of energy, are available for
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Figure 2b: Equivalent system ill-ustrating finite elements.
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this step. Commonly, mj-nimum potential energy is used

(Desai,1977), that is, in any el-astic body, the work done by

the external static forces is stored optimally in the dis-

placed shape as a mi-nimum strain energy of distortion. The

mathematj.cal aspects of this step, often referred to as the

Displacement Method, are presented in Appendj.x C.

The third step in the finite element method. is referred

to as the Direct Stiffness Method. This step assembl-es the

local- element stiffness matrices into a g1obaI sti-ffness

matrix using the principle of superposj-tion. As each element

has been analysed 1ocal1y, the stiffness of any given node is

based only on that element. In the g1oba1 system, any given

node may interconnect any number of efements. The total

stiffness of the node is the summation of all of these ele-

rnents. This process satisfies the conpatibility of displace-

ments at the nodal- points relative to the global continuum.

It does not satisfy the displacement compati-bility along

the elementls edges.

The final two'steps involve eombining the known boundary

eonditions and external loadings with the 91oba1 stiffness

matrix of step three, thus satisfying the equilibri-um of the

system. The equations are then solved' yielding first the

unknown displacements and second the element strains and

stresses.

For the particular study dealt with in this project, a

plane strain, nonlinear finite element program was used for
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the analysis.' Many three-dimensional problems, such as

tunnelli-ng, can be modelled in two dimensions. The simpli-

fication ari-ses from the faet (o" assumption) that the dis-

placements of the system are developed only in one plane.

For the problem of tunnelling, it is generally assumed

(Ghaboussi et aI, 1978) tfre tunnel- is excavated instan-

taneously such that the displacements are only radial-, ig-

noring any in the axial direction. The resul-t is a two-

dj-mensional problem that need only consider a strip of unit

thickness as shown in Figure 3.

3.2.1 Nonlinear Analyses

The basic concept of the finite element method is in-
dependent of whether linear or nonlinear analysis are per-

formed. However, certain factors must be considered when

doing nonlinear analyses. the first step is to choose the

typ" of nonlinear behaviour associated with the problem.

In general, nonlinear behavi-our can be divided i-nto

three eategories:

1. Material- nonlinearity, whi-ch arises from non-

li-neari-ties in the constitutive equations.

2. Geometrj-c nonlinearity, which arises from large de-

formations and geometric changes in the structure

and elements.

3. Combíned geometric and material- nonl-inearity.
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Figure 3z The three dj-mensional problem of tunnellj-ng
can be modelled j-n two dimensi-ons by taking
advantage of the symmetry of the system.
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fn this stud.y, the effect of geometric nonlinearity was ex-

pected to be insignificant as the displacements under the

normal range of l-oads are small- rel-ative to the dimensions

of the continuum. Consequently, this study has been con-

cerned only with material nonlinearity.
As described in Chapter If, in order to simulate any

nonl-inear behaviour it is necessary to adjust one or more of
the deformati-on parameters in accordance with internal stress

changes. This implies that they must refl_ect changing stress

.conditions resulting from load application andfor removal.

In this study, the adjustment ûras made to the stress-strai_n

matrix [C] ,, and j-s known as the vari-able or tangent stiff-
ness method. Clear]y to make these adjustments an iterative
approach was mandatory.

The simplest and most common i-terative solutions involve
an incremental or stepinrise procedure. The basis of this tech-

nique is to subdivide the l-oad into a number of small incre-
ments, and apply them one at a time, At the beginnÍng of
each new load increment approximate moduli values are sel-ected

for each element on the basis of the exi-sting stresses and

strains in that element. The l-oad increment is then applied

and the resulting stress, strain, and displacement changes

are calculated and added to the previous values. These neur

values are used to establish new moduli values.

Another eommon'technique, referred to as the mid.point

Runge-Kutta procedure, d.etermines a new [C] matrix for the
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stresses and strains associated with applying one-hal-f of

the load increment. This stiffness matrix is then used for
computing the stresses and strains for the required full in-

crement. As with the full increment method, the change i-n

stress and strai-n are added to the previous values, and the

procedure is repeated until the entire l-oad has been applied.

Essenti-ally, these techniques approximate nonlinear

behaviour as a series of linear steps as shown in Figure /e.

Obviousl-y the more steps taken in reaching the total l-oad,

the better the accuraey. Unf,ortunately, this accuracy is
achieved at the cost of additional eomputer tj-me as ne'hr

stress-strain matrices must be determined for all el-ements

in each load increment. The program used in this study in-

corporated both nonlinear techniques.

3.3 THE FINTTE ELEMENT PROGRAM

The finite element program investigated j-n this study

was originally developed by Domaschuk and Valliappanin 197/+

to analyse the stresses and displ-acements of various non-

l-inear axi-symmetric problems in geotechnical engineering.

The program had two maj-n features whi-ch made it parti-

cularly useful to this study: first, the constitutive por-

tion of the program made use of either Youngrs Modul-us (U)

& Poissonts Ratio (v), or the Bulk Modulus (f) & Shear

Modulus (C) as the defornation parameters; and seeond, the

program had been designed specifically for a nonlinear

analysis of the hlinnipeg (late Agassiz) c1ays.
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The basj-c formulation of the program (i.e. the el-ement

and global stiffness matrices, the equation sol-ver, and the

stress solution) follows the one developed at the University

of Cal-ifornia by l,rlilson (1967). The basis for the incremental

method of nonlinear analysi-s fol-lows a program developed by

Desai (1968). Since its formulation, the program üias only

used on one or more occasj-ons. Reeently, Yong (lggl) studied

the contribution of the bulk and shear moduli to dispÌacements

usi-ng the program. As a result the program was better de-

tail-ed. and also updated to handle metrie units. The progratn

has since been mod.ified to suit the requirements of the par-

ticular tunnelling problem being considered.

ïn an attempt to model the tunnelling operation it i¡ras

deeided to change the program t s axisymmetric formulation to

that of a plane strain problem. By simply replacing the com-

ponents of the third row and column of the stress-strain
matrix with zeros, the program automatically reeognized the

plane strain condition,

A second modification to the program Ïras required. to

keep the shear modulus (C) from going to zero in the itera-
tive solutions. The need for doing this arises from the fact
that some of the elements go into a plastic stress state at

large boundary loads, before a general state of failure has

oecurred. The method chosen involved limiting the change

and,f or magnitude of the shear modulus to some minimum val-ue.

The program changes necessary for this modificati-on only
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affected the subroutine which calculated the shear modulus.

The first step was to limit the change of d.ecreasi-ng

shear modul-i between successive iterations to some arbitrary
value. The number chosen hras given by:

^
1

max # increments

If the cal-culated change exceeded this vaIue, a revised

shear modulus (Grr"r) was given by:

G - ( 1- 
^ 

)xCnew max' ol_d

This implied if 5 increments r¡rere specified, the maximum

change in any given increment would be 20f,.

The second step was to establ-ish a lower bound on the

shear modulus. This was chosen to be 1350kPa.



CHAPTER TV

/+.0 MODELLING THE TUNNEL PROBLEM

/+.1 TUNNEL DETAILS

In July 1978, Hardy Associates (lglA) ltd. and R. V.

Anderson Associates Ltd. began a Tunnel Instrumentation

Project for the City of Tlinni-peg, hiaterworks, hlaste and

Disposal Division; the objective being to enhance the de-

si-gn and ninimize the cost of future tunnel- construetion in
the i¡iinnipeg area

Located near the North End ïIater Pollution Control

Plant in Northwest iirlinnipeg, the tunnel strikes east to
west at a centerl-ine depth of 12.7 n, with a 2.0 m outside

diameter. The tunnel- was hand-mined i¡ithout a shiel-d at a

rate of approximately 3.0 m per day, Pri-mary lining hras not

required¡ The i-nterior fornwork consisted of steel_ ribs and

timber planks, which were al-so removed at a raï,e of 3.0 m per

day following a curing period. of 3 days. Liner concrete was

plaeed to within approximately 1 .0 m of the tunnel face each

day.

The tunnel was monitored. at the Northwest fnterceptor,
some 50 tn west of the northwest corner of the treatment

plant site. The soil and l-iner instrumentation used at the

site included piezoneters, settlement plates, a slope indi-

cator, earth pressure cel-ls and embedmen! strain gauges. The

2/,



instrumentatj-on layout is shown both in plan and

Figure 5. Details of the i-nstrumentation can be

Chapter 3.0 of Hardyrs report ( 1 981 ) .

/+.2 SOIL INFORMATIoN

lu,2.I Sources of Informatj-on

The geotechnical infornation used in
correl-ated from two sources; the detail-ed

eonducted by Hardy Associates (1978) Ltd.

nonlinear behaviour of Lake Agassiz clays

Valliappan (197 /+) ,

25

section in
found in

this study was

si-te inve stigation
and a report on the

by Domaschuk and

lr.2.2 Soil Profile and Index Properties

Hardyls investigati-on, which was done at the loeation
of the riser pipe shown in Figure J, incl-uded the usual rou-

tine sampling along with several- vane shear and pïessuremeter

tests. The results of the testing program, along with the test
borehole 1og, are shown in Figure 6.

Soil stratigraphy at the instrumentation site is typical
of the l¡Iinnip"g area, being comprised of a thin cover of top

soi-l over varved, lacustrine clays. The surfj-cial clay de-

posíts are brown, becoming mottled from about the 2 m depth

and grey from about the 7 n depth. The transitj-on in color is
gradual. A 1 m layer of tan silt exists within the upper 3 m

of the profile. The clays are highly plastic (Ctt) with
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plasticity indieies ranging from /+0 to 77, and tend to de-

crease slightly with depth.

The moisture content profile is relatively uniform with

some evidence of drying or dessication within the surficial-
3 to /t, n depth. Bulk densities ranged from approximately

16.3 to 18.3 kN/m3. Undrained shear strengths vari-ed from

approxi-mately 50 to 125 kPa based on field vane shear tests
and 25 to 60 kPa based on urÌconfined compression tests,

ln,2.3 Properti-es Cho sen for Finite Element Modelling

The borehole 1og contained in Hardyrs report extended

only to 12.2 m, while the dimensions of the finite element

model- required. a depth of approximately 17 n. The remainder

of the basic geotechnical data (moisture contents, speci-fic

gravities, plasticity indicies) Ï¡ere obtained from Domaschuk

and. val-liappan (197 /r) in the bel-ief their study was represen-

tative of the 't¡Iinnipeg area (Baracos, 1961). The extend.ed

borehole and assoej-ated data is shown in FJ-gure 7.

hlhere possible, the basic geotechnical_ data used in the

program was compared with published values (Graham et aI,
1982) to assure reasonable magnitudes were being considered.

In the program output, the calcul-ated insitu bul-k and shear

moduli were also observed and are shown in Fi-gures 8 and 9.

The calcul-ated bul-k modulus shows excellent correspondence

with Grahamls work, while the shear modulus shor^¡s only satis-
factory correspondence.
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The nonl-inear behaviour of the Lake Agassiz clays used

in this study have been described by the fail-ure criterion
developed by Domaschuk and Valliappan (lgl ¿) . The failure
criterj-on, which is in terms of resultant deviatorie stress

at failure and constant-mean-normal stress has the advantage

of incorporating the effect of the intermediate pri-ncipal

stress. As well, it does not require the orientation of the

fail-ure plane for comparing the prevai-ling state of stress

to the failure stress at any point within the mass. A com-

plete description of the failure criterion formulation can

be found in Appendix B. For the purpose of clarity, it is

32

(+.t)

expressed here as foll-ows:
o

.'{ ,m }S,^ = 10*tP'e(lrco
ß

= resultant deviatoric stress

aL failure

= preconsolidation pressure

= effective-mean-normal stress

= initial void ratio

= linear regression coeffj-cients

in l-og-1og plotting, ref erred to

as failure criterion parameters

in which S

P.

(.ú

df

c

o
m

e
o

&ß

Clearly these parameters were not contained in Hardyls

site investigation, and consequently they had. to be inter-
preted solely from Domaschuk and Val-li-appanrs report on the

basis of physical descrípti-ons of the materials.



33

The coeffieient of horizontal earth pressure (t<o) i4ras

intentional-ly ehosen equal to 1.0 to facilitate calculating

the bound.ary loads on each el-ement in the tunnel. The need

for this assumption arises because the progran can not dis-

tinguish what portion of the applied load is vertical and.

which is horizontal on the elements with sloped faces. It

shoul-d be noted that this assumption is common in other

finite element studies such as Hoyaux and Ladanyi (1969) and

Hardy et al (1981).

lN'3 FINITE ELEMENT MODEL

The finite element model used in this study is shown i-n

Figure 10. It contai-ne d 165 elements, 186 nodes, and was

separated into /+ different soil types withín the conti-nuum.

The general orientation and dj-mensions of the model are simi-

Iar to those used. by Hardy et al (1981) thus allor"ri-ng correla-

tion between the two studies.

As descrj-bed previously, the borehole 1og shown in

Figure 7 j-s typical of the l,rlinnipeg area, and specifically

the tunnel site, and implies there is symmetry about any

vertical l-ine in the continuum. This symmetry allowed. the

modelling of only one-half of the con.ti-nuum (in ttre hori-

zonilal direetion) using the centerli-ne of the tunnel as the

axis of symmetry and one vertical- boundary. The second ver-

tieal boundary was placed 7 tunnel dj-ameters ar^ray, where it
was assumed bound.ar:y i-nfluences would be at a mj-nimum. Both
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of these boundaries (with the exception of the tunnel open-

ing) v¡ere considered restrained in the horizont,al direction,

allowing only vertical displacements.

The upper horizont,al boundary (ground surface), l-ocated

11 .7 m above the tunnel cro'hln, r^ras consj-dered to be unre-

strained i-n al-l directions. The l-ower boundary was located

3.3 m below the ,tunnel invert and was consi-dered to be re-

strained in all directions. Finally, the nodes making up the

tunnel opening were considered to be unrestrained i-n all direc-

tions.

L.3.1 Boundary Load Conditions and Deformation Analyses

fn order to model the physj-cal- operation of tunnelling

with a finite element program the user must be ai,irare of the

programls formulation, particularly the technique used to

build the load vector. Although several progïams consider

gravity forces as load.s, this particul-ar one does not.

Gravity forces are only used to calculate insitu stresses

and subsequent bulk and. shear moduli values for each element;

they are not eonsi-dered as loads. When the analysi-s j-s per-

formed, the program consid.ers the continuum weightless, and

cal-cul-ates only the stress change associated with that load

application, either compressive or tensile. These changes

are then ad.ded to the previous stress values yielding a nelr

stress state from which revised, bul-k and shear modufi values

can be determíned. This procedur:e is continued until all
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iterations have been completed.

The implication is that to model- the tunnelling operation

the user must apply the negative of the insitu stress, as cal-

culated at the center of the face of eaeh element around the

tunnel opening' divided by the number of i-ncrements. fn this

study the insi-tu stresses vary from a minimum of -203.275 kPa

aL the crown to a maximum of -236.1/+5 kPa at the invert. This

is simply the resul-t of the change in depth from the top to
the bottom of the tunnel opening.

Four load cases have been considered in this study. The

first one investigated the insitu to zero stress in one step,

i.e. - a linear analysis. The second, third and fourth cases

i-nvestigated the insitu to zero stress in two, fi-ve and ten

steps respectively

As described, previously, the program calcul-ated the

i-nsi-tu bulk and shear moduli on the basis of input soil- para-

meters, namely moisture contents, plastic indi,cies, unit

weights, etc. The loading magnitude has absofutely no effect
on these insitu values, and consequently the starting point

for eaeh analysis r,rras always the same.



CHAPTER V

5.0 RESULTS AND ANALYSIS OF RESULTS

The results of the deformati-on analyses have been

arated i-nto three parts; first ¡ àyr investigation of the

linear and nonlinear analyses, second, a eomparison of

finite element resul-ts with measured field values, and

a discussion of the results.

s ep-

the

third,

5.1 L]NEAR VS NONL]NEAR ANALYSES

Figure 11 illustrates typical displacement vectors along

three radial directions extending from the tunnel center. The

resul-ts elearly indicate that the majority of deformation is
directed. toward the tunnel- center.

Figures 12 and 13 il-l-ustrate the magnitude of deformation

along the vertical and hori-zontal radials respectively for each

1oad. case. The vertical radi-al, located d.irectly above the

tunnel crohrn shows deformations ranging from 6.5 mm for the

l-inear case to 12.2 nn for the 10 increment nonlinear ease.

The horizontal radial, which extends from the tunnel- center,

shows deformations ranging from 11.7 nn for the linear case to

16.1 nm for the 10 increment nonlinear case. The resul-ts indi-
cate a zone of influence exists around the tunnel opening which

ranges from 2 to /+ tunnel radii along the vertical- radj-al and

up to 6 radii- along the hori-zontal-.

37
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rn Figure 1/+, the deformations at the tunner warl $rere

plotted against the number of increments into which the total
boundary load. associated with excavation, was divid.ed. The

use of a single j-ncrement lras in effect a lj.near analysj_s as

the deformation analysis \^ras done usi.ng only a single average

value of the bulk and shear moduli i_n each el_ement. Dividing
the total boundary load into 2 or more i-ncrements rendered the
analysis nonlinear in that the deformati-on parameterrs magni_-

tude changed with each load increment in each el_ement. From

Figure 1/¡ it is seen that the nonlinear analyses resulted in
a substantial increase in the computed deformations, with the
largest increase bei-ng associated with the z increment analy-
sis. The increase from. five to ten increments was insignifi-
cant.

As d.escri-bed prêvi-ously, the starti-ng point (i.u. - the
insi-tu values) for both the bulk and shear moduli_ was the same

for al-l load cases. Hor,¡ever, the magnitude and rate of change

of these parameters during the iterative soluti-ons was depen-

dent on the number of j-ncrements into which the total- boundary

l-oad was divided. To" dependence of the two deformation pa'ra-

meters on the prevailing state of stress i_n the soil was ex-

amined by plotting the deformation parameters for each itera-
tive sol-ution.

The bulk modulus val-ues associated with the iterative
solutions decreased wi-th load removalr &s anticipate

¡¿f,-d,,--ns.-t*
üS ,tfi.4tiì.Iü1]"t

l"ttiíi;\fi\','..1:1

coever, the magnitude of change i¡ras insignificant a
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be plotted separatel-y from the insitu line shown previ-ously

in Figure 8. Clearly the bulk modul-us was not a signifi-

cantly contri-buting factor to the nonl-inearity of the analy-

si-s. The results i-ndicate that the bulk modulus could be

considered a constant for any given element throughout the

analyses.

The shear modulus of each element along the vertical

radi-al is shown for the insitu case and for each loading ease

in Figure 15. For any given el-ement (represented by a con-

stant depth) tne shear modulus decreased aL a decreasi-ng rate

as the number of load increments was increased. It is apparent

that the use of a singlerrinsiturrnodulus would yield smaller

calculated deformations than the use of a stress-dependent

modulus which decreases in magnitude as the state of stress

in the soil tends toward failure.-

Increasing the number of increments into whieh the total

load is divid.ed may be thought of as a refinement of the non-

l-inear analysis, For the tunnel ease analysed in this study'

the use of more than 5 increments did not significantly

change the cal-culated deformations, and so from an rraecuracyrt

point of view, 5 increments üIere sufficient-

The computer costs associated with the various l-oad

cases used are shown in Figure 14. It is seen that in an ap-

proximate way there was a direct relationship between eom-

puter costs and. the number of foad increments used.. Thus

from a standpoint of costs, the number of increments shoul-d

be kept to a minimum.
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5.2 COMPUTED DEFORMATIONS VERSUS OBSERVED DEFORMAT]ONS

A comparison of measured field deformations along the

vertical- radial with those computed using the nonlinear
analysis with 10 i-ncrements is shown in Figure 16. rt is
seen that the comparison is good at the tunnel- wall where the

observed deformati-on was 1/t, nn and the eomputed. was approxi-
mately 13 nn Thus from the standpoint of a cr-ass A predic-
tion of tunnel deformations, the mathematical model proved to

be very aceurate. However the agreement between the predicted

and observed at points ar¡ray from the tunnel wall üras very
poor. According to the mathemati-cal model, significant d.e-

formations were confi-ned to a distance of only one tunnel-

radius beyond the tunnel wall, whereas the observed deforma-

tions extend.ed beyond. 6 tunnel radii. As well, the deforma-

ti.on patterns r^rere quite different throughout the eontinuum.

The observed deformations varied almost 1Í-nearly with depth

whereas the predicted val-ues aþproached zero asymptoticalry.

5.3 DTSCUSSION OF RESULTS

The reasons for the variation between observed and pre-

dicted values are associated Ìrith either the input data or

the mathematical model used..

ïnsofar as input data is concerned, the insitu soil pr.o-

perties used were those of another site but because of the

similarities of the soil conditions at the two sites, 'it'is
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unl-ike1y that this was a significant contributing factor.
Hor¿ever the solutions for the bulk and shear moduli are func-

tions of stress and were determined by J-aboratory compression

tests whereas the tunnel problem, was one of unl-oading, It
was assumed in the deformation analysis that the sol-uti.ons

for the deformation parameters were not stress-path dependent.

This coul-d account for some discrepancy betv¡een observed and

predicted values, but vras unlikely the major factor"
As mentioned previously, the greatest discrepancy between

observed and predicted val-ues was j-n the pattern of deforma-

tion versus rad.ial- distance from the tunnel wal-l-. The observed

values decreased approximately linearly r,¡ith distance whereas

the predicted varied asymptotically" The asymptotic distribu-
tion implies that all stress and strain changes oecur in a

very narrow zone around the tunnef " This is consistent with

treating a continuum as being elastj-c" For example the stress

distribution beneath a square footing decreases asymptotically

with most of the stress change occuring within the depth of

two footing widths (Sowerso 1970)" Tn the case of tunnels,

Terzagltj- (lg tl ) s bates that rrAt el-evations of more than 5B

(tr^to and a haf f tunnel- r,¡idths) above the centerl-ine n the lower-

ing of the strip seems to have no effect at' all on the state

of stress""".rr Thus according to efastic theory only a

narro\^¡ zone in -t,he vicinity of the boundary load i-s af f ected.

Other tunnel projects besides the one analysed here have

indicated that defornlations extend far beyond the tunnel wall-
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(Rowe and Kack , 1983). consequently the validity of using
model-s utilistl.ng elastic theory (linear and nonlinear) i-s

questionable. rt may very wel-l be that creep model-s or
el-astic-plastic models provid.e better approximations of soil-
deformation in the vicÍnity of a tunnel-. As a matter of
fact aecording to the model used in this study a few el-ements

ürere in a state of failure, i-rnplying a zero shear modul-us 
Srrd

a small finite value had to be assigned to each of these el_e-

ments to prevent a non-operative situation. Hoi,¡ever the com-

puted deformations r^rere not appreciably affected by these few

elements. The occurrenee of a plastic state in some elements

sugþests that the use of an elastic-plastic imodel might be

more appropri-ate. The use of other model-s !¡as beyond the
scope of this study.
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CONCLUSTONS

This praeticum has investigated the applicability of

a nonlinear load-deformation finite element program for

estimating deformations associated with soft ground tunnel-

ling in l,riinnipeg. Based on the results of the investiga-

tion, the followi-ng conclusions have been drawn.

1. The finite element method can be a very powerful

tool- when used. correctly and its limitations are

understood.

2. The bulk modulus of each element renained essen-

tial1y constant for the entíre stress changerange.

3. The shear modulus und.erwent large changes (up to

100/') with stress changes in the soil indicating

that the nonlinearity is primarily due to shear

def ormati-ons.

lr. There was very good agreement between the pre-

dicted d.eformati-ons at the tunnel wall and the

obs erved.

5. Agreement between the predicted and observed defor-

mations beyond the tunnel wall were poor. The ob-

served deformations decreased linearly with dis-

tance whereas the predicted approached zero asymp-

to tica1ly.
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RECOMMENDATIONS

Based on the results of this investigati-on, the follow-

ing reeommendations have been suggested.

1. A future topic for study could be to investi-gate

íf tunnel deformations respond better to a creep

model in which K & c = f(t).

2. A compilati-on of all- perti-nent data from existing

case histories could be obtained so that design

charts or curves similar .to Peck et al- may be de-

veloped for use in hli-nnj-P"g:

3, A future study to establish the long term earth

pressures around the tunnel in l,rlinnipeg clay or

til-l- would also be useful-.
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APPENDIX A

Chapter IV of Domaschuk and Val-liappan (197/r) Aescribes

the specific testing details and the complete bulk modulus

derivation. The following is a brief summary of that

chapter.

The results of the i-sotropi-c compres sion tests clearly

indicated the stresi-strain relationship was nonlinear. As

shown in Figure 17, the increase in volumetric strain (ev)

decreased with increasing isotropic stress (or). They al-so

found, the bul-k modulus behaved differently above and below

the preconsol-idation pressure (pct). Above Pcr, in the nor-

mally consolidated region, the bulk modulus varied linearly

with stress level. Below Pcr, in the overconsolidated re-

gi-on, the bulk nodul-us remained nearly constant.

The isotropic compression results also indicated that

soil typ" (as defined by its plastic limit) affected. the rate

of change of r' and om. Specifically, soi-ls havi-ng 1ow plas-

tic indecies (p.1.) underwent l-ess volume change than those

with higher P.I.ts (tor the same initial void ratio (eo) and.

i-sotropic stress (or)) as shown in Figure 18.

In the program developed by Domaschuk and Valliappan

(l9llr) , a three parameter relationship was chosen to repre-

sent the isotropic stress-strain behavi-our observed in the

laboratory. The basic equation i^Ias given by:
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l+"1

n-r
E vm

Õ

o e {t + ] (ar )
mc vc

where o,n & r,, = isotropic stress and. strain
re spectively

"*" & rrr" = characteristic values of isotropi_c

stress and strain respectively
n = shape parameter

Tlie values.of omc, evc, and n for each material_ type.hrere

eval-uated by the method of least squares to obtain a best

fit solution. Knowing the value of Õm, it is possible to
sol-ve for e__ using Newtonl s method of iteration.V

The sol-ution for the bul-k modulus lras then obtained

simply by differentiating equation A1 with respect to r'
yielding:

doom mc
ãd = K = .-g {1 * n

VVC l+"1'-',
(az ¡

U
mwhere the initial bulk modulusc
vc

Equation A2 hras then used di-rectly in the finite element

program.
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APPENDTX B

Chapter V of Domaschuk and Val-l-iappan (1971.) aeseribes

the specific testing details and the complete shear modulus

(C) derivation. The followi-ng is a brief summary of that

chapter.

The results of the constant-mean-normal triaxial- tests

elearly indicated. a nonl-inear relationship existed between

the principal stress difference (ot - Õ3) and axial strain
(et). As shown in Eigures 19 to 21, the rate of change of

(ot - o3) decreased with increasing axj-al strains.

The plots of vol-ume strain ( ev ) vs axial strain ( e r ) ,

al-so shown in Figures 19 to 21 , indicated the vol-ume change

was a function of the rreducedl overconsol-idation ratio
o

(Þ+). The samples with ratios less than 0.6 exhibited. posi-
c

tive dil-atency ( i. e. - expansi-on) , while those wj-th ratios

greater than 0.6 exhibited negative dilatency.

Domaschuk and Valliappan chose to use a hyperbolic re-

lati-onship to describe the resultant deviatoric strest (SA)

vs resultant deviatoric strain ( eU) behaviour for various re-

duced overconsolidation ratios. Due to the poorly defined

final portion of the curve, a failure ratio (Rf), defined as

the observed failure stress to the asymptotic value of the

model, r,¡as determi-ned statistieally for each test, the

average resul-t ldas Rt = Q"82.

Log - log plots of the resul-tant deviatoric stress at
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failure (Sr'.) with a normalised variable, defined by #,' ol- c o
clearly indicated a linear relationship existed, from which

the following failure criterion was obtained:

1 O0{
o

m

Þ]ã-co
Ìß (s.r)df

in which S df

0

viatoríc strress at fail-ure ( S

plasticity index (for any giv

c1ays. The opposite hras true

fn the program developed

the resultant deviatoric stre

by:

resul-tant deviatoric stress

at failure
preconsolidation pressure

effective-mean-normal stress

initial void ratio

1j-near regressi-on coeffi-ci-ents

in log - log plotting, referred to

as fai-l-ure criterion parameters

I
c

m

P

Õ

ô
o

&ß

Comparing the individual failure criterj-ons for the

brown and blue clays it was apparent that they behaved dif-
f erently. As shown in Fi-gures 22 and 23, the resul-tant de-

.o) decreased with increase inQrÕ
men ã# ratio) for the brown

co
for the blue cIays.

by Domaschuk and Valliappan,

ss-strain curve hras given

e.Goo (n "z)d
o

ù *be
d

LI
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where S & the resul-tant deviatoric stress

and strain respectively
initial- tangent modulus

reciprocal of the asymptoti-c value

of the resul-tant deviatoric stress

d e

ïnvestigating the effect of initial void ratio
ratio of mean normal stress to the preconsoli-d.ation

on the initial tangent modul_us (C
o ) i^ias d,one by

6lt

and the

pressure

combining
G

m

(8.3 )

(B. t-)

d

Go

b

G o

o ')í 10

the
o

m

F'G-co

o .mano' pÇ-.co
The variation of .orog õ- wl-thvariabl- e s

ind.icated a linear relationship existed in the form:

o
m

G-o
Logrr(f)={-B(Þ*)

m -c-o

where A & B semilogarithmic regression

co efficient s

Rewriting equation 8.3 gave the general sol_ution:
o

m

Þ'le-co
{a B( )]

LT
mo

A linear regression analysi_s of equation B./+ indi-
cated that for the brown c1ays, located at depths above

23 feet, A and B were constant, being equal to 2.32g67g0

and 1 .1157 590 respectively. B el-ow 23 f eet, in the bl_ue

c1ays, only B was considered a constant, being equal to
0.811/þ248. The coefficient A, on the other hand, was ex-

pressed as a function of the plastic ind.ex and given



o)

by:

gave !

where

A

C&D=

10"
(-P
regression

by 0.88573

(s.¡)

(s.¿)

to

the

eoeffj-eients given

and 0.348 respecti_vely

Differentiating equati-on 8.2 with respect to gd

ds.d
ã;

d
G (r bS 2G )o d

As explained earl-j-er, the asymptotic value was related.

the observed resultant deviatoric stress at fai_lure by

f a j-lure ratio, Rf t

sat = Rf +t sdrr-t = Rf )t

'Expressing the value of SU,. in terms of the

terion, defined by equation B.'1 , equation B.

4ù.

R

1

b
(8.7)

failure cri-
7 was rewritten

(n.a¡

(B.g)

R
b ffË-

"df o
mffi-co

s{ Ì ß
10

Substituting for b, equation B.d became:

s
G {t

o o
d*r(t¡ )l'

.,oo{ff}
co

ß

which was used directly in the finite er-ement program.
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APPENDIX C

The Displacement Method involves introdueing a function
that will- approximate the element displacements at each node.
The displaeement moder- chosen depend.s on two factors; first,
the aceuraey requirecl, and. second, the degrees of freedom as_

soeiated with eaeh node. rn this program, a very simple model
has been used (l-inear) which eoïresponds to the two degrees
of freedom as each node (i.". - the displacements in the
X & Y direetions), and is gi_ven by:

For the three node el_ements

constant strain triangles),
used i-n this case (ref erred t.o as

equation (C.f) ¡ecomes:

(c.2)

{u} =

where {u} =

loj =

{s} =

iqÌ
whore {q}

or io]
-1

[a] =

Io] t ol

vector of dispJ_acement

with'i n the el-ement

generalized coordinate

vector of generali_zed

at any point

mo del

di spla c em ent s

(c.1)

=[a]{o}
ui
Lr.;

1[
v¡

vkI

[a] 1xy000
1xyO00
1xy000
0001xy
0001xy
0001xy

- _-1
IAJ { q}

displacement transformation matrix
vector of nodal displacements

where

{q}

(c.3)



From equations (C.l ) and (C .Z ) it fol-l-ows that:
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[o] hl-'{ q} (c ./,)

d,isplacements at any point (*,y) within the

of nodal displacements { q} .

displacements and strains are related by .p-
of elasticity as follo'hrs:

{u}

which represents

el-ement in terms

The element

plying the theory

e
du
dx ú2

dvdu
õy 0,3 + 0s

dv
a; 05x v

Y +

from which

{ e} [eoJ { o}

where {o}

{ei

Substituting equation (C.l) into (c.l) t

dx

(c. s)

= [ol oooo-l
lo o o o o 1l
10010101

IBol

,l{i

01
A,z
03
04
0,5

0e

{e}

or {e}

where { e}

-]
[noJ lai { q}

[n] { q}

vector of strains at any point

within the element

strain displacement matrix for
generalized coordinates

(c.e)

(c.z)

[Bo]



[s]

4È ¡

{o} =

[c] =

strain displacement matrix for
interpolation models
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(c.e)

The general stress-strain rer-ationship for a plane strain
case, in terms of the bulk and shear modul-i (r & G) can be

expressed

where

[c]t'l
fr + /,c/ 3

lt + 2G/3

Lo
K + 2G/3
K + /rc/3

U

{o}0

0
X

v

x)¡

U

T

in r¿hi ch [C]

{o}

{ e}'{ o} dv

stress-strain matrix, which depends

entirely on the material properties
vector of stresses at any poi_nt

within the el-ement

combining equati-ons (c.z) and (c.a¡, the following relation-
ship develops:

{ o} = [c] l¡l tq] (c.s)

The element stiffness matrix and l-oad vector can be form-
ulated by using the principle of virtual_ displacenents, which
states that the external work done on the body (q) must equal
the internal work done on the stresses in the body (l,t). The

element stiffness is determined by equating the work quanti-
ties. The internal work is given by:

]{w
l_ vo1

(c.ro)



while the external work is given b]r:
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(c.rr)

(c.tz)
(c.r:)

{a}

where iX] =

{T} =

t_
I twi'{x} dv

J vol

vector of known

vector of known

i-ntensitie s

a [¡]'[c] l¡l

dA

body force intensities
surface traction

many of

r ',,J"".:"]'{ti

By

the

applying the appropriate variational principles
terms vanish, leaving only:

{0} =.[r<]{q}
where tr.l = |' Irl'ic] l¡l dv

'vol

For plane strain erements the vor-ume i-ntegral is simpry
area of the element, as its depth is always unity. This
plies thè element stiffness is gi.ven by:

the

im-

(c.tt)[t]
where A el-ement area




