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ABSTRACT
In this thesis an attempt has been made to investigate the problem
of pooling of means of two independent random samples from Poisson

populations with parameters Al and A, respectively, where it is

2

suspected, but not known with certainty, that XE = Kl. Estimators
of Al have been obtained using the following three approaches:

1. Non-Bayesian Approach

2. BSemi-Bayesian Approach

3. Empirical Bayes Approach.

Restricting to the case of equal sample sizes we first consider
the non-Bayesian approach which is a generalization of the preliminary
test of significance (PTS) procedure first suggested by Huntsberger

(1955). Following Huntsberger we use a weight function ¢(S., S

1° 2)

to obtain an estimator of A. given by

1
T(Sl, 32) =0 if 8, =0,8,=0
s. (82 + 36°
N 2 .
= —5- —————————75 otherwise
(Sl + Sg)

where Sl and 32 are the respective sample totals, and m the common

sample size.

The expected value and variance of T(S S both exact and

l) 2)9

asymptotic, have been evaluated. The computer results on the asymp-~

S,) indicated that there is close agreement

totic relative bias of T(Sl’ o

between the exact and asymptotic formulae. The asymptotic relative
S

efficiency (ARE) of T(Sl, 82) with respect to x = -i-, defined as




Al/m

€ = Tsymptotic MSE[T(S + 1007

Al

TR

l)

has been computed for the values of A, = 0.5 (0.1) 1.0, Xg = .5 (.1)

1
1.0 and m = 10, 12, 14, 16, 18, 20, 25, 30. It is observed that

except for a small region of the values of Al and Kg, there is g

gain in efficiency. For all the values of Xl and AQ where Al = Kg

the ARE is 200%.

Next we discuss the semi-Bayesian approach to the problem. A

o

M

the parameter of the second population. Two different models with

prior gamma distribution G( , o) where a is known, is assumed for
examples have been considered. It is found that the asymptotic
variance of the maximum likelihood estimator in both the cases is
smaller than the exact variance of x, the mean of the first sample.
Here we also derive an estimator on the basis of the best unbiased
linear combination where the weights are estimated from the first
sample, as 1t has smaller variance than that of the second sample.
However, we find that in neither of the two situations considered
does it give any improvement over the maximum likelihood estimator.
Finally we deal with the case where o is assumed unknown.
Following empirical Bayes approach it is assumed that past experience
for estimating o is available. Because of the various complexities
involved with this procedure, only a partial solution has been éiven.
The procedure for estimating o has been discussed and the empirical

Bayes estimators of Al for the two cases have been obtained.
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CHAPTER I

INTRODUCTION AND SUMMARY

1.1 Review of Literature.

The problem of pooling of means of two independent random samples
from normal populations has been studied in the past by various authors,
namely Mosteller (1948), Bennett (1952), Graybill and Deal (1959),
Kitagawa (1963), Zacks (1966) and Kale and Bancroft (1967), to mention
a few. The first attempt to explore the same problem for discrete
populations(in particular Poisson and Binomial) was made by Kale and
Bancroft (1967). They used the square root transformation for the
Poisson case and the arcsine transformation for the Binomial case
and transformed the corresponding problem for the discrete distributions
to the problem of pooling of two sample means from the normal popu-
lations with known variances.

Kale and Bancroft developed the theory for the following problem:

Y .Y

There are two independent random samples (Y 1n ) and

1
. 2 2 .
(YQl’ Y22""’Y2n2) available from N(ul, ¢”) and N(pz, 0" ) respectively,

11’ 12t

2

0 being known. It is suspected, but not known with certainty, that

My The problem is how to use this prior information in estimating
They approached this problem through the "Theory of Incompletely

Specified Models" as outlined by Bancroft (196L4). [An extensive bibli-

ography of the papers in this area is given in the paper by Bancroft (1972)].




Using a preliminary test of significance of size a to test ul = u2,

against My # Moo they proposed the following estimator for ul:

*

X =X if 2] > g o,

e T -

N n, +n it |ZI < gaGZ

- - o 21 1 o _
where 7Z = X, - X,, Oy =0 (E—- =) and £, is given by 1 - ¢(£a) = a/2,

n
1 2
¢ being the cumulative distribution function of a N(O, 1) variable.

The bias and mean squared error (MSE) of i* were studied and the
regions in the parameter space in which E* has smaller mean squared
error than the usual estimator il’ the mean of the first sample, were
investigated. They also discussed the test of the hypothesis My TR,
subsequent to the preliminary test of significance (PTS) and studied
its size and power.

Mosteller (1948) in his paper on "Pooling Data', which seems to
be the first significant work on the subject of pooling of means as
such, has also discussed this problem. Besides making a brief study
of this problem, based on the test of significance of the null hypothesis
= Uy he suggested a Bayes approach to the problem. He assumed a

prior distribution, namely, N(O, aeoz), 22a° known, for the difference

My

d = -, which is equivalent to assuming that 1, has a N(ul, a262)

distribution. Using the method of maximum likelihood, he derived the

estimator:
.~ _%(ma® +1) + 7
M 2

na + 2




for the case where the two samples are of equal size. The mean squared
error (MSE) of this estimator is:

2

~ ) = o 1+ na2
M n )

D2(

2 + na
In fact, ﬁl is the best linear unbiased estimator of ul. These results
can be generalized to the case of unequal sample sizes. Compared to
the estimator E* of Kale and Bancroft (1967), Mosteller's has uniformly
smaller MSE than that of x.

Zacks (1966) considered the problem of pooling of two sample means
in a slightly different situation. There are two independent random
samples of equal size from N(u, 0?), (i =1, 2). The problem is to
estimate the common mean u, the variance ratio p = 02/02, being unknown.
As in most of the works by various authors in this area, Zacks also
used a preliminary test of significance to derive his '"Class of
Estimators" but in the closing section of his paper he suggests the
use of Bayesian approach, i.e., assuming a prior distribution of ¢
values, to investigate the problem. It may be noted that Graybill
and Deal (1959) have also proposed a solution to the same problem by
estimating p.

A very detailed investigation of the problem of pooling of sample

means from two normal populations with same variance but different

means, suspected to be close to each other, was made by Bruner (1967).
Instead of using a preliminary test of significance, an empirical
Bayes approach was used. Bruner studied the problem under the following

two models:



Model TI: (x., X

15 X ) and (Y., Y.,...,Y ) are two independent

1?2 "2°"""°"n
1 5

random samples from normal populations N(ul, o”) and N(ug, 02) re—~

YRR

spectively, 02 being known. The mean of the first population, ul
is taken as fixed but unknown. The mean of the second population,
u2 itself is assumed to be normally distributed with mean ul and

. 22 2 .,
variance a ¢ where a 1is unknown.

Model IT: In this model, the first sample is the same as in the first
model but each member Yj of the set of observations (Yl, Y2,...,Yn )
2

from the second population is assumed to be normally distributed

with mean “gj and known variance 02, where ugj’ Jg =1, 2,...,n2, is

a random sample from a normal population with mean My and variance ago
where a2 is unknown.

Using the empirical Bayes method and thus assuming that there is
some past experience available, the prior distribution of Uy, OT moTe
specifically the parameter a2, was estimated. Bruner derived the
estimators for these two models and obtained exact expressions for
their MSE.

These MSE'$ were then compared with that of X, the mean of the
first sample and under the first model it was shown that if the past
experience consists of more than 10 samples from the second population
then the empirical Bayes approach produces a better estimator (smaller
MSE) than x and the same is true for model II if the size of the second
sample n,. > 10.

2
1.2 Problem and Summary of Results

In this thesis we will consider the problem of pooling of sample
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means from two Poisson populations with parameters Al and Ag respectively.

It is suspected, but not known with certainty, that Al = kg. The

problem is to estimate Xl using this prior information on A Solutions

X
to this problem have been obtained using the following three approaches:
1. DNon-Bayesian Approach
2. Bemi-Bayesian Approach
3. Empirical Bayes Approach.

The models for which these three approaches have been used are
described below. A brief summary of the results obtained is also

presented.

Non-Bayesian Approach: We restrict ourselves to the case when two

sample sizes are equal and consider the following situation:

There are two independent random samples (X X .,Xm) and

oo
) and P(x

l?

(Yl’ Y2,...,Ym) available from Poisson populations P(A:L 2)

respectively, the problem being that of estimating Al when it is

suspected that Ag = Kl.

Following Huntsberger (1955) we congider a welght function

¢(Sl, 82) such that O < ¢(Sl, 82) < 1 and construct estimator of
the type
5 S.+5
- s 1 2
m m
where 3. = L X, and S, = I Y..
1 . i 2 A |
i=1l i=1

For particular choice of
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S
_ P N S |
¢(sl, 32) =1 if Sl 5, - 31 < cu

0 otherwise

i

where Ca is a constant, a being the level of significance of the PTS,

we get estimators obtained by using the PTS approach. However, in
this thesis we consider only the "continuous'" weight functions which
do not correspond to any estimator based on PTS.

The estimator derived using this approach is:

T(Sl, 82) =0 if 8, = 0 and §, = 0
5 82 + 352
1 1 2 R
e otherwise.
(Sl+52)
The exact and asymptotic expected value and variance of T(Sl, 82) have

also been obtained in Chapter II.
Some computer results on the asymptotic relative efficiency of
T(Sl, 82) with respect to x, the mean of the first sample, for sample

sizes 10 (2) 20 (5) 30 and for pairs (i Az) vhere A, = .5 (.1) 1.0

lﬂ
and Ag = .5 (.1) 1.0 have been obtained. It is observed that except

for a small region of the values of Al and A there is a gain in

2)

efficiency. It is also found that for all those pairs of values of

Al and Ag in which Al = AQ,

is 200%. We note that T(S

the asymptotic relative efficiency (ARE)
Sl+s
1 82) is as efficient as pwangP which is

the UMVUE of the common mean XA, = A

1 2°

Keeping in view the close theoretical connection between the

Bayesian and empirical Bayes procedures we present a combined des-
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cription of the models for which these have been used and give examples
in each case.

Bayesian and Empirical Bayes Approach

Model T Xl’ X2""’Xm is a random sample from a Poisson population
with parameter Kl which is taken as fixed but unknown. Yl’ Y2,...,Yn is

a second random sample from a Poisson population with parameter Ag.
We formalize the prior information "Ag is suspected to be close to Xl"
by assuming that the ratio 9§ = AE/Al has a gamma distribution

G(a, p) defined by

=& 0Pl 50
such that E(6) = 1. This is equivalent to assuming that the parameter
AQ of the second population follows a gamma distribution G(%—-, a).

1
We discuss the problem of estimating the mean of the first popu-

lation Xl, in both the cases (i) a known and (ii) o unknown. Assuming
o to be known is similar to following Mosteller's approach (Bayesian)

for normal populations where My = M is assigned a known prior dis-

1
tribution. 1In the case when o is assumed unknown, we use empirical
Bayes approach according to which it is assumed that there is some
past experience on the basis of which the prior distribution of A

2

can be estimated. This past experience comprises p samples

Yll’ YlQ""’Yln
Y21’ Y22""°Y2n
Y

10 Yopore Yoy

of size n each.
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As an example of this model we may consider the following:

A random sample X, , X .,Xm from a population of bacterial

PERE

colonies is available from an experiment. The number of bacterial
colonies is assumed to follow a Poisson distribution with parameter

A;. Another sample Y Y

1 ’Yn is available from a second popu-—

12 Tosees

lation similar to the first one from another experiment. We assume
that the second population of bacterial colonies follows a Poisson
distributuion with parameter A2 where it 1s suspected that Ag is

equal to Al. We further assume that the ratio 6 = AE/Xl follows a
gamma distribution G(a, p) such that E(6) = 1. This is equivalent

to assuming that A, has a G(%—-, ®). Previous p samples of size n
1
each constitute the past experience for the estimation of the prior

distribution of A, or more specifically of a.

2

Model II X X

) seee,X 1s a random sample from a Poisson distribution
1 2 m

with parameter Al where Al is fixed but unknown — similar to the first

model. We have another sample Y., ¥ .,Yn from a second population

LR

but in this model, instead of assuming a Poisson distribution with

parameter A, for each member of the second sample as is the case in

2
the first model, we assume that each Yj follows a Poisson distribution

with parameter A2j’ (3 =1, 2,...,n). Tt is further assumed that

62j = Agj/kl, (3 =1, 2,...,n) are i.i.d. variates G(a, p) such that

n

E(egj) = 1. This assumption amounts to saying that {X2j}j=l are
i.i.4. G(%— , ).
1

It may be noted here that a situation very similar to the structure

of the second sample for this model has been considered by Bates and




1k,

Neyman (1952).

As in the first model here also we consider both cases: o known
and o unknown. It may be noted that this model is the same as the
model I with the past experience. Here the past experience is con-
stituted by the second sample itself. Thus we may consider

n ..
. are i.i.d.

n . .
{YEj}j=l as n samples of size one each. Since {Y =1

2J
G(z— , o) we can estimate o from this set of observations alone.

As an example of this model we consider the following case which
has been described by Arbous and Kerrich (1951).

We have for the current year a random sample X ) X2,...,Xm from
a population of accidents assumed to follow a Poisson distribution
with parameter kl. Also available is another sample from a similar
population for the preceding year. We can conceive that the second
population is non-homogeneous with regard to the accident proneness

of its members. Thus it can be assumed that each Yj of the second

sample comes from a Poisson population with parameter Agj’ (5 =1,

2,...,n). It is further assumed that ezj = Agj/kl follows a gamma

distribution G(a, p) such that E(egj) = 1, or equivalently, Agj has

a G(%—-, a). We note that here as contrasted with model I, we can
1

estimate o from the second sample itself and therefore no past
experience is necessary.

The case of o known for both the models I and IT has been dis-
cussed in Chapter III. It is shown here that the maximum likelihood
estimator of kl in both the cases has asymptotically smaller MSE

than that of either x or y alone, where x and y denote the mean of
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the first and second samples respectively. We also show that a
weighted combination u = wli + w2§ does not lead to a better (smaller
MSE) estimation procedure. This should be contrasted with the results
of Graybill and Deal (1959) for the normal populations with common
mean but unequal variances where they proved that the estimator of
the common mean obtained on the bagis of the weighted combination is
uniformally better than either x or y if nl and n, are both larger
than 10.

The case of o unknown for both the models, where we use the
empirical Bayes procedure, is presented in Chapter IV. Because of
various complexities involved with this procedure, only a partial
solution to the problem has been given. We obtain an estimate of
o for model T with past experience and for model II without any

additional past experience. We use this estimator of o to obtain

empirical Bayes estimator of Al.
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CHAPTER IT

NONBAYESIAN APPROACH

2.1 Introduction

In this chapter we consider the problem of pooling of means
from two samples of equal size from the Poisson populations with
parameters Al and AZ and it is suspected that Al = Xg' We derive
an estimator of Al by using the approach of Huntsberger (1955).
Huntsberger's approach is a generalization of preliminary test of
significance (PTS) approach and does not use any prior distribution

for the parameter Xe. If one were to use a PTS approach the new

*
estimator T would be

S s s
® O 1 1
T ==, < C. (a) or ———>C.(a)
m 5 +5, 1 5 +5, 2
S. + 8 s
P15 1
om ¢ (a) < 5+ 5, < Cyla)

where Cl(a) and Cg(a) are constants and a is the level of PTS. Sl

and 82 are defined as before. In view of the symmetry of the problem

Cl(a) and Cg(u) are symmetric around l-, i.e., C

5 (o) + Cg(a) =1,

1

%
We now consider the generalization of T by a weight function

S
o
1 72
S ) S S, +8
1 1 1 1 2
T,(5,, 85) = [1 - $(z—2)] = + [ )]
6 "1 5 +8," m 5+ 5, om
vhere 0 < ¢(u) < 1. Note that ¢(u) = 0 corresponds to never pool

procedure while ¢(u) = 1 corresponds to always pool procedure and
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¢(u) = 1 for Cl(a) <u< Cz(u) and zero otherwise corresponds to the

sometimes pool procedure where the PTS is carried at level q.

2.2 Selection of Weight Function ¢

We want to select a weight function ¢ defined over O <u<il
such that

(a) 0<¢(u) <1

(b) ¢(%J =1 and ¢{u) >0 as u~0and u~>1

(¢) ¢(u) is symmetric around u = %

(d) ¢(u) is differentiable everywhere.

We further want ¢ to be a fairly simple function. (d) rules out
PTS estimators or linear functions of u. The simplest quadratic function
of u that satisfies the four conditions mentioned above is

¢(u) = bu(l -~ u), 0 <u < 1. For this weight function, the resulting

estimator is

T(Sl, Sg) =0 if 8, = 0 and 8, =0
g Se . 382 (2.2.1)
717 2 .
= —57 -——————75 otherwise
(Sl+82)

2.3 Exact Bias and MSE of T(Sl’ 82)

We have from (2.2.1)

S 2 -
E[T(S,, s.)] = E =+ _ Slsg(sl Szj_
12 72 m )2

m(Sl + 82

]
>
I
=
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as Sl and 82 have Poisson distributionsP(mkl) and P(mkg) respectively.

Thus we can rewrite as

2s.,8,(s, -8,)
E[T(S,, 8,)] = A, - E [E L2 1 2 S, +8,=t%
1 2 1 £ s (S. + 8 >2 1 2
1 SRS T
5 Sl(t - 81)(281 - t)
= A, -~ =% |E S, +5, =1t
1 m 2 1 2
t |8 t
1
(2.3.1)
Since the conditional distribution of S1 given Sl + 82 =t 1s a binomial
mA A
. . . . _ _ 1 - 1 ..
distribution with n = t and p = N w e  al (2.3.1) is:
1 2 1 2
t 8,(t -8 )(2s, - 1)
2 1 1 t
BlT(s,, 8,01 =2 - 2B | 3 — ()
t |8,=0 t 1
1
( Al )Sl( AQ )t—Sl
Al + AQ Al + A2
t S, t-8
= -28 |1 L (382 - %3 253y (& )p lq 1
1 m — 1 1 1°°8
t t2 Sl=0 1

(2.3.2)
On substitution of the first three raw moments of the binomial distri-
bution B(t, p) in (2.3.2), we get
)

- 2 | 43 2
E[T(8,, 8,)] = Ao f [;2 {t7(-p + 3p” - 2p

+ t2(3p - 9p2 + 6po) + t(-2p + 6p° - hp3);]

= - 53- % plt) + %% % tp(t) + Eﬁ- z %—p(t), (2.3.3)
t=1 t=1 t=1
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where
A, = A)
p)
A=p-3p° 4 opo = L2 é
(xl + AZ)
and
—m{ A, 4+A )
P mOy +an®
p(t) = T , b =0, 1, 2,....,m.

After simplifying (2.3.3) a little further we find that
A AL (A, = L)

E[T(S,, S.)] = A, - —=2 L 2
1° P2 1 n(n + )3
1 o
—m(A1+A2)
{m(kl + Az) - 3[1 - e 1}
WA (L = An) —m( A, +A,)
SRS Sl § {1 -e 12 }E(X‘l) (2.3.4)
m()\:L + Ag)
where X has a Poisson distribution P(m)\l + mkz) truncated at zero.
Thus the bias of the estimator T(Sl, sg) is
22X A (A, = AL) ~m{A_+X_)
B(T) = - —=2-L 2 {Em(k +2)-3[1-e T 273
a(r + )3 1 2
1 2
-m(A,+X,.)
+2{1 - e 12 }E(X‘l{]. (2.3.5)

Now for variance of T(S Sg), we evaluate first

l)

— )
5 5, 28182(81 - 825'
E[T(s,, 8.)]° = E|l—= -
1 2 m m(S +s )2
B 1 )
2 1s22(s. - 5.2 us?P(s. - s)
1 172471 o 1°2'°1 2
=BlZt L~ % >
.T m (Sl + 82) m (Sl + 82)



20.

2.2 p)
A 8-87(s. - 8.)
N N S 172'71 " P2 IS s =1
1 m m2 t s (s. + 8 )u 1 2
1 1 2
)
b 5155(8, - 8) .
-5 EE " 5, +8,=t
m t sl (sl + 82)
A
- L 2 3.3 2.k 5 6 _
=Al+ =+ =EE [{t s] - 6t 8, + 13t7s] - 12t8] + usl}lsl +8, = t]
m t S
h ths2 + 3t3s3 - 2t28h
-5 EE -5 1 1 ’S i s =t
mo % Sl th 1 2
A A A A
.2, 4 2 L U5 76
"Al+m+2E[Alt +A2t+A3+t+ +3_J (2.3.6)
m t t t
where t has P(mkl + m)\e) truncated at zero and
X
_ 1 k4 3 2.2 3 k4
Al = z [Elkl + 26A1A2 + 2TALA, + 8Alk2 + zxg],
(A, +2.)
12
A = -——i;——-[sxhx 132332 + 21253 19 Ah + 222]
2 - 6 1%2 ~ 1%2 12 7 1%2 ol
(A1+A2)
A, = -——3;———-[56Ahx - 83A3A2 + 150x2A3 87x Ah + 9A5]
37 6 1% 1% 1% ~ 1% 2
(A1+A2)
A = ~——15——— [15xhx 2102522 + 450023 - 2102 xh + 15A5]
L 6 12 7 12 12 7 1%2 2
(A1+A2)
A_ = ——3;——-—-[12Ahx 232 + 58hA2A3 - 24k Ah + 12x5]
5 © 6 172 7 1%2 1%2 12 PRl
(A1+A2)
and
by
_ 1 b 3.2 2.3 h 5
Ag = z [Alke - 26A1A2 + 66A1A2 - 26Alx2 + xe].

(kl+A2)
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Further calculations give

A
2 _ 2. M
E[T(Sl, 82)] = Al o
L 2 2
+ . —m(Al+A2) [%l{l +m (Al+k2) o+ mAz(Al+A2) + A3
m {l-e }
—m(Al+A2)
- e {Al{l + m(xl+x2)} + mAe(Al+K2) + 2A3}
=2m( A +x.)
+A3e 1 2]
—m( A +A )
. EE-{l ~e P hmEeh) « A B(x%) + amE& ] (2.3.7)
m

Hence, from (2.3.7) and (2.3.L) we get

A

5,)] = =

Var[T(Sl, 5

2
basa (a-2n) —m( A+
;21 2 m(a+1,) - 3[1 - e 1

2)]
m(A1+X2)3

}

hxzxg(x - )2 —m(A,+)1)
- mymy) -3l — e b 2P

2
m (A1+A2)

L 2 2
+ (2 ,) {%l{l * ot +A5)7) + mA (g +n,) + A

3

-m
m2{l - e }

—m(xl+A2)
- e {Al[]_ + m(xl+>\2)] + mA

-zm(xl+xgi]

2(A1+x2) + A3}

+

A3e
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—m( A, +2,)
+ -Ll‘—g {l - e 1 2 }Au
m
8a A (A, =As) —m( A +A.)
e N 32 - e 1720
m(K1+A2)
2h A (A, =As) —m( A, +A.)
Oy - === Gy -3 - 12 Eeh
m{ A +X1.)
1" %2
2.2 2
16AAZ (A =2s) —m{ A +X)
SR 2o 12 2mxh)y?
m (A1+A2)
~m( A, +A,.)
+ E5{1 - e 12 }[ASE(X"Q) + A6E(X'3)} (2.3.8)
m

2.4 Asymptotic Bias and MSE

Now T(Sl, 82) is differentiable and the conditions given by
Kendall and Stuart (1958) for the variance of the estimators x and
y are satisfied. Therefore, in this case, the Taylor series expansion

can be used to obtain the asymptotic mean and variance of the esti-

mator T(S,, §,).
We have
3 2
T(S,S)=§——+—3-}£‘Y—-.
1 2 - -2
(x + )
Expanding T(Sl, 82) in a Taylor series at x = A, and y = A, we can
write T(Sl, 82) as:
T(Sl, 32) = T(Sl, 82)

»
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N

bl
i

>

ignoring terms of order 8§ > 0. Using the formula of Kendall

1
2+8 »

m

and Stuart (1958) and after some algebra, we obtain

2A_ A (A -\ )
s)] = -—22.21 2 o 3 (2.4.1)
2 1 (X ) )2 m(kl+A2)

12

E[T(Sl,

Thus the asymptotic bias of T(Sl’ SE) is given by

2A1A2(A1—A2)

3
m(Al+A2)

Ba(T) = - {m(xl+x - 3}. (2.4.2)

5)

Similarly, the asymptotic variance is given by

A
_ 1 6 5 b o2 3,3
Vara[T(Sl, 82)] = z [xl + 10AA, - 21x A, + zuxlxg
m(A,+x.)
12
2.h 5 6
+ 2TA0A, - 18A1A2 + 9x2]. (2.4.3)
2.5 Bome Asymptotic Results on Bias and MSE
The asymptotic relative bias B is defined as
B = !asymptotlc biasg —.exact blasl (2.5.1)
exact bias
100B% values for sample sizes 10 (2) 20 (5) 30 and for pairs (Al, Ag)
where A, = .5 (.1) 1.0 and A, = .5 (.1) 1.0 were computed and it was

1 2
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observed that as the sample size increased, B decreased and even for
the smallest sample size m = 10, we found that the maximum value of

B was 0.5219 x 1o‘h. This indicated that the asymptotic formula
provided very good approximations. For sample 6f size 16 the maximum

T

of B was of order 10
13

and for sample of size 30 the maximum of B

was of order 10 It is for this reason and the fact that the

computation of the exact variance of T(Sl’ 82) is too involved,

we computed the asymptotic variance of T(S 5 only. The comparison

12 2)
of T(Sl’ 82) and x was based on the asymptotic MSE.

- The asymptotic relative efficiency (ARE) of T(Sl’ 82) with

respect to X is defined as
Al/m

® = Asymptotic MSE[T(S,, S2)/A > A,

T 100%.

Tables 1 through VIII give the values of e for each sample size and

1> Ag) mentioned above.

For sample size 10, the ARE is less than 100% for the combi-~

combination of values of (A

nation of values: (.5, .9), (.5, 1.0), (.6, 1.0), the minimum being
70% for (.5, 1.0). For all other values it is greater than 100%,
the maximum being 208% which occurs at A = .6, Ay = 5.

For sample size 12, there is a loss in efficiency for the same
combination of values of Al and 12 as those for sample size 10. 1In
this case also, the minimum and maximum ARE's which are respectively
63% and 205% occur at the same points as for sample size 10.

The ARE for sample size 1k is less than 100% for the following

values of (A,, A, ): (.5, .8), (.5, .9), (.5, 1.0), and (.6, 1.0),

1’ 72
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the minimum being 56% for (.5, 1.0). TFor all other combinations
the ARE is greater than 100% with a maximum of 201% for A = .6,
AZ = ,5.

The loss in efficiency for sample sizes 16 and 18 occurs at
the following common points (.5, .8), (.5, .9), (.5, 1.0), (.6, .9),
(.6, 1.0), and (1.0, .5) with an additional point (.7, 1.0) for the
sample size 18. The minimum ARE occurs at (.5, 1.0) in both the cases,
which is 50% for sample size 16 and 46% for sample size 18. The maximum
ARE is 200% for both the sample sizes and this occurs along the diagonal
Al = Ag’

For sample sizes 20, 25 and 30 the ARE is less than 100% for
the following combinations: (.5, .8), (.5, .9), (.5, 1.0), (.6, .9),
(.6, 1.0), (.7, 1.0), (.9, .5), (1.0, .5), (1.0, .6), with three extra
points (.5, .7), (.8, .5), and (.9, .6) for sample size 30. The
minimum ARE's for the three cases are respectively 42%, 35%, 30%
which occur at the same point (.5, 1.0). For all other combinations
the ARE is more than 100% with a maximum of 200% which occurs along
the diagonal Al = X2 in each of the three cases.

We note that when Al = A the ARE is 200%. This implies

29

that when Al = Ag

]—Al

MSE[T(S = 5=

10 S0 A,

+
which is the MSE of the minimum variance unbiased estimator 5—542 .




TABLE T
VALUES OF e

Sample Size 10

A ° 5 6 T .8 9 1.0
.5 200 1Tk 1k2 113 89 71

.6 208 200 177 1k7 118 95

T 196 206 200 179 151 123

.8 17h 194 205 200 181 155

.9 151 173 193 20k 200 183
1.0 132 152 173 192 203 200




TABLE II
VALUES OF e
Sample Size 12

Ao

\ 5 .6 7 .8 .9 1.0
1

.5 200 171 135 10bL 80 63
.6 205 200 1Tk 141 110 86
.7 186 203 200 177 1h5 115
.8 160 186 202 200 179  1k49
.9 137 161 185 201 200 181
1.0 117 138 162 186 201 200

27,




TABLE TIT
VALUES OF e

Sample Size 1L

Ao
Ay 5 6 T .8 9 1.0
.5 200 168 129 96 T2 56
.6 201 200 172 135 102 78
.7 178 200 200 175 1ko 108
.8 149 178 200 200 177 1Lk
.9 124 150 179 199 200 179
1.0 105 126 152 179 199 200




TABLE IV

VALUES OF e

Sample Size 16

A - 5 6 T 8 9 1.0
.5 200 166 123 89 66 50

.6 198 200 170 129 96 T2

.7 170 198 200 173 135 101

.8 139 171 197 200 175 139

.9 114 1k 172 197 200 177
1.0 96 116 1k3 173 197 200




TABLE V

VALUES OF e

Sample Size 18

Ao
Ay 5 6 T .8 9 1.0
.5 200 163 118 83 61 L6
.6 195 200 167 12k 90 66
T 162 195 200 171 130 96
.8 130 16F 195 200 173 135
.9 105 132 166 195 200 176
1.0 86 107 135 168 195 200




TABLE VI

VALUES OF e

Sample Size 20

Ao

Ay 5 6 7 .8 9 1.0
.5 200 161 113 78 56 Lo

.6 192 200 165 119 85 61

T 156 192 200 169 125 90

.8 122 158 193 200 172 130

.9 97 125 160 193 200 17k
1.0 81 99 127 162 193 200




TABLE VII
VALUES OF e

Sample Size 25

Ao

Ay 5 6 T .8 9 1.0
.5 200 155 102 68 b 35

.6 185 200 160 109 Th 52

T 1kl 186 200 164 115 80

.8 106 14k 187 200 167 121

.9 83 109 148 188 200 170
1.0 67 85 112 151 189 200




TABLE VIII
VALUES OF e

Sample Size 30

.5 .6 .7 .8 .9 1.0
200  1h9 93 60 ) 30
178 200 155 100 66 L5
129 180 200 159 107 71

93 133 182 200 163 113

72 97 137 183 200 166

58 Th 101 1ko 18k 200
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CHAPTER III

SEMI-BAYESTAN APPROACH

In this chapter we derive the estimators of kl for the two

models when o is assumed known. We consider the model I first.

3.1 Model I

Here we have (Xl, X2,...,Xm) and (Yl’ YZ""’Yn) independent
random samples from two Poisson populations with parameters )\, and

1

Ag respectively where Al is taken as fixed but unknown. It is assumed
that the ratio of the two parameters 6 = Ag/xl is distributed as

G(o, p) such that E(6) = 1. Tt can then be easily shown that this

is equivalent to assuming that A, has a distribution G(%—-, a).
1
Let X = (Xl, Xg,...,Xm)
Y = (Yl, Y2,...,Yn).

The joint distribution of X and Y given Al and A2 is

= (3.1.2)
m n
where S. = Iz X., S, = 2 Y, and H, (X, Y) is a function of sample obser-—
1 i=1 & 2 =1 J 1= =

vations alone. Now since Ag is a random variable with distribution

G(%~', o), we have the marginal distribution of X and Y given by,
1
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—nk2 S2

1 2 17 o-1
(o) e Kg dAE
o
e (x Y)e_mlxsl (oc/)\l) r(52 + o)
B X 1 TT(a) 5 +a
(n+a/kl)
S
s 2 T(S.+a)
_ 1 0, o 2
=0 & O G o) T (3.1.3)
1 1
After some suitable adjustments (3.1.3) can be written as
L(X, Y[A)) = p,(8)p,(8,) -H(X, ¥) (3.1.4)
where
-mkl Sl
e (mx. )
p,(8)) = 5 ,l
1!
S2
r(s.+a) ni /o
p,(8,) = —= L . (3.1.5)
270 F(a)SQ! nAl o nkl :
(14 —5)% |1+ %
o o

and H(§J X) is a funection of sample observations alone. This shows
ni

that 8. is P(mkl) and S, is NB{a, —Elﬁ. The general form of the

1

negative binomial distribution that has been used throughout is given by:

2

x=0,1, 2,..., (3.1.6)

Q -P =1,
From (3.1.3) it is easlly verified that the usual regularity conditions
such as given by Cramer (1946) and Huzurbazar (1948) are satisfied and

the maximum likelihood estimate (MLE) Al is the unique solution of the
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likelihood equation é—%§5;9-= 0. TFurther the asymptotic wvariance
1

of Xl is given by
o} -1
_E d log L

BAl

Taking logrithm of both sides of (3.1.3),‘differentiating it partially

with respect to Al and equating the derivative to zero, we get

S. + 8 (Sg+o¢)n

) log L 2
a; = m + = n T atron 0 (3.1.7)
1 1 1
or
—mkl(a + nkl) + (Sl + 82)(a + nAl) - nAl(S2 + o) _
X, (o + ni) =0 (3.1.8)
1 1

or

2
Almn - Al{nSl - al(m +n)} - a(S, +8

1 ) =0,

the roots of which are

nSl ~ o{m + n) i_V{nSl - a(m + n)}2 + Mamn(Sl + S5)

MoF omn
Since {nSl - a(m + n)}2 + hamn(sl + 82) > {nSl - o(m + n)}2 for all

values of Sl > 0, 82 > 0, Al is given by

nSl - a(m +n) + anSl - of{m + n)}2 + hamn(Sl + 82)

;\l = - . (3.1.9)

We also show that Xl provides the maximum of the likelihood by proving
2 ~
that 28D (5 op 5 =5,
3 1 1
1
We have from (3.1.8)

2
3log L a 1 } 1 a

_— + (W) (3.1.10)
BAQ dkl {kl(a + nkl) Kl(a + nkl

1
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where

N = -mxl(a + nkl) + (8. + 82)(a + nA

N ) - nkl(S + a).

1 2

~ ~

At A,, N(X,) = 0. Also xl(u + nA,) > 0. Therefore, to show that

1)

12 1
2 ~
§_;95;L,< 0, we need to investigate the sign of av_ at A..
2 dAa 1
Bkl 1
av__ -m(o + nA,) - mnx, + n(S, + S.) - n(S. + a)
dkl 1 1 1 2 2
= —alm + n) + nSl - 2mnkl
so that
aN >
—=— = ~a{m + n) + nS. - 2mn)\_. (3.1.11)
dkl 1 1
But from (3.1.9)
mnd, = nS, - o(m + n) + D (3.1.12)
where
-/ 2
D = {nSl - o{m + n)}° + hamn(Sl + 82) . D > 0.

Hence on substitution of (3.1.12) in (3.1.11), we get

Qg_ = —a(m + n) + nSl - n8

axy

L+ a{m + n) ~D

1l

-D < 0.

Thus

2 ~
3log L 5ot a =
akz 1
1

1
Therefore, Al given by (3.1.9) is the maximum likelihood estimate
of Al.

The asymptotic variance of Xl is given by
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> 321 L —l
Var(i,) = - |E =282
1 312
1
From (3.1.7) we have
2
%1og 1. By *8,) (8, + a)n
> T~ > M >
9A] A (a + nxl)
82105 L (m + n) n2
E( 2 ) = - A * o + ni
Bkl 1 1
) :?(u + nAl) - na
Xl(a + nkl)
Hence
ni
~ )\l (l + —&']:‘)
Var(Al) = - n)\l i . (3.1.13)
T+ 2+ g
It is easily verified that Var(i.) < V(x). It may be remarked that

1

A

Var(ll) is the asymptotic variance of ) the maximum likelihood

l)

estimate whereas V(x) is the exact variance of x.

Next we consider model II.
3.2 Meodel IT

A random sample (Xl’ Xg""’Xm) from a Poisson distribution with
parameter kl is available where Kl is taken as fixed but unknown. We

have another sample (Y Y .,Yn) from a second population where

12 fort

it is assumed that each Yj has a Poisson distribution with parameter

A j =1, 2,...,n). It is further assumed that {62.}n , Where

25> 373=L

623 = Agj/kl are i.i.d. random variables G(a, p) such that E(6 =1,

2j)

which is equivalent to assuming that {Agj}?

j=1 are i.i.d. G(%-—, a).

1
Since Yj, (j =1, 2,...,n) is assumed to follow a Poisson distri-
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bution P(A2j), where Agj has a G(%*~, a), it follows that the marginal

Al 1
distribution of Yj is a NB(a, —g).

Therefore, the marginal distribution of X and Y is

mo n F(Yj + a)]
R R | R
i=1 M7 |j=1 3
S
A o -m\, S
1 1l 1,71
S e e ( ) e Ty (3.2.1)

1 {r(a)y® ¢t M

where Sl and 82 are defined as before.

Here again it is easy to verify that the regularity conditions

assumed by Cramer (1946) and Huzurbazar (1948) are satisfied and il’

the MLE, is the unique solution of é—%§5~é-= 0 and the asymptotic
1
variance of Xl is given by

-1
-E 82105 L
A% .
1

Now from (3.2.1), the likelihood equation is

s s s
a.éig L _ inx + XE._ “”125"‘ n o+ X§.= 0. (3.2.2)
1 T A ety 1

The roots of (3.2.2) are

~

Sl ~ a(m + n) i_VéSl - o{m + n)}2 + ham(Sl + SE)

L= = . (3.2.3)

Following very similar arguments as those given in the previous section,
we find that the maximum likelihood estimate of Xl for the second

model, is

Sl ~a{m + n) + /{Sl - a(m + n)}2 + ham(Sl + 82)

Al = - (3.2.4)




and it provides the unique maximum of the likelihood since it can

>
be shown that 28 L . o .t 2 =7 .
> 15 M

215

To obtain the asymptotic variance of Xl’ the maximum likelihood

estimate, we evaluate first

°log L _ on aspla +24,) 8
2 2" 27 2
Ay (o + Al) (o + A3 A
from (3.2.2), so that
2
- + - +
E<3210g L) . ankl ankl(a 2Al) mkl(a A
2 - 2
axl {xl(u + A})}

Hence, after some simplification,

-1
~ 2 —
Var()\)=_E§_;;O£_L’.
1 BAQ
1
A 1
m n [*]
1+ m (a + Al)

(3.2.5)

As in model I, here also we find that the asymptotic variance of the

maximum likelihood estimate Xl’ is smaller than the exact variance

of the first sample mean x. It may also be noted that the asymptotic

variance of the maximum likelihood estimate for the first model is

larger than that for the second model.

3.3 Combining Unbiased Estimators

Graybill and Degl (1959) considered the same problem for two

samples (X X ) and (Yl, Yoannn

D S
1° %2 N 5

. . 2 2
with common mean u and unknown variances o- and o

1

respectively.

24 ) from normal populations

They

considered the best unbiased linear combination of X and y and estimated

weights by using estimators Si’ sg 1

of 02 and 02 respectively and
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obtained the estimator

“ oo o= 2 2
u = (n152X + ngsly)/(nls2 + nzsl)

where 52 = Z(xi - i)g

] /(n; - 1) and sg = 3y, - 7)%/(n

: 5 - 1). They

proved that ﬁ is an unbiased estimator of u and that it is uniformally

better than either x or y if n, and n, are both larger than 10. We

note that the estimators of the weights are stochastically independent
of X and 5.
We consider model I first and assume that the sample sizes are

equal. The best unbiased linear combination is now given by

1
where
mh
1+ —
=-————-£q—— nd_ W =——-.—l_.__
kel mhy a 2 mh,
2 + —= 2 4 —=
o o

and m denotes the common sample size so that

mxkl

X+ 7y + -
T = — . (3.3.1)

We find that the weights Wy and W, are functions of Kl which is being

estimated by X and ¥y both. It is not possible to obtain an estimator
of Al which is independent of x and ¥, that can be used in the welghts

Wl and WZ. Thus we have three alternatives:

(1) Estimate w, and w, by estimating A, by X

(2) Estimate w) and w, by estimating A by v

(3) Estimate Wy and Vs by estimating Al from both the samples.
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If we use (3), the evaluation of MSE of the final estimator

would be too complex. Between (1) and (2) we prefer (1), because
_ kl _ Al mAl _

we note that V(x) = — » vhile Viy) = —5-(1 + —5—0 and V(y) does not
tend to zero even for large samples. It is for this reason it is
expected that combining x and § may not lead generally to an improved
estimator. This must be contrasted with the MLE of Al obtained in
the previous section, which has asymptotic variance smaller than

that of x or y. Choosing the first alternative we get from (3.3.1)

the estimator

2
# 1 57 T8, +5)/a
w o= = (3.3.2)
m Sl
o 4 —
(7

* % *
we obtain E(u ) and Var(u ) and show that u does not give any improvement

(i.e., smaller MSE) over x. Now

2
) © S+ 8.+ S5/a
1 1 2 1
EW*) == 1 3 P, (8. )p,(8,)
m S =0 S =0 Sl 1 7172 T2
1 2 2 + —=
o
w [ as omi
1 1
== 3% {8 - + p. (8,)
m Sl=0 1 20, + Sl 20, + Sl 171

which after some further simplification is

2
) +
20, amkl

%y _ a1 i
Bul) = Ay - b T s p(8)).
S. =0 1
1
After some further algebra we get
-mA 2o h
¥y o a 1 1 ?
E(u’) = MomptCH S)e 1Fy miy (3.3.3)




R

where qu is the generalized hypergeometric function defined as
Iy
& o o 3 o I (ai)n n
2 2t ey > .
ol Pal= l;; o
Slb Be”"asq; n=0 I_[ (B‘ o
j=1 ¢
and
_I(a + n)
(a)n T T{a)
The variance of u* is
Var(u') = B[ (v*)?] - [E(u*)]°.
We have
( *)2 N (Sl + 5, + Sl/a)
E(u = —F
02 (2 + S,/a)
2 2.2
_ 1 ; ; 32 EaSl . o Sl 2a8182
T2, - 2071 7 2048 2 2048
m-8,=0 §,=0 1 (2a+Sl) 1
2.2 2
. o 82 20 8182
(2a+Sl) (2a+Sl) ;
—mkl Sl mkl 2
e (mkl) F(S2 + o) 1 —=
. 5,1 T(a)s,! mh wh (3.3.4)
1+ =5 |1+—=%
o o
o 2 82 - 208.mA
e e 171
m2 S =0 1 20 + Sl
1
mi
2.2 2 2 2 1
a”S; - 20"mA; 8, + a {(mxl) + mAl(l + )}
N 5
(20 + 8.)

1
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. . (3.3.5)

Rearranging the terms in (3.3.5) and simplifying it further, we get

E[(u*)Z] = lE-(mAl)2 + mAl + 5@2 - (120L3 + 6u2mkl)E(§§i%7§—)
m 1
mhi
+ {ho 4 botmy + o®[(ma)® + my (1 + —2) yE(— i 5| (3.3.6)
@ (20 + 8.)
l —
S
_m}L 1
® e L(mr )
1 2 2 3 2 1 1
= =5 (mAl) +mh + 50° - (L2a” + 6a mkl) E S =7
m Sl—O 1 1
mi
+ {hah + ha3mkl + ag[(m)\l)2 + mkl(l + —alﬁ]}
-mA S
o N e l(mkl) 1
- T 5 = (3.3.7)
Sl=0 (2& + Sl) 1

After suitable adjustment of the terms in (3.3.7), we obtain finally

-mA
#\2 _ 1 2 2 2 1
E(u™)° = m2 (mll) + mAl + 507 - (6a° + 3umkl)e
20, 5 N mA
2 1 2 1
lFl mxl + {a” + amkl + H—[(mkl) + mkl(l + = )1}
20 + 1,
—mAl Ea, 20, 5
) 2F2 mll . (3.3.8)
20 + 1, 20 + 1
Therefore, from (3.3.3) and (3.3.8)
A -mA 20 5
sy oM 20 20 B, 2™ ’
v(u") = ool Sl el A) = T+ A )e Fy m\
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A, -m\ 2a ; 2
- |G ”%Qe ' 1F1 mAy
20 + 1,
oA A mh ~mA 20, 20, :
oy 2 1 1 2 1 1 1 i ?
DT+ =+ RSl G —=)}]e 7o mA | -

200 + 1, 20 + 1;

(3.3.9)

We now discuss the asymptotic behaviour of the estimator u®.
It is known that asymptotically the following formula is true:
[Refer to "Handbook of Mathematical Functions", edited by M. Abra-

mowitz and I. A. Stegun (196L4)].

2(}. . m}\ e
> _TI'(20 + 1) 1 20 - 20+1 1
\F mA, | = ) © (mAl) [1 + O(EX_)]
20 + 1; 1
mh
= 20 e l(mA )‘1[1 + o(—i—)J.
1 mhi
1
Hence, from (3.3.3),
2a2 1
E(u®) g A, + + 0(=3) (3.3.10)
mkl m

which shows that for large m the bias is negligible. Now

—-mA S

oty . ST (3.3.11)
2o + 8 8,=0 5,1 (20 + sl)
e—mxl 2q, ;
=T 1N Do + 1 mhy

1 1
¥ mh + of 2)'
1 m

As the series in (3.3.11) is uniformally convergent differentiation

with respect to a on both sides can be performed [see Cramer (1966)].
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Thus we get

(20 + sl) m

Hence from (3.3.6)

L)

A
E[(u*)g] . Ai + —§-+ O(—§ (3.3.12)
m

and from (3.3.10) and (3.3.12) we have

A
* 1 1
Var(u”) a —+ O(;Eﬁ.

Thus asymptotically u* as an estimate of Al would be as good as x
only. We have already seen that the MLE Xl has asymptotic variance

smaller than that of x. Therefore, we prefer Xl to X and would also

prefer Xl to u*.

Similarly for the model II we know that E(X) = AL E(y) = A
A A A

V(x) = —i'and Viy) = —i-(l + —%J. Thus the optimum weights are

l:

A
l+_..l‘_
W= a and W, = L
1 Kl 2 Al
2 + — 2 + —
o o

Here also we note that V(y) > V(x). Hence, following the arguments

given earlier, we estimate Al occurring in (ﬁl, w,) by x. This gives

5)

us the estimator

2
u** =L Sl i 82 i Sl/am (3.3.13)
m 2+ Sl/am . o

After a long algebra and following precisely the same methods

%
as were used for evaluating E(u ), we find that
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B(u™) = + 2t (=), (3.3.14)
1 A mAa
1 1
2&2
Thus we note that the bias of u " has a constant term =~ which is
1

independent of m, the sample size. This shows that u * would not

be as good as Xl’ which being MLE, has bias tending to zero as m - .

Therefore, in model II also we prefer the MLE Xl to u**.
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CHAPTER IV

EMPIRICAL, BAYES APPROACH

Here we consider the problem of estimating Al for the two models
when o is assumed unknown. First we consider model I.

L.1 Empirical Bayes Estimator for Model I

Following empirical Bayes approach we assume that past experience

for estimating o in the form of p previous samples

LOR PUTIN a
Yors Yopsenesly
(P ng,...,an

each of size n is available. Tt may be noted that o and Al both
cannot be estimated from the second sample. It is also asusmed

that each sample (le, ng,...,an) (3 =1, 2,...,p) comes from a

Poisson distribution with parameter A It is further assumed

03"
that {A,,}°_. are i.i.d. ¢(=% , o)
2573521 .i.4. Al > ).
Let
n
S,. = Y .,3=1,2,...,p.
23 k=1 kJ

The conditional distribution of Szj’ given ng, is Poisson P(nkgj).

As ng has been assumed to follow a G(Xg-, a), it is easily verified
1
that the unconditional distribution of the jth sample total ng,
ni
has a negative binomial distribution NB(a, —aéﬁ.

The joint distribution function for the sample totals
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821’ 822,...,82p is given by
S,
P P(ng + a) 1 ni, /o J
L8515 Sppores8y) = T =45y ) =¥y
J—l 2J (l + l)OL 1 +
(o4
S {
_ 1 nkl/a © T(Sg. + a) )
= ¥ I S (h.1.1)
(r(a)¥P(1 + —2)% |1 4 -&L 3= 2 ]
where
P P n
S= $8..= 3% ITY..
j=1 2 3= x=1 B

We need to estimate a. Using the method of maximum likelihood estimate,

we have from (L4.1.1)

SR a2
1 1 1 1

which when solved for Al gives

Xl = ) (4.1.3)

S
np
Next taking the partial derivative of the logrithm of (4.1.1) with respect

to o and equating it to zero, we get

D S - npA
9 log L _ _ a - 1_
30 pyla) + 2 9(8y5 + @) +p log i - o = 0
j=1 1 1
(h.1.h)
where
bx) = & [og 1(x)] = L

is the diagamma function.

From (4.1.3) and (4.1.4) we get
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0 A i,
% {q)(s2j +a) - ¢(a)}| - log(1l + —5—0 =0 (k,1.5)
o

Qg -

where 4 denotes the maximum likelihood estimator of O .

The numerical solution of the equation (L4.1.5) is facilitated by
the use of the tables of the function

Mr, p) = 9@+ 1) - ¥(p) (4.1.6)
for various values of ﬁ and r = 0, 1, 2,...,35. These tables are
given in the paper by Sichel (1951). Sichel has illustrated the

procedure and suggested the use of the approximation

~ i ~ 1 1 ~
Mr, p) g log(p +r - 1) + T TSR ¥ (p)
(h.1.7)

in case values of A{r, ﬁ) for r > 35 are required. It may be noted
that ng and & in (4.1.5) are the counterparts of r and D respectively.
Substituting the MLE & of o thus obtained in (3.1.9), we obtain

the estimator

nSl - a{m + n) i.VénSl - a(m + n)}2 + homn(s. + 8.)

= 1 2
1= - . (1.1.8)

>

4.2 Empirical Bayes Estimator for Model IT

In this model the past experience is replaced by the second
sample. The n observations from the second population may be treated
as n samples of size one each.

According to our assumptions in this model {Yj}?=l are i.i.d.
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A
NB(o, —%ﬁ. Hence, the joint likelihood of Y is
Y.
n (Y. + a) Ao )
L(Y., ¥ Y )= 1 ) L L
1° "2°°°"°'p (o1 r(o)r(Y.) A A
a ' a
S
n (Y, +a)y 1 Al/a 2
=< T ’ . (h.2.1)
i=1 Ty n Al no, Al
J J {r(a)3 (1 + =) 1+ =

Using the method of maximum likelihood we find that the equation giving

the maximum likelihood estimator & of o in this case is

~

%— 3 {w(Yj +8) - pla)}| - log(l + =) =0 (L.2.2)

Q>!I—-‘

A, = Sg/n.

Here again the method of Sichel as explained for the first model
can be used to obtain a solution of o. It may be noted that Yj and o
in (4.2.2) are the counterparts of r and D respectively.

The ML estimator of o thus obtained from (L4.2.2) which we denote
by ;, can be substituted in (3.2.4). Thus the MLE when o is assumed

unknown for the second model becomes

- Sl - ;(m +n) + V{S - a(m + n)}2 + bom(s. + S.)
N 1 1 2
xl = - . (4.2.3)

In view of the rather complicated expressions for the two estimators

Al and Xl’ the evaluation of the MSE of these two estimators proved

to be too complex. The general theory of empirical Bayes approach,
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however, would guarantee that the MSE of % and il would converge

1

to the corresponding minimum Bayes risk, as the past experience

tends to infinity.
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