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Abstract

This thesis applies neural networks to an application in the field of
telecommunications.  Neural networks are investigated to determine if they
can be used to perform routing decisions within a telecommunications
network. Once a neural network was modelled to perform the routing function
for an individual node in a network, the modelling is extended to a sample
telecommunications network to evaluate its performance in a variety of

network conditions.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to research the application of neural networks to
a specific issue in the field of telecommunications. The issue being considered
is the problem of performing efficient shortest path routing decisions within

a telecommunications network under normal and abnormal conditions.

The study of neural networks has been a steadily increasing area of interest
over the past 5 years, where the application of neural networks to different
scientific and engineering disciplines has produced alternative methods to
solving classic problems [1]. Neural networks have been applied to areas of
optimization, control, associative memories, and pattern recognition [2], areas
that can be applied to routing in telecommunications networks. By studying
the concept of routing both from the specific field of telecommunications and
the more general field of routing theory, this thesis will map routing concepts
into the neural network paradigm, define a neural network solution, and
demonstrate through modelling the ability of a neural network to perform

telecommunications network routing.

1.2 Problem

The operation of the telecommunications network depends on the efficient use
of the components in the network, and network routing is a key factor in
determining this efficiency. Improper network routing results in poor
network utilization, which in turn affects the services that the network can

provide.

As telecommunications networks evolve, the importance of routing in these
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networks is increasing. This increased importance is due to a number of
factors: telecommunications companies are under pressure to become more
efficient, requiring maximum utilization of network components; the
increased dependence of the public and corporations on these networks
requires higher levels of network reliability and availability; and the
introduction of new technology has made the network more complex. Routing
methods must evolve to maximize network utilization under normal conditions,
plus adapt to problems in the network so that the effects of any abnormal
network condition is minimized to provide maximum reliability and

availability.

A neural network router can be created that can meet these requirements.
While new telecommunications routing methods are being researched, only a
small portion of this work involves neural networks. Conventional
approaches are superior to the older, manual routing methods, but still have
disadvantages in terms of speed and [lexibility. By utilizing the adaptive
properties of neural networks, an advanced method of network routing could

be created without the disadvantages of conventional routing methods.

1.3 Scope

This thesis is composed of six chapters. In Chapter 2, an overview of relevant
information to this thesis is provided, and begins with an introduction to and
description of telecommunications networks. After this general discussion the
issue of network routing and reliability will be introduced. This is followed by
a discussion of current and proposed routing methods within
telecommunications networks, and a brief discussion of routing theory. The
chapter concludes with a discussion on the application of neural networks in
telecommunications, and a description of the specific routing approach to be
studied. In Chapter 3, the modelling of a single node within a defined sample
network will be presented, with the objective of optimizing the topology,
learning, and neural network training set to perform the network routing
task. The results of Chapter 3 will be applied in Chapter 4, where the routing

for the full sample network will be modelled, the results discussed, and the
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performance of the neural networks evaluated for different routing
conditions. Chapter S contains conclusions on the research and
recommendations on areas for further investigation. The thesis concludes
with a list of references used in this research, and appendices containing

related material.
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Chapter 2

Overview

This chapter will provide an overview of topics of interest in this thesis. The
chapter will first review of the operation of telecommunications networks,
then discuss the nature and current methods of routing within these
networks. A review of methods and research in the area of routing theory is
then provided, and this is followed by a discussion of current applications of
neural networks to telecommunications routing. The desired attributes for a
neural network router are then outlined, and the method of routing studied in

the remainder of the thesis is discussed.

2.1 The telecommunications network

The telecommunications network provides services that most people take for
granted. To the majority of people, telecommunications is represented by the
telephone, and the process of inputting a series of numbers into the telephone
that then connects the calling person to another telephone. But between
these telephones is a massive investment by utilities and corporations in a
complex telecommunications network. This network provides not only the
basic connection service familiar to the public, but also specialized services to
corporations that rely on the network for providing service to their
customers. These specialized services are becoming more important as
telecommunications networks evolve, and are projected to become an
important factor in the future competitiveness of many companies and

countries.

As stated above, the telecommunications network is a complex system.
Providers of telecommunications services - typically the phone company -
must plan, install, and maintain these networks. Underlying these network
activities is the requirement to provide a high level of service to its users. In

some areas of telecommunications a monopoly exists, and a single network
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provider is regulated by a government to provide service at a price that allows
for reasonable rates of return on the provider's investment. In other areas
telecommunications services are deregulated, and multiple service providers
compete in the marketplace to provide services based on the cost of the
network and the variety of services. In Canada, an example of a service
monopoly is long distance telephone service, and an example of a deregulated
service is cellular phone service. The global trend in telecommunications is
toward deregulation; as will be discussed later, this results in the need for
increased efficiency, reliability, and functionality within the network, and

the need to find new methods of controlling and managing this network.

2.1.1 Telecommunications network structure

The basic telecommunications network shown in Figure 2.1 is composed of
three major sections, with each section performing a specific network
function. The first section is called the access section; this section connects
the equipment of a telephone user - known as customer premise equipment -
to the telephone switching center or central office. The customer premise
equipment is connected by a dedicated set of wires or access lines to the
central office. This configuration is the most simple example of the access
portion of the network, but there are other configurations. One example is
where a switching element similar in function to a central office is placed
between a central office and the customer premise equipment. In one
example, a switching element is located at the business site, and is called a
private branch exchange, or PBX. A second example is where a smaller
switching center, called a remote, is placed to service a portion of a central
office's serving area. The purpose of both the PBX and the remote is to
concentrate a large number of access lines into a smaller number of

transport facilities; this will be described in the following paragraphs.

The second section of a telecommunications network is the switching section,
where a central office concentrates the access lines of a specific geographic
area and connects these lines to access lines in its own area or to transport

facilities between it and central of fices in other areas. To provide full




Chapter 2 - Overview Page 6

Central Office Serving Area Central Office Serving Area

~ Central
- Office

Telephone
Switch

Telephone
Switch

Transp e
Facilities . .

Figure 2.1:
Sections of a Telecommunications Network

interconnection between the hundreds of millions of telephones in the
telecommunications network is not possible; instead the network relies on the
fact that only a small portion of the telephones in the network are in use at a
given time to reduce the number of connections required. The main
component of the central office is the telephone switch, which is connected
to all access lines in its geographic area and then selectively connects the
lines in use to the access line of a telephone that is being called. In the case
where the called telephone is within the same geographic area as the calling
telephone, the telephone switch will connect them within the central office.
If, however, the called telephone is in a geographic area served by another
telephone switch, then some form of link is required between these switches.
This link is called a transport facility, and is part of the set of dedicated
interoffice links that forms the transport portion of the network. Depending
on the location of the destination telephone switch, a series of telephone
switches and transport facilities may be required to provide the end-to-end
connection. The location of the called telephone and telephone switch is

determined from the telephone number, which can be considered to be a
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network address.

The final section of the network is the transport section. As stated above,
transport facilities are dedicated links between central offices, and like the
facilities in the access section of the network, the links are not all in use at
one time. The amount of activity on a specific transport facility is a function
of the network traffic between the central offices, and a properly planned
transport facility will have the available capacity to handle the heaviest
traffic requirements under the busiest, or peak, conditions. When the traffic
between two offices reaches the level where the transport facility is at full

capacity, no further connections can be provided over that link.

Advances in technology have produced dramatic changes in
telecommunications networks. One of the most dramatic revolutions has been
the migration of the network from analog to digital systems. In the analog
network shown in Figure 2.2(a), the access, switching, and transport sections
were analog based; an analog signal originated from the telephone, connected
with a physical connection at the calling telephone switch to an analog
transport facility, and connected through a physical connection at the
destination telephone switch to the called telephone. With the evolution to
digital technology shown in Figure 2.2(b), only the access section of the
network remains analog; at the digital switch, the analog signal is digitized,
and the digital signal is now digitally switched and carried over digital
transport facilities to a destination digital switch where is it converted to
analog for connection to the called telephone. The benefits of the digital
network are significant: noise has been reduced, improved reliability has
been achieved, and the performance and capacity of the network has been
increased. One of the major benefits of digitization of the transport facilities is
the use of time division multiplexing to combine multiple low speed signals
from the access network onto a single high speed transport facility. While an
analog transport facility consisted of thousands of wire pairs with each pair
representing a single transport circuit, a single digital transport facility can
now carry thousands of time multiplexed channels, with each channel
representing a transport circuit. The introduction of fibre optics transmission

technology in the telecommunications network has provided the most
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Figure 2.2(b):
Digital Telecommunications Network

significant increases in capacity, with new systems now providing over 30 000
voice channels, or a combination of voice, data, and video signals, on one fibre

optic pair.

2.1.2 Routing and network reliability

To obtain maximum efficiency from a telecommunications network, digital
signals representing voice, data, or video signals must be routed between the

originating and destination points in the network quickly and reliably.

Routing activity occurs at several points between the originating and
destination locations. First, the telephone switch translates the telephone
number into routing information, and the connection is routed through the
switch to another access line or a transport facility. If the destination is

within the switch's serving area, the routing is performed within that switch.
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If the destination is in another central office, then a destination telephone
switch will route the call from the transport facility that connects it to the
originating central office to the access line of the destination telephone. As
the distance between originating and destination central offices increases,
more transport facilities and telephone switches may be required to provide
the end-to-end connection, with each switch performing similar routing
functions. Under normal traffic conditions the network performs this activity
with a high level of reliability. If, however, an abnormal condition occurs,
then the network attempts to compensate for the condition, and depending on
the type of condition, different compensation methods can be used. If a
transport facility reaches capacity, the telephone switch can redirect traffic
to other transport facilities along other routes that have not reached capacity.
But if a transport facility becomes unavailable as a result of failure, the
transport network must attempt to restore the lost capacity by using spare
capacity in the network. The ability of the network to route traffic under

normal and abnormal conditions is a fundamental requirement.

One of the most important issues in the telecommunications network is
network reliability. Some of the reasons are:

- Network providers are under increasing pressure to provide new
services. These new services increasingly rely on information
stored in the local and remote computer systems of network
providers, resulting in increased network communication.

- Some new services are data applications. These applications require
higher bandwidths and lower bit error rates than regular voice
transmission.

- Digital technology has allowed for increased capacity within the
network; as a result, more services and users are affected when a
network problem occurs.

- While the amount of required maintenance and been reduced and
the overall availability of network equipment has been improved,
the problems that now occur in the networks are becoming
increasingly more complex.

- Network failures can be caused by a variety of factors, including

human error, natural disasters, terrorism, and the complexity of
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modern equipment used in the digital network.

- The reliance of the users on services and the introduction of service
competition has resulted in the need for increased reliability and
availability in the network.

- Though rare, major network failures can affect thousands of users
and disrupt activities over a large area. In one recent event, a
telephone switch in New York City failed; tens of thousands of users
lost basic communications, financial operations were affected and
air traffic control was disrupted in regional airports [3]. In the
worst case, the financial cost can be significant; a fire in a central
office in Chicago disrupted operations at O'Hare airport and resulted
in service outages of up to a month for some residential and business
customers; the estimates of the cost of lost business range from the

hundreds of millions to billions of dollars [4].

To mitigate the effect of future failures, network providers are deploying
systems that provide improved network routing, restoration and survivability.
Depending on the section of the network (access, switching, or transport)
different systems or methods are available. Of the three sections of the
network, this thesis will focus on the routing and restoration in the transport
section. The reasons are:
- Transport failures are a frequent type of abnormal network
condition.

- Transport failures affect more users across a larger geographic area.

Since transport facilities are outside the controlled environment of
central offices, they are more susceptible to failure from a number

of areas.

The topology of the transport network lends itself to a number of

possible restoration solutions.

The various restoration solutions all involve static or dynamic

routing methods.

If a routing method can be defined that can be mapped into a neural

network structure, then a solution may be possible.




Chapter 2 - Overview Page 11

2.1.3 Transport network protection and restoration

The areas of network protection and restoration have been extensively
researched in telecommunications; a complete review of network protection
and restoration methods is not required for this thesis. Instead, this section

will provide a brief overview of existing and new methods.

2 1.3.1 Protection channels and manual restoration

The most widespread method of providing restoration of failed facilities is by
the use of protection channels. A protection channel is a redundant or spare
facility with the same capacity as the regular working facility it protects.
Figure 2.3(a) shows a working and protection channel in normal operation,
with the traffic being carried on the working channel. When a problem
occurs with the working facility, the problem is detected and the traffic is
switched by protection equipment to the protection channel, as shown in
Figure 2.3(b). The method of protection where one working channel is
protected by one protection channel is called 1:1 protection. A more general
form of this protection is called 1:N protection, where one protection channel
provides a redundant facility for N working channels; if any one of the N
working channels fails, the traffic can be restored on the protection channel.
Figures 2.3(c) and 2.3(d) depict the normal and restoration activities for a 1:N

system.

This form of restoration is well suited to facility failures that affect only one
working channel of a transport facility; an example of this type of failure is
where a portion of the transport equipment associated with one channel fails.
Where this form of protection fails to perform is in instances where a failure
affects an entire transport facility such as a failure of transport equipment
common to all channels or the loss of the transmission medium such as the
cutting of a fibre optic cable or loss of a microwave relay tower. In these
cases, 1:1 and I:N protection methods cannot provide restoration, and
restoration is performed by manually reconnecting the traffic from the failed
facility onto the protection channels of one or more alternate transport

facilities , restoring the traffic to the opposite end of the failed facility. This
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process of manual rerouting is a time consuming process, and can result in the
loss of service for significant periods of time; as a result, methods of providing
faster restoration around a failed facility were needed. The process of manual

rerouting of a failed facility is shown in Figure 2.4(a) and (b).

2.1.3.2 Digital Cross Connect Systems

The introduction of digital cross connect systems (or DCS) has been a
significant development in the management of transport facilities. The DCS
replaces the manual cross connect equipment in central offices, and provides
remote and automatic control of the connections of digital facilities. The
network provider operations staff can issue commands to a DCS to perform
connections of different transport facilities, and in the case of the failure of a
transport facility the operations staff can use a DCS to quickly perform the
reconnections required to restore service. The placement and use of a DCS for

restoration are shown in Figure 2.5.

The use of a DCS can reduce the time of restoration to minutes, but this still
results in loss of traffic connections and service. To reach the goal of
providing restoration without the loss of most traffic connections, the time to
restore facilities must be in the 1-2 second range. The introduction of special
features in the DCS is now making this level of restoration possible. Using a
feature called Fast Facility Protection (FFP) [5], the protection channels for 1:1
protection systems can be routed over a different route to the destination. The
traffic being carried is bridged onto both the working and protection
channels by the DCS at one end of the facility, and at the other end the
presence and signal quality of the traffic is monitored. If there is a loss of
traffic (resulting from the loss of the entire facility), or if the signal quality is
degraded, then the DCS at the other end switches to the protection channel.
This feature is now available and is being considered for use by some network

providers. An example of FFP is shown in Figure 2.6.

2.1.3.3 Survivable Ring Architectures
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Another method of providing restoration is by implementing ring
architectures in transport networks. By arranging the transport links
between a number of separate locations into a ring, simple redundancy
methods can be implemented. Current examples of this type of architecture

are available from both the computer and telecommunications network areas.

For computer networks, the Fibre Distributed Data Interchange (FDDI)
standard describes a 100 million bits per second fibre optic data network. To
build survivability into the FDDI network, working and protection network
traffic circulates around a fibre optic ring connecting all nodes, with the
working and protection channels being transmitted in opposite directions
around the ring. If any site on the loop experiences a failure, or the facility
fails between two nodes, protection circuitry at the nodes detect the failure
and redirect working traffic onto the protection channel, creating a single
traffic loop connecting all nodes and isolating the failure. FDDI restoration is

presented in Figure 2.7.

In telecommunications networks, one example of restoration using the ring
architecture is provided by the Shared Protection Ring (SPRING) [6]. Like
FDDI the SPRING has two traffic channels transmitting in opposite directions,
but in the case of SPRING the working and protection capacity is split between
the two rings, resulting in one half of the working traffic being transmitted
in the opposite direction to the other half. [f a facility failure occurs, the
working capacity carried on the failed facility is redirected into the protection
capacity of the working facility, isolating the failed facility and maintaining

traffic connections. SPRING restoration is presented in Figure 2.8.

2.1.3.4 Dynamic restoration methods and self healing

Restoration provided by methods such as FFP and ring architectures can
provide rapid restoration from failures on the order of 50 milliseconds. This
short restoration time will maintain traffic and service connections in the
network, but there are drawbacks to these methods. Bandwidth must be

dedicated to the restoration of specific facilities, resulting in the need to
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provision large amounts of channel capacity just for restoration and imposing
added design rules on the network. In addition, these methods are based on
static conditions in the transport network, and cannot adapt to multiple
network changes should they occur. In order to provide flexibility and to
reduce the need to provide large amounts of restoration capacity, several

adaptive and dynamic restoration techniques have been proposed.

Dynamic restoration or self-healing techniques rely on the use of a
restoration protocol implemented in transport network DCSs. When the failure
of a transport facility occurs, a designated DCS sends restoration messages to
adjacent DCSs over connecting facilities with available capacity. The process
is repeated by these adjacent DCSs resulting in a "message wave" that floods the
network. The target of this message wave - and the signature information
contained in it - is the DCS at the other end of the failed facility; when the
messages are received, the signatures are processed, and the alternate
restoration routes and their capacities are determined. To complete the
process, a return message is issued along the alternate routes to establish the
restoration link(s) required to restore all traffic. This self-healing process
has been suggested by Yang and Hasegawa [7] and Grover et al [8]: in the
former case the authors based their approach on the implementation of
specific types of equipment in the transport network; in the latter case, a more
generalized form and more well defined protocol has been created. For both
these methods, the restoration time has been estimated in the 1.5-2 second

range.

2.2 Routing Theory

Routing has been researched extensively from a theoretical perspective to
determine efficient algorithms; for the purposes of this thesis, the study was
focussed on the area of shortest path (SP) problems. SP problems are
encountered in many areas of research apart from communications, and are a
subset of a larger class of problems that include longest path problems, most

reliable path problems, and largest capacity path problems. Several good
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sources classify the types of SP algorithms available. Deo and Pang [9]
classified different algorithms based on a number of factors with the goal of
identifying suitable candidates for parallel implementation and computation;
the majority of the material for this section was obtained (unless otherwise

noted) from this source.

As stated above, SP algorithms are dependent on a number of problem factors.
One of these factors is the characteristics of the network. Some of the network
characteristics that must be considered are:
- Are the nodes in the network densely or sparsely connected?
- Are the arcs of the network directed (have one direction) or
undirected?
- Are the lengths of the arcs positive values or any real value?
- Are the lengths of the arcs based on uniform (unit) distance,
euclidean distance, or a more generalized real valued function?

- Are the lengths of the arcs deterministic (fixed) or probabilistic?

In comparing these characteristics to a telecommunications network, we find
the transport network can be generally represented as a sparsely connected,
undirected graph with positive arc values based on a deterministic function
related to euclidean distance. While the pure euclidean distance can be used,
several factors can be combined to determine the cost function for a transport

facility such as cost of use, type of equipment, and network delay factors.

The type of solution required is another factor in determining the desired SP
algorithm. The solution will be governed by a number of characteristics,
including:
- Are there any constraints on the selection of the path (i.e. the path
must have a certain number of arcs, or pass through a specific node)
or is the solution unconstrained?
- Must the solution provide the shortest path only or define the 2nd,
3rd...K-th shortest paths?
- Will the solution determine the path between two specific nodes,
between one node and all other nodes in the network, or the shortest

paths between all nodes?
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In transport networks the paths for restoration routing are typically
unconstrained, but the other characteristics are not as clearly defined,
allowing for a number of possible routing methods. If the transport network
has sufficient capacity in its protection channels to accommodate any single
facility failure, then a shortest path algorithm would be adequate; what is
more likely, however, is that protection channels in the network have
different capacities, and that a K-th shortest path algorithm is required. K-th
shortest path algorithms were used in the self healing systems discussed
previously, where several low capacity alternate routes can be used to reroute

the traffic of a single failed high capacity facility.

In most cases the primary requirement for restoration is to provide an
alternate route for traffic to the node at the other end of the failed facility, and
an algorithm that determines a path between two specific nodes can be
implemented. However, since any given network node can have a number of
transport facilities, and since we would like to design a routing system that can
tolerate the loss of network nodes, an algorithm that can provide a path from a

specific node to all other nodes in the network is desirable.

The last major factor that classifies SP algorithms is the technique used to
determine the shortest path. Each algorithm can be described by its use of
preprocessing and the method used to determine the solution. The majority of
these SP techniques involve path finding through general purpose computer
simulations, and can be further broken into combinatorial and algebraic

techniques.

2.2.1 Combinatorial techniques

Combinatorial techniques involve traversing the arcs of a graph and
recording information obtained in the process; this method is also called the
graph traversal technique. Information recorded while traversing the
graph is contained in labels that are associated with the nodes and arcs of the

graph; all labels are temporary when the technique begins, and all are
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assigned permanent or fixed labels when the process is complete. The method
that the labels are assigned and modified further classifies the labelling
technique. Most research in the area of labelling methods aim to optimize the

basic procedure by a number of methods.

In methods where permanent labels are assigned while the algorithm is being
performed are called label setting techniques. This technique was first
described by Dijkstra [10], as a method of determining the shortest path
between two given nodes P and Q in a graph containing N nodes. The method
starts at Node P, and the label for Node P is made permanent. Starting at P, all
the arcs connecting P to its adjacent nodes are identified and the nodes
assigned temporary labels; the label is proportional to the distance from that
node to Node P. All of the temporary labels are then examined, and the node
with the smallest temporary label is then made permanent. The process is
then repeated, with all the nodes connected to the nodes with permanent
labels now assigned temporary labels. At each iteration, all nodes connected to
permanently labelled nodes are searched and the paths that produce the
smallest temporary labels are retained, and the node with the smallest
temporary label is then made permanent. In this manner the process
continues, adding one node at a time until Node () is reached; the maximum
number of cycles required to perform this technique is N-1. When complete,
the labels defined by the technique identily the shortest distance to Node P and
the sequence of nodes that define the path, and il allowed to run for N-1
iterations the shortest paths to all nodes are determined. Many
implementations of label setting algorithms are available using different data
structures in an attempt to optimize the traversing process, resulting in
several fast search techniques. The Dijkstra algorithm has also been
implemented in a neural network by Fahner [11] as a method of providing

planning for real-time robotic motion.

If the labelling technique keeps all labels as temporary labels until all
calculations are completed, it is called a label correcting technique. One
proposed implementation of a label correcting technique in communications
is the use of the Bellman-Ford algorithm as discussed by Ephremides and Verdu

[12]. The authors assert that a distributed implementation of the Bellman-Ford
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algorithm is well suited to communications networks, for messages between
the nodes are processed to determine the labels for each link. By using this
method the nodes in the network can have their information updated
asynchronously, no network coordination is required, and the nodes rely only
on receiving information from adjacent nodes. If the communications
between the nodes is continuous, then each node maintains an accurate

knowledge of the shortest path to any node in the network.

2.2.2 Algebraic techniques

Algebraic techniques are methods that involve the manipulations of matrices
or the use of linear equations to produce a solution. An example of a matrix
solution is an all pairs routing method similar to calculating the power of a
matrix. Examples of linear equation methods are the organization of the
network information as an algebraic system and then solving a set of
simultaneous equations. For the purposes of this thesis, these methods are not

being considered.

2.3 Neural networks and telecommunications routing

As stated earlier, neural networks are being applied to current problems and
issues in many different fields, and telecommunications is no exception. A
search of neural network and telecommunications literature has identified
numerous references where neural networks are being applied to this field;
the majority of this research has occurred in the last five years with the
increased interest in and availability of neural network research tools. Most
of the research performed involves some form of routing decision, but the
specific applications, conditions, and routing methods vary. Brown [13] and
Melsa et al [14] investigate the use of neural networks to perform routing
within digital telephone switches, where the priority is performing the
maximum number of input/output connections. Other applications include
Hiramatsu [15,16], Chugo at al [17] and Frisiani at al [18] where routing

decisions for data networks are made based on the traffic levels within
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transport facilities, network delay times and messages between nodes. Lastly,
some of the research made specific reference to performing routing decisions
in the transport network under normal or failure conditions; this research

will be further discussed in the following paragraphs.

One of the routing methods reviewed was proposed by Rauch and Winarske
[19]. In this method an all pairs solution to routing of an N node
telecommunications network is produced. For a given network, an NxN
capacity matrix defines the link connections between nodes and their
capacities, with zero entries inserted where no link is present between nodes.
Multiplication of the capacity matrix is used to determine the number of links
between two specific nodes in the network. If there are L. number of nodes
(including originating and destination nodes) comprising the route between
two specific nodes, then a set of L. Nx1 control vectors are defined to represent
the two end nodes and their connections to adjacent nodes in the network. A
neural network is then used to converge the vectors to determine the links
producing the shortest route, utilizing a gradient approach that minimizes the
loss function with respect to the capacity matrix and the control vectors. If a
condition such as a link failure occurs, the capacity matrix would be changed
and a new route can be determined with a new convergence of the vectors

performed by the neural network.

This approach is able to perform routing decisions in a telecommunications
network, but a number of shortcomings are apparent. These are:

- Routing is determined from the connectivity of the nodes in the
network and the network link capacities, and does not utilize a more
general form of network representation that could include factors
such as network delays.

- This approach produces a centralized routing method where one
neural network performs routing decisions for the entire transport
network, rather than a distributed routing method.

- Extensive preprocessing in the form of matrix multiplications are
required to prepare control vectors for convergence.

- As a centralized method, neural network scalability becomes a

problem. For the 16 node example used by the authors, 1260 active
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neural elements and 9000 connections are required; for a
telecommunications network with 100 nodes and 2000 source-
destination pairs, the authors estimate that 14,000 active neural

elements and 100,000 connections would be required.

As a result of these factors, other methods were researched. The most
promising approach found is proposed by Jensen et al [20], where a distributed
adaptive routing algorithm is investigated for telecommunications networks.
In this approach a neural network is placed within each node of a
telecommunications network, and is responsible for routing to adjacent nodes.
A multilayer feed forward network resides at each node, with the input layer
representing the nodes in the network and the output layer representing the
links that connect the specific node to adjacent nodes. By using information
on the propagation time of packets arriving from other nodes in the network,
a mapping of delays through a given link to any node in the network is
developed. The propagation delay values, combined with the adjacent link and
the source node information, are then used to train the neural network. To use
the trained network, an input neuron representing a specific destination node
is asserted, and the output of the neural network will be the adjacent link on
the shortest path to the destination node. The neural network in the next node
of the telecommunications network in turn will make a routing decision
toward the destination node based on similar training to that of the first node.
When tested against other routing methods, it was found that after training
the neural network routing decisions were of equal performance to static
routing tables, and were more flexible in adapting to abnormal network

conditions.

This approach overcomes the shortcomings of the previous neural network
method. By providing a distributed routing system, decisions can be made
locally instead of from a centralized point, resulting in faster response. By
defining a neural network structure based on mappings of the network nodes
and adjacent links, the network implementation is more scalable. And while
network delay was used solely in the approach, more generalized functions
can be used to represent the network facilities. One of the drawbacks

identified was the need for constant communication between nodes, but in a
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modern transport network this can be accommodated.

2.4 Attributes of an optimal routing method using neural
networks

From reviewing the background on routing from the viewpoints of
telecommunications, routing theory, and existing neural network
applications, we can define attributes of a preferred network routing system
using neural networks. These are:

- The method must be able to perform routing decisions quickly, given
the requirement to adapt to restoration situations. Neural networks
offer fast decision times, for once a neural network is trained the
speed of the decision is limited to the speed of a simulator in the case
of a software implementation or chip delays in the case of a
hardware implementation.

- The routing method should be distributed to provide the fast decision
times, for centralized methods incur delays from the
communications required to report the status of the network,
perform the decision, and implement the routing changes. Routing
methods discussed by Ephremides and Verdu can be implemented in a
distributed manner, and both Grover et al and Jensen et al
demonstrated distributed routing with conventional and neural
network methods respectively.

- The routing method should be able to provide multiple route
alternatives in the case of a network failure. This type of
performance is produced by using K-th shortest paths routing
methods, as implemented in Grover at al for the current
telecommunications network.

- The routing method will require information provided by adjacent
nodes for performing routing decisions. Ephremides and Verduy,
Grover et al and Jensen et al all used messages; while Ephremides and
Verdu and Jensen et al used continuous messaging to defined the
characteristics of the network, Grover et al used messaging only

when a failure occurred to determine restoration routes. The
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transmission and processing of the messages between nodes is the
main reason for the length of restoration times simulated by Grover
et al; if such a message wave is transmitted in advance of a failure
when the network is under normal conditions, the processed
signatures could be used to determine the ranking of adjacent links
for routing to the nodes in a telecommunications network. This
ranking information could then be used as a training set for a
neural network.

- The neural networks used should be scalable, for as
telecommunications networks change a neural network router must
be able to adapt accordingly. Of the neural network research

reviewed, the method used by Jensen et al appears o scale easily.

The purpose of this thesis is to implement a neural network router with the
attributes outlined above. The flollowing paragraphs provide a detailed

description of the proposed method.

2.5 Description of the routing method under study

The routing method studied in this thesis would perform distributed routing,
where each individual node in the network performs routing decisions. These
routing decisions are based on the relationship between the originating node
where the decision is being made, the desired destination node, and the links
that connect the originating node to adjacent nodes in the network. By
limiting the routing decision to the originating node's links, the number of
alternatives that a neural network has to consider in performing the routing

function is reduced.

As discussed, networks consist of a set of nodes connected to each other by a set
of links. For simplicity the sample network used in this thesis will be an
undirected connected graph; this means that all links are bidirectional (a link
can be used to define a route in either direction) and that at least one route can
be defined between any two nodes. A route through a network consists of an

originating node, a destination node, and a sequence of intervening links and
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nodes between them that defines a route. One of the intervening links in the

route will be a link that connects the originating node to an adjacent node.

As stated above, there will always be at least one route that will connect any
two nodes; in most cases there will be multiple routes between them. In order
to make a routing decision, some type of criteria is required to allow for
comparison of the multiple routes between the originating and destination
nodes. One method of providing this criteria is by assigning a weight or value
to the links and nodes of the network; a route that is comprised of a sequence
of nodes and links is then assigned a weight equal to the sum of the weights of
the links and nodes. By relating the weights of the multiple routes to the links
that connect the originating node to its adjacent nodes, a pattern is defined

that can be used as the criteria for performing routing decisions.

This method can best be shown by example. In Figure 2.9(a), route C-F-J
connects originating node C to destination node J. One of the intervening
links in the route will be a link that connects the originating node C to the
adjacent node F. In addition to this first route, additional routes from C to ] can
be defined through the other links that connect node C to its other adjacent
nodes. In Figure 2.9(b) , three other routes can be defined: route C-E-H-]
connects C to ] through the link that connects node C to node E; C-D-G-]
connects C to J through the link that connects node C to node D; and C-A-B-E-H-

J connects C to J through the link that connects node C 1o node A,

In the example we have identified four separate routes from C to J, but as yet
we cannot make a decision as to which route is the best; some form of criteria
is required for us to make a decision. In Figure 2.9(c), weights are added to the
links that are in proportion to their geometric distance. By adding the weights
of the links for each route together, a weight for each route is determined.
The weight for each route is now associated with the link that connects
originating node C to the adjacent node that delines the first part of each route
from C to J. On the basis of comparing the route weights, the route that
represents the shortest geometric distance from C to J is C-F-J, and the link

from C to F is the first choice for routing. In addition, the ranking of the other
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Figure 2.9(a):

One possible route

from originating node C to destination
node J is the route C-F-J. One of the
links in the route is the link that
connects originating node C to node F.

Figure 2.9(b):

Other possible routes
from originating node C to destination node ]
and their links from originating node C to an
adjacent node:

- Route C-E-H-] (link C to E)

- Route C-D-G-J (link C to D)

- Route C-A-B-E-H-] (link C to A)

Figure 2.9(c):
Weights are assigned to links. Weighted values
for routes are calculated and associated with
links.

107

Route link route value
C-F-J CtoF 0.240
C-E-H-] CtoE 0.254
C-D-G-] CtoD 0.350
C-A-B-E-H-] CtoA 0.504

Figure 2.9(d):
Routing process is repeated with node F acting
as the originating node.

Route link route value
F-C-E-H-] FtoC 0.343
F-E-H-] FtoE 0.264

F-H-J FtoH 0.214

F-J Fto] 0.151

F-G-J FtoG 0.194
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routes has also been determined; routes C-E-H-J, C-D-G-J, and C-A-B-E-H-] are

the 2nd, 3rd, and 4th choices for routing, respectively.

By using the above method, the links from a given originating node have been
ranked with respect to a weighting factor to the destination node. The routing
decision would select the link from node C to node F as the best choice for
routing to node ], and a portion of the complete route has been defined. In
order to completely determine the route, the same process would be performed
with node F as the originating node trying to determine the best route to node
J. The process is repeated relating destination node J to the links that connect
node F to its adjacent nodes. In this case node F is connected by a link to node
J, and in determining the weights of the route the direct link would be chosen.

The routing example with node F is shown in Figure 2.9(d).

As demonstrated above, the relationship of the originating node, the
destination node, and the adjacent links can be used to perform routing. In
order to perform the routing decisions properly, however, the routes that are
related to the adjacent links must comply with the [ollowing rules:

- The routing sequence from the originating node to the destination
node through a specific adjacent link must be the best route using
that link based on the criteria used for routing. In figure 2.9, route
C-A-B-E-H-J and C-A-D-G-] are both routes from originating node C to
destination node J, and both use the adjacent link from C to A; but
route C-A-B-E-H-J has the smallest weighting factor. The best route
must be used for each adjacent link in order for the order of the
routing choices to be properly determined.

- The routing sequence from the originating node to the destination
node through a specific adjacent link must not reuse the originating
node. This would lead to incorrect routing decisions and a
dependence on another adjacent link connected to the originating
node. Please note that in 2.9(d), node I scarched for a route from
node F to node C; this is allowed for node F has become the

originating node performing the routing decision.
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The next section of this thesis will further describe the routing information
used in the simulations and experiments. In considering the objectives of this
thesis, the collection and creation of the routing information and its relation
to the adjacent nodes is not being studied; signature analysis of messages
between nodes as discussed previously is one possible method that can perform
this function. The objective is to study the ability of a neural network to learn
and process this information to perform routing decisions. As will be shown
in later sections, the learning of the routing information will allow an
individual node to not only determine the link that defines the shortest route
to a given destination node, but also determine the best alternate link(s) if the

first choice is not available.
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Chapter 3
Single Network Node Modelling

In this chapter neural networks will be studied to determine their ability to
learn routing information for a single node in a sample network. Several
network topologies and training methods will be tested, and modifications to
the training set will be performed to determine the effects on learning. From
these tests, conclusions will be made on the optimal parameters to perform

learning of routing information.

3.1 Description

3.1.1 Description of the sample network

In order to study the ability of a neural network to perform network routing
decisions, a sample network is required to provide the network data needed for

the research. The sample network used for this research is shown in Figure
3.1.

Figure 3.1:
Sample Neowvork
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The sample network is an undirected connected graph illustrative of a simple
communications network, consisting of 16 nodes and a set of associated links.
The number of links connected to each node (the node's valence) ranges from
a 2to 6. Table 3.1 lists the valence values, the number of nodes in the sample

network of each valence, and the numbers of the nodes.

Table 3.1:
Valence values for the sample network

Valence # Nodes Nodes
2 1 2
3 3 5,10,13
4 7 1,3,4,9,14,15,16
5 3 6,7,8
6 2 11,12

3.1.2 Description of the neural network

Figure 3.2 depicts the neural network studied in this thesis and its relationship
to the nodes in the sample network. Each neural network is trained to
determine routing results for a specific node in the sample network. The
neurons in the input layer of the necural network represent the nodes of the
sample network. The neurons in the output layer of the neural network
represent the links of the specific node in the sample network to its adjacent
nodes; in Figure 3.2, links L1 o 14 represent the adjacent links connected to
node 9. The training set [or cach neural network consists of routing
information relating each nodc and its adjacent links to the other nodes in the
sample network as described in the introduction of this thesis. The task of the
neural network is to learn this related routing information for each node. By
performing postprocessing on the neural network's outputs, the link that best

fits the routing criteria can be determined from the output layer.

In considering the various neural network topologies, activation functions,
and learning rules available for use, the following choices were made for the

test networks.
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SAMPLE
NETWORK

NEURAL NETWORK
FOR SAMPLE
NODE 9

output layer
(routing information)

hidden layers

input layer
(destination node)

ligure 3.2:
Neural Network and its relation to the Sample Network
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3.1.2.1 Learning rule

The learning rule to be used is Back Propagation. This rule was chosen
because the task to be performed is a function of mapping input vectors to
output vectors. Back Propagation has been found to be an effective learning

technique for mapping and pattern classification problems [21].
3.1.2.2 Topology

The network topology is a lour layer feed forward network consisting of an
input, an output, and two hidden layvers. [Fach layer is fully connected to the
following layer. The four layer feed forward network (a three layer
perceptron) is commonly used with the Back Propagation learning rule in
mapping applications and pattern classification; the output rankings of the
neural network can be considered a pattern that must be classified for each
input. There are N! possible ranking patterns for a sample network node with
N outputs, and to select the correct pattern out of a large number of patterns
would require a pattern classifier capable of creating complex and arbitrary
decision regions. The three layer perceptron is well suited to creating these

types of regions [22].
3.1.2.3 Activation function and associated variables

The activation function for the network is a continuous sigmoid [23],

represented by the equation below

]

r+1) =
at+1) L e“WWT

where
a(t+1) is the activation value of a neuron,

w(t) is the weighted sum of the neuron's inputs, including
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any threshold values, and

T is the network temperature.

For this function, the threshold is set to zero, and the maximum and minimum
activation values are set at 0 and 1 respectively; these values are common in
back propagation learning. The temperature variable is used to modify the
steepness of the sigmoid function, and is usually set high at the start of
learning to provide a gradual activation function. As learning progresses the
temperature is reduced, resulting in a steeper activation function that forces

the network towards the minimum error solution.
3.1.2.4 Learning rate and momentum

The back propagation learning rule determines the error between a neuron's
actual output values and the desired values, and modifies the weight of the
connection to the previous layer; this process starts at the output layer and is
propagated back to through the neural network to the input layer. The

formula [24] that determines the change in connection weight is shown below

() = a2 + oawi—1)
ow

where
w(t) is the weight of the connection between two nodes in
different layers,
Aw(t) is the change in connection weight through learning,
E is the global error (the squared error between the actual

and desired output values),

aE(t)/aw is the rate of change of the global error with respect to
the connection weight,

(04 is the learning rate (a variable that controls the amount
of weight change) and

6] is momentum (a variable that speeds learning by using

previous weight change information).
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By adjusting the values of the learning rate and momentum variables, the rate
of learning can be controlled. For this thesis, values of 0.2 and 0.9 used for the
learning rate and momentum respectively; the values were defaults supplied

by the neural network simulator, and were left unchanged.

3.1.3 Determination of the routing information

As discussed in the introduction, routing criteria can be established by
assigning weights or values to the links and nodes of a network, and using the
sum of the weights of a sequence on links and nodes to determine the weight
of a route. This routing information is the basis of the training sets used in
this thesis. In telecommunications networks, a weight related to distance
(physical separation of nodes in a communications network) or time (the time
to transmit a signal between nodes) could be used [or the study. For this thesis
a weighting factor related to time was chosen, for a time related factor can be

used to model both the links and nodes of a communications network.

The links and nodes of a teleccommunications network introduce time delays
through different methods.  Time delays incurred by a transport facility
(transport delays) are a function of the physical distance between two nodes
in the network; in this case a signal with a known velocity travels down the
facility, with the delay equal to the distance divided by velocity. Examples of
links in a telecommunications network include copper wire, fibre optic cable,
and microwave radio. Time delays in a network node are incurred due to the
time required to switch a given signal between links in and out of a node. An
example of a equipment that performs this function is a telephone switch or a
DCS, which connects different digital signal inputs to outputs by using a
combination of time and space switching; time switching involves the
switching of a signal between dilferent time slots, and this process introduces
delays. Depending of the nature of a signal and the complexity of a
telecommunications node, multiple switches may be performed. By using time
based weighting, very dissimilar transport and switching activities can be

modelled in the same neuwork, since the activities all relate to a time




Chapter 3 - Single node modelling Page 39
component.

Depending on the geographical size of the telecommunications network being
considered, the comparative magnitude of the weighting for the nodes will
change with respect to the links. If the values of the node and link weights
are similar in size, then the time delays of the links are small, and the network
being modelled will have a small geographic area in telecommunications
network terms; such a network model would represent a city. If, however, the
node weights are small in comparison to the link weights, then the network
would cover a large geographic area, more closely modelling a large network
between cities. In this thesis the goal is to model large scale networks, so the

link weights would be several times larger than the node weights.

For the purposes of this thesis, @ value of 0.25 milliseconds was chosen to
approximate the maximum time delay for a network node; this is
representative of an average delay in current telecommunications networks.
The lengths of the links shown in Tigure 3.1 were measured and provided in
Table 3.2. If the unmodified link lengths were to be used for the weights, the
link weights would be between 8 and 60 times larger than the node weights,
which would be too large a difference in magnitude for the desired
simulations. To reduce the difference in magnitude between link and node
weights, the link weights were multiplicd by a factor of 0.37: as a result the
link weights were now between 3 and 20 times the size of the node weights.

The value of 0.37 was produced by using the [ollowing formula

(7600 000) (1.46)
(300) (100 000)

0.37 (msec/cm)

where
7600000 = Scaling lactor
1.46 = index of refraction
300 = Speed of light (km/msec)
100000 = number of centimeters per kilometer (cm/km)




Table 3.2
Length values for each link in the sample network
From/To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2.9271] 3.1907] 3.6200 15.000
2 2.0330 2.9271
3 2.9271| 2.0330 2.2895; 2.7127
4 3.1907 1.9311 2.0330| 2.4180
5 3.6200 1.9311 4.4450
6 2.9271] 2.2895 3.1269 2.5598 4.9621
7 2.7127| 2.0330 3.1269 2.3114 2.3114
8 2.4180 2.3114 2.1298 3.2690[ 4.1275
9 4.4450 2.1298 3.1750] 5.1196
10 2.5598 2.1298 2.7127
11 2.3114] 3.2690 2.1298 2.5598 3.2690f 3.0122
12 4.1275{ 3.1750 2.5598 3.7026 2.3114| 4.9289
13 5.1196 3.7026 3.5497
14 4.9621 2.7127] 3.2690 2.2896
15 3.0122] 2.3114 2.2896 4.2360
16 15.000 4.9289] 3.5497 4.2360

sulppow apou a3uls - ¢ 1aadey)
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To use the values in the above formula in an illustrative example, if the sample
network was drawn to a 1:7 600 000 scale, and the velocity of a signal was the
speed of light divided by the given index of refraction, the factor of 0.37
milliseconds/ centimeter is produced. To provide an idea of the scale used,
Figure 3.3 shows the sample network superimposed on a geographic area of

equivalent scale.

Edmonton

5

Regina

Winnipeg

Figure 3.3:
Comparison of sample network to a geographic area of equivalent scale,

After performing the described scaling, the new values are provided in Table
3.3(a). When the weights of several sample sequences of nodes and links were
summed, it was found that the route weights were too large to be used as output
values for training in back propagation nctworks; the route weights must be
between O and 1 for the networks, activation functions, and learning
paradigms to be used. By multiplyving all of the weights by 0.1, the weights
were reduced to values where the route weights could be used for training
purposes. The resulting final weighting values for the nodes and links are
provided in 3.3 (b).




Scaled node and link weights

Table 3.3 (a)

From/To 1 2 3 4 5 6 7 8 9 10 i1 12 13 14 15 16

1 0.2500 1.0734] 1.1700] 1.8275 5.5005
2 0.2500| 0.7455 1.0734
3 1.0734| 0.7455] 0.2500 0.8396} 0.9947
4 1.1700 0.2500f 0.7081 0.7455| 0.8867
5 1.3275 0.7081] 0.2500 1.6300
6 1.0734| 0.8396 0.2500] 1.1466 0.9387 1.8196
7 0.9947| 0.7455 1.1466] 0.2500| 0.8476 0.8476
8 0.8867 0.8476] 0.2500{ 0.7810 1.1987] 1.5136
<] 1.6300 0.7810| 0.2500 1.1643] 1.8774
10 0.9387 0.2500| 0.7810 0.9947
11 0.8476| 1.1987 0.7810| 0.2500[ 0.9387 1.1987| 1.1046
12 1.5136] 1.1643 0.9387| 0.2500{ 1.3577 0.8476| 1.8074
13 1.8774 1.3577] 0.2500 1.3017
14 1.8196 0.9847| 1.1987 0.2500] 0.8396
15 1.1046] 0.8476 0.8396| 0.2500( 1.55833
16 5.5005 1.8074] 1.3017 1.5533| 0.2500

Internal (Node) Weight: Link Weight Multiplier:

Table 3.3 (b)
Final nevwork weights (node and link weights multiplied by 0.1)
From/To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.0250 0.1073[ 0.1170| 0.1327 0.5501
2 0.0250| 0.0748 0.1073
3 0.1073[ 0.0746] 0.0250 0.0840| 0.0995
4 0.1170 0.0250[ 0.0708 0.0746| 0.0887
5 0.1327 0.0708]| 0.0250 0.1630
6 0.1073] 0.0840 0.0250] 0.1147 0.0939 0.1820
7 0.0995| 0.0746 0.1147] 0.0250{ 0.0848 0.0848
8 0.0887 0.0848] 0.0250| 0.0781 0.1199] 0.1514
9 0.1630 0.0781] 0.0250 0.1164] 0.1877
10 0.0939 0.0250] 0.0781 0.0995
11 0.0848| 0.1199 0.0781] 0.0250] 0.0939 0.1199]| 0.1105
12 0.1514] 0.1164 0.0939} 0.0250| 0.1358 0.0848] 0.1807
13 0.1877 0.1358] 0.0250 0.1302
14 0.1820 0.0985| 0.1199 0.0250| 0.0840
15 0.1105{ 0.0848 0.0840]| 0.0250| 0.1558
16 0.5501 0.1807] 0.1302 0.1553] 0.0250

guijjopow apou 3(3uls - ¢ 121deyn
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With the weighting values for the nodes and links determined, pattern files
containing the routing information for w set of sample nodes were generated.
It was decided that a small set of sample nodes would be initially tested to
evaluate the performance of the neural networks. The sample nodes chosen
were nodes 2, 9 and 11; these nodes have 2, 4, and 6 adjacent links respectively,
and by using these nodes for the initial testing the results would provide some
indication of the performance of the neural networks for small, medium, and

large numbers of output nodes.

The pattern file for Node 2 is shown in Table 3.4. Each pattern file consists of a
set of input/output vector pairs. The input vector is a binary vector that
asserts a single inpul neuron representing a specific destination node. The
output vector is a real value vector representing the routing information for
that particular destination node derived [rom the routing criteria discussed.
In each pattern file, onc of the 16 inpul ncurons represents the particular
node in the sample network that is being trained; as a result, the output vector
for that node would contain zcro values. In Table 3.4, these values are
associated with input neuron i2. In the 2, 4, and 6 output node training sets,
the corresponding input neurons with zero output vector values are i2, i9, and
i1l respectively. When the actual training was performed, this zero output
value vector pair was excluded, and the training set contained 15 input/output

vector pairs instead of 16.

All of the pattern files used in the initial testing can be found in Appendix A.

3.1.4 Description of the simulation package

With the basic neural network topology, activation function, learning rule
and initial training scts defined, the training of the neural networks could be
simulated. The network simulations were performed on an Apple Macintosh
IIfx with 4MB RAM and an 80 MB hard drive. The application used to perform
the simulations was MacBrain 2.0 and 3.0, distributed by Neurix of

Massachusetts. MacBrain is an neural network simulation package capable of
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Figure 3.4:
Neural Network with 16 input neurons, 6 output neurons, and
2 hidden layvers of 6 neurons each
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Figure 3.5:
Neural Network with 16 input neurons, 6 output neurons, and
2 hidden lavers of 8 neurons each
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Figure 3.0:
Neural Network with 16 inpul neurons, 0 oulput neurons, and
Z hidden layers of 10 neurons each
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simulating different neural network topologies, activation functions, and

learning rules.

The first objective of the simulations was to determine a suitable number of
neurons for the neural network's two hidden layers. For the initial testing
three combinations of hidden layers were used; both hidden layers contained
equal numbers of neurons, with each layer having 6, 8, or 10 neurons.
Figures 3.4, 3.5, and 3.6 show the topologies of a 6 output neuron, two hidden
layer network with 6, 8, and 10 neurons per hidden layer respectively. These
networks would become the foundation for all testing; to create a neural
network for any of the sample network nodes, output neurons are removed

until the desired number is attained.

3.2 Training the neural networks

3.2.1 The V1 Macro

The three network topologics were trained using the three training sets
generated for nodes 2, 9, and 11, resulting in 9 trained neural networks; Table

3.5 lists the nine network topologics.

Table 3.5:
Neural network topologies used in the initial testing

Network Description of macro used, number of neurons Training

ldentifier per hidden layer, and number of output neurons set used
V1.2.06.2 V1 Macro, 6 neurons/hidden layer, 2 output neurons Node 2
V1.2.06.4 V1 Macro, 6 neurons/hidden layer, 4 output neurons Node 9
V1.2.06.6 V1 Macro, 6 neurons/hidden layer, 6 output neurons Node 11
V1.,2.08.2 V1 Macro, 8 neurons/hidden layer, 2 output neurons Node 2
V1.2.08.4 V1 Macro, 8 neurons/hidden layer, 4 output neurons Node 9
V1.2.08.6 V1 Magro, 8 neurons/hidden layer, 6 output neurons Node 11
Vi.2.10.2 V1 Macro, 10 neurons/hidden layer, 2 output neurons Node 2
V1.2.10.4 V1 Macro, 10 neurons/hidden layer, 4 output neurons Node 9
V1.2.10.6 V1 Macro, 10 neurons/hidden layer, 6 output neurons Node 11
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In MacBrain the training ol the neural networks is performed by opening a
network file containing the neural network and the parameters for its
neurons and connections, pasting a pattern file with the training set onto the
network, and executing a icon-based [lowchart macro that contains the

training algorithm. The f[irst algorithm used in testing was called the V1

Macro, with the flowchart for the macro shown in Figure 3.7; the actual V1

Macro graphic can be found in Appendix A.

The V1 Macro performs the following functions:

- Prompts the user for the number of training cycles to be executed
(NUMCYCLES) and the initial temperature (TEMPERATURE) for the
activation function.

- Executes the learning function identified by the Learn node.

- Performs a loop in the program (using the variables INCREMENT and
TESTPLR) that calculates the mean squared error (MSL), assigns it to
the variable MSERROR, and writes it (o a text window every 5
learning cycles. In the same loop it reduces the temperature,
annealing the nctwork every 3 learning cycles.

- Performs various display housckeeping functions.

- Alerts the user when the simulation is complete.

The initial settings for the training were as follows:

- Number of training cycles (NUNMCYCLES): 20X

- Initial temperature (TEMPERATURE): 0.2

- Learning rate: 0.2

- Momentum: 0.9

- Method of updating: Updating by layer
- Learning rule: Back Propagation

Batch with Momentum

3.2.2 Initial analysis of the V1 Macro trained networks

After the networks were trained the mean squared error results were studied.

The MSE graph for network V1.2.00.4, shown in Figure 3.8, is typical of the
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Figure 3.7:
Flowchart for the VI Macro
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Figure 3.8:
MSE Values as a function of number of training cycles for network V1.2.06.4

mean squared error results for the nine networks trained; for each network
the MSE started as a large value and then decreased monotonically after some
initial fluctuations. The smooth decrcase of the MSE value function is
attributed to the fact that the crror was calculated every five training cycles,
thus resulting in some degree of smoothing of the function due to sampling.
After the initial error fluctuations the function decrease was gradual, followed
by a more rapid decrease in the characteristic before once again levelling off;
the majority of the learning in the network was probably performed during
the rapid decrease in the characteristic. A review of the MSE graphs for all
nine networks shows that the number of cycles required to reach this point in
the characteristic was dependent on the number of output neurons and not the
number of hidden neurons per layer. Figures 3.9, 3.10, and 3.11 show the MSE
characteristic as a function of 2, 4, and 6 output nodes, respectively. Figures
3.12, 3.13, and 3.14 show the MSLE characteristic as a function of 6, 8, and 10

neurons per hidden layer respectively.

One other important feature of cach MSE characteristic is that eight of the
nine networks reached a minimum MSE value during the training, and then
the MSE values began to increase; this feature is most evident in the V1.2.06.2,

which reached the minimum MSE after 685 training cycles. In V1.2.06.6, the
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Figure 3.9:
MSE values for networks with two output neurons using the V1 Macro.
0.2
0.183 V12064 |
0.16—§ —_— V12084 []
0.143 -
0.123 — V12104 | ]
0.1
0.08
0.06 E m“
0.04-3
0.023 \
O = T T T T ¥ 1 T ] ¥ 1) ¥ ¥ ’ 1 ¥ 13 T ] 1 L3 ] I L3
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Training Cycles
Figure 3.10:
MSE values for networks with four output neurons using the V1 Macro.
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Figure 3.11:
MSE values for networks with six output neurons using the V1 Macro.
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Figure 3.12:
MSE Values for networks with six neurons per hidden layer using the V1 Macro.
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MSE Values for networks with eight neurons per hidden layer using the V1 Macro.
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MSE Values for networks with ten neurons per hidden layer using the V1 Macro.
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network did not reach a minimum value within the 2000 cycles; a later
training simulation found that this network reached the minimum MSE at 2265
training cycles. Table 3.6 provides a complete listing of each network's
minimum MSE and the number of training cycles required to reach the

minimum.

Table 3.6:
V.1 Macro minimum MSE results and number of training cycles

Network Minimum MSE # Training cycles
V1.2.06.2 2.26890 E-3 685
V1.2.06.4 4.41559 E-3 1375
V1.2.06.6 6.57322 E-3 2000 (2265)
Vi.2.08.2 2.25664 E-3 795
V1.2.08.4 4.10530 E-3 1480
V1.2.08.6 3.41948 E-3 1540
V1.2.10.2 2.26328 E-3 875
Vi.2.10.4 4.26277 E-3 1300
V1.2.10.6 483774 E-3 1750

In considering the cause of the increasing MSE, it was theorized that the V1
Macro's annealing process had reached a point where the decrease in network
temperature was no longer assisting the network to reach its minimum
energy, and that the steepening activation function was the cause of the

increasing error.

To test this theory, a special macro was created that would anneal the network
until the minimum MSE was detected, then hold the temperature at a fixed
value and let the training continue. An untrained copy of the network 2.06.4
was selected, and the new training macro was execcuted for 2000 training
cycles. The result was that at the point of minimum MSE a small jump in the
MSE value was found as the temperature was being fixed, then the MSE
characteristic continued (o decrease as belore.  Figure 3.15 compares the
portion of the V1.2.06.4 characteristic near the minimum MSE point to the new

macro's results.

With this result found, it was decided that the next part of the research would

compare the output results of the VI Macro trained networks with two new sets
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of trained networks; the first new set of networks would use the new macro
that stops the annealing at the point of minimum MSE and continues learning,
and a second set of networks would be trained to the point of minimum MSE.

The training for these two sets of networks will now be described.
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ligure 3.15:
Comparison ol MSE Values for VI and Special Macros

3.2.3 The V2 and V3 Macros

The special macro described carlier is called the V2 Macro; the flowchart for
the macro shown in Figure 3.10, and the actual V2 Macro graphic can be found

in Appendix A.

The V2 Macro is an extension of the VI Macro. This new macro performs the
following functions:

- Prompts the user [or the number of training cycles to be executed
(NUMCYCLES) and the initial temperature (TEMPERATURE) for the
activation function.

- Executes the learning function identified by the lLearn node.

- Performs a loop in the program (using the variables INCREMENT and
TESTPER) that calculates the mean squared error, assigns it to the
variable MSERROR, and writes it to a text window every 5 learning

cycles. In the same loop the testing for the minimum MSE is
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Flowchart for the V2 Macro
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performed and annealing the network is also performed. The macro
starts to test for the minimum MSE after the number of training
cycles is greater than the variable LOWPASS, which was set to a high
value so that the initial MSE fluctuations would not cause the
annealing to stop prematurely. The variable MSEPREV holds the
previous value for the MSE, which is compared to the latest value
stored in MSERROR. If MSERROR is lower, then its value is written to
MSEPREV, the temperature is lowered, and the learning continues.
If MSERROR is higher, MSERROR is written to MSEPREV, the
temperature is increased to the value where the minimum MSE was
determined, STOPANNEAL is assigned the value of X, and learning
continues. By assigning the value of X to STOPANNEAL, the testing
for minimum MSE is stopped at the point where STOPANNEAL is
compared to ANNEALTLEST.
- Performs various display housekeeping functions.

- Alerts the user when the simulation is complete.

The V3 Macro is the same as the V1 Macro. In order to train the networks up to
the point of the minimum MSL, the value of NUMCYCLES for each of the
networks was set to the number of training cyeles to reach minimum MSE
found during the previous training using the V1 Macro. For the V2 and V3

network training, the following parameters were used:

- NUMCYCLES (for V2 Macro): 2000

- NUMCYCLES (for V3 Macro): Sce Table 3.6

- Initial temperature (TEMPERATURL): 0.2

- Learning rate: 0.2

- Momentum: 0.9

- Method of updating: Updating by group
- Learning rule: Back Propagation

Batch with Momentum

By performing the training ol the networks up to 2000 cycles, similar
relationships were found between the VI, V2, and V3 Macro trained networks;

the one exception to this wuas the 2.00.6 networks, where the results for all
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macros were the same since the function did not reach a point of minimum
MSE. For this network to exhibit the same relationship to the others tested, the
number of training cycles performed has to exceed the number of cycles
required to reach the minimum MSE. Since the minimum value was reached at
2265, the V1 and V2 networks were trained with the value of NUMCYCLES set to
2500.

3.3 Analysis of the V1, V2, and V3 Macro results

D

A total of 9 network topologies using 3 different training methods were

trained, resulting in a total of 27 wainced networks. These networks were then
compared with respect to how well they learned the target values of the
training sets. A number of comparisons were performed on these networks,

and these are described in this section.

3.3.1 Analysis of the individual network results

The Mean Squared Error value for cach of the 27 trained networks were
recorded; Table 3.7 compares these values for each of the macros tested. In all
cases, the MSE values were lowest for the V2 Macro. This MSE value, however,
does not give us any detailed information as to how the trained values compare

to the target values of the training sct. To provide a better analysis of the

training, the set of trained output values was recorded for each network and

compared to the training sets.

Table 3.7:
Comparison of MSE results for the VI, V2, and V3 Macros

Network | V1 Macro MSE | V2 Macro MSE | V3 Macro MSE
2.06.2 1.38996 E-2 | 2.12573 E-3 2.26890 E-3
2.06.4 558325 E-3 | 3.55090 E-3 4.41559 E-3
2.06.6 5.33428 E-2 4.79963 E-3 6.57322 E-3
2.08.2 1.21472 E-2 2.09814 E-3 | 2.25664 E-3
2.08.4 4.71355 E-2 2.83197 E-3 4.10530 E-3
2.08.6 4.47730 E-3 | 254631 E-3 | 3.41948 E-3
2.10.2 1.82580 E-2 | 2.14461 E-3 2.26328 E-3
2.10.4 5.22332 E-3 2.73264 E-3 4.26277 E-3
2.10.6 5.16670 E-3 | 3.56538 E-3 4.83774 E-3
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3.3.1.1 Average and standard deviation results for the trained networks

In addition to the Mean Squared Error results, more detailed results from each
trained network were recorded for analysis. The table for one of the trained
networks (Network V1.2.06.4) is shown in Table 3.8 for illustration, and the
tables for all 27 of the trained networks are provided on pages B.1 to B.27 of
Appendix B. Each table represents the results of a trained network, and
provides the difference of the target (actual) values minus measured (trained)
values of each output neuron for all input patterns. In addition, the following
additional information was calculated for each output neuron and the whole
network:
- The average of the absolute value of the difference of target minus
measured output values. This value provides the average magnitude
of the difference between measured and target values. The smaller
the average, the closer the trained values are to the target values for
the whole network.
- The standard deviation of the absolute value of the difference of
target minus measured output values. This value provides a measure
of the variation of the difference values for the trained network.
The smaller the standard deviation, the more consistent the trained

values are to the target values,

3.3.1.2 Full and modified value results

In analysing the results of the training, it was found that the networks
performed differently with respect to the missing input/output vector pair
representing the node being trained. In some of the networks, the learning
process trained the outpul ncurons to produce a zero value. This success in
learning a zero value was dependent on the number of hidden layer neurons
in each trained network; the networks with 6 and 8 neurons per hidden layer

learned smaller output values than the 10 neuron per hidden layer networks.
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Table 3.8

Training Results for V1.2.06.4
(Network 2.06.4, VI Macro)

Destination Neuron o1 (Route 5) Neuron o2 (Route 8)
Target Meas Diff Target Meas Diff

i 0.3708| 0.38696| -0.0162] 0.3838| 0.34123} 0.04257

i2 0.6027f 0.59431| 0.00839| 0.4619| 0.45203| 0.00987

i3 0.5031{ 0.49084| 0.01226| 0.3623] 0.34667| 0.01563

i4 0.3088| 0.2683] 0.0425| 0.2418] 0.23695| 0.00485

i5 0.213] 0.28783] -0.0748| 0.3376] 0.27743| 0.06017

i6 0.5481| 0.53388] 0.01422| 0.3776] 0.36776( 0.00984

i7 0.4084| 0.33077| 0.07763| 0.2379] 0.24452( -0.0066

i8 0.4225| 0.26476| 0.15774| 0.1281; 0.2078| -0.0797

i9 0.03653| -0.0365 0.02367| -0.0237

i10 0.6212| 0.62441| -0.0032| 0.3761] 0.37954| -0.0034

i1 0.5181] 0.5127| 0.0054 0.273| 0.28933| -0.0163

i12 0.5989| 0.58511| 0.01379| 0.3045{ 0.31116| -0.0067

i13 0.7597| 0.78442| -0.0247| 0.4653] 0.46794| -0.0026

i14 0.663| 0.67004| -0.007| 0.4179| 0.41063| 0.00727

i15 0.6536| 0.67837] -0.0248| 0.4085] 0.38525| 0.02325

i16 0.8046| 0.79761] 0.00899| 0.5102] 0.4862 0.024
Average [Diff| (Full) | 0.03289|Average |Diff] (Full) | 0.02103

Neuron Average |Difff (Mod) | 0.03264|Average |Diff| (Mod) | 0.02086
Results Std Dev |Diff] (Full) 0.04048|Std Dev |Diff] (Full) 0.02202
Std Dev |Diff| (Mod) | 0.04189(Std Dev |Diff| (Mod) | 0.02278

Destination Neuron o3 {Route 12) Neuron o4 (Route 13)
Target Meas Diff Target Meas Diff

it 0.5985| 0.59328| 0.00522} 0.8306| 0.83464 -0.004

i2 0.6191} 0.61651| 0.00259] 0.8512| 0.83803| 0.01317

i3 0.5195} 0.5021 0.0174} 0.7516] 0.76498] -0.0134

i4 0.4565] 0.44198| 0.01452] 0.6886] 0.70348( -0.0149

i5 0.5523] 0.53303] 0.01927] 0.7844] 0.78615| -0.0018

i6 0.5072{ 0.49192] 0.01528; 0.7393| 0.74378| -0.0045

i7 0.395| 0.38908} 0.00592} 0.6271} 0.64714 -0.02

i8 0.3428] 0.34296] -0.0002] 0.5749| 0.58669] -0.0118

i9 0.02331} -0.0233 0.03318| -0.0332

i10 0.3884] 0.38312| 0.00528] 0.6205| 0.58901| 0.03149

i11 0.2853] 0.2917} -0.0064| 0.5174] 0.47513| 0.04227

i12 0.1664; 0.2295| -0.0831] 0.3985| 0.31962| 0.07888

i13 0.3272] 0.24207| 0.08513] 0.2377| 0.24794( -0.0102

i14 0.3851} 0.39052| -0.0054] 0.6172| 0.58445| 0.03275

i15 0.2762] 0.30626] -0.0301 0.5083| 0.44889] 0.05941

i16 0.3712] 0.33132] 0.03988] 0.3929| 0.43999] -0.0471
Average [Diff] (Full) 0.02118]|Average |Diff] (Full) 0.02618

Neuron Average [Diff] (Mod) | 0.02104|Average |Diff| (Mod) | 0.02571
Results Std Dev |Diff] (Full) 0.02362|Std Dev [Diff] (Full) 0.02193
Std Dev |Diff| (Mod) | 0.02445|Std Dev |Diff| (Mod) | 0.02262

Network Average [Diff| (Full) | 0.02532|Std Dev |Diff} (Full) 0.02787
Results Average [Diff] (Mod) | 0.02506|5td Dev [Difff (Mod) | 0.02874

Page 58




Chapter 3 - Single node modelling Page 59

In studying the difference values associated with the missing input/output
vector, it was found that this difference value was significantly larger than
the difference values for the other training patterns. In order to remove the
effect of the missing input/output vector from the average and standard
deviation values discussed above, modified average and standard deviation
values were calculated that removed the missing input/output vector results.
Both the full and modified average and standard deviation values for each
output neuron and the whole network are provided for all of the trained

networks. These values will be used in the comparisons that follow.

3.3.1.3 Distribution of difference valuces

The average and standard deviation values described above provide a basis for
comparison of the target and mecasurcd output values. lHowever, there was also
interest in the distribution of the difference values for each model. The
difference values for each model were analysed and the following distribution
counts were determined:
- The number of target and measured values with an absolute
difference of less than 0.01;
- The number of target and measured values with an absolute
difference greater than or cqual to 0.01 and less than 0.02; and
- The number of target and measured values with an absolute

difference greater than of cqual o 0.02.

The values used for the count thresholds were arbitrarily chosen based on a
review of the difference values. By studying the counts listed above, we could
study the distribution of the difference values [or each network and compare
these distributions against other networks; the better networks would display
larger counts in the smaller diffecrence ranges and smaller counts in larger
difference ranges. The counts were also calculated using the full and modified
results to study the cffect of the originating node and the missing
input/output vector on these distributions. These counts will be used in the

comparisons that follow.
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3.3.1.4 Direct comparison of results between the different networks and

macros

For the following comparisons the average, standard deviation, and
distribution counts were prepared separately [or each network and then
compared to other networks. These comparisons do not directly compare the
difference values of networks using the same training sets against networks
using different numbers of hidden neurons per layer or networks using
different macros. To provide these direct comparisons, the following counts
were performed:

- A set of three networks is compared, and the best result (smallest
absolute difference) for cach measured output was determined and
counted;

- After the best result for each measured outpul was determined, the
difference results of the other networks were compared to it and
counted if the difference between it and the best result was less than
or equal to 0.01;

- After the best result [or cach measured output was determined, the
difference results of the other networks were compared to it and
counted il the difference between it and the best result was greater

than 0.01.

By determining the best results of sets of trained networks, a method of direct
comparison between the various models under study is provided. Better
networks will display larger counts of best results and smaller counts of result
values that were worse than the best results. Poorer networks will display
smaller counts of best results and larger counts of result values that were
worse than the best results. Two ol the following comparisons will compare
sets of networks versus dilferent numbers of hidden neurons and versus

different macros used for training.

3.3.2 Comparison #1 - description and results

Table 3.9 contains nine comparisons of trained networks.  In each comparison
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networks that were trained with the same macro and have the same number of
output neurons were compared versus the number of neurons per hidden
layer. For this comparison the difference distribution count for less than 0.01,
the difference distribution count for greater than or equal to 0.02 , the
average of the absolute value of the dillerence, and the standard deviation of
the absolute value of the difference are compared. The best results in each

comparison are shaded.

In analysing the results of this comparison, no single network topology (6, 8,
or 10 neurons per hidden layer) consistently provided the best results, but the
8 neuron per hidden layer topology performed better overall than the 6 or 10
neuron topologics by supplying the best results or close to the best results
more often. The comparison of distribution counts showed that the
originating node results consistently appceared in the highest count range, or
the range where the absolute value of the dilference was greater than or
equal to 0.02.

In the V1 Macro trained nctworks, the difference in average and standard
deviation values between the full and modified results was small for all
network topologies. This showed that these networks learned the zero value
result for the untrained originating node.  In the V2 and V3 Macro
comparisons, the modified average and standard deviation values were less
than the values for the full sct of results, with significant differences being
found in the V2 and V3 Macro trained networks with 2 and 4 output nodes. This
shows that the VZ and V3 Macros did not learn the untrained originating

node's values to the same degree as the VI Macro.

3.3.3 Comparison #2 - description and results

Table 3.10 contains nine comparisons of trained networks. In each
comparison networks that were trained with the same network topology
(number of output neurons and number of nceuron per hidden layer) were
compared versus the macro used [or training. For this comparison the

difference distribution count f(or less than 0.01, the difference distribution
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Comparison versus number of neurons per hidden layer

Table 3.9
Comparison #1:
Average/Standard Deviation measurements and distribution counts

Page 62

NN Mode! Distribution Counts for |X| Average of Std Deviation of
[X|<.01 1.01<|X]<.02] [X[>.02 | Diff] | Diff
Full | Mod Full Mod
V1.2.06.2 4 4 3358 0.06472| 0.06688
V1.2.08.2 6 6 22 20 | 0.05765] 0.05653 g
V1.2.10.2 5 5 25 | 23 0.0747| 0.07258| 0.06829| 0.07007
V1.2.06.4 |2 15 2na6] 0.02787| 0.02874
V1.2.08.4 | 11 11 23 | 23 | 30 | 26 | 0.02687| 0.02556
V1.2.10.4 | 13 | 13| 18| 18 | 33 | 29 | 0.0304| 0.02779} 0.02684| 0.02491
V1.2.06.6 | 21 21 18 | 14 | 57 | 55 | 0.02638| 0.02686| 0.01845| 0.01895
V1.2.08.6 22
V1.2.10.6 26 0.02238] 0.01867] 0.01927
NN Model Distribution Counts for |X] Average of Std Deviation of
{X]<.01 1.01<|X|<.02] [X]|=.02 | Diff| | Diff
Full { Mod | Full | Mod | Full | M Full Mod Full Mod
V2.2.08.2 8 8 0.04579] 0.0251f 0.08402| 0.02116
V2.2.08.2 11 11 6 6 15 13 | 0.04566 0.08457| 0.02117
V2.2.10.2 7 7 i1 11 i4 [ 12 :
V2.2.06.4 19 19 23 19 0.02027 0.02202
V2.2.08.4 19 1 19 0.03923] 0.0179{ 0.08956] 0.02101
V2.2.10.4 15 15 20 16 | 0.04655 1 0.11968% :
V2.2.06.8 19 15 56 54 | 0.02638] 0.02686 0.01895
V2.2.08.6 29 | 28 0.02253} 0.02994¢ :
V2.2.10.6 22 22 39 33 0.02262| 0.01682
NN Model Distribution Counts for {X] Average of Std Deviation of
X|<.01 1.01<]|X]<.02] |X]=.02 [Diff| | Diff
Full | Mod | Full | Mod | Full | Mod Full Mod Full Mod
V3.2.06.2 8 8 17 1 15 | 0.04698] 0.02657| 0.08294| 0.02119
V3.2.08.2 9 9 0.02659] 0.0829
V3.2.10.2 9 9
V3.2.06.4 i2
V3.2.08.4 13 0.02359| 0.0859
V3.2104 | 22 | 22 | 12 | 12 | 30 | 26 | 0.05172] 0.0237| 0.11699| 0.02366
V3.2.06.6 | 27 | 21 15 | 15 0.02683] 0.02826 | 0.02012
V3.2.08.6 27 0.0
V3.2.10.6 26 26 20 20 50 44 1 0.02565| 0.02215} 0.02279{ 0.01883
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Averagel/Standard Deviation
Comparison

Table 3.10
Comparison #2:

measurements and distribution counts
versus fraining macro
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NN Model Distribution Counts for |X] Average of Std Deviation of
IX|<.01 [.01<[X|<.02] |X[>.02 |Diff]
Full | Mod | Full | Mod | Full { Mod Full Mod Mod
V1.2.06.2 8 8 4 4 20 18 | 0.05303] 0.05358 0.06688
V2.2.06.2 8 (| 0.08402 .
V3.2.06.2 8 17 15 | 0.04698| 0.02657 0.08294| 0.02119
V1i.2.06.4 15 02532 0.025061#0i02
V2.2.06.4 19 0.03777 12 0.07456 3
V3.2.06.4 12 29 25 1 0.04043] 0.02358f 0.07235| 0.02412
V1.2,06.6 14 57
V2.2.06.6 15 | 56 | B4 10.00638) 0 0208¢ :
V3.2.06.6 15 0.02683} 0.028286 0.02012
NN Mode] Distribution Counts for {X] Average of Std Deviation of
[X]<.01 [.01g|X[<.02| |X|=.02 |Diff| | Diff
Full | Mod | Full { Mod | Full | Mod Full Mod Full Mod
V1i.2.08.2 6 6 0.05961
V2.2.08.2 6 | 6 Pisibgg , a1 0.08457] 0.02117
V3.2.08.2 9 9 16 14 0.047] 0.02659{ 0.08293 ;
V1.2.08.4 23 | 30 | 26 [:0:0268 0.02556 0.02428
V2.2.08.4 19 0.03923 i 0.08956
V3.2.08.4 22 22 13 13 29 25 ] 0.04388] 0.02359} 0.08596| 0.02352
V1.2.08.6 22
V2.2.08.6 28 0.02253 0.02994¢ :
V3.2.08.6 27 33 27 | 0.02391] 0.01752 0.03
NN Model Distribution Counts for |X] Average of Std Deviation of
[X[<.01 1.01<giX]<.02] |X|=.02 |Diff| |Diff
Full | Mod | Full | Mod | Full | Mod Full Mod Full Mod
V1.2,10.2 5 5 25 23 0747] 0.07258 0.07007
V2.2.10.2 11 11 Ffdp 253! 0.08196F
V3.2.10.2 9 9 | 16 | 14 | 0.04622] 0.02644] 0.08058] 0.02133
V1.2.10.4 18 18 33 29 0.02779 0.02491
V2.2.10.4 15 15 0.04655¢ 0.11968}
v3.2.104 | 22 | 22 | 12 [ 12| 30 | 26 | 0.05172 0.11699] 0.02366
V1.2.10.6 26 26 0.01927
V2.2.10.6 22 22 » | 0.02262E 0.0
V3.2.10.68 20 20 50 44 | 0.02565| 0.02215] 0.02279
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count for greater than or equal to 0.02 , the average of the absolute value of
the difference, and the standard deviation ol the absolute value of the

difference are compared. The best results in each comparison are shaded.

In this comparison, the V2 Macro trained networks consistently performed
better than the V1 and V3 Macro trained networks. This was most evident in
the modified results, where the V2 trained networks provided the best result or
tied with the best result in 34 of the 36 comparisons. This demonstrated that
the VZ Macro trained networks performed the best learning of the target

values.

3.3.4 Comparison #3 - description and results

Table 3.11 contains nine comparisons of trained networks. Each comparison
directly compared the measured output values of networks that were trained
with the same macro and have the same number of output neurons versus the
number of neurons per hidden laver. For this comparison the best result
count, and the count for results greater than 0.01 than the best result were

compared. The best results in each comparison are shaded.

The results of this comparison are very similar to those of Comparison #1; no
single network topology consistently produced the best results in learning the
target values. Once again, the § neuron per hidden layer topology performed
best overall, producing either the best or close to the best results in most of the

comparisons.

3.3.5 Comparison #4 - description and results

Table 3.12 contains nine comparisons of trained networks. Each comparison
directly compared the measured output valucs of networks that were trained
with the same network topology (number of output neurons and number of

neuron per hidden layer) versus the training macro used. For this
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Table 3.11
Comparison #3:
Direct comparison of difference values
Comparison versus number of neurons per hidden layer

NN Model Counts - V1 Macro
Best Result |Result{<Best+.01 [|Result}>Best+.01
Full Full Mod Full
V1.2.06.2 0 0
V1.2.08.2 1 1 15 15 16 14
V1.2.10.2 8 8 6 6 18 16
V1.2.06.4 20 20
V1.2.08.4 28 27
V1.2.10.4 21 21
V1.2.06.6 25 24
V1.2.08.6 32 28
V1.2.10.6 28 24
NN Model Counts - V2 Macro
Best Result |[Result|<Best+.01 ||Result|>Best+.01
Full Mod Full Mod Full Mod
V2.2.06.2 8 8 24 22
V2.2.08.2 | : 15 15
V2.2.10.2 10 8 22 22
V2.2.06.4 36 36
V2.2.08.4 31 30
V2.2.10.4 37 37
V2.2.086.6 30 24 20 20
V2.2.08.6 30 30
V2.2.10.6 34 34
NN Model Counts - V3 Macro
Best Result |Result|<Best+.01 ||Result|>Best+.01
Full Mod Full Mod Full Mod
V3.2.08.2 10 10 19 18 3
V3.2.08.2 9 9 19 19 4
V3.2.10.2 16 16
V3.2.06.4 25 25
V3.2.08.4 38 37 11 8
V3.2.10.4 17 17 34 34 13 9
V3.2.06.6 15 15
V3.2.08.6 27 27
V3.2.10.6 19 19 36 386
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Table 3.12
Comparison #4:
Direct comparison of difference values
Comparison versus training macro

NN Mode} Counts - 8 neurons per hidden layer
Best Result |Result|<Best+.01 ||Result|>Best+.01
Full Mod Full Mod Full Mod
V1.2.06.2 7 7 14 14
V2.2.06.2 11 11
V3.2.06.2 17 17
V1.2.06.4 20 20
V2.2.06.4 22 22
V3.2.06.4 30 30
V1.,2.06.6 24 24
V2.2.06.6 24 24
V3.2.06.6 25 25
NN Model Counts - 8 neurons per hidden layer
Best Result |Result|<Best+.01 ||Result|>Best+.01
Full Mod Full Mod Full Mod
V1.2.08.2 3 3
V2.2.08.2 11 11 :
V3.2.08.2 15 15 9 7
V1.2.08.4 17 17 27 | 27
V2.2.08.4 23 23
V3.2.08.4 16 16
V1.,2.08.6 44 44
V2.2.08.6 33 33
V3.2.08.6 33 33
NN Model Counts - 10 neurons per hidden layer
Best Result [Resultl<Best+.01 [{Result|>Best+.01
Full Mod Full Mod Full Mod
V1.2.10.2 3 3 3 23
V2.2.10.2 12 12
V3.2.10.2 13 13
V1.2.10.4 18 18
V2.2.10.4 20 20
V3.2.10.4 22 22
V1.2.10.6 30 30 34 34
V2.2.10.6 28 28
V3.2.10.6 40 40 40 34
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comparison the best result count, and the count for results greater than 0.01
than the best result were compared. The best results in each comparison are
shaded.

The results of this comparison are very similar to those of Comparison #2; in
almost all cases, the V2 Macro trained networks produced better results than
the V1 and V3 Macro trained networks. In comparing the modified results the

V2 Macro provided the best results in all 18 comparisons.

3.3.6 Summary of conclusions from Comparisons 1 to 4

Comparisons #2 and #4 conclude that the V2 Macro trained networks produced
the best trained networks of the three macros used in the simulations. If
Comparisons #1 and #3 are revisited with the focus on the V2 Macro trained
comparisons, analysis of these comparisons demonstrates that the 8 neuron
per hidden layer network topology provided the best overall performance in
learning the target values. In Comparison #3, the 8 neuron topology provided
the best results in 5 of the 6 comparisons using the modified results.
Similiarly, in Comparison #1 the 8 ncuron topology provided the best or near
best results of the three topologics when comparing the full and modified
difference distribution counts. In comparing the average and standard
deviation values there was little variation in the results of all three topologies,

with the 8 neuron topology again producing the best or near best results.

Another conclusion from the comparisons was that it was useful to consider
the effect of the originating node on the training of the network. The
untrained node does affect the learning of the networks; at the end of this

thesis some recommendations will be made for further research in this area.

Based on the comparisons performed above, networks using the 8 neuron per
hidden layer topology and the V2 Macro produced the best results for the

range of output neurons configurations tested.
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3.3.7 Comparison of the routing results of the trained networks

In the comparisons performed above, the results of each trained network were
judged as to how close the measured output values were to the target values.
Our conclusions from these comparisons were that the V2 Macro trained
networks performed best, and that the 8 node per hidden layer networks
provided the best overall performance, though this result was not as clear as
the macro comparisons. While this is an important part of this study, the
ultimate goal of the research is to determine how well each network is able to
perform a routing function. To perform a basic routing decision, the trained
network is not required to exactly learn the target values; it is only required
that the target values be learned to the degree that the ranking sequence of
each output neuron in relation to the other output neurons can be determined.
The next comparison evaluates the performance of the trained networks in

determining these rankings.

As stated earlier, each outpul vector in a training sel represents the routing
information from an originating node to a particular destination node. The
routing information consists of time based values, and each output neuron's
value is compared or ranked against the other output values to determine the
best route. If, as a result of training, the learned values are close enough to
the actual values of the training set, then the routing sequences are learned
and can be extracted from the network. [lowever, il the difference between an
actual and learned output value is sulficiently large, then this error can cause
the output value to be larger or smaller than the learned output values of

adjacent higher of lower ranked outputs, and a routing mismatch could occur.

Tables 3.13, 3.14, and 3.15 compare the routing results of V2 Macro trained
networks for 2, 4, and 6 output nodes respectively. The routing results compare
the performance of the networks versus the number of neurons per hidden
layer. The V2 Macro trained networks were chosen for comparison because of
the performance of the V2 Muacro against the other macros in earlier
comparisons. In each table the target rankings for cach training set are
provided, with rank 1 as the smallest value, rank 2 as the second smallest, up to

6 for the 6 output node networks. The measured rankings [rom each network




Table 3.13:
Comparison of target rankings to trained rankings
of 2 output neuron networks using the V2 Macro.

Destination
Node

Target
Rankings

V2.2.06.2
Rankings

Actual -
Measured

V2.2.08.2
Rankings

Actual -
Measured

V2.2.10.2
Rankings

Actual -
Measured

ol 02

o1l 02

ol 02

o1 02

o1 02

o1 02

o1 02

i1

1

2

1 2

1 2

i2

13
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Table 3.14:
Comparison of target rankings to trained rankings
for 4 output neuron networks using the V2 Macro

Destination Target V2.2.06.4 Actual - V2.2.08.4 Actual - V2.2.10.4 Actual -
Node Rankings Rankings Measured -JRankings Measured Rankings Measured
01]02[03|04 01i02l03f{04|]o1|02|03|04 01]02|03]|04}|o1|02{03|04 01]02}03Jo4|]|o1|02|03|04
i1 11234 4 3| 4 3| 4
i2 2111314 1 4 2{ 1} 3| 4 21 1| 3| 4
i3 2111314 1 4 2 11 3{ 4 2| 1] 3| 4
i4 211134 211 4 21 1| 3] 4 2{ 11 3| 4
i5 112[3]4 112 4 1] 2{ 3| 4 11 2y 3{ 4
i6 3111214 311 4 3| 1] 2] 4 3 1| 2| 4
i7 3111214 31 4 3| 1] 21 4 3 1| 2| 4
i8 3111214 3|1 4 3| 1] 2| 4 3] 1] 21 4
i9
i10 4111213 41112183 41 1] 2| 3 41 11 21 3
i11 4111213 4 11 4 1| 2 3 41 11 2 3
i12 4121183 4|2 41 2| 1} 3 41 21 1} 3
i13 4131211 4|3} 41 3| 2| 1 41 3| 21 1
i14 4121113 412 4] 2| 1] 3 41 2|1 1| 3
i15 4121113 412 41 21 1] 3 41 21 1| 3
i16 4131112 41312 41 3| 1] 2 41 31 1] 2

sutdpow apou a3uls - € yndeyn
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are also provided, and the difference of actual ranking versus measured
ranking. No difference value (a difference of zero) means that the network
learned the correct ranking for the output. If the difference is a positive
value, the network learned an output ranking that is lower in value that the
actual rank; if the difference is negative, the network learned an output
ranking that is higher in value than the actual rank. The ranking

mismatches and corresponding difference values are shaded.

In studying the results, it was found that all networks were trained to a level
where the difference between measured and actual output ranking was never
more than 1 or less than -1; this mecans that at most a routing mismatch
transposed the rankings of two outputs. In addition, the 8 neuron per hidden
layer networks performed the best in learning the routing sequences, having
the fewest mismatches in each comparison and overall. Table 3.16 provides a

summary of routing performance [or cach network topology.

The results in the table agree with the general conclusions drawn from the
previous comparisons. Based on these results, it was found that the 8 neuron
per hidden layer networks using the V2 Macro best performed the functions of

learning training sets for rouling purposes.

Table 5.16:
Comparison of routing performance versus number of neurons per hidden layer

ltem 6 neurons 8 neurons 10 neurons
Mismatches - 2 outputs 8 8 10
Mismatches - 4 outputs 6 2 2
Mismatches - 6 outputs 20 8 16
Total mismatches (out of 180) 34 18 28
Total correct matches (out of 180) 146 162 152
Percent correct matches 81% 90% 84%

3.3.8 Modification of the training set

As demonstrated in the above results, the neural networks are able to perform
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routing decisions with a 90% accuracy. If routing decisions were being
performed strictly for the purposes determining a restoration route for a
failed or lost link in a network, then the level of accuracy is higher. In the
case of performing restoration routing, mismatchs between outputs with
ranks 1 and 2 are not a concern; il a link with actual rank 1 and learned rank
2 fails and has to be restored, restoration would occur on a link that has an
actual rank of 2 and learned rank of 1. Despite the mismatch, the alternate
link still has a lower ranking than the rest of the alternative links. If
mismatches between rank 1 and 2 were ignored, the accuracy of the 8 neuron

per hidden layer networks exceeds 99%.

If, however, the nctwork will be used to perform more complex routing
decisions than just restoration, a higher level ol accuracy is required. The
work done to this point has determined optimal parameters for both the
network topology and the training macros; in order to further increase the

accuracy, we must look at other (actors. One of these is the training set.

In reviewing the training sets used, it was found that some output values in a
given output vector were very close in value; this would represent links with
almost equivalent routing times. If in the course ol learning the target values
the error in learning is greater than the small difference between two close
output values, then a routing mismatch would occur. If the difference
between these target values were greater, then the effect of the errors
produced by learning could be reduced. To test this statement, it was decided

that modifying the training set should be tested.

There are several different wuys that the training sct could be modified. One
possible method is to perform {urther scaling of the data like that initially
performed when creating the training scts. The problem with this approach,
however, was that a complete training set already used most of the range of
values between 0 and I, and that the incremental benelit of scaling performed
on the entire training set would be small. In order to provide better scaling,
each output vector in the training sct would have to be scaled separately.
Scaling of each outputl vector would allow for greater separation of close

output values, but even this may not be able to help in cases where the
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difference between target values can be as small as 0.001.

An alternative approach to simple scaling would be to both scale and quantize
the output values. In this case, the target values within each vector are
ranked, and a quantized valuc is created for cach value based on the ranking.
By quantizing the output values, the real value separation of output values no
longer affects the learning, and should result in fewer mismatches. There are
several formulas that could be used (o quantize these values, but the one

decided upon was the following:

Quantized value = —_—t
2nn
Where
r is the rank of output, and
n is the number of output neurons (the node valence)

This formula provides a equal spacing of the target values through the range
of 0 and 1 of 1/n, with the lowest and highest ranked values separated from 0
and 1 by 1/2n; this spacing {rom the ends of the value range results in the
network not having to lecarn training values al the extreme ends of the
activation range. Table 3.17 provides a list of the quantization levels for

different values of n.

Table 5.17:
Quantized output values for different values of n

Quantized output levels
0.25, 0.75
0.1666, 0.5, 0.8333
0.125, 0.375, 0.625, 0.875
0.1,0.3,05,0.7, 0.9
0.0833, 0.25, 0.4166, 0.5833, 0.75, 0.9166

DWW IN D
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3.3.9 Comparison of the initial and modified training set networks

Using the formula above, the training scts used for the network testing were
modified; these modified training sets can be found on pages B.28 to B.30 of
Appendix B. Neural networks consisting of 2, 4, and 6 output neurons and 8
neurons per hidden layer were trained using the modified training set, and
the detailed tables of learning results were created; these tables can be found

on pages B.31 to B.33 of Appendix B.

The learning performance of the modified training set networks was
compared to the networks trained with the original training set. The six
networks were compuared in the following arcas: mean squared error; average
and standard deviation of the absolute value of the difference values;
distribution of the absolute value of the dilference values; and routing

performance.

Table 3.18 shows the mean squarcd error results for the 6 networks. In this
comparison, networks with 4+ and 0 output neurons had lower MSE values with
the original training sct than the modified training set networks, showing
that these networks learncd the real outputl values better than the modified
values. The 2 output ncuron nctworks results were the reverse of the 4 and 6
output neurons results, showing a very high level of learning. In this case,
the networks trained with the modilied values may actually have memorized

the output values, given the small number of output possibilities.

Table 5.18:
Comparison of MSI: results for networks using original and modified training sets

Network MSE (original) MSE (modified)
V2.2.08.2 2.09814 E-3 1.90260 E-5
V2.2.08 .4 2.83197 E-3 5.47008 E-3
V2.2.08.6 2.54631 E-3 1.372125 E-2

Table 3.19 shows the comparison ol the difference distribution count for less
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than 0.01, the difference distribution count [or greater than or equal to 0.02 ,
the average of the absolute value of the diflerence, and the standard deviation
of the absolute value of the difference between networks trained with the
original and modified training sets. These comparisons show that for the 2
output neuron networks the modified training produced very precise
learning, but for the larger networks the original training set produced better

results. This comparison agrees with the MSE results found above.

Table 5.19:
Neural Network Model Test Results:
Average/Standard Deviation measurements and distribution counts
Comparison of VZ trained newworks using real and modified training sets

NN Model Distribution Counts for [X] Average of Std Deviation of
X<.01 01X« 02] X202 |Diff] |Diff]
Full | Mod| Full { Mod | Full | Mod Full Mod Full Mod

V2.2.08.2 11111 ] 6 6 16 | 13 | 0.04566| 0.02482

V2.08.2(M) 0 | 0 | 2 1 0 | 000928 000236] 0.10592

V2.2.08.4 19 | 19 [id7. |13 0.03923}

3 0.08956
V2.2.08.4M)| 17 | 17 | 15| 15 | 32 | 28 | 003248

V2.2.10.6 6 29 | 28
vV2.2.10.6(M)[ 9 9 13 1 13

0.02253] ¢ 69
0.04062] 0.04084

The comparisons made above show that the original training set networks
performed better at learning the output vadues of the training sets. But how do
the networks comparce in the learning of the rankings ol the outputs? Tables
3.20, 3.21, and 3.22 compare the routing results of the original and modified
training set networks. These comparisons show that the modified training set
networks learned the routing rankings better than the original training set,
producing only 2 routing mismatches out of 180 output rankings. The
probable reason for the improved performance in ranking is due to the
scaling and quantizing of target output values; the original training set
networks learned the actual values better, but the separation of the output
values in the modilied training sets was larger than the learning errors

introduced by modifying the values.
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3.4 Conclusions from single network node modelling

Based on the limited amount of testing performed, the conclusions made from
the research are as follows:

- The four layer feed forward network, back propagation learning
rule, and continuous sigmoidal [unction were appropriate testing
choices for the learning task.

- A learning process involving annecaling of the network until
reaching minimum mean squared error, followed by further
learning with the temperature held constant, provided the best
learning results.

- 8 neuron per hidden layer networks performed best overall when
applied to learning tasks involving nctworks with a range of 2 to 6
output neurons

- Scaling and quantizing of output values in the training sets produced
networks that perform routing decisions better than networks with

unscaled and unquantized values.
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V2 Macro 2 Qutput Neuron Routing Comparison -

Table

3.20:

Page 78

real vs. modified training set

Destination
Node

Target
Rankings

V2.2.08.2
Ranking

Actual -
Measured

V2.2.08.2(M)
Ranking

Actual -
Measured

o1

02

o1 02

01 02

o1 02

o1 02

i1

1

N

1 2

1 2

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16
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V2 Macro 4 OQuiput Neuron Routing Comparison -

Table

3.21:

real vs. modified training set

Destination Target V2.2.08.4 Actual - V2.2.08.4(M) Actual -
Node Rankings Ranking Measured Ranking Measured
o1]02|03|o4| |o1|02|03|04||o1[02]|03|c4| |o1]02]03|04]]|01]j02|03]04
i1 1121314 | 3| 4 1 2f 3| 4
i2 211314 2] 1} 3} 4 2] 1| 3| 4
i3 21118314 21 1] 3] 4 2] 1] 3] 4
i4 2111314 2] 1] 3] 4 2] 1] 3] 4
i5 1]12(13[4 1] 2] 3] 4 11 2] 3| 4
i6 311214 3] 1] 2| 4 31 1] 2} 4
i7 3[1[2]4 3] 1] 2f 4 31 1] 2] 4
i8 311214 31 1| 2| 4 3] 11 2] 4
i9
i10 4111213 41 1] 2] 3 41 1] 2] 3
i11 4111213 41 11 2| 3 41 1| 2] 3
i12 412(113 4] 2] 1} 3 4] 2 1} 3
i13 413|211 41 3| 2| 1 41 3] 21 1
i14 4121113 41 2| 1] 3 41 21 1] 3
i15 4121113 41 21 1] 3 4] 21 1] 3
i16 413]1]2 41 3| 1| 2 41 3] 1] 2
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Chapter 4
Full Network Modelling

In this chapter the neural network topology, learning method, and modified
training set identified in the previous chapter are applied to the full sample
network, and the routing results determined. The neural networks are then
tested to evaluate their ability to perform routing decisions related to different
routing scenarios common in telecommunications networks. The chapter
concludes with testing of the ability of the trained neural networks to perform

generalized routing decisions, and a discussion of the results.

4.1 Full network simulation results

Using the findings of the single node research, the remaining 13 nodes of the
sample network were simulated to study the routing performance of the
trained networks for the entire sample network. For each network node the
following activities were performed:

- The routing information and routing rankings for each node was
determined.

- The ranking information was used to create the modified training set
based on the formula used in the single node modelling.

- A neural network was created with 8 neurons per hidden layer and
the required number of neurons for the output layer.

- The neural network was trained using the V2 Macro. The settings
used for training were as per the single node research, but the
number of training cycles was increased to 3000 to ensure the
networks would have enough cycles to reach the point where the
annealing process is stopped.

- The output values of the trained networks were recovered and the
output rankings determined.

- The target rankings and measured rankings were compared.
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Table 4.1 shows the information and results determined in the simulation of
node 12 of the sample network. The results for all network nodes can be found
on pages C.1 to C.16 of Appendix C. The upper half of Table 4.1 show the actual
routing values, the target rankings derived from this routing information,
and the target training values used for the simulation. The bottom half of
Table 4.1 shows the measured values recovered after simulation, and measured
rankings produced from the values, and the comparison of actual and
measured rankings. Routing mismatches have been shaded for presentation
purposes to highlight their occurrence. A review of the sample network
results shows that eight routing mismatches occurred out of 990 routing
rankings. This performance translates into a routing accuracy of 99.19% for
the overall network. Two pairs of routing mismatches occurred in Sample
Network nodes with 5 links (one each in Nodes 6 and 7) and two pairs of
routing mismatches occurred in sample network nodes with 6 links (one each
in Nodes 11 and 12).

The occurrence of the routing mismatches suggests that neural networks with
larger number of output neurons are more susceptible to routing mismatches;
these networks have smaller quantization steps between the modified output
values, and would be the more sensitive to mismatches caused by large
learning errors. In addition, the mismatches occurred with the highest
ranked or lowest ranked outputs, at the extremes of the output value range.
This suggests that the network had difficulty learning the target values at the
extremes of the value range, and a review of the measured values shows large
errors in the mismatched outputs that resulted in the transposition of the
output rankings. No routing mismatches occurred in sample network nodes
with 4 or less links; Table 4.2 provides the details of the routing performance
for the complete Sample Network and for the sets of nodes with equal numbers

of links.

4.2 Performing routing decisions

When performing a routing decision, the goal is to select the best route that

meets the routing criteria. The criteria used throughout this thesis has been




Routing Results for Node 12

Table 4.1:

of the Sample Network

Destination Real Qutput Values Target Rankings Target Values
Node o1 02 03 04 05 06 0102 03] 04| 05] 06 o1 02 03 04 05 06
i1 0.45707| 0.5122| 0.49518] 0.7443] 0.61257] 0.8058 1 3 2 5 4 6 0.08333| 0.41667 0.25 0.75/ 0.58333| 0.91667
i2 0.53518| 0.60328] 0.47765| 0.83538| 0.58302] 0.85926 2 4 1 5 3 6 0.25] 0.58333| 0.08333 0.75| 0.41667] 0.91667
i3 0.43563| 0.50373] 0.3781| 0.73583| 0.50449} 0.78073 2 3 1 5 4 6 0.25| 0.41667| 0.08333 0.75] 0.58333] 0.91667
i4 0.31507] 0.38317] 0.35318| 0.61527| 0.47957]| 0.75581 1 3 2 5 4 6 0.08333] 0.41667 0.25 0.75] 0.58333} 0.91667
i5 0.41088] 0.3544| 0.44899] 0.5865{ 0.57538] 0.7866 2 1 3 5 4 6 0.25] 0.08333| 0.41667 0.75| 0.58333] 0.91667
i6 0.45086]| 0.51896] 0.36584] 0.75106| 0.45072] 0.72696 3 4 1 6 2 5 0.41667] 0.58333] 0.08333| 0.91667 0.25 0.75
i7 0.31116] 0.37926] 0.25363 0.61136| 0.38002] 0.65626 2 3 1 5 4 6 0.25| 0.41667] 0.08333 0.75] 0.58333] 0.91667
i8 0.2014] 0.2695] 0.28877{ 0.5016| 0.41516] 0.6914 1 2 3 5 4 6 0.08333 0.25] 0.41667 0.75] 0.58333] 0.91667
i9 0.3045| 0.16664] 0.39187{ 0.3985| 0.51826] 0.5986 2 1 3] 4 5 ] 0.25| 0.08333| 0.41667] 0.58333 0.75] 0.91667
i10 0.4494| 0.5175| 0.24697| 0.7496] 0.37336] 0.6496 3 4 1 6 2 5 0.41667| 0.58333| 0.08333{ 0.91667 0.25 0.75
i11 0.3463| 0.4144] 0.14387] 0.6465{ 0.27026] 0.5465 3 4 1 6 2 5 0.41667] 0.58333| 0.08333| 0.91667 0.25 0.75
i12
i13 0.5172] 0.3791] 0.60457] 0.1858| 0.47026| 0.3859 5 6 4 3 0.75 0.25] 0.91667| 0.08333| 0.58333] 0.41667
i14 0.4912] 0.5593] 0.28877] 0.63026] 0.24372] 0.51996 3 2 1 4 0.41667 0.75 0.25] 0.91667| 0.08333] 0.58333
i15 0.4818| 0.5499} 0.27937] 0.5213] 0.13476 0.411 4 2 1 3 0.58333| 0.91667 0.25 0.75] 0.08333] 0.41667
i16 0.6621| 0.5343| 0.45967 0.341| 0.31506} 0.2307 6 4 2 1 0.91667 0.75] 0.58333| 0.41667 0.25] 0.08333

Destination Measured Values Measured Rankings Actual-Measured
Node o1l 02 03 04 05 06 01102} 03| 0d4] 05|06 o1 02 03 04 05 06
i1 0.19548| 0.36473 0.197] 0.74489| 0.60116] 0.92454 1 3 2 5 4 <] 0 0 0 0 0 0
i2 0.27181] 0.54748] 0.03897]| 0.84124]| 0.41962| 0.86873 2 4 1 5 3 [ 0 0 0 0 0 0
i3 0.1436] 0.44557| 0.11997| 0.75747| 0.57096| 0.9185 2 3 1 5 4 6 0 0 0 0 0 0
i4 0.1339] 0.35038] 0.27605] 0.75306] 0.59348| 0.92475 1 3 2 5 4 6 0 0 0 0 0 0
i5 0.22657] 0.10704] 0.41498| 0.67157} 0.66785| 0.92313 2 1 3 5 4 6 0 0 0 0 0 0
i6 0.41772] 0.60666| 0.07215| 0.86718] 0.25233| 0.76409 3 4 1 6 2 5 0 0 0 0 0 0
i7 0.14266] 0.44432| 0.12045] 0.75967| 0.57212] 0.91871 2 3 1 5 4 6 0 0 0 0 0 0
i8 0.13505| 0.3019| 0.38581]| 0.72786| 0.57733 0.921 1 2 3 5 4 6 0 0 0 0 0 0
i9 0.23089] 0.09885] 0.42515] 0.65951| 0.66708| 0.92139 2 1 3 4 5 6 0 0 0 0 0 0
i10 0.41823| 0.60238] 0.07122| 0.86609| 0.25208| 0.76151 3 4 1 6 2 5 0 0 0 0 0 0
i11 0.41595| 0.60632| 0.07347| 0.86789] 0.25039| 0.76119% 3 4 1 6 2 5 0 0 0 0 0 0
i12 0.00236| 0.00232| 0.00219] 0.00266] 0.00249| 0.00267
i13 0.75014] 0.24444! 0.95619] 0.10182| 0.57925| 0.41169 5 6 1 4 3 0 0 0 0
i14 0.40213| 0.80911] 0.23006] 0.8918] 0.0402| 0.57508 3 2 1 4 0 0 0 0
i15 0.60273] 0.79992| 0.28916] 0.8243]| 0.07394| 0.41673 4 2 1 3 0 0 0 0
i16 0.89659| 0.78353] 0.57349| 0.4063] 0.26208| 0.09465 ] 4 2 1 0 0 0 0
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78 9@3ed



Chapter 4 - Full Network Modelling Page 83

Table 4.2:
Comparison of routing performance for Sample Network
for entire network and different valence values

ltem Number Number Number of Error Accuracy
of Nodes of routes mismatches (Percent) (Percent)
2 link nodes 1 30 0 0% 100%
3 link nodes 3 135 0 0% 100%
4 link nodes 7 420 0 0% 100%
5 link nodes 3 225 4 1.78% 98.22%
6 link nodes 2 180 4 2.22% 97.78%
Full network 16 990 8 0.81% 99.19%

the shortest time delay between originating and destination nodes using the
available links between the originating node and its adjacent nodes. In the
regular case of determining the optimal route through a telecommunications
network, all links are available. In the special case of determining a
restoration route through a telecommunications network, one or more links
are unavailable, and a choice is made between the remaining links. What is
required is a method of automatically determining the best route given the

availability of adjacent links.

4.2.1 Postprocessing of the output values

A trained neural network produces output values that represent the routing
rankings of a given node in the sample network. This information now must
be combined with information on availability of the links to the adjacent
nodes to select the link representing the best route through the network. This
route selection could be performed by postprocessing the output values with
the link availability. There are several ways that this could be performed, but

a neural network solution is desired considering the nature of the thesis work.

Choosing the best output from the output layer is a competitive activity. In
neural networks this type of activity can be performed by using mutual
inhibition, where each competing neuron provides a positive weight to itself

and a negative weight to the neurons it competes against. This type of circuit
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is normally called a winner-take-all circuit, and is commonly used to select a
given unit with the highest activation value. In this thesis, what is required is
a "loser-take-all" circuit, where the lowest activation (smallest value) is
selected. This can be achieved by using an offset activation value of 1 and
subtracting the lowest activation value; in this manner the summation of 1

minus the smallest activation will produce the largest activation value.

This circuit is shown in Figure 4.1(a). In this figure the input neurons for the
circuit are the outputs of the trained neural network. The input neuron is
connected to the output neuron (one of the competing members of the
winner-take-all circuit) by a inhibitory link with weight = -1. A select neuron
is also connected to each output neuron by an excitory link with weight = 1.
This select neuron is used to provide link availability information: if the select
neuron has an activation of 1, the link associated with the output of the
trained neural network is available; if the select neuron has an activation of 0,
the link is not available. When the link is available, the select neuron
provides the offset activation value, and the sum of the activations to the
competing neuron is 1 minus the input activation. When the link is not
available, no offset is provided, and the sum of the activations is 0 minus the
input activation. Figure 4.1(b) shows a winner-take-all circuit with all links
available (all select neurons have an activation of 1). When the winner-take-
all circuit has settled, the winning node is associated with the lowest ranking
input value, provided by neuron o4. Figure 4.1 (¢) shows a winner-take-all
circuit with one link not available (the unavailable link is associated with the
lowest ranked input value, and the associated select neuron has an activation
of 0). With the select neuron activation at 0, the activation of the competing
neuron is O minus the input activation, resulting in a negative input. The
winner in this competition is the neuron associated with input value 02 as
shown in Figure 4.2(d), for it now has the highest activation value of the three

neurons with available links.

MacBrain provides a Group Winner activation function as one of the available
activation functions; this was used to produce a winner-take-all circuit. By
adding a Group Winner layer and select neurons to the trained network, the

final neural network used for routing has the topology shown in Figure 4.2,
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The inputs into the network are the destination node for which the route is to
be determined, and the link availability as determined by the select nodes that
provide activation to the Group Winner layer. This final neural network

topology will be used in upcoming simulations.

4.3 Simulation of a routing decision - normal network

The first simulation of a routing decision uses the sample network in its
normal configuration with all links available. In this simulation, the neural

networks determine the best route based on the shortest network delay.

4.3.1 Successful selection of optimal route

For this simulation, Node 6 was selected as the originating node and Node 13
was selected as the destination node. Node 6 has five links to adjacent nodes,
connecting it to Nodes 2, 3, 7, 10, and 14. The best routes from each adjacent
node to Node 13 were determined and these routes were combined with the
adjacent links to create the five possible routes that can be selected by the
neural network. Figure 4.3(a) shows the five routes and their associated
routing values. Based on these values, the optimal route from Node 6 to Node 13
is 6-10-11-12-13, and the link from Node 6 to Node 10 is the best choice for

routing from Node 6.

The file containing the trained neural network for Node 6 was opened, and the
following neuron inputs were set: input i13 was set to 1, all other input
neurons were set to 0, and the select neurons were all set to 1 (all links
available). The input information was then cycled through the network, and
the output neuron associated with 04 was activated by the winner-take-all
circuit. The o4 output corresponds to the link from Node 6 to Node 10. The
simulation was continued by opening the trained neural network for Node 10,
selecting the same input and select neuron information, and cycling the input

values through the neural network. When the network had completed cycling




Chapter 4 - Full Network Modelling Page 88

Adjacent Link  Route Shading Routing Value

2 0.77075
3 0.64786
7 0.55413
10 0.52664
14 0.61152

Figure 4.3(a):
Routes from Node 6 to Node 13 through available adjacent links

Figure 4.3(b):
Optimal route through Node 10 chosen by neural networks
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the input information, the output neuron corresponding to the link from Node
10 to 11 was selected. To complete the simulation, the process was repeated for
the trained networks for Nodes 11 and 12, and the links from Node 11 to Node 12
and Node 12 to Node 13 were selected, respectively. The complete selected route
was 6-10-11-12-13, the correct route identified previously. This route is shown
in Figure 4.3(b)

4.3.2 Unsuccessful selection of optimal route

When a neural network incorrectly learned the routing sequence, a routing
mismatch occurs. These routing mismatches can result in incorrect routing

decisions being performed in the network.

To demonstrate the effect of a learning error producing an incorrect routing
decision, the neural networks are used to determine the optimal route between
Node 11 and Node 14. It can be easily determined that the optimal route is the
link that directly connects Node 11 to Node 14, but in this case the neural
network did not correctly learn the routing rankings. To test the effect of the
learning error, the file containing the trained neural network for Node 11 was
opened and the following neuron inputs were set: input il4 was set to 1, all
other input neurons were set to O, and the select neurons were all set to 1 (all
links available). The input information was then cycled through the network,
and the output neuron associated with 03 was selected. The 03 output
corresponds to the link from Node 11 to Node 10; the error in learning caused
the network to select the link associated with output 03 instead of 05, the link
that directly connects Node 11 to Node 14. The simulation was continued by
opening the trained neural network for Node 10, selecting the same input and
select neuron information, and cycling the input values through the neural
network. When the network had completed cycling the input information, the
output neuron corresponding to the link from Node 10 to 14 was selected. The
complete route determined was 11-10-14, instead of 11-14. This result is shown

in Figure 4.4(a).
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mel-  Correct route

Route selected by neural networks

Figure 4.4(a):
Unsuccessful selection of optimal route from Node 11 to Node 14

wmessll-  Correct route

Route selected by neural networks

Figure 4.4(b):
Example of route impacted by unsuccessful selection in Figure 4.4(a).
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The above example shows the result of incorrect learning by the neural
networks under study. It is also important to consider that this incorrect
routing decision between Node 11 to Node 14 will impact other routing
decisions. Any route with Node 14 as the destination node that uses the link
between Node 11 and Node 14 as part of the route will have that part of the
routing decision incorrectly performed. As an example, the optimal route
from Node 5 to Node 14 is the route 5-4-7-11-14; but since this route includes
the routing mismatch demonstrated above, the route chosen by the neural

networks will be 5-4-7-11-10-14. Both routes are shown in Figure 4.4(b).

In studying the errors performed in the routing, it is important to consider
that the routing error made in determining the route from Node 11 to Node 14
is not performed when the route from Node 14 to Node 11 is determined; there
was no learning errors in the neural network trained for Node 14, so the

correct routing decision would be performed in the opposite direction.

4.4 Simulation of a routing decision around unavailable
links

The optimal route through the sample network with all links available was
presented above. The process relied on the concept that routing decisions by
the neural networks are dependent on the availability of links from each node
to adjacent nodes in the network, and the optimal route consists of an
originating node, a destination node, and a set of intervening links and nodes.
For the following simulations, the task of the neural networks will be to
determine the most optimal alternate route between two sample network nodes
when a network link used by the optimal route is unavailable. These
simulations are analogous to the removal of a link in the sample network, and

the requirement to establish a alternate route to replace it.

Unless the neural networks are trained with new network information related
to the unavailable link in sample network, the neural networks will still

perform their routing decisions based on their learned information and
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adjacent link availability. As a result, any neural network for a node that is
not connected to the unavailable link will perform its routing decisions as if
that link is available. Only the neural networks for the nodes connected to the

unavailable link will use that link information in their routing decisions.

Based on the method of routing, the determination of an alternate route can be
performed by one of two methods. In the first method, an alternate route will
be created from the node where the adjacent link is unavailable to the
destination node. In the second method, an alternate route will be created that
will replace the unavailable link only, without changing the rest of the

existing optimal route.

4.4.1 Selection of an alternate route to the destination node

In this method, if all of the adjacent links to a node were available, the input
neuron for the destination node would be set to 1, all other input neurons
would be set to O, and all links are available. The input values would be cycled
through the network, and the output routing result would be produced. If an
adjacent link was unavailable, then the input neuron representing the
destination would be set to 1, all other input neurons would be set to 0, and the
link availability values set as required. When the input values are cycled to
the outputs, the best adjacent link to the destination node would be selected.
The node at the end of this adjacent link will then select another adjacent link
that represents the optimal route to the destination node using the same
method, and this is repeated until the destination node is reached. Since the
new node and its alternate adjacent links are not part of the original set of the
optimal intervening nodes and links, the alternative route may differ
significantly from the original optimal route. In addition, since each node
along the optimal route has a different set of adjacent links, the location of the

unavailable link can significantly affect the resulting alternative routings.

As an example, the optimal route between Node 16 and Node 3 determined when
all network links are available is 16-15-11-7-3 as shown in Figure 4.5(a). In

between Node 16 and Node 3 are four links; a removal of any one of these links
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will result in a specific neural network selecting the second choice adjacent
link to determine an alternate route. Since each node in the network has a
different set of adjacent links, the alternate solution for each node along the
route will be different. Figure 4.5(b) shows the alternate routes determined by

the neural networks for the unavailability of different links in the network.

A study of the routing decisions above also reveals that the alternate route
selected will also be dependent on the direction that the routing is performed,
for the nodes on each end of the unavailable link can select different
alternate links and nodes. To demonstrate this, routing decisions were
performed from Node 3 to Node 16, the opposite direction to the previous
routing simulation. Figure 4.6(a) is a duplicate of Figure 4.5(b), which shows
the route selections made when the routing was performed from Node 16 to
Node 3. Figure 4.6(b) shows the route selections made for the same unavailable
links, but in this example the routing was performed from Node 3 to Node 16.
In comparing the two figures it can be seen that for a given unavailable link
the neural networks selected different alternate routes, with these routes

being dependent upon the direction the routing is taking place.

4.4.2 Selection or alternate routing around an unavailable link

In the previous method, an alternate optimal route was created from a node
with an unavailable link to the destination node. This method, while effective
in establishing an alternate routing, resulted in alternative routings that were
significantly different than the original optimal route. This can be useful in
some forms of communications networks (such a packet networks where
knowledge of the exact routing is not required) but the primary requirement
in current telecommunications networks is to establish an alternate route
around an unavailable link. This second routing method satisfies this

requirement.

To test the routing activity of the neural networks using this method, a
modified routing procedure was required. For this method, if all of the

adjacent links of a node were available, the input neuron for the destination
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Figure 4.5(a)
Optimal Route from Node 16 to Node 3 with all links available

Unavailable Link Route Shading  New Optimal Route  Alternate routing at

a 16-12-11-7-3 16

b . < 16-15-14-6-3 15

c 16-15-11-10-6-3 11

d ARNURNNN - 16-15-11-7-6-3 7
Figure 4.5(b)

Alternate routes determined as a function of unavailable link
(Routing from Node 16 to Node 3)
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Unavailable Link Route Shading  Alternate Route Alternate routing at

a - 16-12-11-7-3 16
b : 16-15-14-6-3 15
c 16-15-11-10-6-3 11
d RN 16-15-11-7-6-3 7

Figure 4.6(a)
Alternate routes determined as a function of unavailable link
(Routing from Node 16 to Node 3)

Unavailable Link Route Shading  Alternate Route Alternate routing at

a e 3-7-11-15-12-16 15
b 3-7-11-12-16 11
c : 3-7-8-12-16 7
d SO 3-6-14-15-16 3

Figure 4.6(b)
Alternate routes determined as a function of unavailable link
(Routing from Node 3 to Node 16)
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node would be set to 1, all other input neurons would be set to 0, and all links
are available. The input values would be cycled through the network, and the
output routing result produced. If, however, the adjacent link used in the
original optimal route was unavailable, then the input neuron for the sample
network node at the other end of the unavailable adjacent link would be set to
1, all other input neurons would be set to 0, and the link availability values set
as required. When the input values are cycled to the outputs, the best adjacent
link to the node on the other end of the unavailable link would be selected. In
this manner the node at the other end of the unavailable link becomes an
interim destination node, and routing continues through the network until
this node is reached. When the node at the other end of the unavailable link is
reached, routing towards the original destination node is resumed, and the
routing after the unavailable link is continued until the destination node is

reached.

Using this method of routing for an unavailable link has two advantages over
the original routing method: first, all nodes and all but one of the links used in
the original optimal route are reused for the alternate route; and second, this
form of routing produces the same results if the routing is performed in either
direction. Figure 4.7 shows the results of using this routing method for the

different unavailable links tested in the previous routing simulation.

4.4.3 Unsuccessful selection of alternate route

The above simulations demonstrate the successful determination of alternate
routes around an unavailable link. In reviewing the learning of the neural
networks, no unsuccessful alternate routings could be performed. The reason
for this result was discussed in single network node modelling; in the case of
performing alternative routing around an unavailable link, routing
mismatches between rank 1 and rank 2 values have no effect on performance.
Of the 4 routing mismatches that occurred in the 16 neural networks used, two
were rank 1/rank 2 mismatches and two were rank S5/rank 6 mismatches. The

rank S/rank 6 mismatches will also have no effect in the single link failure
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Unavailable Link Route Shading Alternate Route  Alternate routing at

a IR— 16-12-15-11-7-3 16,15

b SIS, 16-15-12-11-7-3 15,11

c & 16-15-11-8-7-3 11,7

d AV 16-15-11-7-6-3 7.3
Figure 4.7:

Alternate routes around unavailable links for each unavailable link

case, for these alternative routes are too far down on the routing priority to

affect this type of routing decision.

4.5 Simulation of a routing decision - node failure

In the previous set of simulations, routing decisions were performed for the
case when a single link between two nodes is unavailable; this is an example of
a link removal or failure. If a specific node is unavailable in the network, this
is equivalent to all links associated with that node being made unavailable.

This is an example of a node removal.

The method of performing routing decisions in the case of a node failure is
similar to the link failure case; nodes in the sample network that were not

directly connected to the removed node will perform routing decisions as if no
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network changes have occurred, and all nodes will still perform routing
decisions based on the routing rankings of available links. But there are
special considerations in the case of a node failure. These are:

- If the node that has been removed from the network is the
originating node, it will not be performing any routing decisions.

- Selection of an alternate route around an unavailable link (the
second form of routing utilized for link failures) cannot be
performed, for this method attempts to create an alternate route to a
node on the far end of the failed link; in this case that node is
unavailable.

- If the node removed from the network is the destination node, no
final route can be determined. It will be shown that the attempt to
perform the alternate routing selection will cause the neural

networks to define a route circling the removed node.

4.5.1 Routing around an unavailable node between originating and

destination nodes

In the first method of selecting an alternate route (selecting an alternate
route to the destination node), the first node along the optimal route that
experiences an unavailable link selects an adjacent link that provides the best
alternative route to the destination node. The node at the end of this adjacent
link will then select another adjacent link that represents the optimal route to
the destination node, and the process is continued until the destination node is
reached. If any of the nodes along this alternate route have adjacent links
that connect to the unavailable node, those links will be unavailable and not
used in the route selection. As was demonstrated in the unavailable link case,
the alternate routings selected are dependent on the direction that the route is
determined, and that these routes can be significantly different. An example
of the first method of alternate route selection around an unavailable node is
shown in Figure 4.8, where an alternate route from Node 3 to Node 16 is

required when Node 11 is unavailable.
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Optimal Route from Node 3 to 16

%%  Unavailable Node 11 and associated unavailable links
wosss@Bse-  Alternate routing from Node 16 to Node 3
VO\NN-  Alternate routing from Node 3 to Node 16

Figure 4.8:
Alternate routing around unavailable node to destination node

In the second method of selecting an alternate route (selecting an alternate
route around an unavailable link), the method is the same as for an
unavailable link until the point where the selection of an alternate path to the
other end of the unavailable link is attempted. If another unavailable link to
the node on the opposite end of the first unavailable link is encountered, then
the routing decision would be changed from the node at the end of the
unavailable link back to the original destination node. This change of routing
destination will result in similar routing selections to those determined by the
first method. In Figure 4.9(a), the second method of route selection is applied
to the example of Node 11 unavailable on a route between Node 3 and Node 16.
In this case the alternative routes determined were very similar in both
directions, but in Figure 4.9(b) the example shows that significantly different

alternate routes can determined by each direction using this method.
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M Optimal Route from Node 3 to 16

% Unavailable Node 11 and associated unavailable links
Alternate routing selected from Node 16 to Node 3
SRR Alternate routing selected from Node 3 to Node 16

Figure 4.9(a)
Alternate routing around an unavailable node
Routing to destination node after first attempting to route around first
unavailable link

e Optimal Route from Node 3 to 16

Unavailable Node 7 and associated unavailable links
sssaegR Alternate routing selected from Node 16 to Node 3
A RS Alternate routing selected from Node 3 to Node 16

Figure 4.9(b)
Second example of alternate routing around an unavailable node
demonstrating significant differences between alternate routes
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4.5.2 Routing determination when the destination node is

unavailable

If the unavailable node is the actual destination node, a complete route cannot
be determined. When this condition was tested, the neural networks selected
alternate routes to other nodes with unavailable links associated with the
unavailable node. This function was seen in part in Figure 4.9(b), where the
alternative route from Node 16 to Node 3 utilized several of the adjacent nodes
with unavailable links associated with Node 7. In Figure 4.10, Node 7 is now an
unavailable destination node, and the alternative route the neural networks
attempted to determine starts at Node 11 and circles Node 7, linking to all other
nodes with unavailable adjacent links until it returns to Node 11. In
attempting to determine the alternate route, a condition that the neural
network would not select the adjacent link that connects to the previous node

was used; this was based on the fact that the previous node chose the current

E—— Optimal Route from Node 7 to 16

: R Unavailable Node 7 and associated unavailable links

SRIISSaS Alternate routing selections made to reach Node 7
Figure 4.10:

Attempt to determine alternate routing for an unavailable destination node
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node to continue with the alternate routing. If this condition was not used,
then Node 4 would have chosen Node 8 in Figure 4.10 again, for the adjacent
link to Node 8 is the second ranked choice from Node 4 to Node 7 after the

unavailable link from Node 4 to Node 7.

Unless a decision to stop the routing attempt is made, the process would
continue indefinitely. Like the earlier situation where the routing destination
was changed from the node at the other end of the unavailable link to the
destination node when a second unavailable link was encountered, a decision
external to the neural networks making the routing decision is required. A
decision to terminate the routing attempt could be made after encountering a
number of unavailable links, or it could be made when the alternate route
encounters a node that had previously attempted to determine an alternate

route; in the case of Figure 4.10, this would occur when Node 11 is reached.

4.5.3 Unsuccessful selection of alternate route

As with the simulations for unavailable links, the above simulations
demonstrate the successful determination of alternate routes around an

unavailable node when it is not an originating or destination node.

A review of the learning of the neural networks found that an alternate
routing could always be determined, but since the training information is
based on the availability of the adjacent links only, the alternate route may
not be the best alternative available, for other unavailable links not directly
connected to each node affect the final route. Apart from this condition,
alternative routings around an unavailable node are equivalent to routing
around multiple unavailable links. As in the routing determinations for
unavailable links, routing mismatches between rank 1 and rank 2 values have
no effect on performing routing decisions. Of the 4 routing mismatches that
occurred in the 16 neural networks used, two were rank 1/rank 2 mismatches
and two were rank 5/rank 6 mismatches. The rank 5/rank 6 mismatches will
have no effect in the unavailable node cases, for these alternative routes are

too far down on the routing priority to affect almost all alternative routing
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decisions.

4.6 Simulation of generalized routing decisions

The final set of tests performed with the neural networks tested the ability to
perform a generalization function. In this set of tests, the values of more than
one input neuron were set to non-zero values to observe the neural network
activity. Setting multiple input neurons to non-zero values is analogous to
having the network determine which output neuron represents the best

routing choice for a set of destination nodes.

Six test examples were used to investigate generalization, with the results of
these tests provided in Tables 4.3 to 4.8. In each test 2 or 3 input neurons of
specific neural networks were set to non-zero values and cycled to propagate
the information to their outputs. The output values of the neural network
were collected and rank values calculated; these rankings were then compared
with the output node rankings of the neural network for each destination
node, and the ranking of the output nodes by the sum of the actual routing
values (network delays) for the set of desired destination nodes. Figures
4.11(a) and (b) depict two of the generalization tests, their optimal routes for
the respective destination nodes, and the optimal links based on network
delays. Figure 4.11(a) depicts the condition where both destination nodes have
the same optimal route, resulting in a simple decision. Figure 4.11(b) depicts
the condition where the destination nodes have different optimal routes, and
the optimal link derived from network delay is used by one of the routes. This
is a more complex decision, and in this test the neural network made different
link selections based on the method of input activation. The different methods

of input activation are discussed below.

The tests were initially performed with activation of the input neurons
representing the set of destination nodes set to 1, and all other inputs neurons
set to 0. When this method of activation was used, it was found that for some

tests the activation values of the output neurons approached or reached the
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= Optimal Route from Node 13 to Node 6

wrsrrrrrzzszs Optimal Route from Node 13 to Node 14

—— Optimal link for routes from Node 13 to Nodes 6 and 14
based on total route network delays. Optimal link was
selected by neural network in Generalization Test #1 for
both maximum input and normalized input activations.

Figure 4.11(a)
Generalized routing example where 2 nodes have the same first choice link

Optimal Route from Node 5 to Node 13

L LSS LSS Optimal Route from Node 5 to Node 14

I— Optimal link for routes from Node 5 to Nodes 13 and 14
based on total route network delays. Optimal link was
selected by neural network in Generalization Test #2 with
maximum input activation.

SGIEETENT Link selected in Generalization Test #2 with normalized
input activation.

Figure 4.11(b)
Genralized routing example where 2 nodes have different first choice links
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maximum activation value of 1. This saturation of the output values occurred
because the neural networks were initially trained with training vectors
having only a single input neuron set to 1. To reduce the occurrence of
saturation, a variation of the input activation method was also tested; in this
second method, the activation values for the set of destination nodes were set to
the reciprocal of the number of destination nodes. This form of normalized
activation resulted in the total of the input activation values being equal to 1.
In the case of 2 active input neurons the activation was set at 0.5, and for three

active input neurons the activation was set at 0.33.

4.6.1 Generalization test results

Test #1 is an example of performing a decision from a 3 output originating
node (Node 13) to two destinations (Nodes 6 and 14) that have the same first
choice route. The results of the test are provided in Table 4.3, with output
values of rank 1 shaded for comparison purposes. In this case, the optimal
routes from Node 13 to Nodes 6 and 14 both utilize the link from Node 13 to Node
12. For both input activation methods the neural network selected the correct
route, but the rankings of the other routes changed with the different
methods of activation. When the input activation was normalized, the
resulting output activations were smaller that when both input neurons were
set to an activation of 1; this observation was also observed in the rest of the

generalization tests.

Test #2 is an example of performing a decision from a 3 output originating
node (Node 5) to two destination nodes (Nodes 13 and 14) with different first
choice routes. The results of the test are provided in Table 4.4, with output
values of rank 1 shaded for comparison purposes. When the input activations
were set to 1, the neural network generated the routing ranking based on total
network delay and the output ranking to Node 13, and selected the optimal
route for both destination nodes. When the input activations were normalized,
the neural network selected the output rankings of Node 14, and selected the

2nd choice route for the two destination nodes.
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Test #3 is an example of performing a decision from a 5 output originating
node (Node 8) to two destination nodes (Nodes 6 and 12) with significantly
different output rankings. The results of the test are provided in Table 4.5,
with output values of rank 1 shaded for comparison purposes. When the
rankings of the outputs based on the total delay were calculated, these
rankings were found to be different from the output rankings of the two
destination nodes. When this test was performed, both methods of activation
produced the correct routing selection, though the routing rankings of the
outputs with the normalized activation were closer to the total delay ranking
values than the output rankings produced when the input activations were set
at 1. This test also showed that when input activations were set at 1, 4 of the 5
outputs neurons reached activation values of greater than 0.98; in this case,

setting all active inputs to 1 resulted in near saturation of output values.

Test #4 is an example of performing a decision from a 4 output originating
node (Node 16) to two destination nodes (Nodes 4 and 6) with similar output
rankings. The results of the test are provided in Table 4.6, with output values
of rank 1 shaded for comparison purposes. When the input activations were
set to 1, the output neurons reached maximum activation and no ranking
results could be determined. When the activation values were normalized, the
output neurons produced almost no activation value, the opposite result of the
previous test. When the output values for the normalized activation were
ranked, the network selected the correct routing choice for Node 4, but the
incorrect routing choice for both nodes. The reason for these small activation
values is not known, but observation of the activations of the various layers in
the neural network showed high activation values in the first hidden layer
and low activation values in higher layers; the combination of activation
values and connection weights may have resulted in a cancellation of inputs

in higher layers of the neural network.

Test #5 is an example of performing a decision from a 4 output originating
node (Node 4) to three destination nodes (Nodes 10,12, and 16) with similar
output rankings. The results of the test are provided in Table 4.7, with output

values of rank 1 shaded for comparison purposes. When both activation

et
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Table 4.3:
Test #1: Route selection from Node 13 to Nodes 6 and 14

Qutput Node ol 02 03
Output Rankings: Node 13 to Node 6 2 3
Output Rankings: Node 13 to Node 14 3 2

Total Delay for routes to Nodes 6 and 14] 1.1881)] 0.9312] 1.1459
Output Rankings by Total Delay

Qutput Node
Qutput Values: i6=i14=1
Output Rankings: i6=i14=1

Output Node o1 02 03
Output Values: i6=i14=0.5 0.49{ 0.0833| 0.5057
Output Rankings: i6=i14=0.5 2 3
Table 4.4:
Test #2: Route selection from Node 5 to Nodes 13 and 14
Output Node o1 03

Output Rankings: Node 5 to Node 13
Output Rankings: Node 5 to Node 14
Total Delay for routes to Nodes 6 and 14
Output Rankings by Total Delay

Output Node o1 02 03
Output Values: i13=i14=1 0.8898] 0.349| 0.3359
Output Rankings: i13=i14=1 3 2
OQutput Node 03
Output Values: i13=i14=0.5 0.3161
Output Rankings: i13=i14=0.5 2
Table 4.5:
Test #3: Route selection from Node 8 to Nodes 6 and 12
Output Node o1 03 04 05
Output Rankings: Node 8 to Node 6 2 5 3
Output Rankings: Node 8 to Node 12 5 2 3

Total Delay for routes to Nodes 6 and 12 | 0.8448| 0.6379} 0.8798| 0.6806| 0.7436
Output Rankings by Total Delay

Qutput Node
Qutput Values: i6=i12=1

—t
o
©
©
©
=
e
©
©
@
@

Output Rankings: i6=i12=1 5 4 2
Output Node 01 02 03 04 05
Output Values: i6=i12=0.5 0.2017] 0.0837] 0.4972] 0.1584} 0.2503
Output Rankings: i6=i12=0.5 3 5 2 4
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Table 4.6:
Test #4: Route selection from Node 16 to Nodes 4 and 6

Page 108

Output Node ol

Output Rankings: Node 16 to Node 4

Output Rankings: Node 16 to Node 6

Total Delay for routes to Nodes 4 and 6

Output Rankings by Total Delay

Output Node

Output Values: i4=i6=1

Output Rankings: i4=i6=1

Output Node o1 02 03 o4
Output Values: i4=i6=0.5 0.0015f{ 0.0012{ 0.0014{ 0.0012
Output Rankings: i4=i6=0.5 4 3 2

Table 4.7:
Test #5: Route selection from Node 4 to Nodes 10,12 and 16

OQutput Node o1l 02
Output Rankings: Node 4 to Node 10 3 4
Output Rankings: Node 4 to Node 12 4 3
Output Rankings: Node 4 to Node 16 4 3 5
Total Delay for routes to Nodes 10,12,16] 1.9216| 1.7449| 1.2397] 1.2251
Output Rankings by Total Delay 4
Output Node o1
Output Values: i10=i12=i16=1 0.9999
Output Rankings: i10=i12=i16=1 4
Output Node o1 02 03 04
Output Values: i10=i12=i16=0.33 0.7613] 0.6026| 0.2253| 0.1884
Qutput Rankings: i10=i12=i16=0.33 4 3 2
Table 4.8:

Test #6: Route selection from Node 3 to Nodes 9,14 and 15

Output Node

Output Rankings: Node 3 to Node 9

Output Rankings: Node 3 to Node 14

Output Rankings: Node 3 to Node 15

Total Delay for routes to Nodes 9,14,15

Output Rankings by Total Delay

Output Node

QOutput Values: i9=i14=i15=1

Output Rankings: i9=i14=i15=1

Output Node o1 02 03

04

Output Values: i9=i14=i15=0.33 0.0604} 0.0346| 0.0196

0.0178

Output Rankings: i9=i14=i15=0.33 4 3 2
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methods were tested, the neural network correctly selected the first choice
route for two of the destination nodes and all three nodes based on total delay.
When the input activation was set at 1, output values were close to saturation;
when the input activation was normalized, output values were considerable

lower.

Test #6 is an example of performing a decision from a 4 output originating
node (Node 3) to 3 destination nodes (Nodes 9, 14, and 15) with similar output
rankings. The results of the test are provided in Table 4.8, with output values
of rank 1 shaded for comparison purposes. The results of this test were similar
to that of Test #4; when the input activations were set at 1, saturation of the
outputs occurred, and when the input activations were normalized, very small
output activations were produced. In this case, the output rankings were the
same as the output rankings based on total delay, and the network selected the

correct output.

4.6.2 Summary of generalization tests

In reviewing the performance of the neural networks in performing
generalization decisions, the results were inconsistent. While some networks
correctly determined output rankings, other networks produced incorrect
output rankings and selected incorrect routes. In all but one test routing
mismatches between the measured rankings and the output rankings based on
total delay were off by a value of 1, the same level of routing mismatches that
occurred in the single node routing tests performed in earlier sections. Based
on this performance, the neural networks could be used to perform
generalized routing decisions for restoration purposes (where rank 1/rank 2
mismatches could be ignored) but the inconsistent results found in the small
set of of tests conducted is not a significantly large sample to properly support
the above conclusion. More testing of these types of decisions, and
investigation into the neural network behaviour found in Tests #4 and #6, is

required before firm conclusions could be made.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

A number of conclusions have been drawn from the work presented in this
thesis. They are:

- Several approaches can be considered in mapping
telecommunications routing problems into the area of neural
networks. By studying the concepts of network routing from the
perspective of current routing methods and routing theory, routing
patterns or relationships can be extracted for study. In this thesis, a
distributed routing routing method based on a time based ranking
system was selected for neural network simulation and analysis.

- Experimentation with various neural network variables uncovered
differences in the capabilities of neural networks to learn routing
information. In this thesis, modifications to the structure of the
neural network and to the learning method demonstrated that
routing performance could be improved.

- The preparation of the training set information can significantly
affect the routing performance of the tested neural networks. The
quantization of routing rankings tested in this thesis resulted in
poorer learning of the actual rank values but improved learning of
the ranking order.

- Trained neural networks, combined with a postprocessing winner-
take-all layer, can be used to perform distributed routing. When the
set of neural networks was trained with routing information from a
sample network, the neural networks performed the specific
individual routing tasks with a high degree of efficiency under a
number of different network routing conditions. The neural
networks were also able to perform a number of generalized routing

decisions, but the results of the generalized routing tests were not as
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conclusive as those of the individual routing analysis; a potential
explanation for this is that the training sets for the neural networks

did not contain any generalizing information.

5.2 Recommendations

Based on the work performed, there are a number of recommendations for
areas of further investigation. These are:

- Extension of the routing method to more generalized routing
problems.

- The performance of the neural networks could be tested with other
learning rules such as Hebbian learning or counterpropagation.

- Routing performance can be tested using other neural network
topologies. The thesis demonstrated that 8 neurons per hidden layer
performed best of the three topologies considered, but other
topologies with different number of neurons in each layer are
possible. Neural network topologies with 4 and 10 neurons per
hidden layer are examples of the different topologies considered for
potential study, and the removal of the input neuron representing
the originating node can be investigated to evaluate any effects on
neural network performance.

- A study of features extracted by the neural network's hidden layers
can be performed to determine their relationships to the routing
network under study.

- Further testing in the area of generalization can be performed to
more fully understand how the networks perform this function, and
investigations into how generalized routing information could be
incorporated into the training set and neural networks can be
performed.

- The neural networks in this thesis were studied using software
simulations on a general purpose computer. One possible extension
of this work would be to implement the neural networks in silicon to

test actual routing performance.
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Appendix A:
Training macros and sets
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Pattern File for Node 2 of Sample Network
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Pattern File for Node 9 of the Sample Network

Destination Input Vector Output Vector
Node
i1 iz i3 |i4 [i5 [ie iz |i8 [i9 [i10 |i11 |i12 |i13 |i14 [i15 |i16 |of 02 03 04
i 1 0] O0f o] o] of of of of o] of of o] o] ol o]l o0.3708] 0.3838] 0.5985| 0.8306
i2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 0.6027] 0.4619] 0.6191] 0.8512
i3 0] of 1 0] O0f o/ of of o] of of of o ol of o] 0.5031] 0.3623] 0.5195/ 0.7516
i4 0] 0] of 1 0] O0f of o] of o] of of o] o] o] of 0.3088 0.2418] 0.4565] 0.6886
i5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.213] 0.3376] 0.5523| 0.7844
i6 O] 0] O0f of of 1 0] 0, O] 0] 0of 0] o] of of o o0.5481] 0.3776/ 0.5072| 0.7393
i7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0] 0.4084{ 0.2379 0.385] 0.6271
i8 0] 0] 0O of o] o] o] 1 0] 0] O] of o] of o] of 0.4225| 0.1281] 0.3428 0.5749
i9 0f 0 of o] of of o of 1 0] Oof O] of o] ol O] 0.0000{ 0.0000/ 0.0000{ 0.0000
i10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0] 0.6212] 0.3761] 0.3884] 0.6205
i11 0] of O] 0] of o] of of o] of 1} of of of o] o] o.5181 0.273] 0.2853| 0.5174
i12 O] 0f of o o] of of of o] of o] 1 0f O] O] O] 0.5989] 0.3045| 0.1664] 0.3985
i13 0| of of o of o] of of ol ol o] of 1 O] O] O] 0.7597| 0.4653] 0.3272| 0.2377
i14 Of 0] O0f of o] o] of of of o] of of of 1 0] O 0.663] 0.4179| 0.3851| 0.6172
i15 0f o of of of of of of of of ol ol of of 1 0] 0.6536] 0.4085| 0.2762] 0.5083
i16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.8046] 0.5102] 0.3712] 0.3929
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Pattern File for Node 11 of the Sample Network

Destination Input Vector Output Vector
Node
i1_li2 [i3 li4 Ji5 jie [i7 ]i8 [i9 ]i1o [i11 ]i12 [i13 ]i14 [i15 [i16 |of1 02 03 04 05 06
1 1 O] O] o] of of of of of of o] o] O] of of O] 0.3763] 0.4256| 0.4882] 0.5759] 0.6182] 0.7023
2 of 1 ol of o] of of of of of o] of o] o] of of o0.3588] 0.5037[ 0.3793| 0.6541} 0.5092| 0.6088
3 Ol of 1f o] o] o] ©of O] o0 0] of O] Of Of O] O 0.2592] 0.4041| 0.3559] 0.5545| 0.4859| 0.5854
4 0 0 0 1 0 0 0 0 0 Y 0 0 0 0 0 0] 0.2343| 0.2836| 0.4862| 0.4339f 0.6162f 0.5603
5 0] 0] of o] 1 O/l O of 0] o] O] 0] O] O] 0| O] 0.3301] 0.3794] 0.582| 0.4732 0.712f 0.5997
6 0f 0] o] o] o] 1 O] O] O O] O] O} O Of O] 0] 0.2745| 0.4194] 0.247] 0.5696] 0.3769] 0.4765
7 0Of of of o] of of 1 O] O] O} O] O] Of Of O] O] 0.1348| 0.2797} 0.3887 0.43] 0.5166] 0.5564
8 Of 0] of 0f 0f of o] + 0] O] of O] O] Of O] Of 0.2445] 0.1699| 0.4964] 0.3203] 0.565| 0.4467
9 0O} 0f Oof 0] 0/ O] O] o0 11 0| o] of of o] o] of 0.3476f 0.273] 0.5995 0.2853 0.53] 0.4117
10 0f 0of 0] 04 o0of of o} of o] 1 O] O] O] O] O] Of 0.3933] 0.5382| 0.1281]| 0.4871}] 0.2944| 0.3939
11 0 0 0 0 0 0 0 0 0 Y 1 0 0 0 0 0] 0.0000] 0.0000f 0.0000f 0.0000] 0.0000] 0.0000
12 0| Of O o] o] 0o of of o] o of 11 of O] o0 O] 0.4209| 0.3463] 0.4713] 0.1439] 0.3886] 0.2703
13 Ol 0] o] o] ol of o] of of of of o 1 0 0] 0| 0.5603] 0.4857] 0.6321] 0.3047| 0.5494| 0.4311
14 O] of of of of of o] o] o] of of of of 1 Of O] 0.4815| 0.6331] 0.2526] 0.3626] 0.1699| 0.2695
15 Of 0} of oy o0of of of of of o of o] of of 1 0] 0.5307] 0.456| 0.3615| 0.2536{ 0.2789] 0.1605
16 0] of of of of of of of of of ©O0f o] of of 0of 1| 0.s62866 0.552| 0.5418] 0.3496{ 0.4591| 0.3408
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Appendix B:
Single node modelling results




Training Results for V1.2.06.2

(Network 2.06.2, V1 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.2569| 0.30273| -0.0458] 0.3986] 0.31941| 0.07919
i2 0.04306]| -0.0431 0.04654| -0.0465
i3 0.1245| 0.04622| 0.07828| 0.2663]| 0.05003| 0.21627
i4 0.3486] 0.34681| 0.00179] 0.3966| 0.36605| 0.03055
i5 0.4146] 0.43077| -0.0162] 0.4924] 0.45044| 0.04196
i6 0.2335 0.041| 0.1925| 0.1573| 0.04433| 0.11297
i7 0.249| 0.06095{ 0.18805 0.297{ 0.06602] 0.23098
i8 0.3588]| 0.36095| -0.0021| 0.4068| 0.38049| 0.02631
i9 0.4618] 0.45955| 0.00225| 0.5097| 0.4796| 0.0301
i10 0.3524| 0.29049| 0.06191| 0.2762| 0.30855| -0.0324
i11 0.3588| 0.3472] 0.0116| 0.3793| 0.3667| 0.0126
i12 0.4776( 0.46848| 0.00912] 0.4981] 0.48932| 0.00878
i13 0.6385] 0.63023| 0.00827 0.659| 0.64821| 0.01079
i14 0.4405| 0.38725| 0.05325/ 0.3643| 0.3994| -0.0351
i15 0.4942| 0.46577| 0.02843| 0.4733| 0.47587| -0.0026
i16 0.6745| 0.64238| 0.03212|{ 0.6536| 0.65873| -0.0051
Average |Diff| (Full)] 0.04842|Average |Diff| (Full)] 0.05764
Neuron Average |Diff| (Mod)| 0.04878 Average [Difff (Mod)| 0.05838
Results Std Dev |Diff| (Full)| 0.06003|Std Dev |Diff| (Full)| 0.07077
Std Dev |Diff] (Mod) | 0.06212{Std Dev |Diff| (Mod) | 0.07319
Network Average |Difff (Full)] 0.05303|Std Dev |Diff| (Full)| 0.06472
Results Average |Diff| (Mod)| 0.05358|Std Dev |Diffl (Mod) | 0.06688
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Training Results for V1.2.08.2

(Network 2.08.2, V1 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i 0.2569( 0.28168| -0.0248| 0.3986| 0.30242| 0.09618
i2 0.0715f -0.0715 0.07721} -0.0772
i3 0.1245] 0.07042| 0.05408| 0.2663] 0.07659| 0.18971
i4 0.3486] 0.33394] 0.01466| 0.3966| 0.35496{ 0.04164
i5 0.4146( 0.42424| -0.0096] 0.4924{ 0.44666| 0.04574
i6 0.2335| 0.06315| 0.17035| 0.1573| 0.06845| 0.08885
i7 0.249| 0.07516( 0.17384 0.297{ 0.08133| 0.21567
i8 0.3588] 0.35021] 0.00859| 0.4068| 0.37191| 0.03489
i9 0.4618( 0.45184| 0.00996| 0.5097| 0.47508| 0.03462
i10 0.3524| 0.22612| 0.12628| 0.2762| 0.24254| 0.03366
i11 0.3588| 0.32692] 0.03188| 0.3793| 0.34806| 0.03124
i12 0.4776| 0.46238| 0.01522| 0.4981| 0.48504| 0.01306
i13 0.6385| 0.62634| 0.01216 0.659| 0.64764| 0.01136
i14 0.4405| 0.37257| 0.06793| 0.3643| 0.39235| -0.0281
i15 0.4942{ 0.43674] 0.05746] 0.4733| 0.45938| 0.01392
i16 0.6745| 0.64214| 0.03236| 0.6536| 0.66176| -0.0082
Average |Diff| (Full)| 0.05504 Average |Diff| (Full)] 0.06025
Neuron Average [Diff| (Mod)| 0.05395 Average |Diff| (Mod)| 0.05912
Results Std Dev |Diff| (Full) 0.0555(Std Dev |Diff] (Full)| 0.06177
Std Dev |Diff| (Mod) | 0.05727|Std Dev |Diff| (Mod) | 0.06377
Network Average |Diff| (Full)] 0.05765|Std Dev |Diff| (Full)| 0.05782
Results Average |Difff (Mod)| 0.05653|Std Dev |Diff| (Mod) | 0.05961
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Training Results for V1.2.10.2
(Network 2.10.2, V1 Macro)

Destination Neuron o1 (Route 3) Nueron 02 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.2569] 0.14932| 0.10758| 0.3986| 0.16186| 0.23674
i2 0.10219] -0.1022 0.1108] -0.1108
i3 0.1245| 0.09382| 0.03068| 0.2663| 0.10212| 0.16418
i4 0.3486| 0.28185| 0.06675| 0.3966| 0.30104| 0.09556
i5 0.4146{ 0.41347| 0.00113] 0.4924| 0.43604| 0.05636
i6 0.2335] 0.08242| 0.15108| 0.1573| 0.08961| 0.06769
i7 0.249 0.104 0.145 0.297| 0.11283| 0.18417
i8 0.3588] 0.34716| 0.01164| 0.4068| 0.36798| 0.03882
i9 0.4618| 0.43911| 0.02269| 0.5097| 0.46259| 0.04711
i10 0.3524| 0.10614| 0.24626| 0.2762| 0.11508| 0.16112
i11 0.3588| 0.32868| 0.03012] 0.3793] 0.35833| 0.02097
i12 0.4776| 0.45562| 0.02198| 0.4981| 0.47872] 0.01938
i13 0.6385 0.624] 0.0145 0.659] 0.64538]| 0.01362
i14 0.4405| 0.3625 0.078] 0.3643| 0.3826{ -0.0183
i15 0.4942( 0.43063| 0.06357| 0.4733| 0.45226| 0.02104
i16 0.6745| 0.63911] 0.03539| 0.6536| 0.65956] -0.006
Average |Diff| (Full)] 0.07054 Average |Diff| (Full)] 0.07886
Neuron Average |Diff] (Mod)| 0.06842 Average |Diff| (Mod)| 0.07673
Results Std Dev |Diff] (Full) 0.0663|Std Dev |Diff| (Full)| 0.07215
Std Dev |Diff| (Mod) | 0.06807[Std Dev |Diff| (Mod) | 0.07416
Network Average |Diff| (Full)] 0.0747|Std Dev |Diff| (Full)| 0.06829
Results Average |Diff| (Mod)| 0.07258|Std Dev |Diff| (Mod) | 0.07007
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Training Results for V1.2.06.4
(Network 2.06.4, V1 Macro)

Destination Neuron o1 (Route 5) Neuron o2 (Route 8)
Target Meas Diff Target Meas Diff

i1 0.3708; 0.38696| -0.0162| " 0.3838] 0.34123] 0.04257
i2 0.6027| 0.59431| 0.00839] 0.4619{ 0.45203| 0.00987
i3 0.5031} 0.49084{ 0.01226] 0.3623| 0.34667| 0.01563
i4 0.3088] 0.2663| 0.0425| 0.2418} 0.23695] 0.00485
i5 0.213| 0.28783} -0.0748] 0.3376| 0.27743] 0.06017
i6 0.5481| 0.53388| 0.01422] 0.3776| 0.36776| 0.00984
i7 0.4084| 0.33077{ 0.07763| 0.2378| 0.24452| -0.0066
i8 0.4225| 0.26476| 0.15774] 0.1281| 0.2078[ -0.0797
ig 0.03653] -0.0365 0.02367| -0.0237
i10 0.6212] 0.62441| -0.0032] 0.3761| 0.37954| -0.0034
i11 0.5181] 0.5127 0.0054 0.273] 0.28933] -0.0163
i12 0.5989| 0.58511} 0.01379] 0.3045| 0.31116| -0.0067
i13 0.7597( 0.78442| -0.0247| 0.4653| 0.46794| -0.0026
i14 0.663} 0.67004| -0.007| 0.4179] 0.41063| 0.00727
i15 0.6536] 0.67837| -0.0248| 0.4085| 0.38525| 0.02325
i16 0.8046| 0.79761]| 0.00698] 0.5102] 0.4862 0.024
Average |Diff| (Full)l 0.03289 Average |Diff] (Full){ 0.02103
Neuron Average |Difff (Mod)| 0.03264|Average |Diff] (Mod)| 0.02086
Results Std Dev |Diff| (Full)| 0.04048|Std Dev [Diff| (Full)| 0.02202
Std Dev |Diff] (Mod) | 0.04189|Std Dev |Diff| (Mod) | 0.02278

Destination

Neuron 03 (Route 12)

Neuron o4 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985( 0.59328] 0.00522| 0.8306| 0.83464| -0.004

i2 0.6191| 0.61651| 0.00259| 0.8512| 0.83803| 0.01317

i3 0.5195{ 0.5021f 0.0174] 0.7516| 0.76498] -0.0134

i4 0.4565{ 0.44198] 0.01452| 0.6886| 0.70348| -0.0149

i5 0.5523| 0.53303| 0.01927| 0.7844| 0.78615] -0.0018

i6 0.5072] 0.49192{ 0.01528] 0.7393( 0.74378| -0.0045

i7 0.395] 0.38908| 0.00592| 0.6271] 0.64714 -0.02

i8 0.3428( 0.34296| -0.0002{ 0.5749| 0.58669} -0.0118

i9 0.02331] -0.0233 0.03318] -0.0332

i10 0.3884| 0.38312] 0.00528] 0.6205| 0.58901| 0.03149

i11 0.2853] 0.2917] -0.0064| 0.5174]| 0.47513] 0.04227

i12 0.1664| 0.2295| -0.0631] 0.3985| 0.31962] 0.07888

i13 0.3272| 0.24207| 0.08513| 0.2377| 0.24794| -0.0102

i14 0.3851) 0.39052| -0.0054] 0.6172| 0.58445| 0.03275

i15 0.2762| 0.30626| -0.0301| 0.5083| 0.44889| 0.05941

i16 0.3712] 0.33132] 0.03988] 0.3929]| 0.43999] -0.0471
Average |Diff] (Full)| 0.02118|Average |Diff] (Full)] 0.02618

Neuron Average |Diff| (Mod)] 0.02104]Average |Diff] (Mod)| 0.02571
Results Std Dev |Diff] (Full)| 0.02362|Std Dev [Diff] (Full)| 0.02193
Std Dev |Diff] (Mod) | 0.02445|Std Dev |Diff] (Mod) | 0.02262

Network Average |Diff] (Full)] 0.02532|Std Dev |Diff| (Full)| 0.02787
Results Average |Diffl (Mod)| 0.02506|Std Dev |Diff| (Mod) | 0.02874
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Training Results for V1.2.08.4
(Network 2.08.4, V1 Macro)

Destination

Neuron o1 (Route 5)

Neuron 02 (Route 8)

Target Meas Diff Target Meas Diff

i1 0.3708| 0.35205| 0.01875| 0.3838] 0.33991] 0.04389
i2 0.8027| 0.5856{ 0.0171{ 0.4619] 0.45071] 0.01119
i3 0.5031{ 0.48237} 0.02073| 0.3623] 0.35385] 0.00845
id4 0.3088| 0.24995| 0.05885] 0.2418] 0.23459] 0.00721
i5 0.213( 0.27724] -0.0642{ 0.3376| 0.27887| 0.05873
i6 0.5481| 0.52539{ 0.02271| 0.3776| 0.36714| 0.01046
i7 0.4084} 0.32837| 0.08003] 0.2379{ 0.24195| -0.0041
i8 0.4225| 0.28845| 0.13405{ 0.1281]| 0.21074| -0.0826
i9 0.0526{ -0.0526 0.03387| -0.0339
i10 0.6212( 0.65128| -0.0301] 0.3761| 0.37922] -0.0031
i11 0.5181| 0.54835| -0.0303 0.273| 0.28818| -0.0152
i12 0.5988( 0.59535] 0.00355| 0.3045| 0.28943| 0.01507
i13 0.7597| 0.75393| 0.00577| 0.4653| 0.47533 -0.01
i14 0.663| 0.70045| -0.0375] 0.4179| 0.40757| 0.01033
i15 0.6536{ 0.66736| -0.0138] 0.4085| 0.37255] 0.03595
i16 0.8046] 0.79197| 0.01263| 0.5102] 0.49962| 0.01058
Average |[Diff] (Full)] 0.03766|Average |Diff] (Full)] 0.02255
Neuron Average |Difff (Mod)| 0.03666}Average |Diff] (Mod)| 0.02179
Results Std Dev [Diff] (Full)| 0.03391{Std Dev [Diff| (Full)| 0.02262
Std Dev |Diff| (Mod) | 0.03485|Std Dev |Diff| (Mod) 0.0232

Destination Neuron 03 (Route 12) Neuron o4 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985] 0.61316| -0.0147| 0.8306{ 0.84129{ -0.0107
i2 0.6191} 0.62066| -0.0016] 0.8512| 0.84059| 0.01061
i3 0.5195} 0.50933| 0.01017] 0.7516] 0.75722| -0.0056
i4 0.4565| 0.44457| 0.01193| 0.6886] 0.70087| -0.0123
i5 0.5523| 0.53606| 0.01624] 0.7844| 0.78113| 0.00327
i6 0.5072| 0.49369| 0.01351| 0.7393] 0.74236| -0.0031
i7 0.395{ 0.38487| 0.01013! 0.6271| 0.65044] -0.0233
i8 0.3428| 0.33575| 0.00705{ 0.5749| 0.58957| -0.0147
ig 0.03763| -0.0376 0.06216] -0.0622
i10 0.3884| 0.36284] 0.02556| 0.6205| 0.57605| 0.04445
i11 0.2853( 0.26408 0.02122| 0.5174] 0.45055] 0.06685
i12 0.1664( 0.21265| -0.0463] 0.3985| 0.34866] 0.04984
i13 0.3272( 0.28202] 0.04518}f 0.2377| 0.24983| -0.0121
i14 0.3851) 0.36627| 0.01883] 0.6172| 0.57499| 0.04221
i15 0.2762| 0.30839| -0.0322] 0.5083| 0.47451| 0.03379
i16 0.3712| 0.34629] 0.02491| 0.3929] 0.4174] -0.0245
Average |Diff| (Full)] 0.02106|Average |Diff| (Full)] 0.02622
Neuron Average |Difff (Mod)| 0.01996|Average |Diff| (Mod)| 0.02382
Results Std Dev |Diff| (Full)| 0.01335|Std Dev |Diff[ (Full)| 0.02106
Std Dev |Diff| (Mod) | 0.01304{Std Dev |Diff| (Mod) | 0.01942
Network Average |Diff] (Full)] 0.02687|Std Dev [Diff| (Full)| 0.02422
Results Average |Diff| (Mod)| 0.02556{Std Dev [Diff| (Mod) | 0.02428
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Training Results for V1.2.10.4
(Model 2.06.4, V1 Macro)

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff

i1 0.3708] 0.34781| 0.02299| 0.3838] 0.34264] 0.04116
i2 0.6027] 0.5936f 0.0091] 0.4619]| 0.45209] 0.00981
i3 0.5031| 0.46029] 0.04281f 0.3623| 0.35066| 0.01164
i4 0.3088] 0.28944; 0.01936] 0.2418]| 0.24264| -0.0008
i5 0.213] 0.19687| 0.01613| 0.3378| 0.26826| 0.06934
i6 0.5481} 0.52875( 0.01935| 0.3776] 0.36484} 0.01276
i7 0.4084| 0.35785] 0.05055] 0.2378] 0.2347f 0.0032
i8 0.4225| 0.32037| 0.10213] 0.1281] 0.20368] -0.0756
i9 0.0652] -0.0652 0.04462| -0.0446
i10 0.6212| 0.63596] -0.0148] 0.3761| 0.37651| -0.0004
i11 0.5181} 0.55983| -0.0417 0.273| 0.29702| -0.024
i12 0.5989] 0.59126( 0.00764| 0.3045| 0.30243| 0.00207
i13 0.7597| 0.74813; 0.01157}] 0.4653| 0.46553} -0.0002
i14 0.663( 0.70881| -0.0458] 0.4179| 0.41836| -0.0005
i15 0.6536| 0.67154| -0.0179| 0.4085] 0.3817} 0.0268
i16 0.8046) 0.7784| 0.0262] 0.5102] 0.48441| 0.02579
Average |Diff| (Full)] 0.03208]Average |Diff|] (Full)] 0.0218
Neuron Average |Diff| (Mod)| 0.02987 Average |Diffl (Mod)| 0.02027
Results Std Dev |Diff] (Full)| 0.02514|Std Dev |Diff| (Full)] 0.02446
Std Dev |Diff| (Mod) | 0.02437{Std Dev |Diff| (Mod) | 0.02452

Destination

Neuron o3 (Route 12)

Neuron o4 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985| 0.61117} -0.0127| 0.8306] 0.84178} -0.0112

2 0.6191} 0.61465| 0.00445| 0.8512]| 0.83766] 0.01354

i3 0.5195] 0.50773] 0.01177] 0.7516] 0.75738| -0.0058

i4 0.4565| 0.42852] 0.02798| 0.6886| 0.69339} -0.0048

i5 0.5523| 0.56724| -0.0149| 0.7844 0.797| -0.0126

i6 0.5072| 0.49523| 0.01197| 0.7393] 0.74773| -0.0084

i7 0.395] 0.37192| 0.02308| 0.6271} 0.65121| -0.0241

i8 0.3428{ 0.32307] 0.01973] 0.5749| 0.59463| -0.0197

i9 0.05946; -0.0595 0.10837] -0.1084

i10 0.3884| 0.37162] 0.01678] 0.6205] 0.57796] 0.04254

i11 0.2853| 0.25649| 0.02881| 0.5174| 0.40723| 0.11017

i12 0.1664| 0.21906] -0.0527] 0.3985] 0.32292| 0.07558

i13 0.3272} 0.26893] 0.05827| 0.2377} 0.26839| -0.0307

i14 0.3851| 0.36161} 0.02349] 0.8172] 0.5429] 0.0743

i15 0.2762] 0.30684| -0.0306| 0.5083] 0.45363| 0.05467

i16 0.3712] 0.34605] 0.02515] 0.3929| 0.45789f -0.065
Average |Diff| (Full)] 0.02637|Average |Diff| (Full)] 0.04134

Neuron Average |Diff| (Mod)| 0.02416]Average |Diff| (Mod)| 0.03687
Results Std Dev |Diff| (Full)| 0.01675]Std Dev |Diff] (Fuil)| 0.03587
Std Dev |Diff] (Mod) | 0.01473{Std Dev |Diff| (Mod) | 0.03219

Network Average |Diff] (Full)] 0.0304|Std Dev [Diff] (Full)| 0.02684
Results Average |Diff| (Mod)| 0.02779|Std Dev |Diff] (Mod) | 0.02491

Page B.6




Training Results for V1.2.06.6
(Network 2.06.6, V1 Macro)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron o3 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.3763] 0.32439| 0.05191] 0.4256| 0.45136| -0.0258] 0.4882 0.446] 0.0422
i2 0.3588| 0.35306] 0.00574] 0.5037| 0.50846| -0.0048| 0.3793| 0.35668| 0.02262
i3 0.2592| 0.26104| -0.0018f 0.4041| 0.3439] 0.0602| 0.3559| 0.40491] -0.049
i4 0.2343| 0.19843| 0.03587| 0.2836| 0.25905| 0.02455| 0.4862] 0.4399] 0.0463
i5 0.3301| 0.32423] 0.00587| 0.3794| 0.3434 0.036 0.582| 0.60137| -0.0194
i6 0.2745| 0.29888| -0.0244| 0.4194]| 0.44557| -0.0262 0.247| 0.23824| 0.00876
i7 0.1348| 0.16594] -0.0311| 0.2797| 0.21506| 0.06464| 0.3867| 0.39432| -0.0076
i8 0.2445| 0.24108| 0.00342| 0.1699| 0.22117| -0.0513| 0.4964| 0.51225| -0.0159
i9 0.3478| 0.30476] 0.04284 0.273| 0.28389| -0.0109; 0.5995] 0.53008| 0.06942
i10 0.3933] 0.3628] 0.0305| 0.5382| 0.51762| 0.02058] 0.1281] 0.1904| -0.0623
i11 0.02144]| -0.0214 0.02386] -0.0239 0.01639] -0.0164
i12 0.4209| 0.42217| -0.0013| 0.3463| 0.35589| -0.0096/ 0.4713| 0.4469] 0.0244
i13 0.5603| 0.56079| -0.0005| 0.4857| 0.46069| 0.02501| 0.6321] 0.65468| -0.0226
i14 0.4815) 0.50309| -0.0216| 0.6331| 0.55341| 0.07969| 0.2526| 0.26268| -0.0101
i15 0.5307| 0.52237i1 0.00833 0.456( 0.46017] -0.0042{ 0.3615] 0.36893| -0.0074
i16 0.6266| 0.63594| -0.0093 0.552| 0.60312| -0.0511] 0.5418] 0.50516] 0.03664
Average |Diff| (Full)] 0.0185[Average |Diff] (Full)] 0.03239 Average |Diff] (Full)] 0.02881
Neuron Average |Diff] (Mod)] 0.0183|Average |Diff| (Mod)| 0.03296|Average |Diff| (Mod)| 0.02964
Results Std Dev |Diff| (Full)| 0.01634|Std Dev |Diff| (Full)| 0.02269|Std Dev IDiff] (Full)] 0.01982
Std Dev |Diff| (Mod) | 0.01689|Std Dev |Diff| (Mod) | 0.02337|Std Dev [Diff] (Mod) | 0.02023
Destination Neuron 04 (Route 12) Neuron o5 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.5759| 0.6301| -0.0542| 0.6182| 0.60604| 0.01216] 0.7023] 0.67104| 0.03126
i2 0.6541| 0.63262| 0.02148 0.5092] 0.50591| 0.00329 0.6088| 0.61179 -0.003
i3 0.5545| 0.48891f 0.06559| 0.4859| 0.52778| -0.0419| 0.5854] 0.55569| 0.02971
i4 0.4339| 0.46464f -0.0307 0.6162] 0.58517] 0.03103 0.5603| 0.59134 -0.031
i5 0.4732 0.464( 0.0092 0.712} 0.6744{ 0.0376| 0.5997| 0.61421| -0.0145
i6 0.5696 0.529{ 0.0406{ 0.3769| 0.35253| 0.02437| 0.4765| 0.47097| 0.00553
i7 0.43| 0.40619( 0.02381| 0.5166| 0.53532| -0.0187| 0.5564| 0.53716| 0.01924
i8 0.3203] 0.27664§ 0.04366 0.585| 0.54384} 0.02116] 0.4467| 0.43146] 0.01524
i9 0.2853] 0.30656| -0.0213 0.53] 0.54596| -0.016] 0.4117| 0.43907] -0.0274
i10 0.4871f 0.50336| -0.0163| 0.2944| 0.26367| 0.03073| 0.3939| 0.38402| 0.00988
i11 0.01879| -0.0198 0.01614} -0.0161 0.01719] -0.0172
i12 0.1439] 0.2047) -0.0608| 0.3886| 0.36163| 0.02697| 0.2703| 0.24801| 0.02229
i13 0.3047| 0.2825] 0.0222] 0.5494| 0.55778| -0.0084| 0.4311] 0.37925| 0.05185
i14 0.3626| 0.34563| 0.01697| 0.1699| 0.24152| -0.0716| 0.2695| 0.25818| 0.01132
i15 0.2536| 0.19728| 0.05632| 0.2789| 0.25945| 0.01945] 0.1605| 0.1837| -0.0232
i16 0.3496] 0.34465| 0.00495| 0.4591]| 0.41313| 0.04597| 0.3408| 0.32935| 0.01145
Average [Difff (Full)] 0.03174|Average |Diff] (Full)] 0.02659 Average |Diff] (Full)] 0.02025
Neuron Average |Diff| (Mod)| 0.03254|Average |Diff| (Mod)| 0.02729 Average |Diff] (Mod)| 0.02046
Results Std Dev [Difff (Full)] 0.01918{Std Dev |Diff| (Full)| 0.01683[Std Dev IDiff] (Full){ 0.01221
Std Dev |Diff| (Mod) | 0.01957|Std Dev |Diff] (Mod) | 0.01718[Std Dev [Diff] (Mod) | 0.01261
Network Average [Diff| (Full)] 0.02638[Std Dev |Diff| (Full) | 0.01845
Results Average |Diff| (Mod)| 0.02686|Std Dev |Diff| (Mod) | 0.01895
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Training Results for V1.2.08.6
(Netork 2.08.6, V1 Macro)

Destination Neuron o1 (Route 7) Neuron o2 (Route 8) Neuron o3 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.3763| 0.3393 0.037| 0.4256{ 0.44591| -0.0203| 0.4882| 0.47327| 0.01493
i2 0.3588( 0.33533( 0.02347| 0.5037| 0.50079| 0.00291| 0.3793| 0.34106| 0.03824
i3 0.2592| 0.27336] -0.0142| 0.4041| 0.39986| 0.00424| 0.3559| 0.32425| 0.03165
i4 0.2343| 0.21966] 0.01464] 0.2836| 0.25607| 0.02753| 0.4862| 0.48454| 0.00166
i5 0.3301] 0.3674| -0.0373| 0.3794| 0.37739| 0.00201 0.582] 0.59385| -0.0119
i6 0.2745| 0.25682| 0.01768| 0.4194| 0.39924{ 0.02016 0.247] 0.24445| 0.00255
i7 0.1348| 0.18452] -0.0297| 0.2797| 0.21088| 0.06882] 0.3867| 0.39741| -0.0107
i8 0.2445| 0.21343| 0.03107| 0.1699| 0.20451| -0.0348| 0.4964| 0.50287| -0.0065
i9 0.3476] 0.32686] 0.02074 0.273] 0.27621{ -0.0032| 0.5995] 0.56513| 0.03437
i10 0.3933| 0.34171| 0.05158] 0.5382| 0.5212 0.017] 0.1281]| 0.18999| -0.0619
i11 0.02124] -0.0212 0.02389] -0.0239 0.01738] -0.0174
i12 0.4209| 0.42851( -0.0076] 0.3463| 0.32723| 0.01907| 0.4713] 0.47228] -0.001
i13 0.5603| 0.53861] 0.02169] 0.4857| 0.46542| 0.02028| 0.6321| 0.60966| 0.02244
i14 0.4815| 0.50891| -0.0274| 0.6331| 0.65092| -0.0178| 0.2526| 0.17443| 0.07817
i15 0.5307} 0.53985| -0.0092 0.456{ 0.44991| 0.00609| 0.3615| 0.37604] -0.0145
i16 0.6266] 0.61148f{ 0.01512 0.552| 0.53611] 0.01589] 0.5418} 0.55379| -0.012
Average |[Diff] (Full)| 0.02372]Average |Diff] (Full)| 0.01899 Average [Diff| (Full){ 0.02249
Neuron Average |Diff| (Mod)| 0.02389|Average |Diff| (Mod)| 0.01866 Average |Diff| (Mod)! 0.02283
Results Std Dev |Diff| (Full)| 0.01159|Std Dev [Diff] (Full)| 0.01638[Std Dev [Diff| (Full}] 0.02189
Std Dev |Diff| (Mod) | 0.01198{Std Dev |Diff| (Mod) 0.0169|Std Dev |Diff| (Mod) | 0.02261

Destination

Neuron o4 (Route 12)

Neuron o5 (Route 14)

Neuron 06 (Route 15)

Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.5759| 0.60478| -0.0289| 0.6182| 0.61441[ 0.00379] 0.7023] 0.65797| 0.04433

i2 0.6541/ 0.64947] 0.00463| 0.5092| 0.50728| 0.00192| 0.6088| 0.62994| -0.0211

i3 0.5545| 0.56139| -0.0069| 0.4859| 0.47805( 0.00785| 0.5854] 0.57125| 0.01415

i4 0.4339) 0.42594| 0.00796 0.6162| 0.59929| 0.01691| 0.5603| 0.56773| -0.0074

i5 0.4732] 0.4597} 0.0135 0.712| 0.65478| 0.05722| 0.5997| 0.58996| 0.00974

i6 0.5696/ 0.53622| 0.03338| 0.3769| 0.38282| -0.0059| 0.4765| 0.50588| -0.0294

i7 0.43] 0.40664| 0.02336] 0.5166| 0.53858| -0.022| 0.5564] 0.53605| 0.02035

i8 0.3203| 0.28837| 0.03193 0.565| 0.5513| 0.0137| 0.4467] 0.44685| -0.0002

ig 0.2853] 0.27248| 0.01282 0.53| 0.55417} -0.0242] 0.4117| 0.40904| 0.00266

i10 0.4871| 0.50188| -0.0148| 0.2944| 0.26061| 0.03379] 0.3939] 0.39638] -0.0025

i11 0.02287) -0.0229 0.01911} -0.0191 0.02119} -0.0212

i12 0.1439| 0.17667| -0.0328| 0.3886| 0.37191| 0.01669] 0.2703| 0.22785| 0.04245

i13 0.3047) 0.33235] -0.0277 0.5494| 0.55962| -0.0102| 0.4311| 0.41987| 0.01123

i14 0.3626| 0.35845| 0.00415| 0.1699| 0.14863| 0.02127| 0.2695| 0.21815| 0.05135

i15 0.2536| 0.16761| 0.08599| 0.2789| 0.24806| 0.03084| 0.1605| 0.15936| 0.00114

i16 0.3496] 0.30618] 0.04342] 0.4591]| 0.46552| -0.0064| 0.3408| 0.34009| 0.00071

Average |Diff| (Full)] 0.02469|Average |Diff| (Full)] 0.01824 Average |Diff] (Full)} 0.01749

Neuron Average |Diff| (Mod)| 0.02481|Average |Diff| (Mod)| 0.01818 Average |Diff| (Mod)| 0.01725

Results Std Dev |Diff] (Ful)) 0.0202|Std Dev [Diff| (Full)| 0.01401|Std Dev [Diff| (Full)| 0.01668

Std Dev |Diff] (Mod) 0.0209{Std .Dev |Diff| (Mod) 0.0145|Std Dev |Diff] (Mod) | 0.01723
Network Average |Diff| (Full)] 0.02094/Std Dev |Diff| (Ful | 0.01693
Results Average |Diff| (Mod)| 0.02094|Std Dev |Diff| (Mod) | 0.01748
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Training Results for V1.2.10.6
{Network 2.10.6, V1 Macro)

. Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron 03 (Route 10)
Target Meas . Diff Target Meas Diff Target Meas Diff
i1 0.3763| 0.34288| 0.03342] 0.4256| 0.45625| -0.0307] 0.4882] 0.46024| 0.02796
i2 0.3588) 0.33848] 0.02032f 0.5037{ 0.50784} -0.0041! 0.3793] 0.32407| 0.05523
i3 0.2592| 0.27103| -0.0118| 0.4041| 0.4008] 0.0033] 0.3559| 0.31452| 0.04138
i4 0.2343| 0.20854| 0.02576] 0.2836| 0.25214] 0.03146{ 0.4862| 0.48968| -0.0035
i5 0.3301| 0.35549| -0.0254] 0.3794| 0.35879| 0.02061 0.582| 0.62469| -0.0427
i6 0.2745| 0.2576] 0.0169] 0.4194{ 0.39233| 0.02707 0.247] 0.25107] -0.0041
i7 0.1348( 0.13883| -0.004| 0.2797} 0.19369| 0.08601] 0.3867| 0.38978{ -0.0031
i8 0.2445| 0.17983| 0.06467| 0.1699] 0.18864| -0.0187] 0.4964] 0.49543] 0.00097
i9 0.3476] 0.31847| 0.02913 0.273] 0.28456] -0.0116] 0.5995] 0.55046] 0.04904
i10 0.3933| 0.37848| 0.01482| 0.5382] 0.52774| 0.01046| 0.1281]| 0.21266| -0.0846
i11 0.02429] -0.0243 0.02638f -0.0264 0.02446} -0.0245
i12 0.4209| 0.45756| -0.0367| 0.3463] 0.31924| 0.02706] 0.4713] 0.48184| -0.0105
i13 0.5603| 0.5462| 0.0141| 0.4857; 0.46326| 0.02244| 0.6321] 0.62459| 0.00751
i14 0.4815| 0.49425| -0.0128| 0.6331| 0.64468] -0.0116| 0.2526] 0.16571] 0.08689
i15 0.5307| 0.51893| 0.01177 0.456] 0.45861| -0.0026] 0.3615] 0.36151| -1E-05
i16 0.6266] 0.62673] -0.0001 0.552| 0.55495] -0.003] 0.5418] 0.54498| -0.0032
Average |Diff| (Full)] 0.02162{Average |Diff| (Full)| 0.02106{Average |Diff| (Full)] 0.02782
Neuron Average |Difff (Mod)| 0.02145|Average |Diff| (Mod)| 0.02071[Average |Diff| (Mod)| 0.02804
Results Std Dev |Diff| (Full)] 0.01524|Std Dev |Diff| (Full) | 0.02015|Std Dev |Diff| (Full)| 0.02933
Std Dev |Diff] (Mod) | 0.01576|Std Dev |Diff| (Mod) 0.0208|Std Dev |Diff| {(Mod) | 0.03035
Destination Neuron 04 (Route 12) Neuron o5 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.5759] 0.61843| -0.0425] 0.6182| 0.60379| 0.01441| 0.7023| 0.6563 0.046
i2 0.6541| 0.66501| -0.0109( 0.5092| 0.49114] 0.01806] 0.6088| 0.63168| -0.0229
i3 0.5545| 0.57336| -0.0189| 0.4859| 0.46759] 0.01831| 0.5854] 0.57252| 0.01288
i4 0.4338( 0.42775| 0.00615{ 0.6162} 0.60484| 0.01136] 0.5603| 0.56612| -0.0058
i5 0.4732] 0.43626f 0.03694 0.712] 0.67862| 0.03338| 0.5997| 0.58282| 0.01688
i6 0.5696| 0.53719| 0.03241 0.3769| 0.38614] -0.0092 0.4765| 0.50828| -0.0318
i7 0.43| 0.41733] 0.01267 0.5166| 0.53687| -0.0203] 0.5564} 0.54534| 0.011086
i8 0.3203] 0.29412} 0.02618 0.565| 0.55506| 0.00994| 0.4467| 0.45656] -0.0099
i9 0.2853] 0.28519| 0.00011 0.53| 0.55443] -0.0244| 0.4117| 0.41711| -0.0054
i10 0.4871| 0.47372| 0.01338( 0.2944| 0.26474} 0.02966{ 0.3939] 0.37715| 0.01675
i1 0.02698] -0.027 0.02694] -0.0269 0.02743| -0.0274
i12 0.1439| 0.14451] -0.0006] 0.3886] 0.36086| 0.02774| 0.2703| 0.19605| 0.07425
i13 0.3047f 0.31118| -0.0065| 0.5494| 0.56882{ -0.0194| 0.4311| 0.40826| 0.02284
i14 0.3626{ 0.37839| -0.0158] 0.1699| 0.14639| 0.02351| 0.2695| 0.23356| 0.03594
i15 0.2536| 0.20217| 0.05143] 0.2789] 0.2645| 0.0144| 0.1605| 0.1967| -0.0362
i16 0.3496] 0.30118] 0.04842| 0.4591| 0.45127] 0.00783| 0.3408] 0.33281| 0.00799
Average |Diff] (Full)] 0.02186|Average |Diff| (Full)f 0.01931]|Average |Diff| (Full) 0.024
Neuron Average |Difff (Mod)| 0.02152|Average |Diff| (Mod)| 0.0188|Average |Diff| {Mod)| 0.02377
Results Std Dev |Diff| (Full)] 0.01658|Std Dev |Diff| (Full) | 0.00781|Std Dev |Diff| (Full)| 0.01808
Std Dev |Diff| (Mod) 0.0171]|Std Dev |Diff| (Mod) 0.0078|Std Dev |Diff] (Mod) | 0.01869
Network Average |Diff| (Full)j 0.02261{Std Dev |[Diff] (Full)| 0.01867
Results Average |Diff| (Mod)| 0.02238{Std Dev |Diff| (Mod) | 0.01927
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Training Results for V2.2.06.2

(Network 2.06.2, V2 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.2569| 0.31309] -0.0562| 0.3986| 0.34103| 0.05757
i2 0.34317| -0.3432 0.3692| -0.3692
i3 0.1245] 0.18544| -0.0609| 0.2663| 0.21066| 0.05564
i4 0.3486] 0.35828| -0.0097| 0.3966] 0.38638| 0.01022
i5 0.4146| 0.44063] -0.026| 0.4924| 0.46424| 0.02816
i6 0.2335] 0.18121| 0.05229} 0.1573]| 0.20552| -0.0482
i7 0.249| 0.25843] -0.0094 0.297] 0.28785| 0.00915
i8 0.3588] 0.36858( -0.0098| 0.4068| 0.39643| 0.01037
i9 0.4618| 0.47515| -0.0134| 0.5097| 0.4953| 0.0144
i10 0.3524| 0.29949] 0.05291| 0.2762| 0.32862| -0.0524
i11 0.3588{ 0.35477| 0.00403| 0.3793| 0.3831| -0.0038
i12 0.4776| 0.47591| 0.00169] 0.4981] 0.49988| -0.0018
i13 0.6385| 0.64429{ -0.0058 0.658] 0.65273]| 0.00627
i14 0.4405| 0.39559| 0.04491| 0.3643| 0.41452| -0.0502
i15 0.4942f 0.47607| 0.01813| 0.4733| 0.49308| -0.0198
i16 0.6745| 0.66514]| 0.00936| 0.6536| 0.66411| -0.0105
Average |Diff| (Full)| 0.04486|Average |Diff| (Full)] 0.04673
Neuron Average |Diff| (Mod)| 0.02497|Average |Diff| (Mod)| 0.02523
Results Std Dev |Diff| (Full) 0.0823{Std Dev |Diff] (Full)| 0.0884
Std Dev |Difff (Mod) | 0.02183|Std Dev |Diff| (Mod) | 0.02123
Network Average |Diff| (Full)| 0.04579|Std Dev |Diff| (Full){ 0.08402
Results 0.0251[Std Dev |Difff (Mod) | 0.02116

Average |Diff| (Mod)
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Training Results for Vv2.2.08.2
(Network 2.08.2, V2 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
it 0.2569| 0.31318| -0.0563| 0.3986| 0.34232| 0.05628
i2 0.34503] -0.345 0.37134{ -0.3713
i3 0.1245| 0.18331] -0.0588{ 0.2663| 0.21173| 0.05457
i4 0.3486] 0.3582| -0.0096| 0.3966| 0.38664| 0.00996
i5 0.4146| 0.44087| -0.0263] 0.4924| 0.4644 0.028
i6 0.2335| 0.18114] 0.05236] 0.1573| 0.20675| -0.0495
i7 0.249] 0.25793| -0.0089 0.297( 0.28839] 0.00861
i8 0.3588| 0.36955| -0.0108| 0.4068| 0.39543| 0.01137
i9 0.4618| 0.47485| -0.0131| 0.5097| 0.49584| 0.01386
i10 0.3524| 0.30073] 0.05167| 0.2762| 0.32784| -0.0516
i11 0.3588| 0.35572| 0.00308| 0.3793| 0.38211| -0.0028
i12 0.4776| 0.47731| 0.00029f 0.4981| 0.49838| -0.0003
i13 0.6385] 0.64395| -0.0055 0.659]| 0.65322| 0.00578
i14 0.4405| 0.39338| 0.04712] 0.3643| 0.41445| -0.0502
i15 0.4942{ 0.47578] 0.01842| 0.4733| 0.49328 -0.02
i16 0.6745] 0.66512| 0.00938| 0.6536 0.664f -0.0104
Average |Diff] (Full)] 0.04478 Average |Diff| (Full)| 0.04653
Neuron Average |Diff| (Mod)| 0.02476 Average |Diff| (Mod)| 0.02488
Results Std Dev |Diff] (Full) 0.0828|Std Dev |Diff] (Full)| 0.08901
Std Dev |Diff| (Mod) | 0.02183|Std Dev |Diff| (Mod) | 0.02124
Network Average |Diff] (Full)] 0.04566{Std Dev |Diff| (Ful) | 0.08457
Results Average |Diff| (Mod)| 0.02482|Std Dev |Diffl (Mod) | 0.02117
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Training Results for v2.2.10.2
(Network 2.10.2, V2 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
it 0.2569| 0.31316| -0.0563| 0.3986( 0.34247| 0.05613
i2 0.33448| -0.3345 0.36095| -0.361
i3 0.1245| 0.18482| -0.0603] 0.2663| 0.2105| 0.0558
i4 0.3486| 0.35899| -0.0104| 0.3966| 0.38575| 0.01085
i5 0.4146| 0.44122| -0.0266] 0.4924| 0.46391| 0.02849
i6 0.2335| 0.18149| 0.05201| 0.1573| 0.20618| -0.0489
i7 0.249] 0.25905| -0.0101 0.297] 0.28724| 0.00976
i8 0.3588| 0.36995| -0.0112] 0.4068| 0.39499] 0.01181
i9 0.4618| 0.47465] -0.0129] 0.5097| 0.49594| 0.01376
i10 0.3524| 0.30013| 0.05227| 0.2762| 0.32836| -0.0522
i11 0.3588| 0.35577| 0.00303| 0.3793| 0.38198| -0.0027
i12 0.4776| 0.47662| 0.00098| 0.4981| 0.49909| -0.001
i13 0.6385| 0.6441f -0.0056 0.659]| 0.65277] 0.00623
i14 0.4405] 0.3921] 0.0484] 0.3643| 0.4153( -0.051
i15 0.4942| 0.4765| 0.0177{ 0.4733| 0.4926| -0.0193
i16 __0.6745] 0.66325] 0.01125| 0.6536| 0.66586| -0.0123
Average |Diff| (Full)] 0.04459|Average |Diff| (Full)] 0.04632
Neuron Average |Diff| (Mod)| 0.02526 Average |Diff| (Mod)| 0.02534
Results Std Dev |Diff| (Full)| 0.08014{Std Dev |Diff] (Full)|{ 0.08636
Std Dev [Difff (Mod) | 0.02188{Std Dev |Diff| (Mod) | 0.02116
Network Average |Diff| (Full)] 0.04545{Std Dev [Diff| (Full)| 0.08196
Results Average |Diff| (Mod)| 0.0253{Std Dev [Diffl (Mod) | 0.02115
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Training Results for V2.2.06.4
(Network 2.06.4, V2 Macro)

Destination Neuron o1 (Route 5) Neuron o2 (Route 8)
Target Meas Diff Target Meas Diff
i1 0.3708| 0.38399| -0.0132| 0.3838| 0.35059] 0.03321
i2 0.6027| 0.60233| 0.00037{ 0.4619| 0.46229| -0.0004
i3 0.5031] 0.50783| -0.0047| 0.3623| 0.36139| 0.00091
i4 0.3088| 0.30664| 0.00216] 0.2418| 0.25847] -0.0167
i5 0.218| 0.25767| -0.0447| 0.3376| 0.2794| 0.0582
i6 0.5481| 0.54793| 0.00017{ 0.3776/ 0.38121} -0.0036
i7 0.4084| 0.39223| 0.01617| 0.2379| 0.27368| -0.0358
i8 0.4225| 0.36142| 0.06108] 0.1281] 0.24601{ -0.1179
i9 0.38876; -0.3888 0.21248| -0.2125
i10 0.6212] 0.61758| 0.00362| 0.3761| 0.37943| -0.0033
i11 0.5181] 0.50669| 0.01141 0.273] 0.29045] -0.0175
i12 0.5989( 0.58212] 0.01678] 0.3045| 0.30689| -0.0024
i13 0.7597| 0.78868| -0.029] 0.4653] 0.45896| 0.00634
i14 0.663f 0.6663| -0.0033] 0.4179] 0.40769] 0.01021
i15 0.6536| 0.66154| -0.0079| 0.4085| 0.37938| 0.02912
i16 0.8046| 0.82517| -0.0208] 0.5102] 0.50217( 0.00803
Average |Diff| (Full)] 0.03899|Average |Diff| (Full)] 0.03475
Neuron Average |Diff| (Mod)| 0.01568|Average |Diff| (Mod)] 0.0229
Results Std_Dev |Diff| (Full)| 0.09478|Std Dev [Diff| (Full){ 0.05608
Std Dev |Diff| (Mod) | 0.01745|Std Dev [Diff| (Mod) | 0.03102
Destination Neuron 03 (Route 12) Neuron o4 (Route 13)
Target Meas Diff Target Meas Diff
i1 0.5885] 0.59974| -0.0012| 0.8306| 0.84774| -0.0171
i2 0.6191]| 0.62235| -0.0032] 0.8512| 0.84645| 0.00475
i3 0.5195] 0.50448] 0.01502| 0.7516( 0.76569| -0.0141
i4 0.4565| 0.43547| 0.02103} 0.6886| 0.70164] -0.013
i5 0.5523| 0.5509; 0.0014| 0.7844| 0.81159| -0.0272
i6 0.5072] 0.49724| 0.00996] 0.7393| 0.74685| -0.0076
i7 0.385] 0.38184| 0.01316| 0.6271| 0.62745| -0.0003
i8 0.3428] 0.3317| 0.0111] 0.5749{ 0.55588] 0.01902
i9 0.22271} -0.2227 0.37734] -0.3773
i10 0.3884( 0.39953[ -0.0111} 0.6205] 0.61139| 0.00911
i11 0.2853| 0.3072| -0.0219] 0.5174] 0.49998| 0.01742
i12 0.1664] 0.24706] -0.0807| 0.3985| 0.35617| 0.04233
i13 0.3272| 0.26207| 0.06513] 0.2377| 0.27664| -0.0389
i14 0.3851} 0.40448| -0.0194| 0.6172| 0.60606| 0.01114
i15 0.2762( 0.33001| -0.0538] 0.5083| 0.48314] 0.02518
i16 0.3712] 0.33564| 0.03556[ 0.3929| 0.41925| -0.0264
Average |Diff| (Full)] 0.03665]Average |Difi] (Fulb)i 0.04068
Neuron Average |Diff| (Mod)| 0.02425|Average |Diff| (Mod)| 0.01824
Results Std Dev |Diff| (Full)| 0.05481|Std Dev |Diff| (Full)| 0.09051
Std Dev Diff| (Mod) | 0.02412|Std Dev [Diff| (Mod) | 0.01195
Network Average |Diff| (Full)] 0.03777|Std Dev [Diff| (Full)] 0.07456
Results Average |Diff] (Mod)| 0.02027|Std Dev |Diff| (Mod) | 0.02202
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Training Results for V2.2.08.4
(Network 2.08.4, V2 Macro)

Destination

Neuron o1 (Route 5)

Neuron 02 (Route 8)

Target Meas Diff Target Meas Diff

i1 0.3708} 0.38102| -0.0102| 0.3838| 0.35577| 0.02803
i2 0.6027] 0.60416] -0.0015| 0.4619] 0.46389} -0.002
i3 0.5031| 0.50401| -0.0009| 0.3623| 0.36782] -0.0055
i4 0.3088{ 0.30028( 0.00851| 0.2418] 0.25907{ -0.0173
i5 0.213] 0.26661| -0.0536] 0.3376] 0.28925| 0.04835
i6 0.5481] 0.5502] -0.0021| 0.3776] 0.38232| -0.0047
i7 0.4084| 0.39251} 0.01589| 0.2379] 0.27058] -0.0327
i8 0.4225] 0.35983| 0.06267| 0.1281| 0.24146] -0.1134
i9 0.38955] -0.3896 0.23948| -0.2395
i10 0.6212| 0.62405; -0.0029| 0.3761| 0.37564] 0.00046
i11 0.5181] 0.5156{ 0.0025 0.273] 0.28839| -0.0154
i12 0.5989]| 0.59143; 0.00747| 0.3045] 0.3005 0.004
i13 0.7597| 0.77694] -0.0172| 0.4653] 0.4704] -0.0051
i14 0.663| 0.67633] -0.0133] 0.4179| 0.40034} 0.01756
i15 0.6536] 0.66248| -0.0089| 0.4085| 0.34862| 0.05988
i16 0.8046] 0.81876| -0.0142| 0.5102] 0.51038| -0.0002
Average |Diff| (Full)] 0.03821|Average |Diff] (Full)] 0.03712
Neuron Average |Diff| (Mod)| 0.01479|Average |Diff| (Mod)| 0.02363
Results Std Dev |Diff] (Full) | 0.09538|Std Dev |Diff| (Full)| 0.06157
Std Dev |Diff] (Mod) | 0.01848{Std Dev |Diff} (Mod) 0.0307

Destination Neuron 03 (Route 12) Neuron 04 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985| 0.60624| -0.0077{ 0.8306| 0.84239| -0.0118
i2 0.6191| 0.62525| -0.0061| 0.8512| 0.84649| 0.00471
i3 0.5195| 0.51206{ 0.00744] 0.7516| 0.76105| -0.0094
i4 0.4565( 0.44006| 0.01644] 0.6886f 0.7017| -0.0131
i5 0.5523] 0.55628| -0.004| 0.7844| 0.8042| -0.0198
i6 0.5072[ 0.49994| 0.00726{ 0.7393| 0.74843| -0.0091
i7 0.395| 0.38019f 0.01481 0.6271] 0.63425] -0.0071
i8 0.3428| 0.32986] 0.01294| 0.5749| 0.56508] 0.00982
i9 0.29655| -0.2966 0.51137} -0.5114
i10 0.3884{ 0.39517| -0.0068f 0.6205| 0.61837] 0.00213
i11 0.2853| 0.29939| -0.0141] 0.5174| 0.50186| 0.01554
i12 0.1664( 0.23937| -0.073] 0.3885| 0.37122]| 0.02728
i13 0.3272f 0.27988| 0.04732f 0.2377| 0.26393] -0.0262
i14 0.3851| 0.39596| -0.0109] 0.6172| 0.61662| 0.00058
i15 0.2762( 0.33044| -0.0542] 0.5083| 0.49114]| 0.01716
i16 0.3712] 0.34606| 0.02514] 0.3929| 0.40855] -0.0157
Average |Diff| (Full)] 0.03779|Average [Diff| (Full)] 0.04381
Neuron Average [Diff] (Mod)| 0.02054]Average |Diff| (Mod)| 0.01263
Results Std Dev |Difff (Full)| 0.07186{Std Dev |Diff| (Full)| 0.12492
Std Dev |Diff| (Mod) | 0.02079|Std Dev |Diff| (Mod) | 0.00788
Network Average |Difff (Full)] 0.03923|Std Dev |Diff| (Full)| 0.08958
Results Average |Diffl (Mod)| 0.0179|Std Dev |Diff] (Mod) | 0.02101
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Training Results for V2.2.10.4
(Network 2.08.4, V2 Macro)

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff

i1 0.3708] 0.3779] -0.0071| 0.3838| 0.35714} 0.02666
i2 0.6027| 0.60212| 0.00058| 0.4619| 0.46571] -0.0038
i3 0.5031] 0.50546] -0.0024] 0.3623] 0.36542| -0.0031
i4 0.3088{ 0.31018; -0.0014| 0.2418| 0.26116] -0.0194
i5 0.213] 0.24618| -0.0332| 0.3376} 0.29302| 0.04458
i6 0.5481| 0.55125| -0.0031] 0.3776| 0.37959] -0.002
i7 0.4084| 0.40363] 0.00477| 0.2379| 0.26359| -0.0257
i8 0.4225{ 0.37297] 0.04953] 0.1281| 0.23745| -0.1094
i9 0.45799] -0.458 0.31876] -0.3198
i10 0.6212| 0.62135| -0.0001| 0.3761] 0.37616| -6E-05
i11 0.5181} 0.50856| 0.00954 0.273| 0.28921{ -0.0162
i12 0.5989( 0.59116| 0.00774f 0.3045| 0.29978]| 0.00472
i13 0.7597( 0.77617| -0.0165| 0.4653] 0.4692| -0.0039
i14 0.663| 0.67276| -0.0098| 0.4179| 0.40156} 0.01634
i15 0.6536( 0.66086| -0.0073] 0.4085| 0.38204] 0.02646
i16 0.8046| 0.82075| -0.0162f 0.5102| 0.50839] 0.00181
Average |Diff| (Full)] 0.03919|Average |Diff| (Full)] 0.03899
Neuron Average |Diff| (Mod)| 0.01127|Average |Diff| (Mod)| 0.02027
Results Std Dev [Diff| (Full)| 0.11244|Std Dev |Diff] (Full)| 0.07955
Std Dev |Diff] (Mod) | 0.01355|Std Dev |Diff| (Mod) | 0.02781

Destination

Neuron 03 (Route 12)

Neuron 04 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985( 0.60495| -0.0064] 0.8306] 0.8447| -0.0141

i2 0.6191( 0.62475| -0.0057f 0.8512| 0.84417] 0.00703

i3 0.5195f 0.51082| 0.00868] 0.7516| 0.76138| -0.0098

i4 0.4565| 0.43557| 0.02093| 0.6886| 0.70075| -0.0122

i5 0.5523| 0.56083| -0.0085] 0.7844]| 0.80292| -0.0185

i6 0.5072{ 0.49889| 0.00831f 0.7393| 0.74886{ -0.0096

i7 0.395| 0.87291| 0.02209] 0.6271| 0.63743| -0.0103

i8 0.3428( 0.32404| 0.01876f 0.5749] 0.56832] 0.00658

i9 0.44419| -0.4442 0.70048} -0.7005

i10 0.3884( 0.39882| -0.0104] 0.6205| 0.61479| 0.00571

i11 0.2853| 0.30611| -0.0208] 0.5174| 0.50194] 0.01546

i12 0.1664| 0.24297| -0.0766| 0.3985| 0.36923| 0.02927

i13 0.3272| 0.2716| 0.0556f 0.2377| 0.26865| -0.031

i14 0.3851| 0.40075| -0.0157} 0.6172| 0.61169| 0.00551

i15 0.2762| 0.33292| -0.0567{ 0.5083| 0.48511] 0.02319

i16 0.3712| 0.34059| 0.03061] 0.3929| 0.41279| -0.0199
Average |Diffl (Full)] 0.05062|Average |Diff| (Full)] 0.05741

Neuron Average |Difff (Mod)| 0.02439|Average |Diff| (Mod)| 0.01454
Results Std Dev |Diff] (Full)| 0.10701|Std Dev |Diff| (Full)] 0.17167
Std Dev [Diff] (Mod) | 0.02162|Std Dev [Diff| (Mod) | 0.00827

Network Average |Diff] (Full)] 0.04655{Std Dev |Diff| (Full)] 0.11968
Results Average |Diff| (Mod)| 0.01762|Std Dev |Diff] (Mod) 0.0195
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Training Results for

V2.2.06.6

(Network 2.06.6, V2 Macro)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron o3 (Route 10)
Target Meas Diff Target Meas Diff Target | Meas Diff
i1 0.3763| 0.32439| 0.05191] 0.4256] 0.45136{ -0.0258| 0.4882 0.446| 0.0422
ie 0.3588| 0.35306( 0.00574| 0.5037| 0.50846| -0.0048| 0.3793| 0.35668| 0.02262
i3 0.2592| 0.26104] -0.0018] 0.4041| 0.3439] 0.0602| 0.3559| 0.40491| -0.049
i4 0.2343| 0.19843| 0.03587] 0.2836| 0.25905| 0.02455| 0.4862| 0.43909| 0.0463
i5 0.3301| 0.32423| 0.00587| 0.3794! 0.3434 0.036 0.582| 0.60137| -0.0194
i6 0.2745| 0.29888] -0.0244] 0.4194| 0.44557| -0.0262 0.247| 0.23824| 0.00876
i7 0.1348| 0.16594| -0.0311| 0.2797| 0.21506]| 0.06464| 0.3867| 0.39432| -0.0076
i8 0.2445( 0.24108; 0.00342] 0.1699| 0.22117| -0.0513| 0.4964| 0.51225| -0.0159
i9 0.3476) 0.30476{ 0.04284 0.273| 0.28389| -0.0109| 0.5995| 0.53008| 0.08942
i10 0.3933| 0.3628f 0.0305| 0.5382| 0.51762| 0.02058| 0.1281| 0.1904| -0.0623
i11 0.02144| -0.0214 0.02386] -0.0239 0.01639] -0.0164
i12 0.4209| 0.42217] -0.0013| 0.3463| 0.35589| -0.0096| 0.4713| 0.4469] 0.0244
i13 0.5603| 0.56079| -0.0005} 0.4857| 0.46069| 0.02501| 0.6321| 0.65468] -0.0226
i14 0.4815| 0.50309| -0.0216| 0.6331| 0.55341| 0.07969| 0.2526| 0.26268| -0.0101
i15 0.5307| 0.52237{ 0.00833 0.456| 0.46017] -0.0042| 0.3615| 0.36893| -0.0074
i16 0.6266] 0.63594] -0.0093 0.552| 0.60312| -0.0511| 0.5418| 0.50516{ 0.03664
Average [Diff] (Full)l 0.0185|Average [Diff| (Full)] 0.03239 Average [Diff] (Full)] 0.02881
Neuron Average |Difff (Mod)| 0.0183]Average |Diff| (Mod)| 0.03296 Average |Diff| (Mod)| 0.02964
Results Std Dev |Diff] (Full)| 0.01634[Std Dev |Diff] (Full)| 0.02269|Std Dev [Diff| (Fulb| 0.01982
Std Dev |Diff| (Mod) | 0.01689[Std Dev |Diff| (Mod) | 0.02337|Std Dev [Diff| (Mod) | 0.02023
Destination Neuron o4 (Route 12) Neuron o5 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.5759] 0.6301] -0.0542] 0.6182| 0.60604| 0.012168] 0.7023] 0.67104] 0.03126
i2 0.6541| 0.63262[ 0.02148| 0.5092| 0.50591| 0.00329| 0.6088| 0.61179| -0.003
i3 0.5545| 0.48891| 0.06559] 0.4859| 0.52778| -0.0419| 0.5854| 0.55569| 0.02971
i4 0.4339| 0.46464| -0.0307| 0.6162| 0.58517| 0.03103| 0.5603| 0.59134] -0.031
i5 0.4732 0.464] 0.0092 0.712] 0.6744| 0.0376] 0.5997| 0.61421| -0.0145
i6 0.5696 0.529| 0.0406| 0.3769| 0.35253| 0.02437| 0.4765| 0.47097| 0.00553
i7 0.43| 0.40619| 0.02381| 0.5166| 0.53532| -0.0187| 0.5564| 0.53716| 0.01924
i8 0.3203] 0.27664] 0.04366 0.585] 0.54384] 0.02116{ 0.4467] 0.431486| 0.01524
i9 0.2853] 0.30656] -0.0213 0.53] 0.54596] -0.016] 0.4117| 0.43907| -0.0274
10 0.4871| 0.50336( -0.0163] 0.2944| 0.26367| 0.03073| 0.3939| 0.38402| 0.00988
i11 0.01979] -0.0198 0.01614] -0.0161 0.01719| -0.0172
i12 0.1439/ 0.2047| -0.0608| 0.3886| 0.36163] 0.02697| 0.2703| 0.24801| 0.02229
i13 0.3047| 0.2825] 0.0222| 0.5494| 0.55778| -0.0084| 0.4311] 0.37925| 0.05185
i14 0.3626; 0.34563| 0.01697| 0.1699| 0.24152| -0.0716| 0.2695| 0.25818| 0.01132
i15 0.2536| 0.19728| 0.05632| 0.2789| 0.25945| 0.01945| 0.1605| 0.1837| -0.0232
i16 0.3496] 0.34465| 0.00495| 0.4591]| 0.41313| 0.04597| 0.3408| 0.32935| 0.01145
Average [Diff| (Full)] 0.03174|Average |Diff| (Full)| 0.02659 Average |Diff| (Full)| 0.02025
Neuron Average |Diff| (Mod)! 0.03254|Average |Diff| (Mod)|{ 0.02729 Average |Diff] (Mod)| 0.02046
Results Std Dev |Diff| (Full)| 0.01918|Std Dev |Diff| (Full)| 0.01683|Std Dev IDiff| (Full)] 0.01221
Std Dev [Diff| (Mod) | 0.01957|Std Dev |Diff| (Mod) | 0.01718[Std Dev [Diff] (Mod) | 0.01261
Network Average |Diff| (Full)] 0.02638{Std Dev |Diff| (Full)| 0.01845
Results Average |Diff] (Mod)] 0.02686|Std Dev |Diff| (Mod) { 0.01895
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Training Results for V2.2.08.6
{Network 2.08.6, V2 Macro)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron 03 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.3763| 0.34989| 0.02641| 0.4256{ 0.44766| -0.0221] 0.4882| 0.50168| -0.0135
i2 0.3588| 0.35131| 0.00749f 0.5037| 0.51887| -0.0152| 0.3793} 0.34988| 0.02942
i3 0.2592 0.278| -0.0188] 0.4041; 0.40148{ 0.00262| 0.3559]| 0.34364| 0.01226
i4 0.2343]| 0.23981| -0.0055] 0.2836| 0.27888| 0.00472] 0.4862| 0.49181| -0.0056
i5 0.3301| 0.34844} -0.0163| 0.3794| 0.36482} 0.01458 0.582{ 0.60199 -0.02
i6 0.2745] 0.27247{ 0.00203| 0.4194] 0.42186| -0.0025 0.247| 0.24741{ -0.0004
i7 0.1348| 0.17916] -0.0444} 0.2797| 0.24171| 0.03799| 0.3867| 0.38033| 0.00637
i8 0.2445]| 0.21329] 0.03121] 0.1699] 0.20355| -0.0337| 0.4964] 0.50761] -0.0112
ig 0.3476] 0.35041] -0.0028 0.273{ 0.28958| -0.0166] 0.5995[ 0.57666{ 0.02284
i10 0.3933| 0.37683] 0.01647{ 0.5382| 0.53924| -0.001| 0.1281] 0.21147| -0.0834
i11 0.12014} -0.1201 0.14408] -0.1441 0.10032] -0.1003
i12 0.4209] 0.42925| -0.0084| 0.3463| 0.33122| 0.01508] 0.4713| 0.47947| -0.0082
i13 0.5603| 0.56671| -0.0064| 0.4857| 0.4784| 0.0073| 0.6321| 0.63009] 0.00201
i14 0.4815( 0.50412( -0.0226f 0.6331( 0.62399| 0.00911| 0.2526] 0.21006| 0.04254
i15 0.5307| 0.52689] 0.00381 0.456) 0.46873| -0.0127| 0.3615] 0.36895| -0.0075
i16 0.6266] 0.62308] 0.00352 0.552| 0.56157| -0.0096{ 0.5418| 0.54554{ -0.0037
Average |Diff| (Full)] 0.02102|Average |Diff| (Full)} 0.0218 Average |Diff| (Full)| 0.02307
Neuron Average |Diff| (Mod)| 0.01441|Average |Diff| (Mod)| 0.01364 Average |Diff|] (Mod)| 0.01792
Results Std Dev |Diff| (Full)| 0.02903|Std Dev |Diff| (Full)| 0.03425[Std Dev |Diff| (Full)| 0.02917
Std Dev |Diff] (Mod) | 0.01243]Std Dev |Diff| (Mod) | 0.01083|Std Dev |Diff| (Mod) | 0.02138
Destination Neuron 04 {Route 12) Neuron 05 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.5759| 0.59753| -0.0216]{ 0.6182| 0.63449| -0.0163| 0.7023| 0.66152| 0.04078
i2 0.6541| 0.6518] 0.0023| 0.5092| 0.51202| -0.0028/ 0.6088| 0.62874] -0.0199
i3 0.5545, 0.5615| -0.007| 0.4859| 0.49729| -0.0114| 0.5854| 0.57951| 0.00589
i4 0.4339| 0.43794| -0.004{ 0.6162| 0.60423| 0.01197| 0.5603| 0.57311] -0.0128
i5 0.4732} 0.47912| -0.0059 0.712] 0.67723| 0.03477| 0.5997| 0.61911| -0.0194
i6 0.5696| 0.54388| 0.02572f 0.3769| 0.38157] -0.0047| 0.4765| 0.50456| -0.0281
i7 0.43| 0.44009{ -0.0101| 0.5166] 0.53112| -0.0145| 0.5564| 0.54869| 0.00771
i8 0.3203; 0.29372| 0.02658 0.565| 0.56293| 0.00207| 0.4467| 0.45945| -0.0128
i9 0.2853| 0.27489{ 0.01041 0.53| 0.55874| -0.0287| 0.4117] 0.4123| -0.0006
i10 0.4871| 0.49321[ -0.0061] 0.2944| 0.27209| 0.02231| 0.3939] 0.38723| 0.00667
i11 0.13914]| -0.1391 0.11668} -0.1167 0.13107| -0.1311
i12 0.1439| 0.19242| -0.0485| 0.3886| 0.38527| 0.00333| 0.2703 0.25/ 0.0203
i13 0.3047| 0.3262] -0.0215| 0.5494| 0.56229| -0.0129] 0.4311| 0.41555| 0.01555
i14 0.3626{ 0.37717| -0.0146] 0.1699| 0.18989 -0.02{ 0.2695{ 0.25017] 0.01933
i15 0.2536( 0.21362] 0.03998| 0.2789| 0.26572{ 0.01318] 0.1605| 0.19905| -0.0386
i16 0.3496] 0.33426] 0.01534] 0.4591| 0.45888| 0.00022| 0.3408| 0.35561| -0.0148
Average [Diff| (Full)] 0.02493|Average |Diff| (Full){ 0.01974 Average |Difff (Full)| 0.02464
Neuron Average |Difff (Mod)[ 0.01731]Average |Diff| (Mod)i 0.01328|Average |Diff| (Mod)| 0.01754
Results Std Dev [Diff| (Full)| 0.03313|Std Dev [Diff| (Full)| 0.02762|Std Dev |Diff] (Full){ 0.03043
Std Dev |Diff| (Mod) | 0.01351|Std Dev |Diff| (Mod) | 0.01008|Std Dev |Diff| (Mod) | 0.01136
Network Average [Diff] (Full)] 0.02253|Std Dev |Diff| (Full)| 0.02994
Results Average |Diff| (Mod)| 0.01569{Std Dev |Diff{ (Mod) | 0.01354
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Training Results for V2.2.10.6
(Network 2.10.6, V2 Macro)

Destination Neuron o1 {(Route 7) Neuron 02 (Route 8) Neuron 03 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.3763| 0.35425| 0.02205| 0.4256| 0.45679| -0.0312] 0.4882] 0.48911] -0.0009
i2 0.3588] 0.35134] 0.00746] 0.5037| 0.52054| -0.0168| 0.3793| 0.33574| 0.04356
i3 0.2592| 0.28094| -0.0217| 0.4041| 0.40064| 0.00346| 0.3559| 0.34572| 0.01018
i4 0.2343| 0.23299| 0.00131] 0.2836| 0.27671| 0.00689| 0.4862| 0.49181| -0.0056
i5 0.3301| 0.35584} -0.0257| 0.3794{ 0.36973| 0.00967 0.582| 0.61262{ -0.0306
i6 0.2745| 0.27319] 0.00131| 0.4194| 0.40513| 0.01427 0.247| 0.26876| -0.0218
i7 0.1348| 0.16786] -0.0331| 0.2797| 0.22475] 0.05495| 0.3867| 0.39726| -0.0106
i8 0.2445] 0.20867| 0.03583| 0.1699| 0.21174| -0.0418| 0.4964| 0.50053| -0.0041
i9 0.3476| 0.34698| 0.00062 0.273| 0.30508| -0.0321} 0.5995] 0.55763| 0.04187
i10 0.3933| 0.39468| -0.0014| 0.5382| 0.53429]| 0.00391| 0.1281| 0.23331| -0.1052
i11 0.07305| -0.0731 0.08209| -0.0821 0.07634| -0.0763
i12 0.4209| 0.44293| -0.022] 0.3463| 0.3238| 0.0225/ 0.4713| 0.48487| -0.0136
i13 0.5603| 0.56352| -0.0032] 0.4857| 0.48074]| 0.00496| 0.6321| 0.62865| 0.00345
i14 0.4815( 0.49609( -0.0146| 0.6331| 0.63187| 0.00123| 0.2526| 0.18723| 0.06537
i15 0.5307| 0.51708} 0.01362 0.456| 0.46736f -0.0114] 0.3615| 0.36747| -0.006
i16 0.6266] 0.62369| 0.00291 0.552| 0.56127| -0.0093| 0.5418| 0.54884| -0.007
Average |Diff| (Full)] 0.0175|Average |Diff| (Full)l 0.02166 Average |Diff| (Full)| 0.02788
Neuron Average |Diff| (Mod)| 0.01379|Average |Diff| (Mod)| 0.01763 Average |Diff] (Mod)| 0.02465
Results Std Dev |Diff| (Full)] 0.01898|Std Dev |Diff] (Full)| 0.02223|Std Dev [Diff] (Full)] 0.03092
Std Dev |Diff| (Mod) | 0.01227|Std Dev |Diff| (Mod) | 0.01584|Std Dev |Diff] (Mod) | 0.02907

Destination

Neuron 04 (Route 12)

Neuron o5 (Route 14)

Neuron 06 (Route 15)

Target Meas Diff Target Meas Diff Target Meas Diff

it 0.5759| 0.61042{ -0.0345| 0.6182| 0.62439| -0.0062| 0.7023| 0.66108| 0.04122

i2 0.6541f 0.66451| -0.0104] 0.5092| 0.49877| 0.01043| 0.6088| 0.63245| -0.0236

i3 0.5545| 0.56398] -0.0095| 0.4859| 0.49399| -0.0081| 0.5854| 0.57875] 0.00665

i4 0.4339| 0.44254| -0.0086| 0.6162| 0.60665| 0.00955| 0.5603] 0.5735| -0.0132

i5 0.4732| 0.46698; 0.00622 0.712| 0.67986| 0.03214| 0.5997| 0.60545| -0.0058

i6 0.5696] 0.53378| 0.03582| 0.3769| 0.3989| -0.022| 0.4765| 0.50957| -0.0331

i7 0.43| 0.42935/ 0.00065| 0.5166| 0.54023| -0.0236| 0.5564| 0.54766| 0.00874

i8 0.3203] 0.30773| 0.01257 0.565| 0.56054| 0.00446] 0.4467| 0.46447| -0.0178

i9 0.2853} 0.29624] -0.0109 0.53| 0.55496| -0.025| 0.4117| 0.42341| -0.0117

i10 0.4871| 0.47447| 0.01263| 0.2944| 0.28239| 0.01201| 0.3939] 0.38312| 0.01078

i11 0.08528| -0.0853 0.08725] -0.0873 0.08877] -0.0888

i12 0.1439f 0.1722] -0.0283| 0.3886| 0.38151| 0.00709| 0.2703| 0.23008| 0.04024

i13 0.3047| 0.32577( -0.0211| 0.5494| 0.56786| -0.0185| 0.4311| 0.41661| 0.01449

i14 0.3626| 0.38819| -0.0256/ 0.1699| 0.17068| -0.0008{ 0.2695| 0.24993| 0.01957

i15 0.2536| 0.22715{ 0.02645| 0.2789] 0.27825| 0.00065| 0.1605| 0.21797| -0.0575

i16 0.3496| 0.32831| 0.02129] 0.4591| 0.46231| -0.0032| 0.3408| 0.3557| -0.0149

Average |Diff] (Full)] 0.02187|Average |Diff| (Full)| 0.01693 Average |Diff| (Full)l 0.0255

Neuron Average |Diff| (Mod)] 0.01764)Average |Diff| (Mod)| 0.01224 Average |Diff| (Mod)| 0.02128

Results Std Dev |Diff| (Full)| 0.01983|Std Dev |Diff| (Full)| 0.02097|Std Dev [Diff| (Full)] 0.02231

Std Dev [Diff| (Mod) | 0.01072|Std Dev [Diff| (Mod) | 0.00971[Std Dev |Diff] (Mod) 0.0151
Network Average |Diff| (Full)] 0.02189|Std Dev |Diff] (Full)| 0.02262
Results Average |Difff (Mod)| 0.01787|Std Dev |Diff| (Mod) | 0.01682
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Training Results for V3.2.06.2
(Network 2.06.2, V3 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.2569| 0.31049| -0.0536] 0.3986| 0.33101| 0.06759
i2 0.34236| -0.3424 0.36397| -0.364
i3 0.1245| 0.18644| -0.0619| 0.2663| 0.20039| 0.06591
i4 0.3486| 0.35875( -0.0102| 0.3966] 0.38062| 0.01598
i5 0.4146] 0.43977| -0.0252| 0.4924] 0.46274| 0.02966
i6 0.2335| 0.18409( 0.04941] 0.1573| 0.1979| -0.0406
i7 0.249] 0.25922] -0.0102 0.297] 0.27779] 0.01921
i8 0.3588| 0.36754]| -0.0087| 0.4068| 0.38984| 0.01696
i9 0.4618{ 0.47429]| -0.0125| 0.5097| 0.49697| 0.01273
i10 0.3524| 0.29601{ 0.05639| 0.2762| 0.31654| -0.0403
i11 0.3588| 0.3499] 0.0089| 0.3793| 0.37245| 0.00685
i12 0.4776| 0.47677| 0.00083| 0.4981| 0.49934| -0.0012
i13 0.6385] 0.64158] -0.0031 0.659| 0.65952| -0.0005
i14 0.4405| 0.38562| 0.05488| 0.3643| 0.40742| -0.0431
i15 0.4942] 0.47366{ 0.02054| 0.4733| 0.49545| -0.0222
i16 0.6745| 0.65827| 0.01623| 0.6536] 0.6753| -0.0217
Average |Diff| (Full)] 0.04593 Average |Diff| (Full)] 0.04803
Neuron Average [Diff| (Mod){ 0.02617 Average |Diff| (Mod)| 0.02697
Results Std Dev [Diff| (Full) | 0.08191|Std Dev |Diff| (Full)| 0.08663
Std Dev |Diff| (Mod) | 0.02223|Std Dev |Diff| (Mod) | 0.02087
Network Average |Diff| (Full)] 0.04698|Std Dev |Diff| (Full)| 0.08294
Results Average |Diff| (Mod)| 0.02657|Std Dev |Diff| (Mod) | 0.02119
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Training Results for V3.2.08.2
(Network 2.08.8, V3 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i 0.2569| 0.3107| -0.0538| 0.3986| 0.33231| 0.06629
i2 0.34226( -0.3423 0.36426| -0.3643
i3 0.1245| 0.18445 -0.06| 0.2663] 0.20049| 0.06581
i4 0.3486| 0.35909( -0.0105| 0.3966| 0.38145| 0.01515
i5 0.4146| 0.44047| -0.0259| 0.4924] 0.46309| 0.02931
i6 0.2335| 0.18575( 0.04775| 0.1573| 0.20162| -0.0443
i7 0.248] 0.25662| -0.0076 0.287] 0.27662| 0.02038
i8 0.3588| 0.36594| -0.0071| 0.4068| 0.38819| 0.01861
i9 0.4618| 0.47484] -0.013| 0.5097] 0.49684| 0.01286
i10 0.3524| 0.29729| 0.05511| 0.2762] 0.31842{ -0.0422
i11 0.3588] 0.34732| 0.01148| 0.3793| 0.36972| 0.00958
i12 0.4776| 0.4762| 0.0014] 0.4981| 0.49844| -0.0003
i13 0.6385| 0.64155| -0.0031 0.659| 0.65891 9E-05
i14 0.4405| 0.38401| 0.05649| 0.3643] 0.4061| -0.0418
i15 0.4942| 0.47473{ 0.01947| 0.4733] 0.49571| -0.0224
i16 0.6745] 0.65868| 0.01582| 0.6536| 0.67354| -0.0199
Average |[Difff (Full)] 0.04567|Average |Diff| (Full)] 0.04834
Neuron Average |Diff| (Mod)| 0.0259 Average [Diff| (Mod)| 0.02727
Results Std Dev |Diff| (Full)| 0.08189|Std Dev |Diff| (Ful)] 0.08661
Std Dev [Difff (Mod) | 0.02198|Std Dev |Diff| (Mod) | 0.02082
Network Average |Diff| (Full) 0.047|Std Dev |Diff| (Full)| 0.08293
Results Average |Diff| (Mod)| 0.02659|Std Dev |Diff] (Mod) | 0.02105
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Training Results for V3.2.10.2
(Network 2.10.2, V3 Macro)

Destination Neuron o1 (Route 3) Neuron 02 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.2569| 0.31285| -0.056| 0.3986( 0.33566| 0.06294
i2 0.33186{ -0.3319 0.35402f -0.354
i3 0.1245| 0.18222] -0.0577| 0.2663] 0.19812| 0.06818
i4 0.3486{ 0.35857 -0.01| 0.3966| 0.38115] 0.01545
i5 0.4146| 0.43791] -0.0233] 0.4924| 0.46084| 0.03156
i6 0.2335f 0.18441] 0.04909| 0.1573| 0.20062| -0.0433
i7 0.249| 0.25697] -0.008 0.297| 0.27713] 0.01987
i8 0.3588] 0.36222]| -0.0034] 0.4068| 0.38876{ 0.01804
i9 0.4618| 0.47542| -0.0136| 0.5097| 0.4974| 0.0123
i10 0.3524| 0.30009] 0.05231] 0.2762| 0.32254| -0.0463
i11 0.3588| 0.34818| 0.01062| 0.3793| 0.37104| 0.00826
i12 0.4776| 0.47472f 0.00288] 0.4981| 0.49775| 0.00035
i13 0.6385| 0.64143| -0.0029 0.659] 0.6583| 0.0007
i14 0.4405) 0.37897| 0.06153| 0.3643{ 0.40217| -0.0379
i15 0.4942| 0.47414| 0.02006] 0.4733| 0.49433| -0.021
i16 0.6745| 0.65897| 0.01553] 0.6536] 0.67354| -0.0199
Average |Diff| (Full)] 0.04492|Average |Diff| (Full)l 0.04751
Neuron Average |Difff (Mod)| 0.02579{Average |Diff| (Mod)|{ 0.02708
Results Std Dev |Diff| (Full)| 0.07955|Std Dev |Diff] (Full)| 0.08418
Std Dev |Diff] (Mod) | 0.02251|Std Dev |Diff| (Mod) | 0.02085
Network Average |Diff| (Full)] 0.04622(Std Dev |Diff] (Full)| 0.08058
Results Average |Diffl (Mod)| 0.02644{Std Dev |Diff| (Mod) | 0.02133
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Training Results for
(Network 2.06.4, V3 Macro)

V3.2.06.4

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff

i1 0.3708| 0.37876] -0.008] 0.3838| 0.34064| 0.04316
i2 0.6027/ 0.60405/ -0.0013| 0.4619| 0.45794] 0.00396
i3 0.5031| 0.50067| 0.00243] 0.3623] 0.36096| 0.00134
i4 0.3088| 0.30585{ 0.00295| 0.2418| 0.25409} -0.0123
i5 0.213} 0.26966| -0.0567] 0.3376] 0.27287| 0.06473
i6 0.5481] 0.54266{ 0.00544| 0.3776| 0.37932| -0.0017
i7 0.4084| 0.36134| 0.04706] 0.2379] 0.26173] -0.0238
i8 0.4225| 0.32404| 0.09846] 0.1281] 0.23097| -0.1029
i9 0.37377| -0.3738 0.21279{ -0.2128
i10 0.6212| 0.61504| 0.00616] 0.3761] 0.38052| -0.0044
i11 0.5181| 0.49745] 0.02065 0.273]| 0.29117| -0.0182
i12 0.5989] 0.57771| 0.02119] 0.3045| 0.30635| -0.0019
i13 0.7597] 0.78846| -0.0288] 0.4653| 0.44776! 0.01754
i14 0.663| 0.66752| -0.0045[ 0.4179| 0.40983| 0.00807
i15 0.6536( 0.66155| -0.008] 0.4085| 0.38088{ 0.02764
i16 0.8046] 0.81807| -0.0135] 0.5102{ 0.49415| 0.01605
Average |Diff| (Full)] 0.04367|Average |Diff| (Full)] 0.03503
Neuron Average |Diff| (Mod)| 0.02167|Average |Diff] (Mod)| 0.02318
Results Std Dev |Diff| (Full)| 0.0918|Std Dev |Diff| (Full)] 0.05463
Std Dev |Diff] (Mod) | 0.02698|Std Dev |Diff| (Mod) | 0.02811

Destination

Neuron 03 (Route 12)

Neuron o4 (Route 13)

Target Meas Diff Target Meas Diff

i1 0.5985| 0.59804| 0.00046| 0.8306| 0.85096| -0.0204

i2 0.6191| 0.61865] 0.00045] 0.8512| 0.84572] 0.00548

i3 0.5195 0.505 0.0145 0.7516{ 0.75971| -0.0081

i4 0.4565] 0.43128| 0.02522] 0.6886| 0.69797] -0.0094

i5 0.5528( 0.54344| 0.00886| 0.7844| 0.81463| -0.0302

i6 0.5072| 0.49587/ 0.01133] 0.7393| 0.74216] -0.0029

i7 0.395| 0.38042| 0.01458| 0.6271| 0.62438| 0.00272

i8 0.3428| 0.32835| 0.01445] 0.5749]| 0.55223| 0.02267

i9 0.2227| -0.2227 0.36348| -0.3635

i10 0.3884| 0.39599| -0.0076] 0.6205| 0.60083| 0.01967

i11 0.2853] 0.30311| -0.0178] 0.5174] 0.48059| 0.03681

i12 0.1664] 0.23377| -0.0674] 0.3985| 0.32483| 0.07367

i13 0.3272| 0.25269| 0.07451 0.2377] 0.28897| -0.0513

i14 0.3851 0.3992| -0.0141] 0.6172| 0.59413| 0.02307

i15 0.2762| 0.32251| -0.0463| 0.5083| 0.46754| 0.04076

i16 0.3712] 0.3322 0.039] 0.3929] 0.43131| -0.0384
Average |Diff] (Full)l 0.0362 Average |Diff| (Full)] 0.04681

Neuron Average |Diff| (Mod)| 0.02377|Average |Diff| (Mod)| 0.0257
Results Std Dev |Difff (Full) | 0.05442|Std Dev |Diff] (Full)| 0.08663
Std Dev |Diff] (Mod) | 0.02288|Std Dev |Diff| (Mod) | 0.02001

Network Average [Diff| (Full)| 0.04043|Std Dev |Diff| (Full)| 0.07235
Results Average |Diff| (Mod)| 0.02358|Std Dev |Diff| (Mod) | 0.02412
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Training Results for V3.2.08.4
(Network 2.08.4, V3 Macro)

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff
i1 0.3708| 0.36703] 0.00377| 0.3838| 0.33978] 0.04402
i2 0.6027| 0.59848| 0.00422| 0.4619| 0.45563] 0.00627
i3 0.5031] 0.49015] 0.01295| 0.3623} 0.35799| 0.00431
i4 0.3088} 0.29216{ 0.01664] 0.2418| 0.24771| -0.0059
i5 0.213| 0.27974| -0.0667| 0.3376| 0.28056{ 0.05704
i6 0.5481| 0.53484| 0.01326| 0.3776] 0.37314| 0.00446
i7 0.4084] 0.35273] 0.05567| 0.2379] 0.25287| -0.015
i8 0.4225( 0.31701| 0.10548 0.1281] 0.2219] -0.0938
i9 0.37403} -0.374 0.2342| -0.2342
i10 0.6212| 0.62331{ -0.0021} 0.3761} 0.3755| 0.0006
i11 0.5181] 0.50364| 0.01446 0.273] 0.2849} -0.0119
i12 0.5989} 0.57346] 0.02544} 0.3045| 0.29899| 0.00551
i13 0.7597| 0.78055| -0.0208] 0.4653]| 0.45453| 0.01077
i14 0.663| 0.67192| -0.0089] 0.4179]| 0.40214] 0.01576
i15 0.6536| 0.6534{ 0.0002| 0.4085| 0.37477| 0.03373
i16 0.8046] 0.8121] -0.0075| 0.5102] 0.49482| 0.01538
Average [Diff| (Full)] 0.04577|Average |Diff| (Full)] 0.03491
Neuron Average |Diff| (Mod)| 0.02388|Average |Diff| (Mod)! 0.02163
Results Std Dev [Diff| (Full) | 0.09207|Std Dev |Diff| (Full)| 0.05864
Std Dev |Diff] (Mod) | 0.02953|Std Dev |Diff| (Mod) | 0.02566
Destination Neuron 03 (Route 12) Neuron o4 (Route 13)
Target Meas Diff Target Meas Diff
i1 0.5985| 0.59915{ -0.0006| 0.8306| 0.84719] -0.0166
i2 0.6191| 0.61744| 0.00166| 0.8512| 0.84278| 0.00842
i3 0.5195| 0.50367| 0.01583| 0.7516| 0.75358] -0.002
i4 0.4565] 0.42651] 0.02999] 0.6886| 0.69321] -0.0046
i5 0.5523{ 0.53994| 0.01236| 0.7844] 0.80444 -0.02
i6 0.5072| 0.49132| 0.01588] 0.7393| 0.73716| 0.00214
i7 0.395( 0.37019| 0.02481| 0.6271| 0.61763| 0.00947
i8 0.3428{ 0.31556| 0.02724] 0.5749| 0.5403| 0.0346
i9 0.29107] -0.2911 0.49315| -0.4932
i10 0.3884| 0.3829{ 0.0055/ 0.6205| 0.58695] 0.03355
i11 0.2853] 0.2891| -0.0038] 0.5174] 0.4662] 0.0512
i12 0.1664| 0.23659| -0.0702| 0.3985| 0.34665| 0.05185
i13 0.3272] 0.26481| 0.06239| 0.2377| 0.28451] -0.0468
i14 0.3851| 0.38833| -0.0032| 0.6172| 0.58684| 0.03036
i15 0.2762| 0.32455| -0.0484] 0.5083| 0.47633] 0.03197
i16 0.3712| 0.33749]| 0.03371] 0.3928} 0.42664| -0.0337
Average |Diff|] (Full)] 0.04042[Average [Diff| (Full)] 0.05441
Neuron Average |Difff (Mod)| 0.02371|Average [Diff| (Mod)| 0.02516
Results Std _Dev |Diff| (Full)| 0.07017|Std Dev |Diff| (Full)| 0.11821
' Std Dev |Diff| (Mod) | 0.02209|Std Dev |Diff| (Mod) | 0.01749
Network Average |Diff| (Full)| 0.04388|Std Dev |Diff| (Full)| 0.08596
Results Average |Diff| (Mod)| 0.02359|Std Dev |Diff| {Mod) | 0.02352
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Training Results for V3.2.10.4
{Network 2.10.4, V3 Macro)

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff
i1 0.3708 0.372] -0.0012] 0.3838] 0.33996| 0.04384
i2 0.6027| 0.60148| 0.00122| 0.4619| 0.45605} 0.00585
i3 0.5031| 0.49533| 0.00777| 0.3623| 0.35898{ 0.00332
i4 0.3088| 0.31182| -0.003] 0.2418] 0.2548] -0.013
i5 0.218] 0.27762| -0.0646] 0.3376] 0.28193| 0.05567
i6 0.5481| 0.53986] 0.00824| 0.3776] 0.3736 0.004
i 7 0.4084| 0.36558| 0.04282] 0.2379| 0.25618| -0.0183
i8 0.4225| 0.32402| 0.09848| 0.1281] 0.22137| -0.0933
i9 0.443] -0.443 0.31402] -0.314
i10 0.6212| 0.61367| 0.00753] 0.3761| 0.37371] 0.00239
i11 0.5181] 0.49272| 0.02538 0.273] 0.28942| -0.0164
i12 0.5988| 0.57665] 0.02225| 0.3045] 0.3084| -0.0039
i13 0.7597| 0.78569] -0.026] 0.4653| 0.45449 0.01081
i14 0.663| 0.66629| -0.0033| 0.4179| 0.40131] 0.01659
i15 0.6536] 0.6536 0} 0.4085] 0.38058{ 0.02792
i16 0.8046] 0.81814| -0.0135| 0.5102{ 0.49975| 0.01045
Average |Diff| (Full)] 0.04802|Average |Diff] (Full)] 0.03998
Neuron Average |Diff| (Mod)| 0.02169|Average |Diff| (Mod)| 0.02171
Results Std Dev |Diff] (Full) | 0.10871|Std Dev |Diff] (Full)| 0.07698
Std Dev [Diff| (Mod) | 0.02785|Std Dev |Diff] (Mod) | 0.02505
Destination Neuron 03 (Route 12) Neuron o4 (Route 13)
Target Meas Diff Target Meas Diff
i1 0.5985| 0.59644; 0.00206| 0.8306| 0.84772] -0.0171
i2 0.6191] 0.61877| 0.00033| 0.8512| 0.84486| 0.00634
i3 0.5195] 0.50345| 0.01605] 0.75168| 0.75345] -0.0018
i4 0.4565( 0.42226| 0.03424| 0.6886 0.687| 0.0016
i5 0.5523] 0.54052| 0.01178] 0.7844| 0.80542| -0.021
i6 0.5072| 0.49096] 0.01624] 0.7393| 0.73809] 0.00121
i7 0.395) 0.36971| 0.02529| 0.6271| 0.61828| 0.00884
i8 0.3428| 0.30647| 0.03633] 0.5749| 0.52701] 0.04789
i9 0.43965] -0.4397 0.69181| -0.6918
i10 0.3884| 0.38729| 0.00111| 0.6205| 0.59039} 0.03011
i11 0.2853| 0.30184] -0.0165] 0.5174| 0.47867| 0.03873
i12 0.1664] 0.24764| -0.0812| 0.3985] 0.35374] 0.04476
i13 0.3272| 0.26393} 0.06327] 0.2377] 0.28942| -0.0517
i14 0.3851{ 0.38816] -0.0031f 0.8172] 0.58155| 0.03565
i15 0.2762| 0.33204} -0.0558{ 0.5083| 0.48184| 0.02646
i16 0.3712| 0.34386| 0.02734] 0.3929| 0.4397] -0.0468
Average |Diff| (Full)] 0.0519 Average |Diff| (Full)l 0.06699
Neuron Average |Diff] (Mod)| 0.02605|Average |Diff] (Mod)| 0.02534
Results Std Dev [Diff| (Full)| 0.106086|Std Dev |Diff| (Full)| 0.16757
Std Dev |Diff| (Mod) | 0.02445|Std Dev |Diff| (Mod) | 0.01846
Network Average [Diff| (Full)] 0.05172|Std Dev [Diff| (Full)| 0.11699
Results Average |Difff (Mod)| 0.0237|Std Dev |Diff| (Mod) | 0.02366
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Training Results for V3.2.06.6
{Network 2.06.6, V3 Macro)

Destination Neuron o1 (Route 7) Neuron o2 (Route 8) Neuron 03 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.3763| 0.31822| 0.05708] 0.4256] 0.43095| -0.0054| 0.4882| 0.45639| 0.03181
i2 0.3588| 0.33716| 0.02164] 0.5037] 0.48239} 0.02131| 0.3793| 0.35724] 0.02206
i3 0.25982} 0.2619( -0.0027| 0.4041| 0.35279| 0.05131| 0.3559] 0.3762| -0.0203
i4 0.2343| 0.20681| 0.02749| 0.2836| 0.26558] 0.01802| 0.4862| 0.42071| 0.06549
i5 0.3301| 0.32354| 0.00656] 0.3794] 0.33392| 0.04548 0.582| 0.5942] -0.0122
i6 0.2745] 0.2885| -0.014] 0.4194] 0.44578} -0.0264 0.247| 0.21204] 0.03496
i7 0.1348| 0.1779 -0.0431{ 0.2797| 0.22776| 0.05194| 0.3867] 0.37366| 0.01304
i8 0.2445( 0.23781] 0.00669] 0.1699| 0.22109| -0.0512| 0.4964] 0.48912| 0.00728
i9 0.3476| 0.28712] 0.06048 0.273] 0.25635} 0.01665] 0.5995{ 0.53512] 0.06438
i10 0.3933| 0.32988| 0.06342| 0.5382] 0.51492| 0.02328| 0.1281| 0.15182] -0.0237
i11 0.00575] -0.0058 0.00616] -0.0062 0.00488]| -0.0049
i12 0.4209] 0.41683| 0.00407| 0.3463| 0.33455| 0.01175] 0.4713} 0.46031| 0.01099
13 0.5603| 0.55759| 0.00271] 0.4857] 0.4482| 0.0375/ 0.6321] 0.65678] -0.0247
i14 0.4815| 0.48017| 0.00133] 0.6331| 0.55467| 0.07843| 0.2526| 0.23058] 0.02202
i15 0.5307] 0.51349| 0.01721 0.456] 0.44938| 0.00662| 0.3615] 0.36917| -0.0077
i16 0.6266| 0.63397| -0.0074 0.552] 0.59507] -0.0431] 0.5418] 0.4954] 0.0464
Average |Diff| (Full)] 0.02135|Average |Diff| (Full)] 0.0309 Average |Diff] (Full)] 0.02574
Neuron Average |Diff] (Mod)| 0.02239{Average |Diff| (Mod)| 0.03255 Average |Diff| (Mod)| 0.02713
Results Std Dev |Diff| (Full)| 0.02225|Std Dev |Diff| (Full)| 0.02113|Std Dev [Diff| (Full)| 0.01888
Std Dev [Diff| (Mod) | 0.02263{Std Dev [Diff| (Mod) | 0.02077|Std Dev |Diff| (Mod) | 0.01868

Destination

Neuron o4 (Route 12)

Neuron o5 (Route 14)

Neuron o6 (Route 15)

Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.5758| 0.6009} -0.025| 0.6182] 0.60927| 0.00893| 0.7023| 0.65786| 0.04444

i2 0.6541| 0.60543] 0.04867| 0.5092{ 0.50835| 0.00085| 0.6088| 0.60102| 0.00778

i3 0.5545] 0.49067| 0.06383| 0.4859| 0.50406| -0.0182| 0.5854| 0.54422{ 0.04118

i4 0.4339| 0.44942| -0.0155| 0.6162| 0.55794] 0.05826] 0.5603| 0.56507| -0.0048

i5 0.4732| 0.44287} 0.03033 0.712] 0.65924| 0.05276]/ 0.5997| 0.59318| 0.00652

i6 0.5696| 0.52688( 0.04272| 0.3769| 0.33635] 0.04055{ 0.4765| 0.46477| 0.01173

i7 0.43| 0.39585| 0.03415| 0.5166] 0.50436| 0.01224| 0.5564] 0.50959} 0.04681

i8 0.3203| 0.27749] 0.04281 0.565; 0.52212| 0.04288] 0.4467] 0.42122| 0.02548

ig 0.2853| 0.28472| 0.00058 0.53| 0.54544] -0.0154| 0.4117| 0.4278] -0.0161

i10 0.4871| 0.52382] -0.0367] 0.2944] 0.24628| 0.04812| 0.3939| 0.39408| -0.0002

i11 0.00552] -0.0055 0.00484]| -0.0048 0.00506] -0.0051

i12 0.1439| 0.18497| -0.0411| 0.3886| 0.36318| 0.02542| 0.2703]| 0.23674| 0.03356

i13 0.3047, 0.2705] 0.0342| 0.5494| 0.55274] -0.0033/ 0.4311| 0.3701 0.061

i14 0.3626| 0.36536| -0.0028| 0.1699| 0.23615| -0.0663| 0.2695] 0.27221| -0.0027

i15 0.2536| 0.19488| 0.05872| 0.2789] 0.26624| 0.01266! 0.1605| 0.18856 -0.0281

i16 0.3496] 0.32807| 0.02153] 0.4591| 0.40409] 0.05501{ 0.3408] 0.3183] 0.0225

Average |Diff| (Full)] 0.03151|Average |Diff| (Full)] 0.02911 Average [Diff] (Full)] 0.02237

Neuron Average |Diff| (Mod)| 0.03324|Average |Difff (Mod)| 0.03072 Average |Diff] (Mod)| 0.02352

Results Std Dev [Diff] (Full)[ 0.01884|Std Dev |Diff| (Full)| 0.02232|Std Dev [Diff| (Full)] 0.01862

Std Dev |Diff| (Mod) | 0.01813{Std Dev |Diff| (Mod) | 0.02212|Std Dev |Diff] (Mod) | 0.01868
Network Average |Diff| (Full)] 0.02683|Std Dev |Diff| (Full)| 0.02026
Results Average |Diff| (Mod)| 0.02826{Std Dev |Diff| (Mod) | 0.02012
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Training Results for V3.2.08.6
(Network 2.08.6, V3 Macro)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron 03 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.3763| 0.33826| 0.03804| 0.4256( 0.44574| -0.0201| 0.4882] 0.48056 0.00764
i2 0.3588| 0.34062| 0.01818{ 0.5037| 0.51702| -0.0133] 0.3793| 0.33204 0.04726
i3 0.2592f 0.27116| -0.012| 0.4041| 0.39294] 0.01116| 0.3559] 0.33939| 0.01651
i4 0.2343| 0.22674f 0.00756( 0.2836{ 0.26405| 0.01955| 0.4862| 0.48497 0.00123
i5 0.3301| 0.35087] -0.0208] 0.3794| 0.36476| 0.01464 0.582| 0.59931| -0.0173
i6 0.2745| 0.26325| 0.01125| 0.4184| 0.40648| 0.01292 0.247] 0.25037{ -0.0034
i7 0.1348( 0.16411] -0.0293| 0.2797| 0.21672| 0.06298| 0.3867| 0.38461| 0.00209
i8 0.2445] 0.20613] 0.03837| 0.1699| 0.19544] -0.0255| 0.4964] 0.50233 -0.0059
i9 0.3476| 0.34014] 0.00746 0.273| 0.28671] -0.0137| 0.5995| 0.56238] 0.03712
i10 0.3933| 0.36568| 0.02762/ 0.5382| 0.5221| 0.0161] 0.1281] 0.21275 -0.0847
i11 0.11599] -0.116 0.1386] -0.1386 0.0971] -0.0971
i12 0.4209| 0.42675| -0.0059 0.3463| 0.32745| 0.01885| 0.4713| 0.47169 -0.0004
i13 0.5603| 0.55488( 0.00542| 0.4857| 0.47261| 0.013098| 0.8321] 0.6219 0.0102
i14 0.4815| 0.50035 -0.0189( 0.6331| 0.63312] -2E-05| 0.2526| 0.17913 0.07347
i15 0.5307| 0.52981f 0.00089 0.456/ 0.45389( 0.00211| 0.3615| 0.36575| -0.0043
i16 0.6266]| 0.61528] 0.01132 0.552| 0.54988| 0.00212{ 0.5418] 0.54503] -0.0032
Average |Diff| (Full)] 0.02305]|Average |Diff| (Full)] 0.02405 Average |Diff| (Full)] 0.02573
Neuron Average |Difff (Mod)| 0.01686]Average |Diff| (Mod)| 0.01642|Average |Diff| {Mod)| 0.02098
Results Std Dev |Diff| (Full)| 0.02731|Std Dev [Diff{ (Full)| 0.03369|Std Dev |Diffl (Full)| 0.03248
Std Dev |Diff] (Mod) | 0.01187|Std Dev |Diff] (Mod) | 0.01471{Std Dev [Diff| (Mod) | 0.02724

Destination

Neuron 04 (Route 12)

Neuron o5 (Route 14)

Neuron 06 (Route 15)

Target Meas Diff Target Meas Diff Target Meas Diff

i1 0.5759| 0.6062| -0.0303| 0.6182| 0.62102| -0.0028| 0.7023 0.66179] 0.04051

i2 0.6541} 0.65765| -0.0035| 0.5092| 0.49548| 0.01372| 0.6088 0.62986] -0.0211

i3 0.5545| 0.55498| -0.0005| 0.4859| 0.48892| -0.003| 0.5854 0.57528] 0.01012

i4 0.4339| 0.4299 0.004| 0.6162{ 0.59975| 0.01645| 0.5603| 0.56584] -0.0055

i5 0.4732{ 0.46778| 0.00542 0.712| 0.66879| 0.04321| 0.5997| 0.60398| -0.0043

i6 0.5696| 0.5337[ 0.0359| 0.3769| 0.38075| -0.0038| 0.4765 0.50441| -0.0279

i7 0.43] 0.41821) 0.01179| 0.5166] 0.53277| -0.0162| 0.5564 0.53868| 0.01772

i8 0.3203| 0.28696] 0.03334 0.565/ 0.55946] 0.00554| 0.4467| 0.44863]| -0.0019

i9 0.2853| 0.27719] 0.00811 0.53[ 0.5528| -0.0228{ 0.4117| 0.40852| 0.00318

i10 0.4871) 0.48462| 0.00248 0.2944| 0.27258| 0.02182] 0.3939 0.38768]| 0.00622

i11 0.13178] -0.1318 0.11081| -0.1108 0.12497} -0.125

i12 0.1439| 0.18246( -0.0386| 0.3886| 0.37619] 0.01241| 0.2703 0.23701] 0.03329

i13 0.3047| 0.32384{ -0.0191| 0.5494| 0.55918] -0.0098] 0.4311 0.4123] 0.0188

i14 0.3626| 0.36953| -0.0069 0.1699| 0.16066| 0.00924| 0.2695 0.22683] 0.04267

i15 0.2536/ 0.18528| 0.06832| 0.2789| 0.25163| 0.02727| 0.1605 0.17521] -0.0147

i16 0.3496] 0.31869] 0.03091| 0.4591| 0.456368| 0.00274] 0.3408 0.34546]| -0.0047

Average |Diff| (Full)] 0.02694 Average |Diff} (Full)] 0.0201 Average |Diff| (Full)] 0.0236

Neuron Average |Diff| (Mod)| 0.01995|Average [Diff| (Mod)| 0.01406|Average |Diff] (Mod)| 0.01684

Results Std Dev |Diff] (Full)| 0.03353]Std Dev |Diff| (Full) | 0.02651{Std Dev |Diff} (Full)| 0.03012

Std Dev |Diff| (Mod) | 0.01917|Std Dev [Diff] (Mod) | 0.01124Std Dev |Diff| (Mod) | 0.01375
Network Average |Diff| (Full)] 0.02391|Std Dev |Difff (Full) 0.03
Results Average |Diff| (Mod)| 0.01752{Std Dev [Diff| (Mod) | . 0.0169
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Training Results for v3.2.10.6
(Network 2.10.6, V3 Macro)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron o3 (Route 10)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.3763| 0.33644| 0.03986| 0.4256] 0.45935| -0.0338| 0.4882| 0.44626] 0.04194
i2 0.3588( 0.33784| 0.02096} 0.5037| 0.51053| -0.0068| 0.3793] 0.32308] 0.05624
i3 0.2592) 0.26823| -0.009] 0.4041| 0.38779| 0.01631| 0.3559| 0.33558| 0.02032
i4 0.2343] 0.21393| 0.02037] 0.2836] 0.25529| 0.02831| 0.4862| 0.48901| -0.0028
i5 0.3301| 0.35181] -0.0217] 0.3794| 0.35874| 0.02066 0.582] 0.61904} -0.037
i6 0.2745( 0.26123{ 0.01327| 0.4194| 0.38195| 0.02745 0.247| 0.26177| -0.0148
i7 0.1348| 0.14953| -0.0147| 0.2797| 0.19979| 0.07991| 0.3867| 0.39688| -0.0102
i8 0.2445| 0.18676| 0.05774| 0.1699| 0.1943| -0.0244| 0.4964| 0.48668| 0.00972
i9 0.3476| 0.33046{ 0.01714 0.273| 0.29341] -0.0204] 0.5995] 0.54776| 0.05174
i10 0.3933] 0.38857| 0.00473] 0.5382{ 0.52974| 0.00846{ 0.1281| 0.22244| -0.0943
i11 0.06958] -0.0696 0.07821| -0.0782 0.07298| -0.073
i12 0.4209| 0.44825] -0.0274] 0.3463| 0.31854| 0.02776| 0.4713} 0.47647| -0.0052
i13 0.5603| 0.5499| 0.0104| 0.4857| 0.4665| 0.0192| 0.6321| 0.62728| 0.00482
i14 0.4815| 0.49048| -0.009| 0.6331| 0.63669| -0.0036| 0.2526| 0.16516| 0.08744
i15 0.5307| 0.51821( 0.01249 0.456| 0.45971| -0.0037| 0.3615| 0.35837| 0.00313
i16 0.6266| 0.62188( 0.00472 0.552] 0.55243] -0.0004| 0.5418| 0.54533| -0.0035
Average |Diff| (Full)] 0.02207|Average |Diff| (Full)] 0.02498 Average [Diff] (Full)l 0.03226
Neuron Average |[Difff (Mod)| 0.0189]Average |Diff] (Mod)| 0.02141 Average |Diff| (Mod)|{ 0.02955
Results Std Dev [Diff|] (Full)| 0.01863[Std Dev |Diff] (Full) 0.0234Std Dev |Difff (Full}| 0.03173
Std Dev |Diff] (Mod) | 0.01413|Std Dev |Diff| (Mod) | 0.01926|Std Dev [Diff] (Mod) | 0.03086
Destination Neuron o4 (Route 12) Neuron o5 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.5759| 0.63153| -0.0556f 0.6182| 0.59779| 0.02041| 0.7023| 0.66406| 0.03824
i2 0.6541| 0.66547| -0.0114] 0.5092{ 0.48783| 0.02137| 0.6088| 0.63268| -0.0239
i3 0.5545] 0.55919| -0.0047| 0.4859| 0.48394| 0.00196] 0.5854| 0.57441| 0.01099
i4 0.4339 0.4273] 0.0066| 0.6162| 0.60361| 0.01259| 0.5603| 0.5642| -0.0039
i5 0.4732{ 0.44591| 0.02729 0.712] 0.67755] 0.03445, 0.5997| 0.58885| 0.01085
i6 0.5696]| 0.52914| 0.04046 0.3769| 0.39143| -0.0145| 0.4765| 0.50729| -0.0308
i7 0.43| 0.40739| 0.02261] 0.5166| 0.53826| -0.0217| 0.5564| 0.53608| 0.02032
i8 0.3203f 0.2999| 0.0204 0.565| 0.55301} 0.01199] 0.4467| 0.45658| -0.0099
i9 0.2853| 0.28803] -0.0027 0.53| 0.54779] -0.0178] 0.4117| 0.41325| -0.0016
i10 0.4871| 0.46566| 0.02144| 0.2944| 0.26836| 0.02604| 0.3939| 0.37294| 0.020986
i11 0.08085] -0.0809 0.08283| -0.0828 0.0842| -0.0842
i12 0.1439] 0.15333| -0.0094| 0.3886| 0.36244| 0.02616{ 0.2703| 0.20533| 0.06497
i13 0.3047| 0.31194| -0.0072| 0.5494{ 0.56657| -0.0172| 0.4311| 0.40554| 0.02558
i14 0.3626| 0.381089| -0.0185| 0.1699| 0.15014| 0.01976] 0.2695| 0.23487| 0.03483
i15 0.2536] 0.20661| 0.04699( 0.2789| 0.26353| 0.01537| 0.1605| 0.19898| -0.0385
i16 0.3496| 0.30646| 0.04314f 0.4591| 0.45276| 0.00634| 0.3408| 0.33594| 0.00486
Average |Diff| (Full)] 0.02621|Average |Difi| (Full)] 0.0219 Average |Diff| (Full)] 0.0265
Neuron Average |Diff| (Mod)| 0.02257|Average |Diff| (Mod)| 0.01784 Average |Diff| (Mod)| 0.02266
Results Std Dev [Diff|] (Full)| 0.02185{Std Dev |Diff] (Full){ 0.01802|Std Dev |Diff] (Full)| 0.02253
Std Dev |Diff] (Mod) | 0.01686{Std Dev |Diff| (Mod) | 0.00808|Std Dev |Diff] (Mod) | 0.01704
Network Average [Diff| (Full)] 0.02565[Std Dev [Diff| (Full)| 0.02279
Results Average [Diff] (Mod)| 0.02215|Std Dev |Diff] (Mod) | 0.01883
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Pattern File for Node 2 of the Sample Network

Modified training set
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Pattern File for Node 9 of the Sample Network
Modified training set

Destination input Vector Output Vector
Node
i1 ]i2 [i3 |i4 |i5 [i6 |i7 [i8 i9 Jit0]it1li12]i13|i14]i15]i16 lo1 02 03 04

i1 1 0) of of o] 0] of o0 of of O0f of o] of o 0 0.125 0.375 0.625 0.875
i2 0 1 0 0] 0} 0O of O 0 0] 0} 07 0] O 0 0 0.375 0.125 0.625 0.875
i3 0] © 1 0] 0] O] ©Oof O] O O] o0 o0 O 0] 0 0 0.375 0.125 0.625 0.875
i4 0] 0] © 1 0] 0] Ol 0O0f 0O O} 0] o0 O 0] o0 0 0.375 0.125 0.625 0.875
i5 0l 0] o0 O 1 0p _0of 0] O 0] _0f 0] O 0 0 0 0.125 0.375 0.625 0.875
i6 0] 0of o7 o] o 1 0] 0] 0y 0} 0O oOof O o0Of of o 0.625 0.125 0.375 0.875
i7 0f 0] of of of o 1 0] 0] of of of of o 0 0 0.625 0.125 0.375{ 0.875
i8 0of o] 0 0] 0f 0OfF O 1 0f of of of o 0] © 0 0.625 0.125 0.375 0.875
i9 0l 0] 0] o0F of O] of o 1 0p of 0] of o © 0

i10 0] 0 0] o] o of o] o 0 1 0] 0] 0 O 0 0 0.875 0.125 0.375 0.625
i11 0 of 0of o] o of o] o o 0 1 0 0 0] O 0 0.875 0.125 0.375 0.625
i12 0] Of 0 O]l O] Oof of of of of o 1 0] 0f of o 0.875 0.375 0.125 0.625
i13 0] Oof 0 of of of o] o 0 0] 0f © 1 0] O 0 0.875 0.625 0.375 0.125
i14 0) Of o of o] of of o o0 of of of o 1 0 0 0.875 0.375 0.125 0.625
i15 0] 0] 0y of o] of of of o of of of of o 1 0 0.875 0.375 0.125 0.625
i16 O] O] O] 0] 0] 0] of of of of of of o 0] O 1 0.875 0.625 0.125 0.375
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Pattern File for Node 11 of the Sample Network
Modified Training Set

Destination Input Vector Output Vector
Node
i1 li2 i3 [Ji4 ]i5 [ie ]i7 [i8 [i9 Ji1o]i11[i121i13]it4]i15]i16 |o1 02 03 04 05 06

1 1 O] ol Oof O] Of O oy of of O] of o] of o] o]o0.08333 0.25| 0.41667] 0.58333 0.75] 0.91667
2 0] 1 0 O] Oof of of Of O] oOof o] 0] of of o0} 0]0.08333] 0.41667 0.25| 0.91667] 0.58333 0.75
3 0f 0of 1 0] 0] of of of 0] 0] o0of of of o] o o0f]0.08333] 0.41667 0.25 0.75] 0.58333] 0.91667
4 0l 0of of 1 0] of Oof 0o 0of 0 0Of © 0] 0l Of 0]0.08333 0.25] 0.58333] 0.41667] 0.91667 0.75
5 0] 0of of of 1 0] 0] 0y 0y o] of O] of 0] 0| o0fo0.08333 0.25| 0.58333| 0.41667| 0.91667 0.75
6 0) 0] of o0 of 1 0] of of 0f o] of o0of of of o 0.25] 0.58333} 0.08333] 0.91667] 0.41667 0.75
7 0] ol of of o1 0o 1 0f 0] 0o of O 0] 0] O] 0]0.08333 0.25] 0.41667| 0.58333 0.75[ 0.91667
8 0l ol . of o} 0of 0] O 1 0] Oof of of of of of o 0.25/ 0.08333 0.75] 0.41667| 0.91667| 0.58333
9 0f O0f 0 04 0f 0f Of of 1 O Of Of O] Of O} 0]0.41667] 0.08333] 0.91667 0.25 0.75/ 0.58333
10 0] 0l o O] of of ©Of o oOf 1 0] 0] O] Of Of 0]0.41867| 0.91667| 0.08333 0.75 0.25]| 0.58333
11 0O 0of o] of of o] of of of o] 1 0] 0] 0of of o

12 O Ol of of o] 0Of Of o0of of of 0Of 1 0f 0] of o 0.75] 0.41667] 0.91667| 0.08333| 0.58333 0.25
13 0f Oof o, 0Oof of Oof Of o0f of of o0of o0 1 0 of © 0.75] 0.41667] 0.91667} 0.08333| 0.58333 0.25
14 0] Oof of of of o] o0y 0] of of o o o 1 0] O 0.75| 0.91667 0.25| 0.58333| 0.08333| 0.41667
15 0] 0] of o] o of o] of of o7 o of o of 1 0] 0.91667 0.75| 0.58333 0.25| 0.41667| 0.08333
16 0] of of o] of of of o0of of o] 0] o 0] 0f Of 1]0.91667 0.75] 0.58333 0.25| 0.41667| 0.08333
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Training Results for V2.2.08.2(M)

(Network 2.08.2, V2 Macro, modified training set)

Destination Neuron o1 (Route '3) Neuron o2 (Route 6)
Target Meas Diff Target Meas Diff
i1 0.25( 0.25082| -0.0008 0.75} 0.75101f -0.001
i2 0.43514| -0.4351 0.43082] -0.4308
i3 0.25| 0.25266| -0.0027 0.75| 0.75178| -0.0018
i4 0.25| 0.25483| -0.0048 0.75] 0.75288| -0.0029
i5 0.25| 0.25081| -0.0008 0.75} 0.75098{ -0.001
i6 0.75] 0.75031} -0.0003 0.25| 0.24928| 0.00072
i7 0.25| 0.25088| -0.0009 0.75] 0.75093| -0.0009
i8 0.25| 0.24995 5E-05 0.75f 0.7507} -0.0007
i9 0.25| 0.25259{ -0.0026 0.75| 0.75166| -0.0017
i10 0.75| 0.74899! 0.00101 0.25| 0.24573| 0.00427
i11 0.25 0.24362( 0.00638 0.75]| 0.74795| 0.00205
i12 0.25| 0.24463| 0.00537 0.75| 0.74849| 0.00151
i13 0.25] 0.25241| -0.0024 0.75| 0.75174f -0.0017
i14 0.75| 0.74892( 0.00108 0.25| 0.24514| 0.00486
i15 0.75] 0.75397| -0.004 0.25| 0.25943| -0.0094
i16 0.75] 0.75125] -0.0012 0.25| 0.25197f -0.002
Average |Diff] (Full)] 0.02935|Average |Diff| (Full)[ 0.02921
Neuron Average |Diff] (Mod)| 0.00229/Average |Diff| (Mod)| 0.00243
Results Std Dev |Diff] (Full) | 0.10823|Std Dev |Diff] (Full){ 0.10712
Std Dev |Diff] (Mod) | 0.00199|Std Dev |Diff| (Mod) | 0.00229
Network Average |Diff| (Full)} 0.02928|Std Dev |Diff] (Full)| 0.10592
Results Average [Diff] (Mod)| 0.00236{Std Dev |Diff| (Mod) | 0.00211
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Training Results for V2.2.08.4(M)
(Network 2.08.4, V2 Macro, modified training set)

Destination Neuron o1 (Route 5) Neuron 02 (Route 8)
Target Meas Diff Target Meas Diff
i1 0.125/ 0.1092] 0.0158 0.375| 0.35656] 0.01844
i2 0.375] 0.38464| -0.0096 0.125| 0.16896| -0.044
i3 0.375] 0.37422} 0.00078 0.125| 0.13245| -0.0075
i4 0.375] 0.37872} -0.0037 0.125{ 0.14116| -0.0162
i5 0.125| 0.12419] 0.00081 0.375/ 0.38077| -0.0058
i6 0.625| 0.63012] -0.0051 0.125] 0.08691| 0.03809
i7 0.625/ 0.6257] -0.0007 0.125| 0.08052| 0.04448
i8 0.625; 0.64197] -0.017 0.125] 0.07961| 0.04539
i9 0.17998 -0.18 0.05106| -0.0511
i10 0.875 0.807 0.068 0.125| 0.16234| -0.0373
i11 0.875| 0.83401] 0.04099 0.125} 0.14268| -0.0177
i12 0.875| 0.90865| -0.0337 0.375] 0.37002| 0.00498
i13 0.875| 0.86102] 0.01398 0.625} 0.63012| -0.0051
i14 0.875| 0.90949} -0.0345 0.375] 0.36959| 0.00541
i15 0.875] 0.90949f -0.0345 0.375| 0.37099{ 0.00401
i16 0.875] 0.92616] -0.0512 0.625| 0.61295| 0.01205
Average [Diff] (Full)] 0.03189|Average |Diff| (Full)l 0.02234
Neuron Average |Diff] (Mod){ 0.02202|Average |Diffi (Mod)| 0.02042
Results Std Dev |Diff] (Full)| 0.04428{Std Dev |Diff] (Full)| 0.01767
Std Dev |Diff] (Mod) | 0.02075|Std Dev |Diff| (Mod) | 0.01649
Destination Neuron 03 (Route 12) Neuron o4 (Route 13)
Target Meas Diff Target Meas Diff
i1 0.625! 0.63668| -0.0117 0.875] 0.87536| -0.0004
i2 0.625] 0.8008] 0.0242 0.875; 0.8902| -0.0152
i3 0.625] 0.61008] 0.01492 0.875| 0.90257| -0.0276
i4 0.625| 0.60694| 0.01806 0.875] 0.90012( -0.0251
i5 0.625( 0.62944| -0.0044 0.875| 0.86247] 0.01253
i6 0.375] 0.42094] -0.0459 0.875] 0.8203] 0.0547
i7 0.375] 0.42361} -0.04886 0.875| 0.82086| 0.05414
i8 0.375] 0.41848| -0.0435 0.875| 0.81252| 0.06248
i9 0.06041| -0.0604 0.12549| -0.1255
i10 0.375| 0.28083{ 0.09417 0.625| 0.72225{ -0.0972
i11 0.375| 0.28011] 0.09489 0.625{ 0.70899| -0.084
i12 0.125} 0.15639} -0.0314 0.625| 0.60561| 0.01939
i13 0.375] 0.38026f -0.0053 0.125| 0.11959| 0.00541
i14 0.125] 0.15353| -0.0285 0.625| 0.60572| 0.01928
i15 0.125] 0.16594] -0.04009 0.625( 0.60074| 0.02426
i16 0.125{ 0.11439} 0.01061 0.375] 0.36871| 0.00629
Average |Diff] (Full)] 0.0361]Average |Diff| (Fuli)] 0.03959
Neuron Average |Diff| (Mod)| 0.03447|Average |Diff| (Mod)| 0.033886
Results Std Dev [Difff (Full)| 0.02822|Std Dev |Diff| (Full)| 0.03669
Std Dev |Diff] (Mod) | 0.02843|Std Dev |Diff| (Mod) | 0.02967
Network Average |Diff| (Full)] 0.03248(Std Dev |Diff| (Full)| 0.03307
Results Average |Diff] (Mod)| 0.0277|Std Dev |Diff| (Mod) 0.0247
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Training Results for V2.2.08.6(M)
(Network 2.08.6, V2 Macro, modified training set)

Destination Neuron o1 (Route 7) Neuron 02 (Route 8) Neuron 03 (Routse 10)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.08333] 0.06172| 0.021861 0.25| 0.2585| -0.0085| 0.41667| 0.41389| 0.00278
i2 0.08333} 0.13664| -0.0533| 0.41667| 0.43062| -0.014 0.25] 0.23642} 0.01358
i3 0.08333| 0.10874| -0.0254| 0.41667 0.398| 0.01867 0.25{ 0.24862] 0.00138
i4 0.08333| 0.09668] -0.0133 0.25| 0.20363| 0.04637| 0.58333| 0.59691| -0.0136
i5 0.08333] 0.09233| -0.009 0.25 0.213 0.037| 0.58333| 0.59671| -0.0134
i6 0.25| 0.17169| 0.07831| 0.58333| 0.61812| -0.0348| 0.08333| 0.10494] -0.0216
i7 0.08333| 0.05721{ 0.02612 0.25| 0.27988| -0.0299| 0.41667] 0.39973| 0.01694
i8 0.25( 0.23902] 0.01098]1 0.08333| 0.13341| -0.0501 0.75] 0.82527} -0.0753
i9 0.41867| 0.40024| 0.01643} 0.08333| 0.14153] -0.0582| 0.91667] 0.88947| 0.0272
i10 0.41667| 0.45291] -0.0362| 0.91667| 0.84433] 0.07234] 0.08333} 0.10821| -0.0249
i11 0.02135] -0.0214 0.03729| -0.0373 0.02667} -0.0267
i12 0.75] 0.78417] -0.0342| 0.41667f 0.3919| 0.02477| 0.91667| 0.85977] 0.0569
i13 0.75| 0.78289} -0.0329( 0.41667| 0.39392} 0.02275| 0.91667| 0.85939| 0.05728
i14 0.75] 0.74397| 0.00603| 0.91667| 0.8983| 0.01837 0.25] 0.20792| 0.04208
i15 0.91667| 0.88108] 0.03559 0.75] 0.78922| -0.0392{ 0.58333| 0.61683| -0.0335
i16 0.81667] 0.88152| 0.03515 0.75| 0.79066| -0.0407| 0.58333| 0.61603| -0.0327
Average |Difff (Full)] 0.0285]|Average |Diff| (Full)] 0.03455|Average |Diff| (Full)] 0.02873
Neuron Average |Diff] (Mod)] 0.02897]Average |Diff| (Mod)| 0.03437|Average |Diff| (Mod)| 0.02887
Results Std Dev [Diff| (Full)| 0.01823|Std Dev |Diff| (Full)| 0.01696|Std Dev |Diff| (Full)| 0.02052
Std Dev |Diff| (Mod) | 0.01876|Std Dev |Diff| (Mod) | 0.01754|Std Dev |Diff] (Mod) | 0.02124
Destination Neuron o4 (Route 12) Neuron o5 (Route 14) Neuron 06 (Route 15)
Target Meas Diff Target Meas Diff Target Meas Diff
i1 0.58333| 0.58206{ 0.00127 0.75| 0.81844} -0.0684| 0.91667| 0.85316| 0.06351
i2 0.91667| 0.84222| 0.07445( 0.58333| 0.58151| 0.00182 0.75] 0.81554| -0.0655
i3 0.75, 0.80137| -0.0514} 0.58333 0.627] -0.0437| 0.91667| 0.82676| 0.08991
i4 0.41687| 0.45756] -0.0409| 0.91667| 0.83459| 0.08208 0.75| 0.80056| -0.05086
i5 0.41667| 0.43474| -0.0181| 0.91667] 0.85022| 0.06645 0.75] 0.80398] -0.054
i6 0.91667| 0.90707( 0.0096| 0.41667] 0.36331| 0.05336 0.75] 0.7905] -0.0405
i7 0.58333| 0.56772| 0.01561 0.75] 0.82371| -0.0737| 0.91667| 0.86394| 0.05273
i8 0.416687( 0.34146; 0.07521| 0.91667| 0.82579| 0.09088| 0.58333| 0.65121] -0.0679
i9 0.25] 0.27979| -0.0298 0.75] 0.81702| -0.067| 0.58333| 0.54126| 0.04207
i10 0.75] 0.79098| -0.041 0.25| 0.2244| 0.0256] 0.58333| 0.58303] 0.0003
i11 0.04389| -0.0439 0.04197] -0.042 0.0521] -0.0521
i12 0.08333| 0.14505| -0.0617| 0.58333| 0.62217| -0.0388 0.25] 0.20663] 0.04337
i13 0.08333| 0.14216] -0.0588| 0.58333| 0.62432| -0.041 0.25] 0.2061| 0.0439
i14 0.58333| 0.59922| -0.0159]| 0.08333] 0.2221| -0.1388| 0.41667] 0.3741| 0.04257
i15 0.25] 0.20697| 0.04303} 0.41667| 0.36066| 0.05601| 0.08333| 0.15845| -0.0751
i16 0.25]| 0.20322] 0.04678] 0.41667| 0.35996| 0.05671| 0.08333| 0.15646! -0.0731
Average |Diff| (Full)] 0.03921|Average |Diff] (Full)] 0.05914 Average |Diff] (Full)] 0.05357
Neuron Average |Diff] (Mod)| 0.0389|Average |Diff| (Mod)| 0.06029|Average {Diff| (Mod)| 0.05367
Results Std Dev [Diff| (Full)| 0.02255|Std Dev |Diff| (Full)| 0.03058|Std Dev |Difi| (Full | 0.02014
Std Dev [Diff| (Mod) | 0.02331{Std Dev |Diff| (Mod) | 0.03129|Std Dev |Diff| (Mod) | 0.02084
Network Average [Diff| (Full)] 0.04062|Std Dev |Diff] (Full)| 0.02444
Results Average |Diff| (Mod)| 0.04084|Std Dev |Diff] (Mod) | 0.02509

Page B.33




Appendix C:
Full network modelling results




Routing Results for Node 1
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 04 ol 02 03 04 01 02 03 04
i1
i2 0.25685| 0.49057| 0.60218 1 1 2 3 4 0.125 0.375 0.625 0.875
i3 0.1573] 0.39102{ 0.50263 1 1 2 3 4 0.125 0.375 0.625 0.875
i4 0.38132 0.167] 0.27861 1 3 1 2 4 0.625 0.125 0.375 0.875
i5 0.47713| 0.26281}f 0.1828 1 3 2 1 4 0.625 0.375 0.125 0.875
i6 0.26626| 0.40625] 0.51786 1 1 2 3 4 0.125 0.375 0.625 0.875
i7 0.28177] 0.26655] 0.37816 1 2 1 3 4 0.375 0.125 0.625 0.875
i8 0.39153| 0.28067| 0.39228| 0.9822 2 1 3 4 0.375 0.125 0.625 0.875
ig 0.49463] 0.38377] 0.3708] 0.9472 3 2 1 4 0.625 0.375 0.125 0.875
i10 0.38513| 0.47941| 0.59102 1 1 2 3 4 0.125 0.375 0.625 0.875
i11 0.39153] 0.37631] 0.48792 0.9159 2 1 3 4 0.375 0.125 0.625 0.875
i12 0.5104f 0.45707] 0.5122| 0.8058| 2 1 3 4 0.375 0.125 0.625 0.875
i13 0.6772] 0.59647f 0.5835| 0.7553 3 2 1 4 0.625 0.375 0.125 0.875
i14 0.47326| 0.52121] 0.63282] 0.88936 1 2 3 4 0.125 0.375 0.625 0.875
i15 0.52703| 0.51181] 0.62196| 0.7804 2 1 3 4 0.375 0.125 0.625 0.875
i16 0.70733] 0.66277] 0.7387] 0.6001 3 2 4 1 0.625 0.375 0.875 0.125
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 o1 02 03 04 o1 02 03 04
i1 0.17793| 0.31699] 0.57219| 0.86369 1 2 3 4
i2 0.1344] 0.37814] 0.63432] 0.86453 1 2 3 4 0 0 0 0
i3 0.13555| 0.37913{ 0.63372] 0.86157 1 2 3 4 0 0 0 0
id4 0.62063] 0.12367{ 0.37261] 0.89066 3 1 2 4 0 0 0 0
i5 0.62436] 0.37733| 0.13152]| 0.87352 3 2 1 4 [4] Q 0 0
i6 0.13476] 0.37809] 0.63347] 0.86652 1 2 3 4 0 0 0l 0
i7 0.36603| 0.14865] 0.63695] 0.89723 2 1 3 4 0 0 0 0
i8 0.36619| 0.15043] 0.63881| 0.89711 2 1 3 4 0 0 0 0
i9 0.62091] 0.3787] 0.13694] 0.88292 3 2 1 4 0 0 0 0
i10 0.13663] 0.37807| 0.63509] 0.86539 1 2 3 4 0 0 0 0
i11 0.37124} 0.13319] 0.63016] 0.88376 2 1 3 4 0 0 0 0
i12 0.36466{ 0.15702] 0.63593] 0.9059 2 1 3 4 0 0 0 0
i13 0.62576{ 0.37553} 0.13034| 0.87261 3 2| 1 4 0 0 0 0
i14 0.15456| 0.25345] 0.51267] 0.7918 1 2 3 4 0 0 0 0
i15 0.37366| 0.14555] 0.62995] 0.88582 2 1 3 4 0 0 0 0
i16 0.6212] 0.37782 0.879] 0.1324 3 2 4 1 0 0 0 0
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Routing Results for Node 2
of the Sample Network

Destination Real Qutput Values | |Target Rankings |Target Values
Node ot 02 01 02 ot 02
i1 0.2569 | 0.3986 1 2 0.25 0.75
i2
i3 0.1245 | 0.2663 1 2 0.25 0.75
i4 0.3486 | 0.3966 1 2 0.25 0.75
i5 0.4146 | 0.4924 1 2 0.25 0.75
i6 0.2335 | 0.1573 2 1 0.75 0.25
i7 0.249 0.297 1 2 0.25 0.75
i8 0.3588 | 0.4068 1 2 0.25 0.75
i9 0.4618 | 0.5097 1 2 0.25 0.75
i10 0.3524 | 0.2762 2 1 0.75 0.25
i11 0.3588 | 0.3793 1 2 0.25 0.75
i12 0.4776 | 0.4981 1 2 0.25 0.75
i13 0.6385 0.659 1 2 0.25 0.75
i14 0.4405 | 0.3643 2 1 0.75 0.25
i15 0.4942 | 0.4733 2 1 0.75 0.25
i16 0.6745 | 0.6536 2 1 0.75 0.25
Destination Measured Values Meas Rankings{ |Actual-Measured
Node ol 02 o1 02 ot 02
i1 0.25082] 0.75101 1 2 0 0
i2 0.43514| 0.43082
i3 0.25266| 0.75178 1 2 0 0
i4 0.25483| 0.75288 1 2 0 0
i5 0.25081] 0.75098 1 2 0 0
i6 0.75031] 0.24928 2 1 0 0
i7 0.25088] 0.75093 1 2 0 0
i8 0.24995{ 0.7507 1 2 0 0
i9 0.25259{ 0.75166 1 2 0 0
i10 0.74899] 0.24573 2 1 (4] 0
i11 0.24362| 0.74795 1 2 [¢] 0
i12 0.24463| 0.74849 1 2 0 0
i13 0.25241| 0.75174 1 2 0 0
i14 0.74892| 0.24514 2 1 0 0
i15 0.75397] 0.25943 2 1 0 0
i16 0.75125| 0.25197 2 1 0 0
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Routing Results for Node 3
of the Sample Network

Destination Real Output Values Targel Rankings Target Values
Node o1 02 03 04 01 02 03 04 01 02 03 o4
i1 0.1573| 0.6381}] 0.5152] 0.39102 1 4 3 2 0.125 0.875 0.625 0.375
i2 0.67085] 0.12455| 0.26626] 0.42146 4 1 2 3 0.875 0.125 0.375 0.625
i3
i4 0.2993] 0.4961] 0.37321}] 0.24902 2 4 3 1 0.375 0.875 0.625 0.125
i5 0.3151| 0.59191] 0.46902{ 0.34483 1 4 3 2 0.125 0.875 0.625 0.375
i6 0.53855| 0.25685] 0.13396] 0.28917 4 2 1 3 0.875 0.375 0.125 0.625
i7 0.39885] 0.39655| 0.27366| 0.14947 4 3 2 1 0.875 0.625 0.375 0.125
i8 0.41297| 0.50631] 0.38342| 0.25923 3 4 2 1 0.625 0.875 0.375 0.125
i9 0.5031] 0.60941] 0.48652] 0.36233 3 4 2 1 0.625 0.875 0.375 0.125
i10 0.61171| 0.37572] 0.25283| 0.36233 4 3 1 2 0.875 0.625 0.125 0.375
i11 0.50861| 0.47882| 0.35593] 0.25923 4 3 2 1 0.875 0.625 0.375 0.125
i12 0.58937] 0.59769| 0.4748] 0.3781 3 4 2 1 0.625 0.875 0.375 0.125
i13 0.7158] 0.75849] 0.6356] 0.5389 3 4 2 1 0.625 0.875 0.375 0.125
i14 0.65351] 0.46385] 0.34096] 0.40413 4 3 1 2 0.875 0.625 0.125 0.375
i15 0.64411] 0.57281| 0.44992| 0.39473 4 3 2 1 0.875 0.625 0.375 0.125
i16 0.7324| 0.75311] 0.63022| 0.57503 3 4 2 1 0.625 0.875 0.375 0.125
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 o1 02 03 04 ol 02 03 04
i1 0.12151 0.8926[ 0.61879] 0.37285 1 4 3 2 0 0 0 0
i2 0.86982) 0.12291] 0.37361} 0.62831 4 1 2 3 0 0 0 0
i3 0.01196] 0.00902| 0.00738] 0.00665
i4 0.38071] 0.90741} 0.58221 0.1769 2 4 3 1 0 0 0 0
i5 0.12104{ 0.89017] 0.61558| 0.37972 1 4 3 2 0 0 0 0
i6 0.88732| 0.36894| 0.14916| 0.61436 4 2 1 3 0 0 0 0
i7 0.85143] 0.6956 0.27] 0.15719 4 3 2 1 0 0 0 0
i8 0.62595] 0.84305| 0.4083] 0.09028 3 4 2 1 0 0 0 0
i9 0.62685] 0.83708| 0.40614| 0.09996 3 4 2 1 0 0 0 0
i10 0.89895] 0.58566| 0.18704| 0.37965 4 3 1 2 0 0 0 -0
i11 0.8604] 0.67518] 0.31801| 0.13231 4 3 2 1 0 0 0 0
i12 0.62621] 0.83959| 0.40877 0.079 3 4 2 1 4] 0 0 0
i13 0.62563{ 0.84102] 0.40882| 0.08469 3 4 2 1 0 0 0 0
i14 0.89937| 0.59368] 0.18942| 0.36824 4 3 1 2 0 0 0 0
i15 0.85911| 0.67721} 0.30818]| 0.14161 4 3 2 1 0 0 0 0
i16 0.62597] 0.8392] 0.40903} 0.88541 3 4 2 1 0 0 0 0
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Routing Results for Node 4
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 04 o1 02 03 04 o1 02 03 04
i1 0.167] 0.27861f 0.38132] 0.5052 1 2 3 4 0.125 0.375 0.625 0.875
i2 0.39885] 0.51046] 0.34857| 0.47245 2 4 1 3 0.375 0.875 0.125 0.625
i3 0.2993{ 0.41091] 0.24902] 0.3729 2 4 1 3 0.375 0.875 0.125 0.625
i4
i5 0.3248| 0.12081]| 0.52541| 0.42976 2 1 4 3 0.375 0.125 0.875 0.625
i6 0.40826] 0.51987| 0.26425] 0.27343 3 4 1 2 0.625 0.875 0.125 0.375
i7 0.42376] 0.52167] 0.12455] 0.24843 3 4 1 2 0.625 0.875 0.125 0.375
i8 0.53353] 0.41191| 0.23431} 0.13867 4 3 2 1 0.875 0.625 0.375 0.125
i9 0.5128] 0.30881}f 0.33741| 0.24177 4 2 3 1 0.875 0.375 0.625 0.125
i10 0.52713] 0.63874| 0.33741} 0.38667 3 4 1 2 0.625 0.875 0.125 0.375
i11 0.53353] 0.55681| 0.23431] 0.28357 3 4 1 2 0.625 0.875 0.125 0.375
i12 0.6524| 0.45021] 0.35318| 0.31507 4 3 2 1 0.875 0.625 0.375 0.125
i13 0.7255f 0.52151] 0.51398] 0.45447 4 3 2 1 0.875 0.625 0.375 0.125
i14 0.61526] 0.66893] 0.37921] 0.42847 3 4 1 2 0.625 0.875 0.125 0.375
i15 0.66903] 0.55997| 0.36981{ 0.419807 4 3 1 2 0.875 0.625 0.125 0.375
i16 0.7421} 0.65591] 0.55011| 0.52077 4 3 2 1 0.875 0.625 0.375 0.125
Destination Measured Values Measured Rankings Actuai-Measured
Node o1 02 03 04 3} 02 03 04 o1 o2 03 04
i1 0.1296| 0.37348| 0.62376| 0.87892 1 2 3 4 0 0 0 0
i2 0.37499{ 0.87557| 0.12534] 0.62435 2 4 1 3 0 0 0 0
i3 0.37098{ 0.88066] 0.12652} 0.62057 2 4 1 3 0 0 0 0
i4 0.61832| 0.61648| 0.18042] 0.25071
i5 0.37651] 0.12011| 0.87276] 0.62583 2 1 4 3 0 0 0 0
i6 0.63058] 0.86524| 0.10644] 0.37959 3 4 1 2 0 0 0 0
i7 0.63078f 0.8614{ 0.11237] 0.38432 3 4 1 2 0 0 0 0
i8 0.89811{ 0.61441]| 0.36663] 0.13938 4 3 2 1 0 0 0 0
i9 0.87234] 0.37825| 0.62581] 0.12915 4 2 3 1 0 0 0 o
i10 0.63088] 0.86044! 0.10794] 0.38441 3 4 1 2 0 0 0 0
i1 0.63155] 0.85251{ 0.11274] 0.39328 3 4 1 2 0 0 0 0
i12 0.89727{ 0.61666| 0.36527| 0.13527 4 3 2 1 0 0 0 0
i13 0.89649| 0.61345| 0.36834] 0.1444 4 3 2 1 0 0 0 0
i14 0.63164| 0.86144| 0.10392! 0.38264 3 4 1 2 0 0 0 0
i15 0.78481] 0.72033| 0.21779{ 0.27609 4 3 1 2 0 0 0 0
i16 0.89748| 0.61198] 0.36881]| 0.14681 4 3 2 1 0 0 0 0
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Routing Results for Node 5
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 ot 02 03 ol 02 03
i1 0.1828] 0.26281| 0.57177 1 2 3 0.16667 0.5] 0.83333
i2 0.41465| 0.44438| 0.64988 1 2 3 0.16667 0.5] 0.83333
i3 0.3151] 0.34483]| 0.55032 1 2 3 0.16667 0.5{ 0.83333
id4 0.3248] 0.12081] 0.42977 2 1 3 0.5] 0.16667| 0.83333
i5
i6 0.42406| 0.36006] 0.56556 2 1 3 0.5] 0.16667{ 0.83333
i7 0.42435| 0.22036] 0.34776 3 1 2 0.83333] 0.16667 0.5
i8 0.43847[ 0.23448 0.3161 3 1 2 0.83333] 0.16667 0.5
i9 0.54157| 0.33758 0.213 3 2 1 0.83333 0.5] 0.16667
i10 0.54293] 0.43322] 0.5641 2 1 3 0.5] 0.16667] 0.83333
i11 0.53411} 0.33012 0.461 3 1 2 0.83333] 0.16667 0.5
i12 0.61486{ 0.41088 0.3544 3 2 1 0.83333 0.5 0.16667
i13 0.75427] 0.55028| 0.4257 3 2 1 0.83333 0.5 0.16667
i14 0.63106| 0.47502| 0.57312 3 1 2 0.83333] 0.16667 0.5
i15 0.66961| 0.46562| 0.46416 3 2 1 0.83333 0.5] 0.16667
i16 0.7579] 0.61658 0.5601 3 2 1 0.83333 0.5] 0.16667
Destination Measured Values Measured Rankings Actual - Measured
Node 01 02 03 o1 02 03 o1 02 03
i1 0.16655 0.502 1 1 2 3 0 0 0
i2 0.16606] 0.5022 1 1 2 3 0 0 0
i3 0.16805{ 0.50247 1 1 2 3 0 0 0
i4 0.50868| 0.13002| 0.83719 2 1 3 0 0 0
i5 0.72533] 0.17241] 0.3431
i6 0.50562| 0.13304| 0.83642 2 1 3 o] 0 0
i7 0.8234]| 0.18662| 0.50348 3 1 2 0 0 0
i8 0.8215] 0.19258| 0.50068 3 1 2 0 0 0
i9 0.83189! 0.50225{ 0.16396 3 2 1 0 0 0
i10 0.50542] 0.13934{ 0.83827 2 1 3 0 0 0
i11 0.83184]| 0.17632] 0.50106 3 1 2 0 0 0
i12 0.84429] 0.4976| 0.16474 3 2 1 0 0 0
i13 0.84295| 0.49853| 0.16853 3 2 1 0 0 0
i14 0.82804] 0.18079} 0.50192 3 1 2 0 0 0
i15 0.83371] 0.5024] 0.1698 3 2 1 0 0 0
i16 0.83195| 0.50208| 0.16326 3 2 1 0 0 0
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Routing Resuits for Node 6
of the Sample Network

Destination Real Qutput Values Target Rankings Target Values
Node o1 02 03 04 05 o1 02 03 04 05 ol 02 03 o4 05
i1 0.38915{ 0.26626] 0.40625| 0.59828{ 0.72821 3 4 5 0.3 0.1 0.5 0.7 0.9
i2 0.1573| 0.23351| 0.38872| 0.58075} 0.71068 3 4 5 0.1 0.3 0.5 0.7 0.9
i3 0.25685| 0.13396| 0.28917f 0.4812| 0.61113 2 1 3 4 5 0.3 0.1 0.5 0.7 0.9
i4 0.48087| 0.35798] 0.26425| 0.45628] 0.58621 4 2 1 3 5 0.7 0.3 0.1 0.5 0.9
i5 0.54695] 0.42406] 0.36006] 0.55209} 0.68202 3 2 1 4 5 0.5 0.3 0.1 0.7 0.9
i6
i7 0.38132] 0.25843]| 0.1647| 0.35673| 0.48666 4 2 1 3 5 0.7 0.3 0.1 0.5 0.9
i8 0.49108] 0.36819| 0.27446f 0.39187| 0.5218 4 2 1 3 5 0.7 0.3 0.1 0.5 0.9
i9 0.59418{ 0.47129| 0.37756] 0.49497| 0.59212 5 2 1 3 4 0.9 0.3 0.1 0.5 0.7
i10 0.59418| 0.47129| 0.37756{ 0.14387| 0.35647 5 4 3 1 2 0.9 0.7 0.5 0.1 0.3
i11 0.49108| 0.36819| 0.27446| 0.24697] 0.3769 5 3 2 1 4 0.9 0.5 0.3 0.1 0.7
i12 0.60995| 0.48706f 0.39333] 0.36584| 0.45072 5 4 2 1 3 0.9 0.7 . 0.3 0.1 0.5
i13 0.77075] 0.64786} 0.55413] 0.52664| 0.61152 5 4 2 1 3 0.9 0.7 0.3 0.1 0.5
i14 0.63598] 0.51309} 0.41936] 0.26834 0.232 5 4 3 2 1 0.9 0.7 0.5 0.3 0.1
i15 0.62658{ 0.50369| 0.40996] 0.3773{ 0.34096 5 4 3 2 1 0.9 0.7 0.5 0.3 0.1
i16 0.80688] 0.68399} 0.59026] 0.5576] 0.52126 5 4 3 2 1 0.9 0.7 0.5 0.3 0.1

Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 05 02 03 04 o5 o1 02 03 04 05
il 0.25232| 0.19123| 0.47996] 0.70413| 0.90557 3 4 5 0 0 0 0 0
i2 0.18201] 0.16575] 0.52827| 0.6938| 0.88846 X 3 4 5 A : 0 0 0
i3 0.25292]1 0.18943{ 0.4806/ 0.6989} 0.9185 2 1 3 4 5 0 0 0 0 0
id4 0.7113] 0.28848] 0.10273] 0.50243} 0.89146 4 2 1 3 5 0 0 0 0 0
i5 0.53027{ 0.2118| 0.13418] 0.69561| 0.90745 3 2 1 4 5 0 0 0 0 0
i6 0.18339] 0.08281| 0.0428| 0.05672| 0.11014
i7 0.70417| 0.29037] 0.11097] 0.48872| 0.80084 4 2 1 3 5 0 0 0 0 0
i8 0.7061| 0.29221] 0.11157] 0.50426] 0.88712 4 2 1 3 5 0 0 0 0 0
i9 0.85164| 0.34563| 0.04953| 0.49798]| 0.70498 5 2 1 3 4 0 0 0 0 0
i10 0.91785| 0.71056] 0.48507| 0.1055] 0.29382 5 4 3 1 2 0 0 0 0 0
i11 0.8596| 0.54984] 0.26405] 0.13165] 0.69051 5 3 2 1 4 0 0 0 0 0
i12 0.91634] 0.67102| 0.32213{ 0.0641} 0.50751 5 4 2 1 3 0 0 0 0 4]
i13 0.92207] 0.67397| 0.31777| 0.07659} 0.50421 5 4 2 1 3 0 0 0 0 0
i14 0.9005| 0.69775| 0.50105] 0.30207] 0.09311 5 4 3 2 1 0 0 0 0 0
i15 0.90131] 0.69584| 0.50291{ 0.30099 0.102 5 4 3 2 1 0 0 0 0 0
i16 0.90402] 0.69717] 0.50045| 0.29788] 0.10287 5 4 3 2 1 0 0 0 0 0
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Routing Resuits for Node 7
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 04 05 ol 02 03 04 05 o1 02 03 04 05
it 0.28177] 0.26655] 0.40596] 0.39043} 0.53533 2 1 4 3 5 0.3 0.1 0.7 0.5 0.9
i2 0.24902] 0.4984 0.297] 0.62228| 0.48903 1 4 2 5 3 0.1 0.7 0.3 0.9 0.5
i3 0.14947] 0.39885] 0.27366{ 0.52273] 0.46569 1 3 2 5 4 0.1 0.5 0.3 0.9 0.7
i4 0.42377] 0.12455| 0.54796| 0.24843| 0.39333 4 1 5 2 3 0.7 0.1 0.9 0.3 0.5
i5 0.43957] 0.22036] 0.56376| 0.34424| 0.48914 3 1 5 2 4 0.5 0.1 0.9 0.3 0.7
i6 0.25843| 0.50781] 0.1647] 0.50163] 0.35673 2 5 1 4 3 0.3 0.9 0.1 0.7 0.5
i7
i8 0.53744| 0.23822] 0.53157| 0.13476{ 0.27966 2 2 1 3 0.9 0.3 0.7 0.1 0.5
i9 0.62756] 0.34132] 0.63467| 0.23786| 0.38276 4 2 5 1 3 0.7 0.3 0.9 0.1 0.5
i10 0.3773| 0.48622] 0.28357] 0.38276| 0.23786 3 5 2 4 1 0.5 0.9 0.3 0.7 0.1
i11 0.4804| 0.38312] 0.38667| 0.27966] 0.13476 5 3 4 2 1 0.9 0.5 0.7 0.3 0.1
i12 0.59927| 0.41462| 0.50554| 0.31116| 0.25363 5 3 4 2 1 0.9 0.5 0.7 0.3 0.1
i13 0.76007] 0.55402] 0.66634| 0.45056] 0.41443 5 3 4 2 1 0.9 0.5 0.7 0.3 0.1
i14 0.46543{ 0.52802| 0.3717] 0.42456{ 0.27966 4 5 2 3 1 0.7 0.9 0.3 0.5 0.1
i15 0.57439| 0.51862] 0.48066| 0.42092| 0.27026 5 4 3 2 1 0.9 0.7 0.5 0.3 0.1
i16 0.75469] 0.62032] 0.66096] 0.51686] 0.45056 5 3 4 2 1 0.9 0.5 0.7 0.3 0.1
Destination Measured Values Measured Rankings Actual-Measured
Node ol 02 o3 04 05 o1 02 03 04 05 o1 02 03 04 05
il 0.27124| 0.10466] 0.75717] 0.51066| 0.83897 2 1 4 3 5 0 0 0 0 0
i2 0.14111] 0.70238] 0.22634| 0.84259| 0.55665 1 4 2 5 3 0 0 0 0 0
i3 0.11761] 0.49791| 0.29711] 0.90819} 0.69869 1 3 2 5 4 o] 0 0 0 0
i4 0.70832] 0.17595/ 0.83601| 0.20482| 0.54324 4 1 5 2 3 0 0 [¢] 0 0
i5 0.51491| 0.12905| 0.83219| 0.28282| 0.74104 3 1 5 2 4 0 0 0 0 0
i6 0.23801| 0.89375| 0.20859] 0.7789| 0.41504 2 5 1 4 3 0 0 0 0 0
i7 0.18904| 0.1024] 0.12222 0.076] 0.04359
i8 0.81922| 0.26626] 0.84906{ 0.19057| 0.43918 3 2 3 1 3 B 0 B 0 0
i9 0.75943| 0.21562| 0.84257| 0.17368| 0.50276 4 2 5 1 3 0 0 0 0 0
i10 0.53309| 0.9297| 0.25767| 0.64516| 0.18196 3 5 2 4 1 0 0 0 0 0
i11 0.89587| 0.52172] 0.69791] 0.26596] 0.11294 5 3 4 2 1 0 0 0 0 0
i12 0.90197 0.505) 0.70039] 0.28919} 0.10254 5 3 4 2 1 0 0 0 0 0
i13 0.90043] 0.50642{ 0.69899] 0.28944] 0.10401 5 3 4 2 1 0 1] 0 0 0
i14 0.69924| 0.88344] 0.29622| 0.51656| 0.08341 4 5 2 3 1 0 0 0 0 0
i15 0.88784{ 0.67329| 0.50448| 0.3438| 0.04433 5 4 3 2 1 0 0 0 0 0
i16 0.89641| 0.51712| 0.69798] 0.27435| 0.11103 5 3 4 2 1 0 0 0 0 0
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Routing Resuits for Node 8
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node 01 02 03 04 05 o1 02 03 04 o5 o1 02 03 04 05
i1 0.28067| 0.37631] 0.4739| 0.52121} 0.67158 1 2 3 4 5 0.1 0.3 0.5 0.7 0.9
i2 0.46224| 0.35878|] 0.70574| 0.50368| 0.65405 2 1 5 3 4 0.3 0.1 0.9 0.5 0.7
i3 0.36269| 0.25923] 0.6062] 0.40413| 0.5545 2 1 5 3 4 0.3 0.1 0.9 0.5 0.7
i4 0.13867| 0.23431f 0.41191| 0.37921] 0.52958 1 2 4 3 5 0.1 0.3 0.7 0.5 0.9
i5 0.23448{ 0.33012] 0.3161] 0.47502| 0.5308 1 3 2 4 5 0.1 0.5 0.3 0.7 0.9
i6 0.37792] 0.27446] 0.61034| 0.39187| 0.54224 2 1 5 3 4 0.3 0.1 0.9 0.5 0.7
i7 0.23822| 0.13476] 0.49813] 0.27966] 0.43003 2 1 5 3 4 0.3 0.1 0.9 0.5 0.7
i8
i9 0.42248{ 0.42003] 0.1281] 0.43017] 0.3428 4 3 1 5 2 0.7 0.5 0.1 0.9 0.3
i10 0.45108{ 0.34762] 0.49147 0.273| 0.42337 4 2 5 1 3 0.7 0.3 0.9 0.1 0.5
i1 0.34798| 0.24452] 0.38837| 0.1699] 0.32027 4 2 5 1 3 0.7 0.3 0.9 0.1 0.5
i12 0.46685| 0.36339] 0.2695] 0.28877| 0.2014 5 4 2 3 1 0.9 0.7 0.3 0.5 0.1
i13 0.62765] 0.52419] 0.3408| 0.44957] 0.3622 5 4 1 3 2 0.9 0.7 0.1 0.5 0.3
i14 0.49288{ 0.38942| 0.48822] 0.3148] 0.42012 5 2 4 1 3 0.9 0.3 0.7 0.1 0.5
i15 0.48348| 0.38002} 0.37926{ 0.3054| 0.31116 5 4 3 1 2 0.9 0.7 0.5 0.1 0.3
i16 0.66378] 0.56032] 0.4752] 0.4857] 0.4071 5 4 2 3 1 0.9 0.7 0.3 0.5 0.1
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 05 o1 02 03 04 o5 o1 02 03 04 05
i1 0.09606] 0.3211] 0.50603] 0.67072| 0.92326 1 2 3 4 5 0 0 (4] 0 o]
i2 0.28831] 0.11222] 0.91605| 0.5055| 0.69031 2 1 5 3 4 0 0 0 0 [¢]
i3 0.29407} 0.11818] 0.91853| 0.49073] 0.70181 2 1 5 3 4 0 0 0 0 0
i4 0.14375| 0.25189] 0.67106| 0.55387| 0.87786 1 2 4 3 5 0 0 o] 0 0
i5 0.10995| 0.49427] 0.29473]| 0.69051| 0.94291 1 3 2 4 5 0 0 0 0 0
i6 0.29542| 0.11716] 0.91984| 0.49329] 0.69875 2 1 5 3 4 0 0 0 0 0
i7 0.29105] 0.11649] 0.9189{ 0.4931] 0.70117 2 1 5 3 4 0 0 0 0 0
i8 0.11256] 0.05898] 0.20683] 0.75848] 0.1223 0 0 0 0 0
i9 0.69212| 0.50337] 0.1221] 0.90812} 0.29292 4 3 1 5 2 0 0 0 0 0
i10 0.73946| 0.25812] 0.86098{ 0.09774] 0.51053 4 2 5 1 3 0 0 0 0 0
i11 0.73218| 0.25595{ 0.86176] 0.09749]| 0.51851 4 2 5 1 3 0 0 0 0 Q
i12 0.96025] 0.68468] 0.29114| 0.50175| 0.12098 5 4 2 3 1 0 0 0 0 0
i13 0.8638] 0.72385] 0.14986] 0.50139] 0.28119 5 4 1 3 2 0 4] 0 0 0
i14 0.80477| 0.37846] 0.74562| 0.07004{ 0.47337 5 2 4 1 3 0 0 0 0 0
i15 0.9453| 0.68169| 0.50777]| 0.12211] 0.29396 5 4 3 1 2 0 0 0 0 0
i16 0.95614| 0.69619] 0.26215] 0.49422] 0.13251 5 4 2 3 1 0 0 0 0 0
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Routing Results for Node 9
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 04 ot 02 o3 04 ol 02 03 o4
i1 0.3708 | 0.3838 | 0.5985 | 0.8306 1 2 3 4 0.125 0.375 0.625 0.875
i2 0.6027 | 0.4619 | 0.6191 | 0.8512 2 1 3 4 0.375 0.125 0.625 0.875
i3 0.5031 | 0.3623 | 0.5185 | 0.7516 2 1 3 4 0.375 0.125 0.625 0.875
i4 0.3088 | 0.2418 | 0.4565 | 0.6886 2 1 3 4 0.375 0.125 0.625 0.875
i5 0.213 | 0.3376 | 0.5523 | 0.7844 1 2 3 4 0.125 0.375 0.625 0.875
i6 0.5481 | 0.3776 | 0.5072 | 0.7393 3 1 2 4 0.625 0.125 0.375 0.875
i7 0.4084 | 0.2379 0.395 0.6271 3 1 2 4 0.625 0.125 0.375 0.875
i8 0.4225 | 0.1281 | 0.3428 | 0.5749 3 1 2 4 0.625 0.125 0.375 0.875
i9
i10 0.6212 | 0.3761 | 0.3884 | 0.6205 4 1 2 3 0.875 0.125 0.375 0.625
it1 0.5181 0.273 0.2853 | 0.5174 4 1 2 3 0.875 0.125 0.375 0.625
i12 0.5989 | 0.3045 | 0.1664 | 0.3985 4 2 1 3 0.875 0.375 0.125 0.625
i13 0.7597 | 0.4653 | 0.3272 | 0.2377 4 3 2 1 0.875 0.625 0.375 0.125
i14 0.663 | 0.4179 | 0.3851 | 0.6172 4 2 1 3 0.875 0.375 0.125 0.625
i15 0.6536 | 0.4085 | 0.2762 | 0.5083 4 2 1 3 0.875 0.375 0.125 0.625
i16 0.8046 | 0.5102 | 0.3712 | 0.3929 4 3 1 2 0.875 0.625 0.125 0.375
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 o4 ol 02 03 o4 o1 02 03 o4
i1 0.12064| 0.36457| 0.62624| 0.88483 1 2 3 4 0 0 0 0
i2 0.38091| 0.16157| 0.60545] 0.88898 2 1 3 4 0 0 0 0
i3 0.37082| 0.12994| 0.60916] 0.80994 2 1 3 4 0 0 0 0
i4 0.37334] 0.13767| 0.60786] 0.9064 2 1 3 4 0 0 0 0
i5 0.12399| 0.37676| 0.6262| 0.87092 1 2 3 4 0 0 0 0
i6 0.63426| 0.08577] 0.41756| 0.82075 3 1 2 4 0 0 0 0
i7 0.63004| 0.07894| 0.42203] 0.81951 3 1 2 4 0 0 0 0
i8 0.64193] 0.07859] 0.42408| 0.80787 3 1 2 4 0 0 0 0
i9 0.17534| 0.05154| 0.06006] 0.1238 0 0 0 0
i10 0.81947| 0.15429] 0.29638{ 0.70918 4 1 2 3 0 0 0 0
i11 0.8474] 0.14743] 0.3038| 0.68869 4 1 2 3 0 4] 0 0
i12 0.88879| 0.37374]| 0.14601] 0.61392 4 2 1 3 0 0 0 0
i13 0.87144] 0.6233]| 0.38081] 0.11708 4 3 2 1 0 0 0 0
i14 0.88899| 0.37354| 0.1439] 0.61452 4 2 1 3 0 0 0 0
i15 0.89133| 0.37418] 0.16284] 0.60682 4 2 1 3 0 0 0 0
i16 0.8974] 0.62104] 0.12304| 0.36509 4 3 1 2 0 0 0 0
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Routing Results for Node 10
of the Sample Network

Destination Real Qutput Values Target Rankings Target Values
Node o1 02 o3 o1 02 03 o1 02 03
it 0.38513| 0.47941] 0.59773 1 2 3 0.16667 0.5] 0.83333
i2 0.27617| 0.46188| 0.48877 1 2 3 0.16667 0.5] 0.83333
i3 0.25283| 0.36233] 0.46543 1 2 3 0.16667 0.5| 0.83333
id4 0.38312] 0.337411 0.50368 2 1 3 0.5/ 0.16667| 0.83333
i5 0.47893] 0.43322] 0.59949 2 1 3 0.5] 0.16667] 0.83333
i6 0.14387| 0.37756] 0.35647 1 3 2 0.16667]| 0.83333 0.5
i7 0.28357| 0.23786] 0.40413 2 1 3 0.5] 0.16667] 0.83333
i8 0.39333 0.273] 0.43927 2 1 3 0.5 0.16667] 0.83333
i9 0.47643| 0.3761] 0.50959 2 1 3 0.5] 0.16667| 0.83333
i10
it 0.39333] 0.1281] 0.29437 3 1 2 0.83333] 0.16667 0.5
i12 0.5122| 0.24697| 0.38819 3 1 2 0.83333| 0.16667 0.5
i13 0.673] 0.40777] 0.52899 3 1 2 0.83333] 0.16667 0.5
i14 0.35087 0.273] 0.14947 3 2 1 0.83333 0.5| 0.16667
i15 0.45983] 0.2636] 0.25843 3 2 1 0.83333 0.5] 0.16667
i16 0.64013] 0.4439| 0.43873 3 2 1 0.83333 0.5] 0.16667
Destination Measured Values Measured Rankings Actual - Measured
Node o1 02 03 o1 02 03 o1l 02 03
i1 0.17165] 0.5012] 0.83266 1 2 3 0 0 0
i2 0.17273] 0.50127] 0.83247 1 2 3 0 0 0
i3 0.17482] 0.50185] 0.83232 1 2 3 0 0 0
i4 0.49905| 0.16703| 0.83351 2 1 3 0 0 0
i5 0.49915] 0.15746] 0.83466 2 1 3 0 0 0
i6 0.15352| 0.83227] 0.49914 1 3 2 0 0 0
i7 0.49884] 0.16398] 0.83381 2 1 3 0 0 0
i8 0.49925] 0.15908] 0.83431 2 1 3 0 0 0
i9 0.49886| 0.16573| 0.83379 2 1 3 0 0 0
i10 0.40223| 0.15564 0.524
it1 0.83353| 0.16674] 0.4994 3 1 2 0 0 0
i12 0.83282] 0.17283] 0.49972 3 1 2 0 0 0
i13 0.83265] 0.17365] 0.49978 3 1 2 0 0 0
i14 0.82963( 0.49924] 0.1518 3 2 1 0 0 0
i15 0.83678| 0.50037f 0.17741 3 2 1 0 0 0
“i16 0.83488| 0.49993| 0.17147 3 2 1 0 0 0
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Routing Results for Node 11
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 04 05 06 o1 02 03 04 05 06 ol 02 03 04 05 06
it 0.3763| 0.4256] 0.4882| 0.5759] 0.6182] 0.7023 1 2 3 4 5 6 0.08333 0.25] 0.41667] 0.58333 0.75] 0.91667
i2 0.3588| 0.5037] 0.3793] 0.6541] 0.5092| 0.6088 1 3 2 6 4 5 0.08333| 0.41667 0.25{ 0.91667| 0.58333 0.75
i3 0.2592] 0.4041] 0.3559] 0.5545] 0.4859] 0.5854 1 3 2 5 4 6 0.08333] 0.41667 0.25 0.75} 0.58333] 0.91667
i4 0.2343] 0.2836| 0.4862] 0.4339] 0.6162] 0.5603 1 2 4 3 6 5 0.08333 0.25| 0.58333| 0.41667| 0.91667 0.75
i5 0.3301] 0.3794 0.582] 0.4732 0.712f 0.5997 1 2 4 3 6 5 0.08333 0.25{ 0.58333| 0.41667| 0.91667 0.75
i6 0.2745] 0.4194 0.247] 0.5696] 0.3769] 0.4765 2 4 1 6 3 5 0.25]| 0.58333] 0.08333] 0.91667| 0.41667 0.75
i7 0.1348; 0.2797] 0.3867 0.43| 0.5166] 0.5564 1 2 3 4 5 6 0.08333 0.25] 0.41667{ 0.58333 0.75] 0.91667
i8 0.2445! 0.1699] 0.4964] 0.3203 0.565( 0.4467 2 1 5 3 6 4 0.25] 0.08333 0.75] 0.41667] 0.91667} 0.58333
i9 0.3476 0.273] 0.5995] 0.2853 0.53] 0.4117 3 1 6 2 5 4 0.41667]| 0.08333} 0.91667 0.25 0.75] 0.58333
i10 0.3933| 0.5382] 0.1281] 0.4871} 0.2944] 0.3939 3 6 1 5 2 4 0.41667| 0.91667| 0.08333 0.75 0.25] 0.58333
i11
i12 0.4209{ 0.3463] 0.4713] 0.1439] 0.3886] 0.2703 5 3 1 2 0.75{ 0.41667| 0.91667] 0.08333] 0.58333 0.25
i13 0.5603] 0.4857| 0.63211 0.3047] 0.5494] 0.4311 5 3 1 2 0.75| 0.41667] 0.91667] 0.08333] 0.58333 0.25
i14 0.4815] 0.6331| 0.2526] 0.3626] 0.1699] 0.2695 5 6 4 3 0.75] 0.91667 0.25] 0.58333| 0.08333] 0.41667
i15 0.5307 0.456| 0.3615] 0.2536] 0.2789| 0.1605 6 5 2 1 0.91667 0.75] 0.58333 0.25] 0.41667] 0.08333
i16 0.6266 0.552] 0.5418] 0.3496| 0.4591] 0.3408 6 5 2 1 0.91667 0.75] 0.58333 0.25] 0.41667] 0.08333
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 05 06 o1 02 03 o4 05 06 o1 02 03 04 05 06
i1 0.06706f 0.25186] 0.41279] 0.6029| 0.79714| 0.85029 1 2 3 4 5 6 0 0 0 0 0 o]
i2 0.14248| 0.41925| 0.23325| 0.85734| 0.57883| 0.80742 1 3 2 <] 4 5 0 0 0 0 0 0
i3 0.11291] 0.39858] 0.25528| 0.79685]{ 0.6221| 0.82824 1 3 2 5 4 6 0 0 0 0 0 0
i4 0.10139}] 0.2115] 0.59972| 0.44766{ 0.83838| 0.79636 1 2 4 3 6 5 0 0 0 0 0 0
i5 0.08988{ 0.24691] 0.58656f 0.41208| 0.87963| 0.79248 1 2 4 3 6 5 0 0 0 0 0 0
i6 0.1826| 0.60269| 0.12364] 0.90456| 0.38871] 0.78954 2 4 1 6 3 5 0 0 0 0 0 0
i7 0.0622| 0.2863| 0.40234] 0.57337| 0.79963| 0.86897 1 2 3 4 5 6 0 0 0 0 0 0
i8 0.22901| 0.1304] 0.8122] 0.3475{ 0.82935| 0.66058 2 1 5 3 6 4 0 0 0 0 0 0
i9 0.40507] 0.12296] 0.89364| 0.27721| 0.81644] 0.54231 3 1 6 2 5 4 0 0 0 0 0 0
i10 0.44456{ 0.86953| 0.10069| 0.77571| 0.20845] 0.58854 3 6 1 5 2 4 0 0 0 0 0 [¢]
i11 0.02155f 0.03727{ 0.02701]| 0.04291| 0.04147{ 0.0517 0 0 0 0 0 0
it12 0.79102] 0.39044) 0.85856| 0.1506| 0.61842] 0.20302 5 3 1 2 0 0 0 0 0 0
i13 0.78897] 0.39193| 0.85835] 0.14653] 0.62195| 0.20172 5 3 1 2 0 0 0 0 0 o]
i14 0.75384] 0.92675| 0.18549] 0.59854} 0.19596| 0.37521 5 6 4 3 0 0 0} 0
i15 0.87282| 0.78356] 0.62547{ 0.20393{ 0.37138| 0.15747 6 5 2 1 0 0 0 0
i16 0.87153] 0.78501] 0.62411] 0.20137] 0.37358| 0.15754 6 5 2 1 0 0 0 0
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Routing Results for Node 12
of the Sample Network

Destination Real Qutput Values Target Rankings Target Values

Node ot 02 03 04 o5 06 ot 02 o3 04 05 06 o1 02 03 04 05 06

i1 0.45707] 0.5122{ 0.49518{ 0.7443| 0.61257] 0.8058 1 3 2 5 4 6 0.08333]{ 0.41667 0.25 0.75] 0.58333]| 0.91667
i2 0.53518] 0.60328| 0.47765] 0.83538| 0.58302| 0.85926 2 4 1 5 3 6 0.25] 0.58333] 0.08333 0.75] 0.41667| 0.91667
i3 0.43563| 0.50373| 0.3781] 0.73583] 0.50449{ 0.78073 2 3 1 5 4 6 0.25| 0.41667] 0.08333 0.75] 0.58333| 0.91667
i4 0.31507] 0.38317| 0.35318| 0.61527{ 0.47957{ 0.75581 1 3 2 5 4 6 0.08333] 0.41667 0.25 0.75] 0.58333] 0.91667
i5 0.41088| 0.3544] 0.44899| 0.5865| 0.57538| 0.7866 2 1 3 5 4 6 0.25{ 0.08333f 0.41667 0.75| 0.58333| 0.91667
i6 0.45086| 0.51896{ 0.36584| 0.75106| 0.45072] 0.72696 3 4 1 6 2 5 0.41667] 0.58333| 0.08333] 0.91667 0.25 0.75
i7 0.31116| 0.37926] 0.25363| 0.61136| 0.38002| 0.65626 2 3 1 5 4 6 0.25| 0.41667] 0.08333 0.75] 0.58333] 0.91667
i8 0.2014| 0.2695] 0.28877] 0.5016] 0.41516] 0.6814 1 2 3 5 4 6 0.08333 0.25] 0.41667 0.75] 0.58333] 0.91667
ig9 0.3045| 0.16664| 0.39187{ 0.3985] 0.51826] 0.5986 2 1 3 4 5 6 0.25] 0.08333] 0.41667] 0.58333 0.75] 0.91667
i10 0.44894] 0.5175| 0.24697{ 0.7496] 0.37336| 0.6496 3 4 1 6 2 5 0.41667] 0.58333] 0.08333] 0.91667 0.25 0.75
i11 0.3463] 0.4144| 0.14387| 0.6465] 0.27026] 0.5465 3 4 1 6 2 5 0.41667] 0.58333| 0.08333] 0.91667 0.25 0.75
i12

i13 0.5172] 0.3791] 0.60457| 0.1858] 0.47026] 0.3859 5 2 6 1 4 3 0.75 0.25] 0.91667| 0.08333] 0.58333| 0.41667
i14 0.4912| 0.5593] 0.28877| 0.63026] 0.24372] 0.51996 3 2 1 4 0.41667 0.75 0.25| 0.91667} 0.08333| 0.58333
i15 0.4818| 0.5499{ 0.27937f 0.5213] 0.13476 0.411 4 2 1 3 0.58333| 0.916867 0.25 0.75] 0.08333} 0.41667
i16 0.6621] 0.5343| 0.45967 0.341} 0.31506] 0.2307 6 4 2 1 0.91667 0.75] 0.58333{ 0.41667 0.25] 0.08333

Destination Measured Values Measured Rankings Actual-Measured

Node o1 02 03 o4 05 06 o1 02 03 04 05 06 o1 02 03 04 05 06

i1 0.19548| 0.36473 0.197| 0.74489] 0.60116| 0.92454 1 3 2 5 4 6 0 Q 0 0 0 0
i2 0.27181] 0.54748| 0.03897] 0.84124| 0.41962{ 0.86873 2 4 1 5 3 6 0 0 0 0 Q 0
i3 0.1436] 0.44557| 0.11997| 0.75747] 0.57096] 0.9185 2 3 1 5 4 6 0 0 0 0 0 0
iq4 0.1339] 0.35038| 0.27605| 0.75306] 0.59348| 0.92475 1 3 2 5 4 6 0 "] 0 0 0 0
i5 0.22657] 0.10704] 0.41498] 0.67157| 0.66785| 0.92313 2 1 3 5 4 6 0 0 0 0 0 0
i6 0.41772] 0.60666f 0.07215] 0.86718]| 0.25233| 0.76409 3 4 1 6 2 5 0 0 0 0 0 0
i7 0.14266] 0.44432| 0.12045{ 0.75967] 0.57212| 0.91871 2 3 1 5 4 6 0 0 0 0 0 0
i8 0.13505] 0.3019] 0.38581| 0.72786] 0.57733 0.921 1 2 3 5 4 6 0 0 0 o] 0 0
i9 0.23089] 0.09885| 0.42515] 0.65951| 0.66708] 0.92139 2 1 3 4 5 6 0 0 0 0 o] 0
i10 0.41823} 0.60238| 0.07122] 0.86609] 0.25208{ 0.76151 3 4 1 6 2 5 0 0 0 0 0 0
i11 0.41595] 0.60632| 0.07347] 0.86789| 0.25039| 0.76119 3 4 1 6 2 5 0 0 0 0 0 0
i12 0.00236{ 0.00232| 0.00219| 0.00266| 0.00249| 0.00267

i13 0.75014{ 0.24444| 0.95619] 0.10182] 0.57925| 0.41169 5 [ 4 3 0 0 0
i14 0.40213] 0.80911| 0.23006| 0.8918| 0.0402| 0.57508 3 2 1 4 0 0 0
i15 0.60273] 0.79992| 0.28916] 0.8243]| 0.07394| 0.41673 4 2 1 3 (1] 0 0
i16 0.89659{ 0.78353| 0.57349] 0.4063| 0.26209| 0.09465 6 4 2 1 0 0 [¢]
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Routing Results for Node 13
of the Sample Network

Destination Real Qutput Values Target Rankings Target Values
Node ot 02 03 o1 02 03 o1 02 03
it 0.59647| 0.61787| 0.7553 1 2 3 0.16667 0.5/ 0.83333
i2 0.67458] 0.63845| 0.80876 2 1 3 0.5] 0.16667] 0.83333
i3 0.57503] 0.5389| 0.73023 2 1 3 0.5{ 0.16667| 0.83333
i4 0.45447] 0.47587] 0.67597 1 2 3 0.16667 0.5] 0.83333
i5 0.4257| 0.5152] 0.7153 1 2 3 0.16667 0.5{ 0.83333
i6 0.59026| 0.52664| 0.67646 2 1 3 0.5]. 0.16667] 0.83333
i7 0.45056] 0.41443] 0.60576 2 1 3 0.5] 0.16667] 0.83333
i8 0.3408] 0.3622f 0.5623 1 2 3 0.16667 0.5] 0.83333
i9 0.2377{ 0.3272] 0.5273 1 2 3 0.16667 0.5| 0.83333
i10 0.5888| 0.40777| 0.59393 2 1 3 0.5] 0.16667] 0.83333
i11 0.4857] 0.30467 0.496 2 1 3 0.5] 0.16667| 0.83333
i12 0.3781] 0.1858] 0.3859 2 1 3 0.5] 0.16667] 0.83333
i13
i14 0.59782| 0.40452| 0.46946 3 1 2 0.83333] 0.16667 0.5
i15 0.48886] 0.29556| 0.3605 3 1 2 0.83333] 0.16667 0.5
i16 0.5848] 0.3915] 0.1802 3 2 1 0.83333 0.5] 0.16667

Destination Measured Values Measured Rankings Actual - Measured
Node ol 02 03 o1 02 03 o1 02 03
i1 0.15971] 0.50005| 0.83093 1 2 3 0 0 0
i2 0.49964} 0.17494] 0.8296 2 1 3 0 0 0
i3 0.50229| 0.17105] 0.82978 2 1 3 0 0 0
i4 0.18295] 0.49924| 0.83818 1 2 3 0 0 0
i5 0.15932] 0.50081] 0.82961 1 2 3 0 0 0
i6 0.49847] 0.17055] 0.83286 2 1 3 0 0 4]
i7 0.49983] 0.16751] 0.8331 2 1 3 0 0 0
i8 0.16037] 0.4989] 0.83404 1 2 3 0 [¢] 0
i9 0.16873] 0.49706] 0.83916 1 2 3 0 0 0
i10 0.50271} 0.18223] 0.82339 2 1 3 0 0 0
it 0.49713] 0.17224] 0.83274 2 1 3 0 0 0
i12 0.49526] 0.16504| 0.83738 2 1 3 0 0 0
i13 0.32633| 0.12921] 0.61153 2 1 3
i14 0.84043| 0.13677] 0.50073 3 1 2 0 0 0
i15 0.83673] 0.1481] 0.50276 3 1 2 0 0 0
i16 0.99882| 0.49898{ 0.16676 3 2 1 4] 0 0
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Routing Resuits tor Node 14
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node o1 02 03 o4 o1 02 03 04 o1 02 03 04
i1 0.47326] 0.5096| 0.53643 0.636 1 2 3 4 0.125 0.375 0.625 0.875
i2 0.3643| 0.40064| 0.50368] 0.60324 1 2 3 4 0.125 0.375 0.625 0.875
i3 0.34096] 0.3773] 0.40413] 0.50369 1 2 3 4 0.125 0.375 0.625 0.875
i4 0.47125] 0.46188| 0.37921| 0.47877 3 2 1 4 0.625 0.375 0.125 0.875
i5 0.56706] 0.55769] 0.47502] 0.57312 3 2 1 4 0.625 0.375 0.125 0.875
i6 0.232] 0.26834| 0.39187] 0.49143 1 2 3 4 0.125 0.375 0.625 0.875
i7 0.3717{ 0.36233] 0.27966] 0.37922 3 2 1 4 0.625 0.375 0.125 0.875
i8 0.48146] 0.39747] 0.3148] 0.41436 4 2 1 3 0.875 0.375 0.125 0.625
i9 0.58456| 0.50057| 0.4179] 0.38512 4 3 2 1 0.875 0.625 0.375 0.125
i10 0.35087| 0.14947 0.273] 0.37256 3 1 2 4 0.625 0.125 0.375 0.875
it1 0.45397| 0.25257| 0.1699] 0.36946 4 2 1 3 0.875 0.375 0.125 0.625
i12 0.57284| 0.37144] 0.2877| 0.24372 4 3 2 1 0.875 0.625 0.375 0.125
i13 0.73364] 0.53224]| 0.44957| 0.40452 4 3 2 1 0.875 0.625 0.375 0.125
it4
i15 0.58947] 0.38807] 0.3054f 0.13396 4 3 2 1 0.875 0.625 0.375 0.125
i16 0.76977] 0.56837] 0.4857] 0.31426 4 3 2 1 0.875 0,625 0.375 0.125
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 o4 o1 02 03 04 o1 02 03 04
i1 0.12048] 0.37027] 0.61759] 0.90257 1 2 3 4 0 0 0 0
i2 0.12051} 0.37001] 0.61782] 0.90249 1 2 3 4 0 0 0 0
i3 0.12089] 0.37109] 0.61672] 0.90276 1 2 3 4 0 0 0 0
i4 0.62766( 0.3819] 0.14226] 0.85196 3 2 1 4 Y 0 0 4]
i5 0.63177] 0.37303] 0.15155] 0.85162 3 2 1 4 0 0 0 0
i6 0.12059| 0.36995| 0.61783] 0.90254 1 2 3 4 0 0 0 0
i7 0.62758| 0.38183] 0.14053] 0.85316 3 2 1 4 0 0 0 0
i8 0.87584] 0.37207] 0.08853] 0.63509 4 2 1 3 0 0 0 0
i9 0.87308] 0.62673| 0.37411] 0.12522 4 3 2 1 0 0 0 0
i10 0.62701} 0.16415] 0.40707| 0.81003 3 1 2 4 0 0 0 0
i11 0.87068] 0.37382| 0.0891] 0.63645 4 2 1 3 0 0 0 0
i12 0.87838] 0.6183] 0.37841] 0.13178 4 3 2 1 0 0 0 0
i13 0.87516] 0.62438] 0.37473] 0.12754 4 3 2 1 0 0 0 0
i14 0.02241] 0.01807] 0.01799| 0.02124 0 0 0 0
i15 0.8735{ 0.6259] 0.37462f 0.12579 4 3 2 1 0 0 0 0
i16 0.87301] 0.62685] 0.37404| 0.12515] |. 4 3 2 1 0 0 0 0
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Routing Resuits for Node 15

of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node 01 02 03 04 o1 02 03 04 o1 02 03 04
i1 0.51181] 0.56683| 0.58222| 0.7804 1 2 3 4 0.125 0.375 0.625 0.875
i2 0.49428| 0.58741| 0.47326] 0.86365 2 3 1 4 0.375 0.625 0.125 0.875
i3 0.39473] 0.48786] 0.44992 0.7641 1 3 2 4 0.125 0.625 0.375 0.875
i4 0.36981] 0.42483| 0.48817] 0.70107 1 2 3 4 0.125 0.375 0.625 0.875
i5 0.46562] 0.46416] 0.58398] 0.7404 2 1 3 4 0.375 0.125 0.625 0.875
i6 0.38247]{ 0.4756] 0.34096]| 0.75184 2 3 1 4 0.375 0.625 0.125 0.875
i7 0.27026{ 0.36339] 0.38862| 0.63963 1 2 3 4 0.125 0.375 0.625 0.875
i8 0.3054| 0.3116] 0.42376] 0.5874 1 2 3 4 0.125 0.375 0.625 0.875
ig 0.4085| 0.27616] 0.52686] 0.5524 2 1 3 4 0.375 0.125 0.625 0.875
i10 0.2636| 0.35673| 0.25843| 0.63297 2 3 1 4 0.375 0.625 0.125 0.875
it1 0.1605| 0.25363| 0.27886] 0.52987 1 2 3 4 0.125 0.375 0.625 0.875
i12 0.27937| 0.13476| 0.39775 0.411 2 1 3 4 0.375 0.125 0.625 0.875
i13 0.44017| 0.29556| 0.55853] 0.3605 31 1 4 2 0.625 0.125 0.875 0.375
i14 0.3054| 0.39853| 0.13396{ 0.67477 2 3 1 4 0.375 0.625 0.125 0.875
i15
i16 0.48507] 0.34046] 0.60343] 0.2053 3 2 4 1 0.625 0.375 0.875 0.125
Destination Measured Values Measured Rankings Actual-Measured
Node 01 02 03 04 o1 02 03 04 o1 02 03 04
i1 0.19609{ 0.38016] 0.57985] 0.87446 1 2 3 4 0 0 0 0
i2 0.37497] 0.6284| 0.12907] 0.87595 2 3 1 4 0 0 0 0
i3 0.07441| 0.62969| 0.38442] 0.85865 1 3 2 4 0 0 0 0
i4 0.11321| 0.3769] 0.63134] 0.86334 1 2 3 4 0 0 0 0
i5 0.35767] 0.12564] 0.63656| 0.87409 2 1 3 4 0 0 0 0
i6 0.37316| 0.62495| 0.12884] 0.87389 2 3 1 4 0 0 0 0
i7 0.15333| 0.35065| 0.64172] 0.86575 1 2 3 4 0 0 0 0
i8 0.10074| 0.38006] 0.62392] 0.88595 1 2 3 4 0 0 0 0
i9 0.38057] 0.11647| 0.62529] 0.87705 2 1 3 4 0 0 0 0
i10 0.37224} 0.62286] 0.12834f 0.87282 2 3 1 4 0 0 0 0
i11 0.09919{ 0.37378] 0.61651] 0.89222 1 2 3 4 0 0 0 0
i12 0.35348{ 0.14553] 0.63405] 0.88816 2 1 3 4 0 0 0 0
i13 0.63863{ 0.09128] 0.99357{ 0.36039 3 1 4 2 0 0 0 0
i14 0.38011] 0.62046f 0.11562{ 0.87847 2 3 1 4 0 0 0 0
i15 0.00142] 0.00139} 0.00143 0.0017 0 ] 0 0
i16 0.61377] 0.37812] 0.99982| 0.14173 3 2 4 1 0 0 0 0

Page C.15




Routing Results for Node 16
of the Sample Network

Destination Real Output Values Target Rankings Target Values
Node ol 02 03 04 01 02 03 04 o1 02 03 o4
i1 0.6001| 0.66277] 0.7387] 0.69211 1 2 3 4 0.125 0.375 0.625 0.875
i2 0.83195| 0.68335| 0.79365| 0.65356 4 2 3 1 0.875 0.375 0.625 0.125
i3 0.7324] 0.5838] 0.6941| 0.57503 4 2 3 1 0.875 0.375 0.625 0.125
i4 0.7421| 0.52077] 0.60967| 0.55011 4 1 3 2 0.875 0.125 0.625 0.375
i5 0.7579] 0.5601] 0.5809] 0.64446 4 1 2 3 0.875 0.125 0.375 0.625
i6 0.84136] 0.57155| 0.68184| 0.52126 4 2 3 1 0.875 0.375 0.625 0.125
i7 0.84165( 0.45933| 0.56963| 0.45056 4 2 3 1 0.875 0.375 0.625 0.125
i8 0.85577| 0.4071 0.496] 0.4857 4 1 3 2 0.875 0.125 0.625 0.375
i9 0.9459] 0.3721] 0.3929] 0.45646 4 1 2 3 0.875 0.125 0.375 0.625
i10 1} 0.45267| 0.56297| 0.43873 4 2 3 1 0.875 0.375 0.625 0.125
i11 0.95141} 0.34957| 0.45987] 0.34079 4 2 3 1 0.875 0.375 0.625 0.125
i12 1{ 0.2307 0.341} 0.31506 4 1 3 2 0.875 0.125 0.625 0.375
i13 1] 0.3915] 0.1802]| 0.47586 4 2 1 3 0.875 0.375 0.125 0.625
it4 1] 0.44942| 0.55972| 0.31426 4 2 3 1 0.875 0.375 0.625 0.125
i15 1] 0.34046| 0.45076{ 0.2053 4 2 3 1 0.875 0.375 0.625 0.125
i16
Destination Measured Values Measured Rankings Actual-Measured
Node o1 02 03 04 o1 02 03 04 01 02 03 o4
it 0.12483] 0.37529]| 0.62509 1 1 2 3 4 4] 0 0 0
i2 0.86913| 0.37058| 0.62427] 0.13071 4 2 3 1 0 0 0 0
i3 0.87751| 0.38386] 0.61433| 0.09268 4 2 3 1 0 0 0 0
id4 0.87292} 0.08957] 0.63114| 0.37628 4 1 3 2 0 0 0 0
i5 0.8794| 0.11827] 0.37875| 0.62546 4 1 2 3 0 0 0 0
i6 0.86869( 0.37344| 0.62484| 0.13219 4 2 3 1 4] 0 0 0
i7 0.86987| 0.36938] 0.62723} 0.13355 4 2 3 1 0 0 0 0
i8 0.8737| 0.17935| 0.59951] 0.37171 4 1 3 2 o] 0 0 o]
i9 0.87727| 0.12869| 0.36769| 0.62402 4 1 2 3 0 0 0 0
i10 0.87969| 0.38996| 0.61727| 0.09295 4 2 3 1 0 0 0 0
i11 0.8848| 0.32721] 0.64823| 0.1552 4 2 3 1 o] 0 0 0
i12 0.87887| 0.08978| 0.63454| 0.37573 4 1 3 2 0 0 0 0
i13 0.87083] 0.37603| 0.12861| 0.62488 4 2 1 3 0 0 0 0
it4 0.86847] 0.3733] 0.62478| 0.13374 4 2 3 1 0 0 o] 0
it5 0.87825| 0.37791] 0.62333| 0.10166 4 2 3 1 0 0 0 0
i16 0.00116} 0.00099] 0.00108| 0.00102 0 o] 0 0

Page C.16




