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ABSTRACT

The applicability of a nonlinear load-deformation
finite element program, developed at the University of
Manitoba, to the problem of estimating the deformations
associated with soft ground tunnelling operations in
Winnipeg was investigated in this study. By using actual
geotechnical data (i.e. - moisture contents, plasticity
indecies, etc.) from a closely monitored and well docu-
mented tunnel in Winnipeg in the finite element model, it
was possible to assess the accuracy and limitations of the
program by comparing the computed values with the measured
field values.

The model provided very good estimates of deformation
at the tunnel wall, however the agreement between predicted
and observed deformation at points away from the tunnel wall
was poor. |

The deformations according to the model approached zero
asymptotically with radial distance from the wall, whereas
the observed deformations decreased approximately linearly

with distance from the tunnel wall.
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INTRODUCTION

Deformations resulting from tunnelling operations in
soft ground have been a concern for many years. In todays
cluttered urban areas, these deformations not only affect
surface structures, but also the multitude of buried ser-
vices such as gas and water lines. As well, knowledge of
the deformations is useful in determining the short and long
term stability of the surrounding soil mass and in calcula-
ting tunnel support and liner requiréments. Consequently,
accurate estimates of the magnitude and distribution of these
deformations prior to construction, particularly for large
diameter tunnels near the ground surface, is essential for
safe and economical tunnel design.

At present there are no simple reliable methods for ac-
curately calculating or predicting these deformations. The
variables involved are just too numerous to incorporate into
a closed-form solution. In recent years the development of
numerical methods and various computer technigues such as
finite elements, have made it possible to model soft ground
tunnelling operations more realistically.

The majority of finite element investigations in soft
ground tunnelling (Hardy et al, 1981 ; Hoyaux and Ladanyi,
1969) have used linear analyses and the results were not sat-
isfactory. It is realised that nonlinear analyses offer a

better representation of the physical problem (Desai and



Christian, 1977) and therefore yield better solutions. Un-
fortunately, three problems are generally associated with
this technique:

1) Commercially available programs are expensive.

2) The nonlinear model describing the soil behavior

is seldom fully understood by the user.

3) The deformation parameters necessary for the

analysis are difficult to quantify.

The purpose of this practicum is to investigate the ap-
plicability of an inexpensive nonlinear finite element pro-
gram, developed at the University of Manitoba, to the problem
of estimating the deformations associated with soft ground
tunnelling operations in the.Winnipeg area. This was done by
modelling an existing closely monitored and well documented
tunnel in the Winnipeg area. Using geotechnical data from
the site in the finite element program made it possible to
assess the accuracy and limitations of the program by compar-
ing the-computed values with the actual values observed in the

field.



CHAPTER II

2.0 METHODS OF PREDICTING GROUND MOVEMENTS ASSOCIATED WITH

TUNNELLING

The literature contains several studies on tunnel design
in soft ground (Muir Wood, 1975; Peck et al, 1972; Henkel,
1970). However the majority are only concerned with estima-
ting stresses around the tunnel. Although useful, this infor-
mation is only a small part of what is required for a complete
tunnel design.

More recently, attention has been given to estimating de-
formations associated with tunnelling operations in soft
ground, which is more useful. From a designer's point of view,
knowing the anticipated deformations makes it possible to
assess the short and long term stability of the surrounding
soil mass; to calculate support and liner requirements; and to
specify construction practices. From a contractor's point of
view, stresses are meaningless as they are not visible, only
their effects are; namely strains, distortions, displacements,
and ground surfaée settlements. Conseqﬁently, if these defor-
mations can be predicted accurately in advance of the excava-
tion, better all-round tunnel design and pperations can be

effected.

2.1 EMPIRICAL METHODS

Empirical techniques for predicting ground movements are



not very common in the literature. Clough and Schmidt, 1981
cite the major reason for this as being the complexity of
the deformations associated with tunnelling. Displacements
at the tunnel face are three dimensional, moving both
axially toward the advancing tunnel and radially toward the
tunnel walls. The authors suggest that for an order of mag-
nitude assessment of probable displacements this complexity
may be ignored, and it can be assumed that the tunnel is ex-
cavated instantaneously such that displacements are only
radial. With this in mind, an empirical solution for calcu-
lating the loss of ground is presented from which an approxi-
mate ground settlement curve can be made. The solution is
based on the theoretical tunnel dimensions and the actual
volume of soil removed, as calculated by summing the theor-
etical displacements around the periphery resulting from the
stress reduction. The.solution assumes elastic conditions
prevail in the soil and zero volume change in the plastic
zone.

Rowe and Kack (1983), suggest the best summary of em-.
pirical solutions is contained in a paper by Peck_(1969). The
authors feel these solutions when applied with appropriate
judgement, may yield quite adeqﬁate and economical designs.
However, it is emphasised that empirical solutions are subject
to some important limitations; first, the limited information
on the distribution of deformations throughout the entire soil

mass; second, their applicability to different tunnel geome-



tries and construction techniques; and third, the consis-

tency of the results.
2.2 NUMERICAL METHODS

Recent advances in theoretical solutions using numeri-

cal methods, such as finite elements, have indicated a
potential for estimating deformations due to tunnelling, yet
their application is still quite limited (Row, Lo, and Kack,
1983). The finite element method has made it possible to
overcome the complex boundary conditions, nonhomogeneity,
anisotropy, and nonlinearity typical of many geotechnical
problems. Unfortunately, our ability to incorporate the ap-
propriate stress-strain characteristics of the soil has not

progressed sufficiently.
2.2.1 Linear Analyses

Earlier studies (Hoyaux and Ladanyi, 1969; Ghaboussi,
1978; Tan and Clough, 1980; Hardy et al, 1981) using linear
finite element analyses to predict soil movements due to
tunnelling in soft ground have displayed promising results
in sbme ihstances; It is generally agreed however, that
there has been insufficient consideration.given to the gen-
eral theoretical and practical factoré hecessary for these
techniques to'yield consistently good results; To illus-

" trate this point, the 'reasonable'! correlation between field
observations and computer analyses described in several of
the‘studies weré attained only after revising the elastic .

parameters (Hardy et al, 1981).



Clearly this technique of revising parameters can not be used

in a design office to predict deformations.
2.2.2 Nonlinear Analyses

Rowe and Kack (1983) describe a theoretically based de-
sign procedure suitable for different soil types, construction
methods, geometries, etc. using an elasto~plastic finite ele-
ment program. In an earlier paper (forming part of a series
on soft ground tunnelling), Rowe, Lo, and Kack (1983) describe
the technique used in their study, and illustate it with a com-
prehensive parametric study. The analyses were performed using
a plane strain elasto-plastic finite element program (EPTUN)
developed by the authors. The plastic behavior was modelled
using a Coulomb-Mohr failure criterion and a nonassociated flow
rule. The constitutive: equations made use of Young's Modulus
and Poisson's Ratio. Assumptions in the analyses included no
dilatencytforsoft or loose soils, and an isotropic drained
response of the soil. |

Based on four case histories, the authors felt their theory
provided reasonable predictions of ground movement, prior to
construction, in most cases, requiring only a limited knowledge
of the soil profile, tunnel characteristics, and construction
methods. However, the authors emphasize that there are certain
situations where the proposed theory and current empirical ap-
proaches would not provide satisfactory éstimates; specifically
in circumstances where large volume changes within the soil are

possible.



CHAPTER TIT

3.0 PROPOSED METHOD

As described in Chapter ITI, the finite element method
is a recognised and trusted technique in geotechnical engin-
eering. The problem in its use is incorporating the appro-
priate geotechnical stress-strain or deformation character-
istics of the soil, as it is difficult to evaluate the insitu
characteristics from laboratory testing.

The deformation characteristics of an isotropic homo-
geneous elastic solid can be described by two parameters.
These car be Young'é Modulus (E) and Poisson's Ratio (v), the
Bulk Modﬁlus (K) and the Shear Modulus (G), or Lame's Con-
stants. Most studies have attempted to use non-constant
Young's Modulus derived from standard triaxial compression
tests to describe nonlinear behaviour (Hoyaux & Ladanyi,
1969). However, the relationship between the principal
stress difference (q) and axial strain (e1) in the standard
triaxial test doeé not represent the true deformation charac-
teristics of a soil. The method only considers the change in
major principal stress and does not reflect the overall
stress conditions in the soil.. As well, determining an ap-
propriate value of Poisson's Ratio is difficult in this
method, and in many cases it is simply assumed to be constant.

The approach followed in this study utilises the work of



Domaschuk and Valliappan (1974) in which the nonlinear be-
haviour of Winnipeg (Lake Agassiz) clays was characterised

by non-constant bulk and éhear moduli (K & G ). Their study
established a technique whereby these parameters were deter-
mined as functions of soil properties and stress level. The
primary reason for choosing the deformation parameters K & G,
is that each is associated with separate physical components
of soil behaviour. The bulk modulus is associated with
changes in mean normal stress, while the shear modulus is as- .
sociated with changes in shear stress., Similarly, each can

be evaluated independently by appropriate laboratory testing.
3.1 DEFORMATION PARAMETERS

In general, the state of stress at a point can be repre-
sented by three principal stresses and their respective
directién cosines. For a cubical element, the magnitude and
direction of these stresses can be represented by vectors act-
ing on each face, as showh in Figure 1a. These principal
stresses can be separated into mean normal components and
deviatofic components as shown in Figures 1b and 1c, respec-
tively. The mean normal stress (om) and resultant deviatoric
component (Sd) are given by:

.0y + 0, f O3

o, = ; (3.1)

Sst sty s (3.2)

[#5]
n



(a) General stress

"
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Figure 1: Typical State of Stress at Point
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in which Sy = 01 = 0. 4, S; = 0y =~ o, S3 = 03 = O

m m

By the nature of its formulation, the mean normal stress
(om) is only associated with linear strains which result in
volumetric changes. The resultant deviatoric component is
associated with shearing strains which tend to produce distor-
tion and dilatency effects. The mean normal strain (em) and
resultant deviatoric component (ed) are given by:
€1 T €2 + €3
€n = 3 (3.3)
2 2 2
2/ (er = e )+ (ea - e ) 4 (65 - e ) (3.0)

£q
The general constitutive relationship for a homo-

geneous, linear elastic material exhibiting small strains,

can be expressed in terms of the bulk and shear moduli as

follows:
055 = K ey 855+ 26 (e55 - 2 ey 85 5) (3.5)
where Oij & Eij = the stress and’strain components
respectively.
€1k =_the cubical dilation.
6ij = the Kronecker delta.

Equation (3.5) can be resolved into a mean normal component,

given by:

(e} = 3K€ . (3~6)
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and a deviatoric component, given by:

84 = Gegq (3.7)

3.1.1 Bulk Modulus

The bulk modulus is one of the constitutive parameters
used in this study. It reflects only one physical component
of behaviour and can be evaluated independently in the lab-
oratory by dfained isotropic triaxial compression tests.

The bulk modulus (X) which relates isotropic stress (om)
and-volumetric strain (ev) was given in equation 3.6. Since
the relationship is generally nonlinear, the bulkvmodulus may
be defined as:

=lin S e (3.8)
: A€V+O Aev dgv N

Several factors can affect the bulk modulus, particu-
larly soil type, initial void ratio, the magnitude of iso-
tropic stfess, sample disturbance, etc. In the work of
Domaschuk ana Valliappan many of these were investigated. The
results indicated the governing factors were soil type and
isotropic stress level. The insitu Qoid ratios fell in such
a narrow range for each depth investigated, that they ﬁere
not considered in the analysis. The expression used in the

study was given by:

K, = K; (1 + nesgl) (3.9)
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where Ki initial bulk modulus

£ normalized volumetric strain

vn
The specific testing details and complete bulk modulus deri-
vation can be found in Chapter IV of their report. A brief

summary of that chapter can be found in Appendix A.
3.1.2 Shear Modulus

The shear modulus is the second constitutive parameter
used in this study to describe soil behaviour. Like the bulk
modulﬁs, it reflecﬁs only one physical component of behaviour
and can be evaluated independently in the laboratory. In this
case the test required is a constant-mean-normal triaxial com-
pression test. |

The shear modulus (G), which relates the deviatoric
stress (Sd) and the deviatoric strain (sd) was given in equa-
tion 3.7. Since the relationship is generally nonlinear,, the
shear modulus may be defined as:

, AS, 48
_1lim d _
G = T = (3.10)

[N

[oX}
joN)

Aed+0 €

[oN

Domaschuk and Valliappan investigated several of the factors
which affect the shear modulus, ,particularly the mean stress,
void ratio, overconsolidation ratio, strength, sample distur-
bance, etc., in order to obtain a solution for the shear

modulus of Winnipeg (Lake Agassiz) clays in a functional

form. The expression used in their study was given by:
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S4 2
Gy {1 - Ry = 'B)} (3.11)

m
10¥ps 1
c O

1l

in which Gi initial shear modulus

j=s}
il

failure ratio

f
Sd = resultant deviatoric stress
Oy = effective-mean-normal stress
P; = preconsolidation pressure
ey = initial void ratio
@ & B = linear regression coefficients

The specific testing details and complete shear modulus deri-
vation can be found in Chapter V of their report. A brief

summary of that chapter can be found in Appendix B.

3.2 FINITE ELEMENT ANALYSES

The nonlinear stress-strain characteristics of Winnipeg
(Lake Agassiz) clay, as per Domaschuk and Valliappan were in-
corporated in a nonlinear load-deformation finite element
program. In this study, that program was used. for the pro-
blem of predicting deformations associated ﬁith tunnelling
in Winnibeg.

The most important consideration when using any finite
element method program is that it does not yield exact solu-
tions. At best, the solutions are very good approximations.
The ﬁethod felies on various 'approximate numerical methods'

in its formulation as there are no closed-form solutions.
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As well, there is always some doubt regarding the accuracy
of the material properties used in the analysis. Conse-
quently, the results are not exact, yet they are far better
than any 'hand-method' or educated guess could ever offer.

Complete explanations of the finite element method can
be found in several publications. Zienkiewicz (1971), Desai
& Abel (1972), and Desai & Christian (1977) all expléin the
mathematical aspects of the method systematically, along
with several applications of the method to various geotech-
nical problems. For completeness, a brief summary of the
method fdllows.

In general, the finite element method consists of five
separate steps. The first step is to discretize the global
continuum into an equivalent system of smaller local continua
called 'finite elements' as shown in Figure 2. The choice of
orientation‘and size of elements-is arbitrary. This allows
the usér to build a mesh.which will account for nonhomo-
geneity (e.g. layered soils) with a minimum of difficulty.

As well, by considering more elements in the analysis, the
mathematical model is improved and more accurate reéults can
be realised. However, this improvement is achieved at the
expense of increased computing time,

The second step involves analysing each element in turn
on the basis of its physical properties and constituitive re-
lationships. Various methods of analysis, all derived from

the principle of conservation of energy, are available for
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this step. Commonly, minimum potential energy is used
(Desai, 1977), that is, in any elastic body, the work done by
the external static forces is stored optimally in the dis-
placed shape as a minimum strain energy of distortion. The
mathematical aspects of this step, often referred to as the
Displacement Method, are presented in Appendix C.

The third step in the finite element method is referred
to as the Direct Stiffness Method. This step assembles the
local element stiffness matrices into a global stiffness
matrix using the principle of superposition. As each element
has been analysed locally, the stiffness of any given node is
based only on that element. In.the global system, any given
node may interconnect any number of elements. The total
stiffness of the node is the summation of all of these ele-
ments. This process satisfies the compatibilify of displace~-
ments at the nodal points relative to the global continuum.
It does not satisfy the displacement compatibility along
the element's edges.

The final two steps involve combining the known boundary
conditions and external loadings with the global stiffness
matrix of step three, thus satisfying the equilibrium'of the
system. The equations are then solved, yielding first the
unknown displacements and second the element strains and
stresses.

For the particular study dealt with in this project, a

plane strain, nonlinear finite element program was used for
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the analysis. Many three-dimensional problems, such as
tunnelling, can be modelled in two dimensions. The simpli-
fication arises from the fact (or assumption) that the dis-
placements of the system are developed only in one plane.
For the problem of tunnelling, it is generally assumed
(Ghaboussi et al, 1978) the tunnel is excavated instan-
taneously such that the displacements are only radial, ig-
noring any in the axial direction. The result is a two-
dimensional problem that need only consider a strip of unit

thickness as shown in Figure 3.

3.2.17 Nonlinear Analyses

The basic concept of the finite element method is in-
dependent of whether linear or nonlinear anélysis are per-
formed. However, certain factors must be considered when
doing nonlinear analyses. The first step is to choose the
type of nonlinear behaviour associated with the problem.

Ih general, nonlinear behaviour can be divided into
three categories:

1. Material nonlinearity, which arises from non-

1iheafities in the constitutive equations.

2. Geometric.nonlinearity, which arises from large de-

formations and geometric changes in the structure
and elements.

3. Combined geometric and material nonlinearity.
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Figure 3: The three dimensional problem of tunnelling
can be modelled in two dimensions by taking

advantage of the symmetry of the system.
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In this study, the effect of geometric nonlinearity was ex-
pected to be insignificant as the displacements under the
normal range of loads are small relative to the dimensions
of the continuum. Consequently, this study has been con-
cerned only with material nonlinearity.

As described in Chapter II, in order to simulate any
nonlinear behaviour it is necessary to adjust one or more of
the deformation parameters in accordance with‘internal stress
changes. This implies that they must reflect changing stress
.conditions resulting from load application and/or removal.

In this study, the adjustment was made to the stress-strain

matrix [C],: and is known as the variable or tangent stiff-

ness method. Cleariy to make these adjustments an iterative
approach was mandatory. ‘

The simplest and most common iterative solutions involve
an incremental or stepwise procedure. The basis of this tech-
nique is to subdivide the load into a number of small incre-
ments, and apply them one at a time. At the beginning of
each new load increment approximate moduli values are selected
for each element on the basis of the existing stresses and
strains in that element. The load increment is then applied
and the resulting stress, strain, and displacement changes
are calculated and added to the previous values. These new
values are used to establish new moduli values.

Another common technique, referred to as the midpoint

Runge-Kutta procedure, determines a new [C] matrix for the
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stresses and strains associated with applying one-half of
the load increment. This stiffness matrix is then used for
computing the stresses and strains for the required full in-
crement. As with the full increment method, the change in
stress and strain are added to the previous values, and the
procedure is repeated until the entire load has been applied.
Essentially, these techniques approximate nonlinear
behaviour as a series of linear steps as shown in Figure 4.
Obviously the more steps taken in reaching the total load,
the better the accuracy. Unfortunately, this accuracy is
achieved at the cost of additional computer time as new
stress-strain matrices must be determined for all elements
in each load increment. The program used in this study in-

corporated both nonlinear techniques.
3.3 THE FINITE ELEMENT PROGRAM

The finite element program investigated in this study
was originally developed by Domaschuk and Valliappan in 1974
to analyse the stresses and displacements of various non-
linear axisymmetric problems in geotechnical engineering.

The program had two main features which made it parti-
cularly useful to this study: first, the constitutive por-
tion of the program made use of either Young's Modulus (E)
& Poisson's Ratio (v), or the Bulk Modulus (K) & Shear
Modulus (G) as the deformation parameters; and second, the
program had been designed specifically for a nonlinear

analysis of the Winnipeg (Lake Agassiz) clays.
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The basic formulation of the program (i.e. the element
and global stiffﬁess matrices, the equation solver, and the
stress solution) follows the one developed at the University
of California by Wilson (1967). The basis for the incremental
method of nonlinear analysis follows a. program developed by
Desai (1968). Since its formulation, the program was only
used on one or more occasions. Recently, Yong (1983) studied
the contribution of the bulk and shear moduli to displacements
using thé program. As a result the program was better de-
tailed and also updated to handle metric units. The program
has since been modified to suit thé requirements of the par-
‘ticular iunnelling problem being considered.

In an attempt to model the tunnelling operation it ﬁas.
decided to change the program's axisymmetric formulation to
that of a plane strain problem. By simply replacing the com=-
ponents of the third row and column of the stress-strain
matrix with zeros, the program automatically recognized the
plane strain condition.

A second modification to the program was required to
keep the shear modulus (G) from going to zero in the itera-
tive solutions. The heéd for doing this arises from the fact
that some of the elements go into a plastic stress state at
large boundary loads, before a general state of failure has
occurred. The method chosen involved limiting the change
and/or magnitude of the shear modulus to some minimum value.

The program changes necessary for this modification only
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affected the subroutine which calculated the shear modulus.
The first step was to limit the change of decreasing
shear moduli between successive iterations to some arbitrary

value. The number chosen was given by:

1
A _ -
max = §f increments

If the calculated change exceeded this valﬁe, a revised

shear modulus (Gnew) was given by:

Gnew = (1 - Amax)-*Gold

This implied if 5 increments were specified, the maximum
change in any given increment would be 20%.
The second step was to establish a lower bound on the

shear modulus. This was chosen to be 1350kPa.



CHAPTER IV

4.0 MODELLING THE TUNNEL PROBLEM
4.1 TUNNEL DETAILS

In July 1978, Hardy Associates (1978) Ltd. and R. V.
Anderson Associates Ltd. began a Tunnel Instrumentation
Project for the City of Winnipeg, Waterworks, Waste and
Disposal Division; the objective being to enhance the de-
sign and minimize the cost of future tunnel construction in-
the Winnipeg area. o

Located near the North End Water Pollution Control
Plant in Northwest Winnipeg, the tunnel strikes east to
west at a centerline depth of 12.7 m, with a 2.0 m outéide
diameter. The tunnel was hand-mined without a shield at a
rate of approximately 3.0 m per day. Primary lining waé not
required; The interior formwork consisted of steel ribs and
timber planks, which were also remoﬁed at a rate df 3.0 m per
day following a curing period of 3 days. Liner concrete was
piaced to within approximately 1.0 m of the tunnel face each
~day. | |
| The tunnel was monitored at the'Ndrthwest_lnteréeptor,
some 50 m west of the northwest corner of the treatment |
plant site. The sdil and liner instrumentation used at the
site included piezometers, settlement plates, a slope indi-

cator, earth pressure cells and embedment strain gauges. The

24
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\
instrumentation layout is shown both in plan and section in
Figure 5. Details of the instrumentation can be found in

Chapter 3.0 of Hardy's report (1981).
L.2 SOIL INFORMATION
L.2.1 Sources of Information

The geotechnical information used in this study was
correlated from two sources; the detailed site investigation
conducted by Hardy Associates (1978) Ltd. and a report on tﬂe
nonlinear behaviour of Lake Agassiz clays by Domaschuk and

Valliappan (1974).
4.2.2 Soil Profile and Index Properties

Hafdy's investigation, which was done at the location
of the riser pibe shown in Figure‘5, included the usual rou-
tine sampiing along with several vane shear and pressuremeter
tests. The results of the testing program, along with the test
borehole log, are shown in Figure 6. |

SOil stratigraphy at the instrumentation site is typical
of the Winnipeg area, being comprised of a thin cover of top
soilvover varved, lacustrine clays. The surficial clay de-
posits are brown, becoming mottled from about the 2 m depth
and grey from about the 7 m depth. The transition in color is
gradual. A 1 m layer of tan silt exists within the upper 3 m

of the profile. The clays are highly plastic (CH) with
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BOREHOLE LOG
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Figure 6: Original Borehole Log, After Hardy et al (1981)
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plasticity indicies ranging from 40 to 77, and tend to de-
crease slightly with depth.

The moisture content profile is relatively uniform with
some evidence of drying or dessication within the surficial
3 to 4 m depth. Bulk densities ranged from approximately
16.3 to 18.3 kN/m>. Undrained shear strengths varied from
approximately 50 to 125 kPa based on field vane shear tests

and 25 to 60 kPa based on unconfined compression tests.
4.2.3 Properties Chosen for Finite Element Modelling

The borehole log contained in Hardy's report extended
only to 12.2 m, while the dimensions of the finite element
model required a depth of approximately 17 m. The remainder
of the basic gebtechnical data (moisture contents, specific
gravities, plasticity indicies) were obtained from Domaschuk
and Valliappan (1974) in the belief their study was represen-
tative of the Winnipeg area (Baracos,>1961). The extended
borehole and associated data is shown in Figurev7.

Where possible, the basic geotechnical data used in the
program was comparéd with publishedvvalues (Graham et al,
1982) to assure reasonable magnitudes were being considered.
In the pfdgram output, the calculated insitu bulk and shear
moduli were also observed and are shown in Figures 8 and 9.
The calculated bulk modulus shows excellent correspondence
with Graham's work, while the shear modulus shows only satis-

factory correspondence.
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The nonlinear behaviour of the Lake Agassiz clays used
in this study have been described by.the failure criterion
developed by Domaschuk and Valliappan (1974). The failure
criterion, which is in terms of resultant deviatoric stress
at failure and constant-mean-normal stress has the advantage
of incorporating the effect of the intermediate principal
stress. As well, it does not require the orientation of the
failure plane for comparing the prevailing state of stress
to the failure stress at any point within the mass. A'com-
plete description of the failure criterion formulation can
be found in Appendix B. TFor the purpose of clarity, it is

expressed here as follows:

% .8

Sqp = 100‘{?;‘5;} (4.1)

in which Sqf = resultant deviaforic stress
at failure

P; =.preconsolidation pressure

o, =.effective~-mean-normal stress

e, = initial void ratio

¢ & B = linear regression coefficients

in log-log plotting, referred to

as failure criterion parameters

Clearly these parameters were not contained in Hardy's
site investigation, and consequently they had to be inter-
preted solely from Domaschuk and Valliappan's report on the

basis of physieal descriptions of the materials.
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The coefficient of horizontal earth pressure (Ko) was
intentionally chosen equal to 1.0 to facilitate calculating
the boundary loads on each element in the tunnel. The need
for this assumption arises because the.program can not dis-
tinguish what portion of the applied load is vertical and
which is horizontal on the elements with sloped faces. It
should be noted that this assumption is common in other
finite element sfudies such as.Hoyéux and Ladanyi (1969) and

Hardy et al (1981).
4.3 TFINITE ELEMENT MODEL

The finite element model used in this study is shown in
Figure 10. It.contained>165 elements, 186 nodes, and was
separated into 4 different soil types within the continuum.
The general orientation and dimensions of the model are simi-
lar to those used by'Hardy.et al’(1981)bthus allowing correla-
tioﬁ between the two studies.

As described previously, the borehole log shown in
Figuré 7 is typical of the Winnipeg area, and specifically
the tunnel site, and implies there is symmetry about any
vertical line in the continuum. This symmetry allowed the
modeiling of only one-half of the continuum (in the hori-
gzontal direction)'ﬁsing the centerline of the tunnel as the
axis of symmetry and one vertical boundary. The second ver-
tical boundary was placed .7 tunnei diaméters away, where it

was assumed boundary influences would be at a minimum. Both
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of these boundaries (with the exception of the tunnel open-
ing) were congidered restrained in the horigzontal direction,
allowing only vertical displacements.

The upper horizontal boundary (ground surface), located
11.7 m above the tunnel crown, was considered to be unre-
strained in all directions. The lower boundary was located
3.3 m below the tunnel invert and was considered to be re-
strained in all directions. Finally, the nodes making up the
tunnel opening were considered to be unrestrained in all direc-

tions.
L.3.1 Boundary Load Conditions and Deformation Analyses

In order to model the physicél operation of tunnelling
with a finite element program the usér must be aware of the
program's formulation, particularly the technique used to
build the load vector. Although séveral programs consider
gravity forces as loads, this particular one does not.
Gravity forces are only used to calculate insitu stresses
and subsequent bulk and shear moduli values for each element;
they are not considered as loads. When the analysis is per-
formed, the program considers the continuum weightless, and
calculates only the stress change associated with that load
application, either compressive or tensile. These changes
are then added to the. previous stress values yielding a new
stress state from which revised bulk and shear moduli values

can be determined. This procedure is continued until all
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iterations have been completed.

The implication is that to model the tunnelling operation
the user must apply the negative of the insitu stress, as cal-
culated at the center of the face of each element around the
tunnel opening, divided by the number of increments. In this
study the insitu stresses vary from a minimum of -203.275 kPa
at the crown to a maximum of -236.145 kPa at the invert. This
| is simply the result of the change in depth from the top to
the bottom of the tunnel opening.

Four load cases have been considered in this study. The
first one investigated the insitu to zero stress in one step,
i.e. - a linear analysis. The second, third and fourth cases
investigated the insitu to zero stress in two, five and ten
steps respectively.

As described.previously, the program calculated the
insitu bulk and éhear.mﬁduli on the basis of.input soil para-
meters, namely moisture contents, plastic indicies, unit |
weights, etc. The loading magnitude has ébsolutely no effect
on these insitu values, and consequently the starting point

for each analysis was always the same.



CHAPTER V

5.0 RESULTS AND ANALYSIS OF RESULTS

The results of the deformation analyses have been sep-
arated into three parts; first, an investigation of the
linear and nonlinear analyses, second, a comparison of the
finite element results with measured field values, and third,

a discussion. of the results.
5.1 LINEAR VS NONLINEAR ANALYSES N

Figure 11 illustrates‘typical displacement vectors along
ithree radial directions exteﬁding from the tunnel center. The
results clearly indicate that the majority of deformétion is
directed toward the tunnel center.

Figures 12 and 13 illustrate the magnitude of deformation
along the vertical and horizontal radials respectively for each
load case. The veftical radial, located directly above the
tunnel crown shows deformations ranging from 6.5 mm for the
linear case to 12.2 mm for the.10_increment nonlinear case.

" The horizontal radial, which éxtends from the tuﬁnel center,
shows deformations ranging from 11.7 mm for the linear case to
16.1 mm for the.10 increment nonlinear case. The results indi-
cate a zone of influence exists around the tunnel opening which
ranges from 2 to 4 tunnel radii along the vertical radial and

~up to 6 radii along the horizontal.

37
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In:.Figure 14, the deformations at.the tunnel wall were
plotted against the number of increments into which the total
boundary load aséociated with excavation, was divided. The
‘use of a single increment was in effect a linear analysis as
the deformation analysis was done using only a single average
value of the bulk and shear moduli in each element. Dividing
the total boundary load into 2 or more increments rendered the
analysis nonlinear in that the deformation parameter's magni-
tude changed with each load increment in each element. Fromn
Figure 14 it is seen that the nonlinear analyses resulted in
a substantial increase in the computed deformations, with the
1argeét increase being associated with the 2 increment analy-
sis. The incréase from. five to ten increments was insignifi-
cant.

As described previously, the starting'boint (i.e. - the
.insitu.values) for both the bulk and shear moduli was the same
for ali load caées, However, thé magnitude and raté of change
of these parameters during-the iterative solutions was depen-
dent on the number of increments into which the total boundary
load was divided. The dependence of the tﬁo deformatioﬁ‘pa}a-
- meters on the prevailing state of stress in the soil was ex-
amined by plotting the deférmation parameters for each itera-
tive sdluﬁion.

-vThe bulk modulus values associated with the iterative

' sblutions‘decreased,with load removal, as.anticipatedﬁgé@g
. . 4 '&\‘(\

~ever, the magnitude of change was insignificant ang
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be plotted separately from the insitu line shown previously
in Figure 8. Clearly the bulk modulus was not a signifi-
cantly contributing factor to the nonlinearity of the analy-
sis. The results indicate that the bulk modulus could be
considered a constant for any given element throughout the
analyses.

The shear modulus of each element along the vertical
radial is shown for the insitu case and for each loading case
‘in Figure 15. For any given element (represented by a con-
stant dépth) the shear modulus decreased at a decreasing rate
as the number of load increments was increased. It is apparent
that the use of a single "insitu" modulus would yield smaller
calculated deformations than the use of a stress-dependent
modulus which decreases in magnitude as the state of stress
in the soil tends toward failure.

Increasing the number‘of increments into which the total
load is divided may be thought of as a refinemen£ of the non-
linear analysis. For the tunnel case analysed in this study,
the use of more than 5 increments did not significantly
change the calculated deformations, and so from an "accuracy"
point of view, 5 increments were sufficient.

The computer costs associated with the various load
casesAused are shown in Figure 14. It is seen that in an ap-
proximate way there was a direct relationship between com- |
puter costs and the ﬁumber of load increments used. Thus
from é standpoint of costs, the number of increments should

be kept to a minimum.
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5.2 COMPUTED DEFORMATIONS VERSUS OBSERVED DEFORMATIONS

A comparison of measured field deformations along the
vertical radial with those computed using the nonlinear
analysis with 10 increments is shown in Figure 16. It is
seen that the compafison is good at the tunnel‘wall where the
observed déformation'was 14 mm and the computed was approxi-
mately 13 mm. 'Thus from the standpoint of a Class A predic-
tion of tunnel deforﬁations, the mathematical model proved to
be very accurate. However‘the agreement between the predicted
~and observed at points away from the tunnel wall was very
poor. According to the mathematical model, Significant'de—
formations wére confined to a distance of only one tunnel
radius beyond the. tunnel wall, whereas the observed deforma-
tions extended beyond 6 tunnel radii.’ As well, the deforma-
tion patterns were quite different throughout thevcontinuum.
The observéd deformations‘varied almost linearly with depth

whereas the predicted values approached zero asymptotically.,
5.3 DISCUSSION OF RESULTS -

. The reasons for the variation between bbservéd and pre-
dicfed values. are associated with either the input data or
‘the mathematical mddel used;

Insofar-as input data is concerned, the insitu soil pro-
perties ﬁsed were those.of another site but because of the

similarities 6f'the'soil conditions at the twqﬁsites,'it is
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unlikely that this was a significant contributing factor.
However the solutions for the bulk and shear moduli are func-
tions of stress and were determined by laboratory compression
tests whereas the tunnel problem, was one of unloading. It
was assumed in the deformation analysis that the solutions
for the deformation parameters were not stress-path dependeﬁt.
This could account for some discrepancy betweén observed and
predicted values, but was unlikely the major factor.

As mentioned previously, the greatest discrepancy between
observed and predicted values was in the.pattern of deforma-
tion versus radial distance from the tunnel wall. The observed
values decreased approximately linearly with distance whereas
the predicted varied asymptotically. The asymptotic distribu-
tion implies that all stress and strain changes occur in a
very narrow zone around the tunnel. This is consistent with
treating a continuum as being elastic. For example the stress
distribution beneath a square footing decreases asymptotically
with most‘of the stress change occuring within the depth of
two footing widths (Sowers, 1970). In the case of tunnels,
Terzaghi (1943) states that "At elevations of more than 5B
(two and a half tunnel widths) above the centerline, the lower-
ing of the strip seems to have no effect at all on the state
of stress....". Thus according to elastic theory only a
narrow zone in the vicinity of the boundary load is affected.

Other tunnel projects besides the one analysed here have

indicated that deformations extend far beyond the tunnel wall
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(Rowe and Kack, 1983). Consequently the validity of using
models utilisting elastic ﬁheory (linear and nonlinear) is
questionable.‘ It may very well be that creep models or
elastic-plastic ﬁodels provide better approximations of soil
deformation in the vicinity of a tunnel. As a matter‘of
fact according to the model used in this sﬁudy a few elements
were in a state of failure, implying a zero shear modulus §nd
a small finite value had to be assigned to each of these ele-
ments to prevent a non-operétive situation. However the com-
puted deformations were not aﬁpreciably affected by these few
elements. The occurrence of a.plasﬁic state in some elements
suggests that the use of an elastic-plastic model might be
more appropriate. .The use of ofher models was beyond the

'scope of this study.
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CONCLUSIONS

This practicum has investigated the applicability of

a nonlinear load-deformation finite element program for

estimating deformations associated with soft ground tunnel-

ling in Winnipeg. Based on the results of the investiga-

tion, the following conclusions have been drawn.

1.

The finite element method can be a very powerful
tool when used correctly and its limitations are
understood.

The bulk modulus of each element remained essen-
tially constant for the entire stress change range.
The shear modulus underwent large changes (up to
100%) with stress changes in the soill indicating
that the nonlinearity is primarily due to shear
deformations.

There was very good agreement between the pre-
dicted deformations at the tunnel wall and the
observed.

Agreement between the predicted and observed defor-
mations beyond the tunnel wall were poor. The ob-
served deformations decreased linearly with dis-~
tance whereas the predicted approached zero asymp-

totically.
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RECOMMENDATIONS

Based on the results of this investigation, the follow-

ing recommendations have been suggested.

1.

A future topic for study could be to investigate
if tunnel deformations respond better to a creep
model in which K & G = £(t).

A compilation of all pertinent data from existing
case histories could be obtained so that design
charts or curves similar to Peck et al may be de-
veloped for use in Winnipeg.

A future study to establish the long term earth
pressures around the tunnel in Winnipeg clay or

+ill would also be useful.
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APPENDIX A

Chapter IV of Domaschuk and Valliappan (1974) describes
the specific testing details and the complete bulk modulus
derivation. The following is a brief summary of fhaf
chapter.

The results of the isotropic compression tests clearly
indicated the stress-strain relationship was nonlinear. As
shown in Figure 17, the increase in volumetric strain (ev)
dedreased with increasing isotropic stress (Om). They also
found, the bulk modulus behaved differently above and below
the preconsolidation pressure (Pe'). Above Pe', in the nor-
mally consolidated region, the bulk modulus varied linearly
with stress level. Below Pc', in the overconsolidated re-
gion, the bulk modulus remained nearly constant.

- The isotropic compression results also indicated that
soil type (as defined by its plastic limit) affected the rate
of change of €y and O Specifically, soils having low plas-
tic indecies (P.I.) underwent less volume change than those
with higher P.I.'s (for the same initial void ratio (eo) and
isotropic stress (om» as shown in Figure 18.

In the program developed by Domaschuk and Valliappan
(197L), a three parameter relationship was chosen to repre-
sent the isotropic stress-strain behaviour observed in the

laboratory. The basic equation was given by:
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n-1
om €V E:V
o == 1+ | } (A1)
me ve ve

where o & e, = isotropic stress and strain

respectively

b]
R
™

]

Sne ve characteristic values of isotropic
stress and strain respectively
n = shape parameter

The values of Cne? Evo? and n for each material type were

ve
evaluated by the method of least squares to obtain a best
fit solution. Knowing the value of O it is possible to
solve for €y using Newton's method of iteration.

The solution for the bulk modulus wasg then obtained

simply by differentiating equation A1 with respect to €,

yielding: -1

dom Omc €y

I ° K=—1{14+n |— } (A2)
£ IS
v ve ve

Ome

where ——= = the initial bulk modulus
ve

Equation A2 was then used directly in the finite element

program.
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APPENDIX B

Chapter V of Domaschuk and Valliappan (1974) describes
the specific testing details and the complete shear modulus
(G) derivation. The following is a brief summary of that
chapter.

The results of the constant-mean-normal triaxial tests
clearly indicated a nonlinear relationship existed between
the principal stress difference (o, - 03) and axial strain
(e1). As shown in Figures 19 to 21, the rate of change of
(03 - 03) decreased with increasing axial strains.

The plots of volume strain (EV) vs axial strain (e,;),
also shown in Figures 19 to 21, indicated thevvolume change
was a function of the 'reduced' overconsolidation ratio
(%% . The samples with ratios less than 0.6 exhibited posi-
- tive dilatency (i.e.. - expansion), while those with ratios
greater than 0.6 exhibited negative dilatency.-

Domaschuk and Valliappan chose to use a hyperbolic re-
lationship to describe the resultant deviatoric stress (Sd)
vs resultant deviatoric strain-(ed) behaviour for véridus re~-
duced overconsolidation ratios. Due to the poorly defined
final portion of the curve, a failure ratio (Rf), defined as
the observed failure stress to the asymptotic value of the.
model, was aetermined statistically for each test, the
average result was R, = 0.82.

f
Log - log plots of the resultant deviatoric stress at
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Y
failure (Sdf) with a normalised variable, defined by AP
c
clearly indicated a linear relationship existed, from which

the following failure criterion was obtained:

o B8
.. =100t (B.1)
af Pceo
in which Sdf = resultant deviatoric stress

at failure

Pé = preconsolidation pressure
o, = effective-mean-normal stress
e, ~ initial void ratio

a & B = linear regression coefficients

in log - log plotting, referred to

as failure criterion parameters

Comparing the individual failure criteriqns for the
brown and blue clays it was apparent that they behaved dif-
ferently. As shown in Figures 22 and 23, the resultant de-
viatoric stress at failure (Sdf) decreased with increase in
plasticity index (for any given §Z%; ratio) for the brown
clays. The opposite was true for the blue clays.

In the program developed by Domaschuk and Valliappan,
the resultant deviatoric stress-strain curve was given
by:

8dGo

S " T T oo (B.2)
d o
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where Sd & €q = the resultant deviatoric stress
and strain respectively
GO = initial tangent modulus

b = reciprocal of the asymptotic value

of the resultant deviatoric stress

Investigating the effect of initial void ratio and the
ratio of mean normal stress to the preconsolidation pressure

on the initial tangent modulus (G, ) was done by combining
G o
the variables EQ and FT%_‘ The variation of log 82 with
o m c o m

fT%‘ indicated a linear relationship existed in the form:
c o

(¢}
A - B(ﬁ,—Z—-) (B.3)

Log, o (5=
m c O

where A & B

It

semilogarithmic regression

coefficients

Rewriting equation B.3 gave the genefal solution:

g
m
G, = o * 1olh - B(—_—Péeo)} (B.4)

A linear regression analysis of equation B.4 indi-
cated that for the brown clays, located at depths above
23 feet, A and B were constant, being equal to 2.3286780
and 1.1157590 respectively. Below 23 feet, in the blue
clays, only B was considered a constant, being equal to
0.8114248. The coefficient A, on the other hand, was ex-

pressed as a function of the plastic index and given
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by:
C
A = -———-10 (B.5)
(1)
where C & D = regression coefficients given
by 0.88573 and 0.348 respectively
Differentiating equation B.2 with respect to €4
gave:
de )
3, =G =G (1 - DbS,) _ (B.6)

As'explained earlier, the asymptotic value was related to
the observed resultant deviatoric stress at failure by the
failure ratio, Rf:

S.. =R, %8S = R, * (B.7)

daf - 7'f dult f

o'l

‘Expressing the value of Sdf in terms of the failure cri-
terion, defined by equation B.1, equation B.7 was rewritten

as:
R R
'b = ...S...’f. = O’f (B.S)
daf { m }
10%'PTe
c O

Substituting for b, equation B.) became:

S

d 2 (B.9)

o m LB
Tkatare
c O

[}
1

GOH - Rf(

which was used directly in the finite element program.
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APPENDIX C

The Displaéement Method involves introducing a function
that will approximate the element displacements at each node.
The displacement model chosen depends on two factors; first,
the accuracy required, and second, the degrees of freedom as-
sociated with each node. 1In this program, a very simple model
has been used (linear) which corresponds to the two degrees
of freedom as éach node (i.e. - the displacements in the

X & Y directions), and is given by:

{u} [0]{a} (c.1) .

where {ul

1

vector of displacement at any point

within the element

1

[o]
{a}

-generalized coordinate model

[l

vector of generalized displacements

For the three node elements used in this case (feferred to as

constant strain triangles), equation (C.1) becomes:

{q} =[a]{a} ‘ (C.2)

where {q} = ,u A =1 x y 0o o o]

U 1 x y 0 0 0

u, 1 x y 0 0 0

v 0 0 0 1 x y

' 0 0 0 1 x y

v, 0 0 0 1 x Y|

-1
or {a} = [A] {q} (C.3)
-1
where [A] = displacement transformation matrix

{q}

vector of nodal displacements
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From equations (C.1) and (C.3) it follows that:
{u} = [e][aA]*{q} (c-4)

which represents displacements at any point (x,y) within the
element in terms of nodal displacements {qg}.
The element displacements and strains are related by ap-

plying the theory of elasticity as follows:

EX:-%%:(XZ Ey:%%:ae
_du, dv
'YXy = dy + dX = O3 + s
from which
(e} = [B,]{a) (c.5)
where [B ] = [01 00 00 {a} = [a,
@ 000001 s
0010120 Qg
Gy
{e} = {EX} gs
y 6
ny
Substituting equation (C.3) into (C.5):
-1
{e} = [Bu][A] {q} (C.6)
or {e} = [B]{q} (Cc.7)

il

where {e} vector of strains at any point

within the element

[3,]

a

strain displacement matrix for

generalized coordinates
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[B] = strain displacement matrix for

interpolation models

The general stress-strain relationship for a plane strain
case, in terms of the bulk and shear moduli (K & @) can bé

expressed as:

{o} = [c]{e} (c.8)
where [C] = [K + 4G/3 K + 2G/3 0 {o} = o,
K + 2G/3 K + 4G/3 0 oy
0 0 G T
Xy

in which [C]

i

stress-strain matrix, which depends
entirely on the material properties

{o}

vector of stresses at any point

within the element

Combining equations (C.7) and (C.8), the following relation-

ship develops:
{o} = [c][B]{q) | (¢.9)

The element stiffness matrix and load vector can be Fform-
ulated by using the principle of virtual displacements, which
states that the external work done on the body (Q) must equal
the internal work done on the stresses in the body (W). The
element stiffness is determined by equating the work quanti-
ties. The internal work is given by:

.} = [ {e)Tio} av (¢.10)
1 Jvol
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while the external work is given by:

@ = [ T av s [[ tamm an (c.11)
vol area
where {X} = vector of known body force intensities
{T} = vector of known surface traction
intensities

By applying the appropriate variational principles many of

the terms vanish, leaving only:

{Q} = [x]{q} (C.12)

where [k] = ] l[B]T[C][B] av (¢.13)

For plane strain elements the volume integral is simply the
area of the element, as its depth is always unity. This im-

plies the element stiffness is given by:

(k]

where A

A[B]"[c] [B] | C(C.14)

element aresg





