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Abstract

The thesis uses mathematical modeling and analysis to provide insights into the transmission

dynamics of Human papillomavirus (HPV), and associated cancers and warts, in a commu-

nity. A new deterministic model is designed and used to assess the community-wide impact

of mass vaccination of new sexually-active susceptible females with the anti-HPV Gardasil

vaccine. Conditions for the existence and asymptotic stability of the associated equilibria

are derived. Numerical simulations show that the use of Gardasil vaccine could lead to

the effective control of the spread of HPV in the community if the vaccine coverage is at

least 78%. The model is extended to include the dynamics of the low- and high-risk HPV

types and the combined use of the Gardasil and Cervarix anti-HPV vaccines. Overall, this

study shows that the prospect of the effective community-wide control of HPV using the

currently-available anti-HPV vaccines are encouraging.
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Chapter 1

Introduction

This chapter provides a review of some of the key biological and epidemiological features of

HPV disease, as well as the associated cancers and warts.

1.1 Human Papillomavirus (HPV)

Human papillomavirus (HPV) is a major sexually-transmitted infection (STI) that continues

to inflict significant public health burden globally (see, for example, [27, 45, 51, 72, 100]).

Genital HPV infection is the commonest STI in Canada and the USA [35, 45, 80, 82].

Currently, 79 million Americans are infected with HPV, and 14 million new HPV infections

are recorded in the USA annually [15]. HPV prevalence is higher in women than in men

[50, 68, 71, 100], and it is estimated that as many as 75% of sexually-active men and women

will have at least one HPV infection in their lifetime [45, 49, 56, 100]. HPV was identified,

in 1983, as the causative agent of cervical cancer [45, 46].

Cervical cancer is currently the second most common malignancy among women, and

a leading cause of cancer-related death globally [24, 45, 72, 100]. Data shows that up to

250,000 cervical cancer related deaths are recorded globally every year [33, 46], and that

about 86% of cervical cancer cases occur in developing countries [100] (see also Table 1.1

and Figures 1.1 and 1.2).
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Region Cervical cancer cases Deaths

Africa 80,419 53,334

Americas 80,711 36,125

Asia 312,752 159,774

Europe 54,323 25,102

Oceania 1,595 781

Developing regions 453,321 241,969

Developed regions 76,507 33,159

World (Total) 529,828 275,128

Table 1.1: Incidence and mortality of cervical cancer by region for the year 2008 [100].

For instance, in the year 2008, about 529,409 new cervical cancer cases and 274,883 related

mortality were recorded globally [100]. About 12,000 women in the USA are diagnosed with

cervical cancer every year [15]. In Canada, an estimated 1,300 women were diagnosed with

cervical cancer in 2009 (with 380 related deaths), corresponding to an annual incidence rate

of 7 cases per 100,000 women (see Table 1.2) [10, 54]. Cervical cancer ranks as the 12th

most frequent cancer among women in Canada (it is also the 3rd most frequent cancer among

Canadian women between the ages of 15 and 45) [54, 100]. Infection with certain HPV types

can also cause genital warts, and data from the US Centres for Diseases Control shows that

up to 360,000 cases genital warts are recorded in the USA annually [15, 22, 27, 76].

2



Figure 1.1: World age-standardized∗ incidence rates of cervical cancer for the year 2008 [100].

∗ ”age-standardized” rate (ASR) is a method of adjusting the crude (with respect to
incidence and mortality) rate to eliminate the effect of differences in population age
structures when comparing crude (with respect to incidence and mortality) rates for different
periods of time, different geographic areas and/or different population sub-groups [4].

Figure 1.2: World age-standardized mortality rates of cervical cancer for the year 2008 [100].

HPV is caused by over 120 different serotypes [15, 27, 76]. While some of these types

cause genital warts only, others can cause diverse cancers [15, 27, 76]. HPV infects squamous
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Province Estimated new cases

Newfoundland 20

Prince Edward Island 10

Nova Scotia 50

New Brunswick 30

Quebec 280

Ontario 490

Manitoba 45

Saskatchewan 35

Alberta 160

British Columbia 160

Canada (Total) 1,300

Table 1.2: Estimates of new cases of cervical cancer by province in Canada for 2009 [76].

epithelial cells in the cervix, the genital areas of males and females, bladder, mouth, throat,

tongue etc. [15, 76, 100]. Transmission of the virus occurs when the virus comes in contact

with these areas, allowing it to transfer between epithelial cells. Although genital HPV
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infections are very common, especially those caused by the low-risk HPV types (such as,

HPV-6 and HPV-11 [18, 51]), they do not (generally) cause any clinical symptoms of HPV

(and are cleared up without any treatment within a few years [15, 46, 100]; it is known that

in 90% of HPV cases, the body’s immune system clears the infection naturally within two

years [15]). These low-risk HPV types cause warts (papillomas) on the genital areas, which

are very common, harmless, non cancerous, and easily treatable [15, 18]. Genital warts

usually appear as a small bump or groups of bumps in the genital area (they can be small

or large, raised or flat, or shaped like a cauliflower) [22].

Other forms of HPV, particularly those caused by the high-risk types (such as, HPV-

16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56,

HPV-58, HPV-59, HPV-68, HPV-73 and HPV-82), are more problematic [18, 51]. These

(high-risk) HPV types cause cervical and other cancers related to the genital areas [15, 18,

22, 51, 76, 100]. The common symptoms of the disease include small bumpy warts on the

genitals or anus and itching or burning around the genitals [15, 100].

The incubation period of HPV is typically between 1 month to 2 years [1, 15, 100]. A

major challenge associated with the transmission dynamics of HPV is that a high proportion

of individuals with genital HPV infections are not detected [15]. Thus, not all people infected

with HPV will develop clinical symptoms of HPV, and such latently-infected people (i.e.,

those with asymptomatic HPV infection) can transmit HPV infection [33, 41, 50]. Numerous

factors, such as smoking, weakened immune system or co-infection (or supper infection)

with other STIs (or HPV types), affect the risk of developing HPV-related cancer (following

infection with the high-risk HPV types) [15, 46, 76].

Although most people clear HPV infection and develop antibody responses, HPV can also

employ several strategies to avoid the immune system [41, 49]. In the absence of regression

(from pre-cancerous stage to a normal cell situation), pre-cancerous lesions may persist for

many years, and may, in some instances, progress to cancer [49, 80, 82, 100]. High-risk

HPV types infect genital areas in men and women, and cause flat lesions at these areas.
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In women, who do not successfully clear their HPV infection, such lesions can progress

to the low-grade cervical intraepithelial neoplasia (denoted by CIN1), and may progress

further to higher CIN grades (denoted by CIN2 and CIN3) and cervical cancer if untreated

[10, 15, 26, 46, 50, 61, 76]. It has been shown that, without treatment, the incidence of the

progression of CIN3 to cervical cancer is about 30% [49, 56]. Figure 1.3 depicts a diagram

for the transition of high-risk HPV types through the three CIN stages (CIN1, CIN2 and

CIN3) to cancer. It is known that the high-risk HPV-16 and HPV-18 account for over 70%

of cervical cancer cases globally [9, 46, 49, 56].

Figure 1.3: A diagram for the transition of high-risk HPV types through the various stages
of cervical dysplasia (CIN1, CIN2 and CIN3), cervical cancer, and associated regression [39].

HPV is a circular, double-stranded DNA virus, protected by a capsid protein [17, 22, 66].

It first infects keratinocyte stem cells, situated in the basal layer of the epithelium [17, 22, 33].

Consequently, HPV enters the target (normal) cell, uncoats and delivers its DNA into the

target cell’s nucleus [17, 22, 33, 41, 50]. Upon infection, the virus exploits the replication

machinery of the target cell to reproduce several copies of its genome, so that each infected

cell contains a low viral load of about 50 copies [17, 22, 66]. The target cells proliferate
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and move towards the outer layers of the epithelium (the viruses also proliferate) [17, 22,

66, 74, 94]. At this stage, the viral load has been drastically increased (resulting in the

production of thousands of viral particles per cell) [17]. As these infected cells approach the

surface of the skin, the viral particles are released to infect other target cells [6, 22, 69, 94],

continuing the cycle. It is known that HPV-16 and HPV-18 are most frequently associated

with cervical cancer (this due to the presence of two viral oncogenes, E6 and E7 genes,

which bind to the human p53 tumor suppressor protein [22, 30, 79, 81, 102]. While the E6

protein targets the p53 tumor suppressor for degradation, the E7 protein, on the other hand,

inactivates the retinoblastoma susceptibility protein [81]). Figure 1.4 depicts the process of

HPV infection in women. Further details about HPV replication cycle can be obtained from

[6, 17, 22, 66, 69, 74, 94] (and some of the references therein).

Figure 1.4: HPV infection in women [69].

1.2 Control Strategies

The spread of HPV, and associated cancers and warts, is controlled via a number of pre-

ventive and therapeutic mechanisms. It is known, first of all, that the use of condoms can
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reduce the transmission of HPV between sexual partners [15, 68, 80, 82]. The other main

anti-HPV control strategies are described below.

1.2.1 Treatment

Unlike some other STIs, HPV cannot be cured using antibiotics [68]. Treatment against

HPV infection depends on the type of the virus the individual is infected with [15, 76, 82].

If the infected person has contracted the low-risk HPV types (which causes genital warts),

the resulting (associated) genital warts can be removed using chemical treatment methods

(such as, cryotherapy, podophyllin and trichloroacetic acid) and cream (such as, Aldara)

[15, 56, 89]. However, it is known that eliminating the visible aspect of the warts will

not always eliminate the virus completely, and the warts can re-appear [15, 46, 100]. On

the other hand, for individuals infected with the high-risk HPV types (that cause various

cancers), treatment will depend on the CIN stage at the time of diagnosis [15, 49, 80]. The

associated pre-cancerous HPV do not (in general) cause any noticeable symptoms, and are

usually detected through a Pap test (smear) or a colposcopy [15, 22, 33, 41, 50].

1.2.2 Pap screening

Pap screening has proven to be quite effective, particularly in developed nations, in early

detection of CIN, and, consequently, reducing cervical cancer incidence and mortality [61].

Pre-cancerous lesions can usually be treated successfully (using, for instance, loop electro-

surgical excision procedure, which involves the removal of a cancerous tissue using a wire

loop, or using laser therapy [68, 80, 82]). It has recently been recommended that the Pap

test be administered every 3 years, starting at age 21 [15, 46, 76, 80]. Furthermore, a pos-

itive diagnosis of cervical cancer imply the presence of invasive cancer in the deeper layers

of the cervix, and that the cancer has also spread to the uterus. If the cancer is limited to

the cervix, it can be treated with the removal of the uterus (hysterectomy). However, if it

spreads to the anus or other genital areas, it can be treated via surgery or radiation therapy
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[15, 34, 56, 100].

1.2.3 HPV Vaccine

Two anti-HPV vaccines, namely Cervarix and Gardasil, have been approved for use to

protect new sexually-active males and females against some of the most common HPV types

[15, 34, 46, 56, 76]. The Gardasil quadrivalent vaccine, produced by Merck Inc., protects

against four HPV types (namely, HPV-6, HPV-11, HPV-16 and HPV-18; these are the four

commonest HPV types). The Cervarix bivalent vaccine, produced by GlaxoSmithKline,

targets two high-risk HPV types (namely, HPV-16 and HPV-18 ) [10, 77]. The two vaccines,

administered in a series of three doses over a period of 6 months, are 90-100% effective in

preventing HPV infection against the respective HPV types [9, 27, 46, 50, 61, 76, 100]. Both

vaccines have been licensed by the Food and Drug Administration of the USA, and the retail

price of either vaccine is about USD $130 per dose (that is, USD $390 for full series) [15, 34].

It has been reported that both vaccines have side effects, including pain (at the body location

where the vaccine is given), fever, dizziness, and nausea [15, 34, 76, 100]. While the Gardasil

vaccine is approved for both females and males, the Cervarix vaccine is only approved for

females [76, 77, 100].

1.3 Reproduction Number and Bifurcations

Compartmental mathematical models have been widely used to gain insights into the spread

and control of emerging and re-emerging diseases of public health importance, dating back

to the pioneering works of Bernoulli in 1760 (see, for instance, [2, 3, 5, 21, 47] and the

references therein). The dynamics of these models is typically characterized by a threshold

quantity, known as the basic reproduction number (denoted by R0), which measures the

average number of new cases a typical infectious individual can generate in a completely-

susceptible population [3, 20, 47]. In general, the disease dies out in time if R0 < 1, and
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persists in the community if R0 > 1. This phenomenon, where the disease-free equilibrium

(DFE) and an endemic equilibrium point (EEP) of the model exchange their stability atR0 =

1, is known as forward bifurcation [12, 14, 42, 47, 48, 86]. The epidemiological meaning of

the forward bifurcation phenomenon is that the requirement R0 < 1 is (in general) necessary

and sufficient for the effective control or elimination of the disease. Figure 1.5 depicts a

schematic diagram of forward bifurcation.

Figure 1.5: Forward bifurcation diagram (where λ is the infection rate).

It is known, in some epidemiological settings, that the requirement R0 < 1, while neces-

sary, is not sufficient for effective disease control or elimination. This is due to a dynamic phe-

nomenon, known as backward bifurcation. This phenomenon results when a stable EEP of the

model co-exists with the associated stable DFE whenR0 < 1. Backward bifurcation has been

observed in numerous epidemiological studies, such as those in [12, 14, 23, 28, 42, 84, 85, 86].

In a backward bifurcation situation, effective disease control is dependent on the initial sizes

of the sub-populations of the model. Consequently, the presence of backward bifurcation in

the transmission dynamics of a disease makes the effective control of the disease (in the com-
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munity) more difficult. Figure 1.6 depicts a diagram for the backward bifurcation diagram.

Figure 1.6: Backward bifurcation diagram, showing co-existence of a stable DFE and two
branches of endemic equilibria (stable and unstable branch).

1.4 Thesis Outline

The main aim of this thesis is to use mathematical modelling, based on the current knowledge

of HPV biology and epidemiology, and rigorous qualitative analysis to gain insights into the

transmission dynamics of HPV (and associated cancers and warts) in a community. The

models to be developed in this thesis consider only the heterosexual transmission of HPV.

The thesis is organized as follows. Some of the basic mathematical preliminaries needed to

qualitatively analyze the models to be developed in the thesis are reviewed in Chapter 2.

In Chapter 3, an HPV vaccination model (based on using the Gardasil vaccine alone in the

community) is formulated and rigorously analyzed. In Chapter 4, the model developed in

Chapter 3 is extended to include, inter alia, the dynamics of the low- and high-risk HPV

types and the two anti-HPV vaccines (Cervarix and Gardasil). The main mathematical
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and epidemiological contributions of the thesis, including some areas for future work, are

enumerated in Chapter 5.

Some of the main questions to be addressed in the thesis are:

i) What are the main qualitative features of realistic models for the transmission dynam-

ics of HPV (and associated cancers and warts) in a community, in the presence of a

mass vaccination program (using the currently-available Cervarix and Gardasil vac-

cines) against HPV? In particular, emphasis will be on determining conditions for the

existence and asymptotic (both local and global) stability of the associated equilibria

of the models, as well as to characterize the various bifurcation types the models may

undergo.

ii) Can the singular use of the Gardasil vaccine for new sexually-active susceptible women

lead to the effective control or elimination of HPV from the community? If yes, what

percentage of the new sexually-active susceptible women need to be vaccinated to

achieve this result?

iii) What are the qualitative features of a vaccination model for HPV that stratifies the

total population in terms of the risk of transmitting infection with the low- and high-

risk HPV types?

iv) Does the vaccination of new sexually-active susceptible males have a quantifiable

community-wide impact in reducing HPV (and HPV-related) burden?

v) What is the community-wide impact of the combined use of the two anti-HPV vaccines,

Cervarix and Gardasil (for new sexually-active susceptible women)?
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Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basis mathematical theories and methodologies relevant

to the thesis.

2.1 Equilibria of Autonomous Ordinary Differential Equa-

tions (ODEs)

In this thesis, only the systems of autonomous ODEs, given by

ẋ = f(x), x ∈ Rn, (2.1)

are considered. That is, non-autonomous ODE systems, of the form

ẋ = f(x, t), x ∈ Rn, and t ∈ R, (2.2)

where f can depend on the independent variable t, are not considered in this thesis.

In both equations (2.1) and (2.2), and throughout this thesis, the over dot represents

differentiation with respect to time ( d
dt), and the right-hand side function, f ∈ Cr with

r ≥ 1, is called a vector field [73].
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Definition 2.1. A point x̄ ∈ Rn is called an equilibrium point of the autonomous system

(2.1) if f(x̄) = 0.

Theorem 2.1. (Fundamental Existence- Uniqueness Theorem [73]). Let E be an open subset

of Rn containing x0 and assume that f ∈ C1(E). Then, there exists an a > 0 such that the

initial value problem:

ẋ = f(x), x(0) = x0,

has a unique solution x(t) on the interval [−a, a].

Definition 2.2. The Jacobian matrix of f at the equilibrium x̄, denoted by Df(x̄), is the

matrix,

J(x̄) =





∂f1
∂x1

(x̄) · · ·
∂f1
∂xn

(x̄)

...
...

...

∂fn
∂x1

(x̄) · · ·
∂fn
∂xn

(x̄)




,

of partial derivatives of f evaluated at x̄.

Definition 2.3. The linear system ẋ = Ax, with the matrix A = Df(x̄), is called the

linearization of the system (2.1) at the equilibrium x̄.

Definition 2.4. An equilibrium point x̄ of the system (2.1) is called hyperbolic if none of

the eigenvalues of Df(x̄) has zero real part.

Definition 2.5. An equilibrium point that is not hyperbolic is called non-hyperbolic.

2.2 Hartman-Grobman Theorem

Consider the dynamical system:

ẋ = f(x), x ∈ Rn, (2.3)

ẏ = g(y), y ∈ Rn,

14



where f(x) and g(x) are two Cr (r ≥ 1) vector fields on Rn.

Definition 2.6. [98]. The dynamics generated by the vector fields f and g, of the system

(2.3), are said to be locally Ck-conjugate (k ≤ r) if there exists a Ck diffeomorphisim h

which takes the orbits of the flow generated by f , φ(t, x), to the orbits of the flow generated

by g, ψ(t, y), preserving orientation and parameterization by time.

Theorem 2.2. (Hartman-Grobman Theorem [98]). Consider the Cr(r ≥ 1) system

ẋ = f(x), x ∈ Rn, (2.4)

with domain of f to be a large open subset of Rn. Suppose also that the system (2.4) has

equilibrium solutions which are hyperbolic. Consider the associated linear system

ξ̇ = Df(x̄)ξ, ξ ∈ Rn. (2.5)

Then, the flow generated by the system (2.4) is C0-conjugate to the flow generated by the

linearized system (2.5) in a neighborhood of the equilibrium point x = x̄.

It should be stated that the Hartman-Grobman Theorem guarantees a homeomorphism

between the flow of the non-linear ODE and that of its linearization. In general, near a

hyperbolic equilibrium point x̄, the non-linear system ẋ = f(x) has the same qualitative

structure as the linear system ẋ = Ax, with A = Df(x̄) [73].

2.3 Stability Theory

Definition 2.7. [98]. The equilibrium x̄, of the system (2.1), is said to be stable if, given

� > 0, there exists a δ = δ(�) > 0 such that, for any solution y(t) of the system (2.1)

satisfying |x̄− y(t0)| < δ, |x̄− y(t)| < � for t > t0 where t0 ∈ R.
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Definition 2.8. [98]. The equilibrium x̄, of the system (2.1), is said to be asymptotically-

stable if it is stable and there exists a constant c > 0 such that, for any solution y(t) of the

system (2.1) satisfying |x̄− y(t0)| < c, lim
t→∞

|x̄− y(t)| = 0.

Definition 2.9. An equilibrium solution which is not stable is said to be unstable.

The main standard methods for analyzing the stability of the equilibria of the disease trans-

mission models are described below.

2.3.1 Standard linearization

Theorem 2.3. [98]. Suppose all the eigenvalues of Df(x̄) have negative real parts. Then,

the equilibrium solution x = x̄, of the system (2.1), is locally-asymptotically stable (LAS). It

is unstable if at least one of the eigenvalues has positive real part.

2.3.2 The next generation operator method and R0

The next generation operator method [19, 95] is used to establish the local asymptotic

stability of the disease-free equilibrium (DFE) of a disease transmission model. The notation

in [95] is used in this thesis. Suppose the given disease transmission model, with non-negative

initial conditions, can be written in terms of the following system:

ẋi = f(x) = Fi(x)− Vi(x), i = 1, ..., n, (2.6)

where Vi = V −
i − V +

i and the functions satisfy Axioms (A1)-(A5) below.

The function Fi(x) represents the rate of appearance of new infections in compartment

i, V +
i (x) represents the rate of transfer of individuals into compartment i, and V −

i (x)

represents the rate of transfer of individuals out of compartment i. Furthermore, the

number of individuals in each compartment is given by x = (x1, ..., xn)t, xi ≥ 0, and

Xs = {x ≥ 0 | xi = 0, i = 1, ...,m} is defined as the disease-free states (non-infected

variables of the model).
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(A1) If x ≥ 0, then Fi, V
+
i , V −

i ≥ 0 for i = 1, ...,m;

(A2) if xi = 0, then V −
i = 0. In particular, if x ∈ Xs then V −

i = 0 for i = 1, ...,m;

(A3) Fi = 0 if i > m;

(A4) if x ∈ Xs then Fi(x) = 0 and V +
i = 0 for i = 1, ...,m;

(A5) if F (x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

Definition 2.10. (M-Matrix). An n×n matrix A is called an M-matrix if and only if every

off-diagonal entry of the matrix A is non-positive and the diagonal entries are all positive.

Lemma 2.1. (van den Driessche and Watmough [95]). If x̄ is a DFE of (2.6) and fi(x)

satisfy (A1)-(A5), then the derivatives DF (x̄) and DV (x̄) are partitioned as

DF (x̄) =




F 0

0 0



 , DV (x̄) =




V 0

J3 J4



 ,

where F and V are the m×m matrices defined by,

F =

�
∂Fi

∂xj
(x̄)

�
and V =

�
∂Vi

∂xj
(x̄)

�
with 1 ≤ i, j ≤ m.

Further, F is a non-negative matrix, V is a non-singular M-matrix and J3, J4 are matrices

associated with the transition terms of the model, and all eigenvalues of J4 have positive real

parts.

Theorem 2.4. (van den Driessche and Watmough [95]). Consider the disease transmission

model given by (2.6) with f(x) satisfying Axioms (A1)-(A5). If x̄ is a DFE of the model,

then x̄ is LAS if R0 = ρ(FV −1) < 1 (where ρ is spectral radius), but unstable if R0 > 1.
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2.3.3 Krasnoselskii sub-linearity argument

The central idea of the Krasnoselskii sub-linearity argument is to show that the linearized

version of the non-linear system ẋ = f(x), given by (where x̄ is an equilibrium solution of

the non-linear system)

Ż(t) = Df(x̄)Z,

has no solution of the form

Z(t) = Z0e
ωt,

with Z0 ∈ Cn, ω ∈ C and Re(ω) ≥ 0, where C denotes the complex number (further details

about the application of the Krasnoselskii sub-linearity argument to prove the asymptotic

stability of an equilibrium of a disease transmission model are available in [31, 32, 91]).

2.4 Center Manifold Theory

An effective way to analyse the qualitative properties of some dynamical systems is to re-

duce their dimensionality. The Centre Manifold Theory offers a mathematical technique for

making such reduction (near an equilibrium point) possible.

Consider the non-linear system (2.1). Further, let,

ẋ = Ax, (2.7)

be the corresponding linearized system, with A = Df(x̄), near a hyperbolic equilibrium

point x̄.

Definition 2.11. [73]. The stable, unstable, and centre subspaces; respectively, of the linear
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system (2.7) are defined by (where A ∈ Mnn(R))

Es = span {uj, vj; aj < 0} ,

Eu = span {uj, vj; aj > 0} ,

Ec = span {uj, vj; aj = 0} ,

where wj = uj ± ivj are eigenvectors corresponding to the eigenvalues λj = aj ± ibj.

Remark 2.1. For a hyperbolic flow of a linear system, Rn = Es ⊕ Eu. These subspaces

become manifolds for non-linear ODEs.

Theorem 2.5. (Stable Manifold Theory [73]). Let f ∈ C1(E), where E is an open subset

of Rn containing the origin, and let φt be the flow of non-linear system (2.1). Suppose that

f(0) = 0 and D(0) has k eigenvalues with negative real parts, and q = n−k eigenvalues with

positive real parts. Then, there exists a k-dimensional differentiable manifold S tangent to

the stable subspace Es of the linear system (2.7) at 0 such that for all t ≥ 0, φt(S) ⊂ S and

for all x0 ∈ S,

lim
t→∞

φt(x0) = 0,

and there exists a q-dimensional differentiable manifold U tangent to the unstable subspace

Eu of the linear system (2.7) at 0 such that for all t ≥ 0, φt(U) ⊂ U and for all x0 ∈ U ,

lim
t→−∞

φt(x0) = 0.

Definition 2.12. [73]. Let φt be the flow of non-linear system (2.1). The global stable and

unstable manifolds of (2.7) at 0 are defined, respectively, by

W s(0) =
�

t≤0

φt(S),
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and,

W u(0) =
�

t≥0

φt(U).

Theorem 2.6. [73]. Let f ∈ Cr(E), where E is an open subset of Rn containing the origin

and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real parts,

j eigenvalues with positive real parts, and m = n − k − j eigenvalues with zero real parts.

Then, there exists an m− dimensional centre manifold W c(0) of class Cr tangent to centre

subspace Ec of (2.7) which is invariant under the flow φt of (2.1).

Lemma 2.2. The local centre manifold of the system (2.1) at 0,

W c
loc(0) = {(x, y) ∈ Rm

× Rk
| y = h(x) for |x| < δ}, (2.8)

for some δ > 0, where h ∈ Cr(Nδ(0)), h(0) = 0 and Dh(0) = O since W c(0) is tangent to

the centre subspace

Ec = {(x, y) ∈ Rm
× Rk

| y = 0},

at the origin.

Theorem 2.7. (Center Manifold Theory [73]). Let f ∈ Cr(E) where E is an open subset of

Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has m eigenvalues

with zero real parts and k eigenvalues with negative real parts, where m+k = n. The system

(2.1) then can be written in diagonal form

ẋ = Cx+ F (x, y),

ẏ = Py +G(x, y),

where (x, y) ∈ Rm × Rk, C is a square matrix with m eigenvalues having zero real parts,

P is a square matrix with k eigenvalues with negative real parts, and F (0) = G(0) = 0,

DF (0) = DG(0) = O. Furthermore, there exists a δ > 0 and a function h ∈ Cr(Nδ(0)) that
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defines the local centre manifold (2.8) and satisfies

Dh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0,

for |x| < δ; and the flow on the centre manifold W c(0) is defined by the system of differential

equations

ẋ = Cx+ F (x, h(x)),

for all x ∈ Rmwith |x| < δ.

Theorem 2.7 can be used to determine the flow near non-hyperbolic equilibrium points [73].

2.5 Bifurcation Theory

Bifurcation theory plays an important role in providing deeper insight into the qualitative

dynamics of many phenomena arising in the natural and engineering sciences.

Consider the non-linear autonomous ODE system

ẋ = f(x, µ), x ∈ Rn, (2.9)

where f is a function of time and µ is a scalar parameter.

Definition 2.13. Bifurcation is defined as a change in the qualitative behaviour of a given

dynamical system when an associated parameter is varied.

Definition 2.14. The parameter values where bifurcation occurs are called bifurcation values

(or bifurcation points).

There are numerous types of bifurcations, including saddle-node, transcritical, pitchfork,

Hopf, and backward bifurcation [44, 47, 73, 98]. The following theorem, which uses Centre

Manifold Theory, is used to establish the existence of backward bifurcation phenomenon (for

the models in Chapters 3 and 4 of the thesis).
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Theorem 2.8. (Castillo-Chavez & Song [11, 14]). Consider the following general system of

ordinary differential equations with a parameter φ

dx

dt
= f(x, φ), f : Rn

× R → Rand f ∈ C2 (Rn
× R) , (2.10)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and assume

A.1) A = Dxf(0, 0) =
�

∂fi
∂xj

(0, 0)
�

is the linearization matrix of the system (2.10) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and other

eigenvalues of A have negative real parts;

A.2) Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the

zero eigenvalue).

Let fk be the k-th component of f and

a =
n�

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n�

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

The local dynamics of the system around 0 is totally determined by the signs of a and b.

i) a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and there

exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there exists a

negative, locally asymptotically stable equilibrium;

ii) a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

iii) a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a positive

unstable equilibrium appears;
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iv) a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

2.6 Lyapunov Function Theory

A powerful method for analyzing the stability of an equilibrium point is based on the use of

Lyapunov functions.

Definition 2.15. [73]. A point x0 ∈ Rn is called an ω−limit point of x ∈ Rn, denoted by

ω(x), if there exists a sequence {ti} such that

φ(ti, x) → x0 as ti → ∞.

Definition 2.16. [73]. A point x0 ∈ Rn is called an α−limit point of x ∈ Rn, denoted by

α(x), if there exists a sequence {ti} such that

φ(ti, x) → x0 as ti → −∞.

Definition 2.17. [73]. The set of all ω−limit points of a flow is called the ω−limit set.

Similarly, The set of all α−limit points of a flow is called the α−limit set.

Definition 2.18. [98]. Let S ⊂ Rn be a set. Then, S is said to be invariant under the flow

generated by ẋ = f(x) if for any x0 ∈ S we have φ(t, x0) ∈ S for all t ∈ R.

Lemma 2.3. [98]. A set S ⊂ Rn is positively-invariant if, for every x0 ∈ S, φ(t, x0) ∈ S, ∀

t ≥ 0.

Definition 2.19. [98]. A function V : Rn → R is said to be positive-definite if:
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• V (x) > 0 for all x �= 0,

• V (x) = 0 if and only if x = 0.

Definition 2.20. [98]. Consider the system (2.1). Let x̄ be an equilibrium solution of the

system (2.1), and let V : U → R be a C1 function defined on some neighbourhood U of x̄

such that

i) V is positive-definite,

ii) V̇ (x) ≤ 0 in U \ {x̄}.

Definition 2.21. [98]. Any function, V , that satisfies the conditions (i) and (ii) in Definition

2.20 is called a Lyapunov function.

Theorem 2.9. (LaSalle’s Invariance Principle [44]). Consider the system (2.1). Let,

S = {x ∈ Ū : V̇ (x) = 0} (2.11)

and M be the largest positive invariant set of the system (2.1) in S. If V is a Lyapunov

function on U and γ+(x0) is a bounded orbit of the system (2.1) which lies in S, then the

ω−limit set of γ+(x0) belongs to M ; that is, x(t, x0) → M as t → ∞.

Corollary 2.1. If V (x) → ∞ as |x| → ∞ and V̇ ≤ 0 on Rn, then every solution of the

system (2.1) is bounded and approaches the largest invariant set M of (2.1) in the set where

V̇ = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically stable

(GAS).
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2.7 Comparison Theorem

Comparison Theorem is sometimes used to prove the global asymptotic stability of equilibria

of dynamical systems. The general idea is to compare the solutions of the non-linear system

ẋ = f(t, x), (2.12)

with those of the differential inequality system

ż ≤ f(t, z), (2.13)

or,

ẏ ≥ f(t, y), (2.14)

on an interval. The technique requires that the system (2.12) has a unique solution. Consider

the autonomous system (2.12), where f is a continuously-differentiable function on an open

subset D ⊂ Rn. Let φt(x) denote the solution of the system (2.12) with initial value x.

Definition 2.22. [87]. f is said to be of Type K in D if for each i, fi(a) ≤ fi(b) for any

two points, a and b, in D satisfying a ≤ b and ai = bi.

Definition 2.23. [87]. The subset D is p-convex if tx + (1 − t)y ∈ D for all t ∈ [0, 1]

whenever x, y ∈ D and x ≤ y.

Thus, if D is a convex set, then it is also p-convex. If D is a p-convex subset of Rn and

∂fi
∂xj

≥ 0, i �= j, x ∈ D, (2.15)

then f is of Type K in D (i.e., the Type K condition can be identified from the sign structure

of the Jacobian matrix of the system (2.12) [87]).

Theorem 2.10. (Comparison Theorem [88]). Let f be continuous on R × D and of Type

K. Let x(t) be a solution of (2.12) defined on [a, b]. If z(t) is a continuous function on [a, b]
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satisfying (2.13) on (a, b), with z(a) ≤ x(a), then z(t) ≤ x(t) for all t in [a, b]. If y(t) is a

continuous on [a, b] satisfying (2.14) on (a, b), with y(a) ≥ x(a), then y(t) ≥ x(t) for all t in

[a, b].
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Chapter 3

HPV Model Using the Gardasil

Vaccine for Females

3.1 Introduction

As stated in Chapter 1, two anti-HPV vaccines are currently available in the market [15,

46, 68, 76, 93, 96]. These vaccines, which are highly-effective against HPV infection (with

efficacy of about 90-100% [15, 76, 93, 96]), have been approved for use in a number of

countries, including Australia, Canada, USA and some European countries [1, 76, 100]. In

this chapter, the quadrivalent Gardasil vaccine (which targets the four vaccine-preventable

HPV types, namely HPV-6, HPV-11, HPV-16 and HPV-18) will be considered. The vaccine

is recommended for females between 9 and 13 years of age (as this is the age range before

the onset of sexual activity for most females; the vaccine should be administered to females

before they become sexually-active in order to ensure maximum benefit [10, 15, 76]).

In other words, the objective of this chapter is to qualitatively assess the community-wide

impact of mass vaccination, of new sexually-active susceptible females using the quadriva-

lent Garadsil vaccine, on the transmission dynamics of the aforementioned four vaccine-

preventable HPV types in a community. To achieve this objective, a new deterministic
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model, for the heterosexual transmission of HPV community, will be formulated and rigor-

ously analysed, as below.

Although there are many types of cancers associated with HPV infection [10, 15, 26, 46,

50, 76], this chapter considers only cervical cancer (because it is the more predominant of all

the HPV-related cancers [10, 15, 33, 34, 35, 45, 46, 50, 76, 77, 97]). Furthermore, it is worth

mentioning that a sizeable percentage of HPV-infected females (particularly those who are

untreated) develop persistent HPV infection, and become at the greatest risk of developing

cervical cancer precursor lesions, causing cell abnormalities (known as cervical intraepithelial

neoplasia (CIN)) and cervical cancer [10, 15, 26, 35, 45, 46, 50, 61, 68, 77].

HPV infection affects men as well, causing serious cancers including throat and penile

cancers (albeit they are less common) [71, 76]. Although some researchers suggest that

both females and males should be vaccinated against HPV [46, 76, 77] (while others suggest

vaccinating females only is more effective than vaccinating both males and females [9, 40, 41,

68]), this chapter considers the vaccination of females only (in line with the studies reported

in [9, 24, 25, 26, 61]). This assumption (of vaccinating only females) is relaxed in Chapter

4, where both new sexually-active susceptible males and females are vaccinated.

3.2 Model Formulation

The model to be constructed is based on the heterosexual transmission dynamics of HPV

in a community, subject to the use of mass vaccination of new sexually-active susceptible

females (of ages 9 to 13) using the quadrivalent Gardasil vaccine. The model assumes

homogenous mixing of the sexually-active female and male populations. The total sexually-

active population at time t, denoted by N(t), is sub-divided into two gender groups, namely

the total female population at time t (denoted by Nf (t)) and the total male population at

time t (denoted by Nm(t)). The total sexually-active female population (Nf (t)) is further

sub-divided into eight mutually-exclusive compartments of unvaccinated susceptible females
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(Sf (t)), new sexually-active susceptible females vaccinated with the Gardasil vaccine (Vf (t)),

exposed (i.e., latently-infected, and show no clinical symptoms of HPV) females (Ef (t)),

infected females with clinical symptoms (symptomatic) of HPV (If (t)), infected females

with persistent HPV infection (P (t)), infected females with cervical cancer (C(t)), infected

females who recovered from cervical cancer (Rc(t)), and infected females who recovered from

infection without developing cervical cancer (Rf (t)).

Furthermore, the total sexually-active male population at time t (Nm(t)) is sub-divided

into susceptible (Sm(t)), exposed (Em(t)), infected with clinical symptoms of HPV (Im(t))

and recovered (Rm(t)) males. Thus,

N(t) = Nf (t) +Nm(t),

where,

Nf (t) = Sf (t) + Vf (t) + Ef + If (t) + P (t) + C(t) +Rc(t) +Rf (t),

and,

Nm(t) = Sm(t) + Em + Im(t) +Rm(t).

It should be emphasized that, in this thesis, individuals in the exposed (Ef and Em) and

persistent (P ) classes are infected with HPV, and can transmit HPV to susceptible individ-

uals.

The population of unvaccinated susceptible females (Sf ) is increased by the recruitment

of new sexually-active females at a rate πf (1-ϕf ), where 0 < ϕf ≤ 1 is the fraction of

newly-recruited sexually-active females (typically of ages 9 to 13 years [10, 15, 76]) who are

vaccinated with the Gardasil vaccine. This population is further increased by the loss of

infection-acquired immunity by recovered females who did not develop cervical cancer (at a

rate ξf ). Unvaccinated susceptible females acquire HPV infection, following effective contact
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with infected males (i.e., those in the Em and Im classes), at a rate λm, where

λm =
βmcf (Nm, Nf ) (ηmEm + Im)

Nm
. (3.1)

In (3.1), βm is the probability of infection from males to females per contact, and cf (Nm, Nf )

is the average number of female partners per male per unit time. Thus, βmcf (Nm, Nf ) is

the effective contact rate (i.e., contact capable of leading to infection) for male-to-female

transmission of HPV. Furthermore, ηm (with 0 ≤ ηm < 1) is the modification parameter

accounting for the assumption that exposed males are less infectious than symptomatically-

infected males (in other words, unlike in many other HPV transmission modelling studies

(such as those in [9, 24, 25, 26, 61]), the model to be developed in this chapter assumes HPV

transmission by exposed individuals). It should be emphasized that a standard incidence

formulation is used in (3.1), where the contact rate is assumed to be constant, unlike in the

case of the mass action incidence (where the contact rate increases linearly with the total

size of the population [47]). It has been shown that using standard incidence function is

more suited for modelling human diseases than mass action incidence [58]. The population

of unvaccinated susceptible females is further decreased by natural death at a rate µf (it is

assumed that females in all epidemiological compartments suffer natural death at the rate

µf ). Thus,
dSf

dt
= πf (1− ϕf ) + ξfRf − λmSf − µfSf . (3.2)

The population of vaccinated new sexually-active susceptible females with the Gardasil

vaccine (Vf ) is generated by the vaccination of unvaccinated susceptible females (at the

rate πfϕf ), and is decreased by HPV infection (at the reduced rate λm(1 − εv), where

0 < εv ≤ 1 represents the vaccine efficacy against HPV infection) and natural death. As in

[10, 15, 46, 76, 77], it is assumed that the Gardasil vaccine does not wane for the duration

of the HPV dynamics considered (to our knowledge, no evidence of waning Gardasil vaccine
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protection has been shown in the literature). Thus,

dVf

dt
= πfϕf − (1− εv)λmVf − µfVf . (3.3)

The population of exposed females (Ef ) is generated by the infection of unvaccinated and

vaccinated susceptible females. This population is further increased by the re-infection of

recovered females (at a rate ρfλm, where 0 ≤ ρf < 1 accounts for the assumption that

the re-infection of recovered females occur at a rate lower than the primary infection of

unvaccinated susceptible females). It is assumed, unlike in some other modelling studies

of HPV transmission dynamics (such as those in [9, 24, 25, 26, 61]), that HPV infection

does not confer permanent immunity against re-infection. Exposed females develop clinical

symptoms of HPV (at a rate σf ) and suffer natural death. Thus,

dEf

dt
= λm [Sf + (1− εv)Vf ] + ρfλmRf − (σf + µf )Ef . (3.4)

The population of infected females with clinical symptoms of HPV (If ) is generated at the

rate σf . This population is decreased by recovery (at a rate ψf ) and natural death. Hence,

dIf
dt

= σfEf − (ψf + µf )If . (3.5)

The population of infected females with persistent HPV infection (P ) is generated when

infected females with clinical symptoms of HPV develop persistent HPV infection (at a rate

ψf (1−rf ), where 0 < rf ≤ 1 is the fraction of infected females with clinical symptoms of HPV

who recover naturally from HPV infection without developing persistent HPV infection).

Females with persistent HPV infection move out of this epidemiological class (either through

recovery or development of cervical cancer) at a rate αf , and suffer natural death. Thus,

dP

dt
= ψf (1− rf )If − (αf + µf )P. (3.6)

31



It should be mentioned that the model to be developed in this chapter does not not explicitly

account for the pre-cancerous CIN stages (albeit the P class is assumed to also contain

individuals in the CIN stages; individuals in the CIN stages are typically detected using Pap

screening [61], which is also not explicitly incorporated in the model to be developed in this

chapter, although it is, intuitively, the reason individuals in the persistent infection class

are moved to the cancer class). The dynamics of the CIN stages is explicitly modelled in

Chapter 4.

The population of females with cervical cancer (C) is generated by the development of

cervical cancer by infected females with persistent HPV infection (at a rate αf (1−κf ), where

0 < κf ≤ 1 is the fraction of infected females with persistent HPV infection who recovered

from HPV infection). This population decreases due to recovery (at a rate γf ), natural death

and disease-induced death (at a rate δf ). Hence,

dC

dt
= αf (1− κf )P − (γf + µf + δf )C. (3.7)

The class of infected females who recovered from cervical cancer (Rc) is generated at the

rate γf , and decreases by natural death, so that

dRc

dt
= γfC − µfRc. (3.8)

The population of infected females who recovered from infection without developing cervical

cancer (Rf ) is generated at the rates ψfrf and αfκf , respectively. Recovered females acquire

HPV re-infection at the rate ρfλm. This population is further decreased by the loss of

infection-acquired immunity (at the rate ξf ) and natural death. This gives:

dRf

dt
= ψfrfIf + αfκfP − (ρfλm + ξf + µf )Rf . (3.9)

The population of susceptible males (Sm) is generated by the recruitment of new sexually-
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active males (at a rate πf ). It is further increased by the loss of infection-acquired immunity

by recovered males (at a rate ξm). This population is diminished by infection, following

effective contact with infected females, at a rate λf , where

λf =
βfcm (Nm, Nf ) (ηfEf + If + θpP )

Nf
. (3.10)

In (3.10), βf is the probability of infection from females to males per contact, cm (Nm, Nf )

is the average number of male partners per female per unit time, ηf (0 ≤ ηf < 1) is the

modification parameter accounting for the assumption that exposed females (i.e., those in

the Ef class) are less infectious than symptomatically-infected females (i.e., those in the If

class), and θp > 0 is the modification parameter accounting for the assumption that infected

females with persistent HPV infection transmit HPV at a different rate compared to infected

females in the If class. This population is further decreased by natural death (at a rate µm;

it is assumed that males in all epidemiological compartments suffer natural death at this

rate, µm). Thus,
dSm

dt
= πm + ξmRm − λfSm − µmSm. (3.11)

The population of exposed males (Em) is generated by the infection of susceptible males (at

the rate λf ) and by the re-infection of recovered males (at a rate ρmλf , where 0 ≤ ρm < 1

accounts for the assumption that the re-infection of recovered males occur at a rate lower

than the primary infection of susceptible males). Exposed males develop clinical symptoms

of HPV (at a rate σm) and suffer natural death. Thus,

dEm

dt
= λfSm + ρmλfRm − (σm + µm)Em. (3.12)

The population of infected males with clinical symptoms of HPV (Im) is generated at the
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rate σm. It is reduced by recovery (at a rate ψm) and natural death. Hence,

dIm
dt

= σmEm − (ψm + µm)Im. (3.13)

The population of recovered males (Rm) is generated at the rate ψm. It is decreased by re-

infection (at the rate ρmλf ), loss of infection-acquired immunity (at the rate ξm) and natural

death, so that
dRm

dt
= ψmIm − (ρmλf + ξm + µm)Rm. (3.14)

It should be mentioned that no disease-induced death is assumed for males (although this

assumption is justified owing to the fact that penile cancer is rare [46], it will be relaxed in

the model to be developed in Chapter 4). Furthermore, no pre-cancerous or cancer stages are

considered for males in the model developed in this chapter (this assumption is also relaxed

in Chapter 4). It follows from the equations given in {(3.11)-(3.14)} that

dNm

dt
= πm − µmNm, (3.15)

so that Nm(t) →
πm
µm

, as t → ∞.

It is worth mentioning that an important feature of a sex-structured disease transmission

model, such as {(3.1)-(3.14)}, is that the total number of sexual contacts females make with

males must equal the total number of sexual contacts males make with females (see, for

instant, [13, 27, 65, 84, 101]). Thus, the following conservation law (for number of sexual

contacts made by males balancing those made by females) must hold:

cm (Nm, Nf )Nm = cf (Nm, Nf )Nf . (3.16)

It is assumed that male sexual partners are abundant, so that females can always have enough

number of male sexual contacts per unit time. Hence, it is assumed that cf (Nm, Nf ) = cf ,
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a constant, and cm (Nm, Nf ) is calculated from the relation

cm (Nm, Nf ) =
cfNf

Nm
. (3.17)

Using the constraint (3.17) in (3.1) and (3.10), the infection rates λm and λf are, now, given,

respectively, by

λm =
βmcf (ηmEm + Im)

Nm
and λf =

βfcf (ηfEf + If + θpP )

Nm
. (3.18)

Based on the above formulations and assumptions (and using (3.18) for (3.1) and (3.10)),

the model for the heterosexual transmission of HPV (and associated dysplasia), in a com-

munity that implements a mass vaccination campaign against HPV (using the quadrivalent

Gardasil vaccine), is given by the following deterministic system of non-linear differential

equations:

35



dSf

dt
= πf (1− ϕf ) + ξfRf −

βmcf (ηmEm + Im)

Nm
Sf − µfSf ,

dVf

dt
= πfϕf − (1− εv)

βmcf (ηmEm + Im)

Nm
Vf − µfVf ,

dEf

dt
=

βmcf (ηmEm + Im)

Nm
[Sf + (1− εv)Vf + ρfRf ]− (σf + µf )Ef ,

dIf
dt

= σfEf − (ψf + µf )If ,

dP

dt
= ψf (1− rf )If − (αf + µf )P, (3.19)

dC

dt
= αf (1− κf )P − (γf + µf + δf )C,

dRc

dt
= γfC − µfRc,

dRf

dt
= ψfrfIf + αfκfP −

�
ρf

βmcf (ηmEm + Im)

Nm
+ ξf + µf

�
Rf ,

dSm

dt
= πm + ξmRm −

βfcf (ηfEf + If + θpP )

Nm
Sm − µmSm,

dEm

dt
=

βfcf (ηfEf + If + θpP )

Nm
(Sm + ρmRm)− (σm + µm)Em,

dIm
dt

= σmEm − (ψm + µm)Im,

dRm

dt
= ψmIm −

�
ρm

βfcf (ηfEf + If + θpP )

Nm
+ ξm + µm

�
Rm.

A flow diagram of the model (3.19) is depicted in Figure 3.1. The state variables and

parameters of the model are tabulated in Table 3.1.

The model (3.19) is an extension of the HPV vaccination models in [9, 24, 25, 26, 61],

by:

i) including classes for exposed females (Ef ) and males (Em);

ii) allowing for disease transmission by exposed females and males (ηf �= 0, ηm �= 0);

iii) allowing for the loss of infection-acquired immunity by recovered individuals (ξf �= 0,

ξm �= 0);
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iv) allowing for the re-infection of recovered individuals (ρf �= 0, ρm �= 0).

Furthermore, the model (3.19) extends the vaccination models in [9, 26] by, in addition to

Items (i)-(iii) above, including disease-induced mortality (δf �= 0) and a compartment for

females with persistent HPV infection (P ).

3.2.1 Basic properties

The basic qualitative features of the basic HPV vaccination model (3.19) will be explored.

First of all, for the vaccination model (3.19) to be epidemiologically meaningful, it is impor-

tant to show that all its state variables are non-negative for all time t > 0 (i.e., the solutions

of the vaccination model (3.19) with non-negative initial data must remain non-negative for

all t > 0).

Theorem 3.1. Let the initial data for the vaccination model (3.19) be Sf (0) > 0, Vf (0) >

0, Ef (0) ≥ 0, If (0) ≥ 0, P (0) ≥ 0, C(0) ≥ 0, Rc(0) ≥ 0, Rf (0) ≥ 0, Sm(0) > 0, Em(0) ≥

0, Im(0) ≥ 0, and Rm(0) ≥ 0. Then, the solutions (Sf (t), Vf (t), Ef (t), If (t), P (t), C(t), Rc(t),

Rf (t), Sm(t), Em(t), Im(t), Rm(t)) of the model with positive initial data, will remain positive

for all time t > 0.

The proof of Theorem 3.1 is given in Appendix A.

Theorem 3.2. The closed set

D =

�
(Sf , Vf , Ef , If , P, C,Rc, Rf , Sm, Em, Im, Rm) ∈ R12

+ : Nf ≤
πf

µf
, Nm ≤

πm

µm

�

is positively-invariant and attracting with respect to the model (3.19).

Proof. Adding the first eight equations of the model (3.19) gives:

dNf

dt
= πf − µfNf − δfC ≤ πf − µfNf . (3.20)
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It follows from (3.20) that dNf

dt < 0 if Nf (t) > πf

µf
. Thus, using a standard Comparison

Theorem (Theorem 2.10; see also [58]),

Nf (t) ≤ Nf (0)e
−µf t +

πf

µf
(1− e−µf t).

Therefore, Nf (t) ≤
πf

µf
if Nf (0) ≤

πf

µf
. Similarly, it follows from (3.15) that

Nm(t) = Nm(0)e
−µmt +

πm

µm
(1− e−µmt).

Hence, Nm(t) ≤
πm
µm

if Nm(0) ≤
πm
µm

. Thus, D is positively-invariant. Furthermore, if Nf (t) >

πf

µf
and Nm(t) >

πm
µm

; then either the solution enters D in finite time, or Nf (t) approaches
πf

µf

and Nm(t) approaches
πm
µm

, and the state variables associated with the infected classes of the

model approach zero. Hence, D attracts all solutions in R12
+ .

In the region D, the model (3.19) can be considered as epidemiologically and mathematically

well-posed [47].

3.3 Analysis of Vaccination-free Model

Before analyzing the vaccination model (3.19), it is instructive to gain insight into the dynam-

ics of the model (3.19) in the absence of vaccination (i.e., the model (3.19) with ϕf = Vf = 0).

The resulting vaccination-free model is given by
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dSf

dt
= πf + ξfRf −

βmcf (ηmEm + Im)

Nm
Sf − µfSf ,

dEf

dt
=

βmcf (ηmEm + Im)

Nm
(Sf + ρfRf )− (σf + µf )Ef ,

dIf
dt

= σfEf − (ψf + µf )If ,

dP

dt
= ψf (1− rf )If − (αf + µf )P, (3.21)

dC

dt
= αf (1− κf )P − (γf + µf + δf )C,

dRc

dt
= γfC − µfRc,

dRf

dt
= ψfrfIf + αfκfP −

�
ρf

βmcf (ηmEm + Im)

Nm
+ ξf + µf

�
Rf ,

dSm

dt
= πm + ξmRm −

βfcf (ηfEf + If + θpP )

Nm
Sm − µmSm,

dEm

dt
=

βfcf (ηfEf + If + θpP )

Nm
(Sm + ρmRm)− (σm + µm)Em,

dIm
dt

= σmEm − (ψm + µm)Im,

dRm

dt
= ψmIm −

�
ρm

βfcf (ηfEf + If + θpP )

Nm
+ ξm + µm

�
Rm,

where, now,

Nf (t) = Sf (t) + Ef (t) + If (t) + P (t) + C(t) +Rc(t) +Rf (t),

and,

Nm(t) = Sm(t) + Em(t) + Im(t) +Rm(t).

For the vaccination-free model (3.21), it can be shown (using the approach in Section 3.2.1

) that the following region is positively-invariant and attracting

D1 =

�
(Sf , Ef , If , P, C,Rc, Rf , Sm, Em + Im, Rm) ∈ R11

+ : Nf ≤
πf

µf
, Nm ≤

πm

µm

�
,
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so that it is sufficient to consider the dynamics of the vaccination-free model (3.21) in D1.

It is worth noting from (3.15) that Nm(t) →
πm
µm

as t → ∞. Consequently, from now on,

the total male population at time t (given by Nm(t)) will be replaced by its limiting value,

πm
µm

(since Nm(t) →
πm
µm

, as t → ∞). In other words, the rest of the analyses in this chapter

will be carried out with Nm(t), in (3.19) and (3.21), replaced by its limiting value, N∗
m = πm

µm
.

3.3.1 Local asymptotic stability of disease-free equilibrium (DFE)

The vaccination-free model (3.21) has a DFE, obtained by setting the right-hand sides of

the equations in the model (3.21) to zero, given by

E0 = (S∗
f , E

∗
f , I

∗
f , P

∗, C∗, R∗
c , R

∗
f , S

∗
m, E

∗
m, I

∗
m, R

∗
m) =

�
πf

µf
, 0, 0, 0, 0, 0,

πm

µm
, 0, 0

�
. (3.22)

with,

N∗
f = S∗

f =
πf

µf
and N∗

m = S∗
m =

πm

µm
. (3.23)

The next generation operator method [95] (see also Section 2.3.2) will be used to explore

the local stability of the DFE. The matrices F (of new infections) and H (of transfer terms

between compartments) evaluated at the DFE (E0), are given, respectively, by

F =





0 0 0 0 0
ηmβmcfS∗

f

N∗
m

βmcfS∗
f

N∗
m

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ηfβfcf βfcf θpβfcf 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





,
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and,

H =





g1 0 0 0 0 0 0 0

−σf g2 0 0 0 0 0 0

0 −h1 n1 0 0 0 0 0

0 0 −h2 n2 0 0 0 0

0 −m1 −m2 0 g3 0 0 0

0 0 0 0 0 g4 0 0

0 0 0 0 0 −σm g5 0

0 0 0 0 0 0 −ψm g6





,

where,

g1 = σf + µf , g2 = ψf + µf , h1 = ψf (1− rf ), h2 = αf (1− κf ), n1 = αf + µf ,

n2 = γf + µf + δf , m1 = ψfrf , m2 = αfκf , g3 = ξf + µf , g4 = σm + µm,

g5 = ψm + µm, g6 = ξm + µm.

It follows from Theorem 2.4 that (where ρ is the spectral radius of FH−1):

R0 = ρ
�
FH

−1
�
=

�
RmRf , (3.24)

with,

Rm =
βmcfµmπf

πmµfg5

�
ηmg5 + σm

g4

�
and Rf =

βfcf
g2

�
ηfn1g2 + σf (n1 + θph1)

n1g1

�
.

The result below follows from Theorem 2.4 (or Theorem 2 of [95]).

Theorem 3.3. The DFE, E0, of the vaccination-free model (3.21), given by (3.22), is locally-

asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The threshold quantity, R0, is the basic reproduction number of the model (3.21) [47]. It

represents the average number of secondary HPV infections generated by a typical HPV-
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infected person if introduced into a completely-susceptible sexually-active population (or

community). It is worth noting that R0 is an aggregate product of the average number of

new HPV cases generated by females (denoted by Rf ) and males (denoted by Rm).

Epidemiologically speaking, Theorem 3.3 states that a small influx of infected individuals

(males or females) will not generate large HPV outbreaks in the community if R0 < 1 (in

other words, HPV can be effectively controlled in the community if the initial sizes of the

sub-populations of the model (3.21) are in the basin of attraction of the DFE, E0, of the model

(3.21)). However, in order for such effective control (or elimination) to be independent of

the initial sizes of the sub-populations of the vaccination-free model (3.21), it is necessary

to show that the DFE (E0), of the model (3.21), is globally-asymptotically stable (GAS) if

R0 < 1. This is explored, for a special case, in Section 3.3.5.

3.3.2 Interpretation of the basic reproduction number (R0)

The reproduction threshold (R0) can be interpreted as follows. Susceptible females can

acquire infection, following effective contacts with either exposed (Em) or symptomatic males

(Im). The number of female infections generated by exposed males (near the DFE) is given

by the product of the infection rate of exposed males
�

βmcfηmS∗
f

N∗
m

�
and the average duration

in the exposed (Em) class
�

1
σm+µm

= 1
g4

�
. Furthermore, the number of female infections

generated by symptomatic males (near the DFE) is given by the product of the infection

rate of symptomatic males
�

βmcfS∗
f

N∗
m

�
, the probability that an exposed male survives the

exposed stage and move to the symptomatic stage
�

σm
σm+µm

= σm
g4

�
and the average duration

in the symptomatic (Im) class
�

1
ψm+µm

= 1
g5

�
. Thus, the average number of new female

infections generated by infected males (exposed or symptomatic) is given by (noting that

S∗
f = πf

µf
and N∗

m = πm
µm

),

�
βmcfηmµm

πmg4
+

βmcfµmσm

πmg4g5

�
S∗
f =

βmcfµmπf

πmµf

�
ηmg5 + σm

g4g5

�
. (3.25)
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The two terms in the left-hand side (LHS) of (3.25), represent the number of new female in-

fections generated by exposed males (Em) and the number of new female infections generated

by symptomatic males (Im), respectively.

Similarly, susceptible males acquire HPV infection, following effective contacts with either

exposed females (Ef ), symptomatic females (If ) or females with persistent HPV infection

(P ). The number of male infections generated by exposed females (near the DFE) is the

product of the infection rate of exposed females
�

βf cfηfS∗
m

N∗
m

�
and the average duration in the

exposed (Ef ) class
�

1
σf+µf

= 1
g1

�
. The number of male infections generated by symptomatic

females is the product of the infection rate of symptomatic females
�

βf cfS∗
m

N∗
m

�
, the probabil-

ity that an exposed female survives the exposed class and move to the symptomatic stage
�

σf

σf+µf
= σf

g1

�
and the average duration in the symptomatic (If ) class

�
1

ψf+µf
= 1

g2

�
. Fur-

thermore, the number of male infections generated by females with persistent HPV infection

is the product of the infection rate of females with persistent HPV infection
�

βf cf θpS∗
m

N∗
m

�
, the

probability that an exposed female survives the exposed class and move to the symptomatic

stage
�

σf

σf+µf
= σf

g1

�
, the proportion of symptomatic females that move to the persistent

infection class
�

ψf (1−rf )
ψf+µf

= h1
g2

�
and the average duration in the persistent infection class

�
1

αf+µf
= 1

n1

�
. Thus, the average number of new male infections generated by infected fe-

males (exposed, symptomatic or those with persistent HPV infection) is given by (noting

that S∗
m = πm

µm
)

�
βfcfηfµm

πmg1
+

βfcfµmσf

πmg1g2
+

βfcfσfθpµmh1

πmn1g1g2

�
S∗
m = βfcf

�
ηfn1g2 + σfn1 + σfθph1

n1g1g2

�
. (3.26)

The terms in LHS of (3.26), represent the number of new male infections generated by

exposed females (Ef ), symptomatic (If ) and females with persistent HPV infection (P ).

Since two generations are needed in the female-male-female HPV transmission cycle, the

geometric mean of (3.25) and (3.26) gives the basic reproduction number, R0 (interpretation

for R0 is also given in [16, 37, 43] for other epidemiological settings).
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3.3.3 Existence and local asymptotic stability of endemic equilib-

rium point (EEP)

It is instructive to determine the number of possible equilibrium solutions the vaccination-

free model (3.21) can have. It is convenient to let

E1 = (S∗∗
f , E∗∗

f , I∗∗f , P ∗∗, C∗∗, R∗∗
c , R∗∗

f , S∗∗
m , E∗∗

m , I∗∗m , R∗∗
m ), (3.27)

be an arbitrary endemic equilibrium of the model (3.21) (an equilibrium where all the infected

components of the model are non-zero). Furthermore, let (it should be emphasized that Nm,

in (3.21), is now replaced by πm
µm

)

λ∗∗
m =

βmcfµm (ηmE∗∗
m + I∗∗m )

πm
, (3.28)

and,

λ∗∗
f =

βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm
, (3.29)

be the force of infection for males and females at steady- state, respectively.

Solving the equations of the vaccination-free (3.21) at the endemic steady-state gives:

S∗∗
f =

πf + ξfR∗∗
f

λ∗∗
m + µf

, E∗∗
f =

λ∗∗
m

�
S∗∗
f + ρfR∗∗

f

�

g1
, I∗∗f =

σfE∗∗
f

g2
,

P ∗∗ =
h1I∗∗f
n1

, C∗∗ =
h2P ∗∗

n2
, R∗∗

c =
γfC∗∗

µf
, R∗∗

f =
m1I∗∗f +m2P ∗∗

ρfλ∗∗
m + g3

, (3.30)

S∗∗
m =

πm + ξmR∗∗
m

λ∗∗
f + µm

, E∗∗
m =

λ∗∗
f (S∗∗

m + ρmR∗∗
m )

g4
, I∗∗m =

σmE∗∗
m

g5
,

R∗∗
m =

ψmI∗∗m
ρmλ∗∗

f + g6
.
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Substituting the expressions in (3.30) into (3.28) and (3.29) gives

λ∗∗
m =

λ∗∗
f z11

�
g6 + λ∗∗

f t12
�

�
λ∗∗
f

�2
z12 + λ∗∗

f z13 + z14
, (3.31)

λ∗∗
f =

λ∗∗
mz21 (g3 + λ∗∗

m t22)

(λ∗∗
m )2 z22 + λ∗∗

mz23 + z24
, (3.32)

with,

z11 = βmcfµm (ηmg5 + σm) , t12 = ρm, z12 = t12 (g4g5 − σmψm) ,

z13 = g4g5 (g6 + µmt12)− σmψm (ξm + µmt12) , z14 = g4g5g6µm, (3.33)

z21 =
βfcfπfµm

πm
(ηfn1g2 + n1σf + θph1σf ) , t22 = ρf , z22 = t22 [n1g1g2 − σf (n1m1 + h1m2)] ,

z23 = n1g1g2 (g3 + µf t22)− σf (n1m1 + h1m2) (ξf + µf t22) , z24 = n1g1g2g3µf .

The expressions in (3.33) can be simplified to

z12 = t12µm (σm + ψm + µm) > 0,

z13 = µm [(σm + ψm + µm) (ξm + µmt12) + (σm + µm) (ψm + µm)] > 0,

z22 = t22µf (σf + ψf + µf ) (µf + αf ) + σfψf (1− rf ) [µf + αf (1 + κf )] > 0,

z23 = σfψf (1− rf ) {ξf [µf + αf (1− κf )] + t22µf (αf + µf )}

+ µf

�
µ2
f (ξf + µf ) + σfξf (αf + µf )

�
+ µf (σf + ξf + µf ) [αf (ψf + µf ) + µfψf ]

+ t22µ
2
f (σf + ψf + µf ) (αf + µf ) > 0.

By substituting (3.32) into (3.31), and simplifying, it follows that the endemic equilibria of

the vaccination-free model (3.21) satisfy the following polynomial (in terms of λ∗∗
m ),

a0 (λ
∗∗
m )4 + b0 (λ

∗∗
m )3 + c0 (λ

∗∗
m )2 + d0λ

∗∗
m + e0 = 0, (3.34)

45



where,

a0 = t22z21 (t22z21z12 + z13z22) + z14z
2
22,

b0 = 2t22g3z12z
2
21 + z22 (z14z23 + g3z13z21) + z22 (z14z23 − g6g3z11z21)

+ t22z21 (z13z23 − t12t22z11z21) ,

c0 = z22z14z24
�
2−R

2
0

�
+ g3z13z21z23 + g3z21 (g3z21z12 − t12t22z11z21) (3.35)

+ t22z21 (z13z23 − t12g3z11z21) + z13 (z14z23 − g6t22z11z21) ,

d0 = z23z14z24
�
1−R

2
0

�
+ z24 (g3z13z21 − g6t22z11z21) + g3z21 (z24z13 − t12g3z11z21) ,

e0 = z11z
2
24

�
1−R

2
0

�
.

It follows from (3.35) that the coefficient, a0, of the quartic (3.34), is always positive (since all

the parameters of the model (3.21) are positive). Furthermore, the coefficient, e0, is positive

(negative) if R0 is less than (greater than) unity. Thus, the number of possible positive real

roots the polynomial (3.34) can have depends on the signs of b0, c0, and d0. This can be

analysed using the Descartes Rule of Sign for the quartic (3.34). The various possibilities

for the number of positive real roots of (3.34) are tabulated in Table 3.2, from which the

following result is obtained:

Theorem 3.4. The vaccination-free model (3.21),

i) has a unique endemic equilibrium if R0 > 1 and Cases 1,2,3 and 6 of Table 3.2 hold;

ii) could have more than one endemic equilibria if R0 > 1 and Cases 4,5,7 and 8 of Table

3.2 hold;
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iii) could have two or more endemic equilibria if R0 < 1 and Cases 2,3,4,5,6,7 and 8 of

Table 3.2 hold.

We claim the following result, for the local asymptotic stability of a special case of the EEP

(E1) of the model (3.21).

Theorem 3.5. Consider the vaccination-free model (3.21) with ρf = ρm = 0 and that

Item (i) of Theorem 3.4 holds. Then, the associated unique endemic equilibrium, E1, of the

resulting reduced model, is LAS whenever R0 > 1.

The proof of Theorem 3.5, based on using a Krasnoselskii sub-linearity argument [31, 32, 91],

is given in Appendix B. The result of Theorem 3.5 is numerically illustrated by simulating the

model (3.21), using numerous initial conditions and parameter values such that R0 = 6.4887.

The results obtained, depicted in Figure 3.2, show convergence of the solutions to the unique

endemic equilibrium, E1 (in line with Theorem 3.5). The epidemiological implication of

this result is that, for this special case (of the model (3.21) with ρf = ρm = 0), HPV will

establish itself in the population, when R0 > 1, if the initial sizes of the sub-populations

of the vaccination-free model (3.21) are in the basin of attraction of the unique endemic

equilibrium (E1).

3.3.4 Backward bifurcation analysis

The presence of multiple endemic equilibria of the vaccination-free model (3.21) whenR0 < 1

(as shown in Theorem 3.4 and Table 3.2) suggests the possibility of backward bifurcation,

where, typically, the stable DFE (E0) co-exists with a stable endemic equilibrium (E1), when

the associated basic reproduction number (R0) is less than unity. The phenomenon of

backward bifurcation has been observed in numerous disease transmission models, such as

those with imperfect vaccine and exogenous re-infection (see, for instance, [14, 28, 83, 84, 85,

86, 103] and some of the references therein), vector-borne diseases [37] and treatment [104].
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We claim the following result (the proof, based on using Centre Manifold Theory, as

described in [14], is given in Appendix C).

Theorem 3.6. The vaccination-free model (3.21) undergoes backward bifurcation at R0 = 1

if the inequality ρf > ρcf , given by (C.6) in Appendix C, holds.

The backward bifurcation phenomenon is illustrated by simulating the vaccination-free

model (3.21) with the following set of parameter values: δf = 0.0001, ξf = ξm = 0.0012, ρf =

1.2, ρm = 0.9855, πf = πm = 100, βm = 0.35, cm = cf = 15, µf = µm = 1
75 , κf =

0.895, αf = 0.878, σf = σm = 0.75, ψf = ψm = 0.8, θp = 0.95 and ηf = ηm = 0.9.

With this set of parameter values, the associated bifurcation coefficients, a and b (defined in

Appendix C), take the values a = 0.0182183226 > 0 and b = 359.2293164 > 0.

It should be mentioned that the aforementioned parameter values are chosen only to

illustrate the backward bifurcation phenomenon property of the vaccination-free model (and

they may not all be realistic epidemiologically; in particular, the parameter ρf has to be

chosen outside its realistic range 0 ≤ ρf ≤ 1). As noted by Lipsitch and Murray [60], it is, in

general, difficult to illustrate the phenomenon of backward bifurcation using a realistic set of

parameter values. Nonetheless, the analyses in Appendix C show that the vaccination-free

model (3.21) will undergo backward bifurcation R0 = 1 if the re-infection parameter for

females (ρf ) exceeds a certain threshold (ρcf ). The resulting backward bifurcation diagram

is depicted in Figure 3.3.

The epidemiological consequence of the backward bifurcation phenomenon of the vaccination-

free model (3.21) is that the effective control of HPV spread in the population (when R0 < 1)

is dependent on the initial sizes of the sub-populations of the model. In other words, the

presence of backward bifurcation in the vaccination-free model (3.21) makes the effort to

effectively control (or eliminate) HPV spread in the population difficult.

Furthermore, it follows from the analyses in Appendix C that the vaccination-free model

(3.21) does not undergo backward bifurcation if recovered females and males do not acquire

HPV re-infection (i.e., if ρm = ρf = 0). In such a scenario (i.e., the model (3.21) with
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ρm = ρf = 0 and, for computational convenience, ξf = ξm = 0), the backward bifurcation

coefficient, a (given by (C.7) in Appendix C), is negative (which excludes backward bifurca-

tion in line with Item (iv) of Theorem 2.8 in Chapter 2). Thus, the analyses in Appendix

C suggest that the DFE (E0), of the vaccination-free model (3.21), is GAS if R0 < 1 and

ρm = ρf = 0. This claim is explored below.

3.3.5 Global asymptotic stability of DFE (special case)

To further confirm the absence of backward bifurcation in the vaccination-free model (3.21),

for the scenario when ρm = ρf = 0, the global asymptotic stability property of its DFE (E0),

is established below for this special case.

Theorem 3.7. The DFE, E0, of the vaccination-free model (3.21), with ρf = ρm = 0, is

GAS in D1 if R0 < 1.

The proof of Theorem 3.7, based on using a Comparison Theorem [58], is given in Appendix

D. This result is illustrated numerically in Figure 3.4, by simulating the vaccination-free

model (3.21) using multiple initial conditions and parameter values such that R0 = 0.3823

(so that, by Theorem 3.7, the DFE, E0, of the model (3.21) is GAS). Figure 3.4 shows

convergence of the solution profiles to the DFE (in accordance with Theorem 3.7). The

epidemiological implication of Theorem 3.7 is that the classical epidemiological requirement

of having the associated reproduction number (R0) less than unity is necessary and sufficient

for the elimination of HPV from the community.

In summary, the vaccination-free model (3.21) has the following dynamical features:

i) The model has a LAS DFE whenever R0 < 1;

ii) The model can have a unique or multiple endemic equilibria when the associated re-

production number (R0) exceeds unity. For the special case when the model has a

unique endemic equilibrium point, this equilibrium is shown to be LAS;
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iii) The model undergoes the phenomenon of backward bifurcation at R0 = 1 if the re-

infection parameter for females (ρf ) exceeds a certain threshold (ρcf );

iv) The re-infection of recovered individuals (ρf �= 0; ρm �= 0) causes the phenomenon

of backward bifurcation in the vaccination-free model (3.21). It is shown that in the

absence of such re-infection (i.e., ρf = ρm = 0), the DFE of the resulting model is GAS

in D1 whenever R0 < 1.

3.4 Analysis of Vaccination Model

In this section, the full model (3.19) will be rigorously analysed (with the aim of determin-

ing whether or not the model (3.19) has certain dynamical features that are absent in the

vaccination-free model (3.21)).

3.4.1 Local asymptotic stability of DFE

Consider, now, the full vaccination model (3.19). Its DFE is given by

E
V
0 = (S∗

f , V
∗
f , E

∗
f , I

∗
f , P

∗, C∗, R∗
c , R

∗
f , S

∗
m, E

∗
m, I

∗
m, R

∗
m)

= (S∗
f , V

∗
f , 0, 0, 0, 0, 0, 0, S

∗
m, 0, 0, 0), (3.36)

where, now,

S∗
f =

πf (1− ϕf )

µf
, V ∗

f =
πfϕf

µf
, S∗

m =
πm

µm
,

with,

N∗
f = S∗

f + V ∗
f =

πf

µf
and N∗

m = S∗
m =

πm

µm
.

The matrices FV and HV , associated with vaccination model (3.19), are given by
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FV =





0 0 0 0 0 βmcfηm
N∗

m

�
S∗
f + (1− εv)V ∗

f

� βmcf
N∗

m

�
S∗
f + (1− εv)V ∗

f

�
0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

βfcfηf βfcf βfcfθp 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





,

and,

HV =





g1 0 0 0 0 0 0 0

−σf g2 0 0 0 0 0 0

0 −h1 n1 0 0 0 0 0

0 0 −h2 n2 0 0 0 0

0 −m1 −m2 0 g3 0 0 0

0 0 0 0 0 g4 0 0

0 0 0 0 0 −σm g5 0

0 0 0 0 0 0 −ψm g6





,

where gi(i = 1..., 6), n1, n2,m1,m2 and h1, h2 are as defined in Section 3.3.3. Thus, the

vaccination reproduction number, denoted by Rv = ρ
�
FVH

−1
V

�
, is given by

Rv =
�
RvmRvf ,

with (it is worth stating that since 0 < εvϕf < 1, the threshold quantity Rvf > 0),
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Rvm =
βfµm

g5πm

�
ηmg5 + σm

g4

�
and Rvf =

βmc2fπf (1− εvϕf )

g2µf

�
ηfn1g2 + σf (n1 + θph1)

n1g1

�
.

Thus, the result below follows (from Theorem 2 of [95]).

Theorem 3.8. The DFE, EV
0 , of the vaccination model (3.19), is LAS if Rv < 1, and

unstable if Rv > 1.

The threshold quantity, Rv, is the vaccination reproduction number for the model (3.19). It

can be interpreted in the same way as R0 in Sections 3.3.1 and 3.3.2.

3.4.2 Existence and local asymptotic stability of EEP

The existence of an EEP of the vaccination model (3.19) is explored below. As in Section

3.3.3, let,

E
V
1 = (S∗∗

f , V ∗∗
f , E∗∗

f , I∗∗f , P ∗∗
f , C∗∗, R∗∗

c , R∗∗
f , S∗∗

m , E∗∗
m , I∗∗m , R∗∗

m ), (3.37)

be an arbitrary endemic equilibrium of the full model (3.19). Furthermore, let λ∗∗
m and λ∗∗

f

be given as in (3.31) and (3.32), respectively (see Section 3.3.3). Solving the equations of

the model (3.19) at steady-state, in terms of λ∗∗
m and λ∗∗

f , gives

S∗∗
f =

πf (1− ϕf ) + ξfR∗∗
f

λ∗∗
m + µf

, V ∗∗
f =

πfϕf

(1− εv)λ∗∗
m + µf

, E∗∗
f =

λ∗∗
m

�
S∗∗
f + (1− εv)V ∗∗

f + ρfR∗∗
f

�

g1
,

I∗∗f =
σfE∗∗

f

g2
, P ∗∗ =

h1I∗∗f
n1

, C∗∗ =
h2P ∗∗

n2
, R∗∗

c =
γfC∗∗

µf
, R∗∗

f =
m1I∗∗f +m2P ∗∗

ρfλ∗∗
m + g3

,

S∗∗
m =

πm + ξmR∗∗
m

λ∗∗
f + µm

, E∗∗
m =

λ∗∗
f (S∗∗

m + ρmR∗∗
m )

g4
, I∗∗m =

σmE∗∗
m

g5
, (3.38)

R∗∗
m =

ψmI∗∗m
ρmλ∗∗

f + g6
.
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Using (3.38) in (3.31) and (3.32), and simplifying, gives

λ∗∗
m =

λ∗∗
f z11

�
g6 + λ∗∗

f t12
�

�
λ∗∗
f

�2
z12 + λ∗∗

f z13 + z14
and λ∗∗

f =
λ∗∗
mz211

�
z212 + λ∗∗

m t221 + (λ∗∗
m )2 z213

�

(λ∗∗
m )3 z222 + (λ∗∗

m )2 z223 + λ∗∗
mz224 + z225

,

(3.39)

with (where z11, t12, z12, z13 and z14 are as defined in Section 3.3.3),

z211 =
βfcfπfµm

πm
(ηfn1g2 + n1σf + θph1σf ) , t221 = ρfµf (1− εvϕf ) + g3(1− εv),

z212 = g3µf (1− εvϕf ), z213 = ρf (1− εv), z222 = ρf (1− εv) [n1g1g2 − σf (n1m1 + h1m2)] ,

z223 = (1− εv) [n1g1g2 (ρfµf + g3)− σf (n1m1 + h1m2) (ρfµf + ξf )]

+ ρf [n1g1g2 − σf (n1m1 + h1m2)] , (3.40)

z224 = (1− εv)µfn1g1g2g3 + µfn1g1g2 (ρfµf + g3)− σf (n1m1 + h1m2) (ρfµf + ξf ) ,

z225 = µ2
fn1g1g2g3.

Since all the parameters of the vaccination model (3.19) are positive, and 0 < εv < 1, it can

be shown, after some lengthy algebraic manipulations, that all the variables in (3.40) are

positive (see Section 3.3.3). Substituting λ∗∗
f into λ∗∗

m in (3.39), and simplifying, it follows

that the non-zero equilibria of the vaccination model (3.19) satisfy the following polynomial

(in terms of λ∗∗
m ),

a2 (λ
∗∗
m )6 + b2 (λ

∗∗
m )5 + c2 (λ

∗∗
m )4 + d2 (λ

∗∗
m )3 + e2 (λ

∗∗
m )2 + f2λ

∗∗
m + j2 = 0, (3.41)

with,
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a2 = z222 (z14z222 + z13z213z211) + z12z
2
213z

2
211,

b2 = 2z14z223z222 + z211z213 (z13z223 + t12z11z211z213) + t12z
2
11z213 (z12 + t221)

+ z222 (t221z13z211 − g6z11z213) ,

c2 = z12z212z213z
2
211 + t221z

2
211 (t221z12 + t12z11z213) + z213z

2
211 (z12z212 + t12t221z11)

+ (z222 + z224) (z14z224 + z13z212z211 − t221z11z211z212) + z223 (z14z223 + t221z13z211 − g6z11z213) ,

d2 = z222z14z225
�
2−R

2
v

�
+ z211z213 (z13z225 + t12z11z211z212) + z212z

2
211 (t221z12 + t12z11z213)

+ t221z
2
211 (z12z212 + t12t221z11) + z224 (z14z223 + t221z13z211 − g6z11z213)

+ z223 (z14z224 + z13z212z211 − g6t211z11z211) ,

e2 = z223z14z225
�
2−R

2
v

�
+ t12t221z

2
211z11z212 + z2211z212 (z12z212 + t12t221z11)

+ z224 (z14z224 + z212z13z211 − g6t221z11z211) + z225 (t221z13z211 − g6z11z213) ,

f2 = z14z224z225
�
1−R

2
v

�
+ z225 (z14z224 + z13z211z212 − g6t221z11z211) + t12z11z

2
211z

2
212,

j2 = z14z
2
225

�
1−R

2
v

�
.

Clearly, the coefficient, a2, of the polynomial (3.41), is always positive (since all the model

parameters are positive). Furthermore, the coefficient, j2, is positive (negative) if Rv is less

than (greater than) unity. Thus, the number of possible positive real roots the polynomial

(3.41) can have depends on the signs of b2, c2, d2, e2 and f2. The various possibilities for the
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roots of (3.34) are tabulated in Table 3.3.

Theorem 3.9. The vaccination model (3.19),

i) has a unique endemic equilibrium if Rv > 1 and whenever Cases 1,2,3 and 6 of Table

3.3 hold;

ii) could have more than one endemic equilibrium if Rv > 1 and whenever Cases 4,5,7,8,11

and 12 of Table 3.3 hold;

iii) could have two or more endemic equilibrium if Rv < 1 and whenever Cases 2-12 of

Table 3.3 hold.

Furthermore, as in the case of the vaccination-free model (3.21), the vaccination model

(3.19) also undergoes backward bifurcation, as below.

Theorem 3.10. The vaccination model (3.19) undergoes backward bifurcation at Rv = 1

whenever the inequality (E.3), given in Appendix E, is satisfied.

The proof, based on using Centre Manifold Theory, is given in Appendix E. Here, too, the

backward bifurcation property of the vaccination model (3.19) can be removed whenever the

re-infection of recovered individuals does not occur (i.e., ρf = ρm = 0). The GAS property

of the DFE, EV
0 , of the vaccination model (3.19), is established for this case in Section 3.4.3.

3.4.3 Global asymptotic stability of DFE (special case)

The global asymptotic stability of the DFE, EV
0 , of the vaccination model (3.19) is established

for the special case where the re-infection of recovered individuals does not occur (i.e., ρf =

ρm = 0).

Theorem 3.11. The DFE, EV
0 , of the vaccination model (3.19), with ρf = ρm = 0, is GAS

in D if Rv < 1.

The proof of Theorem 3.11, based on using a Lyapunov function, is given in Appendix F.
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3.5 Qualitative Assessment of Vaccine Impact

The population-level impact of the anti-HPV mass vaccination program, using the Gardasil

vaccine, in the community is assessed for the special case of the vaccination model (3.19)

with ρf = ρm = 0 (so that the DFE of the resulting model is GAS, in line with Theorem

3.11). It is convenient to re-write the associated vaccination reproduction number, Rv, as

R
2
v = R

2
0 (1− εvϕf ) , (3.42)

where ϕf represents the fraction of females vaccinated at steady-state, εv is the vaccine

efficacy, and R0 is basic reproduction number for the vaccination-free model (3.21) with

ρf = ρm = 0. Thus (noting that gi(i = 1..., 6), n1, n2,m1,m2 and h1, h2 are as defined in

Section 3.3.3),

R
2
0 = R

2
v |ϕf=0=

βfcmβmcf (ηmg5 + σm) (ηfn1g2 + σfn1 + σfθph1)

n1g1g2g4g5
.

It can be shown from (3.42), by writing Rv = Rv (ϕf ), that

Rv (ϕf ) = R0

�
1− εvϕf , (3.43)

so that,

∂Rv

∂ϕf
= −

εvR0

2
�

1− εvϕf

.

Since 0 < εv < 1, it follows that Rv(ϕf ) is a decreasing function of ϕf . Furthermore, there

is a unique ϕc
f , such that Rv

�
ϕc
f

�
= 1, given by

ϕc
f =

1

εv

�
1−

1

R2
0

�
.

Lemma 3.1. The DFE, EV
0 , of the vaccination model (3.19), with ρf = ρm = 0, is GAS in
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D if ϕf > ϕc
f , and unstable if ϕf < ϕc

f .

Proof. Consider the vaccination model (3.19) with ρf = ρm = 0. Let ϕf > ϕc
f . Then, it

follows from (3.42) that Rv < 1. Hence, the result follows from Theorem 3.11 that the DFE,

EV
0 of (3.19) with ρf = ρm = 0, is GAS in D for this case (ϕf > ϕc

f ).

Figure 3.5 depicts a contour plot of Rv, as a function of the vaccine efficacy (εv) and coverage

(ϕf ). It follows from Figure 3.5 that, with the assumed 90% efficacy of the Gardasil vaccine

[7, 15, 76, 93, 96], HPV can be effectively controlled or eliminated from the community if

at least 78% of the new sexually-active susceptible females in the community are vaccinated

(with Gardasil) at steady-state.

3.6 Numerical Simulations

The vaccination-free model (3.21) is simulated, first of all, using the parameter values given

in Table 3.1 (unless otherwise stated). The following initial conditions were used in the

simulations: Sf (0) = 15, 000, Vf (0) = 35, 000, Ef (0) + If (0) + P (0) = 5, 000, C(0) = 1, 300,

Sm(0) = 50, 000, Em(0) + Im(0) = 500 and Rc(0) = Rf (0) = Rm(0) = 0. Figure 3.6 depicts

the cumulative number of new cervical cancer cases as a function of time in the absence of

vaccination (i.e., Vf = ϕf = 0). This figure (which represents the worst-case scenario of

HPV transmission in the community in the absence of mass vaccination) shows that about

1, 700 cervical cancer cases will be recorded over 5 years. Furthermore, up to 262 infected

people will die over the same time period (Figure 3.7).

The vaccination model (3.19) is then simulated to determine the impact of mass vaccina-

tion of new sexually-active females (using the Gardasil vaccine) on the cumulative number

of new cervical cancer cases in the community. Figure 3.8 shows a marked decrease in the

cumulative number of cases (from 1, 700 in Figure 3.6 to about 907) if the Gardasil vaccine

efficacy is assumed to be 80%. This number further reduces to only 3 cases if the vaccine

efficacy is 99% (it should be recalled that the efficacy of the Gardasil vaccine is in the range
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90 − 100% [15, 76, 93, 96]; so that the assumption for 80% and 99% efficacy is within a

realistic range). The cumulative number of cervical cancer mortality, for various Gardasil

efficacy, for this case is depicted in Figure 3.9. This figure shows that with an assumed

vaccine efficacy of 80%, the cumulative mortality, over 5 years, reduces (in comparison to

the worst-case scenario) to about 23 deaths (this number further reduces to 16 deaths if

the vaccine efficacy is 99%). It is worth mentioning that the simulations carried out in this

chapter are subject to uncertainties in the estimates of the parameter values given in Table

3.1 (the effect of such uncertainties can be assessed by using a sampling technique, such as

Latin hypercube sampling, as described in [8, 63]).

In summary, the vaccination model (3.19) has the following dynamical features:

i) The model has a LAS DFE whenever Rv < 1;

ii) The model can have a unique or multiple endemic equilibria when the associated re-

production number (Rv) exceeds unity. For the special case when the model has a

unique endemic equilibrium point, this equilibrium is shown to be LAS;

iii) The model undergoes the phenomenon of backward bifurcation at Rv = 1 if the in-

equality (E.3) holds. It is shown that the re-infection of recovered males and females

causes the backward bifurcation phenomenon in this model. In the absence of re-

infection of recovered individuals (i.e., ρf = ρm = 0), the DFE of the resulting model

was shown to be GAS in D whenever Rv < 1.

These results show that the vaccination model (3.19) exhibits essentially the same qualitative

dynamics (with respect to the existence and stability of the associated equilibria, as well as

with respect to the backward bifurcation property) as the vaccination-free model (3.21).
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3.7 Summary of the Chapter

A new deterministic model for the transmission dynamics of HPV in a community, where a

mass vaccination program using Gardasil is administrated for new sexually-active susceptible

females, is designed. An essential feature of the resulting HPV vaccination model is that

it incorporates the re-infection of, as well as the loss of infection-acquired immunity by,

recovered individuals. Both the vaccination-free and vaccination models were rigorously

analysed to gain insight into their dynamical features. Some of the main theoretical and

epidemiological findings of this chapter are as follows:

i) both the vaccination-free model (3.21) and the vaccination model (3.19) have a globally-

asymptotically stable DFE whenever their associated reproduction number is less than

unity and no re-infection of recovered individuals occurs (i.e., ρf = ρm = 0);

ii) both models have at least one locally-asymptotically stable EEP whenever their re-

spective reproduction numbers exceed unity for the special case with ρf = ρm = 0;

iii) both models exhibit the phenomenon of backward bifurcation under certain conditions.

It is shown that the backward bifurcation phenomenon is caused by the re-infection of

recovered individuals;

iv) the cumulative number of cervical cancer cases in the absence of vaccination, which

represents the worst-case scenario of HPV transmission in the community, shows that

about 1, 700 cervical cancer cases will be recorded over 5 years. Furthermore, up to

262 infected females will die of cervical cancer over the same time period;

v) the impact of mass vaccination of new sexually-active susceptible females (using the

Gardasil vaccine) on the cumulative number of new cervical cancer cases in the com-

munity shows a marked decrease in the number of cases (from 1, 700 in to about 907)

if theGardasil vaccine efficacy is assumed to be 80%. This number further reduces to

only 3 cases if the Gardasil vaccine efficacy is assumed to be 99%;
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vi) the cumulative number of cervical cancer mortality shows that with an assumed Gar-

dasil vaccine efficacy of 80%, the cumulative mortality, over 5 years, reduces (in com-

parison to the worst-case scenario) to about 23 deaths (this number further reduces to

16 deaths if the efficacy of the vaccine is assumed to be 99%);

vii) numerical simulations of the vaccination model (3.19) show that the use of the Gar-

dasil vaccine (with the assumed efficacy of 90%) can lead to the effective control (or

elimination) of the four HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) in the

community if at least 78% of the new sexually-active susceptible females are vacci-

nated at steady-state.
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Figure 3.1: Flow diagram of the vaccination model (3.19).
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Table 3.1: Description of variables and parameters of the vaccination model (3.19).

Variable Description

Sf Population of unvaccinated susceptible females

Sm Population of susceptible males

Vf Population of new sexually-active susceptible
females vaccinated with the Gardasil vaccine

Ef (Em) Population of exposed females (males)

If (Im) Population of infected females (males) with clinical
symptoms of HPV

P Population of females with persistent infection

C Population of infected females with cervical cancer

Rc Population of infected females who recovered
from cervical cancer

Rf (Rm) Population females (males) who recovered from
HPV

Nf (Nm) Total population of females (males)

Parameter Description Nominal value Reference
per year

πf (πm) Recruitment rate of new sexually-active
females (males) 10000 [61, 75]

βm (βf ) Infection probability for females (males) 0.4 (0.5) [61, 75]

cf (cm) Average number of female (male) sexual

partners for males (females) 2
�

2Nf (t)
Nm(t)

�
[61, 75]
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Parameter Description Nominal value Reference
per year

ϕf Fraction of new sexually-active females vaccinated 0.7 [25, 61]

εv Vaccine (Gardasil) efficacy 0.9 [61, 76]

µf (µm) Natural death rate for females (males) 1
65 [9, 61]

ξf (ξm) Rate of loss of infection-acquired immunity for females
(males) Assumed

ηf (ηm) Modification parameter for infectiousness
of exposed individuals in the Ef (Em) class relative to
those in the If (Im) class Assumed

ρf (ρm) Re-infection parameter for females (males) Assumed

σf (σm) Rate of development of clinical symptoms of HPV
for exposed females (males) Assumed

ψf (ψm) Recovery rate of infected females (males) 0.9 [61, 67]

rf Fraction of symptomatic females who recover naturally
from HPV (but do not develop persistent infection) 0.5 [61]

αf Recovery rate of infected females with
persistent infection 0.9 [61]

κf Fraction of symptomatic females who recover naturally
from persistent infection (but do not develop
cervical cancer) Assumed

γf Recovery rate of females with cervical cancer 0.76 [25, 61]

δf Cancer-induced mortality rate for females 0.001 [61]

θp Modification parameter for the infectiousness
of females with persistent infection relative to
those in the If class 0.9 [61]
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Cases a0 b0 c0 d0 e0 R0 Number of sign
changes

Number of
possible positive

real roots

1 + + + + + R0 < 1 0 0
+ + + + - R0 > 1 1 1

2 + - - - + R0 < 1 2 0,2
+ - - - - R0 > 1 1 1

3 + + - - + R0 < 1 2 0,2
+ + - - - R0 > 1 1 1

4 + - + - + R0 < 1 4 0,2,4
+ - + - - R0 > 1 3 1,3

5 + - - + + R0 < 1 2 0,2
+ - - + - R0 > 1 3 1,3

6 + + + - + R0 < 1 2 0,2
+ + + - - R0 > 1 1 1

7 + + - + + R0 < 1 2 0,2
+ + - + - R0 > 1 3 1,3

8 + - + + + R0 < 1 2 0,2
+ - + + - R0 > 1 3 1,3

Table 3.2: Number of possible positive real roots of (3.34) for R0 < 1 and R0 > 1.
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Figure 3.2: Simulations of the vaccination-free model (3.21), showing the total number of
infected individuals (females and males) as a function of time using various initial conditions.
Parameter values used are as given in Table 3.1, with ρf = ρm = 0, ξf = ξm = 0.0012,
πf = πm = 400, βf = 0.8, βm = 0.9, κf = 0.7, αf = 0.5, σf = σm = 0.5, ψf = ψm = 0.5 and
ηf = ηm = 0.8 (so that, R0 = 6.4887 > 1).
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Figure 3.3: Backward bifurcation diagram for the vaccination-free model (3.21), showing
the total number of infected individuals (females and males) as a function of the backward
bifurcation parameter, β∗. Parameter values used are as given in Table 3.1, with ξf = ξm =
0.0012, ρf = 1.2, ρm = 0.9855, πf = πm = 100, βm = 0.35, cm = cf = 15, µf = µm = 1

75 ,
κf = 0.895, αf = 0.878, σf = σm = 0.75, ψf = ψm = 0.8, θp = 0.95 and ηf = ηm = 0.9 (so
that, R0 = 1).
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Figure 3.4: Simulations of the vaccination-free model (3.21), showing the total number of
infected individuals (females and males) as a function of time using various initial conditions.
Parameter values used are as given in Table 3.1, with ξf = ξm = 0.1, ρf = ρm = 0,
πf = πm = 400, βf = βm = 0.05, κf = 0.7, γf = 0.22, αf = 0.5, σf = σm = 0.5,
ψf = ψm = 0.5 and ηf = ηm = 0.8 (so that, R0 = 0.3823 < 1).
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Cases a2 b2 c2 d2 e2 f2 j2 Rv Number of sign
changes

Number of
possible positive

real roots

1 + + + + + + + Rv < 1 0 0
+ + + + + + - Rv > 1 1 1

2 + - - - - - + Rv < 1 2 0,2
+ - - - - - - Rv > 1 1 1

3 + + - - - - + Rv < 1 2 0,2
+ + - - - - - Rv > 1 1 1

4 + - + - - - + Rv < 1 4 0,2,4
+ - + - - - - Rv > 1 3 1,3

5 + - - - - + + Rv < 1 2 0,2
+ - - - - + - Rv > 1 3 1,3

6 + + + - - - + Rv < 1 2 0,2
+ + + - - - - Rv > 1 1 1

7 + + - - - + + Rv < 1 2 0,2
+ + - - - + - Rv > 1 3 1,3

8 + - + - - + + Rv < 1 2 0,2
+ - + - - + - Rv > 1 3 1,3

9 + - + - + + + Rv < 1 4 0,2,4
+ - + - + + - Rv > 1 5 1,3,5

10 + + - + - + + Rv < 1 4 0,2,4
+ + - + - + - Rv > 1 5 1,3,5

11 + + + - + - + Rv < 1 4 0,2,4
+ + + - + - - Rv > 1 3 1,3

12 + - + - + - + Rv < 1 6 0,2,4,6
+ - + - + - - Rv > 1 5 1,3,5

Table 3.3: Number of possible positive real roots of (3.41) for Rv < 1 and Rv > 1.
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Figure 3.5: Simulations of the vaccination model (3.19), showing a contour plot of Rv as a
function of vaccine efficacy (εv) and the fraction of new sexually-active females vaccinated
at steady-state (ϕf ). Parameter values used are as given in Table 3.1, with ξf = ξm = 0.01,
ρf = ρm = 0, κf = 0.895, αf = 0.878, rf = 0.887, γf = 0.22, σf = σm = 0.85 and
ηf = ηm = 0.8 and various values of εv and ϕf (with 0 ≤ εv, ϕf ≤ 1).
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Figure 3.6: Simulation of the vaccination-free model (3.21), showing the cumulative number
of cervical cancer cases as a function of time. Parameter values used are as given in Table
3.1, with ξf = ξm = 0.012, ρf = ρm = 0.3, κf = 0.7, αf = 0.42, σf = σm = ψf = ψm = 0.5,
θp = 0.9, ηf = ηm = 0.85 and δf = 0.001.
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Figure 3.7: Simulation of the vaccination-free model (3.19), showing the cumulative cervical
cancer-related mortality as a function of time. Parameter values used are as given in Table
3.1, with ξf = ξm = 0.012, ρf = ρm = 0.3, κf = 0.7, αf = 0.42, σf = σm = ψf = ψm = 0.5,
θp = 0.9, ηf = ηm = 0.85 and δf = 0.01.
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Figure 3.8: Simulation of the vaccination model (3.19), showing the cumulative number
of cervical cancer cases as a function of time for various vaccine efficacy levels. Parameter
values used are as given in Table 3.1, with ξf = ξm = 0.012, ρf = ρm = 0.3, κf = 0.7,
αf = 0.42, σf = σm = ψf = ψm = 0.5, θp = 0.9, ηf = ηm = 0.85 and δf = 0.001.
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Figure 3.9: Simulation of the vaccination model (3.19), showing the cumulative cervical
cancer-related mortality as a function of time for various vaccine efficacy levels. Parameter
values used are as given in Table 3.1, with ξf = ξm = 0.012, ρf = ρm = 0.3, κf = 0.7,
αf = 0.42, σf = σm = ψf = ψm = 0.5, θp = 0.9, ηf = ηm = 0.85 and δf = 0.01.
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Chapter 4

Risk-structured HPV Model with the

Gardasil and Cervarix Vaccines

4.1 Introduction

In this chapter, the vaccination model discussed in Chapter 3 will be extended to account

for the dynamics of the low- and high-risk HPV types in the community. For simplicity, only

four (of the 120) HPV subtypes, namely HPV-6, HPV-11, HPV-16 and HPV-18, will be

considered. HPV-16 and HPV-18 are high-risk, and can persist for many years, causing CIN

and cervical cancer if untreated [9, 10, 15, 26, 46, 50, 61, 76]. These (high-risk) HPV types

account for 70% of cervical cancer cases globally [9, 46]. Almost all cervical cancer cases are

caused by HPV infection (HPV also accounts for 90% of anal cancers, 60% of oropharyngeal

cancers, and 40% of vaginal and penile cancers [38, 70]). As stated in Chapter 1, the pre-

cancerous CIN stages (lesions) are categorized into the low-grade (denoted by CIN1) and

high-grade stages [10, 15, 50, 61, 76]. In line with some other modelling studies for the

natural history of HPV [57, 62, 67], the high-grade CIN2 and CIN3 pre-cancerous stages are

lumped into a single compartment (for mathematical convenience; denoted by CIN2/3). It

should be mentioned that the three CIN stages are considered separately in [25, 61]. In later
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stages, the original cancer may spread to areas surrounding the uterus and cervix or near

organs such as the bladder or rectum. It may also spread to distant sites in the body through

the bloodstream or the lymph nodes [76, 100]. Furthermore, the high-risk HPV types cause

pre-cancerous intraepithelial neoplasia in males (also divided into three grades according to

severity of the lesions, denoted by INM1 and INM2/3), resulting in various cancers in males

(such as anal and penile cancers [29]). The currently-available HPV vaccines (Gardasil and

Cervarix ) target these high-risk HPV types.

On the other hand, HPV-6 and HPV-11 are considered low-risk HPV types (since they

do not cause cervical cancer; although they do cause genital warts [76, 77]). As stated in

Chapter 1, while the bivalent (Cervarix ) vaccine exclusively targets the high-risk HPV types

(HPV-16 and HPV-18), the quadrivalent (Gardasil) vaccine targets both the low-risk (HPV-

6 and HPV-11) and the high-risk (HPV-16 and HPV-18) HPV types. As stated in Chapter

1, it should be emphasized that the Cervarix vaccine is approved for use in females only,

while the Gardasil vaccine is approved for use in both females and males [76, 77, 100].

Unlike in Chapter 3 (where only the Gardasil vaccine is used), both Gardasil and Cervarix

will be used in this chapter. In other words, susceptible females have the option to choose

between the Gardasil and Cervarix vaccines (while susceptible males only have the Gardasil

vaccine option). Furthermore, in line with the recent recommendations by some Public

Health Agencies [46, 76, 77], both females and males will be vaccinated (only females are

vaccinated in the model developed in Chapter 3). As in Chapter 3, the vaccines will be

given to children of ages 9 to 13 [10, 15, 76] (it should be stated that males and females of

ages 13 to 26, who were not vaccinated before, are also be vaccinated [46, 76]). It is worth

mentioning that, unlike in [25, 29], no co-infection of HPV types is assumed in this study.
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4.2 Model Formulation

To formulate the model for the transmission dynamics of the low- and high-risk HPV sub-

types in a community, in the presence of mass vaccination (using the Cervarix and Gar-

dasil vaccines), the total sexually-active female population at time t (denoted by Nf (t))

is sub-divided into mutually-exclusive compartments of unvaccinated susceptible females

(Sf (t)), new sexually-active susceptible females vaccinated with the bivalent Cervarix vaccine

(V b
f (t)), new sexually-active susceptible females vaccinated with the quadrivalent Gardasil

vaccine (V q
f (t)), exposed (latently-infected) females with the low-risk HPV types (El

f (t)), ex-

posed females with the high-risk HPV types (Eh
f (t)), infected females with clinical symptoms

of the low-risk HPV types (I lf (t)), infected females with clinical symptoms of the high-risk

HPV types (I lf (t)), infected females with persistent infection with the low-risk HPV types

(P l
f (t)), infected females with persistent infection with the high-risk HPV types (P h

f (t)),

infected females in the (low-grade) CIN1 stage (Gfl(t)), infected females in the (high-grade)

CIN2/3 stage (Gfh(t)), infected females with genital warts (Wf (t)), infected females with

cervical cancer (Cc
f (t)), infected females who recovered from cervical cancer (Rc

f (t)) and

infected females who recovered from HPV infection (and genital warts) without develop-

ing cervical cancer (Rf (t)), so that (where the indices l and h in Gfl and Gfh represent,

respectively, low- and high-grade CIN, and not low- and high-risk HPV types),

Nf (t) = Sf (t) + V b
f (t) + V q

f (t) + Ei
f (t) + I if (t) + P i

f (t) +Wf (t) +Gfl(t) +Gfh(t)

+ Cc
f (t) +Rc

f (t) +Rf (t), i ∈ {l, h}, (4.1)

where the indices l and h (with exception of those in Gfl and Gfh) represent low- and high-

risk HPV types, respectively. In this study, HPV-6 and HPV-11 are the low-risk HPV types

considered, while HPV-16 and HPV-18 are the high-risk HPV types. These HPV types are

preventable using the Cervarix and Gardasil vaccines.

Furthermore, the total sexually-active male population at time t, denoted by Nm(t), is
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sub-divided into mutually-exclusive compartments of unvaccinated susceptible males (Sm(t)),

new sexually-active susceptible males vaccinated with the quadrivalent Gardasil vaccine

(V q
m(t)), exposed males with the low-risk HPV types (El

m(t)), exposed males with the high-

risk HPV types (Eh
m(t)), infected males with clinical symptoms of the low-risk HPV types

(I lm(t)), infected males with clinical symptoms of the high-risk HPV types (Ihm(t)), infected

males with persistent infection with the low-risk HPV types (P l
m(t)), infected males with

persistent infection with the high-risk HPV types (P h
m(t)), infected males with genital warts

(Wm(t)), infected males in the low-grade HPV-related intraepithelial neoplasia INM1 stage

(Gml(t)), infected males in the high-grade HPV-related intraepithelial neoplasia INM2/3

stage (Gmh(t)), infected males with HPV-related cancers (Cr
m(t)), infected males who recov-

ered from HPV-related cancers (Rc
m(t)) and infected males who recovered from HPV (and

genital warts) without developing HPV-related cancers (Rm(t)). Thus (noting that the in-

dices l and h in Gml and Gmh represent, respectively, low- and high-grade INM for males,

and not low- and high-risk HPV type),

Nm(t) = Sm(t) + V q
m(t) + Ei

m(t) + I im(t) + P i
m(t) +Wm(t) +Gml(t) +Gmh(t)

+ Cr
m(t) +Rc

m(t) +Rm(t), i ∈ {l, h}. (4.2)

It follows from (4.1) and (4.2) that the total sexually-active (heterosexual) population, at

time t, is given by

N(t) = Nf (t) +Nm(t).

It should be emphasized that, in this chapter, individuals in the exposed (Ei
f and Ei

m) and

persistent (P i
f and P i

m) classes, with i ∈ {l, h}, are infected with HPV, and can transmit

HPV to susceptible individuals.

The population of unvaccinated susceptible females (Sf ) is increased by the recruitment

of new sexually-active females at a rate πf (a fraction, 1−ϕb
f −ϕq

f , with 0 < ϕb
f +ϕq

f ≤ 1, of

which, is vaccinated; where, ϕb
f is the fraction of unvaccinated susceptible females vaccinated
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with the Cervarix vaccine, and ϕq
f is the fraction vaccinated with the Gardasil vaccine). This

population is further increased by the loss of infection-acquired immunity by infected females

who recovered without developing cervical cancer (at a rate ξf ). The population is decreased

by infection, following effective contacts with males infected with the high-risk and the low-

risk HPV types (i.e., those in the El
m, E

h
m, I

l
m, I

h
m, P

l
m and P h

m classes), at the rates λl
m and

λh
m, given, respectively, by:

λl
m =

βl
mcf (Nm, Nf )

�
ηlmE

l
m + I lm + θlmP

l
m

�

Nm
, (4.3)

λh
m =

βh
mcf (Nm, Nf )

�
ηhmE

h
m + Ihm + θhmP

h
m

�

Nm
. (4.4)

In (4.3), βl
m is the probability of transmission of HPV infection from infected males (with

the low-risk HPV types) to susceptible females per contact, and cf (Nm, Nf ) is the average

number of female partners per male per unit time. Thus, βl
mcf (Nm, Nf ) is the effective

contact rate for male-to-female transmission of the low-risk HPV types. Furthermore, ηlm

(with 0 ≤ ηlm < 1) is the modification parameter accounting for the assumption that exposed

males with the low-risk HPV types are less infectious than symptomatically-infected males

with the low-risk HPV types. Similarly, in (4.4), βh
m is the probability of transmission of

HPV infection from infected males (with the high-risk HPV types) to susceptible females per

contact, and βh
mcf (Nm, Nf ) is the effective contact rate for male-to-female transmission of

the high-risk HPV types. The parameter ηhm (with 0 ≤ ηhm < 1) accounts for the assumption

that exposed males with the high-risk HPV types are less infectious than symptomatically-

infected males with the high-risk HPV types, and θlm(θ
h
m) > 0 is the modification parameter

accounting for the assumption that infected males with persistent infection with the low-

risk (high-risk) HPV types transmit HPV at a different rate compared to infected males

in the other infected classes (El
m, I

l
m(E

h
m, I

h
m)). The population of unvaccinated susceptible

females is further decreased by natural death (at a rate µf ; it is assumed that females in all

epidemiological compartments suffer natural death at the rate µf ). Thus,
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dSf

dt
= (1− ϕb

f − ϕq
f )πf + ξfRf −

�
λl
m + λh

m

�
Sf − µfSf . (4.5)

The population of new sexually-active susceptible females vaccinated with the bivalent Cer-

varix vaccine (V b
f ) is generated by the vaccination of a fraction, ϕb

f , of unvaccinated suscep-

tible females with the Cervarix vaccine (at the rate πfϕb
f ). It is decreased by HPV infection,

following effective contacts with males infected with high-risk HPV types (at the reduced

rate (1 − εb)λh
m, where 0 < εb ≤ 1 represents the efficacy of the Cervarix vaccine against

infection with the high-risk HPV types) and males infected with the low-risk HPV types

(at the rate λl
m; it should be emphasized that the Cervarix vaccine has no efficacy against

the low-risk HPV types, HPV-6 and HPV-11 [46, 76, 77]). This population is decreased by

natural death. Since there is currently no evidence to the contrary, it is assumed that this

vaccine (as well as Gardasil) does not wane [10, 15, 46, 76, 77]. Hence,

dV b
f

dt
= ϕb

fπf − (1− εb)λ
h
mV

b
f − λl

mV
b
f − µfV

b
f . (4.6)

The population of new sexually-active susceptible females vaccinated with the quadrivalent

Gardasil vaccine (V q
f ) is generated by the vaccination of a fraction, ϕq

f , of unvaccinated

susceptible females with the Gardasil vaccine (at the rate πfϕ
q
f ). It is decreased by HPV

infection, following effective contacts with males infected with the low- and high-risk HPV

types (at a reduced rate (1 − εq)
�
λl
m + λh

m

�
, where 0 < εq ≤ 1 represents the efficacy

of Gardasil vaccine against infection with HPV-6, HPV-11, HPV-16 and HPV-18). This

population is decreased by natural death. Thus,

dV q
f

dt
= ϕq

fπf − (1− εq)
�
λh
m + λl

m

�
V q
f − µfV

q
f . (4.7)

The population of exposed females with the low-risk (high-risk) HPV types (El
f (E

h
f )) is

generated by the infection of unvaccinated and vaccinated susceptible females with the low-
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risk HPV types (at the rate λl
m(λ

h
m)). This population is further increased by the re-infection

of recovered females with the low-risk (high-risk) HPV types (at a rate ρlfλ
l
m(ρ

h
fλ

h
m), where

0 ≤ ρlf (ρ
h
f ) < 1 accounts for the assumption that the re-infection of recovered females with

low-risk (high-risk) HPV types occurs at a rate lower than the rate for primary infection of

susceptible females). Exposed females develop clinical symptoms of the low-risk (high-risk)

HPV types (at a rate σl
f (σ

h
f )) and suffer natural death. Thus,

dEl
f

dt
= [Sf + Vb + (1− εq)Vq]λ

l
m + ρlfλ

l
mRf − (σl

f + µf )E
l
f ,

dEh
f

dt
= [Sf + (1− εb)Vb + (1− εq)Vq]λ

h
m + ρhfλ

h
mRf − (σh

f + µf )E
h
f . (4.8)

The population of infected females with clinical symptoms of the low-risk (high-risk) HPV

types (I lf (I
h
f )) is generated at the rate σl

f (σ
h
f ). This population is decreased by recovery (at

a rate ψl
f (ψ

h
f )) and natural death. Hence,

dI lf
dt

= σl
fE

l
f − (ψl

f + µf )I
l
f ,

dIhf
dt

= σh
fE

h
f − (ψh

f + µf )I
h
f . (4.9)

The population of females with persistent infection with the low-risk HPV types (P l
f ) is

generated by the development of persistent infection, with the low-risk HPV types, by symp-

tomatic females with the low-risk HPV types (at a rate (1 − rlf )ψ
l
f , where 0 < rlf ≤ 1 is

the fraction of symptomatic females with the low-risk HPV types who recovered from HPV

infection without developing genital warts; it is assumed that individuals infected with the

low-risk HPV types do not progress to the CIN stages and/or develop cancer [10, 15, 76, 77]).

Females with persistent infection with the low-risk HPV types move out of this epidemiolog-

ical class (either through recovery or development of genital warts) at a rate αl
f , and suffer

natural death. Thus,
dP l

f

dt
= (1− rlf )ψ

l
fI

l
f − (αl

f + µf )P
l
f . (4.10)
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The population of females with persistent infection with the high-risk HPV types (P h
f ) is

generated at a rate (1 − rhf )ψ
h
f , where 0 < rhf ≤ 1 is the fraction of symptomatic females

with the high-risk HPV types who recovered from HPV without progressing to the low-

grade CIN1 stage, and by a fraction, 1 − (s1f + s2f ), of infected females in the high-grade

CIN2/3 stage who develop persistent infection (at a rate [1− (s1f + s2f )] zf , where s1f and

s2f , with 0 ≤ s1f + s2f ≤ 1, are the fractions of infected females in the high-grade CIN2/3

stage who naturally recovered from HPV infection, and of infected females in the high-grade

CIN2/3 stage who revert to the low-grade CIN1 stage, respectively). Females with persistent

infection with the high-risk HPV types move out of this epidemiological class (either through

recovery or development of pre-cancerous CIN lesions) at a rate αh
f , and suffer natural death.

Hence,

dP h
f

dt
= (1− rhf )ψ

h
f I

h
f + [1− (s1f + s2f )] zfGfh − (αh

f + µf )P
h
f .

The population of females with genital warts (Wf ) is generated when infected females with

persistent infection with the low-risk HPV types develop genital warts (at a rate (1− kl
f )α

l
f ,

where 0 < kl
f ≤ 1 is the fraction of infected females with persistent low-risk HPV types

who recovered from HPV infection). Since genital warts do not cause cervical cancer (or any

other type of cancer [76, 100]), it is assumed that genital warts do not cause death in females

and males. This population decreases due to recovery (at a rate nf ) and natural death, so

that,
dWf

dt
= (1− kl

f )α
l
fP

l
f − (nf + µf )Wf . (4.11)

The population of females with the low-grade CIN1 (Gfl) is generated when infected females

with persistent infection with the high-risk HPV types develop pre-cancerous CIN lesions

(at a rate (1 − kh
f )α

h
f , where 0 < kh

f ≤ 1 is the fraction of infected females with persistent

infection with the high-risk HPV types who recovered from HPV infection). This population

is further increased by the reversion (or regression) of individuals in the high-grade CIN2/3
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stage into the low-grade CIN1 stage (at a rate s2fzf ). Individuals move out of this class

at a rate uf (due to progression to the high-grade CIN2/3 stage [25, 29, 61, 100], at a rate

(1− df )uf , or recovery, at a rate dfuf ). It is assumed that individuals in the CIN stages do

not suffer disease-induced death (until they develop cervical cancer). Thus,

dGfl

dt
= (1− kh

f )α
h
fP

h
f + s2fzfGfh − (uf + µf )Gfl. (4.12)

The population of females in the high-grade CIN2/3 stage (Gfh) is generated by the pro-

gression of infected females with low-grade CIN1 (at the rate (1− df )uf , where 0 ≤ df ≤ 1

is the fraction of infected females in the low-grade CIN1 stage who naturally recovered from

HPV infection). Transition out of this class occurs at a rate zf (where a fraction, s1fzf ,

recovers; another fraction, s2fzf , reverts to the low-grade CIN1 stage and the remaining

fraction, 1− (s1f + s2f ), develops persistent infection). This population is decreased by the

development of cervical cancer (at a rate ωf ) and natural death. Hence,

dGfh

dt
= (1− df )ufGfl − (zf + ωf + µf )Gfh. (4.13)

The population of females with cervical cancer (Cc
f ) is generated by the development of

cervical cancer by infected females in the high-grade CIN2/3 stage (at the rate ωf ). This

population decreases due to recovery (at a rate γf ), natural death and cancer-induced death

(at a rate δf ), so that
dCc

f

dt
= ωfGfh − (γf + µf + δf )C

c
f . (4.14)

The population of infected females who recovered from cervical cancer (Rc
f ) is generated at

the rate γf , and decreases by natural death. As in [61], it is assumed that individuals in this

class do not acquire HPV infection again (since these individuals require treatment/surgery,

which, typically, result in the removal or damage to the cervix and some other normal tissues
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around it [68]). Thus,
dRc

f

dt
= γfC

c
f − µfR

c
f . (4.15)

The population of infected females who recovered from HPV infection (and genital warts)

without developing cervical cancer (Rf ) is generated at the rates rlfψ
l
f , r

l
fhψ

h
f , k

l
fα

l
f , k

h
fα

h
f ,

nf , dfuf and s1fzf , respectively. Recovered females acquire re-infection at the rates ρlfλ
l
m

and ρhfλ
h
m. This population is further decreased by the loss of infection-acquired immunity

(at the rate ξf ) and natural death. This gives:

dRf

dt
= rlfψ

l
fI

l
f + rhfψ

h
f I

h
f + kl

fα
l
fP

l
f + kh

fα
h
fP

h
f + nfWf + dfufGfl + s1fzfGfh

−
�
ρhfλ

h
m + ρlfλ

l
m

�
Rf − (ξf + µf )Rf . (4.16)

The population of unvaccinated susceptible males (Sm) is generated by the recruitment

of new sexually-active males at a rate πm (a fraction, ϕq
m, of which, is vaccinated with the

Gardasil vaccine; it is assumed that males are not vaccinated with the Cervarix vaccine

[76, 77, 100]). It is further increased by the loss of infection-acquired immunity by recovered

males (at a rate ξm). This population is diminished by infection, following effective contacts

with infected females (with both the low-risk and high-risk HPV types), at rates λl
f and λh

f ,

where

λl
f =

βl
fcm (Nm, Nf )

�
ηlfE

l
f + I lf + θlfP

l
f

�

Nf
, (4.17)

λh
f =

βh
f cm (Nm, Nf )

�
ηhfE

h
f + Ihf + θhfP

h
f

�

Nf
. (4.18)

In (4.17) and (4.18), βl
f (β

h
f ) is the probability of transmission of HPV infection from infected

females with the low-risk (high-risk) HPV types to males per contact and cm (Nm, Nf ) is the

average number of male partners per female per unit time. Furthermore, ηlf (ηhf ) (with

0 ≤ ηlf (η
h
f ) < 1) is the modification parameter accounting for the assumption that exposed

females with the ow-risk (high-risk) HPV types (i.e., those in the El
f (E

h
f ) class) are less
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infectious than symptomatically-infected females (i.e., those in the I lf (I
h
f ) class), and θlf (θ

h
f ) >

0 is the modification parameter accounting for the assumption that infected females with

persistent infection with the low-risk (high-risk) HPV types transmit HPV at a different

rate compared to infected females in the El
f , I

l
f (E

h
f , I

h
f ) classes. This population is further

decreased by natural death (at a rate µm; it is assumed that males in all epidemiological

compartments suffer natural death at this rate, µm). Thus,

dSm

dt
= (1− ϕq

m) πm + ξmRm −
�
λh
f + λl

f

�
Sm − µmSm. (4.19)

The population of new sexually-active susceptible males vaccinated with the Gardasil vaccine

(V q
m) is generated by the vaccination of the fraction, ϕq

m, of unvaccinated susceptible males (at

the rate πmϕq
m). It is decreased by HPV infection, following effective contacts with females

infected with the high-risk HPV types (at a reduced rate (1− εq)λh
f , where 0 < εq ≤ 1 is the

efficacy of the Gardasil vaccine) and females infected with the low-risk HPV types (at the

rate (1− εq)λl
f ). This population is reduced by natural death. Hence,

dV q
m

dt
= ϕq

mπm − (1− εq)
�
λh
f + λl

f

�
V q
m − µmV

q
m. (4.20)

The population of exposed males with the low-risk (high-risk) HPV types (El
m(E

h
m)) is

generated by the infection of unvaccinated and vaccinated susceptible males with the low-

risk (high-risk) HPV types (at the rate λl
f (λ

h
f )). This population is further increased by the

re-infection of recovered males (at a rate ρlmλ
l
f (ρ

h
mλ

h
f ), where 0 ≤ ρlm(ρ

h
m) < 1 also accounts

for the assumption that re-infection of recovered females occurs at a rate lower than the

primary infection). Exposed males develop clinical symptoms of the low-risk (high-risk)

HPV types (at a rate σl
m(σ

h
m)) and suffer natural death. Hence,

dEl
m

dt
= [Sm + (1− εq)V

q
m]λ

l
f + ρlmλ

l
fRm − (σl

m + µm)E
l
m, (4.21)

dEh
m

dt
= [Sm + (1− εq)V

q
m]λ

h
f + ρhmλ

h
fRm − (σh

m + µm)E
h
m. (4.22)

81



The population of infected males with clinical symptoms of the low-risk (high-risk) HPV

types (I lm(I
h
m)) is generated at the rate σl

m(σ
h
m). It is reduced by recovery (at a rate ψl

m(ψ
h
m))

and natural death. Thus,

dI lm
dt

= σl
mE

l
m − (ψl

m + µm)I
l
m, (4.23)

dIhm
dt

= σh
mE

h
m − (ψh

m + µm)I
h
m. (4.24)

The population of males with persistent infection with the low-risk HPV types (P l
m) is gen-

erated by the development of persistent infection, with the low-risk HPV types, by symp-

tomatic males with the low-risk HPV types (at a rate (1 − rlm)ψ
l
m, where 0 < rlm ≤ 1 is

the fraction of symptomatic males with the low-risk HPV types who recovered from HPV

infection without developing genital warts). Males with persistent infection with the low-risk

HPV types move out of this epidemiological class (either through recovery or development

of genital warts) at a rate αl
m, and suffer natural death. Thus,

dP l
m

dt
= (1− rlm)ψ

l
mI

l
m − (αl

m + µm)P
l
m. (4.25)

The population of males with persistent infection with the high-risk HPV types (P h
m) is

generated at a rate (1 − rhm)ψ
h
m, where 0 < rhm ≤ 1 is the fraction of symptomatic males

with the high-risk HPV types who recovered from HPV without progressing to the low-grade

INM1 stage, and by a fraction, 1− (s1m + s2m), of infected males in the high-grade INM2/3

stage who develop persistent infection (at a rate [1− (s1m + s2m)] zm, where s1m and s2m,

with 0 ≤ s1m + s2m ≤ 1, are the fractions of infected males in the high-grade INM2/3 stage

who naturally recovered from HPV infection, and of infected males in the high-grade INM2/3

stage that reverts to the low-grade INM1 stage, respectively). Males with persistent infection

with the high-risk HPV types move out of this epidemiological class (either through recovery

or development of pre-cancerous lesions) at a rate αh
m, and suffer natural death. Hence,
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dP h
m

dt
= (1− rhm)ψ

h
mI

h
m + [1− (s1m + s2m)] zmGmh − (αh

m + µm)P
h
m.

The population of males with genital warts (Wm) is generated when infected males with

persistent infection with the low-risk HPV types develop genital warts (at a rate (1−kl
m)α

l
m,

where 0 < kl
m ≤ 1 is the fraction of infected males with low-risk persistent HPV types who

recovered from HPV infection). This population decreases due to recovery (at a rate nm)

and natural death, so that,

dWm

dt
= (1− kl

m)α
l
mP

l
m − (nm + µm)Wm. (4.26)

The population of males in the low-grade HPV-related INM1 stage (Gml) is generated when

infected males with persistent infection with the high-risk HPV types develop pre-cancerous

lesions (at a rate (1 − kh
m)α

h
m, where 0 < kh

m ≤ 1 is the fraction of infected males with

persistent infection with the high-risk HPV types who recovered from HPV infection). This

population is further increased by the reversion of individuals in the high-grade HPV-related

INM2/3 stage (at a rate s2mzm). Individuals move out of this class at a rate um (due to

progression to the high-grade INM2/3 stage, at a rate (1 − dm)um, or recovery, at a rate

dmum). It is assumed that individuals in INM stages do not suffer disease-induced death

(until they develop HPV-related cancer). Thus,

dGml

dt
= (1− kh

m)α
h
mP

h
m + s2mzmGmh − (um + µm)Gml. (4.27)

The population of males in the high-grade HPV-related INM2/3 stage (Gmh) is generated

by the progression of infected males in the low-grade HPV-related INM1 stage (at the rate

(1 − dm)um, where 0 ≤ dm ≤ 1 is the fraction of infected males in the low-grade INM1

stage who naturally recovered from HPV infection). Transition out of this class occurs at

a rate zm (where a fraction, s1mzm, recovers; another fraction, s2mzm, reverts to the low-
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grade INM1 stage and the remaining fraction, 1− (s1m+s2m), develops persistent infection).

This population is decreased by the development of HPV-related cancer (at a rate ωm) and

natural death. Hence,

dGmh

dt
= (1− dm)umGml − (zm + ωm + µm)Gmh. (4.28)

The population of males with HPV-related cancers (Cc
m) is generated by the development

of HPV-related cancers by infected males in the high-grade IN2/3 stage (at the rate ωm).

This population decreases due to recovery (at a rate γm), natural death and cancer-induced

death (at a rate δm), so that

dCr
m

dt
= ωmGmh − (γm + µm + δm)C

r
m. (4.29)

The population of males who recovered from HPV-related cancers (Rc
m) is generated at the

rate γm, and decreases by natural death, so that

dRc
m

dt
= γmC

c
m − µmR

c
m. (4.30)

The population of males who recovered from HPV infection (and genital warts) without

developing cancer (Rm) is generated at the rates rlmψ
l
m, rmψ

h
m, k

l
mα

l
m, k

h
mα

h
m, nm, dmum and

s1mzm. It is decreased by re-infection (at the rates ρlmλ
l
f and ρhmλ

h
f ), loss of infection-acquired

immunity (at the rate ξm) and natural death, so that

dRm

dt
= rlmψ

l
mI

l
m + rfψ

h
mI

h
m + kl

mα
l
mP

l
m + kh

mα
h
mP

h
m + nmWm + dmumGml

+ s1mzmGmh −
�
ρhmλ

h
f + ρlmλ

l
f

�
Rm − (ξm + µm)Rm. (4.31)

It should be emphasized, as in Chapter 3, that the following conservation law for the
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model {(4.3)-(4.31)} must hold:

cm (Nm, Nf )Nm = cf (Nm, Nf )Nf . (4.32)

Furthermore, it is assumed that male sexual partners are abundant, so that females can

always have enough number of male sexual contacts per unit time. Hence, cf (Nm, Nf ) = cf ,

a constant, and cm (Nm, Nf ) is calculated from the relation

cm (Nm, Nf ) =
cfNf

Nm
. (4.33)

It is assumed, from now on, that the two vaccines (Gardasil and Cervarix ) have the same

efficacy (that is, εb = εq = εv) [10, 34, 77, 100].

Based on the above formulations and assumptions, and using (4.33) in {(4.3), (4.4),

(4.17) and (4.18)}, it follows that the risk-structured model for the transmission dynamics

of the low- and high-risk HPV types in a community that adopts mass vaccination (using

Cervarix and Gardasil vaccines) is given by the following deterministic system of 29 non-
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linear differential equations:

dSf

dt
= (1− ϕb

f − ϕq
f )πf + ξfRf −

�
λh
m + λl

m

�
Sf − µfSf ,

dV b
f

dt
= ϕb

fπf − (1− εv)λ
h
mV

b
f − λl

mV
b
f − µfV

b
f ,

dV q
f

dt
= ϕq

fπf − (1− εv)
�
λh
m + λl

m

�
V q
f − µfV

q
f ,

dEl
f

dt
=

�
Sf + V b

f + (1− εv)V
q
f

�
λl
m + ρlfλ

l
mRf − (σl

f + µf )E
l
f ,

dEh
f

dt
=

�
Sf + (1− εv)V

b
f + (1− εv)V

q
f

�
λh
m + ρhfλ

h
mRf − (σh

f + µf )E
h
f ,

dI lf
dt

= σl
fE

l
f − (ψl

f + µf )I
l
f ,

dIhf
dt

= σh
fE

h
f − (ψh

f + µf )I
h
f ,

dP l
f

dt
= (1− rlf )ψ

l
fI

l
f − (αl

f + µf )P
l
f ,

dP h
f

dt
= (1− rhf )ψ

h
f I

h
f + [1− (s1f + s2f )] zfGfh − (αh

f + µf )P
h
f , (4.34)

dWf

dt
= (1− kl

f )α
l
fP

l
f − (nf + µf )Wf ,

dGfl

dt
= (1− kh

f )α
h
fP

h
f + s2fzfGfh − (uf + µf )Gfl,

dGfh

dt
= (1− df )ufGfl − (zf + ωf + µf )Gfh,

dCc
f

dt
= ωfGfh − (γf + µf + δf )C

c
f ,

dRc
f

dt
= γfC

c
f − µfR

c
f ,

dRf

dt
= rlfψ

l
fI

l
f + rhfψ

h
f I

h
f + kl

fα
l
fP

l
f + kh

fα
h
fP

h
f + nfWf + dfufGfl

+ s1fzfGfh −
�
ρhfλ

h
m + ρlfλ

l
m

�
Rf − (ξf + µf )Rf ,
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dSm

dt
= (1− ϕq

m) πm + ξmRm −
�
λh
f + λl

f

�
Sm − µmSm,

dV q
m

dt
= ϕq

mπm − (1− εv)
�
λh
f + λl

f

�
V q
m − µmV

q
m,

dEl
m

dt
= [Sm + (1− εv)V

q
m]λ

l
f + ρlmλ

l
fRm − (σl

m + µm)E
l
m,

dEh
m

dt
= [Sm + (1− εv)V

q
m]λ

h
f + ρhmλ

h
fRm − (σh

m + µm)E
h
m,

dI lm
dt

= σl
mE

l
m − (ψl

m + µm)I
l
m,

dIhm
dt

= σh
mE

h
m − (ψh

m + µm)I
h
m,

dP l
m

dt
= (1− rlm)ψ

l
mI

l
m − (αl

m + µm)P
l
m,

dP h
m

dt
= (1− rhm)ψ

h
mI

h
m + [1− (s1m + s2m)] zmGmh − (αh

m + µm)P
h
m,

dWm

dt
= (1− kl

m)α
l
mP

l
m − (nm + µm)Wm,

dGml

dt
= (1− kh

m)α
h
mP

h
m + s2mzmGmh − (um + µm)Gml,

dGmh

dt
= (1− dm)umGml − (zm + ωm + µm)Gmh,

dCr
m

dt
= ωmGmh − (γm + µm + δm)C

r
m,

dRc
m

dt
= γmC

c
m − µmR

c
m,

dRm

dt
= rlmψ

l
mI

l
m + rhmψ

h
mI

h
m + kl

mα
l
mP

l
m + kh

mα
h
mP

h
m + nmWm + dmumGml

+ s1mzmGmh −
�
ρhmλ

h
f + ρlmλ

l
f

�
Rm − (ξm + µm)Rm.

A flow diagram of the model (4.34) is depicted in Figures 4.1 and 4.2. The state variables

and parameters of the model are tabulated in Tables 4.1 and 4.2.

It should be mentioned that there is no biological or epidemiological relationship (such

as back-and-forth transition or evolution) between the low- and high-risk HPV types. That

is, the two HPV risk types (low and high) are independent, and the reason for stratifying the

infected population according to the two risk types is to account for the fact that infection

87



with the low-risk HPV types causes genital warts only, while infection with the high-risk

HPV types causes cancers. In other words, the purpose of the risk structure in this study

is to account for the heterogeneity of outcomes (cancers or warts) associated with infection

with the low- or high-risk HPV types. Another advantage of stratifying the infected popu-

lation in terms of infection with the low- and high-risk HPV types is that it allows for the

realistic assessment of the community-wide impact of the currently-available vaccines (since,

for example, the Cervarix vaccine only targets the high-risk, HPV-16 and HPV-18, types

while the Gardasil vaccine targets all the four HPV types considered in this study). Further-

more, it should be emphasized that the risk-structure in this study is not associated with

human behaviour (i.e., risky sexual practices), so that there is no back-and-forth transition

between the two risk HPV types based on changes in human behaviour.

The 29-dimensional model (4.34) extends the 12-dimensional model (3.19) developed in

Chapter 3 by (inter alia):

i) stratifying the total population in terms of the dynamics of the low- and high-risk HPV

types;

ii) incorporating two anti-HPV vaccines (Cervarix and Gardasil); only the Gardasil vac-

cine is considered in Chapter 3;

iii) vaccinating both new sexually-active susceptible females and males (only females are

vaccinated in Chapter 3);

iv) including the dynamics of individuals with genital warts (Wf ,Wm);

v) including the dynamics of individuals in the low- and high-grade pre-cancer (CIN and

INM) stages for females and males (Gfl, Gml, Gfh, Gmh);

vi) including the dynamics of infected males with HPV-related cancers (Cr
m), cancer-

induced mortality for males (δm �= 0), infected males who recovered from HPV-related

cancers (Rc
m) and a compartment for males with persistent HPV infection (Pm).
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4.2.1 Basic properties

As in Section 3.2.1, the following result holds for the low- and high-risk HPV model (4.34).

Theorem 4.1. Let the initial data for the model (4.34) be Sf (0) > 0, V b
f (0) > 0, V q

f (0) >

0, El
f (0) ≥ 0, Eh

f (0) ≥ 0, I lf (0) ≥ 0, Ihf (0) ≥ 0, P l
f (0) ≥ 0, P h

f (0) ≥ 0,Wf (0) ≥ 0, Gfl(0) ≥

0, Gfh(0) ≥ 0, Cc
f (0) ≥ 0, Rc

f (0) ≥ 0, Rf (0) ≥ 0, Sm(0) > 0, V q
m(0) > 0, El

m(0) ≥ 0, Eh
m(0) ≥

0, I lm(0) ≥ 0, Ihm(0) ≥ 0, P l
m(0) ≥ 0, P h

m(0) ≥ 0,Wm(0) ≥ 0, Gml(0) ≥ 0, Gmh(0) ≥ 0, Cr
m(0) ≥

0, Rc
m(0) ≥ 0 and Rm(0) ≥ 0. Then, the solutions (Sf (t), V b

f (t), V
q
f (t), E

l
f (t), E

h
f (t), I

l
f (t), I

h
f (t),

P l
f (t), P

h
f (t),Wf (t), Gfl(t), Gfh(t), Cc

f (t), R
c
f (t), Rf (t), Sm(t), V q

m(t), E
l
m(t), E

h
m(t), I

l
m(t), I

h
m(t),

P l
m(t), P

h
m(t),Wm(t), Gml(t), Gmh(t), Cr

m(t), R
c
m(t), Rm(t)) of the model with positive initial

data, will remain positive for all time t > 0.

Theorem 4.1 can be proved using the approach in Appendix A (and the proof is not repeated

here). Consider, next, the feasible region

Dr = Df ∪ Dm ⊂ R15
+ × R14

+ ,

with,

Df =

��
Sf , V

b
f , V

q
f , E

l
f , E

h
f , I

l
f , I

h
f , P

l
f , P

h
f ,Wf , Gfl, Gfh, C

c
f , R

c
f , Rf

�
∈ R15

+ : Nf ≤
πf

µf

�
,

and,

Dm =

��
Sm, V

q
m, E

l
m, E

h
m, I

l
m, I

h
m, P

l
m, P

h
m,Wm, Gml, Gmh, C

c
m, R

c
m, Rm

�
∈ R14

+ : Nm ≤
πm

µm

�
.

Using the method described in Section 3.2.1, it can be shown that the region Dr is positively-

invariant and attracting for the model (4.34), so that it is sufficient to consider the dynamics

of the model in Dr. This result is summarized below.
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Lemma 4.1. The region Dr = Df ∪ Dm ⊂ R15
+ × R14

+ is positively-invariant for the model

(4.34) with initial conditions in R29
+ .

4.3 Existence and Stability of Equilibria

4.3.1 Local asymptotic stability of DFE

The DFE of the model (4.34) is given by

E
r
0 = (S∗

f , V
b∗

f , V q∗

f , El∗

f , E
h∗

f , I l
∗

f , I
h∗

f , P l∗

f , P h∗

f ,W ∗
f , G

∗
fl, G

∗
fh, C

c∗

f , Rc∗

f , R∗
f , S

∗
m,

V q∗

m , El∗

m, E
h∗

m , I l
∗

m, I
h∗

m , P l∗

m , P h∗

m ,W ∗
m, G

∗
ml, G

∗
mh, C

r∗

m , Rc∗

m , R∗
m)

= (S∗
f , V

b∗

f , V q∗

f , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, S∗
m, V

q∗

m , 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0), (4.35)

with (noting that ϕb
f + ϕq

f ≤ 1, so that S∗
f > 0),

S∗
f =

πf

�
1− ϕb

f − ϕq
f

�

µf
, V b∗

f =
πfϕb

f

µf
, V q∗

f =
πfϕ

q
f

µf
,

S∗
m =

πm (1− ϕq
m)

µm
, V q∗

m =
πmϕq

m

µf
,

and,

N∗
f = S∗

f + V b∗

f + V q∗

f =
πf

µf
and N∗

m = S∗
m + V q∗

m =
πm

µm
.

The associated next generation matrices, Fr and Hr (for the new infection terms and the

remaining transfer terms in the model (4.34)) are, respectively, given by (it should be

mentioned that, for the purpose of the computations in this section, the infected classes

of the model (4.34) are ordered as follows: El
f , I

l
f , P l

f ,Wf , Eh
f , I

h
f , P h

f , Gfl, Gfh, Cc
f ,
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El
m, I

l
m, P

l
m,Wm, Eh

m, I
h
m, P

h
m, Gml, Gmh, Cr

m):

Fr =




010×10 F1

F2 010×10



 and Hr =




H1 010×10

010×10 H2



 ,

where,

F1 =





βl
mcfηlm
N∗

m
p1

βl
mcf
N∗

m
p1

βl
mcf θlm
N∗

m
p1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 βh
mcfηhm
N∗

m
p2

βh
mcf
N∗

m
p2

βh
mcf θhm
N∗

m
p2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





,
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F2 =





βl
f cfη

l
f

N∗
m

p3
βl
f cf
N∗

m
p3

βl
f cf θ

l
f

N∗
m

p3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0
βh
f cfη

h
f

N∗
m

p4
βh
f cf
N∗

m
p4

βh
f cf θ

h
f

N∗
m

p4 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





,

H1 =





A1 0 0 0 0 0 0 0 0 0

−b1 A2 0 0 0 0 0 0 0 0

0 −b2 A3 0 0 0 0 0 0 0

0 0 −b3 A4 0 0 0 0 0 0

0 0 0 0 A5 0 0 0 0 0

0 0 0 0 −b5 A6 0 0 0 0

0 0 0 0 0 −b6 A7 0 −g1 0

0 0 0 0 0 0 −b7 A8 −g2 0

0 0 0 0 0 0 0 −b8 A9 0

0 0 0 0 0 0 0 0 −b9 A10





,
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H2 =





D1 0 0 0 0 0 0 0 0 0

−k1 D2 0 0 0 0 0 0 0 0

0 −k2 D3 0 0 0 0 0 0 0

0 0 −k3 D4 0 0 0 0 0 0

0 0 0 0 D5 0 0 0 0 0

0 0 0 0 −k5 D6 0 0 0 0

0 0 0 0 0 −k6 D7 0 −j1 0

0 0 0 0 0 0 −k7 D8 −j2 0

0 0 0 0 0 0 0 −k8 D9 0

0 0 0 0 0 0 0 0 −k9 D10





,

with 010×10 being the zero matrix of order 10, and

93



p1 =
�
S∗
f + V b∗

f + (1− εv)V
q∗

f

�
=

πf

�
1− εvϕ

q
f

�

µf
,

p2 =
�
S∗
f + (1− εv)V

b∗

f + (1− εv)V
q∗

f

�
=

πf

�
1− εv

�
ϕb
f + ϕq

f

��

µf
,

p3 =
�
S∗
m + V b∗

m + (1− εv)V
q∗

m

�
=

πm (1− εvϕq
m)

µm
,

p4 =
�
S∗
m + (1− εv)V

b∗

m + (1− εv)V
q∗

m

�
=

πm (1− εvϕq
m)

µm
,

A1 = σl
f + µf , b1 = σl

f , A2 = ψl
f + µf , b2 =

�
1− rlf

�
ψl
f , A3 = αl

f + µf ,

b3 =
�
1− kl

f

�
αl
f , A4 = nf + µf , A5 = σh

f + µf , b5 = σh
f , A6 = ψh

f + µf ,

b6 =
�
1− rhf

�
ψh
f , A7 = αh

f + µf , g1 = [1− (s1f + s2f )] zf , b7 =
�
1− kh

f

�
αh
f ,

A8 = uf + µf , g2 = s2fzf , b8 = (1− df ) uf , A9 = zf + ωf + µf , b9 = ωf ,

A10 = γf + µf + δf , D1 = σl
m + µm, k1 = σl

m, D2 = ψl
m + µm,

k2 =
�
1− rlm

�
ψl
m, D3 = αl

m + µm, k3 =
�
1− kl

m

�
αl
m, D4 = nm + µm,

D5 = σh
m + µm, k5 = σh

m, D6 = ψh
m + µm, k6 =

�
1− rhm

�
ψh
m, D7 = αh

m + µm,

j1 = [1− (s1m + s2m)] zm, k7 =
�
1− kh

m

�
αh
m, D8 = um + µm, j2 = s2mzm,

k8 = (1− dm) um, D9 = zm + ωm + µm, k9 = ωm, D10 = γm + µm + δm.

Thus, it follows from [95] that

R
r
0 = ρ

�
FrH

−1
r

�
=

�
RrfRrm, (4.36)

where,

Rrf = ρ
�
F1H

−1
2

�
= max{Rfl,Rfh} and Rrm = ρ

�
F2H

−1
1

�
= max{Rml,Rmh},
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with,

Rfl =
βl
mcfπfµm

�
1− εvϕ

q
f

�
B1

µfπm

3�
i=1

Di

, Rfh =
βh
mcfπfµm

�
1− εv

�
ϕb
f + ϕq

f

��
(Q1 +Q2 +Q3)

µfπmD5D6Q4
,

Rml =
βl
fcf (1− εvϕq

m)B2

3�
i=1

Ai

, Rmh =
βh
f cf (1− εvϕq

m) (Q5 +Q6 +Q7)

A5A6Q8
,

and,

B1 = ηlmD3D2 + k1D3 + θlmk2k1, Q1 = ηhm (D6D7D8D9 − k8j2D6D7 − k8k7j1D6) ,

Q2 = k5D7D8D9 − k5k8j2D7 − k5k7k8j1, Q3 = θhm (k5k6D8D9 − k5k6k8j2) ,

Q4 = D7D8D9 − k8j2D7 − k7k8j1, B2 = ηlfA3A2 + b1A3 + θlfb2b1,

Q5 = ηhf (A6A7A8A9 − b8g2A6A7 − b8b7g1A6) , Q6 = b5A7A8A9 − b5b8g2A7 − b5b7b8g1,

Q7 = θhf (b5b6A8A9 − b5b6b8g2) , Q8 = A7A8A9 − b8g2A7 − b7b8g1.

It can be shown that the quantities Rfl,Rml,Rfh and Rmh are positive (see Appendix G), so

that the reproduction thresholds, Rrf and Rrm are positive. For mathematical convenience,

let (where Rl = RflRml and Rh = RfhRmh)

R
r
0 =

�
max{Rl,Rh}.

Consequently, the result below follows from Theorem 2 of [95].

Theorem 4.2. The DFE, Er
0 , of the model (4.34), given by (4.35), is LAS if Rr

0 < 1, and

unstable if Rr
0 > 1.

The threshold quantity, Rr
0, is the basic reproduction number [47] for the model (4.34). It

represents the average number of secondary HPV infections generated by a typical HPV-

infected person if introduced into a susceptible sexually-active population (or community)
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where a certain fraction of the new sexually-active individuals is vaccinated. It is worth

noting that Rr
0 is an aggregate product of the average number of new HPV cases generated

by females (denoted by Rrf ) and males (denoted by Rrm) in a community.

Epidemiologically speaking, Theorem 4.2 states that a small influx of infected individuals

(females or males) will not generate large outbreaks of the low- and high-risk HPV types in

the community if Rr
0 < 1 (in other words, the two HPV types can be effectively controlled

in the community if the initial sizes of the sub-populations of the model (4.34) are in the

basin of attraction of the DFE, Er
0 , of the model (4.34)). However, in order for such effective

control (or elimination) to be independent of the initial sizes of the sub-populations of the

model (4.34), it is necessary to show that the DFE (Er
0 ), of the model (4.34), is globally-

asymptotically stable (GAS) if Rr
0 < 1. This is explored, for a special case, in Section

4.3.4.

4.3.2 Existence and local stability of boundary equilibria

The possible non-trivial equilibria of the model (4.34) are:

i) low-risk-only boundary equilibrium (an equilibrium of the model (4.34) with no high-

risk HPV types), denoted by E l
1;

ii) high-risk-only boundary equilibrium (an equilibrium of the model (4.34) with no low-

risk HPV types), denoted by Eh
1 ;

iii) co-existence equilibria (equilibria of the model (4.34) where both the low- and high-risk

HPV types co-exist), denoted by Er
1 .

Consider the model (4.34) in the absence of the high-risk HPV types (i.e., the model (4.34)

with V b
f = Eh

f = Ihf = P h
f = Gfl = Gfh = Cc

f = V b
m = Eh

m = Ihm = P h
m = Gml = Gmh = Cr

m =

0). Furthermore, for computational convenience, let ηlm = ηlf = θlm = θlf = ξf = ξm = 0

in the model (4.34). The resulting low-risk-only model is given by (it should be noted that

Nm, in the model (4.34), is now replaced by its limiting value, πm
µm

, since individuals infected
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with the low-risk HPV types do not develop or suffer cancer-induced mortality, so that the

total male population, Nm(t), remains constant):

dSf

dt
= (1− ϕq

f )πf −
βl
mcfµmI lm

πm
Sf − µfSf ,

dV q
f

dt
= ϕq

fπf − (1− εv)
βl
mµmcfI lm

πm
V q
f − µfV

q
f ,

dEl
f

dt
=

�
Sf + (1− εv)V

q
f

� βl
mcfµmI lm

πm
+ ρlf

βl
mcfµmI lm

πm
Rf − (σl

f + µf )E
l
f ,

dI lf
dt

= σl
fE

l
f − (ψl

f + µf )I
l
f ,

dP l
f

dt
= (1− rlf )ψ

l
fI

l
f − (αl

f + µf )P
l
f , (4.37)

dWf

dt
= (1− kl

f )α
l
fP

l
f − (nf + µf )Wf ,

dRf

dt
= rlfψ

l
fI

l
f + kl

fα
l
fP

l
f + nfWf − ρlf

βl
mcfµmI lm

πm
Rf − µfRf ,

dSm

dt
= (1− ϕq

m) πm −
βl
fcfµmI lf
πm

Sm − µmSm,

dV q
m

dt
= ϕq

mπm − (1− εv)
βl
fcfµmI lf
πm

V q
m − µmV

q
m,

dEl
m

dt
= [Sm + (1− εv)V

q
m]

βl
fcfµmI lf
πm

+ ρlm
βl
fcfµmI lf
πm

Rm − (σl
m + µm)E

l
m,

dI lm
dt

= σl
mE

l
m − (ψl

m + µm)I
l
m,

dP l
m

dt
= (1− rlm)ψ

l
mI

l
m − (αl

m + µm)P
l
m,

dWm

dt
= (1− kl

m)α
l
mP

l
m − (nm + µm)Wm,

dRm

dt
= rlmψ

l
mI

l
m + kl

mα
l
mP

l
m + nmWm − ρlm

βl
fcfµmI lf
πm

Rm − µmRm.

It is convenient to let (with A1, A2, D1, D2, b1 and k1 as defined in Section 4.3.1)

R
l
0 = R

r
0 |Rfh=Rmh=ηlm=ηlf=θlm=θlf=ξf=ξm=0=

�
βl
mc

2
fπfµmβl

fb1k1
�
1− εvϕ

q
f

�
(1− εvϕ

q
m)

πmµfA1A2D1D2
.
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Furthermore, let

E
l
1 = (S∗∗

f , V q∗∗

f , El∗∗

f , I l
∗∗

f , P l∗∗

f ,W ∗∗
f , R∗∗

f , S∗∗
m , V q∗∗

m , El∗∗

m , I l
∗∗

m , P l∗∗

m ,W ∗∗
m , R∗∗

m ),

represents any arbitrary endemic equilibrium of the low-risk-only model (4.37). Define

λl∗∗

m =
βl
mcfµmI l

∗∗
m

πm
and λl∗∗

f =
βl
fcfµmI l

∗∗
f

πm
. (4.38)

Setting the right-hand sides of the low-risk-only model (4.37) to zero gives the following

steady-state expressions:

S∗∗
f =

πf

�
1− ϕq

f

�

λl∗∗
m + µf

, V q∗∗

f =
πfϕ

q
f

(1− εv)λl∗∗
m + µf

,

El∗∗

f =

�
S∗∗
f + (1− εv)V

q∗∗

f

�
λl∗∗
m + ρlfλ

l∗∗
m R∗∗

f

A1
, I l

∗∗

f =
b1El∗∗

f

A2
, P l∗∗

f =
b2I l

∗∗
f

A3
, (4.39)

W ∗∗
f =

b3P l∗∗
f

A4
, R∗∗

f =
m1I l

∗∗
f +m2P l∗∗

f + nfW ∗∗
f

ρlfλ
l∗∗
m +m3

, S∗∗
m =

πm (1− ϕq
m)

λl∗∗
f + µm

,

V q∗∗

m =
πmϕq

m

(1− εv)λl∗∗
f + µm

, El∗∗

m =

�
S∗∗
m + (1− εv)V q∗∗

m

�
λl∗∗
f + ρlmλ

l∗∗
f R∗∗

m

D1
,

I l
∗∗

m =
k1El∗∗

m

D2
, P l∗∗

m =
k2I l

∗∗
m

D3
, W ∗∗

m =
k3P l∗∗

m

D4
, R∗∗

m =
m4I l

∗∗
m +m5P l∗∗

m + nmW ∗∗
m

ρlmλ
l∗∗
f +m6

,

where (with Ai, Di (i = 1, ..., 4), b1, b2, b3, k1, k2 and k3 as defined in Section 4.3.1),

m1 = rlfψ
l
f , m2 = kl

fα
l
f , m4 = rlmψ

l
m and m5 = kl

mα
l
m.
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Substituting (4.39) into the expression for λl∗∗
m and λl∗∗

f in (4.38) gives,

λl∗∗

m =
λl∗∗
f

�
a02

�
λl∗∗
f

�2
+ a01λl∗∗

f + a0
�

a33
�
λl∗∗
f

�3
+ a22

�
λl∗∗
f

�2
+ a11λl∗∗

f + a00
, λl∗∗

f =
λl∗∗
m

�
b02

�
λl∗∗
m

�2
+ b01λl∗∗

m + b0
�

b33 (λl∗∗
m )3 + b22 (λl∗∗

m )2 + b11λl∗∗
m + b00

,

(4.40)
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where,

a02 =
µmβl

mcfk1ρ
l
m (1− εv)

2�
i=1

Di

, a01 =
µ2
mβ

l
mcfk1

�
(1− εv) + ρlm (1− εqϕq

m)
�

2�
i=1

Di

,

a0 =
µ3
mβ

l
mcfk1 (1− εvϕq

m)
2�

i=1
Di

, a33 =

(1− εv) ρlm

�
4�

i=1
Di − k1 (m4D3D4 +m5D4k2 + nmk3k2)

�

4�
i=1

Di

,

a22 =

µm

�
(1− εv)

4�
i=1

Di + ρlm (2− εv)

�
4�

i=1
Di − k1 (m4D3D4 +m5D4k2 + nmk3k2)

��

4�
i=1

Di

,

a11 =

µ2
m

�
(2− εv)

4�
i=1

Di + ρlm

�
4�

i=1
Di − k1 (m4D3D4 +m5D4k2 + nmk3k2)

��

4�
i=1

Di

, (4.41)

a00 = µ3
m, b02 =

µmπfβl
fcfb1ρ

l
f (1− εv)

πm

2�
i=1

Ai

, b01 =
µmµfπfβl

fcfb1
�
(1− εv) + ρlf

�
1− εvϕ

q
f

��

πm

2�
i=1

Ai

,

b0 =
µmµ2

fπfβl
fcfb1

�
1− εvϕ

q
f

�

πm

2�
i=1

Ai

, b33 =

(1− εv) ρlf

�
4�

i=1
Ai − b1 (m1A3A4 +m2A4b2 + nfb3b2)

�

4�
i=1

Ai

,

b22 =

µf

�
(1− εv)

4�
i=1

Ai + ρlf (2− εv)

�
4�

i=1
Ai − b1 (m1A3A4 +m2A2b2 + nfb3b2)

��

4�
i=1

Ai

,

b11 =

µ2
f

�
(2− εv)

4�
i=1

Ai + ρlf

�
4�

i=1
Ai − b1 (m1A3A4 +m2A4b2 + nfb3b2)

��

4�
i=1

Ai

, b00 = µ3
f .

Since all the parameters of the low-risk-only model (4.37) are positive, and 0 < εv, ϕq
m, ϕ

q
f ≤

1, it can be shown, after some lengthy algebraic manipulations, that all the expressions in

(4.41) (namely, a02, a01, a0, a33, a22, a11, a00, b02, b01, b0, b33, b22, b11, b00) are positive. It follows,
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by substituting λl∗∗
f into λl∗∗

m in (4.40), and simplifying, that the non-zero (endemic) equilibria

of the low-risk-only model (4.37) satisfy the following polynomial (in terms of λl∗∗
m ):

9�

i=0

Yi

�
λl∗∗

m

�9−i
= 0, (4.42)

with Yi (i = 0, ..., 9) given in Appendix H. Since all the parameters of the low-risk-only model

(4.37) are non-negative, it follows from the expressions for Yi (i = 0, ..., 9) in Appendix H

that Y0 > 0 and Y9 > 0 whenever Rl
0 < 1. Thus, the number of possible positive real

roots the polynomial (4.42) can have depends on the signs of Yi (i = 1, ..., 8). The various

possibilities (using the Descartes Rule of Signs) for the number of positive real roots of (4.42)

are tabulated in Table 4.3, from which the following result is obtained.

Theorem 4.3. The low-risk-only model (4.37) could have 2 or more endemic equilibria if

Rl
0 < 1, and at least one positive endemic equilibrium whenever Rl

0 > 1.

Similar result can be established if the high-risk-only component of the model (4.34) is

considered. Consequently, we offer the following conjecture:

Conjecture 4.1. The model (4.34) could have 2 or more endemic equilibria if Rr
0 < 1, and

at least one positive endemic equilibrium whenever Rr
0 > 1.

The presence of multiple endemic equilibria in the low-risk-only model (4.37) (and, by ex-

tension, the risk-structured model (4.34)) when Rl
0 < 1 suggests the possibility of backward

bifurcation in the model (4.34). This is explored in Section 4.3.3.

Extensive numerical simulations of the model (4.34), using the parameter values in Table

4.2 (unless otherwise stated), were carried out to quantitatively assess the dynamics of the

low- and high-risk HPV types in the community, for various scenarios (of the associated

reproduction numbers, Rl and Rh). It should be mentioned that these numerical simulations

have to be ran for extended periods of time to reach steady-state (as is evident in some of the

plots). Figure 4.3 depicts the simulation results obtained for the case when the reproduction
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number of one of the HPV risk type (low or high) is less than unity, while that of the other

HPV risk type exceeds unity. This figure shows that the HPV (risk) type with reproduction

number less than unity dies out in time, while the HPV (risk) type with reproduction number

greater than unity persists. Thus, these simulations suggest that the model (4.34) undergoes

competitive exclusion for the case when Ri < 1 < Rj (with i, j = {l, h}; i �= j), where the

HPV (risk) type with the higher reproduction number (greater than unity) drives out (to

extinction) the HPV (risk) type with the lower reproduction number (less than unity). This

suggests the following conjecture:

Conjecture 4.2. The model (4.34) has at least one stable low-risk-only (high-risk-only)

boundary equilibrium, E l
1(E

h
1 ), whenever Ri < 1 < Rj (with i, j = {l, h}; i �= j). In other

words, the risk-structured model (4.34) undergoes competitive exclusion, with the HPV risk

Type j driving out the HPV risk Type i to extinction, whenever Ri < 1 < Rj.

Furthermore, the case when both reproduction numbers (Rl and Rh) of the model (4.34)

exceed unity is simulated. Figure 4.4 shows that the low- and high-risk HPV types co-exist

whenever their respective reproduction numbers exceed unity, but the HPV (risk) type with

the higher reproduction number dominates the one with the lower reproduction number (but

does not drive it to extinction). These simulations suggest the following conjecture:

Conjecture 4.3. The risk-structured model (4.34) could have at least one stable co-existence

endemic equilibria, Er
1 , whenever 1 < Ri ≤ Rj (with i, j = {l, h}).

4.3.3 Existence of backward bifurcation

The existence of multiple endemic equilibria when Rl
0 < 1 suggests the possibility of back-

ward bifurcation (where, typically, the stable DFE (E0) co-exists with a stable endemic

equilibrium (E l
1), when the associated basic reproduction number (Rl

0) is less than unity) in

the low-risk-only model (4.37).
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Theorem 4.4. The low-risk-only model (4.37) undergoes backward bifurcation at Rl
0 = 1

under a certain condition, given by (I.5) in Appendix I.

The proof of Theorem 4.4, based on using Centre Manifold theory [11, 14], is given in

Appendix I. Furthermore, it follows from the analyses in Appendix I that the associated

bifurcation coefficient, a, is negative whenever the re-infection parameters (ρlm and ρlf ) of

the model (4.37) are set to zero.

Theorem 4.5. In the absence of the re-infection of recovered individuals (i.e., ρlm = ρlf = 0),

the low-risk-only model (4.37) does not undergo backward bifurcation at Rl
0 = 1.

The analyses in Section 4.3.3 and Appendix I (where the low-risk-only model (4.37) is shown

not to undergo backward bifurcation in the absence of re-infection) suggest that the DFE

of the full risk-structured model (4.34) may be globally-asymptotically stable (GAS) when

Rr
0 < 1 and ρlm = ρlf = ρhm = ρhf = 0. This is explored below.

4.3.4 Global asymptotic stability of DFE (special case)

The global asymptotic stability of the DFE, Er
0 , of the model (4.34), is established for the

special case where the re-infection of recovered individuals does not occur (i.e., ρlf = ρlm =

ρhf = ρhm = 0) and that cancer-induced mortality for males is negligible (so that, δm = 0).

The following result will be needed in proving the GAS of the DFE, Er
0 .

Lemma 4.2. The following region

D
∗
r = {(Sf , V

b
f , V

q
f , E

l
f , E

h
f , I

l
f , I

h
f , P

l
f , P

h
f ,Wf , Gfl, Gfh, C

c
f , R

c
f , Rf , Sm, V

q
m,

El
m, E

h
m, I

l
m, I

h
m, P

l
m, P

h
m,Wm, Gml, Gmh, C

r
m, R

c
m, Rm) ∈ Dr :

Sf ≤ S∗
f , V

b
f ≤ V b∗

f , V q
f ≤ V q∗

f , Sm ≤ S∗
m, V

q
m ≤ V q∗

m }

is positively-invariant for the model (4.34) with ξf = ξm = 0.
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Proof. Consider the risk-structured model (4.34) with ξf = ξm = 0. It then follows from the

first equation of (4.34), with ξf = 0, that

dSf

dt
≤ πf (1− ϕb

f − ϕq
f )− µfSf = µf (S

∗
f − Sf ).

Hence,

Sf (t) ≤
πf (1− ϕb

f − ϕq
f )

µf
+

�
Sf (0)−

πf (1− ϕb
f − ϕq

f )

µf

�
e−µf t = S∗

f +
�
Sf (0)− S∗

f

�
e−µf t.

Thus, Sf (t) ≤ S∗
f if Sf (0) ≤ S∗

f as t → ∞. Furthermore, it follows from the sixteenth

equation of (4.34), with ξm = 0, that

dSm

dt
≤ πm(1− ϕq

m)− µmSm = µm(S
∗
m − Sm),

so that,

Sm(t) ≤
πm(1− ϕq

m)

µm
+

�
Sm(0)−

πm(1− ϕq
m)

µm

�
e−µmt = S∗

m + [Sm(0)− S∗
m] e

−µmt.

Thus, Sm(t) ≤ S∗
m if Sm(0) ≤ S∗

m as t → ∞. Similarly, it can be shown that V b
f ≤ V b∗

f ,V q
f ≤

V q∗

f and V q
m ≤ V q∗

m . Hence, the set D∗
r ⊂ Dr is positively-invariant for the model (4.34) with

ξf = ξm = 0.

It is convenient to define,

R
r
0 |ρlf=ρlm=ρhf=ρhm=δm=0= R

r
01.

Theorem 4.6. The DFE, Er
0 , of the risk-structured model (4.34) is globally-asymptotically

stable (GAS) in D∗
r if Rr

01 < 1.

The proof of Theorem 4.6 is given in Appendix J. The epidemiological consequence of

Theorem 4.6 is that both the low- and high-risk HPV types will be eliminated from the
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community if Rr
01 < 1 in the absence of the re-infection of recovered individuals (ρlf = ρlm =

ρhf = ρhm = 0) and cancer-induced death for males (δm = 0). Figure 4.5 illustrates the GAS

property of the DFE of the special case of the model (4.34), in line with Theorem 4.6.

4.4 Numerical Simulations

The risk-structured model (4.34) is further simulated, using the parameters in Table 4.2

(unless otherwise stated), to assess the community-wide public health impact of the two

vaccines. Figure 4.6A depicts the cumulative number of HPV-related cancers in females and

males for the cases where only females, and both females and males, are vaccinated with

the Gardasil vaccine. This figure shows a significant decrease in the cumulative number of

cancer cases if males are (additionally) vaccinated. In particular, while vaccinating females

only (at the assumed 70% coverage level) resulted in about 250 cumulative cancer cases over

two years, this number reduces to about 100, over the same time period, if both females and

males are vaccinated (with 70% Gardasil coverage for both). Similar results are obtained for

the associated cancer-related mortality. For example, while vaccinating females only (at the

rate 70% coverage level) resulted in about 8 cumulative mortality cases over two years, only

2 cancer-related deaths are recorded, over the same time period, if both females and males

are vaccinated (Figure 4.6B).

Contour plots of Rr
01, as a function of the fraction of females vaccinated with the Gardasil

vaccine at steady-state (ϕq
f ) and the efficacy of the Gardasil vaccine (εv), are depicted in

Figure 4.7. Figure 4.7A shows that, with the assumed 90% efficacy of the Gardasil vaccine

(εv = 0.9), vaccinating 87% of new sexually-active susceptible females will lead to the effec-

tive control or elimination of both the low- and high-risk HPV types in the community (since

this brings Rr
01 < 1, which results in the GAS property of the DFE of the model (4.34), in

line with Theorem 4.6). It should be emphasized from Figure 4.7A that the current Gardasil

coverage of the 70% in most communities [9, 26, 46, 61, 76] will not lead to the effective
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control of HPV (since it fails, even with the assumed efficacy of 90%, to bring Rr
01 < 1). The

case when only females are vaccinated, and both Cervarix and Gardasil vaccines are used in

the community (with efficacy of both vaccines fixed at 90% [9, 10, 15, 26, 46, 61, 76]), is also

simulated (Figure 4.7B). It is shown from this figure that, with the assumed 70% Gardasil

vaccine coverage for females, at least 18% of the remaining new sexually-active susceptible

females need to be vaccinated with the Cervarix vaccine in order to effectively control the

disease. This seems consistent with the 87% Gardasil coverage needed for effective control

in Figure 4.7A.

Furthermore, a contour plot of Rr
01, as a function of the fraction of males vaccinated with

the Gardasil vaccine at steady-state and the fraction of females vaccinated with the Gardasil

vaccine at steady-state, for the fixed (90%) efficacy of the Gardasil vaccine, is depicted

in Figure 4.8. This figure shows that if only 70% of the new sexually-active susceptible

females are vaccinated with the Gardasil vaccine (which is typically the norm [9, 26, 46,

61, 76]), additionally vaccinating 47% of new sexually-active susceptible males will lead to

the community-wide elimination of the low- and high-risk HPV types. This is encouraging

since, in Figure 4.7A, a large percentage (87%) of new sexually-active females need to be

vaccinated to have a realistic chance of effectively controlling the spread of HPV in the

community. Hence, this study shows that vaccinating a certain fraction of new sexually-

active susceptible males (less than 50%) enhances the likelihood of effectively combatting

the spread (or elimination) of HPV in the community (since 70% coverage for new sexually-

active females and less than 50% coverage for new sexually-active males, with the Gardasil

vaccine, seems attainable). In other words, this study supports the recent recommendations,

by some public health agencies, to vaccinate sexually-active males [46, 76, 77, 90].
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4.5 Summary of the Chapter

A new risk-structured deterministic model for the transmission dynamics of HPV in a pop-

ulation, in the presence of the Cervarix and Gardasil vaccines (that target the four low-

and high-risk HPV types considered in this chapter), is designed. The main theoretical and

numerical results obtained are summarized below.

i) the risk-structured model (4.34) has a LAS DFE whenever Rr
0 < 1;

ii) the low-risk-only model (4.37) undergoes the phenomenon of backward bifurcation

at Rl
0 = 1 if Inequality (I.5) holds. It is shown that the re-infection of recovered

individuals causes the backward bifurcation property in the model. The low-risk-only

model could have one or more endemic equilibria when the associated reproduction

number (Rl
0) exceeds unity;

iii) in the absence of the re-infection of recovered individuals (i.e., ρlf = ρlm = ρhf = ρhm = 0)

and cancer-induced death in males (i.e., δm = 0), the DFE of the risk-structured model

(4.34) is GAS in D∗
r whenever Rr

01 < 1;

iv) with the assumed 90% efficacy of the Gardasil vaccine, at least 87% of the new sexually-

active females need to be vaccinated to have a realistic chance of effectively controlling

the spread of the low- and high-risk HPV types in the community;

v) it is shown that, with the assumed 70% Gardasil vaccine coverage for females, at least

18% of the remaining new sexually-active susceptible females need to be vaccinated

with the Cervarix vaccine in order to effectively control the spread of the low- and

high-risk HPV types in the community;

vi) vaccinating a fraction of new sexually-active susceptible males offers beneficial community-

wide public health impact. In particular, simulations show that while vaccinating new

sexually-active susceptible females only (at the assumed 70% vaccine coverage) re-

sulted in about 250 cumulative cancer cases (in both females and males) over two
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years, this number reduces to about 100, over the same time period, if both new

sexually-active susceptible males (with 70% Gardasil coverage level) and females are

vaccinated. Furthermore, while vaccinating females only with the Gardasil vaccine (at

the 70% coverage level) resulted in about 8 cumulative cancer-related mortality cases

over two years, only 2 such deaths are recorded, over the same time period, if both

males and females are vaccinated;

vii) if only 70% of the new sexually-active susceptible females are vaccinated with the

Gardasil vaccine, additionally vaccinating 47% of the new sexually-active susceptible

males will lead to the effective community-wide control, or elimination, of the low- and

high-risk HPV types. Thus, this study supports the recent recommendations by some

public health agencies to vaccine sexually-active males (since doing so offers additional

community-wide benefit, vis-a-vis the control of the two (risk) HPV types).
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Figure 4.1: Flow diagram of the female component of the model (4.34).
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Figure 4.2: Flow diagram of the male component of the model (4.34).
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Table 4.1: Description of state variables of the model (4.34).

Variable Description

Sf (Sm) Population of unvaccinated susceptible females (males)

El
f (E

l
m) Population of exposed females (males) infected with the low-risk HPV types

Eh
f (E

h
m) Population of exposed females (males) infected with the high-risk HPV types

I lf (I
l
m) Population of infected females (males) with clinical symptoms of the low-risk

HPV types

Ihf (I
h
m) Population of infected females (males) with clinical symptoms of the high-risk

HPV types

V b
f (V

b
m) Population of susceptible females (males) vaccinated with the bivalent

Cervarix vaccine

V q
f (V

q
m) Population of susceptible females (males) vaccinated with the quadrivalent

Gardasil vaccine

P l
f (P

l
m) Population of infected females (males) with persistent infection with the low-risk

HPV types

P h
f (P

h
m) Population of infected females (males) with persistent infection with the high-risk

HPV types

Gfl(Gml) Population of infected females (males) in the low-grade CIN (INM) stage

Gfh(Gmh) Population of infected females (males) in the high-grade CIN (INM) stage

Wf (Wm) Population of infected females (males) with genital warts

Cc
f Population of infected females with cervical cancer

Cr
m Population of infected males with HPV-related cancers

Rc
f (R

c
m) Population of infected females (males) who recovered from HPV-related cancers

Rf (Rm) Population of infected females (males) who recovered from HPV infection

Nf (Nm) Total female (male) population
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Table 4.2: Description of the parameters of the model (4.34), where l and h represent the
low-risk and high-risk HPV types, respectively.

Parameter Description Nominal value Reference
per year

πf (πm) Recruitment rate of new sexually-active
females (males) 10000 [61, 75]

µf (µm) Average duration of sexual activity for
females (males) 1

65 [9, 61]

βi
m(β

i
f ) Infection probability for females (males)

with the i-risk HPV types, i ∈ {l, h} 0.4 (0.5) [61, 75]

cm(cf ) Average number of male (female) sexual

partners for females (males) per unit time 2
�

2Nf (t)
Nm(t)

�
[61, 75]

ξf (ξm) Rate of loss of infection-acquired immunity
for females (males) 0.0012 Assumed

ρif (ρ
i
m) Re-infection parameter for females (males)

with i-risk i-risk HPV types, i ∈ {l, h} Assumed

ϕq Fraction of new sexually-active females
(males) vaccinated with the quadrivalent
Gardasil vaccine 0.7 [7, 25, 61]

ϕb Fraction of new sexually-active females
vaccinated with the bivalent Cervarix vaccine 0.2 Assumed

εv Efficacy of the bivalent Cervarix vaccine
(quadrivalent Gardasil vaccine) 0.9 [61, 76]

σi
f (σ

i
m) Rate of symptoms development for exposed females

(males) with the i-risk HPV types, i ∈ {l, h} 0.5 Assumed

rif (r
i
m) Fraction of symptomatic females (males) with

the i-risk HPV types who recover naturally
from the i-risk HPV types (but do not develop
persistent infection) 0.5 [61]
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Parameter Description Nominal value Reference
per year

ψi
f (ψ

i
m) Transition rate out of I if (I

i
m) class for females

(males), i ∈ {l, h} 0.9 [61]

kl
f (k

l
m) Fraction of symptomatic females (males) who

recovered naturally from persistent infection with
the low-risk HPV types (but do not develop
genital warts) 0.5 Assumed

αl
f (α

l
m) Transition rate out of P l

f (P
l
m) class for females

(males) 114 Assumed

(1− kl
f )α

l
f Rate at which females with low-risk persistent

HPV infection develop genital warts 57 [53, 99]

kh
f (k

h
m) Fraction of symptomatic females (males) who

recovered naturally from persistent infection with
the high-risk HPV types (but do not develop
CIN (INM)) 0.5 [61]

αh
f (α

h
m) Transition rate out of P h

f (P
h
m) class for females

(males) 114 Assumed

nf (nm) Recovery rate of infected females (males) with
genital warts 87.5 [36, 53, 99]

df (dm) Fraction of infected females (males) with low-grade
CIN (INM) who naturally recovered from HPV
infection 0.2 Assumed

uf (um) Transition rate out of Gl
f (G

l
m) class for females

(males) 17.25 Assumed

(1− df ) uf Progression rate from CIN1 to CIN2/3 stage 13.8 [52, 53, 55]

s1f (s1m) Fraction of infected females (males) with high-grade
CIN (INM) who naturally recovered from HPV
infection 0.285 Assumed
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Parameter Description Nominal value Reference
per year

s2f (s2m) Fraction of infected females (males) with high-grade
CIN (INM) who regressed to the low-grade CIN
(INM) stage 0.2 Assumed

zf (zm) Transition rate out of Gh
f (G

h
m) class for females

(males) 40.75 [52, 53, 55]

s2fzf Regression rate from CIN2/3 to CIN1 stage 8.15 [52, 53, 55]

s1fzf Recovery rate of individuals with CIN2/3 stage 11.6 [52, 53, 55]

ωf (ωm) Rate of development of cancer for females (males)
in high-grade CIN (INM) stages 23.5 [52, 53, 55]

γf (γm) Recovery rate of females (males) in the Cc
f (C

r
m) class 0.76 [25, 61]

δf (δm) Cancer-induced mortality rate for females (males) 0.001 [61]

ηif (η
i
m) Modification parameter for infectiousness of exposed

individuals in the Ei
f (E

i
m) class for females (males),

relative to those in the I if (I
i
m) class, i ∈ {l, h} Assumed

θif (θ
i
m) Modification parameter for the infectiousness of

individuals with the i-risk HPV persistent infection
relative to those in the I if , E

i
f (I

i
m, E

i
m) class for

females (males), i ∈ {l, h} Assumed

∗ Similar (biological) parameters are used for males and females.
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Cases Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Rl
0 Number of

sign
changes

Number of
possible
positive
real roots

1 + + + + + + + + + + Rl
0 < 1 0 0

+ + + + + + - - - - Rl
0 > 1 1 1

2 + - - - - - + + + + Rl
0 < 1 2 0,2

+ - - - - - - - - - Rl
0 > 1 1 1

3 + + - - - - + + + + Rl
0 < 1 2 0,2

+ + - - - - - - - - Rl
0 > 1 1 1

4 + - + - - - + + + + Rl
0 < 1 4 0,2,4

+ - + - - - - - - - Rl
0 > 1 3 1,3

5 + - - - - + + + + + Rl
0 < 1 2 0,2

+ - - - - + - - - - Rl
0 > 1 3 1,3

6 + + + - - - + + + + Rl
0 < 1 2 0,2

+ + + - - - - - - - Rl
0 > 1 1 1

7 + + - - - + + + + + Rl
0 < 1 2 0,2

+ + - - - + - - - - Rl
0 > 1 3 1,3

8 + - + - - + + + + + Rl
0 < 1 2 0,2

+ - + - - + - - - - Rl
0 > 1 3 1,3

9 + - + - + + + + + + Rl
0 < 1 4 0,2,4

+ - + - + + - - - - Rl
0 > 1 5 1,3,5

10 + + - + - + + + + + Rl
0 < 1 4 0,2,4

+ + - + - + - - - - Rl
0 > 1 5 1,3,5

11 + + + - + - + + + + Rl
0 < 1 4 0,2,4

+ + + - + - - - - - Rl
0 > 1 3 1,3

12 + - + - + - + + + + Rl
0 < 1 6 0,2,4,6

+ - + - + - - - - - Rl
0 > 1 5 1,3,5

13 + - + - + - + - - - Rl
0 < 1 7 1,3,5,7

+ - + - + - + + + + Rl
0 > 1 6 0,2,4,6

14 + - + - + - + - + + Rl
0 < 1 8 0,2,4,6,8

+ - + - + - + - - - Rl
0 > 1 7 1,3,5,7

15 + - + - + - + - + - Rl
0 < 1 9 1,3,5,7

+ - + - + - + - + + Rl
0 > 1 8 0,2,4,6,8

16 + + + - + - + - + - Rl
0 < 1 7 1,3,5,7

+ + + - + - + - + + Rl
0 > 1 6 0,2,4,6

Table 4.3: Number of possible positive real roots of (4.42) for Rl
0 < 1 and Rl

0 > 1.
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Figure 4.3: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2. (A) Rl < 1 < Rh (here,
ρlf = ρlm = 0.2, ρhf = ρhm = 0.0001, βl

m = βl
f = 0.005, βh

m = 0.9, βh
f = 0.95875, cf = 32,

γf = γm = 0.22, ψl
f = σl

f = 0.1, kh
f = kh

m = 0.7, ηlf = ηlm = 0.8, ηhf = ηhm = 0.9, θlf = θlm = 0.9
and θhf = θhm = 0.95; so that 0.1781 = Rl < 1 < Rh = 10.5770 and Rr

0 = 3.2522). (B)
Rh < 1 < Rl (here, ρhf = ρhm = 0.2, ρlf = ρlm = 0.0001, βl

m = 0.9,βl
f = 0.8, βh

m = 0.05,
βh
f = 0.003, cf = 32, γf = γm = 0.22, ψl

f = σl
f = 0.1, kh

f = kh
m = 0.7, ηlf = ηlm = 0.8,

ηhf = ηhm = 0.9, θlf = θlm = 0.9 and θhf = θhm = 0.95; so that 0.0310 = Rh < 1 < Rl = 5.718
and Rr

0 = 2.3899).
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Figure 4.4: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2. (A) Rl > Rh > 1 (here,
ρlf = ρlm = 0.001, ρhf = ρhm = 0.03, βl

m = 0.058, βl
f = 0.28, βh

m = 0.45, βh
f = 0.27, cf = 8,

γf = 0.7, γm = 0.5, ψl
m = ψh

m = σh
m = 0.4, σl

f = 0.1, kh
f = kh

m = 0.7, ηlf = ηlm = 0.8,
ηhf = ηhm = 0.8, θlf = θlm = 0.9, zf = zm = 3, wf = wm = 0.9, df = dm = 0.6, uf = um = 2,
and θhf = θhm = 0.95; so that 10.1328 = Rl > Rh = 6.3261 > 1 and Rr

0 = 3.1832). (B)
Rh > Rl > 1 (here, ρhf = ρhm = 0.03, ρlf = ρlm = 0.0001, βl

m = 0.45,βl
f = 0.03, βh

m = 0.7,
βh
f = 0.3, cf = 8, ψl

f = σl
f = 0.1, kh

f = kh
m = 0.7, ηlf = ηlm = 0.8, ηhf = ηhm = 0.9,

θlf = θlm = 0.9, ψh
f = ψh

m = 0.5 and θhf = θhm = 0.9; so that 16.8274 = Rh > Rl = 10.9341
and Rr

0 = 4.1021).
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Figure 4.5: HPV prevalence as a function of time for the model (4.34) using various initial
conditions. Parameter values used are as given in Table 4.2, with ρlf = ρlm = ρhf = ρhm =
δm = 0, βl

m = βl
f = 0.05, βh

m = 0.5, βh
f = 0.4, ηlf = ηlm = 0.7, ηhf = ηhm = 0.8, θlf = θlm = 0.9

and θhf = θhm = 0.95 (so that, 0.005 = Rl < Rh = 0.2253 < 1 and Rr
01 = 0.4747 < 1).
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Figure 4.6: Simulation of the model (4.34) using Gardasil vaccine. Parameter values used
are as given in Table 4.2. (A) Showing the cumulative number of HPV-related cancer cases
in both females and males as a function of time for females only vaccinated and both females
and males vaccinated (here, ρhf = ρhm = ρlf = ρlm = 0.0012, βl

m = 0.8, βl
f = 0.9, βh

m = 0.7,
βh
f = 0.9, kh

f = kh
m = 0.2, ηlf = ηlm = 0.7, ηhf = ηhm = 0.8, θlf = θlm = 0.9, αl

f = αl
m = 1.4,

αh
f = αh

m = 11.75 and θhf = θhm = 0.9). (B) Showing the cumulative number of mortality as
a function of time for females only vaccinated and both females and males vaccinated (here,
ρhf = ρhm = ρlf = ρlm = 0.0012, βl

m = 0.8, βl
f = 0.9, βh

m = 0.7, βh
f = 0.9,kh

f = kh
m = 0.2,

ηlf = ηlm = 0.8, ηhf = ηhm = 0.9, θlf = θlm = 0.9 and θhf = θhm = 0.9).
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Figure 4.7: Simulations of the model (4.34). Parameter values used are as given in Table
4.2. (A) showing a contour plot of Rr

01 as a function of the Gardasil vaccine efficacy (εq)
and the fraction of new sexually-active females vaccinated at steady-state (ϕq

f ) with ρlf =
ρlm = ρhf = ρhm = δm = 0, βl

m = βl
f = 0.05, βh

m = 0.5, βh
f = 0.4, rlf = rlm = 0.887,

ϕq
m = 0, ηlf = ηlm = ηhf = ηhm = 0.8 and θlf = θlm = θhf = θhm = 0.9. (B) showing a

contour plot of Rr
01 as a function of the fraction of new sexually-active females vaccinated

with Gardasil (ϕq
f ) and Cervarix (ϕb

f ) at steady-state with ρlf = ρlm = ρhf = ρhm = δm = 0,
βl
m = βl

f = 0.05, βh
m = 0.5, βh

f = 0.04, rlf = rlm = 0.887, ϕq
m = 0, ηlf = ηlm = ηhf = ηhm = 0.8

and θlf = θlm = θhf = θhm = 0.9.
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Figure 4.8: Simulations of the model (4.34). Parameter values used are as given in Table
4.2, showing a contour plot of Rr

01 as a function the fraction of new sexually-active females
vaccinated at steady-state (ϕq

f ) and the fraction of new sexually-active males vaccinated at
steady-state (ϕq

m) with ρlf = ρlm = ρhf = ρhm = δm = 0, βl
m = βl

f = 0.05, βh
m = 0.5, βh

f = 0.04,
rlf = rlm = 0.887, σl

m = σl
f = 0.85, ηlf = ηlm = ηhf = ηhm = 0.8 and θlf = θlm = θhf = θhm = 0.9.
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Chapter 5

Contributions of the Thesis and

Future Work

The thesis contributes in three main categories, namely:

i) model formulation: formulation of novel anti-HPV vaccination models, of the form

of deterministic systems of non-linear differential equations, for the transmission dy-

namics of HPV, and the associated cancers and warts, in a community;

ii) mathematical analysis: carrying out detailed qualitative (mathematical) analysis of

the models developed in the thesis (in particular, finding conditions for the existence

and asymptotic stability of the associated equilibria);

iii) public health: using the models developed in the thesis to evaluate the impact of the

anti-HPV Cervarix and Gardasil vaccines in combatting the spread of the four chosen

HPV-types (HPV-6, HPV-11, HPV-16 and HPV-18).

The specific contributions of the thesis are summarized below.

122



5.1 Model Formulation

The thesis consists of two new models for HPV transmission dynamics (and the associated

cancers and warts) in a community.

i) The first model, given by (3.19), is for the transmission dynamics of HPV (and the

associated cancers in females) in a population, in the presence of the Gardasil vaccine

(which targets the four HPV types, HPV-6, HPV-11, HPV-16 and HPV-18) for new

sexually-active susceptible females. Some of the novelties of this model (in relation to

the many other HPV transmission models in the literature, including those in [9, 24,

25, 26, 61]) is that it:

a) includes the dynamics of the exposed (i.e., latently-infected) individuals;

b) allows for the transmission of HPV by exposed individuals;

c) allows for the loss of infection-acquired immunity by recovered individuals;

d) allows for the re-infection of recovered individuals.

Furthermore, the model (3.19) extends the models in [9, 26] by, additionally, including

cancer-induced mortality in females and the dynamics of females with persistent HPV

infection.

ii) The second model, given by (4.34), is based on extending the model developed in

Chapter 3 to study the transmission dynamics of the low- and high-risk HPV types in

the presence of the Cervarix and Gardasil vaccines. Some of the notable new features

of the model (4.34), in relation to the model (3.19), are:

a) stratifying the entire population in terms of the risk of transmitting either the low-

risk (HPV-6 and HPV-11) or the high-risk (HPV-16 and HPV-18) HPV types;

b) incorporating two anti-HPV vaccines (Cervarix and Gardasil);
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c) allowing for mass vaccination of new sexually-active susceptible males (with the

Gardasil vaccine);

d) including the dynamics of infected individuals with genital warts;

e) including the dynamics of individuals in the low-grade and high-grade pre-cancer

stages (CIN for females and INM for males);

f) including the dynamics of infected males:

1) with HPV-related cancers;

2) cancer-induced mortality for males;

3) infected males who recovered from HPV-related cancers;

4) a compartment for males with persistent HPV infection.

5.2 Mathematical Analysis

A major contribution of the thesis is the detailed qualitative analyses of (the two models) it

contains. Some of the main mathematical results obtained are summarized below.

5.2.1 Chapter 3

The model (3.19), and its vaccination-free version (3.21), are qualitatively analysed. The

leading following theoretical results were obtained:

i) it is shown, using the next generation operator method, that each of the two models

has a locally-asymptotically stable disease-free equilibrium whenever its associated

reproduction number is less than unity;

ii) each of the two models has at least one endemic equilibrium whenever its associated

reproduction threshold exceeds unity. For the case when the models have a unique

endemic equilibrium, it is shown, using a Krasnoselskii sub-linearity argument, that

the unique endemic equilibrium is locally-asymptotically stable;
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iii) the two models undergo the phenomenon of backward bifurcation under certain condi-

tions. The backward bifurcation phenomenon, proved using Centre Manifold Theory,

is shown to arise due to the re-infection of recovered individuals;

iv) in the absence of the re-infection of recovered individuals, it is shown, using Comparison

Theorem and Lyapunov Function theory, that the associated disease-free equilibrium

of the two models are globally-asymptotically stable whenever the respective associated

reproduction threshold is less than unity;

v) overall, it is shown that the two models (vaccination and vaccination-free models)

developed in Chapter 3 have essentially the same qualitative features. Thus, this

study shows that adding vaccination to the vaccination-free model (3.21) does not alter

its qualitative dynamics with respect to the existence and stability of its associated

equilibria, as well as with respect to its backward bifurcation property.

5.2.2 Chapter 4

The model (4.34), and the low-risk-only version (4.37), are qualitatively analysed.

i) Each of the two models has a locally-asymptotically stable disease-free equilibrium

whenever its associated reproduction threshold is less than unity;

ii) it is shown that both models have at least one endemic equilibrium whenever the

reproduction threshold exceeds unity;

iii) it is shown that the low-risk-only model (4.37) undergoes a re-infection-induced back-

ward bifurcation under certain conditions;

iv) in the absence of the re-infection of recovered individuals and cancer-induced mortality

in males, it is shown that the disease-free equilibrium of the model (4.34) is globally-

asymptotically stable whenever the associated reproduction threshold is less than unity.
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5.3 Public Health

The models developed in this thesis are simulated, using the parameter values in Tables 3.1

and 4.2, to gain quantitative insight into the transmission dynamics of HPV (and related

cancers and warts) in a community. Some of the main public health contributions of the

thesis, derived from these simulations, are summarized below:

i) the vaccination model in Chapter 3 shows that the mass vaccination of new sexually-

active females only, using the Gardasil vaccine (with the assumed efficacy of 90%), can

lead to effective community-wide control (or elimination) of HPV if at least 78% of the

new sexually-active susceptible female population is vaccinated at steady-state. How-

ever, the model in Chapter 4 shows that vaccinating new sexually-active susceptible

females alone (with the Gardasil vaccine) can lead to effective control, or elimination,

of HPV from the community if at least 87% of the new sexually-active susceptible

females are vaccinated. Unfortunately, however, since the current Gardasil coverage

in most communities is about 70% [9, 26, 46, 61, 76], this study shows that the sin-

gular use of Gardasil (with the 70% coverage) is inadequate to lead to the effective

control of HPV (since it fails to bring the associated reproduction threshold of the two

vaccination models, (3.19) and (4.34), to be less than unity);

ii) vaccinating new sexually-active susceptible males offers beneficial community-wide im-

pact. In particular, simulations show that while vaccinating new sexually-active suscep-

tible females only (at the assumed 70% coverage rate) resulted in about 250 cumulative

cancer cases over two years, this number reduces to about 100, over the same time pe-

riod, if both new sexually-active males (with 70% Gardasil coverage) and females are

vaccinated. Furthermore, while vaccinating new sexually-active females only with the

Gardasil vaccine (at the 70% coverage level) resulted in about 8 cumulative mortality

cases over two years, only 2 cancer-related deaths are recorded, over the same time

period, if both new sexually-active males and females are vaccinated;
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iii) if only 70% of the new sexually-active susceptible females are vaccinated with the

Gardasil vaccine, additionally vaccinating 47% of new sexually-active susceptible males

will lead to the community-wide elimination of the low- and high-risk HPV types;

iv) it is shown that, with the assumed 70% Gardasil vaccine coverage for new sexually-

active females, at least 18% of the remaining unvaccinated susceptible females need to

be vaccinated with the Cervarix vaccine in order to effectively control the disease.

5.4 Future Work

The work in this thesis can be extended in several directions (in terms of model construction

and associated mathematical analyses), such as:

i) including age-structure (since both vaccines are recommended to be administered to

individuals in certain age groups [15, 76, 93, 96]);

ii) including other anti-HPV intervention strategies (such as condom use and Pap screen-

ing, which are also considered as standard anti-HPV control strategies [15, 27, 61, 76]);

iii) explicitly incorporating the effect of co-infection (of multiple HPV types and/or with

other STIs);

iv) carrying out a cost-benefit analysis of implementing the mass vaccination program in

a community;

v) vaccination of older susceptible men and women (outside the 9-26 age bracket). The ob-

jective is to determine whether vaccinating this age group offers beneficial community-

wide impact;

vi) incorporate the homosexual transmission of HPV. This is crucial since HPV can also

be transmitted via this route. This aspect of HPV transmission dynamics has not yet

been addressed in the literature;
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vii) modelling the in-host dynamics of HPV;

viii) establishing the global asymptotic stability of the endemic and/or boundary equilibria

of the models (mathematical interest). Establishing the global asymptotic stability of

a relatively large dynamical system, such as the 29-dimensional model in Chapter 4,

is always of significant mathematical interest (since one key objective of mathematical

biology research is to develop new mathematical techniques and theories for analysing

relatively large systems of non-linear differential equations).
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Appendix A

Proof of Theorem 3.1

Proof. Let t1 = sup{t > 0 : Sf (t) > 0, Vf (t) > 0, Ef (t) > 0, If (t) > 0, P (t) > 0, C(t) >

0, Rc(t) > 0, Rf (t) > 0, Sm(t) > 0, Em(t) > 0, Im(t) > 0, Rm(t) > 0} > 0. It follows from the

first equation of the vaccination model (3.19) that

dSf

dt
= πf (1− ϕf ) + ξfRf (t)− λm(t)Sf (t)− µfSf (t) ≥ πf (1− ϕf )− [λm(t) + µf ]Sf (t),

which can be re-written as,

d

dt

�
Sf (t) exp

�
µf t+

� t

0

λm(τ) dτ

��
≥ πf (1− ϕf ) exp

�
µf t+

� t

0

λm(τ) dτ

�
.

Hence,

Sf (t1) exp

�
µf t1 +

� t1

0

λm(τ) dτ

�
− Sf (0) ≥

� t1

0

πf (1− ϕf ) exp

�
µfy +

� y

0

λm(τ) dτ

�
dy,

so that,

129



Sf (t1) ≥ Sf (0) exp

�
−µf t1 −

� t1

0

λm(τ) dτ

�

+

�
exp

�
−µf t1 −

� t1

0

λm(τ) dτ

��� t1

0

πf (1− ϕf ) exp

�
µfy +

� y

0

λm(τ) dτ

�
dy > 0.

Similarly, it can be shown that Vf (t) > 0, Ef (t) ≥ 0, If (t) ≥ 0, P (t) ≥ 0, C(t) ≥ 0, Rc(t) ≥

0, Rf (t) ≥ 0, Sm(t) ≥ 0, Em(t) ≥ 0, Im(t) ≥ 0, and Rm(t) ≥ 0 for all time t > 0. Hence, all

solutions remain positive for all non-negative initial conditions.

Theorem 3.1 can also be proved using the approach given in Appendix A of [92].
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Appendix B

Proof of Theorem 3.5

Proof. Consider the vaccination-free model (3.21) with ρf = ρm = 0. The proof of Theorem

3.5 is based on using a Krasnoselskii sub-linearity trick, as given in [91] (see also [31, 32]).

The method essentially entails proving that the linearization of the model system (3.21),

around the EEP (E1) of the vaccination-free model (3.21), has no solutions of the form

Z̄(t) = Z̄0e
ωt, (B.1)

with,

Z̄0 = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11) , Zi ∈ C, ω ∈ C, and Re(ω) ≥ 0.

This implies that the eigenvalues of the characteristic polynomial associated with the lin-

earized equations have negative real part (i.e., Re (ω) < 0). Then the EEP, E1, is locally

asymptotically stable. For simplicity, consider the special case of the vaccination-free model

(3.21) with the probability of re-infection set to zero (so that, ρm = ρf = 0 in (3.21)). The

linearized system of (3.21), around the EEP E1 (with ρm = ρf = 0), gives the following

system of linear equations
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ωZ1 = −

�
βmcfµm (ηmE∗∗

m + I∗∗m )

πm
+ µf

�
Z1 + ξfZ7 −

βmcfµmηmS∗∗
f

πm
Z9 −

βmcfµmS∗∗
f

πm
Z10,

ωZ2 =
βmcfµm (ηmE∗∗

m + I∗∗m )

πm
Z1 − g1Z2 +

βmcfµmηmS∗∗
f

πm
Z9 +

βmcfµmS∗∗
f

πm
Z10,

ωZ3 = σfZ2 − g2Z3,

ωZ4 = h1Z3 − n1Z4,

ωZ5 = h2Z4 − n2Z5,

ωZ6 = γfZ5 − µfZ6, (B.2)

ωZ7 = m1Z3 +m2Z4 − g3Z7,

ωZ8 = −
βfcfµmηfS∗∗

m

πm
Z2 −

βfcfµmS∗∗
m

πm
Z3 −

βfcfµmθpS∗∗
m

πm
Z4

−

�
βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm
+ µm

�
Z8 + ξmZ11,

ωZ9 =
βfcfµmηfS∗∗

m

πm
Z2 +

βfcfµmS∗∗
m

πm
Z3 +

βfcfµmθpS∗∗
m

πm
Z4 +

βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm
Z8

− g4Z9,

ωZ10 = σmZ9 − g5Z10,

ωZ11 = ψmZ10 − g6Z11,
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which is equivalent to the system

�
1 +

1

µf

�
ω +

βmcfµm (ηmE∗∗
m + I∗∗m )

πm

��
Z1 =

ξf
µf

Z7 −
βmcfµmηmS∗∗

f

µfπm
Z9

−
βmcfµmS∗∗

f

µfπm
Z10,

�
1 +

ω

g1

�
Z2 =

βmcfµm (ηmE∗∗
m + I∗∗m )

g1πm
Z1

+
βmcfµmηmS∗∗

f

g1πm
Z9 +

βmcfµmS∗∗
f

g1πm
Z10,

�
1 +

ω

g2

�
Z3 =

σf

g2
Z2,

�
1 +

ω

n1

�
Z4 =

h1

n1
Z3,

�
1 +

ω

n2

�
Z5 =

h2

n2
Z4,

�
1 +

ω

µf

�
Z6 =

γf
µf

Z5, (B.3)

�
1 +

ω

g3

�
Z7 =

m1

g3
Z3 +

m2

g3
Z4,

�
1 +

1

µm

�
ω +

βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm

��
Z8 = −

βfcfηfS∗∗
m

πm
Z2 −

βfcfS∗∗
m

πm
Z3

−
βfcfθpS∗∗

m

πm
Z4 +

ξm
µm

Z11,
�
1 +

ω

g4

�
Z9 =

βfcfµmηfS∗∗
m

g4πm
Z2 +

βfcfµmS∗∗
m

g4πm
Z3

+
βfcfµmθpS∗∗

m

g4πm
Z4

+
βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

g4πm
Z8,

�
1 +

ω

g5

�
Z10 =

σm

g5
Z9,

�
1 +

ω

g6

�
Z11 =

ψm

g6
Z10.

Adding the first, ninth, and tenth equations of (B.3), and then adding the second, third,

fourth, and eighth equations of (B.3), and finally moving all the negative terms to the left-
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hand side (and simplifying) gives the following system:

[1 + F1 (ω)]Z1 + [1 + F9 (ω)]Z9 + [1 + F10 (ω)]Z10 =
�
HZ̄

�
1
+
�
HZ̄

�
9

+
�
HZ̄

�
10
,

[1 + F2 (ω)]Z2 + [1 + F3 (ω)]Z3 + [1 + F4 (ω)]Z4 + [1 + F8 (ω)]Z8 =
�
HZ̄

�
2
+
�
HZ̄

�
3

+
�
HZ̄

�
4
+
�
HZ̄

�
8
,

[1 + F5 (ω)]Z5 =
�
HZ̄

�
5
, (B.4)

[1 + F6 (ω)]Z6 =
�
HZ̄

�
6
,

[1 + F7 (ω)]Z7 =
�
HZ̄

�
7
,

[1 + F11 (ω)]Z11 =
�
HZ̄

�
11
,
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where,

F1 (ω) =
1

µf

�
ω +

βmcfµm (ηmE∗∗
m + I∗∗m )

πm

�
,

F2 (ω) =
1

g1

�
ω +

g1βfcfηfS∗∗
m

πm

�
,

F3 (ω) =
1

g2

�
ω +

g2βfcfS∗∗
m

πm

�
,

F4 (ω) =
1

n1

�
ω +

n1βfcfθpS∗∗
m

πm

�
,

F5 (ω) =
ω

n2
,

F6 (ω) =
ω

µf
,

F7 (ω) =
ω

g3
,

F8 (ω) =
1

µm

�
ω +

βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm

�
,

F9 (ω) =
1

g4

�
ω +

g3βmcfµmηmS∗∗
f

µfπm

�
,

F10 (ω) =
1

g5

�
ω +

g4βmcfµmS∗∗
f

µfπm

�
,

F11 (ω) =
ω

g6
,
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and,

H =





0 0 0 0 0 0 ξf
µf

0 0 0 0

y1
g1

0 0 0 0 0 0 0 y2
g1

y3
g1

0

0 σf

g2
0 0 0 0 0 0 0 0 0

0 0 h1
n1

0 0 0 0 0 0 0 0

0 0 0 h2
n2

0 0 0 0 0 0 0

0 0 0 0 γf
µf

0 0 0 0 0 0

0 0 m1
g3

m2
g3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ξm
µm

0 y4
g4

y5
g4

y6
g4

0 0 0 y7
g4

0 0 0

0 0 0 0 0 0 0 0 σm
g5

0 0

0 0 0 0 0 0 0 0 0 ψm

g6
0





,

with,

y1 =
βmcfµm (ηmE∗∗

m + I∗∗m )

πm
, y2 =

βmcfµmηmS∗∗
f

πm
, y3 =

βmcfµmS∗∗
f

πm
,

y4 =
βfcfµmηfS∗∗

m

πm
, y5 =

βfcfµmS∗∗
m

πm
, y6 =

βfcfµmθpS∗∗
m

πm
,

y7 =
βfcfµm

�
ηfE∗∗

f + I∗∗f + θpP ∗∗�

πm
.

In the above computations, the notation H
�
Z̄
�
i
(for i = 1, ..., 11) denotes the ith co-

ordinate of the vector H
�
Z̄
�
. Furthermore, it should be noted that the matrix H has

non-negative entries, and the EEP

E1 =
�
S∗∗
f , E∗∗

f , I∗∗f , P ∗∗, C∗∗, R∗∗
c , R∗∗

f , S∗∗
m , E∗∗

m , I∗∗m , R∗∗
m

�
,

satisfies

E1 = HE1. (B.5)

To show that Re (ω) < 0, we consider two cases: ω = 0 and ω �= 0.
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Case 1: ω = 0

Suppose ω = 0. It follows then that (B.2) is a homogeneous linear system. Furthermore, the

determinant of (B.2) (with ω = 0) is

∆ =

������������������������������������

−y1 − µf 0 0 0 0 0 ξf 0 −y2 −y3 0

y1 −g1 0 0 0 0 0 0 y2 y3 0

0 σf −g2 0 0 0 0 0 0 0 0

0 0 h1 −n1 0 0 0 0 0 0 0

0 0 0 h2 −n2 0 0 0 0 0 0

0 0 0 0 γf −µf 0 0 0 0 0

0 0 m1 m2 0 0 −g3 0 0 0 0

0 −y4 −y5 −y6 0 0 0 −y7 − µm 0 0 ξm

0 y4 y5 y6 0 0 0 y7 −g4 0 0

0 0 0 0 0 0 0 0 σm −g5 0

0 0 0 0 0 0 0 0 0 ψm −g6

������������������������������������

,

= − (y1 + µf )M1 + ξfM2 − y2M3 + y3M4, (B.6)

where,

M1 = µfn2g3n1g2g5g6 [g1g4 (µm + y7)− µm (y2 + y4)]

− µfn2g3µmg6 [σfg5y2 (n1y5 + h1y6) + n1σmg2y3y4 + n1σmσfy3y5 + h1σmσfy3y6]

− µfn2g3n1g1g2σmξmψmy7,

M2 = σfµfn2y1 (n1m1 + h1m2) [g4g5g6 (µm + y7)− σmξmψmy7] ,

M3 = g5µmµfn2y1g3g6 (n1g2y4 + h1σfy6 + n1σfy5) , (B.7)

M4 = −σmµmµfn2y1g3g6 (n1g2y4 + h1σfy6 + n1σfy5) .
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It can be shown, by simplifying (B.6) with (B.7), that the determinant, ∆, is non-zero.

Hence, for the case that ω = 0, the linear system (B.2) has only the trivial solution Z̄ = 0.

This implies that ω �= 0.

Case 2: ω �= 0

Now assume that ω �= 0 and Re (ω) ≥ 0 (assume the contrary to show that Re (ω) < 0). Let

F (ω) = min {|1 + Fi (ω)| , i = 1, 2, 3, ..., 11}. It can be shown from (B.4) that |1 + Fi (ω)| > 1

for all i. Hence, F (ω) > 1. On the other hand, since the coordinates of E1 are positive, if Z̄

is any solution of (B.4), then there exists a minimal positive real number s such that

��Z̄
�� ≤ sE1,

where
��Z̄

�� = (|Z1| , |Z2| , |Z3| , |Z4| , ..., |Z11|) and |.| is the norm in C. Therefore, s
F (ω) < s and

the minimality of s implies that
��Z̄

�� > s
F (ω)E1. Since s is the minimal positive real number

such that

|Z11| ≤ sR∗∗
m , (B.8)

Taking norms on both side of last equation of (B.4), and using (B.5), (B.8) and the fact that

H is nonnegative, gives

F (ω) |Z11| ≤ H (|Z|)11 ≤ sR∗∗
m ,

so that,

|Z11| ≤
s

F (ω)
R∗∗

m < sR∗∗
m ,

which contradicts the minimality of s. Hence, Re (ω) < 0. This concludes the proof.
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Appendix C

Proof of Theorem 3.6

Proof. The Centre Manifold Theory, as described in [14], will be used to prove Theorem 3.6.

It is convenient to, first of all, make the following changes of variables. Let,

Sf = x1, Ef = x2, If = x3, P = x4, C = x5, Rc = x6, Rf = x7,

and,

Sm = x8, Em = x9, Im = x10, Rm = x11.

Furthermore, it should be noted that the total male population, now given by Nm = x8 +

x9+x10+x11 is replaced by its limiting value πm
µm

. Hence, the model (3.19) can be re-written

in the form:
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dx1

dt
= f1 = πf + ξfx7 −

βmcfµm (ηmx9 + x10)

πm
x1 − µfx1,

dx2

dt
= f2 =

βmcfµm (ηmx9 + x10)

πm
(x1 + ρfx7)− g1x2,

dx3

dt
= f3 = σfx2 − g2x3,

dx4

dt
= f4 = h1x3 − n1x4, (C.1)

dx5

dt
= f5 = h2x4 − n2x5,

dx6

dt
= f6 = γfx5 − µfx6,

dx7

dt
= f7 = m1x3 +m2x4 −

�
ρf

βmcfµm (ηmx9 + x10)

πm
+ g3

�
x7,

dx8

dt
= f8 = πm + ξmx11 −

βfcfµm(ηfx2 + x3 + θpx4)

πm
x8 − µmx8,

dx9

dt
= f9 =

βfcfµm(ηfx2 + x3 + θpx4)

πm
(x8 + ρmx11)− g4x9,

dx10

dt
= f10 = σmx9 − g5x10,

dx11

dt
= f11 = ψmx10 −

�
ρm

βfcfµm(ηfx2 + x3 + θpx4)

πm
+ g6

�
x11.

The Jacobian of the system (C.1) at the DFE (E0) is given by
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J(E0) =





−µf 0 0 0 0 0 ξf 0 −g11 −g12 0

0 −g1 0 0 0 0 0 0 g11 g12 0

0 σf −g2 0 0 0 0 0 0 0 0

0 0 h1 −n1 0 0 0 0 0 0 0

0 0 0 h2 −n2 0 0 0 0 0 0

0 0 0 0 γf −µf 0 0 0 0 0

0 0 m1 m2 0 0 −g3 0 0 0 0

0 −g13 −g14 −g15 0 0 0 −µm 0 0 ξm

0 g13 g14 g15 0 0 0 0 −g4 0 0

0 0 0 0 0 0 0 0 σm −g5 0

0 0 0 0 0 0 0 0 0 ψm −g6





,

where,

g11 =
ηmβmcfπfµm

µfπm
, g12 =

βmcfπfµm

µfπm
, g13 = ηfβfcf , g14 = βfcf , g15 = θpβfcf .

Consider the case when R0 = 1. Suppose (without loss of generality) that βf is chosen

as a bifurcation parameter. Solving for βf from R0 = 1 gives

βf = β∗ =
n1g1g2g4g5πmµf

βmc2fπfµm (ηmg5 + σm) [ηfn1g2 + σf (n1 + θph1)]
. (C.2)

The transformed system, (C.1) with βf = β∗, has a hyperbolic equilibrium point (i.e., the

linearization has eigenvalue with zero real part while the other have negative real part).

Eigenvectors of J(E0) |βf=β∗:

Let J(E0) |βf=β∗= Jβ∗ . In order to apply the method described in [14], the following com-

putations are necessary. The matrix Jβ∗ has a left eigenvector (associated with the zero
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eigenvalue) given by,

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11]
T ,

with,

v1 = 0, v2 =
σfv3 + ηfβ∗cfv9

g1
, v3 =

h1v4 + β∗cfv9
g2

, v4 =
θpβ∗cfv9

n1
, v5 = 0,

v6 = 0, v7 = 0, v8 = 0, v9 = v9 > 0, v10 =
βmcfµmπfv2

g4πmµf
, v11 = 0.

Furthermore, the matrix Jβ∗ has a right eigenvector (associated with the zero eigenvalue)

given by,

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11]
T ,

where,

w1 =
ξfw7

µf
−

βmcfµmπf (ηmw9 + w10)

µ2
fπm

, w2 =
βmcfµmπf (ηmw9 + w10)

g1πmµf
, w3 =

σfw2

g2
,

w4 =
σfh1w2

g2n1
, w5 =

h2w4

n2
, w6 =

h2γfw4

n2µf
, w7 =

m1w3 +m2w4

g3
,

w8 =
ξmw11

µm
−

β∗cf (ηfw2 + w3 + θpw4)

µm
, w9 = w9 > 0, w10 =

σmw9

g5
, w11 =

ψmw10

g6
.
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Computations of bifurcation coefficients, a and b:

It follows from Theorem 2.8 of Chapter 2 that, for the system (C.1), the associated non-zero

partial derivatives of C.1 (at the DFE, E0) are given by

∂2f1
∂x9∂x10

=
ηmβmcfµ2

mπf

π2
mµf

+
βmcfµ2

mπf

π2
mµf

,
∂2f2

∂x9∂x10
= −

ηmβmcfµ2
mπf

π2
mµf

−
βmcfµ2

mπf

π2
mµf

,

∂2f9
∂x2∂x11

= −
ηfβ∗cfµm

πm
+

ρmηfβ∗cfµm

πm
,

∂2f9
∂x3∂x11

= −
β∗cfµm

πm
+

ρmβ∗cfµm

πm
,

∂2f9
∂x4∂x11

= −
θpβ∗cfµm

πm
+

ρmθpβ∗cfµm

πm
,

∂2f11
∂x2∂x11

= −
ρmηfβ∗cfµm

πm
,

∂2f11
∂x3∂x11

= −
ρmβ∗cfµm

πm
,

∂2f11
∂x4∂x11

= −
ρmθpβ∗cfµm

πm
,

∂2f7
∂x7∂x9

= −
ρfηmβmcfµm

πm
,

∂2f7
∂x7∂x10

= −
ρfβmcfµm

πm
,

∂2f2
∂x7∂x9

=
ρfηmβmcfµm

πm
,

∂2f2
∂x7∂x10

=
ρfβmcfµm

πm
, (C.3)

∂2f2
∂x9∂x9

= −2
ηmβmcfµ2

mπf

π2
mµf

,
∂2f2

∂x10∂x10
= −2

βmcfµ2
mπf

π2
mµf

,
∂2f2

∂x1∂x10
=

βmcfµm

πm
,

∂2f1
∂x9∂x9

= 2
ηmβmcfµ2

mπf

π2
mµf

,
∂2f1

∂x10∂x10
= 2

βmcfµ2
mπf

π2
mµf

,
∂2f1

∂x1∂x10
= −

βmcfµm

πm
,

∂2f1
∂x8∂x9

=
∂2f1

∂x9∂x11
=

ηmβmcfµ2
mπf

π2
mµf

,
∂2f1

∂x1∂x9
= −

ηmβmcfµm

πm
,

∂2f2
∂x8∂x9

=
∂2f2

∂x9∂x11
= −

ηmβmcfµ2
mπf

π2
mµf

,
∂2f2

∂x1∂x9
=

ηmβmcfµm

πm
,

∂2f8
∂x2∂x9

=
∂2f8

∂x2∂x10
=

∂2f8
∂x2∂x11

=
ηfβ∗cfµm

πm
,

∂2f8
∂x3∂x9

=
∂2f8

∂x3∂x10
=

∂2f8
∂x3∂x11

=
β∗cfµm

πm
,

∂2f8
∂x4∂x9

=
∂2f8

∂x4∂x10
=

∂2f8
∂x4∂x11

=
θpβ∗cfµm

πm
,

∂2f9
∂x2∂x9

=
∂2f9

∂x2∂x10
= −

ηfβ∗cfµm

πm
,

∂2f9
∂x3∂x9

=
∂2f9

∂x3∂x10
= −

β∗cfµm

πm
,

∂2f9
∂x4∂x9

=
∂2f9

∂x4∂x10
= −

θpβ∗cfµm

πm
,

∂2f1
∂x8∂x10

=
∂2f1

∂x10∂x11
=

βmcfµ2
mπf

π2
mµf

,
∂2f2

∂x8∂x10
=

∂2f2
∂x10∂x11

= −
βmcfµ2

mπf

π2
mµf

.
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It follows from the expressions in (C.3), and Theorem 2.8 of Chapter 2, that

a =
11�

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

=
2cfµm

µ2
fπ

2
m

[A1v2 (ηmw9 + w10) + A2v9 (ηfw2 + w3 + θpw4)] (C.4)

−
2cfµm

µ2
fπ

2
m

[B1v2 (ηmw9 + w10) + B2v9 (ηfw2 + w3 + θpw4) + B3] ,

with,

A1 = βm [πmµf (ξf + µfρf )w7 + β∗πfµfcf (ηfw2 + w3 + θpw4)] ,

A2 = β∗πmµ
2
fρmw11,

B1 = βmπf [µf (ξmw11 + µm (w9 + w11)) + cfµm (ηmw9 + w10)] ,

B2 = β∗πmµ
2
f (w9 + w10 + w11) ,

B3 = βmπfµmµfv2w10 (w9 + w10) ,

and,

b =
11�

k,i=1

vkwi
∂2fk

∂xi∂β∗ (0, 0) = cfv9 (ηfw2 + w3 + θpw4) > 0.

It is evident from (C.4) that the bifurcation coefficient, a, is positive whenever

Q1 > Q2, (C.5)

where,

Q1 = A1v2 (ηmw9 + w10) + A2v9 (ηfw2 + w3 + θpw4) ,

Q2 = B1v2 (ηmw9 + w10) + B2v9 (ηfw2 + w3 + θpw4) + B3.
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Thus, it follows from Theorem 2.8, that the vaccination-free model (3.21) undergoes back-

ward bifurcation whenever Inequality (C.5) holds.

The inequality (C.5) can be expressed in terms of the re-infection parameter for recovered

females, ρf , as

ρf > ρcf , (C.6)

where,

ρcf =
B1

βmπmµ2
f

+
B2v9 (ηfw2 + w3 + θpw4)

v2 (ηmw9 + w10) βmπmµ2
f

+
B3

v2 (ηmw9 + w10) βmπmµ2
f

−
A2v9 (ηfw2 + w3 + θpw4)

v2 (ηmw9 + w10) βmπmµ2
f

−
β∗πfcf (ηfw2 + w3 + θpw4)

πmµf
−

ξf
µf

> 0.

Thus, this study shows that the vaccination-free model (3.21) undergoes backward bi-

furcation whenever the re-infection parameter for females (ρf ) exceeds a certain threshold

(ρcf ). Models with re-infection, such as those for the transmission dynamics of mycobacterium

tuberculosis [14, 60, 86], are known to undergo backward bifurcation. It is instructive, there-

fore, to check whether or not the re-infection of recovered individuals in the model (3.21)

induces the phenomenon of backward bifurcation in the model. This is explored below.

C.1 Effect of Re-infection of Recovered Individuals on

Backward Bifurcation

It is worth exploring the possible effect the re-infection of recovered individuals may have on

the backward bifurcation property of the vaccination-free model (3.21). Setting ρf = ρm = 0

(and, for computational convenience, ξf = ξm = 0) in (C.5) shows that

a =
2cfµm

µ2
fπ

2
m

[(A11 − B11) v2 − B22v9 (ηfw2 + w3 + θpw4)] , (C.7)
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with,

A11 = β∗µfβmπfcf (ηfw2 + w3 + θpw4) (ηmw9 + w10) ,

B11 = β∗πfµm [(ηmw9 + w10) (β
∗cf (ηmw9 + w10) + µf (w9 + w10)) + µfw10w11] ,

B22 = µ2
fπmβ

∗ (w9 + w10 + w11) .

Using the value of β∗ from (C.2) gives (here the eigenvectors v9 and w9 are given the value

unity)

A11 − B11 = −
π2
fµm (σm + µm)

πmcfµf (ψm + µm) (ηmψm + ηmµm + σm)
[ηmµfψm

�
µmψm + 2µ2

m + 2βmcfσm

�

+ βmcfηmψmµm (2ηmµm + ηmψm + 2σm) + ηmµ
2
m (βmcfµmηm + µmµf + 2βmcfσm)

+ σm

�
βmcfµmσm + 2µfσmψm + ηmµmµfψm + µmµfψm + µfµ

2
m

�
] < 0,

B22 =
π2
fµm (σm + µm)

2

πmcf
> 0. (C.8)

Hence, it follows from (C.7), with (C.8), that the bifurcation coefficient a < 0 for the

vaccination-free model (3.21) with ρf = ρm = ξf = ξm = 0. Thus, it follows from Item

(iv) of Theorem 2.8 of Chapter 2 that the vaccination-free model (3.21) does not undergo

backward bifurcation in the absence of re-infection and loss of infection-acquired immunity

(ρf = ρm = ξf = ξm = 0). This fact can further be illustrated by substituting ρf = ρm = 0

in the quartic (3.34) in Section 3.4.2. Doing so shows that the non-zero equilibria of the

model (3.21), with ρf = ρm = 0, reduces to

a1λ
∗∗
m − b1 = 0, (C.9)
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where,

a1 =
βfcfπfµm

πm
(ηfn1g2 + n1σf + θph1σf ) g3µm [(σm + ψm + µm) ξm + (σm + µm) (ψm + µm)]

+ µmg4g5g6ξfσfψf (1− rf ) [µf + αf (1− κf )] + µf

�
µ2
f (ξf + µf ) + σfξf (αf + µf )

�

+ µf (σf + ξf + µf ) [αf (ψf + µf ) + µfψf ] ,

b1 = µfµmn1g1g2g3g4g5g6
�
R

2
0 − 1

�
.

It is clear from (C.9) that the coefficient a1 > 0 and b1 > 0 for R0 > 1 (furthermore, b1 < 0

if R0 < 1). Thus, the linear system (C.9) has a unique positive solution, given by λ∗∗
m = b1

a1
,

whenever R0 > 1 (the linear system has no positive endemic equilibrium when R0 < 1).

Lemma C.1. The vaccination-free model (3.21), with ρf = ρm = 0, has a unique endemic

equilibrium whenever R0 > 1, and no endemic equilibrium whenever R0 < 1.

The absence of endemic equilibria in (C.9) when R0 < 1 suggests that the phenomenon

backward bifurcation is not possible in the vaccination-free model (3.21), when ρf = ρm =

0 (since backward bifurcation requires the existences of multiple endemic equilibria when

R0 < 1). Thus, it can be concluded from the analyses in this Appendix (and Theorem 3.7)

that the backward bifurcation property of the vaccination-free model (3.21) is caused by the

re-infection of recovered individuals.
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Appendix D

Proof of Theorem 3.7

Proof. Consider the vaccination-free model (3.21) in the absence of re-infection (i.e., ρf =

ρm = 0). The proof is based on using a Comparison Theorem (see Theorem 2.10). The

equations for the infected components of the vaccination-free model (3.21), with ρf = ρm = 0,

can be re-written as (it should be noted the system (D.1) satisfies the Type K condition [87],

as discussed in Section 2.7):

d

dt





Ef (t)

If (t)

P (t)

C(t)

Rf (t)

Em(t)

Im(t)

Rm(t)





= (F −H)





Ef (t)

If (t)

P (t)

C(t)

Rf (t)

Em(t)

Im(t)

Rm(t)





− J





Ef (t)

If (t)

P (t)

C(t)

Rf (t)

Em(t)

Im(t)

Rm(t)





, (D.1)

where the matrices F and H are as defined in Section 3.3.1, and

J =

�
1−

µfSf (t)

πf

�
J1 +

�
1−

µmSm(t)

πm

�
J2,
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with,

J1 =





0 0 0 0 0 ηmβmcfπfµm

µfπm

βmcfπfµm

µfπm
0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





,

and,

J2 =





0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ηfβfcf βfcf θpβfcf 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





.

It should be noted that J1 and J2 are non-negative matrices. Furthermore, since,

Sf (t) ≤ Nf (t) ≤
πf

µf
and Sm(t) ≤ Nm(t) ≤

πm

µm
(for all t ≥ 0 in D1),

it follows that,
µfSf (t)

πf
≤ 1 and

µmSm(t)

πm
≤ 1,
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so that J is a non-negative matrix. It follows from (D.1) that

d

dt





Ef (t)

If (t)

P (t)

C(t)

Rf (t)

Em(t)

Im(t)

Rm(t)





≤ (F −H)





Ef (t)

If (t)

P (t)

C(t)

Rf (t)

Em(t)

Im(t)

Rm(t)





. (D.2)

Using the fact that the eigenvalues of the matrix F − H all have negative real parts (see

local stability result in Section 3.3.1, where ρ(FH−1) < 1 if R0 < 1, which is equivalent

to F − H having eigenvalues with negative real parts when R0 < 1), it follows that the

linearized differential inequality system (D.2) is stable whenever R0 < 1. Thus, it follows,

by Comparison Theorem [58] (see also Theorem 2.10), that

lim
t→∞

(Ef (t), If (t), P (t), C(t), Em(t), Im(t)) → (0, 0, 0, 0, 0, 0) .

Substituting Ef = If = P = C = Im = Em = 0 into the first and eighth equations of the

vaccination-free model (3.21) gives Sf (t) → S∗
f and Sm(t) → S∗

m as t → ∞ for R0 < 1.

Thus,

lim
t→∞

(Sf (t), Ef (t), If (t), P (t), C(t), Rc(t), Rf (t), Sm(t), Em(t), Im(t), Rm(t)) = E0,

so that the DFE, E0, of the vaccination-free model (3.21) is GAS in D1 whenever R0 < 1

and ρf = ρm = 0.
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Appendix E

Proof of Theorem 3.10

Proof. The proof of Theorem 3.10 is also based on using Centre Manifold Theory, as shown

in Appendix C. Solving for βf from Rv = 1 gives

βf = β∗ =
n1g1g2g4g5πmµf

βmc2fπfµm (ηmg5 + σm) [ηfn1g2 + σf (n1 + θph1)] (1− εvϕf )
. (E.1)

Eigenvectors of J(EV
0 ) |βf=β∗:

For the system (3.19), it can be shown that the associated matrix J(EV
0 ) |βf=β∗= JV

β∗ has a

left eigenvector (associated with the zero eigenvalue) given by,

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12]
T ,

with,

v1 = 0, v2 = 0, v3 =
β∗cf (σfn1 + σfh1θp + n1g2ηf ) v10

n1g1g2
, v4 =

β∗cf (n1 + θph1)v10
n1g2

,

v5 =
θpβ∗cfv10

n1
, v6 = 0, v7 = 0, v8 = 0, v9 = 0, v10 = v10 > 0,

v11 =
βmcfµmπf (1− εvϕf )v3

g5πmµf
, v12 = 0.
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Furthermore, JV
β∗ has a right eigenvector (associated with the zero eigenvalue) given by,

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12]
T ,

where,

w1 =
ξfw8

µf
−

βmcfµmπf (1− ϕf ) (ηmw10 + w11)

µ2
fπm

, w2 = −
βmcfµmπfϕf (1− εv) (ηmw10 + w11)

µ2
fπm

,

w3 =
βmcfµmπf (σm + ηmg5)(1− εvϕf )w10

µfπmg1g5
, w4 =

σfw3

g2
, w5 =

h1w4

n1
, w6 =

h1h2w4

n1n2
,

w7 =
γfw6

µf
, w8 =

m1w4 +m2w5

g3
, w9 =

ξmw12

µm
−

β∗cf (ηfw3 + w4 + θpw5)

µm
,

w10 = w10 > 0, w11 =
σmw10

g5
, w12 =

ψmw11

g6
.

Computations of bifurcation coefficients, a and b:

For the model (3.19), it can be shown that the associated bifurcation coefficients, a and b

are given, respectively, by

a =
12�

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

=
2cfµm

µ2
fπ

2
m

[A111v3 (ηmw10 + w11) + A222v10 (ηfw3 + w4 + θpw5)] , (E.2)

−
2cfµm

µ2
fπ

2
m

[B111v3 (ηmw10 + w11) + B222v10 (ηfw3 + w4 + θpw5)] ,

and,

b =
12�

k,i=1

vkwi
∂2fk

∂xi∂β∗ (0, 0) = cfv10 (ηfw3 + w4 + θpw5) > 0.
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In (E.2),

A111 = βm [πmµf (ξf + µfρf )w8 + β∗µfcfπf (1− εvϕf ) (ηfw3 + w4 + θpw5)]

+ β2
mcfµmπfϕf (ηmw10 + w11) ,

A222 = β∗πmµ
2
fρmw12,

B111 = βmµfπf (1− εvϕf ) [ξmw12 + µm (w10 + w11 + w12)] + β2
mcfµmπf (ηmw9 + w10) ,

B222 = β∗πmµ
2
f (w10 + w11 + w12) .

Hence, it follows from Theorem 2.8 that the vaccination model (3.19) undergoes backward

bifurcation at Rv = 1 if the bifurcation parameter a, given in (E.2), is positive. It is evident

from (E.2) that a > 0 whenever

Q3 > Q4, (E.3)

where,

Q3 = A111v3 (ηmw10 + w11) + A222v10 (ηfw3 + w4 + θpw5) ,

Q4 = B111v3 (ηmw10 + w11) + B222v10 (ηfw3 + w4 + θpw5) .

E.1 Non-existence of Backward Bifurcation

Consider the vaccination model (3.19) in the absence of re-infection (ρf = ρm = 0). Setting

ρf = ρm = 0 (and, for simplicity, ξf = ξm = 0) into the expression for the bifurcation

coefficient, a in (E.2), and using β∗ for βf in (E.1), shows that (here, the eigenvectors v10
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and w10 are given the value unity)

a = −
2βmcfµm (σm + µm) (ηmψm + ηmµm + σm) [1− εvϕf (2− εv)]

πmµf (µm + ψm) (1− εvϕf )
−

2 (σm + µm)
2

πm
< 0.

(E.4)

It should be stated that, in (E.4), 0 ≤ εv, ϕf ≤ 1. Hence, it follows from (E.4), that the

bifurcation coefficient, a < 0, for the vaccination model (3.19) with ρf = ρm = ξf = ξm = 0.

Thus, it follows from Item (iv) of Theorem 2.8 that the vaccination model (3.19) does not

undergo backward bifurcation in the absence of re-infection.
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Appendix F

Proof of Theorem 3.11

Proof. Consider the vaccination model (3.19) with ρf = ρm = 0 and Rv < 1. Furthermore,

consider the following Lyapunov function (where g1, g2, g4, g5, n1 and h1 are as defined in

Section 3.3.3):

L =
βfcf (ηfn1g2 + σfn1 + θpσfh1) (ηmg5 + σm)

n1g1g2g4R2
v

Ef +
βfcf (n1 + θph1) (ηmg5 + σm)

n1g2g4R2
v

If

+
βfcfθp (ηmg5 + σm)

n1g4
P +

(ηmg5 + σm)

g4
Em + Im,

with Lyapunov derivative (where, as in Chapter 2, the dot denotes the differentiation with

respect to t) given by

L̇ =
βfcf (ηfn1g2 + σfn1 + θpσfh1) (ηmg5 + σm)

n1g1g2g4R2
v

Ėf +
βfcf (n1 + θph1) (ηmg5 + σm)

n1g2g4R2
v

İf

+
βfcfθp (ηmg5 + σm)

n1g4
Ṗ +

(ηmg5 + σm)

g4
Ėm + ˙Im,
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so that,

L̇ =
βfcf (ηfn1g2 + σfn1 + θpσfh1) (ηmg5 + σm)

n1g1g2g4R2
v

�
βmcf (ηmEm + Im)

Nm
[Sf + (1− εv)Vf ]− g1Ef

�

+
βfcf (n1 + θph1) (ηmg5 + σm)

n1g2g4R2
v

(σfEf − g2If ) +
βfcfθp (ηmg5 + σm)

n1g4
(h1If − n1P )

+
(ηmg5 + σm)

g4

�
βfcf (ηfEf + If + θpP )

Nm
Sm − g4Em

�
+ (σmEm − g5Im) .

Since Sf (t) + Vf (t) ≤ Nf (t) ≤
πf

µf
, Sm(t) ≤ Nm(t) ≤

πm
µm

for all t in D, and 0 < εv < 1, it

follows that

L̇ ≤

�
−
βfcf (ηfn1g2 + σfn1 + θpσfh1) (ηmg5 + σm)

n1g1g2g4R2
v

g1 +
βfcf (n1 + θph1) (ηmg5 + σm)

n1g2g4R2
v

σf

�
Ef

+

�
−
βfcf (n1 + θph1) (ηmg5 + σm)

n1g2g4R2
v

g2 +
βfcfθp (ηmg5 + σm)

n1g4
h1

�
If

+

�
−
βfcf (ηmg5 + σm)

g4
+

βfcf (ηmg5 + σm)

g4R2
v

�
(ηfEf + If )

+

�
−g5 +

βmc2fπfµm (ηmg5 + σm) (ηfn1g2 + σfn1 + σfθph1) (1− εvϕf )

n1g1g2g4πmµfR
2
v

�
(ηmEm + Im)

+

�
−
βfcfθp (ηmg5 + σm)

n1g4
n1 +

βfcfθp (ηmg5 + σm)

g4

�
P,
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L̇ =
ηfβfcf (ηmg5 + σm)

g4R2
v

�
R

2
v − 1

�
Ef +

βfcf (ηmg5 + σm) (n1 + θph1)

n1g4R2
v

�
R

2
v − 1

�
If

+ g5
�
R

2
v − 1

�
(ηmEm + Im) < 0 for R

2
v < 1.

Since all the model parameters are non-negative, it follows that L̇ < 0 if R2
v < 1. Hence,

it follows from the LaSalle’s Invariance Principle [59] that every solution of the vaccination

model (3.19), with ρf = ρm = 0 and initial conditions in D, converges to the DFE, EV
0 ,

as t → ∞. That is, (Ef (t), If (t), P (t), C(t), Em(t), Im(t)) → (0, 0, 0, 0, 0, 0) as t → ∞.

Substituting Ef = If = P = C = Im = Em = 0 in the first, second and ninth equations of

the vaccination model (3.19) gives Sf (t) → S∗
f , Vf (t) → V ∗

f and Sm(t) → S∗
m as t → ∞ for

Rv < 1. Thus,

lim
t→∞

(Sf (t), Vf (t), Ef (t), If (t), P (t), C(t), Rc(t), Rf (t), Sm(t), Em(t), Im(t), Rm(t)) = E
V
0 ,

so that, the DFE, EV
0 , of the vaccination model (3.19) is GAS in D whenever Rv < 1 and

ρf = ρm = 0.

157



Appendix G

Positivity of Rfl,Rml,Rfh and Rmh

Recall from Section 4.3.1 (with all the associated variables as defined in Section 4.3.1) that

Rfl =
βl
mcfπfµm

�
1− εvϕ

q
f

�
B1

µfπmD1D2D3
, Rfh =

βh
mcfπfµm

�
1− εv

�
ϕb
f + ϕq

f

��
(Q1 +Q2 +Q3)

µfπmD5D6Q4
,

Rml =
βl
fcf (1− εvϕq

m)B2

A1A2A3
, Rmh =

βh
f cf (1− εqϕq

m) (Q5 +Q6 +Q7)

A5A6Q8
.

The following steps are taken to prove that the quantities above are positive. It can be

shown that:

B1 = ηlmD3D2 + k1D3 + θlmk2k1 > 0,

Q1 = ηhm (D6D7D8D9 − k8j2D6D7 − k8k7j1D6)

= ηhmD6 (ωm + µm) (um + µm)
�
αh
m + µm

�

+ ηhmD6zmµm

�
αh
m + µm

�
+ ηhmD6dmumzm

�
αh
m + s2mµm

�
+ ηhmD6umzmµm (1− s2m)

+ ηhmD6umzm (1− dm)α
h
m

�
s1m

�
1− kh

m

�
+ kh

m (1− s2m)
�
> 0,
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Q2 = k5D7D8D9 − k5k8j2D7 − k5k7k8j1 = k5 (ωm + µm) (um + µm)
�
αh
m + µm

�

+ k5zmµm

�
αh
m + µm

�
+ k5dmumzm

�
αh
m + s2mµm

�
+ k5umzmµm (1− s2m)

+ k5umzm (1− dm)α
h
m

�
s1m

�
1− kh

m

�
+ kh

m (1− s2m)
�
> 0,

Q3 = θhm (k5k6D8D9 − k5k6k8j2)

= θhmk5k6 (ωm + µm) (um + µm) + θhmk5k6zmum (1− s2m)

+ θhmk5k6zm (dmums2m + µm) > 0,

Q4 = D7D8D9 − k8j2D7 − k7k8j1

= (ωm + µm) (um + µm)
�
αh
m + µm

�
+ zmµm

�
αh
m + µm

�

+ dmumzm
�
αh
m + s2mµm

�
+ umzmµm (1− s2m)

+ umzm (1− dm)α
h
m

�
s1m

�
1− kh

m

�
+ kh

m (1− s2m)
�
> 0,

B2 = ηlfA3A2 + b1A3 + θlfb2b1 > 0,

Q5 = ηhf (A6A7A8A9 − b8g2A6A7 − b8b7g1A6)

= ηhfA6 (ωf + µf ) (uf + µf )
�
αh
f + µf

�

+ ηhfA6zfµf

�
αh
f + µf

�
+ ηhfA6dfufzf

�
αh
f + s2fµf

�
+ ηhfA6ufzfµf (1− s2f )

+ ηhfA6ufzf (1− df )α
h
f

�
s1f

�
1− kh

f

�
+ kh

f (1− s2f )
�
> 0,
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Q6 = b5A7A8A9 − b5b8g2A7 − b5b7b8g1

= b5 (ωf + µf ) (uf + µf )
�
αh
f + µf

�

+ b5zfµf

�
αh
f + µf

�
+ b5dfufzf

�
αh
f + s2fµf

�
+ b5ufzfµf (1− s2f )

+ b5ufzf (1− df )α
h
f

�
s1f

�
1− kh

f

�
+ kh

f (1− s2f )
�
> 0,

Q7 = θhf (b5b6A8A9 − b5b6b8g2)

= θhf b5b6 (ωf + µf ) (uf + µf ) + θhf b5b6zfuf (1− s2f )

+ θhf b5b6zf (dfufs2f + µf ) > 0,

Q8 = A7A8A9 − b8g2A7 − b7b8g1

= (ωf + µf ) (uf + µf )
�
αh
f + µf

�
+ zfµf

�
αh
f + µf

�

+ dfufzf
�
αh
f + s2fµf

�
+ ufzfµf (1− s2f )

+ ufzf (1− df )α
h
f

�
s1f

�
1− kh

f

�
+ kh

f (1− s2f )
�
> 0.

Thus,

Rfl > 0, Rml > 0, Rfh > 0 and Rmh > 0.
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Appendix H

Coefficients of the Polynomial (4.42)

Y0 = b302a33 + a02a22b02b33 + b333a00 + b233b02a11 > 0,

Y1 = 2b22b33 (a00b33 + a11b02) + b233 (b22a00 − b02a0 + b01a11) + a02a22 (b02b22 + b01b33) + 2b202b01a33

+ b02b33 (b01a22 − b02a01) + b202 (b01a33 − b02a02) ,

Y2 = b202 (b0a33 − b01a02) + 2b02b01 (b01b33 − b02a02) + b02b33
�
2b0b02 + b201

�
+ b02b33 (b0a22 − b01a01)

+ a02a22 (b02b11 + b01b22 + b0b33) + (b02b22 + b01b33) (b01a22 − b02a01)

+
�
2b11b33 + b222

�
(a00b33 + a11b02) + 2b33b22 (b22a00 − b02a0 + b01a11)

+ b233 (b11a00 + b0a11 − b01a0) ,

Y3 = −b202b0a02 + 2b02b01 (b0a33 − b01a02) +
�
b02b0 + b201 + b0b02

�
(b01a33 − b02a02)− a01b0b02b33

+ 2b0b01b02a33 + a02a22 (b02b00 + b01b11 + b0b22) + 2b22b33 (a11b0 + a00b11 − b01a0)

+ (b01a22 − b02a01) (b02b11 + b01b22 + b0b33) + (a00b33 + a11b02) (2b33b00 + 2b22b11)

+ (b0a22 − b01a01) (b02b22 + b01b33) + (b22a00 − b02a0 + b01a11)
�
2b33b11 + b222

�

+ b233 (a00b00 − a0b0) ,
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Y4 = −2b0a02b02b01 +
�
2b0b02 + b201

�
(b0a33 − b01a02) + 2b0b01 (b01a33 − a02b02) + a02a22b01b00

+ a02a22b0b11 + (b01a22 − b02a01) (b02b00 + b01b11 + b0b22)− a01b0 (b02b22 + b01b33)

+ (b0a22 − b01a01) (b02b11 + b01b22 + b0b33) + (a00b33 + a11b02)
�
2b22b00 + b211

�

+ (b22a00 − a0b02) (2b22b11 + 2b33b00) + (a11b0 + a00b11 − b01a0)
�
2b11b33 + b222

�

+ 2b22b33 (a00b00 − a0b0) ,

Y5 = −2b0a02
�
2b0b02 + b201

�
+ b201 (b01a33 − a02b02) + 2b0b01 (b0a33 − b01a02) + 2b00b11a00b33

+ 2b00b11a11b02 + (b01a22 − b02a01) (b01b00 + b0b11)− a01b0 (b02b11 + b01b22 + b0b33)

+ (b22a00 − a0b02 + b01a11)
�
2b00b22 + b211

�
+ (b0a22 − b01a01) (b02b00 + b01b11 + b0b22)

+ (a11b0 + a00b11 − b01a0) (2b00b33 + 2b22b11) + (a00b00 − a0b0)
�
2b11b33 + b222

�
,

Y6 = −2b20b01a02 + b201 (b0a33 − b01a02) + b0b00 (b01a22 − b02a01) + (b0a22 − b01a01) (b01b00 + b0b11)

+ 2b00b11 (b22a00 − a0b02 + b01a11) + b200 (a00b33 + a11b02)− b20a01b00 − b01a0
�
2b22b00 + b211

�

+ (a11b0 + b11a00)
�
2b22b00 + b211

�
+ (a00b00 − a0b0) (2b33b00 + 2b22b11) ,

Y7 = −b0a02b
2
01 + b0b00 (b0a22 − b01a01)− a01b0 (b01b00 + b0b11) + 2b00b11 (a00b11 − b01a0 + a11b0)

+ b200 (b22a00 − a0b02 + b01a11) + (a00b00 − a0b0)
�
2b22b00 + b211

�
,

Y8 = −a01b
2
0b00 + b200 (a11b0 + a00b11 − a0b01) + 2b00b11 (a00b00 − a0b0) ,

Y9 = b300a00
�
1−

�
R

l
0

�2�
> 0

�
if R

l
0 < 1

�
.
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Appendix I

Proof of Theorem 4.4

Proof. The Centre Manifold Theory, as described in [14], will be used to prove Theorem 4.4.

It is convenient to use the change of variables:

Sf = x1, V q
f = x2, El

f = x3, I lf = x4, P l
f = x5, Wf = x6, Rf = x7, Sm = x8,

V q
m = x9, El

m = x10, I lm = x11, P l
m = x12, Wm = x13, Rm = x14. (I.1)

Let f̂ = [f1, ..., f14] denote the vector field of the low-risk-only model (4.37) in the notation

(I.1), so that the low-risk-only model (4.37) is re-written in the form:
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dx1

dt
= f1 = (1− ϕq

f )πf −
βl
mcfµmx11x1

πm
− µfx1,

dx2

dt
= f2 = ϕq

fπf − (1− εv)
βl
mcfµmx11x2

πm
− µfx2,

dx3

dt
= f3 =

�
x1 + (1− εv)x2 + ρlfx7

� βl
mcfµmx11

πm
− A1x3,

dx4

dt
= f4 = σl

fx3 − A2x4,

dx5

dt
= f5 = b2x4 − A3x5, (I.2)

dx6

dt
= f6 = b3x5 − A4x6,

dx7

dt
= f7 = m1x4 +m2x5 + nfx6 − ρlf

βl
mcfµmx11x7

πm
− µmx7,

dx8

dt
= f8 = (1− ϕq

m) πm −
βl
fcfµmx3x8

πm
− µmx8,

dx9

dt
= f9 = ϕq

mπm − (1− εv)
βl
fcfµmx3x9

πm
− µmx9,

dx10

dt
= f10 =

�
x8 + (1− εv)x9 + ρlmx14

� βl
fcfµmx3

πm
−D1x10,

dx11

dt
= f11 = σl

mx10 −D2x11,

dx12

dt
= f12 = k2x11 −D3x12,

dx13

dt
= f13 = k3x13 −D4x13,

dx14

dt
= f14 = m4x11 +m5x12 + nmx13 − ρlm

βl
fcfµmx3x14

πm
− µmx14,

where Ai, Di (i = 1, ..., 4), bj, kj (j = 1, ..., 3) and m1,m2,m4,m5 are defined in Sections

4.3.1 and 4.3.2.
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The Jacobian of the system (I.2) at the DFE (E l
0) is given by

J l(E l
0) =





−µf 0 0 0 0 0 0 0 0 0 −U1 0 0 0

0 −µf 0 0 0 0 0 0 0 0 −U2 0 0 0

0 0 U4 0 0 0 0 0 0 0 U3 0 0 0

0 0 σl
f U5 0 0 0 0 0 0 0 0 0 0

0 0 0 b2 U6 0 0 0 0 0 0 0 0 0

0 0 0 0 b3 U7 0 0 0 0 0 0 0 0

0 0 0 m1 m2 nf −µf 0 0 0 0 0 0 0

0 0 0 −U8 0 0 0 −µm 0 0 0 0 0 0

0 0 0 −U9 0 0 0 0 −µm 0 0 0 0 0

0 0 0 U10 0 0 0 0 0 U11 0 0 0 0

0 0 0 0 0 0 0 0 0 σl
m U12 0 0 0

0 0 0 0 0 0 0 0 0 0 k2 U13 0 0

0 0 0 0 0 0 0 0 0 0 0 k3 U14 0

0 0 0 0 0 0 0 0 0 0 m4 m5 nm −µm





,

where,

U1 =
βl
mcfπfµm

�
1− ϕq

f

�

µfπm
, U2 =

βl
mcfπfµmϕ

q
f (1− εv)

µfπm
, U3 =

βl
mcfπfµm

�
1− εqϕ

q
f

�

πm
,

U4 = −A1, U5 = −A2, U6 = −A3, U7 = −A4, U8 = β∗cf (1− ϕq
m) ,

U9 = β∗cfϕ
q
m (1− εv) , U10 = β∗cf (1− εvϕ

q
m) , U11 = −D1, U12 = −D2,

U13 = −D3, U14 = −D4.

Consider the case when Rl
0 = 1. Suppose, further, that βl

f is chosen as a bifurcation

parameter. Solving for βl
f from Rl

0 = 1 gives

βl
f = β∗ =

A1A2D1D2πmµf

βl
mc

2
fπfµm

�
1− εvϕ

q
f

�
(1− εvϕ

q
m) k1b1

. (I.3)
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Here, too, the transformed system, (I.2) with βl
f = β∗, has a hyperbolic equilibrium point.

Eigenvectors of J l(E l
0) |βl

f=β∗:

It can be shown that the Jacobian of (I.2) at βl
f = β∗ (denoted by J l

β∗) has a left eigenvector

(associated with the zero eigenvalue) given by,

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14]
T ,

with,

v1 = 0, v2 = 0, v3 =
σl
fv4
A1

, v4 =
β∗cf (1− εvϕq

m) v10
A2

, v5 = 0, v6 = 0, v7 = 0, v8 = 0,

v9 = 0, v10 = v10 > 0, v11 =
βl
mcfµmπf

�
1− εvϕ

q
f

�
v3

D2πmµf
, v12 = 0, v13 = 0, v14 = 0.

Furthermore, the matrix J l
β∗ has a right eigenvector (associated with the zero eigenvalue)

given by,

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14]
T ,

where,

w1 = −
βl
mcfµmπf

�
1− ϕq

f

�
w11

µ2
fπm

, w2 = −
βl
mcfµmπf (1− εv)ϕ

q
fw11

πmµ2
f

,

w3 =
βl
mcfµmπf

�
1− εvϕ

q
f

�
w11

A1πmµf
, w4 =

σl
fw3

A2
, w5 =

b2w4

A3
, w6 =

b3w5

A4
,

w7 =
m1w4 +m2w5 + nfw6

µf
, w8 = −

β∗cf (1− ϕq
m)w4

µm
,

w9 = −
β∗cf (1− εv)ϕq

mw4

µm
, w10 = w10 > 0, w11 =

σl
mw10

D2
, w12 =

k2w11

D3
,

w13 =
k3w12

D4
, w14 =

m4w11 +m5w12 + nmw13

µm
.

Thus, using Theorem 2.8, the bifurcation coefficients, a and b, can be computed.
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Computations of bifurcation coefficients, a and b:

It can be shown, by computing the non-zero partial derivatives of the model (I.2) at the

DFE (E l
0) and simplifying, that

a =
14�

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0) =

2cf
µ2
fπ

2
m

(M11 −M22) , (I.4)

and,

b =
14�

k,i=1

vkwi
∂2fk

∂xi∂β∗ (0, 0) = cfv10w4 (1− εvϕ
q
m) > 0.

where,

M11 = v3w7w11ρ
l
fβ

l
mµmµ

2
fπm + v10w4w14ρ

l
mβ

∗µmµ
2
fπm + v3w

2
11β

l
mµ

2
mπfµfεvϕ

q
f

+ v3w4w11β
∗cfβ

l
mµmπfµf

�
1− εvϕ

q
f

�
+ v3w

2
11β

l2

mcfµ
2
mπfεvϕ

q
f (2− εv) ,

M22 = v3w
2
11β

l2

mcfµ
2
mπf + v3w

2
11β

l
mµ

2
mπfµf + v3w4w11β

∗cfβ
l
mµmπfµfϕ

q
mεv

�
1− εvϕ

q
f

�

+ v3w10w11β
l
mµ

2
mπfµf

�
1− εvϕ

q
f

�
+ v3w11w12β

l
mµ

2
mπfµf

�
1− εvϕ

q
f

�

+ v3w11w13β
l
mµ

2
mπfµf

�
1− εvϕ

q
f

�
+ v3w11w14β

l
mµ

2
mπfµf

�
1− εvϕ

q
f

�

+ v10w
2
4β

∗2cfπmµ
2
fϕ

q
mε

2
v (1− ϕq

m) + v10w4w10β
∗πmµ

2
fµm (1− εvϕ

q
m)

+ v10w4w11β
∗πmµ

2
fµm (1− εvϕ

q
m) + v10w4w12β

∗πmµ
2
fµm (1− εvϕ

q
m)

+ v10w4w13β
∗πmµ

2
fµm (1− εvϕ

q
m) + v10w4w14β

∗πmµ
2
fµm (1− εvϕ

q
m) .

Thus, the result below follows from Theorem 2.8.

Theorem I.1. The transformed model (I.2) (or, equivalently, the model (4.37)) undergoes

a backward bifurcation at Rl
0 = 1 if the bifurcation coefficient a, given by (I.4), is positive.
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It is clear from the expression for the bifurcation coefficient, a, given by (I.4), that a > 0

whenever (since all the low-risk-only model parameters are positive)

M11 > M22. (I.5)

Furthermore, consider the low-risk-only model (4.37) in the absence of re-infection (ρlf =

ρlm = 0). Setting ρlf = ρlm = 0 into the expression for the bifurcation coefficient, a in (I.4),

and using β∗ for βl
f in (I.3), shows that (here, the eigenvectors v10 and w10 are given the

value unity)
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a = −
2
�
σl
m + µm

�

µfπm (ψl
m + µm)

�
1− εvϕ

q
f

�2
�
εvσ

l
mϕ

q
fψ

l
mµm

�
2− εvϕ

q
f

�
+ εvσ

l
mϕ

q
fµ

2
m

�
2− εvϕ

q
f

��

−
2
�
σl
m + µm

�

µfπm (ψl
m + µm)

�
1− εvϕ

q
f

�2
�
εvσ

l2

mϕ
q
f

�
ψl
m + µm

� �
2− εvϕ

q
f

�
+ µfµmσ

l2

m

�
1− εvϕ

q
f

��

−
2µmσl

m

�
σl
m + µm

�
(nm + µm)ψl

m

πmµf (ψl
m + µm) (αl

m + µm) (nm + µm)

�
rlm

�
αl
m + µm

�
+ kl

mα
l
m

�
1− rlm

��

−
2µmσl

m

�
σl
m + µm

�

πmµf (ψl
m + µm) (αl

m + µm) (nm + µm)

�
nm

�
1− rlm

�
ψl
m

�
1− kl

m

�
αl
m

�

−
2
�
σl
m + µm

�

µfπm (ψl
m + µm)

�
1− εvϕ

q
f

�2
�
µfµmσ

l
mψ

l
m

�
1− εvϕ

q
f

�
+ µfσ

l2

mψ
l
m

�
1− εvϕ

q
f

��

−
2
�
σl
m + µm

�

µfπm (ψl
m + µm)

�
1− εvϕ

q
f

�2
�
βl
mµmσ

l2

mcf
�
1− εvϕ

q
f

�
+ µfµ

2
mσ

l
m

�
1− εvϕ

q
f

�2�

−
2σl

mϕ
q
mεv

�
σl
m + µm

�2
(1− ϕq

m)

πmµ2
f (1− εvϕ

q
m)

2 −
2µmσl

m

�
σl
m + µm

�

πmµf

�
1 +

1

(ψl
m + µm)

�

−
2µmσl

m

�
σl
m + µm

� �
1− rlm

�
ψl
m

πmµf (ψl
m + µm) (αl

m + µm)

�
1 +

�
1− kl

m

�
αl
m

(nm + µm)

�
< 0. (I.6)

It should be stated that, in (I.6), 0 ≤ εv, ϕ
q
f , ϕ

q
m ≤ 1. Hence, it follows from (I.6), that the

bifurcation coefficient, a < 0, for the low-risk-only model (4.37) with ρlf = ρlm = 0. Thus, it

follows from Item (iv) of Theorem 2.8 that the low-risk-only model (4.37) does not undergo

backward bifurcation in the absence of re-infection.
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Appendix J

Proof of Theorem 4.6

Proof. Consider the model (4.34) with ρlf = ρlm = ρhf = ρhm = δm = 0. The proof is based

on using a Comparison Theorem. The equations for the infected components of the model

(4.34) can be written as (it should be mentioned that system (J.1) satisfies the Type K

condition discussed in Chapter 2):
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d

dt





El
f (t)

I lf (t)

P l
f (t)

W l
f (t)

Eh
f (t)

Ihf (t)

P h
f (t)

Gfl(t)

Gfh(t)

Cc
f (t)

El
m(t)

I lm(t)

P l
m(t)

Wm(t)

Eh
m(t)

Ihm(t)

P h
m(t)

Gml(t)

Gmh(t)

Cr
m(t)





= (Fr −Hr)





El
f (t)

I lf (t)

P l
f (t)

W l
f (t)

Eh
f (t)

Ihf (t)

P h
f (t)

Gfl(t)

Gfh(t)

Cc
f (t)

El
m(t)

I lm(t)

P l
m(t)

Wm(t)

Eh
m(t)

Ihm(t)

P h
m(t)

Gml(t)

Gmh(t)

Cr
m(t)





− Jr





El
f (t)

I lf (t)

P l
f (t)

W l
f (t)

Eh
f (t)

Ihf (t)

P h
f (t)

Gfl(t)

Gfh(t)

Cc
f (t)

El
m(t)

I lm(t)

P l
m(t)

Wm(t)

Eh
m(t)

Ihm(t)

P h
m(t)

Gml(t)

Gmh(t)

Cr
m(t)





, (J.1)

where the matrices Fr and Hr are as defined in Section 4.3.1, and
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Jr =

�
S∗
f + V b∗

f + (1− εv)V
q∗

f

N∗
m

−
Sf + V q

f + (1− εv)V
q
f

N∗
m

�
J1r

+

�
S∗
f + (1− εv)V b∗

f + (1− εv)V
q∗

f

N∗
m

−
Sf + (1− εv)V

q
f + (1− εv)V

q
f

N∗
m

�
J2r

+

�
S∗
m + (1− εv)V q∗

m

N∗
m

−
Sm + (1− εv)V q

m

N∗
m

�
(J3r + J4r) ,

where,

J1r =




010×10 J1

010×10 010×10



 , J2r =




010×10 J2

010×10 010×10



 ,

J3r =




010×10 010×10

J3 010×10



 and J4r =




010×10 010×10

J4 010×10



 ,

with,

J1 =





βl
mcfη

l
m βl

mcf βl
mcfθ

l
m 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





,
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J2 =





0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 βh
mcfη

h
m βh

mcf βh
mcfθ

h
m 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





,

J3 =





βl
fcfη

l
f βl

fcf βl
fcfθ

l
f 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





,

and,
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J4 =





0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 βh
f cfη

h
f βh

f cf βh
f cfθ

h
f 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





.

It should be noted that J1r,J2r,J3r, and J4r, are non-negative matrices. Furthermore, since

Sf (t) ≤ S∗
f (t), V b

f (t) ≤ V b∗

f (t), V q
f (t) ≤ V q∗

f (t),

and,

Sm(t) ≤ S∗
m(t), V q

m(t) ≤ V q∗

m (t),

(for all t ≥ 0 in D∗
r ), the matrix Jr is non-negative. Thus, it follows from (J.1) that
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d

dt





El
f (t)

I lf (t)

P l
f (t)

W l
f (t)

Eh
f (t)

Ihf (t)

P h
f (t)

Gfl(t)

Gfh(t)

Cc
f (t)

El
m(t)

I lm(t)

P l
m(t)

Wm(t)

Eh
m(t)

Ihm(t)

P h
m(t)

Gml(t)

Gmh(t)

Cr
m(t)





≤ (Fr −Hr)





El
f (t)

I lf (t)

P l
f (t)

W l
f (t)

Eh
f (t)

Ihf (t)

P h
f (t)

Gfl(t)

Gfh(t)

Cc
f (t)

El
m(t)

I lm(t)

P l
m(t)

Wm(t)

Eh
m(t)

Ihm(t)

P h
m(t)

Gml(t)

Gmh(t)

Cr
m(t)





. (J.2)

Using the fact that the eigenvalues of the matrix Fr − Hr all have negative real parts (see

local stability result in Section 4.3.1, where ρ(FrH
−1
r ) < 1 if Rr

01 < 1, which is equivalent

to Fr − Hr having eigenvalues with negative real parts when Rr
01 < 1), it follows that the

linearized differential inequality system (J.2) is stable whenever Rr
01 < 1. Thus, it follows,
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by Comparison Theorem [58] (see also Theorem 2.10), that

lim
t→∞

(El
f (t), I

l
f (t), P

l
f (t),W

l
f (t), E

h
f (t), I

h
f (t), P

h
f (t), Gfl(t), Gfh(t), C

c
f (t), E

l
m(t),

I lm(t), P
l
m(t),Wm(t), E

h
m(t), I

h
m(t), P

h
m(t), Gml(t), Gmh(t), C

r
m(t))

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Substituting El
f = I lf = P l

f =W l
f = Eh

f = Ihf = P h
f =Gfl = Gfh = Cc

f = El
m=I lm = P l

m =

Wm =Eh
m = Ihm = P h

m = Gml = Gmh = Cr
m = 0 into the equations of the model (4.34)

gives Sf (t) → S∗
f , V

b
f (t) → V b∗

f , V q
f (t) → V q∗

f , Sm(t) → S∗
m and V q

m(t) → V q∗
m , as t → ∞ for

Rr
01 < 1. Thus,

lim
t→∞

(Sf (t), V
b
f (t), V

q
f (t), E

l
f (t), I

l
f (t), P

l
f (t),W

l
f (t), E

h
f (t), I

h
f (t), P

h
f (t), Gfl(t),

Gfh(t), C
c
f (t), Sm(t), V

q
m(t), E

l
m(t), I

l
m(t), P

l
m(t),Wm(t), E

h
m(t),

Ihm(t), P
h
m(t), Gml(t), Gmh(t), C

r
m(t)) = E

r
0 ,

so that the DFE, Er
0 , of the model (4.34) is GAS in D∗

r whenever Rr
01 < 1.
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