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ABS.IRAC.I

Abstract

Numerical techniques that employ integral equatíon formulations are favorably used lor

the analysis of electromagnetic radiation and scattering. The conventional method of

moments yields full dense matrix equations whose numerical computation is expensive. In

the past decade, considelable efforls have been made to further reduce the computational

cost. One of the most recent fast algorithms available in literature is the use of wavelets,

which is gaining an increasing amount of attention from researchers in computational

electromagnetics community.

In this thesis, wavelet applications for a last solutìon of electromagnetic integral

equations are thoroughly sfudied. Wavelet bases offel the advantage of highly sparse

moment-method matrix equations, which can be solved efficiently. The performance of

semi-orlhogonal and odhogonal wavelets when used lor a fast solution ofFredholm integral

equations, which arise in the fomrulation ofwave scattenng by two-dimensional conducting

cylinders, is hrst investigated. This basic research consists in the analysis ofmatrix sparsify,

solution accuracy, and matrix condition number, and provides a guideline for the selection

of wavelets used for the fast solutior.r of electromagnetic integral equations. It was

discovered that tl.re oÍhogonal wavelets are optimal in temrs of the condition number. Then,

two kinds of wavelet applications to the method of moments, i.e., the matrix transfom

approach and the change-of-bases scheme, are compared for tlie first tin.re for the solutior.r of

coupled scalar integral equations goveming the problem of scatterir.rg by two-dimensional

dielectric bodies. The study shows that the change-of-bases scheme gives rise to a better

perfonnance in tenls of matrix sparsity, while the matrix transform approach provides a
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problem-independent tra¡sform mechanism. Further, the matrix transform approach with

orlhogonal wavelets is extended to a fast analysis of the scattering by arbitrary bodies of

revolution, whose mathematical model contains coupled vector integro-differential

equations. Finally, the application of wavelets is effectively used for a fast solution of

scattering problems by 3-D inhomogeneous bodies of arbitrary shape, which is formulated

as a volume integral equation involving equivalent sources.

Several solution methods for the resultant sparse matrix equations, obtained with the use

ofwavelets, are also investigated. The conjugate or bi-conjugate gradient (BiCG) iterative

algorithms are popular solvers used in the computational electromagnetics community. A

spalse conjugate gradient algorithn is effectively used for a fast solution of Fredholm

integral equations. A sparse BiCG, with an efficient wavelet transform technique for

Toeplitz matrices, is also presented for the fast solution of 3-D volume integral equations

associated with the scattering problem by 3-D inhomogeneous bodies. A solution technique

using a sparse generalized ninimal residual method is demonstrated for the analysis of

scattering by conducting bodies of revolution, which is described by a vector

integro-differential equation. A sparse LU solver with an approximate minimum degree

ordering algorithm is proposed for the analysis of scattering by dielectric bodies of

revolution, involving coupled vector integro-differential equations, where the resultant

momenl-melhod matrices iriherentþ possess a lúgher condition number.
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CHAPTER 1 INTRODUCTioN

Chapter I

INrnonucrIoi.,l

S1,1. Forword

Research in the area of computational electromagnetics is actively pursued nowadays nol

only by electrical engineers, but also by rnathematicians and conputer scierfists, and

numelical techniques for solvirg electromagr.retic field problems have been intensely studied

in the last few decades. This is due to the impofance ofthis research in many practical areas,

such as prediction of the radar cross section (RCS) of large complex objects, like aircraft,

wave scattering analysis for stealtli technology, interaction of the electromagnetic waves

with biological media, and propagation ofsignals in liigh-speed and nricrowave cjrcuits [61].

Numerical techniques that utilize integral equation forrnulations have been widely used

for the analysis ofradiation and scattering by bodies of simple or complex shape, since the

integral equatior.r formulations reduce the domain of the opeÍator equation to a finite and

often a smaller one than that in the parlial differential equation approach, with all boundary

conditions implicitly taken into account. However, the integral equation approach leads to

full dense matrices and thus yields a special category of con'ìputational technologies,

especially fol electrically large fìeld structuÌes. Considerable effofis have been made by

many researchels to reduce the computatioral complexity recently, notably by developing

various conjugate gradient-fast Fourier transform (CG-FFT) methods, fast multipole
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methods, multilevel algorithms, and by the use of wavelets in the method of moments

(MoM).

In this thesis, the use of wavelets for the fast solution of electromagnetic integral

equations is investigated. In the following Sections, the existfug fast solution techniques and

the curuent ¡esearch status o11 the wavelet applications in the MoM are reviewed, and the

objective of the research work is delineated.

S1.2. Review ofFast Solution Techniques for Integral Equations

The integral equation approach leads to a dense matrix equation whose numerical

solution requires O(N3 ) arithmetic operations for direct solvers and O(N2 ) operations for

iterative solvers, wherc N is the number of unknowns. The followìng algorithms have been

proposed to f,rlher reduce the computational complexity.

CG-FFT Methotls

For Toeplitz matrices, the fast Fourier transfomr (FFT) can be used to perfonrr the

matrix-vector products with O(,Mlogl/) arithmetic operations. This technique is usually

combined with conjugate gradient (CG) iterative algorithms yielding the so-called CG-FFT

methods, whicl.r need only a computer memory of O(1/) .

The CG-FFT methods have been effectively used fol a fast solution of electromagnetic

integral equations. lts application for planar and two-dìmensional radiation problems can be

found in t191, [21], and for the computation of microstrip S-parameters in [36]. For

tluee-dimensional scattering fomrulated in terms ofintegral equations, various schemes have

also been proposed in the past to obtain (block) Toeplitz MoM matrices, including the

_) _
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point-matching method, Galerkin's method with the rooftop basis fui.rctions [48], and a weak

form of CG-FFT 121). The CG-FFT method was also used to expedite the solution of

scattering by a cluster of randomly distributed spheres and randomly distributed cylinders,

whose scattering is characterized by the so-called T matrix [58]. When the subscatterers are

not in a regular array, a precorrected niethod is used to dedve a Toeplitz matrix, which

employs the fast multipole translation operators to shift tl.re centers ofthe subscatterels. It has

been reported that the CG-FFT method can be applied to the scattering by inhomogeneous

bodies with high contrast [61].

Fast Mullipole Methods

Like the CG-FFT method, the fast multipole meihod (FMM), initiated in [22], achieves

its speed by using an indirect fast computation of matrix-vector products in the context ofan

iterative solution for a matrix equation with O(l/ 5 

) arithmetic operations [3a], 1611. The

main idea of the FMM is to reduce the number of scattering centers by first dividing the

subscatterers into groups, and then translating the centers ofa group to its inner subscatterers

by using translation operators, which are derived anallically by virtue of the multipole

expansion ofthe integral kemels.

Several techniques have been proposed to improve the efhciency of the FMM during the

past decade. The ray-propagation algorithn-r [39] is proposed to fui1her reduce the

complexity of a matrix-vector rnultiply to O(N4l3 ¡ operations, where the nunber of

translation operators is reduced by employing the ray physics. The multilevel FMM uses

concepts from the multiscale analysis, such that the complexity of a matrix-vector multiply is

reduced to O(N 1.ogÐ V1l.

3-
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Mu ltil ev e I Alg o r it lmt s

Unlike the CG-FFT method and the FMM, which reduce the complexity of the

matrix-vector products, the multilevel algorithm accelerates the convergence rate of an

iterative method by corecting the defect (residual error) at a finer level wjth lower level

solutions based on a hierarchy ofnested approxinration spaces [9]. A solution to a problem

P is souglrt for by first defrning a hierarchical set ofproblems P = Po, P,, ", Pt, where {

is in some sense a coarser approximation of .l-, . The solution of P, is first found and, then,

level-by-level, the solution of -l-t is obtained from that of {. The convergence and

corrrputational complexity of such algorithms was studied in [15], [7], [18].

One popular approach to construct a multilevel algorithm is to use simple basis fur.rctions

such as rectangular or triangular pulse functions on multiple grids, such a multigrid method

being advocated in [14] for solving sparse systems of equations arìsing from the

discretization of partial differential equations. This algorithm was first applied for a fast

solution of the Fredholm integral equations in [8] and [17], and has been recently employed

for the solution of electronragnetic integral equations in [31] and [78].

Altematively, hierarchical bases independent of grids such as the multi-p basìs [68] can

be utilized to construct the multilevel algorithm. The multi-p hierarcliical bases ate

constructed with piecewise Legendre polynomials, aud have been widely used ìn the

p-versìon ofthe finite element n.rethod. These bases have been used in the irtegral equations

to treat singularities, e.g. for problems in mechanical engineering, relative to polynomial

domains. Our paper [68] exhibits the efficiency of the twolevel algorithm employing the

multi-p bases.

-4-
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The key in the construction of the multilevel algorithms is to find efficient multilevel

operators, i.e., projection and prolongation operators. In the multilevel FMM in [47], these

are obtained from analytical trauslation operators, the efficiency of the procedure being

illustrated by implementing a two-level algorithm.

Use of ll/avelets

There have been many attempts to generate sparse matrices by transforming

appropriately the original dense matrices, with most of their elements having very small

values that can be neglected, and thus the matrix-vector products can be expedited by

employing a sparse matrix technology. Among these sparse matrix approaches, the use of

wavelets gained an increasing popularity.

A sparse preconditioner was used in [52], where a threshold procedure ìs directly applied

to a matrix equation. As a result, the sparsity of the resultant matrices is problem dependent

and limited. Impedance matrix localization method [32] has been proposed as a remedy,

where a local cosine transform (a windowed Fourier transform) is used to transfotm a dense

n:ìatrix into a sparse one. It has been reporled that highly sparse matrices can be obtained for

problems with smooth geometry.

The use of wavelets was ftrst proposed in [24] for a fast solution of a class of integral

equatiolrs with Calderon-Zygnrund type of kernel, and then introduced [33] to the

community of computational electromagretics for a fast solution of the Fredholm integral

equation ofthe first kind arising in the analysis of electromagnetic wave scattering problems.

Due to the wavelet properlies, i.e., otlhogonality, localization, and vanishing noments, the

INTRoDtJCTIoN
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moment-method matrix equations represented in the wavelet domail have a larger content of

elements with very small values.

S1.3, Research Status On the Wavelet Applications in the MoM

Two kìnds of wavelets, orthogonal and semi-orthogonal, are frequently used in

computational electromagnetics. The serni-ofthogonal wavelets (SOW) are symmetric,

compactly srqrported, and closed-form expressions are available. SOW were used for the

solution ofFredholm integral equations in direct way in [44]. A SOW matrix transformation

was also implemerfed in [63] fol the electromagnetic scattering by systems of very thin

parallel conducting cylinders and the matrix sparsity was analyzed quantitatively as a

function of the thleshold r ah¡e.

The implementation of ofhogonal wavelets with infinite support width such as the

Battle-Lemarié wavelets and the Meyer wavelets requires a truncation operation that causes

a cefain numerical euor'[42]. In contrast, the Daubechies' ofhogonal wavelets (DOW) that

are compactly suppofled can be used without any truncation. The efficiency ofthe DOW for

the solution of integrd equations was analyzed in [45] for the scattering by conducting

cyli-nders. The resulting sparse matrix equations were solved by using the conjugate gradient

method with storage space required only for the nonzero entries ofthe sparse matrix.

The performance of SOW was compared with that of the Battle-Lemarié orlhogonal

wavelets in [64], where wavelets are employed in a dilect way. SOW was also compared

with the DOW in [63], wliele a matrix transformation was implemented to reduce the

computational effoú necessary to perform nunerical integrations. It has been reported that

-6-
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the use ofthe SOW yields more highly sparse matrices and better solution accutacy when a

direct solver is adopted than the use oforlhogonal wavelets.

Wavelet packet transfoms have also been implemented in order to obtain more highly

sparse maûices. Several algorithms were designed to select the best bases for a given

problem, where the wavelet packet decomposition tree is optimized by minimizing a

specified cost function. A procedure classified as "top-down near-best basis algorithm", with

an additive cost function, was implemented in [59], [67], which is dependent on the

excitation vector, the best bases being obtained by performing an optimization procedure on

a given excitation vector in the MoM equations. An iterative algorithm for selecting best

bases was also proposed in [66], where the residual eror ofthe transfomred MoM equations

is defined as the cost function.In [7\, an additive energy function, which is directly related

to the sparsity of the transfonned impedance matrices, was employed to seek for the best

wavelet packet bases. One drawback of the above algorithms is the additional computational

cost of searching procedure for the best wavelet packet decomposition tree. RecogniziÍrg

this, a predefined wavelet packet transfonl algorithm was proposed in [75], [8a], where the

wavelet packet decomposition tree is prescribed based on the knowledge of Green's

fuirctions.

The condition number ofwavelet transfonl matrices has been studied in our papers [70],

[71], for TE wave scattering and in l72l for TM wave scattering by electrically large

conducting cylinders. It was pointed out for the first time that ofthogonal wavelets are better

than semi-orlhogonal wavelets in tenls of the condition number. The sanre result has also

been presented in [77] for the scattering by circular and Z-shaped conducting, and in [79]

cylinders for the scattering by 2-D metal strips.

INì'tìoDUcrtoN
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Mathematical models treated by using wavelets are Fredholm ilttegral equations

associated with electromagnetic scattering by two-dìmensional objects [33], l3ll, 1441, [49]

and by rough surfaces [76], coupled surface integral equations describing the eddy curent

problem ofa two-conductor system in the low frequency area [57], scalar integro-differential

equations arising from the thin-wire antenna problems [62], [64], and 3-D integral equations

goveming the scattering by conducting rectangular cavities [84].

Wavelet application in computational electromagnetics has been expanded to many

areas such as the full wave analysis of microstrip floating line structures [41], boundary

element analysis for multiconductor transmission lines in multilayered dielectrics [42], the

computation of parameter matrices of multiple lossy transmission lines with the application

of adaptive war.elet expansion method [38], and the waveguide mode identification [35],

[40] and analysis of multiport strucrures using the semi-orthogonal wavelets witl.r 2

vanishing moments [80]. Dielectric resonators have also been studied based on

fwo-dimensional orlhogonal wavelet transform algorithm [54]. However, the following

issues have not been studied before we stafted our research:

Systematic study of SOW in comparison with the DOW when used for the

solution of integral equations;

Application to coupled integral equations in high frequency electromagnetics;

Application to coupled vector integro-differential equations;

Application to the problems ofthree-dimensional electromagnetic scattering; and

Efficient solution teclmiques for the sparse matrix equations obtained with the

use of wavelets.

-8
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S1.4. Outline of the Work

With an attempt to make contributions to the problems listed above, the thesls is

organized as follows:

In Chapter 2, wavelets are first introduced through reviewing hierarchical bases

employed in computational electromagnetics. Then, features oftypical families of wavelets

available in literalure are compared. Lastly, a review on the use of wavelets in the MoM for a

fast solution of electromagnetic integral equations is presented.

Chapter 3 presents a perforrnance comparison between semi-orthogonal and oÍhogonal

wavelets when used for the solution of Fredholm integral equations, which arise from the

scattering problem by two-dimensional conducting bodies. This comparison is based on the

analysis of matrix sparsity, solution accuracy, and matrix conditìon nunber, and provides a

guideline on the selection of wavelets used for the fast solution of electromagnetic integral

equations.

In Chapter 4, two wavelet applications in the MoM, i.e., the matrix transform approaclr

and the change-of-basis scheme by using odhogonal wavelets, are effectively used for the

ar,alysis of electromagnetic scatterirg by two-dimensional dielectlic bodies, whose

n.rathematical lormulatìon is based on coupled scalar integral equations, and their

perfomrances arc compared for the fir'st time.

In Chapter 5, the matrix trar.rsfomr approach with orlhogonal wavelets is extended to the

problem of scattering by arbitrary bodies of revolution (BOR), which is fonlulated as

coupled vector integro-differential equations. An efficient solutiol technique that uses a

sparse generalized mjnimal residual (GMRES) rnethod, which converges faster than other

9-
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iteratìve methods [65], is demonstrated for the analysis of scattering by conducting BORs,

where the mathematical model is reduced to a vector integral-differential equation. As well,

a sparse LU solver with an approximate nrinimum degree orderrng algorithm [56] is

proposed for the analysis of scattering by dielectric bodies of revolution, where the

monent-method matrices inherently possess a higher condition number.

In Chapter 6, the use of wavelets is fufther extended to the analysis of three-dimensional

electromagnetic scattering by inhomogeneous bodies of arbitrary geometry. The fields

scattered by such objects are modeled using a volume integral equation involving equivalent

sources. Ar efficìent wavelet transfonl algorithm designed for Toeplitz matrices [73] is

enrployed to speed up the 3-D wavelet transfomation of MoM matrix equations and a sparse

bi-conjugate gradient solver is utilized to obtain a fast solution ofthe resultant sparse matrix

equations.

Conclusions of this research work as well as the related future work are summarized in

Chapter 7. A detailed review of various wavelets, i.e., bi-orthogonal, semi-orthogonal, and

orlhogonal wavelets, with some examples, is provided in Appendix A. The computational

algorithm for the semi-orlhogonal wavelets is presented in Appendix B, and the structurc

charls of the conr.puter progmrns used in this thesis are described in Appendix C.

10-
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Chtpter 2

Tnnonv

In this chapter, wavelets are described through reviewing hierarchical bases employed in

computational electromagretics. Salient features of various wavelets are studied, and their

applications in the MoM lor fast solution of electromagnetic integral equatìons ale

summarized and discussed.

52.1. HierarchicalBases

Hierarchical bases gerer ate a sequence ofsuccessive approximation spaces of 121Ã¡

Vo cV, c... cV¡t cV, c.'.

which cor.rstitutes a multiresolution analysis. Each subsequent space is generated as

(2.r)

V,*t=V,@ll/, (2.2)

where W, is the complement space of V, in V,tt, the symbol @ stands for the direct sum

and V = Span{þ,,j eZ}, Ø/, = Span{V ¡,j e Z}, u,ith properly cl.rosen basis functions /

ard ry , and Z being the set of integers- Consequently, we have the hierarchical

decomposition of V,,, as

ll -
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V,,, =Vo @Wa @IYt @ "ØIY^-1 (2.3)

Hierarchical basís functions lrave been frequently used in computational

electromagnetics to construct multilevel iterative methods or to obtain sparse MoM matrix

equations, which accelerate the solution speed. So far, various basis functions þ and ry

have been proposed by many researchers.

$2.1.1. Classical Hierarchical Bases

There are two classical hierarchical bases: one is constructed with the rectangular pulse

function, and the other is constructed from the triangular pulse function. The hieralchical

basis based on the rectangular pulse function is used irr [31] to construct a multilevel

algorithm fol the solution of electromagnetic integral equations. The triangular pulse

function possesses multilevel splitting propeúy, i.e., þ(x)=0.5þ(2x +1) + þ(2x)

+0.5þ(2x-1) as showr in Fig.2.1(a). Starting with the basis Zo and its complement lZo,a

class of lrieralcl,ical bases Wr, k = \,2,... car be constructed as shown in Fig. 2.1(b), with

triangular' functions on the diffelent level ofgrids, yields the hierarchical decomposition in

(2.3).

In [78], the hierarchical bases are employed to formulate an adaptive multiscale moment

method. It is noted that the two classical hierarchical bases are grid-dependant, and the

relevant multilevel algorithms being called multigrid metirods [14], [ 17].

t2-
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Fig. 2.1. Multilevel splitting triangular pulse fulctions /(x) : (a) ç1(;r) has the

representation þ(x) = 0.5þ(2x + I) + þ(2x) + 0.5þ(2x - 1); (b) Hierarchical subspaces I/o

ard W,,i = 0,1 in the intenøal [-1, 1].
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F ig. 2.2. Muì ti-p hì erarch i cal l¡asi s functions.

ç2.1.2. Multip Hierarchical Bases

The multi-p hierarchical basis functions are constructed u,ith piecewise Legendre

polynomials [49] as follows

ó,(€) = 0- É)12

ó,G) = 0+ €)12

-rf

Ö,(åt- ,lr2i -3\12 f,P,-.tttdr. 1- 3.4. . p-l

(2.4)
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where øi,l>3, is a polynomial ofdegree l-1 defined in tems ofthe Legendre polynomial

P, ,,lhe set of bases for i <7 is shown in Fig. 2.2. They are hierarchical and generate a

sequence of nested approxinration spaces as in (2.I), where V, is the span of the above

polynomial basis functions with degree up to i, and the complementary subspace I{ in

(2.2) is the span ofpolynomial basrs functions ofdegree I + 1.

The most impofiant propefty of multi-p bases is that of being gnd-independent, which is

vety useful tn the numerical coÍr'ìputation. Contrary to the classical hierarchical bases that

employ a simple function on multilevel grids, tlie multi-p bases utilize multilevel basis

functiolrs with dynamic polynomial degrees on a fixed set of grids.

S2.1.3. Wavelet-LikeBases

Wavelet-like bases, also called multiwavelets [28], 1291, are cornprised of a finite set of

scaling functions {þ,; ì e [1,/r]] , where k is a positive integer. The scaling functions are

consharcted by orlliogonalizing polynomial functìons wlrose degree is less than /r by the

Grarn-Schmidt process, and the corresponding multi-wavelets are

ry ,(x) = J2þ,(2x - 1), i =1,... ,k

whose trar.rslations and dilations in the form of

(2.s)

v'1,,,,(x) = 2"' 
| 2 ry, (2"' x - n), i = 1,..., k; nt, n e Z (2.6)

corìstitute a hierarchy ofnested approximation spaces of 12

- 15 -
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Wavelet-like bases are constructed to possess a combination ofthe properlies ofclassical

and multi-p hierarchical bases. They are also based on a set of multilevel grids with

polynomials ol diffelent degree À. The wavelet-like bases are orthogonal and possess the

most impofiant properlies of the wavelets, as indicated by their name, such as having /r

number of vanisl.ring moments. The scaling functions {þ,;i e [1, k]] for k = 4, 5 are shown

in Fig. 2.3.

s2. i.4 Wavelets

Differently from waveletlike bases, wavelets form a hierarchy ofnested approximation

spaces of L2 and are constructed by translating and dilating a single scaling functior.r and a

single wavelet function. Their use is first introduced in [24], and has been extended to many

areas. Typical examples of wavelets are shown in Appendix A.

-16-
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Fig.2.3. Functions þ,, ,ër for k=4 in (a) and /r=5 in (b). L is polynomial in the

interual [0, 1] and is odd or even according to þ,(1) = (-lJt** 'ø,(-€),1 = t-1, 01.
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S2.2. Salient Features of Wavelets

Orthogonali4t

The wavelet transformation with odhogonal wavelets is a unitary transfolmation; the

condition number of tlre transform matrices is equal to 1, which is an optimal case and is

impoúant in numerical con.rputations. This means that an error in the original formulation

will not grow, that the condition number will be preserued after the transformation, and that

stable numerical computatio[s are possible.

Contpact support

The supporl width of wavelets is impodant in the implernentation of the fast wavelet

transfonn (FWT) algorithm 1241. If tbe scaling function and tlre wavelet function are

compactly suppoÍed, their coelficient sequences are finite, so that the summations in the

FWT are finite. Also the computational cost of FWT is proporlional to the support width of

wavelets selected. If they are not compactly supported, a fast decay is desired so that the

filters can be truncated reasonably. It is reporled, however, that this truncation causes a

certair numerical error in cotrputational electromagnetics [42].

Nunúer of vanisltitrg montents

Vanishirg moments play an inportant role in data compression or large matrix

compression [5]. Wavelets with a larger number of vanishing moments are desired to obtain

a higher compression rate, wl.rich, however, increases the computational cost of FWT since

wavelets with higher vanishirg noments have a wider support width. The trade-off behveen

t8-



Cr.hPTÊR 2

the number of vanishing moments and the FWT computational cost is one of criteria in the

selection of wavelets when used for the fast solution of íntegral equations.

An a ly t i c al exp r e s s io tr

An analytical expression for a scaling function or wavelet function does not always exist.

In computational electromagnetics, it would be ideal to have closed form expressions such

that the inner products associated with MoM can be exactly evaluated numerically.

However, the change-of-basis sclleme can be applied when no closed lorrrr expressions are

available, the scheme utilizing only the coefficient sequences ofwavelets.

There are other propefiies that are impofiant in some specific applications. Ratìona1 filter

coefficients are useful for computer implementation, since multiplication by a lational

number on a comprìter corresponds to shifting bits, which is a very fast operatìon.

Smoothness and symmetry of wavelets are useful in image compression, where the enor

alter a threshold procedule can be easily detected visually.

As noted in [5] by Daubechies, it is impossible to construct wavelets that have all these

propefiies, and there is a trade-off between tliem. The propefties of some wavelets are

compared in Table 2. 1.

t9-



Wavelet
Farnily

Compact Support Analy,tical Expression
Orthogonality Symmetry

Primary DuaÌ Primary Duaì

B

c ø

D

E

F

TABLE 2,I , COMPARISON OF VARIOUS FAMILIES OF WA.VE[-I]TS

/'. Yes r: No Ø: Semi

A: Daubechies' ofhogonal wavelets

B: Biorlhogonal spline wavelets

C: Semi-orlhogonal wavelets

D: Meyer wavelets [4]

E: Battle-Lemariè wavelets [5]

F: Coiflets

-20 -
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$2.3. Use of Wayelets in the MoM

Consider a Fredholm integral equation ofthe first kind

/(s) = r(a(s))

with .C being an integral operator defined as

(2.1)

(2 8)¿(r/(s)) - [G( s,., '.t ¿,(s')ds', s, s'e C'
J
C

where ¡.¿ is the unknown function on C to be detennined, with the kemel G and the

fuirction J being given. Equation (2.7) can be converted into a matrix equation by using

MoM, and wavelets can be employed in the following ways.

$2.3. 1. Direct Application

One may directly use wavelets as basis functior.rs in MoM. The unknown function zz(s)

can be approximated ir temrs of the scaling function / and the wavelel ty

zr(s)=r"¡"1 *t 4,", (2.e)

where

2^ _t

¿r'(s)=Pr ¿r(s)= I-rjdr,,,(") (2.10)
,=0

(2.1 1)
.i 2"'-1

ud (s) = Q,tt(s) = 2|,r1,,.,,vr,,,.,,f'l
1t1= ja n=0

-21 -
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Here, jo is the coarsest resolution level, and xi, and r!,,.,, are the expansion coefficients to

be determined. P, and Q, are íhe projection operators onto spaces V,o and

{I/,; j e [jo, 7], respectively.

Applying Galerkh's procedure to (2.7) leads to the following system oflinear algebraic

equations at the selected /-th resolution level

ZI =V (2.r2)

IB CI
z-

lc D)

whose elements are given by

, =l''1,
lv')

.=[''l
to 

I

(2.t3)

/" = [rj, :ri,..., x',^,,)', I" = Vi,, Ii,-,. ", I l-,1'

1,,, 

=n,",,,,

\v' = rri,.vl,,., .. . , vl ,l'
I

lv;i,, = <v',,,,,'¡¡

(2.14)

(2.1.s)

1)
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8,,,,, = Bl:",, = (Ø,,.,,, rç6,,,.,,¡¡

D,,,,,,,.,,,,, = pþ,,,.,, = Q',,, .,,, t(v,,,.,,))

c,, ,,,,,, = c::.,, = (ë 
,,,.,,, , r(yr,,,,,7¡

e ,,,,,, ,, = e,,",, = (ttt,,, .,, , L(þ ,,,,,,)>

(2.16)

where I indicates the transpose and I,j is a vector constructed from the coefficients of

lz -tlr scale in the fomr of Il, =lx':,.a, , r1,..,, ,)'. The elements in (2.16) are ordered in

consistency witlr (2.14) and the matrix operators are shown schemaTically inFig.2.4.

The direct appìication of wavelets in the MoM can be found typically in [33], [43], and

[45] for orlhogonal wavelets, and 1441, [55] for semi-orthogonal wavelets, with the entries of

resulting matrices evaluated nulerically. Consequently, a large amount of computational

work is required to pellom numerical integrations.

52.3.2. Change-of-Basis Scheme (CBS)

One may use wavelets in MoM through the change-of-basis scheme, which takes

advantage of the FWT algorithm. The unknown function zr(s) is approxirnated in tenns of

the scaling functions /

zr(s) = P¡r(s) =2t,,ø,,,(t) (2.17)

where P, denotes the projectìon opel..ator onto the space V, , and (2.7) ca¡ be cast into the

matrix equation (2. 12) tluough the application of Galerkin's procedure, with

- zJ -
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Fig.2.4. Schematic description of the matrix operators B, C, C,and D contbined into
the single rnalrix Z .
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2,,,,, = (þ,.,,,, L(þ,,,)), v,,, = (þ,.,,,,.f )

Expressing the matrix equatior.r in a recursive form as follows

fZ', Ci,1 lt,. l lv;'1
zj -l i. r'=l I. v'=l )

fc- D ') ln' 'l Lr' ]

the elements of the submatrices are

ziì =++tbr.h,,_,21,,,

rr-r -YY¿ n 7l
"A{ l-/)")k ùt6:k'- -" t

Diì =Z1c'o-,8,, ,Z;,

e fi' =ÐZs'r ,h,o-,Z!,,,

r1,-' =\h*,_,,rt,i, f lí =ls,o ,,r,i

(2.re)

(2.18)

(2.20)

(2.21)

(1 ))\

By recursively computing (2.20)-(2.22), one can obtain the same matrix equation of the

fonn (2.12) and (2.13) as that obtained by the direct application of wavelets. Note that the

recursive algorithm is the FWT scheme that is applied to the MoM matrix equation and can

be expressed in the rnatrix fom as
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wzwr (ø/r)-t I -,wv

which leads to a new equation

(2.23)

Z'I'=V' (2.24)

with

Z'=WZIy1, I=WrI" V=lyV (2.2s)

where Il' denotes a transform matrix perfoming the FWT with relevar.rt wavelets

selected. For wavelets whose analytical expressions are not available, the scaling function

ó at the highest level in (2.18) is usually approximated in practice by some local basis

function such as rectangular or triangular basis function. The high computational cost in

the direct application of wavelets is substantially reduced in this scheme t631, t701, t711.

$2.3.3. Matrix Transform Approach (MTA)

This idea ofthe mah'ix transform approach is borrowed from that ofthe change-of-basis

scheme described above, where a system of linear equations of the fom (2.12) is first

obtained by a conventional MoM with some local basis functions such as rectangular or

triangular pulse functions, and then a matrix transfomation as desctibed in (2.23) is applied,

with the transform matrices constructed by using wavelets. Here, the wavelet transfonn

matrices l/ simply act as a sparse preconditioner, and thus is problem independent. The

transfomed fiatrtx Z' is highly sparse aftel thresholding due to the wavelet prnperty of

vanishing rnoments. The differences between the CBS and the MTA will be discussed in

detail in Chapter'4.

-26-
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S2.4. Summary

This Chapter has described some liter ature covering hierarchical bases and their

applications in computational electromagnetics. The salient features ofvarious wavelets are

fuither studied and compared in this Chapter, and it was found that wavelets are optimal

hierarchical basis functions.

Wavelets can be applied for the fast solution of electromagnetic integral equations ìn a

number of ways. The direct application of q'avelets as basìs functions in the MoM results in

intensive computational efforts to evaluate the entries of rnoment-method matrices, while it

is substantially reduced in CBS or MTA, which fully exploit the advantage of the FWT

algorithtr. The main difference between the CBS and tlie MTA is the constmctron details of

a wavelet transform matrix. The MTA siniply uses one-dimensional wavelets and the

wavelet transform matrix acts âs a sparse preconditioner; multidimensional wavelets,

however, are required in the case of the CBS for the solution of multìdimensional integral

equations.

-27.
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Chapter 3

Srr-ncrlor,{ or W¡.vrr,nrs UsED FoR THE Sor,urrox or

INTEGRAL EQUATIONS

$3.1. Introduction

The selection of the number of vanishing moments in a family of wavelets has been

investigated in [45] for Daubechies' orlhogonal wavelets (DOW), and in [63] for

semi-orlhogonal wavelets (SOW). It has been pointed out that 8 vanishing moments are

optinial when the number of urknowns is less than 5000.

Two categolies of wavelets, orlhogonal and semi-or1hogonal, are mainly used in

computational eÌectromagnetics. It has been repofted that the use of SOW yields more highly

sparse matrices and better solution accuracy when a direct solver is adopted than the use of

orthogonal wavelets [63], [64]. However, the efficiency ofthe iterative solution methods for

the sparse rnatrix equations obtained by using the SOW has not been investigated.

The focus of this Chapter is to compare systematically the SOW and the DOW when

used for the solution of integlal equations. Firstly, the effect of thresholding on the matrix

sparsity and also on the solution accuracy, as well as the relationship between accuracy and

rnatrix sparsity, are examined. Then the condition number of matrices involved is examined.

Since the SOW transform yields a matrix with a larger condition number than that

conesponding to the DOW tlansform, it is expected that the convergence rate for an iterative

method is much better in the latter case. Numerical sìmulations are conducted for the

-28 -
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transverse magnetic (TM) and transverse electric (TE) scattering by conducting cylinders of

an arbttrary size with the CG iterative method.

53.2. ProblemFormulation

Consider an infinitely long conducting cylinder excited by a TM or TE (to the z - axis)

electromagnetic plane wave in free space. The induced cunent density -I(r) on the surface

is related to the incident field F'(r) through the following integral equation

¡.

lG( r. r' lJ \ r' tdl' -F (r )

C

with C being the cylinder cross-section contout and G the Green's function.

ln the case of TM incident wave. we have

(3.1)

(3.2)

where El'" is the incident electric field intensity, ãj'z) is the Hankel function of the second

kind and zero order, and /r and 17 are tl.re wave number and the intrinsic inpedance of free

space, respectively.

In the case ofTE incident wave, we have

lrvt 
= a'!''t,t

fc,".,', = 
k 

I H å')' tk I r - i l)

-29 -
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F(r) = H'rc çr¡

G(r, r') = a çr - Ò + ! a[z) çt 1 
r - r' l) cos[ø(r'), r - r']

(3 3)

with H'!'" being the incident field intensity, ãÍ') th" Hankel function of the second kind

and first order, and ø the unit normal vector directed out ofthe cylinder.

S3.3. Effect of the Condition Number

The condition number of a matrix ,4 is defined as [21

y(A)=llA-1 ll.)A)l (3.4)

where . I denotes the Euclidean matrix norm, and can be computed through the singular

value decomposition of the matrix I [2].

In tlre case of DOW, the wavelet transform matrix is orthogonal, that is, ll-r =lYt ,and

the condition ntmtl:,er y(Il/) = 1 . For SOW with rr vanishing moments, the condition

number ofthe transfom matrix ll/ of order N x N has been computed for different values

of N, namely N = \28,256, 512, utd 1024. Numerical experiments show that the condition

number is independent ofN, but it depends on the number ¡2, as shorln in TABLE 3.1 .

Using the properties of the Euclidean matrix norm, the following estimate exists

y (z' ) = y (W/zø/' ) < y' (w)y (z) (3 5)

which means that the upper bound of the condition number of Z' is abouT y'çW¡ ttmes

greater than y(Z) for SOW transformation.

-30-
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The influence ofthe cor.rdition number ofa system matrix on the convergence rate ofthe

CG method was analyzed in [12] for syrnmetric and positive definite matrices. It was

observed that the number of iterations required is approximately r = py'l' to ensure a

solution accuracy of p decimal places. Thìs effect is also studied in [20] for MoM matrices

arísing from electromagnetic integral equations. Since the CG solver requires the system

matrix to be positive definite, the original MoM matrix equations of the form (2.12) is

convefied into the normal equation ZH ZI = ZHV , where 11 denotes the conjugate

transpose. In this case, K = p/(Z). Therefore, if the same accuracy is required, the number

of iterations for solving the transformed matrix equation will be increased approximately by

yt çW\ ttmes with respect to that for solving the original MoM matrix equation.

TABLE3.1. CONDITION NUMBSt y(W) FoRSOWWITH,, VANISHING MOMENTS.

1 2 3 4 5 6 '7 8

r(ø') 1.0 2.60 5.r3 9.97 19.32 3'7.43 72.53 140.53
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E0 t00 120 80 100 120

(a) (b)

Fig. 3.1. Gray-scaled images ofthe wavelet transform matrices oforder 128 x 128 with 8

vanishûrg moments: (a) DOW, (b) SOW.

S3.4. NumericalExperiments

To measure the solution accuracy, the residual error for the equation (2.1,2) is dehned as

e(z)=llz'"t" -v llv x100(%) (3 6)

where 1"n1" is the computed solution. The sparsity ofa tnatrix oforder N x ly' js defined as

S=(l-M¿lN'))x100(%) (3.7)

where M, is the total nuurber of nonzero elements of the matrix after thresliolding u,ith the

th¡eshold value ô, which is one ofthe input parameters ofthe computer program. Equation

(3.1) is converted into the matrix equation of the form (2.12) t:y the pointmatching MoM

with fixed ceìl size selected as one tenth ofthe wavelength ofthe incident wave in free space.
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SOW and DOW with 8 vanishing nloments have been employed to perform the wavelet

transfomrs in (3.5) as in [45] and [63].

$3.4.1. TM Scattering

Sparsity and Soluliott Accuracy

Numerical coÍnputations are first conducted to compare the DOW and SOW in terms of

matrix sparsity and the solution accuracy by the standard LU solver. The surface cument

distributions for a perfectly conducting cylinder of an electric radius /ra = 12.8, computed

when the sparsity S = 83.3% for both the DOW and the SOW, are shown in Fig. 3.2, where

the analytical solution is given as reference. The matrix sparsity S and the residual enor ¿ as

functions of the thresliold value á are plotted in Fig. 3.3. The structües of the sparse

nratrices when a residual enor of e(Z) = 0A8%, for example, is imposed for the DOW and

SOW are given in Fig. 3.4. Several conclusions can be drawn from the above experiments.

Firstly, the use of SOW produces a matrix with very small values of some entries such that

the threshold value is much smaller than that of the DOW. Secondly, in comparison with the

DOW, the use of the SOW gives a better performance in terms of the residual enor when the

rnatrix sparsity is less than a cerlain value, namely 84.03% in this example, as shown in Fig.

3.5. Thirdly, the residual emor increases inegularly with the increase of the matrix sparsity

when using SOW, which indìcates a worse condition nunber of the transform mah-ices.

CondiÍiott Number

We now present experimental lesults when the CG solver is used lor the solution of the

respective matrix equations. The condition number and the residual errol after ¡r iteratio¡s
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are listed in Table 3.3. For DOW, y(Z) = y(Z') and the number of iterations to achieve a

solution with the residual error e(Z) <10 3yo is K(.2) - K(Z'). For SOW, however, y(Z')

ìs approximately 00'1 - 104)yQ) as expected, and the residual enor t(Z) cannot be

decreased below 2o/c' even after N iterations for all values of 1y' considered. Practically, one

solves the sparse matrix equation obtained after thresholding the entries of the transfonned

nratdces. Tat:le 3.2 shows the number of iterations ¡r versus the matrix sparsity in the DOW

case wlren N=128 and with the termination criterion chosen to be s(Z) <104% .It can be

seen that the number of iterations increases with the increase of the sparsity. The

convergence rate of the CG solver for N = 128, when using DOW and SOW, is shown in

Fig.3.6. Clearly, a solution with anetor e(Z) <2o/o canno|be acliieved witli the CG solver

when the SOW matrix transform is used in all cases considered.

ç3.4.2. TE Scattering

Sparsity and Sofutiotr Accurøcy

The same experimerfal procedure as in the TM scatteling case is followed to compare

the DOW and the SOW. Now the computed surface cuffent distributions are compared to the

anal¡ical result for a circular cylindel with the electrical radius /ra =25.6 in Fig. 3.7, and

fhe matrix sparsity and the residual enor as fllnctions of the thleshold value are plotted in

Fig. 3.8. It is again observed that the use of the SOW yields a sparse matrix with a small

threshold value. The residual error versus the Ínatrix sparsity is showr in Fig. 3.9. The use of

SOW does not show any advantage in terms of the solution accuracy when S > 85.7%.
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Cottdition Number

The condition nurlrbers after r iterations of the CG solver are listed in Table 3.2. For the

SOW, It is observed thal y(Z') = (103 .- rc{)y(Z) and the residual error ís e(Z) > 3Vo

even after N iterations for all considered values ofN. When N =256, the convergence

rates of the CG solver are shown in Fig. 3.10 for both the DOW and the SOW, where the

convergence rate with the matrix sparsity ,S = 88.5% is also plotted. Obviously, a solution

with ¿ < 10% camot be achieved within l/ iterations in this example, too.

53.5. Conclusions

In this chapter, the selection of wavelets used lor the integral equation approach is

studied systernatically by examining the efficiency ofthe two categories ofwavelets, namely

the DOW and the SOW. The Euclidean norm of a matrix is employed and tlie singular value

decomposition method is utilized to evaluate the matrix nomr as well as the matrix condition

number. The condition number of a MoM matrix is preserved after the DOW transformation,

but is increased significantly after the SOW hansformation. Numencal results for the

electromagnetic scattering by conducting cylinders show that the coridition number of a

MoM matrix using the SOW witli 8 vanishing Ínoments is enlarged approximately

10t - 100 times, in agreement with the theoretical predictions. As a consequence, the

convergence rate ofthe CG solver is slow and a solution with the residual errol less than 102

cannot be achieved for the exarnples considered. The results presented indicate that the

DOW are optinial wavelets for the solution ofintegral equations when an iterative method of

solution is employed.
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Analytic Solution
SOW| ¿=049%
DO'w: ê = O.S2'/ø

1.5

lil.

90
d (degrees)

Fig. 3.2. Surface cunent distribution on a circular conducting cylinder with ka = 12.8 and
the rnatlix sparsity S = 83 -3% .

10"+
10' 1ou 1o-u roo

Threshold value á

Fig. 3.3. Relative er:or 6 and matrix sparsity ,! versus threshold value á for the cylinder
in Fig. 3.2.
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Fig. 3.4. Structures of sparse matrices after thresholding when the residual eror
e (Z) =g.ago/o: (a) DOW, S =79.47%; (b) SOW, S =8298% .
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Fig. 3.5. Residual error ¿ versus matrix sparsity,S.
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DOW S = 83.3OoÁ

-.------....-

28.I

)W S = 83.3Oo,1

)W 's = A3.3Oo/

30 35

when N =

--.
D(

S(
D(-s(

:

:

:

25

:ions ¡r

solver

20

of lterat

the CG

to'I

1

'o' I "\
t-,,.i,o 
Il\',o'l ..--------..-

I

l

,o-'l
Irt',
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I

I
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o 5 10 15 2C

Number of

Fig. 3.6. Convergence rate ofthe

ê\

s

TABLE 3.2. NUMBER oF ITERATIONS /T VERSUS MATRIX SPARSITY.ç wHeN ¡y'= 128

AND THE TERl\drNATroN CruTnRroN rs SET To t(Z) <10 3 % n'r rHE DOW C¡.se.

TABLE3.3. CoNDrrroN NUMBER / AND RILATTVE ERROR e(%) arrrn /r ITERATIONS

FOR DIFFERTNT MATRIX SIZES WITHOUT THRESHOLDN.IG ITM CASE).

,s(%) 60.06 70.9'7 7 5.98 78.44 83.30

K 25 33 35 3'7 40 4l

MoM DOW sow

v(z) K €(z) y(z') K €(z') v(z') K €(z')

t28 13.83 19 6 68x l0r t3.83 r9 6.68x104 3.1't xl}a 129 2.27

256 29.50 50 9.l9x 10-a 29 50 50 8.63x 104 1.14x 105 251 2.19

512 103.9'7 t01 6 90x10{ t03.94 102 9.04x104 L40x105 513 3.12

1024 247 .09 229 9.59x 104 246.9'7 234 8.51x 10{ 6.14x104 1025 4 1'7
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H:,
O----------+

Fig. 3.7. Surface cunent distribution
and the nratrix sparsity S = 88.50o.

d (degrees)

for a circular conducting cylinder with ka =25.6

Threshold Value á

Fig. 3.8. Relative emor ¿ and matrix sparsity S versus threshold value á for the scatterer
in Fig. 3.7.
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Relative error r versus matrix sparsity.S.

TABLE3.4. CoNDrïoN NUMBËR ,/ AND RxL^TrvE ERROR s(%) AFTER K ITERATTONS

FOR DIFI.'ERENT MATRIX SIZES WITHOUT T1IRESHOLDING (TE CASE).

MoM DOW sow

r(z) K 8(z\ v(z') K t(z') rQ') K Ê(z')

128 4.'71 14 2.79x10'a 4.72 14 2.79x104 3.36x10a t29 3.0'7

256 12.43 36 6.21x10'a 12.4i 16 7.06x 10r 1.17x 105 25',7 444

512 80.02 55 9.38x 10{ 80.04 55 9.35x 10{ 1.40x105 513 5.68

r024 1.86 x 10r 114 9.06x 10'a 1.87 x 103 I l5 9.52x l0l 8.03x 105 1025 8.40
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Fig.3.10. Convergence rate of the CG solver fot N =256.
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Chapter 4

Sc¡,TTnnTNc sY DIELECTRIC BODIBS

54.1. Introduction

For orthogonal wavelets, both the MTA and the CBS described in Chapler 2 can be used

for a fast solution of integral equations. The hvo trethods are differentiated by the

construction details of the rvavelet transfomr natrix W . In the case of the MTA, IU is

constructed by simply using one-dimensional wavelets, while in the case of the CBS it is

constructed with multi-dimensional wavelets, which are tensor products of one-dimensional

wavelets. It is noted that for problems formulated based on one-dimensional Fredholm

integral equations, as those studied in Chapter 3, the CBS and the MTA are identical, since

the unlarowns associated with the integral equations are single vectors, and the

one-dimensional FWT is required in both methods.

In this Chapter, the use of wavelets in the MoM for a last analysis of scattering by

two-dimensional dielectric bodies is studied. The mathematical fon¡ulation enploys

coupled surface integral equations, and the unknowls to be determined are two independent

vectors. The main focus is to compare the performances of the CBS and the MTA, with

numerìcal experiments conducted for various dielectric bodies.
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(p"'"

o-.-

Sr

Fig.4.1. Two-dimensional dielectric obstacle immersed in an incident fieId g¡""

$4.2, ProblemFormulation

Consider the scattering problem by a dielectric obstacle in a 2-dìmensional space as

shown in Fig. 4.1, illuminated by an incident electromagnetic plane wave. The illuminating

field rpt"" = xrpi"" has only a z - component and is independent of the z - axis. The

goveming equation for the fields is the scalar Heh¡holtz equation,

(v'z + k?)ai ?) = o,

(v2 +kl)rp,(r¡=0,

re,S,

r€,s2

(4.1)
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where /., = aEJjt is the medium wave number, e, and p, being the pemiíttivity and

pemreability of the respective region S,, i =1,2 .The total field p' in S' is

Qt=Q"'" +Qi (4.2)

We define Green's functions in the respective regiols to satisô' the following equations in

two dimensions

(v1 +kl)g,(r)= õ(r-r'), i=1,2

and the radiation condition at infinity

(4.3)

where r, r'are position vectors and H[2) the Hankel function of the second kind and zero

order.

From (4.1)-(4.3) and with some mathematical manipulations, we have

giV,r' ) = L ft['' lt', l' -'' )4l

tls,Q,r')v'ø,(r) - q,Q)Y2 g,(r,r')lds = rpt"" (r') - rp,(r')
.s

[[s.Q,r')v',lr(r) - ç.,(r)Y2 gr(r,r')]tls = q,Q),
s

(4.4)

r' e ,S,

(4.5)

r'eS,,

By applying the Green's second identity [1], the integrals on the leftiand side of (4.5)

become contour integrals over the cross-sectional contou C bounding tlie dielectric region

S, . Consequently,
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Y'rp,(r')tll'- to,Q')n'.v's,@,r')dt'- ç"" -rp,(r¡, r e S,
a

V'rp,(r')dl'- lrt.Q)n'.v'sr(r,r')dt' =çr(r), reS.,
c

rp, and n' . V' (p i act as surface sources, and satisfy the boundary conditions of the fomr

lp,v) = q,(r)
l

lp,tr.vqltrt= p,n vprtrr. r ec

(4.6)

I lg,¡r,r'¡í

t.
lls,t''''t"'

(4.1)

wilh p, = p,,i -- 1,2 when p is an electric filed and p, = e, when p is a magnetic field.

Witli inrplying (4 .7), (4.6) can be written symbolically as

I tr rt r'' V',plr' ll + Lt2le(r' \ t -,p'"" ( r )

)

I
lLrt( n' ' V' tP(r' ¡) + L,2(pQ)) = a, r e C

wherc the integral operators are

L,,(n' .Y'rp(r')') = IS,U,r')n' 
.V'ç(r')tll'

C

L,,(q(r')) = - lø()n''v's,Q,r')dt' + rp(r)

' 
,0.r,

Lr,t n' V' pt r' t\ = L lg,t r. r' tn' . v' qçr' ¡dt'p:i

L,,(q(r')) = - !V?)n' 
.v's,Q,r')ctt' - rpQ)

(-

(4 8)
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Tlrus, the integral equations (4.8) contain two independent unknowns I and n' Y'ç on C

Consequently, (4.8) can be treated as linear operator equations and solved with the MoM.

S4.3. Numerical Method

To solve (4.8) with the MoM, we let

(4. 10)

where /,.,, (r') and J'r.,,(r') are the selecled basis functions. Then, (4.8) becomes

(4. 1 1)

Applying tlre weiglrted residual procedure with selected weighting functions w,.,,,(r') and

wr,,,,(r') for nt -1, N leads to a system of 21y' linear algebraic equations in the fonr.r of

N

n' .Y'rp(r') = Lo,,f,,,,(r')
n=1

EQ) =lb,,f',,,(r')
=1

lfo,,r,,, ¡,. ,,', -fø,,t ,t ¡,,,, ( r'))= ol-Ã
ÀÀ

)1a,, t,, r f ,, t r' t t + >b,, 4. t f ),, I r' | ) = e"'' t r t

{. ,-r ¡-l

Z o, (*,,,,,, L,,( f ,,, (r'))) + lb,, (w,,,,, L,,( f.,,, (r' ))) = 0
,=l n-\

NN

Zo,,(-.,,,,, L,,(.f,,,(t"))) +1b,,|wr,,,,, Lrr(fr,,(r'))) =(w.,,,,,rp"'"çr1)
=l ¡=l

(4.12)

which can be written in the form of a matrix equation as
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2,,

ZI
z,,ll I,) lt ,1

z..llt,l L o l
(4.13)

with

(4.14)

i i=l')

Equation (4.13) can be transfomed iito (2.24) by using either the CBS or the MTA with

the wavelet transform matrix I/. In the case of the CBS, the multidimensional wavelets are

requìred to construct I/, wliich can l¡e obtained by sinply using tensor products. To

illustrate the idea, consider the case ofa plane. Let

@(x, y) = dt(x)ö(y) = ó Ø ó(x, v) (4.1s)

with þ being the scaling fuirctions for the selected wavelets and define

Vo=Span{@(x-k,,y-k2; k,, kteZ}. Of course, if the set {þ(r-l;leZ} ís an

ofilrogonal basis, the set {@(;-Ë,, ),-kz} fonr an ofihogonal basis for Vr. By dyadìc

scaling, one can obtain a multiresolutional analysis. The complenrenl space \ of Vo in V,

is similarly generated by the translations ofthe three functions

Y(') =þØV, Y(') =VØÓ, YG) =VØV

where r¿ is the corresponding wavelet function.

(4.16)

[í';:l 

ï,,1,',,','
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For a given function Vf (r,y) e I] ,the following projection exists

ftx,y)= II<f,u/,,t ØV¡,t) V,., ØV¡,0

Thus, the wavelet transform maTrix ll can be obtained in a way

one-dimensional case. The gray-scaled images of the wavelet transfom

512 x 512 for Daubechies' u'avelets with S vanishing moments ale shown

c Iearly shows their diflerences.

(4.tt)

similar as in the

matrìces of order

in Fig. 4.2, which

The transformed matrices Z' with the CBS and the MTA are usually highly sparse due

to the salient features of wavelets. However, the CBS will result in a better performance than

the MTA ir terms of matrix sparsity and solution accuracy, since the lattel sir-nply treats the

unknown J =llt, I2lr in (4.13) as a vector, and the discontinuity between the two

sub-unknowns I, and I" generates more matrix elements with a higher value.

:
-- -

r00

200

100

400

500

100 200 300 400 500

(a)

Fig. 4.2. Gray-scaled images of wavelet

(b)

transform matrices: (a) MTA; (b) CBS.

-48-



CH^PTER 4 Sc^'l-t ERI¡*c By DTELECTRTc BoDrEs

S4.4. NumericalExperiments

The above procedure was implemented to analyze numerically the electromagnetic wave

scattering by various djelectric bodies. The basis functions f, ,,(t) in (4.10) and the

weighting functions w,.,, (l) in (4.12) were chosen to be rectangular pulse functìons.

Daubechies' wavelets with 8 vanishing moments have been employed for the construction of

wavelet hansform matrices. To measure the perfomance of CBS and MTA, the relative

solution error is defined as

s 
",, 

=l I - I õ lllllr )lxto}% (4.18)

where 1 is the solution obtained with the conventional MoM and 1, is the one obtained by

the present method with the threshold value á .

The first example considered is a circular cylinder of relative pennittivity e,. =2.5 and

the electric radius Æoa = 50 in free space, illuminated by a plane wave as shown in Fig. 4.6,

where /ro is the wave number offree space. To compare the efficiencies ofthe CBS and the

MTA, computations were perfonled fol different tlueshold values of á , ar.rd the nur¡ber of

basis functions was kept N = 5 12 . The sparsity S of the mahix Z' as a function of threshold

value á and the solution error S,,,. versus the matrix sparsity S are plotted in Figs 4.3 and

4.4, respectively. Both the MTA and the CBS result in highly sparse matrix equations, but

tlie latter produces a higher matrix sparsity than the fomer, e.g., about 5%o whel

S".,. = 10.50 0%. The structure of sparse matrices is shown in Fig. 4.5 for the case of

S", = 10.50 0/0, the corresponding E-, tt YE- and, îar-fteld RCS are plotted in Figs 4.6-4.9.

Fig. 4.7 and Fig. 4.8 shows ã- on the surface of the cylinder and tliat inside and outside of
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the cylinder along the y-axis, where the conventional MoM and the analytic solution are

given as references.

The second example considered is the above circular dielectnc cylinder with relative

permittivity e,. = 40 . The number of basis functions was kept N = 512 as above. The

relationship between,S and á is shown inFig.4.l0, and that between S",, and,Sisgivenin

Fig. 4.1 l. The MTA and the CBS produce highly sparse matrix equations, and the CBS again

gives higher a matrix sparsity then MTA about 7o/o when S 
",,. 

= 10.05 %. The sparse matrix

structues are shown in Fig. 4.I2, and conesponding E - , n .Y E - and far-held RCS are

plotted in Figs 4.13-4.16. Fì9.4.1,4 and Fig. 4.15 shows .ð- on the surface of the cylinder

and that inside and outside of the cylinder along the y - axis, here again the conventional

MoM and the analytic solution are given as references

$4.5, Conclusions

MTA and CBS with orthogonal wavelets are studied for the analysis of scattering by

fi,vo-dimensional dielechic bodies, formulated as coupled surface integral equations with

two independent unknowns. Their efficiency is compared in temrs of the matrix sparsity and

the solution accuracy obtained with the standard LU solver. Nume¡ical experiments are

conducted for fwo-dimensional dielectric bodies oflarge size with typically latge and small

values of penlittjvity, namely e ,. = 2.5,40 . The MTA and the CBS both result in highly

sparse matrix equations within the acceptable range of solution enor, namely ,S,,,. < 10.5 %

in the examples considered, and CBS produces higher sparse matrices about 5Yo in the hrst

exanrple and 7To in fhe second exanrple.
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The MTA and the CBS are differer.rtiated by the construction of wavelet transfomr

matdces. The MTA simply requires one-dimensional wavelet, while the CBS needs

multidimensional wavelets, which are tensor products of one-dimensional wavelets. The

CBS gives nse to a better performance than the MTA in tenns of matrix sparsity, the MTA,

however, provides a problem-independent transfomr mechanism at the cost of matrix

sparsity.
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Fig. 4.3. Sparsity ,S as a function of threshold value á for the dielectric cylinder in
Fie.4.6.

60 65 70 75 80 85

,s(%)

Fig. 4.4. Relative solution error ,S",,. versus matrix spaxsity .S for the dielectric cylinder in

Fig.4.6.
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(b)

Fig. 4.5. Gray-scaled images of the transformed matrix Z' for the dielectric cylinder in
Fig. 4.6 when S 

",.,. 
=10.50%: (a) S : 78.47yo oblained with MTA and á - Ll51x 10-a;

(b) S= 83.57% obtainedwith CBS and ô = 1.95x10-4.

Fig. 4.6. ¡r.VE, on the surface of the dielectric cylinder ofradius /roa - 50 and the

relative dielectric constant s,. = 2.5 , when S",, = 10.50% for E'!'" = 1 1V/ut).

(a)

s

$'
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Fig.4.7. .8" on the surface of the dielectric cylinder in Fig. 4.6.
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Fig.4.8..8- onthe l-axis across the dielectric cylinder in Fig.4.6
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_ Analvlic solution t1l
cBS: s = 10.5b%
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Fig. 4.9. Far-field RCS ofthe dielectric cylinder in Fig. 4.6.
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Fig. 4.10. Sparsity ,S as a function of threshold value á for the dielectric cylindel.. in
Fig. 4.13.
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x6,
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MTA
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0
50 uo .t(%) u'

Fig.4.1l. Relative solution enor S",, versus the matrix sparsity S for the dielectric

cylinder in Fig. 4. 13.

Fig. 4.12. Gray-scaled images of the transfonled maÍrtx Z' for the dielectric cylinder in
Fig. 4. I 3, when S",, = 10.05% : (a) S : 66.17% obtained with MTA and á = 67 .69 xl} 6 

;

(b) S: 74. 7 4o/o oblãiîed with CBS and õ --92.94x106 .

7A 75

(b)
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Fig. 4.16. Far-field RCS of the dielectric cylinder iri Fig. 4.13.
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Chapter 5

ScarrlnNc sy ARBTTRARv Bolrns oF REvoLUTIoN (BOR)

S5.1. Introduction

Scattering of electromagnetic waves by arbitrary BORs can be described by constructing

coupled vector i.rtegro-differential equations wl.rich can be solved by taking advantage of the

axial symmetry ofthe body t101, t13]. Considerable efforls have been made in recent years

to enhance the computational efficiency lor electrically large structures. The FFT was used

in [23] to improve the matrix fiIl time. Entire-domain fuirctions were also employed rn order

to reduce the size of moment-method matrices arising in the analysis of electrically large

axially symmetric reflector antennas [25].

In this Chapter, the MTA with orlhogonal wavelets is extended to the problem of

scattering by arbitrary BORs. Ar efficient sparse solution technique that employs the

generalized minirnal residual (GMRES) niethod, which converges faster than other iterative

methods [65], is demonshated for the analysis of the electromagnetic scattering by a

conductirg BOR, where the mathematical model is reduced to a single vector'

integro-differential equation. A sparse LU decomposition method [60] with an approximate

minimum degree ordering algorithm [56] is proposed for the case ofdielectric BORs, whose

moment-rnethod matrices inherently possess a higher condition number. Numerical

experiments are performed to evaluate the effìciency and accumcy of the solutior.r

techniques.
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EF E¡"" +¡.1"

H- É* +H:

Fig. 5.1. Surface equivalence of an arbitrary homogeneous dielectric scatterel' in an
unbounded mediurir: (a) Original probleni; (b) Replaced by the surface equivalent sources
J,=nxH and K,=-nxE.

$5.2. Surface Integral Equations

Considel a geneml radiation and scattering problem involving a homogeneous scatterer

of permittivity a, and permeability ¡-rr, illuminated by the incident fields Eittc and Hitt' in

an unbounded medium of ár and 4, as shown in Fig. 5.1(a). According to the equivalent

principle [1], the scatterer can be replaced by the surface current sources, J, = nx H and

K"=-nxE,wl.ricl.rproducethescatteredfields,E'and11'asshowninFig.5.1(b).The

integlal equations for this problem can be obtained by requiring continuity of the frelds

tangential to the surface ofthe scatterer S

(a)
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n x Ei Q,, K,) + rt x E:Q,, K,) = -n x E"''

ttx HitJ,. /(, )-rrr H)tJ".K )=-n, H''

(s.l)

(s.2)

(s 3)

(s.4)

where r¡ is tlie unit vector nornral to the surface ,9 ofthe body as shown in Fig. 5.1. The

fields radiated by the equivalent cunents in a homogenous region can be computed in

tenns of electric and magnetic vector and scalar potentials as

E;(J,. K,¡=-jaA,-v@, -f V ,4
tl

HìtJ,.K,t--jaF, -YV,- L Yrl,
u,

with

(s s)

where

Gt = e-iþ'l'-") lØn)r - r'l¡, I =1,2 (5.6)

j = Jj , þ = ..1i,ø , and a, and p, are the permittivity and pemreability, respectively,

of the nraterial outside and inside the body. A time-dependence faclor ej'' is assumed but

suppressed thloughout. The electric and magnetic surface charge densities, q" and q,,,, are

lelated to their corresponding surface cuuent densities through the equation ofcontinuity

I^ 

=, I!,o,0, ø,- t,!!ø.o,a,

lr, 
=",![x.c,a, r, =,1,, I[n,,,o,0,
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I Ct)
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t2, /-b

€r ltt

Fig. 5.2. Dielectric body of revolution

S5,3. Method of Solution

When the scattering body is an arbitrary dielectric BOR about the z - axis, as shown in

Fig. 5.2, (5.8) can be efficiently solved by taking advantage of the rotational syrnmetry.

Because ofthis symmetry, a Fourier series expansion in the angle / can reduce the problem

to the solution of a system of orthogonal modes. The main advantage of using the Fourier

modes is that the scattering ploblem can be solved mode by mode due theìr oÍhogonality.

The integro-differential equations (5.8) can be transformed into a system of linear

algebraic equations through the application of the method of monlents exploiting the system

axisymnretry. Nanely, the unknown cunent densities are first expressed in terms of Fourier

modes as
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where Mi, and M! aïe components along the tanger.rtial unit vectors I and /, respectively,

and ¡ is the length variable along the generator curve C of the BOR. The current densities can

fufther be expanded as

where N is the total number of basis functions

functions

(s.1 1)

p=t,Ó

fr used along C . Clioosing the weighting

M,(t,ø) -ll1ø:,r,) * tr! (t)ln"r, M, = r,,K, (s.10)

P=1,Ói Ì=r.2."'N (s.12)

of 4N x4N lir.rear equations for each n in

lt,ur= 
pi,tir ¡rç¡

J^
I x i tt ; = p>' I,i;" f, (t ),IEi

W,X Q) -- pw,(t)e i"þ 
,

tlre application of MoM yields a system ZI = V

the fonl

2i,,, zil,,,

zf,i.,, zl!,,,

2i,.,, z:1.,

zli,, z!1,,

zi'r,,, zü,,,

z!:,,, z!!,,,

Z'ir,,, ztl,,,

Z!;,,, 2Y,,,

r:,'

rl'"

I:,,

rÍ''

(5.13)

V,:"

v,!"

V,:'

yd.,t

with the matrix elements
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(5. r 4)

and F,,q, - q.f t,Q)et''0 . The inner products in (5. 14) can be evaluated in the fonl of integrals

along the generator curve C ofthe body, for example

[Z',',.,,],, = I 
ù 

I 
dl t j a w, Ø.f (r')[sin y(r) sin y (t' ) . 

î p,k|'), + s!i\)
cc

+ p,Gli'.:, + cl,'-))ll2+ cos¡(r)cos¡(r')(/t,g';," + /trgl," )l

+twi(t).f i|')ljco)l(sl,') le, + s!,') l")j (s ls)

lz ß,,,1,, = I 
dt 

I dt' t- a y,, (t) f r Q) sin y (t) tu, (gj? - gjl, )
CC

where gl') represeÍìts the ¡z - th Fourier mode of G, in (5.6) and 7 denotes the angle

between the unit vectors t and z , being positive if r points away from the z - axis and

negative if r points towards the z - axis. Several formulas to lacilitate the computation

above should l¡e noted:

v' .r, = t)firo't'A'l+ ,Ltþ (t')I"r'ø' (s.16)
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,{) =
{;,,

1

¡',ó - ó' I = -Lf s',,t' q¡,¡' 1¿ 
:''ó-ó'

(5.17)
2î

tc,lt,t,ayi""aa
0

with the coordinate transfoml

n = x cosy cosó + ycosy sin þ - zsiny

¡ = xsin/ cosø - ysitt y sit þ + zsin y

ó = -xsinó + lcosó

(s. 18)

Finally, the unknown current density coefficients can be found by solving the matrix

equations (5.8), and tlie far field and radar cross section (RCS) can be calculated though the

procedure described irr [10], [13]. In what follows, an efficient and accurate nuÍnerical

solution of(5.8) is analyzed in detail.

$5.4. Solution Techniques for Sparse Matrix Equations

Although both orlhogonal and semi-orthogonal wavelets have been frequently used for

the solution of electromagnetic integral equations, yielding highly sparse moment-method

matrices, we have shown in Chapter 3 that the condjtion number of Il/ is 141 in the case of

SOW with 8 vanishing moments, such that the cor.rdition nurnber of the transformed matrices

is considerably increased, while it is 1 in the case of the DOW, rvhich is optimal. Here, the

orthogonal wavelet transforrnation scheme is extended to the problem of scattering by

arbitrary BORs.
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Implementing a thresholding procedure with appropriate threshold value 4 the

transformed matrix Z' becomes a sparse matrix. In order to accelerate the iterative solution

algorithm, the elements oî Z'are aranged using the "row-indexed sparse storage mode"

[45], where the solution is practically propottional to the rratrix sparsity in tirne.

$5.4.1. ConductingBORs

The GMRES iterative algorithm described in [65] is implemented to obtain the fast

solution of the derived sparse matrix equation since it converges faster than other iterative

algorithms and also due to the fact that the ofhogonality ofthe wavelets used provides an

efhcient way to select the termination criterion for the iterative process. Since the Euclidean

norm ]ø'l= 1 for the orlhogonal wavelets, the residual eror r for the solution of (5.13),

delrned by r=lzt-vllllvl, ìs equal to the residual eruor r'=lzr'-v'lll)v')tor tne

solution of the transformed matrix equation (2.24) before thresholding. Recognizing this, a

solution of(5.13) with a required accuracy a is sought for by usfug the generalized minimal

residual (GMRIS) algorithm in two steps. Fìrst, the sparse matrix equation obtained after

thresholding (5.13) with a threshold value ä is solved imposing the same accuracy e such

that the residual enor 6 for this matrix equation is trinimized to /;9 . Then, the enor r ìs

checked, and the iterative procedure is tenninated if r < e , otherwise the GMRES algorithm

is restarted rvitl.r the new tennination criterion 6 -rf +n] 3€a , A= / -ril beinC

determined in the previous step and e, being a predefined accuracy less than e. Note that

the eror z1 is a quantification of the influence ofthresholding on the residual error r. This

eror is usually small since a very small value of á is used in practice. Thus, in the second

SCATTERING BY AIìBITIì"4.RY BODIES OF REVOLUTION
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step the GMRES iterative process converges fast and the solution of(5.13) can be found by

computing only one full matrix-vector multiplication used to evaluate r . This procedure was

tested by r-rumerical experiments and found to be more efficient than that used in [45], where

a smaller value of the residual enor is required for the termination criterion to ensure that the

conjugate gradient iterative algorithm yields a solution of the original moment-method

equation with the residual enor ¿ .

$5.4.2. DielectricBORs

The original MoM matrix Z inherently possesses a high condition number in the case of

dielectric BORs. This is confinled by numerical experiments conducted, whele iterative

solution algorithms for (5.13), such as the conjugate and bi-conjugate gradients, and also the

GMRES method, fail to converge to an accuracy of 1% in the residual enor for the problems

considered in this paper.

The condition number ofvarious wavelet transform matrices has been studred in Chapter'

2. It was pointed out that the condition number of I/ is always 1 in the case of orthogonal

wavelets, which is optimal. By using such wavelets, the condition number of Z in (5.13)

will be preserved after the wavelet tralrsformation. To treat more efficiently the matrix

equatiolrs (2.24) and to take full advantage of the sparsity of the transformed impedance

rnatrices, an in-rproved sparse LU decornposition solver [60] has been implemented, which

dynamically allocates the cornputer memory needed and employs an approxinate ninimum

degree order ing algorithm [56] to further increase the sparsity of the con.rputed L and U

factors.
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$5.5. NumericalExperiments

Based on the procedure described above, a computer program has been witten to

analyse the problem of electromagnetic wave scattering by an arbitrary BOR. The functions

fo(t) rn (5.11) and wr(/) in (5.12) were chosen to be triangular pulse functions, and

elements of Z a:nd V in (5.13) were evaluated following the procedure described in [13].

The Daubechies' wavelet [5] with 8 vanishing moments has been employed for the translorm

ìn (2.25). Since the main source of erors is the thresholding level in the transforned

impedance matrices, the tlueshold value dwas taken as one of the input parameters of the

computer program and an appropriate value of it has been selected. A numerical solution

with 1% relative enor in the residual vector norrrr was sought for the results generated. The

sparsity of a matrix has been defined in (3.7). Numerical experiments were conducted for

various BORs. The plane of incidence of plane wave is assumed to be at þ=0" and

d = 180', and tlre curent densities are obtained in the forrrr

r,Q,þ) -- tJ',(t)cosþ + øJ! (t)sinø

K,(t,þ) = tK',(t)sinþ + þKf (r)cos/ .

(5.19)

$ 5.5.1. Conducting BORs

A solution of(5.13) is sought by using the GMRES iterative process described above,

with e = 0.01 as in [45] and s¿ = 0.0001. Numerical experiments were performed on a

Pentium 120 personal computer.
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The first example considered is that of the conducting sphere with a radits þoa

illuminated by an axially incident plane wave as sho'*n in Fig. 5.3, where po is the wave

number ofthe incident field in free space. To illustrate the efficiency of the present method,

experiments were conducted for different large electrical dimensions namely Boa:25.6,

51.2, and 102.4, whiie the number of basis functions per wavelength was kept 20 as il [23].

Figs. 5.2 and 5.3 show the computed E - and H -p|ne radar cross section (RCS) for

poa- 51.2 obtained by the present method in comparison with that by the conventional

MoM with the LU solver. The sparse matrix with S : 1I.28%, obtained from Z' wifh a

small threshold value á = 9 x i0-6 is shown in Fig. 5.5. Table 5.1 illustrates the efficiency

of the rnethod presented as compared to the MoM with the LU solver. A highly sparse mafrix

is produced with smaller á in all cases, and the matrix sparsity increases with the increase of

the matrix size since more wavelets now a¡e involved. 45.04%o to 80.09% reduction in CPU

time can be observed, i.e. 1.9 to 5 times, with the time used to perform the FWT included. It

should be remarked that the computational efficiency increases with the matrix size, which

recomrnends the method presented for an efficient solution ofelectrically large problems.

The second example considered is that of a conducting cone with spherical caps

illuminated by an a,xially incident plane wave as shown in Fig. 5.6. The efhciency of the

proposed procedure is examined for fixed dimensions ofthe body, poa =12, pob =6,and

P,h = 48, but with the total number N of basis functions considered along the generator

curve of the body taken to be 256 ærd then increased to 512. A more densely sampling

usually lesults in moment-method equations with a higher condition number. The computed

E- and 11 - plane RCS are plotted in Figs. 5.5 a¡d 5.6, respectively, and the results
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obtained by the MoM with the LU solver are also given as reference. As shown in Table 5.2,

48.92%o alnd 78.29"/o redttctíons iri CPU time are obtained in conparison with the MoM

employing the LU solver for the case of N: 256 (nratrix size 512 x 512) and 512 (matrix size

1024x 1024), respectively. As expected, the reduction in computation tin.re is increased as

compared to the corresponding cases in the first example.

S 5.5.2. Dielectric BORs

The fírst example considered is that of a dielectric sphere of relative permittivity e, = 8

ar.rd normalized radius Boa in free space, illuminated by a plane wave, as shown in Fig. 5.8.

To illustrate the efficiency of the presented method, computations were perlomed for

different electric dimensions, namely /joa = 12.8,25.6, and 51.2, while the number of basis

functions per wavelength was kept 20.

The nonnalized values of lJl(t)l,lJ!Ø,lKl(/)1, and K!Q) I for the sphere with

poa --12.8 and its RCS are plotted in Figs. 5.7, 5.8, and 5.9, respectively, where the results

obtained by the conventional MoM with the LU decomposition algorithm are also given as

reference. The structure of the sparse matrix with the sparsity S = 33.42% is indicated

qualitatively in Fig. 5.11. As shown in Table 5.3, a 50% to 73% reduction in CPU time,

includìng the time to perfom tl.re FWT, is achieved with respect to the reference method, i.e.

abolt 2 to 4 times faster in the case ofthe larger spl.rere.

Another exarnple given here is that of a cone-sphere object with the relative permittivity

ê, = 12, the cone angle a=50', and the sphere radius Bra in free space, illuminated by a

plane wave axially incident on the cone veftex, as shown in Fig. 6. Again, to examine the
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efficiency of the method empìoyed, the same numerical experiments as in the previous

exarnple were performed for various body dimensions, namely for poa= 10,20, and 40,

with approximately 20 cells per wavelength along the object generator curve. For the case of

poa = 10 and N = 128 , the surface electric and magnetic current densities, as well as the

RCS computed by the presented method, are plotted in Figs. 5.11, 5.12, and 5.13,

respectively, along with those obtained by the conventional MoM. As shown in Table 5.4, a

4lo/o fo 6'7%o reútction in CPU time, including the time used to perform the FWT, is achieved

with respect to the conventional method.

$5.6. Conclusions

A fast solution technique based on the FWT and using sparse matrix solvers has been

investigated for the problem of wave scattering by a dielectric BOR, whose MoM matrix

equation inherently possesses a high condition number. The MTA with ofihogonal wavelets

is adapted to obtair highly sparse matrices, as well as to preserve the condition number ofthe

original moment-method matrices. The sparse stluctures of the resulting matrices are

exploited to speed up their nurnerical solutjon.

A new approach is proposed lor the case of conducting BORs, where a solution of the

original moment¡lethod equations is obtained by applying the GMRES iterative algorithm

for achieving a given accuracy, taking into account the influence of thresholding by

implementing an effective terïrination criterion tliat exploits the orthogonal properly of

wavelets. The computational efficiency of this method has been illustrated by companng it

with the conventional MoM using a direct solver for different numbers ofbasis functions per
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wavelength. Various numerical results generated show that the method presented is an

efficient tool for the analysis ofwave scattering by conducting bodies ofrevolution

In the case of dielectric BORs, the MoM n.ratrix equation inherently possesses a high

condition number, such that iterative methods fail to converge lo a 1o/o solution enor. The

improved sparse LU decomposition technique [60] with dlmamic memory allocation and

with an apploximate minimum degree-ordering algorithm [56] is proposed to exploit the

sparse structures of the resulting matrices. The computation efficiency of this method has

been illustrated by comparison with the conventional MoM for various dimensions of

different BORs. Numerical results obtained show that the method presented is highly

efficierf for the analysis of wave scattering, especially for bodies whose linear dimensions

are large with respect to the wavelength. As seen from TeeLps 5.3 and 5.4, the reduction of

the computation time increases with the electric size of the body, the method developed

being, for instance, more than three tirles faster when þoa = 40 for the cone-sphere

scatterer. Accurate results are obtained not only for the far-field RCS, but also for the field

quantities on tlre surface ofthe body.
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Fig. 5.5. Structure of the sparse matrix with S = 88.72% obtained aftel thresholding

Z'wifh 6 =9x10-6 for the conducting sphere in Fig.5.3.

TITBI-E 5.1. EppIcI¡NCy nON CONDUCTING SPHERES OF LARGE SIZES

þoo
Mahix

S ize

Threshold
Vah¡e ô

Sparsity
s (%)

CUP Time in Seconds Reduction
h CPU Tilne (%)

FWT + GMRES LU

25.6 512 x 512 3.5 l0ó 84.63 22.3t + 24.98 86.01 45.04

51 .2 1024 x 1024 9 x 10 
ó 88.',12 91.83 + 154.47 76t.41 67 .65

102.4 2048 x 2048 6 x 10-6 92.85 595.94 + 690.19 6462.85 80.09
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Fig. 5.6. -E -plane RCS for a conducting cone with spherical caps, pna--12, Ptb=6,
and poh =48, for N:5\2 basis functions along the generator curwe and a sparsity

S = 9236% of the matrix Z' after thresholding.
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Fig. 5.7. I/-plane RCS for the conducting cone with spherical caps in Fig. 5.6 for a
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T,\BLE 5.2. EFFICIENCY FOR CONDUCTING CONES WITI-I SPHERIC,AT CAPS

Fig. 5.8. Electlic cunent density on a dielectric sphere of electric radius Boa : 12.8 and

relative dielectric constant t. = 8, for N =128 basis fuirctions along the generator culve.

Mah ix
Size

fhreshold
Value ô

Sparsiry
,s (%)

CPU Titne in Seconds Reduction
in CPU Time (%)

FWT + GMRES LU

256 512 512 2 x l0-a 88.47 22.41 + 2t .53 86.01 48.92

512 1024 x 1024 2.1 x 10'6 92.36 91.83 + ',73.',]1 '761 .41 '78.29
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Fig. 5.9. Magnetic cunent density on the dielectric sphere in Fig. 5.8.
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Fig. 5.10. Far-field RCS of the dielectric sphere in Fig. 5.8.
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Fig. 5.1 1. Structure of the matrix with a sparsity S = 66.58% obtained after thresbolding
Z' for the dielectric sphere in Fig. 5.8.

TABLE 5.3. EFFICIENCY FoR DIELECTRIC SPHERES WITH 
'], 

=8 AND RADIUS ¿I

þ"o Matrix Size Spanity S (%) Reduction
in CPI I Tirne l%'

12.8 128 512 5t2 66.58 50. t4

25.6 256 1024 x 1024 76.58 71 .08

5t.2 512 2048 x 2048 78.64 't3 14

7cl
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0 510 15 20 25 30 35 40

Por

Fig. 5.12. Electric cunent density on a cone-sphere scatterer with e,. =12, c¿ = 50' and

Boa =10 , for N = 128 basis fuirctions along the generatot curve.

o 510 15 20 25 30 35 40
/^t

Fig. 5.13. Magnetic cunent density on the dielectric cone-sphere in Fig. 5.12
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Fig. 5.14. Far-field RCS ofthe dielectric cone-sphere in Fig. 5.12.

TABLE 5.4. EFFICIENCY FOR DIELECTRIC CONE-SPIIERES WITH E,.=12,A=50'
AND RADII Is ¿ -

þna Matrix Size Sparsity .S (%)
Reduction

in CPI I Time l%)

10 128 512 x 512 55.20 41.3',7

20 256 1024 x 1024 70.35 60.21

40 5t2 2048 x 2048 '7 4.45 67.33
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Chapter 6

ScITTnRTnG sy 3-D INHOMOGENEOUS DIELECTRIC BODIES

S6.1. Introduction

The use of wavelets in the MoM results in hígh1y sparse matrix equations, which car, be

solved efhciently by utilizing sparse matrix solvers. In [45], the conrputational complexity

was studied when ofthogonal wavelets, along with a sparse conjugate gradient solver, are

employed for the solution of2-D electromagr.retic scattering problems. A sparse generalized

minimal residual method and the MTA with orthogonal wavelets has been successfully

applied to obtain fast solutions for the electromagnetic scattering by conducting bodies of

revolution [81] and a sparse LU solver with the approximate minimum degree ordering

algorithm and the MTA with orlhogonal wavelets have also been proposed for the fast

analysis ofthe electromagnetic scattering by dielectric bodies ofrevolution [82].

In this Chapter, a fast wavelet analysis method for the ploblem ofwave scatterirg by 3-D

inhomogeneous dielectric bodies of arbitrary geometry is presented. The fields scattered by

such objects are modeled using a volume integral equation involving equivalent sources. The

application of the MoM leads to matrix equatiorrs with a Toeplitz-block structure [48], [58],

which is fully exploited to speed up the 3-D wavelet transfonn algorithm. Then, a sparse

bi-conjugate gradient (BiCG) solver is employed to achieve a fast solution of the resultant

systems of equations with a computation cost of O(M), where M is the total number of

unknowns. Numerical experiments are presented to show the efficiency ofthis procedure for

lossless and also for lossy dielect¡ic bodies with diffetent geometric shapes.
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Fig. 6.1 . Replacerrrent ofa lossy, inhomogeneous dielectric body by an equivalent voìume
cu1Tent.

$6.2. ProblemFormulation

Corisider a lossy, inhomogeneous 3-D dìelectric body Vr, enclosed by a surface S, of

arbitrary shape, with the permittivity e(r) and conductivity o(r), located in free space Zo

as showlr in Fig. 6.1(a). The body is replaced by a distribution of equivalent volutre cun'elrt

density "/ as shown in Fig. 6.1(b), with

I (r) = to(r) + j a\e (r) - e olE (r)j = r (r) E (r) (6.1)

where eo is the free-space permittivity and E(r) is the total electric field intensity inside the

body. The distribution of "/ is lelated to the scattered field at the observation point of

position vector r througb the i[tegral equation,
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where r' is the position vector of the source point and G(r,r') is the free-space dyadic

Green function

E'tr¡= lG t r. r'\. Jl r'\dv'
J

t/,

rfflce','t

(6.2)

(6.5)

(6.3)

po being tlre pemreability of free space, ko -- a.,leopu the wave number in free space, ar.rd

¡ tlle identity dyadic, i.e. I = xx + yy + zz in Caftesian coordinates.

Since tlie total electric fìeld E(r) inside tlie body is the sum of the scattered field E' (r)

and the incident field E¡"' (r) , i.e.,

E(r) = E'(r) + E"'" (r)

An integral equation satisfied by ./ can be written in the fomr

(6 4)

(t
G (r,r') = - jap"l I
]L
lI - ,^",''
l^.l(rlr.r l=
t 4trlr-r'l

where

L ¡g¡ - L1J (r)) = E"'" rr)r(r)

t(t (r)) = lG @, r'). r (/)dv
v,

(6.6)



Since .C is a linear operator, the MoM can be applied to solve (6.5). Once "/ is found,

.E can be determined everywhere via (6.2)-$.a).

$6.3. Numerical Method

In rectangular coordinates, G V, r') . Jlt') in 16.6.¡ can be expressed as

[",,
G ..1 =l G^.

L";;

where n* p =1,2,3 denotes a unit vector along :r-,;, - 6t

G is siven bvp.t e

G,. G,.'l[u, ."rl
G.. c..ll,. tl
G,', 

",.]1". 
,l

(:6.i)

z - axis, respectively, and

(:6.9)

(6.8)

witb 6,,n being the Kr-onecker delta and G the scalar Green's function given in (6.3).

Equation (6.5) can be cast into a matrix equation through the MoM discussed in Chapter

2. Firstly, the unknown curent density is expanded in terms of a set of subdomain basis

tunctions {"f,i Q);, e[1,N1, p e [1,3]], i.e.,

c,,(r.r't--¡ru,( a,.* l, å'lc,r.'',. p.s =t.2.3
I R; ÕuPÕut)

rQ)=ZZupaif,iØ,

Substituting (6.7) and (6.9) into (6.5) gives

r eV,

(6.10)_>>a,l(G,,q,f,i)
)ÈI q=l

I $-u t"
r(r) "1 "" "

=up E"'"(r), p=1,2,3
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where (.) indicates the inner product.

Consequently, after applying a weighted residual method with a set of weighting

functions {w,,,(r), nt e [1, N]], where

3

w,,,(r) =lurw!,(r) (6. 1 1)

we have

S^",,,,, 1 ,0, $$^0.,,,, ,. /v\\ -.,.,/, ,,./-t- r"n,rV)',,, 
=*ai,fui,,G,,,.f,i))=(w11,,u,,'8"'"(r)), 

p=1',2,3 (6'12)

which can be written as a matrix equation of the form

lz,,+D, 2,, 2,, 'l[],'l lv,ftiltltI ZT Zr, + D, Zr. ll L l-ly, (ó. 13)ttlI z, ztz zjt-D3)lrt) lv,l

or, more condensed, as ZI = V , wth the elements of Ir,Vr, D, and Z r,, gívenby

[,'1,,, = a!,

lI/,1,,, =(wi,Q), ut,'8t"" (r))

(6.14)

I D,,1,,,,, = 1wl,i,trt. L f,i t, ¡' r\r )

[z o,),,,,, -- -(w l, (r), (G *, f ,i (r))), p,s = r, 2, 3

Here, Z ,, are Toeplitz n.ratrices, Do are banded r¡atri ces, and Z is symmetric.
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A Gale¡kin's nr.oment method u'ith rooftop basis functions [48] has been implemented,

where the elements in (6.14) are evaluated numerically, as well as a simple point-rnatching

moment method t111, [16], where the elenents in (6.14) are calculated analytically.

Equation (6.14) can be transformed into (2.24) using CBS with a 3-D wavelet transfon¡

malrtx V[/ . The transformed natrix Z' is highly sparse after thr esholding and, thus, a sparse

iterative method such as the BiCG can be employed to achieve a fast solution ofthe resultant

systems of equations with a computational cost of O(M) , where M = 3N, N being the

number of basis functions used.

The conventional fast wavelet transform described in Appendix A for (2.25), and also in

[24], requires a number of arithmetic operations of O(M'?). However, it is noted tliat the

submatrices Z on in (6.13) are Toeplitz matdces and Z is symmetric. Thus, a wavelet

transforrn algorithm designed for Toeplitz matrices [73], [83] is utilized which significantly

reduces the number of arithmetic operations by eliminatirg redundant operations in the

wavelet transforms applied to column and row vectors of a Toeplitz matrjx. The number of

arithmetic operations necessary to perfonn this wavelet transform to (6.13), with 8 vanishing

moments, is plotted as a function of the N in Fig. 6.2, which shows its efficiency with

respect to the conventional FWT algorithm.

56.4. NumericalExperirnents

A computer program has been written with dynamic memory allocation, to implement

the above mentioned technique. The MoM in I11], t16] is used to obtain the matrix equation

(6.13), and Daubechies' wavelets with 8 vanishing Íìoments are used to obtain the

transfomed matrix equation of the forrtt (2.24). The sparsity ,S of a matrix is defined here as

Q?
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its percentage content of zero elements, and the effect of the th¡eshold is measured by the

enor function dehned as

where E is the total electric field intensity inside the scatterer obtained by directly solving

(6.13) and .Eu is the value obtained from the transformed equation (2.24) with a threshold

value á. The termination criterion for the sparse BiCG algorithm is chosen in terms of the

relative residual enor, namely ll Z'l -V' ] I 1lV' ll< 10-a . To measure the performance of

the presented metliod, the reduction in computational time is defined as

u--- -ll 
E - Et ll x 100r%)
il8il

n"=Ç,rcÌ(%), ø=LU, BicG

(6. 15)

(6. 16)

where 7o is the CPU time used to solve (6.13) by the standard ø solver with ø being

either LU or BiCG, and Z is the CPU time used by the presented method including the time

used to perform the wavelet transform of (6.13). Ftxîher, 4r, represents the reduction in

CPU time of the presented algorithm with respect to the standard LU solver, while r7o,.., is

that u.ith lespect to the standard BiCG solver, and thus the latter is a quantitative measure of

the contribution of using wavelets. Numerical experiments a¡e conducted on a Pentium

800MHz personal computer.

The first illustrative example considered is that ofa homogenous dielectric sphere with

the electric radius ka = 1.0 and a relative permittivity e ,. = 4.0 , as shown in Fig. 6.3. The

incident wave is propagating in the z - direction and is polarized in the r -direction. The
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geometry is modeled by using 8 x 8 x 8 cubic cells of equal size. When ,S : 90.05%, the

sparse structure of Z' is shown in Fig. 6.4, and the far-field RCS is plotted in Fig. 6.3, where

the solution obtained when S = 0% and the Mie series solution are given as reference. The

performance of the presented algorithm is shown in Table 6.1, where a reduction of

rln * 960/o can be observed, while r¡,,,ro is abouT 17-26%o. In other words, the presented

method is faster than the conventional MoM using sta¡da¡d LU solver about 25 times, ald

than that using the standard BiCG solver about 1.3 times. This is due to the fact that the

problem considered is well conditioned such that the BiCG solver converges rapidly to a

lelative residual 10-a within 15 iterations.

A second example is that ofinhomogeneous dielectric block in the form ofa rectangular

parallelepiped of electric size ka=0.5, kb =0.5, and kc=1.0, with the relative

permittivity distributed as e,(x) =e,,^rn+(L,ef2a)(x+a-Lxl2), where e,.,,",, =2.5 ,

Ae =1.0 , and 4r is the cell width in the x -direction, Lx = al4 , as shown in Fig. 6.3. The

geomelry is modeled by using 8 x 8 x 16 cubic cells of equal size. When,S = 86.31%, the

sparse structure of Z' is shown ìn Fig. 6.4, and the fal-field RCS is plotted in Fig. 6.3, where

the result obtained without thresholding, i.e., S - 0%, is also plotted as a reference. The

performance of this algorithm is indicated in Table 6.2, which shows that the CPU time

reductions ale about rt ¡.u *'/ïYo and 1a,r:c x53-63%o. It should be remarked that the

computational efficiency increases with tlie matrix size, which recommends the method

presented for an efficient solution ofelectrically large problems.

A third example considered is that of a lossy dielectric block in the form of a

rectangular parallelepiped of electric size ktt=1.0, kb =0.5, and frc=0.5, with
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ê,. = 7 .45 and o = 0.8895 / ¡n , illuminated by an incident wave propagating in the

z - direction with ,r - polarization, as shown in Fig. 6.8. The geometry is modeled by

using 16x8x8 cubic cells of equal size. When S:73.81%, the sparse stlxcture of Z' is

shown in Fig. 6.9, and the far-field RCS is plotted in Fig. 6.10, where the result obtained

without thresholding, i.e., S = 0%, is also plotted as a reference. The performance of this

algoritlrm is indicated in Table 6.3. An efficiency of Tru -î1s;cc=67 -78% is achieved

in this case. Note that ryr, is decreased and qr,ro is increased in comparison with the

previous cases. This is mainly due to the larger magnitude of

t(r)ljaen = e,. + o I ja€r - I in (6.1), which makes the values of the elements of the

submatrices D , in (6.14) smaller, and worsens the condition nunrbel of the global rnatrix

Z and thtts increases the number of iterations of the BiCG solver.

S6.5. Conclusions

The application of wavelet transfom to the problem of wave scatteling by 3-D

inhomogeneous dielectric bodies of arbitrary geometry is investigated in this chapter. The

fields scattered by such dielectric objects are modeled using a volume integral equation

with equivalent sources, wlrose correspor.rding MoM matrix equatiot't has a Toeplitz-block

structue, which is fully exploited to speed up the 3-D wavelet transfom utilizing the

efficient algorithm designed for Toeplitz :latrices in [73]. A highly sparse matrix equation

is derived after applying the wavelet transform, whose solution can be obtained by using an

efhcient sparse BiCG algorithm. Nurnerical experiments are conducted for lossless

homogenous dielectric spheres with relatively small permittivity whìch is well

conditioned, lossless inhomogeneous parallelepipeds of electrically large size, and lossy
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homogenous dielectric parallelepipeds whose MoM matrices have a Jarger condition

number. It has been shown that the method presented gives an efficient fast solution

technique for the analysis of wave scattering by 3-D inhomogeneous dielectric bodies of

arbitrary geometry.
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Fig. 6.2. Number of arithmetic operations used to perforrn the wavelet transform with 8

vanishing moments for the matrix Z in (6.14) as a function 1y', where 3N is the number of
unknowns.

Scattering Angle d (degrees)

Fig.6.3. Far-field RCS ofa homogenous dielectric sphere ofradius ka=1.0 and relative
permittivity e,. = 4.0 .



Fig. 6.4. Gray-scaled image of the sparse matrix with S = 90.05% for the sphelical
scatterer in Fig. 6.3.

TABLE 6.1 . CoMpurATroN EFFTCTENCY FoR THE SPHERE rN FIc. 6.3; ryd IS DEFTNED

rN (6.16).

6 s(%) 8",,(%)
CPU time (s) ryo (%)

FWT + BiCG a : l,II ¿z : BiCG

) l0'r 73.',1',l L31 7.75 3.41 9s.85 17.o3

5 l0r 84 42 2.44 2.66 96. t3 22.60

8x l0-l 3.40 7.7s + 2.25 96.28 25.65

I 10''? 90 50 4.36 7 .',1 5 2.09 96.34 26.84
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z
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1-\1) -.__1,_-n ,

Fig. 6.5. Inhonrogeneous rectangular block scatterer of size ka - 0.5, kb : 0.5, and

kc:1.0, with e,-(x) = t,..,.,,i,., * (Le l\a¡(x + a - Lrl2) , where a,,,',n =2.5, Ae =1..0,

andLt=a|4.

cl2

0

-cl2

b

\\\\

Fig. 6.6. Gray-scaled image of the sparse matrix with,S = 86.31Yo for the inhomogeneous
rectangular block scatterer in Fig. 6.5.
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Scatteling Angle á (degrees)

Fig.6.7. Far-freld RCS ofthe inhornogeneous rectangular block scatterer in Fig. 6.5

TABt,E 6.2. COMPUT,4TION EFFICIENCY FOR THE INIIOMOGENEOUS RECTANGULAR

BLOCK rN FrG. 6.5; ,? rS DË!'INED rN (6.16).

¡r s(%) 8",.,.(%)
CPU time (s) ry (%)

FWT + BiCG a = LI-) ø : BiCC

1x 10'r 1t.66 0.5 8 23.86 + 2t.85 97.94 5 3.06

0-l 82.01 t.3l 23.86 + l7 .81 98. 12 57 .21

5 10'l 86.:l I 1.74 23.86 + t3.22 98.33 61.92

8x 10-r 89.5 2.43 23.86 + I1.78 98.3 9 63.40

SCATTERTNG BY 3-D INHOMOGENEOUS DIELEC] RIC BODTES
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E rc

Fig. 6.8. Lossy rectangular block scatterer of size ka: 1.0, kb: 0.5, and /rc : 0.5, with
c,. =7.45 aud o = 0.889 S'nr.

Fig. 6.9. Gray-scaled image of the sparse mahix with,S:73.81%o for lhe lossy rectangular
block scatterer in Fig. 6.8.
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\
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Scattering Angle d(degrees)

Fig. 6.10. Far-field RCS ofthe lossy rectangular block scatterer in Fig. 6.8.

TABLE 6.3, COMPUTATION EFFICIENCY FOR THE LOSSY RECTANGULAR BLOCK IN

Frc.6.8; ry rs DE|TNED rN (6.16).

6 s(%) 8",.,.(%)
CPU rùne (s) n (%)

FWT + BiCG a:Ll) a : BiCG

l0-2 6l.40 2.55 23.86 + 700.44 67.33 67 .20

5x l0-r 6'/ .92 4.68 23 .86 1- 5',73 .61 73.05 72.95

8x l0-l 8.89 23 .86 + 454.21 't8.44 78.3 5

- 
S =0%. S =73.81%
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Chapter 7

CoNcr-usroNs aNl Furunn Wonx

$7.1. Conclusions

In this work, the application of wavelets for a fast solution of electromagnetic integral

equations is studied. Wavelets offer the advantages of highly sparse moment-method

matrices, as well as a natural mechanism for a multilevel analysis, and thus are a powerful

nrathematical tool for the numerical solutiot.t of integral equations.

Orthogonal wavelets provide a unitary transfomation and are the optimal category of

wavelets in terms of the matrix condition number when used for the solution of

electronragnetic integral equations. More highly sparse moment-method matrices can be

obtained at the cost of worsening the matrix condition number with the use of

semi-orthogonal wavelets. The condition number of the matrices in the semi-ofthogonal

wavelet domain is liigher than that of the moment-method matrices, about 102 - 104 times

higher for the case of 8 vanishing moments, for example. The optimal number of vanishing

moments in a family of wavelets is 8, when the total number of unknowns is less than 5000.

Two applications of orthogonal wavelets, the MTA and the CBS, produce highly sparse

moment-metbod matrices and both are efficient means for a fast solution of electromagnetic

ir.rtegral equations. The CBS gives rise to more sparse matrices than tl.re MTA, abottt 7Yo

more for the problems of scattering by two-dimensronal dielectric bodies considered in the
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work. The MTA, however, simply requires one-dimensional wavelets, and provides a

problem-independent transfonlation.

The MTA with orlhogonal wavelets has been efficiently exte¡rded to the analysis of

scattering by BORs, which is perfonned by constmcting coupled vector integro-diflerential

equations by taking advantage of the axial symmetry of the body. Efficìent solution

techniques for solving the resultant sparse matrix equations have also been proposed. The

presented solution technique using GMRES is an elficient means for sparse matrix

equations, which is demonstrated for the analysis of conducing BORs. A sparse LU solver

with the approximate minimum degree-ordering algorithm [56] can be advantageously

applied to the solution of matrix equations that possess a higher condition nurnber, when

iterative methods like the CG and GMRES fail to converge, e.g., for the analysis of dielectric

BORs.

Finally, the application of wavelets is furlher extended to the analysis of scattering by

3-D inhomogeneous bodies of arbitrary geometry formulated as a volune integral equation

involving equivalent sources [83]. An efficient wavelet transfom algorithm designed for

Toeplitz natrices [73] is employed to speed up the 3-D wavelet transformations, and a sparse

BiCG algorithm is implemented to obtain a fast solution of the resultant sparse matrix

equation. Numerical experiments conducted have shown that the presented procedure is

highly efficient.

The main contributior.rs of this work are now summarized as follows:

. The performance of semi-orthogonal and orlhogonal wavelets, when used for a

fast solution of integral equations, has been studied systematically, and it has
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been pointed out for the first time that the orlhogonal wavelets are optimal in

temrs of the matrix condition number.

o The MTA and the CBS have been implen'ìented for the solution of coupled scalar

integal equations and have beeu efficiently used for the analysis ofscaltering by

two-dimensional dielectric bodies.

o The use of wavelets 1.ras been extended to solving single vector

integro-differential equations that arise in the analysis of scattering by

conducting BORs, as well as to coupled vector rntegro-differential equations

formulated for the analysis of scattering by dielectric BORs.

The application of wavelets has been successfully implemented for the analysis

of scattering by 3-D inhomogeneous bodies of arbitrary geometry, whìch is

formulated as a volume integral equation. A¡ efficient wavelet transfotrrr

algorithm for Toeplitz matrices is utilized and a sparse BiCG solver is employed

to obtain a fast solution ofthe resultant sparse matrix equations.

Several solution techniques for sparse matrices, obtained with the use of

wavelets, have been investigated. A sparse CG solver is efficiently used for a fast

solution of Fredholm integral equations. A sparse BiCG algorithm with an

efficient wavelet transfonl technique for Toeplìtz matrices is also presented lol

the fast solution of 3-dimensional volume integl'al equations associated with

scattering problems by 3-dimenaional ir.rhomogeneous bodies. Also, two solution

technìques have been proposed for the analysis of scattering by bodies of

revolution. The one using a sparse GMRES has been demonstrated for the

analysis ofscattenng by conducting bodies ofrevolution. The other one, using a
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sparse LU solver with ar1 approxjn'ìate minimum degree ordering algorithm is

especially recommended for problems whose resultant moment-method rnatrices

possess a higher condition number.

$7.2. Future Work

A number of areas for future wolk on the application of wavelets in computational

electromagnetics have been identified.

¡ Multilevel algorithm

As already discussed in Chapter 2, the multilevel algorithm is one ofelficient fast

solution techniques for integral equations. The rectangular and the triangular

functions combined with multigrids were employed to implement the multilevel

iterative algorithm in [31] and [78], respectively. In [68], we also implemented a

multilevel algorithm utilizing the multi-p hierarchical basis functiols. These

algorithms have a significant drawback, i.e., the condition number increases with

the increment ofthe polynomial degree ofthe basis functions used. A multilevel

aigorithm was also implemented based on the FMM, which requires hierarchical

grouping of grids (a tree structure of spatial decomposition). Wavelets are

optimal hierarchical basis functions and provide a natural mechanism for

multilevel algorithms. The resulting matrices obtained with the use of wavelets

in MoM have a hierarchical structure as shown in Fig. 2.4, u'hich provides simple

multilevel operators, prolongation and projection operators. Moreover, the

implementation of the multilevel algorithms using wavelets is much easier than

others discussed above.
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o Inverse problems

The CG-FFT method has been successfully utilized for the inverse problems

related to ultrasonic imaging in [51] and acoustic imaging ìn [53]. The inverse

problems are driven by a forward solver. The methods described in this work

have been proven to be efficient means for the electromagnetic scattering, and

can be fui1her applied to electromagnetic inverse problems. The algorithm in

Chapter 6 is especially recommended for use in general three-dimensional

microwave imagfug.

. Spectral domain methods

The spectral domain method has been successfully applied to a class of

electromagnetic problems involving the microstrip-type structures. Orre of the

key problems in this method is the selection of the basis functions and test

functions, which determires the convergence of the integrals in the Fourier

domain, related to the evaluation of the elements of the MoM matrices [30].

Wavelets with compact support both in time and Fourier domains are avaì1able in

literature, and plovide an important propeúy, i.e., localization both in time and

Fourier domains, which can be fufiher exploited in the spectral domain method.

¡ Genetic algorithms

The genetic algorithm is one of the global optimization methods based on the

concept of nalural selection and genetics. By searching through an encoded

vadable space, the genetic algorithm iteratively improves a population of

solutions, and thus is a class of computationally intensive problems [69]. The
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applications of fast solution techniques described in the work will dramatically

improve the performance of genetic algorithms for electromagnetic inverse or

optimization problems.

Wavelets versus wavelet packets

As discussed in Chapter 1, two categories of wavelet packets, namely the best

basis algorithms t591, t661, [67], 174l and the predehned algorithms [75], [84],

have been used in computatior.ral electromagÌretics. The use of wavelet packets

generates sparser MoM matrices than those obtained with the use of the wavelet

translorms since more wavelets that have vanishing moments are involved. The

wavelet transfonn, however, is the simplest form of wavelet packet transforms

[67], l7 5), and thus is less expensive than a wavelet packet transfonn. A

qual'rtitative comparison of the wavelet transform versus a wavelet packet

translorm needs to be irvestigated by considering the trade-off between the

computational cost of transform algorithms and that for solving the resultant

sparse matrix equations.
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Appendix A

WAVELETS

$ 4.1 Biorthogonal Wavelets

Biofhogonal wavelets have been considered to gain nrore flexibility in the construction

of wavelets since they only require that {þ(x - n);n e Zl forn a Riesz bases of tr/'. Since

(2.1) and (2.2), lhere exist two sequences {h,,} and {g,,} such that the scaling function /

and the wavelet function r¿ satrsfli the following equation

ófÐ="D2,n,,ø(2x-n)

,t,@ = JiZs,,þ(2x-n)

with V, = Span{þ,,,, = 2j'' d¡(2i x - tt); n e Z} and

generating a prin-rary multilesolution analysis (MRA).

Similarly, their dual functions $ añ fr satisly

õar=,22t,,[ex -n¡

V@=Jt>.,g,,$Qx-n)

(A 1)

w, = Span{y,,,, =2jt2t/t(2'x-n)}

(^.2)
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and lj = span{$,., =2it2Sç2i x n)} anð, fr, = span{/,.,, =2it2Eç2j x-n)} are the

dual MRA approximation spaces. A complete development of biorlhogonal wavelets with

spline functions is given in [5]. Figs.4.1 and 4.2 show the biorlhogonal scalirg functions

and wavelets constructed with rectangular and triangular pulse functions. The biorlhogonal

scaling functions and wavelets are symmetric and compactly supporled. Moreover', all the

filter coefficients are dyadic and rational and thus are very suitable for fast computations

since division by 2 can be done very fast on a digital computer. Another attractive property is

that the closed-forrn expressions for the scaling function and their wavelet are available at all

;r. The disadvantages are that they do not generate orlhogonal MRA, and the support widths

for the primary and dual scaling functions are different.

$ 4.2 Semi-Orthogonâl Wayelets

C. K. Chui introduced the semi-orlhogonal wavelets t6l, [7], 1261. Semi-orlhogonal

wavelets are biofihogonal wavelets that generate an orthogonal MRA. These

semi-oÍl.rogonal wavelets are based upon the cardinal B-Splines, as are the Battle-Lemarié

orlhogonal wavelets. For an index Æ, define the scaling function

/("r) = N, (x) (A.3)

where N* (:r) is the cardinal B-splhe that is expressed recursively as a convolution

Nr = No_, *Nr with the rectangular pulse function N,(l) = I¡,.¡G) . The dilated and

translated sequence {Ó,,,, = 2jl'412i , - r);n e Z} forns a Riesz basis for V,,the function

space consisting of all splines of order Æ - 1 . The general two-scale relationship fo¡ these

scaling functions is given by the well-known B-spline identity
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, (k\
N* (;r; = f 2-t.r þ/, 1l.r - ii.¡ (A 4)Ã [,J

which gives the sequence {ft,, } ín (4. 1). The conesponding wavelets are given by [6]

. ,., t /t-\

B,=8r,,-+fIl n,lw,rt,-t*t). 
0< i<3k-2 (,t6)

- t=0\.)

Associated with the primary fuirction s þ and ry are dual functions I and P. which are

given by [6], [46]

vG)=Zs,t'{ t(2x - n)
neZ

with the sequence {g,, } given by

-\-- ^tk\- ¿)ó n+1k 1 2lv I
IeZ

-l Ì,.,,,,. , .,,a',0'

leZ

lõot=f zì,,õrr2x - n)
t-
I tìe¿

I
lõrrt=fze,prt2x - n)
I ,;'

r
Ie

(A.5)

(4.7)

(A 8)
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and the sequenc e {d:k) ) is uniquely determined by usíng the interpolatory propefty of the

fundamental spline of order 2k

L1 ¡(n) = lo(¡') u rulnt + k - i) = ã k.o
jez

(A.e)

â*,0 is the standard Kronecker delta function. Note that the infintte sequence {øj*)} is of

exponential decay, so are {Îi,,¡ and {},, } .

The collections {õr,r:k . Z} arñ {/,.0;k e Z} fonn the dual MRA approximation

subspaces I, and ñ, which are mutually orlhogonal,

VJ IW., V. LW., (A.10)

Consequently, fi,, LWr, and /, L Z. . Thus the primary and dual functions generate an

orthogonal MRA. The functions / and ty are cornpactly supported. Tlieir dual functions /

and f, however, are not compactly supported. For an index Ã, the supporl widths for / and

ty are 10, frl and [0, 2À - l] , respectively. When À = 1, the result is the Han system. For

/r > 1 , the rvavelets are consûucted ofsplines ofdegree k -1. Semi-orlhogonal wavelets are

symmetric for even /r and antisymetric for odd /r. Semi-orlhogonal wavelets witl'tk=2,5,8,

are shown in Fig. 4.3.
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$ .4.3 Orthogonal Wavelets

The construction of orthogonal wavelets is based on an MRA where the collection ofthe

scaling function {ë(*-n);ne Z} forms an ofthogonal basis of Zo , instead of a Riesz basis.

The scaling function and wavelets satisfr (4.1) with

g,,=(-1)"h,,, zn: =, (4.r1)

Two simple examples of orthogonal wavelets are the Harr wavelets and the Shannon

wavelets. The Harr wavelets are not continuous in time domain, and the Shannon wavelets

decay very slowly. The Mayer wavelets were consûucted by using pollmomials and decay

faster than any inverse polynomial. The scaling function and wavelet function have

closed-form expressions only in Fourier domain, and are infinitely supporled in time domain

as shown in Fig. 4.4.

Battle (1987) and Lemariè (1988) constructed, independently, a family of orthogonaL

wavelet bases [5], which decay exponentially, faster than Meyer wavelets. Tl.re

Battle-Lemariè wavelets are constructed by orthogonalizing B-spline fuirctions. As a result,

closed form expressrons for the scaling function and the wavelet are no longer available. The

Battle-Lemané wavelets with ly' vanishing moments are piecewise polynomial of degree

N-1, and thus belong to CN 2 (i.e., whicli have N-2 times continuous derivatives);

/(:r) is always symmetric, while yr(.1) is symmetric for oddNand antisymmetric for evenN

about ¡ = lf 2 axis. They are infinitely supporled just like tl.re Meyer wavelets.

In 1988, Daubechies introduced a family of wavelets that are not only orthonormal, but

also have compact supporl both in the time and Fourier domains [5]. The development of this

W.{VÊLI]TS
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family has had a profound impact and these wavelets are used extensively in practice.

Several membels of this family are displayed in Fig. 4.5. These wavelets are also indexed by

a positive integer N, where N is the number ofvanishing moments. They are supported on an

interval of length 2N - 1 , and the smoothness increases as N increases. Unfortunately, as

proved in [5], orthogonal wavelet bases, except the Haar wavelets, with compact suppoú are

aslnr.rmetric, and no closed-form expressions are available.

Anothel family of orthonormal wavelets constructed by Daubechies is the family of

coiflets, named by her in honor of wavelet researcher Ronald Coifman, who suggested a

wavelet-based MRA in which the scaling firnction also has vanishing moments [5]. There

are no closed form expressions, too. Some exampÌes are given in Fig. 4.6. It is clear from the

figure that þ and yt arc much more symmetric than those of Daubechies' wavelets, at the

expense of their supporl width, i.e., coiflets with È vanishing moments have typically suppof

width 3k - I , as compared to 2È 1 for the Daubechies' wavelets shown in Fig. 4.4.

$ ,4..4 The Fast Wavclet Transform Algorithm

The fast wavelet transform (FWT) algorithm [24] is extremely useful in practical

applications such as the wavelet-based MoM for the numerical solution of integral

equations. Like the FFT (fast Fourier transfom), the FWT of length N only needs

O(NlogN) arithmetic operations. Without loss of generality, let us consider for illustration

the biorlhogonal FWT algoritlm.

With (2.3), a function l, eVrcan be written as the sun of a function f 1-t e V, 1 and

Q¡-t €W¡ r
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f ¡(r) -ls¡.*ó¡.*(x) = .f ¡-t + Q¡ t

k

with

\-^ ). t--\
- / Jit tq.t,1t\À)

I

= F¿, , ,ttt. , ,rx\

t¡ 
^=r-f 

.õ,0). d,.¡=(.[.Ìt.¡)

Due to (4.2), the following relationships exist

sj,,t = nE\lk zrs ¡, d ¡-t,r = "Dlîr-r,a,kk

s j,r - n7>hk ,,s, ,,r + JilEr ,,d i-r,,
kk

A schematic representation of the inverse FWT is shown in Fig. ,{.7(b).

(A. r2)

[':,

(4.r3)

(4.14)

(A.1s)

(A.16)

where the scaling function coefficients s;,¿ and wavelet function coefficients d¡,¡ arc

given by

Thus, for given coefficients .sJ,À at any level -/, all the lower level coelficients sr,o and

d ¡,r,, for j < J , can be easily computed. The forward fast transform or decompositiot't

algorithm is shown schematically in Fig. 4.7(a), where the arrows reptesent the

decomposition computations.

The inverse FWT algorithm can be derived fi'on-r the relationship
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The filter coefficients completely characterize wavelet bases. It is easily seen that the

support width of the wavelets is closely related, proporlionally, to the number of arithmetic

operations.
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Fig. 4.7. Fast wavelet transfon¡ scheme: (a) forward algorithm; (b) inverse algorithm
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Appendix B

Couputatlolt or SrN{r-onrHoGoNAL wAvELETS

with N* (;r) and ry(x) being given in (,{.5) and (,4.6), respectively

ln conparison with (4.6), we obtain

[n order to work only wìth integers, let

lV 1x¡ = lz.tr - I)tty(x)
lj

| 
*,-, = jÏ r-tt¡ y*, N 

^t2x 
- i )

[ ¿ t-a

2r-lr

bf=

(8.1)

(8.2)

Zølr'*'(i -t)
Þf)

(j) = (2k -I)t N,rQ +1)

lkl kl

l¡ ,l ttk - ttl

Tlre sequence {f j; j el\,Zk -Zl} is totally positive. Utilizing the notations in Fig. 8.1,

the computational procedure for the sequence {ff} is schematically described inFig.8.2.



c

(b)

c=a+b

ab
\// \ /s

c

(a)

Fig. 8.1. Notat ions: (a) c = ra + sb, (l:)
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Fig. 8.2. Computation of the sequenca {yi ; j el0,3k - 2l}
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Appendix C

Sorrw¿.nn Srnucrunn

The structure chart of a software system illustrates the partitioning of the system into

modules showing their hieralchy, organization, and communications, a¡d is also a powerful

means of documentation of a softwa¡e system that helps the designers. The structure chart

symbols defined in [3] are used in this appendix.

Although several computer programs in Forlran 90 with the memory being allocated

dynamically have been implemented for the research work in this thesis, they share fhe

common structure as depicted in Fig. C. i . The modules for solving matrix equations and the

fast wavelet transforms used in Fig. C.1 are packaged separately and described in Figs. C.2

and C.3, respectively.
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Fig. C. 1. Structure chart of the software system used
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Fig- C.2. Structure charl of the solution module for matrix equatiolrs

Fig. C.3. Structure chart of the last wavelet transforn module
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