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Abstract

The thesis uses mathematical modeling and analysis to provide insights into the transmission
dynamics of Human papillomavirus (HPV), and associated cancers and warts, in a commu-
nity. A new deterministic model is designed and used to assess the community-wide impact
of mass vaccination of new sexually-active susceptible females with the anti-HPV Gardasil
vaccine. Conditions for the existence and asymptotic stability of the associated equilibria
are derived. Numerical simulations show that the use of Gardasil vaccine could lead to
the effective control of the spread of HPV in the community if the vaccine coverage is at
least 78%. The model is extended to include the dynamics of the low- and high-risk HPV
types and the combined use of the Gardasil and Cervariz anti-HPV vaccines. Overall, this
study shows that the prospect of the effective community-wide control of HPV using the

currently-available anti-HPV vaccines are encouraging.
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Chapter 1

Introduction

This chapter provides a review of some of the key biological and epidemiological features of

HPYV disease, as well as the associated cancers and warts.

1.1 Human Papillomavirus (HPV)

Human papillomavirus (HPV) is a major sexually-transmitted infection (STI) that continues
to inflict significant public health burden globally (see, for example, [27, 45, 51, 72, 100]).
Genital HPV infection is the commonest STI in Canada and the USA [35, 45, 80, 82].
Currently, 79 million Americans are infected with HPV, and 14 million new HPV infections
are recorded in the USA annually [15]. HPV prevalence is higher in women than in men
[50, 68, 71, 100], and it is estimated that as many as 75% of sexually-active men and women
will have at least one HPV infection in their lifetime [45, 49, 56, 100]. HPV was identified,
in 1983, as the causative agent of cervical cancer [45, 46].

Cervical cancer is currently the second most common malignancy among women, and
a leading cause of cancer-related death globally [24, 45, 72, 100]. Data shows that up to
250,000 cervical cancer related deaths are recorded globally every year [33, 46], and that
about 86% of cervical cancer cases occur in developing countries [100] (see also Table 1.1

and Figures 1.1 and 1.2).



Region Cervical cancer cases | Deaths
Africa 80,419 53,334
Americas 80,711 36,125
Asia 312,752 159,774
Furope 54,323 25,102
Oceania 1,595 781
Developing regions | 453,321 241,969
Developed regions | 76,507 33,159
World (Total) 529,828 275,128

Table 1.1: Incidence and mortality of cervical cancer by region for the year 2008 [100].

For instance, in the year 2008, about 529,409 new cervical cancer cases and 274,883 related
mortality were recorded globally [100]. About 12,000 women in the USA are diagnosed with
cervical cancer every year [15]. In Canada, an estimated 1,300 women were diagnosed with
cervical cancer in 2009 (with 380 related deaths), corresponding to an annual incidence rate
of 7 cases per 100,000 women (see Table 1.2) [10, 54]. Cervical cancer ranks as the 12th
most frequent cancer among women in Canada (it is also the 3rd most frequent cancer among
Canadian women between the ages of 15 and 45) [54, 100]. Infection with certain HPV types
can also cause genital warts, and data from the US Centres for Diseases Control shows that

up to 360,000 cases genital warts are recorded in the USA annually [15, 22, 27, 76].



ASR
[ ]==689
] =129
[ <=203
M <=30
I =563
[ | Nodata - R

ASR, age-standardized incidence rate; Rates par 100,000 woman par year.
Data sources:
TARC, Globocan 2008.

Figure 1.1: World age-standardized* incidence rates of cervical cancer for the year 2008 [100].

* 7age-standardized” rate (ASR) is a method of adjusting the crude (with respect to
incidence and mortality) rate to eliminate the effect of differences in population age
structures when comparing crude (with respect to incidence and mortality) rates for different
periods of time, different geographic areas and/or different population sub-groups [4].

ASR
[]==28
[] <=8
I <=108
M =176
W =7

[ | No data - R

ASR, aga-standardizad rale; Raies per 100,000 women par year.
Dala sources:
TARC, Globocan 2008.

Figure 1.2: World age-standardized mortality rates of cervical cancer for the year 2008 [100].

HPV is caused by over 120 different serotypes [15, 27, 76]. While some of these types

cause genital warts only, others can cause diverse cancers [15, 27, 76]. HPV infects squamous



Province Estimated new cases
Newfoundland 20
Prince Edward Island | 10
Nova Scotia 50
New Brunswick 30
Quebec 280
Ontario 490
Manitoba 45
Saskatchewan 35
Alberta 160
British Columbia 160
Canada (Total) 1,300

Table 1.2: Estimates of new cases of cervical cancer by province in Canada for 2009 [76].

epithelial cells in the cervix, the genital areas of males and females, bladder, mouth, throat,
tongue etc. [15, 76, 100]. Transmission of the virus occurs when the virus comes in contact

with these areas, allowing it to transfer between epithelial cells. Although genital HPV



infections are very common, especially those caused by the low-risk HPV types (such as,
HPV-6 and HPV-11 [18, 51]), they do not (generally) cause any clinical symptoms of HPV
(and are cleared up without any treatment within a few years [15, 46, 100]; it is known that
in 90% of HPV cases, the body’s immune system clears the infection naturally within two
years [15]). These low-risk HPV types cause warts (papillomas) on the genital areas, which
are very common, harmless, non cancerous, and easily treatable [15, 18]. Genital warts
usually appear as a small bump or groups of bumps in the genital area (they can be small
or large, raised or flat, or shaped like a cauliflower) [22].

Other forms of HPV, particularly those caused by the high-risk types (such as, HPV-
16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56,
HPV-58, HPV-59, HPV-68, HPV-73 and HPV-82), are more problematic [18, 51]. These
(high-risk) HPV types cause cervical and other cancers related to the genital areas [15, 18,
22, 51, 76, 100]. The common symptoms of the disease include small bumpy warts on the
genitals or anus and itching or burning around the genitals [15, 100].

The incubation period of HPV is typically between 1 month to 2 years [1, 15, 100]. A
major challenge associated with the transmission dynamics of HPV is that a high proportion
of individuals with genital HPV infections are not detected [15]. Thus, not all people infected
with HPV will develop clinical symptoms of HPV, and such latently-infected people (i.e.,
those with asymptomatic HPV infection) can transmit HPV infection [33, 41, 50]. Numerous
factors, such as smoking, weakened immune system or co-infection (or supper infection)
with other STIs (or HPV types), affect the risk of developing HPV-related cancer (following
infection with the high-risk HPV types) [15, 46, 76].

Although most people clear HPV infection and develop antibody responses, HPV can also
employ several strategies to avoid the immune system [41, 49]. In the absence of regression
(from pre-cancerous stage to a normal cell situation), pre-cancerous lesions may persist for
many years, and may, in some instances, progress to cancer [49, 80, 82, 100]. High-risk

HPYV types infect genital areas in men and women, and cause flat lesions at these areas.



In women, who do not successfully clear their HPV infection, such lesions can progress
to the low-grade cervical intraepithelial neoplasia (denoted by CIN1), and may progress
further to higher CIN grades (denoted by CIN2 and CIN3) and cervical cancer if untreated
[10, 15, 26, 46, 50, 61, 76]. It has been shown that, without treatment, the incidence of the
progression of CIN3 to cervical cancer is about 30% [49, 56]. Figure 1.3 depicts a diagram
for the transition of high-risk HPV types through the three CIN stages (CIN1, CIN2 and
CIN3) to cancer. It is known that the high-risk HPV-16 and HPV-18 account for over 70%

of cervical cancer cases globally [9, 46, 49, 56].

/"j‘"‘i )\

Figure 1.3: A diagram for the transition of high-risk HPV types through the various stages
of cervical dysplasia (CIN1, CIN2 and CIN3), cervical cancer, and associated regression [39].

HPV is a circular, double-stranded DNA virus, protected by a capsid protein [17, 22, 66].
It first infects keratinocyte stem cells, situated in the basal layer of the epithelium [17, 22, 33].
Consequently, HPV enters the target (normal) cell, uncoats and delivers its DNA into the
target cell’s nucleus [17, 22, 33, 41, 50]. Upon infection, the virus exploits the replication
machinery of the target cell to reproduce several copies of its genome, so that each infected

cell contains a low viral load of about 50 copies [17, 22, 66]. The target cells proliferate



and move towards the outer layers of the epithelium (the viruses also proliferate) [17, 22,
66, 74, 94]. At this stage, the viral load has been drastically increased (resulting in the
production of thousands of viral particles per cell) [17]. As these infected cells approach the
surface of the skin, the viral particles are released to infect other target cells [6, 22, 69, 94],
continuing the cycle. It is known that HPV-16 and HPV-18 are most frequently associated
with cervical cancer (this due to the presence of two viral oncogenes, E6 and E7 genes,
which bind to the human p53 tumor suppressor protein [22, 30, 79, 81, 102]. While the E6
protein targets the pb3 tumor suppressor for degradation, the E7 protein, on the other hand,
inactivates the retinoblastoma susceptibility protein [81]). Figure 1.4 depicts the process of
HPYV infection in women. Further details about HPV replication cycle can be obtained from

6, 17, 22, 66, 69, 74, 94] (and some of the references therein).
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Figure 1.4: HPV infection in women [69].

1.2 Control Strategies

The spread of HPV, and associated cancers and warts, is controlled via a number of pre-

ventive and therapeutic mechanisms. It is known, first of all, that the use of condoms can
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reduce the transmission of HPV between sexual partners [15, 68, 80, 82]. The other main

anti-HPV control strategies are described below.

1.2.1 Treatment

Unlike some other STIs, HPV cannot be cured using antibiotics [68]. Treatment against
HPV infection depends on the type of the virus the individual is infected with [15, 76, 82].
If the infected person has contracted the low-risk HPV types (which causes genital warts),
the resulting (associated) genital warts can be removed using chemical treatment methods
(such as, cryotherapy, podophyllin and trichloroacetic acid) and cream (such as, Aldara)
[15, 56, 89]. However, it is known that eliminating the visible aspect of the warts will
not always eliminate the virus completely, and the warts can re-appear [15, 46, 100]. On
the other hand, for individuals infected with the high-risk HPV types (that cause various
cancers), treatment will depend on the CIN stage at the time of diagnosis [15, 49, 80]. The
associated pre-cancerous HPV do not (in general) cause any noticeable symptoms, and are

usually detected through a Pap test (smear) or a colposcopy [15, 22, 33, 41, 50].

1.2.2 Pap screening

Pap screening has proven to be quite effective, particularly in developed nations, in early
detection of CIN, and, consequently, reducing cervical cancer incidence and mortality [61].
Pre-cancerous lesions can usually be treated successfully (using, for instance, loop electro-
surgical excision procedure, which involves the removal of a cancerous tissue using a wire
loop, or using laser therapy [68, 80, 82]). It has recently been recommended that the Pap
test be administered every 3 years, starting at age 21 [15, 46, 76, 80]. Furthermore, a pos-
itive diagnosis of cervical cancer imply the presence of invasive cancer in the deeper layers
of the cervix, and that the cancer has also spread to the uterus. If the cancer is limited to
the cervix, it can be treated with the removal of the uterus (hysterectomy). However, if it

spreads to the anus or other genital areas, it can be treated wvia surgery or radiation therapy



[15, 34, 56, 100].

1.2.3 HPYV Vaccine

Two anti-HPV vaccines, namely Cervariz and Gardasil, have been approved for use to
protect new sexually-active males and females against some of the most common HPV types
[15, 34, 46, 56, 76]. The Gardasil quadrivalent vaccine, produced by Merck Inc., protects
against four HPV types (namely, HPV-6, HPV-11, HPV-16 and HPV-18; these are the four
commonest HPV types). The Cervariz bivalent vaccine, produced by GlaxoSmithKline,
targets two high-risk HPV types (namely, HPV-16 and HPV-18 ) [10, 77]. The two vaccines,
administered in a series of three doses over a period of 6 months, are 90-100% effective in
preventing HPV infection against the respective HPV types [9, 27, 46, 50, 61, 76, 100]. Both
vaccines have been licensed by the Food and Drug Administration of the USA, and the retail
price of either vaccine is about USD $130 per dose (that is, USD $390 for full series) [15, 34].
It has been reported that both vaccines have side effects, including pain (at the body location
where the vaccine is given), fever, dizziness, and nausea [15, 34, 76, 100]. While the Gardasil
vaccine is approved for both females and males, the Cervariz vaccine is only approved for

females [76, 77, 100].

1.3 Reproduction Number and Bifurcations

Compartmental mathematical models have been widely used to gain insights into the spread
and control of emerging and re-emerging diseases of public health importance, dating back
to the pioneering works of Bernoulli in 1760 (see, for instance, [2, 3, 5, 21, 47] and the
references therein). The dynamics of these models is typically characterized by a threshold
quantity, known as the basic reproduction number (denoted by Rg), which measures the
average number of new cases a typical infectious individual can generate in a completely-

susceptible population [3, 20, 47]. In general, the disease dies out in time if Ry < 1, and



persists in the community if Ry > 1. This phenomenon, where the disease-free equilibrium
(DFE) and an endemic equilibrium point (EEP) of the model exchange their stability at Ry =
1, is known as forward bifurcation [12, 14, 42, 47, 48, 86]. The epidemiological meaning of
the forward bifurcation phenomenon is that the requirement Ry < 1 is (in general) necessary
and sufficient for the effective control or elimination of the disease. Figure 1.5 depicts a

schematic diagram of forward bifurcation.

I8 i Stable Endemic
i Equilibrium

0.06

0.04

0.02+
i Stable DFE Unstable DFE

DI:I T 1 T 1 | 1 1 1 1 I i T T T | T T T T I

o0 05 10 15 54

Figure 1.5: Forward bifurcation diagram (where A is the infection rate).

It is known, in some epidemiological settings, that the requirement Ry < 1, while neces-
sary, is not sufficient for effective disease control or elimination. This is due to a dynamic phe-
nomenon, known as backward bifurcation. This phenomenon results when a stable EEP of the
model co-exists with the associated stable DFE when Ry < 1. Backward bifurcation has been
observed in numerous epidemiological studies, such as those in [12, 14, 23, 28, 42, 84, 85, 86].
In a backward bifurcation situation, effective disease control is dependent on the initial sizes
of the sub-populations of the model. Consequently, the presence of backward bifurcation in

the transmission dynamics of a disease makes the effective control of the disease (in the com-
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munity) more difficult. Figure 1.6 depicts a diagram for the backward bifurcation diagram.

0.25]
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0.15-
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R, Backward-bifurcation range

Figure 1.6: Backward bifurcation diagram, showing co-existence of a stable DFE and two
branches of endemic equilibria (stable and unstable branch).

1.4 Thesis Outline

The main aim of this thesis is to use mathematical modelling, based on the current knowledge
of HPV biology and epidemiology, and rigorous qualitative analysis to gain insights into the
transmission dynamics of HPV (and associated cancers and warts) in a community. The
models to be developed in this thesis consider only the heterosexual transmission of HPV.
The thesis is organized as follows. Some of the basic mathematical preliminaries needed to
qualitatively analyze the models to be developed in the thesis are reviewed in Chapter 2.
In Chapter 3, an HPV vaccination model (based on using the Gardasil vaccine alone in the
community) is formulated and rigorously analyzed. In Chapter 4, the model developed in
Chapter 3 is extended to include, inter alia, the dynamics of the low- and high-risk HPV

types and the two anti-HPV vaccines (Cervariz and Gardasil). The main mathematical

11



and epidemiological contributions of the thesis, including some areas for future work, are

enumerated in Chapter 5.

Some of the main questions to be addressed in the thesis are:

i)

ii)

iii)

iv)

What are the main qualitative features of realistic models for the transmission dynam-
ics of HPV (and associated cancers and warts) in a community, in the presence of a
mass vaccination program (using the currently-available Cervariz and Gardasil vac-
cines) against HPV? In particular, emphasis will be on determining conditions for the
existence and asymptotic (both local and global) stability of the associated equilibria
of the models, as well as to characterize the various bifurcation types the models may

undergo.

Can the singular use of the Gardasil vaccine for new sexually-active susceptible women
lead to the effective control or elimination of HPV from the community? If yes, what
percentage of the new sexually-active susceptible women need to be vaccinated to

achieve this result?

What are the qualitative features of a vaccination model for HPV that stratifies the
total population in terms of the risk of transmitting infection with the low- and high-

risk HPV types?

Does the vaccination of new sexually-active susceptible males have a quantifiable

community-wide impact in reducing HPV (and HPV-related) burden?

What is the community-wide impact of the combined use of the two anti-HPV vaccines,

Cervariz and Gardasil (for new sexually-active susceptible women)?

12



Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basis mathematical theories and methodologies relevant

to the thesis.

2.1 Equilibria of Autonomous Ordinary Differential Equa-
tions (ODEs)

In this thesis, only the systems of autonomous ODEs, given by
&= f(z), zeR", (2.1)
are considered. That is, non-autonomous ODE systems, of the form
= f(x,t), z€R" and teR, (2.2)

where f can depend on the independent variable ¢, are not considered in this thesis.
In both equations (2.1) and (2.2), and throughout this thesis, the over dot represents
differentiation with respect to time (<), and the right-hand side function, f € C” with

dt

r > 1, is called a vector field [73].
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Definition 2.1. A point £ € R" is called an equilibrium point of the autonomous system

(2.1) if f(z) = 0.

Theorem 2.1. (Fundamental Existence- Uniqueness Theorem [73]). Let E be an open subset
of R™ containing o and assume that f € CY(E). Then, there exists an a > 0 such that the

imatial value problem:

has a unique solution x(t) on the interval [—a,al.

Definition 2.2. The Jacobian matriz of f at the equilibrium T, denoted by Df(Z), is the

matrix,
Aft (= Af1 (=
g(z) - (D)
Afn (= Afn (=
ge(@) - gim()

of partial derivatives of f evaluated at T.

Definition 2.3. The linear system & = Ax, with the matrivx A = Df(z), is called the

linearization of the system (2.1) at the equilibrium .

Definition 2.4. An equilibrium point T of the system (2.1) is called hyperbolic if none of

the eigenvalues of Df(Z) has zero real part.

Definition 2.5. An equilibrium point that is not hyperbolic is called non-hyperbolic.

2.2 Hartman-Grobman Theorem

Consider the dynamical system:

t = f(x), zeR" (2.3)

v = g(y), yeR"
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where f(z) and g(z) are two C” (r > 1) vector fields on R".

Definition 2.6. [98]. The dynamics generated by the vector fields f and g, of the system
(2.3), are said to be locally C*-conjugate (k < r) if there exists a C* diffeomorphisim h
which takes the orbits of the flow generated by f, ¢(t,x), to the orbits of the flow generated

by g, ¥(t,y), preserving orientation and parameterization by time.

Theorem 2.2. (Hartman-Grobman Theorem [98]). Consider the C"(r > 1) system
T = f(z), =eR" (2.4)

with domain of f to be a large open subset of R™. Suppose also that the system (2.4) has

equilibrium solutions which are hyperbolic. Consider the associated linear system

£=Df(x)¢, £eR™ (2.5)

Then, the flow generated by the system (2.4) is C°-conjugate to the flow generated by the

linearized system (2.5) in a neighborhood of the equilibrium point x = .

It should be stated that the Hartman-Grobman Theorem guarantees a homeomorphism
between the flow of the non-linear ODE and that of its linearization. In general, near a
hyperbolic equilibrium point z, the non-linear system & = f(z) has the same qualitative

structure as the linear system & = Az, with A = Df(z) [73].

2.3 Stability Theory

Definition 2.7. [98]. The equilibrium Z, of the system (2.1), is said to be stable if, given
€ > 0, there exists a 6 = 6(e) > 0 such that, for any solution y(t) of the system (2.1)

satisfying | — y(to)] < 0, |2 — y(t)| < € for t >ty where ty € R.
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Definition 2.8. [98]. The equilibrium T, of the system (2.1), is said to be asymptotically-
stable if it is stable and there exists a constant ¢ > 0 such that, for any solution y(t) of the

system (2.1) satisfying | — y(to)| < ¢, tlz'm |z —y(t)] = 0.
— 00
Definition 2.9. An equilibrium solution which is not stable is said to be unstable.

The main standard methods for analyzing the stability of the equilibria of the disease trans-

mission models are described below.

2.3.1 Standard linearization

Theorem 2.3. [98]. Suppose all the eigenvalues of Df(Z) have negative real parts. Then,
the equilibrium solution © = &, of the system (2.1), is locally-asymptotically stable (LAS). It

1s unstable if at least one of the eigenvalues has positive real part.

2.3.2 The next generation operator method and R,

The next generation operator method [19, 95] is used to establish the local asymptotic
stability of the disease-free equilibrium (DFE) of a disease transmission model. The notation
in [95] is used in this thesis. Suppose the given disease transmission model, with non-negative

initial conditions, can be written in terms of the following system:

where V; = V,” — V.© and the functions satisfy Axioms (A1)-(A5) below.

The function Fj(z) represents the rate of appearance of new infections in compartment
i, V;7(z) represents the rate of transfer of individuals into compartment ¢, and V, (z)
represents the rate of transfer of individuals out of compartment ¢. Furthermore, the
number of individuals in each compartment is given by = = (z1,...,2,)" x; > 0, and
Xs={2 >0 | a2 =0,i=1,..,m} is defined as the disease-free states (non-infected

variables of the model).
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(A1) If x >0, then F;, V", V." >0 fori=1,...m;

(A2) if x; =0, then V;” = 0. In particular, if x € X then V,;” =0 for i = 1, ..., m;
(A3) F,=0ifi>m;

(A4) if r € X then Fj(z) =0and V" =0 for i =1,...,m;

(A5) if F(x) is set to zero, then all eigenvalues of D f(zy) have negative real parts.

Definition 2.10. (M-Matrix). An n xn matriz A is called an M-matriz if and only if every

off-diagonal entry of the matriz A is non-positive and the diagonal entries are all positive.
Lemma 2.1. (van den Driessche and Watmough [95]). If Z is a DFE of (2.6) and fi(z)

satisfy (A1)-(A5), then the derivatives DF(z) and DV (Z) are partitioned as

F 0 Voo
DF(z) = , DV(z) = ,
0 0 Ty Jy

where F and V' are the m X m matrices defined by,

oF; aV; . .
F— - 1< <m.
{3% (:c)} and 'V {83@- (m)] with 1<14,7<m

Further, F' is a non-negative matriz, V is a non-singular M-matrix and Js, Jy are matrices

associated with the transition terms of the model, and all eigenvalues of J4 have positive real

parts.

Theorem 2.4. (van den Driessche and Watmough [95]). Consider the disease transmission
model given by (2.6) with f(x) satisfying Azioms (A1)-(A5). If T is a DFE of the model,

then T is LAS if Ro = p(FV~Y) < 1 (where p is spectral radius), but unstable if Ry > 1.
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2.3.3 Krasnoselskii sub-linearity argument

The central idea of the Krasnoselskii sub-linearity argument is to show that the linearized
version of the non-linear system & = f(x), given by (where z is an equilibrium solution of

the non-linear system)

has no solution of the form

Z(t) = Zoeo')t,

with Zy € C", w € C and Re(w) > 0, where C denotes the complex number (further details
about the application of the Krasnoselskii sub-linearity argument to prove the asymptotic

stability of an equilibrium of a disease transmission model are available in [31, 32, 91]).

2.4 Center Manifold Theory

An effective way to analyse the qualitative properties of some dynamical systems is to re-
duce their dimensionality. The Centre Manifold Theory offers a mathematical technique for
making such reduction (near an equilibrium point) possible.

Consider the non-linear system (2.1). Further, let,
T = Ar, (2.7)

be the corresponding linearized system, with A = Df(Z), near a hyperbolic equilibrium

point .

Definition 2.11. [73]. The stable, unstable, and centre subspaces; respectively, of the linear
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system (2.7) are defined by (where A € M,,(R))

E° = span{u;j,vj;a; <0},
E* = span{uj,vj;a; > 0},

E¢ = span{uj,vj;a; =0},

where w; = u; £ iv; are eigenvectors corresponding to the eigenvalues \j = a; £ 1b;.

Remark 2.1. For a hyperbolic flow of a linear system, R = E* @& E*. These subspaces

become manifolds for non-linear ODEs.

Theorem 2.5. (Stable Manifold Theory [73]). Let f € C'(E), where E is an open subset
of R™ containing the origin, and let ¢ be the flow of non-linear system (2.1). Suppose that
f(0) =0 and D(0) has k eigenvalues with negative real parts, and ¢ = n—k eigenvalues with

positive real parts. Then, there exists a k-dimensional differentiable manifold S tangent to

the stable subspace E*® of the linear system (2.7) at 0 such that for allt > 0,¢,(S) C S and

for all zy € S,

tim (o) =0,

and there exists a q-dimensional differentiable manifold U tangent to the unstable subspace

E" of the linear system (2.7) at 0 such that for allt > 0,¢,(U) C U and for all xo € U,
tﬁznoo(bt(xo) =0

Definition 2.12. [73]. Let ¢, be the flow of non-linear system (2.1). The global stable and

unstable manifolds of (2.7) at 0 are defined, respectively, by

we(0) = Jau(9),

<0
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and,

W (0) = o).

>0
Theorem 2.6. [73]. Let f € C"(E), where E is an open subset of R"™ containing the origin
and r > 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real parts,
7 eigenvalues with positive real parts, and m = n — k — j eigenvalues with zero real parts.
Then, there exists an m— dimensional centre manifold W€¢(0) of class C" tangent to centre

subspace E¢ of (2.7) which is invariant under the flow ¢ of (2.1).

Lemma 2.2. The local centre manifold of the system (2.1) at 0,
Wie(0) = {(z,y) e R" x R* | y = h(w) for |z| <4}, (2.8)

for some 6 > 0, where h € C"(Ns(0)), h(0) = 0 and Dh(0) = O since W¢(0) is tangent to
the centre subspace

E°={(z,y) € R" x R* [ y = 0},
at the origin.

Theorem 2.7. (Center Manifold Theory [73]). Let f € C"(E) where E is an open subset of
R™ containing the origin and r > 1. Suppose that f(0) = 0 and that D f(0) has m eigenvalues
with zero real parts and k eigenvalues with negative real parts, where m+k =n. The system

(2.1) then can be written in diagonal form

t = Cx+ F(z,y),

y = Py+G($7y)>

where (z,y) € R™ x R¥, C is a square matriz with m eigenvalues having zero real parts,
P is a square matriz with k eigenvalues with negative real parts, and F(0) = G(0) = 0,

DF(0) = DG(0) = O. Furthermore, there ezists a § > 0 and a function h € C"(N5(0)) that
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defines the local centre manifold (2.8) and satisfies
Dh(z)[Cz + F(x, h(x))] — Ph(z) — G(x, h(z)) = 0,

for |x| < 0; and the flow on the centre manifold W<(0) is defined by the system of differential
equations

&= Cx+ F(x,h(x)),
for all x € R™with |z| < 4.

Theorem 2.7 can be used to determine the flow near non-hyperbolic equilibrium points [73].

2.5 Bifurcation Theory

Bifurcation theory plays an important role in providing deeper insight into the qualitative
dynamics of many phenomena arising in the natural and engineering sciences.

Consider the non-linear autonomous ODE system
= f(z,p), zeR" (2.9)

where f is a function of time and p is a scalar parameter.

Definition 2.13. Bifurcation is defined as a change in the qualitative behaviour of a given

dynamical system when an associated parameter is varied.

Definition 2.14. The parameter values where bifurcation occurs are called bifurcation values

(or bifurcation points).

There are numerous types of bifurcations, including saddle-node, transcritical, pitchfork,
Hopf, and backward bifurcation [44, 47, 73, 98]. The following theorem, which uses Centre
Manifold Theory, is used to establish the existence of backward bifurcation phenomenon (for

the models in Chapters 3 and 4 of the thesis).
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Theorem 2.8. (Castillo-Chavez & Song [11, 14]). Consider the following general system of

ordinary differential equations with a parameter ¢

dx

o = f(z,¢), f :R* xR — Rand f e C*(R" x R), (2.10)

where 0 is an equilibrium point of the system (that is, f(0,¢) =0 for all ¢) and assume

A.1) A= D,f(0,0) = (gg’:? (0,0)) is the linearization matriz of the system (2.10) around
the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of A and other

eigenvalues of A have negative real parts;

A.2) Matriz A has a right eigenvector w and a left eigenvector v (each corresponding to the

zero eigenvalue).

Let fi be the k-th component of f and

- 0 fi

a = Z Ukwiij(O,O),
k=1 v

b = zn:vkw, ka 0,0).
k=1 Oz a¢

The local dynamics of the system around 0 is totally determined by the signs of a and b.

i) a>0,b>0. When ¢ < 0 with |¢p| < 1, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < ¢ <K 1, 0 is unstable and there exists a

negative, locally asymptotically stable equilibrium;

ii) a < 0,0 < 0. When ¢ < 0 with |¢p| < 1, 0 is unstable; when 0 < ¢ < 1, 0 is locally

asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

iii) a > 0,0 < 0. When ¢ < 0 with |¢| < 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ <K 1, 0 s stable, and a positive

unstable equilibrium appears;
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w) a < 0,b>0. When ¢ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0.

2.6 Lyapunov Function Theory

A powerful method for analyzing the stability of an equilibrium point is based on the use of

Lyapunov functions.
Definition 2.15. [73]. A point xy € R™ is called an w—1limit point of x € R™, denoted by
w(z), if there exists a sequence {t;} such that

¢(tz,$) — 29 as t; — oo.

Definition 2.16. [73]. A point xo € R" is called an a—limit point of x € R", denoted by

a(x), if there exists a sequence {t;} such that
o(ti,x) = x9 as t; — —o0.
Definition 2.17. [73]. The set of all w—1limit points of a flow is called the w—Ilimit set.

Similarly, The set of all a—limit points of a flow is called the a—limit set.

Definition 2.18. [98]. Let S C R" be a set. Then, S is said to be invariant under the flow

generated by & = f(x) if for any xo € S we have ¢(t,xy) € S for all t € R.

Lemma 2.3. [98]. A set S C R" is positively-invariant if, for every xo € S, ¢(t,z9) € S, V

t>0.

Definition 2.19. [98]. A function V : R™ — R is said to be positive-definite if:

23



o V(x) >0 for all z # 0,
e V(z) =0 if and only if x = 0.

Definition 2.20. [98]. Consider the system (2.1). Let T be an equilibrium solution of the
system (2.1), and let V : U — R be a C' function defined on some neighbourhood U of T

such that
i) V' is positive-definite,
i) V(x) <0 in U\ {z}.

Definition 2.21. [98]. Any function, V', that satisfies the conditions (i) and (i) in Definition

2.20 is called a Lyapunov function.

Theorem 2.9. (LaSalle’s Invariance Principle [44]). Consider the system (2.1). Let,

S={zelU:V(z)=0} (2.11)

and M be the largest positive invariant set of the system (2.1) in S. If V is a Lyapunov
function on U and vyt (x0) is a bounded orbit of the system (2.1) which lies in S, then the

w—limit set of vt (xo) belongs to M; that is, x(t,x9) — M as t — oo.

Corollary 2.1. If V(z) — oo as || — co and V < 0 on R", then every solution of the
system (2.1) is bounded and approaches the largest invariant set M of (2.1) in the set where

V = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically stable
(GAS).
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2.7 Comparison Theorem

Comparison Theorem is sometimes used to prove the global asymptotic stability of equilibria

of dynamical systems. The general idea is to compare the solutions of the non-linear system
T = f(t,x), (2.12)
with those of the differential inequality system
2 < f(t, 2), (2.13)

or,

y=fty), (2.14)

on an interval. The technique requires that the system (2.12) has a unique solution. Consider
the autonomous system (2.12), where f is a continuously-differentiable function on an open

subset D C R"™. Let ¢.(z) denote the solution of the system (2.12) with initial value .
Definition 2.22. [87]. f is said to be of Type K in D if for each i, fi(a) < fi(b) for any
two points, a and b, in D satisfying a < b and a; = b;.

Definition 2.23. [87]. The subset D is p-convex if tx + (1 —t)y € D for all t € [0,1]
whenever x,y € D and x < y.

Thus, if D is a convex set, then it is also p-convex. If D is a p-convex subset of R™ and

ofi .
> .
az; = 0, i#j, ve€D, (2.15)

then f is of Type K in D (i.e., the Type K condition can be identified from the sign structure

of the Jacobian matrix of the system (2.12) [87]).

Theorem 2.10. (Comparison Theorem [88]). Let f be continuous on R x D and of Type

K. Let x(t) be a solution of (2.12) defined on [a,b]. If z(t) is a continuous function on [a,b]
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satisfying (2.13) on (a,b), with z(a) < x(a), then z(t) < x(t) for all t in [a,b]. If y(t) is a
continuous on [a,b] satisfying (2.14) on (a,b), with y(a) > x(a), then y(t) > x(t) for all t in
[a, b].
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Chapter 3

HPV Model Using the Gardastl

Vaccine for Females

3.1 Introduction

As stated in Chapter 1, two anti-HPV vaccines are currently available in the market [15,
46, 68, 76, 93, 96]. These vaccines, which are highly-effective against HPV infection (with
efficacy of about 90-100% [15, 76, 93, 96]), have been approved for use in a number of
countries, including Australia, Canada, USA and some European countries [1, 76, 100]. In
this chapter, the quadrivalent Gardasil vaccine (which targets the four vaccine-preventable
HPV types, namely HPV-6, HPV-11, HPV-16 and HPV-18) will be considered. The vaccine
is recommended for females between 9 and 13 years of age (as this is the age range before
the onset of sexual activity for most females; the vaccine should be administered to females
before they become sexually-active in order to ensure maximum benefit [10, 15, 76]).

In other words, the objective of this chapter is to qualitatively assess the community-wide
impact of mass vaccination, of new sexually-active susceptible females using the quadriva-
lent Garadsil vaccine, on the transmission dynamics of the aforementioned four vaccine-

preventable HPV types in a community. To achieve this objective, a new deterministic
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model, for the heterosexual transmission of HPV community, will be formulated and rigor-
ously analysed, as below.

Although there are many types of cancers associated with HPV infection [10, 15, 26, 46,
50, 76], this chapter considers only cervical cancer (because it is the more predominant of all
the HPV-related cancers [10, 15, 33, 34, 35, 45, 46, 50, 76, 77, 97]). Furthermore, it is worth
mentioning that a sizeable percentage of HPV-infected females (particularly those who are
untreated) develop persistent HPV infection, and become at the greatest risk of developing
cervical cancer precursor lesions, causing cell abnormalities (known as cervical intraepithelial
neoplasia (CIN)) and cervical cancer [10, 15, 26, 35, 45, 46, 50, 61, 68, 77].

HPYV infection affects men as well, causing serious cancers including throat and penile
cancers (albeit they are less common) [71, 76]. Although some researchers suggest that
both females and males should be vaccinated against HPV [46, 76, 77] (while others suggest
vaccinating females only is more effective than vaccinating both males and females [9, 40, 41,
68]), this chapter considers the vaccination of females only (in line with the studies reported
in [9, 24, 25, 26, 61]). This assumption (of vaccinating only females) is relaxed in Chapter

4, where both new sexually-active susceptible males and females are vaccinated.

3.2 Model Formulation

The model to be constructed is based on the heterosexual transmission dynamics of HPV
in a community, subject to the use of mass vaccination of new sexually-active susceptible
females (of ages 9 to 13) using the quadrivalent Gardasil vaccine. The model assumes
homogenous mixing of the sexually-active female and male populations. The total sexually-
active population at time ¢, denoted by N(t), is sub-divided into two gender groups, namely
the total female population at time ¢ (denoted by Ny(t)) and the total male population at
time ¢ (denoted by N,,(t)). The total sexually-active female population (N¢(t)) is further

sub-divided into eight mutually-exclusive compartments of unvaccinated susceptible females
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(S¢(t)), new sexually-active susceptible females vaccinated with the Gardasil vaccine (Vi(t)),
exposed (i.e., latently-infected, and show no clinical symptoms of HPV) females (E((t)),
infected females with clinical symptoms (symptomatic) of HPV (I4(t)), infected females
with persistent HPV infection (P(t)), infected females with cervical cancer (C(t)), infected
females who recovered from cervical cancer (R.(t)), and infected females who recovered from
infection without developing cervical cancer (Ry(t)).

Furthermore, the total sexually-active male population at time ¢ (N,,(t)) is sub-divided
into susceptible (5,,(t)), exposed (E,,(t)), infected with clinical symptoms of HPV (I, (%))

and recovered (R,,(t)) males. Thus,

N(t) = Ny(t) + Nin(1),

where,

Ny(t) = Sp(t) + Vi(t) + Ep + 1;(t) + P(t) + C(t) + R.(t) + Ry(1),

and,

N (t) = Spn(t) + Em + L (t) + Rin(t).

It should be emphasized that, in this thesis, individuals in the exposed (Ef and E,,) and
persistent (P) classes are infected with HPV, and can transmit HPV to susceptible individ-
uals.

The population of unvaccinated susceptible females (S) is increased by the recruitment
of new sexually-active females at a rate m;(1-¢y), where 0 < ¢y < 1 is the fraction of
newly-recruited sexually-active females (typically of ages 9 to 13 years [10, 15, 76]) who are
vaccinated with the Gardasil vaccine. This population is further increased by the loss of
infection-acquired immunity by recovered females who did not develop cervical cancer (at a

rate £¢). Unvaccinated susceptible females acquire HPV infection, following effective contact
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with infected males (i.e., those in the F,, and I, classes), at a rate \,,, where

N,,, N E I
)\mzﬁmcf( ms ;\z(nm m+ m). (31)

In (3.1), By, is the probability of infection from males to females per contact, and cg (N, Ny)
is the average number of female partners per male per unit time. Thus, Bycs (Ny,, Ny) is
the effective contact rate (i.e., contact capable of leading to infection) for male-to-female
transmission of HPV. Furthermore, n,, (with 0 < 7,, < 1) is the modification parameter
accounting for the assumption that exposed males are less infectious than symptomatically-
infected males (in other words, unlike in many other HPV transmission modelling studies
(such as those in [9, 24, 25, 26, 61]), the model to be developed in this chapter assumes HPV
transmission by exposed individuals). It should be emphasized that a standard incidence
formulation is used in (3.1), where the contact rate is assumed to be constant, unlike in the
case of the mass action incidence (where the contact rate increases linearly with the total
size of the population [47]). It has been shown that using standard incidence function is
more suited for modelling human diseases than mass action incidence [58]. The population
of unvaccinated susceptible females is further decreased by natural death at a rate py (it is
assumed that females in all epidemiological compartments suffer natural death at the rate
fer). Thus,

dsS
d—tf =71 —p5) +§ Ry — ASy — pypSy. (3.2)

The population of vaccinated new sexually-active susceptible females with the Gardasil
vaccine (Vy) is generated by the vaccination of unvaccinated susceptible females (at the
rate mppy), and is decreased by HPV infection (at the reduced rate A, (1 — ¢,), where
0 < g, < 1 represents the vaccine efficacy against HPV infection) and natural death. As in
[10, 15, 46, 76, 77], it is assumed that the Gardasil vaccine does not wane for the duration

of the HPV dynamics considered (to our knowledge, no evidence of waning Gardasil vaccine
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protection has been shown in the literature). Thus,

v,
L= mp = (L= e)AaVs = Vs (3.3)

The population of exposed females (Ey) is generated by the infection of unvaccinated and
vaccinated susceptible females. This population is further increased by the re-infection of
recovered females (at a rate psA,,, where 0 < py < 1 accounts for the assumption that
the re-infection of recovered females occur at a rate lower than the primary infection of
unvaccinated susceptible females). It is assumed, unlike in some other modelling studies
of HPV transmission dynamics (such as those in [9, 24, 25, 26, 61]), that HPV infection
does not confer permanent immunity against re-infection. Exposed females develop clinical
symptoms of HPV (at a rate o;) and suffer natural death. Thus,

dEy _

7 A [S5+ (1 =€)V + ppAmBRy — (o5 + pg) Ey. (3.4)

The population of infected females with clinical symptoms of HPV (Iy) is generated at the

rate oy. This population is decreased by recovery (at a rate 1) and natural death. Hence,

di;

o —orEr - (V5 + pp)ly. (3.5)

The population of infected females with persistent HPV infection (P) is generated when
infected females with clinical symptoms of HPV develop persistent HPV infection (at a rate
Yr(1—rg), where 0 < ry < 1is the fraction of infected females with clinical symptoms of HPV
who recover naturally from HPV infection without developing persistent HPV infection).
Females with persistent HPV infection move out of this epidemiological class (either through

recovery or development of cervical cancer) at a rate ay, and suffer natural death. Thus,

dP

o = V=)l = (ay + py) P (3.6)
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It should be mentioned that the model to be developed in this chapter does not not explicitly
account for the pre-cancerous CIN stages (albeit the P class is assumed to also contain
individuals in the CIN stages; individuals in the CIN stages are typically detected using Pap
screening [61], which is also not explicitly incorporated in the model to be developed in this
chapter, although it is, intuitively, the reason individuals in the persistent infection class
are moved to the cancer class). The dynamics of the CIN stages is explicitly modelled in
Chapter 4.

The population of females with cervical cancer (C) is generated by the development of
cervical cancer by infected females with persistent HPV infection (at a rate ay(1—ry), where
0 < Ky < 1is the fraction of infected females with persistent HPV infection who recovered
from HPV infection). This population decreases due to recovery (at a rate y¢), natural death

and disease-induced death (at a rate ;). Hence,

ac

— =yl = k)P = vy + py +67)C. (3.7)

The class of infected females who recovered from cervical cancer (R.) is generated at the

rate v¢, and decreases by natural death, so that

dR.
dt

=75C — pyRe. (3.8)

The population of infected females who recovered from infection without developing cervical
cancer (Ry) is generated at the rates ¢yr; and ok, respectively. Recovered females acquire
HPYV re-infection at the rate pgA,,. This population is further decreased by the loss of

infection-acquired immunity (at the rate {f) and natural death. This gives:

dR;

o = Yrrelp +agprP - (P Am + & + pyp) Ry (3.9)

The population of susceptible males (S,,) is generated by the recruitment of new sexually-
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active males (at a rate my). It is further increased by the loss of infection-acquired immunity
by recovered males (at a rate ;). This population is diminished by infection, following

effective contact with infected females, at a rate Ay, where

o (Nows Np) (0B + I7 + 0,P
)\f:ﬁfc ( f)(]Zf s+ 1 +0,P) (3.10)
f

In (3.10), B¢ is the probability of infection from females to males per contact, ¢, (N, Ny)
is the average number of male partners per female per unit time, ny (0 < 7y < 1) is the
modification parameter accounting for the assumption that exposed females (i.e., those in
the £y class) are less infectious than symptomatically-infected females (i.e., those in the I
class), and 6, > 0 is the modification parameter accounting for the assumption that infected
females with persistent HPV infection transmit HPV at a different rate compared to infected
females in the Iy class. This population is further decreased by natural death (at a rate fi,,;
it is assumed that males in all epidemiological compartments suffer natural death at this
rate, (i, ). Thus,
Sy,

The population of exposed males (FE,,) is generated by the infection of susceptible males (at
the rate A\y) and by the re-infection of recovered males (at a rate p,Af, where 0 < p,,, <1
accounts for the assumption that the re-infection of recovered males occur at a rate lower
than the primary infection of susceptible males). Exposed males develop clinical symptoms

of HPV (at a rate o,,,) and suffer natural death. Thus,

dE,,

The population of infected males with clinical symptoms of HPV (I,,,) is generated at the
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rate o,,. It is reduced by recovery (at a rate 1,) and natural death. Hence,

dl,,

The population of recovered males (R,,) is generated at the rate 1,,. It is decreased by re-
infection (at the rate p,,As), loss of infection-acquired immunity (at the rate &,,) and natural
death, so that

dR,,
o = Ymln = (prds + &+ ) B (3.14)

It should be mentioned that no disease-induced death is assumed for males (although this
assumption is justified owing to the fact that penile cancer is rare [46], it will be relaxed in
the model to be developed in Chapter 4). Furthermore, no pre-cancerous or cancer stages are
considered for males in the model developed in this chapter (this assumption is also relaxed

in Chapter 4). It follows from the equations given in {(3.11)-(3.14)} that

AN,
M = fnNo, 3.15
i (3.15)

so that Ny, (t) — 7=, as t — oc.

It is worth mentioning that an important feature of a sex-structured disease transmission
model, such as {(3.1)-(3.14)}, is that the total number of sexual contacts females make with
males must equal the total number of sexual contacts males make with females (see, for

instant, [13, 27, 65, 84, 101]). Thus, the following conservation law (for number of sexual

contacts made by males balancing those made by females) must hold:
Cm (Nm,Nf) Nm = Cy (Nm,Nf) Nf. (316)

It is assumed that male sexual partners are abundant, so that females can always have enough

number of male sexual contacts per unit time. Hence, it is assumed that ¢y (N, Ny) = ¢y,
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a COIlStal’lt, and Cm, (]V,,n, Nf) is calculated from the relation
m 2'7IL7N . 3].1

Using the constraint (3.17) in (3.1) and (3.10), the infection rates A, and s are, now, given,

respectively, by

_ Bt (B + L) A = Drer eBy 1y + 0,P)

A N an N

(3.18)

Based on the above formulations and assumptions (and using (3.18) for (3.1) and (3.10)),
the model for the heterosexual transmission of HPV (and associated dysplasia), in a com-
munity that implements a mass vaccination campaign against HPV (using the quadrivalent
Gardasil vaccine), is given by the following deterministic system of non-linear differential

equations:
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ds By (B + L
=L = 71— )+ &Ry — AU )Sf_NfSﬁ
dt Ny
dv; Bins (N Em + In)
_ = - 1 - -
- mror — (1 — &) N Vi— nsVy,
dtf _ f - [Sp+ (1 —e,)Vy + prRy] — (o) + pyp) Ey,
dl
d_tf = 0By — (Y5 + pg)ly,
dP
- = (1 —rp)I; — (af + pyp)P, (3.19)
dC
— = ag(l=r)P = (3 +py +05)C,
dR,
c - C - Rca
I s 1223
d_tf = ’g/)fo[f—{—OZfKZfP— Pr f< N >+€f+:uf Rf’
S, Bres By + 1y + 6,P)
at = Tm + ngm - Nm Sm o 'umSm’
dE,, Ec+1:,4+6,P
dt N
dl,,
= OB = (Un + ) I,
dR,, E:+1:4+0,P
== Yl pn 222 L1 T )t | R

A flow diagram of the model (3.19) is depicted in Figure 3.1. The state variables and
parameters of the model are tabulated in Table 3.1.

The model (3.19) is an extension of the HPV vaccination models in [9, 24, 25, 26, 61],
by:

i) including classes for exposed females (Ey) and males (£, );
ii) allowing for disease transmission by exposed females and males (ny # 0, n,, # 0);

iii) allowing for the loss of infection-acquired immunity by recovered individuals (§; # 0,

Em # 0);
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iv) allowing for the re-infection of recovered individuals (pf # 0, p,, # 0).

Furthermore, the model (3.19) extends the vaccination models in [9, 26] by, in addition to
Items (i)-(iii) above, including disease-induced mortality (§; # 0) and a compartment for

females with persistent HPV infection (P).

3.2.1 Basic properties

The basic qualitative features of the basic HPV vaccination model (3.19) will be explored.
First of all, for the vaccination model (3.19) to be epidemiologically meaningful, it is impor-
tant to show that all its state variables are non-negative for all time ¢ > 0 (i.e., the solutions
of the vaccination model (3.19) with non-negative initial data must remain non-negative for

all t > 0).

Theorem 3.1. Let the initial data for the vaccination model (3.19) be S¢(0) > 0,V(0) >
0, E;(0) > 0,1;(0) > 0, P(0) > 0,C(0) > 0,R.(0) > 0,R;(0) > 0,8, (0) > 0, En(0) >
0,1,,(0) >0, and R,,(0) > 0. Then, the solutions (S¢(t), Vi(t), Ef(t), I(t), P(t),C(t), R.(t),
Rg(t), Sm(t), En(t), In(t), Ry (t)) of the model with positive initial data, will remain positive

for all time t > 0.
The proof of Theorem 3.1 is given in Appendix A.

Theorem 3.2. The closed set

D = {(Sf7Vf7EfajfaPvcaRcaRfJvaEmvjmaRm) ERL2Nf S %7Nm§ Z_m}
f m

is positively-invariant and attracting with respect to the model (3.19).

Proof. Adding the first eight equations of the model (3.19) gives:

dN
d—tf =mp = pyNy = 0;C <7y — iy Ny (3.20)
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It follows from (3.20) that % < 0if Ng(t) > Z—; Thus, using a standard Comparison

Theorem (Theorem 2.10; see also [58]),

N(t) < Np(0)e st + (1 — sty
g

Therefore, Ny(t) < Z—; if N;(0) < Z—; Similarly, it follows from (3.15) that

Nn(t) = N, (0)e Pt + Z—’”(1 )

Hence, Nin(t) < 72 if Ny, (0) < 2. Thus, D is positively-invariant. Furthermore, if Ny(t) >
Z—’; and N, (t) > 7=; then either the solution enters D in finite time, or Ny(t) approaches Z—?
and N,,(t) approaches Z—m, and the state variables associated with the infected classes of the

model approach zero. Hence, D attracts all solutions in Rf. O

In the region D, the model (3.19) can be considered as epidemiologically and mathematically

well-posed [47].

3.3 Analysis of Vaccination-free Model

Before analyzing the vaccination model (3.19), it is instructive to gain insight into the dynam-
ics of the model (3.19) in the absence of vaccination (i.e., the model (3.19) with ¢ = V; = 0).

The resulting vaccination-free model is given by
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dsSy B (MmEm + L)

o = T &R N, Sp = hrSy,
foo_ i >(Sf+prf) — (o7 + py) Ey,

dt No,

dl

dP

dC

— = ap(1— k)P — (vs+ s +6;)C,

dR.

7 = ¢k

dR Bmc m B + I

d_tf = @/)fT‘f[f—f—OéfIifP_ Pr f(nN )+§f+:uf Rf7
S, Brey By + 1y +6,P)

- = T, + mem Nm Sm ,umsnu
dE,, Ef+1;+6,P

_ 5fcf (77f f f P ) (Sm + mem) — (O‘m + ,Um)Ema

dt N

dl,,

— = onE,, — (1/1m + Mm)lﬂw
dR,, E I;+0,P
7 - 7vbm]m - pmﬁfo (nf ];V_’_ ’ u s ) +€m + Hm Rm7

where, now,

Np(t) = 5p(t) + Ep(t) + 15 (1) + P(t) + C(t) + Re(t) + Ry(t),

and,

Noat) = Son(t) + Eo(t) + In(t) + Ron(2).

For the vaccination-free model (3.21), it can be shown (using the approach in Section 3.2.1

) that the following region is positively-invariant and attracting

Dl = {(SfaEfajfapacaRcaRfasmaEm+[maRm> ER}::NJC < ﬂaNm < W_m}’
223 Hm
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so that it is sufficient to consider the dynamics of the vaccination-free model (3.21) in D;.
It is worth noting from (3.15) that N, (t) — Z—Z as t — oco. Consequently, from now on,
the total male population at time ¢ (given by N,,(t)) will be replaced by its limiting value,
oz (since Ny (t) — 72, as t — 00). In other words, the rest of the analyses in this chapter
will be carried out with N,,(¢), in (3.19) and (3.21), replaced by its limiting value, N}, = T=.

Hm

3.3.1 Local asymptotic stability of disease-free equilibrium (DFE)

The vaccination-free model (3.21) has a DFE, obtained by setting the right-hand sides of

the equations in the model (3.21) to zero, given by

* * * * * * * * * * * 7Tf Tm
80 == (Sf,Ef,If,P ,C 7RC7Rf7Sm7Em7Im7Rm) = <M_f70,070,070, M—m,O,O) . (322)

with,

Ni=Si="L and N;=5;,=""

. 3.23
[if fhm (3.23)

The next generation operator method [95] (see also Section 2.3.2) will be used to explore
the local stability of the DFE. The matrices F (of new infections) and H (of transfer terms

between compartments) evaluated at the DFE (&), are given, respectively, by

ntmeS;; ,BmeS;:

0 0 0 00 M g
0 0 0 0 0 0 0 0
0 0 0 00 0 0 0
Fo 0 0 0 00 0 0 0 |
0 0 0 0 0 0 0 0
ngBrcr Brey OpPecy 00 0 0 0
0 0 0 0 0 0 0 0
0 0 0 00 0 0 0
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and,

g1 0 0 0 0 O 0 0
—0f G2 0 0 0 O 0 0
0O —-h nya 0 0 O 0 0
e 0 0 —hy ny 0 0 0 0 |
0O —my —mo 0 g3 O 0 0
0 0 0 0 0 g4 0 0
0 0 0 0 0 —om g5 O
0

0 0 0 0 0 Y g6

where,

G = op+py, go =Y+ pgp, by = (1—1y), ho = ay(l — ky), n1 = ay + py,
Mo = Yf+ g+ 0 my =Ty, Mo = aypky, g3 =Ef + b, Ga = O + [,

95 = Ym+ fim;, g6 = Em + Hm-
It follows from Theorem 2.4 that (where p is the spectral radius of FH!):

Ro=p(FH ') = VRuRy, (3.24)

with,

R ﬁmemeﬂ'f (nmg5 + O'm) and Rf _ Bfo nfni1gs + O'f(n1 + ephl)
Tt f 95 94 92 n1g1

The result below follows from Theorem 2.4 (or Theorem 2 of [95]).

Theorem 3.3. The DFE, &, of the vaccination-free model (3.21), given by (3.22), is locally-

asymptotically stable (LAS) if Ry < 1, and unstable if Ry > 1.

The threshold quantity, Ry, is the basic reproduction number of the model (3.21) [47]. It

represents the average number of secondary HPV infections generated by a typical HPV-
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infected person if introduced into a completely-susceptible sexually-active population (or
community). It is worth noting that Ry is an aggregate product of the average number of
new HPV cases generated by females (denoted by R;) and males (denoted by R,,).
Epidemiologically speaking, Theorem 3.3 states that a small influx of infected individuals
(males or females) will not generate large HPV outbreaks in the community if Ry < 1 (in
other words, HPV can be effectively controlled in the community if the initial sizes of the
sub-populations of the model (3.21) are in the basin of attraction of the DFE, &y, of the model
(3.21)). However, in order for such effective control (or elimination) to be independent of
the initial sizes of the sub-populations of the vaccination-free model (3.21), it is necessary
to show that the DFE (&), of the model (3.21), is globally-asymptotically stable (GAS) if

Ry < 1. This is explored, for a special case, in Section 3.3.5.

3.3.2 Interpretation of the basic reproduction number (RR))

The reproduction threshold (Ry) can be interpreted as follows. Susceptible females can
acquire infection, following effective contacts with either exposed (E,,) or symptomatic males

(I;,). The number of female infections generated by exposed males (near the DFE) is given

. . m mS* .
by the product of the infection rate of exposed males (%) and the average duration
in the exposed (E,,) class <0 Jlru = gl4> Furthermore, the number of female infections

generated by symptomatic males (near the DFE) is given by the product of the infection

. m S* “7. .
rate of symptomatic males (’B ]\(;f ! ), the probability that an exposed male survives the
exposed stage and move to the symptomatic stage <J "J:”M = ‘;—T> and the average duration

L_ — 1) Thus, the average number of new female
wm“l‘#m g5

in the symptomatic ([,,) class (

infections generated by infected males (exposed or symptomatic) is given by (noting that

S]"Z:ﬁ and N;;:Z—Z),

<6mcf77m,um + Bmcflu’mo-m> g — Bmcfﬂmﬂ'f (Um% + Um) ) (325)
TmJa Tmgags Tmfbf 9495
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The two terms in the left-hand side (LHS) of (3.25), represent the number of new female in-
fections generated by exposed males (E,,) and the number of new female infections generated
by symptomatic males (1,,,), respectively.

Similarly, susceptible males acquire HPV infection, following effective contacts with either
exposed females (Ey), symptomatic females (If) or females with persistent HPV infection

(P). The number of male infections generated by exposed females (near the DFE) is the

product of the infection rate of exposed females <M) and the average duration in the
exposed (Ey) class (trleruf = i) The number of male infections generated by symptomatic

females is the product of the infection rate of symptomatic females (%ﬂ), the probabil-

ity that an exposed female survives the exposed class and move to the symptomatic stage

oy o5 . . . 1 _ 1 ~
(q T 91) and the average duration in the symptomatic (1) class ( SR = g2>. Fur
thermore, the number of male infections generated by females with persistent HPV infection
is the product of the infection rate of females with persistent HPV infection (%), the

probability that an exposed female survives the exposed class and move to the symptomatic

stage (Ulfjr—fw = Z—f), the proportion of symptomatic females that move to the persistent
infection class <% = %) and the average duration in the persistent infection class
<af«1wf = %) Thus, the average number of new male infections generated by infected fe-

males (exposed, symptomatic or those with persistent HPV infection) is given by (noting

that S, = ™)
HKm

<5fo’f]f[Lm N Brctimoy N 6fcf0f9pumh1> S = Byeg (nfnlgg + oy + Uf9ph1) - (3.26)
Tmg1 Tmd192 TmM19192 119192
The terms in LHS of (3.26), represent the number of new male infections generated by
exposed females (Ey), symptomatic (Iy) and females with persistent HPV infection (P).
Since two generations are needed in the female-male-female HPV transmission cycle, the
geometric mean of (3.25) and (3.26) gives the basic reproduction number, Ry (interpretation

for Ry is also given in [16, 37, 43] for other epidemiological settings).
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3.3.3 Existence and local asymptotic stability of endemic equilib-
rium point (EEP)

It is instructive to determine the number of possible equilibrium solutions the vaccination-

free model (3.21) can have. It is convenient to let

&= (SE B I, PO R R S B L Ry, (3.27)

m?om )

be an arbitrary endemic equilibrium of the model (3.21) (an equilibrium where all the infected
components of the model are non-zero). Furthermore, let (it should be emphasized that N,,,

in (3.21), is now replaced by Z_Z)

ﬁmcf,um (nmE;ZK + I:::)

A = , (3.28)
Tm
and,
Af = Brestin (B} 17"+ 0y >, (3.29)
Tm

be the force of infection for males and females at steady- state, respectively.

Solving the equations of the vaccination-free (3.21) at the endemic steady-state gives:

o TGRS o NP NRY) . ofFf
! L 91 o ga
pro= Loewo P e ppo L (330)
™ 2 Ks PrAn + 93
o+ En R (S 4 pr R g
S:r;k _ Tr*j_g m’E;:k: f( P )7[:::0- m’
)\f +:um ga Js
mI**
R = w—m
pm)‘f +g6
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Substituting the expressions in (3.30) into (3.28) and (3.29) gives

with,

211

213

221

223

A= **f 2211 (96 +** ¥ 12) | (3.31)
()\f )" z12 + ¥ 213+ 214

N = omen (gt Anta) (3.32)
(A5F)" 290 + Nt zog + 204

BnCslim (Mms + 0m), tiz = pm, 212 = ti2 (9495 — Om¥m)

9495 (96 + tmt12) — OmWm (Em + mti2), 214 = 949596 m, (3.33)
Bresmptim (

m

Nfnigs + niog + O0phioy) . taa = pp, 222 = taz [N1g1G2 — 0 (Nimy + hamy)],

n19192 (g3 + pptae) — o (namy + hama) (§5 + pirtas), 2o4 = N1G192g3its-.

The expressions in (3.33) can be simplified to

212

213

222

223

= tiofim (Om + Ym + fim) > 0,

= pn [(Om + m + ) (En + pimt12) + (O + ) (Ym + pn)] > 0,

= taopp (o +r + pg) (g +op) +opp (L—rp) [pg + o (1+ )] > 0,
= oy (L=rp){&s lus +ap (L= k)] + taopy (ay + pip) }

+ g (3 A+ pp) + 05y (o + pap)] + g (o + &+ pup) lag (V5 + pug) + ppidy]

+

taspiy (07 + by + pg) (af + i) > 0.

By substituting (3.32) into (3.31), and simplifying, it follows that the endemic equilibria of

the vaccination-free model (3.21) satisfy the following polynomial (in terms of A**),

ag (NS 4+ bo (A)? 4 ¢ (A5)? + doA™ +eg = 0, (3.34)
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where,

2
agp = toozor (tae2o1212 + 213%22) + 214259,

2
bo = 2tagszi02; + 292 (214203 + g3213221) + 222 (214223 — g6g3211221)

+  ta9201 (213203 — tiataez11291) ,

co = zmzaz (2= RY) + gszi3z21223 + 93221 (93221212 — tiatarz11221) (3.35)

+  togzon (213223 - t1293211221) + 213 (214223 - 967522211221) s

2
do = 23214224 (1 — RY) + 224 (93213221 — getaoz11201) + G321 (224213 — t12g3211221)

ey = 211234 (1 — Rg) .

It follows from (3.35) that the coefficient, ag, of the quartic (3.34), is always positive (since all
the parameters of the model (3.21) are positive). Furthermore, the coefficient, e, is positive
(negative) if Ry is less than (greater than) unity. Thus, the number of possible positive real
roots the polynomial (3.34) can have depends on the signs of by, cg, and dy. This can be
analysed using the Descartes Rule of Sign for the quartic (3.34). The various possibilities
for the number of positive real roots of (3.34) are tabulated in Table 3.2, from which the

following result is obtained:
Theorem 3.4. The vaccination-free model (3.21),

i) has a unique endemic equilibrium if Ry > 1 and Cases 1,2,3 and 6 of Table 3.2 hold;

i) could have more than one endemic equilibria if Ro > 1 and Cases 4,5,7 and 8 of Table

3.2 hold;

46



iii) could have two or more endemic equilibria if Ro < 1 and Cases 2,3,4,5,6,7 and 8 of

Table 3.2 hold.

We claim the following result, for the local asymptotic stability of a special case of the EEP
(&€1) of the model (3.21).

Theorem 3.5. Consider the vaccination-free model (3.21) with py = py = 0 and that
Item (i) of Theorem 3.4 holds. Then, the associated unique endemic equilibrium, &, of the

resulting reduced model, is LAS whenever Ry > 1.

The proof of Theorem 3.5, based on using a Krasnoselskii sub-linearity argument [31, 32, 91],
is given in Appendix B. The result of Theorem 3.5 is numerically illustrated by simulating the
model (3.21), using numerous initial conditions and parameter values such that Ry = 6.4887.
The results obtained, depicted in Figure 3.2, show convergence of the solutions to the unique
endemic equilibrium, & (in line with Theorem 3.5). The epidemiological implication of
this result is that, for this special case (of the model (3.21) with p; = p,, = 0), HPV will
establish itself in the population, when Ry > 1, if the initial sizes of the sub-populations
of the vaccination-free model (3.21) are in the basin of attraction of the unique endemic

equilibrium (&;).

3.3.4 Backward bifurcation analysis

The presence of multiple endemic equilibria of the vaccination-free model (3.21) when Ry < 1
(as shown in Theorem 3.4 and Table 3.2) suggests the possibility of backward bifurcation,
where, typically, the stable DFE (&) co-exists with a stable endemic equilibrium (&;), when
the associated basic reproduction number (Rg) is less than unity. The phenomenon of
backward bifurcation has been observed in numerous disease transmission models, such as
those with imperfect vaccine and exogenous re-infection (see, for instance, [14, 28, 83, 84, 85,

86, 103] and some of the references therein), vector-borne diseases [37] and treatment [104].
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We claim the following result (the proof, based on using Centre Manifold Theory, as

described in [14], is given in Appendix C).

Theorem 3.6. The vaccination-free model (3.21) undergoes backward bifurcation at Ry = 1

if the inequality py > p$, given by (C.6) in Appendiz C, holds.

The backward bifurcation phenomenon is illustrated by simulating the vaccination-free
model (3.21) with the following set of parameter values: §; = 0.0001, £ = &,, = 0.0012, p; =
1.2, pm = 09855, mp = mp = 100, By = 0.35, ¢ = ¢f = 15, fif = pin = =, Ky =
0.895, ay = 0878, o5 = 0y, = 0.75, Yy = ¢, = 0.8, 0, = 0.95 and 7y = n,, = 0.9.
With this set of parameter values, the associated bifurcation coefficients, a and b (defined in
Appendix C), take the values a = 0.0182183226 > 0 and b = 359.2293164 > 0.

It should be mentioned that the aforementioned parameter values are chosen only to
illustrate the backward bifurcation phenomenon property of the vaccination-free model (and
they may not all be realistic epidemiologically; in particular, the parameter p; has to be
chosen outside its realistic range 0 < p;y < 1). As noted by Lipsitch and Murray [60], it is, in
general, difficult to illustrate the phenomenon of backward bifurcation using a realistic set of
parameter values. Nonetheless, the analyses in Appendix C show that the vaccination-free
model (3.21) will undergo backward bifurcation Ry = 1 if the re-infection parameter for
females (py) exceeds a certain threshold (p$). The resulting backward bifurcation diagram
is depicted in Figure 3.3.

The epidemiological consequence of the backward bifurcation phenomenon of the vaccination-
free model (3.21) is that the effective control of HPV spread in the population (when Ry < 1)
is dependent on the initial sizes of the sub-populations of the model. In other words, the
presence of backward bifurcation in the vaccination-free model (3.21) makes the effort to
effectively control (or eliminate) HPV spread in the population difficult.

Furthermore, it follows from the analyses in Appendix C that the vaccination-free model

(3.21) does not undergo backward bifurcation if recovered females and males do not acquire

HPV re-infection (i.e., if p,, = py = 0). In such a scenario (i.e., the model (3.21) with
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pm = py = 0 and, for computational convenience, &5 = &, = 0), the backward bifurcation
coefficient, a (given by (C.7) in Appendix C), is negative (which excludes backward bifurca-
tion in line with Item (7v) of Theorem 2.8 in Chapter 2). Thus, the analyses in Appendix

C suggest that the DFE (&), of the vaccination-free model (3.21), is GAS if Ry < 1 and

pm = py = 0. This claim is explored below.

3.3.5 Global asymptotic stability of DFE (special case)

To further confirm the absence of backward bifurcation in the vaccination-free model (3.21),
for the scenario when p,, = py = 0, the global asymptotic stability property of its DFE (&),

is established below for this special case.

Theorem 3.7. The DFE, &, of the vaccination-free model (3.21), with py = p,, = 0, is

The proof of Theorem 3.7, based on using a Comparison Theorem [58], is given in Appendix
D. This result is illustrated numerically in Figure 3.4, by simulating the vaccination-free
model (3.21) using multiple initial conditions and parameter values such that Ry = 0.3823
(so that, by Theorem 3.7, the DFE, &, of the model (3.21) is GAS). Figure 3.4 shows
convergence of the solution profiles to the DFE (in accordance with Theorem 3.7). The
epidemiological implication of Theorem 3.7 is that the classical epidemiological requirement
of having the associated reproduction number (RR) less than unity is necessary and sufficient
for the elimination of HPV from the community.

In summary, the vaccination-free model (3.21) has the following dynamical features:
i) The model has a LAS DFE whenever Ry < 1;

ii) The model can have a unique or multiple endemic equilibria when the associated re-
production number (Ry) exceeds unity. For the special case when the model has a

unique endemic equilibrium point, this equilibrium is shown to be LAS;
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iii) The model undergoes the phenomenon of backward bifurcation at Ry = 1 if the re-

infection parameter for females (py) exceeds a certain threshold (p%);

iv) The re-infection of recovered individuals (p; # 0;p, # 0) causes the phenomenon
of backward bifurcation in the vaccination-free model (3.21). It is shown that in the
absence of such re-infection (i.e., py = p,,, = 0), the DFE of the resulting model is GAS

in D; whenever Rg < 1.

3.4 Analysis of Vaccination Model

In this section, the full model (3.19) will be rigorously analysed (with the aim of determin-
ing whether or not the model (3.19) has certain dynamical features that are absent in the

vaccination-free model (3.21)).

3.4.1 Local asymptotic stability of DFE

Consider, now, the full vaccination model (3.19). Its DFE is given by

& = (S}, Vi E}I5, P ,C* R: R, Si B I R

= (51,V£,0,0,0,0,0,0,5;,,0,0,0), (3.36)
where, now,

1— m

Iif If -
with,
7Tm

Tf
Ni=Si4Vi=-L and N: =g =2
Py fim

The matrices Fyr and Hy, associated with vaccination model (3.19), are given by
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0 0 0 00 Zmlsii-g)Vy] L[S+ (1-e)Vf] 0
0 0 0 00 0 0 0
0 0 0 00 0 0 0
7 0 0 0 00 0 0 0
0 0 0 00 0 0 0
Bremy Brep Brepd, 00 0 0 0
0 0 0 00 0 0 0
0 0 0 00 0 0 0
and,

Hy

0 0 0O 0 —o,m 95 O

0
0
0
0 0 0 0 0 g 0 0
0
0

0O 0 0 0 0 —tm g

where g¢;(i = 1...,6), ny,na,my,me and hq, hy are as defined in Section 3.3.3. Thus, the

vaccination reproduction number, denoted by R, = p (}"VH‘_/I), is given by

Rv =V Rvavf7

with (it is worth stating that since 0 < e,y < 1, the threshold quantity R,r > 0),
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Rom

_ ﬁfum <77m95 + Om
gs5Tm

g4

> and va =

Bncimr (L= eupys) [npnigs + op(na + 0,hy)

gally

Thus, the result below follows (from Theorem 2 of [95]).

Theorem 3.8. The DFE, &), of the vaccination model (3.19), is LAS if R, < 1, and

unstable if R, > 1.

The threshold quantity, R,, is the vaccination reproduction number for the model (3.19). It

can be interpreted in the same way as Rq in Sections 3.3.1 and 3.3.2.

3.4.2 Existence and local asymptotic stability of EEP

The existence of an EEP of the vaccination model (3.19) is explored below. As in Section

3.3.3, let,

81‘/ — (S**7 ‘/>I<>I<7 El;*7 ];*7 P;*7 C(>I<>I<7 R:*7 R**

) m

(3.37)

be an arbitrary endemic equilibrium of the full model (3.19). Furthermore, let A} and A"

be given as in (3.31) and (3.32), respectively (see Section 3.3.3). Solving the equations of

the model (3.19) at steady-state, in terms of A* and A}*, gives

St
I
o

kk
R,

02

T (L —p) + § Ry Ve Wiz v
*x ) o K%k ’ r -
ff,P**: 1f7C>k*: 2 7R:*:7f
92 m 1
A 91 T g
Yl

k%
7Rf_

Y

A [S7 4+ (L= )V + ps Ry ]

my I + my PP
PFA + g3

?

(3.38)



Using (3.38) in (3.31) and (3.32), and simplifying, gives

At 2o11 (2012 4 Nirtost + (A5)? Zo13]

()\22‘)3 Z22 + (/\;'Tf)z 2993 + A\ 2o04 + Zo25
(3.39)

N5tz (g6 + Aftia)
(A}*)Q z12 + A 213 + 214

*k
m

and /\}* =

with (where z11, t12, 212, 213 and z14 are as defined in Section 3.3.3),

Bresmstim (
Tom

2212 = Q3Mf(1 - 5v90f>7 2213 = Pf(l - 51})7 2222 = Pf(l - 5v) [n1g1gz — 0y (n1m1 + h1m2)] )

2 nynige +nioy + Ophiog), taor = prpg(1 —epipf) + g3(1 — &),
23 = (L=€0)[ng1g2 (privy + g3) — op (numa + hama) (pgpiy + &5)]

+ prlmgige —op (namy + himy)] (3.40)
Zooa = (L —ey)prn1g1929s + prnigige (prity + g3) — op (namy + hame) (prps +&5)

2225 = M?En19192g3-

Since all the parameters of the vaccination model (3.19) are positive, and 0 < ¢, < 1, it can
be shown, after some lengthy algebraic manipulations, that all the variables in (3.40) are
positive (see Section 3.3.3). Substituting A} into A}y in (3.39), and simplifying, it follows
that the non-zero equilibria of the vaccination model (3.19) satisfy the following polynomial

(in terms of \%¥),
as (A + by (N + o (A 4 da (A5 + e ()2 + fodin + o = 0, (3.41)

with,
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a2

Co

da

€2

2

J2

2 2
2992 (2142222 + 21322132211) + 21225132911

2
221429932292 + 22112213 (2132223 + t1221129112213) + t12211 2213 (212 + t221)

2222 (t2212’132’211 - 962112213) )

2 2 2
Z122912%213%511 + t2o1 2511 (t2o1 212 + t122112013) + 22132511 (2122212 + tiateo1211)

(2222 + 2224) (2’142’224 + 21322122211 — t22121122112212) + 29923 (Z14Z223 + t9212132211 — 96Z11Z213) )
2—R2) + ( +t )+ o (t +t )
22222142225 v 22112213 (R132225 1221122112212 22122911 \l221%12 122112213
2
to212511 (2122212 + tiatao1 211) + 2224 (2142023 + to212132011 — G62112213)

2223 (2142224 + Z13%2212%2211 — g6t2112112211) )

2 2 2
2oa3714%2225 (2 — R3) + tiatos1 251, 2112212 + 25112212 (2122212 + tiatazi 211)

29224 (2142224 + 22122132211 — 96?52212112211) + 2225 (t2212132211 - 962112213) )

2 2 2
21472247225 (1 - RU) + 2225 (2142224 + Z1322112212 — 96752212112211) + 1122112511 %2125

2142325 (1 — Ri) .

Clearly, the coefficient, as, of the polynomial (3.41), is always positive (since all the model

parameters are positive). Furthermore, the coefficient, js, is positive (negative) if R, is less

than (greater than) unity. Thus, the number of possible positive real roots the polynomial

(3.41) can have depends on the signs of by, ¢2, ds, e5 and f;. The various possibilities for the
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roots of (3.34) are tabulated in Table 3.3.
Theorem 3.9. The vaccination model (3.19),

i) has a unique endemic equilibrium if R, > 1 and whenever Cases 1,2,3 and 6 of Table

3.3 hold;

i) could have more than one endemic equilibrium if R, > 1 and whenever Cases 4,5,7,8,11

and 12 of Table 3.3 hold;

iii) could have two or more endemic equilibrium if R, < 1 and whenever Cases 2-12 of

Table 3.3 hold.

Furthermore, as in the case of the vaccination-free model (3.21), the vaccination model

(3.19) also undergoes backward bifurcation, as below.

Theorem 3.10. The vaccination model (3.19) undergoes backward bifurcation at R, = 1

whenever the inequality (E.3), given in Appendiz E, is satisfied.

The proof, based on using Centre Manifold Theory, is given in Appendix E. Here, too, the
backward bifurcation property of the vaccination model (3.19) can be removed whenever the
re-infection of recovered individuals does not occur (i.e., py = p,, = 0). The GAS property

of the DFE, &}, of the vaccination model (3.19), is established for this case in Section 3.4.3.

3.4.3 Global asymptotic stability of DFE (special case)

The global asymptotic stability of the DFE, &), of the vaccination model (3.19) is established

for the special case where the re-infection of recovered individuals does not occur (i.e., py =
Pm = 0)'

Theorem 3.11. The DFE, &), of the vaccination model (5.19), with p; = py, = 0, is GAS
inD if R, < 1.

The proof of Theorem 3.11, based on using a Lyapunov function, is given in Appendix F.
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3.5 Qualitative Assessment of Vaccine Impact

The population-level impact of the anti-HPV mass vaccination program, using the Gardasil
vaccine, in the community is assessed for the special case of the vaccination model (3.19)
with p; = p,,, = 0 (so that the DFE of the resulting model is GAS, in line with Theorem

3.11). It is convenient to re-write the associated vaccination reproduction number, R, as
R2 =R (1 —evpp), (3.42)

where ¢y represents the fraction of females vaccinated at steady-state, ¢, is the vaccine
efficacy, and Ry is basic reproduction number for the vaccination-free model (3.21) with
pr = pm = 0. Thus (noting that g;(¢ = 1...,6), ny,ng, my, me and hq, hy are as defined in
Section 3.3.3),

BrcmBmcs (mgs + om) (nyrage + oyna + o46,h1)

RE=TR2|, —0= :
0 lw n1391929495

It can be shown from (3.42), by writing R, = R, (¢y), that

R, (‘Pf) =TRo vV 1—eupy, (3-43)

so that,

87% €UR0

Opy 21 —5Ug0f'

Since 0 < ¢, < 1, it follows that R,(¢y) is a decreasing function of ;. Furthermore, there

is a unique ¢4, such that R, (gojc) =1, given by
c_ 1, 1
T R3)
Lemma 3.1. The DFE, &), of the vaccination model (3.19), with p; = p, =0, is GAS in
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D if oy > ¢, and unstable if oy < ¢5.

Proof. Consider the vaccination model (3.19) with py = p,, = 0. Let ¢ > ¢5. Then, it
follows from (3.42) that R, < 1. Hence, the result follows from Theorem 3.11 that the DFE,

&Y of (3.19) with py = p,, = 0, is GAS in D for this case (¢; > ©%)- O

Figure 3.5 depicts a contour plot of R, as a function of the vaccine efficacy (¢,) and coverage
(¢f). It follows from Figure 3.5 that, with the assumed 90% efficacy of the Gardasil vaccine
[7, 15, 76, 93, 96], HPV can be effectively controlled or eliminated from the community if
at least 78% of the new sexually-active susceptible females in the community are vaccinated

(with Gardasil) at steady-state.

3.6 Numerical Simulations

The vaccination-free model (3.21) is simulated, first of all, using the parameter values given
in Table 3.1 (unless otherwise stated). The following initial conditions were used in the
simulations: S¢(0) = 15,000, V¢(0) = 35,000, £,(0) + 1;(0) + P(0) = 5,000, C(0) = 1, 300,
Sm(0) = 50,000, E,,(0) + ,(0) = 500 and R.(0) = Rf(0) = R,,(0) = 0. Figure 3.6 depicts
the cumulative number of new cervical cancer cases as a function of time in the absence of
vaccination (i.e., Vy = ¢y = 0). This figure (which represents the worst-case scenario of
HPV transmission in the community in the absence of mass vaccination) shows that about
1,700 cervical cancer cases will be recorded over 5 years. Furthermore, up to 262 infected
people will die over the same time period (Figure 3.7).

The vaccination model (3.19) is then simulated to determine the impact of mass vaccina-
tion of new sexually-active females (using the Gardasil vaccine) on the cumulative number
of new cervical cancer cases in the community. Figure 3.8 shows a marked decrease in the
cumulative number of cases (from 1,700 in Figure 3.6 to about 907) if the Gardasil vaccine
efficacy is assumed to be 80%. This number further reduces to only 3 cases if the vaccine

efficacy is 99% (it should be recalled that the efficacy of the Gardasil vaccine is in the range
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90 — 100% [15, 76, 93, 96]; so that the assumption for 80% and 99% efficacy is within a
realistic range). The cumulative number of cervical cancer mortality, for various Gardasil
efficacy, for this case is depicted in Figure 3.9. This figure shows that with an assumed
vaccine efficacy of 80%, the cumulative mortality, over 5 years, reduces (in comparison to
the worst-case scenario) to about 23 deaths (this number further reduces to 16 deaths if
the vaccine efficacy is 99%). It is worth mentioning that the simulations carried out in this
chapter are subject to uncertainties in the estimates of the parameter values given in Table
3.1 (the effect of such uncertainties can be assessed by using a sampling technique, such as
Latin hypercube sampling, as described in [8, 63]).

In summary, the vaccination model (3.19) has the following dynamical features:
i) The model has a LAS DFE whenever R, < 1;

ii) The model can have a unique or multiple endemic equilibria when the associated re-
production number (R,) exceeds unity. For the special case when the model has a

unique endemic equilibrium point, this equilibrium is shown to be LAS;

iii) The model undergoes the phenomenon of backward bifurcation at R, = 1 if the in-
equality (E.3) holds. It is shown that the re-infection of recovered males and females
causes the backward bifurcation phenomenon in this model. In the absence of re-
infection of recovered individuals (i.e., p; = p,, = 0), the DFE of the resulting model

was shown to be GAS in D whenever R, < 1.

These results show that the vaccination model (3.19) exhibits essentially the same qualitative
dynamics (with respect to the existence and stability of the associated equilibria, as well as

with respect to the backward bifurcation property) as the vaccination-free model (3.21).
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3.7 Summary of the Chapter

A new deterministic model for the transmission dynamics of HPV in a community, where a

mass vaccination program using Gardasil is administrated for new sexually-active susceptible

females, is designed. An essential feature of the resulting HPV vaccination model is that

it incorporates the re-infection of, as well as the loss of infection-acquired immunity by,

recovered individuals. Both the vaccination-free and vaccination models were rigorously

analysed to gain insight into their dynamical features. Some of the main theoretical and

epidemiological findings of this chapter are as follows:

i)

ii)

iii)

iv)

both the vaccination-free model (3.21) and the vaccination model (3.19) have a globally-
asymptotically stable DFE whenever their associated reproduction number is less than

unity and no re-infection of recovered individuals occurs (i.e., py = pm, = 0);

both models have at least one locally-asymptotically stable EEP whenever their re-

spective reproduction numbers exceed unity for the special case with p; = p,, = 0;

both models exhibit the phenomenon of backward bifurcation under certain conditions.
It is shown that the backward bifurcation phenomenon is caused by the re-infection of

recovered individuals;

the cumulative number of cervical cancer cases in the absence of vaccination, which
represents the worst-case scenario of HPV transmission in the community, shows that
about 1,700 cervical cancer cases will be recorded over 5 years. Furthermore, up to

262 infected females will die of cervical cancer over the same time period;

the impact of mass vaccination of new sexually-active susceptible females (using the
Gardasil vaccine) on the cumulative number of new cervical cancer cases in the com-
munity shows a marked decrease in the number of cases (from 1,700 in to about 907)
if the Gardasil vaccine efficacy is assumed to be 80%. This number further reduces to

only 3 cases if the Gardasil vaccine efficacy is assumed to be 99%;
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vi)

vii)

the cumulative number of cervical cancer mortality shows that with an assumed Gar-
dasil vaccine efficacy of 80%, the cumulative mortality, over 5 years, reduces (in com-
parison to the worst-case scenario) to about 23 deaths (this number further reduces to

16 deaths if the efficacy of the vaccine is assumed to be 99%);

numerical simulations of the vaccination model (3.19) show that the use of the Gar-
dasil vaccine (with the assumed efficacy of 90%) can lead to the effective control (or
elimination) of the four HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) in the
community if at least 78% of the new sexually-active susceptible females are vacci-

nated at steady-state.
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Figure 3.1: Flow diagram of the vaccination model (3.19).
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Table 3.1: Description of variables and parameters of the vaccination model (3.19).

Variable  Description

Sy Population of unvaccinated susceptible females
Sm Population of susceptible males
Vi Population of new sexually-active susceptible

females vaccinated with the Gardasil vaccine
E¢(E,) Population of exposed females (males)

I¢(Ly) Population of infected females (males) with clinical
symptoms of HPV

P Population of females with persistent infection
C Population of infected females with cervical cancer
R, Population of infected females who recovered

from cervical cancer

R¢(R,,) Population females (males) who recovered from

HPV

N;(N,,)  Total population of females (males)

Parameter Description Nominal value Reference
per year
7f(m,)  Recruitment rate of new sexually-active
females (males) 10000 (61, 75]
Bm (Bf)  Infection probability for females (males) 0.4 (0.5) 61, 75]
cf (¢n)  Average number of female (male) sexual
partners for males (females) 2 <§\]f\2((tt)) ) (61, 75]
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Parameter Description Nominal value Reference
per year
©f Fraction of new sexually-active females vaccinated 0.7 25, 61]
Ev Vaccine (Gardasil) efficacy 0.9 (61, 76]
pr(pm)  Natural death rate for females (males) = 9, 61]
Er(&m) Rate of loss of infection-acquired immunity for females
(males) Assumed
nf(Mm)  Modification parameter for infectiousness
of exposed individuals in the E¢(E,,) class relative to
those in the I¢(1,,) class Assumed
pf(pm)  Re-infection parameter for females (males) Assumed
of(om)  Rate of development of clinical symptoms of HPV
for exposed females (males) Assumed
V()  Recovery rate of infected females (males) 0.9 61, 67]
s Fraction of symptomatic females who recover naturally
from HPV (but do not develop persistent infection) 0.5 [61]
af Recovery rate of infected females with
persistent infection 0.9 [61]
Kf Fraction of symptomatic females who recover naturally
from persistent infection (but do not develop
cervical cancer) Assumed
Vf Recovery rate of females with cervical cancer 0.76 25, 61]
d¢ Cancer-induced mortality rate for females 0.001 [61]
0, Modification parameter for the infectiousness
of females with persistent infection relative to
those in the Iy class 0.9 [61]
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Cases | ag | by | co | do | €o Ro Number of sign Number of
changes possible positive
real roots
1 + |+ |+ |+ |+ | Ro<1 0 0
+ 1+ 4+ |+ - Ro>1 1 1
2 + | -]1-1-]+] Rl 2 0,2
+ - - - - | Ro>1 1 1
3 + |+ - -]+ Rl 2 0,2
+ |+ | - - - [ Rp>1 1 1
4 + -]+ -]+ Rl 4 0,24
+ - + - - | Ro>1 3 1,3
5 + | - - + |+ | Ro<1 2 0,2
+ 1 -1-14+]-]Ro>1 3 1,3
6 + |+ | + - + | Ro<1 2 0,2
T+ +[- - [Roe>1 1 1
7 + |+ | - + |+ | Ro<1 2 0,2
+ 1+ -1+ -]Ro>1 3 1,3
8 + | - + 1+ |+ | Ro<1 2 0,2
-+ [+ - Ro>1 3 1.3

Table 3.2: Number of possible positive real roots of (3.34) for Ry < 1 and Ry > 1.
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Figure 3.2: Simulations of the vaccination-free model (3.21), showing the total number of
infected individuals (females and males) as a function of time using various initial conditions.
Parameter values used are as given in Table 3.1, with py = p,, = 0, {; = &, = 0.0012,
Tf = Tm = 400, 5f = 0.8, ﬁm = 0.9, Ry = 0.7, ay = 0.5, Of =0m = 0.5, wf = Ipm = 0.5 and
nf = Ny = 0.8 (so that, Ry = 6.4887 > 1).
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Figure 3.3: Backward bifurcation diagram for the vaccination-free model (3.21), showing
the total number of infected individuals (females and males) as a function of the backward
bifurcation parameter, 3*. Parameter values used are as given in Table 3.1, with {; = &, =
0.0012, py = 1.2, pp, = 0.9855, my = m, = 100, B = 0.35, ¢ = ¢ = 15, piy = pin = ==,
ky = 0.895, ay = 0.878, 05 = 0, = 0.75, ¢y = 1y, = 0.8, 6, = 0.95 and 1y = n,, = 0.9 (so
that, RO = 1)
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Figure 3.4: Simulations of the vaccination-free model (3.21), showing the total number of
infected individuals (females and males) as a function of time using various initial conditions.
Parameter values used are as given in Table 3.1, with & = &, = 0.1, py = p, = 0,
= myn = 400, By = B, = 0.05, ky = 0.7, v = 0.22, ay = 0.5, 0y = 0, = 0.5,
Yy =y, = 0.5 and 1y =, = 0.8 (so that, Ry = 0.3823 < 1).
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Cases [ ag | by | co | da | ex | fo] 72 R, Number of sign Number of
changes possible positive
real roots

U [+ [+[+][+[+][+][F[R.<1 0 0
+ |+ |+ |+ |+ ] +] - | R >1 1 1

2 + -l -1-1-]1-14+R,<1 2 0,2
+ - - --]1-]1-]1Ry>1 1 1

3 + 1+ - -|-]-1+Rs<1 2 0,2
+ 1+ - -|-]-]-]1Ry>1 1 1

4 + -+ -] -]-]+|R<1 4 0,24
+ -+ -] -]-1]-|Rs>1 3 1,3

5 [+ -1-1-1-1T+]+[Ro<1 2 0,2
+ -] - -]-]4+]-|Rs>1 3 1,3

6 + 1+ |+ -|-]-1+ R <1 2 0,2
T - - -]-R>1 1 1

T+l -+ ][R <1 2 0,2
- --1+-R,>1 3 1,3

8 [+ -+ -[-T+[+[R.<1 2 0,2
+ -+ --1+-R,>1 3 1,3

9 + -+ -+ ] +]+ R <1 4 0,2,4
+ -+ -+ +]- | R >1 5 1,3,5

10 + |+ |-+ -] +]+ R <1 4 0,2,4
+ |+ |-+ -]+]-|R>1 5 1,3,5

11 + |+ |+ -+ -]+ R <1 4 0,2,4
Fl+ |+ - [+ -[-|R.>1 3 1,3

12 + -+ -]+ -]+ R <1 6 0,2,4,6
+ -+ - +]-]-|R>1 5 1,3,5

Table 3.3: Number of possible positive real roots of (3.41) for R, < 1 and R, > 1.
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Figure 3.5: Simulations of the vaccination model (3.19), showing a contour plot of R, as a
function of vaccine efficacy (e,) and the fraction of new sexually-active females vaccinated
at steady-state (¢s). Parameter values used are as given in Table 3.1, with &y = &, = 0.01,
pr = pm = 0, Ky = 0.895, ay = 0.878, ry = 0.887, 74 = 0.22, 05y = 0, = 0.85 and
nf = Ny = 0.8 and various values of ¢, and ¢ (with 0 <e,, ¢f <1).
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Figure 3.6: Simulation of the vaccination-free model (3.21), showing the cumulative number
of cervical cancer cases as a function of time. Parameter values used are as given in Table
3.1, with §5 = &, = 0.012, ps = p,, = 0.3, Ky = 0.7, ay = 0.42, 0 = 0y, = Yy = Yy, = 0.5,
0, =0.9, ny =1y, = 0.85 and oy = 0.001.
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Figure 3.7: Simulation of the vaccination-free model (3.19), showing the cumulative cervical
cancer-related mortality as a function of time. Parameter values used are as given in Table
3.1, with &5 = &, = 0.012, py = pp, = 0.3, k5 = 0.7, ay = 042, 0y = 0y, = Yy = Yy, = 0.5,
0p = 0.9, ny =1y = 0.85 and dy = 0.01.
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Figure 3.8: Simulation of the vaccination model (3.19), showing the cumulative number
of cervical cancer cases as a function of time for various vaccine efficacy levels. Parameter
values used are as given in Table 3.1, with §; = &, = 0.012, py = p,, = 0.3, Ky = 0.7,
af =042, 05 = 0y, =Yy =Y, = 0.5, 0, = 0.9, ny = n,, = 0.85 and 05 = 0.001.
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Figure 3.9: Simulation of the vaccination model (3.19), showing the cumulative cervical
cancer-related mortality as a function of time for various vaccine efficacy levels. Parameter
values used are as given in Table 3.1, with §; = &, = 0.012, py = p,, = 0.3, Ky = 0.7,
Qy = 0.42, Of =0pm = @/)f = @Dm = 0.5, 9p = 0.9, Ny ="MNm = 0.85 and 5]0 = 0.01.
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Chapter 4

Risk-structured HPV Model with the

Gardasil and Cervarix Vaccines

4.1 Introduction

In this chapter, the vaccination model discussed in Chapter 3 will be extended to account
for the dynamics of the low- and high-risk HPV types in the community. For simplicity, only
four (of the 120) HPV subtypes, namely HPV-6, HPV-11, HPV-16 and HPV-18, will be
considered. HPV-16 and HPV-18 are high-risk, and can persist for many years, causing CIN
and cervical cancer if untreated [9, 10, 15, 26, 46, 50, 61, 76]. These (high-risk) HPV types
account for 70% of cervical cancer cases globally [9, 46]. Almost all cervical cancer cases are
caused by HPV infection (HPV also accounts for 90% of anal cancers, 60% of oropharyngeal
cancers, and 40% of vaginal and penile cancers [38, 70]). As stated in Chapter 1, the pre-
cancerous CIN stages (lesions) are categorized into the low-grade (denoted by CIN1) and
high-grade stages [10, 15, 50, 61, 76]. In line with some other modelling studies for the
natural history of HPV [57, 62, 67], the high-grade CIN2 and CIN3 pre-cancerous stages are
lumped into a single compartment (for mathematical convenience; denoted by CIN2/3). It

should be mentioned that the three CIN stages are considered separately in [25, 61]. In later
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stages, the original cancer may spread to areas surrounding the uterus and cervix or near
organs such as the bladder or rectum. It may also spread to distant sites in the body through
the bloodstream or the lymph nodes [76, 100]. Furthermore, the high-risk HPV types cause
pre-cancerous intraepithelial neoplasia in males (also divided into three grades according to
severity of the lesions, denoted by INM1 and INM2/3), resulting in various cancers in males
(such as anal and penile cancers [29]). The currently-available HPV vaccines (Gardasil and
Cervariz) target these high-risk HPV types.

On the other hand, HPV-6 and HPV-11 are considered low-risk HPV types (since they
do not cause cervical cancer; although they do cause genital warts [76, 77]). As stated in
Chapter 1, while the bivalent (Cervariz) vaccine exclusively targets the high-risk HPV types
(HPV-16 and HPV-18), the quadrivalent (Gardasil) vaccine targets both the low-risk (HPV-
6 and HPV-11) and the high-risk (HPV-16 and HPV-18) HPV types. As stated in Chapter
1, it should be emphasized that the Cervariz vaccine is approved for use in females only,
while the Gardasil vaccine is approved for use in both females and males [76, 77, 100].

Unlike in Chapter 3 (where only the Gardasil vaccine is used), both Gardasil and Cervariz
will be used in this chapter. In other words, susceptible females have the option to choose
between the Gardasil and Cervariz vaccines (while susceptible males only have the Gardasil
vaccine option). Furthermore, in line with the recent recommendations by some Public
Health Agencies [46, 76, 77], both females and males will be vaccinated (only females are
vaccinated in the model developed in Chapter 3). As in Chapter 3, the vaccines will be
given to children of ages 9 to 13 [10, 15, 76] (it should be stated that males and females of
ages 13 to 26, who were not vaccinated before, are also be vaccinated [46, 76]). It is worth

mentioning that, unlike in [25, 29], no co-infection of HPV types is assumed in this study.
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4.2 Model Formulation

To formulate the model for the transmission dynamics of the low- and high-risk HPV sub-
types in a community, in the presence of mass vaccination (using the Cervariz and Gar-
dasil vaccines), the total sexually-active female population at time t (denoted by Ny(t))
is sub-divided into mutually-exclusive compartments of unvaccinated susceptible females
(S¢(t)), new sexually-active susceptible females vaccinated with the bivalent Cervariz vaccine
(VP(t)), new sexually-active susceptible females vaccinated with the quadrivalent Gardasil
vaccine (V/(t)), exposed (latently-infected) females with the low-risk HPV types (E}(t)), ex-
posed females with the high-risk HPV types (E}L (t)), infected females with clinical symptoms
of the low-risk HPV types (I}(t)), infected females with clinical symptoms of the high-risk
HPV types (I}(t)), infected females with persistent infection with the low-risk HPV types
(P}(t)), infected females with persistent infection with the high-risk HPV types (Pf(t)),
infected females in the (low-grade) CIN1 stage (G(t)), infected females in the (high-grade)
CIN2/3 stage (Gyp(t)), infected females with genital warts (W, (t)), infected females with
cervical cancer (C§(t)), infected females who recovered from cervical cancer (R%(t)) and
infected females who recovered from HPV infection (and genital warts) without develop-
ing cervical cancer (Ry(t)), so that (where the indices [ and h in Gy and Gy, represent,

respectively, low- and high-grade CIN, and not low- and high-risk HPV types),

Ni(t) = Sp(t) + VP(t) + V() + Ex(t) + I;(t) + Pp(t) + Wi(t) + Gult) + Gn(t)

+ C%(t) + R5(t) + Ry(t), i€ {I,h}, (4.1)

where the indices [ and h (with exception of those in Gy, and Gyy,) represent low- and high-
risk HPV types, respectively. In this study, HPV-6 and HPV-11 are the low-risk HPV types
considered, while HPV-16 and HPV-18 are the high-risk HPV types. These HPV types are
preventable using the Cervariz and Gardasil vaccines.

Furthermore, the total sexually-active male population at time ¢, denoted by N,,(t), is
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sub-divided into mutually-exclusive compartments of unvaccinated susceptible males (.S, (t)),
new sexually-active susceptible males vaccinated with the quadrivalent Gardasil vaccine
(V4(t)), exposed males with the low-risk HPV types (E' (t)), exposed males with the high-
risk HPV types (E" (t)), infected males with clinical symptoms of the low-risk HPV types
(I (t)), infected males with clinical symptoms of the high-risk HPV types (1" (t)), infected
males with persistent infection with the low-risk HPV types (P! (t)), infected males with
persistent infection with the high-risk HPV types (P”(¢)), infected males with genital warts
(Wpn(t)), infected males in the low-grade HPV-related intraepithelial neoplasia INM1 stage
(Gu(t)), infected males in the high-grade HPV-related intraepithelial neoplasia INM2/3
stage (Gpn(t)), infected males with HPV-related cancers (C7, (1)), infected males who recov-
ered from HPV-related cancers (R, (t)) and infected males who recovered from HPV (and
genital warts) without developing HPV-related cancers (R,,(t)). Thus (noting that the in-
dices [ and h in G,,; and G,,, represent, respectively, low- and high-grade INM for males,

and not low- and high-risk HPV type),

Ni(t) = Sp(t) + VI(E) + B, (8) + I, (t) + P (t) + Wi (t) + Gru(t) + Gn(t)

4O () + RE(t) + Ri(t), i€ {l,h}. (4.2)

It follows from (4.1) and (4.2) that the total sexually-active (heterosexual) population, at
time ¢, is given by

N(t) = Ng(t) + N ().

It should be emphasized that, in this chapter, individuals in the exposed (E} and E') and
persistent (P} and P.,) classes, with i € {/,h}, are infected with HPV, and can transmit
HPV to susceptible individuals.

The population of unvaccinated susceptible females (S) is increased by the recruitment
of new sexually-active females at a rate 7; (a fraction, 1 — gp’} — gp‘}, with 0 < gp’} + go‘} <1, of

which, is vaccinated; where, <pl} is the fraction of unvaccinated susceptible females vaccinated
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with the Cervariz vaccine, and gogc is the fraction vaccinated with the Gardasil vaccine). This
population is further increased by the loss of infection-acquired immunity by infected females
who recovered without developing cervical cancer (at a rate £;). The population is decreased
by infection, following effective contacts with males infected with the high-risk and the low-
risk HPV types (i.e., those in the E! | E! 1! " P! and P" classes), at the rates A} and

A given, respectively, by:

Bt (Nm, Ny) (1 By + L + 0,,570)

A= 4.3

m Nm ) ( )
"y (Nos Ny) (nl ER + I + 608 Ph

ai = Oncr (N Ny) (77; m ot I+ OnPr) (1.4)

In (4.3), B is the probability of transmission of HPV infection from infected males (with
the low-risk HPV types) to susceptible females per contact, and ¢y (IV,,, Ny) is the average
number of female partners per male per unit time. Thus, 8! c; (N, Ny) is the effective
contact rate for male-to-female transmission of the low-risk HPV types. Furthermore, 7!,
(with 0 < !, < 1) is the modification parameter accounting for the assumption that exposed
males with the low-risk HPV types are less infectious than symptomatically-infected males
with the low-risk HPV types. Similarly, in (4.4), 8" is the probability of transmission of
HPV infection from infected males (with the high-risk HPV types) to susceptible females per
contact, and S cs (N, Ny) is the effective contact rate for male-to-female transmission of
the high-risk HPV types. The parameter n” (with 0 < 7 < 1) accounts for the assumption
that exposed males with the high-risk HPV types are less infectious than symptomatically-
infected males with the high-risk HPV types, and 0! (6") > 0 is the modification parameter
accounting for the assumption that infected males with persistent infection with the low-
risk (high-risk) HPV types transmit HPV at a different rate compared to infected males
in the other infected classes (E' , I’ (E", I")). The population of unvaccinated susceptible
females is further decreased by natural death (at a rate piy; it is assumed that females in all

epidemiological compartments suffer natural death at the rate py). Thus,
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ds
b= (L= gf = 9Py + &Ry — (N + XL) Sy = psSy. (4.5)

The population of new sexually-active susceptible females vaccinated with the bivalent Cer-
varix vaccine (V}’) is generated by the vaccination of a fraction, gol}, of unvaccinated suscep-
tible females with the Cervariz vaccine (at the rate wfgol}). It is decreased by HPV infection,
following effective contacts with males infected with high-risk HPV types (at the reduced
rate (1 — &)\, where 0 < g, < 1 represents the efficacy of the Cervariz vaccine against
infection with the high-risk HPV types) and males infected with the low-risk HPV types
(at the rate A! ; it should be emphasized that the Cervariz vaccine has no efficacy against
the low-risk HPV types, HPV-6 and HPV-11 [46, 76, 77]). This population is decreased by
natural death. Since there is currently no evidence to the contrary, it is assumed that this
vaccine (as well as Gardasil) does not wane [10, 15, 46, 76, 77]. Hence,
dV}’

= Gy — (1 =) A VP — XL VP — 1, VY. (4.6)

The population of new sexually-active susceptible females vaccinated with the quadrivalent
Gardasil vaccine (V') is generated by the vaccination of a fraction, ¢%, of unvaccinated
susceptible females with the Gardasil vaccine (at the rate 7ng0;1c). It is decreased by HPV
infection, following effective contacts with males infected with the low- and high-risk HPV
types (at a reduced rate (1 — g,) (AL, + A%), where 0 < g, < 1 represents the efficacy
of Gardasil vaccine against infection with HPV-6, HPV-11, HPV-16 and HPV-18). This
population is decreased by natural death. Thus,

vy q h ! q q

o = (1—¢,) ()\m + )\m) Vi — Vi (4.7)
The population of exposed females with the low-risk (high-risk) HPV types (E}(E})) is

generated by the infection of unvaccinated and vaccinated susceptible females with the low-
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risk HPV types (at the rate Al (\")). This population is further increased by the re-infection
of recovered females with the low-risk (high-risk) HPV types (at a rate p4 AL, (p}\Y,), where
0< p?(p’}) < 1 accounts for the assumption that the re-infection of recovered females with
low-risk (high-risk) HPV types occurs at a rate lower than the rate for primary infection of
susceptible females). Exposed females develop clinical symptoms of the low-risk (high-risk)

HPV types (at a rate o4(c’)) and suffer natural death. Thus,

dEgc l [\ l l

— = S Vet (L= Vol A + pp A By — (0 + 1) By,

dE.? h h\h h h

— = S (U =a)Vo+ (1) Vol A + oA By — (05 + 114) E- (4.8)

The population of infected females with clinical symptoms of the low-risk (high-risk) HPV
types (I5(I})) is generated at the rate o%(c). This population is decreased by recovery (at

a rate ¢4(¢})) and natural death. Hence,

dIch I nl) l l

E = UfEf_(¢f+Mf)]fa

dr’

— = o= Wi+ o)l (4.9)

The population of females with persistent infection with the low-risk HPV types (P}) is
generated by the development of persistent infection, with the low-risk HPV types, by symp-
tomatic females with the low-risk HPV types (at a rate (1 — 7})¢}, where 0 < 7} < 1 is
the fraction of symptomatic females with the low-risk HPV types who recovered from HPV
infection without developing genital warts; it is assumed that individuals infected with the
low-risk HPV types do not progress to the CIN stages and /or develop cancer [10, 15, 76, 77]).
Females with persistent infection with the low-risk HPV types move out of this epidemiolog-
ical class (either through recovery or development of genital warts) at a rate ozic, and suffer

natural death. Thus,
djjl‘ Iyl Tl l !
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The population of females with persistent infection with the high-risk HPV types (P}L) is
generated at a rate (1 — r?)w’}, where 0 < r}‘ < 1 is the fraction of symptomatic females
with the high-risk HPV types who recovered from HPV without progressing to the low-
grade CIN1 stage, and by a fraction, 1 — (s15 + sof), of infected females in the high-grade
CIN2/3 stage who develop persistent infection (at a rate [1 — (s17 + S2f)] 2f, where s1¢ and
Sof, With 0 < s17 4 sop < 1, are the fractions of infected females in the high-grade CIN2/3
stage who naturally recovered from HPV infection, and of infected females in the high-grade
CIN2/3 stage who revert to the low-grade CIN1 stage, respectively). Females with persistent
infection with the high-risk HPV types move out of this epidemiological class (either through
recovery or development of pre-cancerous CIN lesions) at a rate a?, and suffer natural death.

Hence,

apr JiI hy, 1 h Th h h

o (L=rp)ply + (1 — (s1p + sop)] 2pGpn — (af + pug) Py

The population of females with genital warts (W) is generated when infected females with
persistent infection with the low-risk HPV types develop genital warts (at a rate (1 — k;)agp,
where 0 < k; < 1 is the fraction of infected females with persistent low-risk HPV types
who recovered from HPV infection). Since genital warts do not cause cervical cancer (or any
other type of cancer [76, 100]), it is assumed that genital warts do not cause death in females
and males. This population decreases due to recovery (at a rate ny) and natural death, so
that,

dW
Wf = (1 — K)ol Pk — (ng + pup) Wy (4.11)

The population of females with the low-grade CIN1 (G ;) is generated when infected females
with persistent infection with the high-risk HPV types develop pre-cancerous CIN lesions
(at a rate (1 — k})a’f, where 0 < K} < 1 is the fraction of infected females with persistent
infection with the high-risk HPV types who recovered from HPV infection). This population

is further increased by the reversion (or regression) of individuals in the high-grade CIN2/3
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stage into the low-grade CIN1 stage (at a rate sypzy). Individuals move out of this class
at a rate us (due to progression to the high-grade CIN2/3 stage [25, 29, 61, 100], at a rate
(1 —dy)uy, or recovery, at a rate dsuys). It is assumed that individuals in the CIN stages do

not suffer disease-induced death (until they develop cervical cancer). Thus,

del

dt = (1 — k?)a?Pf + SQfoth - (Uf + Mf) Gfl. (412)

The population of females in the high-grade CIN2/3 stage (Gyy) is generated by the pro-
gression of infected females with low-grade CIN1 (at the rate (1 — dy)uy, where 0 < d; <1
is the fraction of infected females in the low-grade CIN1 stage who naturally recovered from
HPV infection). Transition out of this class occurs at a rate zy (where a fraction, s;rzy,
recovers; another fraction, syrzy, reverts to the low-grade CIN1 stage and the remaining
fraction, 1 — (s1f + saf), develops persistent infection). This population is decreased by the

development of cervical cancer (at a rate wy) and natural death. Hence,

deh
dt

= (1—df)ufGﬂ—(zf+wf+uf) th. (4.13)

The population of females with cervical cancer (Cf) is generated by the development of
cervical cancer by infected females in the high-grade CIN2/3 stage (at the rate wy). This
population decreases due to recovery (at a rate 7¢), natural death and cancer-induced death
(at a rate dy), so that

dcs

d—tf = wiGpn — (vp + 1y +05)CF. (4.14)

The population of infected females who recovered from cervical cancer (R$) is generated at
the rate vy, and decreases by natural death. Asin [61], it is assumed that individuals in this
class do not acquire HPV infection again (since these individuals require treatment /surgery,

which, typically, result in the removal or damage to the cervix and some other normal tissues
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around it [68]). Thus,
dRG . .

The population of infected females who recovered from HPV infection (and genital warts)
without developing cervical cancer (Ry) is generated at the rates rgﬂﬂéc, rﬁchw'}, kﬁcagf, k‘?a?,
ng, dyuy and s;fzy, respectively. Recovered females acquire re-infection at the rates plf)\in
and p?)\’gl. This population is further decreased by the loss of infection-acquired immunity
(at the rate ) and natural death. This gives:

ax;

o = TR U]+ kel P KRG PR 4 Wy dyus Gt 157G

— (PN PpAL) By — (& + pg) By (4.16)

The population of unvaccinated susceptible males (.S,,) is generated by the recruitment
of new sexually-active males at a rate m,, (a fraction, ¢?  of which, is vaccinated with the
Gardasil vaccine; it is assumed that males are not vaccinated with the Cervariz vaccine
[76, 77, 100]). It is further increased by the loss of infection-acquired immunity by recovered
males (at a rate &,,). This population is diminished by infection, following effective contacts
with infected females (with both the low-risk and high-risk HPV types), at rates )\lf and )\’;,

where

e (N Np) (Bl + 14 + 0,

. 4.17
f Ny ’ ( )
o Nf . ‘

In (4.17) and (4.18), 85(B}) is the probability of transmission of HPV infection from infected
females with the low-risk (high-risk) HPV types to males per contact and ¢, (N,,, Ny) is the
average number of male partners per female per unit time. Furthermore, nic (77?) (with
0< n}(n}l) < 1) is the modification parameter accounting for the assumption that exposed

females with the ow-risk (high-risk) HPV types (i.e., those in the E}(E}) class) are less
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infectious than symptomatically-infected females (i.e., those in the I%(I}) class), and 6/ (6%) >
0 is the modification parameter accounting for the assumption that infected females with
persistent infection with the low-risk (high-risk) HPV types transmit HPV at a different
rate compared to infected females in the E%, [ }(E}‘, 1 ]’}) classes. This population is further
decreased by natural death (at a rate p,,; it is assumed that males in all epidemiological

compartments suffer natural death at this rate, p,,). Thus,

dSm,

= (L= @0 Mo+ &R — (A 4+ XY) S = S (4.19)

The population of new sexually-active susceptible males vaccinated with the Gardasil vaccine
(V.2) is generated by the vaccination of the fraction, ¢? , of unvaccinated susceptible males (at
the rate m,p% ). It is decreased by HPV infection, following effective contacts with females
infected with the high-risk HPV types (at a reduced rate (1 —g,) A}, where 0 < g, < 1 is the
efficacy of the Gardasil vaccine) and females infected with the low-risk HPV types (at the
rate (1 —g,)A}). This population is reduced by natural death. Hence,

Vi

= P — (1—ey) (N} + X)) ViE — V2. (4.20)

The population of exposed males with the low-risk (high-risk) HPV types (E! (E")) is
generated by the infection of unvaccinated and vaccinated susceptible males with the low-

risk (high-risk) HPV types (at the rate A%(\})). This population is further increased by the

re-infection of recovered males (at a rate pl, Ay (o NF), where 0 < pf (pk,) < 1 also accounts

for the assumption that re-infection of recovered females occurs at a rate lower than the

primary infection). Exposed males develop clinical symptoms of the low-risk (high-risk)

h

")) and suffer natural death. Hence,

HPV types (at a rate o (o

dE!
dEh"
dtm = [Sm+ (1 —¢)V] )\’} + pl,jl)\’}Rm — (o™ 4 ) B (4.22)
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The population of infected males with clinical symptoms of the low-risk (high-risk) HPV
types (IL (I")) is generated at the rate o’ (o). It is reduced by recovery (at a rate ¢! ("))

and natural death. Thus,

dLln l l l l

g = OmPm = (Wt i) I, (4.23)
dIh

e T B, — (g, + ) Iy (4.24)

The population of males with persistent infection with the low-risk HPV types (P!) is gen-

erated by the development of persistent infection, with the low-risk HPV types, by symp-

l

m?

tomatic males with the low-risk HPV types (at a rate (1 — 7)) where 0 < 7/ < 1is
the fraction of symptomatic males with the low-risk HPV types who recovered from HPV
infection without developing genital warts). Males with persistent infection with the low-risk

HPV types move out of this epidemiological class (either through recovery or development

of genital warts) at a rate o' , and suffer natural death. Thus,

dPL.

o (1T =r Ik — (o, + pm) P (4.25)

The population of males with persistent infection with the high-risk HPV types (P") is

h

m?

generated at a rate (1 —rh) where 0 < r® < 1 is the fraction of symptomatic males
with the high-risk HPV types who recovered from HPV without progressing to the low-grade
INMI1 stage, and by a fraction, 1 — (S1,, + Sam ), of infected males in the high-grade INM2/3
stage who develop persistent infection (at a rate [1 — (S1,, + Som)] 2m, Where sy, and Sop,
with 0 < sy, + So,, < 1, are the fractions of infected males in the high-grade INM2/3 stage
who naturally recovered from HPV infection, and of infected males in the high-grade INM2/3
stage that reverts to the low-grade INM1 stage, respectively). Males with persistent infection
with the high-risk HPV types move out of this epidemiological class (either through recovery

or development of pre-cancerous lesions) at a rate o | and suffer natural death. Hence,
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dP"
S = (L= BT+ (L= (s1+ sam)] 5m G — (0 + pon) P
The population of males with genital warts (W,,) is generated when infected males with
persistent infection with the low-risk HPV types develop genital warts (at a rate (1—4' )a! |
where 0 < k! <1 is the fraction of infected males with low-risk persistent HPV types who

recovered from HPV infection). This population decreases due to recovery (at a rate n,y,)

and natural death, so that,

dW,

T (1 = kp)ag, Py, = (i + i) Wi, (4.26)

The population of males in the low-grade HPV-related INM1 stage (G,;) is generated when
infected males with persistent infection with the high-risk HPV types develop pre-cancerous
lesions (at a rate (1 — k”)a”, where 0 < k" < 1 is the fraction of infected males with
persistent infection with the high-risk HPV types who recovered from HPV infection). This
population is further increased by the reversion of individuals in the high-grade HPV-related
INM2/3 stage (at a rate Somzy,). Individuals move out of this class at a rate u,, (due to
progression to the high-grade INM2/3 stage, at a rate (1 — d,,)u,,, or recovery, at a rate
dpty). It is assumed that individuals in INM stages do not suffer disease-induced death

(until they develop HPV-related cancer). Thus,

dGml
dt

= (1 — k:f;)afnPf; + SQmZmeh — (um + [Lm) Gml- (427)

The population of males in the high-grade HPV-related INM2/3 stage (G,,5,) is generated
by the progression of infected males in the low-grade HPV-related INM1 stage (at the rate
(1 — dp)Up,, where 0 < d,, < 1 is the fraction of infected males in the low-grade INM1
stage who naturally recovered from HPV infection). Transition out of this class occurs at

a rate z, (where a fraction, $i,,2,, recovers; another fraction, so,,z.,, reverts to the low-
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grade INM1 stage and the remaining fraction, 1 — (1, + S2,m), develops persistent infection).
This population is decreased by the development of HPV-related cancer (at a rate w,,) and

natural death. Hence,

dGmh
dt

= (1 = dn)umGumi — (Zm + Wi + i) G- (4.28)

The population of males with HPV-related cancers (C¢,) is generated by the development
of HPV-related cancers by infected males in the high-grade IN2/3 stage (at the rate w,,).
This population decreases due to recovery (at a rate 7,,), natural death and cancer-induced
death (at a rate d,,), so that

dcr,
dt

= Wmeh - (/Ym + Hm + 5m)077;7, (429)

The population of males who recovered from HPV-related cancers (R¢,) is generated at the

rate 7,,, and decreases by natural death, so that

dR;,
dt

Y Cry — L2, (4.30)

The population of males who recovered from HPV infection (and genital warts) without

developing cancer (R,,) is generated at the rates v’ ¢! rt Kkl ol kMol n.,. d,u, and

h

Sim%m- 1t is decreased by re-infection (at the rates pfn/\lf and p;,

)\’JE), loss of infection-acquired

immunity (at the rate &,,) and natural death, so that

dR,,

= rhat I el I KL ol PL o4 Kol P, W+ dipttn G

mm- m mm- m

+ S1mZmGmn — (PN} + P AS) Rin — (& + i) Ron. (4.31)

It should be emphasized, as in Chapter 3, that the following conservation law for the
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model {(4.3)-(4.31)} must hold:
Cm (Nm,Nf) Nm = Cyr (Nm,Nf) Nf. (432)

Furthermore, it is assumed that male sexual partners are abundant, so that females can
always have enough number of male sexual contacts per unit time. Hence, ¢y (N,,, Ny) = ¢y,

a constant, and Cm (Mn, Nf) is calculated from the relation
m ]\[’frh N — T . 4-33

It is assumed, from now on, that the two vaccines (Gardasil and Cervariz) have the same
efficacy (that is, e, = ¢, = &,) [10, 34, 77, 100].

Based on the above formulations and assumptions, and using (4.33) in {(4.3), (4.4),
(4.17) and (4.18)}, it follows that the risk-structured model for the transmission dynamics
of the low- and high-risk HPV types in a community that adopts mass vaccination (using

Cervariz and Gardasil vaccines) is given by the following deterministic system of 29 non-
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linear differential equations:

d5¢
di
dv}
di
vy
dt
dE}
dt
dE}
dt
i,
dt
art
dt
ap!
dt
dP}
dt
AWy
di
dG fl
di
dG fh
di
dCs
dt
dR
dt
dfty
dt

(1= ¢f —Pmr + &Ry — (N, + X,) S — 1sSy,

Pomp — (L — e )AL VE = ANV — VP,

whmr— (1 —eu) (A + X,) Vi — usVY,

[Sr+ VP + (1 =)V X, + oM Ry — (0 + y) B,
[Sp+ (1 =) Vi + (1= e)VI] X%, + pp A Ry — (0 + ) B,
oG By — (U + pg) I},

ofEf — (U} + pp)I},

(1 — ) dy — (o + py) P,

(L= I} + [1 = (s1p + s0p)] 2¢G g — (af + pg) Py,

(1 — K)ol Py — (ng + pug) Wy,

(1— k?)a?P}L + Sor2fGen — (up + pg) Gy,

(1 —dp)usGp — (27 +wyp + py) Gyn,

wrGrn — (vy + py + 05)CF,

V5Cs — py Ry,

PRIy I+ ke Py + ko Py ng Wy + dgus G

s1pzrGn — (P3A + P4 AL) Ry — (& + py) Ry,
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dSp,
dt
ave
dt
dE!
dt
dE"
dt
dI!
dt
dr’
dt
dP!
dt
dp"

dt
AW,

dt
dGml

dt
dG

dt
cr,
dt
dRe,
dt
AR,
dt

A flow diagram of the model (4.34) is depicted in Figures 4.1 and 4.2. The state variables

(1= I )T + &R — (/\}} + Alf) S — MmSm,

P mm — (1= y) (N} + X)) Vi — Vi1,

(S + (1= ) VI NS + pl s R = (07, + i) B},
[Sin + (L =€) VI X} + pp Xj R — (0, + pin) By,
T By = (U + ) I

o, = (U + pm) I,

(1 =)0 L, = (0, + ) Py,

(1 =)Ly 4 [1 = (s1m + 82m)] 2 Gt — (a3, + i) Py,
(1= kp)ag, Py, — (n + tim) Wi,

(1 — K)o PP 4 59020 Gty — (U + pim) G

(1 = d)umGomi — (2 + Wi + ) G,

WinGmn — (Ym + tom + 0)C

YmCry — i 1y,

rbl I et gl It kLol PL kol PR, W+ di e G

mmT m mm- m

and parameters of the model are tabulated in Tables 4.1 and 4.2.

It should be mentioned that there is no biological or epidemiological relationship (such
as back-and-forth transition or evolution) between the low- and high-risk HPV types. That
is, the two HPV risk types (low and high) are independent, and the reason for stratifying the

infected population according to the two risk types is to account for the fact that infection
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with the low-risk HPV types causes genital warts only, while infection with the high-risk
HPV types causes cancers. In other words, the purpose of the risk structure in this study
is to account for the heterogeneity of outcomes (cancers or warts) associated with infection
with the low- or high-risk HPV types. Another advantage of stratifying the infected popu-
lation in terms of infection with the low- and high-risk HPV types is that it allows for the
realistic assessment of the community-wide impact of the currently-available vaccines (since,
for example, the Cervariz vaccine only targets the high-risk, HPV-16 and HPV-18, types
while the Gardasil vaccine targets all the four HPV types considered in this study). Further-
more, it should be emphasized that the risk-structure in this study is not associated with
human behaviour (i.e., risky sexual practices), so that there is no back-and-forth transition
between the two risk HPV types based on changes in human behaviour.

The 29-dimensional model (4.34) extends the 12-dimensional model (3.19) developed in

Chapter 3 by (inter alia):

i) stratifying the total population in terms of the dynamics of the low- and high-risk HPV

types;

ii) incorporating two anti-HPV vaccines (Cervariz and Gardasil); only the Gardasil vac-

cine is considered in Chapter 3;

iii) vaccinating both new sexually-active susceptible females and males (only females are

vaccinated in Chapter 3);
iv) including the dynamics of individuals with genital warts (W, W,,);

v) including the dynamics of individuals in the low- and high-grade pre-cancer (CIN and

INM) stages for females and males (G i, Gy, G pn, Gip);

vi) including the dynamics of infected males with HPV-related cancers (C7,), cancer-
induced mortality for males (d,, # 0), infected males who recovered from HPV-related

cancers (R¢,) and a compartment for males with persistent HPV infection (P,,).

88



4.2.1 Basic properties
As in Section 3.2.1, the following result holds for the low- and high-risk HPV model (4.34).

Theorem 4.1. Let the initial data for the model (4.34) be S§(0) > 0,V}(0) > 0, V(0

(AVARRAYS

(0)
0, E5(0) > 0, E}(0) > 0,15(0) > 0,13(0) > 0,P;(0) > 0, Pf(0) > 0,W;(0) > 0,G5(0)

v

0,Gn(0) > 0,C4(0) > 0, R5(0) > 0,Rf(0) >0, S, (0) > 0,V,2(0) > 0, E! (0) > 0, E"(0)
0,1'.(0) > 0,1"(0) > 0, PL(0) > 0, P"(0) > 0, W,,,(0) > 0,Gpi(0) > 0, G, (0) > 0,C" (0)

v

),

0, RS, (0) > 0 and R,,,(0) > 0. Then, the solutions (S(t), V{(t), V{(t), E4(t), E}(t), I;(t), 1}
I (1),

Pjé(t)’ P;L(t)a Wf<t)7 Gfl<t)7 th<t>7 C)C”(t>a R;(t)> Rf(t)7 Sm(t>7 Vn%(t)’ Efn(t)7 Eﬁn(t) ( )
PL(t), P (), W (t), Gui(t), Grun(t), Cr (), RS, (1), Ri(t)) of the model with positive initial

(t
m(t

data, will remain positive for all time t > 0.

Theorem 4.1 can be proved using the approach in Appendix A (and the proof is not repeated

here). Consider, next, the feasible region

D, =D;UD,, CRY x R

with,

b l h 7l 71h l h c c 15 f

and,

m) - Tm) m?
m

D,, = {(Sm,v,g, VBRI TN P P W, G, G, CG, Re Ry) € RV N, < ”_m}

Using the method described in Section 3.2.1, it can be shown that the region D, is positively-
invariant and attracting for the model (4.34), so that it is sufficient to consider the dynamics

of the model in D,. This result is summarized below.
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Lemma 4.1. The region D, = Dy UD,,, C R} x R is positively-invariant for the model

(4.84) with initial conditions in RZ’.

4.3 Existence and Stability of Equilibria

4.3.1 Local asymptotic stability of DFE

The DFE of the model (4.34) is given by

b* * 1* h* 1* h* 1* h* * *
& = (SpVy Vi Ep By Iy I Py Py W3, Gy, Gy, O Ry Ry S,

m?

(74 A0 X DI KD A S S (AR C A €

mo>tmrItm> mil» ~mh>

Cr RS RY,)
= (83, V}.V7,0,0,0,0,0,0,0,0,0,0,0,0, 55, V4", 0,0,0,0,0,0,0,0,

m? m 7

0,0,0,0), (4.35)

with (noting that <p’]’c + 9% <1, so that S} > 0),

- ) f - ) f - )
Ky Ky 1273
Hm 127

and,

* * 7T * 7Tm

Ni=Si+ V' +V ==L and N =8, +V ="

Iy Hom
The associated next generation matrices, F, and H, (for the new infection terms and the
remaining transfer terms in the model (4.34)) are, respectively, given by (it should be

mentioned that, for the purpose of the computations in this section, the infected classes

of the model (4.34) are ordered as follows: EY, Iy, P;, Wy, E} I}, Pt Gp, Gy, Cf,
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EL TN PL W, Eh Ih PR GG, OT):

m?r-m? m)-m)

F - 010x10 and M — Hi O1ox10
F2 Owox10 O10x10  Ho
where,
5%}\6{2 Lnin P Bj%:if P Bin]\c[g% 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
;o 0 0 0 0 Bfn;gfn B]{L[n;f D Bﬁ"]\czf»;f" P
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Fa

Ha

B}Cf

B§cf0

l

N 7= Ps “xps 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 o % Cf*n"? %;f D 5?;;9?
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
A1 0 0 0 0 0 0 0
—b Ay O 0 0 0 0 0
0 —by Az 0 0 0 0 0
0 0 —bs 0 0 0 0 0
0 0 0 As 0 0 0 0
- 0 0 0 —bs; Ag O 0 0
0 0 0 0 —bg A7 0 —g
0 0 0 0 0 —=br As —g¢
0 0 0 0 0 0 —bg Ay
0 0 0 0 0 0 0 —by

92

o o o o o o o o o o

o o o o o o o o o o

o o o o o o o o o o




D,
—ky

Ho

0
0
0
0
0
0
0
0

0
D,
—ky
0
0

with 019x109 being the zero matrix of order 10, and
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b1

D2

b3

P4

where,

* * 11— vq
Sp4 V(-2 V] _ L mewy),

K
i * 1—e, (0 q
[S;‘i‘(l—év)vjf’ —1-(1_8”)‘/]?}:756[ 5M(¢f+¢f)}7
f
[S;kn‘f’vrlr): + (1 _€v) V,rg::| _ T (1/:61)%0;171)’
[S;vkm + (1 — 51}) anzb* + (1 o 51}) V;ﬂ _ Tm (1; 51)%0!7171)7

oy g, bi=0f Ay =vf gy, b= (1=rh)vh, As=a) +py,
(l—kgc)aic, Ay =nyp+ py, Ag,:a}l—i—,uf, b5:0}‘, Aﬁzw}‘—l—,uf,
(L=r) v, Ar=alf+py, gr=[1— (siy +505)] 25, br = (1—Kk})af,
up+ pp, 9o = Sopzp, b= (1 —dy)uy, Ag=zp+wy+psp, by =wy,
i+ pip 05, Di= 04, + i, ki =0y, Do =Y, + fim,

(1= 70) Yy Ds = apy + i, ks = (1= Ky,) @y D = T + fim,
O+ s ks = 03y Ds =t + pim, ks = (1=rp) Uy, Dr = o, + fim,
(1 — (S1m + So2m)] Zm, k7:(1—kfn) ol Dg = U + fm, J2 = SomZm,

(1_dm)um7 D9:zm+wm+ﬂm> kg:wn’u D10:7m+,um+§m

it follows from [95] that

Ro=p(FH,") = V/RifRom, (4.36)

Rrp=p (]:17-[2_1) =max{Rs, R} and Ry, =p (]:27-[1_1) = max{ R, Rmn},
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with,

Bhacimrpim (1 — e0f) By _ Brermrpm [1 =y (05 + 9%)] (Q1 + Q2 + Qs)

Rp = 3 , Rin :
DsD
[ T 1:[1 Dz HfTTm s 6Q4
Brer (1 —eppl,) By Brer (1 —eupl,) (Qs + Qs + Q7)

le = ) Rmh = )

ﬁ N A5 AsQs

i=1 ‘
and,

By = n\,D3Dy+ kD5 + 0, ksk1, Q1 = 1y, (DgD7Dg Do — ko De D7 — kskzj De) ,

Q2 = ksDyDsDy — ksksjoDr — kskrksji, Qs = 0y, (kskoDs Dy — kskoksja)

Qi = D7DsDy — kgjoDr — krksji, Bo =3 AsAs + by Az + 05baby,

(s = 7]? (AgA7AgAg — bgga As A7 — bgbrg1 Ag), Qs = bs A7 AgAg — bsbgga A7 — bsbrbggn,

Qr = 0 (bsbgAsAg — bsbbsgs), Qs = ArAsAg — bsgaAr — brbsgs.

It can be shown that the quantities R, Ryu, Rn and R,y are positive (see Appendix G), so
that the reproduction thresholds, R, and R, are positive. For mathematical convenience,

let (Where Rl = Rﬂle and Rh = thRmh)

Ry = vmax{R;, Ry}

Consequently, the result below follows from Theorem 2 of [95].

Theorem 4.2. The DFE, &), of the model (4.534), given by (4.35), is LAS if Ry < 1, and

unstable if R{ > 1.

The threshold quantity, R, is the basic reproduction number [47] for the model (4.34). It
represents the average number of secondary HPV infections generated by a typical HPV-

infected person if introduced into a susceptible sexually-active population (or community)
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where a certain fraction of the new sexually-active individuals is vaccinated. It is worth
noting that R{ is an aggregate product of the average number of new HPV cases generated
by females (denoted by R,) and males (denoted by R,,,) in a community.

Epidemiologically speaking, Theorem 4.2 states that a small influx of infected individuals
(females or males) will not generate large outbreaks of the low- and high-risk HPV types in
the community if Rjy < 1 (in other words, the two HPV types can be effectively controlled
in the community if the initial sizes of the sub-populations of the model (4.34) are in the
basin of attraction of the DFE, &], of the model (4.34)). However, in order for such effective
control (or elimination) to be independent of the initial sizes of the sub-populations of the
model (4.34), it is necessary to show that the DFE (&]), of the model (4.34), is globally-
asymptotically stable (GAS) if Rf < 1. This is explored, for a special case, in Section
4.3.4.

4.3.2 Existence and local stability of boundary equilibria
The possible non-trivial equilibria of the model (4.34) are:

i) low-risk-only boundary equilibrium (an equilibrium of the model (4.34) with no high-
risk HPV types), denoted by &};

ii) high-risk-only boundary equilibrium (an equilibrium of the model (4.34) with no low-
risk HPV types), denoted by &P

iii) co-existence equilibria (equilibria of the model (4.34) where both the low- and high-risk

HPV types co-exist), denoted by &7.

Consider the model (4.34) in the absence of the high-risk HPV types (i.e., the model (4.34)
0). Furthermore, for computational convenience, let 7! = 779 =0 = 99 =& =6 =0
in the model (4.34). The resulting low-risk-only model is given by (it should be noted that

N,,, in the model (4.34), is now replaced by its limiting value, :—:, since individuals infected
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with the low-risk HPV types do not develop or suffer cancer-induced mortality, so that the

total male population, N,,(t), remains constant):

dsy
dt
avy
dt
45}
dt
dly
dt
e
dt
AWy
dt
Ry
dt
ds,,
dt
dve
dt
dE!
dt
dIt
dt
dP.
dt
AW,
dt
dR,,
dt

6l C ﬂm m
(1= gy = st g,

m

[ [l
ol — (1 - 5v)qu Ve,

[Sf+ (1= ,)V}] i”cfrimﬁ” + gl Cj::” %Ry — (o} + ) L
03By — (U + )1y,
(1= Pt — (o + py) Py, (4.37)
(1 — K)ol Py — (ng + pg) Wy,
P I 4 Kok P iy — g PnCitmIn g
(1) = Sl s,
T,

it — (1) 2Dy v
S+ (1= ey Sl g Brrinlyp s ),
O By = (U + ) I,
(1= 10) U = (i + i) P,
(1=K Yol PL— (i + pin) W,

AT R ol Pl gy g Gl

It is convenient to let (with Ay, As, Dy, Do, by and k; as defined in Section 4.3.1)

I _ r _
Ro - Ro |th:Rmh:ngn:nlfzagnzegczgfzgm:o— \/

6&77,0?077-]””7715}61]{31 (1 - 5v§0?f) (1 - 51190%1)
7Tm/,LfA1A2D1D2 ’

97



Furthermore, let

EL = (Sy VI B I P W Ry S Ve B I PR W R,

m?»'m m Y tm )
represents any arbitrary endemic equilibrium of the low-risk-only model (4.37). Define

* *

* ok ! l* & m l*
N7 = DnCittmd g _ Bresmmly (4.38)
Tm Tm
Setting the right-hand sides of the low-risk-only model (4.37) to zero gives the following

steady-state expressions:

S a— Ty (1 - SOCJ][) Vq** _ ﬂ-ng(]]‘
d Ny (1 —eo) AL +py”
*ok - I** I 0" Dk o o
Ef — Al ) If = A2 ) Pf = AS ) (439)
W** _ b3Pch** R — ml[}** + mzpllt** + anJj* G — Tm (1 B Spgn)
Ay Py +ms PN
V‘I** _ Wm@% [ _ [S:: + (1 — 61}) VT;ZL**:| )\l** + pm)\l**R**
" A=) N g ) ’
i b 5, P _ el W — k3P . maly” +msP + ng Wor
m _D2 Y D3 ) m D4 Y m pirLAljk* + m6 Y

where (with A;, D; (i = 1,...,4), by, ba, b3, k1, ko and k3 as defined in Section 4.3.1),

Ll 11 Lol 1o
my =1y, mo = kyay, my =r,, and ms = ko,
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Substituting (4.39) into the expression for Al and AL in (4.38) gives,

/\lf** |:a02 ()\?*)2 + am)\lf** + (LQ} . [bog ()\5?)2 + bOl)\i;* + bo

Al**
ass ()‘l;*)3 + az ()‘?*)2 +an\f + ag’ T by (AGT)? 4 ban (572 + by A + bog
(4.40)

1**

m
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where,

 pmBherkiph, (1—€,) Bk [(1—ey) + ph, (1 — e8]
Qo2 = D) » o1 = D) ’
[1D; [1 D
i=1 =1

4
_ l _
13 Bl crky (1 — ey ) (1—¢u) P LH1 D — ki (myD3Dy + msDyky + nmk3k2>]

o = D) y a33 = 1 )
[T D; [T D;
=1 =1
4 4
Mo, {(1 — 81,) H Dz + plm (2 — €v) lH Dz — ]{Zl (TTI,4D3D4 + m5D4k2 + nmkgkg):| }
Aoy = =1 =1 - :
I1 D
=1

4 4
(2, {(2 — &) [ Di+ o, {H D; — ki (myD3Dy + msDyks + “mk3k2)] }
=1 =1

a1 = 1 3 (441)
I1 D
i=1
o, i Biesbiph (1 — &) gy Besby [(1—e0) + 0% (1 = eug})]
a0 = Hpm, bo2 = 2 » o1 = 2 )
Tm H A'L Tm H Az
i=1 =1

4
1—¢g,) /! A;—b AsA Aub bsb

bO = 2 ; U3z — = 4 )
i=1 =1
4 4
19%% {(1 — 51,) H Az + plf (2 — Ev) |:H Az — b1 (m1A3A4 + m2A2b2 + 7’Lfb3bz>:| }
622 _ =1 i=1 ) :
IT A
=1
4 4
117 {(2 — &) H A + Plf {H A; — by (m1AsAy + moAybs + nfb3b2):|
b11 _ i=1 i=1 - ’ bOO — #?}
A;
=1

Since all the parameters of the low-risk-only model (4.37) are positive, and 0 < &,, % , (p‘]{ <
1, it can be shown, after some lengthy algebraic manipulations, that all the expressions in

(441) (namely, Qp2, a1, Ao, A33, A22, A11, AQo, bog, b01, bo, b33, b22, blla b()(]) are positive. It fOHOVVS7
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by substituting X~ into AL, in (4.40), and simplifying, that the non-zero (endemic) equilibria

of the low-risk-only model (4.37) satisfy the following polynomial (in terms of AL "):

9

Svi (L) =0, (4.42)

i=0

with Y; (1 =0, ...,9) given in Appendix H. Since all the parameters of the low-risk-only model
(4.37) are non-negative, it follows from the expressions for Y; (i = 0,...,9) in Appendix H
that Yy > 0 and Yy > 0 whenever R < 1. Thus, the number of possible positive real
roots the polynomial (4.42) can have depends on the signs of Y; (i = 1,...,8). The various
possibilities (using the Descartes Rule of Signs) for the number of positive real roots of (4.42)

are tabulated in Table 4.3, from which the following result is obtained.

Theorem 4.3. The low-risk-only model (4.37) could have 2 or more endemic equilibria if

RL < 1, and at least one positive endemic equilibrium whenever RY > 1.

Similar result can be established if the high-risk-only component of the model (4.34) is

considered. Consequently, we offer the following conjecture:

Conjecture 4.1. The model (4.34) could have 2 or more endemic equilibria if Ry < 1, and

at least one positive endemic equilibrium whenever Ry > 1.

The presence of multiple endemic equilibria in the low-risk-only model (4.37) (and, by ex-
tension, the risk-structured model (4.34)) when R} < 1 suggests the possibility of backward
bifurcation in the model (4.34). This is explored in Section 4.3.3.

Extensive numerical simulations of the model (4.34), using the parameter values in Table
4.2 (unless otherwise stated), were carried out to quantitatively assess the dynamics of the
low- and high-risk HPV types in the community, for various scenarios (of the associated
reproduction numbers, R; and Rj,). It should be mentioned that these numerical simulations
have to be ran for extended periods of time to reach steady-state (as is evident in some of the

plots). Figure 4.3 depicts the simulation results obtained for the case when the reproduction
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number of one of the HPV risk type (low or high) is less than unity, while that of the other
HPV risk type exceeds unity. This figure shows that the HPV (risk) type with reproduction
number less than unity dies out in time, while the HPV (risk) type with reproduction number
greater than unity persists. Thus, these simulations suggest that the model (4.34) undergoes
competitive exclusion for the case when R; <1 <R, (with ¢,5 = {l,h}; @ # j), where the
HPV (risk) type with the higher reproduction number (greater than unity) drives out (to
extinction) the HPV (risk) type with the lower reproduction number (less than unity). This

suggests the following conjecture:

Conjecture 4.2. The model (4.34) has at least one stable low-risk-only (high-risk-only)
boundary equilibrium, EL(EY), whenever R; < 1 < R; (with i,j = {l,h}; i # j). In other
words, the risk-structured model (4.34) undergoes competitive exclusion, with the HPV risk

Type j driving out the HPV risk Type i to extinction, whenever R; <1 < R;.

Furthermore, the case when both reproduction numbers (R; and R},) of the model (4.34)
exceed unity is simulated. Figure 4.4 shows that the low- and high-risk HPV types co-exist
whenever their respective reproduction numbers exceed unity, but the HPV (risk) type with
the higher reproduction number dominates the one with the lower reproduction number (but

does not drive it to extinction). These simulations suggest the following conjecture:

Conjecture 4.3. The risk-structured model (4.34) could have at least one stable co-ezistence

endemic equilibria, £, whenever 1 < R; <R, (with i,j = {l,h}).

4.3.3 Existence of backward bifurcation

The existence of multiple endemic equilibria when R} < 1 suggests the possibility of back-
ward bifurcation (where, typically, the stable DFE (&) co-exists with a stable endemic
equilibrium (£!), when the associated basic reproduction number (R}) is less than unity) in

the low-risk-only model (4.37).
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Theorem 4.4. The low-risk-only model (4.37) undergoes backward bifurcation at Rl = 1

under a certain condition, given by (1.5) in Appendiz 1.

The proof of Theorem 4.4, based on using Centre Manifold theory [11, 14], is given in

Appendix I. Furthermore, it follows from the analyses in Appendix I that the associated

l

bifurcation coefficient, a, is negative whenever the re-infection parameters (p;,

and pl) of

the model (4.37) are set to zero.

Theorem 4.5. In the absence of the re-infection of recovered individuals (i.e., pl, = plf =0),

the low-risk-only model (4.37) does not undergo backward bifurcation at RY = 1.

The analyses in Section 4.3.3 and Appendix I (where the low-risk-only model (4.37) is shown
not to undergo backward bifurcation in the absence of re-infection) suggest that the DFE
of the full risk-structured model (4.34) may be globally-asymptotically stable (GAS) when

Ri < 1and pl, = pgc = ph = p? = (. This is explored below.

4.3.4 Global asymptotic stability of DFE (special case)

The global asymptotic stability of the DFE, &, of the model (4.34), is established for the
special case where the re-infection of recovered individuals does not occur (i.e., plf =p =
,0’} = ph = 0) and that cancer-induced mortality for males is negligible (so that, 6, = 0).

The following result will be needed in proving the GAS of the DFE, &].
Lemma 4.2. The following region

D:: - {(Sf7V]?>quaEgcaE;‘L>IJZ‘71}17P}7P;lawvaflathacﬁaRj%Rf?‘slmavrga

EL BN I 1M PP W, G, G, CF RS Ry € Dy

m?m’ - m?

* b b* * * *

m)'m

is positively-invariant for the model (4.34) with { = &, = 0.
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Proof. Consider the risk-structured model (4.34) with &; = &,, = 0. It then follows from the

first equation of (4.34), with &; = 0, that

ds *
d—tf < mp(1— @} — %) = usSy = pp(S; = Sp).
Hence,
1— b _ 4 1— b 4
S,(1) < mp(1— o5 — ¥}) +15,00) - my(1 —f —¥f) ot — i+ [Sf(O) _ S;E] o hst
Hf Ky

Thus, S¢(t) < S} if S¢(0) < S ast — oo. Furthermore, it follows from the sixteenth

equation of (4.34), with &, = 0, that

dSm
% < ﬂ-m(l - Sp;ln) - ,umSm = ﬂm(s;kn - Sm),

so that,

— 4 — n4
Sin(t) < M +[S,(0) — M ehmt = §* 4 [8,,(0) — S]e .

Thus, S,,(t) < S, if S, (0) < SF as t — oo. Similarly, it can be shown that V}’ < V}’*,Vf <
qu* and V4 < V4. Hence, the set D C D, is positively-invariant for the model (4.34) with

ff:&nzo. ]

It is convenient to define,

RS |pi£=plm:p’fl:p¢n:6m=0: Rgl
Theorem 4.6. The DFE, &), of the risk-structured model (4.34) is globally-asymptotically
stable (GAS) in D} if Rj, < 1.

The proof of Theorem 4.6 is given in Appendix J. The epidemiological consequence of

Theorem 4.6 is that both the low- and high-risk HPV types will be eliminated from the
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community if Rf; < 1 in the absence of the re-infection of recovered individuals (plf =pl =
py = pl, = 0) and cancer-induced death for males (d,, = 0). Figure 4.5 illustrates the GAS

property of the DFE of the special case of the model (4.34), in line with Theorem 4.6.

4.4 Numerical Simulations

The risk-structured model (4.34) is further simulated, using the parameters in Table 4.2
(unless otherwise stated), to assess the community-wide public health impact of the two
vaccines. Figure 4.6A depicts the cumulative number of HPV-related cancers in females and
males for the cases where only females, and both females and males, are vaccinated with
the Gardasil vaccine. This figure shows a significant decrease in the cumulative number of
cancer cases if males are (additionally) vaccinated. In particular, while vaccinating females
only (at the assumed 70% coverage level) resulted in about 250 cumulative cancer cases over
two years, this number reduces to about 100, over the same time period, if both females and
males are vaccinated (with 70% Gardasil coverage for both). Similar results are obtained for
the associated cancer-related mortality. For example, while vaccinating females only (at the
rate 70% coverage level) resulted in about 8 cumulative mortality cases over two years, only
2 cancer-related deaths are recorded, over the same time period, if both females and males
are vaccinated (Figure 4.6B).

Contour plots of R{,, as a function of the fraction of females vaccinated with the Gardasil
vaccine at steady-state (%) and the efficacy of the Gardasil vaccine (e,), are depicted in
Figure 4.7. Figure 4.7A shows that, with the assumed 90% efficacy of the Gardasil vaccine
(e, = 0.9), vaccinating 87% of new sexually-active susceptible females will lead to the effec-
tive control or elimination of both the low- and high-risk HPV types in the community (since
this brings R{, < 1, which results in the GAS property of the DFE of the model (4.34), in
line with Theorem 4.6). It should be emphasized from Figure 4.7A that the current Gardasil

coverage of the 70% in most communities [9, 26, 46, 61, 76] will not lead to the effective
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control of HPV (since it fails, even with the assumed efficacy of 90%, to bring Ry, < 1). The
case when only females are vaccinated, and both Cervariz and Gardasil vaccines are used in
the community (with efficacy of both vaccines fixed at 90% [9, 10, 15, 26, 46, 61, 76]), is also
simulated (Figure 4.7B). It is shown from this figure that, with the assumed 70% Gardasil
vaccine coverage for females, at least 18% of the remaining new sexually-active susceptible
females need to be vaccinated with the Cervariz vaccine in order to effectively control the
disease. This seems consistent with the 87% Gardasil coverage needed for effective control
in Figure 4.7A.

Furthermore, a contour plot of R{;, as a function of the fraction of males vaccinated with
the Gardasil vaccine at steady-state and the fraction of females vaccinated with the Gardasil
vaccine at steady-state, for the fixed (90%) efficacy of the Gardasil vaccine, is depicted
in Figure 4.8. This figure shows that if only 70% of the new sexually-active susceptible
females are vaccinated with the Gardasil vaccine (which is typically the norm [9, 26, 46,
61, 76]), additionally vaccinating 47% of new sexually-active susceptible males will lead to
the community-wide elimination of the low- and high-risk HPV types. This is encouraging
since, in Figure 4.7A, a large percentage (87%) of new sexually-active females need to be
vaccinated to have a realistic chance of effectively controlling the spread of HPV in the
community. Hence, this study shows that vaccinating a certain fraction of new sexually-
active susceptible males (less than 50%) enhances the likelihood of effectively combatting
the spread (or elimination) of HPV in the community (since 70% coverage for new sexually-
active females and less than 50% coverage for new sexually-active males, with the Gardasil
vaccine, seems attainable). In other words, this study supports the recent recommendations,

by some public health agencies, to vaccinate sexually-active males [46, 76, 77, 90].
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4.5 Summary of the Chapter

A new risk-structured deterministic model for the transmission dynamics of HPV in a pop-
ulation, in the presence of the Cervariz and Gardasil vaccines (that target the four low-
and high-risk HPV types considered in this chapter), is designed. The main theoretical and

numerical results obtained are summarized below.

i) the risk-structured model (4.34) has a LAS DFE whenever R{ < 1;

ii) the low-risk-only model (4.37) undergoes the phenomenon of backward bifurcation
at Ry = 1 if Inequality (I.5) holds. It is shown that the re-infection of recovered
individuals causes the backward bifurcation property in the model. The low-risk-only
model could have one or more endemic equilibria when the associated reproduction

number (R}) exceeds unity;

iii) in the absence of the re-infection of recovered individuals (i.e., plf =pl = ,0’; =ph =0)
and cancer-induced death in males (i.e., d,, = 0), the DFE of the risk-structured model

(4.34) is GAS in D} whenever R{;, < 1;

iv) with the assumed 90% efficacy of the Gardasil vaccine, at least 87% of the new sexually-
active females need to be vaccinated to have a realistic chance of effectively controlling

the spread of the low- and high-risk HPV types in the community;

v) it is shown that, with the assumed 70% Gardasil vaccine coverage for females, at least
18% of the remaining new sexually-active susceptible females need to be vaccinated
with the Cervariz vaccine in order to effectively control the spread of the low- and

high-risk HPV types in the community;

vi) vaccinating a fraction of new sexually-active susceptible males offers beneficial community-
wide public health impact. In particular, simulations show that while vaccinating new
sexually-active susceptible females only (at the assumed 70% vaccine coverage) re-

sulted in about 250 cumulative cancer cases (in both females and males) over two

107



vii)

years, this number reduces to about 100, over the same time period, if both new
sexually-active susceptible males (with 70% Gardasil coverage level) and females are
vaccinated. Furthermore, while vaccinating females only with the Gardasil vaccine (at
the 70% coverage level) resulted in about 8 cumulative cancer-related mortality cases
over two years, only 2 such deaths are recorded, over the same time period, if both

males and females are vaccinated;

if only 70% of the new sexually-active susceptible females are vaccinated with the
Gardasil vaccine, additionally vaccinating 47% of the new sexually-active susceptible
males will lead to the effective community-wide control, or elimination, of the low- and
high-risk HPV types. Thus, this study supports the recent recommendations by some
public health agencies to vaccine sexually-active males (since doing so offers additional

community-wide benefit, vis-a-vis the control of the two (risk) HPV types).
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Table 4.1: Description of state variables of the model (4.34).

Variable  Description
S¢(Sm)  Population of unvaccinated susceptible females (males)
E%Y(El,)  Population of exposed females (males) infected with the low-risk HPV types
E}E})  Population of exposed females (males) infected with the high-risk HPV types
I4(1},)  Population of infected females (males) with clinical symptoms of the low-risk
HPV types
I¥(1})  Population of infected females (males) with clinical symptoms of the high-risk
HPV types
VP(VY)  Population of susceptible females (males) vaccinated with the bivalent
Cervariz vaccine
Vi(V,i)  Population of susceptible females (males) vaccinated with the quadrivalent
Gardasil vaccine
P}(P})  Population of infected females (males) with persistent infection with the low-risk
HPYV types
P}(Pl)  Population of infected females (males) with persistent infection with the high-risk
HPV types
G(Gyy) Population of infected females (males) in the low-grade CIN (INM) stage
Gsn(Gpn) Population of infected females (males) in the high-grade CIN (INM) stage
We(W,,) Population of infected females (males) with genital warts
5 Population of infected females with cervical cancer
cr, Population of infected males with HPV-related cancers
R$(Ry,)  Population of infected females (males) who recovered from HPV-related cancers
R;(R,,) Population of infected females (males) who recovered from HPV infection
N¢(N,,) Total female (male) population
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Table 4.2: Description of the parameters of the model (4.34), where [ and h represent the
low-risk and high-risk HPV types, respectively.

Parameter Description Nominal value Reference
per year

7mf(mm)  Recruitment rate of new sexually-active

females (males) 10000 61, 75]
pr(pm)  Average duration of sexual activity for
females (males) = 9, 61]

Br.(B5)  Infection probability for females (males)

with the i-risk HPV types, i € {l, h} 0.4 (0.5) (61, 75]
cm(cr)  Average number of male (female) sexual
partners for females (males) per unit time 2 <3\]X7’:((f)) ) (61, 75]
£r(&n)  Rate of loss of infection-acquired immunity
for females (males) 0.0012 Assumed
p5(pr,)  Re-infection parameter for females (males)
with i-risk i-risk HPV types, i € {l,h} Assumed
©Pq Fraction of new sexually-active females
(males) vaccinated with the quadrivalent
Gardasil vaccine 0.7 [7, 25, 61]
©Op Fraction of new sexually-active females
vaccinated with the bivalent Cervariz vaccine 0.2 Assumed
€ Efficacy of the bivalent Cervariz vaccine
(quadrivalent Gardasil vaccine) 0.9 [61, 76]

Uf(aZ ) Rate of symptoms development for exposed females
(males) with the i-risk HPV types, i € {l,h} 0.5 Assumed

¢ (r},)  Fraction of symptomatic females (males) with
the i-risk HPV types who recover naturally
from the i-risk HPV types (but do not develop
persistent infection) 0.5 [61]

112



Parameter

Description Nominal value
per year

Reference

v (Yn)

K (k)

U g (tm)

(L —dy)uy

s1f(81m)

Transition rate out of I;(1},) class for females
(males), ¢ € {l,h} 0.9

Fraction of symptomatic females (males) who

recovered naturally from persistent infection with

the low-risk HPV types (but do not develop

genital warts) 0.5

Transition rate out of P;(P),) class for females
(males) 114

Rate at which females with low-risk persistent
HPYV infection develop genital warts o7

Fraction of symptomatic females (males) who

recovered naturally from persistent infection with

the high-risk HPV types (but do not develop

CIN (INM)) 0.5

Transition rate out of P}(P}) class for females
(males) 114

Recovery rate of infected females (males) with
genital warts 87.5

Fraction of infected females (males) with low-grade
CIN (INM) who naturally recovered from HPV
infection 0.2

Transition rate out of G%(G',) class for females
(males) 17.25

Progression rate from CIN1 to CIN2/3 stage 13.8
Fraction of infected females (males) with high-grade

CIN (INM) who naturally recovered from HPV
infection 0.285

[61]

Assumed

Assumed

53, 99]

[61]

Assumed

36, 53, 99]

Assumed

Assumed

52, 53, 55]

Assumed
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Parameter Description Nominal value Reference
per year
Sof(S2m)  Fraction of infected females (males) with high-grade
CIN (INM) who regressed to the low-grade CIN
(INM) stage 0.2 Assumed
zf(zm)  Transition rate out of G’}(G},) class for females
(males) 40.75 [52, 53, 55]
Sof2f Regression rate from CIN2/3 to CIN1 stage 8.15 [52, 53, 55]
S1f2f Recovery rate of individuals with CIN2/3 stage 11.6 [52, 53, 55]
wi(wm)  Rate of development of cancer for females (males)
in high-grade CIN (INM) stages 23.5 [52, 53, 55]
Yt(ym)  Recovery rate of females (males) in the C$(Cy,) class 0.76 (25, 61]
d¢(6,)  Cancer-induced mortality rate for females (males) 0.001 [61]
n(m,)  Modification parameter for infectiousness of exposed
individuals in the E%(E;,) class for females (males),
relative to those in the I3(17,) class, i € {I,h} Assumed
0':(6;,) Modification parameter for the infectiousness of
individuals with the i-risk HPV persistent infection
relative to those in the If, E4(1;,, E;,) class for
females (males), i € {l, h} Assumed

« Similar (biological) parameters are used for males and females.
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Cases | Yo | Y1 | Yo | Y5 | Y, | Y5 |Ys | Y7 | Y5 | Y RY Number of | Number of
sign possible
changes positive
real roots
U [+ [+ [+[+[+[+[+[+[+][+[Rh<1 0 0
+ [ F [ F T F - - - -[R>1 L 1
2 |+ -1 -1-]1-[-|+][+][+]|+][Ri<1 2 0,2
+ - 1-T1-1T-1T-T-7T-7T-1T-[Ry>1 1 1
3 |+ [+ - -[-]-|+][+[F]+][Ri<1 2 0,2
+ 1+ -1-1T-1T-T7T-7T-1T-1T-[Ry>1 1 1
4 |4+ -+ -] -]-]+][+]+[+[Rp<1 4 0,24
- [+ - -1-1-1-1T-T-R>1 3 1,3
5 +1-1-1-1-1++]+]+]+[R<1 2 0,2
- - - -1+ -1-1T-T-R>1 3 1,3
6 |+ [+ |+]-[-[-|+][+[F]+][Ri<1 2 0,2
++ |+ -]-]-]-1-1-]1-[Rb>1 1 1
T+ - - H[RI< 2 0,2
+ [+ - -+ -T-[R>1 3 1,3
8 |+ -[+]-]-]+]+][+]+]+]|Ri<1 2 0,2
+ -+ - - - -[R>1 3 13
9 [+ [-]+]-|+[+[+][+]+]F+[Ri<1 4 0,2,4
+ -+ -+ T+ - -1-1-TRrRe>1 5 1,3,5
10 [+ ]+ -[+][-][+][+]F][+][+][Ri<I 4 0,2,4
4+ -+ - +[-[-1-1-[Re>1 5 1,35
1 [+ [+ +]-1T+]-1+]+]+]+]R<1 4 0,2,4
+ [+ -+ - - - -T-R>1 3 1,3
12 [+ -]+ -1T+]-1+]+]+]+]R<1 6 0,2,4,6
+ -+ -+ -[-1-1-1-[Re>1 5 1,35
B[+ -1+1-1T+1-1+]-1-7-R<1 7 1,3,5,7
+ -]+ -1+]-]+1+]+]+|[R,>1 6 0,2,4,6
4 |+ -]+]-[+]-]+]-]+]+]|Ri<1 8 0,2,4,6,8
+ -]+ -1+]-1+1-1-1-]Ry>1 7 1,3,5,7
15 [+[-[+[-[+][-|+][-]+]-|Re<1 9 1,3,5,7
+ -]+ -1+]-]+-1+]+|R,>1 8 0,2,4,6,8
16 |+ [+ ][ +][-]+]-[+]-][+]-[Ri<1 7 1,3,5,7
+ 1+ |+ -1+ -]+ -1+]+|R,>1 6 0,2,4,6

Table 4.3: Number of possible positive real roots of (4.42) for R} < 1 and R} > 1.
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Figure 4.3: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2. (A) R, < 1 < R;, (here,
pho=ph, =02, ph = ph = 0.0001, B, = B} = 0.005, B = 0.9, B} = 0.95875, ¢; = 32,
Vf = Ym = 0.22, w; = 09 = 0.1, k:;} =kl =0.7, 7750 =nl =0.8, n}’ =nh =0.9, 6} =0 =009
and 0} = 0 = 0.95; so that 0.1781 = R; < 1 < R, = 10.5770 and Rj = 3.2522). (B)
Ry < 1 < Ry (here, pﬁﬁ = ph =02, pif = pl = 0.0001, B! = 0.9,5} = 0.8, g = 0.05,
B =0.003, ¢; = 32, v = Y = 0.22, P} = o = 0.1, K} =k}, = 0.7, 14 = 75, = 0.8,
ny =nk =09, 0 =6, =09 and 6} = 6, = 0.95; so that 0.0310 = R, <1 < R; = 5.718
and Ry = 2.3899).
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Figure 4.4: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2. (A) R, > Ry > 1 (here,
py = ph, = 0.001, pff = pl = 0.03, B, = 0.058, B} = 0.28, Br = 0.45, f} = 0.27, ¢; = 8,
vr = 0.7, v = 0.5, Ylo= Yt = ol = 0.4, aéc = 0.1, k}‘ = kI = 0.7, n} =n =08,
77}‘:77,’7‘1:0.8,%:9571:0.9, 2f = 2y =3, Wy = Wy, = 0.9, dy = d, = 0.6, up = Uy, = 2,
and 6% = 6" = 0.95; so that 10.1328 = R; > R, = 6.3261 > 1 and R} = 3.1832). (B)
Ry > Ry > 1 (here, ply = pl, = 0.03, p} = pl, = 0.0001, g}, = 0.45,8% = 0.03, 8 = 0.7,
ﬁ]@ = 0.3, ¢y = 8§, wﬁc = 09 = 0.1, k;ﬁ =kl = 0.7, néc =nl = 0.8, 77}‘ =nh = 0.9,
0 =6, =09, v} =Y = 0.5 and 0} = 0], = 0.9; so that 16.8274 = R, > R; = 10.9341
and R{ = 4.1021).
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Figure 4.5: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2, with plf =pl = p? = ph =
om =0, Bl = Bﬁ: = 0.05, 3" = 0.5, 55} =04, n} =nl =0.7, 77? =nh =08, 6’} =6 =09
and 0} = 6! = 0.95 (so that, 0.005 = R; < Rj, = 0.2253 < 1 and Rf, = 0.4747 < 1).
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Figure 4.6: Simulation of the model (4.34) using Gardasil vaccine. Parameter values used
are as given in Table 4.2. (A) Showing the cumulative number of HPV-related cancer cases
in both females and males as a function of time for females only vaccinated and both females
and males vaccinated (here, p’}’ = ph = plf = pl = 0.0012, B!, = 0.8, ﬁ; =0.9, g =0.7,
=09, K} =k}, =02, 9, =nl, =07, n} =} = 08,0, =0, =09, o, =al, =14,
af, =11.75 and 0} = 6!, = 0.9). (B) Showing the cumulative number of mortality as
a function of time for females only vaccinated and both females and males vaccinated (here,
= ph = ph = p, = 00012, g, = 0.8, g% = 0.9, g} = 0.7, B} = 0.9k} = k], = 0.2,
ne =nh, =08, 0 =nk =0.9, 6% = 6., = 0.9 and 0} = 6, = 0.9).
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Figure 4.7: Simulations of the model (4.34). Parameter values used are as given in Table
4.2. (A) showing a contour plot of Rf, as a function of the Gardasil vaccine efficacy (g,)
and the fraction of new sexually-active females vaccinated at steady-state (go‘}) with plf =
ol = p’} =pt =6, =0, 8 = ﬂ} = 0.05, gh = 0.5, 6}‘ = 04, 7"9 = rl = 0.887,
l, = 0,0, =1, =nf =nk =08and 0, =0, =0} =0, =09 (B)showing a
contour plot of Rf, as a function of the fraction of new sexually-active females vaccinated
with Gardasil (p}) and Cervariz ((,01}) at steady-state with plf =pl = p’]% =ph =6, =0,
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Chapter 5

Contributions of the Thesis and

Future Work

The thesis contributes in three main categories, namely:

i) model formulation: formulation of novel anti-HPV vaccination models, of the form
of deterministic systems of non-linear differential equations, for the transmission dy-

namics of HPV, and the associated cancers and warts, in a community;

ii) mathematical analysis: carrying out detailed qualitative (mathematical) analysis of
the models developed in the thesis (in particular, finding conditions for the existence

and asymptotic stability of the associated equilibria);

iii) public health: using the models developed in the thesis to evaluate the impact of the
anti-HPV Cervariz and Gardasil vaccines in combatting the spread of the four chosen

HPV-types (HPV-6, HPV-11, HPV-16 and HPV-18).

The specific contributions of the thesis are summarized below.
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5.1 Model Formulation

The thesis consists of two new models for HPV transmission dynamics (and the associated

cancers and warts) in a community.

i)

ii)

The first model, given by (3.19), is for the transmission dynamics of HPV (and the
associated cancers in females) in a population, in the presence of the Gardasil vaccine
(which targets the four HPV types, HPV-6, HPV-11, HPV-16 and HPV-18) for new
sexually-active susceptible females. Some of the novelties of this model (in relation to
the many other HPV transmission models in the literature, including those in [9, 24,

25, 26, 61]) is that it:
a) includes the dynamics of the exposed (i.e., latently-infected) individuals;
b) allows for the transmission of HPV by exposed individuals;
c) allows for the loss of infection-acquired immunity by recovered individuals;
d) allows for the re-infection of recovered individuals.
Furthermore, the model (3.19) extends the models in [9, 26] by, additionally, including

cancer-induced mortality in females and the dynamics of females with persistent HPV

infection.

The second model, given by (4.34), is based on extending the model developed in
Chapter 3 to study the transmission dynamics of the low- and high-risk HPV types in
the presence of the Cervariz and Gardasil vaccines. Some of the notable new features

of the model (4.34), in relation to the model (3.19), are:

a) stratifying the entire population in terms of the risk of transmitting either the low-

risk (HPV-6 and HPV-11) or the high-risk (HPV-16 and HPV-18) HPV types;

b) incorporating two anti-HPV vaccines (Cervariz and Gardasil);
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c¢) allowing for mass vaccination of new sexually-active susceptible males (with the

Gardasil vaccine);
d) including the dynamics of infected individuals with genital warts;

e) including the dynamics of individuals in the low-grade and high-grade pre-cancer

stages (CIN for females and INM for males);
f) including the dynamics of infected males:
1) with HPV-related cancers;
2) cancer-induced mortality for males;
3) infected males who recovered from HPV-related cancers;

4) a compartment for males with persistent HPV infection.

5.2 Mathematical Analysis

A major contribution of the thesis is the detailed qualitative analyses of (the two models) it

contains. Some of the main mathematical results obtained are summarized below.

5.2.1 Chapter 3

The model (3.19), and its vaccination-free version (3.21), are qualitatively analysed. The

leading following theoretical results were obtained:

i) it is shown, using the next generation operator method, that each of the two models
has a locally-asymptotically stable disease-free equilibrium whenever its associated

reproduction number is less than unity;

ii) each of the two models has at least one endemic equilibrium whenever its associated
reproduction threshold exceeds unity. For the case when the models have a unique
endemic equilibrium, it is shown, using a Krasnoselskii sub-linearity argument, that

the unique endemic equilibrium is locally-asymptotically stable;
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iii)

iv)

the two models undergo the phenomenon of backward bifurcation under certain condi-
tions. The backward bifurcation phenomenon, proved using Centre Manifold Theory,

is shown to arise due to the re-infection of recovered individuals;

in the absence of the re-infection of recovered individuals, it is shown, using Comparison
Theorem and Lyapunov Function theory, that the associated disease-free equilibrium
of the two models are globally-asymptotically stable whenever the respective associated

reproduction threshold is less than unity;

overall, it is shown that the two models (vaccination and vaccination-free models)
developed in Chapter 3 have essentially the same qualitative features. Thus, this
study shows that adding vaccination to the vaccination-free model (3.21) does not alter
its qualitative dynamics with respect to the existence and stability of its associated

equilibria, as well as with respect to its backward bifurcation property.

5.2.2 Chapter 4

The model (4.34), and the low-risk-only version (4.37), are qualitatively analysed.

i)

ii)

iii)

iv)

Each of the two models has a locally-asymptotically stable disease-free equilibrium

whenever its associated reproduction threshold is less than unity;

it is shown that both models have at least one endemic equilibrium whenever the

reproduction threshold exceeds unity;

it is shown that the low-risk-only model (4.37) undergoes a re-infection-induced back-

ward bifurcation under certain conditions;

in the absence of the re-infection of recovered individuals and cancer-induced mortality
in males, it is shown that the disease-free equilibrium of the model (4.34) is globally-

asymptotically stable whenever the associated reproduction threshold is less than unity.
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5.3 Public Health

The models developed in this thesis are simulated, using the parameter values in Tables 3.1

and 4.2, to gain quantitative insight into the transmission dynamics of HPV (and related

cancers and warts) in a community. Some of the main public health contributions of the

thesis, derived from these simulations, are summarized below:

i)

ii)

the vaccination model in Chapter 3 shows that the mass vaccination of new sexually-
active females only, using the Gardasil vaccine (with the assumed efficacy of 90%), can
lead to effective community-wide control (or elimination) of HPV if at least 78% of the
new sexually-active susceptible female population is vaccinated at steady-state. How-
ever, the model in Chapter 4 shows that vaccinating new sexually-active susceptible
females alone (with the Gardasil vaccine) can lead to effective control, or elimination,
of HPV from the community if at least 87% of the new sexually-active susceptible
females are vaccinated. Unfortunately, however, since the current Gardasil coverage
in most communities is about 70% [9, 26, 46, 61, 76|, this study shows that the sin-
gular use of Gardasil (with the 70% coverage) is inadequate to lead to the effective
control of HPV (since it fails to bring the associated reproduction threshold of the two

vaccination models, (3.19) and (4.34), to be less than unity);

vaccinating new sexually-active susceptible males offers beneficial community-wide im-
pact. In particular, simulations show that while vaccinating new sexually-active suscep-
tible females only (at the assumed 70% coverage rate) resulted in about 250 cumulative
cancer cases over two years, this number reduces to about 100, over the same time pe-
riod, if both new sexually-active males (with 70% Gardasil coverage) and females are
vaccinated. Furthermore, while vaccinating new sexually-active females only with the
Gardasil vaccine (at the 70% coverage level) resulted in about 8 cumulative mortality
cases over two years, only 2 cancer-related deaths are recorded, over the same time

period, if both new sexually-active males and females are vaccinated;
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iii)

iv)

if only 70% of the new sexually-active susceptible females are vaccinated with the
Gardasil vaccine, additionally vaccinating 47% of new sexually-active susceptible males

will lead to the community-wide elimination of the low- and high-risk HPV types;

it is shown that, with the assumed 70% Gardasil vaccine coverage for new sexually-
active females, at least 18% of the remaining unvaccinated susceptible females need to

be vaccinated with the Cervariz vaccine in order to effectively control the disease.

5.4 Future Work

The work in this thesis can be extended in several directions (in terms of model construction

and associated mathematical analyses), such as:

i)

ii)

iii)

iv)

vi)

including age-structure (since both vaccines are recommended to be administered to

individuals in certain age groups [15, 76, 93, 96]);

including other anti-HPV intervention strategies (such as condom use and Pap screen-

ing, which are also considered as standard anti-HPV control strategies [15, 27, 61, 76]);

explicitly incorporating the effect of co-infection (of multiple HPV types and/or with
other STIs);

carrying out a cost-benefit analysis of implementing the mass vaccination program in

a community;

vaccination of older susceptible men and women (outside the 9-26 age bracket). The ob-
jective is to determine whether vaccinating this age group offers beneficial community-

wide impact;

incorporate the homosexual transmission of HPV. This is crucial since HPV can also
be transmitted via this route. This aspect of HPV transmission dynamics has not yet

been addressed in the literature;
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vii) modelling the in-host dynamics of HPV;

viii) establishing the global asymptotic stability of the endemic and/or boundary equilibria
of the models (mathematical interest). Establishing the global asymptotic stability of
a relatively large dynamical system, such as the 29-dimensional model in Chapter 4,
is always of significant mathematical interest (since one key objective of mathematical
biology research is to develop new mathematical techniques and theories for analysing

relatively large systems of non-linear differential equations).
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Appendix A

Proof of Theorem 3.1

Proof. Let t; = sup{t > 0 : Sf(t) > 0,V¢(t) > 0,E¢(t) > 0,1;(t) > 0,P(t) > 0,C(t) >
0, R.(t) >0, R(t) > 0,5,(t) >0, E,(t) >0, L,(t) > 0,R,(t) >0} > 0. It follows from the

first equation of the vaccination model (3.19) that

dd_‘? =71 —@p) +ErRs(t) — N (1) Sf(t) — ppSy(t) > mp(1 — p) — [An(t) + ps] Sf(2),

which can be re-written as,

% {Sf(t) exp [th + /Ot)\m(r) dr] } > (1 —f) exp [uft + /Ot/\m(T) dT:| )

Hence,

Sy(tr) exp {wtl -/ () dT] -5,00> [ (1 o) exp {ufy + [ i) dr} g,

so that,
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Sit) > S;(0) exp {—th— /Otlxmde}

4 {exp {—th—/Otlxm(f)df}}/ot}f(1—gof) exp {Mw/oyAm(T)dT

Similarly, it can be shown that Vi(t) > 0, E¢(t) > 0,1;(t) > 0, P(t) > 0,C(t) > 0, R.(t) >

dy > 0.

0,Rs(t) > 0,5,(t) > 0,E,(t) > 0,1,(t) >0, and R,,(t) > 0 for all time ¢ > 0. Hence, all

solutions remain positive for all non-negative initial conditions. O

Theorem 3.1 can also be proved using the approach given in Appendix A of [92].
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Appendix B

Proof of Theorem 3.5

Proof. Consider the vaccination-free model (3.21) with py = p,,, = 0. The proof of Theorem
3.5 is based on using a Krasnoselskii sub-linearity trick, as given in [91] (see also [31, 32]).
The method essentially entails proving that the linearization of the model system (3.21),

around the EEP (&;) of the vaccination-free model (3.21), has no solutions of the form

Z(t) = Zoe, (B.1)

with,

ZO = (Zl7 227 Z37 Z47 Z57 ZG7 Z77 ZS) ZQ» ZlOa le) ) Zz € C, w e (C, and Re(w) Z 0.

This implies that the eigenvalues of the characteristic polynomial associated with the lin-
earized equations have negative real part (i.e., Re(w) < 0). Then the EEP, &, is locally
asymptotically stable. For simplicity, consider the special case of the vaccination-free model
(3.21) with the probability of re-infection set to zero (so that, p,, = py = 0 in (3.21)). The
linearized system of (3.21), around the EEP & (with p,, = ps = 0), gives the following

system of linear equations
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le

who
w3
why
ws
wZe
w2y

CUZB

WZQ

CUZlQ

Clel

Bmc m mErj;l* + ]:: Bmcf,umnmS** ﬁmcf,um r
- e U ) + Zl+§fZ7——fZg— —fZlo,
Tm T T
Bmc m mE:;: + I;* BmeMmUmS** Bmcf,umS**
st (1 )Z1 — 14y + L Zy+ L Zv,
Tm, Tm Tm
Oy ly — Gols,
hiZ3 —nyZy,
hoZy — noZs,
’YfZ5 - Nf267

m1Z3 -+ m2Z4 — 93Z7,
mh S e m0, S
_ Brerpmny Sy, Z, BycritmSy, Zs — BycsitmOp S, Z

Tm Tm Tm
Bfo,um (’I]fE';* + ];* + QpP**)

Tm

+ Hm ZS + ngH)

BrcstmiisSu | Brcsht mZ3+5foM b mZ4+3f s (s B+ 17 + 0y )Z

(B.2)

Tm Tm, Tm,

94297
OmZy — 95210,

YmZio — g6 211,
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which is equivalent to the system

K Tm 1433 HfTm
ﬁmcf,ums**
—fZl(),
HyTm
(1+ﬁ)22 Bncptim (Bt + L7 )
g1 9g1Tm
ﬁmc MmﬁmS** Bmc ,umS**
! L Zy+ ! L Zyo,
g1Tm g1Tm
(1 + ﬁ) z, = Yz,
g2 g2
h
(1 + i) Z, = 2z,
m n
h
(1 + i) ZS _2Z4a
N9 )
(1 + i) Ze = Lz, (B.3)
127 127
w m m
(1 + —) Zq 7.+ 27,
93 g3 93
{1+_ w—i—ﬁf shm (s E} f ,P*) }ZB _ Byegny mZQ_chf ",
Hm Tm, Tm Tm
ceb,S** m
BresOSm Zy+ 5—Z117
Tm L,

w CrlmMNFSh Crlbm S
(1+_> g, = DicstmlgS o BreitnSu
94 94Tm 94Tm,
Brcstimbp Sy Z,
gaTm

ﬁfo/Lm (UfE;* + [}k* + HpP**)
G4Tm &
w Om
gs ds
w m
(1 + —) le w—Zlo.
e Je

§Z7—B FHmTmo ¢ Z

Adding the first, ninth, and tenth equations of (B.3), and then adding the second, third,

fourth, and eighth equations of (B.3), and finally moving all the negative terms to the left-
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hand side (and simplifying) gives the following system:

[1 + F1 (w)] Z1 + [1 + Fg (w)] Zg + [1 + F10 (w)] ZlO

[1 -+ F2 ((.U)] ZQ + []. + F3 (w)] Zg + []_ + F4 (w)] Z4 + [1 + FS ((U)] Zg

134

[1+ F5 (w)] Zs
14 Fg (w)] Zs
1+ Fr (w)] Z7

14 Fiq (w)] Z11

(HZ), + (HZ),
(HZ),,,

(HZ),+ (HZ),
(HZ),+ (HZ),,
(HZ),,  (BA)
(HZ),,

(HZ).,

(HZ),,,



where,

Rw) = Mi {w 4 OmCsttm (ZmE:;:‘ +I;;*)} |
! m

Fy(w) = n%,

Fs(w) = Iuif’

Fr(w) = i7

Flw) = uim w+ﬂfcf“m(ﬁfE?;:I;*Jrepp**) |

Fy(w) = g%( +936mc:f7:nnm5;*)7

Fio(w) = i(ijW)

Fii(w) = ﬁ7

e
>
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and,

00 0 0 0 0% 0 0 0 0
1233

“mo0 0 0 0 0 0 0 & @ g

g1 g1 g1

0 ‘;—g O 0 0 0 0 0 0 0 0

0 0 % 0O 00 0 0O 0 0 0

0 0 22000 0 0 0 0

H=|1 0 0 0 0 Z—ﬁ o0 0 0 0 0 |,
0 0 ™ = o 0 0 0 0 0 0
gs gs
0O 0 0 0 0 00 O 0 O f;;
0 w B ¥w g 0 0 Z 0 0 0
g4 ga g4 g4
0O 0 0 0 0 0 0 () ()
gs
0O 0 0 0 0 0 0 0 0 @—g 0
with,
BnCyttm (m By + 1) B CflmNmS T} BnCpmS T
o= y Y2 = , Ys = )
— Brepmmg Sy _ BycrpmS,y _ BrepumBpSyy

y4 - —7 y5_—7 yﬁ_—,

7Tm 7Tm 7Tm
g = Drcitn (0 By + 17 + 0,P™)

Tm

In the above computations, the notation H (Z) (for ¢ = 1,...,11) denotes the ith co-

ordinate of the vector H (Z) Furthermore, it should be noted that the matrix H has

non-negative entries, and the EEP

gl _ (S**, E;*, [}k*’ P**, C**, Ri*,R** ok E** I** R;k;) ,

for¥mymomo

satisfies

& = HE,. (B.5)
To show that Re (w) < 0, we consider two cases: w = 0 and w # 0.
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Case 1: w=0

Suppose w = 0. It follows then that (B.2) is a homogeneous linear system. Furthermore, the

determinant of (B.2) (with w = 0) is

—p—py 00 0 0 0 & 0 —Y —ys O
(1 —qg 0 0 0 0 0 0 Yy yz O
0 or —g2 0 0 0 0 0 0 0 0
0 0O h —-n O 0 0 0 0 0 0
0 0 0 hy —mns 0 0 0 0 0 0

A = 0 0 0 0 v —pus O 0 o 0 0 |,
0 0 m me 0 0 —gs3 0 0 0
0 Y+ —Ys —Ye¢ O 0 0 —yr—pm O 0 &n
0 va Ys ¥ O 0 0 Y7 —g1 O 0
0 0 0 0 0 0 0 0 Om —¢g5 O
0 0o 0 0 0 0 0 0 0 ¥m —0e
= — (1 +pyp) My + My — yo Mz + ys My, (B.6)

where,

My = pynagsni929596 (9194 (bm + Y7) — b (Y2 + Ya)]
—  WnagsiimTe [0 5952 (MYs + hys) + N10mGaysys + 11000 rysys + h10m0 rysys
= [fN293M191920mEmPmYT,
My = oppgnoyr (nimy + hims) [9agsgs (tm + Y1) — Om&m¥m¥yr]
Ms = gspimptynay19sge (N1g2ya + h10sys + niosys) (B.7)

My = —0Omfimptynayi9sgs (N1g2ya + hiopys +n1osys) .
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It can be shown, by simplifying (B.6) with (B.7), that the determinant, A, is non-zero.
Hence, for the case that w = 0, the linear system (B.2) has only the trivial solution Z = 0.

This implies that w # 0.

Case 2: w#0

Now assume that w # 0 and Re (w) > 0 (assume the contrary to show that Re (w) < 0). Let
F(w)=min{|l1 + F; (w)],i =1,2,3,...,11}. It can be shown from (B.4) that |1 + F; (w)| > 1
for all 4. Hence, F (w) > 1. On the other hand, since the coordinates of £ are positive, if Z

is any solution of (B.4), then there exists a minimal positive real number s such that
|Z} S 5517

where |Z| = (|1Z1],125],|Z5] ,|Z4|, ..., | Z11]) and |.| is the norm in C. Therefore, Ty < sand
the minimality of s implies that ‘Z | > ﬁ&- Since s is the minimal positive real number
such that

|le| S SR::’ (Bg)

Taking norms on both side of last equation of (B.4), and using (B.5), (B.8) and the fact that
H is nonnegative, gives

F(w)[Zul < H(|Z])y < sR,y,

so that,
5
‘ 11’—F(w> m Sl
which contradicts the minimality of s. Hence, Re (w) < 0. This concludes the proof. ]
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Appendix C

Proof of Theorem 3.6

Proof. The Centre Manifold Theory, as described in [14], will be used to prove Theorem 3.6.

It is convenient to, first of all, make the following changes of variables. Let,

Sf:l‘l, EfZQEQ, ]f:373, P:I47 C:$57 Rc:$67 Rf:l'%

and,

Sm = Ts, Em = Ty, Im = 10, Rm = T11-

Furthermore, it should be noted that the total male population, now given by N,, = zg +
g9+ X109+ 11 is replaced by its limiting value Z—’" Hence, the model (3.19) can be re-written

in the form:
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dry
dt
dﬂ?g

dt
d[L‘g

dt

d$4

dt
dflf5

dt
dx 6

dt
dx 7

dt
dx 8

dt
dxg
dt
dxqg

dt

dl’ll

dt

BmC fm (MmTe + T10) .
ﬂ-m

fi=mp+&prr —

BmCtim (MmTy +
9 = i <Z 2 10) (x1 + prr7) — G122,

1~ Hf,

fs= Oflo — ga2I3,
f4 = hixs — ni1Zy,
f5 = hoxy — nows,

fo = vrrs — pye,
BnCfm (MmTe + T10)
Pf

fr = myizs + moxy — pu T 93| s
Brcepim(nrze + 23 + 0,2
fs =mm +&nzin — P (nf; : . 4)$8—Mm$8=
Brcipim(Nrre + 13 + 014
fo = Y (s + 23 + 0y )(x8+pm$11)—94$97

Tm
f10 = OmT9 — gs5T10,

Crlm (N + x3 + O,
Ji1 = YmT10 — Pmﬁf U (nf; T 4)+96 Z11-

The Jacobian of the system (C.1) at the DFE (&) is given by
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—py 0 0 0 0 0 §r 0 —g11 —g12 O
0 -0 0 0 0 0 0 0 g1 12 0
0 of =02 0 0 0 0 0 0 0 0
0 0 hiy —ny O 0 0 0 0 0 0
0 0 0 hay —mng 0 0 0 0 0 0

JE&)= o 0o 0 0 4 -u 0O 0 0 0 0 [,
0 0 mip Mo 0 0 —g3 O 0 0 0
0 —gi3 —guu —g15 O 0 0 —fm 0 0 Em
0 913 Guu g5 0 0 0 0 —g1 0 0
0 0 0 0 0 0 0 0 Om —g5 O
0 0 0 0 0 0 0 0 0 UV —6
where,
g1 = W, gi12 = %> gi13 = Ufﬁfcfa g14 = ﬁfcfa 915 = epﬁfcf-

Consider the case when Ry = 1. Suppose (without loss of generality) that 5y is chosen

as a bifurcation parameter. Solving for 3y from Ry = 1 gives

* N191929495Tml f
br=p"= : (C.2)
f /BmC?-’]Tflum (77m95 + Um) [nfn192 —+ Oy (nl —+ ephl)]

The transformed system, (C.1) with 8 = §*, has a hyperbolic equilibrium point (i.e., the
linearization has eigenvalue with zero real part while the other have negative real part).
Eigenvectors of J(&) |g,—p-:

Let J(&) |g;=p-= Js-. In order to apply the method described in [14], the following com-

putations are necessary. The matrix Jz« has a left eigenvector (associated with the zero
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eigenvalue) given by,

T
v = [UlaU27U3av471}57vﬁ7v771}87U97U107U11] ;

with,
ofUs + *crv hivy + B*crv 6,6%crv
o = 0, wy= WUFWBIC vt Bepu - OpBTepty
g1 g2 ny
C T FU
ve = 0, v7=0, vg=0, vg =19 >0, Ulozw, vy = 0.

GaTm b f

Furthermore, the matrix Jz« has a right eigenvector (associated with the zero eigenvalue)

given by,
T
w = [w17w27w37w47w57w67w7aw87w9aw10aw11 )
where,
gfw7 Bmcf,umﬂ-f (nmw9 + wlO) /Bmcfﬂmﬂ-f (ﬁmwg + wl()) O fW2
w, = - 9 , W = , W3 = )
oy HyTm G Tm by g2
orhiws hawy hoysw, Miws + Moy
Wy = —, W5 = , We=—"—, W= ——""",
gany N2 NafLf gs
w *c we + w3 + G,w O W w
ws = §m 11_5 f(77f 2 3 D 4), wo = wo > 0, Wy = m 9’w11:1/1m 10'
Hom Hm gs Je
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Computations of bifurcation coefficients, a and b:

It follows from Theorem 2.8 of Chapter 2 that, for the system (C.1), the associated non-zero

partial derivatives of C.1 (at the DFE, &) are given by

anl nmﬁmeu%ﬂf 5meN$rL7Tf 82f2 . nmﬁmcfﬂznﬂ'f ﬁmcf:u%lﬂ-f
rdew | whup | mhwy  Owdeo | may 7wk
Pfo nBCitm | pmf B Crlim Pfo BrCpim | pmBrCiiim
Ory0ry T + Tom " Qw01 T + T
a2f9 gpﬁ*cf,um pm‘gpﬁ*cf/vbm 82fll - pmﬁfﬁ*cfﬂm
_ 2 + — ,
0r40x11 T, T 0r20x11 T,
32f11 Pmﬂ*cfﬂm 52f11 . Pmepﬂ*cf,um
81'361‘11 - Tm, 81‘482711 - Tm ’
a2f7 _ _pfnmﬂmcfﬂm 6’2f7 _ _pfﬁmcf,um
0x701g Tm Ox70x1 Tm
a2f2 _ pfnmﬁmcf:um 82f2 _ pfﬁmcfﬂm (C 3)
0x701g T 07011 Tm ’
a2f2 _ _QTImBmeﬂgan a2f2 _ _QBme,U/%ﬂTf a2.]02 _ ﬁme,um
02901 w2 pup 0100210 T2 iy 0x1011 T
Pl Bty Ph_ Buepiry  Ph o P
02901 T2 1 02100710 T2 1 0x1071 T
J” fi . 9 fi . nmﬁmcf,ugnﬂf O fi o N BmCf bim
0:1788:59 N 827981111 B W?nﬂf 81'181'9 o Tm ,
D fa . 9 fa _ nmﬁmcf,ugnﬂ-f D fa o N BmCr bim
Ors0r9  Ox90T11 T2 g Or10x9 T, ’
D fs . D fs B D fs i ntB*Cylim 9 fs B 9 fs B 9 fs B B Crpim
0r90xg  Ox90T19  Ox00T11 T Ox30xe  O030T10  O0230T11  Tom
Pfs  _ Ofs _ Pfs _ 0Bcrim fo _ Ofo _ mpBicspm
02401 0x40119 0140711 Tom 0x9019 0120710 T
Pfo Pfy  Brcpum Pfo  Pfe  OBrcipim
013019 0130110 Ty 01,019  O1s0T10 T
O fi - 9 fr - 5meM$n7Tf 9 fa - 9% f - ﬁmcfﬂznﬂf
81‘861‘10 N 8271081‘11 N meuf 09388:1010 N 893106:1:11 - Wrznuf ’
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It follows from the expressions in (C.3), and Theorem 2.8 of Chapter 2, that

92
a = Z vkwwja O (0,0),

kyi,j=1
2Cf:um
= M— [sz (nmwg —+ U)w) -+ AQUg (77fU)2 -+ W3 + 9 ’LU4)] (C4)
f m
2Cf:um
2n [B1vg (Mmwy + wio) + Bavg (npws + w3 + Opwy) + Bs),
f m
with,
A = Bulmmpy (& + ppps) wr + B mpppey (npwe + ws + Opwa)]
Ay = B Tppfpmion,
By = Bums g (Emwin + pn (Wg + w11)) + i (Nmwy + w1o)]
By, = ﬁ*wmui (wg + wyg + wi1) ,
By = BnTplmtrvawig (wy + wig) ,
and,

b= ;; Ukwla 86 ) Cflg (nfw2 + w3 + epUJ4) > 0.

It is evident from (C.4) that the bifurcation coefficient, a, is positive whenever

Q1 > Qq, (C.5)

where,

Q1 = Ayvy (Nmwg + wig) + Agvg (Npws + w3 + Opwy)

Q2

Blvg (nmUJQ + U)l[)) + BQUg (’I]fUJQ + ws + pr4) + Bg.
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Thus, it follows from Theorem 2.8, that the vaccination-free model (3.21) undergoes back-

ward bifurcation whenever Inequality (C.5) holds. O

The inequality (C.5) can be expressed in terms of the re-infection parameter for recovered

females, py, as

ps > Py (C.6)
where,

B Bsvyg (Ufwg + ws + pr4) Bs
2 + 2 + 2
Bmﬂ-muf V2 (nmwi) + wlO) Bmﬂ-m,uf V2 (nmw9 + wlO) /Bmﬂ-m,uf

Py =

A2U9 (ﬁf’lﬂg “+ w3 + 9pw4) _ ﬁ*ﬂfo (77fU)2 —+ w3 + (9;,,11)4) _ f_f

> 0.
V2 (nmw9 + wlo) ﬁmﬂ—m,uff T fd [y

Thus, this study shows that the vaccination-free model (3.21) undergoes backward bi-
furcation whenever the re-infection parameter for females (ps) exceeds a certain threshold
( p;) Models with re-infection, such as those for the transmission dynamics of mycobacterium
tuberculosis [14, 60, 86], are known to undergo backward bifurcation. It is instructive, there-
fore, to check whether or not the re-infection of recovered individuals in the model (3.21)

induces the phenomenon of backward bifurcation in the model. This is explored below.

C.1 Effect of Re-infection of Recovered Individuals on
Backward Bifurcation

It is worth exploring the possible effect the re-infection of recovered individuals may have on
the backward bifurcation property of the vaccination-free model (3.21). Setting ps = pp, =0
(and, for computational convenience, &5 = &,, = 0) in (C.5) shows that

2C¢fim
o, 2t

2

,u2ﬂ_ [(AH — BH) Vo — B22U9 (T]fUJQ -+ ws + pr4)] s (07)
f'm
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Ay = BuBmmrcr (npwe + ws + Opws) (Nmwy + wig) ,
B = B"1ppim [(mwe + wio) (B ¢y (Mmwg + wio) + pf (wo + wig)) + prwrowa]

By = pimmf* (w4 wig + wiy) .

Using the value of 8* from (C.2) gives (here the eigenvectors vy and wg are given the value

unity)

T i, (T + )
A+ — B = — f Tim b wm ,Um?/}m + Qluzn + QBmC Om
R T Crtty (Pm + fn) (NP + Nl + ) ity { 7om)

+ 6mcf77m¢m,um (277m/~bm + DV, + 20m) + Umﬂfn (Bmcf,ulmnm + Umpy + 26mcf0'm)

+ o (ﬁmcfﬂmgm + 2,ufo'mwm + nmﬂm,ufwm + Mmﬂf¢m + Mfﬂ?n)] <0,

T2 4 (T + i)

TTmCyf

Hence, it follows from (C.7), with (C.8), that the bifurcation coefficient a < 0 for the
vaccination-free model (3.21) with py = p,, = & = &, = 0. Thus, it follows from Item
(iv) of Theorem 2.8 of Chapter 2 that the vaccination-free model (3.21) does not undergo
backward bifurcation in the absence of re-infection and loss of infection-acquired immunity
(pf = pm =& = &, = 0). This fact can further be illustrated by substituting py = p,, =0
in the quartic (3.34) in Section 3.4.2. Doing so shows that the non-zero equilibria of the

model (3.21), with pf = p,, = 0, reduces to

al)\;‘: - b1 = 0, (Cg)
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where,

Brcymriim (

+ pm9a9596Ero sy (1 —rg) [y + op (L= wp)] 4 g (17 (&5 + pp) + 045 (af + pip)]

ar = ngnigs + M0y + ‘gphlaf) G3btm [(Om + Um 4 pin) Em + (O + ) (Y + fin)]

+ g (g + &+ ) [ag (Vf + pg) + peidy],

bi = [ilmN1919293949596 (R(Z) o 1> :

It is clear from (C.9) that the coefficient a; > 0 and b; > 0 for Ry > 1 (furthermore, b; < 0
if Rg < 1). Thus, the linear system (C.9) has a unique positive solution, given by \** = %,

whenever Ro > 1 (the linear system has no positive endemic equilibrium when Ry < 1).

Lemma C.1. The vaccination-free model (3.21), with p; = pm = 0, has a unique endemic

equilibrium whenever Ry > 1, and no endemic equilibrium whenever Ry < 1.

The absence of endemic equilibria in (C.9) when Rg < 1 suggests that the phenomenon
backward bifurcation is not possible in the vaccination-free model (3.21), when p; = p,,, =
0 (since backward bifurcation requires the existences of multiple endemic equilibria when
Ro < 1). Thus, it can be concluded from the analyses in this Appendix (and Theorem 3.7)
that the backward bifurcation property of the vaccination-free model (3.21) is caused by the

re-infection of recovered individuals.
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Appendix D

Proof of Theorem 3.7

Proof. Consider the vaccination-free model (3.21) in the absence of re-infection (i.e., py =
pm = 0). The proof is based on using a Comparison Theorem (see Theorem 2.10). The
equations for the infected components of the vaccination-free model (3.21), with py = p,, = 0,

can be re-written as (it should be noted the system (D.1) satisfies the Type K condition [87],

as discussed in Section 2.7):

Ey(t) Ey(t) Ey(t)
15 (t) Iy (t) I5(t)
P(t) P(t) P(t)
% C(t) _Fow C(t) . C(t) | (0.1)
Ry(t) Ry(t) Ry (t)
En(t) En(t) En(t)
Ln(t) In(t) Ln(t)
R (1) Ry (t) Ry (t)

where the matrices F and H are as defined in Section 3.3.1, and

P RN ) P R

Uy Tm
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with,

Ji

and,

Jo

00 0 0 O MmPmesmism  BumciTipm
HfTm HfTm
00000 0 0 0
00000 0 0 0
00000 0 0 o |,
00000 0 0 0
00000 0 0 0
00000 0 0 0

0 0 00O0O00O0

(aw]
o o o o O
e
]
]
]
ew]
e

0

niBrcr Breg OpBpcy 00 0 0 0
0 0 0 00000 O

0 O00O0O0O

0 0 0 00O0O0O

It should be noted that J; and J; are non-negative matrices. Furthermore, since,

Sp(t) < Ng(t) <

it follows that,

T and Sm(t) < Np(t) < Tm (forallt > 0in D),
Ky Hm
Ty Tm
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so that J is a non-negative matrix. It follows from (D.1) that

By (1) Ey(1)

14(t) 15(1)

P(t) P(t)
a1 O Fogy| Y (D.2)
W Ryw) Ry (1)

Eon(t) Eo(t)

L(t) Ln(t)

Ron(t) Ron(t)

Using the fact that the eigenvalues of the matrix F — H all have negative real parts (see
local stability result in Section 3.3.1, where p(FH™') < 1 if Ry < 1, which is equivalent
to F — H having eigenvalues with negative real parts when Ry < 1), it follows that the
linearized differential inequality system (D.2) is stable whenever Ry < 1. Thus, it follows,
by Comparison Theorem [58] (see also Theorem 2.10), that

lim (B, (), 1;(t), P(£), C(t), Em(t), Ln(t)) — (0,0,0,0,0,0).

t—o00

Substituting £y = Iy = P = C = I, = E,, = 0 into the first and eighth equations of the
vaccination-free model (3.21) gives Sy(t) — S} and S,,(t) — Sy, ast — oo for Ry < 1.

Thus,

lim (Sf(t)v Ef(t)v If(t)v P<t)7 C(t>7 Rc(t)a Rf<t)7 Sm(t)v Em(t)v [m(t)v Rm(t)) = &,

t—o00

so that the DFE, &, of the vaccination-free model (3.21) is GAS in D; whenever Ry < 1

and pr = pm, = 0. ]
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Appendix E

Proof of Theorem 3.10

Proof. The proof of Theorem 3.10 is also based on using Centre Manifold Theory, as shown

in Appendix C. Solving for 3y from R, = 1 gives

_ N191929495Tm L f (E.1)
B3 phum (Mmgs + om) [Ny1192 + 0f (01 + 0phn)] (1 — uipy)

By =B

Eigenvectors of J(&£]) |3,—p-:

For the system (3.19), it can be shown that the associated matrix J(&;) |3,—g-= J§- has a

left eigenvector (associated with the zero eigenvalue) given by,

T
V= [U17027U37U47U57U67U77087U977}1070117U12] )

with,
*cr(om +orhil, +n ) *cr(ng + 0,h1)v
o = 0. =0, vy = Dot oy tmgn) v - Brep(m A Gph)vio.
n19192 nig2

6,6%crv

Vs = %’ U6:07 'U7:O, U8:O, U9:O’ U10:U10>O’
1

ﬂmc T (1 —eppp)us

oy = FimT s ( 1) o= 0.
gsTm b f
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Furthermore, Jgf* has a right eigenvector (associated with the zero eigenvalue) given by,

T
w = [wwa;w37w47w57w67w77w87w97w107w117w12] )

where,
w = S0 BmCptmms (1= fp) (mtwro £ wnn) 0 Bt Trps (L~ ) (mtno + win)
K ﬂ?fﬁm 7 ,u?fﬂm
~ BmCpttm T (Om + Mmgs) (1 — eup5)wig _ Oyws _ hywy ~ hihswy
w3 = , W4 = , Ws = ) 6 — )
HfTmd19s g2 ny ning
_ fwe MWy + MaWs _ Smwiz BYcr (npws + wy + Opws)
Wy = S, Wgm o, Wy = - :
1253 gs Hm, Hom
O W PYmw
wyp = wp >0, wy= 0wy = =
gs Je

Computations of bifurcation coefficients, a and b:

For the model (3.19), it can be shown that the associated bifurcation c

are given, respectively, by

2Cf:u“m,

oefficients, a and b

= > [A11103 (Nmwio + wi1) + Agzavio (Npws + wy + Opws)] (E.2)

i,
ch M

—5 5 [B111v3 (Nmwio + wi1) + Bagavio (Mrws + wy + Opws)]

[,
and,

82
b= Z vkwix—fk((), 0) = cpvio (Npws + wy + Opws) >
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In (E.2),

Amr = BTty (& + ppps) ws + B ppesmy (1 — gvpy) (npws + wa + Oyws)]
+ BrcimT ey (Rmwio + win)
Aggg = /B*ﬂm,ufc,omwm,
Biii = Buprymy (1= €0pr) [Emwiz + pim (w10 + w11 + wi2)] + Bocppimms (miwg + wio)

By = 5*7Tm/£§c (w10 + w11 + wiz) .

Hence, it follows from Theorem 2.8 that the vaccination model (3.19) undergoes backward
bifurcation at R, = 1 if the bifurcation parameter a, given in (E.2), is positive. It is evident

from (E.2) that a > 0 whenever

Q@3 > Qu, (E.3)

where,

Qs = Aiivs (Nmwio + win) + Aavig (npws + wy + Opws)

Q1 = Binivs (Nmwio + win) + Baxvig (npws + wy + O,ws) .

E.1 Non-existence of Backward Bifurcation

Consider the vaccination model (3.19) in the absence of re-infection (p; = p,, = 0). Setting
pr = pm = 0 (and, for simplicity, £ = &, = 0) into the expression for the bifurcation

coefficient, a in (E.2), and using S* for 5y in (E.1), shows that (here, the eigenvectors vyg
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and wyg are given the value unity)

_QBmcf,“m (Om + tm) (M Vm + Nl + Om) [1 — EuPf (2 —¢,)] B 2(om + ﬂm)z

< 0.
T f (pm + Ym) (1 = 511901‘) Tm

a=

(E.4)
It should be stated that, in (E.4), 0 < ¢,,¢; < 1. Hence, it follows from (E.4), that the
bifurcation coefficient, a < 0, for the vaccination model (3.19) with py = p,, = & = &, = 0.
Thus, it follows from Item (iv) of Theorem 2.8 that the vaccination model (3.19) does not

undergo backward bifurcation in the absence of re-infection.
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Appendix F

Proof of Theorem 3.11

Proof. Consider the vaccination model (3.19) with pf = p,, = 0 and R, < 1. Furthermore,
consider the following Lyapunov function (where g1, gs, g4, 95,71 and hy are as defined in

Section 3.3.3):

- Beer(ngmage + g+ Op0h) (mgs + Um)Ef L Breg (n+6ph) (hmgs + om)

n1919294733 "1929472%

Iy

ﬂfcfep (77m95 + Um)P + (anB + Um) Em + Im;

n194 g4

with Lyapunov derivative (where, as in Chapter 2, the dot denotes the differentiation with

respect to t) given by

po— Brerymgs + o+ 0,05h) (ngs + 0m) g Brey (a4 Ophn) (hngs + om) ;
n1919294R2 g n192gaR3 g

Brcsly (Mmgs + om) I (Nngs + om)

n194 g4

Ep + Iy,
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so that,

. Brer (nymage + opna + 0popht) (Mmgs + om) {ﬁmcf (N Em + 1) }
L= Si+(1—e)Vi] — 1 E
n1919294R; N, 1Sy + ( Wil — g1 B¢

Brcr (ny + Oph1) (Nmgs + o)

g4 Nm

6fcf0p (Um95 + Um)
N 0;Er — go1) + hily —m P
n19294R?2 (0sEy = 9:17) n194 (s F)
G5+ O E; + I; +6,P
n (Mmgs + om) | Brcr (npEy + 15 + 6y )Sm_g4Em}+(ngm—g5fm).

Since Sy(t) + Vi(t) < Ny(t) < Z—; Sm(t) < Nip(t) < 2= for all £ in D, and 0 <, < 1, it

follows that

. I 9 h m m 9 h m m
r S _5fo (T]fn192+0fn1+ pO'J; 1) (77 95+U >gl+ﬁfcf (n1+ D 1) (772 g5—i—a )O'f Ef

L n1919294RU n19294Rv
[ cr(ny + 0,k mds + Om ci0, (Nmgs + om

+ _5ff(1 p1)(77295 )92+5ffp(77 95 )h1:|If
L n19294Rv n194
[ Brcy (mgs + om) | Brey (Mmgs + Um)]

+ | = + E+1
_ " R (nsEy + 1y)
[ BnCT gt (G5 + ) (ynage + o gy + 058, (1 — enpy)

+ |—9g5+ B (1 Em + Im)
I N191929aTmbf R2
[ 0 m m 9 m m

L | Bress (hmgs + o )n1+5f0f p (Nmgs + o )]P,
L n194 g4
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: ntBrct (Mmgs + 0m) /g Brcy (Mmgs + om) (n1 + O,h1) o
L R:—1)F R:—1)1
g4 R? ( v ) F n1g4R2 ( Y ) !

+ g5 (R2=1) (B + I,,) <0 for R. <1

Since all the model parameters are non-negative, it follows that £ < 0 if R? < 1. Hence,
it follows from the LaSalle’s Invariance Principle [59] that every solution of the vaccination
model (3.19), with p; = p,, = 0 and initial conditions in D, converges to the DFE, &},
as t — oo. That is, (Ef(t),I¢(t), P(t),C(t), Em(t), In(t)) — (0,0,0,0,0,0) as t — oo.
Substituting Ky = Iy = P = C = I, = E,,, = 0 in the first, second and ninth equations of
the vaccination model (3.19) gives S¢(t) — S}, Vi(t) — V; and S, (t) — S, as t — oo for
R, < 1. Thus,

lim (Sf(t)v Vf(t>7 Ef(t)7 ]f<t)7 P(t)a C@)? Rc(t)7 Rf(t)a Sm@)? Em<t)7 Im@)? Rm<t)) - 83/7

t—o00

so that, the DFE, &, of the vaccination model (3.19) is GAS in D whenever R, < 1 and

pr = pm =0. [
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Appendix G

Positivity of Rfla le,th and R,,},

Recall from Section 4.3.1 (with all the associated variables as defined in Section 4.3.1) that

Bincfﬂ'f,um (1 - gv(pl]]f) Bl
Rpu = , Riyn
ppTm D1 Dy D3

_ Bl eim s im [1 — &y (‘Pl} + 9030)] (Q1+ Q2+ Q3)
MmeD5D6Q4 7

Bher (1 —ewpl,) By R Brer (1 —eg0%,) (Qs + Qs + Q7)

R ,
: A Ay As A5 AsQs

The following steps are taken to prove that the quantities above are positive. It can be

shown that:

B, = T],ianDg + ]{31D3 + 9571]{32/{31 > 0,

Q1 = 7721 (D6D7D8D9 — kgjoDs D7 — kskf?lee;)
= 777I;LmDG (Wm + Mm) (um + Mm) (aZz + ,Um)
+ 0l Dezmptm (0, + tm) + 1 Deditionzm (0t + Somptm) + 1 Dot Zmftm (1 — Sam)

+ 0l Dettmzm (1 — du) ol [s1 (1= K2) + K2 (1= s2)] > 0,
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Q2

OF

Qs

ksD7DsDg — ksksjoD7 — kskrksji = ks (W + i) (W + i) (0, 4 1)
k5zm,um (CVZ@ + ,U/m) + demumzm (afn + SQmMm) + k5umzm,um (1 - SQm)

kst zm (1= dim) aly, [s1m (1= KJ,) + Kl (1= s2m)] > 0,

0% (ksksDsDo — kskiks o)
O kske (win + fim) (U + fin) + 0% kskgzmtm (1 — Som)

9,}21{:51{:62”1 (dmUmSom + pm) > 0,

D7DgDg — ksja D7 — krksja
(wm =+ Nm) (um + Nm) (O‘Zz + Nm) + Zmbm (0421 + ,Um)
dmumzm (Oé?n + S2m,um) + U Zm m (1 - SQm)

U 2m (1 — dp) [slm (1 — kﬁl) + k" (1 - sgm)] > 0,
U;A3A2 + b1A3 + Harbgbl > 0,

1} (AsA7AsAg — bsga Ag Az — bsbrgr Ag)

M As (wr + pug) (ug + pp) (o + pp)

Wy Aszig (of + pig) + 1y Aedupzy (0 + sappg) + 0y Asupzpig (1= say)

Wy Asugzp (1= dp) aff [sip (1= Kk}) + K} (1= s25)] >0,
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Qe = bsA7AsAg — bsbgga A7 — bsbrbsgn
= b5 (wr + pg) (us + pp) (@f + 1)
+ bszppg (of + pig) + bsdpupzy (off + sappg) + bsupzpig (1= say)

+ b5Ufo (1 - df) Oz;zc [Slf (1 - k??) + k;cl (1 — SQf)] > 0,

Qr = 0} (bsbgAsAg — bsbgbsgs)
= Obsbs (wr + p1g) (g + i) + Ofbsbozgus (1 — s25)

+ el}bg,bﬁZ’f (df’LLfSQf + ,Uf) > 0,

Qs = A7AgAy — bgga A7 — brbsgs
= (wy + pp) (up + ) (&f + pug) + zppp (@f + piy)
+ dyupzy (o + sappp) +upzpiy (1= s3y)

+ Urzyf (1 — df) OK? [Slf (1 — k?) + /{Z}L (1 — ng)} > 0.

Thus,
Rﬂ > 0, R > 0, th >0 and R,,, > 0.
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Appendix H

Coefficients of the Polynomial (4.42)

Y,

Y,

Y3

+ o+ o+ o+

3 3 2
bgos3 + ap2a22002033 + bzzany + b3zboaars > 0,

2b92b33 (agobss + a11bo2) + b§3 (bagagy — bo2ag + borair) + agzass (bo2baz + bo1bss) + 25325016133

boabss (borase — bozan ) + 5(2)2 (borass — bozaoz) ,

bay (boass — boraoz) + 2boabor (borbss — bozaoz) + bozbss (2b0boz + b3y ) + bozbss (boasz — boraor)
02022 (bo2b11 + bo1baa + bobss) + (bo2baz + bo1bss) (bo1ase — bozaot)
(2511533 + 632) (aoobss + a11bo2) + 2b33b22 (baaaoo — bozao + borair)

633 (b11ago + boar — borag) ,

—biaboaoz + 2bo2bor (boass — boraoz) + (bozbo + by + boboz) (borass — bozaoz) — ao1bobozbss
2b0bo1bo2a33 + apzasze (bo2boo + bo1b11 + bobog) + 2baobss (a11bo + aobin — borag)

(boraas — boaaor) (boabiy + bo1bas + bobss) + (agobss + a11boz) (2bs3boo + 2022b11)

(boaza — boraot) (bozbaz + bo1bss) + (bazaoo — boaao + borar) (2b33bir + b35)

b33 (aooboo — aobo) ,
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Y,y

+ o+ o+ o+

—2bgagzbozbor + (2boboz + b3y ) (boass — boragz) + 2bobor (borass — aoaboz) + ag2az2borboo
Apaaazbobr1 + (borazz — boaaor) (Bozboo + borbir + bobag) — ao1bo (bozbaz + borbss)

(boazz — boraor) (bosbir + boibas + bobss) + (aoobas + ar1bo2) (2b22boo + %)

(bagaoo — aoboz) (2092011 + 2b33b00) + (a11bo + agobi1 — bo1ag) (2b11b33 + ng)

202233 (agoboo — aobo) ,

—2boags (2boboz + b)) + by (borass — aeeboz) + 2b0bo1 (boass — boraoz) + 2boobr1aoobss
20b00b11a11bo2 + (borazz — bo2aor) (borboo + bobi1) — ao1bo (bozbi1 + bo1baz + bobss)

(bazago — aoboz + bo1a11) (2500522 + 5%1) + (boa22 — boraot) (bozboo + bo1b11 + bobaz)

(a11bo + agob11 — bo1ao) (2boobss + 2b22b11) + (acoboo — aobo) (2511b33 + bgz) )

—2b3bo1ags + by (boass — boraoz) + boboo (boraze — bozaor) + (boazz — boraor) (borboo + bobir)
2b0ob11 (bazaoo — agboz + borai1) + 630 (aoobss + a11bo2) — bgamboo — boiag (2522600 + 5%1)

(a11bo + brraoo) (2b22boo + b71) + (a0oboo — aobo) (2bs3beo + 2b22b11) |

—boa02631 + boboo (boasz — borao1) — ao1bo (borboo + bob11) + 2b00b11 (@oobi1 — borao + a11bo)

bao (b22a0o — aoboz + borain) + (agoboo — agbo) (2522500 + bfl) ;
—a01b(2)boo + béo (a11bo + agob11 — aobor) + 2boob11 (aooboo — aobo) ,

boaoo [1 - (Rg)Q] >0 (if RL<1).
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Appendix 1

Proof of Theorem 4.4

Proof. The Centre Manifold Theory, as described in [14], will be used to prove Theorem 4.4.

It is convenient to use the change of variables:

Sf = I, V;ZZI?Q, E;:x?w ]j":x47 P}:x57 Wf:xﬁu Rf:I7) Sm:xSa
Vi = g, E. =ua1, I}, =211, P, =1, Wp=m3, R,=1zu (L1)

Let f = [f1, .., f14] denote the vector field of the low-risk-only model (4.37) in the notation

(I.1), so that the low-risk-only model (4.37) is re-written in the form:

163



dxy BLocrpimTiizy

= fi= (1—gp‘]{)7rf——f7T — Qe

dxo ,Bfnc HUmT11T2

E = fQZQO(}Wf—(l—gv)fﬂ_—_fo%

dﬂ?g B’inc mT

E — f3 = |:,’,U1 —+ (1 — 51;)932 + pl]ch?] # - A1$37

dx

d_t4 = f4 = O'ﬁc.l’g — A2$4,

dx

d—: = f5 = 621’4 — A3$5, (12>
dl’G

at = fo = bsxs — Ayzs,

d$7 ﬁfnc mL11L

ol fr = muixy + moxs + nyxe — Plf% — HmT7,
dzg BicshmTsTs

o fsz(l_SOgn)Wm_fﬁ—_f“mxS’

dxg ey CfmT3T9

D0 = fo= gl — (- ) LT
d.??lo l 65”cfum$3
— = fio=[zs+ (1 — &y)z9 + plyx1a] ——— — D11y,
dt Tm,
dz
711 = f11 = Ufnwlo — Doy,
dz
712 = fi2 = kaw11 — D3x12,
dz
713 = fi3 = ksx13 — Dyx13,
die BrCrimT3r1a
714 = fia = myT1y + MsT12 + Ny 13 — Pinfﬂ— — HmT14,

where A;,D; (i = 1,...,4), bj,k; (j = 1,...,3) and my, ma, mg, m5 are defined in Sections

4.3.1 and 4.3.2.
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The Jacobian of the system (I.2) at the DFE (&) is given by

-y 00 0 0 0 0 0 0 o -U; 0 O 0
0O —ur 0 O 0 0 0 0 0 0o -U; 0 0 0
0 0 U 0 0 0 0 0 0 0o U 0 O 0
0 0 ojc Us 0 0 O 0 0 0 0 0 0 0
0 0 0 b Us 0 O 0 0 0 0 0 0 0
0 0O 0 0 b3 U; O 0 0 0 0 0 0 0
(el 0 0 0 my mg ny —puy O 0 0 0 0 0 0
0 0o 0 -Us 0 0 0 —py O 0 0 0 0 0
0 0 0 =Uy 0 0 O 0 —pm O 0 0 0 0
0 0 0 Up 0 0 O 0 0 Uz O 0 0 0
0 0O 0 0 0 0 0 0 0 o Us 0 0 0
0 0O 0 0 0 0 0 0 0 0 ko Uy O 0
0 0O 0 0 0 0 0 0 0 0 0 ks U O
0 0 0 0 0 O 0 0 0 0 mg M5 Ny —fbm
where,
U Brcsmrtim (1= %) = By ttm @} (1 — &) = Bcrmrim (1= 49%) |
HfTm HfTm Tm
U = —Ay, Us=—-4y, Ug=—As, Uyr=—-Ay, Us=p"c;r(1—¢l),

Uy = [crpl (1—¢,), Ug=p0ci(1—eul), Un=—D1, Upa=—Ds,

Uis = —Ds, Uyu=—Dy.

Consider the case when R} = 1. Suppose, further, that /6’} is chosen as a bifurcation

parameter. Solving for 8} from R, = 1 gives

_ A1A2D1D27Tm,uf
BT i (1 — 20ph) (1 — euiplh) kiby

B = 5" (I.3)
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Here, too, the transformed system, (1.2) with Bgc = f*, has a hyperbolic equilibrium point.

Eigenvectors of J!(&)) gt =p:

It can be shown that the Jacobian of (I.2) at ﬂ} = [* (denoted by Jé) has a left eigenvector

(associated with the zero eigenvalue) given by,

T
V= [Ulvv27U37U47U571)67,U77,U87U97U107U117vl271}137U14] )

with,
l *
o Uy cr(l —eu,0l v
v = 07 UQIOJ V3 = I ; U4:B f( ’ngm) 107 U5:O7 U6:O7 U7:07 U8:07
Ay Ay
BLcrpmms (1 — epp%) v3
vg = 0, vig=1v10>0, vi1 = mfmf( vf) ;, Vi =0, vi3 =0, vy =0.
D27rm,uf

Furthermore, the matrix Jé* has a right eigenvector (associated with the zero eigenvalue)

given by,
T
w = [w17 Wa, W3, W4, Ws, W, Wr, W, Wy, W10, W11, W12, W13, ’LU14] )
where,
1 {
Bhc iy (1= 94) wny BmCsmms (1 — &) phwn
wl = - 2 9 w2 = - 2 Y
Ky Tm Tm s
BLCtpimT (1 — evgo‘}) W1 O'écw3 bawy bsws
w = Wy = Wr = We =
3 Alﬂ'ml,[/f b A2 ) 5 A3 ) 6 A4 b
MWy + MawWs + NyWg Brep (1 — @) wy
wy = , Wg = — )
Ky Hm
Bcp (1 —ey) @l wy ol wio kowiq
W9 = — ! L , Wi = wy >0, wy = = y Wiz = )
fim D, Dy
kswio mywWi + MsWia + Ny W13
w1z = , Wig = .
D, Hm

Thus, using Theorem 2.8, the bifurcation coefficients, a and b, can be computed.
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Computations of bifurcation coefficients, a and b:

It can be shown, by computing the non-zero partial derivatives of the model (1.2) at the

DFE (&}) and simplifying, that

- 82fk 26f
a = Z vkwiwjm(O, O) = M?—ﬂ_gn (MH — MQQ) s (14)
k,,j=1
and,
14 pe
b= vwi—k0,0 = crvowy (1 — g2 ) > 0.
k;l K &ciaﬁ*( ) = cyviows ( ©m)
where,
My = vswrwii py By, T + V10WsW140k, B 3 T+ V3WT Bl 1 T 150 )
+ vswgwn BB umminy (1= euph) +vswhi Bcpn e} (2 — &),
My = vswh Bheppms + vswdy B pd mppty + vswagwi B Bl pm ppppties (1 — v0})

vsw10w11 By, Tty (1 — £00%F) + vswiiwio )i, mrpg (1 — e00h)
Usw11w13ﬁfnﬂiﬂfﬂf (1 - EUSO(]{) + U3w11w1457ln/%2n77fﬂf (1 - €u<P;1c)
V10w B Tty er (1= 98) + viowawioS Tt 3t (1 — £40%,)

Ulow4w115*7Tm,u?v,um (1 —eupl) + U10w4w125*ﬂmﬁ6?€ﬂm (1 - evplh,)

+ o+ o+ o+ o+

U10w4w136*ﬂ-m,u§‘,um (1 —evpr,) + U10w4w145*7TmM3me (1 —evplh,) -

Thus, the result below follows from Theorem 2.8.

Theorem 1.1. The transformed model (1.2) (or, equivalently, the model (4.37)) undergoes

a backward bifurcation at R = 1 if the bifurcation coefficient a, given by (1.4), is positive.

]
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It is clear from the expression for the bifurcation coefficient, a, given by (1.4), that a > 0

whenever (since all the low-risk-only model parameters are positive)

My > Mos. (I

ot
~—

Furthermore, consider the low-risk-only model (4.37) in the absence of re-infection (plf =
pl. = 0). Setting plf = pl = 0 into the expression for the bifurcation coefficient, a in (1.4),
and using [3* for ﬁﬁc in (I.3), shows that (here, the eigenvectors vjy and wio are given the

value unity)
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2 (oh, + ) o l
S p £00 P mbim (2 = %) + €00 Py, (2 = €06
HfTTm (@quln‘f‘llm) (1 _51)90(})2 [ v f ( v f) v f ( v f)]

2 (b, + pim)
[T (Vh, + ) (1 — 51}%0;)2

vl (i) (2 20) + gty (1= <06

20mt (04 + i) (Mo + ) VL, . |
- k 1-
Tm b f (win + ,Um) (Ozfn + ,um) (nm + ,um) [Tm (O./m + ,um) + K, ( Tm)}

2t (T + fim) N NI
N m (1= 1—k

2 (o + 1) [ 1ol 2
B Mfumam¢m 1 - gvgoq) + Mfamwm 1 - svgpq :|
[T (Wb, + i) (1 — 5%0;10)2 I ( f ( 1)

2 (Uin T ,um) [ At 12 2 1 2
B m,UmO'me 1- gvgpq + /’Lf/’[’mo-m 1-— 51)%0(1 :|
T (U, + i) (1= €0%) L ( ) ( )

20t 0%y (0, + i) (1= 90%)  2pamat, (04 + pim) { - 1 }
bt (1 — euiph)? Tmflf (Vhy + tim)
2ol (ob + ) (1 — 7 ! 1—Kk)ad
- m(’l" “)(l m) U 1 —( m) O < 0. (1.6)
T f (wm + ) (ady, + i) (M + fim)

It should be stated that, in (I1.6), 0 < &, @?,(p?n < 1. Hence, it follows from (I.6), that the
bifurcation coefficient, a < 0, for the low-risk-only model (4.37) with p} = pl, = 0. Thus, it
follows from Item (iv) of Theorem 2.8 that the low-risk-only model (4.37) does not undergo

backward bifurcation in the absence of re-infection.
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Appendix J

Proof of Theorem 4.6

Proof. Consider the model (4.34) with ,olf =p = p? = ph = §,, = 0. The proof is based
on using a Comparison Theorem. The equations for the infected components of the model
(4.34) can be written as (it should be mentioned that system (J.1) satisfies the Type K

condition discussed in Chapter 2):
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(J.1)

~~ - o~ T~~~ - T~ T o T
T E D EE DD
~ S == R R oo Sy ~ T 9w ~E -8 ~=E& E <f <g <E g g s &
S = ~ CERC = R~ & U
S
_

—
)\)\l/\l/\n/\l/\)\)t)\n/\l/\l/t\n/\l/\/ﬂ.lb/t\,
/@/@/@/@@t/@&h(h\@/@%\%\(@%\%\/u(hﬁ\
=% I == TR oSw 30 S R % 9= _f g =& & =F &g =8 E 0§ =8
SIS = ~ CHNC SRS S B RS

—~
~Y
_
N
SN—
Il

—
EE T T E2EE T D Do
—~ S == TS R S fe, ¥ TP~ —~E g =& g =g g <8 g g =&
S = ~ G = m N A g oo
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where the matrices F, and H, are as defined in Section 4.3.1, and



[ o« b* *
T N;;L N;Z T
N Si+(1—e) VP +(1—¢g,)Vf _Sf+(1—5U)VJ?—|—(1—5v)qu :
N, Ny, '
[(S* +(1—e,) VIS S, +(1—¢g,)V4
+ I N,;;L - N,;;L (t737‘ + \74r) )
where,
O10x10 T O10x10 T2
\717” - : ) \727’ - : )
O10x10 O10x10 O10x10 O10x10
0 0 0 0
T = 10x10 Uiox10 and = 10x10 Yiox10 ’
J3 O10x10 Ja 010x10
with,

Blemb, Blep Bled, 00 000 00
0 0 0 0000000
0 0 0 0000000
0 0 0O 0000000
7 0 0 0 0000000,
0 0 0 0000000
0 0 0 0000000
0 0 0 0000000
0 0 0O 0000000
0 0 0 0000000
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0000 0 0 0
0000 0 0 0
0000 0 0 0
0000 0 0 0
0.0 0 0 Bhempy, Buer Buesbn,
Jo =
0000 0 0 0
0000 0 0 0
0000 0 0 0
0000 0 0 0
0000 0 0 0
ﬁﬁccfn} ﬁgccf 6}@6} 00 0O
0 0 0 0000
0 0 0 0000
0 0 0 0000
7 0 0 0 0000
0 0 0 0000
0 0 0 0000
0 0 0 0000
0 0 0 0000
0 0 0 0000

and,
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0000 0 0 0 000
0000 0 0 0 000
0000 0 0 0 000
0000 0 0 0 000

7 0 0 0 0 Bfemy Biey Biedy 0 0 0
b 0000 0 0 0 000
0000 0 0 0 000
0000 0 0 0 000
0000 0 0 0 000
0000 0 0 0 000

It should be noted that Jy,, Jor, J3:, and Jy,, are non-negative matrices. Furthermore, since
Sy(t) < Sj(t), VR <VE(b), Vi) <V (@),

and,

Sm(t) < Sp(1), Vi) < V(1)

(for all t > 0 in D}), the matrix 7, is non-negative. Thus, it follows from (J.1) that
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E4(t) E4(t)
I5(t) I3(t)
Pi(1) P(t)
Wi(t) Wi(t)
E}(t) E}(t)
IH(t) I#(t)
Pf(t) Pf(t)
Grl(t) Grl(t)
G ra(t) Ga(t)
L R PR B A (J.2)
B BL (1)
L, (t) I,(t)
Py, () Py, (t)
Win(t) Win(t)
By, (t) E(t)
Iy(t) I,(t)
Py(t) Py (t)
Gru(t) G ()
Grn(t) Grn(t)
C(t) Ch(t)

Using the fact that the eigenvalues of the matrix F, — H, all have negative real parts (see
local stability result in Section 4.3.1, where p(F,H ') < 1 if R}y < 1, which is equivalent
to F, — H, having eigenvalues with negative real parts when Ry, < 1), it follows that the

linearized differential inequality system (J.2) is stable whenever Ry, < 1. Thus, it follows,
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by Comparison Theorem [58] (see also Theorem 2.10), that

lim  (E(t), Ty (t), Py(t), Wi(t), B (), 7 (1), P (1), Gu(t), G a(t), CF(1), By, (1),

Irln(t)v Prln(t)7 Wm(t)7 Ew}vl@(t)’ Iﬁl(t)7 P?”)I’L(t)7 Gml(t)7 Gmh(t)v Orrn(t))

= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

Substituting £} = I} = Py =W} = E} = I} = Pi=Gp = G, = Cf = E} =1}, = P}, =
W,, =E!'" = I" = P" = G,,, = G, = C", = 0 into the equations of the model (4.34)
gives Sy(t) — S5, VP(t) — VI, Vi(t) — V]?*, Spm(t) — 8% and VI(t) — V¢ ast — oo for
Ro < 1. Thus,

tlir?o (Sf(t)v V;(t)7 ng(t)’ E}(t% I)l”(t)’ P]l‘(t)a W}(t)v E}L(t% I)}”L(t)v P]}”L(t)v Gfl(t)7

th(t)7 O;(t)w Sm(t)v V;?Z(t), Efn@)» Iqln(t)a Piz(t% Wm<t)7 E:;(t),

Ly (), P (t), G (t), Guan (1), O, (1)) = &,

so that the DFE, &, of the model (4.34) is GAS in D} whenever Rj, < 1. O
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