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ABSTRACT

Abstract

Numerical techniques that employ integral equation formulations are favorably used for
the analysis of electromagnetic radiation and scattering. The conventional method of
moments yields full dense matrix equations whose numerical computation is expensive. In
the past decade, considerable efforts have been made to further reduce the computational
cost. One of the most recent fast algorithms available in literature is the use of wavelets,
which is gaining an increasing amount of attention from researchers in computational

electromagnetics community.,

In this thesis, wavelet applications for a fast solution of electromagnetic integral
equations are thoroughly studied. Wavelet bases offer the advantage of highly sparse
moment-method matrix equations, which can be solved efficiently, The performance of
semi-orthogonal and orthogonal wavelets when used for a fast solution of Fredholm integral
equations, which arise in the formulation of wave scattering by two-dimensional conducting
cylinders, is first investigated. This basic research consists in the analysis of matrix sparsity,
solution accuracy, and matrix condition number, and provides a guideline for the selection
of wavelets used for the fast solution of electromagnetic integral equations. It was
discovered that the orthogonal wavelets are optimal in terms of the condition number. Then,
two kinds of wavelet applications to the method of moments, i.c., the matrix transform
approach and the change-of-bases scheme, are compared for the first time for the solution of
coupled scalar integral equations governing the problem of scattering by two-dimensional
dielectric bodies. The study shows that the change-of-bases scheme gives rise to a better

performance in terms of matrix sparsity, while the matrix transform approach provides a

-1V -



ABSTRACT

problem-independent transform mechanism. Further, the matrix transform approach with
orthogonal wavelets is extended to a fast analysis of the scattering by arbitrary bodies of
revolution, whose mathematical model contains coupled vector integro-differential
equations. Finally, the application of wavelets is effectively used for a fast solution of
scattering problems by 3-D inhomogeneous bodies of arbitrary shape, which is formulated

as a volume integral equation involving equivalent sources,

Several solution methods for the resultant sparse matrix equations, obtained with the use
of wavelets, are also investigated. The conjugate or bi-conjugate gradient (BiCG) iterative
algorithms are popular solvers used in the computational electromagnetics community. A
sparse conjugate gradient algorithm is effectively used for a fast solution of Fredholm
integral equations. A sparse BiCG, with an efficient wavelet transform technique for
Toeplitz matrices, is also presented for the fast solution of 3-D volume integral equations
associated with the scattering problem by 3-D inhomogeneous bodies. A solution technique
using a sparse generalized minimal residual method is demonstrated for the analysis of
scaftering by conducting bodies of revolution, which is described by a vector
integro-differential equation. A sparse LU solver with an approximate minimum degree
ordering algorithm is proposed for the analysis of scattering by dielectric bodies of
revolution, involving coupled vector integro-differential equations, where the resultant

moment-method matrices inherently possess a higher condition number.
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CHAPTER 1 INTRODUCTION

Chapter 1

INTRODUCTION

§1.1. Forword

Research in the area of computational electromagnetics is actively pursued nowadays not
only by electrical engineers, but also by mathematicians and computer scientists, and
numerical techniques for solving electromagnetic field problems have been intensely studied
in the last few decades. This is due to the importance of this research in many practical areas,
such as prediction of the radar cross section (RCS) of large complex objects, like aircraft,
wave scattering analysis for stealth technology, interaction of the electromagnetic waves

with biological media, and propagation of signals in high-speed and microwave circuits [61].

Numerical techniques that utilize integral equation formulations have been widely used
for the analysis of radiation and scattering by bodies of simple or complex shape, since the
integral equation formulations reduce the domain of the operator equation to a finite and
often a smaller one than that in the partial differential equation approach, with all boundary
conditions implicitly taken into account. However, the integral equation approach leads to
full dense matrices and thus yields a special category of computational technologies,
especially for electrically large field structures. Considerable efforts have been made by
many researchers to reduce the computational complexity recently, notably by developing

vartous conjugate gradient-fast Fourier transform (CG-FFT) methods, fast multipole
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methods, multilevel algorithms, and by the use of wavelets in the method of moments
{(MoM).

In this thesis, the use of wavelets for the fast solution of electromagnetic integral
equations 1s investigated. In the following Sections, the existing fast solution techniques and
the current research status on the wavelet applications in the MoM are reviewed, and the

objective of the research work is delineated.

§1.2. Review of Fast Solution Techniques for Integral Equations

The integral equation approach leads to a dense matrix equation whose numerical
solution requires Q(N*) arithmetic operations for direct solvers and Q(N?) operations for

iterative solvers, where N is the number of unknowns. The following algorithms have been

proposed to further reduce the computational complexity.

CG-FFT Methods

For Toeplitz matrices, the fast Fourier transform (FFT) can be used to perform the

matrix-vector products with O(N log V) arithmetic operations. This technique is usually

combined with conjugate gradient (CG) iterative algorithms yielding the so-called CG-FFT

methods, which need only a computer memory of O(N).

The CG-FFT methods have been effectively used for a fast solution of electromagnetic
integral equations. Its application for planar and two-dimensional radiation problems can be
found in [19], [21], and for the computation of microstrip S-parameters in [36]. For
three-dimenstonal scattering formulated in terms of integral equations, various schemes have

also been proposed in the past to obtain (block) Toeplitz MoM matrices, including the
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point-matching method, Galerkin's method with the rooftop basis functions [48], and a weak
form of CG-FFT [27]. The CG-FFT method was also used to expedite the solution of
scattering by a cluster of randomly distributed spheres and randomly distributed cylinders,
whose scattering is characterized by the so-called T matrix [58]. When the subscatterers are
not in a regular array, a precorrected method is used to derive a Toeplitz matrix, which
employs the fast multipole translation operators to shift the centers of the subscatterers. It has
been reported that the CG-FFT method can be applied to the scattering by inhomogeneous

bodies with high contrast [61].

Fast Multipole Methods

Like the CG-FFT method, the fast multipole method (FMM), initiated in [22], achieves
its speed by using an indirect fast computation of matrix-vector products in the context of an
iterative solution for a matrix equation with O(N'?)arithmetic operations [34], [61]. The
main idea of the FMM is to reduce the number of scattering centers by first dividing the
subscatterers into groups, and then translating the centers of a group to its inner subscatterers
by using translation operators, which are derived analytically by virtue of the multipole

expansion of the integral kernels.

Several techniques have been proposed to improve the efficiency of the FMM during the

past decade. The ray-propagation algorithm [39] 1s proposed to further reduce the

4/3

complexity of a matrix-vector multiply to O(N™") operations, where the number of

translation operators is reduced by employing the ray physics. The multilevel FMM uses
concepts from the multiscale analysis, such that the complexity of a matrix-vector multiply is

reduced to O(N logN) [47].
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Multilevel Algorithms

Unlike the CG-FFT method and the FMM, which reduce the complexity of the
matrix-vector products, the multilevel algorithm accelerates the convergence rate of an
iterative method by correcting the defect (residual error) at a finer level with lower level
solutions based on a hierarchy of nested approximation spaces [9]. A solution to a problem

P is sought for by first defining a hierarchical set of problems P =F,, A,---, P, where
is in some sense a coarser approximation of 7._, . The solution of £, is first found and, then,
level-by-level, the solution of P_, is obtained from that of F,. The convergence and

computational complexity of such algorithms was studied m {15}, [17], [18].

One popular approach to construct a multilevel algorithm is to use simple basis functions
such as rectangular or triangular pulse functions on multiple grids, such a multigrid method
being advocated in [14] for solving sparse systems of equations arising from the
discretization of partial differential equations. This algorithm was first applied for a fast
solution of the Fredholm integral equations in [8] and [17], and has been recently employed

for the solution of electromagnetic integral equations in [31] and [78].

Alternatively, hierarchical bases independent of grids such as the multi-p basis {68] can
be utilized to construct the multitevel algorithm. The multi-p hierarchical bases are
constructed with piecewise Legendre polynomials, and have been widely used in the
p-version of the finite element method. These bases have been used in the integral equations
to treat singularities, e.g. for problems in mechanical engineering, relative to polynomial
domains. Our paper [68] exhibits the efficiency of the two-level algorithm employing the

mulii-p bases.



CHAPTER | INTRODRUCTION

The key in the construction of the multilevel algorithms is to find efficient multilevel
operators, i.e., projection and prolongation operators. In the multilevel FMM in [47], these
are obtained from analytical translation operators, the efficiency of the procedure being

illustrated by implementing a two-level algorithm.

Use of Wavelets

There have been many attempts to generate sparse matrices by transformung
appropriately the original dense matrices, with most of their elements having very small
values that can be neglected, and thus the matrix-vector products can be expedited by
employing a sparse matrix technology. Among these sparse matrix approaches, the use of

wavelets gained an increasing popularity.

A sparse preconditioner was used in [52], where a threshold procedure is directly applied
to a matrix equation. As a result, the sparsity of the resultant matrices is problem dependent
and limited. Impedance matrix localization method [32] has been proposed as a remedy,
where a local cosine fransform (a windowed Fourier transform) is used to fransform a dense
matrix into a sparse one. It has been reported that highly sparse matrices can be obtained for

problems with smooth geometry.

The use of wavelets was first proposed in [24] for a fast solution of a class of integral
equations with Calderon-Zygmund type of kernel, and then introduced [33] to the
‘community of computational electromagnetics for a fast solution of the Fredholm integral
equation of the first kind arising in the analysis of electromagnetic wave scattering problems.

Due to the wavelet properties, i.e., orthogonality, localization, and vanishing moments, the
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moment-method matrix equations represented in the wavelet domain have a larger content of

elements with very small values.

§1.3. Research Status On the Wavelet Applications in the MoM

Two kinds of wavelets, orthogonal and semi-orthogonal, are frequently used in
computational electromagnetics. The semi-orthogonal wavelets (SOW) are symmetric,
compactly supported, and closed-form expressions are available. SOW were used for the
solution of Fredholm integral equations in direct way in [44]. A SOW matrix transformation
was also implemented in [63] for the electromagnetic scattering by systems of very thin
parallel conducting cylinders and the matrix sparsity was analyzed quantitatively as a

function of the threshold value.

The implementation of orthogonal wavelets with infinite support width such as the
Battle-Lemarié wavelets and the Meyer wavelets requires a truncation operation that causes
a certain numerical error [42]. In contrast, the Daubechies' orthogonal wavelets (DOW) that
are compactly supported can be used without any truncation. The efficiency of the DOW for
the solution of integral equations was analyzed in [45] for the scattering by conducting
cylinders. The resulting sparse matrix equations were solved by using the conjugate gradient

method with storage space required only for the nonzero entries of the sparse matrix.

The performance of SOW was compared with that of the Battle-Lemarié orthogonal
wavelets in [64], where wavelets are employed in a direct way. SOW was also compared
with the DOW in [63], where a matrix transformation was implemented to reduce the

compuiational effort necessary to perform numerical integrations. It has been reported that
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the use of the SOW vields more highly sparse matrices and better solution accuracy when a

direct solver 1s adopted than the use of orthogonal wavelets.

Wavelet packet transforms have also been implemented in order to obtain more highly
sparse matrices. Several algorithms were designed to select the best bases for a given
problem, where the wavelet packet decomposition tree is optimized by minimizing a
specified cost function. A procedure classified as “top-down near-best basis algorithm”, with
an additive cost function, was implemented in [59], [67], which 1s dependent on the
excitation vector, the best bases being obtained by performing an optimization procedure on
a given excitation vector in the MoM equations. An iterative algorithm for selecting best
bases was also proposed in [66], where the residual error of the transformed MoM equations
is defined as the cost function. In [74], an additive energy function, which is directly related
to the sparsity of the transformed impedance matrices, was employed to seek for the best
wavelet packet bases. One drawback of the above algorithms is the additional computational
cost of searching procedure for the best wavelet packet decomposition tree. Recognizing
this, a predefined wavelet packet transform algorithm was proposed in [75], [84], where the
wavelet packet decomposition tree is prescribed based on the knowledge of Green’s

functions.

The condition number of wavelet transform matrices has been studied in our papers [70],
[71], for TE wave scattering and in [72] for TM wave scattering by electrically large
-conducting cylinders. It was pointed out for the first time that orthogonal wavelets are better
than semi-orthogonal wavelets in terms of the condition number. The same result has also
been presented in {77] for the scattering by circular and Z-shaped conducting, and in [79]

cylinders for the scattering by 2-D metal strips.
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Mathematical models treated by using wavelets are Fredholm integral equations
associated with electromagnetic scattering by two-dimensional objects [33], [37], [44], [49]
and by rough surfaces [76], coupled surface integral equations describing the eddy current
problem of a two-conductor system in the low frequency area [57], scalar integro-differential
equations arising from the thin-wire antenna problems [62], [64], and 3-D integral equations

governing the scattering by conducting rectangular cavities [84].

Wavelet application in computational electromagnetics has been expanded to many
areas such as the full wave analysis of microstrip floating line structures [41], boundary
element analysis for multiconductor transmission lines in multilayered dielectrics [42], the
computation of parameter matrices of multiple lossy transmission lines with the application
of adaptive wavelet expansion method [38], and the waveguide mode identification [35],
[40] and analysis of multiport structures using the semi-orthogonal wavelets with 2
vanishing moments [80]. Dielectric resonators have also been studied based on
two-dimensional orthogonal wavelet transform algorithm [54]. However, the following

issues have not been studied before we started our research:
s  Systematic study of SOW in comparison with the DOW when used for the
solution of integral equations;
e Application to coupled integral equations in high frequency electromagnetics;
e Application to coupled vector integro-differential equations;
e  Application to the problems of three-dimensional electromagnetic scattering; and

o Efficient solution techniques for the sparse matrix equations obtained with the

use of wavelets.
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§1.4, Outline of the Work

With an attempt to make contributions to the problems listed above, the thesis is

organized as follows:

In Chapter 2, wavelets are first introduced through reviewing hierarchical bases
employed in computational electromagnetics. Then, features of typical families of wavelets
available in literature are compared. Lastly, a review on the use of wavelets in the MoM for a

fast solution of electromagnetic integral equations is presented.

Chapter 3 presents a performance comparison between semi-orthogonal and orthogonal
wavelets when used for the solution of Fredholm integral equations, which arise from the
scattering problem by two-dimensional conducting bodies. This comparison is based on the
analysis of matrix sparsity, solution accuracy, and matrix condition number, and provides a
guideline on the selection of wavelets used for the fast solution of electromagnetic integral

equations.

In Chapter 4, two wavelet applications in the MoM, i.e., the matrix transform approach
and the change-of-basis scheme by using orthogonal wavelets, are effectively used for the
analysis of electromagnetic scattering by two-dimensional dielectric bodies, whose
mathematical formulation is based on coupled scalar integral equations, and their

performances are compared for the first time.

In Chapter 5, the matrix transform approach with orthogonal wavelets is extended to the
problem of scattering by arbitrary bodies of revolution (BOR), which is formmlated as
coupled vector integro-differential equations. An efficient solution technique that uses a

sparse generalized minimal residual (GMRES) method, which converges faster than other
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iterative methods {65], is demonstrated for the analysis of scattering by conducting BORs,
where the mathematical model is reduced to a vector integral-differential equation. As well,
a sparse LU solver with an approximate minimum degree ordering algorithm [56] is
proposed for the analysis of scattering by dielectric bodies of revolution, where the

moment-method matrices inherently possess a higher condition number.

In Chapter 6, the use of wavelets is further extended to the analysis of three-dimensional
electromagnetic scattering by inhomogeneous bodies of arbitrary geometry. The fields
scattered by such objects are modeled using a volume integral equation involving equivalent
sources. An efficient wavelet transform algorithm designed for Toeplitz matrices [73] is
employed to speed up the 3-D wavelet transformation of MoM matrix equations and a sparse
bi-conjugate gradient solver is utilized to obtain a fast solution of the resultant sparse matrix

equations.

Conclusions of this research work as well as the related future work are summarized in
Chapter 7. A detailed review of various wavelets, i.e., bi-orthogonal, semi-orthogonal, and
orthogonal wavelets, with some examples, is provided in Appendix A. The computational
algorithm for the semi-orthogonal wavelets 1s presented in Appendix B, and the structure

charts of the computer programs used in this thesis are described in Appendix C.

- 10 -
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Chapter 2

THEORY

In this chapter, wavelets are described through reviewing hierarchical bases employed in
computational electromagnetics. Salient features of various wavelets are studied, and their
applications in the MoM for fast solution of electromagnetic integral equations are

summarized and discussed.

§2.1. Hierarchical Bases

Hierarchical bases generate a sequence of successive approximation spaces of L*(R)

VicVicocV, ¥V, - (2.1)

which constitutes a multiresolution analysis. Each subsequent space is generated as

V

g+l

=V, W, (2.2)

where W, is the complement space of V', in V,

.n1, the symbol @ stands for the direct sum

and V, = Spanig,,jeZ}, W, = Spaniy ,, j € Z}, with properly chosen basis functions ¢
and  , and Z being the set of integers. Consequently, we have the hierarchical

decomposition of ¥V, as

-11-
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Vm :VO @% @m @EB i1 (23)

Hierarchical basis functions have been frequently used in computational
electromagnetics to construct multilevel iterative methods or to obtain sparse MoM matrix

equations, which accelerate the solution speed. So far, various basis functions ¢ and y

have been proposed by many researchers.

§2.1.1. Classical Hierarchical Bases

There are two classical hierarchical bases: one is constructed with the rectangular pulse
function, and the other is constructed from the triangular pulse function. The hierarchical
basis based on the rectangular pulse function is used in [31] to construct a multilevel
algorithm for the solution of electromagnetic integral equations. The triangular pulse

function possesses multilevel splitting property, ie., @(x)=0.5¢2x+1) + ¢(2x)
+ 0.5¢(2x —1) as shown in Fig. 2.1(a). Starting with the basis V, and its complement W, a
class of hierarchical bases W,, k=1, 2,--- can be constructed as shown in Fig. 2.1(b), with
triangular functions on the different level of grids, yields the hierarchical decomposition in

(2.3).

In [78], the hierarchical bases are employed to formulate an adaptive multiscale moment
method, It 15 noted that the two classical hierarchical bases are grid-dependant, and the

relevant multilevel algorithms being called multigrid methods [14], [17].

-12-
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Fig. 2.1. Multilevel splitting triangular pulse functions ¢(x) : (a) ¢(x) has the
_representation ¢(x) =0.5¢(2x + 1)+ ¢(2x) + 0.5¢(2x - 1); (b) Hierarchical subspaces ¥,

and W,,i =0, in the interval [-1, 1].



CHAPTER 2 THEORY

-1 -0.5

Jo O -

Fig. 2.2. Multi-p hierarchical basis functions.

§2.1.2. Multi-p Hierarchical Bases

The multi-p hierarchical basis functions are constructed with piecewise Legendre

polynomials [49] as follows
6,5 =(1-9)/2
O =01+8)2

b= @I N2 [ PL)d, =34, prl

(2.4)
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where ¢., i = 3, is a polynomial of degree i —1 defined in terms of the Legendre polynomial
P_,, the set of bases for i <7 is shown in Fig. 2.2. They are hierarchical and generate a
sequence of nested approximation spaces as in (2.1), where V, is the span of the above
polynomial basis functions with degree up to 7, and the complementary subspace W, in

(2.2) is the span of polynomial basis functions of degree i +1.

The most important property of multi-p bases is that of being grid-independent, which is
very useful in the numerical computation. Contrary to the classical hierarchical bases that
employ a simple function on multilevel grids, the multi-p bases utilize multilevel basis

functions with dynamic polynomial degrees on a fixed set of grids.

§2.1.3. Wavelet-Like Bases

Wavelet-like bases, also called multiwavelets [28], [29], are comprised of a finite set of

scaling functions {¢.; i [L,k]}, where k is a positive integer. The scaling functions are

constructed by orthogonalizing polynomial functions whose degree is less than & by the

Gram-Schmidt process, and the corresponding multi-wavelets are

w,(x)=26.2x-1), i=1-k (2.5)
whose translations and dilations in the form of

Wi, (x)= 2””21,Vj(2"’x -ny, j=lL--kymned (2.6)

constitute a hierarchy of nested approximation spaces of £7.

=15 -
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Wavelet-like bases are constructed to possess a combination of the properties of classical
and multi-p hierarchical bases. They are also based on a set of multilevel grids with
polynomials of different degree k. The wavelet-like bases are orthogonal and possess the
most important properties of the wavelets, as indicated by their name, such as having &

number of vanishing moments. The scaling functions {¢,;i €L, k]} for k=4, 5 are shown

in Fig. 2.3.

§2.1.4. Wavelets

Differently from wavelet-like bases, wavelets form a hierarchy of nested approximation

spaces of L and are constructed by translating and dilating a single scaling function and a
single wavelet function. Their use is first introduced in [24], and has been extended to many

areas. Typical examples of wavelets are shown in Appendix A.

- 16 -
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28 . ‘I‘. o

Fig. 2.3. Functions ¢,---,¢, for k=4 in (a) and k=5 in (b). ¢, is polynomial in the
interval [0, 1] and is odd or even according to ¢,(&) =(=1)""¢.(=£), & =[-1, 0].
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§2.2. Salient Features of Wavelets

Orthogonality

The wavelet transformation with orthogonal wavelets is a unitary transformation; the
condition number of the transform matrices is equal to 1, which is an optimal case and 1s
important in numerical computations. This means that an error in the original formulation
will not grow, that the condition number will be preserved after the transformation, and that

stable numerical computations are possible.

Compact support

The support width of wavelets is important in the implementation of the fast wavelet
transform (FWT) algorithm [24]. If the scaling function and the wavelet function are
compactly supported, their coefficient sequences are finite, so that the summations i the
FWT are finite. Also the computational cost of FWT is proportional to the support width of
wavelets selected. If they are not compactly supported, a fast decay is desired so that the
filters can be truncated reasonably. It is reported, however, that this truncation causes a

certain numerical error in computational electromagnetics [42].

Number of vanishing moments

Vanishing moments play an important role in data compression or large matrix
-compression [5]. Wavelets with a larger number of vanishing moments are desired to obtain
a higher compression rate, which, however, increases the computational cost of FWT since

wavelets with higher vanishing moments have a wider support width. The trade-off between

- 18 -
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the number of vanishing moments and the FWT computational cost is one of criteria in the

selection of wavelets when used for the fast solution of integral equations.

Analytical expression

An analytical expression for a scaling function or wavelet function does not always exist.
In computational electromagnetics, it would be ideal to have closed form expressions such
that the inner products associated with MoM can be exactly evaluated numerically.
However, the change-of-basis scheme can be applied when no closed form expressions are

available, the scheme utilizing only the coefficient sequences of wavelets.

There are other properties that are important in some specific applications. Rational filter
coefficients are useful for computer implementation, since multiplication by a rational
number on a computer corresponds to shifting bits, which is a very fast operation.
Smoothness and symmetry of wavelets are useful in image compression, where the error

after a threshold procedure can be easily detected visually.

As noted in [5] by Daubechies, it is impossible to construct wavelets that have all these
properties, and there 1s a trade-off between them. The properties of some wavelets are

compared in Table 2.1.

-19.
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TABLE 2.1. COMPARISON OF VARIOUS FAMILIES OF WAVELETS.
Wavelet Compact Support | Analytical Expression .
Famil Orthogonality Symmetry
Y Primary | Dual Primary Dual

A e v x x v X
R v v v x x v
C v x v x | v
D x x % x v v
B x x x 4 v v
F v v x x v x

v: Yes x:No ! Semi

A: Daubechies' orthogonal wavelets

B: Biorthogonal spline wavelets

C: Semi-orthogonal wavelets

D: Meyer wavelets [4]

E: Battle-Lemarie wavelets [5]

F: Coiflets
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§2.3. Use of Wavelets in the MoM
Consider a Fredholm integral equation of the first kind

F(s)= L(u(s)) 2.7)

with £ being an integral operator defined as

L{u(s)) = J‘G(S,S') u(s"ds’', s,s'eC’ (2.8)

where u is the unknown function on C to be determined, with the kemel G and the

function f being given. Equation (2.7) can be converted into a matrix equation by using

MoM, and wavelets can be employed in the following ways.

§2.3.1. Direct Application

One may directly use wavelets as basis functions in MoM. The unknown function u(s)

can be approximated in terms of the scaling function ¢ and the wavelet

u(s)=u(s) +u’(s) (2.9)
where
2401
W' (s)=P u(s)= D xih, (s) (2.10)
j 2"
W (5)=0,u(s)= Y xi v, (s) 2.11)
m=jy n=0
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d

mn

Here, j, is the coarsest resolution level, and x; and x; = are the expansion coefficients to
be determined. P, and (), are the projection operators onto spaces V, and
W, JelJy, JI, respectively.

Applying Galerkin's procedure to (2.7) leads to the following system of linear algebraic

equations at the selected /-th resolution level

ZI =V (2.12)
with
B C VS I.S‘
Z = _ , V = R I = (2'13)
C D Vd Id
whose elements are given by
I =[x, x5, 1, I =1, 15 - I T (2.14)

(Vi =(p, .0

V=iV VAT (2.15)
kVnin - <'1ym,.n>f>

=22 .
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Bn’n = Bn{'[zn = <¢ju,n’! ‘C(¢jﬂ,n )>

Dm'n’,nm = D.-’J’:’n',u = <r>‘lfm',n'! L(Wm,n)>
< (2.16)
C = C::'r,n = <¢_f0,n' H L(V/m,n )>

'’ n = C.l:fjn = <lium',n' H L(¢ju M )>

n\mn

o

where 7 indicates the transpose and I? is a vector constructed from the coefficients of

m ~1th scale in the form of I =[x ,,---,x , ]". The elements in (2.16) are ordered in

m m,2"-1

consistency with (2.14) and the matrix operators are shown schematically in Fig. 2.4.

The direct application of wavelets in the MoM can be found typically in [33], [43], and
[45] for orthogonal wavelets, and [44], [55] for semi-orthogonal wavelets, with the entries of
resulting matrices evaluated numerically. Consequently, a large amount of computational

work is required to perform numerical integrations.

§2.3.2. Change-of-Basis Scheme (CBS)

One may use wavelets in MoM through the change-of-basis scheme, which takes

advantage of the FWT algorithm. The unknown function u(s) is approximated in terms of

the scaling functions ¢

u(s) = Pu(s) = > 1,6,,(s) (2.17)

where P, denotes the projection operator onto the space V,, and (2.7) can be cast into the

matrix equation (2.12) through the application of Galerkin's procedure, with

.23
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Fig. 2.4. Schematic description of the matrix operators B, C, E, and D combined into
the single matrix Z ,
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Zo =G0, L8, V=4 S (2.18)

Expressing the matrix eqguation in a recursive form as follows

fol wal Ij—l Vj—l
Z/ = , I = . V= (2.19)
ijl DJ_I Ajvl Fj-l

the elements of the submatrices are

i1 _ j
Z.U(' - z Z hlk—m th’—tanm
m H
it 7
Cie = ZZthwngk'—n Z,,
W

) (2.20)

i i
Dkk' - Z Z ng—m ng'—n an

wm i

Pl i N J
Ckk' - Z Z ngfm th'mu an
moon

I.'{’f] = Zh}lk'—r:];rf’ Afi—_'l = Zg2k’—n‘[1{ (2.21)

I/k{.—l = Zhi’.k'—-nKij’ F}'\J'Au'i = Zglk'fur/nj (222)

By recursively computing (2.20)—(2.22), one can obtain the same matrix equation of the
form (2.12) and (2.13) as that obtained by the direct application of wavelets. Note that the

recursive algorithm is the FWT scheme that is applied to the MoM matrix equation and can

be expressed in the matrix form as

-025.
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Wzw' w1 =wv (2.23)

which leads to a new equation

zZr =V (2.24)

with

Z'=WZW', I=W'I, V=WV (2.25)

where W denotes a {ransform matrix performing the FWT with relevant wavelets
selected. For wavelets whose analytical expressions are not available, the scaling function
¢ at the highest level in (2.18) is usually approximated in practice by some local basis
function such as rectangular or triangular basis function. The high computational cost in

the direct application of wavelets is substantially reduced in this scheme [63], [70], [71].

§2.3.3. Matrix Transform Approach (MTA)

This idea of the mairix transform approach is borrowed from that of the change-of-basis
scheme described above, where a system of linear equations of the form (2.12) is first
obtained by a conventional MoM with some local basis functions such as rectangular or
triangular pulse functions, and then a matrix transformation as described in (2.23) is applied,
with the transform matrices constructed by using wavelets. Here, the wavelet transform
matrices W simply act as a sparse preconditioner, and thus is problem independent. The
transformed matrix Z' is highly sparse after thresholding due to the wavelet property of
vanishing moments. The differences between the CBS and the MTA will be discussed in

detail in Chapter 4,
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§2.4. Summary

This Chapter has described some literature covering hierarchical bases and their
applications in computational electromagnetics. The salient features of various wavelets are
further studied and compared in this Chapter, and it was found that wavelets are optimal

hierarchical basis functions.

Wavelets can be applied for the fast solution of electromagnetic integral equations in a
number of ways. The direct application of wavelets as basis functions in the MoM results in
intensive computational efforts to evaluate the entries of moment-method matrices, while it
is substantially reduced in CBS or MTA, which fully exploit the advantage of the FWT
algorithm. The main difference between the CBS and the MTA is the construction details of
a wavelet transform matrix. The MTA simply uses one-dimensional wavelets and the
wavelet transform matrix acts as a sparse preconditioner; multidimensional wavelets,
however, are required in the case of the CBS for the solution of multidimensional integral

equations.
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Chapter 3

SELECTION OF WAVELETS USED FOR THE SOLUTION OF

INTEGRAL EQUATIONS

§3.1. Introduction

The selection of the number of vanishing moments in a family of wavelets has been
investigated in [45] for Daubechies' orthogonal wavelets (DOW), and in [63] for
semi-orthogonal wavelets (SOW). It has been pointed out that 8 vanishing moments are

optimal when the number of unknowns is less than 5000,

Two categories of wavelets, orthogonal and semi-orthogonal, are mainly used in
computational electromagnetics. It has been reported that the use of SOW yields more highly
sparse matrices and better solution accuracy when a direct solver is adopted than the use of
orthogonal wavelets {63], [64]. However, the efficiency of the iterative solution methods for

the sparse matrix equations obtained by using the SOW has not been investigated.

The focus of this Chapter is to compare systematically the SOW and the DOW when
used for the solution of integral equations. Firstly, the effect of thresholding on the matrix
sparsity and also on the solution accuracy, as well as the relationship between accuracy and
matrix sparsity, are examined. Then the condition number of matrices involved is examined.
Since the SOW transform yields a matrix with a larger condition number than that
corresponding to the DOW transform, it is expected that the convergence rate for an iterative

method is much better in the latter case. Numerical simulations are conducted for the
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transverse magnetic (TM) and transverse eleciric (TE) scattering by conducting cylinders of

an arbitrary size with the CG iterative method.

§3.2.  Problem Formulation

Consider an infinitely long conducting cylinder excited by a TM or TE (to the z — axis)

electromagnetic plane wave in free space. The induced current density J(r) on the surface

is related to the incident field F(r) through the following integral equation

f G(r, ¥V (#")dl' =F () (3.1)
C

with C being the eylinder cross-section contour and G the Green's function,
In the case of TM incident wave, we have
F(r)=E/"(r)

. (3.2)
G(r,¥") = %Héz)(k [r—r"])

where £ is the incident electric field intensity, #(* is the Hankel function of the second
kind and zero order, and £ and # are the wave number and the intrinsic impedance of free
space, respectively.

In the case of TE incident wave, we have

-29.
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F(ry=H"(r)
: (3.3)
G(r, k) =6(r—r") +%H](2}(k L —r'|yeos[n(r),r — ']

with H'™ being the incident field intensity, H* the Hankel function of the second kind

and first order, and n the unit normal vector directed out of the cylinder.

§3.3. Effect of the Condition Number

The condition number of a matrix A4 is defined as [2]
y( A=A |- 1Al (3.4)
where ||- | denotes the Fuclidean matrix norm, and can be computed through the singular
value decomposition of the matrix 4 [2].

In the case of DOW, the wavelet transform matrix is orthogonal, that is, w=w" and

the condition number y(W)=1. For SOW with m vanishing moments, the condition

number of the transform matrix W of order N x N has been computed for different values
of N, namely N = 128, 256, 512, and 1024. Numerical experiments show that the condition

number is independent of &, but it depends on the number m, as shown in TABLE 3.1.

Using the properties of the Euclidean matrix norm, the following estimate exists
HZ"y=y(WZW") <y (W)y(Z) (3.5)

which means that the upper bound of the condition number of 2’ is about »*(W) times

greater than y(Z) for SOW transformation.
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The influence of the condition number of a system matrix on the convergence rate of the
CG method was analyzed in [12] for symmetric and positive definite matrices. It was

112

observed that the number of iterations required is approximately x = py " to ensure a

solution accuracy of p decimal places. This effect is also studied in [20] for MoM miatrices
arising from electromagnetic integral equations. Since the CG solver requires the system

matrix to be positive definite, the original MoM matrix equations of the form (2.12) is
converted into the normal equation Z”ZI = Z"V , where H denotes the conjugate
transpose. In this case, k¥ = py(Z). Therefore, if the same accuracy is required, the number
of iterations for solving the transformed matrix equation will be increased approximately by

¥ (W) times with respect to that for solving the original MoM matrix equation.

TABLE 3.1. CONDITION NUMBER ¥{#) FOR SOW WITH m VANISHING MOMENTS.

3
(8]
ey
wn
=
~1
o0

i 1

y(W) 1.0 2.60 513 9.97 | 1932 | 3743 | 72.53 | 140.53
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(a) (b)

Fig. 3.1, Gray-scaled images of the wavelet transform matrices of order 128 x 128 with 8
vanishing moments: (a) DOW, (b) SOW.

§3.4. Numerical Experiments

To measure the solution accuracy, the residual error for the equation (2.12) is defined as

&(Z) = 1| ZI“" =V ||V ||x100(%) (3.6)

where 7°“ is the computed solution. The sparsity of a matrix of order N x N is defined as

S=(1-M;/N*)=x100(%) (3.7)

where M ; is the total number of nonzero elements of the matrix after thresholding with the

threshold value &, which is one of the input parameters of the computer program. Equation
(3.1) is converted into the matrix equation of the form (2.12) by the point-matching MoM

with fixed cell size selected as one tenth of the wavelength of the incident wave in free space.
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SOW and DOW with 8 vanishing moments have been employed to perform the wavelet

transforms in (3.5) as in [45] and [63].

§3.4.1. TM Scattering

Sparsity and Solution Accuracy

Numerical computations are first conducted to compare the DOW and SOW in terms of
matrix sparsity and the solution accuracy by the standard LU solver. The surface current
distributions for a perfectly conducting cylinder of an electric radius ka =12.8, computed
when the sparsity S =83.3% for both the DOW and the SOW, are shown in Fig. 3.2, where
the analytical solution is given as reference. The matrix sparsity S and the residual error ¢ as
functions of the threshold value & are plotted in Fig. 3.3. The structures of the sparse
matrices when a residual error of ¢(Z) = 0.48%, for example, is imposed for the DOW and
SOW are given in Fig. 3.4. Several conclusions can be drawn from the above experiments.
Firstly, the use of SOW produces a matrix with very small values of some entries such that
the threshold value is much smaller than that of the DOW, Secondly, in comparison with the
DOW, the use of the SOW gives a better performance in terms of the residual error when the
matrix sparsity is less than a certain value, namely 84.03% in this example, as shown in Fig,
3.5. Thirdly, the residual error increases irregularly with the increase of the matrix sparsity

when using SOW, which indicates a worse condition number of the transform matrices.

Condition Number

We now present experimental results when the CG solver is used for the solution of the

respective matrix equations. The condition number and the residual error after x iterations
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are listed in Table 3.3. For DOW, y(Z) = y(Z") and the number of iterations to achieve a
solution with the residual error £(Z) <107°% is «(Z) = x(Z"). For SOW, however, ¥(Z")

is approximately (10° ~10*)y(Z) as expected, and the residual error £(Z) cannot be
decreased below 2% even after N rterations for all values of N considered. Practically, one
solves the sparse matrix equation obtained after thresholding the entries of the fransformed
matrices. Table 3.2 shows the number of iterations x versus the matrix sparsity in the DOW
case when N =128 and with the termination criterion chosen to be £(Z) <107% . It can be
seen that the number of iterations increases with the increase of the sparsity. The
convergence rate of the CG solver for N =128, when using DOW and SOW, is shown int

Fig. 3.6. Clearly, a solution with an error £(Z) < 2% cannot be achieved with the CG solver

when the SOW matrix transform is used in all cases considered.
§3.4.2. TE Scattering

Sparsity and Solution Accuracy

The same experimental procedure as in the TM scattering case is followed to compare
the DOW and the SOW. Now the computed surface current distributions are compared to the
analytical result for a circular cylinder with the electrical radius ka = 25.6 in Fig. 3.7, and
the matrix sparsity and the residual error as functions of the threshold value are plotted in
Fig. 3.8. It is again observed that the use of the SOW yields a sparse matrix with a small
threshold value. The residual error versus the matrix sparsity is shown in Fig. 3.9, The use of

SOW does not show any advantage in terms of the solution accuracy when S > 85.7%.
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Condition Number

The condition numbers after x iterations of the CG solver are listed in Table 3.2. For the
SOW, It is observed that ¥(Z') = (10° ~10*)y(Z) and the residual error is £(Z) > 3%
even after N iterations for all considered values of N. When N =256, the convergence
rates of the CG solver are shown in Fig. 3.10 for both the DOW and the SOW, where the

convergence rate with the matrix sparsity S =88.5% is also plotted. Obviously, a solution

with £ <1% cannot be achieved within N iterations in this example, too.

§3.5. Conclusions

In this chapter, the selection of wavelets used for the integral equation approach is
studied systematically by examining the efficiency of the two categories of wavelets, namely
the DOW and the SOW. The Euclidean norm of a matrix is employed and the singular value
decomposition method is utilized to evaluate the matrix norm as well as the matrix condition
number. The condition number of a MoM matrix is preserved after the DOW transformation,
but 1s increased significantly after the SOW transformation. Numerical results for the
electromagnetic scattering by conducting cylinders show that the condition number of a
MoM matrix using the SOW with 8 vanishing moments is enlarged approximately
10> ~10* times, in agreement with the theoretical predictions. As a consequence, the
convergence rate of the CG solver is slow and a solution with the residual error less than 1%
~cannot be achieved for the examples considered. The results presented indicate that the
DOW are optimal wavelets for the solution of integral equations when an iterative method of

solution is employed.
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Fig. 3.2. Surface current distribution on a circular conducting cylinder with 4o =12.8 and
the matrix sparsity & = 83.3%.
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Fig. 3.3. Relative error £ and matrix sparsity S versus threshold value & for the cylinder
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Fig. 3.4. Structures of sparse matrices after thresholding when the residual error
£(Z)=0.48%: (a) DOW, §=79.47%; (b) SOW, §=82.98% .
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Fig. 3.6. Convergence rate of the CG solver when N =128.

TABLE 3.2. NUMBER OF ITERATIONS k& VERSUS MATRIX SPARSITY S WHEN NV = 128
AND THE TERMINATION CRITERION IS SETTO &(Z) < 107> % IN THE DOW CASE.

S(%)

60.06

70.97 7598 78.44 83.30 84.77

K

25

33 35 37 40 41

TABLE 3.3. CONDITION NUMBER ¥ AND RELATIVE ERROR £(%) AFTER x ITERATIONS
FOR DIFFERENT MATRIX SIZES WITHOUT THRESHOLDING (TM CASE).

: MoM DOW SOW
! nZ) |k eZ)y | vZh | x| &Z) r(Z") Kk | &Z)
128 | 13.83 | 19 | 6.68x10™ | 13.83 | 19 | 6.68x107* | 3.17x10* | 129 | 2.27
256 | 2950 | 50 | 9.19x10™ | 29.50 | 50 | 8.63x107 | 1.14x10° | 257 | 2.79
512 | 10397 | 101 | 6.90x10™ | 103.94 | 102 | 9.04x10™ | 1.40x10° | 513 | 3.12
1024 | 247.09 | 229 | 9.59x10™ | 246.97 | 234 | 8.51x10* | 6.14x10* | 1025 | 4.17
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Fig. 3.7. Surface current distribution for a circular conducting cylinder

and the matrix sparsity S =88.5%.
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TABLE 3.4, CONDITION NUMBER » AND RELATIVE ERROR £(%) AFTER K ITERATIONS
FOR DIFFERENT MATRIX SiZES WITHOUT THRESHOLDING (TE CASE).

N MoM DOW SOW

2} K (L) rZy | k| &ZY) r(Z") K | &Z)
128 4.71 14 1 2.79x10™ 4.72 14 | 279x10™ | 3.36x10" | 129 | 3.07
256 12.43 36 | 621x10% | 1243 36 | 7.06x10™ | 1.17x10° | 257 | 4.44
512 80.02 55 | 938x10™ | 80.04 55 | 9.35x107 | 1.40x10° | 513 | 5.68
1024 | 1.86 x 10" | 114 | 9.06x10™ | 1.87 = 10° | 115 | 9.52x10™ | 8.03x10° | 1025 | 840
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Fig. 3.10. Convergence rate of the CG solver for N =256.
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Chapter 4

SCATTERING BY DIELECTRIC BODIES

§4.1. Introduction

For orthogonal wavelets, both the MTA and the CBS described in Chapter 2 can be used
for a fast solution of integral equations. The two methods are differentiated by the
construction details of the wavelet transform matrix W . In the case of the MTA, W is
constructed by simply using one-dimensional wavelets, while in the case of the CBS it is
constructed with multi-dimensional wavelets, which are tensor products of one-dimensional
wavelets. It is noted that for problems formulated based on one-dimensional Fredholm
integral equations, as those studied in Chapter 3, the CBS and the MTA are identical, since
the unknowns associated with the integral equations are single vectors, and the

one-dimensional FWT is required in both methods.

In this Chapter, the use of wavelets in the MoM for a fast analysis of scattering by
two-dimensional dielectric bodies is studied. The mathematical formulation employs
coupled surface integral equations, and the unknowns fo be determined are two independent
vectors. The main focus is to compare the performances of the CBS and the MTA, with

~ numerical experiments conducted for various dielectric bodies.
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inc

&y My

Fig. 4.1. Two-dimensional dielectric obstacle immersed in an incident field @™ .

§4.2, Problem Formulation

Consider the scattering problem by a diclectric obstacle in a 2-dimensional space as

shown in Fig. 4.1, illuminated by an incident electromagnetic plane wave. The illuminating

field @™ =z¢™ has only a z- component and is independent of the z— axis. The
p

governing equation for the fields is the scalar Helmholtz equation,

(V* + kD)o (r) =0, res,
(4.1)
(V2 + k3o, (1) =0, res,
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where &k, = w./e, 1, 1s the medium wave number, £; and y; being the permittivity and

permeability of the respective region S;, i =1,2 . The total field ¢, 1n S, 1s

inc

@ =" + @] (4.2)

We define Green's functions in the respective regions to satisfy the following equations in

two dimensions

(V2 +kDg,(r)y=-6(r—r'), i=12 (4.3)

and the radiation condition at infimty
1

gi(rr) = = Hy (k; [r=1')) (4.4)
J

where #, r' are position vectors and H” the Hankel function of the second kind and zero

order.

From (4.1)—(4.3) and with some mathematical manipulations, we have

f[gl Ve (n) -, (Vg (rrlds =™ (-,  r'€S,

(4.5)
[Lax(r, ¥V, (1) = 0, (1)V g, (r,¥))ds = 0, (1), res,

By applying the Green's second identity [1], the integrals on the left-hand side of (4.5)

become contour integrals over the cross-sectional contour C bounding the dielectric region

S, . Consequently,
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(2. Vo, ()l = [, - Vg, (r,1)dl = ™ =, (1), €S,
C C
(4.6)
[&a(rr ' -V o, (r)al = [, (r'y - Vg, (r, )l = @, (1), res,
C C

@; and n' - V'gp, act as surface sources, and satisfy the boundary conditions of the form
@ (r) =@, (r)
4.7

PtV (r) = p,n-V,(r), reC

with p; = u;,1=1,2 when ¢ is an electric filed and p, =&, when ¢ is a magnetic field.

With implying (4.7), (4.6) can be written symbolically as

L (" -V'o(r) + £,(p(r)) = Gf’mc(’”)

(4.8)

Ly (0" -V'o(r) + Ly(p(r) =0, reC

where the integral operators are
£, (0 V' p(r)) = [g,(r, ) V' ()l
C
Ly (p(r') == ()’ Vg, (r, 1)l + p(r)
C

(4.9)

Ly, (0 V'p(r) = f)’— [, V'@l
. Ic

Ly (p(r) = = [@(r )’ - Vg, (r,r)dl —~ p()
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Thus, the integral equations (4.8) contain two independent unknowns ¢ and #'-V'ep on C.

Consequently, (4.8) can be treated as linear operator equations and solved with the MoM.

§4.3. Numerical Method

To solve (4.8) with the MoM, we let

[ N
n V()= Za”f],”(r’)

n=1

(4.10)

N
o'y = b, f2,(r")

n=1

where f), (') and f, ,(r') are the selected basis functions. Then, (4.8) becomes

> 4, Ly (F, PN+ Y b Ly (fy, (7)) =0

n=l1 n=1

) (4.11)
> a, Ly (1, (FN) + D b, Loy (f, (7)) = 0" (1)

L n=l n=l

Applying the weighted residual procedure with selected weighting functions w, , (+') and

Wy, (r') for m =1, N leads fo a system of 2N linear algebraic equations in the form of

N N
Sa, (W L)) + Db, (v Lo (f, (7)) =0

n=l n=l

(4.12)
D a, Wy Ly ([ )+ D 8,40y 00 Ly (fo, (7)) = {wy s 07 (1))

Ln=1 n=|

which can be written in the form of a matrix equation as
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li 11 iZ:H:I1:i lj lji
Z, £ _|’ (4.13)
Z, Z,|i I, |0

8}
]

3

with

[Zg ]nm = <wf,m 3 L{j (f:f,n )>

[17} ]m = (Wl,m ’ Q?mc> (4 14)

III ]m = am’ [Iz]m = bmﬂ j; _] e ]., 2

Equation (4.13) can be transformed into (2.24) by using either the CBS or the MTA with
the wavelet transform matrix B . In the case of the CBS, the multidimensional wavelets are
required to construct W, which can be obtained by simply using tensor products. To

illustrate the idea, consider the case of a plane. Let

D(x,y) = gp(x)¢(y) = D $(x,¥) (4.15)

with ¢ being the scaling functions for the selected wavelets and define
Vo =8pan{®@(x—k,y —ky; k|, ky € Z} . Of course, if the set {¢(x—/;leZ} is an
orthogonal basis, the set {@(x—k,, y—k,} form an orthogonal basis for V,. By dyadic
scaling, one can obtain a multiresolutional analysis. The complement space W, of V, in ¥]

is similarly generated by the translations of the three functions
YO =gy, ¥V =py®4d, YV=yy (4.16)

where  1s the corresponding wavelet function.
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Tor a given function Vf(x,y) e L', the following projection exists

J(x,y) :ZZ(f, W, QW) v, P, (4.17)

ik

Thus, the wavelet transform matrix W can be obtained in a way similar as in the
one-dimensional case. The gray-scaled images of the wavelet transform matrices of order
512 x 512 for Daubechies' wavelets with 8 vanishing moments are shown in Fig. 4.2, which

clearly shows their differences.

The transformed matrices Z' with the CBS and the MTA are usually highly sparse due
to the salient features of wavelets. However, the CBS will result in a better performance than

the MTA in terms of matrix sparsity and solution accuracy, since the latter simply treats the
unknown I =[I,, I,] in (4.13) as a vector, and the discontinuity between the two

sub-unknowns I, and I, generates more matrix elements with a higher value.

100 200 300 400 500 100 200 300 400 500

(@) )
Fig. 4.2. Gray-scaled images of wavelet transform matrices: (a) MTA; (b) CBS.
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§4.4. Numerical Experiments

The above procedure was implemented to analyze numerically the electromagnetic wave

scattering by various dielectric bodies. The basis functions f;,(¢) in (4.10) and the

weighting functions w. (¢} in (4.12) were chosen to be rectangular pulse functions.

in
Daubechies' wavelets with 8 vanishing moments have been employed for the construction of
wavelet transform matrices. To measure the performance of CBS and MTA, the relative

solution error is defined as
S =L~ 15 /1T {x100% (4.18)

where I is the solution obtained with the conventional MoM and I is the one obtained by

the present method with the threshold value 6 .

The first example considered is a circular cylinder of relative permittivity ¢, = 2.5 and
the electric radius kya =50 in free space, illuminated by a plane wave as shown in Fig. 4.6,
where k&, is the wave number of free space. To compare the efficiencies of the CBS and the

MTA, computations were performed for different threshold values of &, and the number of
basis functions was kept N = 512. The sparsity S of the matrix Z' as a function of threshold

value & and the solution error S, versus the matrix sparsity S are plotted in Figs 4.3 and

4.4, respectively. Both the MTA and the CBS result in highly sparse matrix equations, but
the latter produces a higher matrix sparsity than the former, e.g., about 5% when

S, =10.50 %. The structure of sparse matrices is shown in Fig. 4.5 for the case of
S, =10.50 %, the corresponding E_, #-VE_ and far-field RCS are plotted in Figs 4.6—4.9.

Fig. 4.7 and Fig. 4.8 shows E_ on the surface of the cylinder and that inside and outside of
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the cylinder along the y-axis, where the conventional MoM and the analytic solution are

given as references.

The second example considered is the above circular dielectric cylinder with relative
permittivity &, =40 . The number of basis functions was kept N =512 as above. The
relationship between S and & is shown in Fig. 4.10, and that between S, and §is given in
Fig. 4.11. The MTA and the CBS produce highly sparse matrix equations, and the CBS again
gives higher a matrix sparsity then MTA about 7% when S, =10.05%. The sparse matrix
structures are shown in Fig. 4.12, and corresponding £_, n-VE_ and far-field RCS are
plotted in Figs 4.13-4.16. Fig. 4.14 and Fig. 4.15 shows E, on the surface of the cylinder
and that inside and outside of the cylinder along the y — axis, here again the conventional

MoM and the analytic solution are given as references

§4.5. Conclusions

MTA and CBS with orthogonal wavelets are studied for the analysis of scattering by
two-dimensional dieleciric bodies, formulated as coupled surface integral equations with
two independent unknowns. Their efficiency is compared in terms of the matrix sparsity and
the solution accuracy obtained with the standard LU solver. Numerical experiments are
conducted for two-dimensional dielectric bodies of large size with typically large and small

values of permittivity, namely ¢, =2.5,40. The MTA and the CBS both result in highly
sparse matrix equations within the acceptable range of solution error, namely §,. <10.5%

in the examples considered, and CBS produces higher sparse matrices about 5% m the first

example and 7% in the second example.
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The MTA and the CBS are differentiated by the construction of wavelet transform
matrices. The MTA simply requires one-dimensional wavelet, while the CBS needs
muitidimensional wavelets, which are tensor products of one-dimensional wavelets. The
CBS gives rise to a better performance than the MTA 1n terms of matrix sparsity, the MTA,

however, provides a problem-independent transform mechanism at the cost of matrix

sparsity.
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Fig. 4.3. Sparsity S as a function of threshold value & for the dielectric cylinder in

Fig. 4.6.
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Fig. 4.5. Gray-scaled images of the transformed matrix Z' for the dielectric cylinder in
Fig. 4.6 when S_, =10.50%: (a) S = 78.47% obtained with MTA and & =1.151x10™;

(b) S = 83.57% obtained with CBS and & =1.95x10™,
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Fig. 4.6. n-VE_ on the surface of the dielectric cylinder of radius kyz = 50 and the

relative dielectric constant £, = 2.5, when S =10.50% for EI =1 (Vim).
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Fig. 4.12. Gray-scaled images of the transformed matrix Z’ for the dielectric cylinder in

Fig. 4.13, when §,, =10.05%: (a) S = 66.17% obtained with MTA and & = 67.69x10°;
(b) S = 74. 74% obtained with CBS and & = 92.94x10°.

- 56 -




CHAPTER 4 SCATTERING BY DIELECTRIC BODIES

140 v T T

— MoM

CcBS, & =10.05%
err

120

100

| n-VE.| (Vmh
3 3

40

20

@ (degrees)
Fig. 4.13. n-VE_ on the surface of the dielectric cylinder of radius k,a =50 and the
relative permittivity &, = 40 for E™ =1 (V/m).

10 T T r
—— Analytic Solution [1]
- MoM ]
... CBS, & =1005%
err
10°
— ¢
il
el
I.I.i?
107"}
107

0 45 80 135 180
& (degrees)

Fig. 4.14. E_ on the surface of the dielectric cylinder in Fig. 4.13.
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Chapter 5

SCATTERING BY ARBITRARY BODIES OF REVOLUTION (BOR)

§5.1. Introduction

Scattering of electromagnetic waves by arbitrary BORs can be described by constructing
coupled vector integro-differential equations which can be solved by taking advantage of the
axial symmetry of the body [10], [13]. Considerable efforts have been made in recent years
to enhance the computational efficiency for electrically large structures. The FFT was used
in [23] to improve the matrix fill time. Entire-domain functions were also employed in order
to reduce the size of moment-method matrices arising in the analysis of electrically large

axially symmetric reflector antennas {25].

In this Chapter, the MTA with orthogonal wavelets is extended to the problem of
scattering by arbitrary BORs. An efficient sparse solution technique that employs the
generalized minimal residual (GMRES) method, which converges faster than other iterative
methods [65], is demonstrated for the analysis of the electromagnetic scattering by a
conducting BOR, where the mathematical model is reduced to a single vector
integro-differential equation. A sparse LU decomposition method {60] with an approximate
~ minimum degree ordering algorithm [56] 1s proposed for the case of dielectric BORs, whose
moment-method matrices inherently possess a higher condition number. Numerical
experiments are performed to evaluate the efficiency and accuracy of the solution

techniques.
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E]: Eit:c+E15 . 5
H=H{JIC+HS E}aHi
e 8 1 1 . & e, / "
o &2 EZS, st :
Js\"......“"“y
K
(a) (b)

Fig. 5.1. Surface equivalence of an arbitrary homogeneous dielectric scatterer in an
unbounded medium: (a) Original problem; (b) Replaced by the surface equivalent sources
J.=nxH and K, =-nx E .

§5.2. Surface Integral Equations

Consider a general radiation and scattering problem involving a homogeneous scatterer
of permittivity £, and permeability ,, illuminated by the incident fields E™ and H™ in
an unbounded medium of & and g, as shown in Fig. 5.1(a). According to the equivalent

principle [1], the scatterer can be replaced by the surface current sources, J, = nx H and

K =-nxE , which produce the scattered fields £° and H* as shown in Fig. 5.1(b). The

mtegral equations for this problem can be obtained by requiring continuity of the fields

tangential to the surface of the scatterer S
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nxENJ ,K)+nxE{J,,K)=-nxE" (5.1

nxH'(J, K)+nxH;(J,,K )=—-nxH"™ (5.2)

where n is the unit vector normal to the surface 5 of the body as shown in Fig. 5.1. The
fields radiated by the equivalent currents in a homogenous region can be computed in

terms of electric and magnetic vector and scalar potentials as

I

E'(J.,K)=—jod -V -~V xF (5.3)
8!
H(J,K,) =~ joF V¥, +Vx 4, (5.4)
Hi
with
{ 1
Al = 4 J.J-Jst'dS? (ﬁ] = J._[qeG!dS
s &1 %
(5.5)
1
F,=¢ ”KstdS ¥, =— _”‘]mGidS
L S Hp s
where
G = -],  1=1,2 (5.6)

j=+-1, B, =gy, ,and g and g, are the permittivity and permeability, respectively,

of the material outside and inside the body. A time-dependence factor ¢/ is assumed but

suppressed throughout. The electric and magnetic surface charge densities, ¢, and g, are

related to their corresponding surface current densities through the equation of continuity
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qe:_._v"']‘? qmz_-—v'lK‘ (57)
J

Now, equations (5.1) and (5.2} can be written symbolically as

nx E™ = £, (J)+ £,(K,)

(5.8)
H XH"”C = LZI(J§)+L22(KA)
with the integro-differential operators are
(L£,,(J)=nx j{ja).]s (r M, G, + 1,G,)
5
[V, D/ (eI V (G, fe, + G, e, )pds’
Lo(K,)=-nx [K ()37 (G, +G,)ds’
S
<
(5.9)

L, () =nx [4,(")xV (G, + G, )ds'
S

Lyy(K)) =nx [{joK, ()56, +56,)

g

k —[(V, - K (X)) (G, + Gy [y )} ds’
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Fig. 5.2. Dielectric body of revolution.

§5.3. Method of Solution

When the scattering body is an arbitrary dielectric BOR about the z — axis, as shown in
Fig. 5.2, (5.8) can be efficiently solved by taking advantage of the rotational symmetry.

Because of this symmetry, a Fourier series expansion in the angle ¢ can reduce the problem

to the solution of a system of orthogonal modes. The main advantage of using the Fourier

modes is that the scattering problem can be solved mode by mede due their orthogonality.

The integro-differential equations (5.8) can be transformed into a system of linear
 algebraic equations through the application of the method of moments exploiting the system
axisymmetry. Namely, the unknown current densities are first expressed in terms of Fourier

modes as
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M (1,¢)= D [M, () + M (t)le™, M, =J K, (5.10)

where M! and M? are components along the tangential unit vectors ¢ and ¢, respectively,

and ¢ is the length variable along the generator curve C of the BOR. The current densities can

further be expanded as

N
Ty =pY IE £
=
) l (5.11)

AJ'
KP ()= pY 15" £,(6), p=t¢
k=i

where & is the total number of basis functions f, used along C. Choosing the weighting

functions
WrI(t) = pw(t)e™, p=t¢; i=1,2--N (5.12)

the application of MoM vyields a system ZI = F of 4N x4N linear equations for each # in

the form

o 1 i [ ghe te
Zi i Zl L Zl2,n Zl 2. Iﬂ V

M

Zaﬂ ZW

i i

Pt o d,e d.c
le,n le,u In ¢ ;/:i

= (5.13)
I g " i 1,m f
ZZLH Zzl,n ZZZ,H ZZZ,H Iu ! I/n "

VA

210

Z T2 £ B Sl B R

with the matrix elements
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[V‘”P.L’ L — (W{T , Ez‘r1c>
[V;IP m <H/;5 , Hmc (5 14‘)
{Z:bqn % < m? ab(l;:ri)>3 a?‘b:l’z;pﬁgxriqé; ivk:]"z’”'N

and FY = qf, (£)e”? . The inner products in (5.14) can be evaluated in the form of integrals

along the generator curve C of the body, for example

where g

22n ik

1201 = [ [dr'{ow,(0) £, (siny () siny(2') - [ (g0 + g

+ (g3 + g2+ cosy @y cosy (1) pagy + 1,87

+ WO Galg Je + 2 [ )} (5.15)
S L IOVAGE VORETEA R

+,(g%) - gDV 2+ n[wi() £ () (0 DI 1 + 287 /1))

represents the n —th Fourier mode of G, in (5.6) and y denotes the angle

between the unit vectors # and z, being positive if # points away from the z —axis and

negative if ¢ points towards the z —axis. Several formulas to facilitate the computation

above should be noted:

I = L prens L rene  (5.16)
ye

_Iar
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G,(t,t',p—¢") = LZgﬁ”(t,r')ef'”“"‘”"
2m
) (5.17)

2
gi[}(r’ tr) = J‘G; (t’tr,a)e—jnada
0

v

with the coordinate transform
I=XCOSYCOS¢+ ycosysing —zsmy

t=xsinycos¢ + ysinysing + zsiny (5.18)

(¢ =-xsing + ycosg

Finally, the unknown current density coefficients can be found by solving the matrix
equations (5.8), and the far field and radar cross section (RCS) can be calculated through the
procedure described in [10], [13]. In what follows, an efficient and accurate numerical

solution of (5.8) is analyzed in detail.

§5.4. Solution Techniques for Sparse Matrix Equations

Although both orthogonal and semi-orthogonal wavelets have been frequently used for
the solution of electromagnetic integral equations, yielding highly sparse moment-method
matrices, we have shown in Chapter 3 that the condition number of W is 141 in the case of
SOW with § vanishing moments, such that the condition number of the fransformed matrices
..1s considerably increased, while it is 1 in the case of the DOW, which is optimal. Here, the
orthogonal wavelet transformation scheme is extended to the problem of scattering by

arbitrary BORs.
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Implementing a thresholding procedure with appropriate threshold value 6, the
transformed matrix Z' becomes a sparse matrix. In order to accelerate the iterative solution
algorithm, the elements of Z'are arranged using the “row-indexed sparse storage mode”

[45], where the solution is practically proportional to the matrix sparsity in time.

§5.4.1. Conducting BORs

The GMRES iterative algorithm described in [65] is implemented to obtain the fast
solution of the derived sparse matrix equation since it converges faster than other iterative
algorithms and also due to the fact that the orthogonality of the wavelets used provides an

efficient way to select the termination criterion for the iterative process. Since the Euclidean

norm HW” =1 for the orthogonal wavelets, the residual error r for the solution of (5.13),

, 15 equal to the residual error »' =HZ ’I'wV'ﬂ/ HV’

defined by r=|ZI-V|/|V | for the

solution of the transformed matrix equation (2.24) before thresholding. Recognizing this, a
solution of (5.13) with a required accuracy ¢ is sought for by using the generalized minimal
residual (GMRES) algorithm in two steps. First, the sparse matrix equation obtained after
thresholding (5.13) with a threshold value & is solved imposing the same accuracy £ such

that the residual error r; for this matrix equation is minimized to #; . Then, the error 7 is

checked, and the iterative procedure is terminated if » < g, otherwise the GMRES algorithm

is restarted with the new termination criterion being

Y5 =¥ +A1 <&z, ﬂz‘rmr;
determined in the previous step and ¢, being a predefined accuracy less than & . Note that

the error A is a quantification of the influence of thresholding on the residual error r. This

error is usually small since a very small value of ¢ is used in practice. Thus, in the second
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step the GMRES iterative process converges fast and the solution of (5.13) can be found by
computing only one full matrix-vector multiplication used to evaluate » . This procedure was
tested by numerical experiments and found to be more efficient than that used m [45], where
a smaller value of the residual error is required for the termination criterion to ensure that the
conjugate gradient iterative algorithm yields a solution of the original moment-method

equation with the residual error & .

§5.4.2. Dielectric BORs

The original MoM matrix Z inherently possesses a high condifion number in the case of
dielectric BORs. This is confirmed by numerical experiments conducted, where iterative
solution algorithms for (5.13), such as the conjugate and bi-conjugate gradients, and also the
GMRES method, fail to converge to an accuracy of 1% in the residual error for the problems

considered in this paper.

The condition number of various wavelet transform matrices has been studied in Chapter
2. It was pointed out that the condition number of W is always | in the case of orthogonal
wavelets, which is optimal. By using such wavelets, the condition number of Z in (5.13)
will be preserved after the wavelet transformation. To treat more efficiently the matrix
equations (2.24) and to take full advantage of the sparsity of the transformed impedance

matrices, an improved sparse LU decomposition solver [60] has been implemented, which

dynamically allocates the computer memory needed and employs an approximate minimum

degree ordering algorithm [56] to further increase the sparsity of the computed 1. and U

factors.
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§5.5. Numerical Experiments

Based on the procedure described above, a computer program has been written to
analyse the problem of electromagnetic wave scattering by an arbitrary BOR. The functions
f. (&) in (5.11) and w,(¢) in (5.12) were chosen to be triangular pulse functions, and
elements of Z and V in (5.13) were evaluated following the procedure described in [13].
The Daubechies' wavelet [5] with § vanishing moments has been employed for the transform
m (2.25). Since the main source of errors is the thresholding level in the transformed
impedance matrices, the threshold value & was taken as one of the input parameters of the
computer program and an appropriate value of it has been selected. A numerical solution
with 1% relative error in the residual vector norm was sought for the results generated. The

sparsity of a matrix has been defined in (3.7). Numerical experiments were conducted for

various BORs. The plane of incidence of plane wave is assumed to be at ¢=0" and

# =180, and the current densities are obtained in the form

J (6, 8)=tJ ({ycosg +@J? (t)sin g
(5.19)

K (t,¢) = tK!(t)sing + pK?(r)cos ¢ .

§5.5.1. Conducting BORs

A solution of (5.13) is sought by using the GMRES iterative process described above,

with £ =0.01 as in [45] and ¢; = 0.0001. Numerical experiments were performed on a

Pentium 120 personal computer.
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The first example considered is that of the conducting sphere with a radius fB,a
illuminated by an axially incident plane wave as shown in Fig. 5.3, where £, is the wave

number of the incident field in free space. To illustrate the efficiency of the present method,
experiments were conducted for different large electrical dimensions namely f,a= 25.6,
51.2, and 102.4, while the number of basis functions per wavelength was kept 20 as in {23].
Figs. 5.2 and 5.3 show the computed E — and H —plane radar cross section (RCS) for

Fya= 51.2 obtained by the present method in comparison with that by the conventional
MoM with the LU solver. The sparse matrix with S = 11.28%, obtained from Z' with a

small threshold value & = 9x107° is shown in Fig. 5.5. Table 5.1 illustrates the efficiency
of the method presented as compared to the MoM with the LU solver. A highly sparse matrix
is produced with smaller & in all cases, and the matrix sparsity increases with the increase of
the matrix size since more wavelets now are involved. 45.04% to 80.09% reduction in CPU
time can be observed, i.e. 1.9 to 5 times, with the time used to perform the FWT included. It
should be remarked that the computational efficiency increases with the matrix size, which

recommends the method presented for an efficient solution of electrically large problems.

The second example considered is that of a conducting cone with spherical caps
illuminated by an axially incident plane wave as shown in Fig. 5.6. The efficiency of the
proposed procedure is examined for fixed dimensions of the body, f,a =12, S, =6, and

Poh =48, but with the total number N of basis functions considered along the generator

curve of the body taken to be 256 and then increased to 512. A more densely sampling
usually results in moment-method equations with a higher condition number. The computed

E - and H —plane RCS are plotted in Figs. 5.5 and 5.6, respectively, and the results
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obtained by the MoM with the LU solver are also given as reference. As shown in Table 5.2,
48.92% and 78.29% reductions in CPU time are obtained in comparison with the MoM
employing the LU solver for the case of N =256 (matrix size 512x 512) and 512 (matrix size
1024 x 1024), respectively. As expected, the reduction in computation time is increased as

compared to the corresponding cases in the first example.

§5.5.2. Dielectric BORs

The first example considered is that of a dielectric sphere of relative permittivity &, =8
and normalized radius S,a in free space, illuminated by a plane wave, as shown in Fig. 5.8.

To illustrate the efficiency of the presented method, computations were performed for

different electric dimensions, namely fS,a =12.8, 25.6, and 51.2, while the number of basis

functions per wavelength was kept 20.

The normalized values of [J!(2) |, |J¢(£)], |K.(¢)], and | K?(¢)] for the sphere with
Poa =12.8 and its RCS are plotted in Figs. 5.7, 5.8, and 5.9, respectively, where the results

obtained by the conventional MoM with the LU decomposition algorithm are also given as
reference. The structure of the sparse matrix with the sparsity § = 33.42% is indicated
qualitatively in Fig. 5.11. As shown in Table 5.3, a 50% to 73% reduction in CPU time,
including the time to perform the FWT, is achieved with respect to the reference method, i.e.

about 2 to 4 times faster in the case of the larger sphere,

Another example given here is that of a cone-sphere object with the relative permittivity
&, =12, the cone angle o =507, and the sphere radius £ a in free space, illuminated by a

plane wave axially incident on the cone vertex, as shown in Fig. 6. Again, to examine the
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efficiency of the method employed, the same numerical experiments as in the previous

example were performed for various body dimensions, namely for f,a =10, 20, and 40,

with approximately 20 cells per wavelength along the object generator curve. For the case of

Fya =10 and N =128, the surface electric and magnetic current densities, as well as the

RCS computed by the presented method, are plotted in Figs. 5.11, 5.12, and 5.13,
respectively, along with those obtained by the conventional MoM. As shown in Table 5.4, a
41% to 67% reduction in CPU time, including the time used to perform the FWT, is achieved

with respect to the conventional method.

§5.6. Conclusions

A fast solutton technique based on the FWT and using sparse matrix solvers has been
investigated for the problem of wave scattering by a dielectric BOR, whose MoM matrix
equation inherently possesses a high condition number. The MTA with orthogonal wavelets
1s adapted to obtain highly sparse matrices, as well as to preserve the condition number of the
original moment-method matrices. The sparse structures of the resulting matrices are

exploited to speed up their numerical solution.

A new approach is proposed for the case of conducting BORs, where a solution of the
original moment-method equations is obtained by applying the GMRES iterative algorithm
for achieving a given accuracy, taking into account the influence of thresholding by
- implementing an effective termination criterion that exploits the orthogonal property of
wavelets. The computational efficiency of this method has been iltustrated by comparing it

with the conventional MoM using a direct solver for different numbers of basis functions per
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wavelength. Various numerical results generated show that the method presented is an

efficient tool for the analysis of wave scattering by conducting bodies of revolution

In the case of dielectric BORs, the MoM matrix equation inherently possesses a high
condition number, such that iterative methods fail to converge to a 1% solution error. The
improved sparse LU decomposition technique [60] with dynamic memory allocation and
with an approximate minimum degree-ordering algorithm [56] is proposed to exploit the
sparse structures of the resulting matrices. The computation efficiency of this method has
been illustrated by comparison with the conventional MoM for various dimensions of
different BORs. Numerical results obtained show that the method presented is highly
efficient for the analysis of wave scattening, especially for bodies whose linear dimensions
are large with respect to the wavelength. As seen from TABLES 5.3 and 5.4, the reduction of
the computation time increases with the electric size of the body, the method developed

being, for instance, more than three times faster when S,z =40 for the cone-sphere

scatterer. Accurate results are obtained not only for the far-field RCS, but also for the field

quantities on the surface of the body.
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Fig. 5.3. E ~plane RCS for a conducting sphere of radius f,a =51.2.
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Fig. 5.4. H —plane RCS for the conducting sphere in Fig. 5.3.
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Fig. 5.5. Structure of the sparse matrix with § =88.72% obtained after thresholding
Z'with § =9x107° for the conducting sphere in Fig. 5.3.

TABLE 5.1. EFFICIENCY FOR CONDUCTING SPHERES OF LARGE SIZES.

b Néaitzl _éx T\[}Zi Oéd Sg a(r{;:;y CUP Time in Seconds ) C% %1 'i?ﬁ:?(%)
FWT + GMRES LU

256 | 512x512 | 35x10° | 84.63 22,31+ 2498 86.01 45.04

512 | 1024 %1024 | 9x10° 88.72 | 91.83+ 15447 | 761.41 67.65

102.4 | 2048 x 2048 | 6 x 107 092.85 | 595.94 +690.19 | 6462.85 80.09
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Fig. 5.6. E —-plane RCS for a conducting cone with spherical caps, f,a =12, 5,0 =6,
and f,h =48, for N = 512 basis functions along the generator curve and a sparsity
S =92.36% ofthe matrix Z' after thresholding.
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Fig. 5.7. H —plane RCS for the conducting cone with spherical caps in Fig. 5.6 for a
sparsity S =92.36% of the matrix £’ after thresholding.
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TABLE 5.2, EFFICIENCY FOR CONDUCTING CONES WITH SPHERICAL CAPS,

N Matrix Threshold | Sparsity CPU Time in Seconds Reduction
. o . .
Size Value d S (%) FWT + GMRES LU in CPU Time (%}
256 | 512x312 2% 107 88.47 2241 +21.53 86.01 48.92
512 | 1024 %1024 | 2.1 x 10° 92.36 01.83+73.71 | 761.41 78.29
1

1 {} T T T T T T T

[ E— Mo

Presented Method 1

Normalized Electric Current
=
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-
o
o
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Incident wave ; i HmcE

10' I L 1 L] 1 ] i

Fig. 5.8. Electric current density on a dielectric sphere of electric radius S,a = 12.8 and

relative dielectric constant £, = 8, for N =128 basis functions along the generator curve.
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Fig. 5.9. Magnetic current density on the dielectric sphere in Fig. 5.8.
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Fig. 5.10. Far-field RCS of the dielectric sphere in Fig. 5.8.
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Fig. 5.11. Structure of the matrix with a sparsity S = 66.58% obtained after thresholding
Z’ for the dielectric sphere in Fig. 5.8.

TABLE 5.3. EFFICIENCY FOR DIELECTRIC SPHERES WITH &£, = 8 AND RADIUS a .

f.a N | MatixSize | SparsityS(%) | C%%d%ﬁf;‘(% )
128 | 128 | si2x512 66.58 50.14
256 | 256 | 1024 x 1024 76.58 71.08
512 | 512 | 2048 x 2048 78.64 73.14
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Fig. 5.12. Electric current density on a cone-sphere scatterer with ¢, =12, o =50°

and

P.a =10, for N =128 basis functions along the generator curve.
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Fig. 5.13. Magnetic current density on the dielectric cone-sphere in Fig. 5.12.
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Fig. 5.14. Far-field RCS of the dielectric cone-sphere in Fig. 5.12.

TABLE 5.4. EFFICIENCY FOR DIELECTRIC CONE-SPHERES WITH &, =12, = 50°

AND RADIUS a.
- . Reduction
1 0
B N Matrix Size Sparsity 5 (%) in CPU Time (%)
10 128 512 %512 55.20 41.37
20 256 1024 x 1024 70.35 60.21
40 512 2048 x 2048 74.45 67.33
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Chapter 6

SCATTERING BY 3-D INHOMOGENEOUS DIELECTRIC BODIES

§6.1. Intreduction

The use of wavelets in the MoM results in highly sparse matrix equations, which can be
solved efficiently by utilizing sparse matrix solvers. In [45], the computational complexity
was studied when orthogonal wavelets, along with a sparse conjugate gradient solver, are
employed for the solution of 2-D electromagnetic scattering problems. A sparse generalized
minimal residual method and the MTA with orthogonal wavelets has been successfully
applied to obtain fast solutions for the electromagnetic scattering by conducting bodies of
revolution [81] and a sparse LU solver with the approximate minimum degree ordering
algorithm and the MTA with orthogonal wavelets have also been proposed for the fast

analysis of the electromagnetic scattering by dielectric bodies of revolution [82].

In this Chapter, a fast wavelet analysis method for the problem of wave scattering by 3-D
inhomogeneous dielectric bodies of arbitrary geometry is presented. The fields scattered by
such objects are modeled using a volume integral equation involving equivalent sources. The
application of the MoM leads to matrix equations with a Toeplitz-block structure [48], [58],
which is fully exploited to speed up the 3-D wavelet transform algorithm. Then, a sparse
bi-conjugate gradient (BiCG) solver is employed to achieve a fast solution of the resultant

systems of equations with a computation cost of O(M ), where M is the fotal number of

unknowns. Numerical experiments are presented to show the efficiency of this procedure for

lossiess and also for lossy dielectric bodies with different geometric shapes.
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Fig. 6.1. Replacement of a lossy, inhomogeneous dielectric body by an equivalent volume
current.

§6.2. Problem Formulation
Consider a lossy, inhomogeneous 3-D dielectric body ¥, enclosed by a surface S, of

arbitrary shape, with the permittivity £(r) and conductivity o(r), located in free space V,

as shown in Fig. 6.1(a). The body is replaced by a distribution of equivalent volume current

density J as shown in Fig. 6.1(b), with
J(r) ={o(r)+ jole(r) — &, ]E(r)} = 1(r)E(r) (6.1)

where g, is the free-space permittivity and E(r) is the total electric field intensity inside the

body. The distribution of J is related to the scattered field at the observation point of

position vector ¢ through the integral equation,
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E*(r)= j G (r,r) J(Had' (6.2)

where #' is the position vector of the source point and G (#,#') is the free-space dyadic

Green function

G(r,r')=—jou, {f + —Z—Y}G(F,r')
8

) (6.3)
= fhglr-r

G(r,r') =

dz|r—r']

4, being the permeability of free space, k, = w+/&,4, the wave number in free space, and

I the identity dyadic, i.e. J = xx + yy + 7z in Cartesian coordinates.

Since the total electric field E(#) inside the body is the sum of the scattered field E*(r)

and the incident field E™(¥), i.e.,
E(ry=E(r+E™(r). (6.4)
An integral equation satisfied by J can be written in the form

L) - L)) = B () ©65)
7(F)

where

LOT(F) = j G (v, J(r"dv (6.6)

"

-84 -



CHAPTER 6 SCATTERING BY 3~D INHOMOGENEOUS DIELECTRIC BODIES

Since £ is a linear operator, the MoM can be applied to solve (6.5). Once J is found,

E can be determined everywhere via (6.2)—(6.4).

§6.3. Numerical Method

In rectangular coordinates, G (r,r")- J(r') in (6.6) can be expressed as

B Gu Glz G13 u, -
G-J=|G, G, Gylu-J (6.7)
Gy Gy Gy Jud

where u,, p=1,2,3 denotes a unit vector along x—, v — or .z — axis, respectively, and

G 1is given by

Pg

G (riy=—jou|s + L&
pq(r5r)w_.]a)1u0 pq+_];§—au au

P g

]G(r,r'), p,g=123 (6.8)

with &, being the Kronecker delta and G the scalar Green's function given in (6.3).

Equation (6.5) can be cast into a matrix equation through the MoM discussed in Chapter

2. Firstly, the unknown cuwrrent density is expanded in terms of a set of subdomain basis

functions {f7(r;ne[l,N], pell,3]},ie,

J(r) xiitlpafﬁf’(r), rel, (6.9)

=l p=l

Substituting (6.7) and (6.9) into (6.5) gives

1 N N3 .
—= XAl = 22 alGyp f) 2wy BT (), p=123 (6.10)

T(r) =] e n=log=l
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where (-) indicates the inner product.

Consequently, after applying a weighted residual method with a set of weighting

functions {w, (r), m €[1, N1}, where

3
w, (F) = > u,wh(r) (6.11)
por

we have

Z ay(w ,,,=—f,f’> ZZG”(W,,,,<GWJ’,,“)>—<wm, ,ET), p=12,3 (612)

n=l g=|

which can be written as a matrix equation of the form

MZn +D Z, Z, “11_ _Vi_
Z,) £y + D, Zy I, | =V, (6.13)
L Zy Z;, Zy+Dy I W

or, more condensed, as ZI =V, with the elements of 1,,V,,D, and Z

.o D, 1 given by
{Ip ]m = a:::
7,1, =wh (#), w, - E™(r))
(6.14)
[Dﬂ ]””i = <M)m (I’) ( ) f‘”P( )>
2, == (r), (G £ pog=1,2,3

Here, Z ,, are Toeplitz matrices, D, are banded matrices, and Z is symmetric.
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A Galerkin's moment method with rooftop basis functions [48] has been implemented,
where the elements in (6.14) are evaluated numerically, as well as a simple point-matching

moment method [11], [16], where the elements in (6.14) are calculated analytically.

Equation (6.14) can be transformed into (2.24) using CBS with a 3-D wavelet transform
matrix W . The transformed matrix Z' is highly sparse after thresholding and, thus, a sparse
iterative method such as the BiCG can be employed to achieve a fast solution of the resultant

systems of equations with a computational cost of O(M ), where M = 3N, N being the

number of basis functions used.

The conventional fast wavelet transform described in Appendix A for (2.25), and also in
[24], requires a number of arithmetic operations of O(Af*). However, it is noted that the

submatrices £, in (6.13) are Toeplitz matrices and Z is symmetric. Thus, a wavelet

transform algorithm designed for Toeplitz matrices [73], [83] is utilized which significantly
reduces the number of arithmetic operations by eliminating redundant operations in the
wavelet transforms applied to column and row vectors of a Toeplitz matrix. The number of
arithmetic operations necessary to perform this wavelet transform to (6.13), with 8 vanishing
moments, is plotted as a function of the & in Fig. 6.2, which shows its efficiency with

respect to the conventional FWT algorithm.

§6.4. Numerical Experiments

A computer program has been written with dynamic memory allocation, to implement
the above mentioned technique. The MoM in [11], [16] is used to obtain the matrix equation
(6.13), and Daubechies' wavelets with 8 vanishing moments are used to obtain the

transformed matrix equation of the form (2.24). The sparsity § of a matrix is defined here as
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its percentage content of zero elements, and the effect of the threshold is measured by the

error function defined as

_HE-E|

o =R x 100(%) (6.15)

where E is the total electric field intensity inside the scatterer obtained by directly solving

(6.13) and E is the value obtained from the transformed equation (2.24) with a threshold
value & . The termination criterion for the sparse BiCG algorithm is chosen in terms of the
relative residual error, namely || ZT' =¥ ||/ |V’ <107 . To measure the performance of

the presented method, the reduction in computational time is defined as

T,~T

7, = x100(%), «=LU, BiCG (6.16)

(24

where T, is the CPU fime used fo solve (6.13) by the standard & solver with & being
either LU or BiCG, and 7" is the CPU time used by the presented method including the time
used to perform the wavelet transform of (6.13). Further, n7,,, represents the reduction in

CPU time of the presented algorithm with respect to the standard LU solver, while 77, is

that with respect to the standard BiCG solver, and thus the latter is a quantitative measure of

the contribution of using wavelets. Numerical experiments are conducted on a Pentium
800MHz personal computer.

The first illustrative example considered is that of a homogenous dielectric sphere with

the electric radius ko =1.0 and a relative permittivity £, = 4.0, as shown in Fig. 6.3. The

incident wave is propagating in the z — direction and is polarized in the x —direction. The
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geometry is modeled by using 8 x 8 x8 cubic cells of equal size. When § = 90.05%, the
sparse structure of Z' is shown in Fig. 6.4, and the far-field RCS is ploited in Fig. 6.3, where
the solution obtained when S = 0% and the Mie series solution are given as reference. The
performance of the presented algorithm is shown in Table 6.1, where a reduction of

n.y ~ 96% can be observed, while 77, is about 17~26%. In other words, the presented

method is faster than the conventional MoM using standard LU solver about 25 times, and
than that using the standard BiCG solver about 1.3 times. This is due to the fact that the

problem considered is well conditioned such that the BiCG solver converges rapidly to a

relative residual 10~ within 15 iterations.

A second example is that of inhomogeneous dielectric block in the form of a rectangular
parallelepiped of electric size ka=0.5, £6=0.5, and kc=1.0, with the relative

+(Ag/2a)(x +a - Ax/2) , where g, . =25,

Fanin

permittivity distributed as £.(x)=¢

Ag =1.0,and Ax is the cell width in the x —direction, Ax = a/4, as shown in Fig. 6.3. The

geometry is modeled by using 8 x8x 16 cubic cells of equal size. When S = 86.31%, the
sparse structure of Z' is shown in Fig. 6.4, and the far-field RCS is plotted in Fig. 6.3, where
the result obtained without thresholding, i.e., S = 0%, is also plotted as a reference. The
performance of this algorithm is indicated in Table 6.2, which shows that the CPU time

reductions are about 77,,, = 78% and 77, =53 ~ 63% . It should be remarked that the

computational efficiency increases with the matrix size, which recommends the method

presented for an efficient solution of electrically large problems.

A third example considered is that of a lossy dielectric block in the form of a

rectangular parallelepiped of electric size ka=1.0, kb =0.5, and ke =0.5, with
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g, =745 and o =0.8895/m , illuminated by an incident wave propagating in the
z — direction with x —polarization, as shown in Fig. 6.8. The geometry is modeled by
using 16 x8x 8 cubic cells of equal size. When S = 73.81%, the sparse structure of Z" is
shown in Fig. 6.9, and the far-field RCS is plotted in Fig. 6.10, where the result obtained
without thresholding, i.e., § = 0%, is also plotted as a reference. The performance of this

algorithm is indicated in Table 6.3. An efficiency of 77, = g = 67 ~ 78% is achieved
in this case. Note that 77,,, is decreased and 77,,., is increased in comparison with the

previous cases. This is mainly due to the larger magnitude of

t(r)fjowsy, = ¢, + o/ jog, -1 in (6.1), which makes the values of the elements of the
submatrices D, in (6.14) smaller, and worsens the condition number of the global matrix

Z and thus increases the number of iterations of the BiCG solver,

§6.5. Conclusions

The application of wavelet transform to the problem of wave scattering by 3-D
inhomogeneous dielectric bodies of arbitrary geometry is investigated in this chapter. The
fields scattered by such dielectric objects are modeled using a volume integral equation
with equivalent sources, whose corresponding MoM matrix equation has a Toeplitz-block
structure, which is fully exploited to speed up the 3-D wavelet transform utilizing the
efficient algorithm designed for Toeplitz matrices in [73]. A highly sparse matrix equation

‘15 derived after applying the wavelet transform, whose solution can be obtained by using an
efficient sparse BiCG algorithm. Numerical experiments are conducted for lossless
homogenous dielectric spheres with relatively small permittivity which is well

conditioned, lossless inhomogeneous parallelepipeds of electrically large size, and lossy
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homogenous dielectric parallelepipeds whose MoM matrices have a larger condition
number. It has been shown that the method presented gives an efficient fast solution
technique for the analysis of wave scattering by 3-D inhomogeneous dielectric bodies of

arbitrary geometry.
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Fig. 6.2. Number of arithmetic operations used to perform the wavelet transform with 8
vanishing moments for the matrix Z in (6.14) as a function &, where 3N is the number of

unknowns.
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Fig. 6.3. Far-field RCS of a homogenous dielectric sphere of radius 4o = 1.0 and relative

permittivity &, = 4.0.
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Fig. 6.4. Gray-scaled image of the sparse matrix with § = 90.05% for the spherical
scatterer in Fig. 6.3.

TABLE 6.1. COMPUTATION EFFICIENCY FOR THE SPHERE IN FIG. 6.3; IS DEFINED
[#1

IN(6.16).
CPU time (s) 7, (%)
§ S(%) | Eu(%0)

FWT + BiCG a =LU o =BIiCG
2x107 | 73.77 1.31 7.75 + 3.41 95.85 17.03
5%107 | 84.42 244 775 + 2.66 96.13 22.60
8x107 | 88.72 3.40 7.75 + 2.25 96.28 25.65
1107 | 90.50 4.36 7.75 + 2.09 96.34 26.84
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AN

/ inc

E

Fig. 6.5. Inhomogeneous rectangular block scatterer of size ka = 0.5, kb = 0.5, and
ke = 1.0, with &.(x) = €., + (Ae/2a)(x +a - Ax/2), where ¢, =25, Ae=1.0,

and Ax = a/4.
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Fig. 6.6. Gray-scaled image of the sparse matrix with § = 86.31% for the inhomogeneous
rectangular block scatterer in Fig. 6.5.
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Fig. 6.7. Far-ficld RCS of the inhomogeneous rectangular block scatterer in Fig. 6.5.

TABLE 6.2. COMPUTATION EFFICIENCY FOR THE INHOMOGENEOUS RECTANGULAR
BLOCK IN FIG. 6.5; 1 1S DEFINED IN (6.16).
[#4

CPU time (s) 7 (%)
) S(%) | E.{%) z
FWT + BiCG a =LU o = BiCG
1%10° | 71.66 | 0.58 23.86 +21.85 97.94 53.06
3107 | 82.01 1.31 23.86+ 17.81 98.12 37.21
5%107° | 86.31 1.74 23.86 + 13.22 98.33 61.92
3x10° | 89.53 | 243 23.86 + 11.78 98.39 63.40
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Fig. 6.8. Lossy rectangular block scatterer of size ka = 1.0, kb = 0.5, and kc = 0.5, with
g, =745 and o =0.889 S/m.
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Fig. 6.9. Gray-scaled image of the sparse matrix with § = 73.81% for the lossy rectangular
block scatterer in Fig. 6.8.
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Fig. 6.10. Far-field RCS of the lossy rectangular block scatterer in Fig. 6.8.

TABLE 6.3. COMPUTATION EFFICIENCY FOR THE L0OSSY RECTANGULAR BLOCK IN
FIG. 6.8; 77 1S DEFINED IN (6.16).

CPU time (s) n (%)
5 S(%) | Eon(%0) u
FWT + BIiCG a =LU | a =BiCG
3x107 | 61.40 2.55 23.86 + 700.44 67.33 67.20
sx107 | 67.92 4,68 23.86 + 573.61 73.05 72.95
§x107 | 73.81 8.89 23.86 + 45421 78.44 78.35
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Chapter 7

CONCLUSIONS AND FUTURE WORK

§7.1. Conclusions

In this work, the application of wavelets for a fast solution of electromagnetic integral
equations is studied. Wavelets offer the advantages of highly sparse moment-method
matrices, as well as a natural mechanism for a multilevel analysis, and thus are a powerful

mathematical tool for the numerical solution of integral equations.

Orthogonal wavelets provide a unitary transformation and are the optimal category of
wavelets in terms of the matrix condition number when used for the solution of
electromagnetic integral equations. More highly sparse moment-method matrices can be
obtained at the cost of worsening the matrix condition number with the use of
semi-orthogonal wavelets. The condition number of the matrices in the semi-orthogonal
wavelet domain is higher than that of the moment-method matrices, about 10° ~10* times
higher for the case of 8 vanishing moments, for example. The optimal number of vanishing

moments in a family of wavelets is 8, when the total number of unknowns is less than 5000.

Two applications of orthogonal wavelets, the MTA and the CBS, produce highly sparse
‘moment-method matrices and both are efficient means for a fast solution of electromagnetic
integral equations. The CBS gives rise to more sparse matrices than the MTA, about 7%

more for the problems of scattering by two-dimensional dielectric bodies considered in the
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work. The MTA, however, simply requires one-dimensional wavelets, and provides a

problem-independent transformation.

The MTA with orthogonal wavelets has been efficiently extended to the analysis of
scattering by BORs, which is performed by constructing coupled vector mtegro-differential
equations by taking advantage of the axial symmetry of the body. Efficient solution
techniques for solving the resultant sparse matrix equations have also been proposed. The
presented solution technique using GMRES is an efficient means for sparse matrix
equations, which is demonstrated for the analysis of conducing BORs. A sparse LU solver
with the approximate minimum degree-ordering algorithm [56] can be advantageously
applied to the solution of matrix equations that possess a higher condition number, when
iterative methods like the CG and GMRES fail to converge, e.g., for the analysis of dielectric

BORs.

Finally, the application of wavelets is further extended to the analysis of scattering by
3-D inhomogeneous bodies of arbifrary geometry formulated as a volume integral equation
involving equivalent sources [83]. An efficient wavelet transform algorithm designed for
Toeplitz matrices [73] is employed to speed up the 3-D wavelet transformations, and a sparse
BiCG algorithm is implemented to obtain a fast solution of the resultant sparse matrix
equation. Numerical experiments conducted have shown that the presented procedure is

highly efficient.
" The main contributions of this work are now summarized as follows;

e The performance of semi-orthogonal and orthogonal wavelets, when used for a

fast solution of integral equations, has been studied systematically, and it has
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been pointed out for the first time that the orthogonal wavelets are optimal in

terms of the matrix condition number.

The MTA and the CBS have been implemented for the solution of coupled scalar
integral equations and have been efficiently used for the analysis of scattering by

two-dimensional dielectric bodies.

The use of wavelets has been extended to solving single vector
integro-differential equations that arise in the analysis of scattering by
conducting BORs, as well as to coupled vector integro-differential equations

formulated for the analysis of scattering by dielectric BORs.

The application of wavelets has been successfully implemented for the analysis
of scattering by 3-D inhomogeneous bodies of arbitrary geometry, which is
formulated as a volume itegral equation. An efficient wavelet transform
algorithm for Toeplitz matrices is utilized and a sparse BiCG solver is employed

to obtain a fast solution of the resultant sparse matrix equations.

Several solution techniques for sparse matrices, obtained with the use of
wavelets, have been investigated. A sparse CG solver is efficiently used for a fast
solution of Fredholm integral equations. A sparse BiCG algorithm with an
efficient wavelet transform technique for Toeplitz matrices is also presented for
the fast solution of 3-dimensional volume integral equations associated with
.écattering problems by 3-dimenaional inhomogeneous bodies. Also, two solution
techniques have been proposed for the analysis of scattering by bodies of
revolution. The one using a sparse GMRES has been demonstrated for the

analysis of scattering by conducting bodies of revolution. The other one, using a
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sparse LU solver with an approximate minimum degree ordering algorithm is
especially recommended for problems whose resultant moment-method matrices

possess a higher condition number.

§7.2. Future Work

A number of areas for future work on the application of wavelets in computational

electromagnetics have been identified.

Mualtilevel algorithm

As already discussed in Chapter 2, the multilevel algorithm is one of efficient fast
solution techniques for integral equations. The rectangular and the triangular
functions combined with multigrids were employed to implement the multilevel
iterative algorithm in [31] and [78], respectively. In [68], we also implemented a
multilevel algorithm utilizing the multi-p hierarchical basis functions. These
algorithms have a significant drawback, i.e., the condition number increases with
the increment of the polynomial degree of the basis functions used. A multilevel
algorithm was also implemented based on the FMM, which requires hierarchical
grouping of grids (a tree structure of spatial decomposition). Wavelets are
optimal hierarchical basis functions and provide a natural mechanism for

muliilevel algorithms. The resulting matrices obtained with the use of wavelets

. .In MoM have a hierarchical structure as shown in Fig. 2.4, which provides stmple

multilevel operators, prolongation and projection operators. Moreover, the
implementation of the multilevel algorithms using wavelets is much easier than

others discussed above.
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Inverse problems

The CG-FFT method has been successfully utilized for the inverse problems
related to ultrasonic imaging in [51] and acoustic imaging in [53]. The inverse
problems are driven by a forward solver. The methods described in this work
have been proven to be efficient means for the electromagnetic scattering, and
can be further applied to electromagnetic inverse problems. The algorithm in
Chapter 6 1s especially recommended for use in general three-dimensional

microwave imaging.
Spectral domain methods

The spectral domain method has been successfully applied to a class of
electromagnetic problems involving the microstrip-type structures. One of the
key problems in this method is the selection of the basis functions and test
functions, which determines the convergence of the integrals in the Fourier
domain, related to the evaluation of the elements of the MoM matrices [30].
Wavelets with compact support both in time and Fourier domains are available in
literature, and provide an important property, i.e., localization both in time and

Fourer domains, which can be further exploited in the spectral domain method.
Genetic algorithms

The genetic algorithm is one of the global optimization methods based on the
concept of natural selection and genetics. By searching through an encoded
variable space, the genetic algorithm iteratively improves a population of

solutions, and thus is a class of computationally intensive problems [69]. The
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applications of fast solution techniques described in the work will dramatically
improve the performance of genetic algorithms for electromagnetic inverse or

optimization problems.

Wavelets versus wavelet packets

As discussed in Chapter 1, two categories of wavelet packets, namely the best
basis algorithms [59], {66], [67], [74] and the predefined algorithms [75], [84],
have been used in computational electromagnetics. The use of wavelet packets
generates sparser MoM matrices than those obtained with the use of the wavelet
transforms since more wavelets that have vanishing moments are involved. The
wavelet transform, however, is the simplest form of wavelet packet transforms
[67], [75], and thus is less expensive than a wavelet packet transform. A
quantitative comparison of the wavelet transform versus a wavelet packet
fransform needs to be mvestigated by considering the trade-off between the
computational cost of transform algorithms and that for solving the resultant

sparse matrix equations.
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Appendix A

WAVELETS

§ A.1 Biorthogonal Wavelets
Biorthogonal wavelets have been considered to gain more flexibility in the construction
of wavelets since they only require that {¢(x —n);n € Z} form a Riesz bases of V. Since

(2.1) and (2.2), there exist two sequences {4, } and {g, } such that the scaling function ¢

and the wavelet function  satisty the following equation

H(x) =2 h,g(2x - n)

) (A.1)
w(x) =2 g,$(2x~n)

with V= Span{g,, =2"7¢(2'x-n);neZ} and W, =Spanfy,, =2""y(2'x-n)}

generating a primary multiresolution analysis (MRA).

Similarly, their dual functions 5 and 7 satisfy

§()=~2Q g (2x-n)

(A.2)

F(x)=+2) 4 Q2x—n)
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and f}; = Span{gﬁﬁ;!n =2/ x ~n)} and WJ,- = Span{i;,, = 275727 x = n)} are the
dual MRA approximation spaces. A complete development of biorthogonal wavelets with
spline functions is given in [5]. Figs. A.l and A.2 show the biorthogonal scaling functions
and wavelets constructed with rectangular and triangular pulse functions. The biorthogonal
scaling functions and wavelets are symmetric and compactly supported. Moreover, all the
filter coefficients are dyadic and rational and thus are very suitable for fast computations
since division by 2 can be done very fast on a digital computer. Another attractive property is
that the closed-form expressions for the scaling function and their wavelet are available at all

x. The disadvantages are that they do not generate orthogonal MRA, and the support widths

for the primary and dual scaling functions are different.

§ A.2 Semi-Orthogonal Wavelets

C. K. Chui introduced the semi-orthogonal wavelets [6], [7], [26]. Semi-orthogonal
wavelets are biorthogonal wavelets that generate an orthogonal MRA. These
semi-orthogonal wavelets are based upon the cardinal B-Splines, as are the Battle-Lemarié

orthogonal wavelets. For an index £, define the scaling function
¢(x) = N, (x) (A3)

where N, (x) is the cardinal B-spline that is expressed recursively as a convolution
N, =N, *N, with the rectangular pulse function N,(x)= yy,(x). The dilated and
translated sequence {¢,, = 22§27 x —n);n e Z} forms a Riesz basis for V.. the function

space consisting of all splines of order £ —1. The general two-scale relationship for these

scaling functions is given by the well-known B-spline identity
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s k
N (xy=) 27" (2x - 1) (A.4)

n=l 1

which gives the sequence {#,} in (A. 1). The corresponding wavelets are given by [6]
w(x)= Y g,N,(2x-n) (A.5)

neZ

with the sequence {g,} given by

( 1)11 k '
80 = 8w = Ger Z Ny(n—1+1), 0<;<3k-2 (A.6)

Associated with the primary functions ¢ and y are dual functions 5 and 17, which are

given by [6], [46]

$(x)=> 2h,¢,(2x~n)

nelZ
(A7)
$(x)=) 28,6, (2x—n)
neZ
with
= ngzk—l—zza}k)
leZ
(A.8)

- k)
&n 7 Zhrw?_kwl-—Zla[. .

leZ
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and the sequence {ay‘)} is uniquely determined by using the interpolatory property of the

fundamental spline of order 2%

Ly (m)y= Y a®N, (m+k-j)=8,, (A.9)

JjeZ

O o 18 the standard Kronecker delta function. Note that the infinite sequence {af,.k)} is of

exponential decay, so are {f{”} and {g,}.

The collections {gpé:.,k;keZ} and {/;,;ksZ} form the dual MRA approximation

subspaces I"/; and H—% which are mutually orthogonal,
V.lWw, V.lw, j=]J (A.10)

Consequently, WJ LW, and 1’71 LV,. Thus the primary and dual functions generate an

orthogonal MRA. The functions ¢ and  are compactly supported. Their dual functions 5
and {7, however, are not compactly supported. For an index %, the support widths for ¢ and
w are [0, k] and [0, 2k —1], respectively. When k =1, the result is the Harr system. For

k > 1, the wavelets are constructed of splines of degree & — 1. Semi-orthogonal wavelets are
symmetric for even k& and antisymetric for odd k. Semi-orthogonal wavelets with k=2, 5, 8,

are shown in Fig. A.3.
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§ A.3 Orthogonal Wavelets

The construction of orthogonal wavelets is based on an MRA where the collection of the

scaling function {@(x - n); n € Z} forms an orthogonal basis of V,, instead of a Riesz basis.

The scaling function and wavelets satisfy (A.1) with

g, = (D"l D h=2 (A1)

Two simple examples of orthogonal wavelets are the Harr wavelets and the Shannon
wavelets. The Harr wavelets are not continuous in time domain, and the Shannon wavelets
decay very slowly. The Mayver wavelets were constructed by using polynomials and decay
faster than any inverse polynomial. The scaling function and wavelet function have
closed-form expressions only in Fourier domain, and are infinitely supported in time domain

as shown in Fig. A.4.

Battle (1987) and Lemarié (1988) constructed, independently, a family of orthogonal
wavelet bases [5], which decay exponentially, faster than Meyer wavelets. The
Battle-Lemarie wavelets are constructed by orthogonalizing B-spline functions. As a result,
closed form expressions for the scaling function and the wavelet are no fonger available. The
Battle-Lemarié wavelets with N vanishing moments are piecewise polynomial of degree
N -1, and thus belong to C"7* (i.e.,, which have N -2 times continuous derivatives);

@(x) is always symmetric, while y(x) is symmetric for odd N and antisymmetric for even N

about x =1/2 axis. They are infinitely supported just like the Meyer wavelets.

In 1988, Daubechies introduced a family of wavelets that are not only orthonormal, but

also have compact support both in the time and Fourier domains [5]. The development of this
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family has had a profound impact and these wavelets are used extensively in practice.
Several members of this family are displayed in Fig. A.5. These wavelets are also indexed by
a positive integer N, where N is the number of vanishing moments. They are supported on an
interval of length 2N 1, and the smoothness increases as /N increases. Unfortunately, as
proved in [5], orthogonal wavelet bases, except the Haar wavelets, with compact support are

asymmetric, and no closed-form expressions are available.

Another family of orthonormal wavelets constructed by Daubechies is the family of
coiflets, named by her in honor of wavelet researcher Ronald Coifman, who suggested a
wavelet-based MRA in which the scaling function also has vanishing moments [5]. There
are no closed form expressions, too. Some examples are given in Fig. A.6. Itis clear from the
figure that ¢ and ¢ are much more symmetric than those of Daubechies' wavelets, at the
expense of their support width, i.e., coiflets with & vanishing moments have typically support

width 3k -1, as compared to 2k —1 for the Daubechies' wavelets shown in Fig. A.4.

§ A4 The Fast Wavelet Transform Algorithm

The fast wavelet transform (FWT) algorithm [24] is extremely useful in practical
applications such as the wavelet-based MoM for the numerical solution of integral
equations. Like the FFT (fast Fourier transform), the FWT of length N only needs

O(N log N) arithmetic operations. Without loss of generality, let us consider for illustration

 the biorthogonal FWT algorithm.

With (2.3), a function f; € V;can be written as the sum of a function /., eV , and

4,4 € W:f—l
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Fixy=>"80 48, (0)= fi0+4;, (A.12)
k

with

S = Zsjd,ﬂjjul,l(x)
7
) (A.13)
qj1 = Zdj—l, Wi ()
L ]

where the scaling function coefficients s, , and wavelet function coefficients d; , are

given by

sk = o) Ay =000 (A.14)

Due to (A.2), the following relationships exist

Sia = '\/Ezﬁk—ﬂsj: d, ;= \/Ezgk—ﬂdj (A.15)
P T

Thus, for given coefficients s, ; at any level J, all the lower level coefficients s , and

d for j<J, can be easily computed. The forward fast transform or decomposition

Sk
algorithm is shown schematically in Fig. A.7(a), where the arrows represent the

decomposition computations.

The inverse FWT algorithm can be derived from the relationship

Si0 = 'JEth—ZISj—],k + \/Ezgk—ﬂdj-l,k (A.16)
k k

A schematic representation of the inverse FWT is shown in Fig. A.7(b).
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The filter coefficients completely characterize wavelet bases. It is easily seen that the
support width of the wavelets is closely related, proportionally, to the number of arithmetic

operations.
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Appendix B

COMPUTATION OF SEMI-ORTHOGONAL WAVELETS

In order to work only with integers, let

W{x)=(2k -Dy(x)

R (B.1)
Fx)= = 2D yIN (2x - )

i=0

with V, (x) and y(x) being given in (A.5) and (A.6), respectively.

In comparison with (A.6), we obtain

k
yE= b1

=0

27D = CE-DIN, (G +]) (B.2)

bff = (kJ :__]‘EL_
| l Nk-0D

The sequence {;/j.' ;7 €[0,3k - 2]} is totally positive. Utilizing the notations in Fig. B.1,

. the computational procedure for the sequence {y j } 1s schematically described in Fig. B.2,
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VARV

(a) (b)

Fig. B.1. Notations: (a) c=ra+sb,(b) c=a+b.
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Fig. B.2. Computation of the sequence {y}; j €[0,3k - 2]}.
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Appendix C

SOFTWARE STRUCTURE

The structure chart of a software system illustrates the partitioning of the system into
modules showing their hierarchy, organization, and communications, and is also a powerful
means of documentation of a software system that helps the designers. The structure chart

symbols defined in [3] are used in this appendix.

Although several computer programs in Fortran 90 with the memory being allocated
dynamically have been implemented for the research work in this thesis, they share the
common structure as depicted in Fig. C.1. The modules for solving matrix equations and the
fast wavelet transforms used in Fig. C.1 are packaged separately and described in Figs. C.2

and C.3, respectively,
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Fig. C.1. Structure chart of the software system used.
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Fig. C.2. Structure chart of the solution module for matrix equations.
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